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Abstract

For several basic optimization problems, it is NP-hard to find an exact solution. As

a result, understanding the best possible trade-off between the running time of an

algorithm and its approximation guarantee, is a fundamental question in theoretical

computer science, and the central goal of the theory of approximation.

There are two aspects to the theory of approximation : (1) efficient approximation

algorithms that establish trade-offs between approximation guarantee and running

time, and (2) inapproximability results that give evidence against them. In this

thesis, we contribute to both facets of the theory of approximation.

In the first part of this thesis, we present the first near-linear-time algorithm for

Balanced Separator - given a graph, partition its vertices into two roughly equal parts

without cutting too many edges - that achieves the best approximation guarantee

possible for algorithms in its class. This is a classic graph partitioning problem and

has deep connections to several areas of both theory and practice, such as metric

embeddings, Markov chains, clustering, etc.

As an important subroutine for our algorithm for Balanced Separator, we provide

a near-linear-time algorithm to simulate the heat-kernel random walk on a graph,

equivalent to computing e−Lv, where L is the Laplacian of the graph, and v is a vector.

This algorithm combines techniques from approximation theory and numerical linear

algebra to reduce the problem of approximating the matrix exponential to solving a

small number of Laplacian systems. We also give a reduction in the reverse direction,

from matrix inversion to matrix exponentiation, hence justifying the use of Laplacian

system solvers.

In the second part of this thesis, we prove inapproximability results for several

basic optimization problems. We address some classic scheduling problems, viz. Con-

current Open Shop and the Assembly Line problem, and variants of the Hypergraph

Vertex Cover problem. For all these problems, optimal inapproximability results were
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previously known under the Unique Games Conjecture. We are able to prove near-

optimal inapproximability results for these problems without using the conjecture.
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Chapter 1

Introduction

One of the central goals of theoretical computer science is to study the amount of

time required for basic computational questions. Several questions of interest can be

framed as combinatorial optimization problems, where the goal is to find one solution

from a discrete set of feasible solutions that optimizes a specified objective.

Classically, the focus has been to study whether the optimum solution can be found

in time polynomial in the size of the input. Though proving unconditional, super-

polynomial lower bounds for optimization problems has remained out of reach, for

most natural problems of interest where we do not have polynomial time algorithms,

the theory of NP-completeness tells us that they are almost as hard to solve as

3SAT (which is widely believed to require super-polynomial, maybe even exponential

amount of time [IPZ01]).

However, proving NP-completeness for an optimization problem is usually not

satisfactory since it only rules out polynomial time algorithms for computing the

optimum solution. How about computing solutions that are close to being optimal?

One widely used approach to measuring the quality of a near-optimal solution is

by its approximation ratio, where we say that a solution is an c-approximation if

its objective value is within a factor c of the optimum (approximation ratio will be
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larger than 1 throughout). Thus, a natural question is, what is the best approximation

ratio that can be guaranteed by efficient algorithms. This is the focus of the theory

of approximation that has been developed ever since the theory of NP-completeness

was developed in the 1970’s.

One of the most important ways of coping with NP-hardness of most problems

of interest is to look for approximately optimal solutions. The ultimate goal of a

complete theory of approximation is to answer the following question for every opti-

mization problem of interest:

Given an input of size n, what is the best approximation factor that can

be guaranteed by an algorithm running in time T (n)?

Here T (n) is any function of n, e.g., n10. In other words, what is the best possible

trade-off that can be achieved between approximation guarantee and running time.

Over the last few decades, much progress has been made towards this challenging

goal. On one hand, a rich theory of approximation algorithms has arisen that gives

efficient algorithms with provable approximation guarantees. On the other hand, the

field of hardness of approximation, beginning in its earnest with the breakthrough

PCP theorem [ALM+98, AS98], has sought to prove limits on approximability achiev-

able by efficient algorithms. However, we are still quite far from a complete under-

standing of the approximability of several fundamental problems such as Balanced

Separator and Minimum Vertex Cover.

In this thesis, we contribute to both these facets of theory of approximation, as

detailed below.

1.1 Near-Linear-time Graph algorithms

Since graphs offer a convenient abstraction for all kinds of networks, it’s no surprise

that optimization problems on graphs are ubiquitous, and particularly in fields such
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as computer networks, operations research, and social sciences. Today, the sizes of

the graphs that we would like to study are huge, e.g. the web graph has ∼100 billion

nodes, and the Facebook graph has ∼1 billion nodes. With such large graphs, any

algorithm that runs in time significantly more than linear in the size of its input is

essentially impractical. This has motivated the search for near-linear-time algorithms

for fundamental graph problems.

With the idea of designing near-linear-time graph algorithms that achieve the best

possible algorithmic guarantees, several fundamental graph problems such as s − t

Max-Flow and balanced graph partitioning have been revisited over the past few

years. The classic combinatorial techniques seem to no longer be sufficient, and the

new algorithms often combine a host of techniques from diverse areas including semi-

definite programming, exponential weights method, and linear algebra. In this thesis,

we add new techniques to this toolbox from approximation theory 1 and numerical

linear algebra.

In the first part of this thesis, we give a near-linear-time approximation algorithm

for Balanced Separator, a fundamental graph partitioning problem where we seek to

partition the vertices of the input graph into two roughly equal sets while minimizing

the number of edges cut. This problem has been intensely studied in both theory and

practice, and has deep connections to several areas of mathematics. It is also known

to be NP-hard to solve exactly, and several approximation algorithms with provable

guarantees are known. Our algorithm achieves an approximation guarantee that is

optimal for any algorithm of its kind in near-linear time, and combines techniques from

approximation theory, numerical linear algebra, and rounding semi-definite programs.

We discuss the problem in more detail, and our contributions, in Chapter 2.

1Approximation theory is the study of approximating a given function f(x) by polynomial or
rational functions, not to be confused with the theory of approximation.
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1.2 Hardness of Approximation

The goal of hardness of approximation is to complement approximation algorithms

with evidence that certain approximation guarantees cannot be achieved by efficient

algorithms, for instance, by proving that such a guarantee is NP-hard to achieve. The

celebrated PCP theorem [ALM+98, AS98] proved that, for Max-3SAT, it is NP-hard

to achieve an approximation factor that is arbitrarily close to 1. In fact, it showed

that achieving such arbitrarily good approximation for a wide class of problems called

MAX-SNP-complete problems, that include Max-3SAT, Minimum Vertex Cover, and

Minimum Set Cover, is NP-hard.

Though the PCP theorem by itself does not imply hardness results matching

the known approximation results, as a result of several influential works [BGS98,

Raz98, H̊as01], the approximability of a few problems, such as Max-3SAT, is quite

well understood by now, and we have optimal hardness results for some of them.

However, the picture is far from complete for several important problems such as

Minimum Vertex Cover and Balanced Separator.

Despite a significant amount of effort devoted towards proving improved inapprox-

imability results, there remained a significant gap between upper and lower bounds

on the approximability of problems such as Max-Cut and Minimum Vertex Cover.

Towards proving optimal inapproximability results for these problems, Khot [Kho02]

introduced the Unique Games Conjecture. The UGC conjectures that a specific con-

straint satisfaction problem (CSP) is NP-hard. We now know that the UGC implies

new optimal inapproximability results for several problems, including Max-Cut, Min-

imum Vertex Cover, and all CSP’s. However, we lack strong evidence in favor of the

conjecture, and our belief in the conjecture isn’t as strong as other classic complexity

assumptions, such as P 6= NP.

Since the UGC is so delicately poised, and we seem to be quite far from a proof

of the conjecture, there is considerable interest in obtaining these new inapproxima-
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bility results without assuming the conjecture. In the second part of this thesis, we

show near-optimal NP-hardness results for approximating some classic scheduling

problems, and variants of Minimum Vertex Cover. All these results were previously

known only under the UGC, and our main contribution is to modify the reductions

to obtain these results just assuming P 6= NP.

The problems of interest, and our contributions are discussed in detail in Chap-

ter 7.

1.3 Organization of this thesis

This thesis is divided into two parts. We outline the structure of the two parts below.

Part I

In the first part, we present a near-linear-time approximation algorithm for graph

partitioning problems, building on rational approximations for the exponential, and

algorithms to approximate the matrix exponential. This part is based on joint work

with Lorenzo Orecchia and Nisheeth Vishnoi. We first describe the problems of

interest, and place our results in context in Chapter 2.

In Chapter 3, we describe a novel spectral algorithm for Balanced Separator, a

fundamental graph partitioning problem, that runs in near-linear time and achieves

an approximation guarantee that is optimal for spectral algorithms. This algorithm

requires, as a subroutine, an algorithm to approximate a matrix-exponential-vector

product.

In Chapter 4, we give an efficient reduction from approximating the matrix-

exponential-vector product to approximating the matrix-inverse-vector product.

Combining with the near-linear-time Laplacian solver of Spielman and Teng, this will

provide us with the subroutine required for our algorithm for Balanced Separator,
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along with its running time guarantee. We also give a simpler algorithm that avoids

the heavy machinery of the Spielman-Teng solver, but still results in a Balanced

Separator algorithm that compares favorably to all previous spectral algorithms.

In Chapter 6, we discuss uniform polynomial approximations to the exponential,

and prove that there exist polynomial approximations to the exponential that offer

a quadratic improvement over the naive Taylor series approximation. We also prove

that this result is essentially optimal. The existence of these improved polynomial

approximations is required for the guarantees on the simpler algorithm to approximate

the matrix-exponential-vector product from the previous chapter.

In Chapter 5, we show that there is also a reduction from approximating the

matrix-inverse-vector product to the matrix-exponential-vector product. This justifies

the use of the Spielman-Teng result for obtaining a near-linear-time algorithm in

Chapter 4.

Part II.

In the second part, we prove close to optimal inapproximability results for variants

of hypergraph vertex cover, and some classic scheduling problems. This part is based

on joint work with Rishi Saket. In Chapter 7, we describe the problems, and put our

results in context.

In Chapter 8, we prove that some classic scheduling problems that have been long

known to have simple 2-approximations, are in fact NP-hard to approximate better

than 2. These results were previously known under a stronger assumption known as

the Unique Games Conjecture. Our results are based on a reduction from a structured

hardness result for Minimum Vertex Cover on hypergraphs.

In Chapter 9, we prove that the Minimum Vertex Cover problem is NP-hard to

approximate on k-uniform k-partite hypergraphs better than k
2
− 1. Since there is

a k
2

approximation algorithm due to Lovász, this is off by at most 1 from the best

6



possible. Here again, the optimal result is known to hold under the Unique Games

Conjecture.
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Chapter 2

The Balanced Separator Problem

and the Matrix Exponential

2.1 The Balanced Separator problem, and Spec-

tral Algorithms

The Balanced Separator problem is the quintessential graph partitioning question.

Informally, the problem can be stated as follows:

Can the given graph be divided into two roughly equal parts without cutting

too many edges?

To formally specify the problem, say we have an unweighted graph G = (V,E), where

V = [n], and |E| = m. Given a set S ⊆ V, define its volume, denoted by vol(S), to

be the sum of the degrees of the vertices in the set S. We measure the quality of the

cut (S, S) by its conductance φ(S), defined as, φ(S)
def
= |E(S,S̄)|

min{vol(S),vol(S)} . Moreover, we

say that a cut (S, S) is b-balanced if min{vol(S), vol(S)} ≥ b ·vol(V ). The Balanced

Separator problem asks the following decision question:
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Given an unweighted graph G, a constant balance parameter b ∈ (0, 1/2],

and a target conductance value γ ∈ (0, 1], does G have a b-balanced cut S

such that φ(S) ≤ γ?

This is a classic NP-hard problem and a central object of study for the develop-

ment of approximation algorithms, both in theory and in practice. On the theoretical

side, the Balanced Separator problem has far reaching connections to several areas of

mathematics such as spectral graph theory, the study of random walks, and metric

embeddings. In practice, algorithms for Balanced Separator play a crucial role in the

design of recursive algorithms [Shm97], clustering [KVV00], and scientific computa-

tion [SKK+00].

Spectral Algorithms. Spectral methods are an important set of techniques in the

design of graph-partitioning algorithms and are fundamentally based on the study of

the behavior of random walks over the instance graph. Spectral algorithms tend to

be conceptually appealing, because of the intuition based on the underlying diffusion

process, and are easy to implement, as many of the primitives required, such as

eigenvector computation, already appear in highly-optimized software packages. The

most important spectral algorithm for graph partitioning is the Laplacian Eigenvector

(LE) algorithm of Alon and Milman [AM85], which, given a graph of conductance at

most γ, outputs a cut of conductance at most O(
√
γ), an approximation guarantee

that is asymptotically optimal for spectral algorithms.

A consequence of the seminal work of Spielman and Teng [ST04, ST06] is that the

LE algorithm can be implemented in Õ(m) time using the Spielman-Teng Laplacian

system solver. Hence, LE is an asymptotically optimal spectral algorithm for the

minimum-conductance problem, both in terms of running time (up to polylog factors)

and approximation quality.
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The simplest spectral algorithm for Balanced Separator iteratively uses the LE

algorithm to remove small conductance cuts from G, working with the residual graph

at each step, until either a balanced cut or an induced γ-expander is found (see, e.g.,

[KVV00]). We’ll denote this algorithm by Recursive Eigenvector Algorithm (RLE).

However, observe that the cut found at each iteration may consist of only a constant

number of vertices, and hence this algorithm may run for Ω(n) iterations. Since each

iteration requires an eigenvalue computation, RLE may require Ω(mn) time in the

worst case.

Our Results. We present a simple random-walk-based algorithm that is the first

such asymptotically optimal spectral algorithm for Balanced Separator. Our algo-

rithm can be seen as analogous to the RLE algorithm for Balanced Separator, and

settles the question of designing spectral algorithms for Balanced Separator. It com-

bines techniques from rounding algorithms for semi-definite programs (SDP), numer-

ical linear algebra, and approximation theory. The following is our main theorem for

Balanced Separator.

Theorem 2.1 (Spectral Algorithm for Balanced Separator). Given an unweighted

graph G = (V,E), a balance parameter b ∈ (0, 1/2], b = Ω(1) and a conductance

value γ ∈ (0, 1], we give an algorithm called BalSep(G, b, γ), that either outputs an

Ω(b)-balanced cut S ⊂ V such that φ(S) ≤ O(
√
γ), or outputs a certificate that no

b-balanced cut of conductance γ exists. BalSep runs in time O(m poly(log n)).

This settles the question of designing asymptotically optimal spectral algorithms

for Balanced Separator. The algorithm for Theorem 2.1 is based on a variant of the

heat kernel random walk and requires, as a subroutine, an algorithm to compute the

product of the matrix-exponential of a matrix and an arbitrary vector in time essen-

tially proportional to the sparsity of the matrix. Our contribution to the problem

of computing the matrix-exponential-vector product appear in detail in Section 2.2.
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The algorithm for computing the matrix-exponential-vector product required for The-

orem 2.1 runs in time Õ(m) and, notably, makes use of the Spielman-Teng Laplacian

system solver in a non-trivial way. Combined with the new simple Laplacian system

solver due to Kelner et al. [KOSZ13], we obtain an algorithm that is almost as simple

and practical as the LE algorithm.

We also prove an alternative result on how to perform this matrix-exponential

computation, which relies just on matrix-vector products. This result, when combined

with our algorithm for Balanced Separator, yields a theorem identical to Theorem

2.1 except that the running time now increases to Õ(m/√γ), see Theorem 3.2.

2.1.1 Comparison to Previous work on Balanced Separator

The best known approximation guarantee for Balanced Separator is O(
√

log n)

achieved by the seminal work of Arora, Rao and Vazirani [ARV09] that combines

SDPs and flow ideas. A rich line of research has centered on reducing the run-

ning time of this algorithm [KRV06, AK07, OSVV08]. This effort culminated in

Sherman’s work [She09], which brings down the required running time to O(nε) s-t

maximum-flow computations 1.

However, these algorithms are based on advanced theoretical ideas that are not

easy to implement, or even capture in a principled heuristic. Moreover, they fail to

achieve a nearly-linear 2 running time, which is crucial in many of today’s applica-

tions that involve very large graphs. In particular, even with the recent algorithms

for approximating s-t max-flows in O(mno(1)) time [She13, KOLS13], the total time

required by Sherman’s algorithm is O(mnε+o(1)). To address these issues, researchers

1Even though the results of [ARV09] and [She09] are stated for the Sparsest Cut problem, the
same techniques apply to the conductance problem, e.g. by modifying the underlying flow problems.
See for example [AL08].

2Following the convention of [ST08], we denote by nearly-linear a running time of Õ(m/poly(γ)).
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have focused on the design of simple, nearly-linear-time algorithms for Balanced Sep-

arator based on spectral techniques.

Spectral Algorithms for Balanced Separator. We already noted that the

simplest spectral algorithm for Balanced Separator, the RLE algorithm, requires

quadratic time in the worst case. Spielman and Teng [ST04, ST08] were the first

to design nearly-linear-time algorithms that output an Ω(b)-balanced cut of con-

ductance O(
√
γ poly(log n)), if a b-balanced cut of conductance less than γ exists.

Their algorithmic approach is based on local random walks, which are used to

remove unbalanced cuts in time proportional to the size of the cut removed, hence

avoiding the quadratic dependence of RLE. Using similar ideas, Andersen, Chung

and Lang [ACL06], and Andersen and Peres [AP09] improved the approximation

guarantee to O(
√
γ log n) and the running time to Õ(m/√γ).

More recently, Orecchia and Vishnoi [OV11] employed an SDP formulation of the

problem, together with the Matrix Multiplicative Weights Update method of Arora

and Kale [AK07] and a new SDP rounding, to obtain an output conductance of

O(
√
γ) with running time Õ(m/γ2), effectively removing unbalanced cuts in O(logn/γ)

iterations. In Section 3.7, we give a more detailed comparison with the work of

Orecchia-Vishnoi.

Finally, our algorithm should be compared to the remarkable results of

Ma̧dry [Ma̧d10] for Balanced Separator, which build up on Räcke’s work [Räc08],

and on the low-stretch spanning trees from Abraham et al. [ABN11], to achieve a

trade-off between running time and approximation. For every integer k ≥ 1, he

achieves roughly O((log n)k) approximation in time Õ(m+ 2k · n1+2−k). Calculations

show that for γ ≥ 2−(log logn)2 , our algorithm achieves strictly better running time

and approximation than Ma̧dry’s for sparse graphs. More importantly, we believe
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that our algorithm is significantly simpler, and likely to find applications in practical

settings.

2.2 Approximating the Matrix Exponential

Given a symmetric n×n matrix A, its matrix exponential, denoted by eA or exp(A),

is defined to be eA
def
=
∑

i≥0
Ai

i!
. This operator is of fundamental interest in several

areas of mathematics, physics, and engineering, and has recently found important

applications in algorithms, optimization, and quantum complexity. Roughly, these

latter applications are manifestations of the Matrix Multiplicative Weights Update

method of Arora and Kale [AK07], and its deployment to solve semi-definite programs

efficiently (see [AK07, OV11, JJUW11]).

At the core of most algorithms based on the Matrix Multiplicative Weights Update

method, and in particular, our algorithm for Balanced Separator, lies an algorithm to

quickly compute exp(−A)v for a symmetric, positive semi-definite (PSD) matrix A

and a unit vector v. It is sufficient to compute an approximation u, to exp(−A)v, in

time which is as close as possible to tA, where tA denote the time required to multiply

the matrix A with a given vector v 3.

It can be shown that using about ‖A‖ terms in the Taylor series expansion of

exp(−A), one can find a vector u that approximates exp(−A)v. Hence, this method

runs in time roughly O(tA ·‖A‖). In our application, and certain others [AK07, Kal07,

IPS11, IPS05], this dependence on the norm is prohibitively large.

Since polynomial approximations to the exponential do not suffice to approximate

the matrix exponential fast (see Section 2.4), a number of works focussed on obtaining

good rational approximations to the exponential [CMV69, Ehl73, UW73, SSV75,

3In general, tA depends on how A is represented and can be Θ(n2). However, it is possible
to exploit the special structure of A if given as an input appropriately. e.g., It is possible to just
multiply the non-zero entries of A, giving tA = O(mA), where mA denotes the number of non-zero
entries in A.
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And81]. The work of Saff, Schönhage, and Varga [SSV75] reduces the computation

of exp(−A)v to a number of (I + cA)−1v computations for some c > 0. Note that

this is insufficient for a fast algorithm since exact computation of (I + cA)−1v is a

costly operation. Eshof and Hochbruck [EH05] propose the use of iterative methods

for approximating (I + cA)−1v 4. However, to the best of our knowledge, there is no

known proof of using rational approximations to approximate the matrix exponential

under approximate inverse computation.

Reduction to Matrix Inversion and SDD Matrices. We give a rigorous proof

of a reduction from (approximate) matrix exponentiation to (approximate) matrix

inversion. Though based on the rational approximation result from Saff, Schönhage,

and Varga [SSV75], our proposed procedure differs from earlier approaches in sig-

nificant ways, and we outline the differences in detail in Section 4.3. Appealing to

techniques from numerical linear algebra and approximation theory, we prove the

following theorem in chapter 4:

Theorem 2.2 (Informal). Given a PSD matrix A, and a vector v, the approximation

of exp(−A)v can be reduced to poly-logarithmic number of approximations of the form

(I + cA)−1u, where c > 0, and u is another vector.

For fast graph algorithms, the quantity of interest is e−Lv, where L is the combina-

torial Laplacian of a graph, and v is a vector. The vector e−Lv can also be interpreted

as the resulting distribution of a certain continuous-time random walk on the graph

with starting distribution v. Thus, concretely, using a the near-linear-time Lapla-

cian system solver5 [ST04, KMP11, KOSZ13], this gives an Õ(m)-time algorithm for

approximating e−Lv for graphs with m edges.

4Their method was cited in a number of works [AK07, Kal07, IPS11, IPS05].
5A Laplacian solver is an algorithm that (approximately) solves a given system of linear equations

Lx = b, where L is a graph Laplacian and b lies in the image of L, i.e., it (approximately) computes
L−1b, see [Vis12].
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Theorem 2.3 (SDD Matrix Exponential Computation). Given an n × n SDD 6

matrix A, a vector v and a parameter δ ≤ 1, there is an algorithm that can compute a

vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time Õ((mA + n) log(2 + ‖A‖)). Here

the tilde hides poly(log n) and poly(log 1/δ) factors.

For our application to Balanced Separator, firstly, the dependence of the running

time on the log(2 + ‖A‖) turns out to just contribute an extra log n factor. Also,

we will have δ = 1/poly(n). Secondly, the matrix we need to invert is neither SDD nor

sparse. Fortunately, we can combine the Laplacian system solver with the Sherman-

Morrison formula to invert our matrices; see Theorem 4.4. A significant effort goes

into analyzing the effect of the error introduced due to approximate matrix inversion.

This error can cascade due to the iterative nature of our algorithm that proves this

theorem.

When the only guarantee we know on the matrix is that it is symmetric and

PSD, we can use the Conjugate Gradient method to approximate the matrix inverse

and obtain the following theorem, which is the best known algorithm to compute

exp(−A)v for an arbitrary symmetric PSD matrix A, when ‖A‖ = ω(poly(log n)).

Theorem 2.4 (PSD Matrix Exponential Computation). Given an n × n sym-

metric PSD matrix A, a vector v and a parameter δ ≤ 1, there is an algo-

rithm that computes a vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time

Õ
(

(tA + n)
√

1 + ‖A‖ log(2 + ‖A‖)
)
. Here the tilde hides poly(log n) and poly(log 1/δ)

factors.

In the symmetric PSD setting, we also prove the following theorem, which gives

a result comparable to Theorem 2.4. This result is comparable to, and implied by

an earlier independent work of Hochbruck and Lubich (Theorem 2 in [HL97]). In

fact, both Theorem 2.5 and the result of Hochbruck and Lubich follow immediately

6A is said to be Symmetric and Diagonally Dominant (SDD) if, Aij = Aji, for all i, j and
Aii ≥

∑
j 6=i |Aij |, for all i. In particular, every Laplacian matrix is SDD.
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by combining the Lanczos method with improved polynomial approximations for the

exponential function. We discuss polynomial approximations to e−x in Section 2.4.

Theorem 2.5 (Simple PSD Matrix Exponential Computation). Given an n × n

symmetric PSD matrix A, a vector v and a parameter δ ≤ 1, there is an algorithm that

computes a vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ , in time O((tA + n) · k+ k2),

where k
def
= Õ(

√
1 + ‖A‖). Here the tilde hides poly(log 1/δ) factors.

As noted above, tA can be significantly smaller than mA. Moreover, it only uses

multiplication of a vector with the matrix A as a primitive and does not require

matrix inversion. Consequently, it does not need tools like the SDD solver or Con-

jugate Gradient method, thus obviating the error analysis required for the previous

algorithms. Furthermore, this algorithm is very simple and when combined with our

random walk-based BalSep algorithm, results in a very simple and practical O(
√
γ)

approximation algorithm for Balanced Separator that runs in time Õ(m/√γ).

2.3 Matrix Inversion is as easy as Exponentiation

The results on approximating the matrix exponential from the last section show that

(approximate) matrix exponentiation can be reduced to a small number of (approxi-

mate) matrix inversions. For our application to Balanced Separator, it was sufficient

to combine this result with the near-linear-time SDD solver by Spielman and Teng.

However, these results leave a few important questions unanswered. The first

question arises because all known SDD or Laplacian system solvers require tools

beyond simple linear algebra operations, such as the computation of a low-stretch

spanning tree (e.g. [ST04, KMP11, KOSZ13]). Hence we should ask whether such a

solver is necessary in order to compute e−Lv in near-linear time (see [Vis12, Chapter

9]). Secondly, and more obviously, these results fail to resolve whether there is a fast

algorithm for approximating the matrix exponential for all PSD matrices.
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We answer the first question in the affirmative, and give evidence that a fast al-

gorithm that approximates the exponential for all PSD matrices would require tech-

niques beyond our current reach, by presenting a reduction in the other direction,

again relying on analytical techniques. The following is our main result.

Theorem 2.6. Given ε, δ ∈ (0, 1], there exist poly(log 1/δε) numbers 0 < wj, tj =

O(poly(1/δε)), such that for all symmetric matrices A satisfying δI � A � I, (1 −

ε)A−1 �
∑

j wje
−tjA � (1 + ε)A−1.

This proves that the problems of (approximate) matrix exponentiation and (approx-

imate) matrix inversion are equivalent up to polylogarithmic factors. Versions of this

lemma were proved by Beylkin and Mònzon [BM05, BM10]. Our proof is simple and

self-contained.

Let us consider the implications of this result to the two questions raised above.

Firstly, it justifies the somewhat surprising use of Laplacian solvers for approximat-

ing the matrix exponential, and in particular, for algorithms based on the Matrix

Multiplicative Weights Update method for problems like Balanced Separator.

Secondly, since this equivalence does not require the matrix A to be a Laplacian,

but only that it be a symmetric positive-definite matrix, this implies that a fast

algorithm for approximating the matrix exponential could be used to approximate

A−1v with only a loss of polylogarithmic factors in the running time. While such

fast solvers are known for linear systems arising from SDD matrices, as discussed

earlier, extending these results to all PSD matrices is an important open problem,

and it would be interesting to investigate if this approach can be used to make some

progress.
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2.4 Uniform approximations to e−x

A straightforward approach to approximate the matrix-exponential-vector product

exp(−A)v is to consider a polynomial p(x) that approximates e−x on the interval

[0, ‖A‖] up to a point-wise error of δ, and return the approximation p(A)v. As a

concrete instantiation of this strategy, we already observed that we could truncate

the Taylor expansion of e−x to obtain such approximating polynomials. The degree of

these polynomials required in order to obtain a good approximation is roughly ‖A‖.

For our application to the Balanced Separator problem, ‖A‖ is of the order of 1/γ

which can be polynomially large in n.

This serves as additional motivation for the following natural question: Do there

exist polynomials approximating e−x on the interval [0, ‖A‖], with their dependence

on ‖A‖ asymptotically better than linear?

We answer this question in the affirmative and show the existence of such polyno-

mials with degree roughly
√
‖A‖. We also show a matching lower bound that proves

that, asymptotically, this is the best dependence possible. This gives further evidence

that significantly improving the running time of Theorem 2.5 for general PSD ma-

trices requires more advanced techniques. The following theorem states both these

results formally:

Theorem 2.7 (Uniform Approximation to e−x). ˙

• Upper Bound. For every 0 < b, and 0 < δ ≤ 1, there exists a polynomial p

that satisfies, supx∈[0,b] |e−x − p(x)| ≤ δ, and has degree Õ(
√
b), where the tilde

hides poly(log 1/δ) factors.

• Lower Bound. For every loge 4 ≤ b, and δ ∈ (0, 1/8], any polynomial p(x) that

approximates e−x uniformly over the interval [0, b] up to an error of δ, must

have degree at least 1
2
·
√
b .
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We note that the upper bound from the above theorem is implicit in the work of

Hochbruck and Lubich [HL97] (This was pointed out to us by an anonymous reviewer

for [OSV12]). We give a different proof of this result, one that starts from the rational

approximation result of Saff, Schönhage, and Varga [SSV75] mentioned earlier, and

avoids complex analysis, unlike the result from [HL97].

The upper bound from the above theorem is required for Theorem 2.5. A concern

to address though, is that the polynomials given by Theorem 2.7 are not known

explicitly. We address this issue by using the Lanczos method from numerical linear

algebra that allows us to convert guarantees about polynomial approximation from

scalars to matrices, without explicit knowledge of the polynomials. Thus, just the

existence of good polynomial approximations allows us to prove Theorem 2.5.
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Chapter 3

Fast Spectral Algorithm for

Balanced Separator

In this chapter, we give a novel spectral approximation algorithm for the Balanced

Separator problem that, given a graph G, a constant balance b ∈ (0, 1/2], and a

parameter γ, either finds an Ω(b)-balanced cut of conductance O(
√
γ) in G, or outputs

a certificate that all b-balanced cuts in G have conductance at least γ, and runs in

time Õ(m) 1. This settles the question of designing asymptotically optimal spectral

algorithms for Balanced Separator. Our algorithm relies on a variant of the heat

kernel random walk and requires, as a subroutine, an algorithm to compute exp(−L)v

where L is the Laplacian of a graph related to G, and v is a vector. In Chapter 4,

we describe the algorithms for computing exp(−L)v, which, when combined with the

spectral algorithm described in this chapter, prove Theorems 3.1 and 3.2.

3.1 Our Results

In this chapter, we describe our algorithm for the Balanced Separator problem, called

BalSep, that underlies theorem 2.1. Our algorithm requires the ability to approx-

1The tilde notation hides polylogarithmic factors in the argument, unless otherwise specified.
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imate exp(−A)v for a given matrix A, and a vector v. Combining the algorithm

from this chapter, with the near-linear-time algorithm for approximating the matrix-

exponential-vector product for the required class of matrices given by Theorem 4.4,

and described in Chapter 4, we are able to complete the proof of Theorem 2.1. We

restate the theorem here for completeness:

Theorem 3.1 (Theorem 2.1 restated). Given an unweighted graph G = (V,E), a

balance parameter b ∈ (0, 1/2], b = Ω(1) and a conductance value γ ∈ (0, 1], we give

an algorithm called BalSep(G, b, γ), that either outputs an Ω(b)-balanced cut S ⊂ V

such that φ(S) ≤ O(
√
γ), or outputs a certificate that no b-balanced cut of conductance

γ exists. BalSep runs in time O(m poly(log n)).

As pointed out in the introduction, our algorithm, BalSep, can be combined

with other algorithms to approximate the matrix-exponential-vector product. In par-

ticular, when combined with the algorithm in Theorem 2.5, we obtain a very simple

and practical algorithm for Balanced Separator that matches the running time, but

improves on the approximation guarantee of the Evolving-Sets-based algorithm by

Andersen and Peres [AP09]. We record the theorem here for completeness and then

move on to the overview of BalSep and its proof. The proof of this theorem appears

in Section 3.5.

Theorem 3.2 (Simple Spectral Algorithm for Balanced Separator). Given an un-

weighted graph G = (V,E), a balance parameter b ∈ (0, 1/2], b = Ω(1) and a conduc-

tance value γ ∈ (0, 1], we give an algorithm, which runs in time Õ(m/√γ), that either

outputs an Ω(b)-balanced cut S ⊂ V such that φ(S) ≤ O(
√
γ) or outputs a certificate

that no b-balanced cut of conductance γ exists.

Throughout this chapter, we fix G to denote the input graph, γ to denote the

target conductance value, and b to denote the target balance parameter.

21



3.1.1 Comparison with the Recursive Eigenvector Algorithm

Before we explain our algorithm, it is useful to review the Recursive Laplacian Eigen-

vector (RLE) algorithm. Recall that given G, γ and b, the goal of the Balanced

Separator problem is to either certify that every b-balanced cut in G has conductance

at least γ, or produce a Ω(b) balance cut in G of conductance O(
√
γ). RLE does this

by applying LE iteratively to remove unbalanced cuts of conductance O(
√
γ) from

G. The iterations stop and the algorithm outputs a cut, when it either finds a (b/2)-

balanced cut of conductance O(
√
γ) or the union of all unbalanced cuts found so far

is (b/2)-balanced. Otherwise, the algorithm terminates when the residual graph has

spectral gap at least 2γ. In the latter case, any b-balanced cut must have at least half

of its volume lie within the final residual graph, and hence, has conductance at least

γ in the original graph. Unfortunately, this algorithm may require Ω(n) iterations in

the worst case. For instance, this is true if the graph G consists of Ω(n) components

loosely connected to an expander-like core through cuts of low conductance. This

example highlights the weakness of the RLE approach: the second eigenvector of the

Laplacian may only be correlated with one low-conductance cut and fail to capture

at all even cuts of slightly larger conductance. This limitation makes it impossible

for RLE to make significant progress at any iteration. We now proceed to show how

to fix RLE and present our algorithm at a high level.

