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Abstract

Modern machine learning algorithms can extract useful information from text, images and

videos. All these applications involve solving NP-hard problems in average case using heuris-

tics. What properties of the input allow it to be solved efficiently? Theoretically analyzing

the heuristics is very challenging. Few results were known.

This thesis takes a different approach: we identify natural properties of the input, then

design new algorithms that provably works assuming the input has these properties. We are

able to give new, provable and sometimes practical algorithms for learning tasks related to

text corpus, images and social networks.

The first part of the thesis presents new algorithms for learning thematic structure in

documents. We show under a reasonable assumption, it is possible to provably learn many

topic models, including the famous Latent Dirichlet Allocation. Our algorithm is the first

provable algorithms for topic modeling. An implementation runs 50 times faster than latest

MCMC implementation and produces comparable results.

The second part of the thesis provides ideas for provably learning deep, sparse representa-

tions. We start with sparse linear representations, and give the first algorithm for dictionary

learning problem with provable guarantees. Then we apply similar ideas to deep learning:

under reasonable assumptions our algorithms can learn a deep network built by denoising

autoencoders.

The final part of the thesis develops a framework for learning latent variable models.

We demonstrate how various latent variable models can be reduced to orthogonal tensor

decomposition, and then be solved using tensor power method. We give a tight sample

complexity analysis for tensor power method, which reduces the number of sample required

for learning many latent variable models.

In theory, the assumptions in this thesis help us understand why intractable problems

in machine learning can often be solved; in practice, the results suggest inherently new
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approaches for machine learning. We hope the assumptions and algorithms inspire new

research problems and learning algorithms.
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Notations

a, b, c, ... constants

u,v,w, ... column vectors

0m, 1m all 0’s/1’s vector of length m (m is omitted if it is clear from context)

supp(u) the support of vector u (set of nonzero indices)

M,N, ... matrices

In n× n identity matrix (n is omitted if it is clear from context)

T, ... tensors

u · v inner-product of two vectors

Diag(u) diagonal matrix whose diagonal entries are from the vector u

‖u‖ `2 norm of a vector

|v|1 `1 norm of a vector

‖M‖ spectral norm of a matrix

|M |1 `1 norm of a matrix

‖M‖F Frobenius norm of a matrix

‖T‖ spectral norm of a tensor

‖T‖F Frobenius norm of a tensor

λi(M) i-th largest eigenvalue of a matrix

κ(M) condition number of a matrix

M> Transpose of a matrix

M−1 inverse of a matrix (M will always be invertible)

M = UDV > the singular value decomposition of matrix M

M † the Moore-Penrose pseudo-inverse of the matrix M

ui,u[i] the i-th entry of the vector

ui,j,u[i, j] the entry in i-th row and j-th column of the matrix
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Mi i-th column of a matrix

M j j-th row of a matrix

T (U, V,W ) tri-linear form of a tensor

u⊗ v tensor product of vectors u and v, equivalent to matrix uv>

u⊗ v ⊗w tensor of three vectors

u⊗k shorthand for u⊗ u⊗ · · · ⊗ u (k u’s in the formula)

[n] the set {1, 2, . . . , n}
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Chapter 1

Introduction

Most machine learning problems are computationally intractable. However in practice, many

heuristic algorithms work well. How do we explain this mismatch? At a high level, this is

a mismatch between worst case and average case complexity. Computational intractability

only implies hardness on worst case inputs, which may not occur in practice. The heuristic

algorithms work because they only need to solve the “easy” instances.

Investigating the details of this explanation raises more questions. What properties of the

input make it “easy” for heuristic algorithms? Assuming the input satisfies these properties,

can we prove current heuristic algorithms work? Can we design new algorithms that work

provably on “easy” inputs?

In this thesis, we try to answer these problems using a few examples. For each learning

task, we identify reasonable properties that are satisfied by real-life inputs, and design prov-

able algorithms using these properties. In theory, these new results show why hard problems

in machine learning can in fact be solved; in practice, these results lead to fundamentally

different approaches.

We focus on unsupervised learning problems: given data points, the goal is to discover

useful structure hiding in data. This is in contrast to supervised learning, where we are given

3



data points and labels, and the goal is to find a function that maps data points to labels.

Take the clustering problem as an example.

Clustering Problem:

Given: Data points

Goal: Group the data points, points within each group are close to each other.

Clustering is a classical unsupervised learning problem: we are only given data points but

not which clusters they are in; the hidden structure is “points within each group are close to

each other”. In order to formally define the “correct” clustering, we specify a probabilistic

model.

Probabilistic modeling is a general way of describing unsupervised learning tasks. The

clustering problem can be modeled as mixture of Gaussians. Each data point is in one of r

groups. Each group has its own mean µi. If a point is in i-th group, the point is generated

according to a Gaussian distribution with mean µi. Doing clustering is then equivalent to

learning the groups.

This probabilistic view is very useful because it specifies how the data is generated, and

provides a “ground truth” for measuring qualities of solutions. Probabilistic models are also

called latent variable models, as the observed data points depend on some latent variables

(e.g. the group numbers). Learning a latent variable model amounts to finding the values of

the latent variables.

There is a multitude of machine learning models in different application areas that at first

glance seem quite different from one another. Can we have a unified framework for thinking

about them? Here we propose a new framework that we call General Matrix Factorization

(GMF) which encompasses PCA, ICA, NMF, dictionary learning etc. (see Figure 1.1 for

illustration, and Table 1.1 for a list of problems in the framework).

Definition 1.1 (General Matrix Factorization). Each General Matrix Factorization

(GMF) problem has three elements:

4



Figure 1.1: General Matrix Factorization Framework

Latent Variables

The latent variables form a matrix W ∈ Rr×m. The i-th column Wi of W contains

latent variables related to the i-th data point. The columns are drawn independently.

Linear Transform

The i-th data point is closely related to AWi, where the matrix A ∈ Rn×r is an unknown

linear transform.

Observation Function

The observed data forms a matrix M . Each data point is a column Mi of M , generated

by applying a simple function f to AWi (Mi = f(AWi)).

Goal: Given M , learn matrices A and W .

Many classical learning tasks fit naturally in the GMF framework. For mixture of Gaus-

sians, the columns of matrix W are basis vectors determining which group the data point

belongs to (i.e. Wi = ej if point i is in group j). The columns of matrix A correspond to

the means of Gaussians µi. The observation function f simply adds Gaussian noise to the

product AW .

The well-known Principal Component Analysis (PCA) tries to find a subspace where the

data points have the largest variance. To reduce PCA to GMF, the hidden variables Wi are

the coordinates of the data points in this subspace. The subspace itself is encoded in A (the
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Problem Observation Function Constraints on A Constraints on W
PCA M = AW + noise dimension n× r dimension r ×m
Clustering M = AW + noise dimension n× r Columns are basis

vectors
ICA M = AW (+noise) full rank independent non-

Gaussian entries

Nonnegative Matrix
Factorization

M = AW (+noise)
dimension n× r
nonnegative entries

dimension r ×m
nonnegative entries

Topic Modeling M = sample AW
dimension n× r
columns are distributions

dimension r ×m
priors

Dictionary Learning M = AW general columns are sparse
Neural Net (1 layer) M = threshold(AW ) general 0/1 entries

Mixed Membership
Community Model

M = sample∗AW A = W>P
dimension r ×m
specific priors

Table 1.1: Machine Learning Problems in General Matrix Factorization Framework

columns of A form an orthonormal basis of the subspace). The observation function f adds

small noise to the product AW .

Independent Component Analysis (ICA, [42]) is another famous example. The goal of

ICA is to learn the matrix A given samples of the form y = Ax, where the vector x has

independent non-Gaussian entries. This is already in the GMF framework: the hidden

variables are the vectors x, the linear transform is matrix A, and the observation function

is just the identity function f(Ax) = Ax.

In Table 1.1 we summarize how different machine learning problems can be reduced to the

general matrix factorization framework (some problems are defined later in this Chapter).

Let us now go back to the questions we asked at the beginning. For mixture of Gaussians

we want to know

Question: What kind of data is easy for learning mixture of Gaussians? Are

there algorithms that work provably for this kind of data?

These questions are already partly answered. The seminal work of Dasgupta[46] shows

when the centers of Gaussians are far enough from each other, the problem can be solved
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efficiently. Follow-up works[31, 125, 141, 155] build on the same assumption, but reduce

amount of separation required. In this thesis we answer similar questions for other problems.

The last five problems in Table 1.1 can be categorized into three classes according to the

constraints on A and W . Each part of this thesis investigates a different class of General

Matrix Factorization problem. We identify very different simplifying assumptions in each

class, and design provable algorithms under such assumptions. We hope these assumptions

explain why such GMF problems can be solved efficiently, and these algorithms inspire

different approaches for machine learning problems.

1.1 Provable, Practical Topic Modeling Algorithm

The first part of the thesis focus on GMF problems with nonnegative constraints. Topic

modeling, which tries to extract thematic information from large corpus of documents, is an

important problem in this class.

A long line of work on topic modeling sets up the basic structure for topic models, start-

ing from probabilistic latent semantic indexing (pLSI, [83]), followed by Latent Dirichlet

Allocation[26], Correlated Topic Models[25] ,Pachinko allocation[112] and many others. Ac-

cording to these works, each topic is a probability distribution over words (e.g., in a topic

related to “weather”, the words “snow”, “rain” and “sunny” have high probability); each

document is a probability distribution over topics.

These models also assume the ordering of the words is not crucial in determining the topics

(“bag-of-words” assumption). Hence words in a document are generated independently

at random. To generate a word, first generate its topic according to the document-topic

distribution, then pick a word from the corresponding topic-word distribution.

The process of generating a word can be summarized as a matrix product. The latent

variables are the document-topic distributions. The linear transform is constructed from the

topic-word distributions. That is, the (i, j)-th entry of matrix W ∈ Rr×m corresponds to the
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probability that document j generates topic i. The (l, i)-th entry of A ∈ Rn×r corresponds

to the probability that the topic i generates the word l. The (l, j)-th entry of product

AW is exactly the probability that document j generates word l. The observation function

f samples N words according to the distribution AWj. Therefore we have the following

description of topic modeling in GMF framework.

Topic Modeling:

Given: There is an unknown topic matrix A with nonnegative entries that is

dimension n × r, and a stochastically generated unknown matrix W that is

dimension r ×m. Each column of AW is viewed as a probability distribution

on rows, and for each column we are given N � n i.i.d. samples from the

associated distribution.

Goal: Reconstruct A and parameters of the generating distribution for W .

Directly analyzing the General Matrix Factorization problem for topic modeling is not

easy because much information is lost in the sampling process. In Chapter 2 We first focus

on a simpler variant called Nonnegative Matrix Factorization (NMF).

Nonnegative Matrix Factorization:

Given: Matrix M = AW +noise, where matrices A ∈ Rn×r and W ∈ Rr×m have

nonnegative entries.

Goal: Find A,W .

We show a natural assumption called “separability” [54] simplifies the problem, and give

a polynomial time algorithm when the instance is separable.

Separability Assumption: A nonnegative factorization M = AW is separable

if for each i there is some row r(i) of A that has a single nonzero entry and this

entry is in the i-th column.
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Under this assumption, the NMF problem has a nice geometric interpretation that leads

to polynomial time algorithms.

In Chapter 3 we show how to apply similar techniques to topic modeling. For topic

modeling the separability assumption naturally translates to the “anchor words assumption”.

Anchor Words Assumption: Every topic has a word with probability at least

p in that topic, and does not appear (has probability 0) in all other topics.

This assumption greatly simplifies the learning task. Even though we get samples from

AW which form a very coarse approximation of the product, we show the noise can be

reduced. Then utilizing the algorithm in Chapter 2 we give a polynomial time algorithm for

topic modeling.

Although the algorithms in Chapters 2 and 3 are interesting in theory, they are very

slow in practice. In Chapter 4 we redesign the algorithms seeking good performance in

practice. The new algorithm is order of magnitude faster than classical topic modeling

toolkit MALLET[122], and produces output with similar quality.

1.2 Towards Provably Learning Deep Representations

Deep learning is one of the hottest topics in machine learning in recent years. The basic idea

of deep learning is using a multi-layer network to represent the mapping from data points

to their labels. Although multi-layer neural nets have been around for a long time, they can

only be effectively learned after Hinton’s fundamental work[80, 81]. Later, with new insights

from many researchers (see survey by Bengio [19]), deep learning has broken many records

in tasks related to voice, images and videos.

Despite its success in practice, theoretical analysis for deep learning algorithms is very

limited. The main difficulties come from the nonlinearity in the network and correlations

introduced by the layers of the network. Livni et al.[115] analyzed an algorithm of learning
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low degree polynomials, which can efficiently explain the input data. However there are no

guarantees for recovering the ground truth parameters.

Traditionally, deep learning is considered a very different topic from what we’ve discussed

so far. However, new developments have characterized the kinds of deep networks that are

useful in practice, and made deep learning quite reminiscent of the other problems in GMF

framework.

Although deep learning is a technique for supervised learning, its performance highly

relies on an unsupervised pretraining step [81]. In this step, the algorithm tries to auto-

matically discover hidden features in the input. These features are then used as a starting

point for supervised training. The unsupervised step can be viewed as learning a “deep

representation”.

Researchers have also assumed that the net (or some modification) can be run in reverse

to get a generative model for a distribution that is a close fit to the empirical input distri-

bution. This idea was implicit in Hinton’s work [81] as the Restricted Boltzmann Machines

(RBM) he uses are naturally reversible. Later it is formalized as the idea of denoising au-

toencoders by Vincent et al.[156]. The generative model view of deep learning puts it into

the General Matrix Factorization framework, where each layer provides a nonlinear code to

represent the key structure of the data.

In the second part of the thesis we try to design algorithms for provably learning deep

representations. In particular, our algorithms learn sparse representations that can be viewed

as GMF problems with sparsity constraints.

In Chapter 5 we first look at the problem of learning a single-layer, sparse linear repre-

sentation. This problem is usually called dictionary learning or sparse coding.

Dictionary Learning

Given: Samples y = Ax where x is a random sparse vector.

Goal: Learn matrix A and vectors x.
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Dictionary learning fits easily to the GMF framework: the latent variables Wi’s are just

the vectors x; the linear transformation is the matrix A; the observation function is identity.

When the matrix A is given, dictionary learning becomes the simpler sparse recovery

problem (closely related to compressed sensing[55]). Even this simpler problem is hard in

the worst case ([48, 95]). However, if we look at the worst case instances more carefully, they

are all in the regime where the vector y can have multiple sparse representations x. Such

ambiguity makes the representation less useful. This inspires the following assumption

Robustness Assumption: The sparse representation for y is unique, and is

stable when the vector y is perturbed.

Previous works [36, 53, 75] have identified sufficient conditions for the sparse representa-

tion to be unique. In Chapter 5 we work with incoherent assumption of Donoho and Huo [53].

Under this assumption, we show the correlation structure of samples contains enough infor-

mation about the support graph of the vectors x. This information is then used by a graph

recovery algorithm to learn the supports of x, and eventually leads to reconstructing the

matrix A.

In Chapter 6, we show how to learn a network of autoencoders([82, 156]). An autoencoder

is a one layer network with an encoding function E and a decoding function D. The functions

D and E are usually of the form D(x) = s(Ax + b) and E(y) = s(A>y + b′) where s is a

nonlinear function that is applied coordinate-wise. We choose s to be the threshold function

(sgn(x) = 1 if x > 0 and sgn(x) = 0 otherwise). The autoencoder is then just a one-layer

neural network.

Learning Autoencoders (one-layer neural net)

Given: Samples y = sgn(Ax) where x is a random sparse vector.

Goal: Learn matrix A and vectors x.
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Learning an autoencoder again reduces to the GMF problem: the latent variables are the

vectors x; the linear transformation is the matrix A; the observation function applies the

threshold function sgn to the vector Ax.

The robustness assumption translates to the denoising property for autoencoders intro-

duced by Vincent et al. [156].

Denoising Assumption: Any valid code x can be recovered even if the output

is perturbed: E(D(x) + noise) = x.

In Chapter 6 we show how to learn a denoising autoencoder when A is a random sparse

matrix (this is inspired by Berinde et al. [21] ). Our algorithm for the single-layer network

is robust, so that even when the input vector x comes from a deep network, the algorithm

can still learn the correct network A. Therefore we can apply this algorithm iteratively to

learn the entire deep network.

1.3 Tensor Decomposition for General Matrix Factor-

ization

In the final part of the thesis, we focus on a unified methodology for solving many GMF

problems in the statistical recovery framework. The key assumption in this part is distribu-

tional:

Distribution Assumption: The latent variables have a specific, simple prior.

The data is generated exactly according to the model.

Statistical recovery algorithms are algorithms that work on synthetic data generated

according to known distributions. There are many beautiful statistical recovery results in

both theoretical computer science and machine learning, including algorithms for planted
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clique or dense subgraphs [125], Hidden Markov Models [88], mixture of Gaussians [128] and

LDA model[9].

Most of these problems still fit into the General Matrix Factorization framework. How-

ever, the constraints on matrix A are not as strong as we have seen in the previous parts.

For example, Anandkumar et al.[9] show how to learn the LDA model without using anchor

words assumption1. However, previous statistical recovery algorithms use problem-specific

techniques, and usually require a large number of samples.

In Chapter 7, we observe that in many cases it is possible to reduce General Matrix

Factorization problem to the Orthogonal Tensor Decomposition problem. In fact, Orthogonal

Tensor Decomposition can even be applied to settings where it is hard to formulate the

problem as GMF.

Definition 1.2. Orthogonal Tensor Decomposition

Given: Tensor T̂ ≈ T =
∑r

i=1 λivi ⊗ vi ⊗ vi, the vectors vi are orthonormal.

Goal: Find estimates λ̂i ≈ λi, v̂i ≈ vi.

The key insight in the reductions is the method-of-moments ([137]): first compute the mo-

ments of observed variables2, then apply suitable linear transformation to get an orthogonal

tensor. This reduction crucially relies on the Distribution Assumption.

After the reduction, the Orthogonal Tensor Decomposition problem can be solved us-

ing tensor power method. In Chapter 7 we give tight sample complexity bounds for this

algorithm.

Many of the previous works (including [8, 9, 38, 87, 88, 130]) can be reinterpreted in

the Orthogonal Tensor Decomposition framework. Our tight sample complexity analysis

gives better bounds for learning many well known models, including Hidden Markov Model,

Independent Component Analysis and simple topic models.

1Unlike the algorithms in Chapter 3, the algorithm does not generalize to other topic models such as
Pachinko Allocation[112]

2The moments for an observed vector y include its mean E[y], variance E[yy>] and higher order corre-
lations
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In Chapter 8, we highlight a new application of Orthogonal Tensor Decomposition: find-

ing overlapping communities in social networks.

The most popular model for communities is the stochastic block model. In this model,

every person is in a single community. Two persons in the same community know each other

with probability p; two persons in different communities know each other with probability

q. Many algorithms (e.g. [125], see a summary in [166]) can learn stochastic block models.

Stochastic block model is limited because every person can be in only one community.

Airoldi et al.[4] purposed mixed membership stochastic block (MMSB) model. In this model,

there are n persons and r communities. Each person belongs fractionally to different com-

munities. If we use Wi,j to denote the fraction that j-th person is involved in the i-th

community, the model asserts the probability that two persons u, v know each other should

be W>
u PWv.

Learning MMSB model:

Given: There is an unknown matrix W ∈ Rr×n with columns drawn from Dirich-

let distribution, and an unknown matrix P . Given a graph G on n vertices,

the edge (u, v) is in the graph with probability W>
u PWv independently.

Goal: Reconstruct W matrix.

Learning MMSB model can be reduced to GMF framework, if we assume the linear

transformation has the form W>P , and the observation function f samples according to

entries of AW to form the graph G. Using method-of-moments, we can also reduce the

learning problem to orthogonal tensor decomposition.

The improved sample complexity analysis in Chapter 7 becomes crucial for learning

MMSB model. Unlike topic models, where we can fix the topic matrix A and get as many

documents as we want, in the community model the dimensions of both A and W increase as

the number of persons increase. Using tensor decomposition, we can match the best known
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trade-off between number of communities and number of persons for the stochastic block

model (even though our algorithm works for the more general MMSB model).

1.4 Other Related Works

Supervised Learning In supervised learning, the input includes data points and corre-

sponding labels, the goal of learning is to predict the labels of new data points.

These problems are traditionally studied via the PAC (Probabilistic Approximately Cor-

rect) model of Valiant [152], and VC dimension and SVMs (Support Vector Machines) of

Vapnik and others [29, 153]. However, our work has to go beyond these approaches. First,

obtaining unlabeled data points has become much easier with vast data generated by the

Internet, while data sets with good quality labels require significantly more effort. Also,

unsupervised learning is very closely related to understanding the properties of the data. In

fact, insights from deep learning [19, 81] hint that supervised learning tasks might be “easy”

because the structure of the input can be learned by unsupervised learning algorithms. With-

out the correct structure of the input, most learning problems are computationally hard in

PAC model or even simpler variants of PAC model (e.g. [93, 97]).

Semi-random Models A common critique to model assumptions and statistical recovery

algorithms is that they are not robust to adversarial perturbations to the model. Semi-

random models allow an adversary to perturb the instance after it is generated using a

stochastic model. The first example is the planted bisection model of Feige and Kilian [60].

Recently, [118] generalized this result. Similar results are also known for graph coloring[27],

finding hidden clique [61] and unique games [102].

Approximation Stability Assumptions Another line of work, initiated by Balcan,

Blum and Gupta[16] focuses on problems where approximation algorithms are applied, such
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as k-means or k-median clustering. They assume the instances satisfy the property that if

a solution has large objective function, then it should also be close to the “ground truth”

solution. The reasoning behind this assumption is if it were false, then it would make no

sense to apply approximation algorithms, and maybe people should seek a different objective

function. Under this kind of assumption people were able to develop algorithms for various

clustering-related problems.

These assumptions are quite different from our work. In particular, we try to make as-

sumptions that natural input should satisfy, without looking into specific objective functions.

Tensor Decompositions There has been several lines of research studying tensor decom-

position, including CP decomposition [78], Tucker decomposition [151] and HOSVD [50] (for

a survey see [99]). Use of tensor decompositions in learning latent variable models also has

a long history, some of the earlier works are summarized in the book [123].

For Orthogonal Tensor Decomposition [101], when the exact tensor is given, it is known

how to decompose the tensor into sum of rank one tensors via variants of power method

[100, 167]. However, before our work it is not clear whether any variant of power method

works under sampling noise.
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Part I

Provable, Practical Topic Modeling

Algorithm
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Chapter 2

Nonnegative Matrix Factorization

In the Nonnegative Matrix Factorization (NMF) problem, we are given an n×m matrix M

with nonnegative real entries (such a matrix will be henceforth called “nonnegative”) and

an integer r > 0. Our goal is to express M as AW where A and W are nonnegative matrices

of size n× r and r×m respectively. NMF arises naturally in the context of topic modeling,

where the matrix product AW can concisely describe the process of generating a word from a

document. In fact, NMF can be viewed as a limiting case of topic models where the number

of words in a document is much larger than the size of the vocabulary.

In this chapter, we first give algorithms for solving exact NMF problem (that is, the

matrix M is exactly equal to the product of AW ), and an almost matching lowerbound.

However, in order to apply NMF in the context of topic modeling, the algorithm needs to

be robust to noise, and fully polynomial over all the parameters (n,m and r). Under a

natural separability assumption [54], we show how to design an algorithm that meets these

requirements.
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2.1 Background and Main Results

2.1.1 History of NMF

Besides applications in topic modeling, NMF is itself an interesting problem that has been in-

dependently introduced in a number of different contexts and applications. Many interesting

heuristics and local search algorithms (including the familiar Expectation Maximization or

EM) have been proposed to find such factorizations. One compelling family of applications

is data analysis, where a nonnegative factorization is computed in order to extract certain

latent relationships in the data and has been applied to image segmentation [109], [110]

information retrieval [83] and document clustering [162]. NMF also has applications in fields

such as chemometrics [107] (where the problem has a long history of study under the name

self modeling curve resolution) and biology (e.g. in vision research [32]): in some cases, the

underlying physical model for a system has natural restrictions that force a corresponding

matrix factorization to be nonnegative. In demography (see e.g., [79]), NMF is used to model

the dynamics of marriage through a mechanism similar to the chemical laws of mass action.

In combinatorial optimization, Yannakakis [164] characterized the number of extra variables

needed to succinctly describe a given polytope as the nonnegative rank of an appropriate

matrix (called the “slack matrix”). In communication complexity, Aho et al [3] showed that

the log of the nonnegative rank of a Boolean matrix is polynomially related to its determin-

istic communication complexity - and hence the famous Log-Rank Conjecture of Lovasz and

Saks [116] is equivalent to showing a quasi-polynomial relationship between real rank and

nonnegative rank for Boolean matrices. In complexity theory, Nisan used nonnegative rank

to prove lower bounds for non-commutative models of computation [133]. Additionally, the

1993 paper of Cohen and Rothblum [41] gives a long list of other applications in statistics

and quantum mechanics. That paper also gives an exact algorithm that runs in exponential

time.
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2.1.2 Main Results

We give both an algorithm for accomplishing this algorithmic task that runs in polynomial

time for any constant value of r and we complement this with an intractability result which

states that assuming the Exponential Time Hypothesis [92] no algorithm can solve the exact

NMF problem in time (nm)o(r).

Theorem 2.1. There is an algorithm for the Exact NMF problem (where r is the target

inner-dimension) that runs in time O((nm)O(r22r)).

This result is based on algorithms for deciding the first order theory of the reals - roughly

the goal is to express the decision question of whether or not the matrix M has nonnegative

rank at most r as a system of polynomial equations and then to apply algorithms in algebraic

geometry to determine if this semi-algebraic set is non-empty. The complexity of these

procedures is dominated by the number of distinct variables occurring in the system of

polynomial equations. In fact, the number of distinct variables plays an analogous role to

VC-dimension. The naive formulation of the NMF decision problem as a non-emptiness

problem is to use nr+mr variables, one for each entry in A or W [41]. Yet even for constant

values of r, an algorithm based on such a formulation would run in time exponential in n

and m.

At the heart of our algorithm is a structure theorem – based on a novel method for

reducing the number of variables needed to define the associated semi-algebraic set. We are

able to express the decision problem for nonnegative matrix factorization using r22r distinct

variables (and we make use of tools in geometry, such as the notion of a separable partition,

to accomplish this [77], [6], [90]). Thus we obtain the algorithm quoted in the above theorem,

and we note that prior to our work it was unknown whether even the case r = 3 was hard

or solvable in polynomial time, and indeed it is the latter.

In fact, in a natural special case of the problem where the rank of M is equal to the

target inner-dimension r we can obtain a further improvement: We refer to this problem as
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the Simplicial Factorization (SF) problem. See Section 2.2.1 for an explanation for why this

special case is natural in the context of information retrieval and other applications where

the goal is to learn latent statistical structure. Our algorithm is again based on the first

order theory of the reals, but here the system of equations is much smaller so in practice one

may be able to use heuristic approaches to solve this system (in which case, the validity of

the solution can be easily checked).

Theorem 2.2. There is an algorithm for the Exact SF problem (where r is the target inner-

dimension) that runs in time O((nm)O(r2))1.

We complement these algorithms with a fixed parameter intractability result. We make

use of a recent result of Patrascu and Williams [136] and engineer low-dimensional gadgets

inspired by the gadgets of Vavasis [154] to show that under the Exponential Time Hypothesis

[92], there is no exact algorithm for NMF that runs in time (nm)o(r). This intractability result

holds also for the SF problem.

Theorem 2.3. If there is an exact algorithm for the SF problem (or for the NMF problem)

that runs in time O((nm)o(r)) then 3-SAT can be solved in 2o(n) time on instances with n

variables.

Although the algorithms mentioned above run in polynomial time for constant r, in

practice they are still intractable even for small r. We consider the nonnegative matrix

factorization problem under an assumption introduced by Donoho and Stodden [54] in the

context of image segmentation called “separability”. This assumption asserts that there are

r rows of A that can be permuted to form a diagonal matrix. If we knew the names of

these rows, then computing a nonnegative factorization would be easy. The challenge in this

context, is to avoid brute-force search (which runs in time nr) and to find these rows in time

polynomial in n, m and r. To the best of our knowledge the following is the first example of

a polynomial-time algorithm that provably works under a non-trivial condition on the input.

1This result is later improved in [127]
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Theorem 2.4. There is an exact algorithm that can compute a separable, nonnegative fac-

torization M = AW (where r is the inner-dimension) in time polynomial in n, m and r if

such a factorization exists.

Donoho and Stodden [54] argue that the separability condition is naturally met in the

context of image segmentation. Additionally, Donoho and Stodden prove that separability

in conjunction with some other conditions guarantees that the solution to the NMF problem

is unique. Our theorem above is an algorithmic counterpart to their results, but requires

only separability. Our algorithm can also be made noise tolerant, and hence works even

when the separability condition only holds in an approximate sense. Indeed, an approximate

separability condition is regarded as a fairly benign assumption and is believed to hold in

many practical contexts in machine learning. For instance it is usually satisfied by model

parameters fitted to various generative models (e.g. LDA [26] in information retrieval). We

thank David Blei for this information.

Lastly, we consider the case in which the given matrix M does not have an exact low-

rank NMF but rather can be approximated by a nonnegative factorization with small inner-

dimension.

Theorem 2.5. There is a 2poly(r log(1/ε)) poly(n,m)-time algorithm that, given a M for which

there is a nonnegative factorization AW (of inner-dimension r) which is an ε-approximation

to M in Frobenius norm, computes A′ and W ′ satisfying ‖M − A′W ′‖F ≤ O(ε1/2r1/4) ‖M‖F .

The rest of the chapter is organized as follows: In Section 2.2 we give an exact algorithm

for the SF problem and in Section 2.3 we give an exact algorithm for the general NMF

problem. In Section 2.4 we prove a fixed parameter intractability result for the SF problem.

And in Section 2.5 we give algorithms for the separable nonnegative fatorization problems,

which is particularly interesting for topic modeling. The same problem is solved again in

later chapters and also in related follow-up works, these different algorithms provides a large
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variety of tradeoffs, which are summarized in Section 2.6. Finally we give an algorithm for

approximate NMF in Section 2.7.

2.2 Simplicial Factorization

Here we consider the simplicial factorization problem, in which M has rank equal to the

target inner-dimension r. Hence in any factorization, the factors A and W must have full

column rank and full row rank respectively.

2.2.1 Justification for Simplicial Factorization

We first argue that the extra restriction imposed in simplicial factorization is natural in many

contexts: Through a re-scaling we can assume that the columns of M , A and W all have

unit `1 norm. The factorization M = AW can be interpreted probabilistically: each column

of M can be expressed as a convex combination (given by the corresponding column of W )

of columns in A. In the example in the introduction, columns of M represent documents and

the columns of A represent “topics”. Hence a nonnegative factorization is an “explanation”

: each document can be expressed as a convex combination of the topics. But if A does

not have full column rank then this explanation is seriously deficient. This follows from a

restatement of Radon’s Lemma. Let conv(AU) be the convex hull of the columns Ai for

i ∈ U .

Observation 1. If A is an n× r (with n ≥ r) matrix and rank(A) < r, then there are two

disjoint sets of columns U, V ⊂ [r] so that conv(AU) ∩ conv(AV ) 6= ∅.

The observation implies that there can be a candidate document x that can be expressed

as a convex combination of one set (U) of topics, or instead can be expressed as a convex

combination of an entirely disjoint other set (V ) of topics. The end goal of NMF is often
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to use the representation of documents as distributions on topics to perform various tasks,

such as clustering or information retrieval. But if (even given the set of topics in a database)

it is this ambiguous to determine how we should represent a given document as a convex

combination of topics, then the topics we have extracted cannot be very useful for clustering!

In fact, it seems unnatural to not require the columns of A to be linearly independent! One

should consider the process (stochastic, presumably) that generates the columns of W . Any

reasonable process would almost surely result in a matrix M whose rank is equal to the rank

of A.

2.2.2 Algorithm for Simplicial Factorization

In this section we give an algorithm that solves the simplicial factorization problem in

(nm)O(r2) time. Let L be the maximum bit complexity of any coefficient in the input.

Theorem 2.6. There is an O((nm)O(r2)) time algorithm for deciding if the simplicial factor-

ization problem has a solution of inner-dimension at most r. Furthermore, we can compute

a rational approximation to the solution up to accuracy δ in time poly(L, (nm)O(r2), log 1/δ).

The above theorem is proved by using Lemma 2.7 below to reduce the problem of finding

a simplicial factorization to finding a point inside a semi-algebraic set with poly(n) con-

straints and 2r2 real-valued variables (or deciding that this set is empty). The decision

problem can be solved using the well-known algorithm of Basu et. al.[18] that solves this

problem in nO(r2) time. We can instead use the algorithm of Renegar [139] (and a bound of

poly(L, (nm)O(r2)) on the bit complexity of the coefficients in the solution due to Grigor’ev

and Vorobjov [73]) to compute a rational approximation to the solution up to accuracy δ in

time poly(L, (nm)O(r2), log 1/δ).

This reduction uses the fact that since A,W have full rank they have “pseudo-inverses”

A+, W+ which are r × n and n × r matrices respectively such that A+A = WW+ = Ir×r.
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Thus A+Mi = A+AWi = Wi and similarly M jW+ = Aj. Hence the columns of A can

be obtained from linear combinations of the columns of M and similarly the rows of W

can be obtain from linear combinations of rows of M . Let C be a maximal set of linearly

independent columns of M and let R be a maximal set of linearly independent rows of M .

Lemma 2.7 (Structure Lemma for Simplicial Factorization). Let M be a rank r matrix.

Then M has a nonnegative matrix factorization of inner-dimension r if and only if there

are linear transformations S and T such that: (i) CSTR = M (ii) CS and TR are both

non-negative

Proof. (“if”) Suppose the conditions in the theorem are met. Then set A = CS and W = TR

and hese matrices are nonnegative and have size n×r and r×m respectively, and furthermore

are a factorization for M . Since rank(M) = r, A and W are a simplicial factorization.

(“only if”) Conversely suppose that there is a simplicial factorization M = AW . Recall

that because A and W have full column and row rank respectively, the columns of A can be

obtained from linear combinations of the columns of M and also the rows of W can be obtain

from linear combinations of rows of M . Since R and C span the row and column space of

M respectively, we have that the columns of A can be obtained by a linear transformation

of the columns of C and similarly W can be obtained by a linear transformation of R.

2.3 General NMF

Now we consider the NMF problem where the factor matrices A,W need not have full rank.

Although the simplicial factorization problem is a quite natural special case in applications in

machine learning and statistics, indeed in other applications such as in extended formulations

[164] it is crucial that the nonnegative rank of a matrix can be much different than its

rank. We note that subsequent to our work, the fourth author gave a singly-exponential
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time algorithm for computing the nonnegative rank of a matrix [127] and coupled with our

hardness results in Section 2.4 this almost characterizes the fastest algorithm we could hope

for under the Exponential Time Hypothesis [92].

Theorem 2.8. There is a O((nm)O(r22r)) time deterministic algorithm that given an n×m

nonnegative matrix M outputs a factorization AW of inner dimension r if such a factor-

ization exists. Furthermore, we can compute a rational approximation to the solution up to

accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).

As in the simplicial case the main idea will again be a reduction to an existence question

for a semi-algebraic set, but this reduction is significantly more complicated than Lemma 2.7.

2.3.1 General Structure Theorem: Minimality

Our goal is to re-cast nonnegative matrix factorization (for constant r) as a system of polyno-

mial inequalities where the number of variables is constant, the maximum degree is constant

and the number of constraints is polynomially bounded in n and m. The main obstacle is

that A and W are large - we cannot afford to introduce a new variable to represent each

entry in these matrices. We will demonstrate there is always a ”minimal” choice for A and

W so that:

1. there is a collection of linear transformations T1, T2, ...Tg(r) from the column-span of M

to Rr and a choice function σW : [m]→ [g(r)]

2. and a collection of linear transformations S1, S2, ...Sg(r) from the row-span of M to Rr

and a choice function σA : [n]→ [g(r)]

And these linear transformations and choice functions satisfy the conditions:

1. for each i ∈ [n], Wi = TσW (i)Mi and
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2. for each j ∈ [m], Aj = M jSσA(j).

Furthermore, the number of possible choice functions σW is at most mO(r2f(r)) and the

number of possible choice functions for σA is at most nO(r2g(r)). These choice functions

are based on the notion of a simplicial partition, which we introduce later. We then give an

algorithm for enumerating all simplicial partitions (this is the primary bottleneck in the algo-

rithm). Fixing the choice functions σW and σA, the question of finding linear transformations

T1, T2, ...Tg(r) and S1, S2, ...Sg(r) that satisfy the above constraints (and the constraint that

M = AW , and A and W are nonnegative) is exactly a system of polynomial inequalities with

a O(r2g(r)) variables (each matrix Ti or Sj is r × r), degree at most four and furthermore

there are at most O(mn) polynomial constraints.

In this subsection, we will give a procedure (which given A and W ) generates a “minimal”

choice for A and W (call this minimal choice A′ and W ′), and we will later establish that

this “minimal” choice satisfies the structural property stated informally above.

Definition 2.9. Let C(A) ⊂ 2[r] denote the subsets of [r] corresponding to maximal indepen-

dent sets of columns (of A). Similarly letR(W ) ⊂ 2[r] denote the subsets of [r] corresponding

to maximal independent sets of rows (of W ).

A basic fact from linear algebra is that all maximal independent sets of columns of A

have exactly rank(A) elements and all maximal independent sets of rows of W similarly

have exactly rank(W ) elements.

Definition 2.10. Let �s be the total ordering on subsets of [r] of size s so that if U and V

are both subsets of [r] of size s, U ≺s V iff U is lexicographically before V .

Definition 2.11. Given a column Mi, we will call a subset U ∈ C(A) a minimal basis for

Mi (with respect to A) if Mi ∈ cone(AU) and for all V ∈ C(A) such that Mi ∈ cone(AV ) we

must have U ≺s V .
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Claim. If Mi ∈ cone(A), then there is some U ∈ C(A) such that Mi ∈ cone(AU).

Definition 2.12. A proper chain (A,W,A′,W ′) is a set of nonnegative matrices for which

M = AW , M = AW ′ and M = A′W ′ (the inner dimension of these factorizations is r) and

functions σW ′ : [m]→ C(A) and σA′ : [n]→ R(W ′) such that

1. for all i ∈ [m], AW ′
i = Mi, supp(W

′
i ) ⊂ σW ′(i) and σW ′(i) is a minimal basis w.r.t. A

for Mi

2. for all j ∈ [n], A′jW
′ = M j, supp(Aj) ⊂ σA′(j) and σA′(j) is a minimal basis w.r.t. W ′

for M j.

Note that the extra conditions on W ′ (i.e. the minimal basis constraint) is with respect to

A and the extra conditions on A′ are with respect to W ′. This simplifies the proof that there

is always some proper chain, since we can compute a W ′ that satisfies the above conditions

with respect to A and then find an A′ that satisfies the conditions with respect to W ′.

Lemma 2.13. If there is a nonnegative factorization M = AW (of inner-dimension r), then

there is a choice of nonnegative A′,W ′ of inner-dimension r and functions σW ′ : [m]→ C(A)

and σA′ : [n]→ R(W ′) such that (A,W,A′,W ′) and σW ′, σA′ form a proper chain.

Proof. The condition that there is some nonnegative W for which M = AW is just the

condition that for all i ∈ [m], Mi ∈ cone(A). Hence, for each vector Mi, we can choose a

minimal basis U ∈ C(A) using Claim 2.3.1. Then Mi ∈ cone(AU) so there is some nonneg-

ative vector W ′
i supported on U such AW ′

i = Mi and we can set σW ′(i) = U . Repeating

this procedure for each column Mi, results in a nonnegative matrix W ′ that satisfies the

condition M = AW ′ and for each i ∈ [m], by design supp(W ′
i ) ⊂ σW ′(i) and σW ′(i) is a

minimal basis with respect to A for Mi.
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We can re-use this argument above, setting MT = (W ′T )AT and this interchanges the

role of A and W . Hence we obtain a nonnegative matrix A′ which satisfies M = A′W ′ and

for each j ∈ [n], again by design we have that supp(Aj) ⊂ σA′(j) and σA′(j) is a minimal

basis with respect to W for M j.

Definition 2.14. Let Π(A,U) (for U ∈ C(A)) denote the r × n linear transformation that

is zero on all rows not in U (i.e. Π(A,U)j = 0 for j /∈ U) and restricted to U is Π(A,U)U =

(AU)+ (where the + operation denotes the Moore-Penrose pseudoinverse).

Lemma 2.15. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. For any index

i ∈ [m], let Ui = σW ′(i) and for any index j ∈ [n] let Vj = σA′(j). Then W ′
i = Π(A,Ui)Mi

and A′j = M jΠ(W ′T , Vj)
T .

Notice that in the above lemma, the linear transformation that recovers the columns of

W ′ is based on column subsets of A, while the linear transformation to recover the rows of

A′ is based on the row subsets of W ′ (not W ).

Proof. Since (A,W,A′,W ′) and σW ′ and σA′ form a proper chain we have that AW ′ =

M . Also supp(W ′
i ) ⊂ Ui = σW ′(i). Consider the quantity Π(A,Ui)Mi. For any j /∈ Ui,

(Π(A,Ui)Mi)j = 0. So consider

(Π(A,Ui)Mi)Ui = (AUi)
+AW ′

i = (AUi)
+AUi(W

′
i )Ui

where the last equality follows from the condition supp(W ′
i ) ⊂ Ui. Since Ui ∈ C(A) we have

that (AUi)
+AUi is the |Ui| × |Ui| identity matrix. Hence W ′

i = Π(A,Ui)Mi. An identical

argument with W ′ replaced with A′ and with A replaced by W ′T (and i and Ui replaced with

j and Vj) respectively implies that A′j = M jΠ(W ′T , Vj)
T too.
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Note that there are at most |C(A)| ≤ 2r linear transformations of the form Π(A,Ui) and

hence the columns of W ′ can be recovered by at most 2r linear transformations of the column

span of M , and similarly the rows of A′ can also be recovered.

The remaining technical issue is we need to demonstrate that there are not too many

choice functions σW ′ and σA′ and that we can enumerate over this set efficiently. In principle,

even if say C(A) is just two sets, there are exponentially many choices of which (of the two)

linear transformation to use for each column of M . However, when we use lexicographic

ordering to tie break (as in the definition of a minimal basis), the number of choice functions

is polynomially bounded. We will demonstrate that the choice function σW ′ : [m] → C(A)

arising in the definition of a proper chain can be embedded in a restricted type of geometric

partitioning of M which we call a simplicial partition.

2.3.2 General Structure Theorem: Simplicial Partitions

Here, we establish that the choice functions σW ′ and σA′ in a proper chain are combinatorially

simple. The choice function σW ′ can be regarded as a partition of the columns of M into

|C(A)| sets, and similarly the choice function σA′ is a partition of the rows of M into R(W ′)

sets. Here we define a geometric type of partitioning scheme which we call a simplicial

partition, which has the property that there are not too many simplicial partitions (by

virtue of this class having small VC-dimension), and we show that the partition functions

σW ′ and σA′ arising in the definition of a proper chain are realizable as (small) simplicial

partitions.

Definition 2.16. A (k, s)-simplicial partition of the columns of M is generated by a collec-

tion of k sets of s hyperplanes

H1 = {h1
1, h

1
2, ...h

1
s},H2 = {h2

1, h
2
2, ...h

2
s}, ...Hk = {hk1, hk2, ...hks}.
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Let Qi = {i′ s.t. for all j ∈ [s], hij ·Mi′ ≥ 0}. Then this collection of sets of hyperplanes

results in the partition

• P1 = Q1

• P2 = Q2 − P1

• Pk = Qk − P1 − P2...− Pk−1

• Pk+1 = [m]− P1 − P2...− Pk

If rank(A) = s, we will be interested in a (
(
r
s

)
, s)-simplicial partition.

Lemma 2.17. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. Then the partitions

corresponding to σW ′ and to σA′ (of columns and rows of M respectively) are a (
(
r
s

)
, s)-

simplicial partition and a (
(
r
t

)
, t)-simplicial partition respectively, where rank(A) = s and

rank(W ′) = t.

Proof. Order the sets in C(A) according to the lexicographic ordering �s, so that V1 ≺s
V2 ≺s ...Vk for k = |C(A)|. Then for each j, let Hj be the rows of the matrix (AVj)

+. Note

that there are exactly rank(A) = s rows, hence this defines a (k, s)-simplicial partition.

Claim. σW ′(i) = j if and only if Mi ∈ Pj in the (k, s)-simplicial partition generated by

H1,H2, ...Hk.

Proof. Since (A,W,A′,W ′) and σW ′ and σA′ forms a proper chain, we have that M = AW ′.

Consider a column i and the corresponding set Vi = σW ′(i). Recall that Vj is the jth set

in C(A) according to the lexicographic ordering �s. Also from the definition of a proper

chain Vi is a minimal basis for Mi with respect to A. Consider any set Vj′ ∈ C(A) with

j′ < j. Then from the definition of a minimal basis we must have that Mi /∈ cone(AVj′ ).

Since Vj′ ∈ C(A), we have that the transformation (AVj′ )(AVj′ )
+ is a projection onto span(A)
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which contains span(M). Hence (AVj′ )(AVj′ )
+Mi = Mi, but Mi /∈ cone(AVj′ ) so (AVj′ )

+Mi

cannot be a nonnegative vector. Hence Mi is not in Pj′ for any j′ < j. Furthermore,

Mi is in Qj: using Lemma 2.15 we have Π(A, Vj)Mi = Π(A, Vj)AW
′
i = W ′

i ≥ 0 and so

(AVj)
+Mi = (Π(A, Vj)Mi)Vj ≥ 0.

We can repeat the above replacing A with W ′T and W ′ with A′, and this implies the

lemma.

2.3.3 Enumerating Simplicial Partitions

Here we give an algorithm for enumerating all (k, s)-simplicial partitions (of, say, the columns

of M) that runs in time O(mks(r+1)). An important observation is that the problem of

enumerating all simplicial partitions can be reduced to enumerating all partitions that arise

from a single hyperplane. Indeed, we can over-specify a simplicial partition by specifying

the partition (of the columns of M) that results from each hyperplane in the set of ks

total hyperplanes that generates the simplicial partition. From this set of partitions, we can

recover exactly the simplicial partition.

A number of results are known in this domain, but surprisingly we are not aware of any

algorithm that enumerates all partitions of the columns of M (by a single hyperplane) that

runs in polynomial time (for dim(M) ≤ r and r is constant) without some assumption on

M . For example, the VC-dimension of a hyperplane in r dimensions is r + 1 and hence

the Sauer-Shelah lemma implies that there are at most O(mr+1) distinct partitions of the

columns of M by a hyperplane. In fact, a classic result of Harding (1967) gives a tight upper

bound of O(mr). Yet these bounds do not yield an algorithm for efficiently enumerating this

structured set of partitions without checking all partitions of the data.

A recent result of Hwang and Rothblum [90] comes close to our intended application. A

separable partition into p parts is a partition of the columns of M into p sets so that the

convex hulls of these sets are disjoint. Setting p = 2, the number of separable partitions

32



is exactly the number of distinct hyperplane partitions. Under the condition that M is in

general position (i.e. there are no t columns of M lying on a dimension t−2 subspace where

t = rank(M) − 1), Hwang and Rothblum give an algorithm for efficiently enumerating all

distinct hyperplane partitions [90].

Here we give an improvement on this line of work, by removing any conditions on M

(although our algorithm will be slightly slower). The idea is to encode each hyperplane

partition by a choice of not too many data points. To do this, we will define a slight

generalization of a hyperplane partition that we will call a hyperplane separation:

Definition 2.18. To a hyperplane h we associate a mapping which we call a hyperplane

separation that maps columns of M to {−1, 0, 1} depending on the sign of h ·Mi (where the

sign function is 1 for positive values, −1 for negative values and 0 for zero).

A hyperplane partition can be regarded as a mapping from columns of M to {−1, 1}

where we adopt the convention that Mi such that h ◦Mi is mapped to 1.

Definition 2.19. A hyperplane partition (defined by h) is an extension of a hyperplane

separation (defined by g) if for all i, g(Mi) 6= 0⇒ g(Mi) = h(Mi).

Lemma 2.20. Let rank(M) = s, then for any hyperplane partition (defined by h), there

is a hyperplane g that contains s affinely independent columns of M and for which h (as a

partition) is an extension of g (as a separation).

Proof. After an appropriate linear transformation (of the columns of M and the hyper-

planes), we can assume that M is full rank. If the h already contains s affinely independent

columns of M , then we can choose g = h. If not we can perturb h in some direction so

that for any column with h(Mi) = 0, we maintain the invariant that Mi is contained on the

perturbed hyperplane h′. Since rank(M) = s this perturbation has non-zero inner product
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with some column in M and so this hyperplane h′ will eventually contain a new column

from M (without changing the sign of h(Mi) for any other column). We can continue this

argument until the hyperplane contains s affinely independent columns of M and by design

on all remaining columns agrees in sign with h.

Lemma 2.21. Let rank(M) = s. For any hyperplane h (which defines a partition), there

is a collection of k ≤ s sets of (at most s) columns of M , S1, S2, ..Sk so that any hyperplanes

g1, g2, ..gk which contain S1, S2, ...Sk respectively satisfy: For all i, h(Mi) (as a partition) is

equal to the value of gj(Mi), where j is the smallest index for which gj(Mi) 6= 0. Furthermore

these subsets are nested: S1 ⊃ S2 ⊃ ... ⊃ Sk.

Proof. We can apply Lemma 2.20 repeatedly. When we initially apply the lemma, we obtain

a hyperplane g1 that can be extended (as a separation) to the partition corresponding to

h. In the above function (defined implicitly in the lemma) this fixes the partition of the

columns except those contained in g1. So we can then choose M ′ to be the columns of M

that are contained in g1, and recurse. If S2 is the largest set of columns output from the

recursive call, we can add columns of M contained in g1 to this set until we obtain a set of

s+ 1 affinely independent columns contained in g1, and we can output this set (as S1).

Theorem 2.22. Let rank(M) = s. There is an algorithm that runs in time O(ms(s+ 2)s)

time to enumerate all hyperplane partitions of the columns of M .

Proof. We can apply Lemma 2.21 and instead enumerate the sets of points S1, S2, ...Ss. Since

these sets are nested, we can enumerate all choices as follows:

• choose at most s columns corresponding to the set S1

• initialize an active set T = S1
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• until T is empty either

– choose a column to be removed from the active set

– or indicate that the current active set represents the next set Si and choose the

sign of the corresponding hyperplane

There are at most O(ms(s+2)s) such choices, and for each choice we can then run a linear

program to determine if there is a corresponding hyperplane partition. (In fact, all partitions

that result from the above procedure will indeed correspond to a hyperplane partition). The

correctness of this algorithm follows from Lemma 2.21.

This immediately implies:

Corollary 2.23. There is an algorithm that runs in time O(mks2)) that enumerates a set of

partitions of the columns of M that contains the set of all (k, s)-simplicial partitions (of the

columns of M).

2.3.4 Solving Systems of Polynomial Inequalities

The results of Basu et al [18] give an algorithm for finding a point in a semi-algebraic set

defined by O(mn) constraints on polynomials of total degree at most d, and f(r) variables

in time O((mnd)cf(r)). Using our structure theorem for nonnegative matrix factorization, we

will re-cast the decision problem of whether a nonnegative matrix M has nonnegative rank

r as an existence question for a semi-algebraic set.

Theorem 2.24. There is an algorithm for deciding if a n ×m nonnegative matrix M has

nonnegative rank r that runs in time O((nm)O(r22r)). Furthermore, we can compute a rational

approximation to the solution up to accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).
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We first prove the first part of this theorem using the algorithm of Basu et al [18], and

we instead use the algorithm of Renegar [139] to compute a rational approximation to the

solution up to accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).

Proof. Suppose there is such a factorization. Using Lemma 2.13, there is also a proper chain.

We can apply Lemma 2.17 and using the algorithm in Theorem 2.22 we can enumerate over

a superset of simplicial partitions. Hence, at least one of those partitions will result in the

choice functions σW ′ and σA′ in the proper chain decomposition for M = AW .

Using Lemma 2.15 there is a set of at most 2r linear transformations T1, T2, ...T2r which

recover columns of W ′ given columns of M , and similarly there is a set of at most 2r linear

transformations S1, S2, ...S2r which recover the rows of A′ given rows of M . Note that these

linear transformations are from the column-span and row-span of M respectively, and hence

are from subspaces of dimension at most r. So apply a linear transformation to columns

of M and one to rows of M to to recover matrices MC and MR respectively (which are no

longer necessarily nonnegative) but which are dimension r×m and n×r respectively. There

will still be a collection of at most 2r linear transformations from columns of MC to columns

of W ′, and similarly for MR and A′.

We will choose r2 variables for each linear transformation, so there are 2∗r2 ∗2r variables

in total. Then we can write a set of m linear constraints to enforce that for each column of

(MC)i, the transformation corresponding to σW ′(i) recovers a nonnegative vector. Similarly

we can define a set of n constraints based on rows in MR.

Lastly we can define a set of constraints that enforce that we do recover a factorization

for M : For all i ∈ [m], j ∈ [n], let i′ = σW ′(i) and j′ = σA′(j). Then we write the constraint

(MC)jSj′Ti′(MR)i = M j
i . This constraint has degree at two in the variables corresponding

to the linear transformations. Lemma 2.13 implies that there is some choice of these trans-

formations that will satisfy these constraints (when we formulate these constraints using the

correct choice functions in the proper chain decomposition). Furthermore, any set of trans-
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formations that satisfies these constraints does define a nonnegative matrix factorization of

inner dimension r for M .

And of course, if there is no inner dimension r nonnegative factorization, then all calls to

the algorithm of Basu et al [18] will fail and we can return that there is no such factorization.

The result in Basu et al. [18] is a quantifier elimination algorithm in the Blum, Shub

and Smale (BSS) model of computation [28]. The BSS model is a model for real number

computation and it is natural to ask what is the bit complexity of finding a rational approx-

imation of the solutions. There has been a long line of research on the decision problem for

first order theory of reals: given a quantified predicate over polynomial inequalities of reals,

determine whether it is true or false. What we need for our algorithm is actually a special

case of this problem: given a set of polynomial inequalities over real variables, determine

whether there exists a set of values for the variables so that all polynomial inequalities are

satisfied. In particular, all variables in our problem are quantified by existential quantifier

and there are no alternations. For this kind of problem Grigor’ev and Vorobjov [73] first

gave a singly-exponential time algorithm that runs in (nd)O(f(r)2) where n is the number of

polynomial inequalities, d is the maximum degree of the polynomials and f(r) is the num-

ber of variables. The bit complexity of the algorithm is poly(L, (nd)O(f(r)2)) where L is the

maximum length of the coefficients in the input. Moreover, their algorithm also gives an

upperbound of poly(L, (nd)O(f(r))) on the number of bits required to represent the solutions.

Renegar[139] gave a better algorithm that for the special case we are interested in takes time

(nd)O(f(r)). Using his algorithm with binary search (with search range bounded by Grigor’ev

et.al.[73]), we can find rational approximations to the solutions with accuracy up to δ in

time poly(L, (nm)O(f(r)), log 1/δ).
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We note that our results on the SF problem are actually a special case of the theorem

above (because our structural lemma for simplicial factorization is a special case of our

general structure theorem):

Corollary 2.25. There is an algorithm for determining whether the nonnegative rank of a

nonnegative n×m matrix M equals the rank and this algorithm runs in time O((nm)O(r2)).

Proof. If rank(M) = r, then we know that both A and W must be full rank. Hence C(A)

and R(W ) are both just the set {1, 2, ...r}. Hence we can circumvent the simplicial partition

machinery, and set up a system of polynomial constraints in at most 2r2 variables.

2.4 Strong Intractability of Simplicial Factorization

Here we prove that there is no algorithm for computing simplicial factorization of dimension

r that runs in (nm)o(r) time unless 3-SAT can be solved in 2o(n) time. Surprisingly, even the

NP -hardness of the problem was only proved quite recently by Vavasis [154]. That reduction

is the inspiration for our result, though unfortunately we were unable to use it directly to

get low-dimensional instances. Instead we give a new reduction using the d-SUM Problem.

