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Abstract

Protein-protein interaction (PPI) networks enable the transmission of biological in-

formation throughout cells, allowing cells to respond to environmental stimuli. PPI

networks can be represented as graphs, and graph analysis techniques have been ap-

plied in order to determine the topological roles played by individual proteins in PPI

network structure. However, more complex analysis is needed to study the functional

organization of PPI networks. In addition, the proteins that make up PPI networks

change and evolve new functions over time.

In the first part of this thesis, we introduce a metric, functional insularity, to

measure the degree to which proteins physically interact with functionally related

proteins. Proteins in PPI networks exhibit significant variation in insularity values,

suggesting the presence of a tradeoff between network modularity and connectiv-

ity. Low-insularity proteins—those that interact with many functionally unrelated

proteins—are more crucial than high-insularity proteins to maintaining network con-

nectivity, are less likely to be essential, and have more regulators. Furthermore, we

show that between-species homologs tend to have similar levels of functional insu-

larity. Low-insularity proteins are found between topological network modules as

well as within them. We find that functional and topological network modules con-

tain proteins with a range of insularity values, including low-insularity proteins that

might may function as “interfaces” to other modules. Finally, we show how functional

insularity analysis can be applied to improve network clustering analyses.

In the second part of this thesis, we study the acquisition of new functions by pro-

teins and their integration into the PPI network. We first use a maximum parsimony-

based approach to infer the ages of human proteins. We then determine various

function-related traits for each age group, such as protein-protein interaction count,

expression ubiquity, and number of unique domains. We find that young proteins

in human have fewer protein-protein interactions, have fewer unique domains, are
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expressed in fewer tissues, and are less likely to be essential than older proteins. In

addition, we find that proteins tend to physically interact mainly with other proteins

of similar age. Finally, we find that younger pairs of paralogs are more coexpressed

and share more common regulators than older pairs.

In sum, this thesis advances our understanding of PPI networks by showing that

the dual requirements of modularity and connectivity are balanced using “connector”

proteins and “module” proteins, which have distinct biological traits, and by un-

covering differences between young and old proteins that suggest that proteins gain

functions and integrate into networks over time.

iv



Acknowledgments

First and foremost, I’d like to thank my advisor, Prof. Mona Singh, for an extraordi-

nary level of support and commitment in helping me to complete my Ph.D. program.

Without her commitment in meeting with me consistently every week to discuss prob-

lems and next steps, and in repeatedly helping me to revise my paper drafts, I would

not have been able to complete my program. I would also like to express my appre-

ciation for her support as my interests and career plans changed over the course of

my grad school career. Whether I planned to stay in academia, go into government

research, or go into industry, she was always willing to provide advice for how best to

achieve my goals. I especially appreciate her willingness to let me spend a summer

interning in the software industry, even though it slowed my research progress.

Secondly, I would like to thank my undergraduate advisor, Prof. Eric Aaron, for

his continued support, mentoring, and friendship throughout my graduate school ca-

reer. His advice on research, graduate school, and career choices has been invaluable

over the past five years. In addition, he provided advice and support from a source

outside the “graduate school bubble,” while simultaneously understanding the gradu-

ate school process in a way that only someone who has also been through the process

can understand.

I would also like to thank the other members of the Princeton community who have

helped out over the past five years. Thanks to all the members of the Singh lab, past

and present, for answering my questions and giving me so much useful feedback on

my research projects. Thanks to Peng Jiang for assistance with the LATEXformatting

of this thesis. Thanks also to Young-Suk Lee for valuable guidance on the processing

of microarray data. Thanks to the faculty members who served on my general exam

and thesis committees: Tom Funkhouser, Andrea LaPaugh, Olga Troyanskaya, and

Vivek Pai.

v



I’d like to thank my all Princeton undergraduate friends (names intentionally un-

listed so I don’t forget anyone) for making graduate school worth all the effort and

frustration, for listening to my constant complaints about research and paper-writing,

for letting me pretend to be an undergrad, and most importantly, for making the past

five years the best of my life so far. I will never forget all the memories of anime club,

juggling club, Katsucon, Kpop music videos, long AIM/MSN conversations, group

dinners, lifting, basketball, squash, Colonial parties, room parties, Dbar, Housepa-

rties, Lawnparties, Winter Formals, Reunions, dance shows, midnight USG movies,

Teriyaki Boy and movie outings, Sushi Palace, the Boston trip, and the Japan trip.

I’m sure there are plenty of other epic memories that I can’t remember right now.

I’d like to thank my friends from Smith College, Zin Min and Sanita, for always

keeping in touch and inviting me to visit even after they were no longer students at

Princeton. My visits to Smith, our experiences at Princeton, our trip to Six Flags,

and our Jersey Shore beach trips were some of the highlights of my graduate school

career. Thanks also to everyone else from the Smith community whom I had the

pleasure of meeting; I’m proud to be an honorary Smithy.

Thanks to the members of Colonial Club from 2010 through 2013, for always

making me feel welcome there, and even giving me the opportunity to become an

official member of the club, despite this not usually being an option for grad students.

Thanks also to Margaret Lo and the members of her karate class, for being the first

to welcome me to Princeton.

I’d also like to thank all the non-University locals whom I’ve met over the past

five years, for reminding me that there is life outside the Orange Bubble. Thanks

especially to the community of Air Mods Flight and Service Center at Trenton-

Robbinsville Airport for giving me the ability to pursue my flying dreams while at

Princeton.

vi



Very special thanks to Katrina for all the great memories from the past two years,

and for always being supportive and sympathetic as I tried to figure out my next

steps after graduate school–all while she was doing the same with her own graduate

program. Spending time in New York or Princeton was a great way to end the week,

and our trips to Washington DC, Lake Tahoe, and the Poconos were some of my

favorite grad school experiences.

Finally, I’d like to thank my family for their support throughout grad school, and

especially for always welcoming me back to my home in Pomfret, CT when I needed

to take a break from the grad student life. Those visits are the best way I know of

to recover from too much programming or paper-writing.

My PhD study was supported by Princeton University, NSF grant ABI-0850063,

NIH/NIGMS R01 grant GM076275, the Quantitative and Computational Biology

Program NIH grant T32 HG003284, and the NIH Center of Excellence grant P50

GM071508.

vii



In memory of Ishboo.

“Dogs are not our whole life,

but they make our lives whole.”

—Roger Caras

viii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Proteins and protein-protein interaction networks . . . . . . . . . . . 1

1.2 Protein evolution and function acquisition . . . . . . . . . . . . . . . 4

1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Functional analysis of the modularity-connectivity tradeoff in pro-

tein interaction networks 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Computing the Functional Insularity Measure of Proteins . . . 12

2.2.3 Topological Protein Roles . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Functional insularity values of homologs in yeast and human . 14

2.2.5 Identification of enriched GO terms in high-insularity and low-

insularity proteins . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.6 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Number of scored proteins . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Functional modules contain a large range of insularity values . 17

2.3.3 High-insularity and low-insularity proteins play different roles

in network connectivity . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 High-insularity and low-insularity proteins have different bio-

logical traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 High-insularity and low-insularity proteins are involved in dif-

ferent biological functions . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Yeast-human homologs exhibit similar functional insularity values 26

2.3.7 Low-insularity proteins decrease quality of network clustering

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Evidence for function acquisition in human proteins over evolution-

ary time 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Gene families . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Determining the age of gene families . . . . . . . . . . . . . . 36

3.2.3 Determining the age of duplication events . . . . . . . . . . . 37

3.2.4 Defining the age of genes and paralogs . . . . . . . . . . . . . 37

3.2.5 Expression data . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.6 Other data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Sequence and structure properties of young vs. old genes . . . 41

x



3.3.2 Physical interactions of young and old genes . . . . . . . . . . 44

3.3.3 Essentiality of young and old genes . . . . . . . . . . . . . . . 47

3.3.4 Expression of young and old genes and paralogs . . . . . . . . 48

3.3.5 Function acquisition as a function of family age vs. duplication

age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Conclusion 56

A Functional insularity results with alternate datasets 58

A.1 Alternate Network Results . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.1 Network statistics . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1.2 Topological Measures . . . . . . . . . . . . . . . . . . . . . . . 60

A.1.3 Topological Protein Roles . . . . . . . . . . . . . . . . . . . . 63

A.1.4 Targeted node removal . . . . . . . . . . . . . . . . . . . . . . 66

A.1.5 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1.6 Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Homology results with alternate PPOD homology datasets . . . . . . 70

A.3 Alternate Clustering Evaluation Results . . . . . . . . . . . . . . . . 72

A.4 Full GO TermFinder results . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 90

xi



List of Tables

1.1 Sizes of PPI networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Partial correlation analysis of protein characteristics vs. family age and

duplication age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1 Enriched Biological Process terms in yeast low-insularity proteins. . . 73

A.2 Enriched Biological Process terms in yeast high-insularity proteins. . 74

A.3 Enriched Biological Process terms in human low-insularity proteins. . 78

A.4 Enriched Biological Process terms in human high-insularity proteins. 78

A.5 Enriched Cellular Component terms in yeast low-insularity proteins. . 85

A.6 Enriched Cellular Component terms in yeast high-insularity proteins. 85

A.7 Enriched Cellular Component terms in human high-insularity proteins. 87

A.8 Enriched Molecular Function terms in yeast low-insularity proteins. . 88

A.9 Enriched Molecular Function terms in yeast high-insularity proteins. . 89

A.10 Enriched Molecular Function terms in human high-insularity proteins. 89

xii



List of Figures

1.1 An example of a signaling pathway. . . . . . . . . . . . . . . . . . . . 3

1.2 A reconstruction of the evolutionary history of 191 species. Figure

taken from [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Distribution of functional insularity scores of all scored proteins in the

yeast PPI network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Distribution of functional insularity scores by functional module and

SPICi cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Illustration of two topological roles expected to be fulfilled by low-

insularity proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Q-Q plots comparing degree, betweenness centrality, and local cluster-

ing coefficient of low-insularity and high-insularity genes. . . . . . . . 21

2.5 Effect of targeted removal of low-insularity and high-insularity proteins

on network structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Overlap among the topological roles, high-insularity proteins, and low-

insularity proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Number of regulators and essentiality for high-insularity and low-

insularity genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Conservation of functional insularity across species. . . . . . . . . . . 27

3.1 Inferring gene age using the Dollo Parsimony Principle. . . . . . . . . 36

xiii



3.2 Sequence length and domain count of young and old genes. . . . . . . 43

3.3 Younger genes have more structural disorder than older genes. . . . . 44

3.4 Younger genes have fewer protein-protein interactions than older genes. 45

3.5 Genes from similar age groups tend to physically interact more often

than expected by chance. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Older genes are more likely to be essential than younger genes. . . . . 47

3.7 Older genes have higher expression ubiquity than younger genes. . . . 48

3.8 Coexpression and regulation of younger and older pairs of paralogs. . 49

A.1 Distribution of functional insularity scores of all scored proteins in the

alternate networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Degree of low-insularity and high-insularity proteins in alternate net-

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.3 Betweenness centrality of low-insularity and high-insularity proteins in

alternate networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.4 Local clustering coefficient of low-insularity and high-insularity pro-

teins in alternate networks. . . . . . . . . . . . . . . . . . . . . . . . . 63

A.5 Overlap between low/high-insularity proteins and the two topological

roles defined in Figure 2.3 for alternate networks. . . . . . . . . . . . 65

A.6 Effect on largest connected component size of removing proteins in in-

creasing order of insularity, decreasing order of insularity, and random

order, for alternate networks. . . . . . . . . . . . . . . . . . . . . . . 66

A.7 Random trials to demonstrate the significant effect of removing low-

insularity and high-insularity proteins. . . . . . . . . . . . . . . . . . 67

A.8 Essentiality of low-insularity and high-insularity proteins in the human

Biogrid network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.9 Essentiality of low-insularity and high-insularity proteins in the yeast

and human HINT Combined networks. . . . . . . . . . . . . . . . . . 69

xiv



A.10 Number of regulators of low-insularity and high-insularity genes in the

yeast HINT Combined network. . . . . . . . . . . . . . . . . . . . . . 70

A.11 Yeast-human homology relationships between high-insularity and low-

insularity proteins when using the MultiParanoid homology dataset

from PPOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.12 Yeast-human homology relationships between high-insularity and low-

insularity proteins when using the Jaccard homology dataset from PPOD. 71

xv



Chapter 1

Introduction

Proteins are large molecules that perform most of the functions necessary to life.

They are responsible for molecular transport, muscle contraction, and catalysis of

most chemical reactions necessary for life. Proteins are synthesized by a process

known as the “central dogma of biology.” First, subsequences of DNA known as

genes are transcribed to messenger RNA, which is then translated to proteins. Thus,

all of the information necessary to encode every protein in an organism is contained

in that organism’s DNA.

1.1 Proteins and protein-protein interaction net-

works

Proteins rarely perform their functions alone; they often cooperate with other proteins

that perform the same or similar functions. This cooperation is often accomplished by

way of physical interactions between specific proteins, in which two or more proteins

make physical contact while performing their functions [1]. Physical interactions may

occur in a binary fashion between two specific proteins [2, 3], or groups of proteins

may interact to form large protein complexes. Examples of such complexes are the

1



Species Number of proteins Number of interactions

C. elegans 3,207 5,656
D. melanogaster 8,058 36,420
H. sapiens 17,808 138,087
S. cerevisiae 6,354 81,839

Table 1.1: Sizes of the largest PPI networks from BioGRID [6] as of August 2, 2013.

ATP synthesis complex, which produces the energy storage molecule ATP, and the

ribosome, which translates RNA into proteins.

Over the past decade, biologists have developed high-throughput methods, in-

cluding the yeast two-hybrid method [4] and affinity capture [5], to identify protein-

protein physical interactions on a large scale. As a result, tens of thousands of specific

protein-protein interactions have been identified for certain species. This data can

be represented as a graph, in which nodes represent proteins and edges represent

physical interactions between two individual proteins. As shown by Table 1.1, these

graphs are very large, making their structure difficult to analyze.