3.1.2 High-Level Idea of Our Algorithm

Rather than working with the vertex embedding given by the eigenvector, at itera-

tion t, we will consider the multi-dimensional vector embedding represented by the

transition probability matrix P (t) of a certain random walk over the graph. We refer

to this kind of walk as an Accelerated Heat Kernel Walk (AHK) and we describe it

formally in Section 3.3.
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At each iteration t = 1, 2, . . . , the current AHK walk is simulated for τ = logn/γ

time to obtain P (t). For any t, this choice of τ ensures that the walk must mix across

all cuts of conductance much larger than γ, hence emphasizing cuts of the desired

conductance in the embedding P (t).

The embedding obtained in this way, can be seen as a weighted combination of

multiple eigenvectors, with eigenvectors of low eigenvalue contributing more weight.

Hence, the resulting embedding captures not only the cut corresponding to the second

eigenvector, but also cuts associated with other eigenvectors of eigenvalue close to

γ. This enables our algorithm to potentially find many different low-conductance

unbalanced cuts at once. Moreover, the random walk matrix is more stable than the

eigenvector under small perturbations of the graph, making it possible to precisely

quantify our progress from one iteration to the next as a function of the mixing of

the current random walk.

For technical reasons, we are unable to show that we make sufficient progress if

we just remove the unbalanced cuts found, as in RLE. Instead, if we find a low-

conductance unbalanced cut S(t) at iteration t, we perform a soft removal, by mod-

ifying the current walk P (t) to accelerate the convergence to stationarity on the set

S(t). This ensures that a different cut is found using P (t+1) in the next iteration. In

particular, the AHK walks we consider throughout the execution of the algorithm

will behave like the standard heat kernel walk on most of the graph, except on a small

unbalanced subset of vertices, where their convergence will be accelerated.

3.2 Definitions and Preliminaries

We first present some preliminaries for this chapter.

Instance Graph and Edge Volume. We denote by G = (V,E) the unweighted

instance graph, where V = [n] and |E| = m. We assume G is connected. We let
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d ∈ Rn be the degree vector of G, i.e. di is the degree of vertex i. For a subset S ⊆ V,

we define the edge volume as vol(S)
def
=
∑

i∈S di. The total volume of V is 2m. The

conductance of a cut (S, S̄) is defined to be φ(S)
def
= |E(S,S̄)|/min{vol(S),vol(S)}. Moreover,

a cut (S, S̄) is b-balanced if min{vol(S), vol(S̄)} ≥ b · vol(V ).

Special Graphs. Let KV denote the complete graph with an edge of weight didj/2m

between every pair i, j ∈ V. For S ⊆ V, let KS denote the complete graph on S, with

an edge of weight didj/vol(S) between every pair i, j ∈ S. For i ∈ V, let Stari denote the

star graph rooted at i, with an edge of weight didj/2m between i and j, for all j ∈ V.

Graph matrices. For an undirected graph H = (V,EH), let A(H) denote the

adjacency matrix of H, and D(H) the diagonal matrix of degrees of H. The (com-

binatorial) Laplacian of H is defined as L(H)
def
= D(H) − A(H). Note that for all

x ∈ RV , x>L(H)x =
∑
{i,j}∈EH (xi − xj)2. By D and L, we denote D(G) and L(G)

respectively for the input graph G. Finally, the natural random walk over G has

transition matrix W
def
= AD−1.

Vector and Matrix Notation. We are working within the vector space Rn. For

a vector x ∈ Rn, let supp(x) be the set of vertices where x is not zero. We denote

by {ei}ni=1 the standard basis for Rn. 0 and 1 will denote the all 0s and all 1s vectors

respectively. We will denote by I the identity matrix over this space. For a symmetric

matrix A, denote by λi(A), the ith smallest eigenvalue of A. For a symmetric matrix

A, we will use A � 0 to indicate that A is positive semi-definite. The expression

A � B is equivalent to A − B � 0. For two matrices A,B of equal dimensions, let

A •B def
= Tr

(
A>B

)
=
∑

ij Aij ·Bij.

Fact 3.3. L(KV ) = D − 1/2m ·D11>D = D1/2(I − 1/2m ·D1/211D1/2)D1/2.
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Embedding Notation. We will deal with vector embeddings of G, where each

vertex i ∈ V is mapped to a vector vi ∈ Rd, for some d ≤ n. For such an embedding

{vi}i∈V , we denote by vavg the mean vector, i.e. vavg
def
=
∑

i∈V
di/2m · vi. Given a

vector embedding {vi ∈ Rd}i∈V , recall that X is the Gram matrix of the embedding if

Xij = v>i vj. A Gram matrix X is always PSD, i.e., X � 0. For any X ∈ Rn×n, X � 0,

we call {vi}i∈V the embedding corresponding to X if X is the Gram matrix of {vi}i∈V .

For i ∈ V, let Ri denote the matrix such that Ri •X = ‖vi − vavg‖2 .

Fact 3.4.
∑

i∈V diRi • X =
∑

i∈V di ‖vi − vavg‖
2 = 1/2m ·

∑
i<j djdi ‖vi − vj‖

2 =

L(KV ) •X.

3.3 Accelerated Heat Kernel (AHK) Random

Walks

The random-walk processes used by our algorithm are continuous-time Markov pro-

cesses [Par99] over V. In these processes, state transitions do not take place at specified

discrete intervals, but follow exponential distributions described by a transition rate

matrix Q ∈ Rn×n, where Qij specifies the rate of transition from vertex j to i. More

formally, letting p(τ) ∈ Rn be the probability distribution of the process at time

τ ≥ 0, we have that ∂p(τ)/∂τ = Qp(τ) Given a transition rate matrix 2 Q, the dif-

ferential equation for p(τ) implies that p(τ) = eτQp(0). We will be interested in a

class of continuous-time Markov processes over V that take into account the edge

structure of G. The simplest such process is the heat kernel process, which is defined

as having transition rate matrix Q = −(I − W ) = −LD−1. The heat kernel can

also be interpreted as the probability transition matrix of the following discrete-time

random walk: sample a number of steps i from a Poisson distribution with mean τ

2A matrix Q is a valid transition rate matrix if its diagonal entries are non-positive and its off-
diagonal entries are non-negative. Moreover, it must be that 1Q = 0, to ensure that probability
mass is conserved.
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and perform i steps of the natural random walk over G :

p(τ) = e−τLD
−1

p(0) = e−τ(I−W )p(0) = e−τ
∞∑
i=0

τ i

i!
W ip(0).

We generalize the concept of heat kernel to a larger class of continuous-time

Markov processes, which we name Accelerated Heat Kernel (AHK) processes. A

process H(β) in this class is defined by a non-negative vector β ∈ Rn, and the tran-

sition rate matrix of H(β) is Q(β)
def
= −(L +

∑
i∈V βiL(Stari))D

−1. As this is the

negative of a sum of Laplacian matrices, it is easy to verify that it is a valid transi-

tion rate matrix. Adding the star terms to the transition rate matrix has the effect

accelerating the convergence of the process to stationarity at vertices i with large

value of βi, as a large fraction of the probability mass that leaves these vertices is

distributed uniformly over the edges. We denote by Pτ (β) the probability-transition

matrix of H(β) between time 0 and τ, i.e. Pτ (β) = eτQ(β).

Finally, to connect to the high-level idea described earlier, for each iteration t, we

use P (t) def
= Pτ (β

(t)) for τ = logn/γ with β(t) ≈ 1/τ
∑t−1

j=1

∑
i∈S(j) ei and starting with

β(1) = 0.

Embedding View.

A useful matrix to study H(β) will be D−1P2τ (β). This matrix describes the proba-

bility distribution over the edges of G and has the advantage of being symmetric and

positive semidefinite:

D−1P2τ (β) = D−
1/2e−(2τ)D−

1/2(L+
∑
i∈V βiL(Stari))D−

1/2

D−
1/2,

Moreover, we have the following fact:

Fact 3.5. D−1/2Pτ (β) is a square root of D−1P2τ (β).

26



Proof.

(
D−

1/2Pτ (β)
)>
D−

1/2Pτ (β) = eτ(Q(β))>D−1eτQ(β) = D−1eτQ(β)eτQ(β) = D−1e2τQ(β).

Hence, D−1P2τ (β) is the Gram matrix of the embedding given by the columns of its

square root D−1/2Pτ (β). This property will enable us to use geometric SDP techniques

to analyze H(β).

Mixing.

Spectral methods for finding low-conductance cuts are based on the idea that random

walk processes mix slowly across sparse cuts, so that it is possible to detect such

cuts by considering the starting vertices for which the probability distribution of the

process strongly deviates from the stationary distribution. We measure this deviation

for vertex i at time t by the `2
2-norm of the distance between Pτ (β)ei and the uniform

distribution over the edges of G. We denote it by Ψ(Pτ (β), i) :

Ψ(Pτ (β), i)
def
= di

∑
j∈V

dj

(
e>j Pτ (β)ei

dj
− 1

2m

)2

.

A fundamental quantity for our algorithm will be the total deviation from sta-

tionarity over a subset S ⊆ V. We will denote Ψ(Pt(β), S)
def
=
∑

i∈S Ψ(Pt(β), i). In

particular, Ψ(Pτ (β), V ) will play the role of potential function in our algorithm. The

following facts express these mixing quantities in the geometric language of the em-

bedding corresponding to D−1P2τ (β).

Fact 3.6. Ψ(Pτ (β), i) = diRi •D−1P2τ (β).
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Proof. By Fact 3.5 and the definition of Ri :

diRi •D−1P2τ (β) = di

∥∥∥∥∥D−1/2Pτ (β)ei −
∑
j∈V

dj
2m

D−
1/2Pτ (β)ej

∥∥∥∥∥
2

= di

∥∥∥∥D−1/2Pτ (β)ei −
D1/21

2m

∥∥∥∥2

= di

∥∥∥∥D1/2

(
D−1Pτ (β)ei −

1

2m

)∥∥∥∥2

= Ψ(Pτ (β), i).

The following is a consequence of Fact 3.4:

Fact 3.7. Ψ(Pτ (β), V ) =
∑

i∈V diRi •D−1P2τ (β) = L(KV ) •D−1P2τ (β).

3.4 Algorithm Description

The algorithm BalSep is formally described in Figure 3.1. Below, we present an

overview of the algorithm.

All the random walks in our algorithm will be run for time τ
def
= O(logn)/γ. We will

consider embeddings given by the columns of D−1/2Pτ (β) for some choice of β. Since

we require our algorithm to run in time Õ(m), and we are only interested in Euclidean

distances between vectors in the embedding, we will use the Johnson-Lindenstrauss

Lemma (see Lemma 3.20 in Section 3.6) to obtain an O(log n)-dimensional embedding

approximately preserving distances between columns of D−1/2Pτ (β) up to a factor of

(1 + ε), where we pick ε
def
= 1/7. (This choice of ε satisfies 1+ε/1−ε ≤ 4/3.)

Required Subroutines. Our algorithm BalSep will call two subroutines Find-

Cut and ExpV. FindCut is an SDP-rounding algorithm that uses random projec-

tions and radial sweeps to find a low-conductance cut, that is either c-balanced, for

some constant c = Ω(b) ≤ b/100, or obeys a strong guarantee stated in Theorem 3.10.
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Such an algorithm is implicit in [OV11] and is described precisely in Section 3.8.

ExpV is a generic algorithm that approximately computes products of the form

Pτ (β)u for unit vectors u. Expv can be chosen to be either the algorithm implied by

Theorem 4.4, which makes use of the Spielman-Teng solver, or that in Theorem 4.5,

which just applies the Lanczos method.

Algorithm Overview. The algorithm BalSep will output a c-balanced cut of

conductance O(
√
γ) or the string No, if it finds a certificate that no b-balanced cut

of conductance less than γ exists. BalSep can also fail and output the string Fail.

We will show that this only happens with small probability. The constants in the

proof have not been optimized and are likely larger than necessary. They can also be

modified to obtain different trade-offs between the approximation guarantee and the

output balance.

At iteration t = 1, we have β(1) = 0, so that P (1) is just the probability transition

matrix of the heat kernel onG for time τ. In general at iteration t,BalSep runs ExpV

to compute O(log n) random projections of P (t) and constructs an approximation

{v(t)
i }i∈V to the embedding given by the columns of D−1/2P (t). This approximate

embedding has Gram matrix X(t).

In Step 2, BalSep computes L(KV ) • X(t), which is an estimate of the total

deviation Ψ(P (t), V ) by Fact 3.7. If this deviation is small, the AHK walk P (t) has

mixed sufficiently over G to yield a certificate that G cannot have any b-balanced cut

of conductance less than γ. This is shown in Lemma 3.8. If the AHK walk P (t) has not

mixed sufficiently, we can use FindCut to find a cut S(t) of low conductance O(
√
γ),

which is an obstacle for mixing. If S(t) is c-balanced , we output it and terminate.

Otherwise, S(t) is unbalanced and is potentially preventing BalSep from detecting

balanced cuts in G. We then proceed to modify the AHK walk, by increasing the

29



Input: An unweighted connected instance graph G = (V,E), a constant balance
value b ∈ (0, 1/2], a conductance value γ ∈ [1/m, 1).

Set τ
def
= logn/12γ and β(1) def

= 0.

At iteration t = 1, . . . , T
def
= 12 log n :

1. Denote P (t) def
= Pτ (β

(t)). Pick k
def
= O(logn/ε2) random unit vectors

{u(t)
1 , u

(t)
2 , . . . , u

(t)
k ∈ Rn} and use the subroutine ExpV to compute the em-

bedding {v(t)
i ∈ Rk}i∈V defined as(

v
(t)
i

)
j

def
=

√
n

k
u>j D

−1/2P (t)ei.

Let X(t) be the Gram matrix corresponding to this embedding.

2. If L(KV ) •X(t) =
∑

i∈V di||v
(t)
i − v

(t)
avg||2 ≤ 1+ε

n
, output No and terminate.

3. Otherwise, run FindCut(G, b, γ, {v(t)
i }i∈V ). FindCut outputs a cut S(t) with

φ(S(t)) ≤ O(
√
γ) or fails, in which case we also output Fail and terminate.

4. If S(t) is c-balanced, output S(t) and terminate.

5. Otherwise, update β(t+1) def
= β(t) + 72γ

T

∑
i∈S(t) ei and proceed to the next

iteration.

Output No and terminate.

Figure 3.1: The BalSep algorithm

values of β(t+1) for the vertices in S(t). This change ensures that P (t+1) mixes faster

from the vertices in S(t) and in particular mixes across S(t).

The BalSep algorithm exactly parallels the RLE algorithm discussed earlier,

introducing only two fundamental changes. First, we use the embedding given by the

AHK random walk P (t) in place of the eigenvector to find cuts in G or in a residual

graph. Secondly, rather than fully removing unbalanced low-conductance cuts from

the graph, we modify β(t) at every iteration t, so P (t+1) at the next iteration mixes

across the unbalanced cuts found so far.
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3.5 Analysis of the Algorithm

At the heart of the analysis of BalSep is a modification of the Matrix Multiplicative

Weights update method from [OV11, AK07], stated in the language of random walks.

This modification allows us to deal with the different embedding used by BalSep at

each iteration as compared to [OV11].

In the analysis, the quantity Ψ(P (t), V ) plays the role of potential function. Re-

call that, from a random-walk point of view, Ψ(P (t), V ) is the total deviation from

stationarity of Pτ (β
(t)) over all vertices as starting points. We start by showing that

if the potential function is small enough, we obtain a certificate that no b-balanced

cut of conductance at most γ exists. In the second step, we show that, if BalSep

finds an unbalanced cut S(t) of low conductance, the potential decreases by a con-

stant fraction. Unless explicitly stated otherwise, the proofs of all lemmas have been

deferred to Section 3.6.

Potential Guarantee.

We argue that, if Ψ(P (t), V ) is sufficiently small, it must be the case that G has no

b-balanced cut of conductance less than γ. A similar result is implicit in OV. This

theorem has a simple explanation in terms of the AHK random walk P (t). Notice

that in each iteration t, we increase the acceleration of P (t) only by a tiny amount

on a small unbalanced set S(t). Hence, if a balanced cut of conductance less than γ

existed, its convergence could not be greatly helped. Then, if P (t) is still mixing very

well, no such balanced cut can exist.

Lemma 3.8. If Ψ(P (t), V ) ≤ 4
3n
, and for each i = 1, . . . , t, we have vol(S(i)) ≤

c · 2m ≤ b/100 · 2m, then

L+
∑
i∈V

β
(t)
i L(Stari) � 3γ · L(KV ).
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Moreover, this implies that no b-balanced cut of conductance less than γ exists in G.

The Deviation of an Unbalanced Cut.

In the next step, we show that, if the walk has not mixed sufficiently, w.h.p. the

embedding {v(t)
i }i∈V , computed by BalSep, has low quadratic form with respect to

the Laplacian ofG. From a SDP-rounding perspective, this means that the embedding

can be used to recover cuts with conductance close to γ. This part of the analysis

departs from that in [OV11], as we use our modified definition of the embedding.

Lemma 3.9. If Ψ(P (t), V ) ≥ 1
n
, then w.h.p. L •X(t) ≤ O(γ) · L(KV ) •X(t).

This guarantee on the embedding allows us to apply SDP-rounding techniques in the

subroutine FindCut. The following result is implicit in [OV11]. Its proof appears

in Section 3.8 for completeness.

Theorem 3.10. Consider an embedding {vi ∈ Rd}i∈V with Gram matrix X such that

L • X(t) ≤ αL(KV ) • X(t), for α > 0. On input (G, b, α, {vi}i∈V ), FindCut runs in

time Õ(md) and w.h.p. outputs a cut C with φ(C) ≤ O(
√
α). Moreover, there is a

constant c = Ω(b) ≤ b/100 such that either C is c-balanced or

∑
i∈C

diRi •X ≥ 2/3 · L(KV ) •X.

The following corollary is a simple consequence of Lemma 3.9 and Theorem 3.10

Corollary 3.11. At iteration t of BalSep, if Ψ(P (t), V ) ≥ 1
n

and S(t) is not c-

balanced, then w.h.p. Ψ(P (t), S(t)) ≥ 1/2 ·Ψ(P (t), V ).

In words, at the iteration t of BalSep, the cut S(t) must either be c-balanced or

be an unbalanced cut that contributes a large constant fraction of the total deviation

of P (t) from the stationary distribution. In this sense, S(t) is the main reason for

the failure of P (t) to achieve better mixing. To eliminate this obstacle and drive the
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potential further down, P (t) is updated to P (t+1) by accelerating the convergence to

stationary from all vertices in S(t). Formally, this is achieved by adding weighted stars

rooted at all vertices over S(t) to the transition-rate matrix of the AHK random walk

P (t).

Potential Reduction.

The next theorem crucially exploits the stability of the process H(β(t)) and Corol-

lary 3.11 to show that the potential decreases by a constant fraction at every iteration

in which an unbalanced cut is found. More precisely, the theorem shows that acceler-

ating the convergence from S(t) at iteration t of BalSep has the effect of eliminating

at least a constant fraction of the total deviation due to S(t). The proof is a simple

application of the Golden-Thompson inequality [Bha96] and mirrors the main step in

the Matrix Multiplicative Weights Update analysis.

Theorem 3.12. At iteration t of BalSep, if Ψ(P (t), V ) ≥ 1
n

and S(t) is not c-

balanced, then w.h.p.

Ψ(P (t+1), V ) ≤ Ψ(P (t), V )− 1/3 ·Ψ(P (t), S(t)) ≤ 5/6 ·Ψ(P (t), V ).

We are now ready to prove Theorem 3.1 and Theorem 3.2 by applying Lemma 3.12

to show that after O(log n) iterations, the potential must be sufficiently low to yield

the required certificate according to Lemma 3.8.

Proof of Theorem 2.1. If BalSep outputs a cut S(t) in Step 4, by construction, we

have that φ(S) ≤ O(
√
γ) and S is Ω(b)-balanced. Alternatively, at iteration t, if

L(KV ) •X(t) ≤ 1+ε/n, we have by Lemma 3.20 that

Ψ(P (t), V ) = L(KV ) •D−1P2τ (β
(t)) ≤ 1

1− ε
L(KV ) •X(t) ≤ 1 + ε

1− ε
· 1

n
≤ 4

3n
.
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Therefore, by Lemma 3.8, we have a certificate that no b-balanced cut of conductance

less than γ exists in G. Otherwise, we must have L(KV ) • X(t) ≥ 1+ε/n, which, by

Lemma 3.20, implies that

Ψ(P (t), V ) ≥ 1/n.

Then, by Lemma 3.9 and Theorem 3.10, we have w.h.p. that FindCut does not fail

and outputs a cut S(t) with φ(S(t)) ≤ O(
√
γ). As BalSep has not terminated in Step

4, it must be the case that S(t) is not c-balanced and, by Theorem 3.12, we obtain

that w.h.p. Ψ(P (t+1), V ) ≤ 5/6 ·Ψ(P (t), V ). Now,

Ψ(P (1), V ) = L(KV ) •D−1P2τ (0) ≤ I • P2τ (0) ≤ n.

Hence, after 2 logn/log(6/5) ≤ 12 log n = T iterations, w.h.p. we have that Ψ(P (T ), V ) ≤

1/n and, by Lemma 3.8, no b-balanced cut of conductance less than γ exists.

We now consider the running time required by the algorithm at every iteration.

In Step 1, we compute k = O(log n), products of the form D−1/2P (t)u, where u is an

unit vector, using the ExpV algorithm based on the Spielman-Teng solver, given in

Theorem 4.4. This application of Theorem 4.4 is explained in Section 4.1.1. By the

definition of β(t), at iteration t we have:

‖HMH‖ =

∥∥∥∥∥τD−1/2(L+
∑
i∈V

di/2m · βiD +
∑
i∈V

di/2m · βieie>i )D−
1/2

∥∥∥∥∥
≤
∥∥τD−1/2(L+ 2 · 72 · γD)D−

1/2
∥∥ ≤ O(τ) = poly(n).

Moreover, it is easy to see that our argument is robust up to an error δ = 1/poly(n) in

this computation and the sparsity of M is O(m) so that the running time of a single

matrix-exponential-vector product is Õ(m). Given the embedding produced by Step

1, L(KV ) •X(t) can be computed in time Õ(nk) = Õ(n) by computing the distances

||v(t)
i − v

(t)
avg||2 for all i ∈ V. By Theorem 3.10, Step 3 runs in time Õ(mk) = Õ(m).
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Finally, both Steps 4 and 5 can be performed in time Õ(m). As there are at most

O(log n) iterations, the theorem follows.

Theorem 3.2 is proved similarly. It suffices to show that a single matrix-exponential-

vector product requires time Õ(m/√γ).

Proof of Theorem 3.2. Using the algorithm of Theorem 2.5, we obtain that ‖A‖ ≤

O(τ), so that k = Õ(
√
τ) = Õ(1/√γ) ≤ Õ(n). Hence, the running time of a single

computation for this method is Õ(m
√
τ) = Õ(m/√γ).

3.6 Remaining Proofs

In this section we provide the remaining proofs from Section 3.5. We start with some

preliminaries.

Preliminaries

Fact 3.13. L � 2 ·D and L(Stari) � 2 ·D.

Fact 3.14. For all i ∈ V, L(Stari) = di/2m · L(KV ) + diRi. In particular, L(Stari) �

diRi.

At iteration t of BalSep, we denote

C(t) def
= D−

1/2Q(β(t))D
1/2 = D−

1/2(L+
∑
i∈V

β
(t)
i L(Stari))D

−1/2.

The following are some useful facts about C(t) that we will require:

Fact 3.15. The vector D1/2 is the eigenvector of C(t) with smallest eigenvalue 0.

Fact 3.16. C(t) � O(1) · I.

35



Useful Lemmas

Lemma 3.17.

Ψ(P (t), V ) = L(KV ) •D−1P2τ (β
(t)) = Tr

(
e−2τC(t)

)
− 1.

Proof. By definition, we have

Ψ(P (t), V ) = L(KV )•D−1P2τ (β
(t)) = L(KV )•D−1e−2τQ(β(t)) = L(KV )•D−1/2e−2τC(t)

D−
1/2.

Using Fact 3.3 and the cyclic property of the trace function, we obtain

L(KV ) •D−1/2e−2τC(t)

D−
1/2 = (I − 1/2mD

1/211D
1/2) • e−2τC(t)

.

Finally, by Fact 3.15, we must have that the right-hand side equals Tr
(
e−2τC(t)

)
− 1,

as required.

The following lemma is a simple consequence of the convexity of e−x. It is proved

in [Ore11].

Lemma 3.18. For a symmetric matrix A ∈ Rn×n such that ρI � A � 0 and τ > 0,

we have

e−τA �
(
I − (1− e−τρ)

ρ
A

)
.

The following are standard lemmas.

Lemma 3.19 (Golden-Thompson inequality [Bha96]). Let X, Y ∈ Rn×n be symmetric

matrices. Then,

Tr
((
eX+Y

))
≤ Tr

((
eXeY

))
.

Lemma 3.20 (Johnson-Lindenstrauss Dimension Reduction). Given an embedding

{vi ∈ Rd}i∈V , V = [n], let u1, u2, . . . , uk, be vectors sampled independently uniformly
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from the n − 1-dimensional sphere of radius
√

n/k. Let U be the k × t matrix having

the vector ui as ith row and let ṽi
def
= Uvi. Then, for k

def
= O(logn/ε2), for all i, j ∈ V,

(1− ε) · ‖vi − vj‖2 ≤ ‖ṽi − ṽj‖2 ≤ (1 + ε) · ‖vi − vj‖2 .

Proof of Lemma 3.8

Proof. Set β
def
= β(t). By Lemma 3.17, we have Tr

(
e−2τC(t)

)
− 1 ≤ 4/3n. Hence,

λn−1(e−2τC(t)
) ≤ 4/3n, which implies that, by taking logs,

λ2(C(t)) ≥ log n

4τ
≥ 3γ.

This can be rewritten in matrix terms, by Fact 3.3 and Fact 3.15:

L+
∑
i∈V

β
(t)
i L(Stari) � 3γ · L(KV ). (3.1)

which proves the first part of the Lemma.

For the second part, we start by noticing that, β(t) = 72γ/T ·
∑t

j=1

∑
i∈S(j) ei. Now

for any b-balanced cut U, with vol(U) ≤ vol(Ū), consider the vector xU defined as

(xU)i
def
=



√
1

2m
· vol(Ū)
vol(U)

for i ∈ U,

−
√

1
2m
· vol(U)

vol(Ū)
for i ∈ Ū .

Applying the guarantee of Equation 3.1, we obtain

x>ULxU +
72γ

T
·

t∑
j=1

∑
i∈S(j)

x>UL(Stari)xU ≥ 3γ · x>UL(KV )xU .
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Notice that

x>ULxU =
∑
{i,j}∈E

((xU)i − (xU)j)
2 =

2m

vol(Ū)
·
∣∣E(U, Ū)

∣∣
vol(U)

≤ 2 · φ(U),

x>UL(Stari)xU =
∑
j∈V

dj
2m

((xU)i − (xU)j)
2) ≤ 2m

vol(U)
· di

2m
=

di
vol(U)

,

x>UL(KV )xU =
∑
i<j∈V

djdi
2m

((xU)i − (xU)j)
2) = 1.

Hence, our guarantee becomes

2φ(U) +
72γ

T
·

t∑
j=1

vol(S(j))

vol(U)
≥ 3γ.

Since for j = 1, . . . , t, we have vol(S(j)) ≤ b/100 · 2m ≤ vol(U)/100, and t ≤ T, we obtain

φ(U) ≥ γ.

Proof of Lemma 3.9

Proof. Consider L •D−1P2τ (β
(t)) = L •D−1/2e−2τC(t)

D−1/2. Using the cyclic property

of trace and the definition of C(t), we have that

L •D−1P2τ (β
(t)) ≤ C(t) • e−2τC(t)

.

We now consider the spectrum of C(t). By Fact 3.15, the smallest eigenvalue is 0.

Let the remaining eigenvalues be λ2 ≤ λ3 ≤ · · · ≤ λn. Then, C(t) • e−2τC(t)
=∑n

i=2 λie
−2τλi . We will analyze these eigenvalues in two groups. For the first group,

we consider eigenvalues smaller than 24γ and use Lemma 3.17 to obtain,

∑
i:λi≤24γ

λie
−2τλi ≤ O(γ) ·

n∑
i=2

e−2τλi ≤ O(γ) · (Tr
(
e−2τC(t)

)
− 1)
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≤ O(γ) · L(KV ) •D−1P2τ (β
(t)).

For the remaining eigenvalues, by Fact 3.16 and Lemma 3.17, together with γ ≥ 1/m ≥

1/n2 and Ψ(P (t), V ) ≥ 1
n
, we have,

∑
i:λi≥24γ

λie
−2τλi ≤ O(1) · n · e−2τ ·24γ ≤ O(1)

n3

≤ O(γ) ·Ψ(P (t), V ) = O(γ) · L(KV ) •D−1P2τ (β
(t)).

Combining these two parts, we have:

L•D−1P2τ (β
(t)) ≤ C(t)•e−2τC(t) ≤ O(1)·

∑
i:λi≤24γ

λie
−2τλi ≤ O(γ)·L(KV )•D−1P2τ (β

(t)).

Now, we apply the Johnson-Lindenstrauss Lemma (Lemma 3.20) to both sides of this

inequality to obtain:

L •X(t) ≤ O(γ) · L(KV ) •X(t).

Proof of Corollary 3.11

Proof. By Lemma 3.9 and Theorem 3.10, we have that S(t) w.h.p. is either c-balanced

or
∑

i∈S(t) diRi • X(t) ≥ 2/3 · L(KV ) • X(t). By Lemma 3.20 and as 1+ε/1−ε ≤ 4/3, we

have w.h.p.:

Ψ(P (t), S(t)) =
∑
i∈S(t)

diRi •D−1P2τ (β
(t)) ≥ 1

1 + ε
· (
∑
i∈S(t)

diRi •X(t)) ≥ 2

3

1

1 + ε
· L(KV ) •X(t)

≥ 2

3
· 1− ε

1 + ε
· L(KV ) •D−1P2τ (β

(t)) =
2

3
· 1− ε

1 + ε
·Ψ(P (t), V ) ≥ 1

2
·Ψ(P (t), V ).
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Proof of Theorem 3.12

Proof. By Lemma 3.17 and the Golden-Thompson inequality in Lemma 3.19:

Ψ(P (t+1), V ) = Tr
(
e−2τC(t+1)

)
− 1 ≤ Tr

(
e−2τC(t)

e−2τD−
1/2( 72γ

T

∑
i∈S(t) L(Stari))D−

1/2
)
− 1.

We now apply Lemma 3.18 to the second term under trace. To do this we notice that∑
i∈S(t) L(Stari) � 2L(KV ) � 2D, so that

D−
1/2

72γ

T

∑
i∈S(t)

L(Stari)

D−
1/2 � 144γ

T
I.

Hence, we obtain,

Ψ(P (t+1), V ) ≤ Tr

e−2τC(t)

I − (1− e−288·τγ/T ) · 1

2
D−

1/2(
∑
i∈S(t)

L(Stari))D
−1/2

−1.

Applying the cyclic property of trace, we get,

Ψ(P (t+1), V ) ≤ Ψ(P (t), V )− (1− e−288·τγ/T )

2

∑
i∈S(t)

L(Stari) •D−1P2τ (β
(t)).

Next, we use Fact 3.14 to replace L(Stari) by Ri and notice that 288 · τγ/T = 2 :

Ψ(P (t+1), V ) ≤ Ψ(P (t), V )− (1− e−2)

2

∑
i∈S(t)

diRi •D−1P2τ (β
(t)).

Then, we apply the definition of Ψ(P (t), S(t)) :

Ψ(P (t+1), V ) ≤ Ψ(P (t), V )− 1/3 ·Ψ(P (t), S(t)).

Finally, by Corollary 3.11, we know that w.h.p. Ψ(P (t), S(t)) ≥ 1/2 · Ψ(P (t), V ) and

the required result follows.
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3.7 SDP Interpretation

In [OV11], the authors presented an algorithm that outputs either a Ω(b)-balanced

cut of conductance O(
√
γ) or a certificate that no b-balanced cut of conductance γ

exists in time Õ(m/γ2). This algorithm uses the Matrix Multiplicative Weights update

method of Arora and Kale [AK07] to approximately solve an SDP formulation of the

Balanced Separator problem. The main technical contribution of their work is

the routine FindCut (implicit in their Oracle procedure), which plays the role of an

approximate separation oracle for their SDP. In each iteration of the algorithm, the

Matrix Multiplicative Weights Update method produces a candidate SDP-solution

Y (t). In one scenario, Y (t) does not have sufficiently low Laplacian objective value:

L • Y (t) ≥ Ω(γ)L(KV ) • Y (t). (3.2)

In this case, the algorithm uses Equation 3.2 to produce a candidate solution Y (t+1)

with lower objective value. Otherwise, FindCut is run on the embedding corre-

sponding to Y (t). By Theorem 3.10, this yields either a cut of the required balance or

a dual certificate that Y (t) is infeasible. This certificate has the form

γ ·
∑
i∈S(t)

diRi • Y (t) ≥ Ω(γ)L(KV ) • Y (t) (3.3)

and is used by the update to construct the next candidate Y (t+1). The number of

iterations necessary is determined by the width of the two possible updates described

above. A simple calculation shows that the width of the update for Equation 3.2 is

Θ(1), while for Equation 3.3, it is onlyO(γ). Hence, the overall width is Θ(1), implying

that O(logn/γ) iteration are necessary for the algorithm of OV to produce a dual

certificate that the SDP is infeasible and therefore no b-balanced cut of conductance

γ exists.
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Our modification of the update is based on changing the starting candidate so-

lutions from Y (1) ∝ D−1 to X(1) ∝ D−1/2e−2τD−
1/2LD−

1/2
D−1/2. In Lemma 3.8 and

Lemma 3.9, we show that this modification implies that all X(t) must now have

L • X(t) ≤ O(γ) · L(KV ) • X(t) or else we find a dual certificate that the SDP is

infeasible. This additional guarantee effectively allows us to bypass the update of

Equation 3.2 and only work with updates of the form given in Equation 3.3. As a

result, our width is now O(γ) and we only require O(log n) iterations.

