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Abstract

We study approximation algorithms for two classes of optimization problems.
The first class is network routing problems. These are an important class of

optimization problems, among which the edge-disjoint paths (EDP) problem is one
of the central and most extensively studied. In the first part of my thesis, I will give
a poly-logarithmic approximation for EDP with congestion 2. This culminates a long
line of research on the EDP with congestion problem.

The second class is facility location problems. Two important problems in this
class are uncapacitated facility location (UFL) and k-median, both having long his-
tories and numerous applications. We give improved approximation ratios for both
problems in the second part of my thesis.

For UFL, we present a 1.488-approximation algorithm for the metric uncapacitated
facility location (UFL) problem. The previous best algorithm, due to Byrka, gave a
1.5-approximation for UFL. His algorithm is parametrized by γ whose value is set to
a fixed number. We show that if γ is randomly selected, the approximation ratio can
be improved to 1.488.

For k-median, we present an improved approximation algorithm for k-median.
Our algorithm, which gives a 1 +

√
3 + ε-approximation for k-median, is based on two

rather surprising components. First, we show that it suffices to find an α-approximate
solution that contains k+O(1) medians. Second, we give such a pseudo-approximation
algorithm with α = 1 +

√
3 + ε.
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Chapter 1

Introduction

1.1 Background

We are now living in an era of information technology. More than ever, we need to
make fast decisions, from deciding warehouse locations for a company, to scheduling
jobs on machines, to displaying ads in empty slots of web pages. Unfortunately,
most optimization problems are NP-hard. Unless NP = P, there are no polynomial
time algorithms to find optimal solutions for these optimization problems. The most
common approach to overcome this difficulty, known as approximation algorithms, is
by relaxing the requirement of finding optimal solutions.

In this thesis, we study approximation algorithms for several classic optimization
problems. All these problems have long history and was studied extensively in the
literature. In spite of the extensive study, there are still large gaps between the best
approximation ratios and the hardness of approximation. These long-standing gaps
present big challenges to our algorithmic toolbox. Thus, studying these problems are
not only useful for practical applications, but also of theoretical importance.

The problems we study fall into two classes: network routing problems and facility
location problems. We now introduce the two classes in details and state our results
of the thesis.

1.1.1 Network Routing Problems

Networks are ubiquitous in our modern society. From the World Wide Web to social
networks, from economic systems to maps of cities, networks represent a wide range
of real-world systems. As networks appear in so many different contexts, optimization
problems in networks are increasingly important.

An important class of optimization problems arising in networks is the network
routing problems. The common goal of this class is to assign sufficient network re-
sources to satisfy the connection requests from the users. Depending on the objective
function, network routing problems are in general one of the following two forms.
In the first form, we want to maximize some measure of profit gained by satisfying
connection requests, such as the number of accepted requests, the throughput of the
connections and the sustainability of the network. In the second form, we want to
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minimize some cost function of the assignment, e.g. the traffic congestion of roads,
the power consumption of wireless ad-hoc stations, and the delay of transportations
from senders to receivers.

The network routing problem we will consider in the thesis is the edge-disjoint
paths problem (EDP). This is one of the central and most extensively studied problem
in this class. In this problem, we are given an undirected n-vertex graph G = (V,E),
and a collection M = {(s1, t1), . . . , (sk, tk)} of k source-sink pairs, that we also call
demand pairs. The goal is to find a collection P of edge-disjoint paths, connecting
the maximum possible number of demand pairs.

Study of EDP has its roots in early 1980’s in the context of very-large-scale integra-
tion (VLSI, [74, 1, 2]). In VLSI design, a single layer of chip is divided into thousands
of cells and we want to use wires to connect some pairs of cells so that the wires do
not interfere with each other. It is practically useful to route as many connections on
a single layer of the chip as possible. In a society of networks, this problem clearly
has numerous applications. As an example, consider the situation where many pairs
of nodes request to connect through paths in a large-scale communication network.

Besides its practical applications, EDP plays an important role in graph theory.
Many special cases of EDP are already interesting classic problems. One special case,
where all the (si, ti) pairs are the same, is the network flow problem. The work on this
special case has led to the famous minimum-cut problem and many efficient algorithms
for the network flow problem. Another special case, where the graph is a star and
the pairs are over the leaves of the star, is the maximum matching problem in general
graphs. EDP is an important element in the proof of the famous graph-minor theorem
by Robertson and Seymour [73]. In their graph minor series, Robertson and Seymour
studied algorithms for solving EDP exactly and used the ideas of the algorithms
to find graph minors. Moreover, EDP, among others, is one of packing problems
in graphs, where the common goal is to find maximum number of edge-disjoint or
node-disjoint admissible structures in a graph. While we have good understanding
in many other packing problems in graphs ([60], [36]), the approximability of EDP
remains mysterious.

Robertson and Seymour have shown that EDP can be solved efficiently, when the
number k of the demand pairs is a constant [73]. When the value k is a part of the
input, it is NP-hard to even decide whether all pairs can be simultaneously routed via
edge-disjoint paths [48]. Good approximation algorithms are known for some special
cases of EDP. Rao and Zhou [72] have shown that if the value of the global minimum
cut in the input graph G is Ω(log5 n), then there is an efficient randomized poly log n-
approximation algorithm for EDP. The EDP problem is also known to have poly-
logarithmic approximation algorithms on bounded-degree expander graphs [61, 18, 17,
52, 37], and constant-factor approximation algorithms on trees [40, 28], grids and grid-
like graphs [9, 12, 55, 54]. Kleinberg [53] has shown an O(log2 n)-approximation for
Eulerian planar graphs. Kawarabayashi and Kobayashi [49] have recently improved
this result to an O(log n)-approximation, for both Eulerian and 4-connected planar
graphs.

In spite of these results on special graphs, obtaining good approximation ratio for
EDP on general graphs is still elusive. The best current approximation algorithm for

2



the EDP problem, due to Chekuri, Khanna and Shepherd [27], achieves an O(
√
n)-

approximation. This is even the best approximation ratio we can achieve for EDP on
planar graphs. Indeed, most of the known results are based on the multi-commodity
flow relaxation, where instead of connecting the demand pairs with paths, we are
only required to send the maximum amount of multi-commodity flow between the
demand pairs, with at most one flow unit sent between every pair. Such a fractional
solution can be computed efficiently by using the standard multi-commodity flow LP-
relaxation, and it can then be rounded to obtain an integral solution. Unfortunately,
a simple example by Garg, Vazirani and Yannakakis [40] shows that the integrality
gap of the multi-commodity flow relaxation can be as large as Ω(

√
n), even for planar

graphs. This implies that the algorithm of [27] is essentially the best possible for
EDP, when using this standard approach. With the current best hardness of approx-
imation factor standing on Ω(log1/2−ε n) for any constant ε (unless NP is contained
in ZPTIME(npoly logn) [5, 4]), the approximability of the EDP problem remains one of
the central open problems in the area of routing.

A natural question is whether we can obtain better approximation algorithms by
slightly relaxing the disjointness requirement, and allowing the paths to share edges.
We say that a set P of paths is an α-approximate solution with congestion c, iff the
paths in P connect at least opt/α of the demand pairs, while every edge of G appears
on at most c paths in P . Here, opt is the value of the optimal solution to EDP,
where no congestion is allowed. This relaxation of the EDP problem is called EDP
with congestion (EDPwC). The EDPwC problem is a natural framework to study the
tradeoff between the number of pairs routed and the congestion, and it is useful in
scenarios where we can afford a small congestion on edges.

This is also a stream of research papers on the EDPwC problem. The classical
randomized rounding technique of Raghavan and Thompson [71] gives a constant
factor approximation for EDPwC, when the congestion c is Ω(log n/ log log n). For
general congestion value c, factor O(n1/c)-approximation algorithms are known for
EDPwC [13, 15, 56]. Recently, Andrews [3] has shown a randomized (poly log n)-
approximation algorithm with congestion c = poly log log n, and Chuzhoy [31] has
shown a randomized (poly log k)-approximation algorithm with congestion 14. For
the congestion value c = 2, Kawarabayashi and Kobayashi [50] have recently shown an
O(n3/7)-approximation algorithm, thus improving the best previously known O(

√
n)-

approximation for c = 2 [13, 15, 56]. On the negative side, Andrews et al. [4] have
shown that the integrality gap of the multicommodity flow relaxation for EDPwC

is Ω

((
logn

(log logn)2

)1/(c+1)
)

for any constant congestion c. Andrews et al. [4] have

also shown that for any constant ε, for any 1 ≤ c ≤ O
(

log logn
log log logn

)
, there is no

O
(

(log n)
1−ε
c+1

)
-approximation algorithm for EDPwC with congestion c, unless NP ⊆

ZPTIME(npoly logn).
EDPwC has also been extensively studied on planar graphs. Chekuri, Khanna and

Shepherd [23, 26] have shown a poly-logarithmic approximation algorithm for EDPwC
with congestion 2 and a constant approximation algorithm with congestion 4. Both
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results have recently been improved by Seguin-Charbonneau and Shepherd [75], who
showed a constant factor approximation algorithm with congestion 2.

1.1.2 Facility Location Problems

The common goal of facility location problems is to decide optimal locations to build
facilities to serve a given set of clients. There are various problems in this class,
depending on the constraints and the objective cost function. There might be con-
straints on the number of facilities we can build, the budget, and the number of clients
a facility can serve. The cost function may reflect the cost for building facilities and/or
the cost for serving the clients.

The problem with the simplest form in this class is the uncapacitated facility
location problem (UFL). In this problem, we are given a set F of potential facility
locations, each location i ∈ F with a facility cost fi, a set C of clients and connection
cost (service cost) function d : F × C → R+. The goal is to find a subset F ′ ⊆ F
of locations to open facilities, so as to minimize

∑
i∈F ′

fi +
∑
j∈C

min
i∈F ′

d(i, j). The first

term in the cost function is the total facility cost, i.e, the cost to build the facilities,
while the second term is the cost of connecting clients to facilities. In the literature,
UFL usually stands for the metric uncapacitated location problem, where clients and
facilities lie in a metric space and the cost function d(i, j) represents the distance
between facility i and client j. This is common in many applications. The problem
is called uncapacitated facility location problem since every facility, once open, can
serve unlimited number of clients. A more complicated variant of the problem is the
capacitated facility location problem, where each facility has an upper bound on the
number of clients it can serve.

This UFL problem is well-studied in the operation research literature, dating back
to early 1960’s ([58, 69, 14]). Several early papers studied the problem under the
name warehouse location problem. The problem occurs when a large company is
deciding a number of locations for building warehouses to supply its existing stores.
Each warehouse built incurs a fixed maintenance cost. Each store will be supplied by
its nearest warehouse and supply cost depends on the distance between the store and
the warehouse.

A closely related problem to UFL is the classic k-median problem. In this problem,
we are not given the facility costs fi. Instead, we are given an upper bound k on the
number of facilities that can be open. The objective function we want to minimize
is the connection cost, i.e, the sum of distance from j to the nearest open facility of
j, over all clients j. Due to its close connection to UFL, it is reasonable to model
the above warehouse location problem as a k-median problem. Assume the large
company only has the budget to build k warehouses. The goal is to is to select the k
warehouses optimally so as to minimize the total supply cost.

When F = C = X, a solution F ′ ⊆ F with |F ′| = k partitions the set of points
into what is known as clusters and thus the objective function measures how well the
data set X can be partitioned into k clusters. If the dataset is indeed from k classes,
then solving the k-median problem will give the desired partition. Due to this nature,
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k-median has numerous applications in clustering, data mining and machine learning
([16]).

Both UFL and k-median are NP-hard. Study of them from the perspective of
approximation algorithms started in early 1990’s. In 1982, Hochbaum [43] presented
a greedy algorithm for the non-metric UFL with O(log n)-approximation guarantee.
Constant factor approximation algorithms are known for the metric UFL. Shmoys,
Tardos and Aardal [77] used the filtering technique of Lin and Vitter [64] to give a
3.16-approximation algorithm, which is the first constant factor approximation for the
metric UFL problem. After that, a steady stream of papers giving improved algorithms
[29, 57, 21, 45, 46, 68] were proposed. Before our work, the best approximation ratio
is 1.50, given by Byrka [19].

On the negative side, Guha and Kuller [41] showed that there is no ρ-
approximation for UFL if ρ < ρ∗ ≈ 1.463, unless NP ⊆ DTIME

(
nO(log logn)

)
,

where ρ∗ is the root of γ = 1 + 2e−γ. Thus, the 1.50-approximation ratio is very
close to being optimal. Jain et al. [46] generalized the result to show that no (γf , γc)-
bifactor approximation exists for γc < 1 + 2e−γf unless NP ⊆ DTIME

(
nO(log logn)

)
.

The exact definition of (γf , γc)-bifactor approximation is given later in Chapter 5.
In contrast to UFL, current techniques give a relatively worse understanding of the

approximability of k-median. The difficulty of k-median lies in the hard constraint
that only k facilities are allowed to be opened. Indeed, without such a constraint,
we could simply open all facilities. Early approaches [65, 64, 57] overcame this diffi-
culty by giving pseudo-approximations that obtain better guarantees while violating
the mentioned constraint by opening k + Ω(k) facilities. The first constant factor
approximation algorithm that opens k facilities is due to Charikar et al. [22]. Based
on LP rounding, their algorithm produces a 62

3
-approximation. Several of the ideas

in [22] are inspired from constant factor approximation algorithms obtained for UFL.
The best known approximation algorithm is the local search algorithm given by Arya
et al. [8]. They showed that if there is a solution F ′, where any p swaps of the
open facilities cannot improve the solution, then F ′ is a 3 + 2/p approximation. This
leads to a 3 + ε approximation that runs in time n2/ε. On the negative side, Jain
et al. [46] proved that the k-median problem is hard to approximate within a factor
1 + 2/e ≈ 1.736. Moreover, the natural linear programming relaxation of k-median is
known to have an integrality gap of at least 2. The best upper bound is by Archer et
al. [6], who showed that the integrality gap is at most 3 by giving an exponential time
rounding algorithm that requires to solve the maximum independent set problem.

In spite of the apparent similarities between k-median and UFL, they were studied
separately in literature, until Jain and Vazirani exploited a deep connection between
them in a beautiful paper [47]. The connection is motivated by basic economic theory:
if we let the opening costs of facilities be small then a “good” solution to UFL will
open many facilities whereas if we let the opening costs of facilities be large then
a good solution will only open few facilities. By appropriately selecting the cost of
facilities, one can therefore expect that an algorithm for UFL opens close to k facilities
and therefore almost also gives a solution to the k-median problem. By exploiting this
concept, Jain and Vazirani obtained a 6-approximation algorithm for k-median using
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their 3-approximation primal-dual algorithm for UFL. The factor 3 was later improved
by Jain et al. [46] to 2 resulting in a 4-approximation algorithm for k-median.

1.2 Our Results

In this thesis, we give our improved approximation algorithms for EDPwC, UFL and
k-median. The three results are respectively based on joint work with Chuzhoy [32],
the work of [62], and joint work with Svensson [63].

Edge disjoint paths with congestion In Part I of the thesis, we given our ran-
domized poly log k-approximation algorithm for EDPwC with congestion 2. Our result
is essentially optimal with respect to this relaxation, both for the congestion and the
number of pairs routed, in the following sense. As observed above, if we are interested
in obtaining a sub-polynomial approximation for EDP via the multi-commodity flow
relaxation, then the best congestion we can hope for is 2. On the other hand, due to
the result of Andrews et al. [4], the hardness for congestion c = 2 is poly-logarithmic,
though the degree of the logarithm is much lower than the degree we obtain in our
approximation algorithm. Thus, our result culminates a long line of research on the
EDP with congestion problem.

Uncapacitated Facility Location In Chapter 5, we give a 1.488-approximation
algorithm for UFL, which is built on the work of Byrka [19]. Byrka presented an
algorithm A1(γ) which gives the optimal bifactor approximation (γ, 1 + 2e−γ) for
γ ≥ γ0 ≈ 1.6774. By either running A1(γ0) or the (1.11, 1.78)-approximation algo-
rithm A2 proposed by Jain, Mahdian and Saberi [46], Byrka was able to give a 1.5-
approximation algorithm. We show that the approximation ratio can be improved to
1.488 if γ is randomly selected.

k-Median In Chapter 6 We present our novel approximation algorithm for k-
median that achieves an approximation guarantee of 1 +

√
3 + ε, improving upon

the decade-old ratio of 3 + ε. Our algorithm is based on two rather surprising compo-
nents. First, we show that it suffices to find an α-approximate solution that contains
k + O(1) medians. Second, we give such a pseudo-approximation algorithm with
α = 1 +

√
(3) + ε.
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Part I

Poly-logarithmic Approximation
Algorithm for Edge Disjoint Path

Problem with Congestion 2
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Chapter 2

Edge Disjoint Paths: Technical
Components

In this part, we give a randomized poly log k-approximation algorithm for EDP with
congestion 2. Our main result is summarized in the following theorem.

Theorem 2.1 There is an efficient randomized algorithm, that, given a graph G,
and a collection M of k source-sink pairs, w.h.p. finds a routing of opt/(poly log k)
of the pairs in M with congestion at most 2, where opt is the maximum number of
pairs that can be routed with congestion 2.

Our result is essentially optimal with respect to this relaxation, both for the
congestion and the number of pairs routed, in the following sense. Due to the Ω(

√
n)-

integrality gap of Garg, Vazirani and Yannakakis [40], if we are interested in obtaining
a sub-polynomial approximation for EDP via the multi-commodity flow relaxation,
then the best congestion we can hope for is 2. On the other hand, due to the hardness
result of Andrews et al. [4], the hardness for EDP with congestion 2 is poly-logarithmic,
though the degree of the logarithm is much lower than the degree we obtain in our
approximation algorithm.

While the approximability status of EDP remains open, our results suggests that
there is a fundamental difference between routing with congestion 1 and with conges-
tion 2, while there is not too much difference between routing with congestion 2 and
with congestion c for any constant c > 2. Suppose we are given a solution P to the
EDP problem that connects D of the demand pairs with congestion c. By scaling the
paths by a factor of 1/c, we obtain a solution of value D/c to the multi-commodity
flow relaxation. By applying our algorithm, we can connect D/(c poly log k) pairs
with congestion 2. That is, we can lower the congestion to 2 with only a factor
(c poly log k) loss in the number of the demand pairs routed. However, if we are in-
terested in routing with congestion 1, then we have to lose an Ω(

√
n)-factor in the

number of pairs routed, due to the integrality gap instance of Garg, Vazirani and
Yannakakis [40].

The proof of the Theorem 2.1 is split into 3 chapters. In the remaining part of this
chapter, we describe some useful components from previous work. Some of the proofs
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are implicit in previous work and we include them for the sake of completeness.
Then, in Chapter 3, we give our algorithm for EDP with congestion 2 in [32]. A
core component of our algorithm is the construction of what we called crossbar. We
dedicate the whole Chapter 4 to this construction.

2.1 Preliminaries and Notations

2.1.1 Notations

Given any undirected graph H, we shall use VH and V (H) to denote the set of vertices
in H, EH and E(H) to denote the set of edges in H, and dH(·) denote the degree
function of H. For any subset S ⊆ VH of vertices, we use outH(S) to denote the set
of edges in H with exactly one endpoint in S. Unless otherwise stated, G = (V,E)
is the input graph where we try to route the k demand pairs. Then, we shall simply
use out(·) to denote outG(·).

Given the routing graph G = (V,E), we say a subset C ⊆ V of vertices is a cluster
if G[C] is connected. A clustering of G is a partition of V into disjoint clusters.
Throughout this part, we shall fix a parameter k1 = k/polylog(k) (the exact order of
k1 is given later). We say that a cluster C ⊆ V is large if |out(C)| ≥ k1, and we say
that it is small otherwise.

Given the setM = {(si, ti) : i ∈ [k]} of k demand pairs, we use T =
⋃
i∈[k] {si, ti}

to denote the vertices participating in the pairs. We call the vertices in T terminals.
For any subset of M′ ⊆ M of demand pairs, we define T (M′) :=

⋃
(si,ti)∈M′ {si, ti}

to be the set of terminals participating in M′.
Given any pair (V1, V2) of subsets of vertices, we denote by F : V1  η V2 the

flow F where every vertex in V1 sends one flow unit to some vertex in V2, and the
congestion due to the flow F is at most η. If additionally every vertex in V2 receives
exactly one flow unit, then we denote this flow by F : V1

1:1
 η V2. In this case, we

must have |V1| = |V2|. When the flow F is integral, defined by a set P of paths, we

say P : V1  η V2 and P : V1
1:1
 η V2 if we have F : V1  η V2 and F : V1

1:1
 η V2

respectively. Notice that if we have P : V1
1:1
 η V2, then |V1| = |V2| = |P| and P

routes a matching integrally with congestion η between V1 and V2.
In the above definitions, either V1 or V2 can be replaced by a set of edges. For

example, if V1 is replaced by a set E1 of edges, then we think of E1 as a set of vertices
that sub-divides edges in E1.

Given a subset S of vertices and two subsets E1, E2 ⊆ out(S) of edges, we say
that the flow F : E1  η E2 is in S if every flow-path is completely contained in G[S],
except for its first and last edges, that belong to out(S). Similarly, we can define a
set P : E1  η E2 of paths being in S.
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2.1.2 Well-Linkedness

The notion of well-linkedness has been widely used in graph decomposition and rout-
ing, see e.g. [25, 72, 3]. While the main ideas are similar, the definition details differ
from paper to paper. Our definition of well-linkedness is similar to that of [31].

Definition 2.2 (α-well-linkedness) Given a graph G = (V,E), a set T ⊆ V of
terminals and a parameter α > 0, we say that G is α-well-linked for T , iff for any
partition (A,B) of V , |E(A,B)| ≥ α ·min {|T ∩ A|, |T ∩B|}.

In many scenarios, we are interested in the following graph. Let S ⊆ V be
a cluster of G = (V,E). We subdivide each edge e ∈ out(S). Then, the graph
G[S ∪ out(S)] is the graph induced by S union the set of newly added vertices that
subdivide edges in out(S). For the sake of simplicity, we identify the vertex that
subdivide e ∈ out(S) with e itself. That is, an element e ∈ out(S) is both an
edge in G and a vertex in G[S ∪ out(S)]. Given G, S ⊆ V , Γ ⊆ out(S), and a
parameter α ∈ [0, 1], we say S is α-well-linked for Γ, if G[S ∪ out(S)] is α-well-
linked for Γ. Equivalently, S is α-well-linked for Γ, if for every partition (X, Y ) of S,
|E(X, Y )| ≥ αmin {| out(X) ∩ Γ|, | out(Y ) ∩ Γ|}. We simply say that the cluster S is
α-well-linked if it is α-well-linked for out(S).

Lemma 2.3 G is α-well-linked for the set T ⊆ V of terminals, if and only if for every
pair of disjoint subsets T1, T2 ⊆ T of equal size, we can find a flow F : T1 1:1

 1/α T2 in
G.

Proof: We first assume that for every pair of disjoint subsets T1, T2 ⊆ T of equal size,
we can find a flow F : T1 1:1

 1/α T2. Consider any cut (A,B) of G. W.l.o.g, assume
|A ∩ T | ≤ |B ∩ T |. Then let T1 = A ∩ T and T2 be any subset of B ∩ T of size |T1|.
Since there is a flow F : T1 1:1

 1/α T2, we have |E(A,B)| ≥ α|T1| = α|A ∩ T |. Since
this is true for every cut (A,B), G is α-well-linked for T .

We then prove the other direction. Focus on two disjoint sets T1, T2 ⊆ T such
that |T1| = |T2| and there is no flow F : T1 1:1

 1/α T2 in G. Then consider the
following network flow problem. Add a super source s∗ and super sink t∗ to the
graph G. Add an edge of capacity 1 between s∗ and each terminal t ∈ T1; add an
edge of capacity 1 between t∗ and each terminal t ∈ T2. All the edges in G has
capacity 1/α. By the assumption, we can not send |T1| flow units from s∗ to t∗. By
the max-flow min-cut theorem, there is a cut (A ∪ {s∗} , B ∪ {t∗}) of capacity less
than |T1| in the network separating s∗ and t∗, where (A,B) is a cut in G. That
capacity of (A,B) is |A ∩ T2|+ |B ∩ T1|+ (1/α)|E(A,B)| < |T1|. Thus, |E(A,B)| <
α(|T1| − |A ∩ T2| − |B ∩ T1|) ≤ αmin {|A ∩ T1|, |B ∩ T2|} ≤ αmin {|A ∩ T |, |B ∩ T |}.
Then, G is not α-well-linked for T . �

We shall use the following more general definition of well-linkedness:

Definition 2.4 ((k1, α)-well-linkedness) Given a graph G = (V,E), a set T ⊆
V of terminals of degree 1, a parameter α ∈ [0, 1] and k1 ∈ Z+, we say that
G is (k1, α)-well-linked for T , iff for any partition (A,B) of V , |E(A,B)| ≥ α ·
min {|T ∩ A|, |T ∩B|, bk1/2c}.
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Though k1 can be any positive integer in the above definition, we will only be
interested in the case where k1 is the threshold defining small and large clusters. It
is easy to see that, G is (k1, α)-well-linked for T , if and only if G is α-well-linked for
every T ′ ⊆ T of size at most k1. Similarly, given a graph G, we say a cluster S of G
is (k1, α)-well-linked for Γ ⊆ out(S) if G[S ∪ out(S)] is (k1, α)-well-linked for Γ, and
we simply say S is (k1, α)-well-linked if S is (k1, α)-well-linked for out(S).

Definition 2.5 ((k1, α)-violating cut) Let S be a cluster of G that is not (k1, α)-
well-linked. We say that a cut (X, Y ) of S is a (k1, α)-violating cut, if |E(X, Y )| <
α ·min {| out(X) ∩ out(S)|, | out(Y ) ∩ out(S)|, bk1/2c}.

Lemma 2.6 Suppose we are given two sets Γ1,Γ2 ⊆ out(S) such that Γ1 ∩ Γ2 =

∅, |Γ1| = |Γ2| ≤ k1/2 and there is no flow F : Γ1
1:1
 1/α Γ2 inside S, then we can find

a (k1, α)-violating cut (X, Y ) of S.

Proof: By setting up a max-flow instance and using the maximum-flow-minimum-
cut theorem, we can find a cut (X, Y ) of S such that | out(X)∩Γ2|+ | out(Y )∩Γ1|+
(1/α)|E(X, Y )| < |Γ1|. Then

E(X, Y ) < α(|Γ1| − | out(X) ∩ Γ2| − | out(Y ) ∩ Γ1|)
≤ αmin {|Γ1| − | out(Y ) ∩ Γ1|, |Γ2| − | out(X) ∩ Γ2|}
≤ αmin {|(Γ1 ∪ Γ2) ∩ out(X)|, |(Γ1 ∪ Γ2) ∩ out(Y )|}
= αmin {|(Γ1 ∪ Γ2) ∩ out(X)|, |(Γ1 ∪ Γ2) ∩ out(Y )|, bk1/2c}
≤ αmin {| out(X)|, | out(Y )|, bk1/2c} .

Thus, (X, Y ) is a (k1, α)-violating cut. The equation used the fact that |(Γ1 ∪ Γ2) ∩
out(X)|+ |(Γ1 ∪ Γ2) ∩ out(Y )| = |Γ1 ∩ Γ2| ≤ k1. �

2.1.3 Sparsest Cut and the Flow-Cut Gap

Suppose we are given a graph G = (V,E), and a subset T ⊆ V of k terminals. The

sparsity of a cut (S, S) in G is Φ(S) = |E(S,S)|
min{|S∩T |,|S∩T |} , and the value of the sparsest

cut in G is defined to be: Φ(G) = minS⊂V Φ(S). The goal of the sparsest cut problem
is, given an input graph G and a set T of terminals, to find a cut of minimum sparsity.
Arora, Rao and Vazirani [7] have shown an O(

√
log k)-approximation algorithm for

the sparsest cut problem. We denote this algorithm by AARV, and its approximation
factor by αARV(k) = O(

√
log k).

A problem dual to sparsest cut is the maximum concurrent flow problem. For
the above definition of the sparsest cut problem, the corresponding variation of the
concurrent flow problem asks to find the maximum value λ, such that every pair of
terminals can send λ/k flow units to each other simultaneously with no congestion.
The flow-cut gap is the maximum ratio, in any graph, between the value of the
minimum sparsest cut and the maximum concurrent flow. The value of the flow-
cut gap in undirected graphs, that we denote by βFCG(k) throughout the paper, is
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Θ(log k) [61, 39, 66, 10]. Therefore, if Φ(G) = α, then every pair of terminals can
send α

kβFCG(k)
flow units to each other with no congestion. Equivalently, every pair of

terminals can send 1/k flow units to each other with congestion at most βFCG(k)/α.
Moreover, any matching on the set T of terminals can be fractionally routed with
congestion at most 2βFCG(k)/α. To see this, consider any pair (t1, t2) in the matching.
We can send 1/k units flow from t1 to every vertex in T and 1/k units flow from
every vertex in T to t2. Thus, we only need to send 2/k units flow between every
pair of vertices.

Given a graph G = (V,E), a cluster S of G, and a subset Γ ⊆ out(S) of edges,
the sparsest-cut instance SC(G,S,Γ) is defined by the graph G[S ∪ out(S)] and the
terminals Γ. Observe that for all α ∈ [0, 1], the sparsity of the sparsest cut in
SC(G,S,Γ) is at least α iff set S is α-well-linked with respect to Γ in graph G. If
Γ = out(S), then we simply denote instance by SC(G,S).

2.1.4 Well-linked Decomposition

In the α-well-linked decomposition, we are given a graph G = (V,E), a cluster C ⊆ V
such that | out(C)| = K and the parameter α ≤ 1. The goal is to partition C into
many sub-clusters, such that each sub-cluster is αWL := α/αARV(K)-well-linked. In the
process, we maintain a partitionW of C, where at the beginning,W = {C}. We then
perform a number of iterations. In each iteration, we select a cluster S ∈ W , and set
up the sparsest cut instance SC(G,S). We run the algorithm AARV on the instance. If
the sparsity of the cut produced by the algorithm is less than α, then we obtain a par-
tition (X, Y ) of S, with |E(X, Y )| < α ·min {| out(S) ∩ out(X)|, | out(S) ∩ out(Y )|}.
In this case, we remove S from W , and add X and Y instead. The algorithm ends
when for every cluster S ∈ W , AARV returns a partition of sparsity at least α. We are
then guaranteed that every cluster in W is α/αARV(K) = αWL-well-linked. We remark
that since α ≤ 1, every cluster S ∈ W in any iteration of the algorithm will have
out(S) ≤ K.

Theorem 2.7 Let W be the partition obtained from the above α-decomposition of
C for some α ≤ 1/(8 logK), where K = | out(C)|. Then,

∑
S∈W | out(S)| ≤ K +

O(αK logK).

Proof: Define a potential function f as f(i) = i + βi log i for some β ≥ 0 to be
decided later. We then show that

∑
S∈W f(| out(S)|) can only decrease. Suppose

in some iteration, we partition a cluster S into X and Y . It suffices to show that
f(| out(X)|)+f(| out(Y )|) ≤ f(out(S)). W.l.o.g, we assume a := | out(X)∩out(S)| ≤
b := | out(Y ) ∩ out(S)|. Thus, c := |E(X, Y )| < αa. For our choice of α, we have
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c < a ≤ b. Thus,

f(| out(X)|) + f(| out(Y )|) = f(a+ c) + f(b+ c)

= a+ c+ b+ c+ β((a+ c) log(a+ c) + (b+ c) log(b+ c))

≤ a+ b+ 2c (1 + β log(a+ b)) + β

(
a log

a+ b+ 2c

2
+ b log(a+ b)

)
≤ a+ b+ 2αa(1 + β logK) + β

(
(a+ b) log(a+ b)− a log

2(a+ b)

a+ b+ 2c

)
≤ f(a+ b) + 2αa(1 + β logK)− βa/2.