Definition 2.26 (d-SUM). In the d-SUM problem we are given a set of N values

{s1, s2, ...sN} each in the range [0, 1], and the goal is to determine if there is a set of d

numbers (not necessarily distinct) that sum to exactly d/2.

This definition for the d-SUM Problem is slightly unconventional in that here we allow

repetition (i.e. the choice of d numbers need not be distinct). Patrascu and Williams [136]

recently proved that if d-SUM can be solved in N o(d) time then 3-SAT has a sub-exponential

time algorithm. In fact, in the instances constructed in [136] we can allow repetition of

numbers without affecting the reduction since in these instances choosing any number more
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than once will never result in a sum that is exactly d/2. Hence we can re-state the results

in [136] for our (slightly unconventional definition for) d-SUM.

Theorem 2.27. If d < N0.99 and if d-SUM instances of N distinct numbers each of

O(d logN) bits can be solved in N o(d) time then 3-SAT on n variables can be solved in

time 2o(n).

Given an instance of the d-SUM, we will reduce to an instance of the Intermediate Simplex

problem defined in [154].

Definition 2.28 (Intermediate Simplex). Given a polyhedron P = {x ∈ Rr−1 : Hx ≥ b}

where H is an n× (r− 1) size matrix and b ∈ Rn such that the matrix [H, b] has rank r and

a set S of m points in Rr−1, the goal of the Intermediate Simplex Problem is to find a set

of points T that form a simplex (i.e. T is a set of r affinely independent points) each in P

such that the convex hull of T contains the points in S.

Vavasis [154] proved that Intermediate Simplex is equivalent to the Simplicial Factoriza-

tion problem.

Theorem 2.29 (Vavasis [154]). There is a polynomial time reduction from Intermediate

Simplex problem to Simplicial Factorization problem and vice versa and furthermore both

reductions preserve the value of r.

2.4.1 The Gadget

Given the universe U = {s1, s2, . . . , sN} for the d-SUM problem, we construct a two di-

mensional Intermediate Simplex instance as shown in Figure 2.1. We will show that the

Intermediate Simplex instance has exactly N solutions, each representing a choice of si.

Later in the reduction we use d such gadgets to represent the choice of d numbers in the set

U .
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Figure 2.1: The Gadget

Recall for a two dimensional Intermediate Simplex problem, the input consists of a

polygon P (which is the hexagon ABCDEF in Figure 2.1) and a set of points S =

{I1, I2, . . . , I3N} inside P (which are the dots, except for M). A solution to this two di-

mensional Intermediate Simplex instance will be a triangle inside P such that all the points

in S are contained in the triangle (in Figure 2.1 ACE is a valid solution).

We first specify the polygon P for the Intermediate Simplex instance. The polygon P is

just the hexagon ABCDEF inscribed in a circle with center M . All angles in the hexagon

are 2π/3, the edges AB = CD = EF = ε where ε is a small constant depending on N , d

that we determine later. The other 3 edges also have equal lengths BC = DE = FA.

We use y(A) and z(A) to denote the y and z coordinates for the point A (and similarly

for all other points in the gadget). The hexagon is placed so that y(A) = y(B) = 0,

y(D) = y(E) = 1.

Now we specify the set S of 3N points for the Intermediate Simplex instance. To get

these points first take N points in each of the 3 segements AB, CD, EF . On AB these

N points are called A1, A2, ..., AN , and |AAi| = εsi. Similarly we have points Ci’s on CD
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Figure 2.2: Proof of Lemma 2.30

and Ei’s on EF , |CCi| = |EEi| = εsi. Now we have N triangles AiCiEi (the thin lines in

Figure 2.1). We claim (see Lemma 2.30 below) that the intersection of these triangles is a

polygon with 3N vertices. The points in S are just the vertices of this intersection.

Lemma 2.30. When ε < 1/50, the points {Ai}, {Ci}, {Ei} are on AB, CD, EF respectively

and AAi = CCi = EEi = εsi, the intersection of the N triangles {AiCiEi} is a polygon with

3N vertices.

Proof. Since the intersection of N triangles AiCiEi is the intersection of 3N halfplanes, it

has at most 3N vertices. Therefore we only need to prove every edge in the triangles has a

segment remaining in the intersection. Notice that the gadget is symmetric with respect to

rotations of 2π/3 around the center M . By symmetry we only need to look at edges AiCi.

The situation here is illustrated in Figure 2.2.

Since all the halfplanes that come from triangles AiCiEi contain the center M , later when

talking about halfplanes we will only specify the boundary line. For example, the halfplane

with boundary AiCi and contains Ei (as well as M) is called halfplane AiCi.

41



The two thick lines in Figure 2.2 are extensions of AB and CD, now they are rotated

so that they are z = ±
√

3y. The two thin lines are two possible lines AiCi and AjCj.

The differences between y coordinates of Ai and Ci are the same for all i (here normalized

to 1) by the construction of the points Ai’s and Ci’s. Assume the coordinates for Ai, Aj

are (yi,−
√

3yi) and (yj,−
√

3yj) respectively. Then the coordinates for the intersection is

(yi+yj+1,
√

3(1+yi+yj+2yiyj)). This means if we haveN segments with y1 < y2 < . . . < yN ,

segment i will be the highest one when y is in range (yi−1 + yi + 1, yi + yi+1 + 1) (indeed,

the lines with j > i have higher slope and will win when y > yi + yj + 1 ≥ yi + yi+1 + 1; the

lines with j < i have lower slope and will win when y < yi + yj + 1 ≤ yi + yi−1 + 1).

We also want to make sure that all these intersection points are inside the halfplanes

CiEi’s and EiAi’s. Since ε < 1/50, all the yi’s are within [−1/2− 1/20,−1/2 + 1/20]. Hence

the intersection point is always close to the point (0,
√

3/2), the distance is at most 1/5. At

the same time, since ε is small, the distances of this point (0,
√

3/2) to all the CiEi’s and

EiAi’s are all larger than 1/4. Therefore all the intersection points are inside the other 2N

halfplanes and the segments will indeed remain in the intersection. The intersection has 3N

edges and 3N vertices.

The Intermediate Simplex instance has N obvious solutions: the triangles AiCiEi, each

one corresponds to a value si for the d-SUM problem. In the following Lemma we show that

these are the only possible solutions.

Lemma 2.31. Let ε < 1/1000. If the solution of the Intermediate Simplex problem is PQR,

then PQR must be one of the AiCiEi’s.

Proof. Suppose PQR is a solution of the Intermediate Simplex problem, since M is in the

convex hull of {I1, I2, . . . , I3N}, it must be in PQR. Thus one of the angles ∠PMQ, ∠QMR,

∠RMP must be at least 2π/3 (their sum is 2π). Without loss of generality we assume this

angle is ∠PMQ and by symmetry assume P is either on AB or BC. We shall show in
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either of the two cases, when P is not one of the Ai’s, there will be some Ik that is not in

the halfplane PQ (recall the halfplanes we are interested in always contain M so we don’t

specify the direction).

When P is on AB, since ∠PMQ ≥ 2π/3, we have CQ ≥ AP (by symmetry when

CQ = AP the angle is exactly 2π/3). This means we can move Q to Q′ such that CQ′ = AP .

The intersection of halfplane PQ′ and the hexagon ABCDEF is at least as large as the

intersection of halfplane PQ and the hexagon. However, if P is not any of the points

{Ai} (that is, |PQ′|/ε 6∈ {s1, s2, ..., sN}), then PQ′ can be viewed as AN+1CN+1 if we add

sN+1 = |AP |/ε to the set U . By Lemma 2.30 introducing PQ′ must increase the number

of vertices. One of the original vertices Ik is not in the hyperplane PQ′, and hence not in

PQR. Therefore when P is on AB it must coincide with one of the Ai’s, by symmetry PQR

must be one of AiCiEi’s.

When P is on BC, there are two cases as shown in Figure 2.3.

First observe that if we take U ′ = U ∪ {1− s1, 1− s2, . . . , 1− sN}, and generate the set

S = {I1, I2, . . . , I6N} according to U ′, then the gadget is further symmetric with respect to

flipping along the perpendicular bisector of BC. Now without loss of generality BP ≤ BC/2.

Since every Ik is now in the intersection of 2N triangles, in particular they are also in the
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intersection of the original N triangles, it suffices to show one of Ik (k ∈ [6N ]) is outside

halfplane PQ.

The first case (left part of Figure 2.3) is when BP < ε. In this case we extend PQ to get

intersection on AB (P ′) and intersection on CD (Q′). Again since ∠PMQ ≥ 2π/3, we have

DQ ≥ BP . At the same time we know ∠DQQ′ ≥ ∠P ′PB, so DQ′ > BP ′. Similar to the

previous case, we take Q′′ so that CQ′′ = AP ′. The intersection of hyperplane P ′Q′′ and the

hexagon ABCDEF is at least as large as the intersection of halfplane PQ and the hexagon.

When ε < 1/1000, we can check AP ′ < 2ε� 1/50, therefore we can still view P ′Q′′ as some

A2N+1C2N+1 for s2N+1 < 2. Now Lemma 2.30 shows there is some vertex Ik not in halfplane

P ′Q′′ (and hence not in halfplane PQ).

The final case (right part of Figure 2.3) is when BP ≥ ε. In this case we notice the

triangle with 3 edges AD, BE, CF (the shaded triangle in the figure) is contained in every

AiCiEi, thus it must also be in PQR. However, since BC/2 ≥ BP ≥ ε, we know AR ≤ ε

and DQ ≤ ε. In this case PQR does not even contain the center M .

2.4.2 The Reduction

Suppose we are given an instance of the d-SUM Problem with N values {s1, s2, ...sN}. We

will give a reduction to an instance of Intermediate Simplex in dimension r − 1 = 3d+ 1.

To encode the choice of d numbers in the set {s1, s2, ..., sN}, we use d gadgets defined in

Section 2.4.1. The final solution of the Intermediate Simplex instance we constructed will

include solutions to each gadget. As the solution of a gadget always corresponds to a number

in {s1, s2, ..., sN} (Lemma 2.31) we can decode the solution and get d numbers, and we use

an extra dimension w that “computes” the sum of these numbers and ensures the sum is

equal to d/2.

We use three variables {xi, yi, zi} for the ith gadget.

Variables 1. We will use 3d+ 1 variables: sets {xi, yi, zi} for i ∈ [d] and w.
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Constraints 1 (Box). For all i ∈ [d], xi, yi ∈ [0, 1], zi ∈ [0, 2] and also w ∈ [0, 1].

Definition 2.32. Let G ⊂ R2 be the hexagon ABCDEF in the two-dimensional gadget given

in the Section 2.4.1.Let H ⊂ R3 be the set conv({(xi, yi, zi) ∈ R3|(yi, zi) ∈ G, xi = 1},0).

H is a tilted-cone that has a hexagonal base G and has an apex at the origin.

Definition 2.33. Let R be a 7× 3 matrix and b ∈ R7 so that {x|Rx ≥ b} = H.

We will use these gadgets to define (some of the) constraints on the polyhedron P in an

instance of intermediate simplex:

Constraints 2 (Gadget). For each i ∈ [d], R(xi, yi, zi) ≥ b.

Hence when restricted to dimensions xi, yi, zi the ith gadget G is on the plane xi = 1.

We hope that in a gadget, if we choose three points corresponding to the triangle for

some value si, that of these three points only the point on the AB line will have a non-zero

value for w and that this value will be si. The points on the lines CD or EF will hopefully

have a value close to zero. We add constraints to enforce these conditions:

Constraints 3 (CE). For all i ∈ [d], w ≤ 1− yi + (1− xi)

These constraints make sure that points on CD or EF cannot have large w value.

Recall that we use z(A) to denote the z coordinate of A in the gadget in Section 2.4.1.

Constraints 4 (AB). For all i ∈ [d]: w ∈
[

(zi−z(A)xi)
ε

± (10
ε
yi + (1− xi))

]
Theses constraints make sure that points on AB have values in {s1, s2, ..., sN}.

The AB and CE constraints all have the property that when xi < 1 (i.e. the correspond-

ing point is off of the gadget on the plane xi = 1) then these constraints gradually become

relaxed.
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To make sure the gadget still works, we don’t want the extra constraints on w to rule

out some possible values for xi, yi, zi’s. Indeed we show the following claim.

Claim. For all points in (xi, yi, zi) ∈ H, there is some choice of w ∈ [0, 1] so that xi, yi, zi

and w satisfy the CE and AB Constraints.

The proof is by observing that Constraints AB have almost no effect when y > 0 and

Constraints CE have no effect when y = 0.

Constraints 1 to 4 define a polyhedron P in 3d + 1-dimensional space and furthermore

the set of constraints that define P have full rank (in fact even the inequalities in the Box

Constraints have full rank). Thus this polyhedron is a valid polyhedron for the Intermediate

Simplex problem.

Next we specify the points in S for the Intermediate Simplex problem(each of which will

be contained in the polyhedron P ). Let Ik (for k ∈ [3N ]) be the set S in the gadget in

Section 2.4.1. As before, let z(Ik) and y(Ik) be the z and y coordinates of Ik respectively.

Definition 2.34 (w-max(Ik)). Let w-max(Ik) be the maximum possible w-value of any point

I with xi = 1, yi = y(Ik), zi = z(Ik) and xj, yj, zj = 0 for all j 6= i so that I is still contained

in P .

Definition 2.35 (O,W, I ik, Q). The set S of points for the Intermediate Simplex problem is

O points: For all i ∈ [d], xi, yi, zi = 0 and w = 0

W point: For all i ∈ [d], xi, yi, zi = 0 and w = 1

I ik points: For each i ∈ [d], for each k ∈ [3N ] set xi = 1/4, yi = 1/4y(Ik), zi = 1/4z(Ik)

and for j 6= i set xj, yj, zj = 0. Also set w to be the 1/4× w-max(Ik).

Q point: For each i ∈ [d], xi = 1/d, yi = y(M)/d, zi = z(M)/d and w = 1/6
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This completes the reduction of 3-SUM to intermediate simplex, and next we establish

the COMPLETENESS and SOUNDNESS of this reduction.

2.4.3 Completeness and Soundness

The completeness part is straight forward: for ith gadget we just select the triangle that

corresponds to ski .

Lemma 2.36. If there is a set {sk1 , sk2 , ...skd} of d values (not necessarily distinct) such that∑
i∈[d] ski = d/2 then there is a solution to the corresponding Intermediate Simplex Problem.

Proof. We will choose a set of 3d+ 2 points T : We will include the O and W points, and for

each ski , we will choose the triangle corresponding to the value ski in the ith gadget. Recall

the triangle is AkiCkiEki in the gadget defined in Section 2.4.1. The points we choose have

xi = 1 and yi, zi equal to the corresponding point in the gadget. We will set w to be ski for

the point on the line AB and we will set w to be zero for the other two points not contained

in the line AB. The rest of the dimensions are all set to 0.

Next we prove that the convex hull of this set of points T contains all the points in S:

The points O and W are clearly contained in the convex hull of T (and are in fact in T !).

Next consider some point I ik in S corresponding to some intersection point Ik in the gadget

G. Since Ik is in the convex hull of the triangle corresponding to ski in the gadget G, there

is a convex combination of the these three points Aki , Cki , Eki in T (which we call J) so

that 1/4J matches I ik on all coordinates except possibly the w-coordinate. Furthermore the

point J has some value in the coordinate corresponding to w and this must be at most the

corresponding value in I ik (because we chose the w-value in I ik to be 1/4×w-max(Ik)). Hence

we can distribute the remaining 3/4 weight among the O and W points to recover I ik exactly

on all coordinates.
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Lastly, we observe that if we equally weight all points in T (except O and W ) we recover

the point Q. In particular, the w coordinate of Q should be 1
3d

∑d
i=1 ski = 1/6.

Next we prove SOUNDNESS for our reduction. Suppose the solution is T , which is a set

of 3d+ 2 points in the polyhedron P and the convex hull of points in T contains all the O,

W , I ik, Q points (in Definition 2.35).

Claim. The points O and W must be in the set T .

Proof. The points O and W are vertices of the polyhedron P and hence cannot be expressed

as a convex combination of any other set of points in P .

Now we want to prove the rest of the 3d points in set T is partitioned into d triples, each

triple belongs to one gadget. Set T ′ = T − {O} − {W}.

Definition 2.37. For i ∈ [d], let

T ′i = {Z ∈ T ′|j 6= i⇒ xj(Z), yj(Z), zj(Z) = 0 and one of xi(Z), yi(Z), zi(Z) 6= 0}

Claim. The sets T ′i partition T ′ and each contain exactly 3 nodes.

Proof. The sets T ′i are disjoint, and additionally each set T ′i must contain at least 3 nodes

(otherwise the convex hull of T ′i even restricted to xi, yi, zi cannot contain the points I ik).

This implies the Claim.

Recall the gadget in Section 2.4.1 is a two dimensional object, but it is represented as a

three dimensional cone in our construction. We would like to apply Lemma 2.31 to points

on the plane xi = 1 (in this plane the coordinates yi,zi act the same as y, z in the gadget).
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Definition 2.38. For each point Z ∈ T ′i , let ext(Z) ∈ R3 be the intersection of the

line connecting the origin and (xi(Z), yi(Z), zi(Z)) with the xi = 1 base of the set

{(xi, yi, zi)|R(xi, yi, zi) ≥ b}. Let ext(T ′i ) be the point-wise ext operation applied to each

point in T ′i .

Since the points I ik are in the affine hull of T ′i when restricted to xi, yi, zi , we know ext(I ik)

must be in the convex hull of ext(T ′i ). Using Lemma 2.31 in Section 2.4.1, we get:

Corollary 2.39. ext(T ′i ) must correspond to some triangle AkiCkiEki for some value ski.

Now we know how to decode the solution T and get the numbers ski . We will abuse

notation and call the 3 points in T ′i Aki , Cki , Eki (they were used to denote the corresponding

points in the 2-d gadget in Section 2.4.1).We still want to make sure the w coordinate

correctly “computes” the sum of these numbers. As a first step we want to show that the

xi of all points in T ′i must be 1 (we need this because the Constraints AB and CE are only

strict when xi = 1).

Lemma 2.40. For each point Z ∈ T ′i , xi(Z) = 1

Proof. Suppose, for the sake of contradiction, that xi(Z) < 1 (for Z ∈ T ′i ). Then consider

the point Q. Since
∑

i∈[d] xi(Q) = 1, and for any point in T
∑

i∈[d] xi ≤ 1, there is no convex

combination of points in T that places non-zero weight on Z and equals Q.

Let T ′′i be T ′i\{Z}, we observe that the points in T ′′i are the only points in T that have

any contribution to (xi, yi, zi) when we want to represent Q (using a convex combination).

For now we restrict our attention to these three dimensions.When trying to represent Q we

must have 1/d weight in the set T ′′i (because of the contribution in xi coordinate). The yi,

zi coordinates of Q are y(M)/d, z(M)/d respectively. This means if we take projection to

yi, zi plane M must be in the convex hull of T ′′i . However that is impossible because no two

points in AkCkEk contain M in their convex hull. This contradiction implies the lemma.
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Lemma 2.41. Any convex combination of points in T that equals the point Q must place

equal weight on all points in T ′.

Proof. Using Lemma 2.40, we conclude that the total weight on points in T ′i is exactly 1/d,

and there is a unique convex combination of the points T ′i (restricted to yi, zi) that recover

the point M which is the 1/3, 1/3, 1/3 combination. This implies the Lemma.

Now we are ready to compute the w value of the point Q and show the sum of ski is

indeed d/2.

Lemma 2.42 (Soundness). When ε < N−Cd for some large enough constant C, if there is

a solution to the Intermediate Simplex instance, then there is a choice of d values that sum

up to exactly d/2.

Proof. As we showed in previous Lemmas, the solution to the Intermediate Simplex problem

must contain O, W , and for each gadget i the solution has 3 points T ′i that correspond to

one of the solutions of the gadget. Suppose for gadget i the triangle we choose is AkiCkiEki .

By Constraints AB we know w(Aki) = ski , by Constraints CE we know w(Cki) ≤ ε and

w(Eki) ≤ ε.

By Lemma 2.41 there is only one way to represent Q, and w(Q) = 1
3d

∑d
i=1[w(Aki) +

w(Cki) + w(Eki)] = 1/6. Then
∑d

i=1 ski =
∑d

i=1 w(Aki) = d
2
−∑d

i=1[w(Cki) + w(Eki)]. Since

w(Cki) and w(Eki)’s are small, we have
∑d

i=1 ski ∈ [d/2 − 2dε, d/2]. However the numbers

only have O(d logN) bits and ε is so small, the only valid value in the range is d/2. Hence

the sum
∑d

i=1 ski must be equal to d/2.

2.5 Fully-Efficient Factorization under Separability

Earlier, we gave algorithms for NMF, and presented evidence that no (nm)o(r) time algorithm

exists for determining if a matrix M has nonnegative rank at most r. Here we consider
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conditions on the input that allow the factorization to be found in time polynomial in n,

m and r. (In Section 2.5.1, we give a noise-tolerant version of this algorithm). To the best

of our knowledge this is the first example of an algorithm (that runs in time poly(n,m, r))

and provably works under a non-trivial condition on the input. Donoho and Stodden [54]

in a widely-cited paper identified sufficient conditions for the factorization to be unique

(motivated by applications of NMF to a database of images) but gave no algorithm for this

task. We give an algorithm that runs in time poly(n,m, r) and assumes only one of their

conditions is met (separability). We note that this separability condition is quite natural in

its own right, since it is usually satisfied [23] by model parameters fitted to various generative

models (e.g. LDA [26] in information retrieval).

Definition 2.43 (Separability). A nonnegative factorization M = AW is called separable if

for each i there is some row f(i) of A that has a single nonzero entry and this entry is in the

ith column.

Let us understand this condition at an intuitive level in context of clustering documents by

topic, which was discussed in the introduction. Recall that there a column of M corresponds

to a document. Each column of A represents a topic and its entries specify the probability

that a word occurs in that topic. The NMF thus “explains” the ith document as AWi where

the column vector Wi has (nonnegative) coordinates summing to one—in other words, Wi

represents a convex combination of topics. In practice, the total number of words n may

number in the thousands or tens of thousands, and the number of topics in the dozens. Thus

it is not unusual to find factorizations in which each topic is flagged by a word that appears

only in that topic and not in the other topics [23]. The separability condition asserts that

this happens for every topic2.

2More realistically, the word may appear in other topics only with negligible property instead of zero
probability. This is allowed in our noise-tolerant algorithm later.
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For simplicity we assume without loss of generality that the rows of M are normalized

to have unit `1-norm. After normalizing M , we can still normalize W (while preserving the

factorization) by re-writing the factorization as M = AW = (AD)(D−1W ) for some r × r

nonnegative matrix D. By setting Di,i = |W i|1 the rows of D−1W will all have l1 norm

1. When rows of M and W are all normalized the rows of A must also have unit `1-norm

because

1 = |M i|1 = |
r∑
j=1

Ai,jW
j|1 =

r∑
j=1

Ai,j|W j|1 =
r∑
j=1

Ai,j.

The third equality uses the nonnegativity of W . Notice that after this normalization, if a

row of A has a unique nonzero entry (the rows in Separability), that particular entry must

be one.

We also assume W is a simplicial matrix defined as below.

Definition 2.44 (simplicial matrix). A nonnegative matrix W is simplicial if no row in W

can be represented in the convex hull of the remaining rows in W .

The next lemma shows that without loss of generality we may assume W is simplicial.

Lemma 2.45. If a nonnegative matrix M has a separable factorization AW of inner-

dimension at most r then there is one in which W is simplicial.

Proof. Suppose W is not simplicial, and let the jth row W j be in the convex hull of the

remaining rows. Then we can represent W j = uTW where u is a nonnegative vector with

|u|1 = 1 and the jth coordinate is 0.

Now modify A as follows. For each row Aj
′

in A that has a non-zero jth coordinate,

we zero out the jth coordinate and add Aj
′

j u to the row Aj
′
. At the end the matrix is still

nonnegative but whose jth column is all zeros. So delete the jth column and let the resulting

n× (r−1) matrix be A′. Let W ′ be the matrix obtained by deleting the jth row of W . Then

by construction we have M = A′W ′. Now we claim A′ is separable.
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Since A was originally separable, for each column index i there is some row, say the f(i)th

row, that has a non-zero entry in the ith column and zeros everywhere else. If i 6= j then by

definition the above operation does not change the f(i)th row of A. If i = j the jth index is

deleted at the end. In either case the final matrix A′ satisfies the separability condition.

Repeating the above operation for all violations of the simplicial condition we end with a

separable factorization of M (again with inner-dimension at most r) where W is simplicial.

Theorem 2.46. There is an algorithm that runs in time polynomial in n, m and r and given

a matrix M outputs a separable factorization with inner-dimension at most r (if one exists).

Proof. We can apply Lemma 2.45 and assume without loss of generality that there is a

factorization M = AW where A is separable and W is simplicial. The separability condition

implies that every row of W appears among the rows of M . Thus W is hiding in plain sight

in M ; we now show how to find it.

Say a row M j is a loner if (ignoring other rows that are copies of M j) it is not in the

convex hull of the remaining rows. The simplicial condition implies that the rows of M that

correspond to rows of W are loners.

Claim. A row M j is a loner iff M j is equal to some row W i

Proof. Suppose (for contradiction) that a row in M j is not a loner and but it is equal to

some row W i. Then there is a set S of rows of M so that M j is in their convex hull and

furthermore for all j′ ∈ S, M j′ is not equal to M j. Thus there is a nonnegative vector u ∈ Rn

that is 0 at the jth coordinate and positive on indices in S such that uTM = M j.

Hence uTAW = M j = W i, but uTA must have unit `1-norm (because |u|1 = 1, all

rows of A have unit `1-norm and are all nonnegative), also uTA is non-zero at position j′.

Consequently W i is in the convex hull of the other rows of W , which yields a contradiction.
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Conversely if a row M j is not equal to any row in W , we conclude that M j is in the

convex hull of the rows of W . Each row of W appears as a row of A (due to the separability

condition). Hence M j is not a loner because M j is in the convex hull of rows of M that are

equivalent to M j itself.

Using linear programming, we can determine which rows M j are loners. Due to separa-

bility there will be exactly r different loner rows, each corresponds to one of the W i. Thus

we are able to recover W ′ that is equal to W after permutation over rows.We can compute

a nonnegative A′ such that A′W ′ = M , and such solution A′ is necessarily separable (since

it is just equal to A after permutation over columns).

2.5.1 Adding Noise

In any practical setting the data matrix M will not have an exact NMF of low inner dimen-

sion since its entries are invariably subject to noise. Here we consider how to extend our

separability-based algorithm to work in presence of noise. We assume that the input matrix

M ′ is obtained by perturbing each row of M by adding a vector of `1-norm at most ε, where

M has a separable factorization of inner-dimension r. Alternatively, |M ′i −M i|1 ≤ ε for all

i. Notice that the case in which the separability condition is only approximately satisfied is

a subcase of this: If for each column there is some row in which that column’s entry is at

least 1− ε and the sum of the other row entries is less than ε then the matrix M ′ will satisfy

the condition stated above. (Note that M,A,W have been scaled as discussed above.)

Our algorithm will require one more condition – namely, we require the unknown matrix

W to be “robustly” simplicial instead of just simplicial.

Definition 2.47 (α-robust simplicial). We call W α-robust simplicial if no row in W has `1

distance smaller than α to the convex hull of the remaining rows in W . (Here all rows have

unit `1-norm.)
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Recall from Lemma 2.45 that the simplicial condition can be assumed without loss of

generality under separability. In general α-robust simplicial condition does not follow from

separability. However, any reasonable generative model would surely posit that the matrix

W —whose columns after all represents distributions—satisfies the condition above. For

instance, if columns of W are picked randomly from the unit `1 ball then after normalization

α is more than 1/10. Regardless of whether or not one self-identifies as a bayesian, it seems

reasonable that any suitably generic way of picking column vectors would tend to satisfy the

α-robust-simplicial property.

Theorem 2.48. Suppose M = AW where A is separable and W is α-robust simplicial. Let

ε satisfy 20ε/α + 13ε < α. Then there is a polynomial time algorithm that given M ′ such

that for all rows |M ′i−M i|1 < ε, finds a nonnegative matrix factorization A′W ′ of the same

inner dimension such that the `1 norm of each row of M ′ − A′W ′ is at most 5ε/α + 4ε.

Proof. Separability implies that for any column index i there is a row f(i) in A whose only

nonzero entry is in the ith column. Then M f(i) = W i and consequently |M ′f(i) −W i|1 < ε.

Let us call these rows M ′f(i) for all i the canonical rows.

Similar to Theorem 2.46, we will show every row is close to convex hull of canonical

rows. On the other hand, if we remove rows that are close to a canonical row, then the

canonical row will be far from the convex hull of other rows. From the above description the

proof of the following claim is immediate since the rows of M can be expressed as a convex

combination of W i’s.

Claim. Every row M ′j has `1-distance at most 2ε to the convex hull of canonical rows.
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Proof. Since M j can be represented as M j =
∑r

k=1Aj,kM
f(k), we have

|M ′j −
r∑

k=1

Aj,kM
′f(k)|1 ≤ |M ′j −M j|1 + |M j −

r∑
k=1

Aj,kM
f(k)|1 + |

r∑
k=1

Aj,k(M
f(k) −M ′f(k))|1

≤ |M ′j −M j|1 +
r∑

k=1

Aj,k|M f(k) −M ′f(k)|1 ≤ ε+ (
r∑

k=1

Aj,k)ε = 2ε.

Here we are just using triangle inequalities and the fact that rows of A have unit `1 norm.

Next, we show how to find the canonical rows. For a row M ′j, we call it a robust-loner

if upon ignoring rows whose `1 distance to M ′j is less than d = 5ε/α + 2ε, the `1-distance

of M ′j to the convex hull of the remaining rows is more than 2ε. Note that we can identify

robust-loner rows using linear programming. The following two claims establish that a row

of M ′j is a robust-loner if and only if it is close to some row W i.

Claim. If M ′j has distance more than d + ε to all of the W i’s, then it cannot be a robust

loner.

Proof. Such an M ′j has distance at least d to each of the canonical rows. The previous claim

shows M ′j is close to the convex hull of the canonical rows and thus by definition it cannot

be a robust-loner.

Claim. All canonical rows are robust-loners.

Proof. Since |M ′f(i) − W i|1 ≤ ε, when we check if M ′f(i) is a robust-loner (using linear

programming), we leave out of consideration all rows that have `1-distance at most 5ε/α+ε to

W i. In particular, this omits any row M ′j such that M j =
∑r

k=1Aj,kW
k and Aj,i ≥ 1−5ε/α.

All remaining rows have Aj,i ≤ 1− 5ε/α.
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Suppose the point in conv(M j : j is a remaining row) that is closest to M f(i) can be

represented by
∑m

t=1 ctM
t =

∑r
k=1 akW

k (where
∑m

t=1 ct = 1 and ct ≥ 0), then we know

ai =
∑m

t=1 ctAj,i ≤ 1− 5ε/α.

The distance between M f(i) and conv(M j : j is a remaining row) is therefore bounded

by

|M f(i)−
m∑
t=1

ctM
t|1 = |(1−ai)W i−

∑
k∈[r],k 6=i

akW
k|1 = (1−ai)|W i−

∑
k∈[r],k 6=i

ak
1− ai

W k|1 ≥
5ε

α
·α = 5ε.

The inequality follows from α-robust simplicial property, because the vector inside the `1

norm is the difference between Wi and a vector in the convex hull of other columns.

Since rows of M ′ are close to M , let
∑m

t=1 c
′
tM
′t be the closest point of M ′f(i) in conv(M ′j :

j is a remaining row), we must have

|M ′f(i) −
m∑
t=1

c′tM
′t|1 ≥ |M f(i) −

m∑
t=1

c′tM
t|1 − |M ′f(i) −M f(i)|1 −

m∑
t=1

c′t|M ′t −M t|1

≥ 5ε− ε− ε = 3ε.

Therefore M ′f(i) is a robust-loner.

The previous claim implies that each robust-loner row is within `1-distance d+ ε to some

W i and conversely, for every W i there is at least one robust-loner row that is close to it. Since

the `1-distances between W i’s are at least 4(d + ε), we can apply distance based clustering

on the robust-loner rows: place two robust-loner rows into the same cluster if and only if

these rows are within `1-distance at most 2(d+ ε). Clearly two robust-loners corresponding

to the same W i has to be in the same cluster because their distance is smaller than 2(d+ ε).

On the other hand, the distance between any two robust-loners corresponding to different

W i’s is more than 4(d+ ε)− 2(d+ ε) = 2(d+ ε), they will never be in the same cluster.
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Therefore we will obtain r clusters, one corresponding to each of the W i’s. Choose one

row from each of the cluster (call the row that is close to W i M ′g(i)), and using similar

argument as Claim 2.5.1, we have

|M ′j −
r∑

k=1

Aj,kM
′g(k)|1 ≤ |M ′j −M j|1 + |M j −

r∑
k=1

Aj,kW
k|1 + |

r∑
k=1

Aj,k(W
k −M ′g(k))|1

≤ |M ′j −M j|1 + 0 +
r∑

k=1

Aj,k|W k −M ′g(k)|1

≤ ε+ (
r∑

k=1

Aj,k)(d+ ε) = d+ 2ε.

This implies that every row of M ′ is within d + 2ε = 5ε/α + 4ε to the convex hull of the

rows we selected. Therefore these rows form a nonnegative W ′ and we can find A′ so that

|M ′j − (A′W ′)j|1 ≤ 5ε/α + 4ε for all j.

2.6 Related Works for Separable-NMF

As the previous section pointed out, the NMF problem with separability assumption is

equivalent to finding the vertices of a simplex, given noisy versions of the vertices and points

within the simplex (but which data points came from vertices is unknown).

This problem has been studied in the context of hyperspectral unmixing, where separa-

bility assumption is called “pure pixel assumption”. Since the separable NMF problem is

very relevant to topic modeling, many subsequent works give new algorithms for separable

NMF. Even within this thesis, we give two alternative algorithms in Chapter 3 and Chapter 4

with different guarantees and trade-offs.

Here we try to summarize the related works. As this is a widely studied problem and

new algorithms are still being developed, the summary is not complete.

There are several aspects in the trade-offs between different algorithms
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Provable Guarantee The best thing to hope for is that the algorithm works provably

even when the input data is perturbed (all three algorithms in this paper have this kind of

guarantee). Later in the table summarizing results we call such algorithms PROVABLE.

However, there are some algorithms that work in practice, and we only know how to prove

them when we are given exact points from the simplex (later in the table these algorithms

are marked with EXACT). Some algorithms are not known to work even given exact points,

we label these as UNKNOWN. There is an interesting special case between PROVABLE

and EXACT, where the algorithm is guaranteed to find the vertices even when the input

data contains perturbed points from the simplex, but the algorithm assumes an additional

condition: any point that is not a vertex has some minimum distance to the closest vertex.

These algorithms are labeled CONDITIONAL.

Norm of Perturbation/Guarantee Among the PROVABLE and CONDITIONAL al-

gorithms, usually there is a theorem stating that “if the input is perturbed in A norm, the

algorithm is guaranteed to find points that are close to the vertices in B norm”. For example,

A norm and B norm can be either `1 and `2. There is a special case for B norm, which

is particularly relevant in the topic modeling setting: the norm is ε, if when the recovered

vertex is represented as a convex combination of the true vertices, the largest component is

at least 1− ε. In a sense this is the `1 norm when we perform linear transformation so that

the simplex becomes the probability simplex. We call this norm the Probability norm.

Given the norm of perturbation, the exact amount of perturbation that can be tolerated is

also different in different algorithms, however they usually only differ by a polynomial factor

of r. Also, if an algorithm uses `1 perturbation, its amount of perturbation is usually related

to the `1 condition number; if an algorithm uses `2 perturbation, its amount of perturbation

is usually related to the traditional (`2) condition number. We don’t go into the details

of these guarantees. Among all the `1 algorithms, our LP-based algorithms achieves the
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optimal bound on error tolerance (the optimal bound appears in [66]), however they are not

very practical.

The `2 algorithms are usually not applicable when the input is not from a simplex (all

the vertices are in a lower dimensional space), the `1 algorithms usually work as long as the

input forms a convex polytope. However, there are several `2 algorithms that can potentially

work for non-simplex inputs.

Running Time Different algorithms have very different running time. The exact running

time really depends on how the algorithm is implemented (for example several algorithms

can be implemented in parallel), therefore it is hard to compare without running extensive

simulations. Here we only give a rough idea on the running time, based on the number

of linear programs used. The algorithms that uses polynomial number of LPs are usually

not practical. The algorithms with a single LP are already practical, but may not be the

fastest algorithms known. The algorithms that do not use any LPs (which are labeled

COMBINATORIAL) are usually really fast in practice. However, keep in mind the real

performance of the algorithms depend highly on implementation, and it is not clear that the

LP-based algorithms are always slower than the combinatorial algorithms.

Parameters Required Different algorithms may require different parameters. Typical

parameters to require are the noise ε and the number of topics r. There might be ways to

remove dependency on various parameters for different algorithms (for example, it seems the

algorithm in previous section depend on condition number α, but it can be removed). The

parameter dependencies are from the algorithms written in individual papers, the author

does not claim that there are no ways of removing any of them.
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Table 2.1: Summary of NMF Algorithms
Algorithm Provability Perturbation/Guarantee Running Time Parameters
Section 2.5 PROVABLE `1/`1 n LPs ε
Section 3.5 PROVABLE `1/Probability n2 LPs ε
Section 4.2 PROVABLE `2/`2 Comb. r∗

VCA[132] EXACT Comb. r
NFINDR[69] UNKNOWN Comb. r
Hottopixx[22] COND `1/`1 1 LP ε, r

GillisVavasis[65] PROVABLE `2/`2 Comb. r∗

Gillis[66] PROVABLE `1/`1 1 LP ε, r
GillisLuce[67] PROVABLE `1/`1 1 LP ε
XRAY[104] EXACT + `2, non-simplex Comb. + r

Ding et al.[52] COND `2/`2 non-simplex? Comb. ε, r†

∗: These dependencies on r can be removed in theory by spectral gap, but in practice the
spectrum does not have a noticeable gap.
+: The authors claim there will be a proof for the perturbed case. Also, although this
algorithm does not use LPs, it does use some other convex program (of smaller scale). The
authors claim this algorithm is faster than Hottopixx.
†: The parameter r appears in the input parameter of their algorithm description, but it
is not used extensively. The authors also claim their algorithm works for the non-simplex
case, this is indeed true but the proof only works on simplex case and has to be modified.

2.7 Approximate Nonnegative Matrix Factorization

Here we consider the case in which the given matrix does not have an exact low-rank NMF

but rather can be approximated by a nonnegative factorization with small inner-dimension.

We refer to this as Approximate NMF. Unlike the algorithm in Theorem 2.48, the algorithm

here works with general nonnegative matrix factorization: we do not make any assumptions

on matrices A and W .

Theorem 2.49. Let M be an n ×m nonnegative matrix such that there is a factorization

AW satisfying ‖M − AW‖F ≤ ε‖M‖F , where A and W are nonnegative and have inner-

dimension r. There is an algorithm that computes A′ and W ′ satisfying

‖M − A′W ′‖F ≤ O(ε1/2r1/4)‖M‖F
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in time 2poly(r log(1/ε)) poly(n,m).

Note that the matrix M need not have low rank, but we will be able to assume M has

rank at most r without loss of generality: Let M ′ be the best rank at most r approximation

(in terms of Frobenius norm) to M . This can be computed using a truncated singular value

decomposition (see e.g. [68]). Since A and W have inner-dimension r, we get:

Claim. ‖M ′ −M‖F ≤ ‖M − AW‖F

Throughout this section, we will assume that the input matrix M has rank at most r -

since otherwise we can compute M ′ and solve the problem for M ′. Then using the triangle

inequality, any good approximation to M ′ will also be a good approximation to M .

Throughout this section, we will use the notation At to denote the tth column of A and

W t to denote the tth row of W . Note that W t is a row vector so we will frequently use AtW
t

to denote an outer-product. Next, we apply a simple re-normalization that will allow us to

state the main steps in our algorithm in a more friendly notation.

Lemma 2.50. We can assume without loss of generality that for all t

‖W t‖ = 1 (2.1)

‖At‖ ≤ (1 + ε)‖M‖F (2.2)

and furthermore ‖A‖F ≤ (1 + ε)‖M‖F .

Proof. We can write AW =
∑r

t=1AtW
t. So we may scale At,W

t to ensure that ‖W t‖ = 1.

Next, since A and W are nonnegative we have ‖AW‖F ≥ ‖AtW t‖F = ‖At‖‖W t‖ and

‖AW‖F ≤ (1 + ε)‖M‖F and this implies the first condition in the lemma.
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Next we observe that

‖AW‖2
F =

n∑
i=1

m∑
j=1

[ r∑
t=1

(AtW
t)i,j

]2

≥
r∑
t=1

n∑
i=1

m∑
j=1

[AtW
t]2i,j = ‖A‖2

F ,

where the inequality follows because all entries in A and W are nonnegative, and the last

equality follows because ‖W t‖ = 1.

Note that this lemma immediately implies that ‖W‖F ≤
√
r.

The intuition behind our algorithm is to decompose the unknown matrix W as the sum

of two parts: W = W0 + W1. The first part W0 is responsible for how good AW is as an

approximation to M (i.e., ‖M − AW0‖F is small) but could be negative; the second part

W1 has little effect on the approximation but is important in ensuring the sum W0 + W1 is

nonnegative. The algorithm will find good approximations to W0,W1.

What are W0,W1? Since removing W1 has little effect on how good AW is as an approx-

imation to M , this matrix should be roughly the projection of W onto the “less significant”

singular vectors of A. Namely, let the singular value decomposition of A be A =
∑r

t=1 σtutv
T
t

and suppose that σ1 ≥ σ2.... ≥ σr. Let t0 be the largest t for which |σt| ≥ δ‖M‖F (where δ

is a constant that is polynomially related to r and ε and will be specified later). Then set

W0 =

t0∑
t=1

(vtv
T
t )W ; W1 =

r∑
t=t0+1

(vtv
T
t )W. (2.3)

Lemma 2.51. ‖M − AW0‖F ≤ ε‖M‖F + δ
√
r‖M‖F

Proof. By the triangle inequality ‖M − AW0‖F ≤ ‖M − AW‖F + ‖AW1‖F . Also AW1 =∑r
t=t0+1 σt(utv

T
t )W , so we have

‖AW1‖F = ‖
r∑

t=t0+1

σt(utv
T
t )W‖F ≤ ‖

r∑
t=t0+1

σt(utv
T
t )‖2‖W‖F ≤ δ‖M‖F

√
r,
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where the last inequality follows because ‖W‖F ≤ √
r and the spectral norm of∑r

t=t0+1(utv
T
t ) is one.

Next, we establish a lemma that will be useful when searching for (an approximation to)

W0:

Lemma 2.52. There is an r ×m matrix W ′
0 such that each row is in the span of the rows

of M and which satisfies ‖W ′
0 −W0‖F ≤ 2ε/δ.

Proof. Consider the matrix A+ =
∑t0

t=1
1
σt
vtu

T
t . Thus A+ is a pseudo-inverse of the truncated

SVD of A. Note that W0 = A+AW and the spectral norm ‖A+‖2 is at most 1/(δ‖M‖F ).

Then we can choose W ′
0 = A+M . Clearly, each row of W ′

0 is in the span of the rows of M .

Furthermore, we have

‖W ′
0 −W0‖F = ‖A+(M − AW )‖F ≤ ‖A+‖‖M − AW‖F ≤

1

δ‖M‖F
· 2ε‖M‖F ≤

2ε

δ
.

And this completes the proof of the lemma.

Lemma 2.53. There is an algorithm that in time 2poly(r log(1/ε)) poly(n,m) finds W ′′
0 ,W

′
1 and

A′ such that W ′′
0 + W ′

1 ≥ 0, A′ ≥ 0 and ‖M − A′(W ′′
0 + W ′

1)‖F ≤ O( ε
δ
‖A‖F + ε‖M‖F +

δ
√
r‖M‖F ).

Proof. We use exhaustive enumeration to find a close approximation to the matrix W ′
0 of

Lemma 2.52, and then we use convex programming to find W ′
1, A

′:

The exhaustive enumeration is simple: try all vectors that lie in some ε1-net in the span

of the rows of M , where ε1 = ε/δ . Such an ε1-net is easily enumerated in the provided

time since the row vectors are smaller than ‖W‖F =
√
r and their span is r-dimensional.
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Contained in this net there must an W ′′
0 such that ‖A+M −W ′′

0 ‖F ≤ ε1. Using Lemma 2.52,

‖W0 −W ′
0‖ ≤ 2ε/δ, so the triangle inequality implies ‖W0 −W ′′

0 ‖F ≤ 2ε/δ + ε1 ≤ 4ε/δ.

Next, we give a method to find suitable substitutes W ′
1, A

′ for W1, A respectively so that

W ′
0 +W ′

1 ≥ 0 and A′(W ′
0 +W ′

1) is a good approximation to M .

Let us assume we know the vectors vi appearing in the SVD of A and ‖A‖F . This is easy

to guarantee since we can enumerate over all choices of the vi’s (which are unit vectors in

Rr) using a suitable ε2-net where ε2 = min{ ε
δr
, 0.1}. Also, ‖A‖F is a scalar value that can

be easily guessed within multiplicative factor arbitrarily close to one.

Let W ′
1 = Z be the optimal solution to the following convex program:

min ‖A‖2
F

t0∑
t=1

‖vTi Z‖2 + δ2‖M‖2
F

r∑
t=t0+1

‖vTi Z‖2 (2.4)

s.t. W ′′
0 + Z ≥ 0. (2.5)

This is optimization problem is convex since the constraints are linear and the objective

function is quadratic but convex. (In fact this optimization problem can be separated into

m smaller convex programs because the constraints between different columns of W ′
1 are

independent).

When the vectors we enumerated (denoted as {v′i}) are close enough to the true values

{vi}, that is, when
∑r

i=1 ‖v′i−vi‖2 ≤ min{ ε2
δ2r
, 0.01}, the value of the objective function after

substituting v by v′ can only change by at most O( ε
2

δ2
‖A‖2

F + rδ2‖M‖2
F ). From now on we

work with the true values of {vi}. The claim below and arguments after will still be true

although the vectors are not exact.

Claim. The optimal value of this convex program is at most O( ε
2

δ2
‖A‖2

F + rδ2‖M‖2
F ).

Proof. We prove that W ′
1 = W −W ′′

0 = (W0 −W ′′
0 ) +W1 is a feasible solution and that the

objective value of this solution is the value claimed in the lemma.
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Since W1 =
∑r

t=t0+1(vtv
T
t )W only contributes to the second term of the objective func-

tion in (2.4), we can upper bound the objective as

‖W0 −W ′′
0 ‖2

F‖A‖2
F + (‖W0 −W ′′

0 ‖F + ‖W1‖F )2δ2‖M‖2
F .

The proof is completed because ‖W0 −W ′′
0 ‖F = O( ε

δ
) and ‖W1‖F ≤ ‖W‖F =

√
r.

After solving the convex program, we obtaine a candidate W ′
1. Let W ′ = W ′′

0 + W ′
1. To

get the right A′ (since W ′ is fixed) we can find the A′ that minimizes ‖M−A′W ′‖2
F by solving

a least-squares problem. Clearly such an A′ satisfies ‖M −A′(W ′′
0 +W ′

1)‖F ≤ ‖M −A(W ′′
0 +

W ′
1)‖F and the latter quantity is bounded by ‖M − AW0‖F + ‖A(W0 −W ′′

0 )‖F + ‖AW ′
1‖F .

Lemma 2.51 bounds the first term and Lemma 2.52 bounds the second term. The square

of the last term is bounded by the objective function of the convex program.

Finally, by choosing δ =
√
ε

r1/4
we get A′, W ′ = W ′′

0 + W ′
1 such that ‖M − A′W ′‖F ≤

O(ε1/2r1/4)‖M‖F .
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Chapter 3

From NMF to Topic Modeling

Developing tools for automatic comprehension and classification of data —web pages, news-

paper articles, images, genetic sequences, user ratings — is a holy grail of machine learning.

Topic Modeling is an approach that has proved successful in all these settings. In this chapter

we focus on the application on text corpus.

In Chapter 2, we have already shown how to learn the topic matrix A when the number

of words per document is much larger than the vocabulary size. However, this is unrealistic

in practice, where most articles have no more than 1000 words and the vocabulary contains

more than a few thousand common words. In this chapter we shall see how to reduce

the sampling noise, and adapt the algorithm in the previous chapter to design a provable

algorithm for topic modeling.

3.1 Main Results

We first precisely define the topic modeling (learning) problem. There is an unknown topic

matrix A which is dimension n × r (i.e. n is the dictionary size) and each column of A

is a distribution on [n]. There is an unknown r × m matrix W whose each column is

itself a distribution (aka convex combination) on [r]. The columns of W are i.i.d. samples
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from a distribution T which belongs to a known family, e.g., Dirichlet distributions, but

whose parameters are unknown. Thus each column of AW (being a convex combination of

distributions) is itself a distribution on [n], and the algorithm’s input consists of N i.i.d.

samples for each column of AW . Here N is the document size and is assumed to be a

constant for simplicity. Our algorithm can be easily adapted to work when the documents

have different sizes.

The algorithm’s running time will necessarily depend upon various model parameters,

since distinguishing a very small parameter from 0 imposes a lower bound on the number

of samples needed. The first such parameter is a quantitative version of separability, which

was presented in Chapter 2 as a natural assumption in context of NMF and topic modeling.

Definition 3.1 (p-Separable Topic Matrix). An n × r matrix A is p-separable if for each i

there is some row π(i) of A that has a single nonzero entry which is in the ith column and it

is at least p.

This assumption requires that each topic has some near-perfect indicator word – a word

that we call the anchor word for this topic— that appears with reasonable probability in that

topic but with negligible probability in all other topics (e.g., “soccer” could be an anchor

word for the topic “sports”). This property is particularly natural in the context of topic

modeling, where the number of distinct words (dictionary size) is very large compared to

the number of topics. Note that separability does not mean that the anchor word always

occurs (in fact, a typical document may be very likely to contain no anchor words). Instead, it

dictates that when an anchor word does occur, it is a strong indicator that the corresponding

topic is in the mixture used to generate the document.

The next parameter measures the lowest probability with which a topic occurs in the

distribution that generates columns of W .
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Definition 3.2 (Topic Imbalance). The topic imbalance of the model is the ratio between the

largest and smallest expected entries in a column of W , in other words, a = maxi,j∈[r]
E[Xi]
E[Xj ]

where X ∈ Rr is a random weighting of topics chosen from the distribution.

Finally, we require that topics stay identifiable despite sampling-induced noise. To for-

malize this, we define a matrix that will be important throughout this paper:

Definition 3.3 (Topic-Topic Covariance Matrix R(T )). If T is the distribution that gen-

erates the columns of W , then R(T ) is defined as an r × r matrix whose (i, j)th entry is

E[XiXj] where X1, X2, ...Xr is a vector chosen from T .

Let γ > 0 be a lower bound on the `1-condition number of the matrix R(T ). This is

defined in Section 3.2, but for a r × r matrix it is within a factor of
√
r of the smallest

singular value. Our algorithm will work for any γ, but the number of documents we require

will depend (polynomially) on 1/γ:

Theorem 3.4 (Main). There is a polynomial time algorithm that learns the parameters of

a topic model if the number of documents is at least

m = max

{
O

(
log n · a4r6

ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)}
,

where the three numbers a, p, γ are as defined above. The algorithm learns the topic-term

matrix A up to entry-wise additive error ε. Moreover, when the number of documents is also

larger than O
(

log r·r2
ε2

)
the algorithm can learn the topic-topic covariance matrix R(T ) up to

entry-wise additive error ε.

As noted earlier, we are able to recover the topic matrix even though we do not always

recover the parameters of the column distribution T . In some special cases we can also

recover the parameters of T , e.g. when this distribution is Dirichlet, as happens in the

popular Latent Dirichlet Allocation (LDA) model [24, 26]. In Section 3.4.1 we compute a
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lower bound on the γ parameter for the Dirichlet distribution, which allows us to apply our

main learning algorithm, and also the parameters of T can be recovered from the co-variance

matrix R(T ) (see Section 3.4.2).

Recently the basic LDA model has been refined to allow correlation among different

topics, which is more realistic. See for example the Correlated Topic Model (CTM) [25] and

the Pachinko Allocation Model (PAM) [112]. A compelling aspect of our algorithm is that

it extends to these models as well: we can learn the topic matrix, even though we cannot

always identify T . (Indeed, the distribution T in the Pachinko is not even identifiable: two

different sets of parameters can generate exactly the same distribution.)

This Chapter is organized as follows: in Section 3.2 we introduce various parameters

related to the A matrix. This prepares us for the proof of the main theorem in Section 3.3.

The proof is adapted to the special case of LDA in Section 3.4. We give a better algorithm

for NMF in Section 3.5 which is important for improving the sample complexity of the

main theorem. Finally, Section 3.6 shows maximum likelihood estimator is NP-hard for

topic modeling even if topics are separable, and justifies the need to assume data is actually

generated according to the model.

3.2 Tools for (Noisy) Nonnegative Matrix Factoriza-

tion

3.2.1 Various Condition Numbers

Central to our arguments will be various notions of matrices being “far” from being low-rank.

The most interesting one for our purposes was introduced by Kleinberg and Sandler [96] in

the context of collaborative filtering; and can be thought of as an `1-analogue to the smallest

singular value of a matrix.
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Definition 3.5 (`1 Condition Number). If matrix B has nonnegative entries and all rows

sum to 1 then its `1 Condition Number Γ(B) is defined as:

Γ(B) = min
|x|1=1

|x>B|1.

If B does not have row sums of one then Γ(B) is equal to Γ(DB) where D is the diagonal

matrix such that DB has row sums of one.

For example, if the rows of B have disjoint support then Γ(B) = 1 and in general the

quantity Γ(B) can be thought of a measure of how close two distributions on disjoint sets

of rows can be. Note that, if x is an n-dimensional real vector, ‖x‖2 ≤ |x|1 ≤
√
n‖x‖2 and

hence (if σmin(B) is the smallest singular value of B), we have:

1√
n
σmin(B) ≤ Γ(B) ≤ √mσmin(B).

The above notions of condition number will be most relevant in the context of the topic-

topic covariance matrix R(T ). We shall always use γ to denote the `1 condition number

of R(T ). The definition of condition number will be preserved even when we estimate the

topic-topic covariance matrix using random samples.

Lemma 3.6. When m > 5 log r/ε20, with high probability the matrix R = 1
m
WW> is entry-

wise close to R(T ) with error ε0. Further, when ε0 < 1/4γar2 where a is topic imbalance,

the matrix R has `1 condition number at least γ/2.

Proof. Since E[WiW
>
i ] = R(T ), the first part is just by Chernoff bound and union bound.

The further part follows because R(T ) is γ robustly simplicial, and the error can change

the `1 norm of vR for any unit v by at most ar · rε0. The extra factor ar comes from the

normalization to make rows of R sum up to 1.
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In Chapter 2 we defined a different measure of “distance” from singular which is essential

to the polynomial time algorithm for NMF:

Definition 3.7 (β-robustly simplicial). If each column of a matrix A has unit `1 norm, then

we say it is β-robustly simplicial if no column in A has `1 distance smaller than β to the

convex hull of the remaining columns in A.

The following claim clarifies the interrelationships of these latter condition numbers.

Claim. (i) If A is p-separable then A> has `1 condition number at least p. (ii) If A> has all

row sums equal to 1 then A is β-robustly simplicial for β = Γ(A>)/2.

We shall see that the `1 condition number for product of matrices is at least the product

of `1 condition number. The main application of this composition is to show that the matrix

R(T )A> (or the empirical version RA>) is at least Ω(γp)-robustly simplicial. The following

lemma will play a crucial role in analyzing our main algorithm:

Lemma 3.8 (Composition Lemma). If B and C are matrices with `1 condition number

Γ(B) ≥ γ and Γ(C) ≥ β , then Γ(BC) is at least βγ. Specificially, when A is p-separable

the matrix R(T )A> is at least γp/2-robustly simplicial.