Another way to interpret our result is that all possible τ u logn/γ updates of the

form of Equation 3.2 in the algorithm of OV are regrouped into a single step, which

is performed at the beginning of the algorithm.

3.8 The FindCut Subroutine

In this section, we present the FindCut routine and prove its guarantees. Most

of the following material appears in [OV11, Ore11], and is reproduced here in our

notation for completeness. The constants in these proofs are not optimized.

Preliminary Lemmas

Fact 3.21. For a subset S ⊆ V,

∑
i∈S̄

diRi �
vol(S)

2m
(L(KV )− L(KS)) .

Proof. By Fact 3.14,

∑
i∈S̄

diRi =
∑
i∈S̄

L(Stari)−
vol(S̄)

2m
L(KV ).
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Moreover, by the definitions of the graphs Stari, KV , KS, it is clear that

∑
i∈S̄

L(Stari) +
vol(S)

2m
L(KS) � L(KV ).

Combining these two equations, we obtain the required statement.

The following is a variant of the sweep cut argument of Cheeger’s inequal-

ity [Chu97], tailored to ensure that a constant fraction of the variance of the

embedding is contained inside the output cut.

Lemma 3.22. Let x ∈ Rn, x ≥ 0, such that x>Lx ≤ λ and vol(supp(x)) ≤ 2m/2.

Relabel the vertices so that x1 ≥ x2 ≥ · · · ≥ xz−1 > 0 and xz = · · · = xn = 0.

For i ∈ [z − 1], denote by Si ⊆ V, the sweep cut {1, 2, . . . , i}. Further, assume that∑n
i=1 dix

2
i ≤ 1, and, for some fixed k ∈ [z− 1],

∑n
i=k dix

2
i ≥ σ. Then, there is a sweep

cut Sh of x such that z − 1 ≥ h ≥ k and φ(Sh) ≤ 1/σ ·
√

2λ.

We will also need the following simple fact.

Fact 3.23. Given u, v, w ∈ Rn, (‖v − w‖ − ‖u− w‖)2 ≤ ‖v − u‖2 .

3.8.1 Roundable Embeddings and Projections

The following definition of roundable embedding captures the case in which a vector

embedding of the vertices V identifies a balanced cut of conductance close to α in

G. Intuitively, in a roundable embedding, a constant fraction of the total variance is

spread over a large set R of vertices.

Definition 3.24 (Roundable Embedding). Given an embedding {vi}i∈V with Gram

matrix X, denote by Ψ the total variance of the embedding: Ψ
def
= L(KV ) • X. Also,

let R = {i ∈ V : ‖vi − vavg‖2 ≤ 32 · (1−b)/b · Ψ
2m
}. For α > 0, we say that {vi}i∈V is

roundable for (G, b, α) if:
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• L •X ≤ αΨ,

• L(KR) •X ≥ Ψ
128
.

A roundable embedding can be converted into a balanced cut of conductance O(
√
α)

by using a standard projection rounding, which is a simple extension of an argument

already appearing in [ARV09] and [AK07]. The rounding procedure ProjRound is

described in Figure 3.2 for completeness. It is analyzed in [OV11] and [Ore11], where

the following theorem is proved.

Theorem 3.25 (Rounding Roundable Embeddings [OV11, Ore11]). If {vi ∈ Rh}i∈V

is roundable for (G, b, α), then ProjRound({vi}i∈V , b) produces a Ω(b)- balanced cut

of conductance O (
√
α) with high probability in time Õ(nh+m).

1. Input: An embedding {vi ∈ Rh}i∈V , b ∈ (0, 1/2].

2. Let c = Ω(b) ≤ b/100 be a constant, fixed in the proof of Theorem 3.25
in [OV11].

3. For t = 1, 2, . . . , O(log n):

a. Pick a unit vector u uniformly at random from Sh−1 and let x ∈ Rn with

xi
def
=
√
h · u>vi.

b. Sort the vector x. Assume w.l.o.g. that x1 ≥ x2 ≥ · · · ≥ xn. Define

Si
def
= {j ∈ [n] : xj ≥ xi}.

c. Let S(t) def
= (Si, S̄i) which minimizes φ(Si) among sweep-cuts for which

vol(Si) ∈ [c · 2m, (1− c) · 2m].

4. Output: The cut S(t) of least conductance over all choices of t.

Figure 3.2: ProjRound subroutine

3.8.2 Description of FindCut

In this subsection we prove Theorem 3.10. The procedure FindCut is formally

described in Figure 3.3.

44



1. Input: Instance graph G, balance b, conductance value α and embedding
{vi}i∈V , with Gram matrix X.

2. Let ri = ‖vi − vavg‖ for all i ∈ V. Denote Ψ
def
= L(KV ) •X and define the set

R
def
= {i ∈ V : r2

i ≤ 32 · (1−b)/b · Ψ/2m}.

3. Case 1: If L •X > αΨ, output FAIL and terminate.

4. Case 2: If L(KR) • X ≥ Ψ/128, the embedding {vi}i∈V is roundable for
(G, b, α). Run ProjRound, output the resulting cut and terminate.

5. Case 3: Relabel the vertices of V such that r1 ≥ r2 ≥ · · · ≥ rn and let
Si = {1, . . . , i} be the jth sweep cut of r. Let z the smallest index such
that vol(Sz) ≥ b/4 · 2m. Output the most balanced sweep cut C among
{S1, . . . , Sz−1}, such that φ(C) ≤ 40 · √γ.

Figure 3.3: FindCut subroutine

Proof. (of Theorem 3.10) By Markov’s inequality, vol(R̄) ≤ b/(32·(1−b))·2m ≤ b/16·2m ≤

1/32 · 2m. By assumption, Case 1 cannot take place. If Case 2 holds, then the

embedding is roundable: by Theorem 3.25, ProjCut outputs an Ω(b)-balanced cut

C with conductance O(
√
α). If this is not the case, we are in Case 3.

We then have L(KR) ≤ Ψ/128 and, by Fact 3.21:

∑
i∈R̄

diRi •X =
∑
i∈R̄

dir
2
i ≥

vol(R)

2m
·
(

1− 1

128

)
·Ψ

≥
(

1− 1

32

)
·
(

1− 1

128

)
·Ψ ≥

(
1− 5

128

)
·Ψ.

It must be the case that R̄ = Sg for some g ∈ [n], with g ≤ z as vol(Sg) ≤

vol(Sz). Let k ≤ z be the the vertex in R such that
∑k

j=1 djr
2
j ≥ 3/4 · (1 − 5/128)

and
∑g

j=k djr
2
j ≥ 1/4 · (1 − 5/128). By the definition of z, we have k ≤ g < z and

r2
z ≤ 4/b · Ψ/2m ≤ 8 · (1−b)/b · Ψ/2m. Hence, we have rz ≤ 1/2 · ri, for all i ≥ g. Define the
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vector x as xi
def
= (ri − rz) for i ∈ Sz and ri

def
= 0 for i /∈ Sz. Notice that:

x>Lx =
∑
{i,j}∈E

(xi − xj)2 ≤
∑
{i,j}∈E

(ri − rj)2
Fact 3.23

≤
∑
{i,j}∈E

‖vi − vj‖2 ≤ αΨ.

Also, x ≥ 0 and vol(supp(x)) ≤ b/4 · 2m ≤ 2m/2, by the definition of z. Moreover,

n∑
i=1

dix
2
i =

z∑
i=1

di(ri − rz)2 ≤
z∑
i=1

dir
2
i ≤ Ψ,

and

n∑
i=k

dix
2
i =

z∑
i=k

di(ri − rz)2 ≥
g∑
i=k

di(ri − 1/2 · ri)2

= 1/4 ·
g∑
i=k

dir
2
i ≥ 1/16 · (1− 5/128) ·Ψ ≥ 1/20 ·Ψ.

Hence we can now apply Lemma 3.22 to the vector 1/
√

Ψ · x. This shows that there

exists a sweep cut Sh with z > h ≥ k, such that φ(Sh) ≤ 40 ·
√
α. It also shows that C,

as defined in Figure 3.3, must exist. Moreover, it must be the case that Sk ⊆ Sh ⊆ C.

As h ≥ k, we have,

∑
i∈C

diRi •X =
∑
i∈C

dir
2
i ≥

k∑
i=1

dir
2
i ≥

3

4
·
(

1− 5

128

)
·Ψ ≥ 2

3
·Ψ =

2

3
· L(KV ) •X.

Finally, using the fact that {vi}i∈V is embedded in d dimensions, we can compute

L • X̃ in time O(dm). Moreover, L(KV ) •X can be computed in time O(nd) by using

the decomposition L(KV )•X =
∑

i∈V di ‖vi − vavg‖
2 . By the same argument, we can

compute L(KR) •X in time O(nd). The sweep cut over r takes time Õ(m). And, by

Theorem 3.25, ProjRound runs in time Õ(md). Hence, the total running time is

Õ(md).
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Notes

The material presented in this chapter is based on the paper “Approximating the

Exponential, the Lanczos Method, and an Õ(m)-Time Spectral Algorithm for Bal-

anced Separator” [OSV12], joint with Lorenzo Orecchia and Nisheeth Vishnoi, that

appeared at STOC 2012. A full version of the paper is available on arxiv [OSV11].
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Chapter 4

Computing exp(−A)v

Our algorithm for the Balanced Separator problem, presented in the last chapter, re-

quires the ability to approximate matrix exponentials. The main result of this chapter

is a reduction from approximating the matrix-exponential-vector product exp(−A)v,

for any positive semidefinite matrix A and any vector v to approximating polylogarith-

mic number of matrix-inverse-vector products (I + cA)−1u, for some constant c > 0

and some vector u. As a warm up, we combine this reduction with the Spielman-

Teng solver to obtain an algorithm for the case where the matrix A is symmetric

and diagonally-dominant (SDD), such as the Laplacian of a graph, that runs in time

roughly Õ(mA), where mA is the number of non-zero entries of A. Finally, combining

the SDD solver with the Sherman-Morrison formula, we show how to approximate

exp(−A)v in near-linear time for the matrices A required by our Balanced Separator

algorithm.

Our algorithms are based on the Lanczos method from numerical linear algebra,

and low degree polynomial and rational approximations to the exponential.
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4.1 Our Results

Before we state our results for this chapter, we state the basic definitions used in

this chapter. Some of these definitions have been presented before, but are being

reproduced here for completeness.

Definitions. We work with square n × n matrices over R. For a symmetric PSD

matrix M, we define the M -norm of a vector x as ‖x‖M
def
= (x>Mx)1/2. Given an

n × n symmetric PSD matrix M and a function f : R 7→ R, we can define f(M) as

follows: Let u1, . . . , un be eigenvectors of M with eigenvalues λ1 ≥ . . . ≥ λn. Define

f(M)
def
=
∑

i f(λi)uiu
>
i . Thus, abusing notation, we denote the matrix exponential by

exp(−M), which can also be defined as
∑

i≥0
(−1)i

i!
M i. Let λ1(M) and λn(M) denote

the largest and the smallest eigenvalues of M respectively, and, let Λ(M) denote

the smallest interval containing the spectrum of M, i.e., [λn(M), λ1(M)]. ‖M‖ def
=

sup‖x‖=1 ‖Mx‖ denotes the spectral norm of M.

M is said to be Symmetric and Diagonally Dominant (SDD) if, Mij = Mji, for

all i, j and Mii ≥
∑

j 6=i |Mij|, for all i. M is called Upper Hessenberg if, (M)ij = 0

for i > j + 1. M is called tridiagonal if Mij = 0 for i > j + 1 and for j > i + 1.

For a matrix M, let mM denote the number of non-zero entries in M. Further, let tM

denote the time required to multiply the matrix M with a given vector w. In general

tM depends on how M is given as an input and can be Θ(n2). However, it is possible

to exploit the special structure of M if given as an input appropriately: It is possible

to just multiply the non-zero entries of M, giving tM = O(mM). Also, if M is a rank

one matrix ww>, where w is known, we can multiply by M in O(n) time.

For any positive integer k, let Σk denote the set of all polynomials with degree at

most k. Given a degree k polynomial p
def
=
∑k

i=0 ai · xi, the `1 norm of p, denoted as

‖p‖1 is defined as ‖p‖1 =
∑k

i≥0 |ai|.
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4.1.1 Approximating exp(−A)v

We first describe the well-known Lanczos method (e.g. see [Saa92]) in Section 4.2.

We also give a proof of a well known theorem about the method that permits us

to extend polynomial approximations for a function f over reals to approximating f

over matrices (Theorem 4.10). For approximating matrix exponentials, the Lanczos

method can be combined with good polynomial approximations to the exponential.

However, as we will show in Chapter 6, polynomial approximations do not suffice for

our application to the Balanced Separator problem.

Reduction to Matrix Inversion : Approximating exp(−A)v using Rational

Approximations

We give a procedure called ExpRational that approximates matrix exponentials,

given black box access to a procedure InvertA with the following guarantee: given a

vector y, a positive integer k and ε1 > 0, InvertA(y, k, ε1) returns a vector u1 such that,

‖(I + A/k)−1y − u1‖ ≤ ε1 ‖y‖ . ExpRational is motivated by the Lanczos method,

but it is based on good rational approximations for the exponential, instead of poly-

nomial approximations.

The following theorem summarizes our result about the procedure ExpRational,

stated informally in Theorem 2.2.

Theorem 4.1 (Running Time of ExpRational given InvertA). Given a symmetric

PSD matrix A � 0, a vector v with ‖v‖ = 1, an error parameter 0 < δ ≤ 1 and oracle

access to InvertA, for parameters k
def
= O(log 1/δ) and ε1

def
= exp(−Θ(k log k + log(2 +

‖A‖))), ExpRational computes a vector u such that ‖exp(−A)v − u‖ ≤ δ, in time

O(T inv
A,k,ε1

· k + n · k2 + k3), where T inv
A,k,ε1

is the time required by InvertA(·, k, ε1).
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The procedure ExpRational is described in Section 4.3. A proof of Theorem 4.1

appears in Section 4.5. The algorithms for Theorems 2.3 and 2.4 are obtained from

ExpRational by giving different implementations of the required procedure InvertA.

Exponentiating SDD matrices and general PSD matrices.

Using the Spielman-Teng SDD solver to implement the InvertA procedure for Ex-

pRational, we obtain a procedure for exponentiating SDD matrices. Theorem 2.3,

restated below, then follows from Theorem 4.1 (see Section 4.3.1).

Theorem 4.2 (Theorem 2.3 Restated). Given an n × n symmetric matrix A which

is SDD, a vector v and a parameter δ ≤ 1, there is an algorithm that can compute a

vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time Õ((mA + n) log(2 + ‖A‖)). The

tilde hides poly(log n) and poly(log 1/δ) factors.

Similarly, we prove Theorem 2.4 (restated below) by using the Conjugate Gradi-

ent method to implement the InvertA procedure for general PSD matrices (see Sec-

tion 4.3.2).

Theorem 4.3 (Theorem 2.4 Restated). Given an n × n symmetric PSD matrix A,

a vector v and a parameter δ ≤ 1, there is an algorithm that can compute a vector

u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time Õ
(

(tA + n)
√

1 + ‖A‖ log(2 + ‖A‖)
)
.

Here the tilde hides poly(log n) and poly(log 1/δ) factors.

Going beyond SDD Matrices

As mentioned in Section 2.2, our algorithm for Balanced Separator (Theorem 2.1)

requires exponentiating matrices that may be neither SDD, nor sparse. Thus, The-

orem 2.3 is insufficient for our application. However, they do have some additional

structure. We prove the following theorem that is tailored for exponentiating matrices

required for Theorem 2.1.
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Theorem 4.4 (Matrix Exponential Computation Beyond SDD). Given an n × n

symmetric matrix A = ΠHMHΠ where M is SDD, H is a diagonal matrix with

strictly positive entries and Π is a rank (n − 1) projection matrix = 1 − ww> (w

is explicitly known and ‖w‖ = 1), a vector v and a parameter δ ≤ 1, there is an

algorithm that can compute a vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time

Õ((mM + n) log(2 + ‖HMH‖)). The tilde hides poly(log n) and poly(log 1/δ) factors.

Recall from Section 3.4 that our algorithm for Balanced Separator requires us to

compute exp(−A)v for a matrix A of the form D−1/2(L+
∑

i βiL(Stari))D
−1/2, where

βi ≥ 0. We first note that if we let Π
def
= I − 1/2m · (D1/21)(D1/21)>, the projection onto

the space orthogonal to 1/
√

2m ·D1/21, then, for each i, D−1/2L(Stari)D
−1/2 = Π(di/2m ·

I + eie
>
i )Π. Since D1/21 is an eigenvector of D−1/2LD−1/2, we have, ΠD−1/2LD−1/2Π =

D−1/2LD−1/2. Thus,

A = ΠD−
1/2LD−

1/2Π +
∑
i

βiΠ(di/2m · I + eie
>
i )Π

= ΠD−
1/2

(
L+

∑
i

βi · di/2m ·D +
∑
i

βidi · eie>i

)
D−

1/2Π.

This is of the form ΠHMHΠ, where H
def
= D−1/2 is diagonal and M is SDD. It is

worth noting that since A itself may be neither sparse nor SDD, we cannot apply the

Spielman-Teng SDD solver to approximate (I + αA)−1.

For the above theorem, we combine the SDD solver with the Sherman-Morrison

formula (for matrix inverse with rank 1 updates) to implement the InvertA procedure

for ExpRational. The details appear in Section 4.4. Note that in order to obtain a

version of Theorem 2.5 for such matrices, we do not have to do anything additional

since multiplication by H and Π take O(n) steps and hence, tA is still O(mM + n).

Finally, note that in our application, ‖HMH‖ is poly(n).
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Approximation Using Our Polynomial Approximation to e−x

More straightforwardly, combining the Lanczos method with the polynomial approxi-

mation to e−x that we prove in Theorem 6.1 (a more precise version of Theorem 2.7),

we obtain the following theorem.

Theorem 4.5 (Running Time Using Lanczos). Given a symmetric PSD matrix

A � 0, a vector v with ‖v‖ = 1 and a parameter 0 < δ ≤ 1, for k that is

O
(√

max{log 1/δ, λ1(A)− λn(A)} · (log 1/δ)
3/2 · log log 1/δ

)
,

and f(x) = e−x, the procedure Lanczos computes a vector u such that ‖exp(−A)v − u‖ ≤

‖exp(−A)‖ δ. The time taken by Lanczos is O ((n+ tA)k + k2).

This result is comparable to, and implied by an earlier independent work of

Hochbruck and Lubich (Theorem 2 in [HL97]). This gives us our second method

for approximating exp(−A)v for general PSD matrices. Note that this algorithm

avoids any inverse computation and, as a result, the procedure and the proofs are

simpler and the algorithm practical.

Remark 4.6. Note the k3 term in the running time for Theorem 4.1 and the k2

term in the running time for Theorem 4.5. This is the time required for computing

the eigendecomposition of a (k + 1) × (k + 1) symmetric matrix. While this process

requires O(k3) time in general, as in Theorem 4.1; in case of Theorem 4.5, the matrix

is tridiagonal and hence the time required is O(k2) (see [PC99]).

4.2 Lanczos Method – From Scalars to Matrices

Suppose we are given an n × n symmetric matrix B, a function f : R → R, and

we are looking to compute f(B)v. Since exact computation of f(B) usually requires

diagonalization of B, which could take as much as O(n3) time (see [PC99]), we seek
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an approximation to f(B)v. The Lanczos method allows us to do exactly that: It

looks for an approximation to f(B)v of the form p(B)v, where p is a polynomial of

small degree, say k. Without loss of generality, we assume throughout that ‖v‖ = 1.

Before we describe how, we note that it computes this approximation in roughly

O((tB + n)k) time plus the time it takes to compute f(·) on a (k + 1) × (k + 1)

tridiagonal matrix, which can often be upper bounded by O(k2) (see [PC99]). Hence,

the time is reduced to O((tB+n)k+k2). What one has lost in this process is accuracy:

The candidate vector u output by the Lanczos method, is now only an approximation

to f(B)v. The quality of approximation, or ‖f(B)v − u‖, can be upper bounded by

the uniform error of the best degree k polynomial approximating f in the interval

[λn(B), λ1(B)]. Roughly, ‖f(B)v − u‖ ≈ (minpk∈Σk supx∈[λ1(B),λn(B)] |f(x) − pk(x)|).

Surprisingly, one does not need to know the best polynomial and proving existence of

good polynomials is sufficient. By increasing k, one can reduce this error and, indeed,

if one lets k = n, there is no error. Thus, the task is reduced to proving existence of

low degree polynomials that approximate f to within the desired error.

We give a description of the Lanczos method (e.g. see [Saa92]) in Figure 4.1

and give a proof of a well-known theorem about the approximation guarantee and

the running time of the method (Theorem 4.10). We then show how to deduce

Theorem 4.5 (Simple algorithm for exponentiating PSD matrices) using Theorem 4.10.

4.2.1 Computing the best polynomial approximation

Now, we describe the Lanczos method in detail, and how it achieves the error guar-

antee described above. Notice that p(B)v lies in the subspace Span{v,Bv, . . . , Bkv}

– called the Krylov subspace. We recall the definition of a Krylov subspace.

Definition 4.7 (Krylov Subspace). Given a matrix B and a vector v, the Krylov

subspace of order k, denoted by K(B, v, k), is defined as the subspace spanned by the

vectors v,Bv, . . . , Bkv.
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It will be convenient to work with an orthonormal basis for K def
= K(B, v, k). Let

{vi}ki=0 be an orthonormal basis for K. Let Vk be the n× (k + 1) matrix with {vi}ki=0

as its columns. Thus, V >k Vk = Ik+1 and VkV
>
k denotes the projection onto the Krylov

subspace K. Let Tk be the (k + 1) × (k + 1) matrix expressing B as an operator

restricted to K in the basis {vi}ki=0, i.e., Tk
def
= V >k BVk. Note that this is not just a

change of basis, since vectors in K can be mapped by B to vectors outside K. Now,

since v,Bv ∈ K, we have,

Bv = (VkV
>
k )B(VkV

>
k )v = Vk(V

>
k BVk)V

>
k v = VkTkV

>
k v.

Extending this argument, the following lemma shows that for all i ≤ k, Biv =

VkT
i
kV
>
k v, and hence, by linearity, p(B)v = Vkp(Tk)V

>
k v, for any polynomial p of

degree at most k.

Lemma 4.8. (Exact Computation with Polynomials. See e.g. [Saa92]). Let Vk and

Tk be as defined above. For any polynomial p of degree at most k,

p(B)v = Vkp(Tk)V
>
k v.

Proof. Recall that VkV
>
k is the orthogonal projection onto the subspace K(B, v, k).

By linearity, it suffices to prove this when p is xt for t ≤ k. This is true for t = 0 since

VkV
>
k v = v. For any j ≤ k, Bjv lies in K(B, v, k), thus, ∀ j ≤ k, VkV

>
k B

jv = Bjv.

Hence,

Btv = (VkV
>
k )B(VkV

>
k )B · · ·B(VkV

>
k )v

= Vk(V
>
k BVk)(V

>
k BVk) · · · (V >k BVk)V >k v = VkT

t
kV
>
k v.
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Thus, Tk can be used to compute p(B)v exactly for any degree k polynomial

p. This lemma suggests that a natural candidate for approximating f(B)v is

the vector Vkf(Tk)V
>
k v, even when f is not a degree k polynomial. To deter-

mine the quality of this approximation, we will bound the norm of the error, i.e.,∥∥f(B)v − Vkf(Tk)V
>
k v
∥∥ .

Writing rk(x)
def
= f(x) − pk(x), where pk is any degree k approximation to f(x),

and using Lemma 4.8, we get that the error in the approximation is,

f(B)v − Vkf(Tk)V
>
k v = rk(B)v − Vkrk(Tk)V >k v,

for any choice of pk. Hence, the norm of the error is at most (‖rk(B)‖+‖rk(Tk)‖) ‖v‖ ,

which is bounded by the value of rk on the eigenvalues of B and Tk. To obtain the

best bound, we can minimize this error bound over polynomials pk of degree at most

k. This is summarized in the following lemma.

Lemma 4.9. (Approximation by Best Polynomial. See e.g. [Saa92]). Let Vk and Tk

be as defined above. Let f : R → R be any function such that f(B) and f(Tk) are

well-defined. Then,

∥∥f(B)v − Vkf(Tk)V
>
k v
∥∥ ≤ min

pk∈Σk

(
max
λ∈Λ(B)

|f(λ)− pk(λ)|+ max
λ∈Λ(Tk)

|f(λ)− pk(λ)|
)
.

Proof. Let pk be any degree k polynomial. Let rk
def
= f − pk. Then,

∥∥f(B)v − Vkf(Tk)V
>
k v
∥∥ ≤ ∥∥pk(B)v − Vkpk(Tk)V >k v

∥∥+
∥∥rk(B)v − Vkrk(Tk)V >k v

∥∥
≤ 0 + ‖rk(B)‖+

∥∥Vkrk(Tk)V >k ∥∥ (Using Lemma 4.8)

= max
λ∈Λ(B)

|rk(λ)|+ max
λ∈Λ(Tk)

|rk(λ)|.

Minimizing over pk gives us our lemma.
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Thus, Vkf(Tk)V
>
k v approximates f(B)v as well as the best degree k polynomial

that uniformly approximates f. Observe that in order to compute this approximation,

we do not need to know the polynomial explicitly. It suffices to prove that there exists

a degree k polynomial that uniformly approximates f well on an interval containing

the spectrum of B and Tk (For exact computation, Λ(Tk) ⊆ Λ(B)). It remains to

show how to compute Vk and Tk. We address this next.

4.2.2 Efficiently Computing a Basis for the Krylov Subspace

In this section, we show how to compute Vk and Tk efficiently. This is done iteratively

as follows: Let v0
def
= v. For i = 0, . . . , k − 1, we compute Bvi and remove the

components along the vectors {v0, . . . , vi} to obtain a new vector that is orthogonal

to v0, . . . , vi. This vector, scaled to norm 1, is defined to be vi+1 (similar to Gram-

Schmidt orthonormalization). By construction, these vectors satisfy, for all i ≤ k,

Span{v0, . . . , vi} = Span{v,Bv, . . . , Biv}.

Since Tk = V >k BVk, we have (Tk)ij = v>i Bvj. By construction, Bvj ∈

Span{v0, . . . , vj+1}, and if i > j + 1, vi is orthogonal to this subspace, and hence

v>i (Bvj) = 0. Thus, Tk is Upper Hessenberg, i.e., (Tk)ij = 0 for i > j + 1. Moreover,

if B is symmetric, v>j (Bvi) = v>i (Bvj), and hence Tk is symmetric and tridiagonal.

This implies that we need to orthogonalize Bvi only w.r.t vi and vi−1. Thus, we need

to compute only O(k) dot-products while computing the basis, instead of O(k2); and

time required for computing the dot-products is O(nk), instead of O(nk2). This is

crucial for the proof of Theorem 2.5 and Theorem 3.2.

We summarize the procedure below. A formal description of the Lanczos algo-

rithm is given in Figure 4.1.

1. Compute the basis {vi}ki=0 – Start with v0
def
= v. For i = 0, . . . , k − 1, compute

Bvi and orthogonalize it to vi and vi−1. Scale the vector to unit norm to get

vi+1.
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2. Construct the matrices Vk, Tk, and return the vector Vkf(Tk)V
>
k v as the candi-

date approximation to f(B)v.

The following theorem summarizes the main result about this procedure.

Theorem 4.10. (Lanczos Theorem. See e.g. [Saa92]) Given a symmetric PSD

matrix B, a vector v with ‖v‖ = 1, a function f, and a positive integer parameter k

as inputs, the procedure Lanczos computes a vector u such that,

‖f(B)v − u‖ ≤ 2 · min
pk∈Σk

max
λ∈Λ(B)

|f(λ)− pk(λ)| .

The time taken by Lanczos is O ((n+ tB)k + k2) .

Proof. The algorithm Lanczos implements the Lanczos method we’ve discussed

here. The error guarantee follows from Lemma 4.9 and the fact that Λ(Tk) ⊆ Λ(B).

The total running time is dominated by k multiplications of B with a vector, O(k)

dot-products and the eigendecomposition of the tridiagonal matrix Tk to compute

f(Tk) (which can be done in O(k2) time [PC99]), giving a total running time of

O ((n+ tB)k + k2) .

Combining the approximation guarantee of the Lanczos algorithm given by The-

orem 4.10 for the setting B
def
= A and f(x)

def
= e−x, along with the polynomial approxi-

mation to e−x that we prove in Theorem 6.1 (a more precise version of Theorem 2.7),

we obtain a proof of Theorem 4.5, which is easily seen to imply Theorem 2.5.

This completes our description of the Lanczos method, and how to deduce Theo-

rem 2.5 using the method.
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Input: A symmetric matrix B � 0, a vector v such that ‖v‖ = 1, a positive integer
k, and a function f : R→ R.
Output: A vector u that is an approximation to f(B)v.

1. Initialize v0
def
= v.

2. For i = 0 to k − 1, (Construct an orthonormal basis to Krylov subspace of order k)

a. If i = 0, compute w0
def
= Bv0. Else, compute wi

def
= Bvi − βivi−1.

b. Define αi
def
= v>i wi and w′i

def
= wi − αivi ∗.

c. Define βi+1
def
= ‖w′i‖ and vi+1

def
= w′i/βi+1.

3. Let Vk be the n× (k + 1) matrix whose columns are v0, . . . , vk respectively.

4. Let Tk be the (k + 1) × (k + 1) matrix such that for all i, (Tk)ii = v>i Bvi =
αi, (Tk)i,i+1 = (Tk)i+1,i = v>i+1Bvi = βi+1 and all other entries are 0.

5. Compute B def
= f (Tk) exactly via eigendecomposition. Output the vector

VkBV >k v.

* If w′i = 0, compute the approximation with the matrices Ti−1 and Vi−1, instead of

Tk and Vk. The error bounds still hold.

Figure 4.1: The Lanczos algorithm for approximating f(B)v

4.3 Approximating exp(−A)v Using a Rational Ap-

proximation to e−x

In this section, we modify the Lanczos method to obtain an algorithm, which we

call ExpRational, that underlies Theorem 4.1 and give a proof of the theorem.

Next, we describe the respective InvertA procedures required to prove Theorem 4.2

(Exponentiating SDD matrices), Theorem 4.3 (Exponentiating PSD matrices) and

Theorem 4.4 (Matrix exponentials required for BalSep). Our starting point is the

following, rather surprising result by Saff, Schönhage, and Varga (SSV) [SSV75].

Theorem 4.11. (Rational Approximation [SSV75]). There exists constants c1 ≥ 1

and k0 such that, for any positive integer k ≥ k0, there exists a polynomial p?k(x) of
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Input: A Matrix A � 0, a vector v such that ‖v‖ = 1, and an approximation
parameter δ.
Output: A vector u such that ‖exp(−A)v − u‖ ≤ δ.

Parameters: Let k
def
= O(log 1/δ) and ε1

def
= exp(−Θ(k log k + log(1 + ‖A‖))).

1. Initialize v0
def
= v.

2. For i = 0 to k − 1, (Construct an orthonormal basis to Krylov subspace of order k )

a. Call the procedure InvertA(vi, k, ε1). The procedure returns a vector wi,
such that, ‖(I + A/k)−1vi − wi‖ ≤ ε1 ‖vi‖ . (Approximate (I + A/k)−1vi)

b. For j = 0, . . . , i,

i. Let αj,i
def
= v>j wi. (Compute projection onto wi)

c. Define w′i
def
= wi −

∑i
j=0 αj,ivj. (Orthogonalize w.r.t. vj for j ≤ i)

d. Let αi+1,i
def
= ‖w′i‖ ∗ and vi+1

def
= w′i/αi+1,i. (Scaling it to norm 1)

e. For j = i+ 2, . . . , k,

i. Let αj,i
def
= 0.

3. Let Vk be the n× (k + 1) matrix whose columns are v0, . . . , vk respectively.

4. Let Tk be the (k+ 1)× (k+ 1) matrix (αi,j)i,j∈{0,...,k} and T̂k
def
= 1/2(T>k + Tk).

(Symmetrize Tk)

5. Compute B def
= exp

(
k · (I − T̂−1

k )
)

exactly and output the vector VkBV >k v.

* If w′i = 0, compute the approximation the matrices Ti−1 and Vi−1, instead of Tk
and Vk. The error bounds still hold.