If we set β = 8α, then 2αa(1 + β logK) ≤ 2αa(1 + 1) ≤ 4αa = βa/2. The above
quantity is at most f(a+ b) = f(| out(S)|).

Thus, we have
∑

S∈W | out(S)| ≤ ∑
S∈W f(| out(S)|) ≤ f(| out(C)|) = K +

4αK logK = K +O(αK logK). �

Corollary 2.8 Let T be a set of K terminals in graph G = (V,E) and α <
1/(8 logK). Then, we can decompose G into many vertex induced sub-graphs such
that each sub-graph G[S] is αWL = α/αARV(K)-well-linked for the set T ∩ S, i.e, the
set of terminals in the sub-graph. Moreover, the number of edges across different
sub-graphs is at most O(αK logK).

Proof: If a terminal T has degree more than 1, we add a degree-1 vertex connected
to the terminal and replace the terminal with the newly added vertex. It is easy to
see that if an induced graph is αWL-well-linked for a subset of new terminals, it must
be αWL-well-linked for the correspondent subset of original terminals. Thus, we can
assume each vertex in T has degree 1. We apply the α-well-linked-decomposition to
the cluster V \ T . The decomposition partitions the graph G \ T into many induced
sub-graphs. Since terminals have degree 1, we add each terminal to the unique sub-
graph containing its neighbour. By doing so, we obtain a partition of G into induced
sub-graphs. Notice that each cluster S obtained from the α-well-linked-decomposition
is αWL-well-linked (for out(S)). If we let S ′ denote the union of S and the terminals
adjacent to S, then the induced sub-graph G[S ′] is αWL-well-linked for S ′ ∩ T . The
number of edges across different sub-graphs is O(αK logK), by Theorem 2.7. �

2.1.5 Boosting the Well-Linkedness

Suppose G = (V,E) is α-well-linked for a set T ⊆ V of terminals for some α = o(1).
Can we select a large subset T ′ ⊆ T (say, |T ′| ≥ Ω(α)|T |) such that G is Ω(1)-well-
linked for T ′? The answer is positive. We call the process of selecting T ′ boosting the
well-linkedness of G.

The first technique to boost the well-linkedness is called grouping. It was intro-
duced by Chekuri, Khanna and Shepherd [24], and has since been widely used in
algorithms for network routing [25, 72, 3, 31]. [24] proved that we can efficiently com-
pute a partition U of T into groups of size O(1/α), such that G is Ω(1)-well-linked
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for any T ′ ⊆ T containing at most 1 terminal from each group in U . In particular,
this implies that the size of T ′ can be as large as Ω(α) |T |.

The well-linkedness factor achieved using the above grouping technique can only
be 1 − ε for any ε > 0. In our application, it is essential that we boost the well-
linkedness to 1. This can be achieved using a more sophisticated technique, due to
Chekuri, Khanna and Shepherd [24]. In order to state the result of [24], we need the
following definition.

Definition 2.9 (degenerate graph) A simple graph H is d-degenerate for some
integer d > 0, if every induced sub-graph of H has a vertex of degree at most d.

A d-degenerate graph H has some nice properties. For example, every sub-graph
of H has average degree at most 2d. Also, we can greedily find an independent set of
H of size d|VH | /(d+ 1)e.

Ideally, we hope to prove that there is an O(1/α)-degenerate graph Z over T ,
such that G is 1-well-linked for every independent set T ′ of Z. However, due to some
technical issues, [24] did not give this result. Instead, the subset of terminals for
which G is 1-well-linked is selected in a two-step fashion. We construct an O(1/α)-
degenerate graph Z = (T , EZ). Then, given any independent set of T ′ of Z, we can
construct a O(1)-degenerate graph Y = (T ′, EY ) such that G is 1-well-linked for any
independent set T ′′ of Y .

For some technical reason, we need our graphs Z and Y to satisfy the following
property :

(A1) Every induced matching of Z (as well as Y ) can be routed in G integrally
with congestion 1.

An induced matching is an induce sub-graph that is a matching. Now we can formally
state the result of [24].

Theorem 2.10 Given a graph G = (V,E) and a subset T ⊆ V of terminals such that
G is α-well-linked for T , for some α ∈ (0, 1], we can efficiently construct an O(1/α)-
degenerate graph Z = (T , EZ) satisfying Property (A1), such that the following is true
for every independent set T ′ ⊆ T of Z. We can efficiently construct a 4-degenerate
graph Y = (T ′, EY ) satisfying Property (A1), such that G is 1-well-linked for every
independent set T ′′ ⊆ T ′ of Y .

Since the above theorem is only given implicitly in [24], we prove it in Section 2.2
for the sake of completeness.

2.2 Boosting the Well-Linkedness

In this section, we prove Theorem 2.10 that is implicitly proved in [24]. Recall the
settings of theorem: we are given a graph G = (V,E), a set T ⊆ V of terminals and
a parameter α < 1.
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2.2.1 Initial Grouping

Our graph Z is defined by a partition U of T into groups of size Θ(1/α). Z contains
an edge between two terminals t, t′ ∈ T if and only if t and t′ are in a same group
in U . In other words, Z is the union of disjoint cliques, where each clique is on some
U ∈ U . We give the grouping U of T in this section. Let q be the smallest even
integer with q ≥ 4/α, so 4/α ≤ q ≤ 4/α + 2. We assume |T | ≥ q since otherwise we
can let Z be the complete graph on T and the theorem is clearly true.

Lemma 2.11 We can efficient construct a partition U of the set T of terminals into
groups of size between q and 3q−3, and associate each group U ∈ U with a (connected)
cluster SU of G satisfying SU ⊇ U , such that the following is true.

⋃
U∈U SU = V and

for any two distinct groups U and U ′ in U , we have |SU ∩ SU ′| ≤ 1.

Proof: The algorithm is as follows. Take an arbitrary spanning tree T of G and root
it at an arbitrary vertex. Take the deepest vertex v in T such that the sub-tree Tv of
T rooted at v contains at least q terminals, breaking ties arbitrarily. Then, for any
child u of v in T , Tu contains less than q terminals in T . A group U and its associated
cluster SU is constructed as follows. Initially U = {v} ∩ T and SU = {v}. Take an
arbitrary order for the children of v. For each child u in that order, if |U | < q we add
the terminals in Tu to U and vertices in Tu to SU . Since each Tu contains at most
q − 1 terminals, our final U has q ≤ |U | ≤ 2q − 2. We let U = U ∪ {U}, T = T \ U
and T = T \ (SU \ v). Notice that SU is indeed a connected cluster containing U , and
the resulting T is still a tree. We repeat this process until at most 3q − 3 terminals
remain. The final group added to U will be the set of remaining terminals in T , and
the cluster for this group is the set of all the vertices left in T . Thus,

⋃
U∈U SU = V .

For any two different groups U,U ′ ∈ U , we have |SU ∩ SU ′| ≤ 1. This is true since
whenever we constructed a group U ′′, we remove all but one vertex in SU ′′ from T . �

With the grouping U , we construct Z = (T , EZ) as we mentioned earlier: Z
contains an edge between two terminals t, t′ ∈ T if and only if t and t′ are in a same
group in U . Since each group U ∈ U has size at most 3q−3 = O(1/α), the graph Z is
O(1/α)-degenerate. An induced matching of the graph Z contains 0 or 2 vertices from
each group U ∈ U . If it contains 2 vertices from U ∈ U , we can connect t and t′ in
G[SU ]. Since the graphs {G[SU ] : U ∈ U} are edge-disjoint (since every two graph has
at most one vertex in common), the induced matching can be routed edge-disjointly
in G. Thus, Z satisfies Property (A1).

2.2.2 Centers and Pseudo-Centers

In this section, we define centers and pseudo-centers, and prove some lemmas that
are essential in the algorithm.

Definition 2.12 Given a sub-graph G′ = (V ′, E ′) of G and a set U ⊆ V ′ of at least
q terminals in V ′, we say a vertex v ∈ V ′ is a center of G′ w.r.t U , iff v can send
one flow unit to U in graph G′, such that every terminal in U receives at most 1/q
flow units, and the flow on every edge in G′ is at most 1/2.
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We say that v is a pseudo-center of G′ w.r.t U , iff v can send one flow unit to U ,
with the same restrictions as above, except that the cut edges of G in G′ are allowed
to carry up to one flow unit.

Claim 2.13 v is a center of G′ w.r.t U if and only if there is no edge e whose removal
separates v and more than |U | − q/2 terminals in U in the graph G′.

Proof: The “only if” direction is easy to see: if there is such an edge e, then e has to
carry more than 1/2 unit flow. Now consider a “if” direction. Consider following the
network flow problem. We take the graph G′, where each edges in G′ has capacity
1/2. Then add a super sink s and an edge of capacity 1/q from each terminal inU to
s. If v is not a center of G′, we can not send 1 unit flow from v to s in the network.
By the maximum-flow-min-cut theorem, there is a cut of capacity less than 1 between
s and v. The cut can only contain one edge in G′ since each edge in G′ has capacity
1/2. Also, it has to contain an edge in G′ since otherwise the cut has to contain
all edges between s and U , which have total capacity at least 1. Therefore, the cut
contains exactly one edge e in G′ and less than q/2 edges between U and s. Let U ′

be the set of terminals whose corresponding edges to s are cut. Then |U ′| < q/2 and
the removal of e in G′ separates v and all terminals in U \ U ′. �

Corollary 2.14 1. If v is a center of G′ w.r.t U and u is in the same 2-edge-
connected component as v in G′, then u is also a center.

2. The set of centers in G′ is connected.

3. G′ contains at least a center w.r.t U .

Proof: The first statement holds since no edge separates u and v and no edge sepa-
rates v from more than |U |−q/2 terminals in |U |. For the second statement, consider
a path from u to v containing w. Then, no edge can separate w from {u, v}. If u and
v are both centers, then w must also be a center. For the third statement, consider
the tree of maximal 2-edge-connected components of G′ and root the tree arbitrarily.
Let C be the lowest component in the tree such that the sub-tree rooted at C contains
at least q/2 terminals in U . Then, every vertex in C is a center. �

The following lemma is crucial in proving Theorem 2.10.

Lemma 2.15 Let T ′ ⊆ T be a subset of terminals. Suppose each terminal t ∈ T ′ is
associated with a sub-graph Gt of G and a set Wt ⊆ T of terminals such that

1. t ∈ Wt ⊆ V (Gt) and |Wt| ≥ q for every t ∈ T ′.

2. For every t ∈ T ′, t is a pseudo-center of Gt w.r.t Wt.

3. The sets {Wt : t ∈ T ′} are disjoint.

4. The sub-graphs {Gt : t ∈ T ′} are edge-disjoint.

Then G is 1-well-linked for T ′.
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Proof: Let T ′1 , T ′2 be any two disjoint subsets of T ′ such that |T ′1 | = |T ′2 |. It suffices

to show that we can find a flow T ′1
1:1
 1 T ′2 in G.

Since each terminal t ∈ T ′ is a pseudo-center of the graph Gt w.r.t Wt, we can
send one flow unit from t to Wt in Gt, such that each terminal in Wt receives at most
1/q flow units. Moreover, each edge in Gt carries at most 1/2 flow unit, except for the
cut edges of G, which may carry up to 1 flow unit. Since we have selected q to be an
even integer, from the integrality of flow, we can assume that the flow is 1/q-integral.
Then, every terminal in Wt receives either 0 or 1/q flow units. Let W ′

t ⊆ Wt be the
set of exactly q vertices that receive 1/q flow units and let Ft be the flow of value 1
sent from t to W ′

t .
Let T1 =

⋃
t∈T ′1

W ′
t , and let T2 =

⋃
t∈T ′2

W ′
t . Notice that |T1| = q|T ′1 | = q|T ′2 | = |T2|

since the sets {W ′
t : t ∈ T ′} are disjoint. Recall that the graph G is α-well-linked for

T . Thus there is a flow T1 1:1
 1/α T2 in graph G. Scaling this flow down by factor

q ≥ 2/α, we obtain a flow F ∗, where every terminal in T1 sends 1/q flow units, every
terminal in T2 receives 1/q flow units, and the edge congestion is at most 1/2. Let flow
F ′ be the concatenation of

⋃
t∈T ′1

Ft, the flow F ∗, and
⋃
t∈T ′2

Ft. Then every terminal

in T ′1 sends one flow unit in F ′, and every terminal in T ′2 receives one flow unit. Every
edge of G carries at most one flow unit in F ′, except for the cut edges of G, which
may carry up to 1.5 flow units.

We show that after removing cycles in the flow F ′, the resulting flow has congestion
at most 1 on every edge in G. To see this, we only need to consider the cut edges of
G. Since we removed cycles, each cut edge can only carry flow in one direction. For a
cut edge whose removal breaks G into G[X] and G[Y ], we can assume it carries flow
from X to Y w.l.o.g. Then, it must be the case that the amount of flow sent from X
to Y is an integer. This holds since every terminal in T ′1 ∪T ′2 sends or receives exactly
1 flow unit. Since the congestion of the cut edge is at most 1.5, it is at most 1. �

Now, we try to construct the graph Y over an independent set T ′ of Z. Thus, T ′
contains at most one terminal from each group U ∈ U . If we could claim that every
terminal t ∈ T ′ is a pseudo-center of G[SU ] w.r.t U for the group U ∈ U containing
t, then we would be done by Lemma 2.15. (For every t ∈ T ′, we can let Wt = U and
Gt = G[SU ], where U is the unique group in U containing t.) However this is not
always the case. To overcome this difficulty, we use the tagging procedure suggested
by [24], where some cluster SU may tag some other cluster SU ′ , such that the unique
terminal t ∈ U ∩ T ′ is a pseudo-center of a larger cluster formed by merging SU and
SU ′ . This is done in the next subsection.

2.2.3 The Tagging Procedure

Focus on some terminal t ∈ T ′ and its cluster SU , where U = Ut. Assume t is not
a pseudo-center of G[SU ] w.r.t U . Then by the three statements of Corollary 2.14,
there must be at least one cut edge of G[SU ] that separates t from all centers of
G[SU ]. Assume there are ` edges e1, e2, · · · , e`. Let Ai be the connected component
of G[SU ]\ei containing t. We name the edges in a way such that A1 ⊂ A2 ⊂ · · · ⊂ A`.
Let i be the smallest index such that there is an edge between Ai and V \ SU(see
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Figure 2.1: Tagging. (a): SU tags SU ′ and there is no portal edge for SU . (b): SU tags
SU ′ and there is a portal edge for SU . (c) The partition for portals. The 7 portals
marked by empty circles are partitioned in to 3 subsets, and each subset is connected
by a sub-graph, denoted by the solid lines.

Figure 2.1). If such i does not exist, then all the edges e1, e2, · · · , e` are cut edges of G
and thus t is a pseudo-center of U . Suppose now i exists. If some vertex v ∈ Ai \Ai−1
is in some cluster SU ′ for U ′ ∈ U and U ′ 6= U , then we say SU tags SU ′ via the
portal vertex v(see Figure 2.1(a)). Otherwise there is an edge (u, v) ∈ E such that
u ∈ Ai \Ai−1, u is not in any cluster other than SU , v ∈ SU ′ for some U ′ ∈ U , U ′ 6= U
and v /∈ SU . In this case, we say SU tags SU ′ via the portal vertex v and e is the
portal edge for SU(see Figure 2.1(b)). In the former case, there is no portal edge for
SU . We remark that if e is a portal edge, then e is not inside any cluster SU . We also
remark that if SU , U ∈ U does not tag any cluster, then either U does not contain a
terminal in T ′, or the unique terminal in U ∩ T ′ is a pseudo-center of G[SU ] w.r.t U .

Lemma 2.16 Suppose SU tags some cluster and t is the unique terminal in U ∩ T ′.
SU ′ be some other cluster. Let P be a path connecting SU and SU ′ via the portal for
SU(i.e, if there is a portal edge for SU , then the first edge of P is the portal edge;
otherwise, the first vertex of P is the portal vertex for SU). Moreover, only the first
vertex of P is in SU . Then, t is a pseudo-center of G′ = G[SU ] ∪ G[SU ′ ] ∪ P w.r.t
U ∪ U ′.

Proof: Define e1, e2, · · · , e` and A1, A2, · · · , A` as above. Let i be the smallest index
such that there is an edge in G between Ai and V \SU . Notice that e1, e2, · · · , ei−1 are
cut edges of G. It suffices to show that there is no edge e′ of EG′ \ {e1, e2, · · · , ei−1}
such that e′ separates t from more than |U ∪U ′| − q/2 terminals in |U ∪U ′| in G′. If
e′ is from the path P or the graph G[SU ′ ], then clearly t is still connected to the at
least q terminals of U in G′ \ e′. Thus, we can assume e′ is in G[SU ]. Noticing that
e1, e2, · · · , e` are the only edges whose removal separates t and the centers of G[SU ],
and e′ /∈ {e1, e2, · · · , ei−1}, we can assume e′ = ej for some i ≤ j ≤ `. In this case, t is
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connected to all terminals of U ′ in G′ \ e′, via the path P . Thus, t is a pseudo-center
of G′ w.r.t U ∪ U ′. �

We now build a graph Z ′ = (U , EZ′). Then our final graph Z in Theorem 2.10
is obtained from Z ′ by replacing each group U ∈ U that contains a terminal t ∈ T ′
with t and remove the groups U ∈ U that do not contain terminals in T ′.

If SU tags SU ′ , we then add an edge (U,U ′) to Z ′. With these edges, we guarantee
that U and U ′ can not both appear in an independent set of Z ′ if U tags U ′. However,
if both SU ′ and SU ′′ tags SU , U ′ and U ′′ may both appear in an independent set. We
now deal with this case. Consider a group U ∈ U such that SU is tagged by at
least two clusters. Consider the multi-set PU of portal vertices in SU via which these
clusters tag SU . We apply the following claim to obtain a partition BU of PU .

Claim 2.17 We can find a partition BU of PU into subsets of size 2 and 3, each
subset associated with a connected sub-graph of G[SU ] containing all portal vertices of
the subset, such that the sub-graphs for all subsets in the partition are edge-disjoint.
(See Figure 2.1(c).)

The proof of the above claim is exactly the same as the proof of Lemma 2.11 for
q = 2 and thus we omit it here. If SU ′ tags SU via the portal vertex v and SU ′′ tags
SU via the portal vertex u, and u and v are in the same subset of the partition BU ,
then we add an edge (U ′, U ′′) in the graph Z ′. This finishes the description of Z ′.

Consider any independent set U ′ ⊆ U of Z ′. Recall that each group U ∈ U ′
contains 0 or 1 terminal in T ′. Let T ′′ ⊆ T ′ be the terminals contained in some
group in U ′.

Lemma 2.18 G is 1-well-linked for T ′′.

Proof: Consider a terminal t ∈ T ′′ and suppose t ∈ U ∈ U ′. If SU does not tag any
cluster, we let Gt = G[SU ] and Wt = U . Notice that in this case, t is a pseudo center
of Gt w.r.t Wt. If SU tags SU ′ and SU ′ is only tagged by SU , we let Wt = U ∪U ′. Let
Gt = G[SU ] ∪G[SU ′ ] if there is no portal edge for SU and Gt = G[SU ] ∪G[SU ′ ] ∪ e′ if
e′ is the portal edge for SU . By Lemma 2.16, t is a pseudo-center of Gt w.r.t Wt in
this case. If SU tags SU ′ and SU ′ is also tagged by some other clusters, then let v be
the portal vertex via which SU tags S ′U . Consider the subset B ∈ BU ′ that contains v
and let u be some other portal vertex in B. Suppose u is for the cluster SU ′′ ; in other
words, SU ′′ tags SU ′ via the portal u. Then we let Wt = U ∪ U ′′, and the graph Gt

is constructed as follows. It contains the graphs G[SU ], G[SU ′′ ] and the sub-graph of
G[SU ′ ] for B ∈ BU ′ defined in Claim 2.17. Moreover, we add portal edges for SU and
SU ′′ , if they exist. Again, by Lemma 2.16, t is a pseudo-center of Gt w.r.t Wt.

Now we show that the graphs {Gt : t ∈ T ′′} are edge-disjoint. First consider the
edges in some cluster SU . If U contains a terminal t ∈ T ′′, then U ∈ U ′ and thus for
all the clusters SU ′ that tags SU , we have U ′ /∈ U ′. Thus, G[SU ] is only used in Gt.
If U does not contain a terminal in T ′′ and SU is not tagged by any clusters, then
G[SU ] is not used at all. If U does not contain a terminal in T ′′ and SU is tagged by
only one cluster SU ′ , then G[SU ] is used by Gt′ if U ′ contains a terminal t′ ∈ T ′′ and

19



not used otherwise. Now consider the final case that U does not contain a terminal
in T ′′ and SU is tagged by at least 2 clusters. In this case, we have constructed a
partition BU for the set PU of portal vertices via which the clusters tag SU . Among
the 2 or 3 clusters whose correspondent portals are in a same subset B ∈ BU , at most
1 cluster SU ′ can have U ′ ∈ U ′. Thus, the sub-graph for B defined in Claim 2.17 is
used at most once. Notice that the sub-graphs for all subsets B ∈ BU are disjoint.
Thus, each edge in G[SU ] is used only once.

Then, we consider the portal edges. Recall that a portal edge is not inside any
cluster. Suppose SU tags SU ′ via a portal edge e = (v, u), where v ∈ SU and u ∈ SU ′ .
Then v is not SU ′′ for any U ′′ ∈ U and U ′′ 6= U . Thus, if e is a portal edge for some
other cluster SU ′′ , it must be the case that SU ′′ tags SU via the portal edge e and
portal vertex v. If U ′′ 6= U ′, then u is in both SU ′ and SU ′′ and thus SU ′′ should tag
SU ′ (or some other cluster containing u) without portal edges. If U ′′ = U ′ then only
one group in {U,U ′} can be in U ′ and thus the portal edge is used only once.

By the similar case-by-case analysis, it is easy to see that the sets {Wt : t ∈ T ′}
are disjoint. Thus, we have identified a sub-graph Gt of G and a set of terminals
Wt ∈ V (Gt) for each t ∈ T ′′. The sub-graphs {Gt : t ∈ T ′′} are edge-disjoint and sets
{Wt : t ∈ T ′′} are disjoint. Moreover, t is an pseudo-center of Gt w.r.t Wt for every
t ∈ T ′. Thus, G is 1-well-linked for T ′′ by Lemma 2.15. �

Recall that Z is obtained from Z ′ by replacing each group U ∈ U containing
a terminal t ∈ T ′ with the terminal t and removing groups U ∈ U containing no
terminals in T ′. Thus, G is 1-well-linked for any independent set T ′′ ⊆ T ′ of Z.

Now we show that Z satisfies Property (A1). Consider any induced-matching of
Z ′ such that every group in the induced matching contains a terminal in T ′. Focus
on a matching edge (U,U ′) such that t ∈ U ∩ T ′ and t′ ∈ U ′ ∩ T ′. If SU tags SU ′ ,
we connect t and t′ via the concatenation of a path in G[SU ], a path in G[SU ′ ], and
possibly the portal edge for SU . If both SU and SU ′ tags SU ′′ and the two portal
vertices for SU and SU ′ are in the same subset B ∈ BU ′′ , we connect t and t′ via the
concatenation of a path in G[SU ], a path G[SU ′ ], a path in the sub-graph of G[SU ′′ ] for
B defined in Claim 2.17, and possibly the portal edge for SU and the portal edge for
SU ′ . By similar and tedious arguments as above, the routing paths for the terminals
are edge-disjoints.

Then we show that Z ′ is 4-degenerate. In the first step, we add edges (U,U ′) for
all pairs such that SU tags SU ′ . Notice that each cluster tags at most 1 cluster, the
graph we obtained 2-degenerate. In the second step, the degree of each vertex in Z ′

is increased by at most 2 since the subsets in each BU have size at most 3. Thus, Z ′

is 4-degenerate, implying that Z is 4-degenerate.

2.3 Routing in Crossbar

Chekuri, Khanna and Shepherd [24, 25, 23] have suggested the following high-level
approach to solving EDP instances (G, T ,M). They start by defining a graph called
a crossbar. Roughly speaking, a graph H with a subset T ′ ⊆ VH of vertices is called
a crossbar, if given any matching M′ over the vertices of T , we can route a large
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Figure 2.2: (γ∗, k∗)-crossbar. The ellipses denote the γ∗ clusters; fat solid lines rep-
resent a tree Ti ∈ T∗; dashed lines represent another tree; M∗ ⊆ M is a perfect
matching on the 2k∗ terminals.

sub-matching of M′ with small congestion in H. They then note that if we could
“embed” a crossbar H in graph G with small congestion, with T ′ being a large subset
of T , then we can obtain a good approximation to EDPwC with small congestion.

An algorithm for constructing a crossbar with a constant congestion follows from
the recent work of Chuzhoy [31]. We follow the approach in [31], except that we
construct a crossbar with congestion 2. We now give the exact definition the crossbar
used in [31] in Section 2.3.1 and prove that we can route many pairs in the crossbar
(Theorem 2.21) in Sections 2.3.2 and 2.3.3.

2.3.1 Crossbar

Definition 2.19 ((γ∗, k∗)-crossbar) Given a EDP instance (G, T ,M) and γ∗, k∗ ∈
Z+, (S∗,Γ∗,T∗,M∗) is called a (γ∗, k∗)-crossbar if the following are true.

1. S∗ = {Sj : j ∈ [γ∗]} is a family of γ∗ disjoint clusters in G \ T .

2. Γ∗ = {Γj : j ∈ [γ∗]}. For every j ∈ [γ∗], Γj ⊆ out(Sj) is a subset of out-going
edges of Sj such that |Γj| = 2k∗.

3. For every j ∈ [γ∗], Sj is 1-well-linked for Γj.

4. T∗ = {Ti : i ∈ [2k∗]}. For every i ∈ [2k∗], Ti is a tree, containing exactly one
terminal ti ∈ T and a representative edge ei,j ∈ Γj for every j ∈ [γ∗].

5. Γj = {ei,j : i ∈ [2k∗]}; that is, every edge in Γj is a representative edge for
exactly one tree Ti.

6. The 2k∗ terminals t1, t2, · · · , t2k∗ are distinct; moreover, M∗ ⊆ M is a perfect
matching on the 2k∗ terminals.
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In the above crossbar, two main components are the set S∗ of clusters and the
set T∗ of trees. The clusters and the trees are well connected in the sense that each
tree Ti ∈ T∗ contains an edge ei,j ∈ out(Sj) for every Sj ∈ S∗. The congestion of the
crossbar is then the maximum number of times an edge is used by the clusters and
the trees. The formal definition is given below.

Definition 2.20 Given a crossbar (S∗,Γ∗,T∗,M∗) for an EDP instance (G, T ,M),
the congestion of the crossbar is the multiplicity of the multi-set

⊎
i∈[2k∗]E(Ti) ]⊎

j∈[γ∗]E(G[Sj]), where ] is the multi-set sum.

Notice that the clusters {Sj : j ∈ [γ∗]} are disjoint. If the congestion of a crossbar
(S∗,Γ∗,T∗,M∗) is at most c, then every edge of G is used by at most c trees in T∗,
and every edge in any cluster G[Sj] is used by at most c− 1 trees in T∗.

[31] implicitly proved that in order to give an poly-logarithmic approximation
for EDP with congestion c, it suffices to construct (γ∗, k∗)-crossbar of congestion of
congestion c with k∗ = k/polylog(k) and a suitable γ∗ = polylog(k).

Theorem 2.21 ([31]) Let (G, T ,M) be an EDP instance with k = |M|. Given a
(γ∗, k∗)-crossbar (S∗,Γ∗,T∗,M∗) of congestion c for some suitable γ∗ = O(log2 k),
we can route Ω

(
k∗/ log4 k∗

)
pairs in M∗ with congestion at most c in G.

In the remaining part of this section, we prove Theorem 2.21. The proof contains
two steps. In the first step, we “embed” an expanderH in the graphG with congestion
c, using the cut-matching game introduced by Khandekar, Rao and Vazirani [51]. In
the embedding, each vertex of H corresponds to a connected component in G (to be
more specific, a tree), and each edge of H corresponds to a path connecting the two
connected components for the two end-points of the edge. Then in the second step,
we route many pairs in H vertex-disjointly. The routing in H be naturally converted
to routing in G, and the vertex-disjointness guarantees that the congestion of the
routing in G is at most c.

2.3.2 Embedding an Expander via Cut Matching Game

In this section, we embed an expander in G. Given a graph G′, the expansion of
G′ = (V ′, E ′) is defined as minS⊆V ′,1≤|S|≤|V ′|/2

|E′(S,V ′\S)|
|S| , where E ′(S, V ′ \ S) is the

set of edges in G′ between S and V ′ \ S. An α-expander is a graph with expansion
at least α.

We use the cut-matching game introduced by Khandekar, Rao and Vazirani [51].
In this game, we are given a set V of N vertices, where N is even. There are two
players: a cut player, whose goal is to construct an expander X on the set V of
vertices, and a matching player, whose goal is to delay its construction. The game
is played in iterations. We start with the graph X containing the set V of vertices,
and no edges. In each iteration j, the cut player computes a partition (Aj, Bj) of V
into two equal-sized sets, and the matching player returns some perfect matching Mj

between the two sets. The edges of Mj are then added to X. Khandekar, Rao and
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Vazirani have shown that there is a strategy for the cut player, guaranteeing that
after O(log2N) iterations we obtain a 1

2
-expander w.h.p. Subsequently, Orecchia et

al. [70] have shown the following improved bound:

Theorem 2.22 ([70]) There is a probabilistic algorithm for the cut player, such that,
no matter how the matching player plays, after γCMG(N) = O(log2N) iterations, graph
X is an αCMG(N) = Ω(logN)-expander, with constant probability.

We now embed an Ω(log k∗)-expander H in G using Theorem 2.22. The set of
vertices of H is VH = T (M∗). The embedding of each vertex ti ∈ VH is Ti, the
unique tree in T∗ containing ti. In order to compute the set of edges of H and their
embedding into G, we perform the cut-matching game on the set VH of 2k∗ vertices,
using Theorem 2.22. Let γ∗ = γCMG(2k∗) = O(log2 k∗) = O(log2 k). Recall that this
game consists of γ∗ iterations, where in iteration j ∈ [γ∗], the cut player computes a
partition (Aj, Bj) of VH , and the matching player responds with a perfect matching
between the vertices of Aj and the vertices of Bj. Given the partition (Aj, Bj) of
VH computed by the cut player, we find a corresponding partition (A′j, B

′
j) of Γj, as

follows. For each ti ∈ VH , if ti ∈ Aj, then we add ei,j to A′j, and otherwise we add it

to B′j. Since the set Sj is 1-well-linked for Γj, we can find a collection Qj : A′j
1:1
 1 B

′
j

of edge-disjoint paths contained in Sj. These paths define a matching Mj between
the edges of A′j and the edges of B′j, which in turn defines a matching between the
terminals of Aj and the terminals of Bj. We then add the edges of the matching to
the graph H. For each such edge e ∈Mj, its embedding into G is the corresponding
path in Qj. From Theorem 2.22, after γ∗ iterations, we obtain a Ω(log k∗)-expander
H, together with its embedding into G. It is easy to see that the embedding causes
congestion at most c in graph G, since the multi-set of edges used by the embedding
(count multiplicity) is a subset of

⊎
j∈[γ∗]E(G[Sj]) ]

⊎
i∈[2k∗]E(Ti).