Proof. The proof is straight forward because for any vector x, we know |x>BC|1 ≤

Γ(C)|x>B|1 ≤ Γ(C)Γ(B)|x|1. For the matrix R(T )A>, by Claim 3.2.1 we know the matrix

A> has `1 condition number at least p. Hence Γ(R(T )A>) is at least γp and again by

Claim 3.2.1 the matrix is γp/2-robustly simplicial.

3.2.2 Noisy Nonnegative Matrix Factorization under Separability

A key ingredient is an approximate NMF algorithm in Chapter 2, which can recover an

approximate nonnegative matrix factorization M̃ ≈ AW when the `1 distance between each

row of M̃ and the corresponding row in AW is small. We emphasize that this is not enough
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for our purposes, since the term-by-document matrix M̃ will have a substantial amount

of noise (when compared to its expectation) precisely because the number of words in a

document N is much smaller than the dictionary size n. Rather, we will apply the following

algorithm (and an improvement that we give in Section 3.5) to the Gram matrix M̃M̃>.

For topic modeling we need a slightly different goal here than in Chapter 2. Instead of

recovering estimates to the anchor words that are close in `1-norm, we would rather recover

almost anchor words that have almost all its weights on a single coordinate. (this was called

the simplicial norm in Section 2.6.) Hence, we will be able to achieve better bounds by

treating this problem directly, we defer the proof to Section 3.5.

Theorem 3.9. Suppose M = AW where W and M are normalized to have rows sum up

to 1, A is separable and W is γ-robustly simplicial. When ε < γ/100 there is a polynomial

time algorithm that given M̃ such that for all rows |M̃ i − M i|1 < ε, finds r row (almost

anchor words) in M̃ . The i-th almost anchor word corresponds to a row in M that can be

represented as (1 − O(ε/γ))W i + O(ε/γ)W−i. Here W−i is a vector in the convex hull of

other rows in W with unit length in `1 norm.

3.3 Algorithm for Learning a Topic Model: Proof of

Theorem 3.4

First it is important to understand why separability helps in nonnegative matrix factoriza-

tion, and specifically, the exact role played by the anchor words. Suppose the NMF algorithm

is given a matrix AB. If A is p-separable then this means that A contains a diagonal matrix

(up to row permutations). Thus a scaled copy of each row of B is present as a row in AB. In

fact, if we knew the anchor words of A, then by looking at the corresponding rows of AB we

could“read off” the corresponding row of B (up to scaling), and use these in turn to recover

all of A. Thus the anchor words constitute the “key” that “unlocks” the factorization, and
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indeed the main step of our earlier NMF algorithm was a geometric procedure to identify

the anchor words. When one is given a noisy version of AB, the analogous notion is “almost

anchor” words, which correspond to rows of AB that are “very close” to rows of B; see

Theorem 3.9.

Now we sketch how to apply these insights to learning topic models. Let M denote the

provided term-by-document matrix, whose each column describes the empirical word fre-

quencies in the documents. It is obtained from sampling AW and thus is an extremely noisy

approximation to AW . Our algorithm starts by forming the Gram matrix MM>, which

can be thought of as an empirical word-word covariance matrix. In fact as the number of

documents increases 1
m
MM> tends to a limit Q = 1

m
E[AWW>A], implying Q = AR(T )A>.

(See Lemma 3.15.) Imagine that we are given the exact matrix Q instead of a noisy ap-

proximation. Notice that Q is a product of three nonnegative matrices, the first of which

is p-separable and the last is the transpose of the first. NMF at first sight seems too weak

to help find such factorizations. However, if we think of Q as a product of two nonnegative

matrices, A and R(T )A>, then our NMF algorithm [11] can at least identify the anchor

words of A. As noted above, these suffice to recover R(T )A>, and then (using the anchor

words of A again) all of A as well. See Section 3.3.1 for details.

Of course, we are not given Q but merely a good approximation to it. Now our NMF

algorithm allows us to recover “almost anchor” words of A, and the crux of the proof is Sec-

tion 3.3.2 showing that these suffice to recover provably good estimates to A and WW>. This

uses (mostly) bounds from matrix perturbation theory, and interrelationships of condition

numbers mentioned in Section 3.2.

For simplicity we assume the following condition on the topic model, which we will see

in Section 3.3.5 can be assumed without loss of generality:

(*) The number of words, n, is at most 4ar/ε.
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Please see Algorithm 3.1: Main Algorithm for description of the algorithm. Note that R is

our shorthand for 1
m
WW>, which as noted converges to R(T ) as the number of documents

increases.

Algorithm 3.1. Learning Topic Models

input Samples from a topic model
output R and A

1: Query the oracle for m documents, where

m = max

{
O

(
log n · a4r6

ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)
, O

(
log r · r2

ε2

)}

2: Split the words of each document into two halves, and let M̃ , M̃ ′ be the term-by-
document matrix with first and second half of words respectively.

3: Compute word-by-word matrix Q = 4
N2m

M̃M̃ ′>

4: Apply the “Robust NMF” algorithm of Theorem 3.9 to Q which returns r words that
are ”almost” the anchor words of A.

5: Use these r words as input to Recover with Almost Anchor Words to compute
R = 1

m
WW> and A

3.3.1 Recover R and A with Anchor Words

We first describe how the recovery procedure works in an “idealized” setting (Algo-

rthm 3.2,Recover with True Anchor Words), when we are given the exact value of

ARA> and a set of anchor words – one for each topic. We can permute the rows of A so

that the anchor words are exactly the first r words. Therefore A> = (D,U>) where D is a

diagonal matrix. Note that D is not necessarily the identity matrix (nor even a scaled copy

of the identity matrix), but we do know that the diagonal entries are at least p. We apply

the same permutation to the rows and columns of Q. As shown in Figure 3.1, if we look at

the submatrix formed by the first r rows and r columns, it is exactly DRD. Similarly, the

submatrix consisting of the first r rows is exactly DRA>. We can use these two matrices to

compute R and A, in this idealized setting (and we will use the same basic strategy in the
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general case, but need only be more careful about how we analyze how errors compound in

our algorithm).

Algorithm 3.2. Recover with True Anchor Words

input r anchor words, empirical correlation matrix Q
output R and A

1: Permute the rows and columns of Q so that the anchor words appear in the first r rows
and columns

2: Compute DRA>1 (which is equal to DR1)
3: Solve for z: DRDz = DR1.
4: Output A> = ((DRDDiag(z))−1DRA>).
5: Output R = (Diag(z)DRDDiag(z)).

Our algorithm has exact knowledge of the matrices DRD and DRA>, and so the main

task is to recover the diagonal matrix D. Given D, we can then compute A and R (for the

Dirichlet Allocation we can also compute its parameters - i.e. the α so that R(α) = R). The

key idea to this algorithm is that the row sums of DR and DRA> are the same, and we can

use the row sums of DR to set up a system of linear constraints on the diagonal entries of

D−1.

Lemma 3.10. When the matrix Q is exactly equal to ARA> and we know the set of anchor

words, Recover with True Anchor Words outputs A and R correctly.

Proof. The Lemma is straight forward from Figure 3.1 and the procedure. By Figure 3.1 we

can find the exact value of DRA> and DRD in the matrix Q. Step 2 of recover computes

DR1 by computing DRA>1. The two vectors are equal because A is the topic-term matrix

and its columns sum up to 1, in particular A>1 = 1.

In Step 3, since R is invertible by Lemma 3.6, D is a diagonal matrix with entries

at least p, the matrix DRD is also invertible. Therefore there is a unique solution z =

(DRD)−1DR1 = D−11. Also Dz = 1 and hence DDiag(z) = I. Finally, using the fact that

DDiag(z) = I, the output in step 4 is just (DR)−1DRA> = A>, and the output in step 5 is

equal to R.
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= 

DRD DRUT 

URD URUT 

D W 

WT 

D U 

U 

R 

Figure 3.1: The matrix Q

3.3.2 Recover R and A with Almost Anchor Words

What if we are not given the exact anchor words, but are given words that are “close” to

anchor words? As we noted, in general we cannot hope to recover the true anchor words,

but even a good approximation will be enough to recover R and A.

When we restrict A to the rows corresponding to “almost” anchor words, the submatrix

will not be diagonal. However, it will be close to a diagonal in the sense that the submatrix

will be a diagonal matrix D multiplied by E, and E is close to the identity matrix (and the

diagonal entries of D are at least Ω(p)). Here we analyze the same procedure as above and

show that it still recovers A and R (approximately) even when given “almost” anchor words

instead of true anchor words. For clarity we state the procedure again in Algorithm 3.3:

Recover with Almost Anchor Words. The guarantees at each step are different than

before, but the implementation of the procedure is the same. Notice that here we permute

the rows of A (and hence the rows and columns of Q) so that the “almost” anchor words

returned by Theorem 3.9 appear first and the submatrix A on these rows is equal to DE.

Here, we still assume that the matrix Q is exactly equal to ARA> and hence the first r

rows of Q form the submatrix DERA> and the first r rows and columns are DERE>D. The

complication here is that Diag(z) is not necessarily equal to D−1, since the matrix E is not
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necessarily the identity. However, we can show that Diag(z) is ”close” to D−1 if E is suitably

close to the identity matrix – i.e. given good enough proxies for the anchor words, we can

bound the error of the above recovery procedure. We write E = I + Z. Intuitively when Z

has only small entries E should behave like the identity matrix. In particular, E−1 should

have only small off-diagonal entries. We make this precise through the following lemmas:

Lemma 3.11. Let E = I + Z and
∑

i,j |Zi,j| = ε < 1/2, then E−11 is a vector with entries

in the range [1− 2ε, 1 + 2ε].

Proof. E is clearly invertible because the spectral norm of Z is at most 1/2. Let b = E−11.

Since E = I + Z we multiply E on both sides to get b + Zb = 1. Let bmax be the largest

absolute value of any entry of b (bmax = max |bi|). Consider the entry i where bmax is achieved,

we know bmax = |bi| ≤ 1 + |(Zb)i| ≤ 1 +
∑

j |Zi,j||bj| ≤ 1 + εbmax. Thus bmax ≤ 1/(1− ε) ≤ 2.

Now all the entries in Zb are within 2ε in absolute value, and we know that b = 1 + Zb.

Hence all the entries of b are in the range [1− 2ε, 1 + 2ε], as desired.

Lemma 3.12. Let E = I + Z and
∑

i,j |Zi,j| = ε < 1/2, then the columns of E−1 − I have

`1 norm at most 2ε.

Proof. Without loss of generality, we can consider just the first column of E−1 − I, which

is equal to (E−1 − I)e1, where e1 is the indicator vector that is one on the first coordinate

and zero elsewhere.

The approach is similar to that in Lemma 3.11. Let b = (E−1 − I)e1. Left multiply by

E = (I +Z) and we obtain b+Zb = −Ze1. Hence b = −Z(b+e1). Let bmax be the largest

absolute value of entries of b (bmax = max |bi|). Let i be the entry in which bmax is achieved.

Then

bmax = |bi| ≤ |(Zb)i|+ |(Ze1)i| ≤ εbmax + ε

Therefore bmax ≤ ε/(1− ε) ≤ 2ε. Further, the |b|1 ≤ |Ze1|1 + |Zb|1 ≤ ε+ 2ε2 ≤ 2ε.
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Now we are ready to show that the procedure Recover with Almost Anchor

Words succeeds when given ”almost” anchor words:

Algorithm 3.3. Recover with Almost Anchors

input r ”almost” anchor words, empirical correlation Q
output R and A.

1: Permute the rows and columns of Q so that the ”almost” anchor words appear in the
first r rows and columns.

2: Compute DERA>1 (which is equal to DER1)
3: Solve for z: DERE>Dz = DER1.
4: Output A> = ((DERE>DDiag(z))−1DERA>).
5: Output R = (Diag(z)DERE>DDiag(z)).

Lemma 3.13. When the matrix Q is exactly equal to ARA>, the matrix A restricted to

almost anchor words is DE where E − I has `1 norm ε < 1/10 when viewed as a vector,

procedure Recover with Almost Anchor Words outputs A such that each column of

A has `1 error at most 6ε. The matrix R has additive error ZR whose `1 norm when viewed

as a vector is at most 8ε.

Proof. Since Q is exactly ARA>, our algorithm is given DERA> and DERE>D with no

error. In Step 3, since D, E and R are all invertible, we have

z = (DERE>D)−1DER1 = D−1(E>)−11

Ideally we would want Diag(z) = D−1, and indeed DDiag(z) = Diag((E>)−11). From

Lemma 3.11, the vector (E>)−11 has entries in the range [1− 2ε, 1 + 2ε], thus each entry of

Diag(z) is within a (1± 2ε) multiplicative factor from the corresponding entry in D−1.

Consider the output in Step 4. Since D, E, R are invertible, the first output is

(DERE>DDiag(z))−1DERA> = (DDiag(z))−1(E>)−1A>
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Our goal is to bound the `1 error of the columns of the output compared to the corresponding

columns of A. Notice that it is sufficient to show that the jth row of (DDiag(z))−1(E>)−1 is

close (in `1 distance) to the indicator vector e>j .

Claim. For each j, |e>j (DDiag(z))−1(E>)−1 − e>j |1 ≤ 5ε

Proof. Again, without loss of generality we can consider just the first row. From Lemma 3.12

e>1 (E>)−1 has `1 distance at most 2ε to e>1 . (DDiag(z))−1 has entries in the range [1−3ε, 1+

3ε]. And so

|e>1 (DDiag(z))−1(E>)−1 − e>1 |1 ≤ |e>1 (DDiag(z))−1(E>)−1 − e>1 (E>)−1|1 + |e>1 (E>)−1 − e>1 |1

The last term can be bounded by 2ε. Consider the first term on the right hand side: The

vector e>1 (DDiag(z))−1 − e>1 has one non-zero entry (the first one) whose absolute value is

at most 3ε. Hence, from Lemma 3.12 the first term can be bounded by 6ε2 ≤ 3ε, and this

implies the claim.

The first row of (DDiag(z))−1(E>)−1A> is A1 + z>A where z is a vector with `1 norm

at most 5ε. So every column of A is recovered with `1 error at most 6ε.

Consider the second output of the algorithm. The output is Diag(z)DERE>DDiag(z)

and we can write Diag(z)D = I + Z1 and E = I + Z2. The leading error are Z1R + Z2R +

RZ1 +RZ2 and hence the `1 norm of the leading error term (when treated as a vector) is at

most 6ε and other terms are of order ε2 and can safely be bounded by 2ε for suitably small

ε).

Finally we consider the general case (in which there is additive noise in Step 1): we are

not given ARA> exactly. We are given Q which is close to ARA> (by Lemma 3.15). We

will bound the accumulation of this last type of error. Suppose in Step 1 of RECOVER

we obtain DERA> + U and DERE>D + V and furthermore the entries of U and U1 have

absolute value at most ε1 and the matrix V has `1 norm ε2 when viewed as a vector.
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Lemma 3.14. If ε, ε1, ε2 are sufficiently small, RECOVER outputs A such that each entry

of A has additive error at most O(ε+ (raε2/p
3 + ε1r/p

2)/γ). Also the matrix R has additive

error ZR whose `1 norm when viewed as a vector is at most O(ε+ (raε2/p
3 + ε1r/p

2)/γ).

The main idea of the proof is to write DERE>D + V as DER(E> + V ′)D. In this way

the error V can be translated to an error V ′ on E and Lemma 3.13 can be applied. The

error U can be handled similarly.

Proof. We shall follow the proof of Lemma 3.13. First can express the error term V instead as

V = (DER)V ′(D). This is always possible because all of D, E, R are invertible. Moreover,

the `1 norm of V ′ when viewed as a vector is at most 8raε2/γp
3, because this norm will grow

by a factor of at most 1/p when multiplied by D−1, a factor of at most 2 when multiplied

by E−1 and at most ra/Γ(R) when multiplied by R−1. The bound of Γ(R) comes from

Lemma 3.6, we lose an extra ra because R may not have rows sum up to 1.

Hence DERE>D + V = DER(E> + V ′)D and the additive error for DERE>D can be

transformed into error in E, and we will be able to apply the analysis in Lemma 3.13.

Similarly, we can express the error term U as U = DERU ′. Entries of U ′ have absolute

value at most 8ε1r/γp
2. The right hand side of the equation in step 3 is equal to DER1+U1

so the error is at most ε1 per entry. Following the proof of Lemma 3.13, we know Diag(z)D

has diagonal entries within 1± (2ε+ 16ε2/γp
3 + 2ε1).

Now we consider the output. The output for A> is equal to

(DER(E> + V ′)DDiag(z))−1DER(A> + U ′) = (DDiag(z))−1(E> + V ′)−1(A> + U ′).

Here we know (E> + V ′)−1 − I has `1 norm at most O(ε + raε2/γp
3) per row, (DDiag(z))

is a diagonal matrix with entries in 1 ± O(ε + raε2/γp
3 + ε1), entries of U ′ has absolute

value O(ε1r/γp
2). Following the proof of Lemma 3.13 the final entry-wise error of A is

roughly the sum of these three errors, and is bounded by O(ε+(raε2/p
3 + ε1r/p

2)/γ) (Notice
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that Lemma 3.13 gives bound for `1 norm of rows, which is stronger. Here we switched

to entry-wise error because the entries of U are bounded while the `1 norm of U might be

large).

Similarly, the output of R is equal to Diag(z)(DERE>D + V )Diag(z). Again we write

Diag(z)D = I + Z1 and E = I + Z2. The extra term Diag(z)VDiag(z) is small because the

entries of z are at most to 2/p (otherwise Diag(z)D won’t be close to identity). The error

can be bounded by O(ε+ (raε2/p
3 + ε1r/p

2)/γ).

Now in order to prove our main theorem we just need to show that when number of

documents is large enough, the matrix Q is close to the ARA>, and plug the error bounds

into Lemma 3.14.

3.3.3 Error Bounds for Q

Here we show that the matrix Q indeed converges to 1
m
AWW>A> = ARA> when m is large

enough.

Lemma 3.15. When m > 50 logn
Nε2Q

, with high probability all entries of Q− 1
m
AWW>A> have

absolute value at most εQ. Further, the `1 norm of rows of Q are also εQ close to the `1 norm

of the corresponding row in 1
m
AWW>A>.

Proof. We shall first show that the expectation of Q is equal to ARA> where R is 1
m
WW>.

Then by concentration bounds we show that entries of Q are close to their expectations.

Notice that we can also hope to show that Q converges to AR(T )A>. However in that case

we will not be able to get the inverse polynomial relationship with N (indeed, even if N

goes to infinity it is impossible to learn R(T ) with only one document). Replacing R(T )

with the empirical R allows our algorithm to perform better when the number of words per

document is larger.

To show the expectation is correct we observe that conditioned on W , the entries of two

matrices M̃ and M̃ ′ are independent. Their expectations are both N
2
AW . Therefore,

82



E[Q] =
4

mN2
E[M̃M̃ ′>] =

1

m

(
2

N
E[M̃ ]

)(
2

N
E[M̃ ′>]

)
=

1

m
AWW>A> = ARA>.

We still need to show that Q is close to this expectation. This is not surprising be-

cause Q is the average of m independent samples (of 4
N2M̃iM̃

′
i). Further, the variance of

each entry in 4
N2M̃iM̃

′>
i can be bounded because M̃ and M̃ ′ also come from independent

samples. For any i, j1, j2, let v = AWi be the probability distribution that M̃i and M̃ ′
i

are sampled from, then M̃i(j1) is distributed as Binomial(N/2, v(j1)) and M̃ ′
i(j2) is dis-

tributed as Binomial(N/2, v(j2)). The variance of these two variables are less than N/8

no matter what v is by the properties of binomial distribution. Conditioned on the vec-

tor v these two variables are independent, thus the variance of their product is at most

Var M̃i(j1)EM̃ ′
i(j2)2 + EM̃i(j1)2 Var M̃ ′

i(j2) + Var M̃i(j1) Var M̃ ′
i(j2) ≤ N3/4 + N2/64. The

variance of any entry in 4
N2M̃iM̃

′>
i is at most 4/N + 1/16N2 = O(1/N). Higher moments

can be bounded similarly and they satisfy the assumptions of Bernstein inequalities. Thus

by Bernstein inequalities the probability that any entry is more than εQ away from its true

value is much smaller than 1/n2.

The further part follows from the observation that the `1 norm of a row in Q is propor-

tional to the number of appearances of the word. As long as the number of appearances

concentrates the error in `1 norm must be small. The words are all independent (conditioned

on W ) so this is just a direct application of Chernoff bounds.

3.3.4 Proving the Main Theorem

We are now ready to prove Theorem 3.4:

Proof. By Lemma 3.15 we know when we have at least 50 log n/Nε2Q documents, Q is entry

wise close to ARA>. In this case error per row for Theorem 3.9 is at most εQ · O(a2r2/p2)
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because in this step we can assume that there are at most 4ar/p words (see Section 3.3.5)

and to normalize the row we need a multiplicative factor of at most 10ar/p (we shall only

consider rows with `1 norm at least p/10ar, with high probability all the anchor words are

in these rows). The γ parameter for Theorem 3.9 is pγ/4 by Lemma 3.6. Thus the almost

anchor words found by the algorithm has weight at least 1−O(εQa
2r2/γp3) on diagonals. The

error for DERE>D is at most εQr
2, the error for any entry of DERA> and DERA>1 is at

most O(εQ). Therefore by Lemma 3.14 the entry-wise error for A is at most O(εQa
2r3/γp3).

When εQ < εp3γ/a2r3 the error is bounded by ε . In this case we need

m = max

{
O

(
log n · a4r6

ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)}
.

The latter constraint comes from Lemma 3.6.

To get within ε additive error for the parameter α, we further need R to be close enough

to the variance-covariance matrix of the document-topic distribution, which means m is at

least

m = max

{
O

(
log n · a4r6

ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)
, O

(
log r · r2

ε2

)}
.

3.3.5 Reducing Dictionary Size

Above we assumed that the number of distinct words is small. Here, we give a simple gadget

that shows in the general case we can assume that this is the case at the loss of an additional

additive ε in our accuracy:

Lemma 3.16. The general case can be reduced to an instance in which there are at most

4ar/ε words all of which (with at most one exception) occur with probability at least ε/4ar.
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Proof. In fact, we can collect all words that occur infrequently and “merge” all of these

words into a aggregate word that we will call the runoff word. To this end, we call a word

large if it appears more than εmN/3ar times in m = 100ar logn
Nε

documents, and otherwise

we call it small. Indeed, with high probability all large words are words that occur with

probability at least ε/4ar in our model. Also, all words that has a entry larger than ε in the

corresponding row of A will appear with at least ε/ar probability, and is thus a large word

with high probability. We can merge all small words (i.e. rename all of these words to a

single, new word). Hence we can apply the above algorithm (which assumed that there are

not too many distinct words). After we get a result with the modified documents we can

ignore the runoff words and assign 0 weight for all the small words. The result will still be

correct up to ε additive error.

3.4 The Dirichlet Subcase

Here we demonstrate that the parameters of a Dirichlet distribution can be (robustly) recov-

ered from just the covariance matrix R(T ). Hence an immediate corollary is that our main

learning algorithm can recover both the topic matrix A and the distribution that generates

columns of W in a Latent Dirichlet Allocation (LDA) Model [26], provided that A is separa-

ble. We believe that this algorithm may be of practical use, and provides the first alternative

to local search and (unproven) approximation procedures for this inference problem [157],

[51], [26].

The Dirichlet distribution is parametrized by a vector α of positive reals is a natural

family of continuous multivariate probability distributions. The support of the Dirichlet

Distribution is the unit simplex whose dimension is the same as the dimension of α. Let

α be a r dimensional vector. Then for a vector θ ∈ Rr in the r dimensional simplex, its

probability density is given by
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Pr[θ|α] =
Γ(
∑r

i=1 αi)∏r
i=1 Γ(αi)

r∏
i=1

θαi−1
i ,

where Γ is the Gamma function. In particular, when all the αi’s are equal to one, the

Dirichlet Distribution is just the uniform random distribution over the probability simplex.

The expectation and variance of θi’s are easy to compute given the parameters α. We

denote α0 = |α|1 =
∑r

i=1 αi, then the ratio αi/α0 should be interpreted as the “size” of the

i-th variable θi, and α0 shows whether the distributions is concentrated in the interior (when

α0 is large) or near the boundary (when α0 is small). The first two moments of Dirichlet

Distribution is listed as below:

E[θi] =
αi
α0

.

E[θiθj] =


αiαj

α0(α0+1)
when i 6= j

αi(αi+1)
α0(α0+1)

when i = j
.

Suppose the Dirichlet distribution has maxαi/minαi = a and the sum of parameters is

α0; we give an algorithm that computes close estimates to the vector of parameters α given

a sufficiently close estimate to the co-variance matrix R(T ) (Theorem 3.19). Combining this

with Theorem 3.4, we obtain the following corollary:

Theorem 3.17. There is an algorithm that learns the topic matrix A with high probability

up to an additive error of ε from at most

m = max

{
O

(
log n · a6r8(α0 + 1)4

ε2p6N

)
, O

(
log r · a2r4(α0 + 1)2

ε2

)}

documents sampled from the LDA model and runs in time polynomial in n, m. Furthermore,

we also recover the parameters of the Dirichlet distribution to within an additive ε.
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Our main goal in this section is to bound the `1-condition number of the Dirichlet dis-

tribution (Section 3.4.1), and using this we show how to recover the parameters of the

distribution from its covariance matrix (Section 3.4.2).

3.4.1 Condition Number of a Dirichlet Distribution

There is a well-known meta-principle that if a matrix W is chosen by picking its columns

independently from a fairly diffuse distribution, then it will be far from low rank. However,

our analysis will require us to prove an explicit lower bound on Γ(R(T )). We now prove such

a bound when the columns of W are chosen from a Dirichlet distribution with parameter

vector α. We note that it is easy to establish such bounds for other types of distributions

as well. Recall that we defined R(T ) in Section 3.1, and here we will abuse notation and

throughout this section we will denote by R(α) the matrix R(T ) where T is a Dirichlet

distribution with parameter α.

Let α0 =
∑r

i=1 αi. The mean, variance and co-variance for a Dirichlet distribution are

well-known, from which we observe that R(α)i,j is equal to
αiαj

α0(α0+1)
when i 6= j and is equal

to αi(αi+1)
α0(α0+1)

when i = j.

Lemma 3.18. The `1 condition number of R(α) is at least 1
2(α0+1)

.

Proof. As the entries R(α)i,j is
αiαj

α0(α0+1)
when i 6= j and αi(αi+1)

α0(α0+1)
when i = j, after normal-

ization R(α) is just the matrix D′ = 1
α0+1

(α× (1, 1, ..., 1) + I) where × is outer product and

I is the identity matrix.

Let x be a vector such that |x|1 = 1 and |D′x|1 achieves the minimum in Γ(R(α)) and

let I = {i|xi ≥ 0} and let J = Ī be the complement. We can assume without loss of

generality that
∑

i∈I xi ≥ |
∑

i∈J xi| (otherwise just take −x instead). The product D′x is∑
xi

α0+1
α+ 1

α0+1
x. The first term is a nonnegative vector and hence for each i ∈ I, (D′x)i ≥ 0.
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This implies that

|D′x|1 ≥
1

α0 + 1

∑
i∈I

xi ≥
1

2(α0 + 1)
.

3.4.2 Recovering the Parameters of a Dirichlet Distribution

When the variance covariance matrix R(α) is recovered with error εR in `1 norm when

viewed as a vector, we can use Algorithm 3.4: Dirichlet to compute the parameters for

the Dirichlet.

Algorithm 3.4. Dirichlet Parameters

input matrix R
output Dirichlet parameters α

Set α/α0 = R1.
Let i be the row with smallest `1 norm, let u = Ri.i and v = αi/α0.

Set α0 = 1−u/v
u/v−v .

Output α = α0 · (α/α0).

Theorem 3.19. When the variance covariance matrix R(α) is recovered with error εR in

`1 norm when viewed as a vector, the procedure Dirichlet(R) learns the parameter of the

Dirichlet distribution with error at most O(ar(α0 + 1)εR).

Proof. The αi/α0’s all have error at most εR. The value u is αi
α0

αi+1
α0+1

± εR and the value v is

αi/α0 ± εR. Since v ≥ 1/ar we know the error for u/v is at most 2arεR. Finally we need to

bound the denominator αi+1
α0+1

− αi
α0
> 1

2(α0+1)
(since αi

α0
≤ 1/r ≤ 1/2). Thus the final error is

at most 5ar(α0 + 1)εR.

3.5 Obtaining Almost Anchor Words

In this section, we prove Theorem 3.9, which we restate here:
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Theorem 3.20. Suppose M = AW where W and M are normalized to have rows sum up

to 1, A is separable and W is γ-robustly simplicial. When ε < γ/100 there is a polynomial

time algorithm that given M̃ such that for all rows |M̃ i − M i|1 < ε, finds r row (almost

anchor words) in M̃ . The i-th almost anchor word corresponds to a row in M that can be

represented as (1 − O(ε/γ))W i + O(ε/γ)W−i. Here W−i is a vector in the convex hull of

other rows in W with unit length in `1 norm.

The major weakness of the algorithm in [11] is that it only considers the `1 norm. How-

ever in an r dimensional simplex there is another natural measure of distance more suited

to our purposes: since each point is a unique convex combination of the vertices, we can

view this convex combination as a probability distribution and use statistical distance (on

this representation) as a norm for points inside the simplex. We will in fact need a slight

modification to this norm, since we would like it to extend to points outside the simplex too:

Definition 3.21 ((δ, ε)-close). A point M ′j is (δ, ε)-close to M ′i if and only if

min
ck≥0,

∑n
k=1 ck=1,cj≥1−δ

|M ′i −
n∑
k=1

ckM
′k|1 ≤ ε.

Intuitively think of point M ′j is (δ, ε)-close to M ′i if M ′i is ε close in `1 distance to some

point Q, where Q is a convex combination of the rows of M ′ that places at least 1− δ weight

on M ′j. Notice that this definition is not a distance since it is not symmetric, but we will

abuse notation and nevertheless call it a distance function. We remark that this distance is

easy to compute: To check whether M ′j is (δ, ε)-close to M ′i we just need to solve a linear

program that minimizes the `1 distance when the c vector is a probability distribution with

at least 1− δ weight on j (the constraints on c are clearly all linear).

We also consider all points that a row M ′j is close to, this is called the neighborhood of

M ′j.
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Definition 3.22 ((δ, ε)-neighborhood). The (δ, ε)-neighborhood of M ′j are the rows M ′i

such that M ′j is (δ, ε)-close to M ′i.

For each point M ′j, we know its original (unperturbed) point Mj is in a convex combi-

nation of W i’s: M j =
∑r

i=1Aj,iW
i. Separability implies that for any column index i there

is a row f(i) in A whose only nonzero entry is in the ith column. Then M f(i) = W i and

consequently |M ′f(i) −W i|1 < ε. Let us call these rows M ′f(i) for all i the canonical rows.

From the above description the following claim is clear.

Claim. Every row M ′j has `1-distance at most 2ε to the convex hull of canonical rows.

Proof. We have:

|M ′j −
r∑

k=1

Aj,kM
′f(k)|1 ≤ |M ′j −M j|1 + |M j −

r∑
k=1

Aj,kM
f(k)|1 + |

r∑
k=1

Aj,k(M
f(k) −M ′f(k))|1

and we can bound the right hand side by 2ε.

The algorithm will distinguish rows that are close to vertices and rows that are far

by testing whether each row is close (in `1 norm) to the convex hull of rows outside its

neighborhood. In particular, we define a robust loner as:

Definition 3.23 (robust loner). We call a row M ′j a robust-loner if it has `1 distance at

most 2ε to the convex hull of rows that are outside its (6ε/γ, 2ε) neighborhood.

Our goal is to show that a row is a robust loner if and only if it is close to some row in

W . The following lemma establishes one direction:

Lemma 3.24. If Aj,t is smaller than 1− 10ε/γ, the point M ′j cannot be (6ε/γ, 2ε)-close to

the canonical row that corresponds to W>.

Proof. Assume towards contradiction that M ′j is (6ε/γ, 2ε)-close to the canonical row M ′i

which is a perturbation of W>. By definition there must be probability distribution c ∈ Rn
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over the rows such that cj ≥ 1−6ε/γ, and |M ′i−∑n
k=1 ckM

′k|1 ≤ 2ε. Now we instead consider

the unperturbed matrix M , since every row of M ′ is ε close (in `1 norm) to M we know

|M i −∑n
k=1 ckM

k|1 ≤ 4ε. Now we represent M i and
∑n

k=1 ckM
k as convex combinations

of rows of W and consider the coefficient on W>. Clearly M i = W> so the coefficient is 1.

But for
∑n

k=1 ckM
k, since cj ≥ 1 − 6ε/γ and the coefficient Aj,t ≤ 1 − 10ε/γ, we know the

coefficient of W> in the sum must be strictly smaller than 1 − 10ε/γ + 6ε/γ = 1 − 4ε/γ.

By the robustly simplicial assumption M i and
∑n

k=1 ckM
k must be more than 4ε/γ · γ = 4ε

apart in `1 norm, which contradicts our assumption.

As a corollary:

Corollary 3.25. If Aj,t is smaller than 1− 10ε/γ for all t, the row M ′j cannot be a robust

loner.

Proof. By the above lemma, we know the canonical rows are not in the (6ε/γ, 2ε) neighbor-

hood of M ′j. Thus by Claim 3.5 the row is close to the convex hull of canonical rows and

cannot be a robust loner.

Next we prove the other direction: a canonical row is necessarily a robust loner:

Lemma 3.26. All canonical rows are robust loners.

Proof. Suppose M ′i is a canonical row that corresponds to W>. We first observe that all

the rows that are outside the (6ε/γ, 2ε) neighborhood of M ′j must have Aj,t < 1 − 6ε/γ.

This is because when Aj,t ≥ 1 − 6ε/γ we have M j −∑r
k=1Aj,tW

> = 0. If we replace M j

by M ′j and W> by the corresponding canonical row, the distance is still at most 2ε and the

coefficient on M ′i is at least 1− 6ε/γ. By definition the corresponding row M ′j must be in

the neighborhood of M ′i.

Now we try to represent M ′i with convex combination of rows that has Aj,t < 1− 6ε/γ.

However this is impossible because every point in the convex combination will also have
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weight smaller than 1 − 6ε/γ on W>, while M i has weight 1 on W>. The `1 distance

between Mi and the convex combination of the Mj’s where Aj,t < 1 − 6ε/γ is a least 6ε by

robust simplicial property. Even when the points are perturbed by ε (in `1) the distance can

change by at most 2ε and is still more than 2ε. Therefore M ′i is a robust loner.

Now we can prove the main theorem of this section:

Proof. Suppose we know γ and 100ε < γ.When γ is so small we have the following claim:

Claim. If Aj,t and Ai,l is at least 1− 10ε/γ, and t 6= l, then M ′j cannot be (10ε/γ, 2ε)-close

to M ′i and vice versa.

The proof is almost identical to Lemma 3.24. Also, the canonical row that corresponds

to W> is (10ε/γ, 2ε) close to all rows with Aj,t ≥ 1− 10ε/γ. Thus if we connect two robust

loners when one is (10ε/γ, 2ε) close to the other, the connected component of the graph will

exactly be a partition according to the row in W that the robust loner is close to. We pick

one robust loner in each connected component to get the almost anchor words.

Now suppose we don’t know γ. In this case the problem is we don’t know what is the

right size of neighborhood to look at. However, since we know γ > 100ε, we shall first run

the algorithm with γ = 100ε to get r rows W ′ that are very close to the true rows in W . It

is not hard to show that these rows are at least γ/2 robustly simplicial and at most γ + 2ε

robustly simplicial. Therefore we can compute the γ(W ′) parameter for this set of rows and

use γ(W ′)− 2ε as the γ parameter.

3.6 Maximum Likelihood Estimation is Hard

Here we prove that computing the Maximum Likelihood Estimate (MLE) of the parameters

of a topic model is NP -hard. We call this problem the Topic Model Maximum Likelihoood

Estimation (TM-MLE) problem:
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Definition 3.27 (TM-MLE). Given m documents and a target of r topics, the TM-MLE

problem asks to compute the topic matrix A that has the largest probability of generating

the observed documents (when the columns of W are generated by a uniform Dirichlet

distribution).

Surprisingly, this appears to be the first proof that computing the MLE estimate in a

topic model is indeed computationally hard, although its hardness is certainly to be expected.

On a related note, Sontag and Roy [143] recently proved that given the topic matrix and a

document, computing the Maximum A Posteriori (MAP) estimate for the distribution on

topics that generated this document is NP -hard. Here we will establish that TM-MLE is

NP -hard via a reduction from the MIN-BISECTION problem: In MIN-BISECTION the

input is a graph with n vertices (n is an even integer), and the goal is to partition the

vertices into two equal sized sets of n/2 vertices each so as to minimize the number of edges

crossing the cut.

Theorem 3.28. There is a polynomial time reduction from MIN-BISECTION to TM-MLE

(r = 2).

Proof. Suppose we are given an instance G of the MIN-BISECTION problem with n vertices

and m edges. We will now define an instance of the TM-MLE problem. First, we set the

number of words to be n. For each word i, we construct N = d200m3 log ne documents each

of which contain the word i twice and no other words. For each edge in the graph G, we

construct a document whose two words correspond to the endpoints of the edge.

Suppose that x = (x1, x2)> is generated by the Dirichlet distribution Dir(1, 1). Conse-

quently the probability that words i and j appear in a document with only two words is

exactly (Aix)·(Ajx). We can take the expectation of this term over the Dirichlet distribution

Dir(1, 1) and hence the probability that a document (with exactly two words) contains the

words i and j is

E[(Aix) · (Ajx)] =
1

3
(Ai · Aj) +

1

6
(Ai1A

j
2 + Aj1A

i
2)
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In the TM-MLE problem, our goal is to maximize the following objective function (which is

the log of the probability of generating the collection of documents):

OBJ =
∑

document = {i, j}
log

[
1

3
(Ai · Aj) +

1

6
(Ai1A

j
2 + Aj1A

i
2)

]
.

For any bisection, we define a canonical solution: the first topic is uniform on all words

on one side of the bisection and the second topic is uniform on all words on the other side

of the bisection.To prove the correctness of our reduction, a key step is to show that any

candidate solution to the MLE problem must be close to a canonical solution. In particular,

we show the following:

1. The rows Ai have almost the same `1 norm.

2. In each row Ai, almost all of the weight will be in one of the two topics.

Indeed, canonical solutions have large objective value. Any canonical solution has objec-

tive value at least −Nn log 3n2/4−m log 3n2/2 (this is because documents with same words

contribute − log 3n2/4 and documents with different words contribute at least − log 3n2/2).

Recall, in our reductionN is large. Roughly, if one of the rows has `1 norm that is bounded

away from 2/n by at least 1/20nm, the contribution (to the objective function) of documents

with a repeated word will decrease significantly and the solution cannot be optimal. To prove

this we use the fact that the function log x2 = 2 log x is concave. Therefore when one of the

rows has `1 norm more than 2/n+1/20nm, the optimal value for documents with a repeated

word will be attained when all other rows have the same `1 norm 2/n − 1/20nm(n − 1).

Using a Taylor expansion, we conclude that the sum of terms for documents with a repeated

word will decrease by at least N/50m2 which is much larger than any effect the remaining

m documents can recoup. In fact, an identical argument establishes that in each row Ai, the

topic with smaller weight will always have weight smaller than 1/20nm.
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Now we claim that among canonical solutions, the one with largest objective value corre-

sponds to a minimum bisection. The proof follows from the observation that the value of the

objective function is −Nn log 3n2/4−k log 3n2/2− (m−k) log 3n2/4 for canonical solutions,

where k is the number of edges cut by the bisection. In particular, the objective function of

the minimum bisection will be at least an additive log 2 larger than the objective function

of a non-minimum bisection.

However, even if the canonical solution is perturbed by 1/20nm, the objective function

will only change by at most m · 1/10m = 1/10, which is much smaller than log 2
2

. And this

completes our reduction.

We remark that the canonical solutions in our reduction are all separable, and hence this

reduction applies even when the topic matrix A is known (and required) to be separable.

So, even in the case of a separable topic matrix, it is NP -hard to compute the MLE.
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Chapter 4

Practical Implementations and

Experiments

In this chapter we show how to implement the algorithm in Chapter 3 efficiently. The

algorithm produces results comparable to the best MCMC implementations while running

orders of magnitude faster.

The algorithm in Chapter 3 is not very practical for several reasons. First, the algorithm

requires solving many linear programs, which are very slow in practice. We need to replace

linear programming with a combinatorial anchor-word selection algorithm. Second, the re-

covery algorithm relies on matrix inversion, which is notoriously unstable and can potentially

produce negative entries. In this chapter we present a simple probabilistic interpretation of

topic recovery given anchor words that replaces matrix inversion with a new gradient-based

inference method.

After implementing the algorithm, we study both the empirical sample complexity of the

algorithms on synthetic distributions and the performance of the algorithms on real-world

document corpora. We find that our algorithm performs as well as collapsed Gibbs sampling

on a variety of metrics, and runs at least an order of magnitude faster.
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Algorithm 4.1. High Level Algorithm

input Textual corpus D, Number of anchors K, Tolerance parameters εa, εb > 0.
output Word-topic matrix A, topic-topic matrix R
Q←Word Co-occurences(D)
Form {Q̄1, Q̄2, ...Q̄V }, the normalized rows of Q.
S ← FastAnchorWords({Q̄1, Q̄2, ...Q̄V }, K, εa) (Algorithm 4.3)
A,R← RecoverKL(Q,S, εb) (Algorithm 4.2)
return A,R

The rest of the chapter is organized as follows: in Section 4.1 we introduce the main

framework of the algorithm, and show how the recovery step can be replaced by a prob-

abilistic approach. The proofs of new recovery algorithms are deferred to Section 4.4. In

Section 4.2 we give a combinatorial NMF algorithm that is much faster than the ones in pre-

vious Chapters. The proof of the algorithm is deferred to Section 4.5. Section 4.3 introduces

the methodology of experiments and present the results.

4.1 A Probabilistic Approach to Exploiting Separabil-

ity

Recall that the algorithm in Chapter 3 has two steps: anchor selection, which identifies

anchor words, and recovery, which recovers the parameters of A and of τ . Both anchor

selection and recovery take as input the matrix Q (of size V ×V ) of word-word co-occurrence

counts, whose construction is described in the supplementary material. Q is normalized so

that the sum of all entries is 1. The high-level flow of our complete learning algorithm is

described in Algorithm 4.1, and follows the same two steps. In this section we will introduce

a new recovery method based on a probabilistic framework. We defer the discussion of anchor

selection to the next section, where we provide a purely combinatorial algorithm for finding

the anchor words.
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Algorithm 4.2. RecoverKL

input Matrix Q, Set of anchor words S, tolerance parameter ε.
output Matrices A,R

Normalize the rows of Q to form Q̄.
Store the normalization constants pw = Q1.
Q̄sk is the row of Q̄ for the kth anchor word.
for i = 1, ..., V do

Solve Ci· = arg minCi DKL(Q̄i||
∑

k∈SCi,kQ̄sk)
Subject to:

∑
k Ci,k = 1 and Ci,k ≥ 0

With tolerance: ε
end for
A′ = diag(pw)C
Normalize the columns of A′ to form A.
R = A†QA†

T

return A,R

Here we adopt a new probabilistic approach, which we describe below after introducing

some notation. Consider any two words in a document and call them w1 and w2, and let z1

and z2 refer to their topic assignments. We will use Ai,k to index the matrix of word-topic

distributions, i.e. Ai,k = Pr(w1 = i|z1 = k) = Pr(w2 = i|z2 = k). Given infinite data,

the elements of the Q matrix can be interpreted as Qi,j = Pr(w1 = i, w2 = j). The row-

normalized Q matrix, denoted Q̄, which plays a role in both finding the anchor words and

the recovery step, can be interpreted as a conditional probability Q̄i,j = Pr(w2 = j|w1 = i).

Denoting the indices of the anchor words as S = {s1, s2, ..., sK}, the rows indexed by

elements of S are special in that every other row of Q̄ lies in the convex hull of the rows

indexed by the anchor words. To see this, first note that for an anchor word sk,

Q̄sk,j =
∑
k′

Pr(z1 = k′|w1 = sk) Pr(w2 = j|z1 = k′) (4.1)

=Pr(w2 = j|z1 = k), (4.2)
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where (4.1) uses the fact that in an admixture model w2⊥w1 | z1, and (4.2) is because

Pr(z1 = k|w1 = sk) = 1. For any other word i, we have

Q̄i,j =
∑
k

Pr(z1 = k|w1 = i) Pr(w2 = j|z1 = k).

Denoting the probability Pr(z1 = k|w1 = i) as Ci,k, we have Q̄i,j =
∑

k Ci,kQ̄sk,j. Since C is

non-negative and
∑

k Ci,k = 1, we have that any row of Q̄ lies in the convex hull of the rows

corresponding to the anchor words. The mixing weights give us Pr(z1|w1 = i)! Using this

together with Pr(w1 = i), we can recover the A matrix simply by using Bayes’ rule:

Pr(w1 = i|z1 = k) =
Pr(z1 = k|w1 = i) Pr(w1 = i)∑
i′ Pr(z1 = k|w1 = i′)p(w1 = i′)

.

Finally, we observe that Pr(w1 = i) is easy to solve for since
∑

j Qi,j =
∑

j p(w1 = i, w2 =

j) = Pr(w1 = i).

Our new algorithm finds, for each row of the empirical row normalized co-occurrence

matrix, Q̂i, the coefficients Pr(z1|w1 = i) that best reconstruct it as a convex combination

of the rows that correspond to anchor words. This step can be solved quickly and in parallel

(independently) for each word using the exponentiated gradient algorithm. Once we have

Pr(z1|w1), we recover the A matrix using Bayes’ rule. The full algorithm using KL divergence

as an objective is found in Algorithm 4.2. Further details of the exponentiated gradient

algorithm are given in the supplementary material.

One reason to use KL divergence as the measure of reconstruction error is that the recov-

ery procedure can then be understood as maximum likelihood estimation. In particular, we

seek the parameters Pr(w1), Pr(z1|w1), Pr(w2|z1) that maximize the likelihood of observing

the word co-occurence counts, Q̂. However, the optimization problem does not explicitly

constrain the parameters to correspond an admixture model.
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We can also define a similar algorithm using quadratic loss, which we call RecoverL2.

This formulation has the extremely useful property that both the objective and gradient can

be kernelized so that the optimization problem is independent of the vocabulary size. To see

this, notice that the objective can be re-written as

||Qi − CT
i QS||2 = ||Qi||2 − 2Ci(QSQ

T

i ) + CT
i (QSQ

T

S)Ci,

where QSQ
T

S is K×K and can be computed once and used for all words, and QSQ
T

i is K×1

and can be computed once prior to running the exponentiated gradient algorithm for word

i.

To recover the R matrix for an admixture model, recall that Q = ARAT . This may be an

over-constrained system of equations with no solution for R, but we can find a least-squares

approximation to R by pre- and post-multiplying Q by the pseudo-inverse A†. For the special

case of LDA we can learn the Dirichlet hyperparameters. Recall that in applying Bayes’ rule

we calculated Pr(z1) =
∑

i′ Pr(z1|w1 = i′) Pr(w1 = i′). These values for Pr(z) specify the

Dirichlet hyperparameters up to a constant scaling. This constant could be recovered from

the R matrix using Algorithm 3.4, but in practice we find it is better to choose it using a

grid search to maximize the likelihood of the training data.

4.2 A Combinatorial Algorithm for Finding Anchor

Words

Here we consider the anchor selection step of the algorithm where our goal is to find the

anchor words. In the infinite data case where we have infinitely many documents, the convex

hull of the rows in Q will be a simplex where the vertices of this simplex correspond to the

anchor words.
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Algorithm 4.3. FastAnchorWords

Input: V points {d1,d2, ...dV } in V dimensions, almost in a simplex with K vertices and
ε > 0
Output: K points that are close to the vertices of the simplex.

Project the points di to a randomly chosen 4 log V/ε2 dimensional subspace
S ← {di} s.t. di is the farthest point from the origin.
for i = 1 TO K − 1 do

Let dj be the point in {d1, . . . ,dV } that has the largest distance to span(S).
S ← S ∪ {dj}.

end for
S = {v′1,v′2, ...v′K}.
for i = 1 TO K do

Let dj be the point that has the largest distance to span({v′1,v′2, ...,v′K}\{v′i})
Update v′i to dj

end for
return {v′1,v′2, ...,v′K}.

Notation: span(S) denotes the subspace spanned by the points in the set S. We compute the

distance from a point x to the subspace span(S) by computing the norm of the projection of x onto

the orthogonal complement of span(S).

Since we only have a finite number of documents, the rows of Q are only an approximation

to their expectation. We are therefore given a set of V points d1,d2, ...dV that are each a

perturbation of a1,a2, ...aV whose convex hull P defines a simplex. We would like to find an

approximation to the vertices of P . This is the same as the problems we solved in Section 2.5

and Section 3.5.

In this section we describe a purely combinatorial algorithm for this task that avoids linear

programming altogether. The new “FastAnchorWords” algorithm is given in Algorithm 4.3.

To find all of the anchor words, our algorithm iteratively finds the furthest point from the

subspace spanned by the anchor words found so far.

Since the points we are given are perturbations of the true points, we cannot hope to find

the anchor words exactly. Nevertheless, the intuition is that even if one has only found r

points S that are close to r (distinct) anchor words, the point that is furthest from span(S)

will itself be close to a (new) anchor word. The additional advantage of this procedure is
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that when faced with many choices for a next anchor word to find, our algorithm tends to

find the one that is most different than the ones we have found so far.

The main contribution of this section is a proof that the FastAnchorWords algorithm

succeeds in finding K points that are close to anchor words. To precisely state the guarantees,

we use a similar notion of robustness as Section 2.5 (but notice that they are different because

of different norms used):

Definition 4.1. A simplex P is γ-robust if for every vertex v of P , the `2 distance between

v and the convex hull of the rest of the vertices is at least γ.

In most reasonable settings the parameters of the topic model define lower bounds on the

robustness of the polytope P . For example, in LDA, this lower bound is based on the largest

ratio of any pair of hyper-parameters in the model [12]. Our goal is to find a set of points that

are close to the vertices of the simplex, and to make this precise we introduce the following

definition:

Definition 4.2. Let a1,a2, ...aV be a set of points whose convex hull P is a simplex with

vertices v1,v2, ...vK . Then we say ai ε-covers vj if when aj is written as a convex combi-

nation of the vertices as ai =
∑

j cjvj , then cj ≥ 1− ε. Furthermore we will say that a set

of K points ε-covers the vertices if each vertex is ε covered by some point in the set.

We will prove the following theorem: suppose there is a set of points A = a1,a2, ...aV

whose convex hull P is γ-robust and has vertices v1,v2, ...vK (which appear in A) and that

we are given a perturbation d1,d2, ...dV of the points so that for each i, ‖ai−di‖ ≤ ε, then:

Theorem 4.3. There is a combinatorial algorithm that runs in time Õ(V 2 + V K/ε2) 1 and

outputs a subset of {d1, . . . ,dV } of size K that O(ε/γ)-covers the vertices provided that

20Kε/γ2 < γ.

1In practice we find setting dimension to 1000 works well. The running time is then O(V 2 + 1000V K).
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This new algorithm not only helps us avoid linear programming altogether in inferring

the parameters of a topic model, but also can be used to solve the nonnegative matrix

factorization problem under the separability assumption, again without resorting to linear

programming. Our analysis rests on the following lemmas, whose proof we defer to the

supplementary material. Suppose the algorithm has found a set S of k points that are each

δ-close to distinct vertices in {v1,v2, ...,vK} and that δ < γ/20K.

Lemma 4.4. There is a vertex vi whose distance from span(S) is at least γ/2.

The proof of this lemma is based on a volume argument, and the connection between the

volume of a simplex and the determinant of the matrix of distances between its vertices.

Lemma 4.5. The point dj found by the algorithm must be δ = O(ε/γ2) close to some vertex

vi.

This lemma is used to show that the error does not accumulate too badly in our algorithm,

since δ only depends on ε, γ (not on the δ used in the previous step of the algorithm). This

prevents the error from accumulating exponentially in the dimension of the problem, which

would be catastrophic for our proof.

After running the first phase of our algorithm, we run a cleanup phase (the second loop

in Alg. 4.3) that can reduce the error in our algorithm. When we have K − 1 points close

to K − 1 vertices, only one of the vertices can be far from their span. The farthest point

must be close to this missing vertex. The following lemma shows that this cleanup phase

can improve the guarantees of Lemma 4.5:

Lemma 4.6. Suppose |S| = K − 1 and each point in S is δ = O(ε/γ2) < γ/20K close to

some vertex vi, then the farthest point v′j found by the algorithm is 1− O(ε/γ) close to the

remaining vertex.

This algorithm is a greedy approach to maximizing the volume of the simplex. The larger

the volume is, the more words per document the resulting model can explain. Better anchor
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word selection is an open question for future work. We have experimented with a variety of

other heuristics for maximizing simplex volume, with varying degrees of success.

4.3 Experimental Results

We compare three parameter recovery methods, Recover [12], RecoverKL and RecoverL2 to

a fast implementation of Gibbs sampling [122].2 Linear programming-based anchor word

finding is too slow to be comparable, so we use FastAnchorWords for all three recovery

algorithms. Using Gibbs sampling we obtain the word-topic distributions by averaging over

10 saved states, each separated by 100 iterations, after 1000 burn-in iterations.

4.3.1 Methodology

We train models on two synthetic data sets to evaluate performance when model assumptions

are correct, and real documents to evaluate real-world performance. To ensure that synthetic

documents resemble the dimensionality and sparsity characteristics of real data, we generate

semi-synthetic corpora. For each real corpus, we train a model using MCMC and then

generate new documents using the parameters of that model (these parameters are not

guaranteed to be separable).

We use two real-world data sets, a large corpus of New York Times articles (295k

documents, vocabulary size 15k, mean document length 298) and a small corpus of NIPS

abstracts (1100 documents, vocabulary size 2500, mean length 68). Vocabularies were pruned

with document frequency cutoffs. We generate semi-synthetic corpora of various sizes from

models trained with K = 100 from NY Times and NIPS, with document lengths set to 300

and 70, respectively, and with document-topic distributions drawn from a Dirichlet with

symmetric hyperparameters 0.03.

2We were not able to obtain [9]’s implementation of their algorithm, and our own implementation is too
slow to be practical.
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We use a variety of metrics to evaluate models: For the semi-synthetic corpora, we can

compute reconstruction error between the true word-topic matrix A and learned topic

distributions. Given a learned matrix Â and the true matrix A, we use an LP to find the

best matching between topics. Once topics are aligned, we evaluate `1 distance between

each pair of topics. When true parameters are not available, a standard evaluation for

topic models is to compute held-out probability, the probability of previously unseen

documents under the learned model. This computation is intractable but there are reliable

approximation methods [33, 158]. Topic models are useful because they provide interpretable

latent dimensions. We can evaluate the semantic quality of individual topics using a

metric called Coherence. Coherence is based on two functions, D(w) and D(w1, w2), which

are number of documents with at least one instance of w, and of w1 and w2, respectively

[126]. Given a set of words W , coherence is

Coherence(W) =
∑

w1,w2∈W

log
D(w1, w2) + ε

D(w2)
. (4.3)

The parameter ε = 0.01 is used to avoid taking the log of zero for words that never co-occur

[146]. This metric has been shown to correlate well with human judgments of topic quality.

If we perfectly reconstruct topics, all the high-probability words in a topic should co-occur

frequently, otherwise, the model may be mixing unrelated concepts. Coherence measures the

quality of individual topics, but does not measure redundancy, so we measure inter-topic

similarity. For each topic, we gather the set of the N most probable words. We then count

how many of those words do not appear in any other topic’s set of N most probable words.

Some overlap is expected due to semantic ambiguity, but lower numbers of unique words

indicate less useful models.
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Figure 4.1: Training time on synthetic NIPS documents.

4.3.2 Efficiency

The Recover algorithms, in Python, are faster than a heavily optimized Java Gibbs sampling

implementation [165]. Fig. 4.1 shows the time to train models on synthetic corpora on

a single machine. Gibbs sampling is linear in the corpus size. RecoverL2 is also linear

(ρ = 0.79), but only varies from 33 to 50 seconds. Estimating Q is linear, but takes only 7

seconds for the largest corpus. FastAnchorWords takes less than 6 seconds for all corpora.

