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Increasingly, companies are creating product advertisements and catalog
images using computer renderings of 3D scenes. A common goal for these
companies is to create aesthetically appealing compositions that highlight
objects of interest within the context of a scene. Unfortunately, this goal is
challenging, not only due to the need to balance the trade-off among aes-
thetic principles and design constraints, but also because of the huge search
space induced by possible camera parameters, object placement, material
choices, etc. Previous methods have investigated only optimization of cam-
era parameters. In this paper, we develop a tool that starts from an initial
scene description and a set of high-level constraints provided by a stylist
and then automatically generates an optimized scene whose 2D composition
is improved. It does so by locally adjusting the 3D object transformations,
surface materials, and camera parameters. The value of this tool is demon-
strated in a variety of applications motivated by product catalogs, including
rough layout refinement, detail image creation, home planning, cultural cus-
tomization, and text inlay placement. Results of a user study indicate that
our system produces images preferable for product advertisement compared
to previous approaches.

Categories and Subject Descriptors:

1. INTRODUCTION

A growth application for computer graphics is creation of images
for product advertisements and catalogs. As photorealistic render-
ing algorithms have improved, it has become practical to synthe-
size images that are indistinguishable from photographs for many
types of scenes commonly found in product advertisements (e.g.,
kitchens, bathrooms, living rooms, etc.). As a result, several fur-
niture and home goods companies are beginning to create product
images for their catalogs by rendering 3D models rather than pho-
tographing physical objects [Southern 2012]. For example, IKEA
has reported that 25% of scenes shown in its 2013 catalog were
rendered from 3D models, and that they expect the percentage to
increase dramatically in upcoming years [Souppouris 2012].

The advantages of creating catalog images from 3D models are nu-
merous: e.g., less expense, less space, more flexibility, and higher
customizability [Enthed 2012]. If libraries with accurate models of
3D surfaces, materials, and lights are available for most objects in
scenes of interest, then it is possible to create advertising images
with off-the-shelf 3D scene modeling tools and photorealistic ren-
dering software, which are relatively cheap, require little physical

space, and allow incremental edits. Virtual photography avoids the
need to build physical sets in large photo studios, store physical
objects in large warehouses, and/or schedule actors, stylists, and
photographers to meet for photo shoots. Moreover, it provides in-
creased opportunities for customization – for example, to adapt the
selections, colors, and placements of objects based on demograph-
ics (or even individual preferences), to produce multiple images
of the same scene with different objects of interest, to adapt scene
composition to the resolution and aspect ratio of the display device,
and/or to adapt the size and placement of text labels depending on
language. Companies currently achieve these goals (partially) with
manual effort at great expense.

Despite these advantages, producing good advertisement images
from 3D models is difficult: it requires optimizing large numbers
of often-competing design constraints. First and foremost, the im-
ages must highlight certain “objects of interest” within a scene (the
ones being advertised), which implies constraints on the positions,
sizes, color contrasts, and visibilities of those objects (e.g., Fig-
ure 7). Second, they must include scene context to provide cues
about where the objects of interest might be found, how they might
be used, who might be using them, etc., requiring contextual ob-
jects to be arranged with plausible 3D positions, sizes, and support
relationships. Finally, they should follow well-established rules of
composition and aesthetics, which further dictate the screen-space
positions, balance, and colors of objects in the scene. Typically, 3D
artists spend multiple days tweaking the positions, orientations, and
materials of objects to optimize the composition of each new image
after an initial approximate scene layout has been chosen. This ef-
fort must be duplicated for every variant of the image, which may
be adapted for different cultures (e.g., IKEA makes 62 versions
for 43 countries), different display devices (e.g., iPhone, PC, print,
etc.), and/or different objects of interest (for zoomed views of cer-
tain objects).

The goal of our work is to develop a tool to assist in the creation
of product images by optimizing 2D compositions of 3D scenes by
adjusting object transformations, materials, and cameras. Our tool
starts with an approximate scene description provided by a stylist1

that includes which objects should appear in the scene, which ob-
jects rest upon which other objects, and which materials can be
used for which objects, plus an initial plausible configuration for
object transformations, surface materials, lighting parameters, and
(optionally) camera views. Our tool then optimizes the scene de-
scription to improve its estimated composition and aesthetic quali-

1A person who designs scenes for product images
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ties, optionally satisfying additional design constraints common in
product image formation (e.g., highlight these objects of interest,
use a landscape image format, leave space for a text box, etc.).

To achieve this goal, we define an energy function that encodes
a large variety of image composition rules and user-provided con-
straints. We then take object positions and orientations, surface ma-
terials, and camera parameters as free variables and optimize the
scene description by minimizing the energy function. Our system
is able to refine scenes automatically to produce better composi-
tions for many aspects of product catalog production.

We have made the following contributions in this work. First, we in-
troduce a scene optimization tool to assist in the creation of product
images. Second, we propose a method for optimizing 2D compo-
sitions by simultaneously manipulating object positions, materials,
and cameras. To the best of our knowledge, we are the first to have
combined all these degrees of freedom in a single optimization.
Third, we demonstrate the utility of our tool for reducing the hu-
man effort to create scenes providing good image compositions for
a variety of use-cases.

2. RELATED WORK

Our work draws upon previous work in image composition and
aesthetics, image analysis and optimization, virtual camera control,
and automatic scene synthesis.

Image composition and aesthetics: Our work is inspired by
composition “rules” that have been established to guide photog-
raphers and graphics designers towards better scene composi-
tions and aesthetics [Arnheim 1988][Bethers 1956][Clifton 1973]
[Grill T. 1990][Krages 2005][Martinez and Block 1988] [Tay-
lor 1938]. Well-known examples include visual balance, diagonal
dominance, and color contrast. Additional guidelines recommend
ways to choose the position, size, aspect ratio, coincidence, visibil-
ity, and background for important objects – for example, the “rule
of thirds” suggests that important objects should appear at the in-
tersections of one-third lines.