2.3.3 Routing Demands in the Expander

Once we have embedded the expander H into the graph G, we will need to route
demand pairs across X via vertex-disjoint paths. There are many algorithms for
routing on expanders, e.g. [61, 18, 17, 52, 37], that give different types of guarantees.
We use the following theorem, due to Rao and Zhou [72] (see also a proof in [31]).

Theorem 2.23 (Theorem 7.1 in [72]) Let G = (V,E) be any n-vertex d-regular
α-expander. Assume further that n is even, and that the vertices of G are partitioned
into n/2 disjoint demand pairs

{
(s1, t1), . . . , (sn/2, tn/2)

}
. Then there is an efficient

algorithm that routes Ω
(

αn
logn·d2

)
of the demand pairs on vertex-disjoint paths in G.

Notice that M∗ is a perfect matching for VH . Thus, by applying Theorem 2.23,

we can find a routing of a subset M′ ⊆M∗ of Ω
(

log k∗k∗

log k∗γ∗2

)
= Ω(k∗/ log4 k∗) pairs in

the expander H with congestion 1. We can convert the paths in H to paths in G in a
natural way. Consider a path P = (ti0 , ti1 , · · · , ti`) in H. Let ej = (tij , tij+1

) for every
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j ∈ {0, 1, · · · , `− 1}. To obtain Q, we replace each edge ej by its embedding-path
Qej in G. Recall that Qej connects Tij to Tij+1

. (Recall that Tij is the unique tree
in T∗ containing tij .) Consider an intermediate vertex tij in P . We connect the last
vertex of Qej−1

to the first vertex of Qej using the unique path in Tij . We also connect
ti0 to the first vertex of Qe0 using the unique path in Ti0 , and connect the last vertex
of Pe`−1

to ti` using the unique path in Qi` . This finishes the construction of Q. We
remark that the path Q only includes the embedding-path Qej of each edge ej ∈ P ,
and some portion of each tree Tij , j ∈ {0, 1, · · · , `}.

Now, due to the fact that the routing paths forM′ in H are vertex-disjoint, every
embedding-path Qe, e ∈ EH is used at most once, and every tree Ti, i ∈ [2k∗] is also
used at most once. Since the congestion of the crossbar is c, the set of routing paths
for M′ in G causes congestion at most c.
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Chapter 3

Edge Disjoint Paths: Main
Algorithm

3.1 Overview of the Algorithm

In this chapter, we give our algorithm for EDP with congestion 2, by assembling the
components described in Chapter 2. We leave the construction of the congestion-2
crossbar, our core component, to Chapter 4.

Our algorithm is based on the natural LP relaxation of the problem. At the very
first step, we solve the LP and decompose the input EDP instance into what we called
well-linked instances. This is the only step where we use the LP relaxation. After
this step, we solve each well-linked instance separately, using a purely combinatorial
approach. In a well-linked instance, the graph G is 1-well-linked for the set of 2k
terminals participating in the k pairs. We shall route k/polylog(k) pairs in G with
congestion 2. This is a clearly a polylog(k)-approximation since the optimum solution
can route at most k pairs.

The high-level structure of the combinatorial algorithm for a well-linked instance
(G, T ,M) is as follows. Throughout this and the next Chapter, let γ = Θ(log8 k), α =

Θ(1/ log k) and k1 = Θ
(

k
γ2 log k

)
be the threshold defining small and large clusters,

as in Table 4.1. Suppose we are given γ disjoint large clusters S1, S2, · · · , Sγ in G \ T
satisfying the following two properties. First, every cluster Si can send k1/2 units
flow to the terminals in T , or equivalently, there is no cut of size less than k1/2
separating Si and T for every i ∈ [γ]. Secondly, each cluster Si is (k1, α)-well-linked
(for out(Si)). Then, we can either route k/polylog(k) pairs in G integrally with
congestion 2, or construct a (γ∗, k∗)-crossbar of congestion 2 in G, for some large
enough γ∗ = O(log2 k) and k∗ = k/polylog(k). Then, by Theorem 2.21, we can route
Ω
(
k∗/ log4 k∗

)
= k/polylog(k) pairs in G with congestion 2.

Thus, it suffices to construct a family of γ clusters satisfying the two properties.
Our algorithm for constructing the clusters is iterative. It maintains a data structure,
from which we can derive the family of γ clusters. We then check whether the two
properties are satisfied. If either property is not satisfied, given the witness, we
update the data structure so that it produces a different family of γ clusters. There
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is a potential function defined over all possible contents of the data structure so that
each time we update the data structure, its potential goes down by at least 1. The
range of the potential function is polynomial in n and k. Thus we can find the family
of γ clusters satisfying the two properties in polynomial time.

There is a small caveat with the above high-level approach: we can not check if a
cluster Si is (k1, α)-well-linked, even if we are willing to lose a factor of polylog(k) in
the α-factor. Indeed, we need to lose a polylog(n) factor. Fortunately we can avoid
the polylog(n) loss factor by carefully merging the two steps. Given a family of γ
disjoint large clusters, we try to construct the crossbar, pretending that the clusters
satisfy the two properties. Then, the procedure either succeeds, or outputs a witness
that one of the two properties is not satisfied. In the former case, we terminate the
algorithm; while in the latter case, we return the witness to the iterative algorithm
and ask the algorithm to give a different family of clusters. Thus, a crucial property
of our crossbar constructor we used is the following. It not only succeeds given a
family of “good” clusters, but also detects bad clusters when it fails.

The remaining part of this section is organized as follows. In Section 3.1.1, we show
how to reduce a general EDP instance to well-linked instances. Then in Section 3.1.2,
we give the theorem for constructing the crossbar. Since it is the core of the algorithm,
we dedicate Chapter 4 to its proof. Finally, we describe the iterative algorithm in
Subsection 3.1.3 and leave the proof of an important theorem to Section 3.2.

3.1.1 Preprocessing

Suppose we are given an EDP instance (G = (V,E), T ,M). W.l.o.g, we can assume
every terminal in T has degree 1 in graph G and participates in exactly 1 pair in
M. (If a vertex appears in a pairs, we can add a degree-1 terminals attached to this
vertex.) Thus, |T | = 2|M|. We can assume each vertex in G has degree at most 4 via
the following transformations. For each vertex v ∈ E with degree d > 4, we replace
v with a d × d grid and connect the d vertices adjacent to v to the d vertices of the
first row of the grid. It is easy to verify that these transformations do not change the
problem.

We use the standard multicommodity flow LP-relaxation for the EDPwC problem
to partition our graph into several disjoint sub-graphs, that are well-linked for their
respective sets of terminals. In the standard LP-relaxation for EDPwC, we have an
indicator variable xi for each 1 ≤ i ≤ k, for whether the pair (si, ti) is routed. Let Pi
be the set of all paths connecting si to ti in G. For each path P , we have a variable
f(P ) indicating whether we are using P or not. The LP relaxation is defined as
follows.
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(LP1) max
k∑
i=1

xi

s.t.
∑
P∈Pi

f(P ) ≥ xi ∀1 ≤ i ≤ k (3.1)∑
P :e∈P

f(P ) ≤ 1 ∀e ∈ E (3.2)

0 ≤ xi ≤ 1 ∀1 ≤ i ≤ k (3.3)

f(P ) ≥ 0 ∀1 ≤ i ≤ k,∀P ∈ Pi (3.4)

While this LP has exponentially many variables, it can be efficiently solved using
standard techniques, e.g. by using an equivalent polynomial-size LP formulation. We
denote by opt the value of the optimal solution to the LP. Clearly, the value of the
optimal solution to the EDPwC instance is at most opt.

Notice that if we replace the right-hand-side of Constraint (3.2) with 2, then we
obtain an LP relaxation for the EDP with congestion 2 problem. Then, it is clear
that the optimum of this new LP is at most 2opt. Due to this fact, our algorithm is
indeed a true approximation for the EDP with congestion 2 problem.

We now partition the given EDP instance into many instances, using the following
theorem whose proof is implicit in [24, 25, 31]. We include the proof for completeness.

Theorem 3.1 Suppose we are given a graph G = (V,E) and a set M of k source-
sink pairs in G. Then we can either route Ω(opt/ log1.5 k) source-sink pairs integrally
in G, or do the following. Find a collection G1, . . . , G` of vertex-disjoint induced sub-
graphs, and compute, for each 1 ≤ i ≤ `, a collection Mi ⊆ M of source-sink pairs
contained in Gi, such that

∑`
i=1 |Mi| = Ω(opt/ log1.5 k), and Gi is 1-well-linked for

Ti := T (Mi).

Proof: We solve (LP1) to obtain opt and the {xi : i ∈ [k]} values. As a first step,
we would like to define a weighted version of well-linkedness and apply a weighted
version of the well-linked decomposition. To avoid extra definitions and proofs, we
insist on the non-weighted versions of well-linkedness and well-linked decomposition
given in Definition 2.2 and Theorem 2.7 via the following trick. First, we round
down each xi to the largest multiple of 1/k. Then, the sum of xi is decreased by at
most 1. We modify the flows {f(P ) : P ∈ ⋃iPi} accordingly so that each si sends xi
units flow to ti. Then, consider the graph G′ obtained from G as follows. For each
(si, ti) ∈ M and t ∈ {si, ti}, we add kxi terminals connected to t via kxi edges. We
call the kxi terminals the copies of t. Let T ′ be the set of newly added terminals.
Thus, |T ′| = 2k

∑
i∈[k] xi ≤ 2k2. We also match the kxi terminals connected to si

and kxi terminals connected to ti in an arbitrary way. By doing so, we obtain a
perfect matching M′ over T ′. We can route 1/k units flow in G′ simultaneously for
all demand pairs in M′.

We apply Corollary 2.8 to G′ and T ′ of terminals and some suitable α′ =
Θ(1/(k log k)) to obtain a partition of G into many induced sub-graphs. Let

27



K = |T ′|. Then, each sub-graph G′[S] is α′WL = α′αARV(K) = Ω(1/(k log1.5 k))-
well-linked for the set S ∩ T ′ of terminals. By Corollary 2.8, there are at most
O(α′K logK) = O(α′K log k) edges across different sub-graphs. If α′ is small
enough, the number is at most K/(4k). We remove the demand pairs in M′ whose
two end-points lie in different sub-graphs. We also remove the terminals participating
in these pairs from T ′. Since we can simultaneously send 1/k units flow for all pairs
in M′, and the number of crossing edges is at most K/(4k), we removed at most
K/(4k)/(1/k) = K/4 pairs fromM′. Thus, the number of remaining pairs is at least
K/2 −K/4 = K/4. Let T ′′ be the set of remaining terminals and M′′ be the set of
remaining pairs.

Now focus on some induced sub-graph G′[S] in the partition. We shall select a
large subset of terminals in T ′′∩S for which G′[S] is 1-well-linked, using the technique
of boosting the well-linkedness in Section 2.1.5. We apply Theorem 2.10 to G′[S] to
obtain an O(1/α′WL)-degenerate graph Z on the set T ′′ ∩ S of terminals. If both
terminals in some pair in M′′ are in T ′′ ∩ S, we identify them in Z. The degeneracy
of the graph is increased by a factor of at most 4. Thus, the resulting graph Z ′ is
still an O(1/α′WL)-degenerate graph. We then can select an independent set of size

Ω(α′WL|T ′′ ∩ S|) in Z ′. We convert the independent set in Z ′ back to a set T̃ of

terminals in Z: for a vertex in the independent set, we include into T̃ the pair of
terminals identified to the vertex. Thus, the induced graph Z[T̃ ] forms a partial

matching. If the partial matching covers 1/2 fraction of the vertices in T̃ , then, by
Property (A1), we can route Ω(α′WL|T ′′ ∩ S|) pairs integrally in G′[S]. Otherwise, we

find a independent set T̃ ′ of size Ω(α′WL|T ′′∩S|) in Z. Moreover, for a pair (s, t) ∈M′′,

either both s and t are T̃ ′, or both are not. By Theorem 2.10, we can obtain an 4-
degenerate graph Y over T̃ ′′. Again, we identify the pairs of terminals in Y to obtain
a 16-degenerate graph Y ′. We either find an integral routing of Ω(α′WL|T ′′ ∩ S|) pairs
in G′[S], or an independent set of size Ω(α′WL|T ′′ ∩ S|) in Y . In the latter case, the
independent set is perfectly matched according to M′′, and G′[S] is 1-well-linked for
the independent set by Theorem 2.10.

Thus, for each induced sub-graph G′[S] in the partition, we either find an integral
routing of Ω(α′WL|T ′′ ∩ S|) pairs or a set of terminals for which G′[S] is 1-well-linked.
Recall that the sum of |T ′′ ∩ S| over all sub-graphs G′[S] is at least K/2. Thus,
we either find an integral routing of Ω(α′WLK) = Ω(opt/ log1.5 k) pairs, or do the
following. Let G′1, . . . , G

′
` be the induced sub-graphs in which we did not find integral

routings. For each 1 ≤ i ≤ `, let T ′i be the set of terminals for which G′i is 1-well-
linked. Since T ′i is perfectly matched, there is a M′

i ⊆ M′′ such that T ′(M′
i) = T ′i .∑`

i=1 |M′
i| = Ω(α′WLK) = Ω(opt/ log1.5 k). The routings in G′ naturally gives the

routings in G. Also, the sub-graphs G′i and the sets T ′i can be easily converted to
sub-graphs of G and subsets of the original terminals T . Recall that each original
terminal has degree 1 in G, if G′i is 1-well-linked for T ′i , then only one copy of each
original terminal can be in T ′i . This finishes the proof. �

Thus, by losing a log1.5 k factor, it suffices to assume our EDP instance (G, T ,M)
has the following properties. We call such an instance satisfying the properties a
well-linked instance.
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(B1) Every non-terminal of G has degree at most 4;

(B2) Every terminal of G has degree exactly 1;

(B3) Every terminal participate in exactly one pair; that is, |T | = 2k;

(B4) G is 1-well-linked for T .

3.1.2 Constructing a Congestion-2 Crossbar

We now state the theorem for constructing the crossbar. Recall that we are given
a well-linked EDP instance (G, T ,M). As in Table 4.1, α = Θ(1/ log k), γ =

Θ(log8 k),and k1 = Θ
(

k
γ2 log k

)
is the threshold used for defining small and big clus-

ters. Let αWL = α/αARV(k). We let k∗ =
α2
WLk

γ6
and γ∗ = Θ(γ1/4) = Θ(log2 k) be

some suitable parameters as in Table 4.1. The proof of the following core theorem is
deferred to Chapter 4.

Theorem 3.2 (constructing crossbar) Given a family of disjoint large clusters
S = {S1, S2, · · · , Sγ} in G \ T , we can efficiently compute one of the following:

(C1) a (k1, α)-violating cut (X, Y ) of Sj, for some 1 ≤ j ≤ γ,

(C2) a cut of size less than k1/2 separating some Sj and T , for some 1 ≤ j ≤ γ,

(C3) an integral routing of Ω(k∗) pairs in M with congestion at most 2 in G,

(C4) a (γ∗, k∗) crossbar of congestion 2 in G.

3.1.3 The Iterative Algorithm

Notice that Theorem 3.2 does not always output a routing or a crossbar; it may
output a violating cut or a small cut. In this case, we produce an “improved” family
S ′ of large clusters and apply Theorem 3.2 again on S ′. If again the algorithm fails to
produce a routing or a crossbar, we produce a further improved set of large clusters.
The algorithm is guaranteed to succeed in polynomial number of iterations. To give
more details about the iterative algorithm, we need the following two definitions.
Recall that a clustering is a partition of G into (connected) clusters.

Definition 3.3 A clustering C of G is an acceptable clustering iff: (i) every terminal
t ∈ T is in a separate cluster, that is, {t} ∈ C; (ii) each small cluster C ∈ C is αWL-
well-linked. An acceptable clustering that contains no large clusters is called a good
clustering.

Given a good clustering C of G, we use HC to denote the graph obtained from G
by contracting every cluster C ∈ C into a super-node vC . We remove all self-loops,
but we do keep parallel edges.
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Note that the terminals are not contracted in HC, since each terminal has its own
cluster. To simplify the notations, we assume the node v{t} is identical to t for any
terminal t. Then T ⊆ VHC for any good clustering C.

Suppose we are given a potential function φ that maps acceptable clusterings to
real numbers. We define a valid clustering family w.r.t φ as follows.

Definition 3.4 Given a potential function φ for acceptable clusterings, we say F =
(C, {Xj : j ∈ [γ]} , {Cj : j ∈ [γ]}) is a valid clustering family w.r.t φ if

(D1) C is a good clustering;

(D2) {Xj : j ∈ [γ]} forms a partition of VHC \ T ;

(D3) each Cj is an acceptable clustering with φ(Cj) ≤ φ(C) − 1 and at least one
large cluster;

(D4) if S ∈ Cj is a large cluster, then S ⊆ ⋃vC∈Xj C.

The main theorem we need for the iterative algorithm is the following.

Theorem 3.5 There is a potential function φ such that φ(C) ∈ [0, 2|E|] for every
acceptable clustering C, and the following is true. We can efficiently construct a valid
clustering family F = (C, {Xj : j ∈ [γ]} , {Cj : j ∈ [γ]}) w.r.t φ. Moreover, given such
a family F , a large cluster S ∈ Cj for some j ∈ [γ], and one of the following:

(E1) a (k1, α)-violating cut of S,

(E2) a cut of size less than k1/2 separating S and T ,

we can efficiently find another valid clustering family F ′ =
(
C ′,
{
X ′j : j ∈ [γ]

}
,{

C ′j : j ∈ [γ]
} )

w.r.t φ such that one of the following is true:

φ(C ′) ≤ φ(C)− 1, (3.5)

φ(C ′) = φ(C) and
∑
j∈[γ]

φ(C ′j) ≤
∑
j∈[γ]

φ(Cj)− 1. (3.6)

We defer the proof of Theorem 3.5 to Section 3.2. Now, we proceed to describe
the iterative algorithm and finish the proof of the Theorem 2.1. We first apply The-
orem 3.5 to obtain a valid clustering family F = (C, {Xj : j ∈ [γ]} , {Cj : j ∈ [γ]})
w.r.t φ. In each iteration, we do the following. By Property (D3) and (D4), each Cj
contains a large cluster Sj ⊆

⋃
vC∈Xj C. By Property (D2), the sets {Xj : j ∈ [γ]}

are disjoint. Thus we have that the set S = {S1, S2, · · · , Sγ} of clusters are disjoint.
Moreover, they do not contain terminals. We then apply Theorem 3.2 on S. If the
algorithm outputs a routing of Ω(k∗) pairs, then we terminate the algorithm. If the al-
gorithm outputs a (γ∗, k∗)-crossbar of congestion 2, we apply Theorem 2.21 to obtain
a routing of Ω(k∗/ log4 k∗) pairs with congestion 2 in G, and terminate the algorithm.
Otherwise, the algorithm outputs either a (k1, α)-violating cut of some Sj ∈ S, or a
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cut of size less than k1/2 separating some Sj ∈ S and T . In either case, we apply The-
orem 3.5 to obtain a valid clustering family F ′ =

(
C ′,
{
X ′j : j ∈ [γ], {Cj : j ∈ [γ]}

})
satisfying either (3.5) or (3.6). We then let F = F ′ and start a new iteration. Since
the function φ has range [0, 2|E|], in at most O(|E|)×O(γ|E|) = O(γ|E|2) iterations,
the algorithm will terminate by returning a routing. The number of pairs routed is al-

ways Ω(k∗/ log4 k∗) = Ω
(

α2
WLk

γ8 log k
/ log4 k∗

)
= Ω

(
k

log72 k

)
. Taking the O(log1.5 k)-factor

lost in Theorem 3.1 into consideration, we obtained an O(log73.5 k)-approximation for
EDP with congestion 2.

3.2 The Clustering Algorithm

This section is dedicated to the proof of Theorem 3.5.

3.2.1 Defining the Potential Function φ

In order to prove Theorem 3.5, we first need to define the potential function φ. For
convenience, φ is defined over all clusterings, not only over acceptable clusterings.
On one hand, φ(C) approximates the number of edges cut by C; on the other hand,
edges connecting smaller clusters contribute slightly less than edges connecting larger
clusters in the potential function. This will ensure that well-linked decomposition can
only decrease the potential function, though it may increase the number of cut edges.

We first define a potential φ(h) for any integer h ≥ 0. For h < k1, let φ(h) =
4α log h. For h ≥ k1, let i be the integer such that (3/2)i−1k1 ≤ h < (3/2)ik1. Then,
φ(h) = 4α log k1 + 4α

∑i−1
j=0(2/3)j. Notice that φ is a non-decreasing function of h.

For all h, φ(h) ≤ 4α log k1 + 12α ≤ 8α log k1 ≤ 1/2.
Consider any clustering C of G and an edge e ∈ E. If both endpoints of e

belong to the same cluster of C, then we set φ(e) = 0. Otherwise, if e = (u, v), and
u ∈ C ∈ C with |out(C)| = h, while v ∈ C ′ ∈ C with |out(C ′)| = h′, then we set
φ(e) = 1 + φ(h) + φ(h′). We think of the one as the contribution of e, φ(h) as the
contribution of u, and φ(h′) as the contribution of v to φ(e). The final potential
of C is just φ(C) =

∑
e∈E φ(e). Notice that φ(e) ≤ 2 for every e ∈ E and thus

φ(C) ∈
[
0, 2 |E|

]
for any clustering C as promised.

3.2.2 Operations on Clusterings

In this section, we define some operations on clusterings. All these operations can
only decrease the potential function.

Well-linked decomposition We show that the well-linked decomposition of a
small cluster will not increase the potential of the clustering:

Lemma 3.6 Let C be any clustering of V , and C ∈ C be a small cluster. Let C ′ be the
clustering obtained from C by replacing C with the clusters obtained from α-well-linked
decomposing C(see Section 2.1.4). Then φ(C ′) ≤ φ(C).
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Proof: In each iteration of the well-linked-decomposition, we break one cluster
in C into two clusters X and Y . It suffices to show that this single operation
does not increase the potential. Thus, we can assume C ′ is the partition obtained
from C by replacing C ∈ C with two clusters X and Y such that |E(X, Y )| ≤
αmin {|out(X) ∩ out(C)| , |out(Y ) ∩ out(C)|}.

Assume w.l.o.g. that |out(X)| ≤ |out(Y )|, so |out(X)| ≤ 2 |out(C)| /3 (since α <
1/3). Let h = |out(C)| , h1 = |out(X)| , h2 = |out(Y )|, and recall that h, h1, h2 < k1.
The changes to the potential are the following:

• The potential of the edges in out(Y ) ∩ out(C) only goes down.

• The potential of every edge in out(X) ∩ out(C) goes down by φ(h) − φ(h1) =
4α log h − 4α log h1 = 4α log h

h1
≥ 4α log 1.5 ≥ 2.3α, since h1 ≤ 2h/3. So

the total decrease in the potential of the edges in out(X) ∩ out(C) is at least
2.3α · |out(X) ∩ out(C)|.

• The edges in E(X, Y ) did not contribute to the potential initially, and now
contribute at most 1 + φ(h1) + φ(h2) ≤ 2 each. Notice that |E(X, Y )| ≤
α · |out(X) ∩ out(S)|, and so they contribute at most 2α · |out(X) ∩ out(S)| in
total.

Thus, the overall potential can only go down. �

Partitioning a large cluster Suppose we are given a clustering C of G, a
large cluster C ∈ C, and a (k1, α)-violating cut (X, Y ) of C. The operation
PARTITION(C, X, Y ) replaces C ∈ C with connected components of G[X] and G[Y ].
We prove the following lemma.

Lemma 3.7 Let C ′ be the outcome of PARTITION(C, X, Y ). Then φ(C ′) ≤ φ(C)− 1.

Proof: Assume w.l.o.g. that |out(X)| ≤ |out(Y )|. Let h = |out(C)|, h1 = |out(X)|,
h2 = |out(Y )|, so h1 ≤ 2h/3. The changes in the potential can be bounded as follows:

• The potential of every edge in out(Y ) ∩ out(C) does not increase.

• The potential of every edge in out(X) ∩ out(C) goes down by at least φ(h) −
φ(h1).

• Every edge in E(X, Y ) now contributes 1 + φ(h1) + φ(h2) < 2.

If h1 < k1, then φ(h) − φ(h1) ≥ 4α (notice that h ≥ k1). Since |E(X, Y )| ≤
α |out(X) ∩ out(C)|, the total decrease in the potential function is at least
|E(X, Y )| ((φ(h)− φ(h1))/α− 2) ≥ |E(X, Y )| ≥ 1(notice that C is connected).

If h1 ≥ k1, then (3/2)i−1k1 ≤ h1 < (3/2)ik1 for some i ≥ 1. Since h > (3/2)h1 ≥
(3/2)ik1, we have φ(h) − φ(h1) ≥ 4α(2/3)i. Notice that |E(X, Y )| ≤ αk1/2 in this
case, by the definition of (k1, α)-violating cut. The total decrease in the potential is
at least 4α(2/3)i × (3/2)i−1k1 − 2αk1/2 ≥ αk1 ≥ 1. �
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Separating a large cluster Let C be a clustering of G, and C ∈ C be a large
cluster in C. Assume further that there is a cut (A,B = V \ A) in graph G, with
C ⊆ A, T ⊆ B, and |out(A)| < k1/2. We perform the following operation, that we
denote by SEPARATE(C, C, A).

If for some C ′ ∈ C \{C}, we have |out(C ′ \ A)| > |out(C ′)|, we change A to A\C ′.
Since |out(A \ C ′)| + |out(C ′ \ A)| ≤ |out(A)| + |out(C ′)|, we have |out(A \ C ′)| <
|out(A)|. Thus, |out(A)| can only decrease and A still satisfies the above properties.
Thus, we can assume |out(C ′ \ A)| ≤ |out(C ′)| for every C ′ ∈ C.

The outcome clustering C ′ of SEPARATE(C, C, A) is as follows. First, we add
every connected component of G[A] to C ′. Notice that all these clusters are small,
as |out(A)| < k1/2. Next, for every cluster C ′ ∈ C \ {C}, we add every connected
component of G[C ′ \A] to C ′. Since we guaranteed that |out(C ′ \ A)| ≤ |out(C ′)| for
every C ′ ∈ C, the following claim is easy to see:

Claim 3.8
⋃
S∈C′:Sis large S ⊆

⋃
S∈C:S is large S.

We now show that SEPARATE operation can only decrease the potential:

Lemma 3.9 Let C ′ be the outcome of operation SEPARATE(C,A). Then φ(C ′) ≤
φ(C)− 1.

Proof: We can bound the changes in the potential as follows:

• Every edge in out(A) contributes at most 2 to the potential of C ′, and there are
at most k1−1

2
such edges. These are the only edges whose potential in C ′ may

be higher than their potential in C.

• Every edge e ∈ out(C) contributed at least 1 to the potential of C, and there
are at least k1 such edges, since C is a large cluster. In C ′, e contributes either
0, or at most 2, in which case e must be in out(C) ∩ out(A) and is counted
previously.

Therefore, the decrease in the potential is at least k1 − 2(k1−1)
2

= 1. �

3.2.3 Producing a Valid Clustering Family

We can now proceed to the proof of Theorem 3.5. We start with the first part of the
theorem, that is, producing a valid clustering family. The algorithm runs in iterations.
In each iteration, it maintains a good clustering C. The initial clustering C contains
all singular clusters, i.e, C = {{v} : v ∈ G}. Let H = HC be the contracted graph
correspondent to the current clustering C. Let m be the number of edges in H \ T .
Recall that terminals in T are not contracted and thus T ⊆ H.

The proof of the following claim is deferred to Section 3.2.5.

Claim 3.10 m ≥ k/3.

We randomly partition the vertices in H \T into γ subsets X1, . . . , Xγ, where each
vertex v ∈ V (H) \ T selects an index 1 ≤ j ≤ γ independently uniformly at random,
and is then added to Xj. We prove the following lemma in Section 3.2.5.
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Lemma 3.11 With probability at least 1
2
, for each 1 ≤ j ≤ γ, |outH(Xj)| < 10m

γ
and

|EH(Xj)| ≥ m
2γ2

.

We repeat the random procedure if the setsX1, · · · , Xγ do not satisfy the condition
of lemma 3.11. Assume now they satisfy the condition. Then for each 1 ≤ j ≤ γ,
|EH(Xj)| > |outH(Xj)|

20γ
. Let X ′j ⊆ V (G) \ T be the set obtained from Xj, after we

un-contract clusters of C for which vC ∈ Xj, that is, X ′j =
⋃
C:vC∈Xj C. Notice that

X ′1, X
′
2, · · · , X ′γ form a partition of V \ T .

For each 1 ≤ j ≤ γ, define Cj be the following clustering. First, we add all clusters
C such that vC /∈ Xj into Cj. Then, we add all connected components of G[X ′j] into
Cj. If any of these connected components is a small cluster, we apply α-well-linked
decomposition to the cluster. Cj is clearly an acceptable clustering. Also, if S ∈ Cj is
a large cluster, then S ⊆ X ′j . We then prove

Lemma 3.12 For any j ∈ [γ], φ(Cj) ≤ φ(C)− 1.

Proof: Let C ′j be the partition of V , obtained as follows: we add to C ′j all clusters
C ∈ C with vC ∈ VH \Xj, and we add all connected components of G[X ′j] to C ′j. That
is, C ′j is obtained like Cj, except that we do not perform well-linked decompositions
of the small clusters. From Lemma 3.6, it is enough to prove that φ(C ′j) ≤ φ(C)− 1.
The changes of the potential from C to C ′j can be bounded as follows:

• each edge in EH(Xj) contributes at least 1 to φ(C) and contributes 0 to φ(C ′j).

• The potential of edges in outH(Xj) may increase. The increment is at most

φ(n) ≤ 1
28γ

per edge. So the total increase is at most
|outH(Xj)|

28γ
≤ |EH(Xj)|

4
.

These are the only edges whose potential may increase.

Overall, the decrease in the potential is at least
|EH(Xj)|

2
≥ m

4γ2
≥ k

12γ2
≥ 1. �

If every Cj contains at least one large cluster, then F =
(
C, {Xj : j ∈ [γ]} ,

{Cj : j ∈ [γ]}
)

is a valid clustering family. Otherwise, some Cj contains no large
clusters and is thus a good clustering. Then, we replace C with Cj and start a new
iteration. By Lemma 3.12, we will obtain a valid clustering family in polynomial
number of iterations.