4.3.3 Semi-synthetic documents

The new algorithms have good `1 reconstruction error on semi-synthetic documents, espe-

cially for larger corpora. Results for semi-synthetic corpora drawn from topics trained on

NY Times articles are shown in Fig. 4.2 for corpus sizes ranging from 50k to 2M synthetic

documents. In addition, we report results for the three Recover algorithms on “infinite data,”

that is, the true Q matrix from the model used to generate the documents. Error bars show

variation between topics. Recover performs poorly in all but the noiseless, infinite data set-

ting. Gibbs sampling has lower `1 with smaller corpora, while the new algorithms get better

recovery and lower variance with more data (although more sampling might reduce MCMC

error further).

Results for semi-synthetic corpora drawn from NIPS topics are shown in Fig. 4.3. Re-

cover does poorly for the smallest corpora (topic matching fails for D = 2000, so `1 is not

meaningful), but achieves moderate error for D comparable to the NY Times corpus. Re-
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Figure 4.2: `1 error for a semi-synthetic model generated from a model trained on NY Times
articles with K = 100. The horizontal line indicates the `1 error of K uniform distributions.
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Figure 4.3: `1 error for a semi-synthetic model generated from a model trained on NIPS
papers with K = 100. Recover fails for D = 2000.

coverKL and RecoverL2 also do poorly for the smallest corpora, but are comparable to or

better than Gibbs sampling, with much lower variance, after 40,000 documents.

4.3.4 Effect of separability

The non-negative algorithms are more robust to violations of the separability assumption

than the original Recover algorithm. In Fig. 4.3, Recover does not achieve zero `1 error

even with noiseless “infinite” data. Here we show that this is due to lack of separability. In

our semi-synthetic corpora, documents are generated from the LDA model, but the topic-

word distributions are learned from data and may not satisfy the anchor words assumption.

We test the sensitivity of algorithms to violations of the separability condition by adding a

synthetic anchor word to each topic that is by construction unique to the topic. We assign

the synthetic anchor word a probability equal to the most probable word in the original

topic. This causes the distribution to sum to greater than 1.0, so we renormalize. Results

are shown in Fig. 4.4. The `1 error goes to zero for Recover, and close to zero for RecoverKL
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Figure 4.4: When we add artificial anchor words before generating synthetic documents, `1

error goes to zero for Recover and close to zero for RecoverKL and RecoverL2.
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Figure 4.5: `1 error increases as we increase topic correlation. We use the same K = 100
topic model from NY Times articles, but add correlation: TOP ρ = 0.05, BOTTOM ρ = 0.1.

and RecoverL2. The reason RecoverKL and RecoverL2 do not reach exactly zero is because

we do not solve the optimization problems to perfect optimality.

4.3.5 Effect of correlation

The theoretical guarantees of the new algorithms apply even if topics are correlated. To test

how algorithms respond to correlation, we generated new synthetic corpora from the same

K = 100 model trained on NY Times articles. Instead of a symmetric Dirichlet distribution,

we use a logistic normal distribution with a block-structured covariance matrix. We partition

topics into 10 groups. For each pair of topics in a group, we add a non-zero off-diagonal

element to the covariance matrix. This block structure is not necessarily realistic, but shows

the effect of correlation. Results for two levels of covariance (ρ = 0.05, ρ = 0.1) are shown

in Fig. 4.5. Results for Recover are much worse in both cases than the Dirichlet-generated

corpora in Fig. 4.2. The other three algorithms, especially Gibbs sampling, are more robust

to correlation, but performance consistently degrades as correlation increases, and improves
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Figure 4.6: Held-out probability (per token) is similar for RecoverKL, RecoverL2, and Gibbs
sampling. RecoverKL and RecoverL2 have better coherence, but fewer unique words than
Gibbs. (Up is better for all three metrics.)

with larger corpora. With infinite data `1 error is equal to `1 error in the uncorrelated

synthetic corpus (non-zero because of violations of the separability assumption).

4.3.6 Real documents

The new algorithms produce comparable quantitative and qualitative results on real data.

Fig. 4.6 shows three metrics for both corpora. Error bars show the distribution of log

probabilities across held-out documents (top panel) and coherence and unique words across

topics (center and bottom panels). Held-out sets are 230 documents for NIPS and 59k

for NY Times. For the small NIPS corpus we average over 5 non-overlapping train/test

splits. The matrix-inversion in Recover failed for the smaller corpus (NIPS). In the larger

corpus (NY Times), Recover produces noticeably worse held-out log probability per token

than the other algorithms. Gibbs sampling produces the best average held-out probability

(p < 0.0001 under a paired t-test), but the difference is within the range of variability

between documents. We tried several methods for estimating hyperparameters, but the

observed differences did not change the relative performance of algorithms. Gibbs sampling
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Table 4.1: Example topic pairs from NY Times (closest `1), anchor words in bold. All 100
topics are in suppl. material.

RecoverL2 run inning game hit season zzz anaheim angel
Gibbs run inning hit game ball pitch

RecoverL2 father family zzz elian boy court zzz miami
Gibbs zzz cuba zzz miami cuban zzz elian boy protest

RecoverL2 file sport read internet email zzz los angeles
Gibbs web site com www mail zzz internet

has worse coherence than the Recover algorithms, but produces more unique words per topic.

These patterns are consistent with semi-synthetic results for similarly sized corpora (details

are in supplementary material).

For each NY Times topic learned by RecoverL2 we find the closest Gibbs topic by `1

distance. The closest, median, and farthest topic pairs are shown in Table 4.1.3 We ob-

serve that when there is a difference, recover-based topics tend to have more specific words

(Anaheim Angels vs. pitch).

4.4 Proof for Nonnegative Recover Procedure

In order to show RecoverL2 learns the parameters even when the rows of Q̄ are perturbed,

we need the following lemma that shows when columns of Q̄ are close to the expectation,

the posteriors c computed by the algorithm is also close to the true value.

Lemma 4.7. For a γ robust simplex S with vertices {v1,v2, ...,vK}, let v be a point in

the simplex that can be represented as a convex combination v =
∑K

i=1 civi. If the vertices

of S are perturbed to S ′ = {...,v′i, ...} where ‖v′i − vi‖ ≤ δ1 and v is perturbed to v′ where

‖v − v′‖ ≤ δ2. Let v∗ be the point in S ′ that is closest to v′, and v∗ =
∑K

i=1 c
′
ivi, when

10
√
Kδ1 ≤ γ for all i ∈ [K] |ci − c′i| ≤ 4(δ1 + δ2)/γ.

3The UCI NY Times corpus includes named-entity annotations, indicated by the zzz prefix.
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Proof. Consider the point u =
∑K

i=1 civ
′
i, by triangle inequality: ‖u− v‖ ≤∑K

i=1 ci ‖vi − v′i‖ ≤

δ1. Hence ‖u− v′‖ ≤ ‖u− v‖ + ‖v − v′‖ ≤ δ1 + δ2, and u is in S ′. The point v∗ is the

point in S ′ that is closest to v′, so ‖v∗ − v′‖ ≤ δ1 + δ2 and ‖v∗ − u‖ ≤ 2(δ1 + δ2).

Then we need to show when a point (u) moves a small distance, its representation also

changes by a small amount. Intuitively this is true because S is γ robust. By Lemma 4.4

when 10
√
Kδ1 < γ, the simplex S ′ is also γ/2 robust. For any i, let Proji(v

∗) and Proji(u)

be the projections of v∗ and u in the orthogonal subspace of span(S ′\{v′i}), then

|ci − c′i| = ‖Proji(v∗)− Proji(u)‖ /dis(vi, span(S ′\{v′i})) ≤ 4(δ1 + δ2)/γ

and this completes the proof.

With this lemma it is not hard to show that RecoverL2 has polynomial sample complexity.

Theorem 4.8. When the number of documents M is at least

max{O(aK3 log V/D(γp)6ε), O((aK)3 log V/Dε3(γp)4)}

our algorithm using the conjunction of FastAnchorWords and RecoverL2 learns the A matrix

with entry-wise error at most ε.

Proof. (sketch) We can assume without loss of generality that each word occurs with prob-

ability at least ε/4aK and furthermore that if M is at least 50 log V/Dε2Q then the empirical

matrix Q̃ is entry-wise within an additive εQ to the true Q = 1
M

∑M
d=1AWdW

T
d A

T see [12]

for the details. Also, the K anchor rows of Q̄ form a simplex that is γp robust.

The error in each column of Q̄ can be at most δ2 = εQ
√

4aK/ε. By Theorem 4.13 when

20Kδ2/(γp)
2 < γp (which is satisfied when M = O(aK3 log V/D(γp)6ε)) , the anchor words

found are δ1 = O(δ2/(γp)) close to the true anchor words. Hence by Lemma 4.7 every entry

of C has error at most O(δ2/(γp)
2).
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With such number of documents, all the word probabilities p(w = i) are estimated more

accurately than the entries of Ci,j, so we omit their perturbations here for simplicity. When

we apply the Bayes rule, we know Ai,k = Ci,kp(w = i)/p(z = k), where p(z = k) is αk which

is lower bounded by 1/aK. The numerator and denominator are all related to entries of C

with positive coefficients sum up to at most 1. Therefore the errors δnum and δdenom are at

most the error of a single entry of C, which is bounded by O(δ2/(γp)
2). Applying Taylor’s

Expansion to (p(z = k, w = i) + δnum)/(αk + δdenom), the error on entries of A is at most

O(aKδ2/(γp)
2). When εQ ≤ O((γp)2ε1.5/(aK)1.5), we have O(aKδ2/(γp)

2) ≤ ε, and get the

desired accuracy of A. The number of document required is M = O((aK)3 log V/Dε3(γp)4).

The sample complexity for R can then be bounded using matrix perturbation theory.

4.5 Proof for Anchor-Words Finding Algorithm

Recall that the correctness of the algorithm depends on the following Lemmas:

Lemma 4.9. There is a vertex vi whose distance from span(S) is at least γ/2.

Lemma 4.10. The point ∆j found by the algorithm must be δ = O(ε/γ2) close to some

vertex vi.

In order to prove Lemma 4.4, we use a volume argument. First we show that the volume

of a robust simplex cannot change by too much when the vertices are perturbed.

Lemma 4.11. Suppose {v1,v2, ...,vK} are the vertices of a γ-robust simplex S. Let S ′ be

a simplex with vertices {v′1,v′2, ...,v′K}, each of the vertices v′i is a perturbation of vi and

‖v′i − vi‖2 ≤ δ. When 10
√
Kδ < γ the volume of the two simplices satisfy

vol(S)(1− 2δ/γ)K−1 ≤ vol(S ′) ≤ vol(S)(1 + 4δ/γ)K−1.

112



Proof. As the volume of a simplex is proportional to the determinant of a matrix whose

columns are the edges of the simplex, we first show the following perturbation bound for

determinant.

Claim. Let A, E be K×K matrices, the smallest eigenvalue of A is at least γ, the Frobenius

norm ‖E‖F ≤
√
Kδ, when γ > 5

√
Kδ we have

det(A+ E)/ det(A) ≥ (1− δ/γ)K .

Proof. Since det(AB) = det(A) det(B), we can multiply both A and A + E by A−1. Hence

det(A+ E)/ det(A) = det(I + A−1E).

The Frobenius norm of A−1E is bounded by

∥∥A−1E
∥∥
F
≤
∥∥A−1

∥∥ ‖E‖F ≤ √Kδ/γ.
Let the eigenvalues of A−1E be λ1, λ2, ..., λK , then by definition of Frobenius Norm∑K
i=1 λ

2
i ≤ ‖A−1E‖2

F ≤ Kδ2/γ2. The eigenvalues of I+A−1E are just 1+λ1, 1+λ2, ..., 1+λK ,

and the determinant det(I + A−1E) =
∏K

i=1(1 + λi). Hence it suffices to show

min
K∏
i=1

(1 + λi) ≥ (1− δ/γ)K when
K∑
i=1

λ2
i ≤ Kδ2/γ2.

To do this we apply Lagrangian method and show the minimum is only obtained when

all λi’s are equal. The optimal value must be obtained at a local optimum of

K∏
i=1

(1 + λi) + C
K∑
i=1

λ2
i .

Taking partial derivatives with respect to λi’s, we get the equations −λi(1 + λi) =

−∏K
i=1(1 + λi)/2C (here using

√
Kδ/γ is small so 1 + λi > 1/2 > 0). The right hand
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Figure 4.7: Illustration of the Algorithm

side is a constant, so each λi must be one of the two solutions of this equation. However,

only one of the solution is larger than 1/2, therefore all the λi’s are equal.

For the lower bound, we can project the perturbed subspace to the K − 1 dimensional

space. Such a projection cannot increase the volume and the perturbation distances only get

smaller. Therefore we can apply the claim directly, the columns of A are just vi+1 − v1 for

i = 1, 2, ..., K − 1; columns of E are just v′i+1 − vi+1 − (v′1 − v1). The smallest eigenvalue

of A is at least γ because the polytope is γ robust, which is equivalent to saying after

orthogonalization each column still has length at least γ. The Frobenius norm of E is at

most 2
√
K − 1δ. We get the lower bound directly by applying the claim.

For the upper bound, swap the two sets S and S ′ and use the argument for the lower

bound. The only thing we need to show is that the smallest eigenvalue of the matrix gener-

ated by points in S ′ is still at least γ/2. This follows from Wedin’s Theorem [160] and the

fact that ‖E‖ ≤ ‖E‖F ≤
√
Kδ ≤ γ/2.

Now we are ready to prove Lemma 4.4.
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Proof. The first case is for the first step of the algorithm, when we try to find the farthest

point to the origin. Here essentially S = {0}. For any two vertices v1,v2, since the simplex is

γ robust, the distance between v1 and v2 is at least γ. Which means dis(0,v1)+dis(0,v2) ≥

γ, one of them must be at least γ/2.

For the later steps, recall that S contains vertices of a perturbed simplex. Let S ′ be

the set of original vertices corresponding to the perturbed vertices in S. Let v be any

vertex in {v1,v2, ...,vK} which is not in S. Now we know the distance between v and S is

equal to vol(S ∪ {v})/(|S| − 1)vol(S). On the other hand, we know vol(S ′ ∪ {v})/(|S ′| −

1)vol(S ′) ≥ γ. Using Lemma 4.11 to bound the ratio between the two pairs vol(S)/vol(S ′)

and vol(S ∪ {v})/vol(S ′ ∪ {v}), we get:

dis(v, S) ≥ (1− 4ε′/γ)2|S|−2γ > γ/2

when γ > 20Kε′.

Lemma 4.5 is based on the following observation: in a simplex the point with largest `2

is always a vertex. Even if two vertices have the same norm if they are not close to each

other the vertices on the edge connecting them will have significantly lower norm.

Proof. (Lemma 4.5)

Since dj is the point found by the algorithm, let us consider the point aj before perturba-

tion. The point aj is inside the simplex, therefore we can write aj as a convex combination

of the vertices:

aj =
K∑
t=1

ctvt

Let vt be the vertex with largest coefficient ct. Let ∆ be the largest distance from some

vertex to the space spanned by points in S (∆ = maxl dis(vl, span(S)). By Lemma 4.4 we

know ∆ > γ/2. Also notice that we are not assuming dis(vt, span(S)) = ∆.
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Figure 4.8: Proof of Lemma 4.5, after projecting to the orthogonal subspace of span(S).

Now we rewrite aj as ctvt + (1− ct)w, where w is a vector in the convex hull of vertices

other than vt. Observe that aj must be far from span(S), because dj is the farthest point

found by the algorithm. Indeed:

dis(aj , span(S)) ≥ dis(dj , span(S))− ε ≥ dis(vl, span(S))− 2ε ≥ ∆− 2ε

The second inequality is because there must be some point dl that correspond to the

farthest vertex vl and have dis(dl, span(S)) ≥ ∆ − ε. Thus as dj is the farthest point

dis(dj , span(S)) ≥ dis(dl, span(S)) ≥ ∆− ε.

The point aj is on the segment connecting vt and w, the distance between aj and span(S)

is not much smaller than that of vt and w. Following the intuition in `2 norm when vt and

w are far we would expect aj to be very close to either vt or w. Since ct ≥ 1/K it cannot be

really close to w, so it must be really close to vt. We formalize this intuition by the following

calculation (see Figure 4.8):

Project everything to the orthogonal subspace of span(S) (points in span(S) are now at

the origin). After projection distance to span(S) is just the `2 norm of a vector. Without

loss of generality we assume ‖vt‖2 = ‖w‖ = ∆ because these two have length at most ∆,

and extending these two vectors to have length ∆ can only increase the length of dj .

116



The point vt must be far from w by applying Lemma 4.4: consider the set of vertices

V ′ = {vi : vi does not correspond to any point in S and i 6= t}. The set V ′ ∪ S satisfy the

assumptions in Lemma 4.4 so there must be one vertex that is far from span(V ′ ∪ S), and

it can only be vt. Therefore even after projecting to orthogonal subspace of span(S), vt is

still far from any convex combination of V ′. The vertices that are not in V ′ all have very

small norm after projecting to orthogonal subspace (at most δ0) so we know the distance of

vt and w is at least γ/2− δ0 > γ/4.

Now the problem becomes a two dimensional calculation. When ct is fixed the length of

aj is strictly increasing when the distance of vt and w decrease, so we assume the distance

is γ/4. Simple calculation (using essentially just pythagorean theorem) shows

ct(1− ct) ≤
ε

∆−
√

∆2 − γ2/16
.

The right hand side is largest when ∆ = 2 (since the vectors are in unit ball) and the

maximum value is O(ε/γ2). When this value is smaller than 1/K, we must have 1 − ct ≤

O(ε/γ2). Thus ct ≥ 1−O(ε/γ2) and δ ≤ (1− ct) + ε ≤ O(ε/γ2).

The cleanup phase tries to find the farthest point to a subset of K − 1 vertices, and use

that point as the K-th vertex. This will improve the result because when we have K − 1

points close to K − 1 vertices, only one of the vertices can be far from their span. Therefore

the farthest point must be close to the only remaining vertex. Another way of viewing this

is that the algorithm is trying to greedily maximize the volume of the simplex, which makes

sense because the larger the volume is, the more words/documents the final LDA model can

explain.

The following lemma makes the intuitions rigorous and shows how cleanup improves the

guarantee of Lemma 4.5.
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Lemma 4.12. Suppose |S| = K − 1 and each point in S is δ = O(ε/γ2) < γ/20K close to

some vertex vi, then the farthest point v′j found by the algorithm is 1− O(ε/γ) close to the

remaining vertex.

Proof. We still look at the original point aj and express it as
∑K

t=1 ctvt. Without loss of

generality let v1 be the vertex that does not correspond to anything in S. By Lemma 4.4

v1 is γ/2 far from span(S). On the other hand all other vertices are at least γ/20r close to

span(S). We know the distance dis(aj , span(S)) ≥ dis(v1, span(S))−2ε, this cannot be true

unless ct ≥ 1−O(ε/γ).

These lemmas directly lead to the following theorem:

Theorem 4.13. FastAnchorWords algorithm runs in time Õ(V 2 + V K/ε2) and outputs a

subset of {d1, ...,dV } of size K that O(ε/γ)-covers the vertices provided that 20Kε/γ2 < γ.

Proof. In the first phase of the algorithm, do induction using Lemma 4.5. When 20Kε/γ2 <

γ Lemma 4.5 shows that we find a set of points that O(ε/γ2)-covers the vertices. Now

Lemma 4.6 shows after cleanup phase the points are refined to O(ε/γ)-cover the vertices.
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Part II

Towards Provably Learning Deep

Networks
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Chapter 5

Provable Sparse Coding: Learning

Overcomplete Dictionaries

Dictionary learning, or sparse coding, tries to learn a sparse linear code to represent the

given data succinctly. Such a code represents data points (e.g. image patches) using sparse

linear combinations of dictionary elements. This sparse representation captures the useful

structure in the input data, and can be used in various tasks including denoising the input

data or providing features for supervised learning algorithms. Learning a sparse linear code

can also be viewed as a preliminary for learning a sparse autoencoder (a sparse nonlinear

code), which is a main building block for deep learning algorithms.

In this chapter we show under mild assumptions, it is possible to learn an overcom-

plete dictionary (i.e. the number of dictionary elements is larger than their dimension) in

polynomial time.
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5.1 Background and Results

5.1.1 Sparse Coding and Dictionary Learning

Sparse coding is widely used in machine learning. However, it is first introduced in neural

science, trying to explain how evolution may have produced cells in the first layer of visual

cortex: Olshausen and Field [134] observed the dictionary elements learned by sparse coding

share similar features as the cells in the internal image representations in the visual cortex.

Inspired by the neural analog, sparse coding is often used for feature selection [10] and

for building classifiers atop sparse coding routines [94]. Dictionary learning is also a basic

building block in design of deep learning systems [138].

Dictionary learning is also used in image processing, where experiments suggest that

hand-designed dictionaries (such as sinusoids, wavelets, ridgelets, curvelets, etc. [120]) do

not do as well as dictionaries learned from data. Dictionaries learned by sparse coding

algorithms are used to perform denoising [57], edge-detection [117], super-resolution [163]

and compression. See [1], [58] for further applications.

5.1.2 Incoherence Assumption

Designing provably correct algorithms for dictionary learning has proved challenging. Even

if the dictionary is completely known, it can be NP-hard to represent a vector u as a

sparse linear combination of the columns of A (even if such a representation exists) [47].

However for many natural types of dictionaries, the problem of finding a sparse representation

is computationally easy. The pioneering work of Donoho and Huo [53] (building on the

uncertainty principle of Donoho and Stark [56]) presented a number of important examples

of dictionaries that are incoherent and gave an algorithm to find a sparse representation in

a known, incoherent dictionary if one exists. More precisely:
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Definition 5.1 (µ-incoherent). An n×m matrix A whose columns are unit vectors is said

to be µ-incoherent if for all i 6= j we have

Ai · Aj ≤ µ/
√
n.

We sometimes say just incoherent if µ is small, like log n.

A randomly chosen dictionary is incoherent with high probability (even if m = nC). Donoho

and Huo [53] gave many other important examples of incoherent dictionaries, such as one

constructed from spikes and sines, as well as those built up from wavelets and sines, or even

wavelets and ridgelets. There is a rich body of literature devoted to incoherent dictionaries

(see additional references in [64]). Donoho and Huo [53] proved that given u = Av where v

has k nonzero entries, where k ≤ √n/2µ, basis pursuit (solvable by a linear program) recovers

v exactly and it is unique. Gilbert, Muthukrishnan and Strauss [64] (and subsequently [150])

gave algorithms for recovering v even in the presence of additive noise. Tropp [148] gave

a more general exact recovery condition (ERC) under which the sparse recovery problem

for incoherent dictionaries can be algorithmically solved. All of these require n > k2µ2.

In a foundational work, Candes, Romberg and Tao [35] showed that basis pursuit solves

the sparse recovery problem even for n = O(k log(m/k)) if A satisfies the weaker restricted

isometry property [34]. Also if A is a full-rank square matrix, then we can compute v from

A−1u, trivially. But our focus here will be on incoherent and overcomplete dictionaries.

5.1.3 Main Results

A range of results are possible which trade off more assumptions with better performance. We

give two illustrative ones: the first makes the most assumptions but has the best performance;

the second has the weakest assumptions and somewhat worse performance.
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The theorem statements will be cleaner if we use asymptotic notation: the parameters

k, n,m will go to infinity and the constants denoted as“O(1)” are arbitrary so long as they

do not grow with these parameters.

Throughout this chapter, we will use Y (i) to denote the ith sample and X(i) as the vector

that generated it – i.e. Y (i) = AX(i). When we are working with a graph G we will use

ΓG(u) to denote the set of neighbors of u in G.

First we define the class of distributions that the k-sparse vectors must be drawn from.

We will be interested in distributions on k-sparse vectors in Rm where each coordinate is

nonzero with probability Θ(k/m) (the constant in Θ(·) can differ among coordinates).

Definition 5.2 (Distribution class Γ and its moments). The distribution is in class Γ if

(i) each nonzero Xi has expectation 0 and lies in [−C, 1] ∪ [1, C] where C = O(1). (ii)

Conditional on any subset of coordinates in X being nonzero, the values Xi are independent

of each other.

The distribution has bounded `-wise moments if the probability that X is nonzero in any

subset S of ` coordinates is at most c` times
∏

i∈S Pr[Xi 6= 0] where c = O(1).

Remark 5.3. (i) The bounded moments condition trivially holds for any constant ` if the

set of nonzero locations is a random subset of size k. The values of these nonzero locations

are allowed to be distributed very differently from one another. (ii) The requirement that

nonzero Xi’s be bounded away from zero in magnitude is similar in spirit to the Spike-and-

Slab Sparse Coding (S3C) model of Goodfellow et al. [70], which also encourages nonzero

latent variables to be bounded away from zero.

Theorem 5.4. There is a polynomial time algorithm to learn a µ-incoherent dictionary A

from random examples of the form Y = AX, where X ∈ Rn is chosen according to some

distribution in Γ and A is Rm×n.

• If k ≤ O(min(m2/5,
√
n

µ logn
)) and the distribution has bounded 3-wise moments, then the

algorithm requires p ≥ Ω(max(m2/k2 logm, m logm
ε2

)) samples and with high probability
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returns a dictionary Â so that for each i, ‖Ai − Âi‖ ≤ ε. The algorithm runs in time

Õ(p2 +m2p).

• If k ≤ cmin(m(`−1)/(2`−1),
√
n

µ logn
) and the distribution has bounded `-wise moments, then

there is a polynomial time algorithm with the same guarantees and sample complexity

that runs in time Õ(p2 + k`−1m+m2p).

• Even if we are given Y (i) = AX(i) + ηi, where ηi’s are independent spherical Gaus-

sian noise with standard deviation σ = o(
√
n), the algorithm still works with sample

complexity p ≥ Ω(mσ2 logm/ε2).

Remark 5.5. (i) The sparsity that this algorithm can tolerate – roughly
√
n

µ logn
or m1/2−ε –

approaches the sparsity that the best known algorithms require even if A is known.

Furthermore since this procedure learns a dictionary that is close to the true dictionary,

what it learns must also be incoherent. Hence:

Remark 5.6. This algorithm learns a dictionary for which we can actually solve sparse

recovery problems.

Now we describe the other result with fewer assumptions on X but lower performance.

Definition 5.7 (Distribution class D). A distribution is in class D if (i) the events Xi 6=

0 have weakly bounded second moment and third moments, in the sense that Pr[Xi 6=

0 and Xj 6= 0] ≤ nε Pr[Xi 6= 0] Pr[Xj 6= 0], Pr[Xi, Xj, Xt 6= 0] ≤ o(n1/4) Pr[Xi 6= 0] Pr[Xj 6=

0] Pr[Xt 6= 0]. (ii) Each nonzero Xi is in [−C,−1] ∪ [1, C] where C = O(1).

Remark 5.8. A major difference from class Γ is that the Xi’s do not have expectation 0 and

are not forbidden from taking values close to 0 (provided they do have reasonable probability

of taking values away from 0). Another major difference is that the distribution of Xi can

depend upon the values of other nonzero coordinates. The weaker moment condition allows

a fair bit of correlation among the set of nonzero coordinates.

124



Theorem 5.9. There is a polynomial time algorithm to learn a µ-incoherent dictionary

A from random examples of the form Y = AX, where X is chosen according to some

distribution in D.

• If k ≤ cmin(m1/4, n
1/4−ε/2
√
µ

) and we are given p ≥ Ω(max(m2/k2 logm, mn
3/2 logm logn

k2µ
))

samples, then the algorithm succeeds with high probability and returns a dictionary Â so

that for each i, ‖Ai−Âi‖ ≤ O(k
√
µ/n1/4−ε/2). The algorithm runs in time Õ(p2+m2p).

The algorithm is also noise-tolerant as the one in Theorem 5.4.

Theorem 5.9 is proved similarly to Theorem 5.4, the proof can be found in [13].

Remark 5.10. It is also possible to relax the condition that each nonzero Xi is in [−C, 1]∪

[1, C]. Instead we require Xi has magnitude at most O(1), and has a weak anti-concentration

property: for every δ > 0 it has probability at least cδ > 0 of exceeding δ in magnitude.

5.1.4 Previous Work

There has also been significant prior work on dictionary learning and sparse coding. Lewicki

and Sejnowski [111] provided the first approach, and subsequently Engan, Aase and Husoy

[59] introduce the method of optimal directions (MOD) and Aharon, Elad and Bruckstein [2]

introduced K-SVD, both of which have had considerable success in practice. For complete-

ness, we will describe these latter two approaches. Suppose the algorithm is given a matrix

Y , generated as AX where A is the unknown dictionary and X is an unknown matrix with

iid columns.

Method of Optimal Direction [59] : Start with an initial guess A, and then alternately

update either A or X:

• Given A, compute a sparse X so that AX ≈ Y (using e.g. matching pursuit [119] or

basis pursuit [39])
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• Given X, compute the A that minimizes ‖AX − Y ‖F

This algorithm converges to a local optimum, because in each step the error ‖AX − Y ‖F
will only decrease.

K-SVD [2] Start with an initial guess for A. Then repeat the following procedure:

• Given A, compute a sparse X so that AX ≈ Y (again, using a pursuit method)

• Group all data points Y (1) where the corresponding X vector has a non-zero at index

i. Subtract off components in the other directions

Y (1) −
∑
j 6=i

AjX
(1)
j

• Compute the first singular vector v1 of the residual matrix, and update the column Ai

to v1

However, these algorithms do not come with provable guarantees. After all, since the first

step in the algorithm uses some arbitrary guess for A there may not be any sparse represen-

tation X so that AX ≈ Y . Furthermore, even if the algorithm learns some dictionary there

is no guarantee that it is incoherent, and consequently no guarantee that one can use it to

solve sparse recovery.

Instead, our goal here is to give an algorithm for dictionary learning that has provable

guarantees. Assuming the data is generated by an incoherent dictionary, we recover it to

within arbitrary accuracy. The most closely related work is an elegant paper of Spielman,

Wang and Wright [144], giving an algorithm that provably recovers A to arbitrary accuracy if

it is a full column rank matrix, and X satisfies reasonable assumptions. However, requiring A

to be full column rank precludes most interesting settings where the dictionary is redundant

and hence cannot have full column rank (see e.g. [53], [58], [120]).
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5.1.5 Our approach

The main idea is to recover the support of the vector X by a graph recovery algorithm. If

given many samples, we can find all the samples for which Xi 6= 0 then we can recover the

column Ai from a singular value decomposition. (Alternatively, we can instead find all the

samples for which Xi > 0 and then the samples will be biased in the direction of Ai). This

is exactly the approach taken in K-SVD [59]. The difference is that in K-SVD, the support

of samples are determined after running matching pursuit on an intermediate guess for the

dictionary. If this guess is not accurate, then the support could be far from correct. Our

main observation is that for incoherent dictionaries, we can recover the support without

knowing the dictionary! We build a graph – called the connection graph. We give a simple

combinatorial algorithm for provably recovering the support graph of X from this graph,

and from this we can immediately recover the true dictionary. In order to prove correctness

of our combinatorial algorithm, we rely on tools from discrete geometry, namely the piercing

number [121], [5].

Related Works The graph recovery problem we have is related to the graph square root

problem ([106, 131]), which tries to reconstruct a graph given all pairs of distance at most

2 in the graph. Our setting is slightly different, and our algorithm only solves the problem

in average case. There is also a connection between our graph recovery problem and those

studied in community detection literature, where recent papers [14], [17] give provable algo-

rithms for finding all of the overlapping communities in a graph. However these algorithms

applied to our problem would run in time quasi-polynomial in the sparsity k.

We remark that algorithms for independent component analysis [42] can also provably

learn an unknown dictionary A from random examples. Suppose we are given random

samples of the form AX where the components of X are exactly independent. Frieze, Jerrum

and Kannan [63] gave an algorithm with provable guarantees that recovers the dictionary
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A up to arbitrary accuracy, provided that the random variables in the vector X are non-

Gaussian (since in that case A is only determined up to rotations anyways). Subsequent

work on this problem considers the over-determined case and gives provable algorithms even

when A is n×m with m larger than n [49], [72]. However, these algorithms are very brittle

to the assumption that the entries in X be independent; if this condition is even slightly

violated, the algorithms can fail. The weakest conditions that we are aware of require that

X be 4-wise independent, and typically even higher orders of independence are required for

the overcomplete case [49], [72]. Hence these algorithms are not well-suited for dictionary

learning where this condition seems too restrictive.

5.2 The Connection Graph

Let A be an unknown n×m dictionary whose columns are incoherent – i.e. each column is

a unit vector and for all i 6= j we have

Ai · Aj ≤ µ/
√
n

Our goal is to recover the dictionary A given sparse linear combinations of its columns. In

particular, suppose that there is a distribution Γ on k-sparse columns X of length m. We

will assume the following generative model:

• each X has at most k non-zeroes and the probability that Xi 6= 0 is Θ(k/m) and

furthermore Xi 6= 0 is non-positively correlated with other coordinates being non-zero

• if a coordinate is non-zero, its magnitude is in the range [1, C] and its expectation is

zero.

In fact, our analysis will immediately extend to even more general models (see the full version

in [13]) but for simplicity we encourage the reader to restrict the distribution Γ so that the
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support of X is uniformly random over all k-tuples and that if a coordinate is non-zero it

is a Rademacher random variable (equally likely to be +1 or −1) since this will allow us

to not have to keep track of as many extraneous constants through the various steps of our

analysis.

Recall our strategy is to find the support of X. Based on the support, we form an

overlapping clustering where we gather together all the samples Y for which Xi 6= 0. We

suggest two approaches for how to use this overlapping clustering to determine the dictionary

in Section 5.4.1 and Section 5.4.2 respectively. The first approach is to further determine

which set of samples have Xi > 0. This set of samples will be biased in exactly the direction

of Ai and hence we can recover this column by taking an average. Alternatively, we can

compute the direction of maximum variance. This latter approach recovers (roughly) the

direction Ai and yields insight into why approaches like K-SVD [59] are effective in practice.

But how can we compute the correct support? As a starting point: if there are two

samples Y (1) = AX(1) and Y (2) = AX(2) then we can determine if the support of X(1) and

X(2) intersect, but with false negatives:

Lemma 5.11. If k2µ <
√
n/2 then |Y (1) · Y (2)| > 1/2 implies that he support of X(1) and

X(2) intersect

Proof. Suppose that the support of X(1) and X(2) are disjoint. Then the following upper

bound holds:

|Y (1) · Y (2)〉| ≤
∑
i 6=j

|Ai · AjX(1)
i X

(2)
j | ≤ k2µ/

√
n < 1/2

and this implies the lemma.

This would be a weak bound in our setting, since we would require that k = O(n1/4/
√
µ).

Whereas if the dictionary is known, then classic results in compressed sensing show (algo-

rithmically) how to recover a vector that is a linear combination of at most
√
n/2µ columns
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of A [53]. In fact we can impose weaker conditions on k, if we use the randomness of the

values in X. We will appeal to the classic Hanson-Wright inequality:

Theorem 5.12 (Hanson-Wright). [76] Let X be a vector of independent, sub-Gaussian

random variables with mean zero and variance one. Let M be a symmetric matrix. Then

Pr[|X>MX − tr(M)| > t] ≤ 2exp{−cmin(t2/‖M‖2
F , t/‖M‖)}

Lemma 5.13. Suppose kµ <
√
n

C′ logn
for large enough constant C ′. Then if the support of

X(1) and X(2) are disjoint, with high probability |Y (1) · Y (2)| < 1/2

Proof. Let N be the k × k submatrix resulting from restricting A>A to the locations where

X(1) and X(2) are non-zero. Set M to be a 2k × 2k matrix where the k × k submatrices in

the top-left and bottom-right are zero, and the k × k submatrices in the bottom-left and

top-right are (1/2)N and (1/2)N> respectively. Here we think of the vector X as being a

length 2k vector whose first k entries are the non-zero entries in X(1) and whose last k entries

are the non-zero entries in X(2). And by construction, we have that

Y (1) · Y (2) = X>MX

We can now appeal to the Hanson-Wright inequality (above). Note that since the support

of X(1) and X(2) do not intersect, the entries in M are each at most µ/
√
n and so the

Frobenius norm of M is at most µk√
2n

. This is also an upper-bound on the spectral norm of

M . We can set t = 1/2, and for kµ <
√
n/C ′ log n both terms in the minimum are Ω(log n)

and this implies the lemma.

We can build a graph of which pairs intersect, by connecting a pair of samples Y (1) and

Y (2) if |Y (1) · Y (2)| > 1/2.
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Definition 5.14. Given p samples Y (1), Y (2), ..., Y (p), build a connection graph on p nodes

where i and j are connected by an edge if and only if Y (1) · Y (2) > 1/2.

This graph will “miss” some edges, since if a pair X(1) and X(2) have intersecting support

we do not necessarily meet the above condition, but (with high probability) this graph will

not have any false positives:

Corollary 5.15. With high probability, each edge (i, j) that is present in the connection

graph corresponds to a pair where the support of X(i) and X(j) intersect.

It is important to note that a sample Y (1) will intersect many other samples (say, Y (2)

and Y (3)), each of which corresponds to a coordinate i (reps. i′) where the support of X(2)

(resp. X(3)) intersect with the support of X(1). But the challenge is that we do not know if

they intersect X(1) in the same coordinate or not. We will use the other samples as a way

to “cross-check” and determine if X(1), X(2) and X(3) have a common intersection.

Remark 5.16. Even if we are given samples Y = AX + η where η is additive noise, under

natural conditions on the correlation of η with our samples (e.g. if it is spherical Gaussian

noise whose expected norm is at most o(
√
n)) this will not affect the construction of the

connection graph, and hence will not affect the proof of correctness of our algorithms.

5.3 Graph Recovery

Our goal in this section is to determine which samples Y have Xi 6= 0 just from the connection

graph. To do this, we reduce this problem to a graph recovery problem.

Definition 5.17 (Graph Recovery). There is an unknown bipartite graph G0(U, V,E0).

Given a graph G(V,E), constructed randomly based on G0 satisfy the following properties:

1. For two vertices (p, q) ∈ V , if they have no common neighbor in G0, then (p, q) 6∈ E.
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2. For vertices p, q1, q2, ..., ql, if there is a vertex u ∈ U where {(u, p), (u, q1), ..., (u, ql)} ⊂

E0, then Pr[all edges (p, qi) ∈ E] ≥ 2−l.

The goal is to recover the graph G0.

Consider G0 as the support graph of X, where U is the set of coordinates, V is the set of

samples, and (i, p) ∈ E0 iff X
(i)
p 6= 0. The connection graph we constructed in Definition 5.14

satisfies the requirement for graph recovery problem. In order to prove this we just need the

following lemma.

Lemma 5.18. Suppose the support of X intersects the support of each of X(1), X(2), ..., X(`).

Then

Pr[ for all j = 1, 2, ..., `, |Y · Y (j)| > 1/2] ≥ 2−`

Proof. We have that with high probability that round(Y · Y (j)) = X · X(j) for all j using

Lemma 5.13, and hence we need to prove that with probability at least 2−`, each pair X ·X(j)

is non-zero. We can prove this by induction, by considering the X(j)’s in an order such that

no set Sj = supp(X) ∩ supp(X(j)) is entirely contained in a earlier set Si (for i < j). Then

conditioned on all previous inner-products X · X(i) being non-zero, the probability that

X(1) ·X(j) is non-zero is at least 1/2.

Now given two samples Y (1) and Y (2) so that the support of X(1) and X(2) intersect

uniquely at index i, we will prove that all the samples Y for which Xi 6= 0 can be recovered

because the expected number of common neighbors between Y (1), Y (2) and Y will be much

larger than in any other case (in particular if Xi = 0 instead).

Claim. Suppose supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)) 6= ∅, then

PrY [ for all j = 1, 2, 3, |Y · Y (j)| > 1/2] ≥ k

8m
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Proof. Let i ∈ supp(X(1))∩ supp(X(2))∩ supp(X(3)). Then the probability that supp(X) 3 i

is exactly k/m, and hence using the previous lemma this implies the claim.

Intuitively, if supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)) = ∅ then the expected number of

common neighbors of Y (1), Y (2) and Y (3) should be smaller. But in principle we should be

concerned that the support of X could still intersect the support of each of X(1), X(2) and

X(3). Let a = |supp(X(1))∩supp(X(2))|, b = |supp(X(1))∩supp(X(3))| and c = |supp(X(2))∩

supp(X(3))|. Then:

Lemma 5.19. Suppose that supp(X(1))∩ supp(X(2))∩ supp(X(3)) = ∅. Then the probability

that the support of X intersects the support of each of X(1), X(2) and X(3) is at most

k6

m3
+

3k3(a+ b+ c)

m2

Proof. We can break up the event whose probability we would like to bound into two (not

necessarily disjoint) events: (1) the probability that X intersects each of X(1), X(2) and

X(3) disjointly (i.e. it contains a point i ∈ supp(X(1)) but i /∈ supp(X(2)), supp(X(3)), and

similarly for the other sets ). (2) the probability that X contains a point in the common

intersection of two of the sets, and one point from the remaining set. Clearly if the support

of X intersects the support of each of X(1), X(2) and X(3) then at least one of these two

events must occur.

The probability of the first event is at most the probability that the support of X contains

at least one element from each of three disjoint sets of size at most k. The probability that

the support of X contains an element of just one such set is at most the expected intersection

which is k2

m
, and since the expected intersection of X with each of these sets are non-positively

correlated (because they are disjoint) we have that the probability of the first event can be

bounded by k6

m3 .
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Similarly, for the second event: consider the probability that the support of X contains

an element in supp(X(1))∩ supp(X(2)). Since supp(X(1))∩ supp(X(2))∩ supp(X(3)) = ∅, the

support of X must also contain an element in supp(X(3)) too. The expected intersection of X

and supp(X(1))∩supp(X(2)) is ka
m

and the expected intersection of X and X(3) is k2

m
, and again

the expectations are non-positively correlated since the two sets supp(X(1))∩supp(X(2)) and

supp(X(3)) are disjoint by assumption. Repeating this argument for the other pairs completes

the proof of the lemma.

Note that the probability that two sets of size k intersect in at least Q elements is at most

( k
m

)Q by the same non-positive correlation argument. Hence we can assume that with high

probability there is no pair of sets that intersect in more than Q locations.

And comparing the lemma and the claim above, we find that if k ≤ cm2/5 then the ex-

pected number of common neighbors is much larger if supp(X(1))∩supp(X(2))∩supp(X(3)) 6=

∅ than if the intersection is empty. Under this condition, if we take p = O(m2/k2 log n) sam-

ples each triple with a common intersection will have at least T common neighbors, and each

triple whose intersection is empty will have less than T/2 common neighbors.

Hence we can search for a triple with a common intersection as follows: We can find a pair

that intersects, since (with high probability) for any pair |Y (1) · Y (2)| > 1/2 the support of

X(1) and X(2) intersect. We can try neighbors of Y (1) at random, and we can use the number

of common neighbors as a test to verify whether all three sets have a common intersection.

Definition 5.20. We will call a triple of samples Y (1), Y (2) and Y (3) an identifying triple for

coordinate i if the support of X(1), X(2) and X(3) intersect and furthermore the support of

X(1) and X(2) is exactly {i}.

Theorem 5.21. Algorithm 5.1(RecoverGraph) output sets that each corresponds to some i

and contains all Y (j) for which i ∈ supp(X(j)). The algorithm runs in time Õ(p2n) and

succeeds with high probability if k ≤ cmin(m2/5,
√
n

µ logn
) and if p = Ω(m2/k2 logm)
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Algorithm 5.1. RecoverGraph

input p samples Y (1), Y (2), ..., Y (p)

output Sets that are equal to the support of rows of X
Compute a graph G on p nodes where there is an edge between i and j iff |Y (1) ·Y (2)| > 1/2

Initialize list of triples to be empty
Set T = pk

10m

for i = 1 TO Ω(mk log2m) do
Choose a random edge (u, v) in G and a random neighbor w of u
if |ΓG(u) ∩ ΓG(v) ∩ ΓG(w)| ≥ T then

Add (u, v, w) to the list of triples
end if

end for
For each node x, add x to each set Su,v,w where (u, v, w) is a triple and |ΓG(u) ∩ ΓG(v) ∩
ΓG(x)| ≥ T
Delete any set Su,v,w that contains another set Sa,b,c
Output the remaining sets Su,v,w ∪ {u, v, w}

Proof. We can use Lemma 5.13 to conclude that each edge in G corresponds to a pair

whose support intersects. We can appeal to Lemma 5.19 and Claim 5.3 to conclude that for

p = Ω(m2/k2 logm), with high probability each triple with a common intersection has at

least T common neighbors, and each triple without a common intersection has at most T/2

common neighbors.

In fact, for a random edge (u, v), the probability that the common intersection of u and

v (of the supports of their X’s) is exactly {i} is Ω(1/m) because we know that their X’s do

intersect, and that intersection has a constant probability of being size one and it is uniformly

distributed over m possible locations. Furthermore the probability that a randomly chosen

neighbor w of u contains i (in the support of its X) is at least k/m, and hence appealing to

a coupon collector argument we conclude that if the inner loop is run at least Ω(km log2m)

times then the algorithm finds an identifying triple (u, v, w) for each column Ai with high

probability.

Note that we may have triples that are not an identifying triple for some coordinate i.

However, any other triple (u, v, w) found by the algorithm must have a common intersection.
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Consider for example a triple (u, v, w) where u and v have a common intersection {i, j}.

Then we know that there is some other triple (a, b, c) which is an identifying triple for i

and hence Sa,b,c ⊂ Su,v,w. (In fact this containment is strict, since Su,v,w will also contain

a set corresponding to an identifying triple for j too). Then the second-to-last step in the

algorithm will necessarily delete all such triples Su,v,w. What is the running time of this

algorithm? We need O(p2n) time to build the connection graph, and the loop takes Õ(mpk)

time. Finally, the deletion step requires time Õ(m2p) since there will be Õ(m2) triples found

in the previous step. This concludes the proof of correctness of the algorithm, and its running

time analysis.

5.4 Recovering the Dictionary

5.4.1 Finding the Relative Signs

Here we show how to recover the columns of A once we have learned the support of X.

The key observation is that if the support of X
(1)
i and X

(2)
i uniquely intersect in index i then

the sign of Y (1) · Y (2) is equal to the sign of X
(1)
i X

(2)
i . And if there are enough such pairs

X
(1)
i and X

(2)
i , then we can correctly determine the relative sign of every pair X

(1)
i and X

(2)
i .

We formalize this idea in the following lemma:

Lemma 5.22. In Algorithm 5.2, Si is either {u : X
(u)
i > 0} or {u : X

(u)
i < 0}.

Proof. It suffices to prove the lemma at the start of Step 12, since this step only takes the

complement of Si with respect to Ci. Appealing to Lemma 5.13 we conclude that if the

support of X(u) and X(v) uniquely intersect in coordinate i then the sign of Y (u) · Y (v) is

equal to the sign of X
(u)
i X

(v)
i . Hence when Algorithm 5.2 adds an element to Si it must

have the same sign as the ith component of X(ui). What remains is to prove that each node

v ∈ Ci is correctly labeled. We will do this by showing that for any such vertex, there is a
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Algorithm 5.2. OverlappingAverage

input p samples Y (1), Y (2), ...Y (p)

output estimation Â of A
Run RecoverGraph (or RecoverGraphHighOrder) on the p samples
Let C1, C2, ...Cm be the m returned sets
for each Ci do

for each pair u, v ∈ Ci such that X(u) and X(v) have a unique intersection do
Label the pair +1 if Y (u) · Y (v) > 0 and otherwise label it −1.

end for
Choose an arbitrary ui ∈ Ci, and set Si = {ui}
for each v ∈ Ci do

if the pair ui, v is labeled +1, or there is w ∈ Ci where the pairs ui, w and v, w have
the same label then

add v to Si.
end if

end for
if |Si| ≤ |Ci|/2 then

set Si = Ci\Si.
end if
Let Âi =

∑
v∈Si X

(v)/‖∑v∈Si X
(v)‖

end for
return Â, where each column is Âi for some i

length two path of labeled pairs that connects ui to v, and this is true because the number

of labeled pairs is large. We need the following simple claim:

Claim. If p > m2 logm/k2 then with high probability any two rows of X share at most

2pk2/m2 coordinates in common.

This follows since the probability that a node is contained in any fixed pair of sets is at

most k2/m2. Then for any node u ∈ Ci, we would like to lower bound the number of labeled

pairs it has in Ci. Since u is in at most k− 1 other sets Ci1 , ..., Cik−1
, the number of pairs u, v

where v ∈ Ci that are not labeled for Ci is at most

k−1∑
t=1

|Cit ∩ Ci| ≤ k · 2pk2/m2 � pk/3m = |Ci|/3
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Therefore for a fixed node u for at least a 2/3 fraction of the other nodes w ∈ Ci the pair

u,w is labeled. Hence we conclude that for each pair of nodes ui, v ∈ Ci the number of w

for which both ui, w and w, v are labeled is at least |Ci|/3 > 0 and so for every v, there is a

labeled path of length two connecting ui to v.

Using this lemma, we are ready to prove Algorithm 5.2 correctly learns all columns of A.

Theorem 5.23. Algorithm 5.2(OverlappingAverage) outputs a dictionary Â so that for each

i, ‖Ai − Âi‖ ≤ ε with high probability if k ≤ cmin(m2/5,
√
n

µ logn
) and if

p = Ω max(m2/k2 logm,m logm/ε2)

Furthermore the algorithm runs in time O(p2k2/m).

Proof. We can invoke Lemma 5.22 and conclude that Si is either {u : X
(u)
i > 0} or {u :

X
(u)
i < 0}, whichever set is larger. Let us suppose that it is the former. Then each Y (u) in

Si is an independent sample from the distribution conditioned on Xi > 0, which we call Γ+
i .

We have that EΓ+
i

[AX] = cAi where c is a constant in [1, C] because EΓ+
i

[Xj] = 0 for all

j 6= i.

Let us compute the variance:

EΓ+
i

[‖AX − EΓ+
i
AX‖2] ≤ EΓ+

i
X2
i +

∑
j 6=i

EΓ+
i

[X2
j ] ≤ C2 +

∑
j 6=i

C2k/m ≤ C2(k + 1),

Note that there are no cross-terms because the signs of eachXj are independent. Furthermore

we can bound the norm of each vector Y (u) via incoherence. We can conclude that if |Si| >

C2k logm/ε2, then with high probability ‖Âi − Ai‖ ≤ ε using vector Bernstein’s inequality

([74], Theorem 12). This latter condition holds because we set Si to itself or its complement

based on which one is larger.
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5.4.2 An Approach via SVD

Here we give an alternative algorithm for recovering the dictionary based instead on SVD.

The advantage is that approaches such as K-SVD which are quite popular in practice also

rely on finding directions of maximum variance, so the analysis we provide here yields insights

into why these approaches work. However, we note that the crucial difference is that we rely

on finding the correct support in the first step of our dictionary learning algorithms, whereas

K-SVD and approaches like it attempt to alternate between updating the dictionary and

fixing the estimation of the support.

Let us fix some notation: Let Γi be the distribution conditioned on Xi 6= 0. Then once we

have found the support of X, each set from Algorithm 5.1 RecoverGraph is a set of random

samples from Γi. Also let α = |u · Ai|.

Definition 5.24. Let R2
i = 1 +

∑
j 6=i(Ai · Aj)2EΓi [X

2
j ].

Note that R2
i is the projected variance of Γi on the direction u = Ai. Our goal is to show

that for any u 6= Ai (i.e. α 6= 1), the variance is strictly smaller.

Lemma 5.25. The projected variance of Γi on u is at most

α2R2
i + α

√
(1− α2)

2µk√
n

+ (1− α2)(
k

m
+
µk√
n

)

Proof. Let u|| and u⊥ be the components of u in the direction of Ai and perpendicular to

Ai. Then we want bound EΓi [(u · Y )2] where Y is sampled from Γi. Since the signs of each

Xj are independent, we can write

EΓi [(u · Y )2] =
∑
j

EΓi [(u · AjXj)
2] =

∑
j

EΓi [((u
|| + u⊥) · AjXj)

2]
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Since α = ‖u||‖ we have:

EΓi [(u · Y )2] = α2R2
i + EΓi [

∑
j 6=i

(2(u|| · Aj)(u⊥ · Aj) + (u⊥ · Aj)2)X2
j ]

Also EΓi [X
2
j ] = (k− 1)/(m− 1). Let v be the unit vector in the direction u⊥. We can write

EΓi [
∑
j 6=i

(u⊥ · Aj)2X2
j ] = (1− α2)(

k − 1

m− 1
)v>A−iA

>
−iv

where A−i denotes the dictionary A with the ith column removed. The maximum over v

of v>A−iA
>
−iv is just the largest singular value of A−iA

>
−i which is the same as the largest

singular value of A>−iA−i which by the Greshgorin Disk Theorem (see e.g. [85]) is at most

1 + µ√
n
m. And hence we can bound

EΓi [
∑
j 6=i

(u⊥ · Aj)2X2
j ] ≤ (1− α2)(

k

m
+
µk√
n

)

Also since |u|| · Aj| = α|Ai · Aj| ≤ αµ/
√
n we obtain:

E[
∑
j 6=i

2(u|| · Aj)(u⊥ · Aj)X2
j ] ≤ α

√
(1− α2)

2µk√
n

and this concludes the proof of the lemma.

Definition 5.26. Let ζ = max{ µk√
n
,
√

k
m
}, so the expression in Lemma 5.25 can be be an

upper bounded by α2R2
i + 2α

√
1− α2 · ζ + (1− α2)ζ2.

We will show that an approach based on SVD recovers the true dictionary up to additive

accuracy ±ζ. Note that here ζ is a parameter that converges to zero as the size of the

problem increases, but is not a function of the number of samples. So unlike the algorithm

in the previous subsection, we cannot make the error in our algorithm arbitrarily small by
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increasing the number of samples, but this algorithm has the advantage that it succeeds even

when E[Xi] 6= 0.

Corollary 5.27. The maximum singular value of Γi is at least Ri and the direction u satisfies

‖u− Ai‖ ≤ O(ζ). Furthermore the second largest singular value is bounded by O(R2
i ζ

2).

Proof. The bound in Lemma 5.25 is only an upper bound, however the direction α = 1

has variance R2
i > 1 and hence the direction of maximum variance must correspond to

α ∈ [1−O(ζ2), 1]. Then we can appeal to the variational characterization of singular values

(see [85]) that

σ2(Σi) = max
u⊥Ai

u>Σiu

u>u

Then condition that α ∈ [−O(ζ), O(ζ)] for the second singular value implies the second part

of the corollary.

Since we have a lower bound on the separation between the first and second singular

values of Σi, we can apply Wedin’s Theorem (see Appendix A.1) and show that we can

recover Ai approximately even in the presence of noise.

Hence even if we do not have access to Σi but rather an approximation to it Σ̂i (e.g. an

empirical covariance matrix computed from our samples), we can use the above perturbation

bound to show that we can still recover a direction that is close to Ai – and in fact converges

to Ai as we take more and more samples.

Algorithm 5.3. OverlappingSVD

Run RecoverGraph (or RecoverGraphHighOrder) on the p samples
Let C1, C2, ...Cm be the m returned sets
Compute Σ̂i = 1

|Ci|
∑

Y ∈Ci Y Y
>

Compute the first singular value Âi of Σ̂i

return Â, where each column is Âi for some i
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Theorem 5.28. Algorithm 5.3 (OverlappingSVD) outputs a dictionary Â so that for each

i, ‖Ai − Âi‖ ≤ ζ with high probability if k ≤ cmin(m2/5,
√
n

µ logn
) and if

p ≥ max(m2/k2 logm,
mn logm log n

ζ2
)

Proof. Appealing to Theorem 5.21, we have that with high probability the call to Algo-

rithm 5.1 (RecoverGraph) returns the correct support. Then given n logn
ζ2

samples from the

distribution Γi the classic result of Rudelson implies that the computed empirical covariance

matrix Σ̂i is close in spectral norm to the true co-variance matrix [140]. This, combined

with the separation of the first and second singular values established in Corollary 5.27 and

Wedin’s Theorem A.2 imply that we recover each column of A up to an additive accuracy of

ε and this implies the theorem. Note that since we only need to compute the first singular

vector, this can be done via power iteration [68] and hence the bottleneck in the running

time is the call to Algorithm 5.1(RecoverGraph).