Image analysis and optimization: Several papers have used these
guidelines to quantify and enhance the compositional and aesthetic
quality of images. For example, [Datta et al. 2006] learned a regres-
sion model to predict the aesthetic quality of an photo from com-
puted image features, including saturation, hue, aspect ratio, rule
of thirds, etc. [Kao et al. 2008] developed a model of image com-
position quality based on horizon balance, intensity balance, loca-
tions of regions-of-interests, and merger avoidance and then used
the model to automatically rotate and crop images. [Lok et al. 2004]
provided an algorithm to move objects in a 2D composition to im-
prove visual balance. [Bhattacharya et al. 2010] provided ways to
adjust the locations of salient foreground regions and the image
aspect ratio to improve images according to the rule of thirds and
visual balance. [Wong and Low 2011] adjust pixel luminance, satu-
ration, and sharpness to improve the salience of important regions.
[Cohen-Or et al. 2006] adjust pixel colors to improve color har-
mony. [Liu et al. 2010; Jin et al. 2012] optimize visual balance, di-
agonal dominance, rule of thirds, and salient-region sizes by crop-
ping, warping, and retargeting images. All these methods operate
only on edits to 2D images – they do not optimize 3D scene param-
eters, such as cameras, materials, and/or object transformations, as
our system does.

Camera optimization: Several methods have incorporated prin-
ciples of image aesthetics and composition in optimization algo-
rithms for camera control in 3D rendering systems [Christie et al.
2008; Gooch et al. 2001]. For example, [Olivier et al. 1999] op-
timized camera parameters to match user-prescribed screen-space
positions, sizes, and spatial relationships of rendered objects. [Ab-
dullah et al. 2011] extended this approach to also consider visual
balance, diagonal dominance, rule of thirds, and depth of field.
[Bares et al. 2000; Bares 2006] added consideration for object
visibility depth order in automatic camera control for virtual en-
vironments. While these papers provide motivation for our work,
they consider only camera control – we additionally optimize ob-
ject transformations and surface materials, which can significantly
improve image compositions, but require solving a more difficult
optimization problem.

Scene optimization: Several recent papers have proposed methods
for automatically placing objects in scenes. For example, [Yu et al.
2011; Fisher et al. 2012] and [Merrell et al. 2011] proposed systems
to produce plausible furniture layouts based on examples and de-
sign guidelines, respectively. These methods focus on scene plau-
sibility without concern for any particular camera viewpoint and/or
image composition principles. As a result, they produce scenes that
may not support generation of aesthetic images from any camera
viewpoint. Our framework works synergistically with these sys-
tems: we employ plausibility constraints similar to [Merrell et al.
2011] to ensure plausible object arrangements as we optimize im-
age compositions in our system.

Camera and scene optimization: In their pioneering work on
“Through the Lens Camera Control,” [Gleicher and Witkin 1992]
discussed the possibility of simultaneously adjusting camera and
object parameters to satisfy screen-space constraints in rendered
images. However, they discussed only low-level constraints (e.g.,
keep the object at a prescribed screen-space position) and provided
no implementation or investigation of the idea – they left the topic
as a suggestion for future work.

Joint optimization of camera parameters and scene content has
been considered in some domain-specific applications. For exam-
ple, [Bell et al. 2001] proposed an approach that maintains visual
constraints of objects in screen space to support interactive update
of labels in a virtual and augmented reality system as the user
changes the camera viewpoint. [He et al. 1996] developed a sys-
tem that automatically controls a camera for capturing actors in
virtual environments, subtly changing the positions of virtual ac-
tors to achieve better compositions. However, these solutions were
domain-specific.

We believe that ours is the first system to optimize aesthetics and
composition of rendered images with simultaneous control over
camera parameters, object transformations, and surface materials.
We investigate this optimization problem for the novel application
of image synthesis for product catalogs.

3. OVERVIEW

The core of our work is a method for optimizing 2D composi-
tions of rendered 3D scenes by adjusting camera parameters, object
transformations, and surface materials. The required input to our
system is a 3D scene graph that includes polygonal models for all
objects in the scene, a hierarchy of support relationships between
objects (e.g., floor supports table, table supports vase), a location
and orientation for every object, a list of possible definitions for
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every surface material, a list of light sources, and the aspect ratio
of the output display device. Our system also requires a list of focus
objects OF that specify the main objects of interest in the scene.
Optional inputs include a list of context objects OC that should re-
main visible for context, and a list of rules that constrain the 3D
spatial relationships between objects of specific types (e.g., picture
frames on walls should not be rotated) Furthermore, in some ap-
plications, users may provide possible initial values for the camera
parameters. All input scene parameters can be approximate, since
they will be refined by the optimization.

From this input, our system optimizes the scene description to
generate a set of rendered images. In particular, our method op-
timizes the following scene parameters (plus other application-
specific variables described in Section 6), with the degrees of free-
dom listed in parentheses:

—Camera (6): position (3), direction (2), and field of view (1)
(camera roll is constrained to be zero).

—Object transformations (3 per object): position of the object
centroid on its support surface (2) and rotation of the object
around the normal of its support surface (1).

—Materials (1 per material): choice of a material/texture defini-
tion amongst a list of possible candidates.

Our system optimizes these parameters according to an energy
function that accounts for image composition, aesthetic principles,
and object focus, while maintaining 3D spatial constraints (e.g., no
collisions, specified spatial relationships) and 2D screen space lay-
out constraints (e.g., preferred locations for objects of interest). In
most applications (described in detail in Section 6) we envision that
stylists will either use our automatically generated images directly
or provide additional inputs/refinements to guide further optimiza-
tion.

The following sections describe our energy function and optimiza-
tion procedure in detail.

4. ENERGY FUNCTION

Our energy function estimates how effectively an image advertises
the product(s) it depicts.

Of course, the quality of an advertising image depends on many
complicated factors that are difficult for a computer to evaluate,
including what type of room is depicted in the scene, how the lay-
out of the room reflect who lives there, how objects near the prod-
uct(s) reflect people’s preferences, what season it is, etc. So, we
leave those decisions to a professional stylist, who provides an ini-
tial scene layout, with constraints about which objects are on which
surfaces, which object(s) are the subject of focus, which object(s)
are important for context, which objects have important spatial
relationships in 3D, and which objects/materials can possibly be
switched with one another. Then, our system must only investigate
the subspace of scenes that satisfy this high-level scene description,
and the output is constrained to reflect the stylist’s specifications.