3.2.4 Improving the Clustering Family

We now proceed to the second part of Theorem 3.5. That is, given a valid clustering
family F , a large cluster S ∈ Cj for some j ∈ [γ], and either (E1) or (E2), we
produce a new F ′ satisfying either (3.5) or (3.6). If we are given (E1), i.e, a (k1, α)-
violating cut (X, Y ) of S, we apply the operation PARTITION(Cj, X, Y ) to obtain a
new clustering. Applying α-well-linked decomposition to small clusters if necessary,
we obtain an acceptable clustering C ′. By Lemma 3.6 and 3.7, we have φ(C ′) ≤
φ(Cj) − 1. Also notice that any large cluster of C ′ is inside

⋃
vC∈Xj C. If C ′ contains

at least one large cluster, then we can replace Cj with C ′ to obtain a new clustering
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family F ′ satisfying (3.6). Otherwise, C ′ is a good clustering. We then can produce a
new clustering family F ′ =

(
C ′′,
{
X ′j : j ∈ [γ]

}
,
{
C ′j : j ∈ [γ]

})
using the algorithm in

Section 3.2.3(the initial good clustering is C ′, instead of clustering of singular vertices).
φ(C ′′) ≤ φ(C ′) ≤ φ(C)− 1 and thus F ′ satisfies the (3.5).

Suppose now we are given a cut (A,B = V \ A) of size less than k1/2 sepa-
rating S and T , i.e, S ⊆ A, T ⊆ B and |E(A,B)| < k1/2. Applying the opera-
tion SEPARATE(Cj, S, A) and α-well-linked decomposition to small clusters if nec-
essary, we obtain a new acceptable clustering C ′. By Lemma 3.6 and 3.9, we have
φ(C ′) ≤ φ(Cj)−1. By Claim 3.8, any large cluster in Cj is inside

⋃
vC∈Xj C. Using the

same argument as above, we can obtain a new clustering family F ′ with the desired
properties.

3.2.5 Omitted Proofs

Proof of Claim 3.10: For each terminal t ∈ T , let et be the unique edge adjacent
to t in H, and let ut be the other endpoint of et. We partition the terminals in T
into groups, where two terminals t, t′ belong to the same group iff ut = ut′ . Let U
be the resulting partition of the terminals. Since the degree of every vertex in H is
at most k1, each group U ∈ U contains at most k1 terminals. Next, we partition
the terminals in T into two subsets X, Y , where |X|, |Y | ≥ k/3, and for each group
U ∈ G, either U ⊆ X, or U ⊆ Y holds. We can find such a partition by greedily
processing each group U ∈ U , and adding all terminals of U to one of the subsets X
or Y , that currently contains fewer terminals. Finally, we remove terminals from X
until |X| = k/3, and we do the same for Y . Since graph H is 1-well-linked for T (G
is 1-well-linked for T , and H is obtained from G by contractions), it is possible to
route k/3 flow units from the terminals in X to the terminals in Y . Since no group
U is split between the two sets X and Y , each flow-path must contain at least one
edge of H \ T . Therefore, the number of edges in H \ T is at least k/3. �

Proof of Lemma 3.11 : Let H ′ = H \ T and fix some 1 ≤ j ≤ γ. Let E1(j)
be the bad event that

∑
v∈Xj dH(v) ≥ 2(2m+k)

γ
. In order to bound the probability

of E1(j), we define, for each vertex v ∈ VH′ , a random variable xv, whose value is
dH(v)
k1

if v ∈ Xj and 0 otherwise. Notice that xv ∈ [0, 1], and the random variables
{xv}v∈VH′ are pairwise independent. Let B =

∑
v∈VH′

xv. Then the expectation of B

is µ1 =
∑

v∈VH′
dH(v)
γk1

= 2m+k
γk1

. Using the standard Chernoff bound (see e.g. Theorem

1.1 in [34]),

Pr [E1(j)] = Pr [B > 2µ1] ≤ e−µ1/3 = e
− 2m+k

3γk1 <
1

4γ
,

since k1 = Θ
(

k
γ2 log k

)
.

Notice that if events E1(j) do not happen, then:

| outH(Xj)| ≤
∑
v∈Xj

dH(v) ≤ 2(2m+ k)

γ
<

10m

γ
,

since m ≥ k/3.

35



Let E2(j) be the bad event that |EH(Xj)| < m
2γ2

. We next prove that Pr [E2(j)] ≤
1
4γ

. We say that two edges e, e′ ∈ EH′ are independent iff they do not share any
endpoints. Since the maximum vertex degree in H is at most k1, each edge in EH′
shares end points with at most 2k1−2 other edges in EH′ . Using the Hajnal-Szemerédi
Theorem [42], we can compute a partition U1, . . . , Ur of the set E(H \ T ) of edges,
where r ≤ 2k1, such that for each 1 ≤ i ≤ r, |Ui| ≥ m

2k1
− 1 ≥ m

4k1
, and all edges in set

Ui are mutually independent. For each 1 ≤ i ≤ r, we say that the bad event E i2(j)
happens iff |Ui ∩ E(Xj)| < |Ui|

2γ2
. Notice that if E2(j) happens, then event E i2(j) must

happen for some 1 ≤ i ≤ r. Fix some 1 ≤ i ≤ r. The expectation of |Ui ∩ E(Xj)|
is µ2 = |Ui|

γ2
. Since all edges in Ui are independent, we can use the standard Chernoff

bound to bound the probability of E i2(j), as follows:

Pr
[
E i2(j)

]
= Pr [|Ui ∩ E(Xj)| < µ2/2] ≤ e−µ2/8 = e

− |Ui|
8γ2 .

Since |Ui| ≥ m
4k1

, m ≥ k/3 and k1 = Θ
(

k
γ2 log k

)
is small enough, this is bounded

by 1
8k1γ

. We conclude that Pr [E i2(j)] ≤ 1
8k1γ

, and by using the union bound over all

1 ≤ i ≤ r, Pr [E2(j)] ≤ 1
4γ

.

Using the union bound over all 1 ≤ j ≤ γ, with probability at least 1
2
, none of the

events E1(j), E2(j) for 1 ≤ j ≤ γ happen, and so for each 1 ≤ j ≤ γ, | outH(Xj)| <
10m
γ

, and |EH(Xj)| ≥ m
2γ2

must hold. �
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Chapter 4

Edge Disjoint Paths: Constructing
Crossbar

4.1 Overview of the Construction

In this chapter, we prove Theorem 3.2, which is repeated below. Recall the settings of
the theorem: (G, T ,M) is a well-linked instance with |M| = k. γ = Θ(log9 k), k1 =

Θ
(

k
γ2 log k

)
, α = Θ(1/ log k), αWL = α/αARV, γ

∗ = Θ(γ1/4) and k∗ = Θ
(

α2
WLk

γ8 log k

)
are as

in Table 4.1.

Theorem 3.2 (constructing crossbar) Given a family of disjoint large clusters
S = {S1, S2, · · · , Sγ} in G \ T , we can efficiently compute one of the following:

(C1) a (k1, α)-violating cut (X, Y ) of Sj, for some 1 ≤ j ≤ γ,

(C2) a cut of size less than k1/2 separating some Sj and T , for some 1 ≤ j ≤ γ,

(C3) an integral routing of Ω(k∗) pairs in M with congestion at most 2 in G,

(C4) a (γ∗, k∗) crossbar of congestion 2 in G.

To this end, we say a path P avoids a cluster S, or P is S-avoiding, if the path
P does not contain any vertex in S as intermediate vertices. Notice that the two
end-points of P may be inside S. For a family S ′ of disjoint clusters, we say a path
P avoids S ′, or P is S ′-avoiding if it avoids every cluster in S ′.

We can verify that for each 1 ≤ j ≤ γ, the vertices of Sj can send k1/2 flow units
with no congestion to the terminals. If this is not the case for some set Sj, then there
is a cut (A,B) with Sj ⊆ A, T ⊆ B and |EG(A,B)| < k1/2. We can return the
cut (A,B) of G and finish the algorithm. From now on we assume that each cluster
Sj ∈ S can send k1/2 flow units to T .

We can not verify whether there exists a (k1, α)-violating cut of some Sj. However,
given two subsets Γ,Γ′ ⊆ out(Sj) of edges, with |Γ| = |Γ′| ≤ k1/2, we can check

whether there exists a flow F : Γ
1:1
 1/α Γ′ inside Sj. If such a flow does not exist, then

by Lemma 2.6, we can find a (k1, α)-violating partition (X, Y ) of Sj, return (X, Y ) and
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Table 4.1: The parameters used in the algorithm

parameters meanings values
k number of pairs in M |M|
γ size of the family S Θ(log8 k)

k1 threshold for defining small and large clusters Θ
(

k
γ2 log k

)
α parameter for well-linkedness decomposition Θ(1/ log k)
αWL well-linkedness guaranteed α/αARV

γ′ size of the family S ′ constructed in step 1
⌊
γ1/4/2

⌋
k2 size of Pe, e ∈ ET constructed in step 1

⌊
5k1
γ4

⌋
γ′′ size of the family S ′′ constructed in step 2 ≥ γ′/4
k3 size of M′ constructed in step 2 Ω(k2/γ

2)
k4 size of M′′ constructed in step 3 Ω(α2

WLk3)

γ∗ size of S∗ in the crossbar (S∗,Γ∗,T∗,M∗) ≥ γ′′/2 = Θ(γ1/4)

k∗ size of M∗ in the crossbar (S∗,Γ∗,T∗,M∗) k4 = Ω
(

α2
WLk

γ8 log k

)
finish the algorithm. Therefore, whenever the algorithm attempts to find such a flow
F , it will either succeed or terminate the algorithm by returning a (k1, α)-violating

cut. From the integrality of flow, if F exists, we can find a set P : Γ
1:1
 d1/αe Γ′ of

paths contained in Sj.
The algorithm contains 4 steps. Firstly, we find a subset S ′ ⊆ S of clusters and a

degree-3 tree T over VT = {vj : Sj ∈ S ′}(see Figure 4.1). Every edge e = (vj, vj′) ∈ ET
is associated with a collection Pe of k2 S ′-avoiding paths connecting Sj and Sj′ . The
paths

⋃
e∈ET Pe cause congestion 2 in G. Secondly, we find a subsetM′ ⊆M demand

pairs and a partition (T1, T2) of the terminals in T (M′) that split every pair in M′.
We find two collections of S ′-avoiding paths P1 : T1  S` and P2 : T2  S`′ , for two
clusters in S`, S`′ ∈ S ′ (see Figure 4.2). P1 ∪ P2 cause congestion 2. In this step, we
trim the tree T a sub-tree T ′ (for some technical reason) and let S ′′ = {Sj : vj ∈ VT ′}
is the set of clusters correspondent to T ′. Notice that

⋃
e∈ET ′

Pe ∪ P1 ∪ P2 can cause
congestion 4 in total. To overcome this, we reroute paths in each collection Pe,
e ∈ ET ′ to obtain P ′e, so that paths in P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e only cause congestion 2

in G. Thirdly, we guarantee that each cluster Sj ∈ S ′′ is 1-well-linked for the set of
edges in out(Sj) that are used by P1 ∪P2 ∪

⋃
e∈ET ′

P ′e. This is done by sub-sampling
paths from the set. Finally, we finish the algorithm by defining the crossbar. The
paths {Pe : e ∈ ET ′} and the clusters S ′′ provide necessary elements for constructing
the crossbar(see Figure 4.3).

For the sake of readability, the key parameters used in the algorithm are given in
Table 4.1. The 4 steps are described in Section 4.2, 4.3, 4.4 and 4.5 respectively.

4.2 Step 1: Constructing the Tree T

This step is summarized in the following lemma. (See Figure 4.1.)
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T

e Pe

“embedding” of T in G

v` S`

Figure 4.1: Step 1 of crossbar construction – constructing the tree T

Lemma 4.1 There is an efficient algorithm, that either computes a (k1, α)-violating
cut of some set Sj ∈ S, or finds S ′ ⊆ S, a tree T and {Pe : e ∈ ET} such that

(F1) S ′ ⊆ S is a subset of size γ′ =
⌊
γ1/4/2

⌋
,

(F2) T is a tree of degree at most 3 with VT = {vj : Sj ∈ S ′},

(F3) for every edge e = (vj, vj′) ∈ ET , Pe is a collection of k2 =
⌊
5k1
γ4

⌋
S ′-avoiding

paths connecting Sj and Sj′ in G,

(F4) the set
⋃
e∈ET Pe of paths causes congestion at most 2 in G.

This section is dedicated to the proof of Lemma 4.1. Since G is 1-well-linked for
the set T of terminals, every pair (Sj, Sj′) of clusters can send k1/2 flow units to each
other with congestion at most 3: concatenate the flows from Sj to a subset T1 of the
terminals, from Sj′ to a subset T2 of the terminals, and those between T1 and T2.
Equivalently, there are at least k11 := bk1/6c edge-disjoint paths connecting Sj and
Sj′ in G.

We build the following graph Z = (VZ , EZ). Let VZ = {v1, . . . , vγ}. For every
pair vj, vj′ ∈ VZ , let w(vj, vj′) be the maximum number of edge-disjoint S-avoiding
paths connecting Sj and Sj′ in G. Then (vj, vj′) ∈ EZ if and only if w(vj, vj′) ≥
k12 := 4k11

γ2
. For simplicity, define w(e) = w(vj, vj′) for e = (vj, vj′) ∈ EZ . Let

w(T ) =
∑

e∈E(T )w(e).

Consider any non-trivial partition (A,B) of VZ . Let vj ∈ A and vj′ ∈ B be two
vertices. Since there are at least k11 edge-disjoint paths connecting Sj and Sj′ in G,
there must be at least k11 edge-disjoint paths connecting

⋃
vj∈A Sj and

⋃
vj∈B Sj that

avoid S. Thus, w(A,B) :=
∑

vj∈A,vj′∈B
w(vj, vj′) ≥ k11. We defer the proof of the

following lemma to Section 4.2.3.
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Lemma 4.2 We can efficiently find either a spanning tree T̃ of Z containing at least
γ′ :=

⌊
γ1/4/2

⌋
leaves, or an induced path of length γ′ − 1 in Z such that for any edge

e = (vj, vj′) in the path, we have w(vj, vj′) ≥ k11
3γ′2γ

.

In the above lemma, an induced path is a path which is also an induced sub-graph
of Z. Apply Lemma 4.2, we obtain either a spanning tree T̃ of Z containing at least
γ′ leaves, or an induced path of length γ′− 1. By renaming the vertices in Z and sets
in S, we may assume the path is (v1, v2, · · · , vγ′). By Lemma 4.2, we have:

(G1) for each j ∈ [γ′ − 1], w(vj, vj+1) ≥ k11
3γ′2γ

= bk1/6c
3bγ1/4/2c2γ ≥

k1
5γ1.5

;

(G2) for each j, j′ ∈ [γ′] with |j − j′| > 1, w(vj, vj′) < k12.

We deal with the path case and tree case separately.

4.2.1 Path Case

In this case, we have a path (v1, v2, · · · , vγ′) satisfying Property (G1) and (G2). Let

S ′ = {Sj : j ∈ [γ′]}. For each 1 ≤ j < γ′, let P̃j be a set of
⌊

k1
5γ1.5

⌋
edge-disjoint

paths connecting Sj to Sj+1 and avoiding S. While the paths in each set P̃j are

edge-disjoint, the total congestion caused by the set
⋃
j P̃j of paths may be as high as

γ′ − 1. In order to overcome this difficulty, we perform edge-splitting on an auxiliary
graph H, constructed as follows. Start with the graph containing all the vertices
and edges in the paths P̃1, P̃2, · · · , P̃γ′−1. Next, for each 1 ≤ j ≤ γ′, we identify the
vertices in Sj that appear in the graph to a single vertex vj. Finally, we replace every
edge by a pair of bi-directed edges. Let H be the final directed graph. Observe that
H is a directed Eulerian graph with the following properties:

(H1) H does not contain any terminals, or vertices from any cluster Sj ∈ S ′(they
were identified with vj);

(H2) For each 1 ≤ j < γ′, there are at least
⌊

k1
5γ1.5

⌋
edge-disjoint paths connecting

vj to vj+1 and avoiding {v1, v2, · · · , vγ′};

(H3) For all 1 ≤ j < j′ ≤ γ′, with |j − j′| > 1, the maximum number of edge-
disjoint paths connecting vj and vj′ and avoiding {v1, v2, · · · , vγ′} is less than
k12.

We use the following theorem to perform edge-splitting in graph H. Let D =
(V,A) be any directed multigraph with no self-loops. For any pair (v, v′) ∈ V of
vertices, their connectivity λ(v, v′;D) is the maximum number of edge-disjoint paths
connecting v to v′ in D. Given a pair a = (u, v), b = (v, w) of edges, a splitting-off
procedure replaces the two edges a, b by a single edge (u,w). We denote by Da,b the
resulting graph. We use the extension of Mader’s theorem [67] to directed graphs,
due to Frank [35] and Jackson [44]. Following is a simplified version of Theorem 3
from [44]:
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Theorem 4.3 Let D = (V,A) be an Eulerian digraph, v ∈ V and a = (u, v) ∈ A.
Then there is an edge b = (v, w) ∈ A, such that for all y, y′ ∈ V \ {v}: λ(y, y′;D) =
λ(y, y′;Da,b).

We iteratively perform edge-splitting in graph H using Theorem 4.3, by repeatedly
choosing vertices v 6∈ {v1 . . . , vγ′}, until all such vertices become isolated. Let ~H ′ be
the underlying resulting graph with all isolated vertices removed. Let H ′ be the
underlying undirected graph of ~H ′. Then VH′ = {v1, . . . , vγ′}, and for each 1 ≤ j 6=
j′ ≤ γ′, each edge e = (vj, vj′) ∈ EH′ corresponds to a path Pe in graph G, connecting
Sj and Sj′ and avoiding S. Moreover, the set

⋃
e∈EH′

Pe of paths causes congestion
at most 2 in G.

Claim 4.4 For each 1 ≤ j, j′ ≤ γ′ with |j − j′| > 1, there are less than 2k12 parallel
edges (vj, vj′) in H ′; for each 1 ≤ j < γ′, there are at least k1

10γ3/2
parallel edges

(vj, vj+1) in H ′.

Proof: The first statement is straightforward. Focus on the directed graph ~H ′. Each
edge from vj to vj′ corresponds to a path from Sj to Sj′ that avoids S ′. W.l.o.g, we
can assume the paths correspondent to all parallel edges of (vj, vj′) cause congestion
1 in G (if an edge is used twice, then the two paths go through the edge in different
directions and we can remove the edge from both paths). Since w(vj, vj′) < k12, there

are less than k12 edges from vj to vj′ in ~H ′. Similarly, there are less than k12 edges

from vj′ to vj in ~H ′. Thus, H ′ contains less than 2k12 edges between vj and vj′ .
We now turn to prove the second statement. Consider some j ∈ [γ′ − 1] and

the following cut (A,B) of VH′ : A = {v1, . . . , vj}, B = {vj+1, . . . , vγ′}. Recall that

graph H contained at least
⌊

k1
5γ1.5

⌋
edge-disjoint paths connecting vj to vj+1. By the

property of Theorem 4.3, H ′ contains at least
⌊

k1
5γ1.5

⌋
edge-disjoint paths connecting

vj to vj+1. In particular, |EH′(A,B)| ≥
⌊

k1
5γ1.5

⌋
. For all pairs (u, v) ∈ A × B except

(vj, vj+1), there are less than 2k12 parallel edges of (u, v), by the first statement.

Noticing that there are at most γ′2

4
− 1 such pairs, the number of edges between vj

and vj+1 is at least⌊
k1

5γ1.5

⌋
−
(
γ′2

4
− 1

)
· 2k12 ≥

⌊
k1

5γ1.5

⌋
− γ1/2

16
· 8 bk1/6c

γ2
≥ k1

10γ1.5
.

�
Our final tree T is simply a path connecting the vertices (v1, v2, · · · , vγ′) in this

order. For each edge e = (vj, vj+1) on this path, we let Pe be the set of paths in
graph G′ corresponding to the set of parallel edges connecting vj to vj+1 in graph H ′.
By Claim 4.4, we have |Pe| ≥ k1

10γ1.5
≥ k2. We discard paths from each set Pe until

|Pe| = k2. It is immediate to verify that
⋃
e∈E(T )Pe cause congestion at most 2 in G,

and moreover, every path in the set avoids S ′. This finishes the proof of Lemma 4.1
for the path case.
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4.2.2 Tree Case

In this case, we have a spanning tree T̃ of Z containing at least γ′ leaves. Let S ′ ⊆ S
be any set of γ′ clusters, corresponding to γ′ leaves in tree T̃ . For the ease of notations,
we assume S ′ = {S1, . . . , Sγ′}. Our first step is summarized in the following claim.
The proof is deferred to Section 4.2.3.

Claim 4.5 There is an efficient algorithm, that either computes a (k1, α)-violating
cut of some set Sj ∈ S, or computes, for each set Sj ∈ S ′, a subset Γj ⊆ out(Sj) of

k13 :=
⌊
k12
2γγ′

⌋
edges, such that for each Sj, Sj′ ∈ S ′, there is a set P : Γj

1:1
 1 Γj′ of

paths in G avoiding S ′.

Our next step is to perform edge splitting, similarly to the path case. We build an
auxiliary graph H from G, as follows. We delete from G all terminals, and for each
j ∈ [γ′], we delete all edges in out(Sj) \ Γj. Next, we contract each set Sj, j ∈ [γ′],
into a super-node vj. Finally, we replace every edge in the resulting graph by a pair
of bi-directed edges. Let H be the resulting graph. Notice that the in-degree and
the out-degree of every super-node vj in H is exactly k13, and for every pair vj, v

′
j′

of such super-nodes, there are k13 edge-disjoint paths connecting vj to vj′ , and k13
edge-disjoint paths connecting vj′ to vj in H.

We iteratively perform edge-splitting in graph H using Theorem 4.3, by repeatedly
choosing vertices v 6∈ {v1 . . . , vγ′}, until all such vertices become isolated. Let H ′ be
the underlying undirected graph of the resulting graph, with all isolated vertices
removed. Then VH′ = {v1, . . . , vγ′}. Each edge e = (vj, vj′) ∈ EH′ corresponds to a
(directed) path Pe in graph G, connecting Sj to Sj′ and avoiding S ′. Moreover, the
set
⋃
e∈EH′

Pe of paths causes congestion at most 2 in G.

H ′ is a 2k13-regular graph. We show that the connectivity between any two vertices
in H ′ is 2k13. To see this, focus on the directed version ~H ′ of H ′. That is, ~H ′ is the
resulting directed graph after splitting-off and removing all isolated vertices. Then,
by the property of splitting-off, there are k13 edge-disjoint paths from vj to vj′ , and
k13 edge-disjoint paths from vj′ to vj in H ′. Then, for any cut (A,B) separating vj
and vj′ in ~H ′, there are at least k13 edges from A to B and k13 edges from B to

A. Since H ′ is the underlying undirected graph of ~H ′, there are at least 2k13 edges
between A and B in H ′.

We prove the following lemma in Section 4.2.3.

Lemma 4.6 Let K be a sufficiently large integer. Let H = (VH , EH) be a K-regular
multi-graph on nH = |VH | vertices, where the connectivity between any two vertices is
K. Then, we can efficiently find a spanning tree T of H of maximum degree 3 such
that every edge of T has at least K/n3

H parallel edges in H.

We apply Lemma 4.6 on H ′ with K = 2k13, to obtain a tree T of degree at most 3
such that each edge of T has many parallel edges in H ′. We output the tree T as our
final tree. Notice that each edge e = (vj, vj′) ∈ ET corresponds to a collection Pe of
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paths in G connecting Sj and Sj′ and avoiding S ′. Moreover, the paths in
⋃
e∈ET Pe

cause congestion at most 2 in G. The number of paths in each set is:

|Pe| ≥
2k13
γ′3

=

⌊
k12

2γγ′

⌋
/γ′

3 ≥
⌊

8k12
γ2

⌋
≥
⌊
8 · 4 bk1/6c /γ4

⌋
≥
⌊

5k1
γ4

⌋
= k2.

We discard the edges in each Pe until |Pe| = k2. This finishes the proof of
Lemma 4.1.

4.2.3 Omitted Proofs

Proof of Lemma 4.2: It is easy to verify that Z is connected: consider any non-
trivial cut (A,B) of VZ ; since w(A,B) ≥ k11, there must be a pair (u, v) ∈ A×B such
that w(u, v) ≥ k11/|A||B| ≥ 4k11/γ

2 and thus (u, v) ∈ EZ . Let T̃ be any spanning
tree of Z. Root the tree T̃ at any vertex. We now perform a number of iterations. In
every iteration, one of the following two operations is performed, whenever possible.

1. Let (vj, vj′) be an edge in T̃ such that vj is the parent of vj′ . Suppose vj is
not the root and vj has degree 2 in T̃ . Let vj′′ be a non-leaf vertex such that
(vj′ , vj′′) ∈ EZ and vj′′ is not a descendant of vj′ in T̃ . Then we delete (vj, vj′)
from T̃ , and add (vj′ , vj′′) to it.

2. Let (vj, vj′) be an edge in T̃ such that vj is the parent of vj′ . Suppose both vj
and vj′ has degree 2 in T̃ and vj is not the root. Consider the two connected
components of T̃ \ (vj, vj′), and let e ∈ E(Z) be the edge connecting these
two components, with the maximum w(e). If w(e) > w(vj, vj′), then we delete
(vj, vj′) from T̃ and add e to it.

Notice that Operation 1 increases the number of leaves in T̃ by 1, and Operation
2 increases w(T̃ ) :=

∑
e∈T̃ w(e) by at least 1 without decreasing the number of leaves

in T̃ . Thus, after polynomially many improvement steps, we obtain a final tree T̃ , on
which none of operations can be performed. Let L denote the set of leaves of T̃ .

If |L| ≥ γ′, we can return T̃ . We now assume that |L| < γ′. A path P in the
tree T̃ is called a 2-path iff it does not contain the root of T̃ , and all its vertices have
degree 2 in T̃ . A 2-path P is maximal iff it is not a strict sub-path of any other
2-path. Since the number of leaves in T̃ is less than γ′, the number of maximal 2-
paths in T̃ is at most 2γ′. Therefore, T̃ contains at least one 2-path of length at least
(γ−2γ′)/2γ′ ≥ γ′. We let P ′ be a maximal 2-path of length at least γ′, that minimizes
the size of the sub-tree rooted at the lowest vertex of P ′. Let P be the sub-path of
P ′, consisting of the last γ′ vertices of P ′. Assume w.l.o.g. that P = (v1, . . . , vγ′),
where vγ′ is the vertex that lies deepest in the tree T̃ . We now prove that P has the
desired properties.

Since the |L| < γ′, and every 2-path in the sub-tree of vγ′ has length at most γ′

(by the choice of P ′), the size of the sub-tree rooted at vγ′ is bounded by 2γ′(γ′ + 2).
Fix some 1 ≤ j < γ′, and consider the edge e = (vj, vj+1). Notice that the size of the
sub-tree rooted at vj+1 is bounded by 2γ′(γ′+ 2) + γ′ ≤ 2γ′(γ′+ 3) ≤ 3γ′2. Let T̃1, T̃2
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be the two connected components of T̃ \ e. Recall that w(VT̃1 , VT̃2) ≥ k11. So there is

at least one pair (vj′ , vj′′) ∈ VT̃1 × VT̃2 such that w(vj′ , vj′′) ≥ k11
|VT̃1 ||VT̃2 |

≥ k11
3γ′2γ

. Since

we could not perform Operation 2, we have w(vj, vj+1) ≥ k11
3γ′2γ

.

Now consider some pair vj, vj′ of vertices on path P , with |j− j′| > 1, and assume
w.l.o.g. that vj is a descendant of vj′ . Since we could not perform Operation 1 on
edge (vj−1, vj) and vertex vj′ , we have (vj, vj′) /∈ EZ . Hence, P is an induced path. �

Proof of Claim 4.5: Take any vj∗ as the root of the tree T̃ . We claim that for each
set Sj ∈ S ′, there is a flow Fj of value k12, connecting Sj∗ to Sj in G, with congestion at
most 1

α
+γ ≤ 2γ, such that the paths in Fj avoid S ′. Indeed, consider the root-to-leaf

path (v∗j = vj0 , vj1 , . . . , vjh = vj) in the tree T̃ . For each edge ez = (vjz , vjz+1) on this
path, there is a set Qz of k12 edge-disjoint paths connecting Sjz to Sjz+1 and avoiding
S ′, from the definition of the graph Z. Let Γ2

z ⊆ out(Sjz) be the set of first edges
of paths in Qz, Γ1

z+1 ⊆ out(Sjz+1) be the set of last edges of paths in Qz. For each
1 ≤ z ≤ h−1, we now have Γ1

z,Γ
2
z ⊆ out(Sjz), two subsets of edges of size k12 < k1/2.

We can either find a (k1, α)-violating cut of Sjz , or find a flow F ′z : Γ1
z

1:1
 1/α Γ2

z

inside set Sz. Concatenating the flows (Q0, F
′
1,Q1, F

′
2, . . . , F

′
h−1,Qh−1), we obtain the

desired flow Fj of value k12. The total congestion caused by paths in
⋃h−1
z=0 Qz is at

most γ (since h ≤ γ, and the paths in each set Qz are edge-disjoint), while each
flow F ′z causes congestion at most 1/α inside the graph G[Sjz ]. Therefore, the total
congestion due to flow Fj is bounded by 1

α
+ γ ≤ 2γ.

Scaling all flows Fj, for j ∈ [γ′] by factor 1/2γγ′, we obtain a new flow F , where
every set Sj ∈ S ′ sends k12

2γγ′ flow units to Sj∗ , and the total congestion due to F is at

most 1. From the integrality of flow, there is a collection {Pj : j ∈ [γ′]} of path sets,
where for each j ∈ [γ′], set Pj contains b k12

2γγ′ c paths connecting Sj to Sj∗ . The paths

in
⋃
j∈[γ′]Pj are edge-disjoint and avoid S ′. We will also assume w.l.o.g. that the

paths avoid Sj∗ . Let Γj ⊆ out(Sj) be the set of first edges of Pj, and Γ′j ⊆ out(Sj∗)
be the set of last edges of Pj. Consider some pair j, j′ ∈ [γ′]. If we can not find a

set of paths Qj,j′ : Γ′j
1:1
 1 Γ′j′ , we find a (k1, α)-violating cut of Sj∗ . Otherwise, by

concatenating Pj,Qj,j′ and Pj′ , obtain a set Γj
1:1
 1 Γj′ of

⌊
k12
2γγ′

⌋
= k13 paths in G

avoiding S ′. �

Proof of Lemma 4.6: Let H ′ = (VH′ , EH′) be any connected graph. It is well-known
that the following polytope is the polytope for spanning trees of H ′:∑

e∈EH′

xe = nH′ − 1

∑
e∈E(H′[S])

xe ≤ |S| − 1 ∀S ⊆ VH′ , S 6= ∅

0 ≤ xe ≤ 1 ∀e ∈ EH′

We define H ′ be the following spanning sub-graph of H. An edge e ∈ EH is
in H ′ if and only if e has at least K/n3

H parallel edges (including e itself). For
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our graph H ′, we let xe = nH−1
|EH′ |

for every e ∈ EH′ . We show that the solution

satisfies all the constraints defining the polytope. The first constraint is trivially
satisfied. For the third constraint, we count the number of edges in H ′. |EH′| ≥
|EH | −

(
nH
2

)
K
n3
H
≥ nHK

2
− K

2nH
≥ K(nH−1)

2
. For K ≥ 2, we have xe ≤ 1 for every

e ∈ EH′ . It remains to consider the second constraint. Focus on some non-trivial
subset S ⊆ VH . Since the connectivity of the graph H is K, then |EH(S, VH \S)| ≥ K,

implying |EH′[S]| ≤ |EH[S]| ≤ |S|K−K
2

. Then,
∑

e∈EH′[S]
≤ |S|K−K

2
2
K

= |S| − 1. Thus,

{xe : e ∈ EH′} is a fractional point in the polytope.
Singh and Lau [78] proved the following theorem.