5.5 A Higher-Order Algorithm

Here we extend the Algorithm 5.1 (RecoverGraph) presented in Section 5.3 to succeed even

when k ≤ cmin(m1/2−ε,
√
n/µ log n). We can then use the Algorithm 5.2 in conjunction with

this new clustering algorithm and obtain the second part of Theorem 6.1.

The premise of Algorithm 5.1(RecoverGraph) is that we can distinguish whether or not

a triple of sets X(1), X(2), X(3) has a common intersection based on their number of common

neighbors in the connection graph. However for k = ω(m2/5) this is no longer true! But

we will instead consider higher-order groups of sets. In particular, for any ε > 0 there is

an ` so that we can distinguish whether an `-tuple of sets X(1), X(2), ..., X(`) has a common

intersection or not based on their number of common neighbors even for k = Ω(m1/2−ε).
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The main technical challenge is in showing that if the sets X(1), X(2), ..., X(`) do not

have a common intersection, that we can upper bound the probability that a random set X

intersects each of them. To accomplish this, we will need to bound the number of ways of

piercing ` setsX(1), X(2), ..., X(`) that have bounded pairwise intersections by at most s points

(see Lemma 5.31), and from this an analysis of Algorithm 5.4(RecoverGraphHighOrder) will

be immediate.

Algorithm 5.4. RecoverGraphHighOrder

Compute a graph G on p nodes where there is an edge between i and j iff |Y (1) ·Y (2)| > 1/2

Initialize list of `-tuples to be empty
Set T = pk

Cm2`

for i = 1 TO Ω(k`−2m log2m) do
Choose a random node u in G, and `− 1 neighbors u1, u2, ...u`−1

if |ΓG(u) ∩ ΓG(u1) ∩ ... ∩ ΓG(u`−1)| ≥ T then
Add (u, u1, u2, ...u`−1) to the list of `-tuples

end if
end for
For each node x, add x to each set Su,u1,u2,...u`−1

where (u1, u2, ...u`−1) is an `-tuple and
|ΓG(u) ∩ ΓG(u1) ∩ ... ∩ ΓG(x)| ≥ T
Delete any set Su,u1,u2,...u`−1

that contains another set Sv,v1,v2,...v`−1

return the remaining sets Su,u1,u2,...u`−1
∪ {u, u1, u2, ...u`−1}

What we need is an analogue of Claim 5.3 and Lemma 5.19. First the easy part:

Claim. Suppose supp(X(1)) ∩ supp(X(2)) ∩ ... ∩ supp(X(`)) 6= ∅, then

PrY [ for all j = 1, 2, ..., `, |Y · Y (j)| > 1/2] ≥ 2−`
k

m

The proof of this claim is identical to the proof of Claim 5.3. But what about an ana-

logue of Lemma 5.19? To analyze the probability that a set X intersects each of the sets

X(1), X(2), ..., X(`) we will rely on the following standard definition:
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Definition 5.29. Given a collection of sets supp(X(1)), supp(X(2)), ..., supp(X(`)), the pierc-

ing number is the minimum number of points p1, p2, ..., pr so that each set contains at least

one point pi.

The notion of piercing number is well-studied in combinatorics (see e.g. [121]). However,

one is usually interested in upper-bounding the piercing number. For example, a classic result

of Alon and Kleitman concerns the (p, q)-problem [5]: Suppose we are given a collection of

sets that has the property that each choice of p of them has a subset of q which intersect.

Then how large can the piercing number be? Alon and Kleitman proved that the piercing

number is at most a fixed constant c(p, q) independent of the number of sets [5].

However, here our interest in piercing number is not in bounding the minimum number

of points needed but rather in analyzing how many ways there are of piercing a collection

of sets with at most s points, since this will directly yield bounds on the probability that X

intersects each of X(1), X(2), ..., X(`). We will need as a condition that each pair of sets has

bounded intersection, and this holds in our model with high-probability.

Claim. With high probability, the intersection of any pair supp(X(1)), supp(X(2)) has size

at most Q

Definition 5.30. We will call a set of ` sets a (k,Q) family if each set has size at most k

and the intersection of each pair of sets has size at most Q.

Lemma 5.31. The number of ways of piercing (k,Q) family (of ` sets) with s points is at

most (`k)s. And crucially if ` ≥ s + 1, then the number of ways of piercing it with s points

is at most Qs(s+ 1) + (`k)s−1.

Proof. The first part of the lemma is the obvious upper bound. Now let us assume ` ≥ s+1:

Then given a set of s points that pierce the sets, we can partition the ` sets into s sets based

on which of the s points is hits the set. (In general, a set may be hit by more than one point,

but we can break ties arbitrarily). Let us fix any s + 1 of the ` sets, and let U be the the
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union of the pairwise intersections of each of these sets. Then U has size at most Qs(s+ 1).

Furthermore by the Pidgeon Hole Principle, there must be a pair of these sets that is hit

by the same point. Hence one of the s points must belong to the set U , and we can remove

this point and appeal to the first part of the lemma (removing any sets that are hit by this

point). This concludes the proof of the second part of the lemma, too.

Corollary 5.32. The probability that the support of X hits each set in a (k,Q) family (of `

sets) is at most ∑
2≤s≤`−1

(Cs + (`k)s−1)
( k
m

)s
+
∑
s≥`

(`k2

m

)s
where Cs is a constant depending polynomially on s.

Proof. We can break up the probability of the event that the support of X hits each set in

a (k,Q) family into another family of events. Let us consider the probability that X pierces

the family with s ≤ ` − 1 points or s ≥ ` points. In the former case, we can invoke the

second part of Lemma 5.31 and the probability that X hits any particular set of s points is

at most (k/m)s. In the latter case, we can invoke the first part of Lemma 5.31.

Note that if k ≤ m1/2 then k/m is always greater than or equal to ks−1(k/m)s. And so

asymptotically the largest term in the above sum is (k2/m)` which we want to be asymptot-

ically smaller than k/m which is the probability in Claim 5.5. So if k ≤ cm(`−1)/(2`−1) then

above bound is o(k/m) which is asymptotically smaller than the probability that a given set

of ` nodes that have a common intersection are each connected to a random (new) node in

the connection graph. So again, we can distinguish between whether or not an `-tuple has

a common intersection or not and this immediately yields a new algorithm that works for k

almost as large as
√
m, although the running time depends on how close k is to this bound.

Theorem 5.33. Algorithm 5.4(RecoverGraphHighOrder(`)) output sets that each corre-

sponds to some i and contains all Y (j) for which i ∈ supp(X(j)). The algorithm runs in
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time Õ(k`−2mp + p2n) and succeeds with high probability if k ≤ cmin(m(`−1)/(2`−1),
√
n

µ logn
)

and if p = Ω(m2/k2 logm)

Hence this yields a polynomial time algorithm for finding an unknown incoherent dic-

tionary whenever k ≤ cmin(
√
n

µ logn
,m1/2−ε) using Theorem 5.23. The proof of correctness of

this algorithm is identical to one of Theorem 5.23 except that the definition of an identifying

`-tuple for coordinate i is a set of ` samples that have a common intersection and for which

the first `− 1 have a common intersection that is exactly {i}. And note that the probability

of finding an identifying `-tuple for coordinate i is at least Ω(1/(mk`−1)).

The threshold of k ≤ √n/2µ is a natural barrier: Suppose we are given a vector u of the

form u = Av where v has at most k non-zeros. Then if k ≤ √n/2µ, the vector v is uniquely

defined and is the sparsest solution to the system u = Ax (where x is the variable). However

when k >
√
n/2µ this is no-longer true and there are incoherent dictionaries where a vector

u admits more than one representation as a sparse linear combination of the columns of

A. In fact, there are many known algorithms for recovering v from u up to the uniqueness

threshold when the dictionary A is known. The above algorithm gives a method to recover

the dictionary at almost the same threshold – i.e. if k ≤ cmin(
√
n

µ logn
,m1/2−ε).
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Chapter 6

Learning Deep Representations

Can we provide theoretical explanation for the success of deep nets in applications such as

vision, speech recognition etc. (see Bengio’s survey [19])? Like most other ML tasks, learning

deep nets seems NP-hard in any reasonable formulation, and in fact “badly NP-hard”because

of many layers of hidden variables connected by nonlinear operations. Usually one imagines

that NP-hardness is not a barrier to provable algorithms in ML because the input is drawn

from some simple distribution and not worst-case. However, supervised learning of neural

nets even on random inputs still seems as hard as cracking cryptographic schemes: this holds

for depth-5 neural nets [93] and even ANDs of thresholds (a simple depth two network) [97].

However, modern deep nets are not “just”neural nets. They assume that the net (or some

modification) can and should be run in reverse to get a generative model that produces a

distribution that fits the empirical input distribution. Hinton promoted this viewpoint, and

assumed that each level is a Restricted Boltzmann Machine (RBM), which is “reversible”in

this sense. Vincent et al. [156] introduced denoising autoencoder, a generalization of an

RBM (see Definition 6.3). These viewpoints allow a different methodology than classical

backpropagation: layerwise learning. The bottom (observed) layer is learnt in unsupervised

fashion using the provided data. This gives values for the next layer of hidden variables,
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which are used as the data to learn the next higher layer, and so on. The final net thus

learned is also a good generative model for the distribution of the bottom layer1.

Viewing layers of deep networks as reversible representations alludes to assumptions and

techniques in the previous chapter. Each layer now is a sparse nonlinear code (as opposed to

a sparse linear code in the previous section). We shall show a similar robustness assumption

allows us to learn the nonlinear code under mild assumptions, and the learning algorithm

can be composed to learn a random deep network. The rest of this chapter is organized

as follows: in Section 6.1 we introduce the generative model and our main results. Every

layer of our network will be a denoising autoencoder, and this is shown in Section 6.2.

In Section 6.3 we illustrate the high-level algorithm, and prove it learns one layer networks.

These results are extended in Section 6.4 to learn a multi-layer network. Section 6.5 describes

the graph recovery algorithm, which is a crucial step in learning the network. The last

layer of our network will be slightly different from the previous layers, and is discussed in

Section 6.6. In Section 6.7 we show our network cannot be simplified: a two layer network

cannot be represented by a one layer network. Finally we list the graph properties we used

in Section 6.8.

6.1 Background and Main Results

6.1.1 Deep Networks

Here we describe the class of randomly chosen neural nets that can be learned by our algo-

rithm. A network D(`, ρ`, {Gi}) has ` hidden layers of binary variables h(`), h(`−1), .., h(1)

from top to bottom and an observed layer y at bottom (see Figure 6.1). The set of nodes

at layer h(i) is denoted by Ni, and |Ni| = ni. The nodes of the output layer are denoted by

1Recent work suggests that classical backpropagation-based learning of neural nets together with a few
modern ideas like convolution and dropout training also performs very well [103], though the authors suggest
that some unsupervised pretraining should help further.
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Y (or N0), and |Y | = n0. For simplicity let n = maxi ni, and assume each ni > nc for some

positive constant c.

y

h(`−1)

h(1)

h(`)

random neural net G`−1

random linear function G0 y = G0h
(1)

h(`−1) = sgn(G`−1h(`))

(observed layer)

random neural nets h(i−1) = sgn(Gi−1h(i))

Figure 6.1: Example of a deep network

The graph between layers i + 1 and i is a random bipartite graph Gi(Ni+1, Ni, Ei, w),

where every edge (u, v) ∈ Ni+1 × Ni in Ei has probability pi. We denote this distribution

of graphs by Gni+1,ni,pi . Each edge e ∈ Ei carries a random weight w(e) in {−1, 1}.The set

of positive edges are denoted by E+
i = {(u, v) ∈ Ni+1 × Ni : w(u, v) > 0}, and the set of

negative edges by E−.

The threshold for the generative direction (from top to bottom) is 0 for every node. The

top layer h(`) is a random vector where every component is an independent Bernoulli variable

with probability ρ`
2. Each node in layer `− 1 computes a weighted sum of its neighbors in

layer `, and becomes 1 iff that sum strictly exceeds 0. We use sgn(·) to denote the threshold

function:

sgn(x) = 1 if x > 0 and 0 else. (6.1)

Applying sgn() to a vector involves applying it componentwise.

2We can also allow the top layer to be uniform over all the ρ`n` sparse vectors, because in that case all
the probabilities computed in the following sections changes only by a multiplicative factor of (1 + o(1)).
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Hence the network generates the observed examples using the following equations:

h(i−1) = sgn(Gi−1h
(i)) for all i > 0 and h(0) = G0h

(1) (i.e., no threshold at the observed

layer).Here (with slight abuse of notation) Gi stands for both the bipartite graph and the

bipartite weight matrix of the graph at layer i.

Throughout this chapter, “with high probability” means the probability is at least 1−n−C

for arbitrary large constant C. Moreover, f � g, f � g mean f ≥ nεg , f ≤ n−εg where ε

is a arbitrarily small constant3.

More network notations. The expected degree from Ni to Ni+1 is di, that is, di ,

pi|Ni+1| = pini+1, and the expected degree from Ni+1 to Ni is denoted by d′i , pi|Ni| = pini.

The set of forward neighbors of u ∈ Ni+1 in graph Gi is denoted by Fi(u) = {v ∈ Ni : (u, v) ∈

Ei}, and the set of backward neighbors of v ∈ Ni in Gi is denoted by Bi(v) = {u ∈ Ni+1 :

(u, v) ∈ Ei}. We use F+
i (u) to denote the positive neighbors: F+

i (u) , {v, : (u, v) ∈ E+
i }

(and similarly for B+
i (v)). The expected density of the layers are defined as ρi−1 = ρidi−1/2

(ρ` is given as a parameter of the model). For higher level ancestors, we use B(j)(u) to denote

the all nodes that have a path to u at layer j, and B
(j)
+ (u) to denote all nodes that have a

positive path to u at layer j.

Our analysis works while allowing network layers of different sizes and different degrees.

For simplicity, we recommend first-time readers to assume all the ni’s are equal, and di = d′i

for all layers.

Discussions Recent papers have given theoretical analysis of models with multiple levels

of hidden features, including SVMs [40, 115]. However, none of these solves the task of

recovering a ground-truth neural network given its output distribution.

Though real-life neural nets are not random, our consideration of random deep networks

makes some sense for theory. Sparse denoising autoencoders are reminiscent of other objects

3It is possible to make the analysis tighter and allow f ≥ g poly log n, we choose this to make the
presentation simpler.
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such as error-correcting codes, compressed sensing, etc. which were all first analysed in the

random case. As mentioned, provable reconstruction of the hidden layer in a known au-

toencoder already seems a nonlinear generalization of compressed sensing (1-bit compressed

sensing, [30]), and even the usual compressed sensing seems possible only if the adjacency

matrix has “random-like” properties (low coherence or restricted isoperimetry or lossless ex-

pansion). In fact our result that a single layer of our generative model is a sparse denoising

autoencoder can be seen as an analog of the fact that random matrices are good for com-

pressed sensing/sparse reconstruction (see Donoho [55] for general matrices and Berinde et

al. [21] for sparse matrices). Of course, in compressed sensing the matrix of edge weights is

known whereas here it has to be learnt, which is the main contribution of our work. Fur-

thermore, we show that our algorithm for learning a single layer of weights be extended to

do layerwise learning of the entire network.

Along the way we show interesting properties of such randomly-generated neural nets:

(a) Each pair of layers constitutes a denoising autoencoder in the sense of Vincent et al.; see

Lemma 6.4. (b) The reverse computation (computing the top hidden layer given the value of

the observed vector) can also be performed by the same network by appropriately changing

the thresholds at the computation nodes (c) The reverse computation is stable to dropouts

(d) the distribution generated by a two-layer net cannot be represented by any single layer

neural net (see Appendix), which in turn suggests that a random t-layer network cannot be

represented by any t/2-level neural net4.

Note that properties (a) to (d) are assumed in modern deep network research (e.g., (b)

is a heuristic trick called “weight tying”) so the fact that they provably hold for a random

generative model can be seen as some theoretical validation of those assumptions.

4Proving this for t > 3 is difficult however since showing limitations of even 2-layer neural nets is a major
open problem in computational complexity theory. Some deep learning papers mistakenly cite an old paper
for such a result, but the result that actually exists is far weaker.
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6.1.2 Main Results

Theorem 6.1. For a network D(`, ρ`, {Gi}), if all graphs Gi’s are chosen according to

Gni+1,ni,pi, weights are chosen at random, and the parameters satisfy:

1. All di � 1, d′i � 1.

2. For all layers, n3
i (d
′
i−1)8/n8

i−1 � 1.

3. For all but last layer (i ≥ 1), ρ3
i � ρi+1.

4. For last layer, ρ1d0 = O(1), d
3/2
0 /d1d2 � 1,

√
d0/d1 � 1, d2

0 � n1

Then there is an algorithm using O(log2 n/ρ2
`) samples, running in time O(

∑`
i=1 ni((d

′
i−1)3+

ni−1)) that learns the network with high probability over both the graph and the samples.

Remark 6.2. We include the last layer whose output is real instead of 0/1, in order to get

fully dense outputs. We can also learn a network without this layer, in which case the last

layer needs to have density at most 1/ poly log(n), and Condition 4 is no long needed.

Although we assume each layer of the network is a random graph, we are not using all

the properties of the random graph. The properties we need are listed in Section 6.8.

6.2 Denoising Property

Experts feel that deep networks satisfy some intuitive properties. First, intermediate layers

in a deep representation should approximately preserve the useful information in the input

layer. Next, it should be possible to go back/forth easily between the representations in two

successive layers, and in fact they should be able to use the neural net itself to do so. Finally,

this process of translating between layers should be noise-stable to small amounts of random

noise. All this was implicit in the early work on RBM and made explicit in the paper of

Vincent et al. [156] on denoising autoencoders. For a theoretical justification of the notion
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of a denoising autoencoder based upon the “manifold assumption” of machine learning see

the survey of Bengio [19].

Definition 6.3 (Denoising autoencoder). An autoencoder consists of an decoding function

D(h) = s(Wh + b) and a encoding function E(y) = s(W ′y + b′) where W,W ′ are linear

transformations, b, b′ are fixed vectors and s is a nonlinear function that acts identically on

each coordinate. The autoencoder is denoising if E(D(h) + η) = h with high probability

where h is drawn from the input distribution, η is a noise vector drawn from the noise dis-

tribution, and D(h) +η is a shorthand for “E(h) corrupted with noise η.” The autoencoder

is said to use weight tying if W ′ = W T .

The popular choices of s includes logistic function, soft max, etc. In this work we choose

s to be a simple threshold on each coordinate (i.e., the test > 0, this can be viewed as an

extreme case of logistic function). Weight tying is a popular constraint and is implicit in

RBMs. Our work also satisfies weight tying.

In practice the denoising autoencoder property is a “soft” constraint on the nonlinear

optimization used in learning: it takes the form of a term that penalizes deviations from this

ideal property. A denoising autoencoder is a network that makes this penalty term zero.

Thus one could conceivably weaken the above definition to say E(D(h) + η) ≈ h instead

of exact equality. However, our networks satisfy the stronger equality constraint for most

datapoints.

We will show that each layer of our network is a denoising autoencoder with very high

probability. (Each layer can also be viewed as an RBM with an additional energy term to

ensure sparsity of h.) Later we will of course give efficient algorithms to learn such networks

without recoursing to local search. In this section we just prove they satisfy Definition 6.3.

The single layer has m hidden and n output (observed) nodes. The connection graph

between them is picked randomly by selecting each edge independently with probability p

and putting a random weight on it in {−1, 1}. Then the linear transformation W corresponds
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simply to this matrix of weights. In our autoencoder we set b = 0 and b′ = 0.2d′ × 1, where

d′ = pn is the expected degree of the random graph on the hidden side. (By simple Chernoff

bounds, every node has degree very close to d′.) The hidden layer h has the following prior:

it is given a 0/1 assignment that is 1 on a random subset of hidden nodes of size ρm. This

means the number of nodes in the output layer that are 1 is at most ρmd′ = ρnd, where

d = pm is the expected degree on the observed side. We will see that since b = 0 the number

of nodes that are 1 in the output layer is close to ρmd′/2.

Lemma 6.4. If ρmd′ < 0.05n (i.e., the assignment to the observed layer is also fairly sparse)

then the single-layer network above is a denoising autoencoder with high probability (over the

choice of the random graph and weights), where the noise distribution is allowed to flip every

output bit independently with probability 0.01.

Remark: The parameters accord with the usual intuition that the information content must

decrease when going from observed layer to hidden layer.

Proof. By definition, D(h) = sgn(Wh). Let’s understand what D(h) looks like. If S is

the subset of nodes in the hidden layer that are 1 in h, then the unique neighbor property

(Lemma 6.27) implies that (i) With high probability each node u in S has at least 0.9d′

neighboring nodes in the observed layer that are neighbors to no other node in S. Further-

more, at least 0.44d′ of these are connected to u by a positive edge and 0.44d′ are connected

by a negative edge. All 0.44d′ of the former nodes must therefore have a value 1 in D(h).

Furthermore, it is also true that the total weight of these 0.44d′ positive edges is at least

0.21d′. (ii) Each v not in S has at most 0.1d′ neighbors that are also neighbors of any node

in S.

Now let’s understand the encoder, specifically, E(D(h)). It assigns 1 to a node in the

hidden layer iff the weighted sum of all nodes adjacent to it is at least 0.2d′. By (i), every

node in S must be set to 1 in E(D(h)) and no node in S is set to 1. Thus E(D(h)) = h

for most h’s and we have shown that the autoencoder works correctly. Furthermore, there
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is enough margin that the decoding stays stable when we flip 0.01 fraction of bits in the

observed layer.

For the last layer, since the output is not 0/1, we shall choose a different threshold.

Lemma 6.5. For the last layer, with high probability the encoder E(y) = sgn(GTy − 0.51)

and linear decoder D(h) = Gh form a denoising autoencoder, where the noise vector η has

independent components each with variance at most o(d′0/ log2 n).

Proof. When there is no noise, we know E(D(h)) = sgn(GTGh − 0.5d′01). With high

probability the matrix GTG has value at least 0.9d′0 on diagonals. For any fixed h, the

support of the i-th row of GTG and the support of h have a intersection of size at most

d′0 log2 n with high probability. Also, at all these intersections, the entries of GTG has random

signs, and variance bounded by O(1). Hence if hi = 1 (GTGh)i ≥ 0.9d′0 − O(
√
d′0 log2 n)

; if hi = 0 (GTGh)i ≤ O(
√
d′0 log2 n). Setting the threshold at 0.5d′0 easily distinguishes

between these two cases.

Even if we add noise, since the inner product of Gi and the noise vector is bounded by

o(d0) with high probability, the autoencoder still works.

6.3 Learning a Single Layer Network

We first consider the question of learning a single layer network, which as noted amounts to

learning nonlinear dictionaries. It perfectly illustrates how we leverage the sparsity and the

randomness of the support graph.

The overall algorithm is illustrated in Algorithm 6.1.

We start with the simplest subcase of the first step: all edge weights are 1, and consider

only pairwise correlations. Then we shall consider 3-wise correlations to figure out which

triples share a common neighbor in the hidden layer. The correlation structure is used by
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Algorithm 6.1. High Level Algorithm

input samples y’s generated by a deep network described in Section 6.1
output Output the network/encoder and decoder functions

1: for i = 1 TO ` do
2: Call LastLayerGraph/3-Wise Graph on h(i−1) to construct the correlation graph
3: Call RecoverGraph3Wise to learn the positive edges E+

i

4: Use PartialEncoder to encode all h(i−1) to h(i)

5: Call LearnGraphLast/LearnGraph to learn the graph/decoder between layer i and
i− 1.

6: end for

the Graph Recovery procedure (described later in Section 6.5) to learn the support of the

graph.

In Section 6.3.1 we show how to generalize these ideas to learn positive edges when edges

can have weights {±1}.

In Section 6.3.2 we construct a partial encoder, which can do encoding given only the

support of positive edges. The result there is general and works in the multi-layer setting.

Finally we give a simple algorithm for learning the negative edges.

6.3.1 Correlation Implies Common Cause

Warm up: 0/1 weights

In this part we work with the simplest setting: a single level network with m hidden nodes,

n observed nodes, and a random (but unknown) bipartite graph G(U, V,E) connecting them

(see Figure 6.2). The expected backdegree of observed nodes are d. All edge weights are 1,

so learning G is equivalent to finding the edges. Recall that we denote the hidden variables

by h and the observed variables by y, and the neural network implies y = sgn(Gh).

Theorem 6.6. Let G be a graph satisfying properties Psing. Suppose ρ � 1/d2, with high

probability over the samples, Algorithm 6.2 construct a graph Ĝ, where u, v are connected in

Ĝ iff they have a common neighbor in G.
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h

G

(observed layer)

(hidden layer)

u′ u v

w

Figure 6.2: Single layered network

Algorithm 6.2. PairwiseGraph

input N = O(log2 n/ρ2) samples of y = sgn(Gh)
output Graph Ĝ on vertices V , u, v are connected if u, v share a positive neighbor in G

for each u, v in the output layer do
if there are at least 2ρN/3 samples of y: yu = yv = 1 then

connect u and v in Ĝ
end if

end for

As mentioned, the crux of the algorithm is to compute the correlations between observed

variables. The following lemma shows pairs of variables with a common parent both get value

1 more frequently than a typical pair. To simplify notation let ρy = ρd be the approximate

expected density of output layer.

Lemma 6.7. Under the assumptions of Theorem 6.6, if two observed nodes u, v have a

common neighbor in the hidden layer then

Pr
h

[yu = 1,yv = 1] ≥ ρ

otherwise,

Pr
h

[yu = 1,yv = 1] ≤ 2ρ2
y

Proof. When u and v have a common neighbor z in the input layer, as long as z is fired both

u and v are fired. Thus Pr[yu = 1,yv = 1] ≥ Pr[hz = 1] = ρ.

On the other hand, suppose the neighbor of u (B(u)) and the neighbors of v (B(v)) are

disjoint. Then to make them both 1, we need supp(h) to intersect both B(u) and B(v).
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These two events are independent (because the sets are disjoing), the probability is at most

(ρ|B(u)|)(ρ|B(v)|) ≤ 2ρ2
y.

The lemma implies that when ρ2
y � ρ(which is equivalent to ρ � 1/(d2)), we can find

pairs of nodes with common neighbors by estimating the probability that they are both 1.

The theorem follos directly from the lemma.

Algorithm 6.3. 3-WiseGraph

input N = O(log n/ρ2) samples of y = sgn(Gh), where h is unknown and chosen from
uniform ρm-sparse distribution

output Hypergraph Ĝ on vertices V . {u, v, s} is an edge if and only if they share a positive
neighbor in G
for each u, v, s in the observed layer of y do

if there are at least ρN/3 samples of y satisfying all u, v and s are fired then
add {u, v, s} as an hyperedge for Ĝ

end if
end for

In order to weaken the assumption that ρ � 1/d2, we can consider higher order cor-

relations using Algorithm 6.3 3-WiseGraph. In the following lemma we show how 3-wise

correlation works when ρ� d−3/2 (ρ3
y � ρ).

Lemma 6.8. If the graph G satisfies Psing and Psing+, for any u, v, s in the observed layer,

1. Prh[yu = yv = ys = 1] ≥ ρ, if u, v, s have a common neighbor

2. Prh[yu = yv = ys = 1] ≤ 2ρ3
y +O(ρyρ log n) otherwise.

Proof. The proof is very similar to the proof of Lemma 6.7.

If u,v and s have a common neighbor z, then Pr[yu = yv = ys = 1] ≤ Pr[hu = 1] = ρ.

On the other hand, if they don’t share a common neighbor, then Prh[yu = yv = ys =

1] = Pr[supp(h) intersects with B(u), B(v), B(s)]. There are two ways supp(h) can intersect

with three sets: 1. it intersects with the three sets independently or 2. it intersects with

the intersection of two. The probability of the first type is easily bound by 2ρ3
y. Notice
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that the property Psing+ bounds the pairwise intersections of these sets by O(log n), so the

probability of second type is bounded by O(ρyρ log n).

General case: finding common positive neighbors

The previous two algorithms still work even when weights can be both positive and negative,

as long as the weights are random. We will show this in the next lemma. A difference in

notation here is ρy = ρd/2 (because only half of the edges have positive weights).

Lemma 6.9. When the graph G satisfies properties Psing and Psing+, for any u, v, s in the

observed layer,

1. Prh[yu = yv = ys = 1] ≥ ρ/2, if u, v, s have a common positive neighbor

2. Prh[yu = yv = ys = 1] ≤ O(ρ3
y + ρyρ log n), otherwise.

Proof. The proof is similar to the proof of Lemma 6.8.

First, when u, v, s have a common positive neighbor z, let U be the neighbors of u, v, s

except z. Hence U = B(u)∪B(v)∪B(s) \ {z}. By property Psing, we know the size of U is

at most 3.3d. With at least 1− 3.3ρd ≥ 0.9 probability, none of them is 1. Hence

Pr[yu = yv = ys = 1] ≥ Pr[hz = 1] Pr[hU = 0] ≥ ρ/2.

On the other hand, if u, v and s don’t have a positive common neighbor, then we have

Prh[yu = yv = ys = 1] ≤ Pr[supp(h) intersects with B+(u), B+(v), B+(s)]. This case is the

same as Lemma 6.8.

6.3.2 Paritial Encoder: Finding h given y

Although we only know the positive edges of G, it is enough for the encoding process. This

is based on unique neighbor property (see Section 6.8 for more details). Intuitively, when
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ρd � 1 any hz = 1 will have a large fraction of unique positive neighbors (that are not

neighbors of any z′ with hz′ = 1). These unique neighbors cannot be canceled by any −1

edges, so they must be 1 in y.

Algorithm 6.4. PartialEncoder

input positive edges E+, sample y = sgn(Gh), threshold θ
output the hidden variable h

return h = sgn((E+)>y − θ1)

Lemma 6.10. If the support of vector h has the 11/12-strong unique neighbor property in

G, then Algorithm 6.4 returns h given input E+ and θ = 0.3d′.

Proof. Let S = supp(h).

If u ∈ S, at most d′/12 of its neighbors (in particular that many of its positive neighbors)

can be shared with other vertices in S. Thus u has at least (0.3)d′ unique positive neighbors,

and these are all “on”.

Now if u 6∈ S, it can have an intersection at most d′/12 with F (S) (by the definition of

strong unique neighbors). Anything outside F (S) must be 0 in y. Thus there cannot be

(0.3)d′ of its neighbors that are 1.

Remark 6.11. Notice that Lemma 6.10 only depends on the unique neighbor property,

which holds for the support of any vector h with high probability over the randomness of

the graph. Therefore this ParitialEncoder can be used even when we are learning the layers

of deep network (and h is not a i.i.d. random sparse vector).

6.3.3 Learning the Graph: Finding −1 edges.

Now that we can find h given y, the idea is to use many such pairs (h,y) and the partial

graph E+ to determine all the non-edges (i.e., edges of 0 weight) of the graph. Since we

know all the +1 edges, we can thus find all the −1 edges.
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Consider some (h,y), and suppose yv = 1, for some output v. Now suppose we knew

that precisely one element of B+(v) is 1 in h (recall: B+ denotes the back edges with weight

+1). Note that this is a condition we can verify, since we know both h and E+. In this case,

it must be that there is no edge between v and S \ B+, since if there had been an edge, it

must be with weight −1, in which case it would cancel out the contribution of +1 from the

B+. Thus we ended up “discovering” that there is no edge between v and several vertices in

the hidden layer.

We now claim that observing polynomially many samples (h,y) and using the above

argument, we can discover every non-edge in the graph. Thus the complement is precisely

the support of the graph, which in turn lets us find all the −1 edges.

Algorithm 6.5. Learning Graph

input positive edges E+, samples of (h,y)
output E−

1: R← (U × V ) \ E+.
2: for each of the samples (h,y), and each v do
3: Let S be the support of h
4: if yv = 1 and S ∩B+(v) = {u} for some u then
5: for s ∈ S do
6: remove (s, v) from R.
7: end for
8: end if
9: end for

10: return R

Note that the algorithm R maintains a set of candidate E−, which it initializes to (U ×

V ) \E+, and then removes all the non-edges it finds (using the argument above). The main

lemma is now the following.

Lemma 6.12. Suppose we have N = O(log2 n/(ρ2d)) samples (h,y). Then with high prob-

ability over choice of the samples, Algorithm 6.5 outputs the set E−.

The lemma follows from the following proposition, which says that the probability that a

non-edge (z, u) is identified by one sample (h,y) is at least ρ2d/3. The probability that this
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particular non-edge is not identified after O(log2 n/(ρ2d)) samples is < 1/nO(logn). Therefore

all non-edges must be found with high probability by union bound.

Proposition 6.13. Let (z, u) be a non-edge, then with probability at least ρ2d/3, all of the

followings hold: 1. hz = 1, 2. |B+(u) ∩ supp(h)| = 1, 3. |B−(u) ∩ supp(h)| = 0.

If such (h,y) is one of the samples we consider, (z, u) will be removed from R by Algo-

rithm 6.5.

Proof. The latter part of the proposition follows from the description of the algorithm. Hence

we only need to bound the probability of the three events.

The three events are independent because {z}, B+(u), B−(u) are three disjoint sets.

The first event has probability ρ, the second event have probability roughly ρ|B+(u)| (since

ρd� 1) and the third event has probability at least 1− ρ|B−(u)|. Therefore the probability

that all three events happen is at least ρ2/3.

6.4 Learning a Multi-layer Network

Among the four steps of the algorithm, graph recovery and partial encoding are not assuming

any distribution on the hidden variable h. Hence these two steps can still be used for learning

a multi-layer network. On the other hand, building the correlation graph and learning the

−1 edges all depend on the distribution of h. In this section we shall show the effect of

correlation between hidden variables are bounded. Although in a multi-layer network the

hidden variable h(1) does not have independent components, the first and last step of the

algorithm can still work. The key idea here is that although the maximum correlation

between two nodes in z, t in layer h(i+1) can be large, there are only very few pairs with

such high correlation. Since the graph Gi is random and independent of the upper layers,

we don’t expect to see many such pairs in the B(u), B(v) for any u, v in h(i).
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6.4.1 Correlation Grapph in a Multilayer Network

For the first step of the algorithm, we show correlation does not change the behavior of the

algorithm by the following theorem.

Theorem 6.14. For any 1 ≤ i ≤ `−1, and if the network satisfies Property Pmul+ (which are

satisfied by random graphs if ρ3
i+1 � ρi), then given O(log2 n/ρ2

i+1) samples, Algorithm 6.3

3-WiseGraph constructs a hypergraph Ĝ, where (u, v, s) is an edge if and only if they share

a positive neighbor in Gi.

The theorem follows directly from the lemma below.

Lemma 6.15. Under the assumption of Theorem 6.14, for any i ≤ `− 1 and any u, v, s in

the layer of h(i) , if they have a common positive neighbor(parent) in layer of h(i+1)

Pr[h(i)
u = h(i)

v = h(i)
s = 1] ≥ ρi+1/3,

otherwise

Pr[h(i)
u = h(i)

v = h(i)
s = 1] ≤ 0.2ρi+1

Proof. The idea is to go all the way back to the `-th layer and use the assumption on the

input distribution there.

Consider first the case when u, v and s have a common positive neighbor z in the layer of

h(i+1). Similar to the proof of Lemma 6.9, when h(i+1)
z = 1 and none of other neighbors of

u, v and s in the layer of h(i+1) is 1, we know h(i)
u = h(i)

v = h(i)
s = 1. Going back to level

`, this is implied by the event B
(`)
+ (z) has at least one component being 1, and everything

else in B(`)(u) ∪ B(`)(v) ∪ B(`)(s) are all 0. By Property Pmul,
∣∣∣B(`)

+ (z)
∣∣∣ ≥ 0.8ρi+1/ρ`, and∣∣B(`)(u) ∪B(`)(v) ∪B(`)(s)

∣∣ ≤ 2`+1ρi/ρ`. Let S = B(`)(u) ∪ B(`)(v) ∪ B(`)(s) \ B(`)
+ (z), we

know (using independence at the first layer h(`))

Pr[h(i)
u = h(i)

v = h(i)
s = 1] ≥ Pr[supp(h(`))∩B(`)

+ (z) 6= ∅] Pr[supp(h(`))∩B(`)
+ (z) = ∅] ≥ ρi+1/3.
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On the other hand, if u, v and s don’t have a common positive neighbor in layer of

h(i+1), consider event E: S intersects each of B
(`)
+ (u), B

(`)
+ (v), B

(`)
+ (s). Clearly, the target

probability can be upperbounded by the probability of E. There are three ways the support

of h(`) can intersect with all three sets: 1. intersect with the intersection of three sets; 2.

intersect with the intersection of two of the sets, and intersect at a different place with the

third set; 3. intersect all three sets at different places.

By graph Property Pmul+, the size of pairwise and three-wise intersections can be

bounded, let A ≤ 2`+1ρi/ρ` be the size of the largest set, B ≤ O(log n)ρi+1/ρ` be the size of

the largest pairwise intersection, and let C = o(ρi+1/ρ`) be the size of 3-wise intersection,

we can bound the probability of event E by

Pr[E] ≤ ρ`C + 3ρ2
`AB + ρ3

`A
3 ≤ 0.2ρi+1.

The bound on the third term uses the assumption that ρ3
i � ρi+1.

6.4.2 Learning the −1 Edges

In order to show Algorithm 6.5 still works, we prove the following lemma that replaces

Lemma 6.12.

Lemma 6.16. If the network satisfy Pneg+, given O(log2 n/(ρ2
i+1)) samples, with high prob-

ability over the choice of the samples, Algorithm 6.5 returns E−.

Proof. Similar as Lemma 6.12, it suffices to prove the following Proposition 6.17 (which

replaces Proposition 6.13).

Proposition 6.17. For any (x, u) 6∈ Ei, with probability Ω(ρ2
i+1) over the choice of h(i+1),

the following events happen simultaneously: 1. x ∈ supp(h(i+1)), 2.
∣∣B+(u) ∩ supp(h(i+1))

∣∣ =

1, 3.
∣∣B−(u) ∩ supp(h(i+1))

∣∣ = 0.

164



When these events happen, (x, u) is removed from R by Algorithm 6.5.

Proof. Let t be an arbitrary node in B+(u), and let S = B(u) \ {t}. For simplicity, we shall

bound probability of the following three events happen simultaneously: 1. h
(i+1)
x = 1; 2.

h
(i+1)
t = 1; 3. supp(h(i+1)) ∩ S = ∅.

Clearly, these three events imply the three events in the lemma. The set S does not

depend on graphs Gi+1 to G`−1. Going back to the first layer, let S1 = B
(`)
+ (x)\B(`)({x}∪S),

S2 = B
(`)
+ (t) \B(`)({x} ∪ S), S3 = B(`)(t)∪B(`)(x)∪B(`)(S) \ (S1 ∪ S2). By Property Pneg+,

|S1| ≥ ρi+1/2ρ`, |S2| ≥ ρi+1/2ρ`, and |S3| ≤ 2`+2ρi/ρ`. Let H = supp(h(`)), the probability

of the three events is at least

Pr[H ∩ S1 6= ∅] Pr[H ∩ S2 6= ∅] Pr[H ∩ S3 = ∅] ≥ (ρi+1/3)2(1−O(ρi)) = Ω(ρ2
i+1).

6.5 Graph Recovery

By Algorithms 6.2 PairwiseGraph and 6.3 3-WiseGraph, we can construct a graph/hypergraph

that is related to the support graph of the positive edges in the network. How can we find

the positive edges? The problem reduces to a graph recovery problem, which is very similar

to the problem we solved in Section 5.3.

For the pairwise correlation graph, the problem is formulated as follows:

Definition 6.18 (Graph Recovery Problem). There is an unknown random bipartite graph

G1(U, V,E1) between |U | = m and |V | = n vertices. Each edge is in E1 with probability

d′/n.

Given: Graph Ĝ(V,E) where (v1, v2) ∈ E iff v1 and v2 share a common parent in G1 (i.e.

∃u ∈ U where (u, v1) ∈ E1 and (u, v2) ∈ E1).

Goal: Find the bipartite graph G1.
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This problem is really similar to the problem we solved in Section 5.3. In fact, it is

even simpler because whenever two vertices share a common parent they are connected (in

Section 5.3 such pairs are only connected with probability /12). We can directly apply

Algorithm 5.1 or the more complicated Algorithm 5.4 to solve this problem.

However, there is a limit in the sparsity of the graphs for these algorithms to work. In

particular, they would require d′ � √n. This is not very satisfying for our application.

In this case, we can rely on the hypergraph generated by 3WiseGraph. Such higher-order

correlation structure was not available for algorithms in the previous chapter.

Definition 6.19 (Graph Recovery with 3-wise Correlation). There is an unknown random

bipartite graph G1(U, V,E1) between |U | = m and |V | = n vertices. Each edge is in E1 with

probability d′/n.

Given: Hypergraph Ĝ(V,E) where (v1, v2, v3) ∈ E iff there exists u ∈ U where (u, v1), (u, v2)

and (u, v3) are all in E1.

Goal: Find the bipartite graph G1.

Algorithm 6.6. RecoverGraph3Wise

input Hypergraph Ĝ in Definition 6.19
output Graph G1 in Defintion 6.19

repeat
Pick a random hyperedge (v1, v2, v3) in E
Let S = {v : (v, v1, v2), (v, v1, v3), (v, v2, v3) ∈ E}
if |S| < 1.3d′ then

Let S ′ = {v ∈ S : v is correlated with at least
(

0.8d′−1
2

)
pairs in S}

In G1, create a vertex u and connect u to every v ∈ S ′.
Mark all hyperedges (v1, v2, v3) for v1, v2, v3 ∈ S ′

end if
until all hyperedges are marked

The intuitions behind Algorithm 6.6 are very similar to the algorithms in previous chap-

ter: since 3-wise correlations are rare, not many vertices should have 3-wise correlation

with all three pairs (v1, v2), (v1, v3) and (v2, v3) unless they are all in the same community.
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The performance of Algorithm 6.6 is better than the previous algorithms because 3-wise

correlations are rarer.

Theorem 6.20. When the graph G1 satisfy properties Prec+, Ĝ is constructed according

to Definition 6.19, and when m3d′8/n8 � 1, Algorithm 6.6 solves Graph Recovery with 3-

wise Correlation. The expected running time is O(m(d′3 + n)) over the randomness of the

algorithm.

Proof. If (v1, v2, v3) has more than one common neighbor, then Property 2 shows the condi-

tion in if statement must be false (as |S| ≥ |F (B(v1) ∩B(v2) ∩B(v3))| ≥ 1.5d′.

When (v1, v2, v3) has only one common neighbor u, then Property 1 shows S = F (u)∪T

where |T | ≤ d′/20.

Now consider S ′, for any v ∈ F (u), it is correlated with all other pairs in F (u). Hence it

must be correlated with at least
(

0.8d′−1
2

)
pairs in S, which implies v is in S.

For any v′ 6∈ F (u), by Property 3 it can only be correlated with d′2/40 pairs in F (u).

Therefore, the total number of correlated pairs it can have in S is bounded by |T | |F (u)| +(|T |
2

)
+ d′2/40 <

(
0.8d′−1

2

)
. This implies v′ is not in S.

The argument above shows S ′ = F (u), so the algorithm correctly learns the edges related

to u.

Finally, to bound the running time, notice that Property 4 shows the algorithm finds

a new vertex u in 10 iterations in expectation. Each iteration takes at most n + d′3 time.

Therefore the algorithm takes O(m(d′3 + n)) expected time.

6.6 Layer with Real-valued Output

In previous sections, we considered hidden layers with sparse binary input and output.

However, in most applications of deep learning, the observed vector is dense and real-valued.
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Bengio et al.[20] suggested a variant auto-encoder with linear decoder, which is particularly

useful in this case.

We use similar ideas as in Section 6.3 to learn the last layer. The algorithm collects the

correlation-structure of the observed variables, and use this information to reconstruct the

edges.

When we observe real-valued output in the last layer, we can learn whether three nodes

u,v and s have a common parent from their correlation measured by E[xuxvxs], even if the

output vector is fully dense. Note that compared to Theorem 6.6 in Section 6.3, the main

difference here is that we allow ρpm to be any constant (before ρpm� 1/d).

Theorem 6.21. When ρ1d0 = O(1), d2
0 � n1, d

3/2
0 /(d1d2) � 1 and

√
d0/d1 � 1, the

last layer is generated at random and the rest of the network satisfy Pmul+, then with high

probability over the choice of the weights and the choice of the graph, for any three nodes

u, v, s at the observed vector y

1. If u, v and s have no common neighbor, then |Eh[yuyvys]| ≤ 0.6ρ1

2. If u, v and s have a unique common neighbor, then |Eh[yuyvys]| ≥ 0.1ρ1

Before proving the theorem we state a concentration bounds for trilinear forms:

Lemma 6.22. If x, y and z are three independent uniformly random vectors in {±1}n,

with high probability ∣∣∣∣∣∑
i,j,k

Ai,j,kxiyjzk

∣∣∣∣∣ ≤ O(

√∑
i,j,k

A2
i,j,k log3 n).

This bound follows easily from the McDiarmid’s inequality (see Appendix B) and union

bound. This is not tight (for example compared to the Hanson-Wright inequality in the

previous chapter) but only loses poly log factors and is good enough for our need.

Proof. In this proof we shall use h for h(1) to simplify notations.

168



By the structure of the network we know

E[yuyvys] =
∑

i∈B(u),j∈B(v),k∈B(s)

wi,uwj,vwk,s E[hihjhk] (6.2)

Observe that wi,u and wj,v are different random variables, no matter whether i is equal to

j. Thus by concentration bounds for trilinear forms, with high probability over the choice

of the weights

|E[yuyvys]| ≤
√ ∑

i∈B(u),j∈B(v),k∈B(s)

E[hihjhk]2 log3 n (6.3)

Let V be the main term in the bound:

V ,
∑

i∈B(u),j∈B(v),k∈B(s)

E[hihjhk]
2.

We need to bound the size of V .

From Property Pmul+ we can bound the expectations of h variables.

Proposition 6.23.

E[hihjhk] is


≤ O(ρ3

1 + ρ2ρ1 + ρ2) log n if B+(i) ∩B+(j) ∩B+(k) 6= ∅,

≤ O(ρ3
1 + log nρ2ρ1 + ρ3) log n if B+(i) ∩B+(j) ∩B+(k) = ∅,

and

E[hihj] is


≤ O(ρ2

1 + ρ2) log n if B+(i) ∩B+(j) 6= ∅,

≤ O(ρ2
1 + ρ3) log n if B+(i) ∩B+(j) = ∅,

When d2
0 � n1, with high probability we can also bound the intersection of neighbors

|B(u) ∩B(v)| ≤ log n for any two u, v in the observed layer.
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Combining all these, we can carefully bound the size of V when u, v, s do not share a

common neighbor. In particular
√
V ≤ √v1 + v2 ≤ O(d3/2(ρ3

1 + ρ2ρ1 + ρ3) + 10d1/2(ρ2
1 +

ρ2)) poly log n.

Under the assumption of theorem,
√
V log3 n ≤ ρ1/3. With high probability, when u, v, s

do not share a common neighbor, we know |E[yuyvys]| ≤ ρ1/10.

When u, v, s share a unique neighbor z, we take the term E[h3
z]wz,uwz,vwz,s out of the sum.

The remaining terms can still be bounded by ρ1/3. Hence |E[yuyvys]| ≥ E[h3
z] − ρ1/10 ≥

0.6ρ1 (we argue that E[hz] ≥ 0.7ρ by going back to the `-th layer as before).

Although the hypergraph generated by Theorem 6.21 is not exactly the same as the

hypergraph required in Definiton 6.19, the same Algorithm 6.6 can find the edges of the

graph. This is because the two hypergraphs only differ when u, v, s share more than one

common neighbor, which happens with extremely low probability (Algorithm 6.6 can actually

tolerate this effect even if the probability is a small constant).

Note that different from the previous sections, here Algorithm 6.3 actually returns a

graph that contains both the positive edges and negative edges. In order to reconstruct

the weighted bipartite graph we need to differentiate between positive and negative edges.

This is not hard: from the proof of Theorem 6.21, when u, v, s share a unique neighbor x,

Eh[yuyvys] > 2ρ/3 if an even number of edges (x, u), (x, v), (x, s) are negative. Therefore

Algorithm 6.7 can distinguish positive and negative edges.

To prove the algorithm works we first consider the case when any triple share at most

one parent. In that case all nodes in S will have edges with the same sign to x, therefore

the sign of t is exactly the sign of Eh[ytyu′yv′ ] for any u′, v′ ∈ S. The algorithm is extremely

noise tolerant, so it still works even if there is a small number of triples that share more than

one parent (and the test Eh[yuyvys] > 0 is not perfect).
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Algorithm 6.7. LearnLastLayer

input E, the set of edges
output E+, E−, the set of positive and negative edges

for each node x ∈ h(1) do
Pick u, v in F (x)
Let S be the set {s : Eh[yuyvys] > 0}.
for each t : (x, t) ∈ E do

if most triples (t, u′, v′)(u′, v′ ∈ S) have positive Eh[ytyu′yv′ ] then
add (x, t) to E+

else
add (x, t) to E−

end if
end for

end for

6.7 Lower Bound

In this section we show that a two-layer network with ±1 weights is more expressive than

one layer network with arbitrary weights. A two-layer network (G1, G2) consists of random

graphs G1 and G2 with random ±1 weights on the edges. Viewed as a generative model, its

input is h(3) and the output is h(1) = sgn(G1 sgn(G2h
(3))). We will show that a single-layer

network even with arbitrary weights and arbitrary threshold functions must generate a fairly

different distribution.

Lemma 6.24. For almost all choices of (G1, G2), the following is true. For every one

layer network with matrix A and vector b, if h(3) is chosen to be a random ρ3n-sparse

vector with ρ3d2d1 � 1, the probability (over the choice of h(3)) is at least Ω(ρ2
3) that

sgn(G1 sgn(G1h
(3))) 6= sgn(Ah(3) + b).

The idea is that the cancellations possible in the two-layer network simply cannot all be

accomodated in a single-layer network even using arbitrary weights. More precisely, even

the bit at a single output node v cannot be well-represented by a simple threshold function.

First, observe that the output at v is determined by values of d1d2 nodes at the top

layer that are its ancestors. Wlog, in the one layer net (A, b), there should be no edge
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between v and any node u that is not its ancestor. The reason is that these edges between

v and its ancestors in (A, b) can be viewed collectively as a single random variables that

is not correlated with values at v’s ancestors, and either these edges are “influential” with

probability at least ρ2
3/4 in which case it causes a wrong bit at v; or else it is not influential

and removing it will not change the function computed on ρ2
3/4 fraction of probability mass.

Similarly, if there is a path from u to v then there must be a corresponding edge in the

one-layer network. The question is what weight it should have, and we show that no weight

assignment can avoid producing erroneous answers.

The reason is that with probability at least ρ3/2, among all ancestors of v in the input

layer, only u is 1. Thus in order to produce the same output in all these cases, in the one-

layer net the edge between u and v should be positive iff the path from u to v consists of

two positive edges. But now we show that with high probability there is a cancellation effect

involving a local structure in the two layer net whose effect cannot be duplicated by such a

single-layer net (See the Figure 6.3 and 6.4).

h(1)

h(2)

v

+1 -1

+1

u1 u2 u3
h(3)

+1

+1

G2

G1

s s′

u4

-1

Figure 6.3: Two-layer network(G1, G2)

h(1)

v

u1 u2 u3
h(3)

Au1v > 0 < 0 > 0

u4

< 0

Figure 6.4: Single-layer network (A, b)

As drawn in Figure 6.3, suppose the nodes u1, u2 connect to s in h(2) via +1 and −1

edge, and s connects to v via a +1 edge. Similarly, the nodes u3, u4 connect to s′ in h(2) via

+1 and −1 edge, and s connects to v via a +1 edge.

Now assume all other ancestors of v are off, and consider the following four values of

(u1, u2, u3, u4): (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 1), (0, 1, 1, 0). In the two-layer network, h
(1)
v

should be 0 for the first two inputs and 1 for the last two inputs. Now we are going to see the

contradiction. For single-layer network, these values imply constraints Au1,v+Au2,v+bv ≤ 0,
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Au3,v + Au4,v + bv ≤ 0, Au1,v + Au4,v + bv > 0, Au2,v + Au3,v + bv > 0. However, there can

be no choices of (A, b) that satisfies all four constraints! To see that, simply add the first

two and the last two, the left-hand-sides are all
∑4

i=1Aui,v + 2bv, but the right-hand-sides

are ≤ 0 and > 0. The single-layer network cannot agree on all four inputs. Each of the four

inputs occurs with probability at least Ω(ρ2
3). Therefore the outputs of two networks must

disagree with probability Ω(ρ2
3).

Remark: It is well-known in complexity theory that such simple arguments do not suffice

to prove lowerbounds on neural nets with more than one layer.

6.8 Random Graph Properties

In this Section we state the properties of random graphs that are used by the algorithm.

We first describe the unique-neighbor property, which is central to our analysis. In the next

part we list the properties required by different steps of the algorithm.

6.8.1 Unique neighbor property

Recall that in bipartite graph G(U, V,E,w), the set F (u) denotes the neighbors of u ∈ U ,

and the set B(v) denotes the neighbors of v ∈ V .

For any node u ∈ U and any subset S ⊂ U , let UF (u, S) be the sets of unique neighbors

of u with respect to S,

UF (u, S) , {v ∈ V : v ∈ F (u), v 6∈ F (S \ {u})}

Definition 6.25. In a bipartite graph G(U, V,E,w), a node u ∈ U has (1 − ε)-unique

neighbor property with respect to S if |UF (u, S)| ≥ (1− ε) |F (u)|.

The set S has (1− ε)-strong unique neighbor property if for every u ∈ U , u has (1− ε)-

unique neighbor property with respect to S.
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Remark 6.26. Notice that in our definition, u does not need to be inside S. This is not

much stronger than the usual definition where u has to be in S: if u is not in S we are simply

saying u has unique neighbor property with respect to S ∪ {u}. When all (or most) sets of

size |S| + 1 have the “usual” unique neighbor properties, all (or most) sets of size |S| have

the unique neighbor property according to our definition.

Lemma 6.27. If G(U, V,E) is from distribution Gm,n,p, for every subset S of U with (1 −

p)|S| > 1 − ε/2 (note that p|S| = d′|S|/n is the expected density of F (S)), with probability

1−2m exp(−ε2d′) over the randomness of the graph, S has the (1−ε)-strong unique neighbor

property.

Proof. Fix the vertex u, first sample the edges incident to u. Without loss of generality

assume u has neighbors v1, . . . , vk (where k ≈ pn). Now sample the edges incident to the

vi’s. For each vi, with probability (1− p)|S| ≥ 1− ε/2, vi is a unique neighbor of u. Call this

event Goodi (and we also use Goodi as the indicator for this event).

By the construction of the graph we know Goodi’s are independent, hence by Chernoff

bounds, we have that with probability 1 − 2 exp(−ε2d′) the node u has unique neighbor

property with respect to S.

By union bound, every u satisfies this property with probability at least 1−2m exp(−ε2C).

6.8.2 Properties required by each steps

We now list the properties required in our analysis. These properties hold with high proba-

bility for random graphs.

Properties for Correlation Graph: Single-layer

The algorithm PairwisGraph requires the following properties Psing
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1. For any u in the observed layer, |B(u)| ∈ [0.9d, 1.1d], (if G has negative weights, we

also need |B+(u)| ∈ [0.9d/2, 1.1d/2])

2. For any z in the hidden layer, |F (z)| ∈ [0.9d′, 1.1d′], (if G has negative weights, we also

need |F+(z)| ∈ [0.45d′, 0.55d′])

The algorithm 3-WiseGraph needs Psing, and additionally Psing+

1. For any u, v in the observed layer, |B+(u) ∪B+(v)| ≤ 10 log n.

Lemma 6.28. If graph G is chosen from Gm,n,p with expected degrees d, d′ � log n, with high

probability over the choice of the graph, Psing is satisfied. If in addition d2 � n, the property

Psing+ is also satisfied with high probability.

The lemma is a straight-forward application of concentration bounds.

Properties for Correlation Graph: Multi-layer

For the multi-layer setting, the algorithm PairwisGraph requires the following expansion

properties Pmul.