Figure 4.2: The ExpRational algorithm for approximating exp(−A)v
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degree k such that p?k(0) = 0, and,

sup
t∈(0,1]

∣∣e−k/t+k − p?k(t)∣∣ = sup
x∈[0,∞)

∣∣e−x − p?k ((1 + x/k)−1
)∣∣ ≤ c1k · 2−k .

This result implies that for any positive integer k, there exists a degree k polyno-

mial p?k such that, p?k((1 + x/k)−1) approximates e−x up to an error of O(k · 2−k) over

the interval [0,∞). This suggests we can approximate exp(−A)v, using the Lanczos

method with B
def
= (I + A/k)−1 and f(x)

def
= ek(1−1/x). Essentially, this was the method

suggested by Eshof and Hochbruck [EH05]. The strong approximation guarantee of

the SSV result along with the guarantee of the Lanczos method from the previous

section, would imply that the order of the Krylov subspace for B required would be

roughly log 1/δ, and hence, independent of ‖A‖. The running time is then dominated

by the computation Bv = (I + A/k)−1v.

Eshof and Hochbruck note that the computation of exact matrix inverse is a

costly operation (O(n3) time in general) and all known faster methods for inverse

computation incur some error. They suggest using the Lanczos method with faster

iterative methods, e.g. Conjugate Gradient, for computing the inverse (or rather the

product of the inverse with a given vector) as a heuristic. They make no attempt to

give a theoretical justification of why approximate computation suffices. Also note

that, even if the computation was error-free, a method such as Conjugate Gradient

will have running time which varies with
√

λ1(A)/λn(A) in general.

We abstract out the required approximate inversion procedure as InvertA and

require the following guarantee: given a vector y, a positive integer k, and an ε1 > 0,

InvertA(y, k, ε1) returns a vector u1 such that, ‖(I + A/k)−1y − u1‖ ≤ ε1 ‖y‖ . We will

use InvertA to approximately multiply a given vector with (I + A/k)−1 during each

iteration of the Lanczos algorithm. To be able to prove Theorem 2.3 using the SSV
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guarantee, we have to adapt the Lanczos method in several ways, and hence, deviate

from the method suggested by Eshof and Hochbruck.

1. Eshof and Hochbruck construct Tk as a tridiagonal matrix as Lanczos method

suggests, but since the computation is no longer exact, the basis {vi}ki=0 is no

longer guaranteed to be orthonormal. As a result, the proofs of the Lanczos

method break down. Our algorithm, instead, builds an orthonormal basis, which

means that at every step, we orthonormalize wi ≈ (I+A/k)−1vi w.r.t all vectors

v0, . . . , vi. Thus, Tk becomes an Upper Hessenberg matrix instead of tridiagonal

and we need to compute k2 dot products in order to compute Tk.

2. With Tk being asymmetric, several nice spectral properties are lost, e.g. real

eigenvalues and an orthogonal set of eigenvectors. We overcome this fact by

symmetrizing Tk to construct T̂k =
Tk+T>k

2
and computing our approximation

with T̂k. This permits us to bound the quality of a polynomial approximation

applied to T̂k by the behavior of the polynomial on the eigenvalues of T̂k.

3. Our analysis is based on the SSV approximation result, which is better than the

variant proved and used by Eshof and Hochbruck . Moreover, for their shifting

technique, which is the source of the ‖exp(−A)‖ factor in the hypothesis, the

given proof in [EH05] is incorrect and it is not clear if the given bound could

be achieved even under exact computation1.

4. Most importantly, for our application, we will be able to employ the Spielman-

Teng solver (Theorem 4.13) to approximate (I + A/k)−1v in time essentially

independent of the norm of A.

1They show the existence of degree k polynomials in (1 + νx)−1 for any constant ν ∈ (0, 1),
that approximate e−x up to an error of exp(1/2ν−Θ(

√
k(ν−1 − 1))). In order to deduce the claimed

hypothesis, it needs to be used for ν ≈ 1/λn(A), in which case, there is a factor of eλn(A) in the error,
which could be huge.

62



We now summarize our procedure below. A formal description of the ExpRa-

tional procedure is given in Figure 4.2.

1. Compute the basis {vi}ki=0 – Start with v0
def
= v. For i = 0, . . . , k − 1,

(a) Use InvertA to obtain wi, an approximation to (I + A/k)−1vi.

(b) Orthogonalize wi to v0, . . . , vi. Scale the vector to unit norm to get vi+1.

2. Construct the matrices Vk, Tk. Compute T̂k and return the vector Vkf(T̂k)V
>
k v

as the candidate approximation to f(B)v.

We will prove Theorem 4.1 that summarizes our main result about this procedure.

Remark 4.12. Note that there is an n · k2 term in the running time for ExpRa-

tional, in contrast with n · k in the running time for Lanczos. This is because, in

ExpRational, we can no longer guarantee that the matrix Tk is tridiagonal, in con-

trast with Lanczos. For ExpRational, k is small (O(log n) for our application)

and hence the term n · k2 does not hurt. Whereas, for Lanczos, k is large (Õ(1/√γ)

for our application), and a term of n · k2 in the running time would be prohibitive.

The proof of Theorem 4.1 is quite technical. The main issue is that the error in

approximating the matrix inverse at each iteration, propagates to later steps. We

need to bound the error introduced in the output vector because of the error at each

iteration. We present a proof at the end of this chapter in Section 4.5.

We now give different implementations of InvertA in order to prove Theorems 4.2,

4.3 and 4.4 in Sections 4.3.1, 4.3.2 and 4.4, respectively.

4.3.1 SDD Matrices – Proof of Theorem 4.2

For Theorem 4.2 about exponentiating SDD matrices, we implement the InvertA pro-

cedure in ExpRational using the Spielman-Teng SDD solver [ST04, ST06]. Here,
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we state an improvement on the Spielman-Teng result by Koutis, Miller and Peng

[KMP11].

Theorem 4.13. (SDD Solver [KMP11]). Given a system of linear equations Mx = b,

where the matrix M is SDD, and an error parameter ε > 0, it is possible to obtain a

vector u that is an approximate solution to the system, in the sense that

‖M−1b− u‖M ≤ ε‖M−1b‖M .

The time required for computing u is Õ (mM log n log 1/ε), where M is an n×n matrix.

(The tilde hides log log n factors.)

We now give a proof of Theorem 4.2.

Proof. (of Theorem 4.2) We use the ExpRational procedure to approximate the

exponential. We only need to describe how to implement the InvertA procedure for

an SDD matrix A. Recall that the procedure InvertA, given a vector y, a positive

integer k and real parameter ε1 > 0, is supposed to return a vector u1 such that

‖(I + A/k)−1y − u1‖ ≤ ε1 ‖y‖ , in time T inv
A,k,ε1

. Also, observe that this is equivalent to

approximately solving the linear system (I + A/k)z = y for the vector z.

If the matrix A is SDD, (I+A/k) is also SDD, and hence, we can use the Spielman-

Teng SDD solver to implement InvertA. We use Theorem 4.13 with inputs (I + A/k),

the vector y and error parameter ε1. It returns a vector u1 such that,

‖(I + A/k)−1y − u1‖(I+A/k) ≤ ε1‖(I + A/k)−1y‖(I+A/k) .

This implies that,

‖(I + A/k)−1y − u1‖2 = ((I + A/k)−1y − u1)>((I + A/k)−1y − u1)

≤ ((I + A/k)−1y − u1)>(I + A/k)((I + A/k)−1y − u1)
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≤
∥∥(I + A/k)−1y − u1

∥∥2

(I+A/k)
≤ ε2

1 · ‖(I + A/k)−1y‖2
(I+A/k)

= ε2
1 · y>(I + A/k)−1y ≤ ε2

1 · y>y ,

which gives us ‖(I + A/k)−1y − u1‖ ≤ ε1 ‖y‖, as required for InvertA. Thus, Theo-

rem 4.1 implies that the procedure ExpRational computes a vector u approximat-

ing e−Av, as desired.

The time required for the computation of u1 is T inv
A,k,ε1

= Õ ((mA + n) log n log 1/ε1) ,

and hence from Theorem 4.1, the total running time is

Õ
(
(mA + n) log n(log 1/δ + log(2 + ‖A‖)) log 1/δ + (log 1/δ)3

)
,

where the tilde hides polynomial factors in log log n and log log 1/δ.

4.3.2 General PSD Matrices – Theorem 4.3

The proof of Theorem 4.3 is identical to that of Theorem 4.2 except that we replace

the SDD solver by the Conjugate Gradient method for implementing the InvertA

procedure. We use the following theorem.

Theorem 4.14. (Conjugate Gradient Method. See [She94]). Given a system of

linear equations Mx = b and an error parameter ε > 0, it is possible to obtain a

vector u that is an approximate solution to the system, in the sense that

‖u−M−1b‖M ≤ ε‖M−1b‖M .

The time required for computing u is O
(
tM
√
κ(M) log 1/ε

)
, – where κ(M) denotes

the condition number of M .

We now give a proof of Theorem 4.3.
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Proof. (of Theorem 4.3) We use the ExpRational procedure to approximate the

exponential. We run the Conjugate Gradient method with the on input (I + A/k),

the vector y and error parameter ε1. As with the SDD solver, the guarantee on the

returned vector u1 is in terms of ‖·‖I+A/k , but as observed in the proof of Theorem 2.3,

this implies ‖(I + A/k)−1y − u1‖ ≤ ε1 ‖y‖, as required for InvertA. Thus, Theorem 4.1

implies that the procedure ExpRational computes a vector u approximating e−Av,

as desired.

Using Theorem 4.14, the time required by each call to InvertA, T
inv
A,k,ε1

is,

O
(
tA
√
κ(I + A/k) log 1/ε1

)
= O

(
tA
√

1 + ‖A‖ log 1/ε1
)
, and hence, from Theo-

rem 4.1, the total running time is

Õ
(
tA
√

1 + ‖A‖(log 1/δ + log(2 + ‖A‖)) log 1/δ + (log 1/δ)2
)
,

where the tilde hides polynomial factors in log log n and log log 1/δ.

Remark 4.15. Note that, in comparison to the SDD solver, the Conjugate Gradient

method has a significantly larger running time in general, because of the
√
κ(M)

factor. However, the Conjugate Gradient method only requires multiplication by the

matrix M, hence the factor tM in the running time, which could be smaller than the

mM factor in the running time for the SDD Solver.

4.4 Beyond SDD Matrices

In this section, we give a proof of Theorem 4.4 that requires us to approximate

exp(−A)v, for a given vector v and matrix A = ΠHMHΠ, where M is an SDD

matrix, H is a diagonal matrix with strictly positive entries and Π is a rank (n− 1)

projection matrix, Π
def
= I − ww> (w is explicitly known and ‖w‖ = 1). Since A may

be neither SDD, nor sparse, Theorem 4.2 does not suffice, whereas the running times

in Theorems 4.3 and 2.5 are slow for our requirements.
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Fortunately, Lemma 4.16 given below implements the InvertA procedure for such

matrices.

Lemma 4.16. (InvertA Procedure for Theorem 4.4). Given a positive integer k,

vector y, an error parameter ε1, a rank (n−1) projection matrix Π = I−ww> (where

‖w‖ = 1 and w is explicitly known), a diagonal matrix H with strictly positive entries,

and an invertible SDD matrix M with mM non-zero entries, let M1 denote the matrix

(I + 1/k · ΠHMHΠ). We can compute a vector u such that

∥∥M−1
1 y − u

∥∥ ≤ ε1

∥∥M−1
1 y
∥∥ ,

in time Õ((mM + n) log n log 1+‖HMH‖
ε1

). (The tilde hides poly(log log n) factors.)

Before we give a proof of Lemma 4.16, we complete the proof of Theorem 4.4

assuming Lemma 4.16. We use the ExpRational procedure with the InvertA pro-

cedure given by Lemma 4.16. The time required for each call to InvertA is T inv
A,k,ε1

def
=

Õ((mM + n) log n log 1+‖HMH‖
ε1

), and hence from Theorem 4.1, we get that we can

compute the desired vector u approximating e−Av in total time

Õ
(
(mM + n) log n(log 1/δ + log(2 + ‖HMH‖)) log 1/δ + (log 1/δ)3

)
,

where the tilde hides polynomial factors in log log n and log log 1/δ. This completes

the proof of Theorem 4.4. We now give a proof for Lemma 4.16, which is proven by

combining the SDD Solver with the Sherman-Morrison formula.

In order to prove Lemma 4.16, we need to show how to approximate the inverse

of a matrix of the form HMH, where H is diagonal and M is SDD. The following

lemma achieves this.

Lemma 4.17. Given a vector y, an error parameter ε1, a diagonal matrix H with

strictly positive entries, and an invertible SDD matrix M with mm non-zero entries;
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we can compute a vector u such that ‖(HMH)−1y − u‖HMH ≤ ε1 ‖(HMH)−1y‖HMH ,

in time Õ((mM + n) log n log 1/ε1). (The tilde hides factors of log log n.)

Proof. Observe that (HMH)−1y = H−1M−1H−1y. Use the SDD solver (Theo-

rem 4.13) with inputs M, vector H−1y and parameter ε1 to obtain a vector u1 such

that, ∥∥M−1(H−1y)− u1

∥∥
M
≤ ε1

∥∥M−1H−1y
∥∥
M
.

Return the vector u
def
= H−1u1. We can bound the error in the output vector u as

follows,

∥∥(HMH)−1y − u
∥∥2

HMH
=
∥∥H−1M−1H−1y −H−1u1

∥∥2

HMH

= (H−1M−1H−1y −H−1u1)>(HMH)(H−1M−1H−1y −H−1u1)

= (M−1H−1y − u1)>M(M−1H−1y − u1)

=
∥∥M−1(H−1y)− u1

∥∥2

M

≤ ε2
1

∥∥M−1H−1y
∥∥2

M
= ε2

1(M−1H−1y)>M(M−1H−1y)

= ε2
1(H−1M−1H−1y)>(HMH)(H−1M−1H−1y)

= ε2
1

∥∥H−1M−1H−1y
∥∥2

HMH
= ε2

1

∥∥(HMH)−1y
∥∥2

HMH
.

Thus, ‖(HMH)−1y − u‖HMH ≤ ε1 ‖(HMH)−1y‖HMH . Since H is diagonal, mul-

tiplication by H−1 requires O(n) time. Hence, the total time is dominated by the

SDD solver, giving a total running time of Õ((mM + n) log n log 1/ε1).

Now, we prove Lemma 4.16.

Proof. (of Lemma 4.16.) We sketch the proof idea first. Using the fact that w is

an eigenvector of our matrix, we will split y into two components – one along w and

one orthogonal (denote it z). Along w, we can easily compute the component of

the required vector. Among the orthogonal component, we will write our matrix as
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the sum of I + 1/k · HMH and a rank one matrix, and use the Sherman-Morrison

formula to express its inverse. We can use Lemma 4.17 to compute the inverse of

I + 1/k ·HMH. The procedure is described in Figure 4.3 and the proof for the error

analysis is given below.

Let M1
def
= 1/k · HMH. Then, I + 1/k · ΠHMHΠ = I + ΠM1Π. Without loss

of generality, we will assume that ‖y‖ = 1. Note that I + ΠM1Π � 0, and hence

is invertible. Let z
def
= y − (w>y)w. Thus, w>z = 0. Since w is an eigenvector of

(I + ΠM1Π) with eigenvalue 1, we get,

(I + ΠM1Π)−1y = (I + ΠM1Π)−1z + (w>y)w. (4.1)

Let’s say t
def
= (I + ΠM1Π)−1z. Then, t + ΠM1Πt = z. Left-multiplying by w>, we

get, w>t = w>z = 0. Thus, Πt = t, and hence (I + ΠM1)t = z, or equivalently,

t = (I + ΠM1)−1z.

(I + ΠM1Π)−1z = (I + ΠM1)−1z = (I +M1 − ww>M1)−1z = (I +M1 − w(M1w)>)−1z

=

(
(I +M1)−1 − (I +M1)−1ww>M1(I +M1)−1

1 + w>M1(I +M1)−1w

)
z

(Sherman-Morrison formula)

= (I +M1)−1z − w>M1(I +M1)−1z

1 + w>M1(I +M1)−1w
(I +M1)−1w. (4.2)

Since we can write I + M1 = I + HMH = H(H−2 + M)H, we can use Lemma 4.17

to estimate (I + M1)−1z and (I + M1)−1w. Using Equation (4.2), the procedure for

estimating (I + ΠM1Π)−1x is described in Figure 4.3.

We need to upper bound the error in the above estimation procedure. From

the assumption, we know that β1 = (I + M1)−1z − e1, where ‖e1‖(I+M1) ≤
ε1

6(1+‖M1‖) ‖(I +M1)−1z‖(I+M1), and β2 = (I + M1)−1x − e2, where , ‖e2‖(I+M1) ≤
ε1

6(1+‖M1‖) ‖(I +M1)−1w‖(I+M1) . Combining Equations (4.1) and (4.2) and subtracting

69



Input: An SDD matrix M, a diagonal matrix H with positive entries, a unit vector
w and a vector y.

Output: A vector u that approximates (I+1/k·ΠHMHΠ)−1y, where Π
def
= 1−ww>.

1. Compute z
def
= y − (w>y)w, and M1

def
= 1/k ·HMH.

2. Estimate (I + M1)−1z with error parameter ε1
6(1+‖M1‖) . Denote the vector re-

turned by β1.

3. Estimate (I + M1)−1w with error parameter ε1
6(1+‖M1‖) . Denote the vector

returned by β2.

4. Compute

u1
def
= β1 −

w>M1β1

1 + w>M1β2

β2 + (w>y)w. (4.3)

Return u1.

Figure 4.3: The InvertA procedure for Theorem 4.4

Equation (4.3), we can write the error as,

(I + ΠM1Π)−1y − u1

= (I +M1)−1z − β1 −
w>M1(I +M1)−1z

1 + w>M1(I +M1)−1w
(I +M1)−1w +

w>M1β1

1 + w>M1β2

β2

= e1 −
w>M1(I +M1)−1z

1 + w>M1(I +M1)−1w
(I +M1)−1w

+
w>M1[(I +M1)−1z − e1]

1 + w>M1[(I +M1)−1w − e2]
[(I +M1)−1w − e2]

= e1 +
w>M1(I +M1)−1z · w>M1e2

(1 + w>M1(I +M1)−1w)(1 + w>M1[(I +M1)−1w − e2])
(I +M1)−1w

− w>M1e1

1 + w>M1[(I +M1)−1w − e2]
[(I +M1)−1w − e2]

− w>M1(I +M1)−1z

1 + w>M1[(I +M1)−1w − e2]
e2.

Let us first bound the scalar terms. Note that ‖z‖ ≤ ‖y‖ = 1.

|w>M1(I +M1)−1z| ≤ ‖w‖
∥∥M1(I +M1)−1z

∥∥ ≤ ∥∥M1(I +M1)−1
∥∥ ≤ 1 ,
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w>M1e1 ≤ ‖w‖ ‖M1‖ ‖e1‖ ≤ ‖M1‖ ‖e1‖(I+M1) ≤ ε1/6 ·
∥∥(I +M1)−1z

∥∥
(I+M1)

= ε1/6 ·
∥∥(I +M1)−

1/2z
∥∥ ≤ ε1/6.

Similarly, w>M1e2 ≤ ε1/6. Also, M1(I+M1)−1 � 0 and hence w>M1(I+M1)−1w ≥ 0.

Thus,

∥∥(I + ΠM1Π)−1y − u1

∥∥ ≤ ∥∥(I + ΠM1Π)−1y − u1

∥∥
(I+M1)

≤ ‖e1‖(I+M1) +
1 · ε1/6

1 · (1− ε1/6)

∥∥(I +M1)−1w
∥∥

(I+M1)

+
ε1/6

(1− ε1/6)
(
∥∥(I +M1)−1w

∥∥
(I+M1)

+ ‖e2‖(I+M1)) +
1

1− ε1/6
‖e2‖(I+M1)

≤ ε1

6(1 + ‖M1‖)
∥∥(I +M1)−1z

∥∥
(I+M1)

+
4 · ε1/6

1− ε1/6

∥∥(I +M1)−1w
∥∥

(I+M1)

≤ ε1/6

∥∥(I +M1)−
1/2z
∥∥+ 4ε1/5

∥∥(I +M1)−
1/2w

∥∥ ≤ ε1.

Other than the estimation of (I + M1)−1z and (I + M1)−1w, we need to compute a

constant number of dot products and a constant number of matrix-vector products

with the matrix M1. Multiplying a vector with M1 = 1/k·HMH takes time O(mM+n),

giving a total time of Õ((mM + n) log n log 1+‖HMH‖
ε1

).

4.5 Error Analysis for ExpRational

To complete the proof of Theorem 4.1, we need to analyze the role of the error that

creeps in due to approximate matrix inversion. The problem is that this error, gener-

ated in each iteration of the Krylov basis computation, propagates to the later steps.

Thus, small errors in the inverse computation may lead to the basis Vk computed by

our algorithm to be quite far from the k-th order Krylov basis for B, v. In this section,

we give the proof of Theorem 4.1, except for the proof of a few lemmas, which have

been presented in Section 4.5.1 for better readability.
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Proof Overview. At a very high-level, the proof follows the outline of the proof for

Lanczos method. We first show that assuming the error in computing the inverse is

small, T̂k can be used to approximate small powers of B = (I+A/k)−1 when restricted

to the Krylov subspace, i.e. for all i ≤ k, ‖Biv − VkT̂
i
kV
>
k v‖ / ε2, for some small

ε2. This implies that we can bound the error in approximating p((I + A/k)−1) using

p(T̂k), by ε2 ‖p‖1 , where p is a polynomial of degree at most k. This is the most

technical part of the error analysis because we need to capture the propagation of

error through the various iterations of the algorithm. We overcome this difficulty

by expressing the final error as a sum of k terms, with the ith term expressing how

much error is introduced in the final candidate vector because of the error in the

inverse computation during the ith iteration. Unfortunately, the only way we know

of bounding each of these terms is by tour de force. A part of this proof is to show

that the spectrum of T̂k cannot shift far from the spectrum of B.

To bound the error in the candidate vector output by the algorithm, i.e. ‖f(B)v−

Vkf(T̂k)V
>
k v‖, we start by expressing e−x as the sum of a degree k-polynomial pk in

(1 + x/k)−1 and a remainder function rk. We use the analysis from the previous para-

graph to upper bound the error in the polynomial part by ε2 ‖p‖1 . We bound the

contribution of the remainder term to the error by bounding ‖rk(B)‖ and ‖rk(T̂k)‖.

This step uses the fact that eigenvalues of rk(T̂k) are {rk(λi)}i, where {λi}i are eigen-

values of T̂k. This is the reason our algorithm symmetrizes Tk to T̂k. To complete the

error analysis, we use the polynomials p?k from Theorem 4.11 and bound its `1 norm.

Even though we do not know p?k explicitly, we can bound ‖p?k‖1 indirectly by writing

it as an interpolation polynomial and using that the values it assumes in [0, 1] have

to be small in magnitude.

Proof. For notational convenience, define B
def
= (I + A/k)−1. Since the computation

of Bvi is not exact in each iteration, the eigenvalues of T̂k need not be bounded by

the eigenvalues of B. Also, Lemma 4.8 no longer holds, i.e., we can’t guarantee that
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VkT̂
t
kV
>
k v0 is identical to Btv0. However, we can prove the following lemma that proves

bounds on the spectrum of T̂k and also bounds the norm of the difference between the

vectors VkT̂
t
kV
>
k v0 and Btv0. This is the most important and technically challenging

part of the proof.

Lemma 4.18 (Approximate Computation with T̂k. Proof in Sec. 4.5.1). The coeffi-

cient matrix T̂k generated satisfies the following:

1. The eigenvalues of T̂k lie in

[(
1 + λ1(A)

k

)−1

− ε1

√
k + 1,

(
1 + λn(A)

k

)−1

+ ε1

√
k + 1

]
.

2. For any t ≤ k, if ε1 ≤ ε2/(8(k+ 1)5/2) and ε2 ≤ 1, we have,
∥∥∥Btv0 − VkT̂ tke1

∥∥∥ ≤
ε2 .

Here is an idea of the proof of the above lemma: Since, during every iteration of

the algorithm, the computation of Bvi is approximate, we will express BVk in terms

of Tk and an error matrix E. This will allow us to express T̂k in terms of Tk and a

different error matrix. The first part of the lemma will follow immediately from the

guarantee of the InvertA procedure.

For the Second part, we first express BVk − VkT̂k in terms of the error matri-

ces defined above. Using this, we can write the telescoping sum BtVk − VkT̂
t
k =∑t

j=1 B
t−j(BVk − VkT̂k)T̂ j−1

k . We use triangle inequality and a tour de force calcula-

tion to bound each term. A complete proof is included in Section 4.5.1.

As a simple corollary, we can bound the error in the computation of the polynomial,

in terms of the `1 norm of the polynomial being computed.

Corollary 4.19 (Approximate Polynomial Computation. Proof in Sec. 4.5.1). For

any polynomial p of degree at most k, if ε1 ≤ ε2/(2(k + 1)3/2) and ε2 ≤ 1,

∥∥∥p(B)v0 − Vkp(T̂k)e1

∥∥∥ ≤ ε2 ‖p‖1 .
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Using this corollary, we can prove an analogue of Lemma 4.9, giving error bounds

on the procedure in terms of degree k polynomial approximations. The proof is very

similar and is based on writing f as a sum of a degree k polynomial and an error

function.

Lemma 4.20 (Polynomial Approximation for ExpRational. Proof in Sec. 4.5.1).

Let Vk be the orthonormal basis and T̂k be the matrix of coefficients generated by

ExpRational. Let f be any function such that f(B) and f(Tk) are defined. Define

rk(x)
def
= f(x)− p(x). Then,

∥∥∥f(B)v0 − Vkf(T̂k)e1

∥∥∥ ≤ min
p∈Σk

(
ε2 ‖p‖1 + max

λ∈Λ(B)
|rk(λ)|+ max

λ∈Λ(T̂k)
|rk(λ)|

)
. (4.4)

In order to control the second error term in the above lemma, we need bounds on the

eigenvalues of T̂k, which are provided by Lemma 4.18.

For our application, f(t) = fk(t)
def
= exp (k · (1− 1/t)) so that fk((1 + x/k)−1) =

exp(−x). This function is discontinuous at t = 0. Under exact computation of the

inverse, the eigenvalues of T̂k would be bounded by the eigenvalues of B and hence

would lie in (0, 1]. Unfortunately, due to the errors, the eigenvalues of T̂k could be

outside the interval. Since f is discontinuous at 0, and goes to infinity for small

negative values, in order to get a reasonable approximation to f , we will ensure that

the eigenvalues of T̂k are strictly positive, i.e., ε1

√
k + 1 < (1 + 1/k · λ1(A))−1.

We will use the polynomials p?k from Theorem 4.11 in Lemma 4.20 to bound the

final error. We will require the following lemma to bound the `1-norm of p?k.

Lemma 4.21 (`1-norm Bound. Proof in Sec. 4.5.1). Given a polynomial p of degree

k such that p(0) = 0 and

sup
t∈(0,1]

∣∣e−k/t+k − p(t)∣∣ = sup
x∈[0,∞)

∣∣e−x − p ((1 + x/k)−1
)∣∣ ≤ 1 ,
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we must have ‖p‖1 ≤ (2k)k+1.

This lemma is proven by expressing p as the interpolation polynomial on the

values attained by p at the k + 1 points 0, 1/k, . . . , k/k, which allows us to express

the coefficients in terms of these values. We can bound these values, and hence,

the coefficients, since we know that p isn’t too far from the exponential function. A

complete proof is included in Section 4.5.1.

Theorem 4.11 shows that p?k(t) is a good uniform approximation to e−k/t+k over

the interval (0, 1]. Since Λ(B) ⊆ (0, 1], this will help us help us bound the second

error term in Equation (4.4). Since T̂k can have eigenvalues larger that 1, we need to

bound the error in approximating fk(t) by p?k(t) over an interval (0, β], where β ≥ 1.

The following lemma, gives us the required error bound. This proof for this lemma

bounds the error over [1, β] by applying triangle inequality and bounding the change

in fk and p over [1, β] separately.

Lemma 4.22 (Approximation on Extended Interval. Proof in Sec. 4.5.1). For any

β ≥ 1, any degree k polynomial p satisfies,

sup
t∈(0,β]

|p(t)− fk(t)| ≤ ‖p‖1 · (β
k − 1) + (fk(β)− fk(1)) + sup

t∈(0,1]

|p(t)− fk(t)| .

We bound the final error using the polynomial p?k in Equation (4.4). We will use the

above lemma for β
def
= 1 + ε1

√
k + 1 and assume that ε1

√
k + 1 < (1 + 1/k · λ1(A))−1.

∥∥∥f(B)v0 − Vkf(T̂k)e1

∥∥∥ ≤ ε2 ‖p?k‖1 + max
λ∈Λ(B)

|rk(λ)|+ max
λ∈Λ(T̂k)

|rk(λ)|

≤ ε2 ‖p?k‖1 + sup
λ∈(0,1]

|(fk − p?k)(λ)|+ sup
λ∈(0,β]

|(fk − p?k)(λ)|.

(Since Λ(B) ⊆ (0, 1] and Λ(T̂k) ⊆ (0, β] )

≤ ε2 ‖p?k‖1 + sup
t∈(0,1]

|p?k(t)− fk(t)|+
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‖p?k‖1 · (β
k − 1) + (fk(β)− fk(1)) + sup

t∈(0,1]

|p?k(t)− fk(t)|

= ‖p?k‖1 · (ε2 + βk − 1) + (exp (k(β−1)/β)− 1) + 2 sup
t∈(0,1]

|p?k(t)− fk(t)| .

Given δ < 1, we plug in the following parameters,

k
def
= max{k0, log2

8c1/δ + 2 log2 log2
8c1/δ} = O (log 1/δ) ,

ε1
def
= δ/32·(k+1)−

5/2 ·(1+1/k·λ1(A))−1 ·(2k)−k−1, β
def
= 1+ε1

√
k + 1, ε2

def
= 8(k+1)

5/2ε1 ,

where k0, c1 are the constants given by Theorem 4.11. Note that these parameters

satisfy the condition ε1

√
k + 1 < (1 + 1/k · λ1(A))−1. Corollary 4.11 implies that

p?k(0) = 0 and

sup
t∈(0,1]

|p?k(t)− fk(t)| ≤
δ

8
· log2

8c1/δ + 2 log2 log2
8c1/δ

(log2
8c1/δ)2

≤ δ

8
· 1

log2
8c1/δ

(
1 + 2 · log2 log2

8c1/δ

log2
8c1/δ

)
≤ δ

8
· 1

3
· 3 ≤ δ

8
, (4.5)

where the last inequality uses δ ≤ 1 ≤ c1 and log2 x ≤ x,∀x ≥ 0. Thus, we can use

Lemma 4.21 to conclude that ‖p?k‖1 ≤ (2k)k+1.

We can simplify the following expressions,

exp (k(β−1)/β)− 1 ≤ exp
(
kε1 ·

√
k + 1

)
− 1 ≤ exp(ε2/8)− 1 ≤ (1 + ε2/4)− 1 = ε2/4 ,

βk − 1 = (1 + ε1

√
k + 1)k − 1 ≤ exp(k · ε1

√
k + 1)− 1 ≤ ε2/4.

Thus the total error ‖u− exp(−A)v‖ =
∥∥∥f(B)v0 − Vkf(T̂k)e1

∥∥∥ ≤ (2k)k+1 · 2ε2 + ε2 +

δ/4 ≤ δ.

Running Time. The running time for the procedure is dominated by k calls to

the InvertA procedure with parameters k and ε1, computation of at most k2 dot-
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products and the exponentiation of T̂k. The exponentiation of T̂k can be done in time

O(k3) [PC99]. Thus the total running time is O(T inv
A,k,ε1

·k+n ·k2 +k3). This completes

the proof of the Theorem 4.1.

4.5.1 Remaining Proofs

In this section, we give the remaining proofs in Section 4.5.

Lemma 4.23 (Lemma 4.18 Restated). The coefficient matrix T̂k generated satisfies

the following:

1. The eigenvalues of T̂k lie in the interval

[(
1 + λ1(A)

k

)−1

− ε1

√
k + 1,

(
1 + λn(A)

k

)−1

+ ε1

√
k + 1

]
.

2. For any t ≤ k, if ε1 ≤ ε2/(8(k+ 1)5/2) and ε2 ≤ 1, we have,
∥∥∥Btv0 − VkT̂ tke1

∥∥∥ ≤
ε2 .

Proof. Given a vector y, a positive integer k and real parameter ε1 > 0,

InvertA(y, k, ε1) returns a vector u1 such that ‖By − u1‖ ≤ ε1 ‖y‖ , in time T inv
A,k,ε1

.

Thus, for each i, the vector wi satisfies ‖Bvi − wi‖ ≤ ε1 ‖vi‖ = ε1. Also define ui as

ui
def
= Bvi − wi. Thus, we get, ‖ui‖ ≤ ε1. Let E be the n × (k + 1) matrix with its

columns being u0, . . . , uk. We can write the following recurrence,

BVk = VkTk + E + αk,k+1vk+1e
>
k+1 , (4.6)

where each column of E has `2 norm at most ε1. Note that we continue to do

complete orthonormalization, so V >k Vk = Ik. Thus, Tk is not tridiagonal, but rather

Upper Hessenberg, i.e., (Tk)ij = 0 whenever i > j + 1.
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Multiplying both sides of Equation (4.6) by V >k , we get Tk = V >k BVk − V >k E. This

implies,

T̂k = V >k BVk − 1/2 · (V >k E + E>Vk) (4.7)

= V >k (VkTk + E + αk,k+1vk+1e
>
k+1)− 1/2 · (V >k E + E>Vk) (Using (4.6))

= Tk + 1/2 · (V >k E − E>Vk). (4.8)

Define E1
def
= 1/2 · (V >k E+E>Vk). Thus, using Equation (4.7), T̂k = V >k BVk−E1. Let

us first bound the norm of E1.