Theorem 4.7 ([78]) Given any connected graph H ′ = (VH′ , EH′) and any fractional
point {xe : e ∈ EH′} in the polytope for spanning trees of H ′, we can efficiently find a

spanning tree T of H ′, such that dT (v) ≤
⌈∑

e∈δH′ (v)
xe

⌉
+ 1 for every v ∈ VH′, where

dT (v) is the degree of v in T and δH′(v) is the set of edges incident to v in H ′.

In our fractional solution {xe : e ∈ EH′}, we have dT (v) < K nH−1
|EH′ |

≤ 2 for every

v ∈ VH . Thus, by applying Theorem 4.7, we obtain a tree T such that dT (v) ≤ 3 for
every v ∈ VH . Moreover, since this tree is in the subgraph H ′, every edge in the tree
has at least K

n3
H

parallel edges. �

4.3 Step 2: Connecting terminals

Up to now, we have obtained a subset S ′ = {Sj : j ∈ [γ′]} of clusters, a tree T of
maximum degree at most 3 on VT = {vj : j ∈ [γ′]} and a collection Pe of k2 paths for
every e ∈ ET satisfying the conditions of Lemma 4.1.

In this section, we connect a subset of terminals to the clusters in S ′, as stated in
the following lemma. (See Figure 4.2.)

Lemma 4.8 There is an efficient algorithm, that either finds a routing of Ω(k1)
demand pairs in M via edge-disjoint paths in G, or finds M′ ⊆M, T1, T2 ⊆ T (M),
a sub-tree T ′ of T , S ′′ ⊆ S ′, `, `′ ∈ [γ′],P1,P2 and {P ′e : e ∈ ET ′}, such that

(I1) M′ ⊆M is a set of k3 = Ω(k2/γ
′2) demand pairs;

(I2) (T1, T2) is a partition of T (M′) that splits every pair in M′;

(I3) T ′ is a sub-tree of T of size γ′′ ≥ γ′/4 and S ′′ = {Sj : vj ∈ VT ′};

(I4) v` ∈ VT ′ has degree 1 in T ′, and v`′ ∈ VT ′ has degree at most 2 in T ′;

(I5) P1 : T1 1:1
 out(S`), P2 : T2 1:1

 out(S`′) are two sets of paths in G;

(I6) for every edge e ∈ ET ′ ⊆ ET , P ′e ⊆ Pe is a subset of Ω(k2) paths;

(I7) paths in P1 ∪ P2 ∪
(⋃

e∈ET ′
P ′e
)

avoid S ′′, and cause congestion 2 in G;
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T2
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v`′
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S`′

S`

Figure 4.2: Step 2 of crossbar construction – connecting terminals

(I8) every edge in
⋃
vj∈VT ′

out(Sj) is used by at most one path in the P1 ∪ P2 ∪(⋃
e∈ET ′

P ′e
)

.

We prove Lemma 4.8 in this section.

4.3.1 Initial Connection

In this subsection, we shall find a subset M0 ⊆ M of bk2/4c pairs, and connect the
terminals T (M0) to some cluster in S ′, say, S1, via a set P : T (M0)  2 out(S1) of
paths in graph G.

Since we assumed there is no cut of size less than k1/2 separating S1 and T , there

is a set P̃ of bk1/2c edge-disjoint paths connecting the terminals in T to the edges
in out(S1). Let T0 ⊆ T be the subset of bk1/2c terminals that serve as endpoints of

paths in P̃ . We partition the remaining terminals into h − 1 =
⌈
k−bk1/2c
bk1/2c

⌉
subsets

T1, T2, · · · , Th−1 of at most bk1/2c terminals each. Then h =
⌈

k
bk1/2c

⌉
≤ 2.05k/k1 for

sufficiently large k. Since G is 1-well-linked for T , there is a set P̃j : Tj  1 T0 of

paths for every j ∈ [h−1]. Using paths in P̃ h times and paths in
{
P̃j : j ∈ [h− 1]

}
,

we obtain an integral set P̂ : T  2h out(S1) of paths.
Our next step is to perform a grouping of the terminals, using Lemma 2.11, with

the parameter q = 2h. Let U be the resulting partition of the terminals. Then each
set U ∈ U contains at least q and at most 3q − 3 terminals, and is associated with a
tree TU containing the terminals of U . The trees {TU}U∈U are edge-disjoint.

We partitionM into two subsets: M1 containing all pairs (s, t) where both s and
t belong to the same group U ∈ U , and M2 containing all remaining pairs.

Assume first that |M1| ≥ k/2. We then select a subset M̃ ⊆ M1 of demand
pairs as follows: for each group U ∈ U , we select one arbitrary pair (s, t) ∈M1 with

s, t ∈ U , if such a pair exists, and add it to M̃. Since every group contains at most

3q = 6h terminals,
∣∣∣M̃∣∣∣ ≥ k

12h
≥ k

12×2.05k/k1 ≥
k1
25

= Ω(k1). Every pair (s, t) ∈ M̃ can
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be connected by some path contained in the tree TU for the U containing s and t.
Since the trees {TU}U∈U are edge-disjoint, the resulting routing of the Ω(k1) pairs in

M̃ is via edge-disjoint paths.
We assume from now on that |M2| ≥ k/2. We greedily select M̃ as follows. Start

with M̃ = ∅. While M2 6= ∅, select any pair (s, t) ∈ M2, add it to M̃ and remove
from M2 all pairs (s′, t′) such that one of s′ and t′ is in the same group as one of s

and t. Notice that for each pair added to M̃, at most 6q = 12h pairs are deleted from

M2. Therefore, at the end of this procedure,
∣∣∣M̃∣∣∣ ≥ k

24h
≥ k1

50
.

We now show that there is a flow F ∗ : T (M̃)  2 out(S1) in G. Let F obtained

by scaling P̂ down by a factor of 2h. Then every terminal in T sends 1/2h flow units
to the edges of out(S1), and the total congestion caused by F is at most 1. In order

to define the flow F ∗, consider some terminal t ∈ T (M̃), and let Ut ∈ U be the group
to which it belongs. Let U ′t ⊆ Ut be any subset of 2h terminals in Ut. Terminal t
then sends 1/2h flow units to each terminal in U ′t , inside the tree TUt . This flow is
then concatenated with the flow that leaves terminals in U ′t in F . Taking the union

of this flow for each t ∈ T (M̃), we obtain a flow F ∗, where every terminal in T (M̃)
sends one flow unit to the edges of out(S1). Since F contributes at most congestion
1 and {TU : U ∈ G} are edge-disjoint, the overall congestion caused by the flow F ∗

is at most 2. From the integrality of flow, we can find a set T (M̃)  2 out(S1) of

2
∣∣∣M̃∣∣∣ = Ω(k1) paths in G. LetM0 ⊆ M̃ be any subset of bk2/4c pairs, T0 = T (M0),

and P be the set of paths connecting T0 to out(S1).

4.3.2 Rerouting Paths in P
Notice that each of the two sets P and

⋃
e∈ET ′

Pe can cause congestion 2 in G and
the union of them can cause congestion 4. In order to overcome this, we prove the
following lemma.

Lemma 4.9 (Rerouting Lemma) Let G = (V,E) be a graph. Let P : V1  1 V2 be
a set of |P| = |V1| paths in G, where V1, V2 ⊆ V . We are also given a collection Q of
edge-disjoint paths terminating at V2. Then, we can efficiently find a subset Q′ ⊆ Q
of at least |Q|− |P| paths, and a collection P ′ : V1  1 V2 of |V1| paths in G, such that
P ′ ∪Q′ causes congestion 1 in G.

Proof: The proof is very similar to the arguments used by Conforti et al. [33]. We
re-route the paths in P via segments of paths in Q, by setting up an instance of the
stable matching problem. In this instance, we are given two sets A,B of the same
size. Each vertex a ∈ A (b ∈ B, resp.) specifies an preference ordering of vertices
in B (A, resp.). A complete matching M between A and B is called stable iff, for
every unmatched pair (a, b) ∈ A × B, either a prefers b′ over b, or b prefers a′ over
a, where a′ and b′ are the vertices such that (a′, b) ∈ M and (a, b′) ∈ M . Conforti et
al. [33], generalizing the famous theorem of Gale and Shapley [38], showed an efficient
algorithm to find a complete stable matching M for any set of preference orderings.
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We set up an instance of the stable matching problem as follows. A contains a
vertex vP for each path P ∈ P , and set B contains a vertex vQ for each path Q ∈ Q.
In order to ensure that |A| = |B|, we add dummy vertices to A as needed. We define
preference lists for vertices in A and B. For each vertex vP ∈ A, the vertices in B
are ordered according to the order of P intersecting their correspondent paths in Q.
The vertices vQ for which P does not intersect Q appear in the end of the preference
ordering in arbitrary order. Similarly for each vertex vQ ∈ B, the vertices of A
are ordered according to the order of the reversal of Q intersecting the correspondent
paths in P . The vertices vP for which Q does not intersect P and the dummy vertices
appear in the end of the preference ordering in arbitrary order.

Let M be a stable matching for the instance. Let Q′ ⊆ Q be the set of paths Q,
whose vertex vQ is matched to a dummy vertex. This ensures that |Q′| ≥ |Q| − |P|.

In order to construct the set P ′ of paths, consider some path P ∈ P with (vP , vQ) ∈
M . If P and Q are edge-disjoint, we add P to P ′. Otherwise, we add to P ′ a path P ′

consisting of two sub-paths: a segment of P from the beginning of P until it intersect
Q, and a segment of Q from the intersecting edge to the end of Q.

This finishes the definitions of P ′ and Q′. Observe that the paths in P ′ connect
every terminal in V1 to V2. It remains to show that the set P ′ ∪Q′ causes congestion
1 in G.

Clearly, the paths in Q′ are edge-disjoint, since Q′ ⊆ Q. We now show that P ′
are edge disjoint. Consider any two paths P ′, P ′′ ∈ P ′. Assume w.l.o.g. that P ′

was obtained from concatenating a segment of some path P1 ∈ P and some path
Q1 ∈ Q (possibly Q1 is empty and P ′ = P1), and similarly P ′′ was obtained from
concatenating a segment of some path P2 ∈ P and some path Q2 ∈ Q via some edge
e2. The paths P ′, P ′′ may share an edge only if the first segment of P ′ shares an edge
with the second segment of P ′′, or vice versa. Assume w.l.o.g. that it is the former.
Then, vP1 prefers vQ2 over vQ1 since P1 intersects Q2 before it intersects Q1. Also,
vQ2 prefers vP1 over vP2 since the reversal of Q2 intersects P1 first before it intersects
P2. This contradicts the fact that M is a stable matching and thus P ′ and P ′′ are
edge-disjoint.

Finally, if some pair of paths P ′ ∈ P ′ and Q′ ∈ Q′ share an edge, we reach a
contradiction exactly as before. �

We apply Lemma 4.9 on the graph G with all edges duplicated, Q =
⋃
e∈ET ′

Pe,
the set P : T0 1:1

 2 out(S1) we constructed, V1 = T0 and V2 =
⋃
j∈[γ′] out(Sj). We then

obtain a set P ′ : T0 →
⋃
j∈[γ′] out(Sj) andQ′ ⊆ Q of size at least |Q|−|P| ≥ |Q|−k2/2

such that P ′ ∪ Q′ causes congestion 2 in G. Since there are at most k2/2 less edges
in Q′ than in Q, we have |Pe ∩Q′| ≥ |Pe| − k2/2 ≥ k2/2. For any e ∈ ET ′ , let
P ′e ⊆ Pe ∩Q′ be any subset of size bk2/2c.

For each path P ∈ P ′, we direct the path from the terminal, and truncate it at the
first vertex in

⋃
j∈[γ′] Sj. The new collection P ′ of paths then connects every terminal

in T0 to some vertex in
⋃
j∈[γ′] Sj and they avoid S ′.

48



4.3.3 Selecting the Set M′ of Pairs

In the next step, we shall define the subset M′ ⊆ M0 of k3 pairs and a partition
(T1, T2) of T (M′) that split every pair in M′. Moreover, we guarantee that all the
paths in P ′ originating at T1 terminate at a same cluster S` ∈ S ′, and all the paths
in P ′ originating at T2 terminate a same cluster S`′ ∈ S ′.

Notice that paths in P ′ connect T0 to clusters in S ′. Let S` ∈ S ′ be a set such that
at least |T0| /γ′ paths in P ′ terminate at S`. Let T ′ ⊆ T0 be the subset of terminals
where these paths originate. Thus, we have |T ′| ≥ |T0| /γ′.

We first consider the easier case where at least |T ′| /4 pairs (s, t) ∈ M0 have
{s, t} ⊆ T ′. We can let M′ ⊆ M0 be a subset of k3 := b|T ′| /4c = Ω(k2/γ

′) such
pairs. Let T1(T2, resp.) contain the first (second, resp.) terminals of pairs inM′. Let
`′ = ` in this case. Then paths in P ′ connect T (M′) to S` = S`′ . Let P1 ⊆ P ′ be the
paths originating at T1 and P2 ⊆ P ′ be the paths originating at T2.

Now consider the harder case where less than |T ′| /4 pairs (s, t) ∈ M0 have
{s, t} ⊆ T ′. So, at least |T ′| /2 pairs (s, t) ∈ M0 have |{s, t} ∩ T ′| = 1. Let T ′1 be
the set of terminals in T ′ whose partners are not in T ′ and T ′2 be the partners of T ′1 .
Thus, |T ′1 | = |T ′2 | ≥ |T ′| /2, T ′1 ⊆ T ′ and T ′2 ∩ T ′ = ∅. Focus on the |T ′2 | paths in
P ′ originating at T ′2 . There is a S`′ ∈ S ′ such that at least |T ′2 | /γ′ of these paths
terminate at out(S`′).(Notice that `′ 6= ` since none of the |T ′2 | paths terminate at
S`.) Let T2 ⊆ T ′2 be a subset of d|T ′2 | /γ′e terminals whose correspondent paths in P ′
terminate at S`′ . Let T1 ⊆ T ′1 be the partners of terminals in T2 andM′ ⊆M0 be the
set of pairs between T1 and T2. Then, k3 := |M′| ≥ |T ′2 | /γ′ ≥ |T0| /γ′2 = Ω(k2/γ

′2).
Let P1 (P2, resp.) be the set of paths in P ′ originating at T1(T2, resp.).

We require that each edge in out(S`)∪out(S`′) is used by at most 1 path in P1∪P2,
as in the theorem statements. This is not hard to guarantee. We say two terminals
s, s′ ∈ T1 ∪T2 conflict if the two paths in P1 ∪P2 originating at s and s′ terminate at
the same edge in out(S`)∪out(S`′ . Then, two pairs (s, t) and (s′, t′) in T1×T2 conflict
if some terminal in {s, t} and some terminal in {s′, t′} conflict. Notice that each pair
conflicts with at most 2 other pairs, we can select |M′| /3 pairs without conflicts. For
notational simplicity, we assume there are no conflicts in M′.

4.3.4 Truncating the Tree T

Our final step is to truncate the tree T to a tree T ′. Assume first that ` 6= `′. Since T
has degree at most 3, we obtain at most 5 sub-trees by removing v` and v`′ from T . Let
T0 denote the sub-tree neighbouring both v` and v`′ , T1, T2 the sub-trees neighbouring
v`, and T3, T4 the sub-trees neighbouring only v`′ (possibly some of the sub-trees are
empty). W.l.o.g, assuming T4 has the most number of vertices among T1, T2, T3, T4.
Then T ′ is obtained from T by deleting T1, T2, T3. It is easy to see that T ′ must
contain at least γ′/4 vertices, and it contains both vertices v and v′. Moreover, the
degree of v` is 1, and the degree of v`′ is at most 2 in T ′. If ` = `′, removing v` from
T will result in at most 3 sub-trees. Similarly, we only keep the largest sub-tree. The
resulting tree T ′ contains at least γ′/3 vertices and v` has degree 1 in T ′.

49



We define S ′′ = {Sj ∈ S ′ : vj ∈ VT ′}. The only thing left is to guarantee Prop-
erty (I8). This is not hard to guarantee by randomly sampling : if an edge e ∈ out(Sj)
is used by two paths in P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e, we randomly one of the two paths. We

remove a pair fromM′ if one of the two paths correspondent to the two terminals are
removed. Notice each path in P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e remains with probability at least

1/4, and each pair in M′ remains with probability at least 1/4. By Chernoff bound
and union bound, with high probability, every P ′e still contains Ω(k2) edges and M′

contains Ω(k3) pairs. Property (I1) can be satisfied by redefining k3. By redefining
T1, T2,P1,P2, all the other properties are still satisfied.

4.4 Step 3: Ensuring Well-Linkedness for Tails

After Step 2, we have constructed the structure in Lemma 4.8 that satisfy Prop-
erty (I1) to (I8). W.l.o.g. we assume that S ′′ = {S1, . . . , Sγ′′}, where γ′′ ≥ γ′/4. S ′′
will serve as the clusters in the cross-bar. Notice that each edge e = (vj, vj′) ∈ T ′

corresponds to many paths connecting Sj and Sj′ . These set of paths for all edges
e ∈ T ′ provides necessary elements to construct many parallel trees in G. In order to
complete these trees, we need to connect the tails of the paths inside clusters. This
requires that clusters are well-linked for the set of tails : the edges via which the
paths in P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e connecting to clusters in S ′′. This is guaranteed by
selecting subsets of these paths, as stated in the following lemma. To the end of this
section, we shall use Γj(P) to denote the set of edges in out(Sj) that are used by P ,
for some cluster Sj ∈ S ′′ and some set P of paths avoiding S ′′. Notice that if an edge
in out(Sj) is used by P , it must be the first or the last edge of some path P ∈ P ,
since paths in P avoid Sj. Moreover, if P is a subset of P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e, every

edge in Γj(P) is used by exactly one path in P by Property (I8).

Lemma 4.10 There is an efficient algorithm, that either computes a routing of
Ω(αWLk3) pairs in M′ with congestion at most 2 in G, or a (k1, α)-violating par-
tition of some set Sj ∈ S ′′, or {P ′′e : e ∈ ET ′} ,M′′ ⊂ M′, T ′1 , T ′2 ,P ′1 and P ′2 such
that

(J1) for every e ∈ ET ′, P ′′e ⊆ P ′e is a subset of 2k4 = Ω(α2
WLk3) paths in Pe,

(J2) M′′ ⊆M′ is set of size k4,

(J3) T ′1 := T1 ∩ T (M′′) and T ′2 := T2 ∩ T (M′′) are respectively the subset of
terminals in T ′1 and T ′2 involved in M′′,

(J4) P ′1 ⊆ P1 (P ′2 ⊆ P2, resp.) is the set of paths in P1 (P2, resp.) connecting T ′1
(T ′2 , resp.) to S` (S`′, resp.),

(J5) every Sj ∈ S ′′ is 1-well-linked for the set Γj

(
P ′1 ∪ P ′2 ∪

⋃
e∈ET ′

P ′′e
)

of edges.
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The proof of this lemma is by applying Theorem 2.10 repeatedly. Initially, let
P = P1 ∪ P2 ∪

⋃
e∈ET ′

P ′e. We apply a sampling procedure for each j ∈ [γ′′] in
arbitrary order. After the procedure for j, we guarantee that Sj is 1-well-linked for
Γj(P). The procedures for j /∈ {`, `′} and for j ∈ {`, `′} are slightly different and we
describe them separately.

Before describing the procedure, we prove the following useful lemma:

Lemma 4.11 Let H = (VH , EH) be a d-degenerate graph for some integer d > 0.
Assume we are given r disjoint subsets V1, V2, · · · , Vr of VH . Then, we can find an
independent set V ′ ⊆ VH of H such that |V ′ ∩ Vi| ≥ b|Vi| /2(d+ 1)rc for every i ∈ [r].

Proof: We describe the algorithm for constructing V ′. Let U = Vi and V ′ = ∅
initially. Repeat the following procedure until U becomes empty. Since H is d-
degenerate, H[U ] contains a vertex v of degree at most d. Suppose v ∈ Vi for some
i ∈ [γ′]. If |V ′ ∩ Vi| < bs/(d+ 1)γ′c, we add v to V ′ and remove v and all neighbours
of v from U . Otherwise, we simply remove v from U .

Now, we prove that |V ′ ∩ Vi| ≥ bs/(d+ 1)γ′c for every i ∈ [γ′]. Assume towards
contradiction that |V ′ ∩ Vi| < bs/(d+ 1)γ′c for some i. Consider the an iteration
where we removed some vertices of Vi from U . If in the iteration we added some v to
V ′, then we removed at most d+ 1 vertices from U . Otherwise, v /∈ Vi since we have
|V ′ ∩ Vi| < bs/(d+ 1)γ′c. In this case we did not remove any vertex from U . The
former case can happen at most γ′ bs/(d+ 1)γ′c − 1 ≤ s/(d+ 1)− 1 times. Thus, we
removed at most (s/(d + 1) − 1)(d + 1) < s vertices of Vi from U , contradicting the
fact that U becomes empty at the end. �

4.4.1 Sampling Procedure for j /∈ {`, `′}
We now describe the sampling procedure for j ∈ [γ′′] \ {`, `′}. Focus on the graph
G′ = G[Sj ∪ out(Sj)] and terminals Γ = Γj(P). We run AARV on G′ with terminal
set Γ, to obtain a cut (A,B). If the sparsity of the cut (A,B) is less than α, then
(A,B) defines a (k1, α)-violating cut of Sj. We then stop the algorithm by returning
the cut (A,B). Otherwise, we are guaranteed that set Sj is α/αARV = αWL-well-linked
for Γ. We then apply Theorem 2.10 on the graph G′ and terminal set Γ to obtain
an O(1/αWL)-degenerate graph Z = (Γ, EZ). Notice that vj has degree at most 3
in T ′. Then the set Γ of edges is naturally divided into at most 3 subsets, one for
each of the edges incident to vj. That is, a subset for an edge e is the set of all tails
correspondent to Γj(P ∩ P ′e). For simplicity, assume there are exactly 3 subsets and
they are Γ1,Γ2 and Γ3. Thus, we can apply Lemma 4.11 to obtain a independent set
Γ′ ⊆ Γ of Z such that |Γ′ ∩ Γi| ≥ b|Γi| /O(1/αWL)c = Ω(αWL) |Γi| for every i ∈ [3].
Define Γ′i = Γ′ ∩ Γi for i ∈ [3]. By Theorem 2.10, we can construct a 4-degenerate
graph Y = (Γ′, EY ) such that G′ is 1-well-linked for every independent set Γ′′ of Y .
We apply Lemma 4.11 again to obtain an independent set Γ′′ ⊆ Γ′ of H such that
|Γ′′ ∩ Γ′i| ≥ Ω(|Γ′i|) = Ω(αWL) |Γi| for every i ∈ [3]. Now, we update the set P of paths
so that Γj(P) = Γ′′ as follows: we remove a path P from P if one of its tails is in
Γ \ Γ′′.
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4.4.2 Sampling Procedure for j ∈ {`, `′} , ` 6= `′

We proceed to deal with the case j ∈ {`, `′}. First consider the simpler case that
` 6= `′. We apply the above procedure for j = ` and j = `′ respectively. Define
G′ = G[Sj ∩ out(Sj)] and Γ = Γj(P). Γ is divided into at most 3 subsets : one subset
for tails of P ∩ P ′e, for each edge e ∈ ET ′ incident to vj (there are 1 or 2 such edges)
and one subset for tails of P ∩ P1 or P ∩ P2 (depending on whether j = ` or j = `′).
Then we can then apply Theorem 2.10 to obtain a subset Γ′′ ⊆ Γ, and update the set
P of paths as before, using the same procedure as we did for j /∈ {`, `′}. In order to
make sure that the paths in P ′1 and P ′2 are matched according toM′, when removing
a path P ∈ P1 (resp., P2) from P , we remove its matched path from P2(resp., P1).
The matched paths are naturally defined: a path P ∈ P1 and a path in P ′ ∈ P2 are
matched if the two terminals contained in P and P ′ are matched in M′.

4.4.3 Sampling Procedure for j = ` = `′

Now we consider the more complicated case j = ` = `′. Then vj has degree 1 in T ′.
Focus on the graph G′ = G[Sj ∪ out(Sj)] and terminals Γ = Γj(P). Γ is naturally
divided into 3 subsets: Γ1 = Γj(P∩P1), Γ2 = Γj(P∩P2), and Γ3 = Γj(P∩P ′e), where
e is the unique edge in T ′ incident to vj. The complication of this case comes from the
requirement that P ∩ P1 and P ∩ P2 are matched. As before, we guarantee that G′

is αWL-well-linked for Γ, and find a O(1/αWL)-degenerate graph Z. In the degenerate
graph, if e ∈ Γ1 and e′ ∈ Γ2 are matched according to M′(i.e, e and e′ are tails of
two matched paths), we identify e and e′. The resulting graph Z ′ has degeneracy at
most 4 times the degeneracy of Z and is thus O(1/αWL)-degenerate. We can then
apply Lemma 4.11 to obtain an independent set Γ′ ⊆ Γ1 ∩ Γ3 (notice that vertices in
Γ2 are identified with vertices in Γ1). Let Γ′1 = Γ′ ∩ Γ1, Γ′3 = Γ′ ∩ Γ3 and Γ′2 be the
vertices in Γ2 identified with Γ′1 (thus, |Γ′1| = |Γ′2|). Redefine Γ′ as Γ′1 ∪ Γ′2 ∪ Γ′3. By
the lemma, |Γ′i| ≥ Ω(αWL) |Γi| for every i ∈ [3].

Focus on the graph Z[Γ′]. The edges in Z[Γ′] form a partial matching: the only
edges are of the form (e, e′) for which e and e′ are matched. If Z[Γ′] contains at least
|Γ′1| /2 edges, we can route |Γ′1| /2 matched pairs in Γ′1×Γ′2, by Theorem 2.10, since the
edges form an induced matching. By concatenating these paths with correspondent
paths in P1 and P2, we obtain a routing of |Γ′1| /2 pairs in G with congestion 2 (since
P1 ∪P2 causes congestion 2). Thus, we assume Z[Γ′] contains less than |Γ′1| /2 edges.
We remove the elements incident to the edges in Z[Γ′] from Γ′,Γ′1 and Γ′2. Then, the
resulting set Γ′ is an independent set of Z. By Theorem 2.10, we can then construct
a 4-degenerate graph Y on Γ′ such that G′ is 1-well-linked for any independent set
Γ′′ ⊆ Γ′ of Y . Repeating the same process for Y,Γ′1,Γ

′
2 and Γ′3(that is, identifying Γ′2

with Γ′1 to obtain Y ′, applying Lemma 4.11, etc.), we either find a routing of Ω(Γ′1)
pairs in M′ with congestion 2, or a subset Γ′′ ⊆ Γ′ such that |Γ′′ ∩ Γ′i| = Ω(|Γ′i|)
for every i ∈ [3]. Moreover, Γ′′ ∩ Γ′1 and Γ′′ ∩ Γ′2 are perfectly matched. Finally we
update P by removing paths with one of its tails in Γ\Γ′′. This finishes the sampling
procedure.
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Figure 4.3: Step 4 of crossbar construction – finishing up

4.4.4 Finishing Proving Lemma 4.10

We then let P ′′e = P ∩ P ′e for every e ∈ ET ′ , P ′1 = P ∩ P1 and P ′2 = P ∩ P2.
Define T ′1 (T ′2 , resp.) to be the set of terminals P ′1 (P ′2, resp.) originating at. Our
sampling procedure guarantees that each Sj is 1-well-linked for Γj(P). In order to
prove Lemma 4.10, it now remains show that the sizes of these sets are large. For each
edge e = (vj, vj′) ∈ ET ′ , |P ∩ P ′e| is decreased twice in the iterative process: one time
in the iteration for j and the other in the iteration for j′. Since each time the fraction
of elements remaining is at least Ω(αWL), we have that the |P ′′e |∩Ω(α2

WL) |P ′e| for every
e ∈ ET ′ . Now consider P ′1 and P ′2. If ` 6= `′, |P ∩ P1| is decreased twice in the process:
one time in the iteration for ` and the other in the iteration for `′. Also, in each time
the fraction of elements remaining is at least Ω(αWL). Thus, |P ′1| ≥ Ω(α2

WL) |P1|. By
the same argument, |P ′2| ≥ Ω(α2

WL) |P2|. For the case ` = `′, |P ∩ P1| is decreased
once. Thus, |P ′1| ≥ Ω(αWL) |P1|. Therefore, |P ′′e | ≥ Ω(α2

WL |P ′e|) = Ω(α2
WLk2) for every

e ∈ ET ′ , and |P ′1| = |P ′2| = Ω(α2
WLk3). If the procedure for j = ` = `′ returned

a routing, the number of pairs routed is at least Ω(αWL|M′|) = Ω(αWLk2/γ
′2). By

discarding some paths, we can assume |P ′1| = |P ′2| = k4 = Ω(α2
WLk3) and |P ′′e | = 2k4

for every e ∈ ET ′ .

4.5 Step 4: Finishing Up

With the structure guaranteed by Lemma 4.10, it is straightforward to construct our
crossbar (see Figure 4.3).

We now describe how we construct the 2k4 trees in the crossbar. Instead of giving
the set of vertices and edges for these trees, we construct a set P of paths. If we
replace each path with a fake edge connecting the two points, it is straightforward to
check that the set of fake edges form 2k4 trees.

First, we include all paths in
⋃
e∈ET ′

P ′′e in the set P . Now, consider any set

Sj ∈ S ′′. If the degree of vj in tree T ′ is 2, then let e, e′ be the two edges incident to

vj in T ′. Since Sj is 1-well-linked for Γj(P ′′e ∩ P ′′e′), we can find a set Qj : Γj(P ′′e )
1:1
 1
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Γj(P ′′e′) of paths contained in Sj. We include Qj in P . If the degree of vj in tree T ′

is 3, let e, e′ and e′′ be the three edges incident to vj in T ′. We can find two sets

Q1
j : Γj(P ′′e )

1:1
 1 Γj(P ′′e′) and Q2

j : Γj(P ′′e )
1:1
 1 Γj(P ′′e′′) of paths inside Sj. We include

Q1
j and Q2

j in P .
The set of paths in P form 2k4 trees. We now need to add more edges to P

so that each tree contains one terminal. To do this, we add P ′1 and P ′2 to P . If
` = `′, let e be the unique edge incident to v` in T ′. We can find a set of paths
Q′ : Γ`(P ′′e )

1:1
 1 Γ`(P ′1 ∪ P ′2). Then we add Q′ to P . Now consider the case ` 6= `′.

Let e be some edge incident to v` in T ′, and e′ be some edge incident to v′` in T ′.
Construct arbitrarily two subsets Γ ⊆ Γ`(P ′′e ) and Γ′ ⊆ Γ`′(P ′′e′) of tails of size k4
each, with the constraint that Γ and Γ′ appear in 2k4 different trees. Then, we can
find two sets of paths Q′ : Γ

1:1
 1 Γ`(P ′1) and Q′′ : Γ′

1:1
 1 Γ`′(P ′2). We add Q′ and

Q′′ to P . It is easy to see that we constructed a set of 2k4 trees in either case, each
containing one of the 2k4 terminals in T ′1 ∪ T ′2 .