1. For any node u at the layer i, |Fi−1(u)| ∈ [0.9d′i−1, 1.1d
′
i−1], |Bi(u)| ∈ [0.9di, 1.1di],∣∣F+

i−1(u)
∣∣ ∈ [0.45d′i−1, 0.55d′i−1],

∣∣B+
i (u)

∣∣ ∈ [0.45di, 0.55di]

2. For any node u at the layer i, |B(t)
+ (u)| ≥= 0.8ρi/ρt, and |B(`)(u)| ≤ 2`−i+1ρi/ρ`.

3. For any pair of nodes u, v at layer i,

∣∣∣B(`)
+ (u) ∩B(`)

+ (v)
∣∣∣ ≤ O

(
ρi+1/ρ` ·

(
1/di+1 + log n/(ρ`n`) +

∣∣∣B(i+1)
+ (u) ∩B(i+1)

+ (v)
∣∣∣))

In particular, if u and v have no common positive parent at layer i+1 (
∣∣∣B(i+1)

+ (u) ∩B(i+1)
+ (v)

∣∣∣ =

0), then ∣∣∣B(`)
+ (u) ∩B(`)

+ (v)
∣∣∣ ≤ o(ρi+1/ρ`)
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The algorithm 3-WiseGraph needs the additional property Pmul+:

1. For any pair of nodes u, v at layer i,
∣∣∣B(`)

+ (u) ∩B(`)
+ (v)

∣∣∣ ≤ O(ρi+1 log n/ρ`)

2. For any three nodes u, v and s at layer i, if they don’t have a common positive neighbor

in layer i+ 1,

∣∣∣B(`)
+ (u) ∩B(`)

+ (v) ∩B(`)
+ (s)

∣∣∣
≤ O

(
ρi+1 log n/ρ` ·

(
1/di+1 + ρ`/(ρ`n`) + 1/(ρ2

`n
2
`)
))
≤ o(ρi+1/ρ`)

Property 1 can be relaxed but we choose to present this simpler condition.

Lemma 6.29. If the network D(`, ρ`, {Gi}) have parameters satisfying di � log n, and

ρ2
i � ρi+1, then with high probability over the randomness of the graphs, {Gi}’s satisfy Pmul.

Additionally, if gi � log n and ρ3
i � ρi+1, then {Gi}’s satisfy Pmul+ with high probability.

In order to prove Lemma 6.29 we need the following claim:

Claim. If the graph G ∼ Gm,n,p with d = pm being the expected back degree, and d� log n.

For two arbitrary sets T1 and T2, with d|T1| � m, d|T2| � m, we have with high probability

|B(T1) ∩B(T2)| ≤ (1 + ε)d|T1 ∩ T2|+ (1 + ε)d2|T1||T2|/m+ 5 log n

This Claim simply follows from simple concentration bounds. Now we are ready to prove

Lemma 6.29.

Proof of Lemma 6.29. Property 1 in Pmul follows directly from di � log n.

Property 2 in Pmul follows from unique neighbor properties (when we view the bipartite

graph from Ni to Ni+1).

For Property 3, we prove the following proposition by induction on t:
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Proposition 6.30. For any two nodes u, v at layer 1,

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ ≤ (1+ε)ttρ2

1/(ρ
2
tnt)+6t(1+ε)tρ3 log n/ρt+(1+ε)tρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt
This is true for t = 2 (simply because of the third term). Suppose it is true for all the

values at most t. When we are considering t+ 1-th level, by Claim 6.8.2, we know with high

probability (notice that we only need to do union bound on n2 pairs)

∣∣∣B(t+1)
+ (u) ∩B(t+1)

+ (v)
∣∣∣ ≤ (1 + ε)dt/2 · ρ2

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ /ρt

+(1 + ε)d2
t/4 · |B(t)

+ (u)||B(t)
+ (v)|+ 5 log n

≤ (1 + ε)t+1ρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt+1 + 6t(1 + ε)t+1ρ3 log n/ρt+1

+(1 + ε)ttρ2
1/(ρ

2
tnt) + (1 + ε)d2

t/4 · ρ2
1/(ρ

2
tnt+1) + 5 log

≤ (1 + ε)t+1ρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt+1 + 6(t+ 1)(1 + ε)t+1ρ3 log n/ρt+1

+2(1 + ε)t+1(t+ 1)ρ2
1/(ρ

2
t+1nt+1),

where the last inequality uses the fact that ρ2
1/(ρ

2
tnt) ≤ d2

t/4 · ρ2
1/(ρ

2
tnt+1). This is because

ntdt/nt+1 = d′t � 1.

Proposition 6.30 implies that when ρ2
1 � ρ2, and ` is a constant,

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ ≤ O

(
ρi+1/ρ` ·

(
1/di+1 + log n/(ρ`n`) +

∣∣∣B(i+1)
+ (u) ∩B(i+1)

+ (v)
∣∣∣))

Property 2 in Pmul+ is similar but more complicated.

Properties for Graph Reovery

For the algorithm RecoverGraph3Wise to work, the hypergraph generated from the random

graph should have the following properties Prec+.
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1. For any (v1, v2, v3) ∈ E, if S is the set defined as in the algorithm, then

|S\F (B(v1) ∩B(v2) ∩B(v3))| < d′/20.

2. For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d′.

3. For any u ∈ U , v ∈ V and v 6∈ F (u), v is correlated with at most d′2/40 pairs in F (u).

4. For any u ∈ U , at least 0.1 fraction of triples v1, v2, v3 ∈ F (u) does not have a common

neighbor other than u.

5. For any u ∈ U , its degree du ∈ [0.9d′, 1.1d′].

Lemma 6.31. When m3d′8/n8 � 1, d′ � 1, with high probability a random graph satisfies

Property Prec+.

Proof. Property 1: Fix any v1, v2 and v3, Consider the graph G1 to be sampled in the

following order. First sample the edges related to v1, v2 and v3, then sample the rest of the

graph.

At step 2, let S1 = B(v2) ∩ B(v3)\B(v1), S2 = B(v1) ∩ B(v3)\B(v2) and S3 = B(v1) ∩

B(v2)\B(v3). By the construction of the graph Ĝ, every vertex in S must be in F (S1) ∩

F (S2)∩F (S3). With high probability (e−Ω(d′)) we know |S1| ≤ 5m(d′/n)2 (this is by Chernoff

bound, because each vertex u is connected to two vertices v2, v3 with probability (d′/n)2).

Similar things hold for S2, S3.

Now F (S1), F (S2) and F (S3) are three random sets of size at most 10m(d′)3/n2, thus

again by Chernoff bound we know their intersection has size smaller than 10(10m(d′)3/n2)3/n2,

which is smaller than d′/20 by assumption.

Property 2: This follows directly from the unique neighbor property of sets of size 2.

Property 3: First sample the edges related to u and v, then sample edges related to

vertices in B(v). For any vertex in B(v), the expected number of pairs is (d′2/n)2. Since

|B(v)| ≤ md′/n with high probability, again by Chernoff bound we know the number of pairs

178



is smaller than O((d′2/n)2md′/n) = O(md′5/n3). This is much smaller than d′2/40 under

assumption (notice that (md′3)/n3 = ((m3d′8/n8)(d′/n))
1/3 � 1). Property 4: Again change

the sampling process: first sample all the edges not related to u, then sample 1/2 of the

edges connecting to u, and finally sample the second half.

Let S1 be the first half of F (u). For a vertex outside S1, similar to Property 3 we know

every v 6∈ S1 has at most d′/40 neighboring pairs in S1, therefore any new sample in the

second half is going to introduce many new triples of correlation. The total number of new

correlations is at least 0.1 fraction.

Property 5: This simply follows from d′ � 1.

Properties for Partial Encoder

The partial encoder only relies on the strong unique-neighbor property.

Properties for Learning −1 Edges

In order to learn the −1 edges, we need Property Pneg+. It includes some properties in Pmul,

and additionally the property that nodes in i-th layer cannot be too negatively correlated,

in particular

1. 1 and 2 in Pmul.

2. For fixed node u and set S at layer i, if |S| ≤ 2di−1, then with high probability∣∣∣B(`)
+ (u) \B(`)(S)

∣∣∣ ≥ ρi/2ρ`.

The proof of second property is very similar to Lemma 6.29.
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Part III

Tensor Decomposition for General

Matrix Factorization
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Chapter 7

Orthogonal Tensor Decomposition

In this chapter we discuss Orthogonal Tensor Decomposition, which is a unified methodol-

ogy for solving General Matrix Factorization problems (or learning latent variable models in

general). This methodology provides computationally and statistically efficient parameter

estimation methods for a wide class of latent variable models—including simple topic mod-

els, independent component analysis and hidden Markov models—which exploits a certain

tensor structure in their low-order observable moments. Specifically, parameter estimation

is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric

tensor derived from the moments; this decomposition can be viewed as a natural generaliza-

tion of the singular value decomposition for matrices.

Although tensor decompositions are generally intractable to compute, the decomposition

of these specially structured tensors can be efficiently obtained by a variety of approaches,

including power iterations and maximization approaches (similar to the case of matrices).

We provide a detailed analysis of a robust tensor power method, establishing an analogue of

Wedin’s perturbation theorem for the singular vectors of matrices. This implies a robust and

computationally tractable estimation approach for several popular latent variable models.
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7.1 Orthogonal Tensors

We call the decomposition

T =
k∑
i=1

λiv
⊗3
i (7.1)

an orthogonal decomposition of tensor T if all the vectors vi’s are orthonormal. And we

call the tensor T orthogonally decomposable. Notice that this is similar to the singular value

decomposition (SVD) of symmetric matrices: M =
∑k

i=1 σiviv
T
i . All symmetric matrices can

be decomposed into orthogonal components, but only very special tensors are orthogonally

decomposable.

Given a tensor T̂ which is close to an orthogonally decomposable tensor T

T̂ ≈ T =
k∑
i=1

λiv
⊗3
i ,

the goal of orthogonal tensor decomposition is to find λ̂i’s and v̂i’s that are close to λi’s

and vi’s.

Our main result is

Theorem 7.1. Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal

decomposition T =
∑k

i=1 λiv
⊗3
i where each λi > 0, {v1,v2, . . . ,vk} is an orthonormal basis,

and E has operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and λmax := max{λi :

i ∈ [k]}.

There exists universal constant C such that when ε ≤ C λmin

k
, there is an algorithm that

returns (v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k). With high probability, there exists a permutation π on

[k] such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j| ≤ 5ε, ∀j ∈ [k],
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and ∥∥∥∥T − k∑
j=1

λ̂jv̂
⊗3
j

∥∥∥∥ ≤ 55ε.

The orthogonal constraint may seem very unnatural, as the parameters of models do not

usually have such strong structure. However in Section 7.2 we show that a more general case

reduces to orthogonal tensor decomposition via commonly applied whitening.

In Section 7.3 we give a few examples to show how this problem is crucial in learning

many different latent variable models. In Section 7.4 we present the tensor power method.

This is followed by discussions in Section 7.5, and the proof of the main theorem appears in

Section 7.6.

7.2 Whitening: Getting Orthogonality from General

Vectors

We now demonstrate how orthogonality can be enforced using the whitening operation.For

concreteness, we take the following specific form, which appears in the exchangeable single

topic model (Theorem 7.2):

M2 =
k∑
i=1

wi µi ⊗ µi,

M3 =
k∑
i=1

wi µi ⊗ µi ⊗ µi.

(The more general case allows the weights wi in M2 to differ in M3, but for simplicity we

keep them the same in the following discussion.) We now show how to reduce these forms

to an orthogonally decomposable tensor from which the wi and µi can be recovered.

Throughout, we assume the following non-degeneracy condition.
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Condition 7.2.1 (Non-degeneracy). The vectors µ1,µ2, . . . ,µk ∈ Rd are linearly indepen-

dent, and the scalars w1, w2, . . . , wk > 0 are strictly positive.

Observe that Condition 7.2.1 implies that M2 � 0 is positive semidefinite and has rank-k.

This is a mild condition; furthermore, when this condition is not met, learning is conjectured

to be hard for both computational [130] and information-theoretic reasons [128].

7.2.1 The reduction

First, let W ∈ Rd×k be a linear transformation such that

M2(W,W ) = W>M2W = I

where I is the k × k identity matrix (i.e., W whitens M2). Since M2 � 0, we may for

concreteness take W := UD−1/2, where U ∈ Rd×k is the matrix of orthonormal eigenvectors

of M2, and D ∈ Rk×k is the diagonal matrix of positive eigenvalues of M2. Let

µ̃i :=
√
wi W

>µi.

Observe that

M2(W,W ) =
k∑
i=1

W>(
√
wiµi)(

√
wiµi)

>W =
k∑
i=1

µ̃iµ̃
>
i = I,

so the µ̃i ∈ Rk are orthonormal vectors.

Now define M̃3 := M3(W,W,W ) ∈ Rk×k×k, so that

M̃3 =
k∑
i=1

wi (W>µi)
⊗3 =

k∑
i=1

1√
wi
µ̃⊗3
i .
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When applying this reduction to learning latent variable models, it is important to bound

the error of the orthogonal tensor. Loose bounds follow from McDiarmid’s inequality (see

Appendix B). Tighter bounds can be obtained by matrix bernstein inequalities, see Chapter 8

for an example.

7.3 Tensor structure in latent variable models

In this section, we give several examples of latent variable models whose low-order moments

can be written as symmetric tensors of low symmetric rank. This form is demonstrated

in Theorem 7.2 for the first example. The general pattern will emerge from subsequent

examples.

7.3.1 Exchangeable single topic models

We first consider a simple bag-of-words model for documents in which the words in the

document are assumed to be exchangeable. Recall that a collection of random variables

x1,x2, . . . ,x` are exchangeable if their joint probability distribution is invariant to permu-

tation of the indices. The well-known De Finetti’s theorem [15] implies that such exchange-

able models can be viewed as mixture models in which there is a latent variable h such

that x1,x2, . . . ,x` are conditionally i.i.d. given h (see Figure 7.1(a) for the corresponding

graphical model) and the conditional distributions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is interpreted as the

(sole) topic of a given document, and it is assumed to take only a finite number of distinct

values. Let k be the number of distinct topics in the corpus, d be the number of distinct

words in the vocabulary, and ` ≥ 3 be the number of words in each document. The gener-

ative process for a document is as follows: the document’s topic is drawn according to the

discrete distribution specified by the probability vector w := (w1, w2, . . . , wk) ∈ ∆k−1. This
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is modeled as a discrete random variable h such that

Pr[h = j] = wj, j ∈ [k].

Given the topic h, the document’s ` words are drawn independently according to the discrete

distribution specified by the probability vector µh ∈ ∆d−1. It will be convenient to repre-

sent the ` words in the document by d-dimensional random vectors x1,x2, . . . ,x` ∈ Rd.

Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [`],

where e1, e2, . . . ed is the standard coordinate basis for Rd.

One advantage of this encoding of words is that the (cross) moments of these random

vectors correspond to joint probabilities over words. For instance, observe that

E[x1 ⊗ x2] =
∑

1≤i,j≤d

Pr[x1 = ei,x2 = ej ] ei ⊗ ej

=
∑

1≤i,j≤d

Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

so the (i, j)-the entry of the matrix E[x1 ⊗ x2] is Pr[1st word = i, 2nd word = j]. More

generally, the (i1, i2, . . . , i`)-th entry in the tensor E[x1 ⊗ x2 ⊗ · · · ⊗ x`] is Pr[1st word =

i1, 2nd word = i2, . . . , `-th word = i`]. This means that estimating cross moments, say, of

x1 ⊗ x2 ⊗ x3, is the same as estimating joint probabilities of the first three words over all

documents. (Recall that we assume that each document has at least three words.)
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The second advantage of the vector encoding of words is that the conditional expectation

of xt given h = j is simply µj , the vector of word probabilities for topic j:

E[xt|h = j] =
d∑
i=1

Pr[t-th word = i|h = j] ei =
d∑
i=1

[µj ]i ei = µj , j ∈ [k]

(where [µj ]i is the i-th entry in the vector µj). Because the words are conditionally inde-

pendent given the topic, we can use this same property with conditional cross moments, say,

of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j] = µj ⊗ µj , j ∈ [k].

This and similar calculations lead one to the following theorem.

Theorem 7.2 ([8]). If

M2 := E[x1 ⊗ x2]

M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =
k∑
i=1

wi µi ⊗ µi

M3 =
k∑
i=1

wi µi ⊗ µi ⊗ µi.

As we will see in Section 7.2, the structure of M2 and M3 revealed in Theorem 7.2 implies

that the topic vectors µ1,µ2, . . . ,µk can be estimated by computing a certain symmetric

tensor decomposition. Moreover, due to exchangeability, all triples (resp., pairs) of words

in a document—and not just the first three (resp., two) words—can be used in forming M3

(resp., M2).
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7.3.2 Beyond raw moments

In the single topic model above, the raw (cross) moments of the observed words directly

yield the desired symmetric tensor structure. In some other models, the raw moments do

not explicitly have this form. Here, we show that the desired tensor structure can be found

through various manipulations of different moments.

Independent component analysis (ICA)

The standard model for ICA [37, 42, 44, 91], in which independent signals are linearly mixed

and corrupted with Gaussian noise before being observed, is specified as follows. Let h ∈ Rk

be a latent random vector with independent coordinates, A ∈ Rd×k the mixing matrix, and

z be a multivariate Gaussian random vector. The random vectors h and z are assumed to

be independent. The observed random vector is

x := Ah+ z.

Let µi denote the i-th column of the mixing matrix A.

Theorem 7.3 ([44]). Define

M4 := E[x⊗ x⊗ x⊗ x]− T

where T is the fourth-order tensor with

[T ]i1,i2,i3,i4 := E[xi1xi2 ]E[xi3xi4 ]+E[xi1xi3 ]E[xi2xi4 ]+E[xi1xi4 ]E[xi2xi3 ], 1 ≤ i1, i2, i3, i4 ≤ k
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h

x1 x2 · · · x`

(a) Multi-view models

h1 h2 · · · h`

x1 x2 x`

(b) Hidden Markov model

Figure 7.1: Examples of latent variable models.

( i.e., T is the fourth derivative tensor of the function v 7→ 8−1E[(v>x)2]2. Let κi := E[h4
i ]−3

for each i ∈ [k]. Then

M4 =
k∑
i=1

κi µi ⊗ µi ⊗ µi ⊗ µi.

See [87] for a proof of this theorem in this form. Note that κi corresponds to the excess

kurtosis, a measure of non-Gaussianity as κi = 0 if hi is a standard normal random variable.

Furthermore, note that A is not identifiable if h is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 from Theorem 7.2 using M4 by

observing that

M4(I, I,u,u) =
k∑
i=1

κi(µ
>
i u)(µ>i u) µi ⊗ µi,

M4(I, I, I,v) =
k∑
i=1

κi(µ
>
i v) µi ⊗ µi ⊗ µi

for any vectors u,v ∈ Rd.

7.3.3 Multi-view models

Multi-view models (also sometimes called näıve Bayes models) are a special class of Bayesian

networks in which observed variables x1,x2, . . . ,x` are conditionally independent given a

latent variable h. This is similar to the exchangeable single topic model, but here we do not

require the conditional distributions of the xt, t ∈ [`] to be identical. Techniques developed
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for this class can be used to handle a number of widely used models including hidden Markov

models (HMMs) [8, 130], phylogenetic tree models [38, 130], certain tree mixtures [7], and

certain probabilistic grammar models [86].

As before, we let h ∈ [k] be a discrete random variable with Pr[h = j] = wj for all j ∈ [k].

Now consider random vectors x1 ∈ Rd1 , x2 ∈ Rd2 , and x3 ∈ Rd3 which are conditionally

independent given h, and

E[xt|h = j] = µt,j , j ∈ [k], t ∈ {1, 2, 3}

where the µt,j ∈ Rdt are the conditional means of the xt given h = j. Thus, we allow the

observations x1,x2, . . . ,x` to be random vectors, parameterized only by their conditional

means. Importantly, these conditional distributions may be discrete, continuous, or even a

mix of both.

We first note the form for the raw (cross) moments.

Proposition 7.4. We have that:

E[xt ⊗ xt′ ] =
k∑
i=1

wi µt,i ⊗ µt′,i, {t, t′} ⊂ {1, 2, 3}, t 6= t′

E[x1 ⊗ x2 ⊗ x3] =
k∑
i=1

wi µ1,i ⊗ µ2,i ⊗ µ3,i.

The cross moments do not possess a symmetric tensor form when the conditional distri-

butions are different. Nevertheless, the moments can be “symmetrized” via a simple linear

transformation of x1 and x2 (roughly speaking, this relates x1 and x2 to x3); this leads

to an expression from which the conditional means of x3 (i.e., µ3,1, µ3,2, . . . , µ3,k) can be

recovered. For simplicity, we assume d1 = d2 = d3 = k; the general case (with dt ≥ k) is

easily handled using low-rank singular value decompositions.
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Theorem 7.5 ([9]). Assume that the vectors {µv,1,µv,2, . . . ,µv,k} are linearly independent

for each v ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2

M2 := E[x̃1 ⊗ x̃2]

M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then

M2 =
k∑
i=1

wi µ3,i ⊗ µ3,i

M3 =
k∑
i=1

wi µ3,i ⊗ µ3,i ⊗ µ3,i.

We now discuss three examples (taken mostly from [8]) where the above observations can

be applied. The first two concern mixtures of product distributions, and the last one is the

time-homogeneous hidden Markov model.

Hidden Markov models

Our last example is the time-homogeneous HMM for sequences of vector-valued observations

x1,x2, . . . ∈ Rd. Consider a Markov chain of discrete hidden states y1 → y2 → y3 → · · ·

over k possible states [k]; given a state yt at time t, the observation xt at time t (a random

vector taking values in Rd) is independent of all other observations and hidden states. See

Figure 7.1(b).
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Let π ∈ ∆k−1 be the initial state distribution (i.e., the distribution of y1), and T ∈ Rk×k

be the stochastic transition matrix for the hidden state Markov chain: for all times t,

Pr[yt+1 = i|yt = j] = Ti,j, i, j ∈ [k].

Finally, let M ∈ Rd×k be the matrix whose j-th column is the conditional expectation of xt

given yt = j: for all times t,

E[xt|yt = j] = Mej , j ∈ [k].

Proposition 7.6 ([8]). Define h := y2, where y2 is the second hidden state in the Markov

chain. Then

• x1,x2,x3 are conditionally independent given h;

• the distribution of h is given by the vector w := Tπ ∈ ∆k−1;

• for all j ∈ [k],

E[x1|h = j] = M diag(π)T> diag(w)−1ej

E[x2|h = j] = Mej

E[x3|h = j] = MTej .

Note the matrix of conditional means of xt has full column rank, for each t ∈ {1, 2, 3},

provided that: (i) M has full column rank, (ii) T is invertible, and (iii) π and Tπ have

positive entries.
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7.4 Tensor power method

In this section, we consider the tensor power method of [105, Remark 3] for orthogonal

tensor decomposition. We first state a simple convergence analysis for an orthogonally

decomposable tensor T .

When only an approximation T̂ to an orthogonally decomposable tensor T is available

(e.g., when empirical moments are used to estimate population moments), an orthogonal

decomposition need not exist for this perturbed tensor (unlike for the case of matrices), and

a more robust approach is required to extract the approximate decomposition. Here, we

propose such a variant in Algorithm 7.1 and provide a detailed perturbation analysis. We

note that alternative approaches such as simultaneous diagonalization can also be employed.

7.4.1 Convergence analysis for orthogonally decomposable tensors

The following lemma establishes the quadratic convergence of the tensor power method

(i.e., repeated iteration of (7.2)) for extracting a single component of the orthogonal decom-

position. Note that the initial vector θ0 determines which robust eigenvector will be the

convergent point. Computation of subsequent eigenvectors can be computed with deflation,

i.e., by subtracting appropriate terms from T .

Lemma 7.7. Let T ∈ ⊗3 Rk have an orthogonal decomposition as given in (7.1). For a

vector θ0 ∈ Rk, suppose that the set of numbers |λ1v
>
1θ0|, |λ2v

>
2θ0|, . . . , |λkv>kθ0| has a unique

largest element. Without loss of generality, say |λ1v
>
1θ0| is this largest value and |λ2v

>
2θ0|

is the second largest value. For t = 1, 2, . . . , let

θt :=
T (I,θt−1,θt−1)

‖T (I,θt−1,θt−1)‖ . (7.2)

193



Then

‖v1 − θt‖2 ≤
(

2λ2
1

k∑
i=2

λ−2
i

)
·
∣∣∣∣λ2v

>
2θ0

λ1v>1θ0

∣∣∣∣2t+1

.

That is, repeated iteration of (7.2) starting from θ0 converges to v1 at a quadratic rate.

To obtain all eigenvectors, we may simply proceed iteratively using deflation, executing

the power method on T −∑j λjv
⊗3
j after having obtained robust eigenvector / eigenvalue

pairs {(vj , λj)}.

Proof. Let θ0,θ1,θ2, . . . be the sequence given by θ0 := θ0 and θt := T (I,θt−1,θt−1)

for t ≥ 1. Let ci := v>i θ0 for all i ∈ [k]. It is easy to check that (i) θt = θt/‖θt‖,

and (ii) θt =
∑k

i=1 λ
2t−1
i c2t

i vi. (Indeed, θt+1 =
∑k

i=1 λi(v
>
i θt)

2vi =
∑k

i=1 λi(λ
2t−1
i c2t

i )2vi =∑k
i=1 λ

2t+1−1
i c2t+1

i vi.) Then

1− (v>1θt)
2 = 1− (v>1θt)

2

‖θt‖2
= 1− λ2t+1−2

1 c2t+1

1∑k
i=1 λ

2t+1−2
i c2t+1

i

≤
∑k

i=2 λ
2t+1−2
i c2t+1

i∑k
i=1 λ

2t+1−2
i c2t+1

i

≤ λ2
1

k∑
i=2

λ−2
i ·

∣∣∣∣λ2c2

λ1c1

∣∣∣∣2t+1

.

Since λ1 > 0, we have v>1θt > 0 and hence ‖v1 − θt‖2 = 2(1 − v>1θt) ≤ 2(1 − (v>1θt)
2) as

required.

In this proof, the key observation is if u =
∑k

i=1 civi, then T (I,u,u =
∑k

i=1 λic
2
ivi,

which is the same as the result of left multiplying u by a matrix M whose eigenvectors are

vi’s and eigenvalues are λici’s. Therefore we call |λici| the effective eigenvalue.

Definition 7.8 (Effective Eigenvalue). Given T =
∑k

i=1 λivi and vector u =
∑k

i=1 civi, the

effective eigenvalue with respect to vi is |λici|.

7.4.2 Perturbation analysis of a robust tensor power method

Now we consider the case where we have an approximation T̂ to an orthogonally decom-

posable tensor T . Here, a more robust approach is required to extract an approximate
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decomposition. We propose such an algorithm in Algorithm 7.1, and provide a detailed

perturbation analysis.

Algorithm 7.1. Robust tensor power method

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in Rk.

3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)

‖T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)‖

(7.3)

5: end for
6: end for
7: Let τ ∗ := arg maxτ∈[L]{T̃ (θ

(τ)
N ,θ

(τ)
N ,θ

(τ)
N )}.

8: Do N power iteration updates starting from θ
(τ∗)
N to obtain θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).

9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ − λ̂ θ̂⊗3.

Algorithm 7.2. Robust tensor power method: Main Loop

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pairs

for i = 1 to k do
Call Algorithm 7.1, get an eigenvector/eigenvalue pair, and replace T̃ with the deflated
tensor

end for
return the estimated eigenvector/eigenvalue pairs

Assume that the symmetric tensor T ∈ Rk×k×k is orthogonally decomposable, and that

T̂ = T + E, where the perturbation E ∈ Rk×k×k is a symmetric tensor with small spectral

norm.

In our latent variable model applications, T̂ is the tensor formed by using empirical

moments, while T is the orthogonally decomposable tensor derived from the population

moments for the given model.
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The following theorem is similar to Wedin’s perturbation theorem for singular vectors

of matrices [160] in that it bounds the error of the (approximate) decomposition returned

by Algorithm 7.1 on input T̂ in terms of the size of the perturbation, provided that the

perturbation is small enough.

Theorem 7.9. Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal

decomposition T =
∑k

i=1 λiv
⊗3
i where each λi > 0, {v1,v2, . . . ,vk} is an orthonormal basis,

and E has operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and λmax := max{λi :

i ∈ [k]}. For any δ > 0, there exists universal constants C1, C2, C3 > 0 such that the following

holds. Pick any η ∈ (0, 1), and suppose

ε ≤ C1 ·
λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and L = k1+δ log(k/η). If Algorithm 7.2 returned eigenvector/eigenvalue pairs (v̂1, λ̂1), (v̂2, λ̂2),

. . . , (v̂k, λ̂k), then with probability at least 1 − η, there exists a permutation π on [k] such

that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j| ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥T − k∑
j=1

λ̂jv̂
⊗3
j

∥∥∥∥ ≤ 55ε.

The proof of Theorem 7.9 is given in Section 7.6.

One important difference from Wedin’s theorem is that this is an algorithm dependent

perturbation analysis, specific to Algorithm 7.1 (since the perturbed tensor need not have

an orthogonal decomposition). Furthermore, note that Algorithm 7.1 uses multiple restarts

to ensure (approximate) convergence—the intuition is that by restarting at multiple points,

we eventually start at a point in which the initial contraction towards some eigenvector

dominates the error E in our tensor. The proof shows that we find such a point with high
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probability within L = poly(k) trials. It should be noted that for large k, the required bound

on L is very close to linear in k.

In general, it is possible, when run on a general symmetric tensor (e.g., T̂ ), for the tensor

power method to exhibit oscillatory behavior [98, Example 1]. This is not in conflict with

Theorem 7.9, which effectively bounds the amplitude of these oscillations; in particular,

if T̂ = T + E is a tensor built from empirical moments, the error term E (and thus the

amplitude of the oscillations) can be driven down by drawing more samples. The practical

value of addressing these oscillations and perhaps stabilizing the algorithm is an interesting

direction for future research [100].

A final consideration is that for specific applications, it may be possible to use domain

knowledge to choose better initialization points. For instance, in the topic modeling appli-

cations (cf. Section 7.3.1), the eigenvectors are related to the topic word distributions, and

many documents may be primarily composed of words from just single topic. Therefore,

good initialization points can be derived from these single-topic documents themselves, as

these points would already be close to one of the eigenvectors.

7.5 Discussion

7.5.1 Computational complexity

It is interesting to consider the computational complexity of the tensor power method in the

dense setting where T ∈ Rk×k×k is orthogonally decomposable but otherwise unstructured.

Each iteration requires O(k3) operations, and assuming at most k1+δ random restarts for

extracting each eigenvector (for some small δ > 0) and O(log(k)+log log(1/ε)) iterations per

restart, the total running time is O(k5+δ(log(k) + log log(1/ε))) to extract all k eigenvectors

and eigenvalues.
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An alternative approach to extracting the orthogonal decomposition of T is to reorganize

T into a matrix M ∈ Rk×k2 by flattening two of the dimensions into one. In this case,

if T =
∑k

i=1 λiv
⊗3
i , then M =

∑k
i=1 λivi ⊗ vec(vi ⊗ vi). This reveals the singular value

decomposition of M (assuming the eigenvalues λ1, λ2, . . . , λk are distinct), and therefore can

be computed with O(k4) operations. Therefore it seems that the tensor power method is

less efficient than a pure matrix-based approach via singular value decomposition. However,

it should be noted that this matrix-based approach fails to recover the decomposition when

eigenvalues are repeated, and it is unstable when the gap between eigenvalues is small.

It is worth noting that the running times differ by roughly a factor of Θ(k1+δ), which can

be accounted for by the random restarts. This gap can potentially be alleviated or removed

by using a more clever method for initialization. Moreover, using special structure in the

problem (as discussed above) can also improve the running time of the tensor power method.

7.5.2 Sample complexity bounds

Previous work on using linear algebraic methods for estimating latent variable models cru-

cially rely on matrix perturbation analysis for deriving sample complexity bounds [8, 9, 87,

88, 130]. The learning algorithms in these works are plug-in estimators that use empirical

moments in place of the population moments, and then follow algebraic manipulations that

result in the desired parameter estimates. As long as these manipulations can tolerate small

perturbations of the population moments, a sample complexity bound can be obtained by

exploiting the convergence of the empirical moments to the population moments via the law

of large numbers.

Using the perturbation analysis for the tensor power method, improved sample complex-

ity bounds can be obtained for all of the examples discussed in Section 7.3. The underlying

analysis remains the same as in previous works (e.g., [9, 87]), the main difference being

the accuracy of the orthogonal tensor decomposition obtained via the tensor power method.
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Relative to the previously cited works, the sample complexity bound will be considerably

improved in its dependence on the rank parameter k, as Theorem 7.9 implies that the tensor

estimation error (e.g., error in estimating M̃3 from Section 7.2) is not amplified by any factor

explicitly depending on k (there is a requirement that the error be smaller than some factor

depending on k, but this only contributes to a lower-order term in the sample complexity

bound).

7.6 Analysis of robust power method

In this section, we prove Theorem 7.9.

The proof is divided into several steps. First in Section 7.6.1 we define what are “good”

initializazers for the tensor power iterations, and show that a random vector is good with

significant probability. Then in Section 7.6.2 we show given a good initializer, the tensor

power method will quickly reach the neighborhood of the top eigenvector. Finally in Sec-

tion 7.6.3, we show that the error in deflation step does not accrue very badly. These three

steps is assembled in Section 7.6.4 to complete the proof.

The vectors during the tensor power method will be called θ0,θ1, ..., and we express each

vector in the basis of {v1,v2, . . . ,vk}:

θt =
k∑
i=1

θi,tvi.

.

Recall the update rule used in the power method,

θt+1 =
k∑
i=1

θi,t+1vi := T̃ (I,θt,θt)/‖T̃ (I,θt,θt)‖.
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In this subsection, we assume that T̃ has the form

T̃ =
k∑
i=1

λ̃iv
⊗3
i + Ẽ (7.4)

where {v1,v2, . . . ,vk} is an orthonormal basis, and, without loss of generality,

λ̃1|θ1,t| = max
i∈[k]

λ̃i|θi,t| > 0.

Also, define

λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]}.

We do not use the original eigenvalues λi’s here, because throughout the deflation process,

some eigenvalues will be deflated and becomes 0.

We further assume the error Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I,u,u)‖ ≤ ε̃, ∀u ∈ Sk−1; (7.5)

‖Ẽ(I,u,u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u>v1)2 ≥ 1− (3ε̃/λ̃1)2. (7.6)

All these settings may seem very unnatural at this point, but they are important for the

later deflation analysis. In particular, after some deflation steps, the error Ẽ will be the

original error E plus the additional error introduced in the deflation process. Later we will

show that the spectral norm of the additional error is bounded by ε̃ which is a constant factor

more than ε. However that alone is not enough because if the error grows by a constant

factor at every deflation step, it will be huge at the end of iteration. The additional insight

is that the error introduced by deflation is not uniform along all directions, it is only large

when the current vector has large projection on the previously found eigenvectors, and will

200



be small when the current vector is close to a new eigenvector (which itself is orthogonal to

all the previously found eigenvectors). That is why constant p is introduced here.

7.6.1 Initialization

For γ ∈ (0, 1), we say a unit vector θ0 ∈ Rk is γ-separated relative to i∗ ∈ [k] if

|θi∗,0| − max
i∈[k]\{i∗}

|θi,0| ≥ γ|θi∗,0|.

Intuitively, a γ-separated vector is a good initializer for the tensor power method, because

it has significantly larger correlation with one of the vectors, and we can hope that this initial

advantage will be amplified and in the end the process converges to the eigenvector.

The following lemma shows that for any constant γ, with probability at least 1 − η, at

least one out of poly(k) log(1/η) i.i.d. random vectors (uniformly distributed over the unit

sphere Sk−1) is γ-separated relative to arg maxi∈[k] λ̃i. (For small enough γ and large enough

k, the polynomial is close to linear in k.)

Lemma 7.10. For any constant γ, there exists a δ such that with probability at least 1−η over

k1+δ · log2(1/η) i.i.d. uniform random unit vectors, at least one of the vectors is γ-separated

relative to arg maxi∈[k] λ̃i.

Proof. Without loss of generality, assume arg maxi∈[k] λ̃i = 1. Suppose we take L = k1+δ

vectors. Consider a random matrix Z ∈ Rk×L whose entries are independent N (0, 1) random

variables; we take the j-th column of Z to be comprised of the random variables used for

the j-th random vector (before normalization). Specifically, for the j-th random vector,

θi,0 :=
Zi,j√∑k
i′=1 Z

2
i′,j

, i ∈ [n].
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It suffices to show that with probability at least 1/2, there is a column j∗ ∈ [L] such that

|Z1,j∗| ≥
1

1− γ max
i∈[k]\{1}

|Zi,j∗|.

Since maxj∈[L] |Z1,j| is a 1-Lipschitz function of L independent N (0, 1) random variables,

it follows that

Pr

[∣∣∣max
j∈[L]
|Z1,j| −median

[
max
j∈[L]
|Z1,j|

]∣∣∣ >√2 ln(8)

]
≤ 1/4.

Moreover,

median
[
max
j∈[L]
|Z1,j|

]
≥ median

[
max
j∈[L]

Z1,j

]
=: m.

Observe that the cumulative distribution function of maxj∈[L] Z1,j is given by F (z) = Φ(z)L,

where Φ is the standard Gaussian CDF. Since F (m) = 1/2, it follows that m = Φ−1(2−1/L).

It can be checked that

Φ−1(2−1/L) ≥
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)

for some absolute constant c > 0. Also, let j∗ := arg maxj∈[L] |Z1,j|.

Now for each j ∈ [L], let |Z2:k,j| := max{|Z2,j|, |Z3,j|, . . . , |Zk,j|}. Again, since |Z2:k,j| is a

1-Lipschitz function of k − 1 independent N (0, 1) random variables, it follows that

Pr

[
|Z2:k,j| > E

[
|Z2:k,j|

]
+
√

2 ln(4)

]
≤ 1/4.

Moreover, by a standard argument,

E
[
|Z2:k,j|

]
≤
√

2 ln(k).
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Since |Z2:k,j| is independent of |Z1,j| for all j ∈ [L], it follows that the previous two displayed

inequalities also hold with j replaced by j∗.

Therefore we conclude with a union bound that with probability at least 1/2,

|Z1,j∗ | ≥
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(8) and |Z2:k,j∗ | ≤
√

2 ln(k) +
√

2 ln(4).

When this even happens, and when δ is large enough, the j∗-th random vector is γ-

separated. The probability of success can easily be boosted from 1/2 to 1 − η by taking

log(1/η)L samples, as all the samples are independent.

7.6.2 Tensor power iterations

In this section we show a good initializer will converge to the neighborhood of the top

eigenvector if the error on the tensor is small enough.

In the next two propositions (Propositions 7.11 and 7.12) and next two lemmas (Lem-

mas 7.13 and 7.14), we analyze the power method iterations using T̃ at some arbitrary iterate

θt using only the property (7.5) of Ẽ. But throughout, the quantity ε̃ can be replaced by

ε̃/p if θt satisfies (θ>t v1)2 ≥ 1− (3ε̃/λ̃1)2 as per property (7.6).

We first define several quantities to measure the progress and simplify calculations.

Rτ :=

(
θ2

1,τ

1− θ2
1,τ

)1/2

, ri,τ :=
λ̃1θ1,τ

λ̃i|θi,τ |
,

γτ := 1− 1

mini 6=1 |ri,τ |
, δτ :=

ε̃

λ̃1θ2
1,τ

(7.7)

for τ ∈ {t, t+ 1}.

Here R is used to measure progress (in the end we hope R would be very large). The

quantity γ is similar to the “eigengap” for matrices (recall the definition of effective eigenvalue

in Definition 7.8. Initially γ should be a small constant for good initial vectors, and will
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remain at least a constant. The quantity δ should be considered as the relative size of the

error (at the beginning it is a small constant and decreases as the algorithm proceeds). The

two propositions below are really just calculations.

Proposition 7.11.

min
i 6=1
|ri,t| ≥ Rt, γt ≥ 1− 1

Rt

, θ2
1,t =

R2
t

1 +R2
t

.

Proposition 7.12.

ri,t+1 ≥ r2
i,t ·

1− δt
1 + δtr2

i,t

=
1− δt
1
r2i,t

+ δt
, i ∈ [k], (7.8)

Rt+1 ≥ Rt ·
1− δt

1− γt + δtRt

≥ 1− δt
1
R2
t

+ δt
. (7.9)

Proof. Let θ̌t+1 := T̃ (I,θt,θt), so θt+1 = θ̌t+1/‖θ̌t+1‖. Since θ̌i,t+1 = T̃ (vi,θt,θt) =

T (vi,θt,θt) + E(vi,θt,θt), we have

θ̌i,t+1 = λ̃iθ
2
i,t + E(vi,θt,θt), i ∈ [k].

Using the triangle inequality and the fact ‖E(vi,θt,θt)‖ ≤ ε̃, we have

θ̌i,t+1 ≥ λ̃iθ
2
i,t − ε̃ ≥ |θi,t| ·

(
λ̃i|θi,t| − ε̃/|θi,t|

)
(7.10)

and

|θ̌i,t+1| ≤ |λ̃iθ2
i,t|+ ε̃ ≤ |θi,t| ·

(
λ̃i|θi,t|+ ε̃/|θi,t|

)
(7.11)

for all i ∈ [k]. Combining (7.10) and (7.11) gives

ri,t+1 =
λ̃1θ1,t+1

λ̃i|θi,t+1|
=

λ̃1θ̌1,t+1

λ̃i|θ̌i,t+1|
≥ r2

i,t ·
1− δt

1 + ε̃
λ̃iθ2i,t

= r2
i,t ·

1− δt
1 + (λ̃i/λ̃1)δtr2

i,t

≥ r2
i,t ·

1− δt
1 + δtr2

i,t

.
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Moreover, by the triangle inequality and Hölder’s inequality,

( n∑
i=2

[θ̌i,t+1]2
)1/2

=

( n∑
i=2

(
λ̃iθ

2
i,t + E(vi,θt,θt)

)2
)1/2

≤
( n∑
i=2

λ̃2
i θ

4
i,t

)1/2

+

( n∑
i=2

E(vi,θt,θt)
2

)1/2

≤ max
i 6=1

λ̃i|θi,t|
( n∑
i=2

θ2
i,t

)1/2

+ ε̃

= (1− θ2
1,t)

1/2 ·
(

max
i 6=1

λ̃i|θi,t|+ ε̃/(1− θ2
1,t)

1/2
)
. (7.12)

Combining (7.10) and (7.12) gives

|θ1,t+1|
(1− θ2

1,t+1)1/2
=

|θ̌1,t+1|(∑n
i=2[θ̌i,t+1]2

)1/2
≥ |θ1,t|

(1− θ2
1,t)

1/2
· λ̃1|θ1,t| − ε̃/|θ1,t|

maxi 6=1 λ̃i|θi,t|+ ε̃/(1− θ2
1,t)

1/2
.

In terms of Rt+1, Rt, γt, and δt, this reads

Rt+1 ≥
1− δt

(1− γt)
(

1−θ21,t
θ21,t

)1/2

+ δt

= Rt ·
1− δt

1− γt + δtRt

=
1− δt

1−γt
Rt

+ δt
≥ 1− δt

1
R2
t

+ δt

where the last inequality follows from Proposition 7.11.

The following Lemma shows how the vector changes during tensor power iterations.

There are several phases, in the first phase Theorem 7.13 shows we make progress as long

as Rt ≤ 9.

Lemma 7.13 (First phase). Assume 0 ≤ δt < 1/18, and γt > 18δt.

1. If r2
i,t ≤ 8, then ri,t+1 ≥ |ri,t|

(
1 + γt

2

)
.

2. If 4 < r2
i,t, then ri,t+1 ≥ min{r2

i,t/2,
1/2−δt
δt
}.

3. “Spectral gap” always increases until it reaches 1/2: γt+1 ≥ min{γt, 1/2}.
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4. Make progress whenever Rt is small: If Rt ≤ 9, then Rt+1 ≥ Rt

(
1 + γt

3

)
, θ2

1,t+1 ≥ θ2
1,t

and δt+1 ≤ δt.

Proof. Consider two (overlapping) cases depending on r2
i,t.

• Case 1: r2
i,t ≤ 2ρ2. By (7.8) from Proposition 7.12,

ri,t+1 ≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

≥ |ri,t| ·
1

1− γt
· 1− δt

1 + 2κρ2δt
≥ |ri,t|

(
1 +

γt
2

)

where the last inequality uses the assumption γt > 2(1 + 2κρ2)δt. This proves the first

claim.

• Case 2: ρ2 < r2
i,t. We split into two sub-cases. Suppose r2

i,t ≤ (ρ(1 − δt) − 1)/(κδt).

Then, by (7.8),

ri,t+1 ≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

≥ r2
i,t ·

1− δt
1 + κδt

ρ(1−δt)−1
κδt

=
r2
i,t

ρ
.

Now suppose instead r2
i,t > (ρ(1− δt)− 1)/(κδt). Then

ri,t+1 ≥
1− δt

κδt
ρ(1−δt)−1

+ κδt
=

1− δt − 1/ρ

κδt
. (7.13)

Observe that if mini 6=1 r
2
i,t ≤ (ρ(1− δt)− 1)/(κδt), then ri,t+1 ≥ |ri,t| for all i ∈ [k], and hence

γt+1 ≥ γt. Otherwise we have γt+1 > 1− κδt
1−δt−1/ρ

> 1− 1/ρ. This proves the third claim.

Finally, for the last claim, if Rt ≤ 1 + 2κρ2, then by (7.9) from Proposition 7.12 and the

assumption γt > 2(1 + 2κρ2)δt,

Rt+1 ≥ Rt ·
1− δt

1− γt + δtRt

≥ Rt ·
1− γt

2(1+2κρ2)

1− γt/2
≥ Rt

(
1 + γt ·

κρ2

1 + 2κρ2

)
≥ Rt

(
1 +

γt
3

)
.

This in turn implies that θ2
1,t+1 ≥ θ2

1,t via Proposition 7.11, and thus δt+1 ≤ δt.
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Next Lemma deals with the second phase, when R is larger than 9. It shows Rt grows in

a quadratic speed until it becomes really large, and once it is really large it stays large.

Lemma 7.14 (Second Phase). When 9 ≤ Rt ≤ λ̃1
3ε̃

, Rt+1 ≥ min{R2
t /2,

λ̃1
3ε̃
}.

When Rt ≥ λ̃1
3ε̃

, Rt+1 ≥ λ̃1
3ε̃

Proof. Observe that for any c > 0,

Rt ≥
1

c
⇔ θ2

1,t ≥
1

1 + c2
⇔ δt ≤

(1 + c2)ε̃

λ̃1

. (7.14)

Now consider the following cases depending on Rt.

• Case 1: Rt ≥ λ̃1
3ε̃

= 1/α. In this case, we have

δt ≤
(1 + α2)ε̃

λ̃1

≤ αγt
1 + α

by (7.14) (with c = α). Combining this with (7.9) from Proposition 7.12 gives

Rt+1 ≥
1− δt

1−γt
Rt

+ δt
≥

1− αγt
1+α

(1− γt)α + αγt
1+α

=
1

α
.

• Case 2: 9 ≤ Rt <
λ̃1
3ε̃

. In this case, we have

δt ≤
(1 + 1/92)ε̃

λ̃1

≤ 1.1ε̃

λ̃1

by (7.14), we have if δt ≥ 1/(2 +R2
t ), then (7.9) implies

Rt+1 ≥
1− δt
1
R2
t

+ δt
≥ 1− 2δt

2δt
≥ λ̃1

3ε̃
.
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If instead δt < 1/(2 +R2
t ), then (7.9) implies

Rt+1 ≥
1− δt
1
R2
t

+ δt
>

1− 1
2+R2

t

1
R2
t

+ 1
2+R2

t

=
R2
t

2
.

Approximate recovery of a single eigenvector

We now state the main result regarding the approximate recovery of a single eigenvector

using the tensor power method on T̃ . Here, we exploit the special properties of the error Ẽ

(both (7.5) and (7.6)).

Lemma 7.15 (Convergence for Top Eigenvector). There exists a universal constant C > 0

such that the following holds.

If the initializer is γ0-biased (0 < γ0 < 1) with respect to i∗ = arg max λ̃i, when ε̃ <

λ̃max · θ2
i∗,0 · γ0/18, and N ≥ C ·

(
log(k/γ0) + log log pλ̃i∗

ε̃

)
, after t ≥ N iterations of the

tensor power method on tensor T̃ as defined in (7.4) and satisfying (7.5) and (7.6), the final

vector θt satisfies

θi∗,t ≥
√

1−
(

3ε̃

pλ̃i∗

)2

, ‖θt − vi∗‖ ≤
4ε̃

pλ̃i∗
, |T̃ (θt,θt,θt)− λ̃i∗| ≤

(
27
( ε̃

pλi∗

)2

+ 2

)
ε̃

p
.

Proof. Assume without loss of generality that i∗ = 1. We consider three phases: (i) iterations

before the first time t such that Rt > 9, (ii) the subsequent iterations before the first time

t such that Rt ≥ λ̃1
3ε̃

and (iii) If p > 1, the subsequent iterations before the first time t such

that Rt ≥ pλ̃1
3ε̃

.

We begin by analyzing the first phase, i.e., the iterates in T1 := {t ≥ 0 : Rt ≤ 9}.

Observe that the condition on ε̃ implies

δ0 =
ε̃

λ̃1θ2
1,0

< γ0/18,
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and hence the preconditions on δt and γt of Lemma 7.13 hold for t = 0. For all t ∈ T1

satisfying the preconditions, Lemma 7.13 implies that δt+1 ≤ δt and γt+1 ≥ min{γt, 1/2},

so the next iteration also satisfies the preconditions. Hence by induction, the preconditions

hold for all iterations in T1. Moreover, for all i ∈ [k], we have

|ri,0| ≥
1

1− γ0

;

and while t ∈ T1: (i) |ri,t| increases at a linear rate while r2
i,t ≤ 8, and (ii) |ri,t| stays above 2

once it is at least 2.(The specific rates are given, respectively, in Lemma 7.13, claims 1 and

2.)

It follows that mini 6=1 r
2
i,t ≤ 4 for at most

2

γ0

ln

( √
8

1
1−γ0

)
= O(log 1/γ0) (7.15)

iterations in T1.

We know R0 ≥ 1/
√
k at the beginning, and it increases by a factor of (1 + γt/3) at every

step, therefore there are at most an additional O(log k) steps after γ reaches 1/2.

Therefore, by combining the counts, we have that the number of iterations in the first

phase is at most |T1| = O

(
log k/γ

)
.

We now analyze the second phase, i.e., the iterates in T2 := {t ≥ 0 : t /∈ T1, Rt <
λ̃1
3ε̃
}.

Note that for the initial iteration t′ := minT2, we have that Rt′ ≥ 1+2κρ2 = 1+8κ = 1/β,

Lemma 7.14 implies that Rt+1 ≥ min{Rt,
λ̃1
3ε̃
}.

To bound the number of iterations in T2, observe that Rt increases at a quadratic rate

until Rt ≥ λ̃1
3ε̃

, so |T2| = O

(
log log λ̃1

3ε̃

)
.

After Rt′′ ≥ λ̃1
3ε̃

, we have

θ2
1,t′′ ≥ 1−

(
3ε̃

λ̃1

)2

.
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Therefore, the vector θt′′ satisfies the condition for property (7.6) of Ẽ to hold. Now we

apply Lemma 7.14 using ε̃/p in place of ε̃, including in the definition of δt (which we call δt):

δt :=
ε̃

pλ̃1θ2
1,t

;

Similar as before, by Lemma 7.14, we have that Rt increases at a quadratic rate in this

final phase until Rt ≥ pλ̃1
3ε̃

. So the number of iterations before Rt ≥ λ̃1
3ε̃

can be bounded as

O

(
log log pλ̃1

ε̃

)
.

Once Rt ≥ pλ̃1
3ε̃

, we have θ2
1,t ≥ 1−

(
3ε̃
pλ̃1

)2

.

Since sign(θ1,t) = r1,t ≥ r2
1,t−1 · (1 − δt−1)/(1 + δt−1r

2
1,t−1) > 0 by Proposition 7.12, we

have θ1,t > 0. Therefore we can conclude that

‖θt − v1‖ =
√

2(1− θ1,t) ≤
√

2

(
1−

√
1− (3ε̃/(pλ̃1))2

)
≤ 4ε̃/(pλ̃1).

Finally,

|T̃ (θt,θt,θt)− λ̃1| =
∣∣∣∣λ̃1(θ3

1,t − 1) +
k∑
i=2

λ̃iθ
3
i,t + Ẽ(θt,θt,θt)

∣∣∣∣
≤ λ̃1

(
1− θ1,t + |θ1,t(1− θ2

1,t)|
)

+ max
i 6=1

λ̃i

√
1− θ2

1,t

k∑
i=2

θ2
i,t + ‖Ẽ(I,θt,θt)‖

≤ (27κ · (ε̃/pλ̃1)2 + 2)ε̃

p
.

7.6.3 Deflation

In this section we give a bound on the additional error caused by deflation. Assuming all

previous steps found vectors that are close to the true vectors, then the Lemma below claims

the error introduced by deflation depends on the projection of the current vector into the

space spanned by the previously found eigenvectors. The benefit of a direction-dependent
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bound is that once we approach the end of the power method iterations, the vector will

be close to the new eigenvector, and therefore has very low projection to the previously

found eigenvectors. This allows the algorithm to find more accurate vectors, in particular

the guarantee will not deteriorate as the deflation process continues.

Lemma 7.16. Fix some ε̃ ≥ 0. Let {v1,v2, . . . ,vk} be an orthonormal basis for Rk, and

λ1, λ2, . . . , λk ≥ 0 with λmin := mini∈[k] λi. Also, let {v̂1, v̂2, . . . , v̂k} be a set of unit vectors

in Rk (not necessarily orthogonal), λ̂1, λ̂2, . . . , λ̂k ≥ 0 be non-negative scalars, and define

Ei := λiv
⊗3
i − λ̂iv̂⊗3

i , i ∈ [k].

Pick any t ∈ [k]. If

|λ̂i − λi| ≤ ε̃,

‖v̂i − vi‖ ≤ min{
√

2, 2ε̃/λi}

for all i ∈ [t], then for any unit vector u ∈ Sk−1, ε̃ ≤ λmin/10000
√
k implies

∥∥∥∥ t∑
i=1

Ei(I,u,u)

∥∥∥∥2

2

≤
(

0.01 + 100
t∑
i=1

(u>vi)
2

)
ε̃2.

Proof. For any unit vector u and i ∈ [t], the error term

Ei(I,u,u) = λi(u
>vi)

2vi − λ̂i(u>v̂i)2v̂i

lives in span{vi, v̂i}; this space is the same as span{vi, v̂⊥i }, where

v̂⊥i := v̂i − (v>i v̂i)vi
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is the projection of v̂i onto the subspace orthogonal to vi. Since ‖v̂i − vi‖2 = 2(1− v>i v̂i),

it follows that

ci := v>i v̂i = 1− ‖v̂i − vi‖2/2 ≥ 0

(the inequality follows from the assumption ‖v̂i−vi‖ ≤
√

2, which in turn implies 0 ≤ ci ≤ 1).

By the Pythagorean theorem and the above inequality for ci,

‖v̂⊥i ‖2 = 1− c2
i ≤ ‖v̂i − vi‖2.

Later, we will also need the following bound, which is easily derived from the above inequal-

ities and the triangle inequality:

|1− c3
i | = |1− ci + ci(1− c2

i )| ≤ 1− ci + |ci(1− c2
i )| ≤ 1.5‖v̂i − vi‖2.

We now express Ei(I, u, u) in terms of the coordinate system defined by vi and v̂⊥i ,

depicted below.

ci


vi v̂i

subspace
orthogonal
to vi span{vi, v̂⊥i }⊥

v̂⊥i /‖v̂⊥i ‖

v̂⊥i

Define

ai := u>vi and bi := u>
(
v̂⊥i /‖v̂⊥i ‖

)
.
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(Note that the part of u living in span{vi, v̂⊥i }⊥ is irrelevant for analyzing Ei(I, u, u).) We

have

Ei(I, u, u) = λi(u
>vi)

2vi − λ̂i(u>v̂i)2v̂i

= λia
2
ivi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2(
civi + v̂⊥i

)
= λia

2
ivi − λ̂i

(
a2
i c

2
i + 2‖v̂⊥i ‖aibici + ‖v̂⊥i ‖2b2

i

)
civi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2
v̂⊥i

=
(

(λi − λ̂ic3
i )a

2
i − 2λ̂i‖v̂⊥i ‖aibic2

i − λ̂i‖v̂⊥i ‖2b2
i ci

)
︸ ︷︷ ︸

=:Ai

vi − λ̂i‖v̂⊥i ‖
(
aici + ‖v̂⊥i ‖bi

)2︸ ︷︷ ︸
=:Bi

(
v̂⊥i /‖v̂⊥i ‖

)
= Aivi −Bi

(
v̂⊥i /‖v̂⊥i ‖

)
.