Protein-protein interaction (PPI) networks are of interest to biologists because

they represent the means by which information may be transmitted throughout the

cell. Signaling pathways such as the one shown in Figure 1.1 are specific examples

of information transmission. A protein on the cell surface might bind a specific

molecule, which then triggers a cascade of protein-protein interactions inside the cell,

ultimately resulting in a change in gene expression or cell behavior. While specific

signaling pathways such as the one shown in Figure 1.1 represent relatively small sets

of protein-protein interactions that are understood by biologists, the global structure

of PPI networks remains an area of active study.

Graph analysis techniques have been used to study the global structure of PPI

networks. Early work discovered that PPI networks are “scale-free,” meaning that

there are a large number of low-degree nodes, with a much smaller number of high-

degree nodes [8]. Additional work found that PPI networks are modular, meaning that
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Figure 1.1: An example of a signaling pathway. Figure taken from [7].

they contain locally dense subgraphs [9]; these topological modules often correspond to

functional modules, or groups of proteins that perform the same or similar functions in

the organism. Thus, PPI network structure shows two correlated types of modularity:

topological modularity and functional modularity.

Previous work has also found that different proteins play different roles in main-

taining the overall structure of the PPI network. Centrality measures are metrics for

measuring the importance of a specific protein to the global network structure. Two

such measures are degree, a local centrality measure, and betweenness centrality [10],

a global measure. Betweenness centrality of a node is the fraction of all shortest

paths in a network that pass through the node. Some proteins participate in many
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more interactions than others (i.e., they have high degree); these proteins are more

likely to be essential to the organism’s survival than proteins that participate in fewer

interactions [11]. Similarly, proteins with high betweenness centrality are also more

likely to be essential than other proteins [12].

The work cited above uses graph theoretic measures such as degree and between-

ness centrality to take a topological view of network structure in order to identify

differences in individual proteins’ contributions to the global structure. However,

PPI networks may also be viewed as functional, rather than purely topological net-

works. In this paper, we propose a method by which to study proteins’ roles in

organizing the functional as well as the topological structure of the PPI network.

1.2 Protein evolution and function acquisition

Organisms evolve, and speciation events result in the genesis of new species, over

extremely long timespans. The root cause of evolution is the random mutation of

DNA, which can result in altered protein sequences, structures, and functions. Some

of these mutations are deleterious to the survival of the organism, some have no effect,

and others are beneficial.

Due to the extremely long timespans (millions of years) over which evolution oc-

curs, it is rarely possible to directly observe the process of protein evolution. Nonethe-

less, researchers can reconstruct the evolutionary tree of life by observing similarities

in the DNA sequences of present-day organisms (Figure 1.2). For example, if the

DNA of two organisms, such as human and chimpanzee, have high sequence sim-

ilarity, then researchers can infer that those organisms are closely related, that is,

they have a recent common ancestor in the tree of life. Species whose genomes show

less sequence similarity, such as humans and bacteria, are assumed to be less closely

related; that is, they have no recent common ancestors in the tree of life. Due to tech-

4



Figure 1.2: A reconstruction of the evolutionary history of 191 species. Figure taken
from [13].
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nological advances in DNA sequences, complete genome sequences of many species

are now available, enabling this type of analysis. Due to the large amount of data,

computational techniques must be used in these analyses.

Because of the central role of proteins within organisms, the mechanisms and

principles by which proteins evolve and acquire new functions over time is of interest

to researchers. Gene duplication events, in which one or more genes are duplicated

in a species’s genome, have been implicated as a major driver for the acquisition of

new protein functions [14, 15, 16]. In contrast to duplication events, which create

copies of existing genes, novel proteins can also be formed from formerly non-coding

DNA sequence, as well as other mechanisms [17]. These novel proteins have also been

shown to evolve and acquire new functions over time [18].

Protein interaction networks also evolve over time [19]. It has been shown that

proteins with many interactions evolve more slowly than proteins with few interactions

and that interacting proteins evolve at similar rates [20]. In this thesis, we present

an analysis of protein function acquisition over time, including the integration of new

proteins into existing PPI networks; our findings suggest that new functional modules

are added to PPI networks over time.

1.3 Our contributions

In this thesis, we provide two main contributions that advance our current under-

standing of protein-protein network structure, function acquisition by proteins, and

integration of new proteins into existing PPI networks. First, we provide a metric,

called functional insularity, that measures the degree to which a protein physically

interacts with functionally related vs. functionally unrelated proteins. We apply this

measure to a large set of proteins in yeast and human PPI networks and draw several

conclusions about the roles played by different proteins in organizing the functional
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network of the cell. We show that proteins with high functional insularity scores

have different biological properties from proteins with low scores; furthermore, we

show that functional insularity is conserved between evolutionarily related proteins

in yeast and human.

Second, we take a dynamic view of protein function and PPI network structure

over time. We use a sequence-based evolutionary analysis to infer an approximate

time of origin for every human protein. We then identify differences between young

and old proteins in several function-related biological features. Our findings suggest

several ways by which proteins may gain functions over time. For example, we find

that younger proteins tend to have lower degree than older proteins, suggesting that

proteins may gain physical interactions and integrate into the existing protein-protein

interaction network over time.
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Chapter 2

Functional analysis of the

modularity-connectivity tradeoff in

protein interaction networks

2.1 Introduction

Over the past decade, large-scale protein-protein interaction (PPI) networks have

been determined for a diverse set of organisms. These networks, in which nodes

represent proteins and edges represent physical interactions between proteins, provide

a global view of the relationships among the components and processes that enable

organisms to function.

The topological organization of PPI networks has been extensively analyzed in

order to improve our understanding of cellular functioning [1]. Topological analy-

sis has proven to be a powerful technique, because it enables the use of well-known

algorithmic concepts and topological measures that can be applied to networks in

general. Topological techniques have been used to provide insights into protein es-
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sentiality [11, 21, 12] and pleiotropy [22], and to understand organizational patterns

such as network motifs [23], information flow [22], and network bottlenecks [12].

Among the key findings of topological network analysis is that cellular networks

are modular. Modularity [24, 25] is an organizational principle in which large systems

are composed of smaller, relatively self-contained subcomponents. In the context of

PPI networks, modularity typically refers to the presence of preferentially interacting

sets of proteins (topological modularity) or to groups of proteins involved in the same

biological process (functional modularity); in practice, there is overlap between mod-

ules defined either topologically or functionally. Previous work has identified both

types of modules in PPI networks [26, 27].

Despite the presence of modularity in PPI networks, there are many crosstalk

interactions between proteins in different modules [28, 29], and modules are therefore

not completely separate entities. Whereas modularity is helpful in order for biologi-

cal processes to function efficiently without interference, connectivity is required for

interprocess cooperation. We set out to analyze the balance between modularity and

connectivity in protein-protein interaction networks.

It is clear from analysis of topological network structure that proteins play dif-

ferent roles in balancing the modularity-connectivity tradeoff in a topological, as op-

posed to functional, sense; these roles can be quantified through the use of various

local and global topological network measures. For example, proteins vary widely in

local clustering coefficient (LCC), a local network centrality metric that measures the

connectivity among a protein’s neighbors [30]. Proteins also vary in betweenness cen-

trality [10, 12], a global network centrality measure that indicates the importance of

the protein in maintaining shortest paths between other network proteins. Low-LCC

and high-betweenness proteins can be viewed as supporting topological connectivity,

while high-LCC and low-betweenness proteins can be viewed as supporting topolog-
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ical modularity, thereby providing further evidence of the connectivity/modularity

tradeoff.

While general-purpose graph analysis techniques are powerful, they do not make

full use of the cellular network, because they do not explicitly consider known func-

tional information. Instead, topological analysis uses network topology as a proxy to

study the key item of interest: functional organization. Here, we propose a method

that uses PPI networks to study functional organization directly, rather than indi-

rectly through general-purpose topological methods.

In this chapter, we make several contributions to advance our understanding of the

functional organization of the cell. First, we provide a measure, functional insularity,

that quantifies the degree to which proteins perform biological processes similar to

their interacting partners. Proteins with low functional insularity interact with pro-

teins of varying biological processes, whereas proteins with high functional insularity

interact largely with proteins that share biological processes. Second, we compute the

functional insularity of yeast and human proteins to show that proteins vary greatly

in their degree of functional insularity. Further, we show that functional modules

tend to contain both high-insularity and low-insularity proteins. Third, we show that

low-insularity proteins are more important to maintaining network connectivity as

defined by both betweenness centrality [10, 31] and two clustering-based topological

measures. Fourth, we show that low-insularity proteins have more regulators and are

less likely to be essential than high-insularity proteins. Finally, we give evidence that

functional insularity is evolutionarily conserved between proteins in yeast and human.
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2.2 Methods

2.2.1 Data Sources

PPI networks. We performed our analysis on three yeast and three human net-

works. For our primary analysis, we focus on version 3.2.95 of the BioGRID [6] PPI

network for yeast; for this network we used all evidence types indicating the pres-

ence of a physical protein-protein interaction. We also used BioGRID version 3.2.95

as our primary human network. In addition, we repeated the analysis on the high-

throughput co-complex and high-throughput binary networks from [32] for both yeast

and human.

Networks were preprocessed by removing the 1% of proteins with highest degree

in order to eliminate potentially “sticky” proteins that appear to have many interac-

tions, but that may be due to experimental artifacts. This resulted in the removal

of 52 proteins from the BioGRID yeast network with degrees ranging from 148 to

1,912, producing a final network with 4,825 nodes and 40,371 edges. For the human

BioGRID network, 133 proteins were removed with degrees ranging from 108 to 8,959,

producing a final network with 9,694 proteins and 39,859 interactions.

All single-network results in the main body of this chapter are reported for the

yeast BioGRID network; for alternate network results, see the Appendix of this thesis.

Functional annotations. The June 2013 version of the GO term hierarchy

and protein annotations were used [33]. Annotations with only the evidence code

of “inferred by electronic annotation” (IEA) and “reviewed computational analysis”

(RCA) were ignored. In order to avoid circularity in the definition of functional

insularity, we also ignored annotations with only the evidence code of “inferred by

physical interaction” (IPI). In order to remove possible confounding effects from very

specific or broad GO terms, we did not consider terms that annotate fewer then 4

or greater than 1,000 yeast proteins, leaving 2,129 Biological Process terms for yeast.
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For human, we ignored terms that annotate fewer than 4 or greater than 5,000 human

proteins, leaving 5,204 Biological Process terms.

Other data Yeast essentiality data were downloaded from the SGD [34]. Yeast

regulatory data were obtained from the YEASTRACT regulatory network dataset [35,

36].

Gene homology data were downloaded from the Princeton Protein Orthology

Database (P-POD) [37]. Three datasets are available, each generated using a dif-

ferent algorithm: OrthoMCL [38], MultiParanoid [39], and Jaccard clustering. The

results described in this chapter were obtained using the OrthoMCL dataset; running

the same analysis on the other two datasets produced similar results (see Section A.2).

2.2.2 Computing the Functional Insularity Measure of Pro-

teins

We define a measure called functional insularity, which quantifies the degree to which

proteins interact with functionally related vs. functionally unrelated neighbors. Let

|R| be the number of proteins that are annotated with at least one GO Biological

Process term under consideration. For a given term t, let R(t) be the set of proteins

annotated by term t and |R(t)| be the number of such proteins. For a given protein

p, let A(p) be the set of terms under consideration annotating protein p, let N (p)

be the set of annotated proteins that interact with protein p, and let |N (p)| be the

number of annotated proteins that interact with p. First, functional similarity f(p, q)

was computed for each pair of proteins (p, q) using an approach similar to that of [9]

and described below.

Then, the functional insularity i(p) of a protein p is defined as the mean functional

similarity of p vs. each of its neighbors:

i(p) =

∑
q∈N (p) f(p, q)

|N (p)|
(2.1)
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The functional similarity of a pair of proteins is defined as the Jaccard coefficient of

the terms annotating each protein, weighted by the information score of each term:

f(p, q) =

∑
t∈A(p)∩A(q) s(t)∑
t∈A(p)∪A(q) s(t)

(2.2)

where s(t) = − log |R(t)|
|R| is the information content for each term under consideration,

defined as in [40]; it scores the specificity of each term, such that terms that annotate

few proteins are scored higher than terms that annotate more proteins.

Functional insularity scores were only computed for proteins with degree at least 3,

and the analyses described in the rest of this chapter were run only on these proteins.

Out of the scored proteins, we classified the top third as “high-insularity” and the

lower third as “low-insularity.”

2.2.3 Topological Protein Roles

We determined the overlap between high-insularity and low-insularity proteins with

sets of proteins that serve as “module connectors” in the following ways. First, we ran

the graph clustering algorithm SPICi [41] in order to obtain a topological modular

representation of the network. SPICi has three parameters: the minimum cluster

size, the density threshold, and the support threshold. We fixed the minimum cluster

size at 3, then systematically varied the support and density thresholds between 0

and 1 in increments of 0.1 and selected the combination that produced the clustering

with maximal modularity by Newman’s method [42]. We also repeated the analysis

using Stijn van Dongen’s MCL clustering algorithm [43, 44], available from http:

//micans.org/mcl/. Default parameters were used for MCL, and clusters with size

less than 3 were considered to be unclustered proteins.

Using the clustered network, all proteins were categorized as “module connectors”

if they had one of the two topological features:
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(A) “Between-cluster connectors.” Unclustered proteins with degree at least 3

that connect to proteins in at least two distinct clusters.

(B) “Within-cluster connectors.” Clustered proteins, at least half of whose

neighbors are outside the protein’s own cluster.

The hypergeometric test was used to compute the overlap between high-insularity

or low-insularity proteins and module connectors to determine the relative roles of

high-insularity and low-insularity proteins in maintaining network connectivity.