We now analyze the congestion caused by the trees. The paths in
⋃
e∈ET ′

P ′′e ∪
P ′1∪P ′2 cause congestion 2 and avoid S ′′. Each of the other paths added to P is inside
some cluster S ∈ S ′′. If vj, j ∈ [γ′′] \ {`, `′} has degree d in T ′, then each edge in Sj
is used at most d− 1 times. Each edge in S` is used at most once.

Thus, we let S∗ contain all sets Sj, for all j ∈ [γ′′] \ {`′} such that the degree
of vertex vj in tree T ′ is either 1 or 2. Then, each edge inside any cluster in S∗

is used by at most one tree. Notice that at least half the vertices of T ′ have this
property, and therefore, |S∗| ≥ γ′′/2. By discarding clusters, we can assume |S∗| = γ∗.
W.l.o.g, assume S∗ = S1, S2, · · · , Sγ∗ Let k∗ = k4 and name the terminals in T ′1 ∪ T ′2
t1, t2, · · · , t2k∗ . For a terminal ti ∈ T ′1 ∪ T ′2 , let Ti be the unique tree containing ti.
For i ∈ [2k∗] and a cluster Sj ∈ S∗, we can define ei,j to be the unique edge in
ETi ∩ Γj(P ′′e ), for an arbitrary edge e ∈ ET ′ incident to vj. Then, Sj is 1-well-linked
for the set Γj :=

⋃
i∈[2k∗] {ei,j}. Let Γ = {Γj : j ∈ [γ′]}, T = {Ti : i ∈ [2k∗]} and

M∗ =M′′, we obtained a (γ∗, k∗)-crossbar (S∗,Γ∗,T∗,M∗) of congestion 2 in G.
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Part II

Approximation Algorithms for
Facility Location Problems
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Chapter 5

Uncapacitated Facility Location
Problem

In this chapter, we give our 1.488-approximation algorithm for the UFL problem.
As mentioned in the introduction, our algorithm was built on the work of Byrka
[19]. An algorithm is a (γf , γc)-bifactor approximation algorithm if the solution given
by the algorithm has expected total cost at most γfF

∗ + γcC
∗, where F ∗ and C∗

are respectively the facility and the connection cost of an optimal solution for the
linear programming relaxation of the UFL problem, which is described later. Byrka
presented an algorithm A1(γ) which gives the optimal bifactor approximation (γ, 1 +
2e−γ) for γ ≥ γ0 ≈ 1.6774. By either running A1(γ0) or the (1.11, 1.78)-approximation
algorithm A2 proposed by Jain, Mahdian and Saberi [46], Byrka was able to give a
1.5-approximation algorithm. We show that the approximation ratio can be improved
to 1.488 if γ is randomly selected. To be more specific, we show

Theorem 5.1 There is a distribution over (1,∞)∪{⊥} such that the following ran-
dom algorithm for the UFL problem gives a solution whose expected cost is at most
1.488 times the cost of the optimal solution : we randomly choose a γ from the distri-
bution; if γ =⊥, return the solution given by A2; otherwise, return the solution given
by A1(γ).

Due to the (γ, 1 + 2e−γ − ε)-hardness result given by [46], there is a hard instance
for the algorithm A1(γ) for every γ. Roughly speaking, we show that a fixed instance
can not be hard for two different γ’s. Guided by this fact, we first give a bifactor
approximation ratio for A1(γ) that depends on the input instance and then introduce
a 0-sum game that characterizes the approximation ratio of our algorithm. The game
is between an algorithm designer and an adversary. The algorithm designer plays
either A1(γ) for some γ > 1 or A2, while the adversary plays an input instance for
the UFL problem. By giving an explicit (mixed) strategy for the algorithm designer,
we show that the value of the game is at most 1.488.

The remaining part of the paper is organized as follows. In Section 5.1, we review
the approximation algorithm A1(γ), γ > 1 in [19], which gives a (γ, 1 + 2e−γ)-bifactor
approximation for γ ≥ γ0 ≈ 1.67736, and then we give our algorithm in Section 5.2.
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5.1 Review of the Algorithm A1(γ) in [19]

In A1(γ), γ > 1, we first solve the following natural linear programming relaxation
for the UFL problem.

min
∑

i∈F ,j∈C

d(i, j)xi,j +
∑
i∈F

fiyi s.t.∑
i∈F

xi,j = 1 ∀j ∈ C (5.1)

xi,j − yi ≤ 0 ∀i ∈ F ,j ∈ C (5.2)

xi,j, yi ≥ 0 ∀i ∈ F ,j ∈ C (5.3)

In the integer programming correspondent to the above LP relaxation, we have
additional constraint that xi,j, yi ∈ {0, 1} for every i ∈ F and j ∈ C. yi indicates
if the facility i is open and xi,j indicates if the client j is connected to the facility
i. Equation (5.1) says that the client j must be connected to some facility and
Inequality (5.2) says that a client j can be connected to a facility i only if i is open.

If the y-variables are fixed, x-variables can be assigned greedily in the following
way. Initially, xi,j = 0. For each client j ∈ C, execute the following steps. Sort
facilities by their distances to j; then for each facility i in the order, assign xij = yi
if
∑

i′∈F xi′,j + yi ≤ 1 and xi,j = 1−∑i′ xi′,j otherwise.
After obtaining a solution (x, y), we modify it by scaling the y-variables up by

γ. Let y be the scaled vector of y-variables. We reassign x-variables using the above
greedy process to obtain a new solution (x, y).

Without loss of generality, we can assume that the following conditions hold for
every i ∈ C and j ∈ F :

1. xi,j ∈ {0, yi};

2. xi,j ∈ {0, yi};

3. 0 < γyi = yi ≤ 1.

Indeed, the above conditions can be guaranteed by splitting facilities. To guar-
antee the first condition, we split i into 2 co-located facilities i′ and i′′ and let
xi′,j = yi′ = xi,j, yi′′ = yi − xi,j and xi′′,j = 0, if we find some facility i ∈ F and
client j ∈ C with 0 < xi,j < yi. The other x variables associated with i′ and i′′ can
be assigned naturally. We update x and y variables accordingly. Similarly, we can
guarantee the second condition. To guarantee the third condition, we can remove the
facilities i with yi = 0; we can split a facility i into 2 co-located facilities i′ and i′′

with yi′ = 1 and yi′′ = yi − 1, if we find some facility i ∈ F with yi > 1.

Definition 5.2 (volume) For some subset F ′ ⊆ F of facilities, define the volume
of F ′, denoted by vol(F ′), to be the sum of yi over all facilities i ∈ F ′. i.e, vol(F ′) =∑

i∈F ′ yi.

57



Definition 5.3 (close and distant facilities) For a client j ∈ C, we say a facility
i is one of its close facilities if xi,j > 0. If xi,j = 0, but xi,j > 0, then we say i is a
distant facility of client j. Let FCj and FDj be the set of close and distant facilities of
j, respectively. Let Fj = FCj ∪ FDj .

Note that if xi,j > 0, then xi,j > 0, due to the greedy assignment of x and x
variables.

Definition 5.4 For a client j ∈ C and a subset F ′ ⊆ F of facilities such that
vol(F ′) > 0, define d(j,F ′) to be the average distance of j to facilities in F ′, with
respect to the weights y. Recalling that y is a scaled vector of y, the average distance
is also with respect to the weights y. i.e,

d(j,F ′) =

∑
i∈F ′ yid(j, i)∑

i∈F ′ yi
=

∑
i∈F ′ yid(j, i)∑

i∈F ′ yi
.

Definition 5.5 (dCave(j), d
D
ave(j), dave(j) and dCmax(j)) For a client j ∈ C, define

dCave(j), d
D
ave(j) and dave(j) to be the average distance from j to FCj ,FDj and Fj

respectively, i.e, dCave(j) = d(j,FCj ), dDave(j) = d(j,FDj ) and dave(j) = d(j,Fj). Define
dCmax(j) to be the maximum distance from j to a facility in FCj .

By definition, dave(j) is the connection cost of j in the optimal fractional solution.
See Figure 5.1 for an illustration of the above 3 definitions. The following claims hold
by the definitions of the corresponding quantities, and will be used repeatedly later :

Claim 5.6 dCave(j) ≤ dCmax(j) ≤ dDave(j) and dCave(j) ≤ dave(j) ≤ dDave(j), for every
client j ∈ C.

Claim 5.7 dave(j) =
1

γ
dCave(j) +

γ − 1

γ
dDave(j), for every client j ∈ C.

Claim 5.8 vol(FCj ) = 1, vol(FDj ) = γ − 1 and vol(Fj) = γ, for every client j ∈ C.

Recall that yi indicates if the facility i is open. If we are aiming at a (γ, γ)-bifactor
approximation, we can open i with probability γyi = yi. Then, the expected opening
cost is exactly γ times that of the optimal fractional solution. If the sets FCj , j ∈ C are
disjoint, the following simple algorithm gives a (γ, 1)-bifactor approximation. Open
exactly 1 facility in FCj , with yi being the probability of opening i. (Recall that∑

i∈FCj
yi = vol(FCj ) = 1.) Connect each client j to its closest open facility. This is

indeed a (γ, 1)-bifactor approximation, since the expected connection cost of j given
by the algorithm is dCave(j) ≤ dave(j).

In general, the sets FCj , j ∈ C may not be disjoint. In this case, we can not ran-
domly select 1 open facility from every FCj , since a facility i belonging to two different
FCj ’s would be open with probability more than yi. To overcome this problem, we
shall select a subset C ′ ⊆ C of clients such that the sets FCj , j ∈ C ′ are disjoint. We
randomly open a facility in FCj only for facilities j ∈ C ′. To allow us to bound the
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Figure 5.1: Illustration for dCave(j), d
D
ave(j), dave(j), d

C
max(j),Fj,FCj and FDj . Each rect-

angle is a facility : its width corresponds to y value and its height corresponds to
its distance to j. The heights of the rectangles are non-decreasing from the left to
the right. The average heights shown in the figure are weighted with respect to the
widths of rectangles.

expected connection cost of clients not in C ′, C ′ also has the property that every client
j ∈ C \ C ′ is close to some client in C ′. The exact definition of being close is given
later in Claim 5.10.

The subset of clients C ′ is selected greedily in the following way. Initially let
C ′′ = C and C ′ = ∅. While C ′′ is not empty, select the client j in C ′′ with the minimum
dCave(j) + dCmax(j), add j to C ′ and remove j and all clients j′ satisfying FCj ∩ FCj′ 6= ∅
from C ′′. The following two claims hold for C ′.

Claim 5.9 FCj ∩ FCj′ = ∅, for two distinct clients j, j′ ∈ C ′.

As already mentioned, this claim allows us to randomly open 1 facility from each set
FCj , j ∈ C ′.

Claim 5.10 For every client j /∈ C ′, there exists a client j′ ∈ C ′ such that vol(FCj ∩
FCj′ ) > 0 and dCave(j

′) + dCmax(j
′) ≤ dCave(j) + dCmax(j).

Notice that vol(FCj ∩FCj′ ) > 0 implies d(j, j′) ≤ dCmax(j) + dCmax(j
′). This property

and that dCave(j
′) + dCmax(j

′) ≤ dCave(j) + dCmax(j) will be used to bound the expected
connection cost of j.

Definition 5.11 (cluster center) For a client j /∈ C ′, we select arbitrarily a client
j′ ∈ C that makes Claim 5.10 hold and call it the cluster center of j.

We now randomly round the fractional solution (x, y). As we already mentioned,
for each j ∈ C ′, we open exactly one of its close facilities randomly with probabilities
yi. For each facility i that is not a close facility of any client in C ′, we open it
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independently with probability yi. Connect each client j to its closest open facility
and let Cj be its connection cost.

Since i is open with probability exactly yi for every facility i ∈ F , the expected
opening cost of the solution given by the above algorithm is exactly γ times that of
the optimal fractional solution. If j ∈ C ′ then E[Cj] = dCave(j) ≤ dave(j).

Byrka in [19] showed that for every client j /∈ C ′,
1. The probability that some facility in FCj (resp., FDj ) is open is at least 1 −
e−vol(F

C
j ) = 1− e−1(resp., 1− e−vol(FDj ) = 1− e−(γ−1)), and under the condition

that the event happens, the expected distance between j and the closest open
facility in FCj (resp., FDj ) is at most dCave(j) (resp., dDave(j));

1

2. d(j,FCj′ \Fj) ≤ dDave(j)+dCmax(j)+dCave(j)(recall that d(j,FCj′ \Fj) is the weighted

average distance from j to facilities in FCj′ \ Fj), where j′ is the cluster center
of j; or equivalently, under the condition that there is no open facility in Fj,
the expected distance between j and the unique open facility in FCj′ is at most

dDave(j) + dCmax(j) + dCave(j).

Combining the above 2 facts, we have

E[Cj] ≤ (1− e−1)dCave(j) + e−1(1− e−(γ−1))dDave(j)
+ e−1e−(γ−1)(dDave(j) + dCmax(j) + dCave(j))

= (1− e−1 + e−γ)dCave(j) + e−1dDave(j) + e−γdCmax(j)

≤ (1− e−1 + e−γ)dCave(j) + (e−1 + e−γ)dDave(j). (5.4)

Notice that the connection cost of j in the optimal fractional solution is dave(j) =
1

γ
dCave(j) +

γ − 1

γ
dDave(j). We compute the maximum ratio between (1 − e−1 +

e−γ)dCave(j) + (e−1 + e−γ)dDave(j) and
1

γ
dCave(j) +

γ − 1

γ
dDave(j). Since dCave(j) ≤ dDave(j),

the ratio is maximized when dCave(j) = dDave(j) > 0 or dDave(j) > dCave(j) = 0. For γ ≥ γ0,
the maximum ratio is achieved when dCave(j) = dDave(j) > 0, in which case the maximum
is 1 + 2e−γ. Thus, the algorithm A1(γ0) gives a (γ0 ≈ 1.67736, 1 + 2e−γ0 ≈ 1.37374)-
bifactor approximation.2

5.2 A 1.488 Approximation Algorithm for the UFL

Problem

In this section, we give our 1.488-approximation algorithm for the UFL problem. Our
algorithm is also based on the combination of A1(γ) and A2. However, instead of

1There is a minor difference between what is explained here and what is in [19]: [19] used a bound
on the probability that some facility in Fj (instead of FD

j ) is open.
2Byrka’s analysis in [19] was slightly different; it used some variables from the dual LP. Later,

Byrka et al. [20] gave an analysis without using the dual LP, which is the one we explain in our
paper.
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running A1(γ) for a fixed γ, we randomly select γ from some distribution described
later.

To understand why this approach can reduce the approximation ratio, we list
some necessary conditions that the upper bound in (5.4) is tight.

1. The facilities in Fj have tiny weights. In other words, maxi∈Fj yi tends to
0. Moreover, all these facilities were independently sampled in the algorithm.
These conditions are necessary to tighten the 1− e−1 (resp., 1− e−(γ−1)) upper
bound for the probability that at least 1 facility in FCj (resp., FDj ) is open.

2. The distances from j to all the facilities in FCj (resp., FDj ) are the same. Oth-
erwise, the expected distance from j to the closest open facility in FCj (resp.,
FDj ), under the condition that it exists, is strictly smaller than dCave(j) (resp.,
dDave(j)).

3. dCmax(j) = dDave(j). This is also required since we used dDave(j) as an upper bound
of dCmax(j) in (5.4).

To satisfy all the above conditions, the distances from j to Fj must be distributed
as follows. 1/(γ + ε) fraction of facilities in Fj (the fraction is with respect to the
weights yi) have distances a to j, and the other 1− 1/(γ + ε) fraction have distances
b ≥ a to j. For ε tending to 0, dCave(j) = a and dCmax(j) = dDave(j) = b.

As discussed earlier, if a = b, then E[Cj]/dave(j) ≤ 1 + 2e−γ. Intuitively, the bad
cases (cases with large E[Cj]/dave(j)) should have a � b. However, if we replace γ
with γ+ 1.01ε (say), then dCmax(j) will equal dCave(j) = a, instead of dDave(j) = b. Thus,
we can greatly reduce the approximation ratio if the distributions of weights for all
j’s are of the above form.

Hence, using only two different γ’s, we are already able to make an improvement.
To give a better analysis, we first give in Section 5.2.1 an upper bound on E[Cj], in
terms of the distribution of distances from j to Fj, not just dCave(j) and dDave(j), and
then give in Section 5.2.2 an explicit distribution for γ by introducing a 0-sum game.

5.2.1 Upper-Bounding the Expected Connection Cost of a
Client

We bound E[Cj] in this subsection. It suffices to assume j /∈ C ′, since we can think of
a client j ∈ C ′ as a client j /∈ C ′ which has a co-located client j′ ∈ C ′. Similar to [19],
we first give an upper bound on d(j,FCj′ \ Fj) in Lemma 5.12, where j′ is the cluster
center of j. The bound and the proof are the same as the counterparts in [19], except
that we made a slight improvement. The improvement is not essential to the final
approximation ratio; however, it will simplify the analytical proof in Section 5.2.2.

Lemma 5.12 For some client j /∈ C ′, let j′ be the cluster center of j. So j′ ∈ C ′ and
vol(FCj ∩ FCj′ ) > 0. Assuming vol(FCj′ \ Fj) > 0, we have,

d(j,FCj′ \ Fj) ≤ (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCmax(j
′) + dCave(j

′). (5.5)
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Figure 5.2: Sets of facilities used in the proof of Lemma 5.12.

not (5.5)

(5.6) (5.9) (5.10)

(5.11) (5.12) (5.13) (5.14)

(5.5)

(5.7) (5.8) Claim 5.13

Figure 5.3: The dependence graph for the equations in the proof of Lemma 5.12. An
equation is implied by its predecessor-equations.

Proof: Figure 5.2 illustrates the sets of facilities we are going to use. For the flow of
the proof, we shall first assume that all the 5 marked sets in the figure have positive
volumes so that the average distances from j or j′ to them are well-defined. Later
we deal with the other cases. Figure 5.3 shows the dependence of equations we shall
prove and can be viewed as the outline of the proof.

If d(j, j′) ≤ (2 − γ)dCmax(j) + (γ − 1)dDave(j) + dCave(j
′), the remaining dCmax(j

′) is
enough for the distance between j′ and any facility in FCj′ . So, we will assume

d(j, j′) > (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCave(j
′). (5.6)

Since dDave(j) ≥ dCmax(j) and γ − 1 > 0, (5.6) implies

d(j, j′) > dCmax(j) + dCave(j
′). (5.7)

By triangle inequality,

d(j′,FCj ∩ FCj′ ) ≥ d(j, j′)− d(j,FCj ∩ FCj′ ),

and by (5.7) and d(j,FCj ∩ FCj′ ) ≤ dCmax(j),

d(j′,FCj ∩ FCj′ ) > dCmax(j) + dCave(j
′)− dCmax(j) = dCave(j

′). (5.8)
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Claim 5.13 If d(j′,FDj ∩ FCj′ ) ≥ dCave(j
′), then (5.5) holds.

Proof: Notice that dCave(j
′) = d(j′,FCj′ ) and FCj′ is the union of the following 3 disjoint

sets: FCj ∩FCj′ ,FDj ∩FCj′ ,FCj′ \Fj. If d(j′,FDj ∩FCj′ ) ≥ dCave(j
′), then by (5.8), we have

d(j′,FCj′ \ Fj) < dCave(j
′). Then, by triangle inequality,

d(j,FCj′ \ Fj) ≤ d(j, j′) + d(j′,FCj′ \ Fj) < d(j, j′) + dCave(j
′).

Since vol(FCj ∩FCj′ ) > 0, we have d(j, j′) ≤ dCmax(j)+dCmax(j
′). Since dCmax(j) ≤ dDave(j),

we have

d(j,FCj′ \ Fj) ≤ dCmax(j) + dCmax(j
′) + dCave(j

′)

≤ (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCmax(j
′) + dCave(j

′).

This proves the claim. �
So, by Claim 5.13, we can assume that

d(j′,FDj ∩ FCj′ ) = dCave(j
′)− z (5.9)

for some positive z. Let ŷ = vol(FDj ∩FCj′ ). Notice that 0 < ŷ < min {γ − 1, 1}, since
we assumed that all the 5 sets marked in Figure 5.2 have positive volumes. Since
dCave(j

′) = ŷd(j′,FDj ∩ FCj′ ) + (1− ŷ)d(j′,FCj′ \ FDj ), we have

d(j′,FCj′ \ FDj ) = dCave(j
′) +

ŷ

1− ŷ z. (5.10)

By (5.6), (5.9) and triangle inequality, we have

d(j,FDj ∩ FCj′ ) ≥ d(j, j′)− d(j′,FCj′ ∩ FDj )

> (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCave(j
′)− (dCave(j

′)− z)

= dDave(j)− (2− γ)(dDave(j)− dCmax(j)) + z. (5.11)

Noticing that dDave(j) =
ŷ

γ − 1
d(j,FDj ∩ FCj′ ) +

γ − 1− ŷ
γ − 1

d(j,FDj \ FCj′ ), we have

d(j,FDj \ FCj′ ) = dDave(j)−
ŷ

γ − 1− ŷ
(
d(j,FDj ∩ FCj′ )− dDave(j)

)
.

Then, by dCmax(j) ≤ d(j,FDj \ FCj′ ) and (5.11),

dCmax(j) ≤ d(j,FDj \ FCj′ ) < dDave(j)−
ŷ

γ − 1− ŷ
(
z − (2− γ)(dDave(j)− dCmax(j))

)
.

So,

dDave(j)− dCmax(j) >
ŷ

γ − 1− ŷ
(
z − (2− γ)(dDave(j)− dCmax(j))

)
,
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and since 1 +
(2− γ)ŷ

γ − 1− ŷ =
(γ − 1)(1− ŷ)

γ − 1− ŷ ≥ 0,

dDave(j)− dCmax(j) >
ŷ

γ − 1− ŷ z
/(

1 +
(2− γ)ŷ

γ − 1− ŷ

)
=

ŷ

(γ − 1)(1− ŷ)
z. (5.12)

By triangle inequality,

d(j′,FCj ∩ FCj′ ) ≥ d(j, j′)− d(j,FCj ∩ FCj′ ),

and by (5.6) and d(j,FCj ∩ FCj′ ) ≤ dCmax(j),

d(j′,FCj ∩ FCj′ ) > (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCave(j
′)− dCmax(j)

= (γ − 1)(dDave(j)− dCmax(j)) + dCave(j
′).

Then by (5.12), we have

d(j′,FCj ∩ FCj′ ) >
ŷ

1− ŷ z + dCave(j
′). (5.13)

Notice that FCj′ \ FDj is the union of the following two sets : FCj ∩ FCj′ and FCj′ \ Fj.
Combining (5.10) and (5.13), we have

d(j′,FCj′ \ Fj) < dCave(j
′) +

ŷ

1− ŷ z. (5.14)

So,

d(j,FCj′ \ Fj) ≤ dCmax(j) + dCmax(j
′) + d(j′,FCj′ \ Fj)

= (2− γ)dCmax(j) + (γ − 1)dCmax(j) + dCmax(j
′) + d(j′,FCj′ \ Fj)

by (5.12) and (5.14),

< (2− γ)dCmax(j) + (γ − 1)

(
dDave(j)−

ŷz

(γ − 1)(1− ŷ)

)
+ dCmax(j

′) + dCave(j
′) +

ŷz

1− ŷ
= (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCmax(j

′) + dCave(j
′).

This finishes the proof of Lemma 5.12 for the case where all the 5 sets marked in
Figure 5.2 have positive volumes. By the conditions of the lemma, we have vol(FCj ∩
FCj′ ) > 0 and vol(FCj′ \ FDj ) ≥ vol(FCj′ \ Fj) > 0. Thus, it remains to consider the

case where vol(FDj \ FCj′ ) = 0 or vol(FDj ∩ FCj′ ) = 0. If vol(FDj ∩ FCj′ ) = 0, then the
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proof of Claim 5.13 can be repeated to yield Inequality (5.5). If vol(FDj \ FCj′ ) =

0, then ŷ = γ − 1 and d(j,FDj ∩ FCj′ ) = dDave(j). Thus, Inequality (5.11) implies

dDave(j)− dCmax(j) <
z

2−γ = ŷz
(γ−1)(1−ŷ) , which is exactly Inequality (5.12). �

Lemma 5.14
d(j,FCj′ \ Fj) ≤ γdave(j) + (3− γ)dCmax(j). (5.15)

Proof: Noticing that dCmax(j
′) + dCave(j

′) ≤ dCmax(j) + dCave(j), the proof is straightfor-
ward from Lemma 5.12.

d(j,FCj′ \ Fj) ≤ (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCmax(j
′) + dCave(j

′)

≤ (2− γ)dCmax(j) + (γ − 1)dDave(j) + dCmax(j) + dCave(j)

= γ

(
1

γ
dCave(j) +

γ − 1

γ
dDave(j)

)
+ (3− γ)dCmax(j)

= γdave(j) + (3− γ)dCmax(j).

�

Definition 5.15 (characteristic function) Given a UFL instance and its optimal
fractional solution (x, y), the characteristic function hj : (0, 1] → R of some client
j ∈ C is defined as follows. Let i1, i2, · · · , ik be the facilities in Fj, in the non-
decreasing order of distances to j. Then hj(p) = d(it, j), where t is the minimum

number such that
t∑

s=1

yis ≥ p. The characteristic function of the instance is defined

as h =
∑

j∈C hj.

Notice that hj, j ∈ C and h are defined using the y vector, not the y vector, and
is thus independent of γ.

Claim 5.16 h : (0, 1] → R is a non-decreasing piece-wise constant function. That
is, there exists points 0 < p1 < p2 < · · · < pm = 1 and values 0 ≤ c1 < c2 < · · · < cm
such that h(p) = ct where t is the minimum integer such that p ≤ pt.

The above claim will be used in the proof of Lemma 5.23. (Although the monotonicity
of h is enough to prove Lemma 5.23, an argument for such general statement requires
the use of measure theory. Using the piece-wise-constant property will simplify the
proof.)

Claim 5.17

dave(j) =

∫ 1

0

hj(p)dp, dCmax(j) = hj(1/γ).

This claim together with Lemma 5.14 implies

d(j,FCj′ \ Fj) ≤ γ

∫ 1

0

hj(p)dp+ (3− γ)hj

(
1

γ

)
. (5.16)
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Lemma 5.18 For any client j,

E[Cj] ≤
∫ 1

0

hj(p)e
−γpγdp+ e−γ

(
γ

∫ 1

0

hj(p)dp+ (3− γ)hj

(
1

γ

))
. (5.17)

Proof:
Let j′ ∈ C ′ be the cluster center of j. We connect j to the closest open facility

in Fj ∪ FCj′ . The proof is outlined as follows: we first prove the lemma for a special
case; then we show that any general case can be converted to the special case by a
sequence of operations which can only make the instance worse.

We first consider the special case where all the facilities in Fj have infinitely small
y values (say, yi = ε and ε tends to 0) and they were independently sampled in the
algorithm. Let i1, i2, · · · , iM be the facilities in Fj, in the order of increasing distances
to j. Notice that Mε = γ. Then, the probability we connect j to it is (1 − ε)t−1ε.
Under the condition that no facilities in Fj is open, the expected connection cost of

j is at most D = γ

∫ 1

0

hj(p)dp+ (3− γ)hj

(
1

γ

)
by (5.16).

E[Cj] ≤
M∑
t=1

ε(1− ε)t−1d(j, it) + (1− ε)MD

=
M∑
t=1

γ

M

(
1− γ

M

)t−1
hj(t/M) +

(
1− γ

M

)M
D.

If we let ε tend to 0 (i.e, let M tend to ∞), then the upper bound becomes∫ 1

0

γe−γphj(p)dp+ e−γD

=

∫ 1

0

hj(p)e
−γpγdp+ e−γ

(
γ

∫ 1

0

hj(p)dp+ (3− γ)hj

(
1

γ

))
.

Now, we deal with a general case. We only handle the case vol(FCj′ \ Fj) > 0.

Handling the case vol(FCj′ \ Fj) = 0 only requires a slight modification to the proof.

Given a partition P of Fj∪FCj′ into sets of volumes at most 1, we define a distribution

gP of sets of opening facilities in Fj ∪ FCj′ using the following process: for every
F ′ ∈ P , open 1 facility in F ′ with probability vol(F ′) and open no facility with
probability 1 − vol(F ′); the probability of opening i ∈ F ′ is yi; the sets in P are
handled independently. Let WP be the expected distance between j and its closest
open facility in Fj ∪ FCj′ (∞ if no facility is open in Fj ∪ FCj′ ), according to the
distribution gP .

The distribution of sets of opening facilities in Fj ∪FCj′ in A1(γ) is gP̃ , where P̃ is

defined as follows. For every j′′ ∈ C ′ such that
(
Fj ∪ FCj′

)
∩FCj′′ 6= ∅,

(
Fj ∪ FCj′

)
∩FCj′′ ∈

P̃ . For every facility i ∈ Fj ∪FCj′ that is not inside any FCj′′ , j′′ ∈ C ′, we have {i} ∈ P̃ .

Since the sets FCj′′ , j′′ ∈ C ′ are disjoint, P̃ is a partition. Moreover, FCj′ ∈ P̃ . Since
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vol(FCj′ ) = 1, there is always an open facility in the distribution gP̃ . Notice that
E[Cj] ≤ WP̃ .

Claim 5.19 If some subset F ′ ⊆ Fj \ FCj′ ,F ′ ∈ P has |F ′| ≥ 2, removing F ′ from
P and adding |F ′| singular sets, each containing one facility in F ′, to P can only
increase WP .

Proof:
For the sake of description, we only consider the case where |F ′| = 2. The proof

can be easily extended to the case where |F ′| ≥ 3.
Assume F ′ = {i, i′}, where i and i′ are two distinct facilities in Fj \ FCj′ and

d(j, i) ≤ d(j, i′). Focus on the two distributions of the distance D between j and its
closest open facility in {i, i′} (D =∞ if it does not exist), with respect to the old gP
and the new gP .

For the old gP , the distribution is: with probability yi, D = d(j, i), with prob-
ability yi′ , D = d(j, i′), and with probability 1 − yi − yi′ , D = ∞. For the new
gP , the distribution is: with probability yi, D = d(j, i), with probability (1 − yi)yi′ ,
D = d(j, i′) and with the probability (1− yi)(1− yi′), D =∞. So, the former distri-
bution strictly dominates the latter one. Thus, splitting {i, i′} can only increase WP .
�

After performing the splitting operation for each set F ′ ∈ P̃ with |F ′| ≥ 2, we
obtain a new partition P̃ ′ =

{
FCj′
}⋃{{i} : i ∈ Fj \ FCj′

}
. By Lemma 5.19, WP̃ ≤

WP̃ ′ . Let P ′ be the new partition obtained by performing the following sequence of
operations to P̃ ′.

1. Split the set FCj′ ∈ P̃ ′ into two subsets: FCj′ ∩ Fj, and FCj′ \ Fj;

2. Scale up ȳ values in FCj′ \ Fj so that the volume of FCj′ \ Fj becomes 1. (Notice
that the distributions gP̃ ′ and gP ′ also depend on the vector y. For notational
purpose, we omitted the subscript y. This operation means that gP̃ ′ is with
respect to the old y, while gP ′ is with respect to the new y.)