The overall error can also be expressed in terms of the Ai and Bi:

∥∥∥∥ t∑
i=1

Ei(I,u,u)

∥∥∥∥2

2

=

∥∥∥∥ t∑
i=1

Aivi −
t∑
i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2

2

≤ 2

∥∥∥∥ t∑
i=1

Aivi

∥∥∥∥2

+ 2

∥∥∥∥ t∑
i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2

2

≤ 2
t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

(7.16)

where the first inequality uses the fact (x+ y)2 ≤ 2(x2 + y2) and the triangle inequality, and

the second inequality uses the orthonormality of the vi and the triangle inequality.

It remains to bound A2
i and |Bi| in terms of |ai|, λi, and ε̃. The first term, A2

i , can be

bounded using the triangle inequality and the various bounds on |λi − λ̂i|, ‖v̂i − vi‖, ‖v̂⊥i ‖,
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and ci:

|Ai| ≤ (|λi − λ̂i|c3
i + λi|c3

i − 1|)a2
i + 2(λi + |λi − λ̂i|)‖v̂⊥i ‖|aibi|c2

i + (λi + |λi − λ̂i|)‖v̂⊥i ‖2b2
i ci

≤ (|λi − λ̂i|+ 1.5λi‖v̂i − vi‖2 + 2(λi + |λi − λ̂i|)‖v̂i − vi‖)|ai|+ (λi + |λi − λ̂i|)‖v̂i − vi‖2

≤ (ε̃+ 7ε̃2/λi + 4ε̃+ 4ε̃2/λi)|ai|+ 4ε̃2/λi + ε̃3/λ2
i

= (5 + 11ε̃/λi)ε̃|ai|+ 4(1 + ε̃/λi)ε̃
2/λi,

and therefore (via (x+ y)2 ≤ 2(x2 + y2))

A2
i ≤ 2(5 + 11ε̃/λi)

2ε̃2a2
i + 32(1 + ε̃/λi)

2ε̃4/λ2
i .

The second term, |Bi|, is bounded similarly:

|Bi| ≤ 2(λi + |λi − λ̂i|)‖v̂⊥i ‖2(a2
i + ‖v̂⊥i ‖2)

≤ 2(λi + |λi − λ̂i|)‖v̂i − vi‖2(a2
i + ‖v̂i − vi‖2)

≤ 8(1 + ε̃/λi)(ε̃
2/λi)a

2
i + 32(1 + ε̃/λi)ε̃

4/λ3
i .

Therefore, using the inequality from (7.16) and again (x+ y)2 ≤ 2(x2 + y2),

∥∥∥∥ t∑
i=1

Ei(I,u,u)

∥∥∥∥2

2

≤ 2
t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

≤
(

0.01 + 100
t∑
i=1

(u>vi)
2

)
ε̃2

7.6.4 Proof of the main theorem

Finally we are ready to prove the main theorem in this Chapter. The proof is basically

an induction on Theorem 7.15, plugging in the error bound in Theorem 7.16. Ideally we

would find the t-th largest eigenvector at the t-th iteration of the algorithm. Theorem 7.10
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will guarantee that in one of the random initial vectors we indeed find the top eigenvector.

However, additional complication arises because we don’t know which random initialization

worked!

The solution to this problem is to pick the one vector with the largest T̃ (v, v, v), because

the value T̃ (v, v, v) is very similar to the quadratic form vTMv for matrices. Analog to ma-

trices suggest that having large T̃ (v, v, v) value should imply closeness to a large eigenvector.

We show that this intuition is correct during the induction step in the proof below.

Theorem 7.9 restated. Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with

orthogonal decomposition T =
∑k

i=1 λiv
⊗3
i where each λi > 0, {v1,v2, . . . ,vk} is an or-

thonormal basis, and E has operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and

λmax := max{λi : i ∈ [k]}. For any δ > 0, there exists universal constants C1, C2, C3 > 0

such that the following holds. Pick any η ∈ (0, 1), and suppose

ε ≤ C1 ·
λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and

L = k1+δ log(k/η)

Suppose that Algorithm 7.1 is iteratively called k times, where the input tensor is T̂ in

the first call, and in each subsequent call, the input tensor is the deflated tensor returned

by the previous call. Let (v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k) be the sequence of estimated eigenvec-

tor/eigenvalue pairs returned in these k calls. With probability at least 1− η, there exists a

permutation π on [k] such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j| ≤ 5ε, ∀j ∈ [k],
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and ∥∥∥∥T − k∑
j=1

λ̂jv̂
⊗3
j

∥∥∥∥ ≤ 55ε.

Proof. We prove by induction that for each i ∈ [k] (corresponding to the i-th call to Algo-

rithm 7.1), with probability at least 1− iη/k, there exists a permutation π on [k] such that

the following assertions hold.

1. For all j ≤ i, ‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j) and |λπ(j) − λ̂j| ≤ 12ε.

2. The error tensor

Ẽi+1 :=

(
T̂ −

∑
j≤i

λ̂jv̂
⊗3
j

)
−
∑
j≥i+1

λπ(j)v
⊗3
π(j) = E +

∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂jv̂⊗3

j

)

satisfies

‖Ẽi+1(I,u,u)‖ ≤ 56ε, ∀u ∈ Sk−1; (7.17)

‖Ẽi+1(I,u,u)‖ ≤ 2ε, ∀u ∈ Sk−1 s.t. ∃j ≥ i+ 1, (u>vπ(j))
2 ≥ 1− (168ε/λπ(j))

2.

(7.18)

We actually take i = 0 as the base case, so we can ignore the first assertion, and just observe

that for i = 0,

Ẽ1 = T̂ −
k∑
j=1

λiv
⊗3
i = E.

We have ‖Ẽ1‖ = ‖E‖ = ε, and therefore the second assertion holds.

Now fix some i ∈ [k], and assume as the inductive hypothesis that, with probability at

least 1 − (i − 1)η/k, there exists a permutation π such that two assertions above hold for

i− 1 (call this Eventi−1). The i-th call to Algorithm 7.1 takes as input

T̃i := T̂ −
∑
j≤i−1

λ̂jv̂
⊗3
j ,
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which is intended to be an approximation to

Ti :=
∑
j≥i

λπ(j)v
⊗3
π(j).

Observe that

T̃i − Ti = Ẽi,

which satisfies the second assertion in the inductive hypothesis. We may write Ti =∑k
l=1 λ̃lv

⊗3
l where λ̃l = λl whenever π−1(l) ≥ i, and λ̃l = 0 whenever π−1(l) ≤ i − 1. This

form is used when referring to T̃ or the λ̃i in preceding lemmas (in particular, Lemma 7.10

and Lemma 7.15).

By Lemma 7.10, with conditional probability at least 1 − η/k given Eventi−1, at least

one of θ
(τ)
0 for τ ∈ [L] is γ-separated relative to π(jmax), where jmax := arg maxj≥i λπ(j), (for

γ = 0.01; call this Event′i; note that the application of Lemma 7.10 determines C3). Therefore

Pr[Eventi−1 ∩ Event′i] = Pr[Event′i|Eventi−1] Pr[Eventi−1] ≥ (1 − η/k)(1 − (i − 1)η/k) ≥ 1 −

iη/k. It remains to show that Eventi−1 ∩ Event′i ⊆ Eventi; so henceforth we condition on

Eventi−1 ∩ Event′i.

Set C1 to be a universal constant that is small enough. For all τ ∈ [L] such that θ
(τ)
0 is

γ-separated relative to π(jmax), we have (i) |θ(τ)
jmax,0

| ≥ 1/
√
k, and (ii) that by Lemma 7.15

(using ε̃/p := 2ε, and i∗ := π(jmax), C = C2),

|T̃i(θ(τ)N ,θ
(τ)
N ,θ

(τ)
N )− λπ(jmax)| ≤ 5ε

(notice by definition that γ ≥ 1/100 implies γ0 ≥ 1 − /(1 + γ) ≥ 1/101, thus it follows

from the bounds on the other quantities that ε̃ = 2pε ≤ 56C1 · λmin

k
< γ0

2(1+8κ)
· λ̃min · θ2

i∗,0 as
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necessary). Therefore θN := θ
(τ∗)
N must satisfy

T̃i(θN ,θN ,θN ) = max
τ∈[L]

T̃i(θ
(τ)
N ,θ

(τ)
N ,θ

(τ)
N ) ≥ max

j≥i
λπ(j) − 5ε = λπ(jmax) − 5ε.

On the other hand, by the triangle inequality,

T̃i(θN ,θN ,θN ) ≤
∑
j≥i

λπ(j)θ
3
π(j),N + |Ẽi(θN ,θN ,θN )|

≤
∑
j≥i

λπ(j)|θπ(j),N |θ2
π(j),N + 56ε

≤ λπ(j∗)|θπ(j∗),N |+ 56ε

where j∗ := arg maxj≥i λπ(j)|θπ(j),N |. Therefore

λπ(j∗)|θπ(j∗),N | ≥ λπ(jmax) − 5ε− 56ε ≥ 4

5
λπ(jmax).

Squaring both sides and using the fact that θ2
π(j∗),N + θ2

π(j),N ≤ 1 for any j 6= j∗,

(
λπ(j∗)θπ(j∗),N

)2 ≥ 16

25

(
λπ(jmax)θπ(j∗),N

)2
+

16

25

(
λπ(jmax)θπ(j),N

)2

≥ 16

25

(
λπ(j∗)θπ(j∗),N

)2
+

16

25

(
λπ(j)θπ(j),N

)2

which in turn implies

λπ(j)|θπ(j),N | ≤
3

4
λπ(j∗)|θπ(j∗),N |, j 6= j∗.

This means that θN is (1/4)-separated relative to π(j∗). Also, observe that

|θπ(j∗),N | ≥
4

5
· λπ(jmax)

λπ(j∗)
≥ 4

5
,

λπ(jmax)

λπ(j∗)
≤ 5

4
.
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Therefore we are in a situation that is very similar to Theorem 7.14, except that now the

dominating |λj∗θj∗| may not have the same j∗ as the largest jmax. The proof of Theorem 7.14

can be easily adapted in this case because we still know
λπ(jmax)

λπ(j∗)
≤ 5

4
, hence we can still apply

Theorem 7.15 and get

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

Since v̂i = θ̂ and λ̂i = λ̂, the first assertion of the inductive hypothesis is satisfied, as we

can modify the permutation π by swapping π(i) and π(j∗) without affecting the values of

{π(j) : j ≤ i− 1} (recall j∗ ≥ i).

We now argue that Ẽi+1 has the required properties to complete the inductive step. By

Lemma 7.16 (using ε̃ := 5ε), we have for any unit vector u ∈ Sk−1,

∥∥∥∥∥
(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂jv̂⊗3

j

))
(I,u,u)

∥∥∥∥∥ ≤
(

1/50 + 100
i∑

j=1

(u>vπ(j))
2

)1/2

5ε ≤ 55ε. (7.19)

Therefore by the triangle inequality,

‖Ẽi+1(I,u,u)‖ ≤ ‖E(I,u,u)‖+

∥∥∥∥∥
(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂jv̂⊗3

j

))
(I,u,u)

∥∥∥∥∥ ≤ 56ε.

Thus the bound (7.17) holds.

To prove that (7.18) holds, pick any unit vector u ∈ Sk−1 such that there exists j′ ≥ i+1

with (u>vπ(j′))
2 ≥ 1− (168ε/λπ(j′))

2. We have (via the assumed bound ε ≤ C1 · λmin

k
)

100
i∑

j=1

(u>vπ(j))
2 ≤ 100

(
1− (u>vπ(j′))

2
)
≤ 100

(
168ε

λπ(j′)

)2

≤ 1

50
,
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and therefore

(
1/50 + 100

i∑
j=1

(u>vπ(j))
2

)1/2

5ε ≤ (1/50 + 1/50)1/25ε ≤ ε.

By the triangle inequality, we have ‖Ẽi+1(I,u,u)‖ ≤ 2ε. Therefore (7.18) holds, so the

second assertion of the inductive hypothesis holds. Thus Eventi−1 ∩ Event′i ⊆ Eventi, and

Pr[Eventi] ≥ Pr[Eventi−1 ∩ Event′i] ≥ 1− iη/k. We conclude that by the induction principle,

there exists a permutation π such that two assertions hold for i = k, with probability at

least 1− η.

From the last induction step (i = k), it is also clear from (7.19) that ‖T −∑k
j=1 λ̂jv̂

⊗3
j ‖ ≤

55ε (in Eventk−1 ∩ Event′k). This completes the proof of the theorem.

7.7 Better Initializers and Adaptive Deflation

If we take a closer look at the analysis of the tensor power method, it is easy to see the

requirement of error smaller than λmin/k is only caused by Theorem 7.15, in particular in

the requirement that the relative error δ0 should be a small constant. For example, the

deflation step, Theorem 7.16 actually requires error only smaller than λmin/
√
k.

In some situations, it is possible to obtain much better initializers. The exchangeable

single topic model is a good example for this idea: for a single document, the expected

word frequency vector v will be µi if the document has topic i. When the document is long

enough it is easy to show that v is actually very close to its expectation. If we apply the

reduction in Section 7.2.1, then W Tv will be close to one of the component in the tensor

decomposition. If we have many such good initializers, then it is possible to do orthogonal

tensor decomposition even when the error is more than λmin/k.

To make this precise, define a vector to be (γ,Q)-good respect to i if u · vi > Q and

|u · vi| −maxj 6=i |u · vj | > γ|u · vi|. Theorem 7.15 shows if the initializer is (γ,Q)-good with
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respect to the top eigenvector, we only require ε̃ < λminQ
2γ/18. This is really good as if Q

and γ are both constants, ε̃ is only required to be smaller than a small constant times λ̂max.

When Q and γ are large, it is possible that the deflation step becomes the bottleneck as

it still requires ε to be smaller than λmin/
√
k. In order to avoid this we need to do deflation

in a more careful way, as in Algorithm 7.3

Algorithm 7.3. {λ,Φ} ←TensorEigen(T, {vi}i∈[L], N)

Input: Tensor T ∈ Rk×k×k, set of L initialization vectors {vi}i∈L, number of iterations N .
Output: the estimated eigenvalue/eigenvector pairs {λ̂i, v̂i}, where λ̂ are the eigenvalues

and v̂i’s are the eigenvectors.
for i = 1 to k do

for τ = 1 to L do
θ0 ← vτ .
for t = 1 to N do
T̃ ← T .
for j = 1 to i− 1 (when i > 1) do

if |λ̂jθ(τ)t · v̂j| > ξ = 5ε̃ then

T̃ ← T̃ − λ̂jv̂⊗3
j .

end if
end for

Compute power iteration update θ
(τ)
t :=

T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)

‖T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)‖

end for
end for
Let τ ∗ := arg maxτ∈L{T̃ (θ

(τ)
N ,θ

(τ)
N ,θ

(τ)
N )}.

Do N power iteration updates starting from θ
(τ∗)
N to obtain eigenvector estimate v̂i,

and set λ̂i := T̃ (v̂i, v̂i, v̂i).
end for
return the estimated eigenvalue/eigenvectors (λ̂i, v̂i).

The main difference between Algorithm 7.3 and Algorithm 7.1 is in the deflation step:

instead of the one shot deflation in Algorithm 7.1 (just subtract the found component from

the tensor), in Algorithm 7.3 we are more careful in that we only subtract the component

when it “threats” the current iteration (that is, the |λiθi,t| value is larger or almost as large

as |λjθj,t| when we are trying to converge to vj).
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Lemma 7.17 (Deflation analysis). Let ε̃ > 0 and let {v1, . . . ,vk} be an orthonormal basis

for Rk and λi ≥ 0 for i ∈ [k]. Let {v̂1, . . . , v̂k} ∈ Rk be a set of unit vectors and λ̂i ≥ 0.

Define third order tensor Ei such that

Ei := λiv
⊗3
i − λ̂iv̂⊗3

i , ∀ i ∈ k.

For some t ∈ [k] and a unit vector u ∈ Sk−1 such that u =
∑

i∈[k] θivi and θ̂i := u · v̂i, we

have for i ∈ [t],

|λ̂iθ̂i| ≥ ξ ≥ 5ε̃,

|λ̂i − λi| ≤ ε̃,

‖v̂i − vi‖ ≤ min{
√

2, 2ε̃/λi},

then when ε̃ ≤ 10−5λmin implies

∥∥∥∥ t∑
i=1

Ei(I,u,u)

∥∥∥∥2

2

≤ 200ε̃2
t∑
i=1

θ2
i .

Proof: The proof is on lines of deflation analysis in Theorem 7.16, but we improve the

bounds based on additional properties of vector u. From Theorem 7.16, we have that for all

i ∈ [t], and any unit vector u,

∥∥∥∥ t∑
i=1

Ei(I,u,u)

∥∥∥∥2

2

≤
(
O(

t∑
i=1

ε̃2/λ2
i ) + 100

t∑
i=1

θ2
i

)
ε̃2 (7.20)

Let λ̂i = λi + δi and θ̂i = θi + βi. We have δi ≤ ε̃ and βi ≤ 2ε̃/λi, and that |λ̂iθ̂i| ≥ ξ.

||λ̂iθ̂i| − |λiθi|| ≤ |λ̂iθ̂i − λiθi| ≤ |(λi + δi)(θi + βi)− λiθi| ≤ 4ε̃. (7.21)
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Thus, we have that |λiθi| ≥ 5ε̃ − 4ε̃ = ε̃. Thus
∑t

i=1 ε̃
2/λ2

i ≤
∑

i θ
2
i . Substituting in (7.20),

we have the result. �

We also need to show that the deflation process indeed deflated all the previously found

eigenvectors that has a large effective eigenvalue. This is again by (7.21), if |λiθi| ≥ 9ε̃, then

|λ̂iθ̂i| ≥ 5ε̃ and will get deflated. On the other hand, the effective eigenvalue of the vector

we want to converge to is at least λminQ� 5ε̃.
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Chapter 8

Tensor Decomposition in Community

Detection

Using the tensor decomposition framework, it is possible to learn many latent variable mod-

els. In this chapter we use mixed membership community model as an example. The new

algorithm in this section illustrates many useful techniques for proving sharp sample com-

plexity bounds using tensor power method. In particular, the sample complexity bounds we

get almost match the state-of-art for stochastic block model (which is a special case of mixed

membership model), even though our algorithm works for more general models.

8.1 Background and Main Results

8.1.1 History of Overlapping Communities

Studying communities forms an integral part of social network analysis. A community gen-

erally refers to a group of individuals with shared interests (e.g. music, sports), or re-

lationships (e.g. friends, co-workers). Community formation in social networks has been

studied by many sociologists, e.g. [45, 108, 124, 129], starting with the seminal work of [129].
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Various probabilistic and non-probabilistic network models attempt to explain community

formation. In addition, they also attempt to quantify interactions and the extent of over-

lap between different communities, relative sizes among the communities, and various other

network properties. Studying such community models are also of interest in other domains,

e.g. in biological networks.

While there exists a vast literature on community models, learning these models is typ-

ically challenging, and various heuristics such as Markov Chain Monte Carlo (MCMC) or

variational expectation maximization (EM) are employed in practice. Such heuristics tend

to scale poorly for large networks. On the other hand, community models with guaranteed

learning methods tend to be restrictive. A popular class of probabilistic models, termed as

stochastic blockmodels, have been widely studied and enjoy strong theoretical learning guar-

antees, e.g. [62, 84, 125, 142, 159, 161]. On the other hand, they posit that an individual

belongs to a single community, which does not hold in most real settings [135].

The mixed membership community model of [4] has a number of attractive properties.

It retains many of the convenient properties of the stochastic block model. For instance,

conditional independence of the edges is assumed, given the community memberships of the

nodes in the network. At the same time, it allows for communities to overlap, and for every

individual to be fractionally involved in different communities.

8.1.2 Main Result

In this section, we describe the mixed membership community model based on Dirichlet

priors for the community draws by the individuals. Then we state our main result.

We first introduce the special case of the popular stochastic block model, where each

node belongs to a single community.
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Notation: Let G be the {0, 1} adjacency matrix for the random network and let GA,B be

the submatrix of G corresponding to rows A ⊆ [n] and columns B ⊆ [n]. We consider models

with k underlying (hidden) communities. For node i, let πi ∈ Rk denote its community

membership vector, i.e., the vector is supported on the communities to which the node

belongs. In the special case of the popular stochastic block model described below, πi is

a basis coordinate vector, while the more general mixed membership model relaxes this

assumption and a node can be in multiple communities with fractional memberships. Define

Π := [π1|π2| · · · |πn] ∈ Rk×n. and let ΠA := [πi : i ∈ A] ∈ Rk×|A| denote the set of column

vectors restricted to A ⊆ [n]. For a matrix M , recall that (M)i and (M)i denote its ith

column and row respectively.

Stochastic block model (special case): In this model, each individual is independently

assigned to a single community, chosen at random: each node i chooses community j in-

dependently with probability α̂j, for i ∈ [n], j ∈ [k], and we assign πi = ej in this case,

where ej ∈ {0, 1}k is the jth coordinate basis vector. Given the community assignments Π,

every directed1 edge in the network is independently drawn: if node u is in community i and

node v is in community j (and u 6= v), then the probability of having the edge (u, v) in the

network is Pi,j. Here, P ∈ [0, 1]k×k and we refer to it as the community connectivity matrix.

This implies that given the community membership vectors πu and πv, the probability of

an edge from u to v is π>uPπv (since when πu = ei and πv = ej , we have π>uPπv = Pi,j.).

Throughout this Chapter we work in the special case where Pi,i = p and Pi,j = q when

i 6= j. Here p, q are two probabilities that two individual know each other when they are

in/not in the same community respectively. Also, we assume all the communities have equal

size, that is, α̂i = 1/k for all i ∈ [k].

1We limit our discussion to directed networks in this paper, but note that the results also hold for
undirected community models, where P is a symmetric matrix, and an edge (u, v) is formed with probability
π>
uPπv = π>

v Pπu.
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Mixed membership model: We now consider the extension of the stochastic block

model which allows for an individual to belong to multiple communities and yet preserves

some of the convenient independence assumptions of the block model. In this model, the

community membership vector πu at node u is a probability vector, i.e.,
∑

i∈[k] πu(i) = 1,

for all u ∈ [n]. Given the community membership vectors, the generation of the edges is

identical to the block model: given vectors πu and πv, the probability of an edge from u to v

is π>uPπv, and the edges are independently drawn. This formulation allows for the nodes to

be in multiple communities, and at the same time, preserves the conditional independence

of the edges, given the community memberships of the nodes.

Dirichlet prior for community membership: The only aspect left to be specified

for the mixed membership model is the distribution from which the community membership

vectors Π are drawn. We consider the popular setting of [4, 71], where the community vectors

{πu} are i.i.d. draws from the Dirichlet distribution, denoted by Dir(α), with parameter

vector α ∈ Rk
>0. The probability density function of the Dirichlet distribution is given by

P[π] =

∏k
i=1 Γ(αi)

Γ(α0)

k∏
i=1

παi−1
i , π ∼ Dir(α), α0 :=

∑
i

αi, (8.1)

where Γ(·) is the Gamma function and the ratio of the Gamma function serves as the

normalization constant.

The Dirichlet distribution is widely employed for specifying priors in Bayesian statistics,

e.g. latent Dirichlet allocation [26]. The Dirichlet distribution is the conjugate prior of the

multinomial distribution which makes it attractive for Bayesian inference.

Let α̂ denote the normalized parameter vector α/α0, where α0 :=
∑

i αi. In particular,

note that α̂ is a probability vector:
∑

i α̂i = 1. Intuitively, α̂ denotes the relative expected

sizes of the communities (since E[n−1
∑

u∈[n] πu[i]] = α̂i). Again in this Chapter we work

with the simplified case where αi = α0/k for all i.
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The stochastic block model is a limiting case of the mixed membership model when the

Dirichlet parameter is α = α0 · α̂, where the probability vector α̂ is held fixed and α0 → 0.

In the other extreme when α0 → ∞, the Dirichlet distribution becomes peaked around a

single point, for instance, if αi ≡ c and c→∞, the Dirichlet distribution is peaked at k−1 ·1,

where 1 is the all-ones vector. Thus, the parameter α0 serves as a measure of the average

sparsity of the Dirichlet draws or equivalently, of how concentrated the Dirichlet measure is

along the different coordinates. This in effect, controls the extent of overlap among different

communities.

Specific Parameter Choices in Homophilic Models A sub-class of community model

are those satisfying homophily. Homophily or the tendency to form edges within the members

of the same community has been posited as an important factor in community formation,

especially in social settings. Many of the existing learning algorithms, e.g. [166] require this

assumption to provide guarantees in the stochastic block model setting.

Throughout this Chapter we deal with a standard special case, where the diagonal entries

of P are all equal to p, and off-diagonal entries are all equal to q < p. All the communities

have the same (expected size), which means α̂i = 1/k for all i ∈ [k]. The parameter α0

should generally be thought of as a constant (which correspond to the case that everyone is

expected to be in constant number of communities). In particular, our Õ and Ω̃ notations

will ignore polynomial powers of α0 + 1.

Main Result Informally, the main result of this chapter is

Theorem 8.1 (Informal). There is an algorithm for estimating the parameters of Mixed

Membership Stochastic Block model, when everyone is expected to be in constant number of

communities, and communities have similar sizes, the guarantee of the algorithm is matches

the state-of-art result for the simpler Stochastic Block model.
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Figure 8.1: Our moment-based learning algorithm uses 3-star count tensor from set X to
sets A,B,C (and the roles of the sets are interchanged to get various estimates). Specifically,
T is a third order tensor, where T(u, v, w) is the normalized count of the 3-stars with u, v, w
as leaves over all x ∈ X.

The rest of this chapter is structured as follows: we show what graph moments we use

and give the structure of the graph moments in Section 8.2. In Section 8.3, we describe

learning algorithms when we have exact moments (just to give intuition) and how this can

be adapted to the case when we are only given samples. The next Section 8.4 states the

performance guarantee of our algorithms, and outlines the proof. All the details of the proof

are deferred to the final Section 8.5.

Implementation In a subsequent work, Huang et al. [89] implemented the algorithm

using GPUs. The algorithm scales up to networks with more than 100,000 nodes and 500

communities, and produces reasonable results.

8.2 Graph Moments Under Mixed Membership Mod-

els

Our approach for learning a mixed membership community model relies on the form of the

graph moments2 under the mixed membership model. We now describe the specific graph

moments used by our learning algorithm (based on 3-star and edge counts) and provide

explicit forms for the moments, assuming draws from a mixed membership model.

2We interchangeably use the term first order moments for edge counts and third order moments for 3-star
counts.
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To simplify notation we define

F := Π>P> = [π1|π2| · · · |πn]>P>. (8.2)

For a subset A ⊆ [n] of individuals, let FA ∈ R|A|×k denote the submatrix of F corresponding

to nodes in A, i.e., FA := Π>AP
>.

Graph Moments under Mixed Membership Dirichlet Model

3-star counts: The primary quantity of interest is a third-order tensor which counts

the number of 3-stars. A 3-star is a star graph with three leaves {a, b, c} and we refer to

the internal node x of the star as its “head”, and denote the structure by x → {a, b, c}

(see figure 8.1). We partition the network into four3 parts and consider 3-stars such that

each node in the 3-star belongs to a different partition. Specifically, consider4 a partition

A,B,C,X of the network. We count the number of 3-stars from X to A,B,C and our

quantity of interest is

TX→{A,B,C} :=
1

|X|
∑
i∈X

[G>i,A ⊗G>i,B ⊗G>i,C ]. (8.3)

T ∈ R|A|×|B|×|C| is a third order tensor, and an element of the tensor is given by

TX→{A,B,C}(a, b, c) =
1

|X|
∑
x∈X

G(x, a)G(x, b)G(x, c), ∀a ∈ A, b ∈ B, c ∈ C, (8.4)

which is the normalized count of the number of 3-stars with leaves a, b, c such that its “head”

is in set X.

3For sample complexity analysis, we require dividing the graph into more than four partitions to deal
with statistical dependency issues, and we outline it in Section 8.3.

4For our theoretical guarantees to hold, the partitions A,B,C,X can be randomly chosen and are of size
Θ(n).
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We now analyze the graph moments for the general mixed membership Dirichlet model.

Instead of the raw moments (i.e. edge and 3-star counts), we consider modified moments to

obtain similar expressions as in the case of the stochastic block model.

Let µX→A ∈ R|A| denote a vector which gives the normalized count of edges from X to

A:

µX→A :=
1

|X|
∑
i∈X

[G>i,A]. (8.5)

We now define a modified adjacency matrix5 Gα0
X,A as

Gα0
X,A :=

(√
α0 + 1GX,A − (

√
α0 + 1− 1)1µ>X→A

)
. (8.6)

In the special case of the stochastic block model (α0 → 0), Gα0
X,A = GX,A is the submatrix of

the adjacency matrix G. Similarly, we define modified third-order statistics,

Tα0

X→{A,B,C} :=(α0 + 1)(α0 + 2) TX→{A,B,C}+2α2
0 µX→A ⊗ µX→B ⊗ µX→C

− α0(α0 + 1)

|X|
∑
i∈X

[
G>i,A ⊗G>i,B ⊗ µX→C +G>i,A ⊗ µX→B ⊗G>i,C + µX→A ⊗G>i,B ⊗G>i,C

]
,

(8.7)

and it reduces to (a scaled version of) the 3-star count TX→{A,B,C} defined in (8.3) for the

stochastic block model (α0 → 0). The modified adjacency matrix and the 3-star count tensor

can be viewed as a form of “centering” of the raw moments which simplifies the expressions

for the moments. The following relationships hold between the modified graph moments

Gα0
X,A, Tα0 and the model parameters P and α̂ of the mixed membership model.

Proposition 8.2 (Moments in Mixed Membership Model). Given partitions A,B,C,X

and Gα0
X,A and Tα0, as in (8.6) and (8.7), normalized Dirichlet concentration vector α̂, and

5To compute the modified moments Gα0 , and Tα0 , we need to know the value of the scalar α0 :=
∑
i αi,

which is the concentration parameter of the Dirichlet distribution and is a measure of the extent of overlap
between the communities. We assume its knowledge here.
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F := Π>P>, where P is the community connectivity matrix and Π is the matrix of community

memberships, we have

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX , (8.8)

E[Tα0

X→{A,B,C} |ΠA,ΠB,ΠC ] =
k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (8.9)

where (FA)i corresponds to ith column of FA and ΨX relates to the community membership

matrix ΠX as

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
1>

)
.

Moreover, we have that

|X|−1EΠX [ΨXΨ>X ] = I. (8.10)

Proof: Recall E[G>i,A|πi,ΠA] = FAπi for a mixed membership model, and µX→A :=

1
|X|
∑

i∈X G
>
i,A, therefore E[µX→A|ΠA,ΠX ] = FA

(
1
|X|
∑

i∈X πi

)
1>. Equation (8.8) follows

directly. For Equation (8.10), we note the Dirichlet moment, E[ππ>] = 1
α0+1

Diag(α̂) +

α0

α0+1
α̂α̂>, when π ∼ Dir(α) and

|X|−1E[ΨXΨ>X ] = Diag(α̂−1/2)
[
(α0 + 1)E[ππ>] + (−2

√
α0 + 1(

√
α0 + 1− 1)

+(
√
α0 + 1− 1)2)E[π]E[π]>

]
Diag(α̂−1/2)

= Diag(α̂−1/2)
(
Diag(α̂) + α0α̂α̂

> + (−α0)α̂α̂>
)

Diag(α̂−1/2)

= I.
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The expectation in (8.9) involves multi-linear map of the expectation of the tensor products

π ⊗ π ⊗ π among other terms. Collecting these terms, we have that

(α0 + 1)(α0 + 2)E[π ⊗ π ⊗ π]− (α0)(α0 + 1)(E[π ⊗ π ⊗ E[π]]

+E[π ⊗ E[π]⊗ π] + E[E[π]⊗ π ⊗ π]) + 2α2
0E[π]⊗ E[π]⊗ E[π]

is a diagonal tensor, in the sense that its (p, p, p)-th entry is α̂p, and its (p, q, r)-th entry is

0 when p, q, r are not all equal. With this, we have (8.9). �

Note that the form of the tensor in this Lemma is very similar to Theorem 7.2. However,

because FA, FB, FC are three different matrices, we need a more complicated reduction than

Section 7.2.1.

8.3 Algorithm for Learning Mixed Membership Mod-

els

The simple form of the graph moments derived in the previous section is now utilized to

recover the community vectors Π and model parameters P, α̂ of the mixed membership

model. We first analyze the simpler case when exact moments are available in Section 8.3.1

and then extend the method to handle empirical moments computed from the network

observations in Section 8.3.2.

8.3.1 Learning Mixed Membership Models Under Exact Moments

We first describe the learning approach when exact moments are available. In Section 8.3.2,

we suitably modify the approach to handle perturbations, which are introduced when only

empirical moments are available.
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We first describe a “simultaneous whitening” procedure similar to Section 7.2.1 to convert

the graph moment tensor Tα0 to a orthogonally decomposable tensor through a multi-linear

transformation of Tα0 . We then employ the power method to obtain the eigenvalues and

eigenvectors of the tensor. Finally, by reversing the multi-linear transform in the whitening

step we get the parameters of interest. This yields a guaranteed method for obtaining the

decomposition of graph moment tensor Tα0 under exact moments.

Reduction of the graph-moment tensor to symmetric orthogonal form (Whiten-

ing): Recall from Proposition 8.2 that the modified 3-star count tensor Tα0 has the form

E[Tα0 |ΠA,ΠB,ΠC ] =
k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i.

In order to whiten the tensor, we make use of the modified adjacency matrix Gα0 , defined in

(8.6). Consider the singular value decomposition (SVD) of the modified adjacency matrix

Gα0 under exact moments:

|X|−1/2E[(Gα0
X,A)>|Π] = UADAV

>
A .

Define WA := UAD
−1
A , and similarly define WB and WC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

RA,B :=
1

|X|W
>
BE[(Gα0

X,B)>|Π] · E[(Gα0
X,A)|Π]WA, W̃B := WBRA,B, (8.11)

and similarly define W̃C . We establish that a multilinear transformation (as defined in (A.1))

of the graph-moment tensor Tα0 using matrices WA, W̃B, and W̃C results in a orthogonally

decomposable tensor.
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Lemma 8.3 (Reducing to Orthogonally Decomposable Tensor). Assume that the matrices

FA, FB, FC and ΠX have rank k, where k is the number of communities. We have an or-

thogonal symmetric tensor form for the modified 3-star count tensor Tα0 in (8.7) under a

multilinear transformation using matrices WA, W̃B, and W̃C:

E[Tα0(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ] =
∑
i∈[k]

λi(Φ)⊗3
i ∈ Rk×k×k, (8.12)

where λi := α̂−0.5
i and Φ ∈ Rk×k is an orthogonal matrix, given by

Φ := W>
A FA Diag(α̂0.5). (8.13)

Remark: Note that the matrix WA orthogonalizes FA under exact moments, and is

referred to as a whitening matrix. Similarly, the matrices W̃B = RA,BWB and W̃C = RA,CWC

consist of whitening matrices WB and WC , and in addition, the matrices RA,B and RA,C serve

to symmetrize the tensor.

Proof: Recall that the modified adjacency matrix Gα0 satisfies

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX .

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
1>

)
.

From the definition of ΨX above, we see that it has rank k when ΠX has rank k. Using the

Sylvester’s rank inequality, we have that the rank of FA Diag(α̂1/2)ΨX is at least 2k−k = k.

This implies that the whitening matrix WA also has rank k. Notice that

|X|−1W>
AE[(Gα0

X,A)>|Π] · E[(Gα0
X,A)|Π]WA = D−1

A U>AUAD
2
AU
>
AUAD

−1
A = I ∈ Rk×k,
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or in other words, |X|−1MM> = I, where M := W>
A FA Diag(α̂1/2)ΨX . We now have that

I = |X|−1EΠX

[
MM>] = |X|−1W>

A FA Diag(α̂1/2)E[ΨXΨ>X ] Diag(α̂1/2)F>AWA

= W>
A FA Diag(α̂)F>AWA,

since |X|−1EΠX [ΨXΨ>X ] = I from (8.10), and we use the fact that the sets A and X do

not overlap. Thus, WA whitens FA Diag(α̂1/2) under exact moments (up on taking expecta-

tion over ΠX) and the columns of W>
A FA Diag(α̂1/2) are orthonormal. Now note from the

definition of W̃B that

W̃>
BE[(Gα0

X,B)>|Π] = W>
AE[(Gα0

X,A)>|Π],

since WB satisfies

|X|−1W>
BE[(Gα0

X,B)>|Π] · E[(Gα0
X,B)|Π]WB = I,

and similar result holds for W̃C . The final result in (8.12) follows by taking expectation of

tensor Tα0 over ΠX . �

Overview of the learning approach under exact moments: With the above re-

sult in place, we are now ready to describe the high-level approach for learning the mixed

membership model under exact moments. First, whiten the graph-moment tensor Tα0 as

described above and then apply the tensor power method described in the previous Chapter.

This enables us to obtain the vector of eigenvalues λ := α̂−1/2 and the matrix of eigenvectors

Φ = W>
A FA Diag(α̂0.5) using tensor power iterations. We can then recover the community

membership vectors of set Ac (i.e., nodes not in set A) under exact moments as

ΠAc ← Diag(λ)−1Φ>W>
AE[G>Ac,A|Π],
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since E[G>Ac,A|Π] = FAΠAc (since A and Ac do not overlap) and Diag(λ)−1Φ>W>
A =

Diag(α̂)F>AWAW
>
A under exact moments. In order to recover the community membership

vectors of set A, viz., ΠA, we can reverse the direction of the 3-star counts, i.e., consider the

3-stars from set A to X,B,C and obtain ΠA in a similar manner. Once all the community

membership vectors Π are obtained, we can obtain the community connectivity matrix P ,

using the relationship: Π>PΠ = E[G|Π] and noting that we assume Π to be of rank k.

Thus, we are able to learn the community membership vectors Π and the model parameters

α̂ and P of the mixed membership model using edge counts and the 3-star count tensor.

We now describe modifications to this approach to handle empirical moments.

8.3.2 Learning Algorithm Under Empirical Moments

In the previous section, we explored a tensor-based approach for learning mixed membership

model under exact moments. However, in practice, we only have samples (i.e. the observed

network), and the method needs to be robust to perturbations when empirical moments are

employed.

Algorithm 8.1. {Π̂, P̂ , α̂} ← LearnMixedMembership(G, k, α0)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector. Let Ac := [n] \ A denote the set of nodes not in A.

Output: Estimates of the community membership vectors Π ∈ Rn×k, community connec-
tivity matrix P ∈ [0, 1]k×k, and the normalized Dirichlet parameter vector α̂.
Partition the vertex set [n] into 5 parts X, Y , A, B, C.
Compute moments Gα0

X,A, Gα0
X,B, Gα0

X,C , Tα0

Y→{A,B,C} using (8.6) and (8.7).

{Π̂Ac , α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G).

Interchange roles of Y and A to obtain Π̂Y c .

Define Q̂ such that its i-th row is Q̂i := (α0 + 1) Π̂i

|Π̂i|1
− α0

n
1>. {We will establish that

Q̂ ≈ (Π†)>.}
Estimate P̂ ← Q̂GQ̂>. {Recall that E[G] = Π>PΠ in our model.}
Return Π̂, P̂ , α̂
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Pre-processing steps

Algorithm 8.2. {Π̂Ac , α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C},

G)

Input: Require modified adjacency submatrices Gα0
X,A, Gα0

X,B, Gα0
X,C , 3-star count tensor

Tα0

Y→{A,B,C}, adjacency matrix G
Output: Estimates of ΠAc and α̂.

Compute rank-k SVD: (|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A and compute whitening matrices

ŴA := UAD
−1
A . Similarly, compute ŴB, ŴC and R̂AB, R̂AC using (8.14).

Compute whitened and symmetrized tensor T ← Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC).

{λ̂, Φ̂} ← Algorithm 7.3 TensorEigen(T, {Ŵ>
AG

>
i,A}i∈B, 10 log n). {Φ̂ is a k×k matrix with

each columns being an estimated eigenvector and λ̂ is the vector of estimated eigenvalues.
Ŵ>
AG

>
i,A’s are initial vectors}

Π̂Ac ← Thres(Diag(λ̂)−1Φ̂>Ŵ>
AG

>
Ac,A , τ) and α̂i ← λ̂−2

i , for i ∈ [k].

Return Π̂Ac and α̂.

Partitioning: In the previous section, we partitioned the nodes into four sets A,B,C,X

for learning under exact moments. However, we require more partitions under empirical

moments to avoid statistical dependency issues and obtain stronger reconstruction guaran-

tees. We now divide the network into five non-overlapping sets A,B,C,X, Y . The set X is

employed to compute whitening matrices ŴA, ŴB and ŴC , described in detail subsequently,

the set Y is employed to compute the 3-star count tensor Tα0 and sets A,B,C contain the

leaves of the 3-stars under consideration. The roles of the sets can be interchanged to obtain

the community membership vectors of all the sets.

Whitening: The whitening procedure is along the same lines as described in the previous

section, except that now empirical moments are used. Specifically, consider the k-rank

singular value decomposition (SVD) of the modified adjacency matrix Gα0 defined in (8.6),

(|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A .
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Define ŴA := UAD
−1
A , and similarly define ŴB and ŴC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

R̂A,B :=
1

|X|Ŵ
>
B (Gα0

X,B)>k−svd · (Gα0
X,A)k−svdŴA, (8.14)

and similarly define R̂AC . The whitened and symmetrized graph-moment tensor is now

computed as

Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC),

where Tα0 is given by (8.7) and the multi-linear transformation of a tensor is defined in

(A.1).

Efficient Initialization: For a mixed membership model in the sparse regime, recall that

the community membership vectors Π are sparse (with high probability). Under this regime

of the model, we note that the whitened neighborhood vectors contain good initializers for the

power iterations. Specifically, in Algorithm 7.1, we initialize with the whitened neighborhood

vectors Ŵ>
AG

>
i,A, for i /∈ A. The intuition behind this is as follows: for a suitable choice of

parameters (such as the scaling of network size n with respect to the number of communities

k), we expect neighborhood vectors G>i,A to concentrate around their mean values, viz., ,

FAπi. Since πi is sparse (w.h.p) for the model regime under consideration, this implies that

there exist vectors Ŵ>
A FAπi, for i ∈ Ac, which concentrate (w.h.p) on only along a few

eigen-directions of the whitened tensor, and hence, serve as an effective initializer.

Reconstruction after tensor power method

Recall that previously in Section 8.3.1, when exact moments are available, estimating the

community membership vectors Π is straightforward, once we recover all the stable tensor

eigen-pairs. However, in case of empirical moments, we can obtain better guarantees with the

following modification: the estimated community membership vectors Π are further subject
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to thresholding so that the weak values are set to zero. Since we are limiting ourselves

to the regime of the mixed membership model, where the community vectors Π are sparse

(w.h.p), this modification strengthens our reconstruction guarantees. This thresholding step

is incorporated in Algorithm 8.1.

Moreover, recall that under exact moments, estimating the community connectivity

matrix P is straightforward, once we recover the community membership vectors since

P ← (Π>)†E[G|Π]Π†. However, when empirical moments are available, we are able to estab-

lish better reconstruction guarantees through a different method, outlined in Algorithm 8.1.

We define Q̂ such that its i-th row is

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
1>,

based on estimates Π̂, and the matrix P̂ is obtained as P̂ ← Q̂GQ̂>. We subsequently

establish that Q̂Π̂> ≈ I.

Improved support recovery estimates in homophilic models: We describe the

post-processing method in Algorithm 8.3, which gives improved estimates by averaging.

Specifically, consider nodes in set C and edges going from C to nodes in B. First, consider

the special case of the stochastic block model: for each node c ∈ C, compute the number of

neighbors in B belonging to each community (as given by the estimate Π̂ from Algorithm 8.1),

and declare the community with the maximum number of such neighbors as the community

of node c. Intuitively, this provides a better estimate for ΠC since we average over the edges

in B. This method has been used before in the context of spectral clustering [125]. The

same idea can be extended to the general mixed membership models: declare communities

to be significant if they exceed a certain threshold, as evaluated by the average number of

edges to each community. The details are provided in Algorithm 8.3. In the next section, we

establish that in certain regime of parameters, this procedure can lead to zero-error support
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recovery of significant community memberships of the nodes and also rule out communities

where a node does not have a strong presence.

Algorithm 8.3. {Ŝ} ← SupportRecoveryHomophilicModels(G, k, α0, ξ, Π̂)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where α
is the Dirichlet parameter vector, ξ is the threshold for support recovery, corresponding to
significant community memberships of an individual. Get estimate Π̂ from Algorithm 8.1.

Output: Ŝ ∈ {0, 1}n×k is the estimated support for significant community memberships
(see Theorem 8.6 for guarantees).
Consider partitions A,B,C,X, Y as in Algorithm 8.1.
Define Q̂ on lines of definition in Algorithm 8.1, using estimates Π̂. Let the i-th row for

set B be Q̂i
B := (α0 + 1)

Π̂iB
|Π̂iB |1

− α0

n
1>. Similarly define Q̂i

C .

Estimate F̂C ← GC,BQ̂
>
B, P̂ ← Q̂CF̂C .

Let H be the average of diagonals of P̂ , L be the average of off-diagonals of P̂
for x ∈ C, i ∈ [k] do
Ŝ(i, x)← 1 if F̂C(x, i) ≥ L+ (H − L) · 3ξ

4
and zero otherwise.{Identify large entries}

end for
Permute the roles of the sets A,B,C,X, Y to get results for remaining nodes.

Computational complexity: We note that the computational complexity of the method

is O(n2k). This is because the time for computing whitening matrices is dominated by SVD

of the top k singular vectors of n × n matrix, which takes O(n2k) time. We then compute

the whitened tensor T which requires time O(n2k + k3n) = O(n2k), since for each i ∈ Y ,

we multiply Gi,A, Gi,B, Gi,C with the corresponding whitening matrices, and this step takes

O(nk) time. We then average this k × k × k tensor over different nodes i ∈ Y to the result,

which takes O(k3) time in each step.

For the tensor power method, the time required for a single iteration is O(k3). We need

at most log n iterations per initial vector, and we need to consider kγ0 initial vectors (recall

that γ0 is a constant close to 1). Hence the total running time of tensor power method is

O(k4+γ) which is dominated by O(n2k).

In the process of estimating Π and P , the dominant operation is multiplying k×n matrix

by n × n matrix, which takes O(n2k) time. For support recovery, the dominant operation
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is computing the “average degree”, which again takes O(n2k) time. Thus, we have that the

overall computational time is O(n2k).

Note that the above bound on complexity of our method nearly matches the bound for

spectral clustering method [125], since computing the k-rank SVD requires O(n2k) time. An-

other method for learning stochastic block models is based on convex optimization involving

semi-definite programming (SDP) [166], and it provides the best scaling bounds (for both the

network size n and the separation p−q for edge connectivity) known so far. The specific con-

vex problem can be solved via the method of augmented Lagrange multipliers [114], where

each step consists of an SVD operation and q-linear convergence is established by [114].

This implies that the method has complexity O(n3), since it involves taking SVD of a gen-

eral n×n matrix, rather than a k-rank SVD. Thus, our method has significant advantage in

terms of computational complexity, when the number of communities is much smaller than

the network size (k � n).

8.4 Sample Analysis for Proposed Learning Algorithm

8.4.1 Sufficient Conditions and Recovery Guarantees

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively. We

say that an event holds with high probability, if it occurs with probability 1− n−c for some

constant c > 0. Recall that Õ and Ω̃ hides polylog factors and polynomials of (1 + α0).

Theorem 8.4 (Guarantees on Estimating P , Π). When p > q > poly log n, p−q√
p

= Ω̃( k√
n
),

with high probability

επ,`1 := max
i
‖Π̂i − Πi‖1 = Õ

( √
np

(p− q)

)
εP := max

i,j∈[n]
|P̂i,j − Pi,j| = Õ

(
k
√
p√
n

)
.
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The proofs are given in next section and a proof outline is provided in Section 8.4.2.

The main ingredient in establishing the above result is the tensor concentration bound

and additionally, recovery guarantees under the tensor power method in Procedure 7.1. We

now provide these results below.

Recall that FA := Π>AP
> and Φ = W>

A FA Diag(α̂1/2) denotes the set of tensor eigenvectors

under exact moments in (8.13), and Φ̂ is the set of estimated eigenvectors under empirical

moments, obtained using Algorithm 8.2. We establish the following guarantees.

Lemma 8.5 (Perturbation bound for estimated eigen-pairs). The recovered eigenvector-

eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method satisfies with high probability, for a

permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8k−1/2εT , max

i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (8.15)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)− E[Tα0

Y→{A,B,C}(WA, W̃B, W̃C)|ΠA∪B∪C ]
∥∥∥

= Õ

(
k3/2√p

(p− q)√n

)
. (8.16)

Notice that the power on k is 3/2 here, the extra
√
k factor is due to all eigenvalues of

this tensor are of order
√
k.

Zero-error guarantees for support recovery

Recall that we proposed Procedure 8.3 as a post-processing step to provide improved support

recovery estimates. We now provide guarantees for this method.

We now specify the threshold ξ for support recovery in Algorithm 8.3.
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Theorem 8.6 (Support Recovery). The support recovery method in Algorithm 8.3 has the

following guarantees on the estimated support set Ŝ when ξ = Ω̃(
√
pk

(p−q)
√
n
): with high proba-

bility,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (8.17)

where Π is the true community membership matrix.

Thus, the above result guarantees that the Algorithm 8.3 correctly recovers all the “large”

entries of Π and also correctly rules out all the “small” entries in Π. In other words, we

can correctly infer all the significant memberships of each node and also rule out the set of

communities where a node does not have a strong presence.

The only shortcoming of the above result is that there is a gap between the “large” and

“small” values, and for an intermediate set of values (in [ξ/2, ξ]), we cannot guarantee correct

inferences about the community memberships. Note this gap depends on εP , the error in

estimating the P matrix. This is intuitive, since as the error εP decreases, we can infer the

community memberships over a large range of values.

For the special case of stochastic block models (i.e. limα0 → 0), we can improve the

above result and give a zero error guarantee at all nodes (w.h.p). Note that we no longer

require a threshold ξ in this case, and only infer one community for each node.

8.4.2 Proof Outline

We now summarize the main techniques involved in proving Theorems 8.4 and 8.6. The

details are in Section 8.5. The main ingredient is the concentration of the adjacency matrix:

since the edges are drawn independently conditioned on the community memberships, we

establish that the adjacency matrix concentrates around its mean under the stated assump-
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tions. See Section 8.5.1 for details. With this in hand, we can then establish concentration

of various quantities used by our learning algorithm.

Step 1: Whitening matrices. We first establish concentration bounds on the whitening

matrices ŴA, ŴB, ŴC computed using empirical moments, described in Section 8.3.2. With

this in hand, we can approximately recover the span of matrix FA since Ŵ>
A F Diag(α̂i)

1/2 is

a rotation matrix. The main technique employed is the Matrix Bernstein’s inequality [149,

thm. 1.4]. See Appendix B for details.

Step 2: Tensor concentration bounds Recall that we use the whitening matrices to

obtain a symmetric orthogonal tensor. We establish that the whitened and symmetrized

tensor concentrates around its mean. This is done in several stages and we carefully control

the tensor perturbation bounds. See Section 8.5.1 for details.

Step 3: Tensor power method analysis. We utilize the algorithm in Section 7.7. Here

we need to establish that there exist good initializers for the power method among (whitened)

neighborhood vectors, see Section 8.5.2 for details.

Step 4: Thresholding of estimated community vectors In Step 3, we provide guar-

antees for recovery of each eigenvector in `2 norm. Direct application of this result only

allows us to obtain `2 norm bounds for row-wise recovery of the community matrix Π. In

order to strengthen the result to an `1 norm bound, we threshold the estimated Π vectors.

Here, we exploit the sparsity in Dirichlet draws and carefully control the contribution of

weak entries in the vector. Finally, we establish perturbation bounds on P through rather

straightforward concentration bound arguments. See Section 8.5.3 for details.

Step 5: Support recovery guarantees. It is convenient to consider the case of in

stochastic block model here in the canonical setting of Section 8.4.1. Recall that Proce-
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dure 8.3 readjusts the community membership estimates based on degree averaging. For

each vertex, if we count the average degree towards these “approximate communities”, for

the correct community the result is concentrated around value p and for the wrong com-

munity the result is around value q. Therefore, we can correctly identify the community

memberships of all the nodes, when p − q is sufficiently large. The argument can be easily

extended to general mixed membership models. See Section 8.5.3 for details.

8.5 Proof of the Main Theorems

In this section we prove the main theorems. The order of the proof follows the order of

the algorithm: we will first show concentration bounds for the whitening matrices and the

tensor; then we give the guarantee for tensor power method (which mainly involves showing

the initializers are good); finally we prove the reconstruction guarantees.

The proof is simplified due to the assumptions (all communities are of the same size, P

has the special structure), but is not oversimplified and can still be easily extended to the

general case.

Throughout the section we heavily use the fact that the columns of Π are chosen according

to Dirichlet distribution, in particular the moments of the distribution is stated as follows

Proposition 8.7 (Moments under Dirichlet distribution). Suppose π ∼ Dir(α), the mo-

ments of π satisfies the following formulas:

E[πi] =
αi
α0

E[π2
i ] =

αi(αi + 1)

α0(α0 + 1)

E[πiπj] =
αiαj

α0(α0 + 1)
, i 6= j.
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More generally, if a(t) =
∏t−1

i=0(a+ i), then we have

E[
k∏
i=1

π
(ai)
i ] =

∏k
i=1 α

(ai)
i

α
(
∑k
i=1 ai)

0

.

8.5.1 Concentration Bounds

Let’s first look at the concentration bounds for the matrices and tensors used in the algorithm.

Bounding Π and F

Lemma 8.8 (Bounds for Π and F ). For πi
iid∼Dir(α) with high probability, we have

σmin(ΠA) ≥
√

|A|
k(α0 + 1)

− Õ(n1/4),

‖ΠA‖ ≤
√
|A|/k + Õ(n1/4),

κ(ΠA) ≤ 2
√

(α0 + 1).

Moreover, with high probability

|FA|1 ≤ 2p|A| (8.18)

Proof: Consider ΠAΠ>A =
∑

i∈A πiπ
>
i .

1

|A|E[Π>AΠA] =Eπ∼Dir(α)[ππ
>]

=
α0

α0 + 1
α̂α̂> +

1

α0 + 1
Diag(α̂),

from Proposition 8.7. The first term is positive semi-definite so the eigenvalues of the sum

are at least the eigenvalues of the second component. Smallest eigenvalue of second com-

ponent gives lower bound on σmin(E[ΠAΠ>A]). The spectral norm of the first component is
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bounded by α0

α0+1
‖α̂‖ ≤ α0

α0+1
α̂max, the spectral norm of second component is 1

α0+1
αmax. Thus∥∥E[ΠAΠ>A]

∥∥ ≤ |A| · α̂max.

Now applying Matrix Bernstein’s inequality to 1
|A|
∑

i

(
πiπ

>
i − E[ππ>]

)
. We have that

the variance is O(1/|A|). Thus with probability 1− δ,

∥∥∥∥ 1

|A|
(
ΠAΠ>A − E[ΠAΠ>A]

)∥∥∥∥ = O

(√
log(k/δ)

|A|

)
.