‖E1‖ ≤ 1/2 · (
∥∥V >k E∥∥+

∥∥E>Vk∥∥) ≤ 1/2 · (‖E‖+
∥∥E>∥∥) ≤ ‖E‖F ≤ ε1

√
k + 1 .

Since T̂k = V >k BVk − E1. We have,

λmax(T̂k) ≤ λ1(B) + ‖E1‖ ≤ (1 + 1/k · λn(A))−1 + ε1

√
k + 1 ,

λmin(T̂k) ≥ λn(B)− ‖E1‖ ≥ (1 + 1/k · λ1(A))−1 − ε1

√
k + 1 .

(We use λmax and λmin for the largest and smallest eigenvalues of T̂k respectively in

order to avoid confusion since T̂k is a (k+1)×(k+1) matrix and not an n×n matrix.)

First, let us compute BVk − VkT̂k.

BVk − VkT̂k
(4.6),(4.8)

= VkTk + E + αk,k+1vk+1e
>
k+1 − Vk

(
Tk + 1/2 · (V >k E − E>Vk)

)
=

(
I − 1/2 · VkV >k

)
E + 1/2 · VkE>Vk + αk,k+1vk+1e

>
k+1 . (4.9)

Now,

∥∥∥Btv0 − VkT̂ tke1

∥∥∥ =

∥∥∥∥∥
t∑

j=1

Bt−j(BVk − VkT̂k)T̂ j−1
k e1

∥∥∥∥∥ (Telescoping sum)
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(4.9)
=

∥∥∥∥∥
t∑

j=1

Bt−j ((I − 1/2 · VkV >k
)
E + 1/2 · VkE>Vk + αk,k+1vk+1e

>
k+1

)
T̂ j−1
k e1

∥∥∥∥∥
∆−ineq.

≤
t∑

j=1

∥∥∥Bt−j ((I − 1/2 · VkV >k
)
E + 1/2 · VkE>Vk

)
T̂ j−1
k e1

∥∥∥
+

∥∥∥∥∥
t∑

j=1

Bt−j (αk,k+1vk+1e
>
k+1

)
T̂ j−1
k e1

∥∥∥∥∥ . (4.10)

We can bound the first term in Equation (4.10) as follows.

t∑
j=1

∥∥∥Bt−j ((I − 1/2 · VkV >k
)
E + 1/2 · VkE>Vk

)
T̂ j−1
k e1

∥∥∥ (4.11)

≤
t∑

j=1

∥∥(I − 1/2 · VkV >k
)
E + 1/2 · VkE>Vk

∥∥∥∥∥T̂k∥∥∥j−1

(Using ‖B‖ ≤ 1)

≤

(
t∑

j=1

(1 + ε1

√
k + 1)j−1

)∥∥(I − 1/2 · VkV >k
)
E + 1/2 · VkE>Vk

∥∥
(Using

∥∥∥T̂k∥∥∥ ≤ 1 + ε1

√
k + 1)

≤ t(1 + ε1

√
k + 1)t−1

(∥∥(I − 1/2 · VkV >k
)∥∥ ‖E‖+ 1/2 · ‖Vk‖

∥∥E>∥∥ ‖Vk‖)
≤ 2tε1

√
k + 1(1 + ε1

√
k + 1)t−1. (4.12)

The second term in Equation (4.10) can be bounded as follows.

∥∥∥∥∥
t∑

j=1

Bt−j (αk,k+1vk+1e
>
k+1

)
T̂ j−1
k e1

∥∥∥∥∥ ≤ |αk,k+1|
t∑

j=1

‖B‖t−j
∥∥∥vk+1e

>
k+1T̂

j−1
k e1

∥∥∥
≤ (1 + ε1)

t∑
j=1

‖B‖t−j
∥∥∥vk+1e

>
k+1

(
Tk + 1/2 · (V >k E − E>Vk)

)j−1
e1

∥∥∥
(Using |αk,k+1| ≤ ‖wk‖ ≤ ‖Bvk‖+ ε1 ≤ 1 + ε1 and (4.8))

≤ (1 + ε1)
t∑

j=1

‖B‖t−j
∥∥∥vk+1e

>
k+1

((
Tk + 1/2 · (V >k E − E>Vk)

)j−1 − T j−1
k

)
e1

∥∥∥
(Using e>k+1T

r
k e1 = 0 for r < k as Tk is Upper Hessenberg)
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≤ (1 + ε1)
t∑

j=1

∥∥vk+1e
>
k+1

∥∥( j−1∑
i=1

(
j − 1

i

)∥∥1/2 · (V >k E − E>Vk)
∥∥i ‖Tk‖j−1−i

)

(Using sub-multiplicity of ‖·‖ and ‖B‖ ≤ 1)

≤ (1 + ε1)
t∑

j=1

(
j−1∑
i=1

(
j − 1

i

)
(ε1

√
k + 1)i(1 + ε1

√
k + 1)j−1−i

)

(Using
∥∥vk+1e

>
k+1

∥∥ ≤ 1, ‖Tk‖ ≤ (1 + ε1

√
k + 1)

and
∥∥1/2 · (V >k E − E>Vk)

∥∥ ≤ ε1

√
k + 1)

≤ (1 + ε1)
t∑

j=1

((1 + 2ε1

√
k + 1)j−1 − 1)

≤ t(1 + ε1)((1 + 2ε1

√
k + 1)t−1 − 1). (4.13)

Combining Equations (4.10),(4.12) and (4.13), we get,

∥∥∥Btv0 − VkT̂ tke1

∥∥∥ ≤ 2tε1

√
k + 1(1 + ε1

√
k + 1)t−1 + t(1 + ε1)((1 + 2ε1

√
k + 1)t−1 − 1)

≤ 2tε1

√
k + 1eε1(t−1)

√
k+1 + teε1(e2ε1(t−1)

√
k+1 − 1) (Using 1 + x ≤ ex)

≤ 2tε1

√
k + 1eε1(t−1)

√
k+1 + t(e2ε1t

√
k+1 − 1)

≤ ε2/4 · eε2/8(k+1) + k(e
ε2/4(k+1) − 1) (Using ε1 ≤ ε2/8(k+1)

5/2 and t ≤ k)

≤ ε2/4 · eε2/8(k+1) + kε2/4(k+1) · (1 + ε2/4(k+1))

(Using ex ≤ 1 + x+ x2 for 0 ≤ x ≤ 1)

≤ ε2/2 + ε2/2 ≤ ε2 (Using ε2 ≤ 1 and k ≥ 0).

This proves the lemma.

Corollary 4.24 (Corollary 4.19 Restated). For any polynomial p of degree at most

k, if ε1 ≤ ε2/(2(k + 1)3/2) and ε2 ≤ 1,

∥∥∥p(B)v0 − Vkp(T̂k)e1

∥∥∥ ≤ ε2 ‖p‖1 .
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Proof. Suppose p(x) is the polynomial
∑k

t=0 at · xt,

∥∥∥p(B)v0 − Vkp(T̂k)e1

∥∥∥ =

∥∥∥∥∥
k∑
t=0

at ·Btv0 − Vk
k∑
t=0

at · T̂ tke1

∥∥∥∥∥
≤

k∑
t=0

|at| ·
∥∥∥Btv0 − VkT̂ tke1

∥∥∥ ≤ ε2

k∑
t=0

|at| = ε2 ‖p‖1 ,

where the last inequality follows from the previous lemma as ε2, ε1 satisfy the required

conditions.

Lemma 4.25 (Lemma 4.20 Restated). Let Vk be the orthonormal basis and T̂k be the

matrix of coefficients generated by the above procedure. Let f be any function such

that f(B) and f(Tk) are defined. Then,

∥∥∥f(B)v0 − Vkf(T̂k)e1

∥∥∥ ≤ min
p∈Σk

(
ε2 ‖p‖1 + max

λ∈Λ(B)
|rk(λ)|+ max

λ∈Λ(T̂k)
|rk(λ)|

)
. (4.14)

Proof. Let p be any degree k polynomial. Let rk
def
= f −p. We express f as p+ rk and

use the previous lemma to bound the error in approximating p(B)v0 by Vkf(T̂k)e1.

∥∥∥f(B)v0 − Vkf(T̂k)e1

∥∥∥ ≤ ∥∥∥p(B)Vke1 − Vkp(T̂k)e1

∥∥∥+
∥∥∥Vkrk(B)e1 − Vkrk(T̂k)e1

∥∥∥
≤ ε2 ‖p‖1 + ‖Vkrk(B)e1‖+

∥∥∥Vkrk(T̂k)e1

∥∥∥
≤ ε2 ‖p‖1 + ‖rk(B)‖+

∥∥∥rk(T̂k)∥∥∥
≤ ε2 ‖p‖1 + max

λ∈Λ(B)
|rk(λ)|+ max

λ∈Λ(T̂k)
|rk(λ)|.

Minimizing over p gives us our lemma.

Lemma 4.26 (Lemma 4.21 Restated). Given a polynomial p of degree k such that

p(0) = 0 and

sup
t∈(0,1]

∣∣e−k/t+k − p(t)∣∣ = sup
x∈[0,∞)

∣∣e−x − p ((1 + x/k)−1
)∣∣ ≤ 1 ,
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we must have ‖p‖1 ≤ (2k)k+1.

Proof. We know that p(0) = 0. Interpolating at the k + 1 points t = 0, 1/k, 2/k, . . . , 1,

we can use Lagrange’s interpolation formula to give,

p(x) ≡
k∑
i=1

∏
0≤j≤k,j 6=i(x− j/k)∏

0≤j≤k,j 6=i(
i/k − j/k)

p(i/k).

The above identity is easily verified by evaluating the expression at the interpolation

points and noting that it is a degree k polynomial agreeing with p at k + 1 points.

Thus, if we were to write p(x) =
∑k

l=1 al · xl (note that a0 = 0), we can express the

coefficients al as follows.

al =
k∑
i=1

∑
0≤j1<...<jk−l≤k
j1,...,jk−l 6=i

(−1)k−lj1/k · . . . · jk−l/k

∏
0≤j≤k,j 6=i(

i/k − j/k)
p(i/k).

Applying triangle inequality, and noting that p(t) is a 1-uniform approximation to

e−k/t+k for t ∈ (0, 1], we get,

|al| ≤
k∑
i=1

(
k
k−l

)
(1/k)k

|p(i/k)| ≤
k∑
i=1

(
k
k−l

)
(1/k)k

(
e−

k(k−i)
i + δ/2

)
≤ 2 · kk+1

(
k

k − l

)
.

Thus, we can bound the `1 norm of p as follows,

‖p‖1 =
k∑
l=1

|al| ≤
k∑
l=1

2 · kk+1

(
k

k − l

)
≤ (2k)k+1.

Lemma 4.27 (Lemma 4.22 Restated). For any β ≥ 1, any degree k polynomial p

satisfies,

sup
t∈(0,β]

|p(t)− fk(t)| ≤ ‖p‖1 · (β
k − 1) + (fk(β)− fk(1)) + sup

t∈(0,1]

|p(t)− fk(t)|.
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Proof. Given a degree k polynomial p that approximates fk over (0, 1], we wish to

bound the approximation error over (0, β] for β ≥ 1. We will split the error bound

over (0, 1] and [1, β]. Since we know that fk(1) − p(1) is small, we will bound the

error over [1, β] by applying triangle inequality and bounding the change in fk and p

over [1, β] separately.

Let β > 0. First, let us calculate supt∈[1,β] |p(t)− fk(t)|.

sup
t∈[1,β]

|p(t)− fk(t)| ≤ sup
t∈[1,β]

(|p(t)− p(1)|+ |p(1)− fk(1)|+ |fk(1)− fk(t)|)

≤ sup
t∈[1,β]

(‖p‖1 · max
0≤i≤k

|ti − 1i|+ |p(1)− fk(1)|+ |fk(1)− fk(t)|)

≤ sup
t∈[1,β]

(‖p‖1 · max
0≤i≤k

|ti − 1i|) + |p(1)− fk(1)|+ sup
t∈[1,β]

|fk(1)− fk(t)|

≤ ‖p‖1 · (β
k − 1) + |p(1)− fk(1)|+ sup

t∈[1,β]

|fk(1)− fk(t)|

(Since t ≥ 1 and tk is increasing for t ≥ 0)

≤ ‖p‖1 · (β
k − 1) + |p(1)− fk(1)|+ (fk(β)− fk(1))

(Since fk(t) is an increasing function for t ≥ 0).

Now, we can bound the error over the whole interval as follows.

sup
t∈(0,β]

|p(t)− fk(t)| = max{ sup
t∈(0,1]

|p(t)− fk(t)|, sup
t∈[1,β]

|p(t)− fk(t)|}

≤ max{ sup
t∈(0,1]

|p(t)− fk(t)|,

‖p‖1 · (β
k − 1) + |p(1)− fk(1)|+ (fk(β)− fk(1))}

= ‖p‖1 · (β
k − 1) + (fk(β)− fk(1)) + sup

t∈(0,1]

|p(t)− fk(t)| .
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Notes

The material presented in this chapter is based on the paper “Approximating the

Exponential, the Lanczos Method, and an Õ(m)-Time Spectral Algorithm for Bal-

anced Separator” [OSV12], joint with Lorenzo Orecchia and Nisheeth Vishnoi, that

appeared at STOC 2012. A full version of the paper is available on arxiv [OSV11].
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Chapter 5

Matrix Inversion is as easy as

Exponentiation

In this chapter, we prove that the inverse of a positive-definite matrix can be ap-

proximated by a weighted sum of a small number of matrix exponentials. Combining

this with the result from the previous chapter, we establish an equivalence between

matrix inversion and exponentiation up to polylogarithmic factors. In particular,

this connection justifies our use of Laplacian solvers for designing fast algorithms for

Balanced Separator. The proof relies on the Euler-Maclaurin formula and certain

bounds derived from the Riemann zeta function. Versions of this lemma were proved

in [BM05, BM10]. We give a simple and self-contained proof in this chapter.

5.1 Introduction

In the last chapter, appealing to techniques from approximation theory, the computa-

tion of e−Lv was reduced to a small number of computations of the form L−1u. Thus,

using the near-linear-time Laplacian solver due to Spielman and Teng [ST04], we

obtained an Õ(m)-time algorithm for approximating e−Lv for graphs with m edges.

Whether the Spielman-Teng result is necessary in order to compute e−Lv in near-
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linear time is an interesting question in its own right (see [Vis12, Chapter 9]). We

answer this question in the affirmative by presenting a reduction in the other direc-

tion, again relying on analytical techniques. We show that the inverse of a positive

definite matrix can be represented as a sparse weighted sum of matrix exponentials.

The following is our main result.

Theorem 5.1. Given ε, δ ∈ (0, 1], there exist poly(log 1/δε) numbers 0 < wj, tj =

O(poly(1/δε)), such that for all symmetric matrices A satisfying δI � A � I, (1 −

ε)A−1 �
∑

j wje
−tjA � (1 + ε)A−1.

This proves that the problems of matrix exponentiation and matrix inversion are

equivalent up to polylogarithmic factors. Note that the numbers wj, tj in the above

theorem are independent of the matrix A, and are given explicitly in the proof. The

proof of Theorem 5.1 follows from the lemma below, which gives such an approxima-

tion in the scalar world.

Lemma 5.2. Given ε, δ ∈ (0, 1], there exist poly(log 1/δε) numbers 0 < wj, tj =

O(poly(1/δε)), such that for all x ∈ [δ, 1], (1− ε)x−1 ≤
∑

j wje
−tjx ≤ (1 + ε)x−1.

Note that as x approaches 0 from the right, x−1 is unbounded, where as e−tx is

bounded by 1 for any t > 0. This justifies the assumption that x ∈ [δ, 1]. We reiterate

that the above lemma is not new, and versions of this lemma were proved in [BM05,

BM10]. We present an arguably simpler and self-contained proof in the next few

sections. We begin by showing how Lemma 5.2 implies Theorem 5.1.

Proof of Theorem 5.1

Let {λi}i be the eigenvalues of A with corresponding eigenvectors {ui}i. Since A is

symmetric and δI � A � I, we have λi ∈ [δ, 1], for all i. Let wj, tj > 0 denote the

numbers given by Lemma 5.2 for parameters ε and δ. Thus, Lemma 5.2 implies that

all i, (1 − ε)λ−1
i ≤

∑
j wje

−tjλi ≤ (1 + ε)λ−1
i . Note that if λi is an eigenvalue of A,

86



then λ−1
i is the corresponding eigenvalue of A−1 and e−tjλi is that of e−tjA with the

same eigenvector. Thus, multiplying the scalar inequalities by uiu
>
i and summing

up, we obtain the matrix inequality (1 − ε)
∑

i λ
−1
i uiu

>
i �

∑
j wj

∑
i e
−tjλiuiu

>
i �

(1 + ε)
∑

i λ
−1
i uiu

>
i . Hence, (1− ε)A−1 �

∑
j wje

−tjA � (1 + ε)A−1.

5.2 Integral Representation, Discretization and

Smoothness

The starting point of the proof of Lemma 5.2 is the easy integral identity x−1 =∫∞
0
e−xtdt. Thus, by discretizing this integral to a sum, the fact that one can approx-

imate x−1 as a weighted sum of exponentials as claimed Lemma 5.2 is not surprising.

The crux is to prove that this can be achieved using a sparse sum of exponentials.

One way to discretize an integral to a sum is the so called trapezoidal rule. If g is the

integrand, and [a, b] is the interval of integration, this rule approximates the integral∫ b
a
g(t)dt by covering the area under g in the interval [a, b] using trapezoids of small

width, say h, as follows:

∫ b

a

g(t)dt ≈ T [a,b],h
g

def
=

h

2
·
K−1∑
j=0

(g(a+ jh) + g(a+ (j + 1)h)) ,

where K
def
= b−a

h
is an integer. The choice of h determines the discretization of the

interval [a, b], and hence K, which is essentially the sparsity of the approximating

sum. To apply this to the integral representation for x−1, we have to first truncate

the infinite integral
∫∞

0
e−xtdt to a large enough interval [0, b], and then bound the

error in the trapezoidal rule. Recall that the error needs to be of the form

∣∣∣x−1 − h
2

∑
j

(
e−xjh + e−x(j+1)h

)∣∣∣ ≤ εx−1.
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For such an error guarantee to hold, we must have xh ≤ Oε(1). Thus, if we want

the approximation to hold for all 0 < x ≤ 1, we require h ≤ Oε(1), which in turn

implies that K ≥ Ωε(b). Also, if we restrict the interval to [0, b], the truncation error

is
∫∞
b
e−xtdt = x−1e−bx, forcing b ≥ δ−1 log 1/ε for this error to be at most ε/x for all

x ∈ [δ, 1]. Thus, this way of discretizing can only give us a sum which uses poly(1/δ)

exponentials, which does not suffice for our application.

This suggests that we should pick a discretization such that t, instead of increasing

linearly with h, increases much more rapidly. Thus, a natural idea is to allow t to

grow geometrically. This can be achieved by substituting t = es in the above integral

to obtain the identity x−1 =
∫∞
−∞ e

−xes+sds. We show that discretizing this integral

using the trapezoidal rule does indeed give us the lemma.

For convenience, we define fx(s)
def
= e−xe

s+s. First, observe that fx(s) = x−1 ·f1(s+

lnx). Since we also allow the error to scale as x−1, as x varies over [δ, 1], s needs

to change only by an additive log 1/δ to compensate for x. Roughly, this suggests

that when approximating this integral by the trapezoidal rule, the dependence on

1/δ is likely logarithmic, instead of polynomial. The proof formalizes this intuition

and uses the fact that the error in the approximation by the trapezoidal rule can be

expressed using the Euler-Maclaurin formula (see Section 5.3.1) which involves higher

order derivatives of fx. We establish the following properties about the derivatives

of fx which, when combined with known estimates on Bernoulli numbers obtained

from the Riemann zeta function, allow us to bound this error with relative ease (see

Section 5.3.2): (1) All the derivatives of fx up to any fixed order, vanish at the

end points of the integration interval (in the limit). (2) The derivatives of fx are

reasonably smooth; the L1 norm of the k-th derivative is bounded roughly by x−1kk

(see Lemma 5.4). In summary, this allows us to approximate x−1 as an infinite sum

of exponentials. In this sum, the contribution beyond about poly(log 1/εδ) terms turns
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out to be negligible, and hence we can truncate the infinite sum to obtain our final

approximation (see Section 5.3.3).

We now present simple properties of the derivatives of fx, alluded to above, which

underlie the technical intuition as to why an approximation of the kind claimed in

Lemma 5.2 should exist. Let f
(k)
x (s) denote the kth derivative of the function fx with

respect to s. The first fact relates f
(k)
x (s) to fx(s).

Fact 5.3. For any non-negative integer k, f
(k)
x (s) = fx(s)

∑k
j=0 ck,j(−xes)j, where

ck,j are some non-negative integers satisfying
∑k

j=0 ck,j ≤ (k + 1)k+1.

Proof. We prove this lemma by induction on k. For k = 0, we have f
(0)
x (s) =

fx(s). Hence, f
(0)
x is of the required form, with c0,0 = 1, and

∑0
j=0 c0,j = 1.

Hence, the claim holds for k = 0. Suppose the claim holds for k. Hence,

f
(k)
x (s) = fx(s)

∑k
j=0 ck,j(−xes)j, where ck,j are non-negative integers satisfying∑k

j=0 ck,j ≤ (k + 1)k+1. We can compute f
(k+1)
x (s) as follows,

f (k+1)
x (s) =

d

ds

(
k∑
j=0

ck,j(−xes)jfx(s)

)
=

k∑
j=0

ck,j(j − xes + 1)(−xes)jfx(s)

= fx(s)
k+1∑
j=0

((j + 1)ck,j + ck,j−1)(−xes)j,

where we define ck,k+1
def
= 0, and ck,−1

def
= 0. Thus, if we define ck+1,j

def
= (j + 1)ck,j +

ck,j−1, we get that ck+1,j ≥ 0, and that f
(k+1)
x is of the required form. Moreover,

we get,
∑k+1

j=0 ck+1,j ≤ (k + 2)(k + 1)k+1 + (k + 1)k+1 = (k + 3)(k + 1)(k + 1)k ≤

(k + 2)2(k + 1)k ≤ (k + 2)k+2. This proves the claim for k + 1 and, hence, the fact

follows by induction.

The next lemma uses the fact above to bound the L1 norm of f
(k)
x .

Lemma 5.4. For every non-negative integer k,
∫∞
−∞

∣∣∣f (k)
x (s)

∣∣∣ ds ≤ 2
x
· ek(k + 1)2k.
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Proof. By Fact 5.3,
∫∞
−∞

∣∣∣f (k)
x (s)

∣∣∣ ds is at most

∫ ∞
−∞

∣∣∣∣∣
(

k∑
j=0

ck,j(−xes)j
)∣∣∣∣∣ e−xes+sds t=xes

=
1

x

∫ ∞
0

∣∣∣∣∣
(

n∑
j=0

ck,j(−t)j
)∣∣∣∣∣ e−tdt

Fact 5.3

≤ 1

x
(k + 1)k+1

(∫ 1

0

e−tdt+

∫ ∞
1

tke−tdt

)
≤ 1

x
· (k + 1)k+1 · (1 + k!) ≤ 2

x
· ek(k + 1)2k,

where the last inequality uses k + 1 ≤ ek, and 1 + k! ≤ 2(k + 1)k.

We conclude this section by giving a brief comparison of our proof to that

from [BM05]. While the authors in [BM05] employ both the trapezoidal rule and the

Euler-Maclaurin formula, our proof strategy is different and leads to a shorter and

simpler proof. In contrast to the previous proof, we use the Euler-Maclaurin formula

in the limit over [−∞,∞], and since the derivatives of fx vanish in the limit, we

save considerable effort in bounding the derivatives at the end points of the integral,

which is required when using the Euler-Maclaurin formula to bound the error. We

manage to use simpler bounds, at the cost of slightly worse parameters. On the way,

we obtain an approximation of x−1 as an infinite sum of exponentials that holds for

all x > 0, which we believe is interesting in itself.

5.3 Proof of the Reduction

Before we introduce the Euler-Maclaurin formula which captures the error in the

approximation of an integral by the trapezoidal rule, we introduce the Bernoulli

numbers and polynomials, bounds on which are derived using a connection to the

Riemann zeta function.
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5.3.1 Bernoulli Polynomials and Euler-Maclaurin Formula

The Bernoulli numbers, denoted by bk for any integer k ≥ 0, are a sequence of rational

numbers which, while discovered in an attempt to compute sums of the form
∑n

i≥0 i
k,

have deep connections to several areas of mathematics, including number theory and

analysis.1 They can be defined recursively as: b0 = 1, and the following equation

which is satisfied for all positive integers k ≥ 2,
∑k−1

j=0

(
k
j

)
bj = 0. This implies that

(et − 1)
∑∞

k=0 bk
tk

k!
= t. Further, it can be checked that t

2
+ t

et−1
is an even function,

thus implying that bk = 0 for odd k ≥ 2. Given the Bernoulli numbers, the Bernoulli

polynomials are defined as Bk(s)
def
=
∑k

j=0

(
k
j

)
bjs

k−j. It follows from the definition

that, for all k, and j ≤ k,
B

(j)
k (s)

k!
=

Bk−j(s)

(k−j)! . We also get B0(s) ≡ 1, B1(s) ≡ s − 1
2
.

Moreover, using the definition of Bernoulli numbers, we get that Bk(0) = Bk(1) = bk

for all k ≥ 2. We also need the following bounds on the Bernoulli polynomials and

the Bernoulli numbers.

Lemma 5.5. For any non-negative integer k, and for all s ∈ [0, 1], |B2k(s)|
(2k)!

≤ |b2k|
(2k)!
≤

4
(2π)2k

.

Proof. The first inequality follows from a well-known fact that |B2k(s)| ≤ |b2k| for all

s ∈ [0, 1] (see [GKP94]). For the second inequality, we recall the following connection

between Bernoulli numbers and the Riemann zeta function for any even positive

integer, proved by Euler (see [GKP94]), ζ(2k)
def
=
∑

j≥1 j
−2k = (−1)k+1 b2k(2π)2k

2·(2k)!
. Thus,

|b2k|
(2k)!

= 2
(2π)2k

∑
j≥1 j

−2k ≤ 4(2π)−2k.

One of the most significant connections in analysis involving the Bernoulli numbers is

the Euler-Maclaurin formula which describes the error in approximating an integral

by the trapezoidal rule.

1The story goes that when Charles Babbage designed the Analytical Engine in the 19th century,
one of the most important tasks he hoped the Engine would perform was the calculation of Bernoulli
numbers.
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Lemma 5.6 (Euler-Maclaurin Formula). Given a function g : R→ R, for any a < b,

any positive h, and any positive integer N ∈ N, we have,

∫ b

a

g(s)ds− T [a,b],h
g = h2N+1

∫ K

0

B2N(s− [s])

(2N)!
g(2N)(a+ sh)ds

−
N∑
j=1

b2j

(2j)!
h2j
(
g(2j−1)(b)− g(2j−1)(a)

)
, (5.1)

where K
def
= b−a

h
is an integer, and [·] denotes the integer part.

Note that the Euler-Maclaurin formula is really a family of formulae, one each for

the choice of N, which we call the order of the formula. Also note that this formula

captures the error exactly. This error can be much less than the naive bound obtained

by summing up the absolute value of the error due to each trapezoid. The first term

in (5.1), after removing the contribution due to the Bernoulli polynomials via Lemma

5.5, can be bounded by the L1 norm of g(2N). The second term in (5.1) depends only

on g(2N−1) evaluated at the ends of the interval. The choice of N is influenced by how

well behaved the higher order derivatives of the function are. For example, if g(s) is a

polynomial, when 2N > degree(g), we get an exact expression for
∫ b
a
g(s)ds in terms

of the values of the derivatives of g at a and b.

In the next section, we use the Euler-Maclaurin formula to bound the error in

approximating the integral
∫
fx(s)ds using the trapezoidal rule. For our application,

we pick a and b such that the derivatives up to order 2N −1 at a and b are negligible.

Since the sparsity of the approximation is Ω(1/h), for the sparsity to depend logarith-

mically on the error parameter ε, we need to pick N to be roughly Ω(log 1/ε), so that

the first error term in (5.1) is comparable to ε.

We end this section by giving a proof sketch for the Euler-Maclaurin formula (see

also [Tao]). We’ll first prove the formula for h = 1 and for the interval [0, 1]. Consider

the integral
∫ 1

0

B
(2N)
2N (s)

(2N)!
g(s)ds, and apply integration by parts2 to it repeatedly to

2
∫
du
ds vds = uv −

∫
udvdsds.
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obtain

∫ 1

0

B
(2N)
2N (s)

(2N)!
g(s)ds =

B
(2N−1)
2N (s)

(2N)!
g(s)

∣∣∣∣∣
1

0

− B
(2N−2)
2N (s)

(2N)!
g(1)(s)

∣∣∣∣∣
1

0

+
B

(2N−3)
2N (s)

(2N)!
g(2)(s)

∣∣∣∣∣
1

0

− · · · − B2N(s)

(2N)!
g(2N−1)(s)

∣∣∣∣1
0

+

∫ 1

0

B2N(s)

(2N)!
g(2N)(s)ds.

Using the fact that for all k ≤ 2N,
B

(k)
2N (s)

(2N)!
= B2N−k(s)

(2N−k)!
, and rearranging, we get,

∫ 1

0

B0(s)g(s)ds− B1(s)g(s)

∣∣∣∣1
0

=
2N∑
k=2

(−1)k−1 Bk(s)

k!
g(k−1)(s)

∣∣∣∣1
0

+

∫ 1

0

B2N(s)

(2N)!
g(2N)(s)ds.

Now, using B0(s) ≡ 1, we get that the first term on the l.h.s. is
∫ 1

0
g(s)ds. Also, since

B1(1) = 1/2, B1(0) = −1/2, we see that the second term on the l.h.s. is 1/2 · (g(0) +

g(1)) = T
[0,1],1
g . Finally, using Bk(0) = Bk(1) = bk for k ≥ 2, and that bk = 0 when

k ≥ 2 is odd, we get the desired formula for h = 1 and the interval [0, 1]. By a change

of variables, we obtain the formula for an arbitrary h and the interval [a, a + h].

Summing the formula for all the intervals [a + (j − 1)h, a + jh], we obtain the final

formula.

5.3.2 Approximation Using an Infinite Sum

As mentioned in Section 5.2, we approximate the integral
∫∞
−∞ fx(s)ds using the trape-

zoidal rule. We bound the error in this approximation using the Euler-Maclaurin

formula. Since the Euler-Maclaurin formula applies to finite intervals, we first fix

the step size h, use the Euler-Maclaurin formula to bound the error in the approx-

imation over the interval [−bh, bh] (where b is some positive integer), and then let

b go to ∞. This allows us to approximate the integral over [−∞,∞] by an infinite

sum of exponentials. In the next section, we truncate this sum to obtain our final

approximation.
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We are given ε, δ ∈ (0, 1]. Fix an x ∈ [δ, 1], the step size h = Θ ((log 1/ε)−2) , and

the order of the Euler-Maclaurin formula, N = Θ (log 1/ε) (exact parameters to be

specified later). For any positive integer b, applying the order N Euler-Maclaurin

formula to the integral
∫ bh
−bh fx(s)ds, and using bounds from Lemma 5.5, we get,

∣∣∣∣∫ bh

−bh
fx(s)ds− T [−bh,bh],h

fx

∣∣∣∣ ≤4

(
h

2π

)2N ∫ bh

−bh

∣∣f (2N)
x (s)

∣∣ ds
+

N∑
j=1

4

(
h

2π

)2j (∣∣f (2j−1)
x (−bh)

∣∣+
∣∣f (2j−1)
x (bh)

∣∣) .
(5.2)

Now, we can use Fact 5.3 to bound the derivatives in the last term of (5.2).

Fact 5.3 implies that for any s and any positive integer k,
∣∣f (k)(s)

∣∣ ≤ fx(s)(k +

1)k+1 max{1, (xes)k}. Thus, for b ≥ − 1
h

log 1
x
, we have xe−bh ≤ 1 and

∣∣f (k)(−bh)
∣∣ ≤

e−bh(k + 1)k+1, and hence f (k)(−bh) vanishes for any fixed k and h, as b goes to ∞.

Also, for any x > 0, and b > 1
h

log 1
x
, we get,

∣∣f (k)(bh)
∣∣ ≤ xke(k+1)bh−xebh(k + 1)k+1,

which again vanishes for any fixed k and h, as b goes to ∞. Thus, letting b go to ∞

and observing that T
[−bh,bh],h
fx

converges to h
∑

j∈Z fx(jh), (5.2) implies,

∣∣∣∣∣
∫ ∞
−∞

fx(s)ds− h
∑
j∈Z

fx(jh)

∣∣∣∣∣ ≤ 4

(
h

2π

)2N ∫ ∞
−∞

∣∣f (2N)
x (s)

∣∣ ds. (5.3)

Hence, since the derivatives of the function fx(s) vanish as s goes to ±∞, the error in

approximating the integral over [−∞,∞] is just controlled by its smoothness. Since we

already know fx is a very smooth function, we are in good shape. Using Lemma 5.4,

we get,
(
h
2π

)2N ∫∞
−∞

∣∣∣f (2N)
x (s)

∣∣∣ ds ≤ 2
x

(
(2N+1)2eh

2π

)2N

. Thus, if we let h
def
= 2π

e2(2N+1)2
,

and N
def
=
⌈

1
2

log 24
ε

⌉
, (5.3) implies that,

∣∣∣∣∣x−1 − h
∑
j∈Z

ejh · e−xejh
∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

fx(s)ds− h
∑
j∈Z

fx(jh)

∣∣∣∣∣ ≤ 8e−2N · 1

x
≤ ε

3

1

x
. (5.4)
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Also note that the above approximation holds for all x > 0. Thus, in particular, we

can approximate the function x−1 over [δ, 1] as an (infinite) sum of exponentials.