Additionally, we used protein betweenness centrality and local clustering coeffi-

cient to evaluate the topological roles of high-insularity and low-insularity proteins.

Betweenness centrality is the fraction of all shortest paths between a pair of nodes

that pass through the node of interest, summed over all pairs of nodes; betweenness

centrality values are normalized to a range of 0–1. Local clustering coefficient is the

number of edges between a protein’s neighbors, compared to the number of such edges

that could possibly exist. Betweenness centrality and local clustering coefficient were

computed using the NetworkX graph analysis package [45].

2.2.4 Functional insularity values of homologs in yeast and

human

We ran the following analysis to investigate the evolutionary conservation of func-

tional insularity. We built a network in which nodes represent human or yeast pro-

teins, and edges represent inter-species homology relationships. We then categorized

the nodes into four groups: human low-insularity, human high-insularity, yeast low-

insularity, and yeast high-insularity. Functional insularity is considered conserved if

there are significantly fewer edges from high-insularity to low-insularity proteins than

expected by chance. To compute P-values for conservation of insularity, the networks

were randomized 1,000 times using the stub-rewiring approach from [23], and the
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number of edges from high-insularity to low-insularity proteins was counted for each

randomization and compared to the number of such edges in the original graph. In

stub-rewiring, the edges of the graph are randomized in a way that preserves the

degree of all nodes; it therefore allows network-based results to be compared to null

distributions generated on random networks, while controlling for the possible effects

of high-degree nodes on the results.

2.2.5 Identification of enriched GO terms in high-insularity

and low-insularity proteins

We used an approach similar to that of GO Termfinder [46] in order to identify GO

terms that are enriched in the sets of high-insularity or low-insularity proteins. For

each term, we obtained a hypergeometric P-value of enrichments and applied a false

discovery rate correction by running 100 trials in which the sets of high-insularity and

low-insularity proteins were randomized. Terms that annotate at least 5% of the high-

insularity or low-insularity proteins with an FDR of less than 0.05 were considered

to be enriched.

2.2.6 Data visualization

Q-Q plots, histograms, Figure 2.8, and the similar figures in the Appendix of this

thesis were generated using the Python graphing library Matplotlib [47]. Q-Q plots

are used to visualize differences in high-insularity vs. low-insularity proteins relative

to a certain measure, e.g., betweenness centrality. They are obtained by plotting the

quantile of one population against the same quantile of the other; if the two popu-

lations have unequal sizes, linear interpolation is used to infer matching percentiles

between the populations. In the Q-Q plots shown in this chapter, the x-coordinate of

a given point represents the value of a given property (e.g., betweenness centrality) in
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Figure 2.1: Distribution of functional insularity scores of all scored proteins in the
yeast PPI network. Low scores indicate low-insularity proteins that connect primar-
ily to unrelated proteins; high scores indicate high-insularity proteins that connect
primarily to related proteins. Proteins with insularity scores to the left of the dashed
line are classified as “low-insularity;” proteins with insularity scores to the right of
the solid line are classified as “high-insularity.”

the set of low-insularity proteins at a given percentile. The y-coordinate of the same

point represents the value of the property in the set of high-insularity proteins at the

same percentile. Thus, if low-insularity and high-insularity proteins tend to have sim-

ilar values of the property, the plotted points will lie on the diagonal. If low-insularity

proteins tend to have higher (respectively, lower) values than high-insularity proteins,

the points will lie below (respectively, above) the diagonal.

2.3 Results and Discussion

2.3.1 Number of scored proteins

The distribution of functional insularity values is shown in Figure 2.1; see Figure A.1

for the equivalent histogram in human. Analysis of the yeast network resulted in

1,119 low-insularity and 1,119 high-insularity proteins, with a total of 3,359 scored
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Figure 2.2: Distribution of functional insularity scores by functional module (A)
and SPICi cluster (B). Functional modules are obtained from [48]. Teal and green
markers indicate the maximum and minimum functional insularity value present in
the module. Black markers and bars indicate the median and interquartile range
of the functional insularity values in the module. There is much variation in the
functional insularities of proteins within a given module, and many modules contain
proteins with functional insularity values significantly above and below those of the
rest of the module.

proteins. In human, 4,809 proteins were scored, for a total of 1,603 low-insularity and

1,603 high-insularity proteins.

2.3.2 Functional modules contain a large range of insularity

values

We used our functional insularity measure to investigate the functional organization

of topological and functional modules. Here, functional modules are defined as pro-

tein sets annotated with a particular GO term from the list of functionally relevant

GO terms presented in [48]. Topological modules are defined as clusters obtained

from a network clustering using SPICi with optimized parameters, as discussed in

Section 2.2.3. We reasoned that there are at least two possible hypotheses regarding
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the connectivity of these modules to the overall network. In one model, intermodule

interactions tend to be diffuse, such that all proteins in a module participate equally

in communicating with extramodular proteins. Alternatively, a subset of the the

proteins in a given module might serve as a physical “interface” to the rest of the

network, performing most of the intermodular interactions, while the other proteins

in the module perform few intermodular interactions.

We used our functional insularity measure to find evidence to distinguish between

these possibilities. Figure 2.2 shows the mean and standard deviation insularity of

GO-derived functional modules and SPICi-derived topological modules, along with

outlier proteins. Many topological and functional modules have a few proteins with

insularity much lower than that of other proteins in the module. As evidenced by their

low insularities, these proteins form more intermodular connections than do the other

proteins in the same module, suggesting that the “interface” model of intermodular

communication is prevalent in the network. This suggests that certain (low-insularity)

proteins in a given module serve to support network connectivity, while other (high-

insularity) proteins in the module serve to support network modularity.

2.3.3 High-insularity and low-insularity proteins play differ-

ent roles in network connectivity

Proteins play different roles in maintaining the overall connectivity of the PPI net-

work. By definition, high-insularity proteins connect mainly to functionally related

proteins; therefore, one might expect them to be primarily responsible for local con-

nectivity within complexes and modules. In contrast, low-insularity proteins might

be expected to provide connectivity between separate modules. We therefore hypoth-

esized that low-insularity proteins play a larger role in maintaining global network

connectivity than do high-insularity proteins.
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Figure 2.3: Illustration of two topological roles expected to be fulfilled by low-
insularity proteins. In the “between-cluster connector” role, an unclustered protein
(black) connects several clusters. In the “within-cluster connector” role, a clustered
protein connects to many proteins outside of its own cluster.

Betweenness centrality and local clustering coefficient. The different topo-

logical roles of low-insularity and high-insularity proteins are supported by compar-

ing their betweenness centrality and local clustering coefficient (LCC) (Figure 2.4).

Betweenness centrality [10] is a global measure of network centrality that takes into

account the entire network structure, rather than the local environment of the protein

in question. As shown by Figure 2.4, the betweenness centrality of each quantile of the

low-insularity proteins is higher than the equivalent quantile of the high-insularity pro-

teins, indicating that low-insularity genes have higher betweenness centrality (mean

8.82× 10−4) than high-insularity genes (mean 3.79× 10−4). Thus, if the PPI network

is seen as a large cellular communication network, then low-insularity proteins are

more important than high-insularity proteins in managing information transmission

throughout the network. Furthermore, low-insularity proteins do not have uniformly

higher degree than high-insularity proteins, suggesting that the betweenness centrality

result may not be due to any correlation between degree and betweenness centrality;

in fact, the partial Spearman correlation of insularity and betweenness given degree

is -0.278, indicating that degree is not a confounding factor.

We note the presence of a small set of high-degree proteins in which low-insularity

members have higher degree than high-insularity members. The rightmost points

in Figure 2.4A fall below the diagonal, indicating that these for these quantiles,
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about 5% of the proteins in the analysis, low-insularity proteins have higher degree

than high-insularity proteins. This is in contrast to the finding that low-insularity

proteins have lower degree than high-insularity proteins overall. In order to confirm

that these proteins were not biasing the above results, we removed them from the

betweenness centrality analysis. The modified set of low-insularity proteins still had

significantly higher betweenness centrality than the modified set of high-insularity

proteins (p = 8.53× 10−4), supporting the robustness of the above result.

In addition, each quantile of low-insularity proteins has lower local clustering co-

efficient (LCC) than the equivalent quantile of high-insularity proteins (Figure 2.4C),

indicating that low-insularity proteins have lower LCC than (mean 0.095) than high-

insularity proteins (mean 0.370). This suggests that low-insularity proteins connect

to multiple topological modules, while high-insularity proteins connect mainly to

proteins in a single module. We found similar results after applying the functional

insularity analysis to a human network (see Section A.1.2).

Effect of targeted node removal on network structure. If low-insularity

proteins connect multiple modules, then one would expect targeted removal of those

proteins to have a strong negative effect on network connectivity. In contrast, one

might expect targeted removal of high-insularity proteins to have a smaller effect on

network connectivity. We tested this by selectively removing proteins in increasing

order of functional insularity (i.e., we removed the most low-insularity proteins first)

and measured the effect on the size of the network’s largest connected component, a

measure of global network connectivity. We compared this to the effects of remov-

ing proteins in decreasing order of functional insularity (i.e., the most high-insularity

proteins first), and to the effects of removing scored proteins in random order. Fig-

ure 2.5A shows that random removals have the greatest effect on network structure

initially; however, as larger numbers of proteins are removed, targeted removal of the

most low-insularity proteins caused a larger decrease in network average clustering
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Figure 2.5: (A) Effect on largest connected component size of removing genes in
order of increasing functional insularity (low-insularity first), decreasing functional
insularity (high-insularity first), and random order of scored proteins. Removing a
sufficiently large number of the most low-insularity proteins has a larger effect on
network connectivity than removing an equal number of the most high-insularity
proteins. (B) Effect of removing the top 50% of low-insularity and high-insularity
proteins compared to a series of trials in which an equal number of random scored
proteins are removed, indicating that low-insularity proteins are more critical to main-
taining network connectivity than high-insularity proteins.

coefficient, as expected. As an additional test, we compared the effect of removing

the 50% of scored proteins with lowest functional insularity, and the 50% of proteins

with highest functional insularity, each at once, to a series of random trials in which

an equal number of randomly chosen proteins were removed; only proteins that could

be given an insularity score were chosen for random removal. Whereas removal of

low-insularity proteins had a larger effect than the random trials, the effect of remov-

ing high-insularity proteins was less than the effect of random removals (Figure 2.5B).

This confirms our hypothesis that low-insularity proteins are more important than

high-insularity proteins in maintaining network connectivity. We found similar results

on a human network (Section A.1.4).

Topological roles of low-insularity proteins. The difference in local clus-

tering coefficient between low-insularity and high-insularity proteins suggests that
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low-insularity proteins might connect to multiple topological modules, while high-

insularity proteins connect mainly to proteins in a single module. In order to test

this hypothesis more directly, we defined two local topological roles that low-insularity

proteins might be expected to fulfill in the PPI network: “within-cluster connectors”

and “between-cluster connectors” (Figure 2.3, Section 2.2.3). These definitions are

purely topological in nature and do not consider protein function, in contrast to our

definition of functional insularity.

We find that when proteins in yeast fulfill the two topological roles, there is

significant overlap with low-insularity proteins and significant lack of overlap with

high-insularity proteins (Figure 2.6). Furthermore, the topological roles cover a large

fraction, 80%, of the low-insularity proteins. Thus, proteins with low functional insu-

larity tend to connect multiple topological modules, whereas high-insularity proteins

are less likely to perform this role and more often connect proteins within the same

topological module. We found similar results using a human network (Section A.1.3).

We note the existence of a small number of high-insularity proteins that fulfill one

of the topological roles. While these proteins connect separate topological modules as

determined by network clustering, their high functional insularity indicates that they

share biological functions with their interaction partners. Thus, these proteins are

“module connectors” in a topological, but not functional, sense. This suggests that

functional insularity is more accurate than purely topological methods for identifying

proteins that connect distinct functional modules.

We repeated the analysis using an alternate clustering algorithm [43, 44] to define

the topological roles and found similar results (Section A.3).
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Figure 2.6: Overlap among the topological roles from Figure 2.3, high-insularity
proteins, and low-insularity proteins. Between-cluster connectors are significantly
enriched in low-insularity genes (p = 5.83×10−22, hypergeometric) and has significant
lack of enrichment with high-insularity genes (p = 9.97 × 10−23). Within-cluster
connectors are also significantly enriched with low-insularity genes (p = 9.70× 10−8)
and has significant lack of enrichment with high-insularity genes (p = 2.00× 10−46).

2.3.4 High-insularity and low-insularity proteins have differ-

ent biological traits

Using the YEASTRACT regulatory network dataset [35, 36], we found that low-

insularity proteins have more regulators than equivalent quantiles of high-insularity

proteins, indicating that low-insularity proteins tend to have more regulators (mean

8.85) than high-insularity proteins (mean 6.56). This suggests that low-insularity

proteins, which tend to connect to multiple modules as shown above, are under the

control of multiple modules’ regulators.
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Figure 2.7: Number of regulators and essentiality for high-insularity and low-
insularity genes. Low-insularity genes have more regulators (p = 2.05 × 10−15,
Wilcoxon rank sum test) and are less likely to be essential than low-insularity genes
(p = 2.48× 10−37, Fisher’s exact test).

High-insularity proteins are significantly more likely to be essential (39.7% essen-

tial) in yeast than low-insularity proteins (15.8% essential) (Figure 2.7). This result,

combined with our finding that high-insularity proteins tend to connect mostly to

proteins within the same module, is consistent with the finding that high-insularity

proteins tend to be crucial members of essential complexes [21], whereas low-insularity

proteins serve to connect different complexes and may not be crucial to maintaining

the structure of any individual complex. We found similar results in a human net-

work, using essentiality of mouse orthologs as a proxy for protein essentiality (see

Section A.1.5).