To show bound on |FA|1, note that each column of FA satisfies E[(FA)i] = (α̂T (P )i)1
>,

and thus |E[FA]|1 ≤ |A|maxi(Pα̂)i ≤ p|A|. Using Bernstein’s inequality, for each column of

FA, we have, with probability 1− δ,

∣∣ |(FA)i|1 − |A|α̂>(P )i
∣∣ = O

(√
p|A| log

|A|
δ

)
,

by applying Bernstein’s inequality, since |α̂>(P )i| ≤ p. �

Bounding the Modified Adjacency Matrix The amount of error in the whitening step

largely depends on the spectral norm of the difference between the true modified adjacency

matrix Gα0
X,A and its expectation.

Lemma 8.9 (Concentration of adjacency submatrices). With high probability

‖GX,A − E[GX,A|Π]‖ = Õ (
√
pn) . (8.19)

‖µX→A − E[µX→A|Π]‖ = Õ(
√
p/n). (8.20)

As a corollary, the modified adjacency matrix has bound

εG := ‖Gα0
X,A − E[(Gα0

X,A)>|Π]‖ = Õ(
√
pn) (8.21)
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Proof: Recall E[GX,A|Π] = FAΠX and GA,X = Ber(FAΠX) where Ber(·) denotes the

Bernoulli random matrix with independent entries. Let

Zi := (G>i,A − FAπi)e>i .

We have G>X,A − FAΠX =
∑

i∈X Zi. We apply matrix Bernstein’s inequality.

We compute the variances
∑

i E[ZiZ
>
i |Π] and

∑
i E[Z>i Zi|Π]. We have that

∑
i E[ZiZ

>
i |Π]

only the diagonal terms are non-zero due to independence of Bernoulli variables, and

E[ZiZ
>
i |Π] ≤ Diag(FAπi) (8.22)

entry-wise. Thus,

‖
∑
i∈X

E[ZiZ
>
i |Π]‖ ≤ max

a∈[k]

∑
i∈X,b∈[k]

FA(a, b)πi(b)

= max
a∈[k]

∑
i∈X,b∈[k]

FA(a, b)ΠX(b, i)

≤ max
c∈[k]

∑
i∈X,b∈[k]

P (c, b)ΠX(b, d)

= ‖PΠX‖∞ = |FX |1. (8.23)

Similarly
∑

i∈X E[Z>i Zi] =
∑

i∈X Diag(E[‖G>i,A − FAπi‖2]) ≤ |FX |1. From Lemma 8.8, we

have |FX |1 = Õ(p|X|) .

We now bound ‖Zi‖. First note that the entries in Gi,A are independent and we can use

the vector Bernstein’s inequality to bound ‖Gi,A−FAπi‖. We have maxj∈A |Gi,j−(FAπi)j| ≤

2 and
∑

j E[Gi,j − (FAπi)j]
2 ≤∑j(FAπi)j ≤ |FA|1. Thus with high probability

‖Gi,A − FAπi‖ = Õ(
√
|FA|1).
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Thus, we have the bound that ‖∑i Zi‖ = Õ(max(
√
|FA|1,

√
|FX |1)) = Õ(

√
pn). The con-

centration of the mean term follows from this result.

The statement for µ is just a straight forward application of Bernstein’s inequality.

Finally, for the modified adjacency matrix Gα0
X,A, we have

εG ≤
√
α0 + 1‖GX,A − E[GX,A|Π]‖+ (

√
α0 + 1− 1)

√
|X|‖µX→A − E[µX→A|Π]‖.

substituting in the bounds for adjacency matrix and mean vector gives the result.

�

Another factor in the whitening error is the smallest singular value of the expectation of

Gα0
X,A, which we estimate below.

Define

ψi := Diag(α̂)−1/2(
√
α0 + 1πi − (

√
α0 + 1− 1)α̂). (8.24)

Let ΨX be the matrix with columns ψi, for i ∈ X. We have

E[(Gα0
X,A)>|Π] = FA Diag(α̂)1/2ΨX ,

from definition of E[(Gα0
X,A)>|Π].

Lemma 8.10 (Smallest Singular Value). With hith probability,

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ Õ(
√
k/n)

σmin

(
E[(Gα0

X,A)>|Π]
)

= Ω̃((p− q)n/k).

Proof: Note that ψi is a random vector with norm bounded by O(
√

(α0 + 1)/α̂min) from

Lemma 8.8 and E[ψiψ
>
i ] = I. We know bound ε1 using Matrix Bernstein Inequality. Each

matrix ψiψ
>
i /|X| has spectral norm at most O((α0+1)/α̂min|X|). The variance σ2 is bounded
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by

∥∥∥∥∥ 1

|X|2E[
∑
i∈X

‖ψi‖2 ψiψ
>
i ]

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

|X|2 max ‖ψi‖2 E[
∑
i∈X

ψiψ
>
i ]

∥∥∥∥∥ ≤ O((α0 + 1)/α̂min|X|).

Since O((α0 + 1)/αmin|X|) < 1, the variance dominates in Matrix Bernstein’s inequality.

Let B := |X|−1ΨXΨ>X . We have with probability 1− δ,

σmin(E[(Gα0
X,A)>|Π]) =

√
|X|σmin(FA Diag(α̂)1/2BDiag(α̂)1/2F>A ),

= Ω(
√
α̂min|X|(1− ε1) · σmin(FA)).

From Lemma 8.8, with probability 1− δ,

σmin(FA) ≥

√ |A|α̂min

α0 + 1
−O((|A| log k/δ)1/4)

 · σmin(P ).

Similarly other results follow. �

Whitening Error Consider rank-k SVD of |X|−1/2(Gα0
X,A)>k−svd = ÛAD̂AV̂

>
A , and the

whitening matrix is given by ŴA := ÛAD̂
−1
A and thus |X|−1Ŵ>

A (Gα0
X,A)>(Gα0

X,A)ŴA = I.

Now consider the singular value decomposition of

|X|−1Ŵ>
AE[(Gα0

X,A)>|Π] · E[(Gα0
X,A)|Π]ŴA = ΦD̃Φ>.

ŴA does not whiten the exact moments in general. On the other hand, consider

WA := ŴAΦAD̃
−1/2
A Φ>A.
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Observe that WA whitens |X|−1/2E[(Gα0
X,A)|Π]

|X|−1W>
AE[(Gα0

X,A)>|Π]E[(Gα0
X,A)|Π]WA = (ΦAD̃

−1/2
A Φ>A)>ΦAD̃AΦ>AΦAD̃

−1/2
A Φ>A = I

Now the ranges of WA and ŴA may differ and we control the perturbations below.

Also note that R̂A,B, R̂A,C are given by

R̂AB := |X|−1Ŵ>
B (Gα0

X,B)>k−svd(G
α0
X,A)k−svdŴA. (8.25)

RAB := |X|−1W>
BE[(Gα0

X,B)>|Π] · E[Gα0
X,A|Π] ·WA. (8.26)

Recall εG is given by (8.21), and σmin

(
E[Gα0

X,A|Π]
)

is given in Theorem 8.10.

Remark 1: Here it is really important to define WA using ŴA, as in general there are

infinitely many matrices that whitens E[(Gα0
X,A|Π], and these matrices are not close in spectral

norm.

Remark 2: It is tempting to define the whitening error as
∥∥∥ŴA −WA

∥∥∥, however for tight

results in the more general settings, it is better to define the whitening error as the following

Lemma.

Remark 3: The whitening matrix perturbation is very central in the perturbation bounds,

in our algorithm works when Õ(εWA
) < 1.

Lemma 8.11 (Whitening matrix perturbations). With high probability,

εWA
:= ‖Diag(α̂)1/2F>A (ŴA −WA)‖ = O

(
(1− ε1)−1/2εG

σmin

(
E[Gα0

X,A|Π]
)) (8.27)

εW̃B
:= ‖Diag(α̂)1/2F>B (ŴBR̂AB −WBRAB)‖ = O

(
(1− ε1)−1/2εG

σmin

(
E[Gα0

X,B|Π]
)) (8.28)
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Thus,

εWA
= εW̃B

= Õ

( √
pk

(p− q)√n

)
(8.29)

Proof: Using the fact that WA = ŴAΦAD̃
−1/2
A Φ>A or ŴA = WAΦAD̃

1/2
A Φ>A we have that

‖Diag(α̂)1/2F>A (ŴA −WA)‖ ≤ ‖Diag(α̂)1/2F>AWA(I − ΦAD̃
1/2
A Φ>A)‖

= ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )(I + D̃

1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA‖ · ‖I − D̃A‖

using the fact that D̃A is a diagonal matrix.

Now note that WA whitens |X|−1/2E[Gα0
X,A|Π] = |X|−1/2FA Diag(α1/2)ΨX , where ΨX is

defined in (8.24). Further it is shown in Lemma 8.10 that ΨX satisfies with probability 1− δ

that

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ O

(√
(α0 + 1)

α̂min|X|
· log

k

δ

)

Since ε1 � 1 when X,A are of size Ω(n), we have that |X|−1/2ΨX has singular values around

1. Since WA whitens |X|−1/2E[Gα0
X,A|Π], we have

|X|−1W>
A FA Diag(α1/2)ΨXΨ>X Diag(α1/2)F>AWA = I.

Thus, with probability 1− δ,

‖Diag(α̂)1/2F>AWA‖ = O((1− ε1)−1/2).
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Let E[(Gα0
X,A)|Π] = (Gα0

X,A)k−svd + ∆. We have

‖I − D̃A‖ = ‖I − ΦAD̃AΦ>A‖

= ‖I − |X|−1Ŵ>
AE[(Gα0

X,A)>|Π] · E[(Gα0
X,A)|Π]ŴA‖

= O
(
|X|−1‖Ŵ>

A

(
∆>(Gα0

X,A)k−svd + ∆(Gα0
X,A)>k−svd

)
ŴA‖

)
= O

(
|X|−1/2‖Ŵ>

A ∆>V̂A + V̂ >A ∆ŴA‖
)
,

= O
(
|X|−1/2‖ŴA‖‖∆‖

)
= O

(
|X|−1/2‖WA‖εG

)
,

since ‖∆‖ ≤ εG + σk+1(Gα0
X,A) ≤ 2εG, using Weyl’s theorem for singular value perturbation

and the fact that εG · ‖WA‖ � 1 and ‖WA‖ = |X|1/2/σmin

(
E[Gα0

X,A|Π]
)
.

We now consider perturbation of WBRAB. By definition, we have that

E[Gα0
X,B|Π] ·WBRAB = E[Gα0

X,A|Π] ·WA.

and

‖WBRAB‖ = |X|1/2σmin(E[Gα0
X,B|Π])−1.

Along the lines of previous derivation for εWA
, let

|X|−1(ŴBR̂AB)> · E[(Gα0
X,B)>|Π] · E[Gα0

X,B|Π]ŴBR̂AB = ΦBD̃BΦ>B.

Again using the fact that |X|−1ΨXΨ>X ≈ I, we have

‖Diag(α̂)1/2F>BWBRAB‖ ≈ ‖Diag(α̂)1/2F>AWA‖,
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and the rest of the proof follows. �

Expected Error in a Single Whitened Vector Before going to the concentration bound

of the tensor, let us first take a look at the expected error in a whitened tensor Ŵ>Gi,A.

This is used in both the tensor concentration bounds and for showing the existence of good

initilizers for tensor power method.

Lemma 8.12 (Concentration of a random whitened vector). Conditioned on Π matrix, for

all i 6∈ X,

√
E[
∥∥∥Ŵ T

AG
T
i,A −W T

AFAπi

∥∥∥2

|Π] ≤ O(εWA
α̂
−1/2
min ) = Õ(

√
pk3/2/(p− q)√n).

In particular, with probability at least 1/4,

∥∥∥Ŵ T
AG

T
i,A −W T

AFAπi

∥∥∥2

≤ O(εWA
α̂
−1/2
min ) = Õ(

√
pk3/2/(p− q)√n).

Proof. We have

∥∥∥Ŵ T
AG

T
i,A −W T

AFAπi

∥∥∥ ≤ ∥∥∥(ŴA −WA)TFAπi

∥∥∥+
∥∥∥Ŵ T

A (GT
i,A − Ŵ T

AFAπ)
∥∥∥ .

The first term is bounded by εWA
α̂
−1/2
min by Lemma 8.11.

Now we bound the second term. Note that G>i,A is independent of Ŵ>
A , since they are

related to disjoint subset of edges. The whitened neighborhood vector can be viewed as a

sum of vectors:

Ŵ>
AG

>
i,A =

∑
j∈A

Gi,j(Ŵ
>
A )j =

∑
j∈A

Gi,j(D̂AÛ
>
A )j = D̂A

∑
j∈A

Gi,j(Û
>
A )j.
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Conditioned on πi and FA, Gi,j are Bernoulli variables with probability (FAπi)j. The goal

is to compute the variance of the sum,
∑

j∈A(FAπi)j

∥∥∥(Û>A )j

∥∥∥2

, and then use Chebyshev’s

inequality.

By Wedin’s theorem, we know the span of columns of ÛA is O(εG/σmin(Gα0
X , A)) = O(εWA

)

close to the span of columns of FA. The span of columns of FA is the same as the span of

rows in ΠA. In particular, let ProjΠ be the projection matrix of the span of rows in ΠA, we

have ∥∥∥ÛAÛ>A − ProjΠ

∥∥∥ ≤ O(εWA
).

Using the spectral norm bound, we have the Frobenius norm

∥∥∥ÛAÛ>A − ProjΠ

∥∥∥
F
≤ O(εWA

√
k)

since they are rank k matrices. This implies that

∑
j∈A

(∥∥∥(ÛT
A )j

∥∥∥− ∥∥ProjjΠ∥∥)2

= O(ε2WA
k).

We also know

‖ProjjΠ‖ ≤
‖πj‖

σmin(ΠA)
= O

√(α0 + 1)

nα̂min

 ,

by the SVD of ΠA.

Now we can bound the variance of the vectors
∑

j∈AGi,j(Û
T
A )j, since the variance of Gi,j

is bounded by (FAπi)j (its probability), and the variance of the vectors is at most

∑
j∈A

(FAπi)j

∥∥∥(Û>A )j

∥∥∥2

≤ 2
∑
j∈A

(FAπi)j
∥∥ProjjΠ∥∥2

+ 2
∑
j∈A

(FAπi)j

(∥∥∥(ÛT
A )j

∥∥∥− ∥∥ProjjΠ∥∥)2

≤ 2
∑
j∈A

(FAπi)j max
j∈A

(∥∥ProjjΠ∥∥2
)

+ max
i,j

Pi,j
∑
j∈A

(∥∥∥(ÛT
A )j

∥∥∥− ∥∥ProjjΠ∥∥)2

≤ O

( |FA|1(α0 + 1)

nα̂min

)
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Chebyshev’s inequality implies that with probability at least 1/4 (or any other constant),

∥∥∥∥∥∑
j∈A

(Gi,j − FAπi)(ÛT
A )j

∥∥∥∥∥
2

≤ O

( |FA|1(α0 + 1)

nα̂min

)
.

And thus, we have

Ŵ T
A (Gi,A − FAπi) ≤

√
|FA|1(α0 + 1)

nα̂min

·
∥∥∥Ŵ T

A

∥∥∥ ≤ O
(
εWA

α̂
−1/2
min

)
.

Combining the two terms, we have the result.

Concentration of the Tensor Finally we are ready to prove the tensor concentration

bound.

Theorem 8.13 (Perturbation of whitened tensor). With high probability,

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)− E[Tα0

Y→{A,B,C}(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ]
∥∥∥

= Õ

( √
pk3/2

(p− q)√n

)
. (8.30)

Proof: In tensor Tα0 in (8.7), the first term is

(α0 + 1)(α0 + 2)
∑
i∈Y

(
G>i,A ⊗G>i,B ⊗G>i,C

)
.

We claim that this term dominates in the perturbation analysis since the mean vector per-

turbation is of lower order. We now consider perturbation of the whitened tensor

Λ0 =
1

|Y |
∑
i∈Y

(
(Ŵ>

AG
>
i,A)⊗ (R̂>ABŴ

>
BG

>
i,B)⊗ (R̂>ACŴ

>
CG

>
i,C)
)
.

257



We show that this tensor is close to the corresponding term in the expectation in three

steps.

First we show it is close to

Λ1 =
1

|Y |
∑
i∈Y

(
(Ŵ>

A FAπi)⊗ (R̂>ABŴ
>
B FBπi)⊗ (R̂>ACŴ

>
C FCπi)

)
.

Then this vector is close to the expectation over ΠY .

Λ2 = Eπ∼Dir(α)

(
(Ŵ>

A FAπ)⊗ (R̂>ABŴ
>
B FBπ)⊗ (R̂>ACŴ

>
C FCπ)

)
.

Finally we replace the estimated whitening matrix ŴA with WA.

Λ3 = Eπ∼Dir(α)

(
(W>

A FAπ)⊗ (W̃>
B FBπ)⊗ (W̃>

C FCπ)
)
.

For Λ0−Λ1, we write Ŵ>
AG

>
i,A as the sum of two terms Ŵ>

A FAπi and Ŵ>
AG

>
i,A−Ŵ>

A FAπi

(and similarly for B and C), then expand Λ0 into eight terms. The first term will be equal

to Λ1. In the remaining terms, the dominant term in the perturbation bound is,

1

|Y |
∑
i∈Y

Ŵ>
A (G>i,A − FAπi)⊗ (R̂>ABŴ

>
B FBπi)⊗ (R̂>ACŴ

>
C FCπi).

We can view the tensor as a matrix (and by definition the spectral norm can only go

down), then apply matrix Bernstein bound. Both terms of the variance can be bounded

by |Y |E[
∥∥∥Ŵ>

A (G>i,A − FAπi
∥∥∥)2]

∥∥∥W̃>
B FB

∥∥∥2 ∥∥∥W̃>
C FC

∥∥∥2

= O(nε2
WA
k3), the norm of each vector

can also be bounded. By matrix Bernstein with high probability this term is bounded by

O(εWA
k3/2/

√
n) ≤ O(εWA

√
k) because k2 < n.

For Λ1 − Λ2, since ŴAFA Diag(α̂)1/2 has spectral norm almost 1, by Lemma 8.14 the

spectral norm of the perturbation is at most
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∥∥∥ŴAFA Diag(α̂)1/2
∥∥∥3

∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2πi)

⊗3

∥∥∥∥∥
≤ O(1/α̂min

√
n
√

log n/δ).

For the final term Λ2 − Λ3, the dominating term is

(ŴA −WA)FA Diag(α̂)1/2 ‖Λ3‖ ≤ εWA
‖Λ3‖

Putting all these together, the third term ‖Λ2 − Λ3‖ dominates and we get the result. �

Lemma 8.14. With high probability,

∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2π)⊗3

∥∥∥∥∥ ≤ O(· 1

α̂min
√
n

√
log n/δ)

= Õ(k/
√
n)

Proof. The spectral norm of this tensor cannot be larger than the spectral norm of a k× k2

matrix that we obtain be “collapsing” the last two dimensions (by definitions of norms). Let

φi = Diag(α̂)−1/2πi, the “collapsed” tensor is just the matrix φi(φi ⊗ φi)> (here we view

φi⊗φi as a vector in Rk2). We apply Matrix Bernstein on the matrices Zi = φi(φi⊗φi)>.

Clearly,
∥∥∑

i∈Y E[ZiZ
>
i ]
∥∥ ≤ |Y |max ‖φ‖4

∥∥E[φφ>]
∥∥ ≤ |Y |α̂−2

min because
∥∥E[φφ>]

∥∥ ≤ 2.

For the other variance term
∥∥∑

i∈Y E[Z>i Zi]
∥∥, we have

∥∥∥∥∥∑
i∈Y

E[Z>i Zi]

∥∥∥∥∥ ≤ |Y |α̂min ∥∥E[(φ⊗ φ)(φ⊗ φ)>]
∥∥

.
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It remains to bound the norm of E[(φ⊗ φ)(φ⊗ φ)>]. This is almost a fixed matrix for

constant α0, the details are lengthy because of the number of different sized entries, and are

omitted here.

8.5.2 Good Initializer for Tensor Power Method

The eigenvectors of the orthogonally decomposable tensor obtained in Lemma 8.3 are

columns of Φ.

Recall that a vector u is (γ,Q)-good with respect to Φi if |u>Φi| > Q, and |λiu>Φi| ≥

(1 + γ)|λju>Φj| for all λj ≤ λi. The following Lemma shows there exists very good initial

vectors in among Ŵ>
AGi,A for i ∈ B.

Lemma 8.15. With high probability, for any 10/9 > γ > 1 there are (γ, ˜Ω(1))-good initial-

izers with respect to all Φi’s within the set {Ŵ>
AGi,A : i ∈ B}.

Intuitively, this Lemma should be true because by Lemma 8.12, Ŵ>
AGi,A is close to

W>
A FAπi = (Diag(α̂)−1/2πi)

>Φ. This shows when this vector is expressed in the basis of Φ,

the coefficients are Diag(α̂)−1/2π. The vector π is chosen from Dirichlet distribution so we

expect π to have a single large entry, thus the vector should be a good initialzer.

We first prove the intuition that Dirichlet vectors should have a single large entry with

good probability. Without loss of generality we assume α̂1 ≤ α̂2 ≤ · · · ≤ α̂k (this is trivially

true in the special case, but the Lemma below applies to more general cases).

Lemma 8.16. Let v be the unit vector Diag(α̂)−1/2π/
∥∥Diag(α̂)−1/2π

∥∥ where π is chosen

according to Dir(α). For any 1 < γ ≤ 5/4, with probability Ω(α̂i/k
γ), the i-th entry of v is

at least α̂
−1/2
i /(α̂

−1/2
i +

√
(α0 + 1)k), the j-th entry of v is at most 1/γ of the i-th entry for

all j > i, and πi > 9/10(α0 + 1).

Proof. We are assuming αi < 1 throughout. This is the reasonable case where Dirichlet

distributions are sparse.
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When α0 < 1/10, we derive the bound directly from properties of Dirichlet distribution.

Let (X1, X2, ..., Xk) ∼ Dir(α), by properties of Dirichlet distribution, we know E[πi] = α̂i

and E[π2
i ] = α̂i

αi+1
α0+1

. Let pi = Pr[πi ≥ 9/10(α0 + 1)]. We have

E[π2
i ] = piE[π2

i |πi ≥
9

10(α0 + 1)
] + (1− pi)E[π2

i |πi <
9

10(α0 + 1)
]

≤ pi + (1− pi)
9

10(α0 + 1)
E[πi|πi <

9

10(α0 + 1)
]

≤ pi + (1− pi)
9

10(α0 + 1)
E[πi]

Here the second line is using the fact that when πi < t, π2
i ≤ tπi (let t = 9/10(α0 + 1)

and take expectation). Substitute E[πi] and E[π2
i ], we know pi ≥ α̂i/10(α0 + 1) = Ω(α̂i).

Also, when πi ≥ 9/10(α0 + 1) ≥ 9/11, all other πj’s are at most 2/11, so α̂
−1/2
i πi is at least

4.5 · α̂−1/2
j πj for j > i.

The only thing left in this case is to show α̂
−1/2
i πi/

√∑k
j=1 α̂

−1
j π

2
j is large.

Notice that for Dirichlet distributions, πi is independent of 1
1−πi (π1,π2, ...,πi−1,πi+1, ...,πk).

When we condition on πi ≥ 9/11, the expectation E[
∑

j 6=i α̂
−1
i π

2
j |πi ≥ 9/11] can only be

smaller than E[
∑

j 6=i α̂
−1
i π

2
j ] ≤ 2k/(α0 + 1) ≤ 2k. By Markov, with probability 1/4 the true

value is below 4 times the expectation, so Pr[
∑

j 6=i α̂
−1
i π

2
j ≤ 8k|πi ≥ 9/11] ≥ 1/4.

Now, with probability pi/4 we know πi ≥ 9/11, and
∑

j 6=i α̂
−1
i π

2
j ≤ 8k, which means

α̂
−1/2
i πi/

√√√√ k∑
j=1

α̂−1
j π

2
j ≥ α̂

−1/2
i /(α̂

−1/2
i +

√
k)

The second case is when α0 ≥ 1/10. In this case we need to several properties of Dirichlet

distribution, Gamma distribution and Gamma functions in Proposition 8.21.

Let Yi ∼ Γ(αi, 1). By the proposition it is clear that v is just the normalized version of

(..., α̂
−1/2
i Yi, ...).
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By property 5 in Proposition 8.21, if we pick t = log k, then each Yi is bigger than t

with probability at most 1/k. Since they are independent, the probability that there exists

some j 6= i such that Yj > t is at most (1 − 1/k)k ≤ e−1. Also, the expected value of∑
j 6=i α̂

−1/2
j Y 2

j ≤ 2kα0, the probability that it is larger than 20kα0 is at most 1/10. The

expected value of
∑

j 6=i Yj ≤ α0, the probability that it is larger than 10α0 is at most 1/10.

By union bound, with probability at least e−1 − 1/10− 1/10 > 0.1, for all j 6= i, Yj < log k,∑
j 6=i α̂

−1
j Y 2

j ≤ 20kα0, and
∑

j 6=i Yj ≤ 10α0.

However, when we pick t = γ log k, we know with probability Cαi/4tk
γ = Ω(α̂i/k

γ log k)

(here we know αi ≥ α̂i/10 because α0 > 1/10), Yi is at least γ log k.

Since Yi and all the other Y ’s are independent, with probability at least Ω(α̂i/k
γ log k),

we have Yi ≥ γ log k, Yj ≤ log k(j 6= i), and

α̂
−1/2
i Yi/

√√√√ k∑
j=1

α̂−1
i Y 2

j ≥ α̂
−1/2
i log k/

√
α̂−1
i log2 k + 10kα0 ≤ α̂

−1/2
i /(α̂

−1/2
i +

√
α0k).

Finally, πi ≥ Yi
Yi+

∑
j 6=i Yj

≥ log t/(log t+ 10α0) > 9/10(α0 + 1).

Remark: The probability can be improved when α̂max/α̂min is small. In particular for

the special case we are interested in, the probability of a good initializer is Õ(k−γ0). We will

use this bound.

Now we are ready to prove Lemma 8.15.

Proof of Lemma 8.15: By Lemma 8.16, the probability that πj gives a good vector for

index i (i ∈ k) is at least 1/kγ0 . When that happens the normalization of sj = W TFAπj is

a (γ0, ˜Ω(1))-good initializer.

Before normalization, by Lemma 8.16 we know πj(i) ≥ 9/10(α0 + 1), therefore every

good vector sj for index i had projection at least 9α̂
−1/2
i /10(α0 + 1) on Φi, and at most

s>j Φi/γ0 projection on all Φt(t > i).
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By Lemma 8.12, with constant probability, conditioned on ŴA,πj ,
∥∥∥Ŵ>

AG
>
j,A −W>

A FAπj

∥∥∥ ≤
O(εWA

√
k). Therefore with constant probability the inner product with Φi can change by at

most O(εWA

√
k), when that happens Ŵ>Gj,A is a (γ0−∆, Ω̃(1))-good intializer for arbitrary

small ∆.

Since the constant probability in Lemma 8.12 is conditioned on πj, we can multiply the

probability in Lemma 8.12 and Lemma 8.16 (we use the bound in the Remark following that

Lemma). Therefore, the probability that a vector is (γ0−∆, Ω̃(1))-good is at least Ω̃(k−γ0).

The size |B| is much larger than kγ0 log n (because n > k2), by union bound the set Ŵ>
AGi,A

has good initializer for all i with high probability. �

8.5.3 Reconstruction After Tensor Power Method

Reconstructing Π Let (M)i and (M)i denote the ith row and ith column in matrix M

respectively. Let Z ⊆ Ac denote any subset of nodes not in A, considered in Procedure

LearnPartition Community. Define

Π̃Z := Diag(λ)−1Φ̂>Ŵ>
AG

>
Z,A. (8.31)

Recall that the final estimate Π̂Z is obtained by thresholding Π̃Z element-wise with threshold

τ in Procedure 8.2. We first analyze perturbation of Π̃Z .

Lemma 8.17 (Reconstruction Guarantees for Π̃Z). With high probability,

επ := max
i∈Z
‖(Π̃Z)i − (ΠZ)i‖ = O

( √
pk

(p− q)√n‖ΠZ‖
)
.

Proof: We have (Π̃Z)i = λ−1
i ((Φ̂)i)

>Ŵ>
AG

>
Z,A.

Notice that Πi
Z = Diag(α̂

1/2
i )Φ>i W

>
A FAΠZ , we can write the difference between Π̃i

Z and

Πi
Z in four terms
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Π̃i
Z − Πi

Z =(Diag(λi)
−1 −Diag(α̂1

i /2))Φ>i W
>
A FAΠZ + Diag(λi)

−1(Φ̂i − Φi)
>W>

A FAΠZ

+ Diag(λi)
−1Φ̂>i (ŴA

> −W>
A )FAΠZ + Diag(λi)

−1Φ̂>i ŴA

>
(GA,Z − FAΠZ)

We will now use perturbation bounds for each of the terms to get the result.

The first term is bounded by

‖Diag(λi)
−1 −Diag(α̂

1/2
i )‖ · ‖Φ‖ · ‖W>

A FA‖ · ‖ΠZ‖ ≤ εT/k · 2 · 2
√
k · ‖ΠZ‖ ≤ O(εWA

) ‖ΠZ‖).

The second term is bounded by

‖Diag(λi)
−1‖ · ‖(Φ)i − Φ̂i‖ · ‖W>

A FA‖ · ‖ΠZ‖ ≤ 2/
√
k · εT/

√
k · 2
√
k · ‖ΠZ‖ ≤ O(εWA

‖ΠZ‖).

The third term is bounded by

‖Diag(λi)
−1‖ · ‖Φ̂i‖ · ‖(Ŵ>

A −W>
A )FA‖ · ‖ΠZ‖ ≤ 2/

√
k · 1 · εWA

√
k · ‖ΠZ‖ = O(εWA

‖ΠZ‖),

from Lemma 8.11 and finally, we bound the fourth term by

‖Diag(λi)
−1‖ · ‖Φ̂i‖ ·

∥∥∥Ŵ>
A

∥∥∥ · ‖GA,Z − FAΠZ‖ ≤ O
(

1/
√
k · 1/σmin(FA) · √pn

)
≤ O(εWA

/
√
k)

from Lemma 8.9 and Lemma 8.10.

The first three terms dominates the last term (by Lemma 8.8), therefore we get the

result. �
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We now show that if we threshold the entries of Π̃Z , the the resulting matrix Π̂Z has

rows close to those in ΠZ in `1 norm. Which is stronger than the `2 guarantee we had in the

previous Lemma.

Lemma 8.18 (Guarantees after thresholding). For Π̂Z := Thres(Π̃Z , τ), where τ =

(̃Θ)(επ
√
k/
√
n) = Õ(εW ) is the threshold, we have with high probability that

επ,`1 := max
i∈[k]
|(Π̂Z)i − (ΠZ)i|1 = Õ(εWA

n/k) = Õ

( √
pk

(p− q)√n ·
n

k

)
.

Remark: Notice that the `1 norm of a row of Π should be around n/k by Lemma 8.8, so

this bound makes sense as long as εWA
� 1.

Proof: Let Si := {j : Π̂Z(i, j) > 0} = {j : Π̃Z(i, j) > τ}, S0
i = {j : ΠZ(i, j) > τ/2} and

S1
i = {j : ΠZ(i, j) > 2τ}. The idea is S0

i should contain almost all entries in Si, and Si

should contain almost all entries of S1
i (approximately S1

i ⊂ Si ⊂ S0
i ).

For a vector v, let vS denote the sub-vector by considering entries in set S. We now have

|(Π̂Z)i − (ΠZ)i|1 ≤ |(Π̂Z)iSi − (ΠZ)iSi|1 + |(ΠZ)iSci |1 + |(Π̂Z)iSci |1

Let us first assume α0 < 1 for simplicity.

By thresholding procedure (Π̂Z)iSi = 0 so that term disappears.

For the first term, from Lemma 8.20, we have P[Π(i, j) ≥ τ/2] ≤ 8α̂i log(2/τ). Since

Π(i, j) are independent for j ∈ Z, by Chernoff bound maxi∈[k] |S0
i | < Õ(n/k).

We claim that most of Si should be in S0
i , because for every j ∈ Si\S0

i , we have |ΠZ(i, j)−

Π̃Z(i, j)| ≥ τ/2, for j ∈ Si, and number of such terms is at most 4ε2
π/τ

2 = Õ(n/k). Thus,

|(ΠZ)iSi − (Π̂Z)iSi |1 ≤ επ
√
|Si| ≤ Õ(επ

√
n/k).
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For the other term, from Lemma 8.20, we have

E[ΠZ(i, j) · δ(ΠZ(i, j) ≤ 2τ)] ≤ α̂i(2τ).

Concentration bounds show that maxi∈[k](ΠZ)i
S1,c
i

≤ Õ(τ · n/k) ≤ Õ(επ
√
n/k).

Again we claim that most indices in Sci are also in S1,c
i , because for every j ∈ Sci and

j 6∈ S1,c
i , we have |ΠZ(i, j)− Π̃Z(i, j)| ≥ τ . This implies that there are at most Õ(n/k) such

entries and

∑
j∈Sci \S

1,c
i

ΠZ(i, j) ≤
√
|Sci \S1,c

i |
√ ∑

j∈Sci \S
1,c
i

[ΠZ(i, j)]2

≤ Õ(
√
n/k) ·

√
4
∑

j∈Sci \S
1,c
i

[ΠZ(i, j)− Π̃Z(i, j)]2

≤ Õ(
√
n/kεπ).

Case α0 ∈ [1, k): From Lemma 8.20, we see that the results hold when we replace α̂max

with αmax, losing factors of (α0 + 1). �

Reconstruction of P Finally we would like to use the community vectors Π and the

adjacency matrix G to estimate the P matrix. Recall that in the generative model, we

have E[G] = Π>PΠ. Thus, a straightforward estimate is to use (Π̂†)>GΠ̂†. However, our

guarantees on Π̂ are not strong enough to control the error on Π̂† (since we only have row-wise

`1 guarantees).

We propose an alternative estimator Q̂ for Π̂† and use it to find P̂ in Algorithm 8.1.

Recall that the i-th row of Q̂ is given by

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
1>.
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Define Q using exact communities, i.e.

Qi := (α0 + 1)
Πi

|Πi|1
− α0

n
1>.

Note that if we define Q as (Q′)i := α0+1
nα̂i

Πi − α0

n
1>, then EΠ[Q′Π>] = I, and we show that

Q′ is close to Q since E[|Πi|1] = nα̂i. For Q, we normalize by |Πi|1 in order to ensure that

the first term of Q has equal column norms (which will be used in our proofs subsequently).

We show below that Q̂ is close to Π†, and therefore, P̂ := Q̂>GQ̂ is close to P w.h.p.

Lemma 8.19 (Reconstruction of P ). With probability 1− 5δ,

εP := max
i,j∈[n]

|P̂i,j − Pi,j| ≤ Õ(εWA
(p− q))

Remark: Note that again this bound is meaningful when εWA
� 1.

Proof: The proof goes in three steps:

P ≈ QΠ>PΠQ> ≈ Q̂Π>PΠQ̂> ≈ Q̂GQ̂>.

Note that EΠ[ΠQ>] = I and by Bernstein’s bound, we can claim that ΠQ> is close to I

and can show that the i-th row of QΠ> satisfies

∆i := |(QΠ>)i − e>i |1 = Õ(k/
√
n).

Moreover,

|(Π>PΠQ>)i,j − (Π>P )i,j| ≤ |(Π>P )i((Q)j − ej)| = |(Π>P )i∆j|

≤ O(pk/
√
n) ≤ O(εWA

(p− q)).

using the fact that (Π>P )i,j ≤ p.
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This can be translated to a bound between P and QΠ>PΠQ> because the dominating

term would be |Q|1
∥∥(Π>PΠQ>)− (Π>P )

∥∥
∞.

Now we claim that Q̂ is close to Q and by Lemma 8.17 |Qi
B − Q̂i

B|1 ≤ O(εWA
) , which

implies

|(Π>PΠQ>)i,j − (Π>PΠQ̂>)i,j| = |(Π>PΠ)i(Q> − Q̂>)j|

= ((Π>PΠ)i − q1>)|(Q> − Q̂>)j|1

≤ O(εWA
(p− q)).

using the fact that (Qj − Q̂j)1 = 0, due to the normalization.

Finally, |(GQ̂>)i,j(Π
>PΠQ̂>)i,j| are small by standard concentration bounds (and the

differences are of lower order). Combining these |P̂i,j − Pi,j| ≤ O(εP ).

�

Support Recovery Proof of Theorem 8.6: From Lemma 8.19,

|P̂i,j − Pi,j| ≤ O(εP )

which implies bounds for the average of diagonals H and average of off-diagonals L:

|H − p| = O(εP ), |L− q| = O(εP ).

In particular, |L+ (H −L) · 3ξ
4
− (q + (p− q)3ξ

4
)| ≤ O(εP ), which means the threshold is

very close to (q + (p− q)3ξ
4

).

On similar lines as the proof of Lemma 8.19 and from independence of edges used to

define F̂ from the edges used to estimate Π̂, we also have

|F̂ (j, i)− F (j, i)| ≤ O(εP ).
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Note that Fj,i = q + Πi,j(p − q). The threshold ξ satisfies ξ = Ω(εWA
) and in particular

(p− q)ξ > O(εP ).

If Πi,j > xi, then Fi,j > q+(p−q)ξ and F̂j,i > q+(p−q)ξ−O(εP ) > (q+(p−q)3ξ
4

)+O(εP ),

thus all large entries are identified. Similarly, if Πi,j < xi/2, F̂j,i cannot be larger than the

threshold. �

8.5.4 Dirichlet Properties

Lemma 8.20 (Marginal Dirichlet distribution in sparse regime). For Z ∼ B(a, b), the

following results hold:

Case b ≤ 1, C ∈ [0, 1/2]:

Pr[Z ≥ C] ≤ 8 log(1/C) · a

a+ b
(8.32)

E[Z · δ(Z ≤ C)] ≤ C · E[Z] = C · a

a+ b
(8.33)

Case b ≥ 1, C ≤ (b+ 1)−1: we have

Pr[Z ≥ C] ≤ a log(1/C) (8.34)

E[Z · δ(Z ≤ C)] ≤ 6aC (8.35)

Remark: The guarantee for b ≥ 1 is worse and this agrees with the intuition that the

Dirichlet vectors are more spread out (or less sparse) when b = α0 − αi is large.
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Proof. We have

E[Z · δ(Z ≤ C)] =

∫ C

0

1

B(a, b)
xa(1− x)b−1dx

≤ (1− C)b−1

B(a, b)

∫ C

0

xadx

=
(1− C)b−1Ca+1

(a+ 1)B(a, b)

For E[Z · δ(Z ≥ C)], we have,

E[Z · δ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)b−1dx

≥ Ca

B(a, b)

∫ 1

C

(1− x)b−1dx

=
(1− C)bCa

bB(a, b)

The ratio between these two is at least

E[Z · δ(Z ≥ C)]

E[Z · δ(Z ≤ C)]
≥ (1− C)(a+ 1)

bC
≥ 1

C
.

The last inequality holds when a, b < 1 and C < 1/2. The sum of the two is exactly E[Z],

so when C < 1/2 we know E[Z · δ(Z ≤ C)] < C · E[Z].

Next we bound the probability Pr[Z ≥ C]. Note that Pr[Z ≥ 1/2] ≤ 2E[Z] = 2a
a+b

by

Markov’s inequality. Now we show Pr[Z ∈ [C, 1/2]] is not much larger than Pr[Z ≥ 1/2] by

bounding the integrals.

A =

∫ 1

1/2

xa−1(1− x)b−1dx ≥
∫ 1

1/2

(1− x)b−1dx = (1/2)b/b.
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B =

∫ 1/2

C

xa−1(1− x)b−1 ≤ (1/2)b−1

∫ 1/2

C

xa−1dx

≤ (1/2)b−1 0.5a − Ca

a

≤ (1/2)b−1 1− (1− a log 1/C)

a

= (1/2)b−1 log(1/C).

The last inequality uses the fact that ex ≥ 1 + x for all x. Now

Pr[Z ≥ C] = (1 +
B

A
) Pr[Z ≥ 1/2] ≤ (1 + 2b log(1/C))

2a

a+ b
≤ 8 log(1/C) · a

a+ b

and we have the result.

Case 2: When b ≥ 1, we have an alternative bound. We use the fact that if X ∼ Γ(a, 1)

and Y ∼ Γ(b, 1) then Z ∼ X/(X + Y ). Since Y is distributed as Γ(b, 1), its PDF is

1
Γ(b)

xb−1e−x. This is proportional to the PDF of Γ(1) (e−x) multiplied by a increasing function

xb−1.

Therefore we know Pr[Y ≥ t] ≥ PrY ′∼Γ(1)[Y
′ ≥ t] = e−t.

Now we use this bound to compute the probability that Z ≤ 1/R for all R ≥ 1.

This is equivalent to

Pr[
X

X + Y
≤ 1

R
] =

∫ ∞
0

Pr[X = x]Pr[Y ≥ (R− 1)X]dx

≥
∫ ∞

0

1

Γ(a)
xa−1e−Rxdx

= R−a
∫ ∞

0

1

Γ(a)
ya−1e−ydy

= R−a

In particular, Pr[Z ≤ C] ≥ Ca, which means Pr[Z ≥ C] ≤ 1− Ca ≤ a log(1/C).
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For E[Zδ(Z < C)], the proof is similar as before:

P = E[Zδ(Z < C)] =

∫ C

0

1

B(a, b)
xa(1− x)bdx ≤ Ca+1

B(a, b)(a+ 1)

Q = E[Zδ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)bdx ≥ Ca(1− C)b+1

B(a, b)(b+ 1)

Now E[Zδ(Z ≤ C)] ≤ P
Q
E[Z] ≤ 6aC when C < 1/(b+ 1).

Properties of Gamma and Dirichlet Distributions

Recall Gamma distribution Γ(α, β) is a distribution on nonnegative real values with density

function βα

Γ(α)
xα−1e−βx.

Proposition 8.21 (Dirichlet and Gamma distributions). The following facts are known for

Dirichlet distribution and Gamma distribution.

1. Let Yi ∼ Γ(αi, 1) be independent random variables, then the vector (Y1, Y2, ..., Yk)/
∑k

i=1 Yk

is distributed as Dir(α).

2. The Γ function satisfies Euler’s reflection formula: Γ(1− z)Γ(z) ≤ π/ sin πz.

3. The Γ(z) ≥ 1 when 0 < z < 1.

4. There exists a universal constant C such that Γ(z) ≤ C/z when 0 < z < 1.

5. For Y ∼ Γ(α, 1) and t > 0 and α ∈ (0, 1), we have

α

4C
tα−1e−t ≤ Pr[Y ≥ t] ≤ tα−1e−t, (8.36)

and for any η, c > 1, we have

P[Y > ηt|Y ≥ t] ≥ (cη)α−1e−(η−1)t. (8.37)
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Proof: The bounds in (8.36) is derived using the fact that 1 ≤ Γ(α) ≤ C/α when α ∈ (0, 1)

and ∫ ∞
t

1

Γ(αi)
xαi−1e−xdx ≤ 1

Γ(αi)

∫ ∞
t

tαi−1e−xdx ≤ tαi−1e−t,

and

∫ ∞
t

1

Γ(αi)
xαi−1e−xdx ≥ 1

Γ(αi)

∫ 2t

t

xαi−1e−xdx ≥ αi/C

∫ 2t

t

(2t)αi−1e−xdx ≥ αi
4C

tαi−1e−t.

�
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Appendix A

Matrices and Tensors

A.1 Matrix Notations

A.1.1 Basic Notations, Rows and Columns

A matrix is a rectangular array of numbers. Throughout this thesis we only consider real

matrices.

Most notations in this paper are commonly used. We used bold letters for vectors like v.

All the vectors are by default column vectors. The entries of a vector is usually denoted as

ui, but sometimes we also use u[i] (especially when the vector itself has many superscripts

or subscripts). The all 1’s and all 0’s vectors of length m are denoted as 0m and 1m, but

the length is usually omitted as it is clear from the context. The basis vectors ei are vectors

which has only one entry ei[i] = 1 and all other entries are 0, again the length of the vector

will be clear from context.

Inner products of vectors is denoted as u · v, although sometimes equivalent matrix

notation u>v is also used (mainly in manipulations that also involves matrices).

We use I to denote the identity matrix, M> to denote the transpose of a matrix, and M−1

to denote the inverse of a matrix. A matrix is symmetric if M = M>. It is orthonormal
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if MM> = M>M = I. The entries of a matrix M is usually denoted as Mi,j, however

sometimes we also use M [i, j]. To represent a diagonal matrix, we use Diag(u) or Diag(ui)

where u is the vector of the diagonal entries.

We use Mi to denote the i-th column of a matrix, and M j to denote the j-th row of a

matrix. To denote a submatrix, let M be an n×m matrix, A ⊂ [n] and B ⊂ [m], then MA,B

or M [A,B] denote the submatrix of M with indices in A and B. When either A or B is a

singleton we also abuse notation to use Mi,B instead of M{i},B.

A.1.2 Norms and Eigenvalues

We again use commonly accepted definitions for vector and matrix norms. The `2 norm

of a vector ‖u‖ =
√∑k

i=1 u
2
i (notice that the subscript 2 is omitted). The `1 norm is

|u|1 =
∑k

i=1 |ui|. Infinity norm is also sometimes used but we will simply write maxk |uk|.

For a matrix M , if Mv = λv, then λ is an eigenvalue and v is an eigenvector of the

matrix. We will only talk about eigenvalues and eigenvectors of real symmetric matrices, so

the eigenvalues and eigenvectors are themselves real.

The singular values of a matrix M are the square roots of the eigenvalues of M>M ,

usually denoted by σi(M)’s (and usually we assume σ1 ≥ σ2 ≥ · · · ≥ σm).

The spectral norm of a matrix is the same as the operator norm, and has several equivalent

definitions:

‖M‖ = σ1(M) = max
‖u‖≤1

‖Mu‖ = max
‖u‖≤1

u>Mu.

Here the last equality only holds when M is symmetric.

The Frobenius norm of a matrix is defined as follows

‖M‖F =

√∑
i,j

M2
i,j =

√∑
i

σi(M)2.
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There are several standard facts about these norms

1. ‖A+B‖ ≤ ‖A‖+ ‖B‖.

2. ‖AB‖ ≤ ‖A‖ ‖B‖

3. ‖AB‖F ≤ ‖A‖ ‖B‖F .

4. For rank r matrices ‖A‖ ≤ ‖A‖F ≤
√
r ‖A‖.

We call a symmetric matrix is positive semidefinite (PSD) if all its eigenvalues are non-

negative. The smallest singular value of a matrix is usually denoted as σmin(M).

The condition number of a matrix is equal to the ratio between its largest and smallest

singular values, κ(M) = ‖M‖ /σmin(M). When the condition number is small we say the

matrix is well conditioned.

A.1.3 Singular Value Decomposition and Eigenspace Perturbation

Every matrix can be decomposed into the form M = UDV >, where U>U = I and V V > = I,

and D is a diagonal matrix whose values are the singular values of M . The columns of U

and V are called left and right singular vectors. When M is symmetric PSD we have U = V .

Often we use the top-k singular values to approximate a matrix M , Mk−svd =∑k
i=1 Uiσi(M)V >i . This is the optimal approximation using rank k matrices in terms

of both spectral norm and Frobenius norm.

The Moore-Penrose pseudo-inverse of an n × m (n > m) full rank matrix M is M † =

V D−1U>, which always satisfies M †M = I (but keep in mind that there are more than

one matrices that satisfy this equation). When a matrix M is symmetric PSD that has

singular value decomposition M = UDU>, the p-th power p ∈ R of M is defined as Mp =

U Diag(Dp
i,i)U

>.

There are several theorems controlling the eigenvalues and eigenvectors of matrices when

they are perturbed.
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Weyl’s Theorem Weyl’s Theorem bounds the perturbation in the singular values when

a noise with bounded spectral norm is added to the matrix.

Theorem A.1 (Weyl’s theorem; Theorem 4.11, p.204 in [147].). Let A,E ∈ Rm×n with

m > n, then

max
i∈[n]
|σi(A+ E)− σi(A)| ≤ ‖E‖ .

Wedin’s Theorem: Wedin’s Theorem bounds the perturbation of subspaces spanned by

singular vectors when a noise with bounded spectral norm is added to the matrix. When the

spectral norm of the noise is much smaller than the top-k singular values, the space spanned

by the top-k singular vectors does not change much.

Theorem A.2 (Wedin’s theorem; Theorem 4.4, p. 262 in [147].). Let A,E ∈ Rm×n with

m ≥ n be given. Let A have the singular value decomposition


U>1

U>2

U>3

A
[
V1 V2

]
=


Σ1 0

0 Σ2

0 0

 .

Let Ã := A + E, with analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). Let

Φ be the matrix of canonical angles between range(U1) and range(Ũ1), and Θ be the matrix

of canonical angles between range(V1) and range(Ṽ1). If there exists δ, α > 0 such that

mini σi(Σ̃1) ≥ α + δ and maxi σi(Σ2) ≤ α, then

max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2

δ
.
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A.2 Tensor Notations

A real p-th order tensor T ∈ ⊗p
i=1 is a member of the tensor product of Euclidean spaces

Rni , i ∈ [p]. We generally restrict to the case where n1 = n2 = · · · = np = n, and

simply write T ∈ ⊗pRn. For a vector v ∈ Rn, we use v⊗p := v ⊗ v ⊗ · · · ⊗ v ∈ ⊗pRn

to denote its p-th tensor power. As is the case for vectors (where p = 1) and matrices

(where p = 2), we may identify a p-th order tensor with the p-way array of real numbers

[Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [n]], where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of A (with

respect to a canonical basis).

An useful way to work with tensors is to view the tensor as a multilinear form. We use

the following notation1:

Notation (Multilinear Form). We can consider T to be a multilinear map in the following

sense: for a set of matrices {Vi ∈ Rn×mi : i ∈ [p]}, the (i1, i2, . . . , ip)-th entry in the p-way

array representation of T (V1, V2, . . . , Vp) ∈ Rm1×m2×···×mp is

[T (V1, V2, . . . , Vp)]i1,i2,...,ip :=
∑

j1,j2,...,jp∈[n]

Tj1,j2,...,jp [V1]j1,i1 [V2]j2,i2 · · · [Vp]jp,ip . (A.1)

Note that if T is a matrix (p = 2), then

T (V1, V2) = V >1 TV2.

Similarly, for a matrix M and vector v ∈ Rn, we can express Mv as

M(I,v) = Mv ∈ Rn,

1the notation first appeared in [113]
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where I is the n× n identity matrix. As a final example of this notation, observe

T (ei1 , ei2 , . . . , eip) = Ti1,i2,...,ip ,

where {e1, e2, . . . , en} is the canonical basis for Rn.

Most tensors T ∈ ⊗pRn considered in this thesis will be symmetric (sometimes called

supersymmetric), which means that their p-way array representations are invariant to permu-

tations of the array indices: i.e., for all indices i1, i2, . . . , ip ∈ [n], Ti1,i2,...,ip = Tiπ(1),iπ(2),...,iπ(p)

for any permutation π on [p]. It can be checked that this reduces to the usual definition of

a symmetric matrix for p = 2.

Definition A.3 (Tensor Rank). The rank of a p-th order tensor T ∈⊗pRn is the smallest

non-negative integer k such that T =
∑k

j=1 u1,j ⊗ u2,j ⊗ · · · ⊗ up,j for some ui,j ∈ Rn, i ∈

[p], j ∈ [k], and the symmetric rank of a symmetric p-th order tensor T is the smallest

non-negative integer k such that T =
∑k

j=1 u
⊗p
j for some uj ∈ Rn, j ∈ [k].

The notion of rank readily reduces to the usual definition of matrix rank when p = 2,

as revealed by the singular value decomposition. Similarly, for symmetric matrices, the

symmetric rank is equivalent to the matrix rank as given by the spectral theorem.

The notion of tensor (symmetric) rank is considerably more delicate than matrix (sym-

metric) rank. For instance, it is not clear a priori that the symmetric rank of a tensor should

even be finite [43]. In addition, removal of the best rank-1 approximation of a (general) tensor

may increase the tensor rank of the residual [145].

Definition A.4 (Spectral Norm of Tensor). The spectral norm of a tensor T is defined by

viewing it as a linear operator.

‖T‖ = sup
‖vi‖≤1,i∈[p−1]

‖T (v1,v2, . . . ,vp−1, I)‖ = sup
‖vi‖≤1,i∈[p]

‖T (v1,v2, . . . ,vp)‖ .
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For symmetric tensors it is easy to show that the maximum is always achieved when all

the vectors are the same, so for symmetric T , ‖T‖ = sup‖v‖≤1 T (v,v, ...,v).
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Appendix B

Concentration Bounds

B.1 Concentration Bounds for Single Variables or

Functions

Given a random variable X, concentration bounds for X tries to bound the probability that

X is far from its expectation E[X]. All the random variables in this thesis will have bounded

moments.

The most basic inequalities are the Markov’s inequality and Chebyshev’s inequality:

Theorem B.1 (Markov’s Inequality). If X is a nonnegative random variable, then for any

k ≥ 1

Pr[X ≥ kE[X]] ≤ 1/k.

Theorem B.2 (Chebyshev’s Inequality). For any random variable X and for any k ≥ 1

Pr[|X − E[X]| > k
√

VarX] ≤ 1/k2.

Much stronger guarantees can be obtained for sum of independent random variables,

including Chernoff bounds and Bernstein’s inequality.
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Theorem B.3 (Chernoff Bounds). Let X1, ..., Xn be independent random variables taking

values in {0, 1}, Pr[Xi = 1] = pi. Then if we let X =
∑n

i=1 Xi and µ = E[X] =
∑n

i=1 pi, for

any δ > 0,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
,

Pr[X < (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

Theorem B.4 (Bernstein’s Inequality). Let X1, ..., Xn be independent random variables with

mean 0. Suppose |Xi| ≤M almost surely for all i, then for all t > 0,

Pr[|
n∑
i=1

Xi| > t] ≤ 2 exp

(
− t2/2∑n

i=1 Var[Xi] +Mt/3

)
.

Finally, when the random variables are not independent, or when we are interested in

other functions of random variables, the common tool is martingales and Azuma’s inequality.

However here we just state the bounded differences/McDiarmid’s inequality as it is the

simplest way to obtain polynomial bounds for the quantities of interest in Chapter 7.

Theorem B.5 (McDiarmid’s Inequality). Consider independent random variables X1, ..., Xn ∈

X , and a real valued function f(X1, X2, ..., Xn). If for all index i ∈ [n], and for all

x1, x2, ..., xn, x
′
i ∈ X , the function satisfies

|f(x1, x2, ..., xi−1, xi, xi+1, ..., xn)− f(x1, x2, ..., xi−1, x
′
i, xi+1, ..., xn)| ≤ ci,

then we have for all t > 0

Pr[|f(X1, ..., Xn)− E[f(X1, ..., Xn)]| ≥ t] ≤ 2 exp

(
2t2∑n
i=1 c

2
i

)
.
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For example, the simplest way to show the sum of independent matrices/tensors have

concentrated spectral norm is to let f be the spectral norm of the sum. However, this usually

won’t give the tightest bound. In order to better understand the concentration behavior we

need more precise bounds in the next Section.

B.2 Concentration Bounds for Vectors and Matrices

Vectors and matrices also have concentration bounds that behave similarly to the Bernstein’s

inequality.

Proposition B.6 (Vector Bernstein Inequality). Let z = (z1, z2, ..., zn) ∈ Rn be a random

vector with independent entries, E[zi] = 0, E[z2
i ] = σ2

i , and Pr[|zi| ≤ 1] = 1. Let A =

[a1|a2| · · · |an] ∈ Rm×n be a matrix, then

Pr[‖Az‖ ≤ (1 +
√

8t)

√√√√ n∑
i=1

‖ai‖2 σ2
i + (4/3) max

i∈[n]
‖ai‖ t] ≥ 1− e−t.

Proposition B.7 (Matrix Bernstein Inequality). Suppose Z =
∑

jWj where

1. Wj are independent random matrices with dimension d1 × d2,

2. E[Wj] = 0 for all j,

3. ‖Wj‖ ≤ R almost surely.

Let d = d1 + d2, and σ2 = max
{∥∥∥∑j E[WjW

>
j ]
∥∥∥ ,∥∥∥∑j E[W>

j Wj]
∥∥∥}, then we have

Pr[‖Z‖ ≥ t] ≤ d · exp
{ −t2/2
σ2 +Rt/3

}
.
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