Even within that subspace, there are many competing factors that
affect the “quality” of the resulting image, including how well it
satisfies aesthetic and composition principles, how effectively it
highlights the focus objects, how well it matches the stylists spec-
ifications, etc. Our goal here is to define an energy function that
reflects these factors and can be optimized efficiently.

F The 2D image frame (viewport)
O The set of all objects
OF The set of focus objects
OC The set of context objects
OB The set of background objects
Oi An object in set O
Pi Oi’s projection into screen space
Vi the part of Pi visible to the camera
V(·) Volume in scene space
A(·) Area in screen space
B(·) Boundary contour in screen space
F(·) Projection onto XY plane in scene space
R(·) Diagonal radius
C
2

(·)/C
3

(·) Centroid in screen space/scene space
d
2

(·, ·)/d
3

(·, ·) Euclidean distance in screen space/scene space
c(·, ·) Color difference in L*ab space

Table I. : Symbols used in the energy function definition.

Several previous papers have proposed energy functions to evaluate
aesthetics and composition of images (see Section 2). Our contribu-
tion here is not the introduction of this idea, but the specialization
of it to images for product advertisements.

Our approach is to interview professionals responsible for creat-
ing scenes for popular product catalogs and to devise an energy
function quantifying the factors they list as important. Although the
number of people suitable for such interviews is quite small (e.g.,
Pottery Barn might use a dozen stylists for a catalog), we were able
to interview one professional stylist who works with several ma-
jor companies and one technical person who works closely with
stylists at a major furniture company. They first described the pro-
cess used to create images for product catalogs and then explained
the factors they use to create good image compositions. Summariz-
ing briefly, the first tasks are to select products to highlight (e.g.,
a bedroom set), choose a space to display them (e.g., a bedroom),
imagine who is using that space (e.g., a teenage boy), select con-
textual objects and arrange them roughly in the scene (e.g., a foot-
ball on the dresser), select a rough camera viewpoint (e.g., from a
person standing in the doorway), and then refine the image com-
position to highlight the selected products within the context of the
scene. This last step is the most time consuming and the focus of
our work.

During our interviews, the following factors were identified as most
important for refining image compositions: 1) object placement
within the 2D frame, 2) object saliency within in the 2D frame,
3) object relationships within the 3D scene, 4) camera placement,
5) image composition, and 6) consistency with the initial scene lay-
out. We encode these factors in an energy function with terms that
represent relevant compositional principles and desired object rela-
tionships:

E = Ert +Ece +Ecl +Esa+

Esr +Eco +Esu +Ecv+

Etv +Evb +Ecc +Eir

(1)

Our system minimizes this energy function to help stylists refine
rough scene layouts to produce good image compositions. The rest
of this section defines the energy terms in detail. For reference,
Table I. lists all of the variables used in the energy function.
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4.1 Object placement within the 2D frame

For product advertisements, some of the most significant factors
affecting image quality are the positions of focus objects, which
we encode with the following terms.

—Rule of thirds. In general, focus objects should align with
vertical or horizontal lines that divide the viewport into thirds
and/or be centered at the intersections formed by them [Baner-
jee and Evans 2004][Bares 2006][Byers et al. 2004] [Datta et al.
2006][Gooch et al. 2001][Liu et al. 2010][Ward 2003]. More
specifically, stylists suggest that horizontal focus objects (e.g.,
sofa) should align with horizontal third lines and vertical focus
objects (e.g., floor lamp) should align with vertical third lines.
We encode these preferences with

Ert =
wrt

R(F )

2

X

Oi2OF

✓
w2

h2

dh(C2(Pi))
2

+

h2

w2

dv(C2(Pi))

◆
2

where w and h are the width and height of the bounding box of
Pi, respectively, and dh and dv stand for minimum distance to
the closest horizontal and vertical third lines respectively.

—Centeredness. For some product images (e.g., zoomed views of
single objects), focus objects should appear in the center of the
image [Arnheim 1988]. We encourage centeredness with the fol-
lowing term:

Ece =

wce

R(F )

2

X

Oi2OF

d
2

(C
2

(F ), C
2

(Pi))
2

—Clearance. Since other objects should not compete with the fo-
cus objects in the composition, we introduce a term to penalize
the objects that are close to focus objects.

For an object Oi, we consider its signed distance to the bound-
ing circle of a focus object in screen space (a negative distance
means Oi is inside the bounding circle), and normalize the dis-
tance by the radius of the bounding circle in order to avoid fa-
voring small objects. We use r(Oi) to denote the minimum of all
the distances,

r(Oi) = min

Oj2OF

d
2

(C
2

(Pi), C2(Pj))�R(Pj)

R(Pj)

The clearance term is then defined as,

Ecl =
wcl

N

X

Oi2OF

⇣
e�max{0,r(Oi)}2

+max {0,�r(Oi)}2
⌘

where N = |O \OF|. The max {0,�r(Oi)}2 term handles the
case where Oi is inside a focus object’s bounding circle.

4.2 Object saliency within the 2D frame

Visibility and object size contribute to perceived relative impor-
tance [Bares et al. 2000][Bares 2006][Bell et al. 2001][Olivier et al.
1999]. An object is perceived as less important if it is partially oc-
cluded by another object, partially clipped by the frame, or if it
takes up a small amount of screen space. We encode the saliency of
focus and context objects with the following terms.

—Object size. To quantify the effect of object size on saliency, we
introduce the following term:

Sr(Oi) = max

⇢
0, r � A(Vi)

A(F )

�
2

where A(Vi) is the area of the visible part Vi of Oi, r is the
minimum required size of Oi. We describe how we choose r
later.