25



2.3.5 High-insularity and low-insularity proteins are involved

in different biological functions

As suggested by the network topology analysis, high-insularity proteins may serve

as crucial components of protein complexes, allowing specific biological processes to

be efficiently completed. This hypothesis is supported by identifying enriched GO

terms in the set of high-insularity and low-insularity proteins. To accomplish this, we

used an FDR-corrected hypergeometric analysis similar to that of the GO Termfinder

software described in [46]. High-insularity genes are enriched in the following Cel-

lular Component terms, among others, in both human and yeast: “macromolecular

complex,” “intracellular organelle part,” “protein complex,” and “nuclear part” (see

Section A.4 for complete results). These terms suggest that high-insularity proteins

tend to be present in protein complexes and other large cellular structures.

In contrast, low-insularity proteins have no enriched Cellular Component or Molec-

ular Function terms that are shared across human and yeast. Two Biological Process

terms are enriched in both species: “small molecule metabolic process” and “single

organism metabolic process,” suggesting that some low-insularity proteins are en-

zymes. The general lack of term enrichment in low-insularity proteins suggests that

low-insularity proteins fulfill a variety of roles in the cell, and that their roles might

differ across species.

2.3.6 Yeast-human homologs exhibit similar functional insu-

larity values

We investigated the evolutionary relationships between high-insularity and low-

insularity proteins in yeast and human, using the Princeton Protein Orthology

Database (P-POD) [37] to determine evolutionary relationships between proteins.

We created the homology graph structure described in Section 2.2.4, a summary
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Figure 2.8: (A) A summary representation of the graph structure used to determine
the relationship between homology and functional insularity. The network summa-
rized in this figure was created by first removing all proteins other than low-insularity
and high-insularity proteins in human and yeast from the ortho-groups. An edge was
then drawn between every pair of yeast and human proteins in the same ortho-group,
but intraspecies edges were not included. Nodes in the figure represent four pro-
tein categories: yeast high-insularity, human high-insularity, yeast low-insularity, and
human low-insularity proteins. Numbers and node sizes represent the number of
proteins in each category. Edges represent homologous relationships; edge sizes rep-
resent the number of such relationships between proteins in the applicable categories.
(B) Homology relationships between low-insularity and high-insularity proteins are
less common than expected by chance. Each cell contains the number of homology
relationships between two protein categories, followed by the expected number of ho-
mology relationships based on 1,000 stub-rewiring randomizations. Each cell contains
an empirical P-value representing the enrichment or de-enrichment of homologies in
the real network compared to the random networks; red cells represent enrichment
in the real network, and blue cells represent de-enrichment. These results show that
homology relationships between high-insularity and low-insularity proteins are less
common than expected by chance.
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version of which is shown in Figure 2.8. To determine whether or not homologous

proteins are likely to have similar functional insularity values, we counted the number

of edges that occur between low-insularity and high-insularity proteins and computed

P-values by running 1,000 stub-rewired trials (Figure 2.8). The random trials had

significantly more edges between high-insularity and low-insularity proteins than did

the real graph. Therefore, homologous proteins across yeast and human tend to have

similar functional insularity.

We investigated further to determine whether the link between homology and

functional insularity is due primarily to conservation of low-insularity proteins, high-

insularity proteins, or both. To accomplish this, we counted the number of high-to-

high insularity edges and low-to-low insularity edges in the real graph and compared

to the randomizations. As shown by Figure 2.8B, there are more high-to-high and

low-to-low edges than expected by chance, indicating that insularity values of both

low-insularity and high-insularity proteins are conserved across human and yeast.

In addition, there is a strong correlation between the functional insularity scores of

yeast-human homologs (Spearman correlation of 0.540), confirming that homologous

proteins tend to have similar insularities.

2.3.7 Low-insularity proteins decrease quality of network

clustering results

The applications of functional insularity are not limited solely to revealing general

principles of functional organization in PPI networks; it may also be used to improve

the quality of network clustering results. Network clustering is a well-known method

for analysis of large biological networks [49]. Network clustering algorithms are used

for at least two complementary purposes. First, they are used to separate a network

into locally dense subgraphs. Secondly, they are used to identify functional modules

of proteins that physically interact. We determined that the presence of low-insularity
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proteins in a PPI network causes network clustering to perform less reliably at both

of these tasks.

In order to determine the effect of functional insularity on network clustering’s

ability to separate a network into locally dense subgraphs, we ran the graph clus-

tering algorithm SPICi [41] with parameter optimization (see Section 2.2.3) on the

original network and on the network that remained after removing all low-insularity

proteins (one third of the scored proteins), then measured the topological quality of

the resulting clusterings using the modularity measure from [50]. We found that the

clustering of the original network had lower modularity (0.371) than the clustering of

the low-insularity-free network (0.492).

To verify that this result is not due merely to the effect of removing a large number

of proteins from the network, we compared the modularity of the low-insularity-

free clustering to that of 100 networks where an equal number of random scored

proteins had been removed. For these networks we ran SPICi using the optimized

parameters determined using the low-insularity-free network. We found that the

clustering of the networks with random removal had lower modularity (mean 0.370,

standard deviation 1.58×10−2) than the clustering of the low-insularity-free network.

Thus, the presence of low-insularity proteins results in a lower quality topological

clustering of the network. Using MCL [43, 44] rather than SPICi as the clustering

algorithm yielded similar results, as did running the analysis on a human PPI network

(see Section A.3).

In order to determine the effect of functional insularity on network clustering’s

ability to recover known protein functional modules, we used the semantic density

evaluation method described in [49]. The clustering of the low-insularity-free network

scored higher (0.154) than that of the original network (0.105) and the 100 networks

with random node removal (mean 9.06 × 10−2, standard deviation 4.80 × 10−3), in-

dicating that the presence of low-insularity proteins interferes with the ability of
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clustering algorithms to recover known functional modules. Thus, if proteins with

low functional insularity can be identified in a network, researchers might choose to

remove such proteins from the network before running a clustering analysis.

2.3.8 Discussion

Related work has explored the roles played by proteins in organizing network structure

[1]. Initial work focused on attributes of individual proteins, such as degree, and PPI

networks were shown to have power-law degree distributions, in which a small number

of high-degree hubs connect a larger number of low-degree nodes [51]. Significant

previous work has focused on identifying intermodular proteins as connecting separate

modules [27, 52, 53, 50]. Our work adds two key contributions to build on this previous

work.

First, we show that intermodular connector proteins can themselves be within

modules. This is shown by Figure 2.2, which shows the presence of low-insularity

proteins within functional and topological modules. In addition, the significance of

the overlap between low-insularity proteins and “within-cluster connectors” shown in

Figure 2.6 indicates the existence of proteins within topological modules that serve

as interfaces to other modules.

Secondly, our work adds a functional dimension to previous work. A previous

topological study suggested the existence of “module organizer” and “module con-

nector” proteins [27]. In this study, the authors identified proteins located between

network clusters (“connectors”) and proteins that were centrally located within clus-

ters (“organizers”). Our work reveals the existence of “connectors” (low-insularity

proteins) and “organizers” (high-insularity proteins) on a functional as well as topo-

logical level. Our work also provides a functional view of two expression-based stud-

ies [52, 53], which combined PPI network data with gene expression data to identify

two classes of hubs [52] and modules [53] that differ in their expression patterns.
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We note that functional insularity could be applied to protein networks other

than physical interaction networks. For example, [50] identified several topological

roles that metabolites play in metabolic networks; this work could be expanded by

computing functional insularities of proteins in a metabolic network and identifying

differences between high-insularity and low-insularity proteins.

When speciation events occur, the results in Figure 2.8 suggest that pairs of ho-

mologous genes tend to remain both high-insularity or both low-insularity. This may

indicate the presence of an evolutionary pressure for certain genes to retain high or

low functional insularities. As suggested by the biological differences between high-

insularity and low-insularity proteins, the biological requirements of a high-insularity

protein that organizes a macromolecular complex are likely different from those of a

low-insularity protein that serves as an interface among multiple complexes. Once

the required biological traits of a highly high-insularity or low-insularity protein have

evolved, further modification may be evolutionarily infeasible, and homologous pro-

teins may therefore retain similar levels of functional insularity.

Our functional insularity measure has several potential uses. First, functional

insularity has important ramifications for the use of topological clustering-based net-

work analysis [27]. We find that proteins with low functional insularity cause clus-

tering algorithms to produce a less modular network partition and to recover known

functional modules less effectively. Thus, researchers might obtain more useful clus-

tering results by removing low-insularity proteins from the network. In addition, func-

tional insularity allows study of the modularity/connectivity tradeoff on a module-

based level, rather than globally, as required by purely topological techniques such

as betweenness centrality. Finally, functional insularity allows identification of in-

termodular connector proteins in low-betweenness network locations that would be

missed by a purely topology-based identification.
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2.4 Conclusions

We propose that in order to best elucidate the relationships between the functions of

life, PPI networks are best viewed in a functional as well as a topological sense. We

define functional insularity, a local functional/topological measure by which to deter-

mine proteins’ roles in maintaining the functional modularity/connectivity tradeoff.

We also show that proteins very widely in their functional insularity and that low-

insularity and high-insularity proteins differ in biological traits such as essentiality

and regulation. These results suggest the presence of a tradeoff between modularity

and connectivity in PPI networks, with high-insularity proteins supporting network

modularity and low-insularity proteins supporting network connectivity. Studies of

network topology have often been used as a proxy by which to gain insight on the

functional organization of organisms. We suggest that functional organization be

studied directly, through the use of measures such as functional insularity, rather

than indirectly, through the use of purely topology-based measures.
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Chapter 3

Evidence for function acquisition

in human proteins over

evolutionary time

3.1 Introduction

Genomes evolve through changes in their genetic makeup; in addition to changes

in noncoding regions, genes are gained, lost, and mutated over time. New genes

may form via several mechanisms [17, 54, 55], including duplication [14], de novo

creation [56, 57], exon shuffling, retroposition, and gene fusion or fission [17]. When

a gene is created with no sequence similarity to existing genes, it can become the

progenitor to a new ortho-group or gene family, which grows through duplication and

speciation events. New gene families may also be formed when two ancient duplicates

diverge to the point where they no longer have detectable sequence similarity.

In order to understand the mechanisms of evolution, it is necessary to understand

the ways in which the genetic makeup of organisms changes over time. As stated

above, gene gains, losses, and mutations are three important mechanisms that drive
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evolution. There is a large body of previous work investigating gene gain and its

effects on evolution, through both duplication [14, 58, 59, 60, 61, 62] and de novo

creation [18]. In this paper, we aim to study changes in gene function over time, by

identifying functional differences between younger and older genes.

Previous work has identified several functional differences between young and old

genes, largely in yeast. For example, in yeast it has been observed that young genes

tend to have fewer protein-protein physical interactions than older genes in [19, 18].

Previous studies in human have mainly focused on expression and disease. In human,

young genes tend to be expressed in fewer tissues [63], have fewer regulators [64], and

are less likely to be Mendelian disease genes [65] than older genes. The presence of

these functional differences between young and old genes suggests that the functional

properties of genes may change over evolutionary time.

In this paper, we aim to build on the work cited above to identify trends in the

acquisition of new functions by human genes over evolutionary time. We categorize

human proteins into 8 age groups using 12 genomes spanning from human to E. coli.

Here, we take several views of functional integration, including protein sequence and

structure [66], protein-protein physical interactions, and gene expression. We find

systematic differences in the functional properties of young vs. old genes. First, we

find that younger genes in human have shorter sequence length than older genes,

and that younger genes have fewer unique domains than older genes. Second, we find

that younger human genes participate in fewer protein-protein interactions than older

genes. Third, we find that human genes tend to interact mainly with similar-aged

genes, extending the result found in yeast [18]. Fourth, we find that younger genes

are less likely to be essential than older genes. Finally, we identify differences in the

expression of young and old human genes. We confirm that older genes are expressed

in more tissues than younger genes, but we also show that younger pairs of paralogs

are more coexpressed and share more regulators than older pairs of paralogs.
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The results found in this paper and in previous work suggest that the functional

characteristics of genes change over time. An alternative explanation for these results

is that older genes are involved in biological processes that require different functional

characteristics (e.g., physical interactions, expression patterns, etc.) from those re-

quired by the biological processes typically carried out by other genes. In order to

distinguish between these alternatives, we extended the previous work by incorporat-

ing a new type of analysis, in which we investigate the functional features of young

vs. old genes involved in specific biological processes. With few exceptions, the re-

sults shown in this paper hold for specific biological processes as well as in aggregate,

suggesting that genes change their functional characteristics over time.

3.2 Methods

3.2.1 Gene families

Gene homology data were obtained from the Princeton Protein Orthology Database

(P-POD) [67]. This dataset contains non-overlapping sets of evolutionarily related

proteins called “ortho-groups.” A set of duplicate genes, or paralogs, was needed for

several of the analyses in this chapter; for this, we used the list of paralogs provided

by P-POD. This list contains pairs of paralogs; both genes in each pair are members

of the same ortho-group. Several PPOD datasets are available; we used the “naive

ensemble” dataset of PPOD version 4.
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3.2.2 Determining the age of gene families

Figure 3.1: (A) The species tree and age groups used to infer gene age using the
Dollo Parsimony Principle. Species abbreviations are as follows: EC–Escherichia coli,
AT–Arabidopsis thaliana, DD–Dictyostelium discoideum, SC–Saccharomyces cere-
visiae, SP–Schizosaccharomyces pombe, CE–Caenorhabditis elegans, DM–Drosophila
melanogaster, DR–Danio rerio, GG–Gallus gallus, MM–Mus musculus, RN–Rattus
norvegicus, HS–Homo sapiens. (B)Example computation of the age of an ortho-
group using the Dollo parsimony principle. The ortho-group contains genes from
mouse, rat, zebrafish, and human. By the Dollo parsimony principle, only one gene
gain event is allowed per ortho-group. Thus, the most parsimonious solution is for
the initial formation of the ancestral gene to occur 300-400 MYA (millions of years
ago), between the divergences of yeast and fly. Because there is no chicken gene in the
ortho-group, a gene loss event must be assigned to the diverged chicken branch of the
species tree. The initial formation event cannot be assigned to occur any earlier than
300-400 MYA, because then a second gene gain event would be required to explain
the presence of the zebrafish gene in the ortho-group. Nor can the initial formation
event be assigned to occur any later than 300-400 MYA, because these solutions would
require more than one loss event and are therefore less parsimonious than the chosen
solution. Thus, the ortho-group is assigned to the 300-400 MYA age group.
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We used a maximum parsimony analysis, based on the Dollo parsimony princi-

ple [68], of the homology data to classify genes into one of 8 age groups (see Figure 3.1).