5.3.3 Truncating the Infinite Sum and Proof of Lemma 5.2

Now, we want to truncate the infinite sum of exponentials approximating x−1 given

by (5.4). Since the function fx(s) = es · e−xes is non-decreasing for s < log 1/x, we

majorize the lower tail by an integral. For A
def
=
⌊
− 1
h

log 3
ε

⌋
< 0 ≤ 1

h
log 1

x
(since

x ≤ 1),

h
∑
j<A

ejh · e−xejh ≤ h

∫ A

−∞
ejh · e−xejhdj =

∫ eAh

0

e−xtdt = x−1
(

1− e−xeAh
)
≤ ε

3

1

x
.

(5.5)

Again, for the upper tail, since the function fx(s) = es · e−xes is non-increasing for

s ≥ log 1
x
, we majorize by an integral. For B

def
=
⌈

1
h

log
(

1
δ

log 3
ε

) ⌉
≥ 1

h
log 1

x
(since

x ≥ δ and ε ≤ 1),

h
∑
j>B

ejh · e−xejh ≤ h

∫ ∞
B

ejh · e−xejhdj =

∫ ∞
eBh

e−xtdt = x−1 · e−xeBh ≤ ε

3

1

x
. (5.6)

Before we complete the proof, we list here the setting of all parameters for complete-

ness:

N =

⌈
1

2
log

24

ε

⌉
, h =

2π

e2(2N + 1)2
, A =

⌊
−1

h
log

3

ε

⌋
, B =

⌈
1

h
log

(
1

δ
log

3

ε

)⌉
.

Thus, combining (5.4), (5.5) and (5.6), the final error is given by,

∣∣∣∣∣1x − h
B∑
j≥A

ejh · e−xejh
∣∣∣∣∣ ≤
∣∣∣∣∣1x − h∑

j∈Z

ejh · e−xejh
∣∣∣∣∣+ h

∑
j<A

ejh · e−xejh + h
∑
j>B

ejh · e−xejh ≤ ε

x
.
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Hence, (1−ε)x−1 ≤
∑B

j≥A he
jh ·e−xejh ≤ (1+ε)x−1, implying the claim of Lemma 5.2.

Notes

The material presented in this chapter is based on the paper “Matrix Inversion is as

easy as Exponentiation”, joint with Nisheeth K. Vishnoi [SV13].
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Chapter 6

Uniform Approximations to e−x

In this chapter, we prove that e−x can be uniformly approximated up to a small

additive error, in a non-negative interval [a, b] with a polynomial of degree roughly
√
b− a. We also give a matching lower bound to prove that this dependence on (b−a)

is optimal.

Combined with the Lanczos method from Chapter 4, it immediately implies The-

orem 4.5 that gives a simple algorithm to compute exp(−A)v for symmetric PSD

matrices that runs in time roughly O(tA ·
√
‖A‖), where tA is time required to multi-

ply a given vector v with A. This result, in turn, gives a simple algorithm for Balanced

Separator (Theorem 3.2).

6.1 Introduction

We will discuss uniform approximations to e−x and give a proof of Theorem 2.7

that shows the existence of polynomials that approximate e−x uniformly over the

interval [0, b], whose degree grows as
√
b and also gives a lower bound stating that

this dependence is necessary. We restate a more precise version of the theorem here

for completeness.
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Theorem 6.1 (Uniform Approximation to e−x).

• Upper Bound. For every 0 ≤ a < b, and a given error parameter 0 < δ ≤ 1,

there exists a polynomial pa,b,δ that satisfies,

sup
x∈[a,b]

|e−x − pa,b,δ(x)| ≤ δ · e−a,

and has degree O
(√

max{log 1/δ, (b− a)} · (log 1/δ)
3/2 · log log 1/δ

)
.

• Lower Bound. For every 0 ≤ a < b such that a + loge 4 ≤ b, and δ ∈ (0, 1/8],

any polynomial p(x) that approximates e−x uniformly over the interval [a, b] up

to an error of δ · e−a, must have degree at least 1
2
·
√
b− a .

We reiterate that the upper bound from the above theorem is implicit in the work

of Hochbruck and Lubich [HL97], as pointed out to us by an anonymous reviewer

for [OSV12]. This chapter gives a different proof of this result, starting from the

rational approximation result of Saff, Schönage, and Varga [SSV75] mentioned earlier,

and avoids complex analysis, unlike [HL97].

We give an overview of the proofs of both these results next.

Upper Bound.

We wish to show that there exists a polynomial of degree of the order of
√
b− a ·

poly(log 1/δ) that approximates e−x on the interval [a, b], up to an error of δ · e−a for

any δ > 0. Our approach is to approximate (1 + x/k)−1 on the interval [a, b], by a

polynomial q of degree l, and then compose the polynomial p?k from the SSV result

with q, to obtain p?k(q(x)) which is a polynomial of degree k · l approximating e−x over

[a, b]. Thus, we are looking for polynomials q that minimize |q(x)−1/x| over [1+a/k, 1+

b/k]. Slightly modifying the optimization, we consider polynomials q that minimize
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|x · q(x) − 1| over [1 + a/k, 1 + b/k]. In Section 6.3, we show that the solution to this

modified optimization can be derived from the well-known Chebyshev polynomials.

For the right choice of k and l, the composition of the two polynomials approximates

e−x to within an error of δ · e−a over [a, b], and has degree
√
b− a · poly(log 1/δ) . To

bound the error in the composition step, we need to bound the sum of absolute values

of coefficients of p?k, which we achieve by rewriting p?k as an interpolation polynomial.

The details appear in Section 6.3.

Lower Bound.

We prove that the square-root dependence on b− a of the required degree is optimal.

The proof is simple and we give the details here: Using a theorem of Markov from

approximation theory (see [Che66]), we show that, any polynomial approximating e−x

over the interval [a, b] up to an error of δ ·e−a, for some constant δ small enough, must

have degree of the order of
√
b− a. Markov’s theorem says that the absolute value of

the derivative of a univariate polynomial p of degree k, which lives in a box of height

h over an interval of width w, is upper bounded by d2h/w. Let pk be a polynomial of

degree k that δ · e−a-approximates e−x in the interval [a, b]. If b is large enough and, δ

a small enough constant, then one can get a lower bound of Ω(e−a) on the derivative

of pk using the Mean Value Theorem. Also, one can obtain an upper bound of O(e−a)

on the height of the box in which pk lives. Both these bounds use the fact that pk

approximates e−x and is δ ·e−a close to it. Since the width of the box is b−a, these two

facts, along with Markov’s theorem, immediately imply a lower bound of Ω(
√
b− a)

on k. This shows that our upper bound is tight up to a factor of poly(log 1/δ).

6.1.1 Preliminaries

Given an interval [a, b], we are looking for low-degree polynomials (or rational func-

tions) that approximate the function e−x in the sup norm over the interval.
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Definition 6.2 (δ-Approximation). A function g is called a δ-approximation to a

function f over an interval I, if, supx∈I |f(x)− g(x)| ≤ δ.

Such approximations are known as uniform approximations in approximation theory

and have been studied quite extensively. We will consider both finite and infinite

intervals I.

For any positive integer k, let Σk denote the set of all degree k polynomials. We also

need to define the `1 norm of a polynomial.

Definition 6.3 (`1 Norm of a Polynomial). Given a degree k polynomial p
def
=
∑k

i=0 ai ·

xi, the `1 norm of p, denoted as ‖p‖1 is defined as ‖p‖1 =
∑k

i≥0 |ai|.

6.2 Known Approximation Results and Discussion

Approximating the exponential is a classic question in Approximation Theory, see

e.g. [Che66]. We ask the following question:

Question: Given δ ≤ 1 and a < b, what is the smallest degree of a polynomial

that is an δ · e−a-approximation to e−x over the interval [a, b]?

This qustion has been studied in the following form: Given λ, what is the best

low degree polynomial (or rational function) approximation to eλx over [−1, 1]? In

a sense, these questions are equivalent, as is shown by the following lemma, proved

using a linear shift of variables. A proof is included in Section 6.5.

Lemma 6.4 (Linear Variable Shift for Approximation). For any non-negative integer

k and l and real numbers b > a,

min
pk∈Σk,ql∈Σl

sup
t∈[a,b]

∣∣∣∣e−t − pk(t)

ql(t)

∣∣∣∣ = e−
b+a
2 · min

pk∈Σk,ql∈Σl
sup

x∈[−1,1]

∣∣∣∣e (b−a)
2

x − pk(x)

ql(x)

∣∣∣∣ .
Using the above lemma, we can translate the known results to our setting. As a

starting point, we could approximate e−x by truncating the Taylor series expansion
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of the exponential. We state the approximation achieved in the following lemma. A

proof is included in Section 6.5.

Lemma 6.5 (Taylor Approximation). The degree k polynomial obtained by truncating

Taylor’s expansion of e−t around the point b+a/2 is a uniform approximation to e−t on

the interval [a, b] up to an error of

e−
b+a
2 ·

∞∑
i=k+1

1

i!

(
b− a

2

)i
,

which is smaller than δ · e− b+a2 for k ≥ max{ e
2(b−a)

2
, log 1/δ}

A lower bound is known in the case where the size of the interval is fixed, i.e.,

b− a = O(1).

Proposition 6.6 (Lower Bound for Polynomials over Fixed Interval, [Al′59, Saf73]).

For any a, b ∈ R such that b− a is fixed, as k goes to infinity, the best approximation

achieved by a degree k polynomial has error

(1 + o(1))
1

(k + 1)!

(
b− a

2

)k+1

· e−
b+a
2 .

In essence, this theorem states that if the size of the interval is fixed, the polyno-

mials obtained by truncating the Taylor series expansion achieve asymptotically the

least error possible and hence, the best asymptotic degree for achieving a δ · e− b+a2 -

approximation. In addition, Saff [Saf73] also shows that if, instead of polynomials, we

allow rational functions where the degree of the denominator is a constant, the degree

required for achieving a δ · e− b+a2 -approximation changes at most by a constant.

These results indicate that tight bounds on the answer to our question should be

already known. In fact, at first thought, the optimality of the Taylor series polyno-

mials seems to be in contradiction with our results. However, note the two important

differences:
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1. The error in our theorem is e−a · δ, whereas, the Taylor series approximation

involves error e−
b+a
2 · δ, which is smaller, and hence requires larger degree.

2. Moreover, the lower bound applies only when the length of the interval (b −

a) is constant, in which case, our theorem says that the required degree is

poly(log 1/δ), which is Ω(log 1/δ), in accordance with the lower bound.

If the length of the interval [a, b] grows unbounded (as is the case for our applica-

tions to the Balanced Separator problem in the previous sections), the main advantage

of using polynomials from Theorem 6.1 is the improvement in the degree from linear

in (b− a) to
√
b− a.

6.3 Proof of Upper Bound

In this section, we use Theorem 4.11 by Saff, Schönhage, and Varga [SSV75], to give

a proof of the upper bound result in Theorem 6.1. We restate Theorem 4.11 for

completeness.

Theorem 6.7 (Theorem 4.11 Restated, [SSV75]). There exists constants c1 ≥ 1 and

k0 such that, for any positive integer k ≥ k0, there exists a polynomial p?k(x) of degree

k such that p?k(0) = 0, and,

sup
t∈(0,1]

∣∣e−k/t+k − p?k(t)∣∣ = sup
x∈[0,∞)

∣∣e−x − p?k ((1 + x/k)−1
)∣∣ ≤ c1k · 2−k .

Our approach is to compose the polynomial p?k given by Theorem 6.7 with poly-

nomials approximating (1 + x/k)−1 , to construct polynomials approximating e−x. We

first show the existence of polynomials approximating x−1, and from these polynomi-

als, we will derive approximations to (1 + x/k)−1.

Our goal is to find a polynomial q of degree k, that minimizes supx∈[a,b] |q(x)− 1/x|.

We slightly modify this optimization to minimizing supx∈[a,b] |x · q(x)− 1|. Note that
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x·q(x)−1 is a polynomial of degree k+1 which evaluates to−1 at x = 0, and conversely

every polynomial that evaluates to −1 at 0 can be written as x · q(x)− 1 for some q.

So, this is equivalent to minimizing supx∈[a,b] |q1(x)|, for a degree k+ 1 polynomial q1

such that q1(0) = −1. By scaling and multiplying by −1, this is equivalent to finding

a polynomial q2, that maximizes q2(0), subject to supx∈[a,b] |q2(x)| ≤ 1. If we shift and

scale the interval [a, b] to [−1, 1], the optimal solution to this problem is known to be

given by the well known Chebyshev polynomials. We put all these ideas together to

prove the following lemma. A complete proof is included in Section 6.5.

Lemma 6.8 (Approximating x−1). For every ε > 0, b > a > 0, there exists a

polynomial qa,b,ε(x) of degree
⌈√

b
a

log 2
ε

⌉
such that supx∈[a,b] |x · qa,b,ε(x)− 1| ≤ ε.

As a simple corollary, we can approximate (1 + x/k)−1, or rather generally, (1 + νx)−1

for some ν > 0, by polynomials. A proof is included in Section 6.5.

Corollary 6.9 (Approximating (1 + νx)−1). For every ν > 0, ε > 0 and b > a ≥ 0,

there exists a polynomial q?ν,a,b,ε(x) of degree
⌈√

1+νb
1+νa

log 2
ε

⌉
such that supx∈[a,b] |(1 +

νx) · q?ν,a,b,ε(x)− 1| ≤ ε.

The above corollary implies that the expression (1+νx) ·q? is within 1±ε on [a, b].

If ε is small, for a small positive integer t, [(1 + νx) · q?]t should be at most 1±O(tε).

The following lemma, proved using the binomial theorem proves this formally. A

proof is included in Section 6.5.

Lemma 6.10 (Approximating (1 + νx)−t). For all real ε > 0, b > a ≥ 0 and positive

integer t; if tε ≤ 1, then,

sup
x∈[a,b]

|((1 + νx) · q?ν,a,b,ε(x))t − 1| ≤ 2tε,

where q?ν,a,b,ε is the polynomial given by Corollary 6.9.
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Since q? is an approximation to (1 + x/k)−1, in order to bound the error for the

composition p?k(q
?), we need to bound how the value of the polynomial p?k changes on

small perturbations in the input. We will use the following crude bound in terms of

the `1 norm of the polynomial.

Lemma 6.11 (Error in Polynomial). For any polynomial p of degree k, and any

x, y ∈ R, |p(x)− p(y)| ≤ ‖p‖1 ·max0≤i≤k |xi − yi|.

In order to utilize the above lemma, we will need a bound on the `1 norm of p?k, which

is provided by Lemma 4.21, that bounds the `1 norm of any polynomial in (1 + x/k)−1

that approximates the exponential function and has no constant term. We restate

the lemma here for completeness.

Lemma 6.12 (`1-norm Bound. Lemma 4.21 Restated). Given a polynomial p of

degree k such that p(0) = 0 and

sup
t∈(0,1]

∣∣e−k/t+k − p(t)∣∣ = sup
x∈[0,∞)

∣∣e−x − p ((1 + x/k)−1
)∣∣ ≤ 1 ,

we must have ‖p‖1 ≤ (2k)k+1.

We can now analyze the error in approximating e−x by the polynomial p?k(q
?) and

give a proof for Theorem 6.1.

Proof. Given δ ≤ 1, let k = max{k0, log2
4c1/δ + 2 log2 log2

4c1/δ} = O (log 1/δ) , where

k0, c1 are the constants given by Theorem 6.7. Moreover, p?k is the degree k polynomial

given by Theorem 6.7, which gives, p?k(0) = 0, and,

sup
x∈[0,∞)

∣∣e−x − p?k ((1 + x/k)−1
)∣∣ ≤ δ

4
· log2

4c1/δ + 2 log2 log2
4c1/δ

(log2
4c1/δ)2

≤ δ

4
· 1

log2
4c1/δ

(
1 + 2 · log2 log2

4c1/δ

log2
4c1/δ

)
≤ δ

4
· 1

2
· 3 ≤ δ

2
,

(6.1)
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where the last inequality uses δ ≤ 1 ≤ c1 and log2 x ≤ x,∀x ≥ 0. Thus, we can use

Lemma 6.12 to conclude that ‖p?k‖1 ≤ (2k)k+1.

Let ν
def
= 1/k. Define ε as ε

def
= δ

2(2k)k+2 . Let pa,b,δ(x)
def
= e−a · p?k

(
q?ν,0,b−a,ε(x− a)

)
,

where q?ν,0,b−a,ε is the polynomial of degree
⌈√

1 + ν(b− a) log 2
ε

⌉
given by Corol-

lary 6.9. Observe that pa,b,δ(x) is a polynomial of degree that is the product of the

degrees of p?k and q?ν,0,b−a,ε, i.e., k
⌈√

1 + ν(b− a) log 2
ε

⌉
. Also note that kε < 1 and

hence we can use Lemma 6.10. We show that pa,b,δ is a uniform δ-approximation to

e−x on the interval [a, b].

sup
x∈[a,b]

|e−x − pa,b,δ(x)| = e−a · sup
x∈[a,b]

∣∣e−(x−a) − ea · pa,b,δ(x)
∣∣

= e−a · sup
y∈[0,b−a]

∣∣e−y − ea · pa,b,δ(y + a)
∣∣

by def
= e−a · sup

y∈[0,b−a]

∣∣e−y − p?k (q?ν,0,b−a,ε(y)
)∣∣

∆−ineq.

≤ e−a sup
y∈[0,b−a]

(∣∣e−y − p?k ((1 + νy)−1
)∣∣+

∣∣p?k ((1 + νy)−1
)
− p?k

(
q?ν,0,b−a,ε(y)

)∣∣)
≤ e−a · sup

y∈[0,b−a]

∣∣e−y − p?k ((1 + νy)−1
)∣∣

+ e−a · sup
y∈[0,b−a]

∣∣p?k ((1 + νy)−1
)
− p?k

(
q?ν,0,b−a,ε(y)

)∣∣
Lem. 6.11

≤ e−a · sup
y∈[0,∞)

∣∣e−y − p?k ((1 + νy)−1
)∣∣

+ e−a · ‖p?k‖1 · max
0≤i≤k

sup
y∈[0,b−a]

∣∣∣(1 + νy)−i −
(
q?ν,0,b−a,ε(y)

)i∣∣∣
Eq. (6.1)

≤ e−a · δ
2

+ e−a · ‖p?k‖1 · max
0≤i≤k

sup
y∈[0,b−a]

(1 + νy)−i
∣∣∣1− ((1 + νy) · q?ν,0,b−a,ε(y)

)i∣∣∣
Lem. 6.10,6.12

≤ e−a · δ
2

+ 2kε · e−a · (2k)k+1 ≤ δ · e−a

The degree of the polynomial pa,b,δ is

k

⌈√
1 + ν(b− a) log

2

ε

⌉
= O

(√
k2 + k(b− a) · (k log k + log 1/δ)

)
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= O
(√

max{log 1/δ, (b− a)} · (log 1/δ)
3/2 · log log 1/δ

)
.

6.4 Proof of Lower Bound

In this section, we will use the following well known theorem of Markov from approx-

imation theory to give a proof of the lower bound result in Theorem 6.1.

Theorem 6.13 (Markov, See [Che66]). Let p : R→ R be a univariate polynomial of

degree d such that any real number a1 ≤ x ≤ a2, satisfies b1 ≤ p(x) ≤ b2. Then, for

all a1 ≤ x ≤ a2, the derivative of p satisfies |p′(x)| ≤ d2 · b2−b1
a2−a1 .

The idea is to first use the uniform approximation bound to bound the value of

the polynomial within the interval of approximation. Next, we use the approximation

bound and the Mean Value theorem to show that there must exist a point t in the

interval where |p′(t)| is large. We plug both these bounds into Markov’s theorem to

deduce our lower bound.

Proof. Suppose p is a degree k polynomial that is a uniform approximation to e−x

over the interval [a, b] up to an error of δ · e−a. For any x ∈ [a, b], this bounds the

values p can take at x. Since p is a uniform approximation to e−x over [a, b] up to an

error of δ · e−a, we know that for all x ∈ [a, b], e−x − δ · e−a ≤ p(x) ≤ e−x + δ · e−a.

Thus, maxx∈[a,b] p(x) ≤ e−a + δ · e−a and minx∈[a,b] p(x) ≥ e−b − δ · e−a.

Assume that δ ≤ 1/8, and b ≥ a + loge 4 ≥ a + loge 2/(1−4δ). Applying the Mean

Value theorem on the interval [a, a + loge 2/(1−4δ)], we know that there exists t ∈

[a, a+ loge 2/(1−4δ)], such that,

|p′(t)| =
∣∣∣∣p(a+ loge 2/(1−4δ))− p(a)

loge 2/(1−4δ)

∣∣∣∣ ≥ (e−a − δ · e−a)− (e−a−loge 2/1−4δ + δ · e−a)
loge 2/(1−4δ)
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≥ e−a
1− 2δ − (1−4δ)

2

loge 2/(1−4δ)
= e−a

1

2 loge 2/(1−4δ)
.

We plug this in Markov’s theorem (Theorem 6.13) stated above to deduce,

e−a
1

2 loge 2/(1−4δ)
≤ k2 (e−a + δ · e−a)− (e−b − δ · e−a)

b− a
≤ k2 · e−a · 1 + 2δ

b− a
.

Rearranging, we get,

k ≥

√
b− a

2 · (1 + 2δ) · loge 2/(1−4δ)
≥

√
b− a

2 · 5/4 · loge 4
≥ 1

2
·
√
b− a,

where the second inequality uses δ ≤ 1/8.

6.5 Remaining Proofs

Lemma 6.14 (Lemma 6.4 Restated). For any non-negative integer k and l and real

numbers b > a,

min
pk∈Σk,ql∈Σl

sup
t∈[a,b]

∣∣∣∣e−t − pk(t)

ql(t)

∣∣∣∣ = e−
b+a
2 · min

pk∈Σk,ql∈Σl
sup

x∈[−1,1]

∣∣∣∣e (b−a)
2

x − pk(x)

ql(x)

∣∣∣∣
Proof. Using the substitution t

def
= (b+a)

2
− (b−a)

2
x,

min
pk∈Σk,ql∈Σl

sup
t∈[a,b]

∣∣∣∣e−t − pk(t)

ql(t)

∣∣∣∣ = min
pk∈Σk,ql∈Σl

sup
x∈[1,−1]

∣∣∣∣e− (b+a)
2

+
(b−a)

2
x − pk ((b+a)/2− (b−a)/2x)

ql ((b+a)/2− (b−a)/2x)

∣∣∣∣
= e−

b+a
2 · min

p′k∈Σk,q
′
l∈Σl

sup
x∈[−1,1]

∣∣∣∣e (b−a)
2

x − p′k(x)

q′l(x)

∣∣∣∣ .

Lemma 6.15 (Lemma 6.5 Restated). The degree k polynomial obtained by truncating

Taylor’s expansion of e−t around the point b+a/2 is a uniform approximation to e−t on
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the interval [a, b] up to an error of

e−
b+a
2 ·

∞∑
i=k+1

1

i!

(
(b− a)

2

)i
,

which is smaller than δ for k ≥ max{ e
2(b−a)

2
, log 1/δ}.

Proof. Let qk(t) be the degree k Taylor approximation of the function e−t around the

point (b+a)/2, i.e., qk(t)
def
= e−

(b+a)
2

∑k
i=0

1
i!

(
t− (b+a)

2

)i
.

sup
t∈[a,b]

|e−t − qk(t)| = sup
t∈[a,b]

e−
b+a
2 ·

∣∣∣∣∣
∞∑

i=k+1

1

i!

(
t− (b+ a)

2

)i∣∣∣∣∣ = e−
b+a
2 ·

∞∑
i=k+1

1

i!

(
(b− a)

2

)i
.

Using the inequality i! >
(
i
e

)i
, for all i, and assuming k ≥ e2(b−a)

2
, we get,

∞∑
i=k+1

1

i!

(
(b− a)

2

)i
≤

∞∑
i=k+1

(
e(b− a)

2i

)i
≤

∞∑
i=k+1

e−i =
1

e− 1
e−k ,

which is smaller than δ for k ≥ log 1/δ.

Lemma 6.16 (Lemma 6.8 Restated). For every ε > 0, b > a > 0, there exists a

polynomial qa,b,ε(x) of degree
⌈√

b
a

log 2
ε

⌉
such that

sup
x∈[a,b]

|x · qa,b,ε(x)− 1| ≤ ε.

Proof. If Tk+1(x) denotes the degree k+ 1 Chebyshev polynomial, consider the func-

tion,

qa,b,ε(x)
def
=

1

x

(
1−

Tk+1

(
b+a−2x
b−a

)
Tk+1

(
b+a
b−a

) )
.

First, we need to prove that the above expression is a polynomial. Clearly 1 −
Tk+1( b+a−2x

b−a )
Tk+1( b+ab−a)

is a polynomial and evaluates to 0 at x = 0. Thus, it must have x as a
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factor. Thus qa,b,ε is a polynomial of degree k. Let κ = b/a and note that κ > 1. Thus,

sup
x∈[a,b]

|x · qa,b,ε(x)− 1| = sup
x∈[a,b]

∣∣∣∣∣Tk+1

(
b+a−2x
b−a

)
Tk+1

(
b+a
b−a

) ∣∣∣∣∣
≤ Tk+1

(
b+ a

b− a

)−1

(Since |Tk+1(y)| ≤ 1 for |y| ≤ 1)

= 2

((√
κ+ 1√
κ− 1

)k+1

+

(√
κ− 1√
κ+ 1

)k+1
)−1

(By def.)

≤ 2

(√
κ+ 1√
κ− 1

)−k−1

(Each term is positive since
√
κ > 1)

= 2

(
1− 1/√κ

1 + 1/√κ

)k+1

≤ 2 · (1− 1/√κ)k+1 ≤ 2 · e−(k+1)/
√
κ ≤ ε,

for k =
⌈√

κ log 2
ε

⌉
. The first inequality follows from the fact that |Tk+1(x)| ≤ 1 for

all |x| ≤ 1.

Corollary 6.17 (Corollary 6.9 Restated). For every ν > 0, ε > 0 and b > a ≥ 0,

there exists a polynomial q?ν,a,b,ε(x) of degree
⌈√

1+νb
1+νa

log 2
ε

⌉
such that

sup
x∈[a,b]

|(1 + νx) · q?ν,a,b,ε(x)− 1| ≤ ε.

Proof. Consider the polynomial q?ν,a,b,ε(x)
def
= q1+νa,1+νb,ε (1 + νx) , where q1+νa,1+νb,ε is

given by the previous lemma.

sup
x∈[a,b]

∣∣(1 + νx) · q?ν,a,b,ε(x)− 1
∣∣ = sup

x∈[a,b]

|(1 + νx) · q1+νa,1+νb,ε (1 + νx)− 1|

t
def
= 1+νx

= sup
t∈[1+νa,1+νb]

|t · q1+νa,1+νb,ε (t)− 1|
Lem. 6.8

≤ ε.

Since 1 + νx is a linear transformation, the degree of q?ν,a,b,ε is the same as that of

q1+νa,1+νb,ε , which is,
⌈√

1+νb
1+νa

log 2
ε

⌉
.
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Lemma 6.18 (Lemma 6.10 Restated). For all real ε > 0, b > a ≥ 0 and positive

integer t; if tε ≤ 1, then,

sup
x∈[a,b]

|((1 + νx) · q?ν,a,b,ε(x))t − 1| ≤ 2tε,

where q?ν,a,b,ε is the polynomial given by Corollary 6.9.

Proof. We write the expression (1 + νx) · q?ν,a,b,ε(x) as 1 plus an error term and then

use the Binomial Theorem to expand the tth power.

sup
x∈[a,b]

|((1 + νx) · q?ν,a,b,ε(x))t − 1| = sup
x∈[a,b]

∣∣∣(1− [1− (1 + νx) · q?ν,a,b,ε(x)
])t − 1

∣∣∣
= sup

x∈[a,b]

∣∣∣∣∣
t∑
i=1

(
t

i

)(
1− (1 + νx) · q?ν,a,b,ε(x)

)i∣∣∣∣∣
≤ sup

x∈[a,b]

t∑
i=1

(
t

i

) ∣∣1− (1 + νx) · q?ν,a,b,ε(x)
∣∣i

≤
t∑
i=1

(
t

i

)
sup
x∈[a,b]

∣∣1− (1 + νx) · q?ν,a,b,ε(x)
∣∣i

Cor. 6.9

≤
t∑
i=1

(
t

i

)
εi = (1 + ε)t − 1

≤ exp(tε)− 1 ≤ 1 + tε+ (tε)2 − 1 ≤ 2tε,

where the second last inequality uses ex ≤ 1 + x+ x2 for x ∈ [0, 1]. 1

Lemma 6.19 (Lemma 6.11 Restated). For any polynomial p of degree k, and any

x, y ∈ R

|p(x)− p(y)| ≤ ‖p‖1 · max
0≤i≤k

|xi − yi|.

1For x ∈ [0, 1], ex =
∑
i≥0

xi

i! = 1 + x + x2
(
1
2! + x

3! + . . .
)
≤ 1 + x + x2

(
1
2 + x

22 + x
23 + . . .

)
≤

1 + x+ x2
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Proof. Suppose p(t) is the polynomial
∑k

i=0 ai · ti, where ai ∈ R. Then,

|p(x)− p(y)| =

∣∣∣∣∣
k∑
i=0

ai · xi −
k∑
i=0

ai · yi
∣∣∣∣∣ ≤

k∑
i=0

|ai||xi − yi|

≤

(
k∑
i=0

|ai|

)
max
0≤i≤k

|xi − yi| = ‖p‖1 · max
0≤i≤k

|xi − yi|.

Notes

The material presented in this chapter is based on the paper “Approximating the

Exponential, the Lanczos Method, and an Õ(m)-Time Spectral Algorithm for Bal-

anced Separator” [OSV12], joint with Lorenzo Orecchia and Nisheeth Vishnoi, that

appeared at STOC 2012. A full version of the paper is available on arxiv [OSV11].
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Chapter 7

Optimal Inapproximability without

UGC

In this chapter, we present a brief history of the field of Hardness of Approximation,

and our contribution to it. We will describe the problems of interest and our results

for them, along with a comparison to previous works.

7.1 Hardness of Approximation – A quick history

Over the last two decades, the field of hardness of approximation has had several

notable successes. The PCP 1 theorem [FGL+96, AS98, ALM+98] ruled out poly-

nomial time approximation schemes for several problems including Max-3SAT and

Minimum Vertex Cover, assuming P 6= NP. A framework for proving such hardness

results based on composing an outer PCP based on Raz’s Parallel Repetition The-

orem [Raz98], with an inner PCP based on the Long Code (introduced by Bellare

et al. [BGS98]) proved to be very successful. This led to optimal inapproximability

results for Max-Clique [H̊as99], Max-3XOR, and Max-3SAT [H̊as01].

1PCP stands for Probabilistically Checkable Proofs.
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For several problems such as Minimum Vertex Cover and Max-Cut, this led to

improved inapproximability results, but they were still far from optimal. Towards ob-

taining optimal inapproximability results, Khot introduced the Unique Games Con-

jecture (UGC) [Kho02]. This conjecture proposed that a specific form of the outer

PCP was still NP-hard. Assuming the UGC led to optimal inapproximability results

for Minimum Vertex Cover [KR08], and Max-Cut [KKMO07, MOO10]. Surprisingly,

Raghavendra [Rag08] proved that assuming the UGC leads to optimal inapproxima-

bility results for all Constraint Satisfaction Problems (CSPs – a large class of problems

that includes Max-Cut, Max-2SAT, Max-3XOR, Max-3SAT etc.). By now, the UGC

is known to imply optimal inapproximability results for a host of other problems, e.g.

some classic scheduling problems [BK09, BK10], strict CSPs [KMTV11], ordering

CSPs [GMR08, GHM+11].

Given that the UGC implies so many optimal inapproximability results, we would

like to believe that the conjecture is true. However, we must ask what evidence

do we have supporting the conjecture. There have been several algorithmic attacks

on the conjecture (e.g. [Kho02, Tre05, GT06, CMM06a, CMM06b]), but they fail

to refute the conjecture. Beginning with the work of Khot and Vishnoi [KV05], a

sequence of works [RS09, KS09, BGH+11] showed that a large class of algorithms

based on semidefinite programming (SDP) hierarchies cannot refute the conjecture,

by constructing hard instances for these algorithms. These results supported the

possibility of the UGC being true.

However, recently it was shown that there are sub-exponential time algorithm for

Unique Games [ABS10, BRS11, GS11]. This is in contrast to problems such as 3SAT

that, we suspect, require 2Θ(n) time [IPZ01]. Further, it was shown that the known

hard instances from [KV05, RS09, BGH+11] can be solved in polynomial time by using

a more powerful SDP hierarchy, the Lasserre hierarchy [BBH+12]. Thus, overall, the

conjecture is poised delicately and we lack strong evidence in either direction.
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Given the uncertain status of the UGC, we explore if some of these new inapprox-

imability results can be achieved without assuming the conjecture. We make progress

towards this goal for variants of the Minimum Vertex Cover problem on hypergraphs,

and some scheduling problems. We discuss these problems in the next few sections.