—Visibility. To quantify the effect of visibility on saliency, we use
the following term:

Vr(Oi) = max

⇢
0, r � A(Vi)

A(Pi)

�
2

+ D(Oi)

where A(Pi) is the total area of the object projection Pi as-
suming no occlusions by other objects or clipping by the image
frame. A(Vi) and A(Pi) can be computed efficiently using hard-
ware occlusion queries [Govindaraju et al. 2003]. We introduce
the term D(Oi) to encourage objects outside the frame to move
towards the center of the frame:

D(Oi) =

⇢
d
2

(C
2

(F ), C
2

(Pi))
2, if A(Vi) = 0

0, else

Visibility and object size are both essential for focus objects. How-
ever, for context objects, we observe that there are two scenarios.
If the context object is small compared to the focus object, visibil-
ity is important while its absolute size in the viewport is not (e.g.
items on the dining table in Figure 4 left). On the other hand, if the
context object is largely occluded, it must maintain some minimum
size in the composition. To handle these cases, we compute both
energies Vr and Sr for each context object and select the mini-
mum. Thus, the complete form of our object saliency energy term
is

Esa = wsf

X

Oi2OF

�
Vvf (Oi) + Ssf (Oi)

�
+

wsc

X

Oi2OC

min {Vvc(Oi),Ssc(Oi)}

There are four parameters in this term. In all experiments, we set
vf = 100%, sf = 10%, vc = 80%, sc = 5%, which means a
focus object is required to be fully visible and cover 10% of the
viewport; a context object is required to be at least 80% visible or
cover at least 5% of the viewport.

4.3 Object relationships within the 3D scene

3D spatial relationships between scene objects can influence the
plausibility of a scene. For example, dining chairs usually remain
near the dining table. Physical laws (e.g., collisions, gravity, etc.)
also impose constraints on object positions. We introduce several
terms to enforce these constraints.

—Locked variables. Assuming that the input scene configuration
has a plausible 3D arrangement of objects, we provide a sim-
ple mechanism to allow a stylist to specify which variables can
and cannot change during the optimization. For example, the
stylist can specify that a picture frame cannot rotate, or that a
dresser can only translate in X (along an axis-aligned wall), or
that camera pitch cannot change. These are implemented as hard
constraints – i.e., they reduce the degrees of freedom in the opti-
mization.
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—Semantic relationships. We also provide mechanisms to spec-
ify which spatial relationships between objects should be main-
tained from the initial scene, and which can be optimized. For
example, he/she can tell the system to keep the chair in front of
the desk, or keep the mouse to the right of the keyboard. These
spatial relationships are specified in a short text file (with 10-
15 lines on average), implemented as soft constraints using the
method similar to [Bukowski and Séquin 1995; Merrell et al.
2011]:

Esr = wsr

X

{Oi,Oj}2C

�i,jd3(C3(Oi), T
�1

i (C
3

(Oj)))
2

where C is a set of constrained object pairs, and T�1

i is the ini-
tial transformation from the scene space into the local coordinate
frame of object Oi, and �i,j controls how much the spatial re-
lationship can change. �i,j can be set by the stylist empirically
in practice, and we set �i,j = 1 by default in all of the results
shown in this paper.

—Collision relationships. Object inter-penetrations should be
avoided to improve the physical plausibility of the scene. In our
implementation, we only penalize the collisions that are visible
in the composition, and treat collisions as soft constraints with
a penalty term based on the relative volume of the object inter-
sections so that the energy function has a gradient near collision
transitions:

Eco = wco

X

Oi2O
A(Vi)>0

X

Oj2O
A(Vj)>0

V(Oi \Oj)

V(Oi)

To compute intersections, we project every object to the XY
(i.e., ground) plane and store the projection as a bitmap along
with the min and max Z values of the object. We detect intersec-
tions by checking for overlaps in both the XY projections and
Z ranges of objects.

—Support relationships. The support relationships provided by
the stylist must be maintained during the optimization (e.g., ob-
ject A is on object B or attached to the side of object B). Thus,
we penalize placement of an object off its support object by mea-
suring the fraction of its projected area outside its support surface
[Fisher et al. 2012]:

Esu = wsu

X

Oi2O

✓
1� A(F(Oi) \ F(Si))

A(F(Oi))

◆
2

where Si is the object supporting object Oi.

4.4 Camera placement.

Product images generally depict scenes from viewpoints that are
“natural” for people. We introduce two terms that capture the notion
of natural viewpoints.

—Canonical views. In most product images with one focus object,
stylists favor canonical views of the object class. In our experi-
ment, we manually defined a set of 1-4 canonical view directions
for each object class [Blanz et al. 1999; Gooch et al. 2001], and
then deviations from them are measured as:

Ecv = wcv min |(✓,�), (ˆ✓i, ˆ�i)|2

where (✓,�) is the view direction of the camera, and (

ˆ✓i, ˆ�i) is
the closest canonical view direction for the object class.

—Typical views. Product images that depict large scenes with mul-
tiple focus objects often use camera viewpoints that match how
a human would typically see the scene. We encode the notion of
a typical view as

Etv = wch(h� h
0

)

2

+ wca�
2

where h is the height of camera off the floor, h
0

= 5ft is the
typical height of a human eye, and � is the pitch of the cam-
era (where 0 is horizontal). This term penalizes viewpoints that
deviate from a typical human eye height and tilt the camera up-
wards/downwards.

4.5 Image composition

Several well-established composition guidelines are used by
stylists to create aesthetically pleasing images. We have included
several in our system.

—Visual balance. Images whose “center of mass” is close to the
center of the image frame generally have better aesthetics [Arn-
heim 1988][Liu et al. 2010][Lok et al. 2004]. So, we add the
following term, which measures the distance between the center
of the frame and the center of mass of 2D object projections:

Evb =
wvb

R(F )

2

d
2

✓
C
2

(F ),

P
C
2

(Pi)A(Pi)P
A(Pi)

◆
2

—Color contrast. Greater color contrast at object contours can
help a viewer understand boundaries between shapes in a scene
[Kowalski et al. 2001][Wong and Low 2011]. To encourage this
effect, we add the following energy term for focus objects:

Ecc =
wcc

R(F )

2

X

Oi2OF

X

p2B(Vi)

1

⇣
avgq2N(p)\Vi

c(p, q)
⌘
2

+ ✏

where N(p) \ Vi denotes the neighborhood of pixel p, exclud-
ing the visible pixels in Vi. To evaluate the color contrast, we
extract the contour of each object in an image rendered at 1/4-th
resolution, which accelerates the computation.