In a maximum parsimony analysis, a set of evolutionarily related genes (e.g., a PPOD

ortho-group) is compared to an existing species tree showing known evolutionary re-

lationships among species. In our analysis, we used the species tree from the NCBI

Taxonomy database [69] and labeled the internal nodes of the tree with approximate

timepoint data from the TimeTree database [70]. The set of species with genes in

the ortho-group is compared to the topological structure of the species tree in order

to determine the origin point of the ortho-group on the species tree that implies the

lowest possible number of gene loss events. Our analysis is similar to the gene age

prediction functionality of the ProteinHistorian program [71].

3.2.3 Determining the age of duplication events

It is also possible to use maximum parsimony to determine the age groups of individual

duplication events in an ortho-group’s evolutionary history. To accomplish this, we

used the reconstructed evolutionary history trees of the ortho-groups; this data is

generated by the NOTUNG program [72] and provided with PPOD. Specifically, a

tree is provided for each ortho-group, in which leaves represent the ortho-group’s

genes and internal nodes represent speciation or duplication events. To compute the

age group of internal duplication nodes, we ran the maximum parsimony analysis on

the set of genes in the subtree of the duplication node in question.

3.2.4 Defining the age of genes and paralogs

After calculating the ages of ortho-groups and duplication events, we then defined

two metrics for gene age, each of which can be applied to individual genes or to pairs

of paralogous genes. First, family age is defined as the age of a gene’s ortho-group.

Note that for a pair of paralogs, both genes must be part of the same ortho-group and
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therefore have the same family age. Secondly, for genes that have at least one paralog,

duplication age is defined as the age of a gene’s most recent ancestral duplication

event in its ortho-group’s phylogenetic tree reconstruction (i.e., the age of the gene’s

lowest ancestor node that represents a duplication event, not a speciation event).

Duplication age of a pair of paralogs is defined as the age of their lowest common

ancestor node in the ortho-group’s phylogenetic tree; note that the lowest common

ancestor node must be a duplication event, not a speciation event. Genes without

paralogs have no ancestral duplication event, so their duplication age is defined to be

equal to their family age.

In the analysis of paralog coexpression and regulator overlap, the original age

groups were condensed to five coarser age groups in order to obtain a larger sample

size for each age group. The original age groups were merged as follows:

• Condensed age group A consists of original age groups 0 to 2 (amniotes).

• Condensed age group B consists of original age group 3 (bony vertebrates).

• Condensed age group C consists of original age groups 4 and 5 (opisthokonts;

ancestor of metazoa and fungi).

• Condensed age group D consists of original age group 6 (eukaryotes).

• Condensed age group E consists of original age group 7 (cellular life).

3.2.5 Expression data

Human expression data from Su et. al [73] were downloaded from the Gene Expression

Omnibus [74, 75]. This dataset contains 79 tissues, each of which has 2 biological

replicates. Moreover, a given gene may be detected by more than one probeset;

therefore, there are multiple expression values for a given gene in a given tissue. To

obtain a consensus expression value for each gene in each tissue, we first computed
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the average of all probeset expression values for each biological replicate, thereby

obtaining one value for each replicate. We then averaged the biological replicates to

obtain the final expression value of a given gene in a given tissue.

The Spearman rank correlation coefficient was used to compute coexpression be-

tween genes. However, before computing the correlation, the gene expression values

in each tissue were normalized, so that all tissues had the same mean and standard

deviation of expression values. This was done in order to control for tissues that

display systematically high or low gene expression.

For the analysis of gene expression ubiquity, we defined a binary metric for whether

or not a gene is expressed in a given tissue. For this, we used a simple threshold value

of 200, as was used in previous work [76]. If a gene’s non-normalized consensus

expression value in a given tissue is greater than 200, the gene is considered to be

expressed in that tissue; otherwise, it is considered to be absent.

3.2.6 Other data

Human protein-protein interaction data was obtained from BioGRID [77, 78].

All evidence types indicative of a physical interaction were considered: “affinity

capture–luminescence,” “affinity capture–MS,” “affinity capture–RNA,” “affinity

capture–Western,” “biochemical activity,” “co-crystal structure,” “co-fractionation,”

“co-localization,” “co-purification,” “far Western,” “FRET,” “PCA,” “Protein-

peptide,” “protein-RNA,” “proximity label–MS,” “reconstituted complex,” and

“two-hybrid.” The 1% of proteins with highest degree were removed from the

network in order to address the presence of “sticky” proteins that seem to interact

with many other proteins due to experimental artifacts. Network data were processed

using the NetworkX graph analysis package [45].

Human regulatory network data was obtained from Gerstein, et. al [79]; the

“Enets2 proximal filtered” network was used. This network contains promoter-
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proximal regulatory interactions, filtered to avoid false positives using a probabilistic

model. In this network, nodes represent transcription factors and targets, and the

presence of a directed edge from a transcription factor to a target indicates that the

transcription factor binds upstream of the target’s promoter.

Human gene essentiality data were inferred by mapping human genes to their

mouse orthologs. If a human gene has an essential mouse ortholog, it is considered to

be essential; if it has a dispensable mouse ortholog, it is considered to be dispensable.

Essentiality of mouse genes was obtained from MGI [80].

Protein disorder data were produced by running the IUPred [81, 82] disorder

prediction program on the amino acid sequence of every human protein; the “long”

disorder prediction option was used. IUPred outputs a predicted disorder between 0

and 1 for each residue. We considered all residues with score greater than or equal to

0.5 to be disordered, which results in approximately 26% of all residues in the human

proteome being classified as disordered. We defined the final disorder score of each

protein as the fraction of disordered residues in the protein’s sequence.

Human protein sequence data were obtained from Ensembl [83]. In order to

determine the number of unique domains in human proteins, PFAM [66] domain

predictions were run on the human protein sequences. Repeated domains in a given

protein were only counted once, as additional copies of the same domain presumably

do not add new functionality to the protein.

Spearman rank correlations between gene age and various characteristics (number

of PPI interactions, sequence length, etc.) were computed. Empirical P-values were

obtained by running 1,000 random trials, in which Spearman rank correlations were

computed after randomly shuffling the gene age values. Partial Spearman correlations

and P-values of various characteristics vs. family age given duplication age (and vice

versa) were computed using the R statistical software package [84].
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3.2.7 Figures

Figures displaying mean and standard deviation of various protein characteristics,

as well as the table from Figure 3.5, were generated with the Matplotlib graphing

package for Python [47]. To create the plots in part B of Figures 3.2, 3.3, 3.4, 3.6 3.7,

and 3.8, we first filtered the generic Gene Ontology slim to include only terms that

annotate at least one protein from each age group. We computed the Spearman

correlation between age and the feature in question for the sets of proteins annotated

with each term. We then arranged the terms in the generic GO slim in decreasing

order of Spearman correlation and plotted each term’s correlation.

3.3 Results

In order to investigate the means by which human genes acquire functions and in-

tegrate into cellular networks, we investigated several function-related gene traits,

including sequence length, domain counts, protein-protein interactions, and expres-

sion data, and tested for correlation with gene age. We computed age groups for

human genes using the Dollo parsimony principle [85] as described in Section 3.2.4.

There are several possible definitions for age of a gene, including “family age” and

“duplication age” (see Section 3.2.4). For the results described below, we used family

age as our definition of gene age for both individual genes and pairs of paralogs. After

running the maximum parsimony analysis described in Section 3.2.2, human genes

were assigned to the age groups shown in Figure 3.1.

3.3.1 Sequence and structure properties of young vs. old

genes

As a first step in investigating function acquisition over time, we investigated the

relationship between protein sequence length and unique domain count with age.
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Because protein structure (and therefore function) is determined by its sequence,

features such as sequence length can be informative in regards to protein function.

In particular, sequence length places a physical constraint on the number of domains

a protein may contain. Protein domains are structural protein subunits that perform

specific functions; thus, a protein’s function is determined by the set of domains it

contains. Features such as unique domain count are therefore informative as to the

number and complexity of functions that may be performed by a protein. In addition,

we also investigated the relationship between age and protein disorder, a structural

feature which has been implicated in cellular organization and recruitment of binding

partners [86]. Disordered regions in a protein are amino acid subsequences that do

not form a unique three-dimensional structure in vivo [86], existing instead as random

coil or adopting a variety of different conformations.

Younger genes have shorter sequence length and fewer domains than

older genes. In order to investigate the reasons for the difference in degree between

older and younger genes, we identified differences in sequence length and domain

count between older and younger genes. We found that younger genes tend to have

shorter protein sequence length and fewer unique domains than older genes, although

they do not have fewer domains than older genes if repeated domains are counted

(Figures 3.2A and 3.2C). There is a slight reversal of the trend in the oldest age

groups; however, the overall correlations between gene age and sequence length, and

between gene age and unique domain count, remain positive.

In addition, we investigated the correlation of gene age vs. unique domain count

and sequence length for individual Gene Ontology [33] Biological Process (BP) terms,

using the Gene Ontology Generic Slim term set. For each of the 70 terms in the set,

we computed the Spearman correlation between gene age and domain count (as well

as sequence length). We found that most gene sets annotated with an given slim term

show a positive correlation between gene age and domain count, as well as gene age
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Figure 3.2: (A) Older genes tend to have longer sequence length than younger genes
(Spearman correlation 0.167; p < 0.001). (B) Spearman correlations between age
and sequence length of individual GO terms tend to be positive. (C) Older genes
tend to have more unique domains than younger genes (Spearman correlation 0.079;
p < 0.001). (D) Spearman correlations between age and unique domain count of
individual GO terms tend to be positive.

and sequence length, indicating that the aggregate correlations seen in parts A and

C of Figure 3.2 also hold for individual biological functions (Figures 3.2B and 3.2D).

Young genes have more structural disorder than old genes. We predicted

structural disorder for human genes using IUPred [81, 82] and found that younger

genes tend to have more structural disorder than older genes (Figure 3.3). In addition,

the negative correlation between disorder and age holds for individual biological func-

tions as well (Figure 3.3B). This suggests that younger genes are initially formed with

little structure, and that they form more structured domains as they gain biological

functions over time.
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Figure 3.3: (A) Younger genes have more structural disorder than older genes (Spear-
man correlation -0.150, p < 0.001). (B) The Spearman correlations of gene age vs.
disorder of individual GO terms tend to be negative.

3.3.2 Physical interactions of young and old genes

Proteins rarely function in isolation; they often physically interact with other proteins

in order to fulfill their functions. Together, these interactions combine to form a large

protein-protein interaction network (PPI network) [78] with tens of thousands of

interactions. In order to further investigate protein function acquisition, we measured

the integration of young and old proteins in the human PPI network in two ways.

First, we determined the average number of physical interactions in which young

and old proteins participate. Secondly, we investigated the enrichment of physical

interactions within and between individual protein age groups.

Younger genes have fewer protein-protein interactions than older genes.

For each age group, we computed the distribution of protein-protein interaction count

of proteins in the age group. As shown in Figure 3.4A, younger genes tend to have

fewer protein-protein interactions than older genes; a similar result was found in yeast

by previous work [18, 87]. We note a reversal of the trend in the oldest age group,

but there is an overall positive correlation between gene age and interaction count. In
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Figure 3.4: (A)Younger genes tend to have fewer protein-protein interactions than
older genes (Spearman correlation of gene age group vs. interaction count 0.093,
p < 0.001). (B) The Spearman correlations of gene age vs. number of protein-protein
interactions of individual GO terms tend to be positive.

addition, the correlation between protein-protein interaction count and age holds for

individual biological functions (Figure 3.4B). Because proteins domains can provide

interfaces by which to interact with another protein [88], the presence of more unique

domains in older proteins might explain the higher interaction count of older proteins.

Genes of similar age physically interact often. If proteins gradually acquire

physical interactions over time, this integration into the PPI network could occur in

several ways. Young proteins might tend to form interactions primarily with older

proteins, therefore integrating mainly into existing functional modules. Alternatively,

younger proteins might tend to form interactions primarily among themselves. We

tested for evidence of these alternatives by investigating the degree to which proteins

interact with other proteins of similar age. For this analysis, we counted the number

of protein-protein interactions within and between the age groups. We then compared

this result to a series of random trials run on stub-rewired [23] randomizations of the

PPI network to determine significance of the edge counts. As shown in Figure 3.5,
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Figure 3.5: Genes from similar age groups tend to physically interact more often than
expected by chance. This table contains empirical p-values indicating enrichment or
de-enrichment of protein-protein interactions between and within the different age
groups. P-values were obtained by running stub-rewiring randomizations of the orig-
inal PPI network. Each cell indicates the number of actual edges found between
the indicated age groups, and the expected number of such edges based on random-
ized trials. Red cells indicates presence of significantly more edges than expected;
blue indicates the presence of significantly fewer edges than expected. Parenthesized
numbers in edge cells indicate the number of proteins in the PPI network that are cat-
egorized into each age group. Red cells tend to be near the table’s diagonal, indicating
enrichment of physical interactions between similar-aged genes.
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Figure 3.6: (A) Older genes are more likely to be essential than younger genes
(Spearman correlation of gene age group vs. essentiality 0.155, p < 0.001). Here,
essentiality is interpreted as a binary number, with 0 indicating that a gene is dis-
pensable and 1 indicating that it is essential. The mean and standard deviation of
the essentiality of each age group is plotted. (B) The Spearman correlations of gene
age vs. essentiality of individual GO terms tend to be positive.

we found that proteins tend to interact with similar-aged proteins more often than

expected by chance.