We show that WP ′ = WP̃ ′ . Consider the two distributions, with respect to gP̃ ′ and gP ′ ,
of the distance between j and its closest open facility in FCj′ . The two distributions

are actually the same, since dmax(j,FCj′ ∩Fj) ≤ dmin(j,FCj′ \Fj), where dmax and dmin

denotes the maximum and the minimum distance from a client to a set of facilities,
respectively. To be more specific, both distributions are generated by the following
process: with probability vol(FCj′ ∩Fj), output the distance between j and a random

facility (with respect to the weights y) in FCj′ ∩Fj; with the remaining 1−vol(FCj′ ∩Fj)
probability, output the distance between j and a random facility in FCj′ \ Fj.

Again, by Claim 5.19, we can split FCj′ ∩ Fj into singular sets. By the same
argument as in the proof of Claim 5.19, splitting a facility i ∈ Fj into 2 facilities i′

and i′′ with yi = yi′ + yi′′ can only increase WP . Now, we get from gP ′ a distribution
gP where, facilities in Fj are independently sampled, each facility i ∈ Fj has yi = ε
with ε → 0, and we open exactly 1 facility in FCj′ \ Fj. This is exactly the special
case defined at the beginning of the proof. Thus, (5.17) holds. �

67



Lemma 5.20 The expected connection cost of the integral solution given by A1(γ) is

E[C] ≤
∫ 1

0

h(p)e−γpγdp+ e−γ
(
γ

∫ 1

0

h(p)dp+ (3− γ)h

(
1

γ

))
. (5.18)

Proof: Summing up (5.17) over all clients j will give us the lemma. �

5.2.2 An Explicit Distribution for γ

In this subsection, we give an explicit distribution for γ by introducing a 0-sum game.

Definition 5.21 Let h : (0, 1] → R be the characteristic function of some UFL in-
stance and γ > 1. Define

α(γ, h) =

∫ 1

0

h(p)e−γpγdp+ e−γ
(
γ

∫ 1

0

h(p)dp+ (3− γ)h

(
1

γ

))
. (5.19)

By Lemma 5.20, α(γ, h) is an upper bound for the connection cost of the solution
given by A1(γ) when the characteristic function of the input instance is h.

We can scale the distances as well as the opening costs of the input instance so

that

∫ 1

0

h(p)dp = 1. Then,

α(γ, h) =

∫ 1

0

h(p)e−γpγdp+ e−γ
(
γ + (3− γ)h

(
1

γ

))
. (5.20)

We consider a 0-sum game between an algorithm designer A and an adversary B.
The strategy of A is a pair (µ, θ), where 0 ≤ θ ≤ 1 and µ is 1− θ times a probability
density function for γ. i.e,

θ +

∫ ∞
1

µ(γ)dγ = 1. (5.21)

The pair (µ, θ) corresponds to running A2 with probability θ and running A1(γ) with
probability 1−θ, for γ randomly selected according to the density function µ/(1−θ).
The strategy for B is a non-decreasing piece-wise constant function h : (0, 1] → R

such that

∫ 1

0

h(p)dp = 1.

Definition 5.22 The value of the game, when A plays (µ, θ) and B plays h, is defined
as

ν(µ, θ, h) = max

{∫ ∞
1

γµ(γ)dγ + 1.11θ,

∫ ∞
1

α(γ, h)µ(γ)dγ + 1.78θ

}
. (5.22)
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Let hq : (0, 1]→ R, 0 ≤ q < 1 be a threshold function defined as follows :

hq(p) =

{
0 p ≤ q
1

1−q p > q
. (5.23)

Lemma 5.23 For a fixed strategy (θ, µ) for A, there is a best response of B that is
a threshold function hq.

Proof: Let h∗ : (0, 1] → R be a best response of B. Notice that h∗ is a piece-wise
constant function. Let 0 < p1 < p2 < · · · < pm = 1, 0 ≤ c1 < c2 < · · · < cm be the
values that makes Claim 5.16 true for h∗. Then, (assuming c0 = p0 = 0)

h∗ =
m−1∑
i=0

(ci+1 − ci)(1− pi)hpi , (5.24)

and ∫ ∞
1

α(γ, h∗)µ(γ)dγ =

∫ ∞
1

α

(
γ,

m−1∑
i=0

(ci+1 − ci)(1− pi)hpi

)
µ(γ)dγ

by the linearity of α

=

∫ ∞
1

m−1∑
i=0

(ci+1 − ci)(1− pi)α (γ, hpi)µ(γ)dγ

=
m−1∑
i=0

(ci+1 − ci)(1− pi)
∫ ∞
1

α (γ, hpi)µ(γ)dγ.

Since
∑m−1

i=0 (ci+1 − ci)(1− pi) = 1, for some q = pi, 0 ≤ i ≤ m− 1,∫ ∞
1

α(γ, hq)µ(γ)dγ ≥
∫ ∞
1

α(γ, h∗)µ(γ)dγ.

Thus,

ν(µ, θ, hq) = max

{∫ ∞
1

γµ(γ)dγ + 1.11θ,

∫ ∞
1

α(γ, hq)µ(γ)dγ + 1.78θ

}
≥ max

{∫ ∞
1

γµ(γ)dγ + 1.11θ,

∫ ∞
1

α(γ, h∗)µ(γ)dγ + 1.78θ

}
= ν(µ, θ, h∗). (5.25)

This finishes the proof. �
Now, our goal becomes finding a strategy (θ, µ) for A such that supq∈[0,1) ν(µ, θ, hq)

is minimized. With the help of a computer program, we obtain a strategy for A. We
first restrict the support of µ to (1,3). Then, we discretize the domain (1,3) into 2n
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µ(γ)

γ1 γ2

a

γ

accumulated probability θ1

Figure 5.4: The distribution of γ. With probability θ1, we run A1(γ1); with probability
a(γ2 − γ1), we run A1(γ) with γ randomly selected from [γ1, γ2]; with probability
θ2 = 1− θ1 − a(γ2 − γ1), we run A2.

small intervals divided by points {ri = 1 + i/n : 0 ≤ i ≤ 2n}. The value of the game
is approximated by the following LP.

min β s.t

1

2n

2n∑
i=1

xi + θ = 1 (5.26)

1

2n

2n∑
i=1

ri−1 + ri
2

xi + 1.11θ ≤ β (5.27)

1

2n

2n∑
i=1

α

(
ri−1 + ri

2
, hq

)
xi + 1.78θ ≤ β ∀q ∈ [0, 1) (5.28)

x1, x2, · · · , x2n, θ ≥ 0

In the above LP, xi is 2n times the probability that we run A1

( ri−1+ri
2

)
, θ is

the probability that we run A2 and β is approximation ratio we can get by using
the strategy specified by xi, 1 ≤ i ≤ 2n and θ. Equation (5.26) requires that with
probability 1 we run either A1 or A2. Inequality (5.27) and (5.28) together say that
the value of the game is at most β, no matter what B plays: Inequality (5.27) bounds
the scaling factor of the facility cost, while Inequality (5.28) bounds the factor of the
connection cost.

We solve the above LP for n = 500 using Matlab. Since we can only handle a
finite number of constraints using Matlab, we only require that the constraints (5.28)
hold for q = i/n, i = 0, 1, · · · , n − 1. The value of the LP is at most 1.4879 and the
correspondent strategy (µ, θ) for A is roughly the following. With probability θ ≈ 0.2,
run A2; with probability about 0.5, run A1(γ1) for γ1 ≈ 1.5; with the remaining 0.3
probability, run A1(γ) for γ selected from (γ1, γ2 ≈ 2) almost uniformly.

In light of the program generated solution, we give a purely analytical strategy
for A and show that the value of the game is at most 1.488. The strategy (µ, θ) is
defined as follows. With probability θ = θ2, we run A2; with probability θ1, we run
A1(γ) with γ = γ1; with probability 1−θ2−θ1, we run A1(γ) with γ randomly chosen
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between γ1 and γ2. Thus, the function µ is

µ(γ) = aIγ1,γ2(γ) + θ1δ(γ − γ1), (5.29)

where δ is the Dirac-Delta function, a =
1− θ1 − θ2
γ2 − γ1

, and Iγ1,γ2(γ) is 1 if γ1 < γ < γ2

and 0 otherwise(See Figure 5.4). The values of θ1, θ2, γ1, γ2, a are given later.
The remaining part of the paper is devoted to prove the following lemma.

Lemma 5.24 There exists some θ1 ≥ 0, θ2 ≥ 0, 1 < γ1 < γ2 and a ≥ 0 such that
θ1 + θ2 + a(γ2 − γ1) = 1 and supq∈[0,1) ν(µ, θ2, hq) ≤ 1.488.

Proof: The scaling factor for the facility costs is

γf = θ1γ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2. (5.30)

Now, we consider the scaling factor γc for the connection costs when h = hq. By
Lemma 5.20,

γc(q) ≤
∫ ∞
1

(∫ 1

0

e−γpγhq(p)dp+ e−γ(γ + (3− γ)hq(1/γ))

)
µ(γ)dγ + 1.78θ2

replacing µ with aIγ1,γ2(γ) + θ1δ(γ − γ1) and hq(p) with 0 or 1/(1− q) depending on
whether p ≤ q,

=

∫ γ2

γ1

(∫ 1

q

e−γpγ
1

1− qdp+ e−γγ + e−γ(3− γ)hq(1/γ)

)
adγ

+ θ1

(∫ 1

q

e−γ1pγ1
1

1− qdp+ e−γ1(γ1 + (3− γ1)hq(1/γ1))
)

+ 1.78θ2

= B1(q) +B2(q) +B3(q) + 1.78θ2, (5.31)

where

B1(q) =

∫ γ2

γ1

∫ 1

q

e−γpγ
1

1− qdpadγ +

∫ γ2

γ1

e−γγadγ,

B2(q) =

∫ γ2

γ1

e−γ(3− γ)hq(1/γ)adγ,

and

B3(q) = θ1

∫ 1

q

e−γ1pγ1
1

1− qdp+ θ1e
−γ1(γ1 + (3− γ1)hq(1/γ1)).
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Then, we calculate B1(q), B2(q) and B3(q) separately.

B1(q) =

∫ γ2

γ1

∫ 1

q

e−γpγ
1

1− qdpadγ +

∫ γ2

γ1

e−γγadγ

=
a

1− q

∫ γ2

γ1

(e−γq − e−γ)dγ − a(γ + 1)e−γ
∣∣γ2
γ1

=
a

(1− q)q (e−γ1q − e−γ2q)− a

1− q (e−γ1 − e−γ2)

+ a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2).
(5.32)

B2(q) =

∫ γ2

γ1

e−γ(3− γ)hq(1/γ)adγ

=


a

1−q ((2− γ1)e−γ1 − (2− γ2)e−γ2) 0 ≤ q < 1/γ2
a

1−q

(
(2− γ1)e−γ1 − (2− 1/q)e−1/q

)
1/γ2 ≤ q ≤ 1/γ1

0 1/γ1 < q < 1

. (5.33)

B3(q) = θ1

∫ 1

q

e−γ1pγ1
1

1− qdp+ θ1e
−γ1(γ1 + (3− γ1)hq(1/γ1))

= θ1

(
1

1− q (e−γ1q − e−γ1) + e−γ1γ1 + e−γ1(3− γ1)hq(1/γ1)
)

=

θ1
(

1
1−q (e

−γ1q − e−γ1) + e−γ1γ1 + e−γ1 (3−γ1)
1−q

)
0 ≤ q ≤ 1/γ1

θ1

(
1

1−q (e
−γ1q − e−γ1) + e−γ1γ1

)
1/γ1 < q < 1

. (5.34)

So, we have 3 cases :

1. 0 ≤ q < 1/γ2.

γc(q) ≤ B1(q) +B2(q) +B3(q) + 1.78θ2

=
a

(1− q)q (e−γ1q − e−γ2q)− a

1− q (e−γ1 − e−γ2)

+ a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) +
a

1− q
(
(2− γ1)e−γ1 − (2− γ2)e−γ2

)
+ θ1

(
1

1− q (e−γ1q − e−γ1) + e−γ1γ1 +
1

1− q e
−γ1(3− γ1)

)
+ 1.78θ2

=
a

(1− q)q (e−γ1q − e−γ2q) +
A1

1− q + θ1
e−γ1q

1− q + A2,

where A1 = a(e−γ1 − γ1e−γ1 − e−γ2 + γ2e
−γ2) + 2θ1e

−γ1 − θ1e−γ1γ1
and A2 = a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) + θ1e

−γ1γ1 + 1.78θ2.

2. 1/γ2 ≤ q ≤ 1/γ1.
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The only difference between this case and the first case is the definition of
B2(q). Comparing the definition of B2(q) for the case 0 ≤ q < 1/γ2 and the
case 1/γ2 ≤ q ≤ 1/γ1, we can get

γc(q) =
a

(1− q)q (e−γ1q − e−γ2q) +
A1

1− q + θ1
e−γ1q

1− q + A2

+
a

1− q
(
(2− γ2)e−γ2 − (2− 1/q)e−1/q

)
. (5.35)

3. 1/γ1 < q < 1

γc(q) ≤
a

(1− q)q (e−γ1q − e−γ2q)− a

1− q (e−γ1 − e−γ2)

+ a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2)

+ θ1

(
1

1− q (e−γ1q − e−γ1) + e−γ1γ1

)
+ 1.78θ2

=
a

(1− q)q (e−γ1q − e−γ2q) +
A3

1− q + θ1
e−γ1q

1− q + A2, (5.36)

where A3 = a(−e−γ1 + e−γ2)− θ1e−γ1 .

We set γ1 = 1.479311, γ2 = 2.016569, θ1 = 0.503357, a = 0.560365 and θ2 =
1− θ1 − a(γ2 − γ1) ≈ 0.195583. Then,

γf = θ1γ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2 ≈ 1.487954. (5.37)

A1 ≈ 0.074347, A2 ≈ 0.609228 and A3 ≈ −0.167720. γc(q) has the maximum
value about 1.487989, achieved at q = 0(see Figure 5.5). This finishes the proof of
Lemma 5.24. �
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Figure 5.5: The function γc(q). The curve in the middle is the function restricted
to the interval [0, 0.03] and the curve on the right is the function restricted to the
interval (1/γ2, 1/γ1). The maximum value of the function is achieved at q = 0.

Thus, Theorem 5.1 follows immediately from Lemma 5.23 and Lemma 5.24.
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Chapter 6

Approximating k-Median

6.1 Introduction

In this section, we give our 1 +
√

3 + ε approximation for k-median. The main
difficulty of the k-median problem is the hard constraint that we can open at most
k facilities. We take a different approach that allows us to relax this constraint and
thereby addressing the problem from a novel point of view using what we call a pseudo-
approximation algorithm. This leads to the improved approximation algorithm, which
can be stated as follows.

Theorem 6.1 There is an algorithm which, given a k-median instance I and a
number ε > 0, produces a 1 +

√
3 + ε-approximate solution to I in running time

O
(
nO(1/ε2)

)
.

Our algorithm contains two main components, each of which, we believe, is of
independent interest. First, we show that in order to give an approximation algorithm
for k-median, it suffices to give a pseudo-approximation algorithm A which, given a
k-median instance I, outputs a set S ⊆ F of k + c facilities with costI(S) ≤ αoptI ,
where optI is the cost of optimum solution for I. Given such an algorithm A as a
black box, we can design an α + ε-approximation algorithm A′ whose running time
is nO(c/ε) times that of A. Interestingly, the instance (see Figure 6.1) that gives the
integrality gap of 2 for the natural LP relaxation of k-median vanishes if we allow
the integral solution to open k + 1 facilities. This suggests that our reduction may
bring in new avenues for approximating k-median. In particular, we find the following
open problem interesting: given a k-median instance I, what is the maximum ratio
between the cost of the optimum integral solution of I with k+ 1 open facilities, and
the LP value (with k open facilities)?

To complement the first component, we give the aforementioned pseudo-
approximation algorithm A with α = 1 +

√
3 + ε. Prior to our work, it was

not even known whether opening k + o(k) facilities would help improve the approx-
imation ratio; all known pseudo-approximation algorithms require k + Ω(k) open
facilities. In contrast, our algorithm only opens k + O(1/ε) facilities. The algorithm
A contains 2 steps. We obtain a bi-point solution for k-median using the algorithm
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of [46]. We lose a factor of 2 in this step. Then, we convert the bi-point solution
into an integral solution with k + O(1/ε) open facilities, losing another factor of
1+
√
3+ε
2

in the approximation ratio. We remark that if we had insisted on opening k
facilities, then a factor of 2 has to be lost in the last step as the instance achieving
an integrality gap of 2 has a bi-point solution.

Theorem 6.1 does not give a better upper bound on the integrality gap of the
natural LP due to the following reason: instead of running the pseudo-approximation
algorithm A on the input instance I, we run it on a residual instance I ′ obtained from
I by removing a subset of facilities that the optimal solution does not open. The way
we obtain I ′ is to guess O(1/ε2) “events” and let I ′ be the instance conditioned on
these events. Due to this nature, our algorithm can be converted to a rounding algo-
rithm based on solving an O(1/ε2)-level LP in the Sherali-Adams hierarchy. Instead
of guessing the O(1/ε2) events, we can now find these events explicitly by looking
at the LP solution. Conditioning on these events, we obtain a fractional solution of
the basic LP. By rounding this LP, we obtain a 1 +

√
3 + ε-approximate solution.

Thus, our approach can be seen to give an 1 +
√

3 + ε-upper bound on the integrality
gap of the O(1/ε2)-level LP in the Sherali-Adams hierarchy. Our result was in fact
first obtained by studying the power of the Sherali-Adams hierarchy for the k-median
problem. However, as it can also be obtained using a combinatorial approach with
less cumbersome notation, we have chosen to present that approach.

We also remark that if F = C, the proof of our first component can be simplified,
by using a recent related result. Awasthi et al. [11] considered k-median clustering
under the stability assumption: they obtained a PTAS for what they called stable
instances. To be more specific, if the given k-median instance has the property that
the optimum cost with k − 1 medians is at least a factor (1 + δ) larger than the
optimum cost with k medians (this is called stable instance), then their algorithm
finds a (1 + ε)-approximate solution to the instance in nO(1/(δε)) time. Using their
result as a blackbox, we can convert a pseudo-approximation algorithm A to a true
approximation algorithm A′ easily.1 However, as we mentioned, one caveat with this
approach is that their algorithm is for the case F = C. Extending their algorithm
to the general case is not immediate and requires reproving all the lemmas. For the
completeness of the paper, we have therefore chosen to present our own approach.
Another difference between the two approaches is that we have a weaker notion of
stability, called sparse instances (defined in Section 6.2) that can be found in poly-
nomial time (and can be made LP based using the Sherali-Adams hierarchy). This
weaker notion does not imply a PTAS for the problem (assuming P 6=NP) but it is
still sufficient for our purposes. Specifically, the sparsity condition implies that, given

1To see how [11] implies our first component, consider the following algorithm. Given a k-median
instance (k,F , C, d), we apply our pseudo-approximation algorithm A to the instance (k− c,F , C, d)
to obtain a set T ⊂ F of k − c + c = k facilities, such that cost(T ) is at most α times optk−c, the
optimum cost with k−c open facilities. If optk−c ≤ (1+ε)optk, then we get a α(1+ε)-approximation.

Otherwise, there must be a i ∈ {0, 1, · · · , c− 1} such that optk−i−1 ≥ (1 + ε)1/coptk−i. Consider the

smallest such i. Then applying the algorithm of [11] to (k − i,F , C, d) with δ = (1 + ε)1/c − 1 ≈ ε/c
(for small ε) will give a solution of cost at most (1 + ε)optk−i ≤ (1 + ε)2optk. Although we do not
know i, we can try all i’s and output the best solution.
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any pseudo-solution to k-median, we can either (i) remove one of the facilities with-
out increasing the cost too much or (ii) we can similarly to the result in [11] find a
(1 + ε)-approximate solution. This becomes explicit in the proof of Lemma 6.8.

6.1.1 Preliminaries

Given a k-median instance I = (k,F , C, d), a pseudo-solution to I is a set S ⊆ F .
A pseudo-solution S satisfying |S| ≤ k is a solution to I; a pseudo-solution S with
|S| ≤ k + c, for some number c ≥ 0, is called a c-additive (pseudo-)solution. The
cost of a pseudo-solution S to I is defined as costI(S) =

∑
j∈C d(j,S), where d(j,S)

denotes the distance from j to its closest facility in S. We let OPTI denote an optimal
solution to I, i.e., one of minimum cost, and we let optI = costI(OPTI). To avoid
confusion we will throughout the paper assume that the optimal solution is unique
and that the concept of closest facility (or client) is also uniquely defined. This can
be achieved either by slightly perturbing the metric or by simply breaking ties in an
arbitrary but fixed way.

When considering a client or facility, it shall be convenient to argue about close
clients or facilities. For any p ∈ F ∪ C and r ≥ 0, we therefore define FBallI(p, r) =
{i ∈ F : d(p, i) < r} and CBallI(p, r) = {j ∈ C : d(p, j) < r} to be the set of facilities
and clients within distance less than r from p, respectively. When I is clear from the
context, we omit the subscripts in costI , OPTI , optI , FBallI , and CBallI .

The standard linear programming relaxation for the k-median problem is formu-
lated as follows.

minimize
∑

i∈F ,j∈C d(i, j)xij

subject to
∑

i∈F yi ≤ k (6.1a)∑
i∈F xij = 1 j ∈ C (6.1b)

xij ≤ yi i ∈ F , j ∈ C (6.1c)

xij, yi ∈ [0, 1] i ∈ F , j ∈ C (6.1d)

Constraint (6.1a) says that we are allowed to open at most k facilities, Con-
straint (6.1b) says that we must connect each client, and Constraint (6.1c) says that
if we connect a client to a facility then that facility has to be opened.

As mentioned earlier, the above linear programming has an integrality gap of 2,
even when the underlying metric is a tree. The instance that gives the integrality gap
of 2 is depicted in Figure 6.1. It is a star with k + 1 leaves. The center of the star
is a facility and the leaves are both facilities and clients. Note that a pseudo-solution
that opens all leaves, i.e., k + 1 facilities, has cost 0 whereas any solution that opens
only k facilities has cost 2. The solution to the linear program obtained by a linear
combination of the pseudo-solution that opens all leaves and the solution that only
opens the center of the star has cost 1 + 1/k yielding the integrality gap of 2 when
k tends to infinity. In general, a solution that is a linear combination of two pseudo-
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Figure 6.1: Instance that gives integrality gap 2/(1 + 1/k) and the optimal fractional
solution. We have k + 2 facilities and k + 1 clients co-located with the top k + 1
facilities. All edges in the graph have length 1. The optimal integral solution has cost
2, while the optimal fractional solution has cost (k + 1)

(
k−1
k
· 0 + 1

k
· 1
)

= 1 + 1/k.

solutions is called a bi-point (fractional) solution. As this concept is important for
our pseudo-approximation algorithm, we state its formal definition.

Definition 6.2 (bi-point (fractional) solution) Let I = (k,F , C, d) be a k-
median instance. Let S1 and S2 be two pseudo-solutions to I such that |S1| ≤ k < |S2|.
Let a ≥ 0, b ≥ 0 be the real numbers such that a + b = 1 and a |S1| + b |S2| = k.
Then, the following fractional solution to I, denoted by aS1 + bS2, is called a bi-point
(fractional) solution:

1. yi = a1i∈S1 + b1i∈S2;

2. xi,j = a1clst(i,S1,j) + b1clst(i,S2,j), where clst(i,S, j) denotes the event that i is the
closest facility in S to j.

It is easy to see that the cost of the fractional solution aS1 + bS2 is exactly
acostI(S1) + bcostI(S2). Jain and Vazirani [47] gave a Lagrangian multiplier preserv-
ing 3-approximation for UFL, which immediately yields an algorithm which produces
a bi-point solution whose cost is at most 3 times the optimum. Together with an
algorithm which converts a bi-point solution to an integral solution at the cost of a
factor 2, [47] gave a 6-approximation for k-median. Later, the factor 3 was improved
by Jain et al. [46] to 2. We now formally state the result of [46].

Theorem 6.3 ([46]) Given a k-median instance I, we can find in polynomial time
a bi-point solution aS1 + bS2 to I whose cost is at most 2 times the cost of an optimal
solution to I.

6.1.2 Overview of the Algorithm

The two components of our algorithm are formally stated in Theorem 6.4 and The-
orem 6.5, whose proofs will be given in Sections 6.2 and 6.3, respectively. Together
they immediately imply Theorem 6.1.
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Theorem 6.4 Let A be a c-additive α-approximation algorithm for k-median, for
some α > 1. Then, for every ε > 0 there is a α + ε-approximation algorithm A′ for
k-median whose running time is O

(
nO(c/ε)

)
times the running time of A.

Theorem 6.5 There exists a polynomial time algorithm which, given a k-median in-
stance I = (k,F , C, d) and ε > 0, produces an O(1/ε)-additive 1+

√
3+ε-approximate

solution to I.

We now provide more details about the proof of the two theorems. At first glance,
it seems that the transformation from a pseudo-approximation to a real approximation
stated in Theorem 6.4 is impossible, since there are cases where allowing k + 1 open
facilities would give much smaller cost than only allowing k open facilities. However,
we show that we can pre-process the input instance so as to avoid these problematic
instances. Roughly speaking, we say that a facility i is dense if the clients in a
small ball around i contribute a lot to the cost of the optimum solution OPT (see
Definition 6.6). We guess the O(1/ε) densest facilities and their respective nearest
open facilities in OPT. Then for each such dense facility i whose nearest open facility
in OPT is i′, we remove all facilities that are closer to i than i′ (including the dense
facility i). Then we get a residual instance in which the gap between the costs of
opening k + O(1) and k facilities is small. The pseudo-approximation algorithm is
then applied to this residual instance.

For example, consider the integrality gap instance depicted in Figure 6.1 and
let OPT be the optimal solution that opens the center and k − 1 leaves. Then the
two leaves that were not opened contribute a large fraction of the total cost (each
contributes opt/2 to be precise) and the two corresponding facilities are dense. By
removing these dense facilities in a preprocessing step, the gap between the costs of
opening k + O(1) facilities and k facilities for the residual instance becomes small
(actually 0 in this example).

Regarding the proof of Theorem 6.5, we first use Theorem 6.3 to obtain a bi-
point solution for k-median whose cost is at most twice the optimum cost. Jain and
Vazirani [47] showed how to convert a bi-point solution to an integral solution, losing
a multiplicative factor of 2 in the approximation. As we previously mentioned, this
factor of 2 is tight, as the fractional solution for the gap instance in Figure 6.1 is a
bi-point solution. Thus, this approach can only yield a 4-approximation.

This is where the c-additive pseudo-approximation is used and again the integrality
gap instance depicted in Figure 6.1 inspired our approach. Recall that if we open the
k + 1 leaves of that instance, then we get a solution of cost 0. In other words, by
opening 1 additional facility, we can do better than the fractional solution. One may
argue that this trick is too weak to handle more sophisticated cases and try to enhance
the gap instance. A natural way to enhance it is to make many separate copies of
the instance to obtain several “stars”. One might expect that the fractional cost in
each copy is 1, the integral cost in each copy is 2 and opening 1 more facility can only
improve the integral solution of one copy and thus does not improve the overall ratio
by too much. However, the integral solution can do much better since one cannot
restrict the integral solution to open k facilities in each star. As an example, consider
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the case where we have 2 copies. The integral solution can open k− 1 facilities in the
first star, and k+ 1 facility in the second star. Then, the cost of this solution is 3, as
opposed to 4 achieved by opening k facilities in each star. The gap is already reduced
to 1.5, without opening additional facilities. Thus, this simple way to enhance the
instance failed.

Our pseudo-approximation algorithm is based on this intuition. From the bi-point
solution aF1+bF2, we obtain copies of “stars” (similar to the integrality gap instance).
Then for each star we (basically) open either its center with probability a or all its
leaves with probability b. Note that since either the center or all leaves of a star is
open we have that a client always has a “close” facility opened. With this intuition
we prove in Section 6.3 that the expected cost of the obtained pseudo-solution is at
most 1+

√
3+ε
2

times the cost of the bi-fractional solution if we open O(1/ε) additional
facilities. The O(1/ε) additional facilities (and the case distinction in Section 6.3)
comes from the difficulty of handling stars of different sizes. If all stars are of the
same size the pseudo-approximation algorithm becomes easier (run the algorithm in

Section 6.3.2 with one group of stars) and one obtains a 1+
√
3

2
-approximate solution

that opens at most k + 3 facilities.

6.2 Obtaining Solutions from Additive Pseudo-

Solutions

In this section, we prove Theorem 6.4. As we mentioned earlier, there are instances
where pseudo-solutions opening k + 1 facilities may have much smaller cost than
solutions opening k facilities. A key concept to overcome this issue is the notion of
sparse instances:

Definition 6.6 For A > 0, an instance I = (k,F , C, d) is A-sparse if for each facility
i ∈ F ,

(1− ξ)d(i,OPTI) · |CBallI(i, ξd(i,OPTI))| ≤ A, (6.2)

where ξ := 1/3. We shall also say that a facility i is A-dense if it violates (6.2).

Recall that d(i,OPTI) is the distance from i to its nearest facility in OPTI .
The idea of the above definition is to avoid instances where we can significantly

reduce the cost by opening O(1) additional facilities. Consider the gap instance I in
Figure 6.1 and suppose OPTI opens the center and the first k−1 leaf-facilities. Then
I is not A-sparse for A < optI/2 since the last two leaf-facilities are A-dense.

The usefulness of the definition is twofold. On the one hand, we show that
we can concentrate on very sparse instances without loss of generality. On the
other hand, we show that any c-additive pseudo-solution to a sparse instance can
be turned into a solution that opens k facilities by only increasing the cost slightly.
The intuition behind the result that we can only concentrate on sparse instances is
the following. Consider an instance I that is not optI/t-sparse for some constant
t. If we consider a facility i that is optI/t-dense then the connection cost of the
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clients contained in CBall(i, ξd(i,OPTI)) in the optimal solution OPTI is at least
(1− ξ)d(i,OPTI)|CBall(i, ξd(i,OPTI))| > optI/t. So, there can essentially (assuming
disjointedness of the balls of clients) only be a constant t number of facilities that
violate the sparsity condition. We can guess this set of dense facilities, as well as their
nearest facility in OPTI in time nO(t).

This is the intuition of Algorithm 1 (that tries to guess and remove opt/t-dense
facilities) and the proof of the following lemma which is given in Section 6.2.1.

Lemma 6.7 Given a k-median instance I = (k,F , C, d) and a positive integer t,
Algorithm 1 outputs in time nO(t) many k-median instances obtained by removing
facilities from I so that at least one, say I ′ = (k,F ′ ⊆ F , C, d), satisfies

1. the optimal solution OPTI to I is also an optimal solution to I ′; and

2. I ′ is optI/t-sparse.

Note that I ′ is obtained by removing facilities from I. Therefore any solution to
I ′ defines a solution to I of the same cost and we can thus restrict our attention to
sparse instances. The next lemma shows the advantage of considering such instances.
Assume we now have a c-additive solution T to a sparse instance I. Algorithm 2 tries
first in Lines 2-3 to identify facilities in T whose removal does not increase the cost
by too much. If the removal results in a set of at most k facilities, we have obtained
a “good” solution returned at Step 4 of the algorithm. Otherwise, as we prove in
Section 6.2.2 using sparsity, more than k − t of the facilities of the solution T are
very close to facilities in OPTI . Algorithm 2 therefore tries to guess these facilities
(the set D) and the remaining facilities of OPTI (the set V). The obtained bounds
are given in the following lemma.