4.6 Inertia

Finally, we add a regularization term that encourages small changes
to the scene:

Eir = wir

X

Oi2O

✓
x2

i

�2

t

+

y2

i

�2

t

+

✓2i
�2

r

◆
+

5X

i=0

c2i
�c[i]2

where (xi, yi, ✓i) describe the translation and rotation of object Oi,
respectively, and ci describe the change to camera parameters, with
�t = 0.5,�r = 0.5,�c = [0.17, 0.17, 20, 20, 20, 0.17] controlling
the flexibility of object movement and camera manipulation.

These energy terms are weighted by coefficients that adjust for
scale differences and control their effects on the final results. By
default, the weights are set to wrt = 10000, wce = 10000, wcl =
500, wsf = 10000, wsc = 500, wsr = 100, wco = 10000, wsu =
10000, wcv = 10000, wch = 10000, wca = 10000, wvb = 20000,
wcc = 1.0, and wir = 1.0. These weightings were determined em-
pirically and are kept the same for all examples in this paper, except
that wce = wcv = 0 for overview images of scenes (e.g., session
A in Figure 2, Figure 7, 8 and 9), and wrt = wch = wca = 0 for
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zoomed-in images of specific objects (e.g., session B in Figure 2,
Figure 3 and 5). It is not expected that a user has to tweak these
weights to get good results for specific scenes.

The number of terms in our energy function reflects the inherent
complexity of composing a good picture, and we found that all of
the terms were useful for improving compositions in different situ-
ations. Figure 1 shows the effect of each energy term.

5. OPTIMIZATION

Our optimization procedure searches for the scene description
(camera, object placements, and surface materials) that minimizes
the energy function described in the previous section (Equation 1).

This is a difficult optimization problem because: 1) there are many
free variables (six for the camera, three for each object transforma-
tion, one for each surface with multiple candidate materials, etc.);
2) some of the variables are continuous (camera and object trans-
formations) while others are discrete (surface materials); and 3) the
energy function is highly non-convex, with strong dependencies be-
tween multiple variables (e.g., camera and object movements). As
a result, we can only hope to find a good local minimum.

Our optimization procedure interleaves optimization of discrete
and continuous variables in alternate steps with an EM-style iter-
ative algorithm. Within each iteration, it first optimizes the discrete
choices of materials with camera parameters and objects transfor-
mations fixed, and then it optimizes the continuous camera param-
eters and object transformations with the materials fixed. The iter-
ations terminate when neither step changes the scene significantly
in the same iteration.

5.1 Discrete optimization

We use a discrete steepest-descent algorithm to optimize materials
during the E-step. The input to the algorithm is a scene and a list of
candidate definitions for each surface material (e.g., surfaces with
material 17 may be either white painted wood, birch wood finish,
etc.), and the output is ideally a selection of one candidate defini-
tion for each material that minimizes the energy function (note that
the color contrast term, Ecc, is the only one affected by material
switches).

The algorithm first builds a list of visible objects with multiple
candidate materials. Then, it iteratively optimizes the materials for
each such object one-by-one in decreasing order of their current
contributions to Ecc. For each visit of an object, the algorithm se-
lects the material switch that produces the lowest Ecc. The algo-
rithm stops when no material switches are possible to lower the
energy further, which usually occurs within 2-3 iterations through
all objects.

5.2 Continuous optimization

We use a continuous steepest-descent algorithm to optimize cam-
era parameters and object transformations during the M-step. The
following paragraphs describe how the direction and magnitude of
each step is computed.

Since the energy function contains terms whose partial derivatives
are difficult to compute analytically (e.g., visibility), we compute
the derivative of the energy with respect to each free variable via a

centered difference approximation. Of course, a brute force imple-
mentation of centered differences for each variable would be ex-
tremely slow: a typical scene has approximately 150 free variables
(3 for each of ⇠50 object transformations plus 6 camera parame-
ters), and thus the energy would have to be computed 300 times for
each steepest descent step. Instead, we keep estimates for all partial
derivatives and re-estimate only a subset after most steps. Specifi-
cally, every k steps, we estimate partial derivatives for all variables,
except ones for transformations of untethered objects outside the
view frustum, and make a move along the direction of steepest de-
scent determined by all partial derivatives. We also build a list of
objects that have non-zero partial derivatives T . Then, during the
intervening steps, we re-estimate partial derivatives for the cam-
era parameters and k randomly selected objects from T and make
a steepest descent move based on these derivatives. We choose
k =

p
|T |, which provides a nice trade-off between efficiency and

accuracy, leveraging the fact that fewer objects have significant ef-
fect on the energy as the optimization converges.

To compute the magnitude of each steepest descent step, we con-
duct a line search along the direction of the estimated derivative.
Specifically, we compute a minimum step length, check the energy
at 10 steps increasing exponentially in length (by 1.25 times at each
step), and then take the best step. To compute the minimum step
length, we project the size of the minimum allowed step size in
each dimension onto the direction of the derivative and take the
minimum.

5.3 Timing

The full optimization procedure takes approximately 20 minutes
(for 60 iterations) for the most complex examples in this paper. The
discrete optimization step is usually very fast (< 10 seconds), since
there are relatively few (⇠10) candidate materials in most scenes.
The continuous optimizations are slower, since there are many pos-
sible object transformations in most scenes (⇠ 60 objects per scene
in our examples) and computing partial derivatives for each trans-
formation variable requires rendering the scene multiple times. In
our experience, computing partial derivatives takes ⇠ 90 seconds
for all variables (every k steps), but only ⇠ 10 seconds for our ran-
domly chosen subsets (intervening steps), at no observed accuracy
difference. Performing the line search takes only 3 seconds for each
step. All times are reported for a 2660 MHz Intel Core i7 processor
with 8 GB of memory.

6. APPLICATIONS

In this section, we describe several applications of our scene opti-
mization framework. These applications were chosen based on the
suggestions of experts who currently create product images at large
furniture companies.

6.1 Refining rough compositions

The primary application of our system is to facilitate the refine-
ment stage of digital catalog image creation. Given a set of focus
objects and a rough composition as initialization, we can apply the
optimization procedure described in the previous section to auto-
matically adjust the camera, object positions, and materials.