3.3.3 Essentiality of young and old genes

We computed the average essentiality of each age group, using essentiality of mouse

orthologs as a proxy for essentiality of human genes (see Section 3.2.6). In this

analysis, dispensable genes were assigned a value of zero, and essential genes were

assigned a value of 1; the mean and standard deviation of these values are displayed

for each age group in Figure 3.6A. As shown in Figure 3.6, older genes are more

likely to be essential than younger genes. The trend reverses in the two oldest age

groups; however, it is still the case that older genes are more likely to be essential

than younger genes overall, and this is true of individual biological functions as well

(Figure 3.6B).
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Figure 3.7: (A) Older genes have higher expression ubiquity than younger genes
(Spearman correlation of gene age group vs. ubiquity 0.192, p < 0.001). (B) The
Spearman correlations of age vs. ubiquity of individual GO terms tend to be positive.

3.3.4 Expression of young and old genes and paralogs

In addition to investigating the relationships of sequence, structure, and physical in-

teractions to gene age, we also investigated three properties related to gene expression:

expression ubiquity, coexpression of paralogs, and shared regulators between paralogs.

Ubiquity, the fraction of tested tissues in which a protein is expressed, is informative

with regard to gene function because a protein can only perform its function where it

is expressed. Similarly, coexpression is informative when comparing the functions of

two related genes. Because gene regulation is an important factor in determining gene

expression patterns, regulator data can provide insight into expression patterns and

gene function. We observed correlations between gene age and these three properties.

Older genes are expressed in more tissues than younger genes. We

computed the ubiquity of human genes as described in Section 3.2.5 and plotted the

ubiquity distribution of the different age groups. As shown in Figure 3.7A, we found

that younger genes tend to be less ubiquitous (i.e., more tissue specific) than older

genes, meaning that younger genes are expressed in fewer tissues than older genes.
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Figure 3.8: (A) Younger pairs of paralogs have higher coexpression than older pairs of
paralogs (Spearman correlation of paralog pair age group vs. pair coexpression -0.182,
p < 0.001). (B) Younger pairs of paralogs tend to share more common regulators
than older pairs of paralogs (Spearman correlation of ortho-group age vs. Jaccard
coefficient of the two sets of regulators for each gene: -0.262, p < 0.001).

In addition, the sets of genes annotated with individual GO Biological Process terms

tend to show positive correlations between age and ubiquity (Figure 3.7B).

Younger pairs of paralogs are more coexpressed and share more regula-

tors than older pairs. The expression patterns of pairs of paralogs can be used to

investigate the change in gene function over time. Gene duplication has been impli-

cated as a driving factor in the acquisition of new functions over time [89, 90, 91]. Two

potential mechanisms for this process are neofunctionalization, in which a duplicated

gene evolves a function distinct from that of the original gene, and subfunctional-

ization, in which duplicate genes split the function or functions of the original gene.

In both of these mechanisms, the functions, and therefore presumably the expression

patterns, of the two genes diverge.

In order to find evidence of the functional divergence of paralogs over time, we

computed the coexpression of pairs of paralogs as described in Section 3.2.5, then

plotted these coexpression values against the age groups of the paralog pairs (both
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Characteristic vs. family age given dupli-
cation age

vs. duplication age given
family age

PPI interactions 0.066 (p = 1.00× 10−7) 0.024 (p = 0.054)
Sequence length 0.070 (p = 4.52× 10−20) 0.097 (p = 2.69× 10−37)
Unique domains 0.065 (p = 6.74× 10−15) -0.003 (p = 0.738)
Ubiquity 0.155 (p = 2.62× 10−60) 0.006 (p = 0.537)
Essentiality 0.082 (p = 5.42× 10−7) 0.086 (p = 1.48× 10−7)
Disorder -0.158 (p = 1.29× 10−97) 0.067 (p = 1.91× 10−18)
Paralog coexpression -0.110 (p = 6.05× 10−29) -0.053 (p = 6.84× 10−8)
Paralog regulators -0.064 (p = 0.002) -0.279 (p = 1.30× 10−44)

Table 3.1: Partial correlations and p-values for the eight functional characteristics
investigated in this paper vs. family age given duplication age, and vs. duplication
age given family age.

genes involved in a paralogy relationship have the same age, because they belong to

the same gene family). In this analysis, we condensed the 8 original age groups into

5 larger groups in order to increase the sample size of each group (see Section 3.2.4).

As shown in figure 3.8A, younger pairs of paralogs tend to be more coexpressed than

older pairs.

Because gene expression is controlled mainly by gene regulation, expression differ-

ences between two genes could be explained by regulatory differences. Therefore, in

order to determine the reason for the decrease in paralog coexpression with age, we

computed the Jaccard overlap of regulators for each pair of paralogs as described in

Section 3.2.6, then plotted the overlap distribution for each age group. As shown in

figure 3.8B, younger pairs of paralogs tend to have more regulators in common than

older pairs.

3.3.5 Function acquisition as a function of family age vs. du-

plication age

Throughout this chapter, age of a gene or pair of genes has been defined as the es-

timated time range at which the gene’s ortho-group originated, based on application

of the Dollo Parsimony Principle to the ortho-group in question. This is a reason-
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able definition of gene age with respect to function acquisition because genes will

continually evolve, diverging from the family’s initial ancestor gene.

However, family age is not the only possible definition of a gene’s age. New genes

within a family are formed by duplication events, which can also be dated using a

method similar to that used to date entire gene families. Thus, age of a single gene

can be defined as the estimated time range of its most recent duplication event, and

age of a pair of paralogs can be defined as the estimated time range of their source

duplication event (see Section 3.2.4). Defining age in this manner allows functional

changes inherited from ancestral genes in the ortho-group to be distinguished from

functional changes that occurred since the genesis (through duplication) of an indi-

vidual gene. When studying the functional divergence of a pair of paralogs, we can

determine whether the extent of divergence is more dependent on age of the family,

or on the time since the actual divergence event of the two genes.

In order to answer these questions, we attempted to determine whether family age

or duplication age is more correlated with the views of function acquisition used in the

above analyses. One difficulty in this investigation is that family age and duplication

age are correlated, because family age must be greater than or equal to duplication

age. Thus, it is necessary to remove the effect of this correlation when computing

correlations between a particular definition of gene age vs. a view of gene function. In

order to accomplish this, we used a partial correlation analysis (Table 3.1). We found

that family age is the most important factor for number of interactions, number of

unique domains, disorder, ubiquity, and coexpression of paralogs, but that duplication

age was the most important factor for sequence length and paralog regulator overlap.

We found essentiality to be equally correlated with duplication age and family age.

We found that number of protein-protein interactions, domain count, and ubiquity

were correlated only with family age (after controlling for duplication age); there was

no significant correlation with duplication age after controlling for the effects of family
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age. This indicates that genes from more ancient families tend to be more ubiquitous,

have more domains, and have more protein-protein interactions than genes from more

recent families, regardless of the time of their most recent duplication event.

In contrast, we found that sequence length and essentiality are correlated with

both family age (after controlling for duplication age) and duplication age (after

controlling for family age). Thus, this suggests that while gene families as a whole

become more essential and increase in sequence length over time, these changes also

occur in individual duplicate genes. In particular, genes with a recent ancestral

duplication event are less likely to be essential than genes with an ancient duplication

event.

We found that the coexpression of paralogs is correlated both with family age and

duplication age. The correlation with duplication age indicates that paralogs origi-

nating from more ancient duplication events tend to have more diverged expression,

suggesting that divergence of paralog expression occurs gradually over time after the

source duplication event. This may suggest the presence of neofunctionalization or

subfunctionalization. The correlation with family age, even after controlling for du-

plication age, indicates that paralogs from older families tend to have more diverged

expression, regardless of the time of their source duplication event.

We found that the degree of regulator overlap for paralogs is correlated with

both family and duplication age, but the correlation is much more significant for

duplication age (after controlling for the effect of family age). This indicates that

regulatory divergence of paralog pairs is mainly a function of the time elapsed since

divergence from their root duplication event, suggesting that the regulators of paralog

pairs diverge gradually over time after their source duplication event.
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3.4 Discussion

We have shown that various functional features of genes are correlated with gene age.

This suggests at least two hypotheses relating to function acquisition. First, the func-

tional feature in question (e.g., sequence length), might change in individual proteins

over evolutionary time. Younger proteins have shorter sequence length than older

proteins, suggesting that newly formed proteins might tend to have short sequences

that increase in length over time. Alternatively, it may be the case that the functional

feature in question does not change in individual proteins, and that older proteins

were initially formed with different functional features than younger proteins. The

positive correlation of sequence length with age could also be due to older proteins

performing functions that require longer sequence lengths, while younger proteins

perform functions that require shorter sequence lengths. In this model, the sequence

lengths of individual proteins do not change over evolutionary time.

In order to distinguish between these two hypotheses, we investigated the corre-

lation between the various functional features and gene age for individual functional

modules. If the first hypothesis were true, we would expect to find similar correla-

tions within individual functional modules as we did for all genes in aggregate. If

the second hypothesis were true, we would expect the driving factor in the aggregate

age-feature correlation to be the function that the gene performs. In the case of se-

quence length, we would expect functional modules that perform ancient functions

(such as DNA replication) to contain genes with longer sequence length than younger

functional modules; thus, we would not expect to find significant age–sequence length

correlation within most functional modules.

As shown by part B of Figures 3.2, 3.3, 3.4, 3.6, 3.7, and 3.8, we found that

the feature–age correlations within individual functional modules recapitulate the

aggregate correlations found in part A of those figures, supporting the first hypothesis.

This suggests that the sequence length, domain count, protein interaction count,
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and expression ubiquity of individual genes may evolve over the large evolutionary

timescales investigated in this chapter.

We found two key results that are informative with regards to the evolution of

protein-protein interaction networks (Figure 3.4 and Table 3.1). First, young pro-

teins tend to participate in fewer physical interactions than older proteins. Secondly,

proteins tend to interact mainly with other proteins of similar age. These results

suggest a hypothesis for the addition of new functional modules to the PPI network.

Initially, newly formed groups of young proteins may participate in few physical in-

teractions. Over time, a group of young proteins might begin to interact and perform

a new function, adding a new functional module to the existing PPI network. In

this interpretation, these groups form modules in both a topological and functional

sense; they both interact more with each other than with the rest of the network, and

they cooperate to perform shared or similar functions. The data shown in Figure 3.5

support this hypothesis over the alternative model, in which young proteins tend to

interact primarily with older, existing modules.

If the increase in degree with age is interpreted to indicate that proteins acquire

interactions over time, the increase in sequence length and domain count with age

suggests a mechanism for this gradual integration into the PPI network. Upon initial

formation, new proteins might have few functions, few domains, and a relatively

short sequence. Over time, mutations might occur to add sequence, and eventually

entire domains, to these proteins. The new domains may then allow the proteins to

perform new functions and physically interact with functionally related protein. In

this way, younger genes might acquire more domains and physical interactions as they

functionally integrate into the cellular network over time.

We found that younger genes tend to have lower expression ubiquity than older

genes (Figure 3.7). From the perspective of function acquisition, one possible interpre-

tation of this result is that younger genes have few functions upon initial formation,
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and therefore are not expressed in many tissues, because they are not needed in those

tissues. Over time, they may gain new functions in certain tissues and therefore

become expressed in those tissues.

We found that younger pairs of paralogs are more coexpressed and share more

regulators than older pairs. This suggests the following hypothesis regarding the

functional divergence of paralogs. Immediately after a duplication event, the two

duplicates have identical sequences and regulatory regions; they therefore have equiv-

alent functions and are expressed in the same tissues. Over time, their regulatory

regions diverge, so that they have fewer regulators in common, and their expression

patterns therefore diverge as well. During this process, the two genes begin to perform

different functions in different tissues. This hypothesis suggests that neofunctional-

ization and subfunctionalization occur over time.

3.5 Conclusions

Organisms have generally evolved to become more complex over evolutionary time;

while addition of genomic material is one mechanism for this increase in complexity,

individual genes are generally believed to evolve over time as well. In this chapter,

we have categorized genes into 8 age groups and shown that there are consistent

differences between younger and older genes with respect to several functional features

of proteins. Together, these findings suggest a model of function acquisition in which

young genes gradually integrate into the organism’s protein interaction network over

time, while they concurrently add domains and become expressed in more tissues. In

addition, our results suggest that new duplicates gradually diverge in expression over

time, and that this divergence might be produced by changes in regulators over time.
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Chapter 4

Conclusion

In this thesis, we presented a metric, functional insularity, that quantifies the degree

to which a protein physically interacts with functionally similar proteins. By tak-

ing a functional perspective of PPI networks, we were able to reveal the presence of

a modularity/connectivity tradeoff and showed that intermodular proteins can ex-

ist within network modules. We found that PPI networks as a whole, as well as

individual topological and functional modules, contain proteins with a wide range

of functional insularity values. We found that low-insularity proteins have different

biological properties from high-insularity proteins and that functional insularity is

conserved across homologous genes in human and yeast. We also determined that

the presence of low-insularity proteins in the PPI network can decrease the ability

of graph clustering algorithms to identify biologically meaningful network modules,

suggesting a possible application of functional insularity in network pre-processing

before running a clustering analysis.

In the second part of this thesis, we took a dynamic view of protein function and

PPI network structure over time by quantifying the age of human proteins and de-

termining trends in various function-related features for each age group. We found

evidence suggesting that proteins acquire functions gradually over time, adding do-
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mains and physical interactions, and becoming expressed in more tissues over time.