7.2 Hypergraph Vertex Cover

A k-uniform hypergraph G = (V,E) consists of a set of vertices V and a collection

of hyperedges E ⊆ 2V such that each hyperedge e ∈ E contains exactly k vertices.

A subset of vertices V ⊆ V such that every hyperedge e ∈ E contains at least one

vertex from V , i.e., e ∩ V 6= ∅, is called a Vertex Cover for G. Equivalently, a vertex

cover is a hitting set for the collection of hyperedges E. Thus, the complement of a

vertex cover is a subset of vertices I such that no hyperedge e ∈ E is contained inside

I, i.e., e * I. Such a set is called an Independent Set.

The Minimum Vertex Cover problem on k-uniform hypergraphs requires us to

compute the minimum size of a vertex cover in a given k-uniform hypergraph G.

We denote this problem by k-HypVC. It is an extremely well studied combinatorial

optimization problem, especially on graphs (k = 2), and is known to be NP-hard for

all k ≥ 2. Indeed, the Minimum Vertex Cover problem on graphs was one of Karp’s

original 21 NP-complete problems [Kar72].

On the other hand, the simple greedy algorithm that picks a maximal collection

of disjoint hyperedges, and outputs the set of all vertices in the edges gives a k-

approximation. A k-approximation can also be obtained using the standard Linear

Programming (LP) relaxation for the problem. The best algorithms known today

achieve only a marginally better approximation factor of (1− o(1))k [Kar09, Hal02].

On the intractability side, there have been several results. For Minimum Vertex

Cover on graphs (k = 2), H̊astad showed a 7/6 − ε inapproximability. This was
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later improved to 1.36 in the work of Dinur and Safra [DS05]. For k-uniform hyper-

graphs, a hardness factor of 2 − ε was given by Goldreich [Gol01] for some constant

k. Subsequently, Holmerin [Hol02b] showed an inapproximability factor of 2 − ε for

k = 4, and 3/2 − ε for k = 3. For large values of k, Trevisan [Tre01] gave a k1/19

hardness factor, which was improved to k1−o(1) by Holmerin [Hol02a], to k− 3− ε by

Dinur et al. [DGK02], and to k − 1− ε in the work of Dinur, Guruswami, Khot, and

Regev [DGKR05], which gives the best hardness factor known for all k ≥ 3.

Obtaining tight inapproximability for Minimum Vertex Cover has remained a

challenging open problem. However, assuming the Unique Games Conjecture (UGC)

formulated by Khot [Kho02] removes fundamental obstructions to further progress.

Indeed, Khot and Regev [KR08] showed an optimal k− ε inapproximability for Min-

imum Vertex Cover on k-uniform hypergraphs for k ≥ 2, assuming UGC. This result

was strengthened by Austrin, Khot, and Safra [AKS11], to yield optimal inapprox-

imability for Minimum Vertex Cover on d-regular graphs, again assuming UGC.

The Unique Games Conjecture also yields structured hardness results for Hyper-

graph Vertex Cover which, via reductions, imply optimal inapproximability results for

some classic scheduling problems [BK09, BK10], and the Stochastic Vehicle Routing

problem [GNS12]. We define these problems in the next section.

7.3 Scheduling and Stochastic Vehicle Routing

For some classic scheduling problems such as Concurrent Open Shop and the As-

sembly Line problem, optimal inapproximability results were known only under the

UGC [BK09, KMTV11]. In this thesis, we prove these optimal inapproximability

results without assuming the UGC, i.e., based only on the assumption P 6= NP. We

also give a super-constant inapproximability result for the Stochastic Vehicle Routing
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problem without assuming the UGC, where again, such a result was previously only

known assuming the UGC [GNS12].

All these results are based on reductions from a new structured hardness result for

Hypergraph Vertex Cover that we will describe in the next section. We now define

the scheduling and stochastic optimization problems mentioned above, along with

a brief description of previous works and the statements of the respective hardness

results we prove.

Concurrent Open Shop

There is a set of m machines M = {M1, . . . ,Mm}, such that each machine produces

a unique kind of component. We have a collection of jobs J = {1, . . . , n}, where each

job j ∈ J has weight wj, and for each i = 1, . . . ,m, the job j requires an operation of

pij units of processing on machine Mi. For a fixed job j, all the pij units on machine

Mi, for i = 1, . . . ,m, can be scheduled independently and in parallel. The completion

time of the job i, denoted by Ti is defined to be the least time when all its operations

pij are completed. The objective is to minimize
∑

iwiTi, i.e., the total weighted

completion time of the jobs.

This problem is used to model various applications in manufacturing and supply

chain management (see [LLP05] for a survey). A 2-approximation for this problem

can be obtained through various techniques [GKP07, LLP07, MQS+10]. Garg et al.

[GKP07] showed that the problem does not have a polynomial time approximation

scheme assuming P 6= NP. It was shown to be NP-hard to approximate within 6
5
−ε

by Mastrolilli et al. [MQS+10], who also showed a 4
3
− ε hardness factor assuming the

UGC. Subsequently, Bansal and Khot [BK10] obtained a tight 2− ε inapproximabil-

ity, assuming UGC. The tight UGC hardness result can also be obtained using the

framework of Kumar et al. [KMTV11] for hardness results for strict CSPs. We show

an optimal hardness of approximation result, bypassing the UGC.
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Theorem 7.1. The Concurrent Open Shop problem is NP-hard to approximate

within a factor of 2− ε, for any ε > 0.

Assembly Line Problem

There is a set of m + 1 machines M = {M0,M1, . . . ,Mm}, and a set of jobs J =

{1, . . . , n}. The machine M0 is special, and is called the assembly machine. Each

job j ∈ J requires an operation Oij of size pij to be executed on machine Mi, for

every i = 1, . . . ,m. For a fixed j, the operations {Oij}mi=1 can be done in any order.

For every j, after all the operations {Oij}mi=1 are completed, a final operation O0j of

size p0j is required to be performed on machine M0. The job j is completed when

O0j is completed. Denote the time of completion of job j by Tj. The objective is to

minimize the makespan, i.e., maxj Tj, or equivalently, the latest completion time of

a job.

This is a classic scheduling problem [PSS+95], with a trivial 2-approximation. It

is easy to see that any schedule that does not let a machine idle if an operation can

be scheduled on it, gives a 2-approximation. The best approximation factor known is

2 − 1
m

[PSS+95], giving only a lower order improvement. It had been observed that

the known hardness results for coloring k-colorable graphs implied that the problem

does not have a polynomial time approximation scheme assuming P 6= NP, but these

reductions give small hardness factors. Settling this problem was listed in a famous

list of open problems in scheduling by Schuurman and Woeginger [SW99]. Assuming

the UGC, Bansal and Khot [BK10] showed an optimal hardness of 2 − ε. We settle

this question by proving an optimal hardness of approximation result, bypassing the

UGC.

Theorem 7.2. The Assembly Line problem is NP-hard to approximate within a

factor of 2− ε, for any ε > 0.

117



Two Stage Stochastic Vehicle Routing

In this problem, we are concerned with the delivery of a single good from a depot to a

set of customers. We have a vehicle of capacity Q units, and a metric (V, d) over a set

of customers including a depot/root r ∈ V . There is a samplable joint distribution D

on unsplittable customer demands for the good, denoted by {qv}v∈V , and an inflation

factor λ ≥ 1. The solution consists of two parts:

(a) First Stage Solution: The first part is a fixed route τ consisting of multiple round

trips – which we refer to as r-tours – starting and ending at the depot r. This route

is computed by the algorithm without the knowledge of the exact customer demands,

but can be used to satisfy as many demands as possible after they are revealed. Note

that the vehicle can carry Q amount of the good at the start of each r-tour. A vertex

may appear several times in the route, however since its demand is unsplittable, it

cannot exceed Q and has to be satisfied all at once. The instantiated demands may

not all be satisfied by the first stage solution, in which case, a more expensive second

stage solution has to be computed to satisfy the remaining demands.

(b) Second Stage Solution: Given the instantiated demands q sampled from D, the

algorithm satisfies a subset qA by the fixed route. The second stage solution is a

recourse route σ(q) which satisfies the rest of the demands.

The algorithm pays the cost d(τ) of the fixed route τ , plus λ times the expected

cost of the recourse route Eq←D[d(σ(q)]. The goal is to find a solution consisting of

the fixed route and a strategy for the recourse route, in order to minimize the cost.

This problem has recently been studied by Gørtz, Nagarajan, and Saket [GNS12],

who gave a poly-logarithmic approximation for it. Using Theorem 7.4 of Bansal

and Khot [BK10] as a black-box, [GNS12] also gave a reduction showing an ω(1)

hardness of approximation, assuming UGC. This is in contrast to constant factor

approximations that have been obtained for single stage stochastic vehicle routing
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problems [GNR12]. For this problem too, we are able to bypass the UGC, and yet

prove an ω(1) hardness result.

Theorem 7.3. The Two Stage Stochastic Vehicle Routing problem is NP-hard to

approximate within any constant factor C > 1.

7.4 Structured Hardness for Vertex Cover

The optimal inapproximability of Minimum Vertex Cover on hypergraphs by Khot

and Regev [KR08] was strengthened in the works of Bansal and Khot [BK09, BK10]

to show that Minimum Vertex Cover is (k−ε)-hard to approximate even on k-uniform

hypergraphs with additional structure (still assuming UGC). The UGC based results

for the problems mentioned in the last section were proved via reductions from this

structured hardness result [BK10, GNS12]. Our results for the above problems are

based on a weaker structured hardness result for Hypergraph Vertex Cover, which

however does not assume the UGC. In this section, we first discuss the results of

Bansal and Khot [BK09, BK10], followed by our structured hardness for Hypergraph

Vertex Cover.

Bansal and Khot [BK09] showed (assuming UGC) an optimal 2− ε inapproxima-

bility for Minimum Vertex Cover on graphs (k = 2) even when the graph G(V,E) is

almost bipartite, i.e., it has two disjoint independent sets of size at least (1
2
− ε)|V |

each, and thus the complement of each of the independent sets is a vertex cover of

size at most (1
2

+ ε)|V |. More formally, they showed that for any ε > 0, assuming

the UGC, it is NP-hard to decide whether a given graph is almost bipartite, or if

every vertex cover is of size at least (1 − ε)|V |. This is a tight structured hardness

result for Minimum Vertex Cover, and is obtained by the construction of a PCP with

nearly optimal parameters. This PCP also yielded optimal 2−ε inapproximability for

the classic scheduling problem of minimizing the weighted completion time subject to
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precedence constraints (usually called Precedence Constrained Scheduling), assuming

the UGC 2.

In a subsequent work, Bansal and Khot [BK10] generalized the structured hardness

result for Minimum Vertex Cover to almost k-partite k-uniform hypergraphs (k ≥ 2).

Formally stated, they proved the following result.

Theorem 7.4 (Bansal-Khot [BK10]). Assuming the Unique Games Conjecture, for

any integer k ≥ 2, and constant ε > 0, the following is NP-hard: Given a k-uniform

hypergraph G(V,E), decide between the following two cases,

YES Case. There is a partition of V into disjoint subsets V1, . . . , Vk, X, such that

|V1| = |V2| = · · · = |Vk| ≥ (1−ε
k

)|V |, with the property that every hyperedge e ∈ E

has at most one vertex from any Vj, (j ∈ [k]). Informally, the hypergraph is almost

k-partite.

NO Case. There is no vertex cover in G of size at most (1 − ε)|V |, i.e., every

independent set in G has size at most ε|V |.

Observe that in the YES case of the above theorem, for any j ∈ [k], the set

Vj ∪X is a vertex cover, and thus, V \ (Vj ∪X) is an independent set. Therefore, the

graph has k vertex covers of size at most ( 1
k

+ ε)|V | each, and k independent sets,

each of size at least (1 − 1
k
− ε)|V |. For k = 2, this is same as the almost bipartite

property for graphs. Combining the YES and NO cases also yields a (k − δ) UGC

based inapproximability for Minimum Vertex Cover on k-uniform hypergraphs.

Via reductions from this hardness result, Bansal and Khot [BK10] proved optimal

UGC based inapproximability for Concurrent Open Shop and the Assembly Line

Problems. Gørtz, Nagarajan, and Saket [GNS12] also used Theorem 7.4 to rule out

a constant approximation for Two Stage Stochastic Vehicle Routing, assuming the

2To be precise, Bansal and Khot [BK09] assume a stronger version of the conjecture that is not
known to be equivalent to the UGC.
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UGC. In the next section, we discuss our new structured hardness result that bypasses

the UGC, and is a key intermediate step in our results for these problems.

7.4.1 A New Structured Hardness for Hypergraph Vertex

Cover

The structural property of almost k-partiteness in the YES case of Theorem 7.4 is

crucial for obtaining hardness results for the scheduling and stochastic optimization

problems mentioned above. The question we study is whether one can instead use a

weaker structural property for which an analogous inapproximability can be shown

without assuming the UGC.

For example, let us consider the following structural property in the YES case.

Say k = qT for some positive integers q and T , and that there is a partition of |V |

into subsets V1, . . . , Vq, X such that |V1| = · · · = |Vq| ≥ (1−ε
q

)|V |, and every hyperedge

contains at most T vertices from Vj, for any j ∈ [q]. This is equivalent to requiring

that: the qT vertices in every hyperedge e can be partitioned into T disjoint blocks

of q vertices each, such that each block has at most one vertex from Vj, for any

j ∈ [q]. If we call a block that has at most one vertex from any Vj as good, then the

property requires that the qT vertices of any hyperedge can be partitioned into T

good blocks of size q each. The almost k-partiteness corresponds to the case of T = 1

and q = k. For T > 1, this property is weaker than the YES case of Theorem 7.4. In

particular, substituting it into Theorem 7.4 yields a weaker inapproximability factor

for Hypergraph Vertex Cover. Nevertheless, even with T = q, this property would be

useful for the above mentioned applications, and interesting in general.

However, it seems difficult to prove an analog of Theorem 7.4 even with the above

property in the YES case. Instead, we weaken it further to require that: the qT

vertices in every hyperedge e can be partitioned into T disjoint blocks of q vertices

each, such that at least T − 1 of the blocks are good. In other words, the vertices of

121



any hyperedge can be partitioned into T blocks of size q each, such that at least T −1

of the blocks each have at most one vertex from Vj, for any j ∈ [q]. We prove the

following structural hardness for hypergraph vertex cover with the above property in

the YES case.

Theorem 7.5. For any ε > 0, and positive integers q, T > 1, the following is NP-

hard: Given a qT -uniform hypergraph G(V,E), decide between the following two cases,

YES Case: There is a partition V1, V2, . . . , Vq, X of V , such that:

1. |V1| = |V2| = · · · = |Vq| ≥
(

1−ε
q

)
|V | and,

2. For each hyperedge e ∈ E, the vertices in e can be partitioned into T blocks

Be
1, . . . , B

e
T , each of size q, such that Be

i contains at most one vertex from any

Vj (1 ≤ j ≤ q), for i = 1, . . . , T − 1.

NO Case: There is no vertex cover in G of size at most (1 − ε)|V |, i.e., every

independent set in G has size at most ε|V |.

Note that in the YES case, the vertices in the block Be
T can be arbitrary. The proof

of this theorem has been presented in Chapter 8, followed by black box reductions that

give optimal (2− ε) inapproximability for Concurrent Open Shop and the Assembly

Line problem, and an ω(1) inapproximability for Stochastic Vehicle Routing.

7.5 Vertex Cover on k-uniform k-partite Hyper-

graphs

Another version of hypergraph vertex cover that we study is the Minimum Vertex

Cover problem on k-partite k-uniform hypergraphs, when the underlying partition is

given. We denote this problem as k-HypVC-Partite. This is an interesting prob-

lem by itself, and its variants have been studied for applications related to databases
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such as distributed data mining [FMO+03], schema mapping discovery [GS10a], and

optimization of finite automata [ISOY05]. On bipartite graphs (k = 2), by König’s

Theorem, computing the minimum vertex cover is equivalent to computing the maxi-

mum matching, which can be done efficiently. For general k, the problem was studied

by Lovász who, in his doctoral thesis [Lov75], proved the following upper bound.

Theorem 7.6 (Lovász [Lov75]). For every k-partite k-uniform hypergraph G:

vc(G)/lp(G) ≤ k/2, where vc(G) denotes the size of the minimum vertex cover and

lp(G) denotes the value of the standard LP relaxation. This yields an efficient k/2

approximation for k-HypVC-Partite.

Note that the standard LP relaxation does not utilize the knowledge of the k-

partition and therefore, by Lovász’s result, lp(G) is a k/2 approximation to vc(G)

even when the k-partition is not known. The above upper bound was shown to

be tight by Aharoni, Holzman, and Krivelevich [AHK96], who proved the following

theorem.

Theorem 7.7 (Aharoni et al. [AHK96]). For every k ≥ 3, there exists a family of

k-partite k-uniform hypergraphs G such that vc(G)/lp(G) ≥ k/2 − o(1). Thus, the

integrality gap of the standard LP relaxation for k-HypVC-Partite is k/2− o(1).

The standard LP relaxation for k-HypVC-Partite and a proof of the above

theorem describing the integrality gap construction is included in Chapter 9.

On the hardness side, the problem was shown to not have a polynomial time

approximation scheme assuming P 6= NP, in [ISOY05] and [GS10a] for k = 3, which

can be extended easily to k ≥ 3. A recent work of Guruswami and Saket [GS10b]

showed the following non-trivial hardness of approximation factor for general k.
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Theorem 7.8 (Guruswami and Saket [GS10b]). For any ε > 0 and k ≥ 5,

k-HypVC-Partite is NP-hard to approximate within a factor of k
4
− ε. Assuming

the UGC yields an optimal hardness factor of k
2
− ε for k ≥ 3 3.

We show a nearly optimal NP-hardness result for approximating k-HypVC-Partite.

Theorem 7.9. For any ε > 0 and integer k ≥ 4, it is NP-hard to approximate

k-HypVC-Partite to within a factor of k
2
− 1 + 1

2k
− ε.

The NP-hardness factor obtained in the above theorem is a significant improve-

ment on that obtained in [GS10b], and for any k ≥ 4, is off by at most an additive

constant of 1 from the optimal. The sub-optimality is due to fundamental limita-

tions of currently known techniques and is analogous to that of the hardness factor

for k-HypVC obtained in [DGKR05]. Chapter 9 is devoted to a proof of the above

theorem.

3The UGC result is based on the framework of Kumar et al. [KMTV11]
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Chapter 8

Hardness for Scheduling Problems

In this chapter, we study the inapproximability of two well-known scheduling prob-

lems: Concurrent Open Shop and the Assembly Line problem. For both these prob-

lems, Bansal and Khot [BK10] obtained tight (2 − ε)-factor inapproximability, as-

suming the Unique Games Conjecture (UGC). We prove optimal (2− ε)-factor NP-

hardness of approximation for both these problems without assuming UGC. We

also prove a super constant NP-hardness factor for Two Stage Stochastic Vehicle

Routing, for which a similar inapproximability was shown by Gørtz, Nagarajan, and

Saket [GNS12] assuming the UGC, and based on the result of [BK10].

Our results follow via black-box hardness reductions from a structured hardness

result for Minimum Vertex Cover on hypergraphs – a weaker analog of a similar result

of Bansal and Khot [BK10] which, however, is based on UGC.

8.1 Main Results

Structured Hypergraph Vertex Cover (HypVCBlk). We rephrase our struc-

tured hardness result for Minimum Vertex Cover on hypergraphs as NP-hardness of

a decision problem HypVCBlk1, which we define below. For any ε > 0, and pos-

1The abbreviation HypVCBlk denotes Hypergraph Vertex Cover with Block structure.
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itive integers q, T > 1, an instance of HypVCBlk(q, T, ε) consists of a qT -uniform

hypergraph. The problem is defined as follows.

Definition 8.1. For any ε > 0, and positive integers q, T > 1, the problem

HypVCBlk(q, T, ε) is: Given a qT -uniform hypergraph G(V,E) as an instance,

decide between the following two cases,

YES Case: There is a partition V1, V2, . . . , Vq, X of V , such that:

1. |V1| = |V2| = · · · = |Vq| ≥
(

1−ε
q

)
|V |, and,

2. For each hyperedge e ∈ E, the vertices in e can be partitioned into T blocks

Be
1, . . . , B

e
T , each of size q, such that the block Be

i contains at most one vertex

from any Vj (1 ≤ j ≤ q) for i = 1, . . . , T − 1.

NO Case: There is no vertex cover in G of size at most (1 − ε)|V |, i.e., every

independent set in G has size at most ε|V |.

This definition serves as a convenient abstraction for the hardness reduction as well

as for proving hardness results for the applications. We prove the following theorem

concerning the hardness of HypVCBlk, that immediately implies Theorem 7.5 from

Section 7.4.1.

Theorem 8.2. For any constant ε > 0, and integers q, T > 1, HypVCBlk(q, T, ε)

is NP-hard.

Applications: Scheduling and Stochastic Routing. Our hardness results for

Concurrent Open Shop, Assembly Line problem, and Two stage Stochastic Vehicle

routing will follow via black-box reductions from the hardness for HypVCBlk proved

in Theorem 8.2. These problems were defined in Section 7.3. We restate our results

for these problems here for completeness.
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Theorem 8.3. The Concurrent Open Shop problem is NP-hard to approximate

within a factor of 2− ε, for any ε > 0.

Theorem 8.4. The Assembly Line problem is NP-hard to approximate within a

factor of 2− ε, for any ε > 0.

Theorem 8.5. The Two Stage Stochastic Vehicle Routing problem is NP-hard to

approximate within any constant factor C > 1.

Organization. We begin with an outline of the proof and techniques used, in Sec-

tion 8.2. Next, we give useful definitions and preliminary results for the analysis of

Boolean functions, in Sections 8.3.1 and 8.3.2 respectively. Section 8.3.3 describes the

variant of Label Cover used in the reduction and states its inapproximability. Section

8.4 contains the main reduction and its analysis, proving Theorem 8.2. Sections 8.5.1,

8.5.2 and 8.5.3 contain the respective hardness reductions and proofs of Theorems 8.3,

8.4, and 8.5.

8.2 Proof Outline and Techniques

The main idea of our hardness reduction for Theorem 8.2 is illustrated by the following

gadget. Say we are given integers T,m, q, and a small constant ε ∈ (0, 1). Consider

the following biased Long Code: the set {∗, 1, . . . , q}m, equipped with a measure µ.

We call the elements of this set as colorings of [m]. A random coloring is sampled from

µ as follows: Sample each coordinate independently, assigning it ∗ with probability

ε, and j (for j ∈ [q]) with probability 1−ε
q
. Given a set of q colorings , we say that

they ‘collide’ in coordinate l, if there is some j ∈ [q] such that two or more of these

colorings have j in coordinate l.

The gadget we construct is a qT -uniform hypergraph with the vertex set con-

sisting of all colorings from T copies of the biased Long Code. The hyperedges are
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constructed as follows. Choose q colorings from each of the T Long Codes, and add a

hyperedge consisting of these qT colorings if for every coordinate l ∈ [m], there is at

most one i ∈ [T ] such that the q colorings from the ith Long Code collide in coordinate

l. We outline the two properties of this gadget which are key to the reduction.

For any coordinate l ∈ [m], we can partition the vertices (colorings) into subsets

V1, . . . , Vq, X in the following manner. A coloring is in Vj if its lth coordinate is j, for

all j ∈ [q], and in X if it is ∗. Clearly, X has ε fraction of the weight, and each of

the subsets Vj have the same weight. Moreover, for each hyperedge e, if we let the

block Be
i be the set of vertices (colorings) in e from the ith Long Code (1 ≤ i ≤ T ),

we get that at least T − 1 blocks each contain at most one vertex from Vj, for any

j ∈ [q] Therefore, for any coordinate, we obtain the desired structural property of the

hypergraph. This corresponds to the YES case of HypVCBlk.

For the NO case, suppose we are given a minimal vertex cover in the above hyper-

graph that has an intersection of measure at most 0.99 with each of the Long Codes.

Denote its complementary maximal independent set by I. Consider the family of

colorings obtained as the intersection of I with the ith Long Code. The maximality

of I implies that this family is monotone, i.e., a coloring in the family belongs to

it even after changing a coordinate from ∗ to any j ∈ [q]. By perturbing ε by a

small amount, and applying Russo’s lemma [Rus82], we deduce that the family has

bounded average sensitivity. Applying Friedgut’s theorem [Fri98] yields a small set

of coordinates called a core, such that the membership of a coloring in the family

is essentially determined by the coordinates in the core. This allows us to find q

colorings in the family that do not collide in coordinates outside the core. Therefore,

we obtain, for each of the T families, q colorings along with a core for that family.

It easily follows that the cores corresponding to at least two of the families must in-

tersect, otherwise there is a hyperedge in I, which is a contradiction. Thus, we have
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decoded an independent set of significant weight into a small set of coordinates that

are consistent.

Variants of the above gadget over the boolean domain were used by Dinur et al.

[DGKR05] in their hardness for Minimum Vertex Cover on k-uniform hypergraphs,

and later by Sachdeva and Saket [SS11] for proving hardness for Minimum Vertex

Cover on k-uniform k-partite hypergraphs. For analyzing their constructions over the

boolean domain, [DGKR05] and [SS11] used techniques from extremal combinatorics

which, however, are considerably less amenable for the larger, biased domains used

in our reduction. Instead, we are able to adapt and apply techniques from Fourier

Analysis which were introduced in the seminal work of Dinur and Safra [DS05] and

used by Dinur et al. [DGK02] on boolean domains. These techniques were later

extended to larger domains in more recent works [DKPS10, KS12].

We note that Bansal and Khot [BK10] in their proof of Theorem 7.4 used powerful

tools based on the Invariance Principle [Mos08]. However, their use of these tools

requires a bijective constraint satisfaction problem, which is currently known to be

NP-hard only assuming the Unique Games Conjecture [Kho02]. The techniques in

our proof – though weaker in terms of the lower bounds yielded – can nevertheless

be used, as outlined below, with a constraint satisfaction problem unconditionally

known to be NP-hard.

We combine our gadget with a variant of Label Cover – used in the work of

Gopalan, Khot, and Saket [GKS10] – that is particularly suited for our techniques.

It consists of T -variable constraints which are obtained by aggregating subsets of T

constraints incident on a variable on the smaller side of the standard Label Cover.

We replace each variable of this variant of Label Cover by a Long Code. Based on

the structure of each T -variable constraint, we add hyperedges between the Long

Codes corresponding to its variables in a manner analogous to the hyperedges of the

above gadget. The YES case follows easily using the analysis sketched above and
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a satisfying assignment to the Label Cover instance. For the NO case, we use the

decoding procedure outlined above to find a good assignment to the variables. This

gives the desired structured hardness (Theorem 8.2) for Minimum Vertex Cover on

hypergraphs. Using this, the hardness results for the scheduling and stochastic vehicle

routing problems (Theorems 8.3, 8.4 and 8.5) follow via black-box reductions. These

reductions are analogous to the ones used for these problems in earlier work [MQS+10,

BK10, GNS12], suitably modified to exploit the structure of the Minimum Vertex

Cover instances we construct.

8.3 Preliminaries

Before we describe the reduction, we need a few definitions and preliminary lemmas.

We follow notation similar to previous works [DKPS10, KS12].

8.3.1 Definitions

An element of {∗, 1, . . . , q}n is referred to as a coloring of [n]. We shall refer to

subsets of {∗, 1, . . . , q}n as families. The measure µp on the set {∗, 1, . . . , q}n is a

product measure assigning, in each coordinate, probability mass 1 − p to ∗ and p/q

to each of the remaining q elements. The dimension of the space will often not be

stated explicitly, and will be clear from the context. A family F ⊆ {∗, 1, . . . , q}n is

monotone if F ∈ F implies F ′ ∈ F where F ′ is any coloring obtained by changing a

∗ in any coordinate of F to some element in [q].

For any coloring F ∈ {∗, 1, . . . , q}n, and any set C ⊆ [n], we let F |C denote the

coloring F restricted to C. For any coloring F, we call F an extension of the restricted

coloring F |C . A set C ⊆ [n] is a (δ, p)-core for a family F , if there exists a family F ′

such that µp(F4F ′) ≤ δ and F ′ depends only on the coordinates in C, i.e., for any

F ∈ {∗, 1, . . . , q}n, changing the value of the coordinates in [n] \ C does not affect
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whether F is in F ′. For t ∈ (0, 1), and a subset C ⊆ [n], let a core-family [F ]tC be

defined as,

[F ]tC
def
=

{
F ∈ {∗, 1, . . . , q}C

∣∣∣∣∣ Pr
F ′∈µ[n]\Cp

[(F, F ′) ∈ F ] > t

}
,

where (F, F ′) is a combined coloring obtained by choosing the coloring assigned by

F on coordinates in C, and by F ′ on [n] \C. The influence of a coordinate i ∈ [n] for

a family F is defined as follows:

Infpi (F)
def
= µp({F : F |i←∗ 6∈ F and ∃j ∈ [q] s.t. F |i←j ∈ F}),

where F |i←∗ is a coloring identical to F except on the ith coordinate where it is ∗,

and similarly for F |i←r, for any r ∈ [q]. The average sensitivity of F at p is defined

as asp(F)
def
=
∑n

i=1 Inf
p
i (F).

Let P q
p be a distribution on {∗, 1, . . . , q}q defined by the following randomized

sampling:

1. Sample a uniformly random permutation τ : [q] 7→ [q]. Set (y1, . . . , yq)
def
=

(τ(1), . . . , τ(q)).

2. Independently for each j ∈ [q], set xj = yj with probability p and with proba-

bility 1− p set xj = ∗. Output (x1, . . . , xq) as a uniform sample from P q
p .

Clearly, P q
p is supported on tuples with at most one coordinate valued j, for any

given j ∈ [q]. It is also easy to see that if we sample (x1, . . . , xq) from P q
p , each xj is

marginally distributed according to µp.

8.3.2 Results from Analysis of Boolean Functions

We begin by stating the following variant of Russo’s Lemma proved in [DKPS10] (as

Lemma 1).
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Lemma 8.6 (Russo’s Lemma [Rus82]). Let F ⊆ {∗, 1, . . . , q}n be monotone, then

µp(F) is increasing with p. In fact,

1

q
· asp(F) ≤ dµp(F)

dp
≤ asp(F).

The following corollary follows immediately.

Corollary 8.7. For a monotone family F ⊆ {∗, 1, . . . , q}n, we have,

1. For any p′ ≥ p, µp′(F) ≥ µp(F).

2. For any ε > 0, there is a p′ ∈ [1− ε, 1− ε/2] such that asp′(F) ≤ 2q
ε

.

Proof. The first property is immediate since Lemma 8.6 implies that dµp(F)

dp
≥ 0. For

the second property, assume to the contrary that for all p ∈ [1−ε, 1−ε/2], asp(F) > 2q
ε

.

By Lemma 8.6, this implies that for all p ∈ [1− ε, 1− ε/2] : dµp(F)

dp
> 2

ε
. Integrating

over p in the range [1− ε, 1− ε/2], we obtain that µp′(F) > 1 for p′ = 1− ε/2, which

is a contradiction.

For our analysis, we require the following generalization of Friedgut’s Theorem

[Fri98], the proof of which follows from the results of Sachdeva and Tulsiani [ST11].

Theorem 8.8 (Friedgut’s Theorem [Fri98, ST11]). Fix δ > 0. Let F ⊆ {∗, 1, . . . , q}n

be monotone with a = asp(F). There exists a function CFriedgut(p, δ, a) ≤ c
a/δ
p,q , for

a constant cp,q depending only on p and q, so that F has a (δ, p)-core C of size

|C| ≤ CFriedgut(p, δ, a).

We use the above stated Friedgut’s theorem in conjunction with the following

generalization of Proposition 3 in [DKPS10] and Lemma 3.1 in [DS05].

Proposition 8.9. Let t ∈ (1/2, 1) be a constant. If C is a (δ, p)-core of F , then

µCp ([F ]tC) ≥ µp(F)− t
1−tδ.
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Proof. Define the families

F1/2
def
=
{
F
∣∣∣ F |C ∈ [F ]

1/2
C

}
, and Ft

def
=
{
F
∣∣ F |C ∈ [F ]tC

}
,

where F |C denotes the coloring F restricted to C. For any coloring F, we call F

an extension of the restricted coloring F |C . Thus, F1/2 and Ft are the families of

all extensions of the core-families [F ]
1/2
C and [F ]tC respectively. Thus, since µp is a

product measure, µp(F1/2) = µCp ([F ]
1/2
C ), and µp(Ft) = µCp ([F ]tC).

It is easy to see that amongst all families F ′ that depend only on the coordinates

in C, the family [F ]1/2 minimizes µ(F∆F ′) (though it may not be the unique mini-

mizing family). In other words, the core-family on the core C, whose extension best

approximates F , is [F ]
1/2
C . Since C is a (δ, p)-core, we get, µp(F∆F1/2) ≤ δ.

Moreover, since t > 1/2, [F ]tC ⊆ [F ]
1/2
C . Consider any coloring F ∈ [F ]

1/2
C \ [F ]tC .

Thus, the fraction of extensions of F that are in F is at least 1
2

and at most t, i.e.,

1

2
· µCp (F ) < µp ({F ′| F ′ ∈ F and F ′|C = F}) ≤ t · µCp (F ).