To evaluate whether our system can assist this application, we ran
an informal experiment in which we first went through the full pro-
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Fig. 1: Effects of disabling energy function terms. For each energy term, we compare the result with the term disabled (left) to our result
(right). The focus object(s) is specified in the parentheses.

cess of creating and refining a scene for a product image using an
interactive modeling tool, and then we investigated how our tool
could have helped during the modeling process. A trained user (a
graduate student who has taken several composition classes before)
was asked to create a 3D scene motivated by an image highlight-
ing a dining room table and chair in the IKEA catalog (Figure 4
left), which she could refer to as she modeled. During the session,
she started with a set of objects, candidate materials, and a random
camera viewpoint (Figure 2A0), and then edited the scene inter-
actively to achieve the final result shown in Figure 4 left. We then
asked her to repeat the interactive refinement process to recreate the
composition in Figure 4 right, which highlights the three goblets on
the dining table. The experiment was performed exactly once with
no feedback from the system regarding composition quality.

During these interactive sessions, we logged a “snapshot” scene
file every 10 seconds representing the user’s progress (several ex-
amples are shown in the top row of Figure 2). After the session was
finished, we used the snapshot scenes to: 1) analyze whether our
energy function explains changes made interactively by the user,
and 2) to study at what point in the modeling process our optimiza-

tion procedure could have been used to assist the user by refining
the scene automatically.

The blue curve in the plot at the bottom of Figure 2 shows the
value of our energy function for each snapshot of the user’s in-
teractive session. Note that for each session, the curve reveals two
phases: a period of “large-scale layout” when the scene energy goes
up and down (A0 ! A47 and B0 ! B11), followed by a pe-
riod of “fine-scale refinements” where the energy decreases almost
steadily (A47 ! A92 and B11 ! B39). This behavior suggests
that the energy function correctly captures image quality differ-
ences of improvements made by the user.

The second row of images in Figure 2 shows the results of running
our optimization procedure on each of the snapshot scenes shown in
the top row, and the red dots in the plot below show the energy func-
tion of the optimized results (connected by a green curve). Note
that the optimized results of the snapshots (bottom row) captured
in the latter half of each user session (A47-A92 and B11-B39) are
qualitatively similar to the final scene created by the user (top-right
image), and their corresponding energy function values are compa-
rable, or even less. These results suggest that a half of the time the
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Fig. 2: Snapshots of an interactive session (top row) and the results of refining them by our optimization tool (second row). In the first session
(left), the user’s goal is to achieve the composition in Figure 4 left, while in the second session (right), her goal is to achieve Figure 4 right.
The plots on the bottom show the evaluation of these scenes using our energy function, with the blue representing the energy of interactive
snapshots and the red points representing our optimized results. Note that the dotted section of the lefthand blue curve has been compressed
to save space.

Overview Detail image of speaker Detail image of shelf

Fig. 3: Detail images generated from overview. From an overview image of a living room (a), we automatically generate detail images that
highlight the speaker (b) and shelf (c). Notice how the chair moves to the right in (b) and to the left in (c) to provide an unobstructed view of
the focus object (results without moving objects can be found in Figure 10).

user spent on the scene refinement could have been off-loaded to
the computer. Also, notice that the latter half of each green dotted
curve is flat indicating that the optimization procedure is robust to
different starting conditions created by the user.

6.2 Generating detail images from an overview

In many cases, catalogs provide an overview image that shows how
various objects can fit together in a room, and then one or more
detail images that focus on individual products of interest. For ex-
ample, the IKEA catalog image in Figure 4 includes an overview
of a dining room (left) with a detail image advertising wine glasses
(right).

Detail images are almost never simply cropped and zoomed-in ver-
sions of the overview image. Stylists typically choose different

viewpoints and move objects slightly in order to highlight the shape
and relevant features of the focus object. For example, in the right-
hand detail image of Figure 4, several objects on the table have
been moved to create an appropriate backdrop for the wine glasses.

To reduce this effort, stylists can use our system to automatically
create detail images. For each detail object Od, our optimization
framework initializes all object positions to the arrangement in the
overview image and generates a set of candidate detail images us-
ing each canonical view of the detail object as a different starting
point for the camera. By default, we choose the candidate image
with the lowest energy as the result.

For a given Od and canonical view, the optimization works as fol-
lows. We set Od as the only focus object, OF = {Od}. To de-
termine context objects OC automatically, we set a threshold �
as 20% of the bounding box diagonal Od, and all objects within
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a) Original composition b) Composition after replacing objects c) Optimized composition

Fig. 5: Object replacement. From the original composition (a) the chair, side table and coffee table are replaced (b). Our optimization
eliminates collisions and produces a better composition for these objects (c).

Fig. 4: Overview and detail images in IKEA catalog. In addition to the
overview image on the left, IKEA provides a detail image that advertises
the glasses on the table. Note how the viewpoint and object positions are
adjusted from the overview image (reprinted with permission from the 2013
IKEA catalog).

� from Od are selected as context objects. We then optimize the
composition with our algorithm.

As a test of our method, we generated detail images for three
scenes: a kitchen, study, and living room. For each scene, we gen-
erated detail images for 20 random objects. In many cases, our op-
timization was able to put the camera close to canonical views only
by moving objects that would otherwise occlude the detail object.
For example, the gray chair is moved to different positions in Fig-
ure 3b and Figure 3c in order to reduce occlusions for different
focus objects. Overall, most of our detail images produce reason-
able compositions, and our user study (Section 7) indicates that
our full optimization produces better results than camera-only op-
timizations the large majority of the time.

6.3 3D views for room planner

Home furnishing companies have recently started to provide on-
line tools that let users create arrangements of furniture customized
for their own rooms, e.g. IKEA’s Home Planner (see Figure 6).
After designing a room in this manner, users often want images
of the room to share with others and to help them evaluate the
design. Thus, another application of our system is to provide an

Fig. 6: Room planner images. The IKEA Home Planner lets users create a
room design in a plan view (left) and then generates a default view of the
3D scene (right).

automated solution for generating well composed images of user-
designed rooms.