We also found evidence suggesting that gene duplicates diverge in expression, and

presumably function, over time, and that this divergence may be driven by changes

in the regulation of the duplicates over time. In addition, we found that proteins tend

to interact mainly with other proteins of similar age, suggesting a possible model of

PPI network evolution, in which young proteins begin to interact with other young

proteins, creating new functional modules that gradually integrate into the PPI net-

work.

Protein-protein interaction networks may be seen as the “wiring” by which infor-

mation is transmitted through cells. In addition, along with other cellular networks,

they may be seen as the functional network of the cell. Thus, understanding their

structure is crucial to understanding the mechanisms by which life operates. However,

PPI networks, as well as other types of biological data such as genome sequences, can

be difficult to interpret due to the large size of the datasets. The methodologies and

results presented in this thesis illustrate that techniques from computer science can

be applied to these data in order to further elucidate principles of the structure and

evolution of protein-protein interaction networks, enabling further understanding of

the relationships among the functions of life.
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Appendix A

Functional insularity results with

alternate datasets

A.1 Alternate Network Results

A.1.1 Network statistics

133 high-degree nodes were removed from the human Biogrid network, with degrees

ranging from 108 to 8,959. Analysis resulted in in 1,603 low-insularity and 1,603

high-insularity proteins, with a total of 4,809 scored proteins.

45 high-degree nodes were removed from the yeast HINT Combined network, with

degrees ranging from 65 to 737. Analysis resulted in 766 low-insularity and 766 high-

insularity proteins, with a total of 2,300 scored proteins.

68 high-degree nodes were removed from the human HINT Combined network,

with degrees ranging from 58 to 333. Analysis resulted in 736 low-insularity and 736

high-insularity proteins, with a total of 2,210 scored proteins.
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Figure A.1: Distribution of functional insularity scores of all scored proteins in the
human BioGRID, yeast HINT Combined, and human HINT Combined networks.
Proteins with scores to the left of the dashed line were classified as low-insularity;
proteins with scores to the right of the solid line were classified as high-insularity.
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A.1.2 Topological Measures

In the human BioGRID network, low-insularity proteins have lower degree (mean

10.3737) than high-insularity proteins (mean 13.238927), p = 1.25558e-22, and low-

insularity proteins have lower local clustering coefficient (mean 0.0882532) than high-

insularity proteins (mean 0.213403), p = 1.59834e-110. The difference in betweenness

centrality between high-insularity and low-insularity proteins is statistically insignif-

icant; however, the partial correlation of betweenness and insularity given degree is

-0.191978. This indicates that, after controlling for degree, there is a negative cor-

relation between betweenness and insularity, as found in the other networks. The

discrepancy is likely due to the fact that low-insularity proteins have significantly

lower degree than high-insularity proteins; given the positive correlation between de-

gree and essentiality, this confounds the trend of low-insularity proteins tending to

have higher betweenness centrality than high-insularity proteins.

In the yeast HINT Combined network, low-insularity proteins have lower degree

(mean 10.3329) than high-insularity proteins (mean 11.304178), p = 1.61849e-08.

Low-insularity proteins have higher betweenness centrality (mean 0.00171632) than

high-insularity proteins (mean 0.000716), p = 3.83494e-22. The effect holds if the top

5% of high-degree proteins are removed: p = 3.305e-24. Low-insularity proteins have

lower local clustering coefficient (mean 0.112094) than high-insularity proteins (mean

0.481805), p = 4.17959e-138. The partial correlation of betweenness and insularity

given degree is -0.393677.

In the human HINT Combined network, low-insularity proteins have lower de-

gree (mean 7.61413) than high-insularity proteins (mean 8.570652), p = 3.19192e-07.

Low-insularity proteins have slightly higher betweenness centrality (mean 0.00114638)

than high-insularity proteins (mean 0.001025); while this result is not statistically sig-

nificant (p = 0.104022), the general trend of low-insularity proteins having higher be-

tweenness centrality matches that seen in other networks . The effect holds if the top
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5% of high-degree proteins are removed, but it is still not statistically significant: p

= 0.0930863. Nonetheless, the partial correlation of betweenness and insularity given

degree is -0.206513, indicating that after controlling for the effects of degree, there

is a negative correlation between betweenness centrality and functional insularity,

matching the trend seen in other networks. Low-insularity proteins have lower local

clustering coefficient (mean 0.0580448) than high-insularity proteins (mean 0.212471),

p = 8.90233e-72.

Figure A.2: Degree of low-insularity and high-insularity proteins in alternate net-
works.
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Figure A.3: Betweenness centrality of low-insularity and high-insularity proteins in
alternate networks.
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Figure A.4: Local clustering coefficient of low-insularity and high-insularity proteins
in alternate networks.

A.1.3 Topological Protein Roles

In the human BioGRID network, low-insularity genes overlapped significantly with

between-cluster connectors (p = 1.91407e-08) and within-cluster connectors (p =

0.0334395). High-insularity genes were significantly unenriched in between-cluster

connectors (p = 3.4105e-16) and within-cluster connectors (p = 1.97445e-08).

70.804741% of the low-insularity proteins are covered by the two topological roles.
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In the yeast HINT Combined network, low-insularity genes overlapped signifi-

cantly with between-cluster connectors (p = 3.22373e-14) and within-cluster con-

nectors (p = 7.37317e-16). High-insularity genes were significantly unenriched in

between-cluster connectors (p = 3.45762e-13) and within-cluster connectors (p =

2.15748e-24). 56.527415% of the low-insularity proteins are covered by the two topo-

logical roles.

In the human HINT Combined network, low-insularity genes overlapped signif-

icantly with between-cluster connectors (p = 0.000500317); while the overlap with

within-cluster connectors was statistically insignificant (p = 0.0520113), the enrich-

ment matches the trend seen in other networks. High-insularity genes were signifi-

cantly unenriched in between-cluster connectors (p = 5.89876e-07) and within-cluster

connectors (p = 0.000114639). 53.668478% of the low-insularity proteins are covered

by the two topological roles.
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Figure A.5: Overlap between low/high-insularity proteins and the two topological
roles defined in Figure 2.3 for alternate networks.
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A.1.4 Targeted node removal

Figure A.6: Effect on largest connected component size of removing proteins in in-
creasing order of insularity, decreasing order of insularity, and random order, for
alternate networks. As in the network analyzed in the main body of this chapter,
removal of low-insularity proteins has the largest effect on network connectivity.
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Figure A.7: Random trials, in which the 50% of scored proteins with highest (and
lowest, respectively) insularities are removed, and the fold change of largest connected
component size is compared to that resulting from removal of an equal number of
random proteins. As expected, removal of low-insularity proteins has a larger effect
than removal of high-insularity or random proteins.

A.1.5 Essentiality

In the human BioGRID network, low-insularity genes are less likely to be essen-

tial (26.178010% essential) than high-insularity genes (39.804241% essential) (p =

4.01062e-07, Fisher’s exact test).
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In the yeast HINT Combined network, low-insularity genes are less likely to be

essential (19.843342% essential) than high-insularity genes (47.911227% essential) (p

= 7.93432e-32, Fisher’s exact test).

In the human HINT Combined network, low-insularity genes are less likely to be

essential (31.538462% essential) than high-insularity genes (47.800587% essential) (p

= 3.81196e-05, Fisher’s exact test).

Figure A.8: Essentiality of low-insularity and high-insularity proteins in the human
Biogrid network.
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Figure A.9: Essentiality of low-insularity and high-insularity proteins in the yeast
and human HINT Combined networks.

A.1.6 Regulators

In the yeast HINT Combined network, low-insularity genes had more regulators (mean

8.939073) than high-insularity genes (mean 5.958501) (p = 6.97321e-23).
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Figure A.10: Number of regulators of low-insularity and high-insularity genes in the
yeast HINT Combined network.

A.2 Homology results with alternate PPOD ho-

mology datasets

When using the MultiParanoid homology dataset, the Spearman correlation between

the functional insularities of homologous genes in yeast and human was 0.504179.

There were significantly fewer cross-class homology relationships than expected by

random chance (p < 0.001).

When using the Jaccard homology dataset, the Spearman correlation between

the functional insularities of homologous genes in yeast and human was 0.193708.

There were significantly fewer cross-class homology relationships than expected by

random chance (p < 0.001). As shown by Figure A.12, there are a larger number

of homology relationships between human high-insularity and yeast low-insularity

proteins than in the other two homology datasets. However, the stub-rewiring analysis

shows that there are still significantly fewer of these relationships than expected by
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random chance, indicating that the large number of these relationships is due mainly

to the large number of human high-insularity and yeast low-insularity proteins in the

analysis.

Figure A.11: Yeast-human homology relationships between high-insularity and low-
insularity proteins when using the MultiParanoid homology dataset from PPOD.

Figure A.12: Yeast-human homology relationships between high-insularity and low-
insularity proteins when using the Jaccard homology dataset from PPOD.
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A.3 Alternate Clustering Evaluation Results

In the human Biogrid network using the topological modularity evaluation, a SPICi

clustering of the original network had modularity 0.310217, while the clustering of the

low-insularity free network had modularity 0.350689. Clusterings of networks with

random node removal had a mean modularity of 0.332389, and a standard deviation

of 0.00721574.

In the human Biogrid network using the semantic density evaluation with GO, a

SPICi clustering of the original network had modularity 0.0350689, while the clus-

tering of the low-insularity free network had modularity 0.0454128. Clusterings of

networks with random node removal had a mean modularity of 0.0277216, and a

standard deviation of 0.00163421.

In the yeast Biogrid network using the topological modularity evaluation, an MCL

clustering of the original network had modularity 0.260249, while the clustering of the

low-insularity free network had modularity 0.397892. Clusterings of networks with

random node removal had a mean modularity of 0.281492, and a standard deviation

of 0.00941433.

In the yeast Biogrid network using the semantic density evaluation with GO, a

MCL clustering of the original network had modularity 0.0636584, while the clustering

of the low-insularity free network had modularity 0.0987579. Clusterings of networks

with random node removal had a mean modularity of 0.0563868, and a standard

deviation of 0.00276532.

In the human Biogrid network using the topological modularity evaluation, an

MCL clustering of the original network had modularity 0.256511, while the clus-

tering of the low-insularity free network had modularity 0.302612. Clusterings of

networks with random node removal had a mean modularity of 0.322006, and a stan-

dard deviation of 0.00559525. This is not consistent with results for other networks

and clustering algorithms, as the networks with random node removal had higher
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modularity than the low-insularity-free network. However, it matches the trend of

the low-insularity-free network having higher modularity than the original network,

again suggesting that low-insularity proteins decrease the quality of network cluster-

ing results.

In the human Biogrid network using the semantic density evaluation with GO, an

MCL clustering of the original network had modularity 0.0154808, while the clustering

of the low-insularity free network had modularity 0.0200427. Clusterings of networks

with random node removal had a mean modularity of 0.0137017, and a standard

deviation of 0.00106182.

A.4 Full GO TermFinder results

Table A.1: Enriched Biological Process terms in yeast low-insularity proteins.

Term Enrichment freq. Background freq. P-value

single-organism metabolic 24.6% 14.1% 2e-33

process

small molecule metabolic 18.9% 10.2% 1.6e-30

process

carboxylic acid metabolic 11.0% 5.4% 1.2e-22

process

organic acid metabolic 11.3% 5.6% 4.9e-22

process

oxoacid metabolic process 11.3% 5.6% 4.9e-22

organonitrogen compound 14.7% 8.1% 1.6e-21

metabolic process

phosphate-containing 15.7% 9.6% 2.1e-16
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compound metabolic

process

phosphorus metabolic 16.2% 10.1% 1.1e-15

process

Table A.2: Enriched Biological Process terms in yeast high-insularity proteins.

Term Enrichment freq. Background freq. P-value

gene expression 41.6% 24.1% 1.5e-60

RNA metabolic process 30.7% 18.6% 5.6e-35

RNA processing 21.0% 11.6% 8.9e-32

cellular macromolecule 62.2% 48.7% 1.3e-28

metabolic process

macromolecule metabolic 62.7% 49.4% 2.8e-28

process

nucleic acid metabolic 39.0% 27.4% 1.6e-25

process

cellular macromolecule 29.0% 19.1% 5.1e-24

biosynthetic process

macromolecule 29.1% 19.2% 6e-24

biosynthetic process

ncRNA processing 13.9% 7.6% 1.4e-20

rRNA processing 11.0% 5.7% 2.7e-19

nucleobase-containing 40.3% 30.2% 3.1e-19

compound metabolic

process

rRNA metabolic process 11.4% 6.0% 3.5e-19
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cellular aromatic 40.8% 31.0% 6.4e-18

compound metabolic

process

cellular nitrogen 41.8% 32.0% 1.2e-17

compound metabolic

process

organic cyclic compound 42.2% 32.4% 1.4e-17

metabolic process

heterocycle metabolic 40.9% 31.3% 1.9e-17

process

ribonucleoprotein complex 16.9% 10.4% 2.9e-17

biogenesis

ncRNA metabolic process 14.0% 8.7% 4e-14

cellular component 29.1% 21.5% 4.6e-14

biogenesis

cellular biosynthetic 34.6% 26.5% 8.2e-14

process

translation 13.3% 8.2% 1.3e-13

cellular metabolic 71.4% 62.8% 1.5e-13

process

primary metabolic process 68.4% 59.7% 1.9e-13

mRNA metabolic process 11.0% 6.5% 3.6e-13

organic substance 69.8% 61.4% 6.3e-13

metabolic process

nitrogen compound 43.3% 35.0% 1.1e-12

metabolic process
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ribosome biogenesis 13.4% 8.5% 2.4e-12

protein targeting 10.8% 6.5% 6.4e-12

metabolic process 72.0% 64.2% 8.5e-12

organic substance 34.7% 27.4% 1.9e-11

biosynthetic process

mitochondrion 10.6% 6.7% 2e-10

organization

cellular component 52.8% 45.2% 2.3e-10

organization or

biogenesis

biosynthetic process 34.9% 27.9% 2.4e-10

cellular macromolecular 13.4% 8.9% 2.8e-10

complex assembly

macromolecular complex 14.8% 10.2% 5.5e-10

assembly

intracellular protein 11.4% 7.5% 2.7e-09

transport

cellular process 94.1% 90.1% 1.2e-08

protein transport 11.5% 7.8% 1.5e-08

nucleobase-containing 11.6% 7.9% 1.8e-08

compound biosynthetic

process

establishment of protein 11.9% 8.2% 8.6e-08

localization

protein localization to 11.3% 7.8% 2.3e-07

organelle
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organic cyclic compound 13.5% 9.8% 4e-07

biosynthetic process

aromatic compound 12.1% 8.6% 5.3e-07

biosynthetic process

cellular nitrogen 12.4% 9.1% 2.6e-06

compound biosynthetic

process

cytoplasmic transport 16.4% 12.7% 3.4e-06

heterocycle biosynthetic 12.2% 9.0% 4.2e-06

process

cellular component 17.2% 13.6% 1.5e-05

assembly

macromolecular complex 18.2% 14.6% 2.2e-05

subunit organization

intracellular transport 18.6% 15.4% 0.0002

cellular protein 12.6% 10.0% 0.00025

localization

cellular component 41.8% 38.1% 0.00092

organization

cellular macromolecule 13.0% 10.6% 0.0012

localization

protein localization 13.1% 11.1% 0.0058

organic substance 13.0% 11.1% 0.0063

transport

biological process 97.7% 96.6% 0.0087

establishment of 19.0% 16.9% 0.01
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localization in cell

Table A.3: Enriched Biological Process terms in human low-insularity proteins.