Lemma 6.8 Given an A-sparse instance I = (k,F , C, d), a c-additive pseudo-
solution T , δ ∈ (0, 1/8), and an integer t ≥ 2c/(δξ), Algorithm 2 finds in time nO(t)

a set S ⊆ F such that:

1. S is a solution to I, i.e, |S| ≤ k; and

2. costI(S) ≤ max
{
costI(T ) + cB, 1+3δ

1−3δ · optI
}

, where B := 2 · A+costI(T )/t
ξδ

.

Before giving the proofs of Lemmas 6.7 and 6.8 let us see how they imply the
main result of this section.

Proof of Theorem 6.4. Select the largest δ ∈ (0, 1/8) such that (1+3δ)/(1−3δ) ≤
α and t := 4

ε
· αc
ξ·δ = O(c/ε). Given a k-median instance I, use Algorithm 1 to obtain a

set of k-median instances such that at least one of these instances, say I ′, satisfies the
properties of Lemma 6.7. In particular, I ′ is optI/t-sparse. Now use algorithm A to
obtain c-additive pseudo-solutions to each of these instances. Note that when we apply
A to I ′, we obtain a solution T such that costI(T ) = costI′(T ) ≤ α · optI′ = α · optI .
Finally, use Algorithm 2 (with the same t and δ selected as above) to transform the
pseudo-solutions into real solutions and return the solution to I of minimum cost. The
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Input: a k-median instance I = (k,F , C, d) and a positive integer t
Output: a set of k-median instances so that at least one satisfies the properties of

Lemma 6.7

for all t′ ≤ t facility-pairs (i1, i
′
1), (i2, i

′
2), . . . , (it′ , i

′
t′) output (k,F ′, C, d), where

F ′ = F \⋃t′

z=1 FBall(iz, d(iz, i
′
z)) B

the facilities that are closer to iz than i′z is to iz are removed

Algorithm 1: Enumeration of k-median instances.

cost of the returned solution is at most the cost of S where S is the solution obtained
by transforming T . By Lemmas 6.7 and 6.8, we have that costI(S) = costI′(S) is at
most

max

{
costI(T ) + c · 2optI + costI(T )

tξδ
,

1 + 3δ

1− 3δ
optI

}
,

which in turn, by the selection of δ, ξ, and t, is at most αoptI+c · 4αoptI
tξδ
≤ (α+ε)optI .

We conclude the proof of Theorem 6.4 by observing that the runtime of the algo-
rithm is nO(t) = nO(c/ε) times the runtime of A.

6.2.1 Proof of Lemma 6.7: Obtaining a Sparse Instance

First note that Algorithm 1 selects nO(t) facility-pairs and can be implemented to
run in time nO(t). We proceed by showing that for one selection of facility-pairs the
obtained instance satisfies the properties of Lemma 6.7. Consider a maximal-length
sequence (i1, i

′
1), (i2, i

′
2), . . . , (i`, i

′
`) of facility-pairs satisfying: for every b = 1, . . . , `,

• ib ∈ F \
⋃b−1
z=1 FBall(iz, d(iz, i

′
z)) is an optI/t-dense facility; and

• i′b is the closest facility to ib in OPTI .

Note that the instance I ′ := (k,F ′, C, d) with F ′ = F \ ⋃`
z=1 FBall(iz, d(iz, i

′
z))

is optI/t-sparse since otherwise the sequence (i1, i
′
1), (i2, i

′
2), . . . , (i`, i

′
`) would not be

of maximal length. Moreover, since we do not remove any facilities in OPTI , i.e.,
(F \ F ′) ∩ OPTI = ∅, we have that OPTI is also an optimal solution to I ′. In other
words, I ′ satisfies the properties of Lemma 6.7.

We complete the proof by showing that Algorithm 1 enumerates I ′, i.e., that
` ≤ t. For the sake of notation let Bz := CBall(i, ξd(iz, i

′
z)). First, note that the

client-balls B1,B2, . . . ,B` are disjoint. Indeed, if a ball Bz overlaps a ball Bw with
1 ≤ z < w ≤ ` then d(iz, iw) < ξd(iz, i

′
z) + ξd(iw, i

′
w). However, since iw must be in

F \ FBall(iz, d(iz, i
′
z)), we have d(iz, iw) ≥ d(iz, i

′
z). Since i′w is the closest facility in

OPTI to iw, we have d(iw, i
′
w) ≤ d(iw, i

′
z), which, by triangle inequalities, is at most

d(iz, iw) + d(iz, i
′
z) ≤ 2d(iz, iw). Hence (using that ξ = 1/3),

ξ(d(iz, i
′
z) + d(iw, i

′
w)) ≤ 3ξd(iz, iw) ≤ d(iz, iw),
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Input: an A-sparse instance I = (k,F , C, d), a c-additive pseudo-solution T , an
integer t ≥ c and δ ∈ (0, 1/8)

Output: A solution S satisfying the properties of Lemma 6.8

1: T ′ := T and B := 2 · A+costI(T )/t
δξ

2: while |T ′| > k and there is a facility i ∈ T ′ such that costI(T ′\{i}) ≤ costI(T ′)+
B do

3: Remove i from T ′;
4: return S := T ′ if |T ′| ≤ k;

5: for all D ⊆ T ′ and V ⊆ F such that |D|+ |V| = k and |V| < t do

6: For i ∈ D, let Li = d(i, T ′ \ {i}) and fi be the facility in FBall(i, δLi) that
minimizes ∑

j∈CBall(i,Li/3)

min {d(fi, j), d(j,V)}

7: Let SD,V := V ∪ {fi : i ∈ D}
8: return S := arg minSD,V costI(SD,V)

Algorithm 2: Obtaining a solution from a c-additive pseudo-solution.

which implies that the balls do not overlap.
Second, note that the connection cost of a client in Bz is, by triangle inequalities,

at least (1−ξ)d(iz, i
′
z) = (1−ξ)d(iz,OPTI). We thus have (using that the client-balls

are disjoint) that optI ≥
∑`

z=1(1 − ξ)d(iz,OPTI)|Bz|. As we only selected optI/t-
dense facilities, (1− ξ)d(iz,OPTI)|Bz| ≥ optI/t and hence optI ≥ `optI/t. It follows
that t ≥ ` which completes the proof of Lemma 6.7.

6.2.2 Proof of Lemma 6.8: Obtaining Solution to Sparse In-
stance from a Pseudo-Solution

We start by analyzing the running time of Algorithm 2. Clearly the while loop
can run at most c iterations (a constant). The number of different pairs (D,V) in the
for loop is at most

t∑
`=0

( |T ′|
k − `

)(|F|
`

)
.

Notice that |T ′| ≤ k+c and c ≤ t. For sufficiently large k and |F|, the above quantity
is at most

(|F|
t

)∑t
`=0

(
k+c
c+`

)
= nO(t). Algorithm 2 can thus be implemented to run in

time nO(t) as required. Moreover, it is clear from its definition that it always returns
a solution S, i.e., |S| ≤ k.

We proceed by proving that S satisfies (6.8b) of Lemma 6.8. Suppose first that
the algorithm returns at Line 4. By the condition of the while loop from Line 2 to
3, we increase costI(T ′) by at most B each time we remove an element from T ′. We
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remove at most c elements and thus we increase the total cost by at most cB. It
follows that (6.8b) is immediately satisfied in this case.

From now on suppose instead that we reached Line 5 of Algorithm 2 and thus
|T ′| > k. We shall exhibit sets D0 and V0 such that |D0| + |V0| = k, |V0| < t and
cost(SD0,V0) ≤ 1+3δ

1−3δoptI . As Algorithm 2 selects D0 and V0 in one iteration and it
returns the minimum cost solution, this concludes the proof of Lemma 6.8. In order
to define the sets D0 and V0 it shall be convenient to use the following definitions.

Definition 6.9 For every facility i ∈ T ′, let Li = d(i, T ′ \ {i}) be the distance from
i to its nearest neighbor in T ′, and let `i = d(i,OPTI) be the minimum distance from
i to any facility in OPTI.

For a facility i ∈ T ′, we say i is determined if `i < δLi. Otherwise, we say i is
undetermined.

The sets D0 and V0 are now defined as follows. Set D0 contain all facilities in
i ∈ T ′ that are determined. If we let f ∗i for i ∈ D0 be the facility in OPTI that is
closest to i, then set V0 := OPTI \ {f ∗i : i ∈ D0}. The intuition of D0 and V0 is that
the solution SD0,V0 is very close to OPTI : the only difference is the selection of fi at
Line 6 of Algorithm 2 instead of f ∗i . Since each i ∈ D0 is determined, selecting fi
greedily using a “locally” optimal strategy gives a good solution.

f ∗i

i

FBall(i, δLi)

CBall(i, Li/3)

Li

`i

Figure 6.2: Definitions ofD0,V0 and U0. Dashed and empty squares represent facilities
in OPTI and T ′ respectively. D0 is the set of empty squares circles. A dashed circle
represents FBall(i, δLi) for a determined facility i ∈ D0. Thus, f ∗i is in the ball since
`i < δLi. U0(V0, resp.) is the sets of empty (dashed, resp.) squares that are not inside
any circle. A solid circle for i ∈ D0 represents the “care-set” of i.

We first show that sets D0 and V0 are indeed selected by Algorithm 2 and then
we conclude the proof of the lemma by bounding the cost of SD0,V0 .

Claim 6.10 |D0|+ |V0| = k and |V0| < t.

Proof of Claim. We start by proving that |D0| + |V0| = k. Recall that V0 = OPTI \
{f ∗i : i ∈ D0}. It is not hard to see that f ∗i 6= f ∗i′ for two distinct facilities in D0. This
is indeed true since d(i, i′) ≥ max(Li, Li′), d(i, f ∗i ) ≤ δLi, d(i′, f ∗i′) ≤ δLi′ and δ ≤ 1/8.
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Thus, f ∗(D0) := {f ∗i : i ∈ D0} has size |D0|, which in turn implies that (to simplify
calculations we assume w.l.o.g. that |OPTI | = k)

|V0| = |OPTI | − |D0| = k − |D0|.

We proceed by proving |V0| < t. Note that the sets of determined and unde-
termined facilities partition T ′. Therefore, if we let U0 be the set of undetermined
facilities, we have that |D0| = |T ′| − |U0|. Combining this with the above expression
for |V0| gives us

|V0| = k − |T ′|+ |U0| ≤ |U0|.
We complete the proof of the claim by showing that |U0| < t.

By the assumption that we reached Line 5 of Algorithm 2, we have |T ′| > k and
costI(T ′ \ {i}) > costI(T ′) +B for every i ∈ T ′. Assume towards contradiction that
|U0| ≥ t. For every i ∈ T ′, let Ci be the set of clients in C connected to i in the solution
T ′ and Ci be the total connection cost of these clients. Thus, costI(T ′) =

∑
i∈T ′ Ci.

Take the facility i ∈ U0 with the minimum Ci. Then, we have Ci ≤ costI(T ′)/t. Let
i′ be the nearest neighbor of i in T ′; thus d(i, i′) = Li.

We shall remove the facility i from T ′ and connect the clients in Ci to i′. In order
to consider incremental connection cost incurred by the operation, we divide Ci into
two parts.

Ci ∩ CBall(i, δξLi). Since i is undetermined, we have δLi ≤ `i and CBall(i, δξLi) ⊆
CBall(i, ξ`i). As I is an A-sparse instance, i is not an A-dense facility. That is
(1− ξ) |CBall(i, ξ`i)| `i ≤ A, implying

(1 + δξ) |Ci ∩ CBall(i, δξLi)|Li ≤
(1 + δξ)

δ(1− ξ)A ≤ A/(δξ).

Then, as each client in Ci ∩ CBall(i, δξLi) has distance at most (1 + δξ)Li to i′

(by triangle inequalities), connecting all clients in Ci ∩ CBall(i, δξLi) to i′ can
cost at most A/(δξ).

Ci \ CBall(i, δξLi). Consider any client j in this set. Since d(j, i′) ≤ d(j, i) + Li and

d(j, i) ≥ δξLi, we have d(j,i′)−d(j,i)
d(j,i)

≤ Li
δξLi

= 1/(δξ). Hence, the connection cost

of a single client is increased by at most a factor 1/(δξ). Therefore, the total
connection cost increases by at most Ci/(δξ), which by the selection of i is at
most costI(T ′)/(δξt).

Summing up the two quantities, removing i from T ′ can only increase the connec-
tion cost by at most A+costI(T ′)/t

δξ
. As the while loop of Algorithm 2 ran for less than

c iterations, costI(T ′) < costI(T ) + cB. Therefore, A+costI(T ′)/t
δξ

< A+(costI(T )+cB)/t
δξ

which since t ≥ 2c/(δξ) is at most A+costI(T )/t
δξ

+B/2 = B leading to a contradiction.

Hence, |U0| < t which concludes the proof of the claim. �

Having proved that the instance SD0,V0 is selected by Algorithm 2, we conclude
the proof of Lemma 6.8 by bounding the cost of SD0,V0 .
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Recall that, for every i ∈ D0, Algorithm 2 opens one facility fi in the ball
FBall(i, δLi). We know we can do this so that the connection cost of C is optI .
We show that we can approximate this instance within a factor of 1 +O(δ). Roughly
speaking, if a client is far away from any of these balls, then it does not care which
facilities to open inside the balls, up to a factor 1 +O(δ). If a client is close to one of
these balls, say FBall(i, δLi), then we put the client into the “care-set” of i. For each
i, we open a facility in the ball that is best for its care-set.

To be more specific, let the care-set of i be CBall(i, Li/3) for any i ∈ D0. Clearly,
the balls CBall(i, Li/3), i ∈ D0 are disjoint. As stated in Line 6 of Algorithm 2, we
open a facility fi in FBall(i, δLi) that minimizes∑

j∈CBall(i,Li/3)

min {d(fi, j), d(j,V0)} .

Claim 6.11 costI(SD0,V0) ≤ 1+3δ
1−3δoptI.

Proof of Claim. We compare OPTI and SD0,V0 . Consider a client j ∈ CBall(i, Li/3) for
some i ∈ D0. The distance from j to any facility in FBall(i, δLi) is at most (1/3+δ)Li.
For any distinct facility i′ ∈ D0, the distance from j to any facility in FBall(i′, δLi′) is at
least d(i, i′)−Li/3−δLi′ ≥ d(i, i′)−d(i, i′)/3−δd(i, i′) = (2/3−δ)d(i, i′) ≥ (2/3−δ)Li.
For δ ≤ 1/8, 1/3 + δ < 2/3− δ. Thus, j is either connected to f ∗i or some facility in
V0 in the solution OPTI . Noticing that we are selecting the best fi for every i ∈ D0,
the total connection cost of

⋃
i∈D0

CBall(i, Li/3) in the solution SD0,V0 is at most that
in OPTI .

Now, consider a client j that is not in
⋃
i∈D0

CBall(i, Li/3). If it is connected to
some facility in V0 in the solution OPTI , then the connection cost of j in the solution
SD0,V0 can not be larger, since V0 ⊆ S. Assume j is connected to f ∗i ∈ CBall(i, Li/3)
for some i ∈ D0. We compare d(j, f ∗i ) to d(j, fi):

d(j, fi)

d(j, f ∗i )
≤ d(j, i) + δLi
d(j, i)− δLi

≤ Li/3 + δLi
Li/3− δLi

=
1 + 3δ

1− 3δ
.

Thus, SD0,V0 has connection cost at most 1+3δ
1−3δoptI . �

6.3 A Pseudo-Approximation Algorithm for k-

Median

This section is dedicated to prove Theorem 6.5. Given a k-median instance I =
(k,F , C, d), we first use Theorem 6.3 to obtain a bi-point solution aS1 + bS2 whose
cost is at most 2 times the optimum cost of I. Then it suffices to convert aS1 + bS2
into an O(1/ε)-additive solution, whose cost is at most 1+

√
3+ε
2

times that of aS1+bS2.
By the definition of bi-point solutions, we have a + b = 1, |F1| ≤ k < |F2| and

a|F1| + b|F2| = k. It shall be convenient to think of aF1 + bF2 as a bipartite graph
(see Figure 6.3) with vertex sets F1 and F2 and an edge for each client j ∈ C that is
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incident to its closest facilities in F1 and F2 denoted by i1(j) and i2(j), respectively.
Moreover, let d1(j) := d(j, i1(j)) and d2(j) := d(j, i2(j)). Then, the (fractional)
connection cost of j in the bi-point solution is ad1(j) + bd2(j). Similarly, if we let
d1 := cost(F1) =

∑
j∈C d1(j) and d2 := cost(F2) =

∑
j∈C d2(j) then the bi-point

solution has cost ad1 + bd2.
We shall prove Theorem 6.5 by exhibiting different algorithms based on the

value of a. Specifically, we shall distinguish between the cases when a is in(
0,
√
3−1
4

]
,
(√

3−1
4
, 2
1+
√
3

]
, and

(
2

1+
√
3
, 1
]
. The simplest case is when a ∈

(
2

1+
√
3
, 1
]
:

the solution where we open all facilities in F1 is then a d1
ad1+bd2

≤ 1/a = (1 +
√

3)/2
approximation.

For the two remaining cases, we will use the concept of stars. For each facility
i ∈ F2 define π(i) to be the facility in F1 that is closest to i. For a facility i ∈ F1

, let Si = {i′ ∈ F2 : π(i′) = i}. We think of Si as a star with center i and leaves
Si. Note that by the definition of stars, we have that any client j with i2(j) ∈ Si
has d(i2(j), i) ≤ d(i2(j), i1(j)) = d2(j) + d1(j) and therefore d(j, i) ≤ d(j, i2(j)) +
d(i2(j), i) ≤ 2d2 +d1. Our algorithms will ensure that there is an open facility “close”
to every client by always opening i if not all facilities in Si are opened. The strategy
for either opening the center of a star or its leaves (or sometimes both) depends
on the value of a. We start in Section 6.3.1 by explaining the simpler case when

a ∈
(

0,
√
3−1
4

]
and then complete the proof of Theorem 6.5 by considering the final

case in Section 6.3.2.

. . .

. . .

. . . . . .

i1

i2

i3

j

F1

F2

Figure 6.3: Depiction of the bipartite graph associated to a bi-point solution. The fat
edges are the clients that form the edges of the stars. For clarity, we only depicted one
client j that is not part of a star. Client j has distances d(j, i1) = d1(j), d(j, i2) = d2
and d(j, i3) ≤ 2d2(j) + d1(j).

6.3.1 Algorithm for a ∈
(

0,
√

3−1
4

]
The idea behind our algorithm is that when a is small then we can open most facilities
in F2. We shall do so by starting with the trivial solution F1 that we will improve by
almost greedily selecting stars and open all their leaves while closing their centers.

As we will maintain the property that i is open if not all facilities in Si are open,
we have that the connection cost of a client j is d2(j) if i2(j) is open and at most
d1(j) + 2d2(j) otherwise. Consider the trivial solution where we open all facilities in
F1. Then the total connection cost is upper-bounded by

∑
j(d1(j) + 2d2(j)). If we

open the facilities in Si instead of i this will save us the cost
∑

j∈δ(Si)(d1(j) + d2(j)),
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where δ(Si) denotes the clients that are incident to the facilities in Si. This motivates
the following linear program that maximizes the cost we will save compared to the
trivial solution:

max
∑
i∈F1

∑
j∈δ(Si)

(d1(j) + d2(j))xi subject to

∑
i∈F1

xi(|Si| − 1) ≤ k − |F1|

0 ≤ xi ≤ 1, ∀i ∈ F1

Intuitively, xi takes value 1 if we open all the facilities in Si and 0 if we open i. If
xi = 1, we need to open |Si| − 1 more facilities (i.e, close i and open all facilities in
Si). Thus, the constraint says that we can only open k facilities. Note that this is
a Knapsack LP and hence it is easy to see that an optimal solution has at most one
fractional variable. Furthermore, xi = b is a feasible solution since b |F2| − b |F1| =
k − |F1|. Therefore, the optimal solution to the LP has value at least b(d1 + d2).

Consider an optimal solution to the Knapsack LP with at most 1 fractional vari-
able. Then, we open all the facilities in Si with xi = 1, all the facilities i ∈ F1 with
xi = 0, and for the i with fractional xi we open i and dxi|Si|e facilities in Si uniformly
at random. (This step can easily be derandomized by greedily selecting the dxi|Si|e
facilities in Si that maximizes the reduced cost.)

Note that we opened the facilities so that the (expected) saved cost compared to
the trivial solution is at least the value of the optimal solution to the linear program.
Therefore, this gives us a solution of (expected) cost at most 2d2 + d1 − b(d2 + d1) =
(1 + a)d2 + ad1. Also, the solution opens at most k + 2 facilities, where the additive
term 2 comes from the star Si with fractional xi value.

Since we can assume that d2 ≤ d1 (otherwise we can simply open all facilities in
F1), the algorithm has an approximation guarantee of

(1 + a)d2 + ad1
(1− a)d2 + ad1

≤ (1 + 2a),

which is at most 1+
√
3

2
if a ≤

√
3−1
4

.

6.3.2 Algorithm for a ∈
(√

3−1
4 , 2

1+
√

3

]
In this subsection, we give the algorithm for the most complex case. To simplify the
arguments, we give a randomized algorithm that can easily be derandomized using
the standard method of conditional probabilities. The idea is that we wish to describe
a randomized rounding that opens a facility in F1 with probability ≈ a and a facility
in F2 with probability ≈ b and at the same time ensuring that there always is an
open facility “close” to a client by maintaining the property: if i is not open then all
facilities in Si are open for all stars.
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We now describe such a randomized rounding that takes a parameter η > 0
that balances the achieved approximation guarantee with the amount of additional
facilities we open: the achieved approximation ratio is (1 + η)1+

√
3

2
while we open at

most k + O(1/η) facilities. It shall be convenient to distinguish between large and
small stars. We say that a star Si is large if |Si| ≥ 2/(abη) and small otherwise.
Moreover, we partition the small stars into d2/(abη)e groups according to their sizes:

Uh = {i ∈ F1 : |Si| = h}, for h = 0, 1, . . . , d2/(abη)e − 1.

The randomized algorithm can now be described as follows:

1: For each large star Si: open i and open bb(|Si| − 1)c facilities in Si uniformly at
random.

2: For each group Uh of small stars: take a random permutation of the stars in Uh,
open the centers of the first da|Uh|e+1 stars, and open all leaves of the remaining
stars. In addition, if we let L be the number of already opened leaves subtracted
from bh|Uh|, then with probability dLe − L open bLc and with remaining proba-
bility open dLe randomly picked leaves in the first da|Uh|e+ 1 stars.

Note that for a large star the algorithm always opens its center and (almost) a b
fraction of its leaves. For a group Uh of small stars, note that we open either the
center (with probability at least a) or all leaves of a star. Moreover, we open the
additional leaves so that in expectation exactly a b fraction of the leaves of the stars
in Uh are opened.

We start by showing that the algorithm does not open too many facilities; we then
continue by bounding the expected cost of the obtained solution.

Claim 6.12 The algorithm opens at most k + 3 d2/(abη)e facilities.

Proof of Claim. Recall that we have that a |F1|+ b |F2| = k and therefore∑
i∈F1

(a+ b |Si|) = k. (6.3)

First, consider a large star i ∈ F1, i.e., a|Si| ≥ 1/(bη) ≥ 1/η. For such a star, the
algorithm opens 1 + bb(|Si| − 1)c ≤ 1 + b(|Si| − 1) = a + b|Si| facilities, which is the
contribution of star i to (6.3).

Second, consider a group Uh of small stars and let m := |Uh|. When considering
this group, the algorithm opens dame+ 1 ≤ am+ 2 facilities in F1, and at most

(m− dame − 1)h+ dbhm− (m− dame − 1)he ≤ bhm+ 1

facilities in F2. Thus, the total number of facilities open from the group Uh of small
stars is at most m(a+ bh) + 3. As m is the size of Uh and a+ bh is the contribution of
each star in Uh to (6.3), the statement follows from that we have at most d2/(abη)e
groups. �

We proceed by bounding the expected cost of the obtained solution. The intuition
behind the following claim is that we have designed a randomized algorithm that
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opens a facility in F2 with probability ≈ b and a facility in F1 with probability ≈ a.
Therefore, if we connect a client j to i2(j) with connection cost d2(j) if that facility
is open, to i1(j) with connection cost d1(j) if that facility but not i2(j) is open, and
to the center i of the star Si : i2(j) ∈ Si with connection cost at most 2d2(j) + d1(j)
if neither i1(j) or i2(j) are opened (recall that i is open if not all facilities in Si are
open), then the expected connection cost of client j is at most

b · d2(j) + (1− b)a · d1(j) + ab(2d2(j) + d1(j)) = ad1(j) + b(1 + 2a)d2(j).

The following claim then follows by linearity of expectation.

Claim 6.13 The algorithm returns a solution with expected cost at most

(1 + η) (ad1 + b(1 + 2a)d2) .

Proof of Claim. Focus on a client j with i1(j) = i1 and i2(j) = i2 as depicted in
Figure 6.3. Let i3 = π(i2) be the closest facility in F1 to i2, i.e., i3 is the center of the
star Si3 with i2 ∈ Si3 . Notice that d(i3, i2) ≤ d(i1, i2) ≤ d1(j)+d2(j) by the definition
of π. Thus, d(j, i3) ≤ d2(j) + d(i3, i2) ≤ d1(j) + 2d2(j). We connect j to i2, if i2 is
open; otherwise, we connect j to i1 if i1 is open. We connect j to i3 if both i1 and i2
are not open. (Notice that for a star Si, if i is not open, then all facilities in Si are
open. Thus, either i2 or i3 is open.) Connecting j to the nearest open facility can
only give smaller connection cost. By abusing notations we let i1 (i2, resp.) denote
the event that i1 (i2, resp.) is open and i1 (i2, resp.) denote the event that i1 (i2,
resp.) is not open. Then, we can upper bound the expected connection cost of j by

Pr[i2] · d2(j) + Pr
[
i1i2
]
· d1(j) + Pr

[
i1i2
]
· (2d2(j) + d1(j)),

which, by substituting Pr
[
i1i2
]

= 1− Pr[i2]− Pr
[
i1i2
]
, equals(

2− Pr [i2]− 2 Pr
[
i1i2
])
d2(j) + (1− Pr [i2]) d1(j). (6.4)

We upper bound this expression by analyzing these probabilities.
Let us start with Pr

[
i1i2
]
. If i2 ∈ Si1 (i.e., i1 = i3) then i1 is always open if i2 is

closed and thus we have Pr
[
i1i2
]

= Pr
[
i2
]
. If Si1 is a large star, then i1 is always open

and we also have Pr
[
i1i2
]

= Pr
[
i2
]
. In both cases, we have Pr

[
i1i2
]

= 1− Pr[i2].
We now consider the case where Si1 is a small star in a group Uh with m := |Uh|

and i1 6= i3. Note that if Si3 is either a large star or a small star not in Uh then the
events i1 and ī2 are independent. We have thus in this case that

Pr
[
i1i2
]

= Pr[i1] · (1− Pr[i2])

=
dame+ 1

m
· (1− Pr[i2])

It remains to consider the case when Si3 is a star in Uh. Notice that the dependence
between i1 and i2 comes from that if i2 is closed then i3 is opened. Therefore, we
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have

Pr
[
i1i2
]

= Pr
[
i1|i2

]
· (1− Pr[i2])

=
dame+ 1− 1

m
· (1− Pr[i2]).

We have thus showed that Pr
[
i1i2
]

is always at least a · (1−Pr [i2]). Substituting
in this bound in (6.4) allows us to upper bound the connection cost of j by

(2b+ (2a− 1) Pr [i2]) d2(j) + (1− Pr [i2]) d1(j).

We proceed by analyzing Pr [i2]. On the one hand, if i2 is a leaf of some big star Si
with s = |Si| ≥ 2/(baη) then Pr[i2] = bb(s−1)c

s
is greater than b− 2/s ≥ b(1− aη) and

smaller than b. On the other hand, if i2 is a leaf of a small star Si in group Uh with
m := |Uh| then in expectation we open exactly a b fraction of the leaves so Pr [i2] = b.
We have thus that b(1− aη) ≤ Pr [i2] ≤ b. Since (1 + η) · (1− aη) ≥ 1 we have that
the expected connection cost of facility j is at most (1 + η) times

(2b+ (2a− 1)b)d2(j) + (1− b)d1(j) = b(1 + 2a)d2(j) + ad1(j).

The claim now follows by summing up the expected connection cost of all clients.
�

We complete the analysis by balancing the solution obtained by running our al-
gorithm with the trivial solution of cost d1 that opens all facilities in F1.

Claim 6.14 We have that min {d1, ad1 + b(1 + 2a)d2} ≤ 1+
√
3

2
(ad1 + bd2).

Proof of Claim. We change d1 and d2 slightly so that ad1+bd2 does not change. Apply
the operation to the direction that increases the left-hand-side of the inequality. This
operation can be applied until one of the 3 conditions is true: (1) d1 = 0; (2) d2 = 0
or (3) d1 = ad1 + b(1 + 2a)d2.

For the first two cases, the inequality holds. In the third case, we have d1 =
(1 + 2a)d2. Then d1

ad1+bd2
= 1+2a

a(1+2a)+1−a = 1+2a
1+2a2

. The maximum value of the quantity

is 1+
√
3

2
, achieved when a =

√
3−1
2

. �

We have shown that, by letting η = ε/(1+
√

3), we can efficiently obtain a O(1/ε)-

additive 1+
√
3+ε
2

-approximation to a bi-point solution with constant a and b, which

proves Theorem 6.5 when a ∈
(√

3−1
4
, 2
1+
√
3

]
.

6.4 Discussion

We have given a 1 +
√

3 + ε-approximation algorithm for k-median, improving upon
the previous best 3+ε-approximation algorithm. Besides the improved approximation
guarantee, we believe that the most interesting technical contribution is Theorem 6.4,
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namely that we can approximate k in k-median without loss of generality. More
specifically, any pseudo-approximation algorithm which outputs a solution that opens
k+O(1) facilities can be turned into an approximation algorithm with essentially the
same approximation guarantee but that only opens k facilities.

For k-median this new point of view has the potential to overcome a known bar-
rier for obtaining an approximation algorithm that matches the 1 + 2/e hardness of
approximation result: the lower bound of 2 on the integrality gap of the natural LP
for k-median. In particular, the known instances that give the integrality gap of 2
vanish if we allow k + 1 open facilities in the integral solution. Following our work,
we therefore find it important to further understand the following open question:
what is the maximum ratio between the cost of the optimum solution with k +O(1)
open facilities, and the value of the LP with k open facilities? One can note that the
hardness of approximation reduction in [46] implies that the integrality gap is at least
1 + 2/e even if we open k + o(k) facilities. Moreover our O(1/ε)-additive approxima-

tion for bi-point solutions achieving a guarantee of 1+
√
3+ε
2

< 1 + 2/e shows that the
worst case integrality gap instances are not of this type when pseudo-approximation
is allowed.

Finally, we would like to mention that Theorem 6.4 naturally motivates the ques-
tion if other hard constraints can be relaxed to soft constraints with a “violation-
dependent” increase in the runtime. Soft constraints often greatly help when de-
signing algorithms. For example, the capacitated versions of facility location and
k-median are notorious problems when the capacities are hard constraints but bet-
ter approximation algorithms are known if the capacities are allowed to be slightly
violated (see e.g. [30]). As our approach was inspired by studying the power of the
Sherali-Adams hierarchy [76] for the k-median problem, we believe that a promis-
ing research direction is to understand the power of that hierarchy and the stronger
Lasserre hierarchy [59] when applied to these kinds of problems.
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