After generating the 3D arrangement of objects, the user selects a
set of focus objects (likely the objects he is considering for pur-
chase) and then asks our system to generate a composition. Unlike
the previous two applications, we do not expect the user to provide
an initial viewpoint for the scene. As a result, we modify our op-
timization to first search globally for the best camera parameters,
which we then use as an initialization to our full optimization.

For our global camera search, we first generate a set of “plausible”
initial camera parameters. We restrict the camera height to be at
human eye level ho, and we sample all of the other parameters as
follows. For the other two camera position coordinates, we sample
uniformly within the walls of the room at roughly 2 ft intervals; we
take 20 uniformly spaced samples for azimuthal angle between 0
and 2⇡; to keep the camera fairly level, we take 5 uniform sam-
ples for the polar angle between ⇡/2 (looking horizontally) and
⇡/2 + 0.28 (looking slightly down); and we consider 4 uniformly
spaced field-of-view values from 0.3 to 0.6. We then prune very
poor samples by checking each camera view to see whether at least
50% of the screen space projection of every focus object bound-
ing box is within the viewport. If not, then we discard the sample.
Next, we do k-means clustering (with k = 4) of the pruned cam-
era parameters. Within each cluster, we pick the camera with the
lowest energy and use that as a candidate initialization. We run our
optimization for each of the k candidate initializations, and pick the
final composition with the lowest energy.
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We used this optimization procedure to generate the results shown
in Figure 7. Here, we arranged all the objects in the scene with-
out providing an initial camera and chose the couch, coffee table
and ottoman as the focus objects. In the final composition (Fig-
ure 7b), all of the focus objects are visible and the image provides
a good overview of the scene from a plausible camera angle. For
comparison, we show the camera-only result in Figure 7c, and no-
tice that the initialization of it is different from that of Figure 7b.
In Figure 7d, we show the camera-only result which is generated
from the same initialization as in (b). With the capability of mov-
ing objects, our full optimization is able to achieve a better balance
between multiple factors, and achieve a better composition.

6.4 Object replacement

Multinational furniture companies like IKEA usually customize
their catalog images for different countries to match cultural pref-
erences. This customization often involves choosing different ma-
terials or replacing objects within a scene. For example, a particular
type of chair might be appropriate in the USA, while a different one
is preferred in China, even though several other aspects of the scene
can be shared. In many cases, the size and shape of new objects can
be significantly different from the original one, which means that
a stylist will have to spend a significant amount of additional ef-
fort adjusting the camera parameters and object positions to achieve
a good composition for each customization. As with the previous
applications, our optimization framework can automatically make
these adjustments to reduce the amount of human effort required
to perform these cultural customizations. Once the relevant objects
and materials have been replaced, we use the current viewpoint,
object positions and materials as initialization and optimize for a
better composition.

Figure 5 shows an example where we replace the grey seat, side
table and coffee table. When we swap in the new objects, there is a
collision between the chair and plant, and in general, the composi-
tion feels cramped. When we optimize the composition, the colli-
sion is resolved and the camera pulls back to keep all the relevant
objects in the frame.

6.5 Text-incorporated composition

Most catalog images have text overlays that describe the depicted
scene. Such text is typically positioned over regions with nearly
constant color so that it is easy to read and often appears in roughly
the same location on every page (e.g., corners) so that the viewer
knows where to look to find textual information. Our optimization
framework can automatically position text based on all of these cri-
teria.

In addition to a set of focus objects and an initial composition, the
stylist also specifies a set of rectangles R where she would like
overlay text to appear in the frame. We then treat each rectangle as
just another object in the scene, but one that only has a 2D position
and can only move within the viewport.

We apply the visibility and inertia terms to text rectangles as well.
Specifically, the overlapping region of a focus object or a context
object with a text rectangle is treated as occlusion. We replace Ecc

by Etc to account for the contrast between text and its background.

Etc = wtv

X

Ri2R
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1
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1

dl(p,wb)2 + ✏

where p is a pixel in the rectangle Ri, dl(·, ·) is the difference be-
tween the luminance of two pixels, w is white and b is black.

We also observe that to make the text with constant color stand
out, it is essential to keep a low variance in luminance within each
rectangle to reduce clutter behind overlaid text. We introduce Etv

for this reason,
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Figure 8 presents a composition optimized with two different initial
positions for the text. Notice how the objects in the scene are moved
to create low contrast, low variance regions of the image where the
text can be overlaid.

(d) Input (e) Our method (f) Camera-only

Fig. 8: Retargeting for different text layouts. The artist provides a rough
position for the text box and specifies the champaign bottle and the goblet
as focus objects. Then our optimization adjusts object positions, viewpoint
and text positions to increase contrast, reduce clutter and remove occlusion
of the focus objects.

6.6 Retargeting for different aspect ratios

Our system can also automatically retarget catalog images to aspect
ratios that are appropriate for different display formats. For exam-
ple, a landscape image in a printed catalog may work better in por-
trait format for a tablet. Simple cropping is usually not sufficient to
create a good retargeted composition because the relative arrange-
ment of objects in image space remains fixed. In addition, existing
2D image retargeting methods such as Seam Carving [2007] of-
ten have trouble preserving strong structural elements (e.g., straight
lines) that are prevalent in indoor scenes. In contrast, our optimiza-
tion framework has the ability to adjust camera parameters and ob-
ject positions to produce good compositions for different aspect
ratios. For this application, we use the viewpoint and object posi-
tions from the input composition as initialization and solve for a
new image with the specified dimensions.
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(a) Candidate initializations (b) Our method (c) Camera-only (d) Camera-only with the same initial-
ization as (b)

Fig. 7: 3D views for room planner. The focus objects are couch, coffee table and ottoman. We start by sampling plausbile camera parameters
and result in 4 candidate initializations (a). We run the optimization from each of them, and select the composition with the lowest energy
(b). For comparison, we show the camera-only result in (c) and the camera-only result which is generated from the same initial camera
parameters as (b) in (d).

Input (4:3) Ours (1:2) Camera-only Input (1:2) Ours (4:3) Camera-only

Fig. 9: Retargeting for different aspect ratios (focus objects: the champagne bottle and goblet). We start with the optimal composition in the
initial aspect ratio (left in each group), and retarget it to a different one (middle). We compare our result to the one where only the camera is
optimized (right).