Term Enrichment freq. Background freq. P-value

small molecule metabolic 15.8% 11.6% 1.6e-10

process

single-organism metabolic 17.7% 13.6% 6.6e-09

process

Table A.4: Enriched Biological Process terms in human high-insularity proteins.

Term Enrichment freq. Background freq. P-value

nucleic acid metabolic 38.2% 21.4% 1.7e-86

process

RNA metabolic process 29.2% 15.3% 1.6e-75

gene expression 31.1% 16.7% 6.2e-75

nucleobase-containing 39.5% 24.1% 2.3e-67

compound metabolic

process

heterocycle metabolic 39.6% 24.5% 4.6e-64

process

cellular aromatic 39.5% 24.5% 3e-63

compound metabolic

process

organic cyclic compound 39.8% 25.2% 4.3e-59

metabolic process

cellular nitrogen 39.9% 25.4% 5.5e-58
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compound metabolic

process

macromolecule metabolic 58.4% 42.4% 6.6e-57

process

cellular macromolecule 56.4% 40.5% 2.9e-56

metabolic process

nitrogen compound 40.4% 26.7% 5.3e-51

metabolic process

cellular macromolecule 24.1% 13.7% 8.7e-48

biosynthetic process

transcription, DNA 16.1% 7.9% 1.7e-47

dependent

macromolecule 24.1% 14.0% 1.4e-44

biosynthetic process

mRNA metabolic process 14.5% 7.0% 3.8e-43

RNA biosynthetic process 17.2% 9.0% 8.4e-42

transcription from RNA 13.6% 6.6% 2.5e-40

polymerase II promoter

primary metabolic process 60.8% 47.9% 4.1e-37

nucleobase-containing 17.7% 9.8% 6.4e-37

compound biosynthetic

process

heterocycle biosynthetic 17.7% 9.9% 3.1e-35

process

organic substance 61.6% 49.0% 3.2e-35

metabolic process

aromatic compound 17.7% 10.0% 9e-35
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biosynthetic process

metabolic process 63.5% 51.1% 1.1e-34

cellular nitrogen 17.7% 10.1% 6e-33

compound biosynthetic

process

cellular metabolic 60.4% 48.3% 8.2e-33

process

organic cyclic compound 17.8% 10.2% 8.7e-33

biosynthetic process

RNA processing 11.5% 5.7% 4.6e-32

cellular biosynthetic 25.0% 16.3% 1.4e-29

process

organic substance 25.2% 16.8% 2.6e-27

biosynthetic process

biosynthetic process 25.3% 17.0% 4.4e-26

cellular macromolecule 13.2% 8.2% 1.3e-18

catabolic process

DNA metabolic process 11.9% 7.3% 6.7e-17

regulation of RNA 28.8% 21.8% 8.4e-17

metabolic process

regulation of 30.8% 23.8% 7.4e-16

macromolecule

biosynthetic process

regulation of 41.4% 33.7% 1.5e-15

macromolecule metabolic

process

regulation of RNA 27.7% 21.1% 3.2e-15
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biosynthetic process

positive regulation of 25.6% 19.3% 3.8e-15

macromolecule metabolic

process

macromolecule catabolic 13.4% 8.8% 7.6e-15

process

regulation of nitrogen 34.4% 27.4% 1.1e-14

compound metabolic

process

regulation of cellular 29.5% 22.9% 1.4e-14

macromolecule

biosynthetic process

positive regulation of 26.0% 19.7% 1.7e-14

cellular metabolic

process

positive regulation of 15.5% 10.6% 1.8e-14

RNA metabolic process

regulation of cellular 31.3% 24.7% 5.8e-14

biosynthetic process

chromosome organization 10.5% 6.7% 1.2e-13

regulation of primary 42.0% 34.8% 1.4e-13

metabolic process

regulation of gene 31.3% 24.7% 1.7e-13

expression

regulation of 31.4% 24.9% 2e-13

biosynthetic process

response to DNA damage 10.4% 6.6% 3.4e-13
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stimulus

cellular process 88.1% 82.7% 4.2e-13

positive regulation of 16.3% 11.6% 8.5e-13

nucleobase-containing

compound metabolic

process

positive regulation of 26.3% 20.4% 8.7e-13

metabolic process

regulation of 26.4% 20.6% 2.5e-12

transcription, DNA

dependent

positive regulation of 16.3% 11.7% 5e-12

nitrogen compound

metabolic process

regulation of cellular 42.1% 35.5% 9.8e-12

metabolic process

positive regulation of 16.0% 11.6% 1.3e-11

macromolecule

biosynthetic process

regulation of nucleobase 32.1% 26.3% 1.3e-10

containing compound

metabolic process

positive regulation of 16.3% 12.0% 2.4e-10

cellular biosynthetic

process

positive regulation of 16.3% 12.2% 1.2e-09
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biosynthetic process

regulation of metabolic 44.8% 38.9% 2.2e-09

process

positive regulation of 13.3% 9.8% 3.9e-09

transcription, DNA

dependent

multi-organism process 12.9% 9.4% 5.7e-09

positive regulation of 13.8% 10.3% 1.8e-08

gene expression

cellular response to 15.1% 11.5% 3.6e-08

stress

cellular catabolic 15.5% 11.9% 6.4e-08

process

regulation of 15.1% 11.6% 7.7e-08

transcription from RNA

polymerase II promoter

positive regulation of 10.8% 8.3% 1.2e-05

protein modification

process

catabolic process 15.6% 12.8% 2.8e-05

organic substance 14.9% 12.2% 3.4e-05

catabolic process

positive regulation of 11.7% 9.3% 3.6e-05

cellular protein

metabolic process

negative regulation of 16.7% 13.8% 4.9e-05

macromolecule metabolic
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process

negative regulation of 16.5% 13.8% 0.00014

cellular metabolic

process

macromolecule 21.0% 18.1% 0.00015

modification

positive regulation of 35.8% 32.4% 0.00021

biological process

positive regulation of 33.4% 30.2% 0.00034

cellular process

positive regulation of 11.9% 9.8% 0.00037

protein metabolic process

cellular protein 20.0% 17.4% 0.00054

modification process

protein modification 20.0% 17.4% 0.00054

process

negative regulation of 16.9% 14.5% 0.00057

metabolic process

cell cycle 13.0% 10.9% 0.00058

protein metabolic process 28.3% 25.4% 0.00068

negative regulation of 10.1% 8.3% 0.00069

RNA metabolic process

cellular protein 26.6% 23.8% 0.00087

metabolic process

negative regulation of 10.4% 8.5% 0.001

gene expression

negative regulation of 10.9% 9.1% 0.0017
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nucleobase-containing

compound metabolic

process

negative regulation of 10.9% 9.2% 0.002

cellular macromolecule

biosynthetic process

negative regulation of 10.9% 9.2% 0.0025

nitrogen compound

metabolic process

cell cycle process 10.9% 9.2% 0.003

positive regulation of 11.9% 10.2% 0.0033

catalytic activity

negative regulation of 11.1% 9.5% 0.0047

macromolecule

biosynthetic process

organelle organization 18.6% 16.7% 0.0081

Table A.5: Enriched Cellular Component terms in yeast low-insularity proteins.

Term Enrichment freq. Background freq. P-value

cell periphery 13.0% 8.9% 6.6e-09

cytoplasm 72.7% 66.3% 1.3e-08

mitochondrion 21.6% 18.1% 0.00011

Table A.6: Enriched Cellular Component terms in yeast high-insularity proteins.

Term Enrichment freq. Background freq. P-value
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macromolecular complex 77.6% 51.0% 1.4e-109

organelle part 74.3% 54.4% 4.2e-62

intracellular organelle 74.2% 54.3% 6.7e-62

part

protein complex 53.2% 37.6% 3.3e-39

ribonucleoprotein complex 27.4% 15.6% 8.6e-39

nuclear part 40.5% 26.6% 5.1e-37

ribosomal subunit 13.0% 6.3% 8.3e-27

organelle lumen 35.5% 24.4% 1.3e-25

intracellular organelle 35.5% 24.4% 1.3e-25

lumen

membrane-enclosed lumen 36.4% 25.3% 6.1e-25

nuclear lumen 28.6% 19.6% 6.1e-20

nucleoplasm part 13.0% 7.2% 6e-19

nucleoplasm 13.7% 7.9% 2.6e-17

ribosome 13.9% 8.2% 4.5e-17

intracellular organelle 87.4% 79.5% 8.8e-17

organelle 87.4% 79.5% 1.1e-16

nucleolus 11.2% 6.4% 1.7e-14

membrane-bounded 79.2% 71.2% 1.3e-13

organelle

intracellular membrane 79.2% 71.2% 1.3e-13

bounded organelle

mitochondrial part 13.9% 9.4% 6.3e-10

intracellular part 95.3% 91.8% 7.1e-08

non-membrane-bounded 35.0% 29.1% 8.8e-08

86



organelle

intracellular non 35.0% 29.1% 8.8e-08

membrane-bounded

organelle

intracellular 95.4% 92.1% 1.4e-07

nucleus 50.9% 44.7% 1.8e-07

organelle membrane 17.6% 13.4% 3.5e-07

membrane part 22.6% 18.1% 1.4e-06

cell 96.5% 94.3% 3.1e-05

cell part 96.5% 94.3% 3.1e-05

cytosol 16.0% 13.2% 0.00047

endomembrane system 10.4% 8.3% 0.0014

organelle envelope 10.5% 8.5% 0.0034

envelope 10.5% 8.5% 0.0034

intrinsic to membrane 13.0% 11.1% 0.0071

integral to membrane 13.0% 11.0% 0.0078

cellular component 97.7% 96.6% 0.0087

No enriched Cellular Component terms were found in human low-insularity proteins.

Table A.7: Enriched Cellular Component terms in human high-insularity proteins.

Term Enrichment freq. Background freq. P-value

nucleoplasm 33.3% 18.8% 6.6e-71

nuclear part 42.0% 26.3% 3e-66

nuclear lumen 37.6% 23.3% 2.7e-59

intracellular organelle 39.2% 26.0% 4.5e-48

lumen
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membrane-enclosed lumen 39.6% 26.9% 7.1e-44

organelle lumen 39.4% 26.7% 9.8e-44

macromolecular complex 45.6% 32.4% 1.3e-42

protein complex 40.4% 28.3% 1.1e-38

nucleus 54.8% 42.3% 5.7e-35

nucleoplasm part 14.6% 7.9% 2e-31

intracellular organelle 55.6% 44.6% 1.5e-27

part

organelle part 56.0% 45.2% 1.2e-26

intracellular membrane 67.0% 57.9% 6.5e-20

bounded organelle

membrane-bounded 67.1% 58.2% 6.9e-19

organelle

intracellular organelle 70.6% 64.2% 2.2e-11

organelle 70.7% 64.4% 7.4e-11

intracellular part 80.2% 76.6% 1.5e-05

cell 86.8% 83.7% 2.3e-05

cell part 86.8% 83.7% 2.3e-05

intracellular 80.2% 77.0% 8e-05

cellular component 88.6% 86.5% 0.001

Table A.8: Enriched Molecular Function terms in yeast low-insularity proteins.

Term Enrichment freq. Background freq. P-value

catalytic activity 47.9% 38.6% 6.1e-15

transferase activity 16.9% 13.2% 5.4e-06
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Table A.9: Enriched Molecular Function terms in yeast high-insularity proteins.

Term Enrichment freq. Background freq. P-value

structural constituent of 12.6% 5.9% 2.6e-29

ribosome

structural molecule 16.1% 9.4% 9.5e-20

activity

RNA binding 10.5% 7.4% 7e-07

nucleic acid binding 18.8% 16.0% 0.0014

molecular function 97.7% 96.6% 0.0087

No enriched Molecular Function terms were found in human low-insularity proteins.

Table A.10: Enriched Molecular Function terms in human high-insularity proteins.

Term Enrichment freq. Background freq. P-value

protein binding 10.2% 6.2% 1e-15

transcription factor

activity

nucleic acid binding 18.5% 13.5% 2.9e-12

DNA binding 12.1% 9.2% 7.9e-07

heterocyclic compound 21.0% 17.8% 2.2e-05

binding

organic cyclic compound 21.1% 18.1% 7.5e-05

binding
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