In Figure 9, we start with the optimal composition in one aspect
ratio and then retarget it to another. For comparison, we generate
images using our optimization method but without adjusting ob-
ject positions (rightmost one in each group). Notably, the greater
flexibility creates better retargeted images.

7. USER STUDY

A natural question to ask when considering our system is whether
the additional freedom afforded by moving objects makes a positive
impact on the results, or if – to the contrary – similarly good results
could be obtained by performing a camera-only optimization. We
investigated this question by asking people to compare 36 pairs of
compositions created using our optimization procedure with object
movement enabled (our method) and disabled (camera-only).

Study design: Our selection of scene compositions to compare in-
cludes all the examples shown in Section 6 of the paper, plus thirty
detail images generated for different objects in three scenes (liv-
ing room, study, and kitchen). For each of the three scenes, we
selected – from among all the large furniture and a random sub-
set of the smaller objects – the ten objects where the detail image
generated with camera-only optimization differed most from the
full-optimization.

We showed these pairs of scene compositions to study participants
in randomized order, with images in each pair flipped left-right ran-

domly. For each pair, the user selected a radio button to indicate
that one composition was better at showcasing the specified focus
objects (listed in the title), or that the two compositions are of the
same quality (see a sample user study web page in the supplemental
material).

We administered the study to two groups: experts who work pro-
fessionally on scene layout for catalog images, and non-experts.

The first group was recruited through personal contacts and com-
pleted a single-page web-based survey without compensation.
Given the small number of experts in this field, we were only able
to administer the survey to two participants.

The second group was recruited through Amazon Mechanical Turk,
and each turker was compensated 10 cents. To exclude ‘lazy’ turk-
ers from our results, we tested the consistency of each turker’s
results. Specifically, each turker completed a multiple-page (one
comparison per page) survey, where each comparsion was asked
twice, with compositions swapped left-right. We excluded any in-
put from turkers for each question where their two answers for the
same pair were inconsistent, and we excluded all input from any
turker whose answers were inconsistent for more than 25% of the
questions. After running the study for 200 turkers, these consis-
tency checks yielded 49 to 75 answers per comparison.

Study results: In the expert study, Expert 1 favored ‘full optimiza-
tion’ in 22 pairs, ‘camera only’ in 12, and had ‘no preference’ in
2; Expert 2 favored ‘full optimization’ in 17 pairs, ‘camera only’ in
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Fig. 11: Amazon Mechanical Turk Study results. We asked participants to compare 36 pair of images generated with full optimization
(top) and camera-only optimization (bottom). Bars represent the proportion of participants who favored each image (dark blue: full, red:
camera-only, light grey: no preference).

14, and had ‘no preference’ in 5. Results of the Amazon Mechan-
ical Turk study are summarized in Figure 11. The top and bottom
rows depict the pairs of images shown to each study participant
(images in the top row show the fully optimized scenes). Upward-
pointing dark blue bars reflect the fraction of study participants who
favored images of the fully optimized scenes, while the downward-
pointing red bars show the fraction that preferred camera-only op-
timizations, and the light gray bars in the middle represent cases
where participants indicated no preference.

Generally, we find that full scene optimization is preferred to
camera-only optimization. If the “no preference” answer is treated
as half a vote for our optimization result and half a vote for camera-
only, our optimization results received � 75% of the votes in 20
cases, 50%-75% of the votes in 13 cases, and < 50% of the votes
in 3 cases in the Mechanical Turk study. In the experts study, the
numbers are 16, 13 and 7 respectively. According to comments pro-
vided by participants, this is mainly because it moves objects to
avoid occlusions, provide favorable contrast, and avoid awkward
camera views.

8. CONCLUSION AND FUTURE WORK

In this work, we have introduced a technique for optimizing 2D
compositions of 3D scenes that adjusts camera parameters, object
transformations, and surface materials. Our results and informal
user evaluation show the benefits of optimizing over all of these
scene parameters simultaneously. In particular, the comparisons be-
tween images generated by only adjusting the camera and those
generated by our full optimization clearly indicate that moving ob-
jects significantly improves the quality of compositions in many
cases. We have demonstrated how our optimization framework ben-
efits a variety of applications related to the creation of digital cata-
log images, from generating detail images of individual objects to
rendering images of entire rooms for a home planner.

Our system has several limitations. First, the optimization proce-
dure is currently too slow to be used in an interactive system. This
is largely because speed has been sacrificed for flexibility in our
implementation. We believe that the speed could be improved by
orders of magnitude in a production-oriented implementation. Sec-
ond, the set of objects allowed in the scene is provided as input and
cannot be changed during the optimization, which limits use of our
algorithm to fine-scale refinement, rather than large-scale explo-
ration. Third, we use OpenGL rendering during our optimization,
which does not account for global illumination effects in final im-
ages. Fourth, we have very primitive energy terms for controlling
the 3D spatial relationships between objects. Perhaps more sophis-
ticated probabilistic models learned from examples would be better

(e.g., [Fisher et al. 2012; Yeh et al. 2012; Yu et al. 2011]). Fifth, we
consider only a partial set of possible composition rules in our final
experiments. Early in the project, we implemented terms for di-
agonal dominance, symmetry, and focusing with vanishing points,
but found them less useful in our target applications – using our
system to systematically investigate which energy terms are most
effective for which applications would be an interesting topic of
further study.

Given that companies are increasingly relying on computer-
generated imagery for catalogs and other product advertisements,
there are many opportunities for future work related to the auto-
mated generation of such images. For example, we imagine new
advertising applications that choose furniture arrangements based
on how a room will look from key viewpoints (e.g., the front door).
Film, game, and real-estate companies could automatically opti-
mize scenes for sequences of camera viewpoints (e.g, for movie
shots or virtual tours). On-line advertisers could adapt product im-
ages to wide varieties (millions) of user preferences with automat-
ically optimized aesthetics. We believe composition-aware scene
modeling is a useful approach for all of these applications and as
such represents a promising research direction for the computer
graphics community.
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