Thus, the extensions of F that are contained in F∆F1/2 have measure

µp
({
F ′
∣∣ F ′ ∈ F∆F1/2 and F ′|C = F

})
= µp ({F ′| F ′ /∈ F and F ′|C = F }) ≥ (1− t) · µCp (F ).

Thus, the contribution by extensions of F to µp(F∆F1/2) is at least (1 − t)µCp (F ).

Similarly, the contribution of extensions of F to to µp(F∆Ft) is at most tµCp (F ).

For any coloring F ′ /∈ [F ]
1/2
C \[F ]tC , its extensions contribute equally to µp(F∆F1/2)

and µp(F∆Ft). Thus, using t
t−1
≥ 1 for t ∈ (1/2, 1), and summing over all F, we get

µp(F∆Ft) ≤ t
1−tµp(F∆F1/2) ≤ t

1−tδ. Hence, µCp ([F ]tC) = µp (Ft) ≥ µp (F)− t
1−tδ.
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8.3.3 Label Cover

From the work of Gopalan, Khot, and Saket [GKS10], we borrow the definition of the

version of Label Cover we will use for our reduction. For positive integers T, k,m > 1,

an instance of LabelCover(T, k,m) consists of a T -uniform hypergraph G(V,E)

with vertex set V and a hyperedge set E, where ∀e ∈ E, |e| = T. The hypergraph G

is connected, and any subset S ⊂ V of size δ|V |, for a positive constant δ, induces a

constant fraction γ(T, δ) > 0 of the hyperedges in E, where the function γ depends

only on T and δ. Every hyperedge e = (ve1, . . . , v
e
T ) is associated with a T -tuple

of projection functions {πei }Ti=1 where πei : [m] → [k] and k < m. A vertex labeling

σ : V 7→ [m] strongly satisfies hyperedge e if πei (σ(vei )) = πej (σ(vej )) for every vei , v
e
j ∈ e.

It is said to weakly satisfy hyperedge e if πei (σ(vei )) = πej (σ(vej )) for some pair vei , v
e
j ∈ e.

The following theorem is proved in [GKS10] by a simple reduction from the stan-

dard bipartite version of LabelCover.

Theorem 8.10. For any soundness parameter α > 0, and any positive integer T > 1,

there are positive integers k,m, such that the following is NP-hard: Given an instance

of LabelCover(T, k,m), decide between the following cases,

YES Case: There is some vertex labeling that strongly satisfies every

hyperedge.

NO Case: No vertex labeling weakly satisfies an α fraction of the hyper-

edges.

8.4 Hardness Reduction for HypVCBlk

We will show that for any positive constant ε > 0, and positive integers q, T > 1,

HypVCBlk(q, T, ε) is NP-hard, thus proving Theorem 8.2. The reduction we give

in this section proves a vertex weighted version of Theorem 8.2, which can easily be
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converted to an unweighted version by suitable replication of vertices. Our reduction

begins with an instance L of LabelCover(T, k,m) given by Theorem 8.10, where

we will specify the soundness parameter α later. The instance L includes a T -uniform

hypergraph GL with vertex set VL and hyperedge set EL.

8.4.1 Construction

We construct the instance G(V,E) of HypVCBlk(q, T, ε) as follows: For each vertex

v ∈ VL, there is a copy Fv of the Long Code, i.e., the set {∗, 1, . . . , q}m equipped with

the measure µp for p
def
= 1− ε, as defined in Section 8.3.1.

Vertices: The vertex set V is the union of the Long Codes Fv for each v ∈ VL. The

weight of F ∈ Fv is wt(F )
def
= µp(F )/|VL|. Thus the total weight of all vertices in V

is 1.

Hyperedges: Let e ∈ EL be a hyperedge in the graph GL such that e = (v1, . . . , vT )

with the associated tuple of projections (π1, . . . , πT ). Let Fi
def
= Fvi for i = 1, . . . , T .

Suppose there are colorings F j
i ∈ Fi, j = 1, . . . , q, and i = 1, . . . , T, satisfying the

following property:

(Almost-uniqueness) For every l1, . . . , lT ∈ [m] such that π1(l1) = π2(l2) =

· · · = πT (lT ), there is a subset I ⊆ [T ], |I| ≥ T − 1 such that for all

i ∈ I, for any j ∈ [q], the tuple (F 1
i (li), F

2
i (li), . . . , F

q
i (li)) has at most one

coordinate with value j.

For each such subset of qT colorings F j
i ∈ Fi, j = 1, . . . , q, and i = 1, . . . , T, which

satisfy the above property, add a hyperedge {F 1
1 , . . . , F

T
1 , F

1
2 , . . . , F

T
q } to E.

In the rest of the section, we analyze the YES and NO cases separately.

135



8.4.2 YES Case

In the YES case of Theorem 8.10, there is a labeling σ : VL 7→ [m] that strongly

satisfies every hyperedge in EL. For j ∈ [q], we define

Vj
def
= {F ∈ Fv | v ∈ VL and F (σ(v)) = j},

and

X
def
= {F ∈ Fv | v ∈ VL and F (σ(v)) = ∗}.

Clearly, V1, . . . , Vq, X is partition of V . By the definition of the probability measure

µp, we have that wt(V1) = · · · = wt(Vq) = 1−ε
q

, and wt(X) = ε.

We need to check the structural property of the YES case of Definition 8.1. Con-

sider a hyperedge e ∈ E. This edge corresponds to a hyperedge e′ = (v1, . . . , vT ) ∈ EL

with the associated tuple of projections (π1, . . . , πT ), so that e is incident on qT col-

orings F j
i ∈ Fvi , j = 1, . . . , q, and i = 1, . . . , T, which satisfy the Almost-uniqueness

property as stated in the construction. Let this set of qT colorings be partitioned into

T blocks Bi = {F j
i }

q
j=1, for i ∈ [T ]. Since π1(σ(v1)) = π2(σ(v2)) = · · · = πT (σ(vT )),

the Almost-uniqueness property implies that there is a subset I ⊆ [T ], |I| ≥ T − 1

such that for all i ∈ I, for all j ∈ [q], the tuple (F 1
i (σ(vi)), . . . , F

q
i (σ(vi))) has at most

one coordinate with value j. Hence Bi (i ∈ I) has at most one coloring from any Vj,

for any j ∈ [q]. Since this holds for every hyperedge in E, this completes the proof of

the YES case of Theorem 8.2.

8.4.3 NO Case

In the NO case, assume that there is a maximal independent set I ⊆ V of weight

wt(I) ≥ ε. For any vertex v, let the family I[v]
def
= Fv ∩ I. Observe that the

maximality of I implies that I[v] is monotone for all v ∈ V . This is because if there
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is a coloring Fv ∈ I[v] such that Fv(l) = ∗ for some l ∈ [m], then adding Fv|l←j for

any j ∈ [q] to I does not add any new hyperedges.

Good Vertices: Call a vertex v ∈ VL ‘good’ if µp(I[v]) ≥ ε/2.

Thus, the families I[v] of good vertices have a significant measure. It is easy to see

by averaging that at least ε/2 fraction of the vertices in VL are good. We show the

existence of q special colorings in the families I[v] of good vertices v. The following

is the main lemma of the analysis of the NO case.

Lemma 8.11. For every good vertex v ∈ VL, there is a subset of coordinates Cv ⊆ [m],

and q colorings F j
v ∈ I[v], for j = 1, . . . , q, such that,

1. |Cv| ≤ c(q, ε), where c(q, ε) is a constant depending only on q and ε.

2. For all l ∈ [m] \ Cv, and j ∈ [q], the q-tuple (F 1
v (l), . . . , F q

v (l)) has at most one

coordinate set to j.

Proof. We fix a good vertex v for the proof of this lemma. By the definition of a good

vertex, we have that µp(I[v]) ≥ ε/2. By Corollary 8.7, there exists a p′ ∈ [1−ε, 1−ε/2]

such that asp′(I[v]) ≤ 2q
ε

. Moreover, µp′(I[v]) ≥ µp(I[v]) ≥ ε/2.

We first show that for such a p′, the family I[v] has a suitably small core. Let

δ
def
= ε/2q. Define the constant c′(q, ε) as,

c(q, ε)
def
= max

p′∈[1−ε,1−ε/2]
a∈[0,2q/ε]

CFriedgut(p
′, δ, a).

Applying Theorem 8.8, we obtain that the monotone family I[v] has a (δ, p′)-core

Cv ⊆ [m] of size |Cv| ≤ c(q, ε). Further, setting s
def
= 1−1/q, and applying Proposition

8.9, we obtain that,

µp′([I[v]]sCv) ≥ µp′(I[v])− (q − 1)δ ≥ ε/2− (q − 1)(ε/2q) = ε/2q,
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by our choice of s and δ. Thus [I[v]]sCv is non-empty. Fix some coloring FCv ∈ [I[v]]sCv .

Consider the joint distribution on q extensions F 1, . . . , F q of FCv defined by the

following random procedure:

1. Let F j|Cv = FCv for all j ∈ [q]. (This must be true for F j to be an extension of

FCv .)

2. Independently for every i ∈ [m] \ Cv, the tuple (F 1(i), . . . , F q(i)) is sampled

uniformly from P q
p′ , as defined in Section 8.3.1.

The above, along with the definition of P q
p′ , implies that for a fixed j ∈ [q], F j(i) is

distributed i.i.d according to µp′ , for i ∈ [m] \Cv. Since FCv ∈ [I[v]]sCv , we have that,

Pr
[
F j ∈ I[v]

]
> s = 1− 1/q, (8.1)

for each j ∈ [q]. Taking a union bound over all j, we obtain,

Pr
[
F 1, . . . , F q ∈ I[v]

]
> 0. (8.2)

By the definition of P q
p′ , we also have that for any i ∈ [m] \Cv, (F 1(i), . . . , F q(i)) has

at most one entry set to j, for any j ∈ [q]. Thus, from Equation (8.2), there exists

a set of colorings F 1, . . . , F j ∈ I[v] with the required properties. This completes the

proof of the lemma.

The next step is to find a significant fraction of the hyperedges in EL which can

be weakly satisfied by a suitable labeling which we will construct using the subsets

Cv. For this we define good hyperedges.

Good Hyperedges: Call a hyperedge e = (v1, . . . , vT ) ∈ EL ‘good’, if all of

its vertices v1, . . . , vT are good vertices.
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Since at least ε/2 fraction of vertices are good, by the definition of LabelCover(T, k,m),

at least γ
def
= γ(ε/2, T ) > 0 fraction of hyperedges in EL are good, where γ(ε/2, T )

depends only on ε and T . The following is a key lemma to complete the analysis.

Lemma 8.12. Let e = (v1, . . . , vT ) ∈ EL be a good hyperedge with the associated

projections (π1, . . . , πT ). For i ∈ [T ], let Cvi be as obtained by applying Lemma

8.11 on the (good) vertex vi. Then there is a pair a, b ∈ [T ] with a 6= b, such that

πa(Cva) ∩ πb(Cvb) 6= ∅.

Proof. Assume to the contrary that the projections of the cores {πi(Cvi)}Ti=1 are all

pairwise disjoint. Since e is a good hyperedge, the vertices v1, . . . , vT are all good.

From the second part of Lemma 8.11, we also obtain the q colorings {F j
vi
}qj=1 ⊆ I[vi]

for each vi, i ∈ [T ].

Consider any l1, . . . , lT ∈ [m] such that π1(l1) = · · · = πT (lT ). From our assump-

tion of pairwise disjointedness of the projections of the cores, there is at most one

i ∈ [T ] such that πi(li) ∈ πi(Cvi). Thus there is a subset I ⊆ [T ], |I| ≥ T − 1, such

that for all i ∈ I, li 6∈ Cvi . Therefore, for each i ∈ I, (F 1
vi

(li), . . . , F
q
vi

(li)) has at most

coordinate set to j, for any j ∈ [q]. This implies that there is a hyperedge in E over

the qT colorings F j
vi
∈ I[vi], j = 1, . . . , q, and i = 1, . . . , T . This contradicts the fact

that I is an independent set in G(V,E). Thus the lemma is proved.

We are now ready to define a (randomized) labeling of the good vertices in VL.

Labeling of good vertices: For every good vertex v, define a random label-

ing σ(v) which selects a label uniformly at random from the small set Cv

given by Lemma 8.11.

Let e = (v1, . . . , vT ) ∈ EL be a good hyperedge, and let a, b be as given by Lemma 8.12.

The labeling σ weakly satisfies e with probability at least 1/|Cva ||Cvb| ≥ 1/c(q, ε)2.

Also, since at least γ = γ(ε/2, T ) fraction of the hyperedges are good, the labeling σ

weakly satisfies at least γ/c(q, ε)2 fraction of hyperedges in expectation. Choosing the
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soundness parameter α in Theorem 8.10 to be small enough, we obtain a contradiction.

Thus, in the NO case, there is no independent set in G(V,E) containing at least an

ε fraction of the vertices.

8.5 Hardness Reductions for Applications

8.5.1 Concurrent Open Shop

We give a reduction from an instance G(V,E) of HypVCBlk(q, T, ε), where we shall

specify the parameters later. We construct an instance of Concurrent Open Shop as

follows. There is a machine Me for every hyperedge e ∈ E. For every vertex v ∈ V,

there is a job jv which has unit size operation on every machine Me such that e is

incident on v. All other operations are of size 0. Each job has weight 1.

In the YES case, there is a partition V1, . . . , Vq, X of V satisfying the property

given in Definition 8.1. In this case, consider the following schedule: every machine

Me corresponding to hyperedge e schedules the unit size operations corresponding to

jobs jv where v ∈ V1 in the first batch, those for vertices in V2 in the second batch,

and so on until those of vertices in Vq in the qth batch, and lastly those of vertices in

X. The order within each batch can be arbitrary. This gives a valid schedule for all

machines.

We know in the YES case that the vertices of each hyperedge e can be partitioned

into T blocks of size q each, such that at least T − 1 of the blocks are good, i.e., any

of the good blocks contains at most one vertex from Vj for any j ∈ [q]. Thus, for

any j ∈ [q] the number of vertices in any hyperedge e from the set ∪ji=1Vj is at most

q + jT . Thus every job corresponding to vertices in Vj is completed by time q + jT .

Note that jobs corresponding to vertices in X are completed by time qT . Since each
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Vj (j ∈ [q]) is of the same size, the average completion time is at most:

1

q

(
q∑
j=1

(q + jT )

)
+ εqT =

1

q

(
q2 + T · q(q + 1)

2

)
+ εqT

= qT

(
1

T
+
q + 1

2q
+ ε

)
.

In the NO case, consider the set of jobs that are completed by time qT − 1. This

set must correspond to an independent set in G, since no hyperedge can complete all

its operations in time qT . Thus, except for ε fraction, the rest of the jobs take at

least qT time to complete. Thus the average completion time is at least (1− ε)qT .

Combining the above analysis with Theorem 8.2, we deduce that Concurrent Open

Shop is NP-hard to approximate within a factor of

1− ε
(1/T + (q + 1)/2q + ε)

, (8.3)

which can be made arbitrarily close to 2 by choosing T, q large enough and ε =

1/(qT )2.

8.5.2 Assembly Line Problem

As above, we give a reduction from an instance G(V,E) of HypVCBlk(q, T, ε), where

the exact parameters will be specified later. For every hyperedge e ∈ E, there is a

machine Me. There is also an additional special machine M0. For every vertex v ∈ V,

there is a job jv with a unit sized operation on each machine Me such that e is incident

on v. In addition, jv has a qT/|V | sized operation on M0.

In the YES case, there is a partition V1, . . . , Vq, X of V satisfying the property

given in Definition 8.1. As proved in the previous subsection, for any j ∈ [q], for any

hyperedge e, the number of vertices incident on e from the subset ∪jk=1Vk is at most

q + jT . Also, since |Vj| ≤ |V |/q, the total time required by jobs corresponding to Vj
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on M0 is at most qT
|V | ·

|V |
q

= T. Similarly, as |X| ≤ ε|V |, the total time required by

jobs corresponding to X on M0 is at most qT
|V | · ε|V | = εqT .

Consider the following schedule for any machine Me : it schedules the unit sized

operations corresponding to jobs of vertices in V1 in the first batch, those of vertices

in V2 in the second batch, and so on till those of vertices in Vq in the qth batch,

and lastly those of vertices in X. The order within each batch can be arbitrary.

The machine M0 processes all the jobs corresponding to vertices in Vj in the time

interval (q+Tj, q+T (j+1)]. This is a valid schedule for each machine Me. Moreover,

under this schedule, for a job corresponding to v ∈ Vj, all its unit size operations on

machines {Me}, where e is incident on v, are completed by time q+Tj. Since the time

required by jobs from Vj on M0 is at most T, it is feasible to schedule them in the time

interval (q+Tj, q+T (j+ 1)]. Thus, this is a valid schedule for jobs corresponding to

V \X. Since the hyperedges are qT -uniform, the jobs corresponding to X complete

on the machines {Me}e by time qT , and are processed on M0 in the time interval

(q + (q + 1)T, q + (q + 1)T + εqT ]. Thus, the makespan is qT (1 + ε) + q + T .

In the NO case, consider the set of vertices whose corresponding jobs complete

on all the machines {Me}e within time qT − 1. This is an independent set, since no

hyperedge can complete all its operations by time by qT −1. Thus, at most ε fraction

of vertices can start processing on M0 before time qT − 1. Therefore, at time qT − 1,

at least (1− ε)|V | · (qT/|V |) = (1− ε)qT amount of processing remains on machine

M0. Thus, the makespan is at least 2qT − εqT − 1.

Hence, the hardness of approximation factor obtained is,

2qT − εqT − 1

qT (1 + ε) + q + T
, (8.4)

which can be made arbitrarily close to 2 by choosing T, q large enough, and ε ≤

1/(qT )2 small enough.
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8.5.3 Two Stage Stochastic Vehicle Routing

We give a reduction from an instance G(V,E) of HypVCBlk(q, T, ε) where the

parameters will be specified later. We construct the following instance of the Two

Stage Stochastic Vehicle Routing problem:

Metric: Define the set of customers to be U
def
= {r, x} ∪ V, where r is the depot/root,

and x is a dummy vertex. Define the metric d on U to be the shortest-path metric

on a star with x as center, and all other vertices as the leaves. The distance between

x and r is |V |/2q and the distance between x and any v ∈ V is 1/2.

Capacity: The capacity Q of the vehicle is set to 1.

Inflation factor: The inflation factor λ is set to ∞, so that there is no recourse route

and all demands have to be satisfied by the fixed route.

Demand Distribution: For each hyperedge e = (v1, . . . , vqT ) ∈ E, there is a scenario

se of demands, where we have a unit demand on each vertex v that is incident on e

and zero demand on all other vertices. Let the distribution be uniformly supported

on all scenarios se, corresponding to hyperedges e ∈ E.

Before proceeding, we note that an r-tour τ that visits the set of vertices Vτ ⊆ V

has cost d(τ) = |V |
q

+ |Vτ |. We now analyze the YES and NO cases separately.

In the YES case, there is a partition V1, . . . , Vq, X of V as specified in the definition

of HypVCBlk(q, T, ε) (Definition 8.1). Construct a fixed route τ ∗ as follows: For

each j ∈ [q], τ ∗ consists of T+q copies of the r-tour that visits the subset Vj∪X. Note

that each of the q(T +q) r-tours visits X. We need to show that τ ∗ can always satisfy

all the demands. By the definition of the demand distribution, it suffices to show that

for any hyperedge e in E, τ ∗ can satisfy a unit demand on each of the vertices that e

is incident on. The second property specified in the definition of HypVCBlk(q, T, ε)

(Definition 8.1) immediately implies that e ∈ E is incident on at most T + q vertices

from Vj, for any j ∈ [q]. Since for every j ∈ [q], we have T + q r-tours visiting Vj,
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we can satisfy the unit demands for all the vertices from Vj that e is incident on by

assigning them one distinct r-tour each that visits Vj. The unit demands for vertices

in X can be satisfied by assigning them one of the remaining r-tours each. This is

possible since all the r-tours visit X and the total number of r-tours is q(T+q), which

is more than the number of vertices qT incident on e. The cost of this solution is,

q∑
j=1

(T + q)(|V |/q + |Vj ∪X|) ≤ (T + q)|V |(2 + εq).

In the NO case, we show that any feasible solution has cost at least qT (1 −

fq,T (ε))|V |, where fq,T (x) is a function parametrized by q and T such that for any

fixed value of q and T , fq,T (x) → 0 as x → 0. Consider a solution consisting of K

different r-tours τ1, . . . , τK . We may assume that K ≤ q2T , otherwise the total cost

would exceed q2T (|V |/q) = qT |V | and we would be done (fq,T (x) ≡ 0).

Now consider a subset of indices I ⊆ [K] of size |I| ≤ qT − 1. Let V (I) be the

vertices that appear only in the set of r-tours {τj | j ∈ I} and in no other r-tours in

the solution. Since every r-tour has capacity 1, the total demand of the vertices in

V (I), in any scenario, is at most qT − 1. Fix any hyperedge e ∈ E. Since G is qT -

uniform, and in the scenario se we assign a unit demand to each of the qT vertices that

e is incident on, not all these vertices can lie in V (I). Thus, V (I) is an independent

set in G, and by the property of the NO case, |V (I)| ≤ ε|V |.

By a union bound, the total number of vertices in V, which appear in at most

qT − 1 r-tours, is at most ∑
I⊆[K],
|I|≤qT−1

|V (I)|.

Since K ≤ q2T , the number of index sets I in the above sum is at most
(
q2T
qT−1

)
≤ 2q

2T .

Thus, the total number of vertices in V which appear in at most qT − 1 r-tours is
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bounded by ε2q
2T |V | def

= fq,T (ε)|V |. Therefore, the cost of the solution in the NO case

is at least qT (1− fq,T (ε))|V |.

Thus, the hardness of approximation factor obtained is,

qT (1− fq,T (ε))

(T + q)(2 + εq)
, (8.5)

which can be made an arbitrarily large constant by choosing T = q large enough and

then ε to be small enough. This completes the analysis.

Notes

The material presented in this chapter is based on the paper “Optimal Inapprox-

imability for Scheduling Problems via Structural Hardness for Hypergraph Vertex

Cover” [SS13] joint with Rishi Saket. A preliminary version of the paper appeared

at CCC 2013.
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Chapter 9

Hardness for Hypergraph VC on

k-partite k-uniform hypergraphs

In this chapter, we study the problem of computing the minimum vertex cover on

k-uniform k-partite hypergraphs when the k-partition is given. We show that this

problem is NP-hard to approximate within a factor of k
2
− 1 + 1

2k
− ε. This hardness

factor is off from the optimal by an additive constant of at most 1 for k ≥ 4. Our

reduction relies on the Multi-Layered PCP of Dinur et al. [DGKR05] and uses a gadget

– based on biased Long Codes – adapted from the LP integrality gap construction of

Aharoni et al. [AHK96]. The nature of our reduction requires the analysis of several

Long Codes with different biases, for which we prove structural properties of the so

called cross-intersecting collections of set families.

9.1 Main Results

We study the Minimum Vertex Cover problem on k-partite k-uniform hypergraphs,

when the underlying partition is given. Recall that we denote this problem as

k-HypVC-Partite. For completeness, we restate our hardness result for approxi-

mating k-HypVC-Partite.
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Theorem 9.1. For any ε > 0 and integer k ≥ 4, it is NP-hard to approximate

k-HypVC-Partite to within a factor of k
2
− 1 + 1

2k
− ε.

Organization. In section 9.2, we give an overview of the techniques used in this

work. Section 9.3 defines and analyzes the above mentioned cross-intersecting set

families. Section 9.4 defines the Multi-Layered PCP of Dinur et al. [DGKR05], and

states their hardness for it. In Section 9.5.1 we describe our reduction and prove

Theorem 9.1. Finally, we give a description of the integrality gap construction of

Aharoni et al. [AHK96] in Section 9.6.

9.2 Techniques

It is helpful to first briefly review the hardness reduction of [DGKR05] for k-HypVC.

The main idea of their construction can be illustrated by the following gadget.

Consider a domain R and the set of all its subsets H = 2R. Sample subsets from

H by choosing each element of R independently with probability 1 − 1/k − ε (for

some small ε > 0), and let the weight of each subset in H be its corresponding

sampling probability, thus making the sum of all weights to be 1. The set H along

with the associated weights is an example of a biased Long Code over R. Construct

a k-uniform hypergraph over the vertex set H by adding an edge between any k

subsets whose intersection is empty. In this hypergraph it is easy to see that every

element r ∈ R yields a corresponding independent set (in the hypergraph) of weight

(1 − 1/k − ε), by choosing all subsets which contain that element. On the other

hand, Dinur et al. [DGKR05] show via an analysis based on extremal set theory, that

any independent set of weight ε must contain k subsets in H which have a small

intersection, thus yielding a special small subset of R. This gap of 1 − 1/k − ε vs ε

for independent set corresponds to a gap of 1/k + ε vs 1 − ε for the complementary

minimum vertex cover objective.
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The construction of [DGKR05] combines the above Long Code based gadget with

a new Multi-Layered PCP. This is a two variable CSP consisting of several layers of

variables, and constraints between variables from each pair of layers. The work of

[DGKR05] shows that it is NP-hard to find a labeling of the variables which satisfies a

small fraction of the constraints between any two layers, even if there is a labeling that

satisfies all the constraints of the instance. The reduction to a k-uniform hypergraph

(as an instance of k-HypVC) involves replacing each variable of the PCP with a

biased Long Code and adding the edges of the above gadget across different Long

Codes.

The starting point for our hardness reduction for k-HypVC-Partite is – as in

[DGKR05] – the Multi-Layered PCP. While we do not explicitly construct a stand-

alone Long Code based gadget, our reduction can be thought of as adapting the

integrality gap construction of Aharoni et al. [AHK96] into a Long Code based gadget

in a manner that preserves the k-uniformity and k-partiteness of the integrality gap.

Such transformations of integrality gaps into Long Code based gadgets have re-

cently been studied in the works of Raghavendra [Rag08] and Kumar et al. [KMTV11],

who show this for a wide class of CSPs and their appropriate SDP and LP integrality

gaps respectively. These Long Code based gadgets can be combined with a Unique

Games instance to yield tight UGC based hardness results, where the reduction is an-

alyzed via the Mossel’s Invariance Principle [Mos08]. Indeed, for k-HypVC-Partite

the work of Guruswami and Saket [GS10b] combines the integrality gap of [AHK96]

with (a slight modification) of the approach of Kumar et al. [KMTV11] to obtain an

optimal UGC based hardness result.

Our reduction, on the other hand, combines Long Codes with the Multi-Layered

PCP instead of Unique Games and so we cannot adopt a Invariance Principle based

analysis. Thus, in a flavor similar to that of [DGKR05], our analysis is via extremal

combinatorics. However, our gadget involves several biased Long Codes with different
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biases and each hyperedge includes vertices from differently biased Long Codes, unlike

the construction in [DGKR05]. The different biases are derived from the LP solution

to the integrality gap of [AHK96], in such a way that the gap obtained in the gadget

corresponds to the value of the integrality gap.

For our analysis, we use structural properties of a cross-intersecting collection of

set families. A collection of set families is cross-intersecting if any intersection of

subsets – each chosen from a different family – is large. Variants of this notion have

previously been studied in extremal set theory (see e.g. [AL09]). We prove an upper

bound on the measure of the smallest family in such a collection. This enables a small

vertex cover (in the hypergraph of our reduction) to be decoded into a good labeling

to the Multi-Layered PCP.

9.3 Cross-Intersecting Set Families

We use the notation [n] = {1, . . . , n} and 2[n] = {F | F ⊆ [n]}. A subset of 2[n] is

called a set family. We begin by defining cross-intersecting set families:

Definition 9.2. A collection of k families F1, . . . ,Fk ⊆ 2[n], is called k-wise t-cross-

intersecting if for every choice of sets Fi ∈ Fi for i = 1, . . . , k, we have |F1∩. . .∩Fk| ≥

t.

In this section, we prove that if a collection of k families F1, . . . ,Fk ⊆ 2[n] is

k-wise t-cross-intersecting, then at least one of the families is small in size, under an

appropriately picked measure. Before we formally state the claim in Lemma 9.4, we

define the family of p-biased measures on subsets of [n], that we will work with.

Definition 9.3. Given a bias parameter 0 < p < 1, we define the measure µp on

subsets of [n] as: µp(F )
def
= p|F | · (1− p)n−|F | . The measure of a family F is defined

as µp(F) =
∑

F∈F µp(F ).
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We can now state the main result of this section.

Lemma 9.4. For arbitrary ε, δ > 0, there exists some t = O
(

1
δ2

(
log 1

ε
+ log

(
1 + 1

2δ2

)))
such that the following holds for all positive integers k: Given k numbers 0 < qi < 1

such that
∑

i qi ≥ 1 and k families, F1, . . . ,Fk ⊆ 2[n], that are k-wise t-cross-

intersecting, there exists a j such that µ1−qj−δ(Fj) < ε.

Proof. Let F1, . . . ,Fk ⊆ 2[n] be a collection of k-wise t-cross-intersecting families. We

will specify our choice of t(ε, δ) at the end of the proof.

For the proof, we introduce an important technique for analyzing cross-intersecting

families – the shift operation (see Definition 4.1, pg. 1298 [GGL95]). Given a family

F , define the (i, j)-shift as follows:

SFij (F ) =

 (F ∪ {i}\{j}) if j ∈ F, i /∈ F and (F ∪ {i}\{j}) /∈ F ,

F otherwise.

Let the (i, j)-shift of a family F be defined as Sij(F) = {SFij (F ) | F ∈ F}. Given

a family F ⊆ 2[n], we repeatedly apply (i, j)-shift for 1 ≤ i < j ≤ n to F until

we obtain a family that is invariant under these shifts. Such a family is called a

left-shifted family and we will denote it by S(F).

The following lemma, whose proof is included later in the section, shows that the

cross-intersecting property is preserved under left-shifting.

Lemma 9.5. Consider families F1, . . . ,Fk ⊆ 2[n] that are k-wise t-cross-intersecting.

Then, the families S(F1), . . . , S(Fk) are also k-wise t-cross-intersecting.

Moreover, by definition, there is a bijection between the sets in F and S(F) that

preserves the size of the set. Thus, for any fixed p, the measures of F and S(F) are the

same under µp, i.e., µp(F) = µp(S(F)). Combining this observation with Lemma 9.5,

it suffices to prove that there exists a j such that µ1−qj−δ(S(Fj)) < ε. Thus, we can
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assume that the families F1, . . . ,Fk are left-shifted (if not, we can replace then with

S(F1), . . . , S(Fk)).

Next, we prove a key structural property about left-shifted cross-intersecting fam-

ilies which states that for at least one of the families, all of its subsets have a dense

prefix. A similar fact for a single left-shifted family was shown in [GGL95] (pg. 1311,

Lemma 8.3), which was reproved and used in [DGKR05]. However, our case of mul-

tiple families with varying biases is different for which we need to prove the following

combinatorial lemma.

Lemma 9.6. Let q1, . . . , qk ∈ (0, 1) be k numbers such that
∑

i qi ≥ 1 and let

F1, . . . ,Fk ⊆ 2[n] be left-shifted families that are k-wise t-cross-intersecting for some

t ≥ 1. Then, there exists a j ∈ [k] such that for all sets F ∈ Fj, there exists a positive

integer rF ≤ n− t such that |F ∩ [t+ rF ]| > (1− qj)(t+ rF ).

We defer the proof of this lemma to the end of this section. Assuming this lemma

for now, we conclude that there must exist a j such that for all sets F ∈ Fj, there

exists an rF such that |F ∩ [t + rF ]| > (1 − qj)(t + rF ). We now apply a Chernoff

bound argument to deduce that µ1−qj−δ(Fj) must be small.

Note that µ1−qj−δ(Fj) is equal to the probability that a random set F chosen

according to µ1−qj−δ lies in Fj. Thus, µ1−qj−δ(Fj) is bounded by the probability

that for a random set F chosen according to µ1−qj−δ, there exists an rF that satisfies

|F ∩ [t+ rF ]| ≥ (1− qj)(t+ rF ).

Chernoff bound states that for a set of m independent bernoulli random variables

Xi, with Pr[Xi = 1] = 1− qj − τ ,

Pr

[
m∑
i=1

Xi ≥ (1− qj)m

]
≤ e−2mτ2 .
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Thus, we get that for any r ≥ 0, Pr[|F ∩ [t + r]| ≥ (1 − qj)(t + r)] ≤ e−2(t+r)δ2 .

Summing over all r, we get that,

µ1−qj−δ(Fj) ≤
∑
r≥0

e−2(t+r)δ2 ≤ e−2tδ2

1− e−2δ2
≤ e−2tδ2

(
1 +

1

2δ2

)
.

Thus, if t is large enough (t = Ω
(

1
δ2

(
log 1

ε
+ log

(
1 + 1

2δ2

)))
suffices), then

µ1−qj−δ(F) must be smaller than ε. This completes the proof of Lemma 9.4.

We now give a proof of Lemma 9.5 that shows that left-shifting preserves the

cross-intersecting property.

Proof. (of Lemma 9.5) Given the assumption, we will prove that Sij(F1), . . . , Sij(Fk)

are k-wise t-cross-intersecting. A simple induction then implies the statement of the

lemma.

Consider arbitrary sets Fi ∈ Fi. By our assumption, |F1∩ . . .∩Fk| ≥ t. It suffices

to prove that |SF1
ij (F1)∩ . . .∩SFkij (Fk)| ≥ t. If j /∈ F1∩ . . .∩Fk, the claim is true since

the only element being removed is j. Thus, for all l ∈ [k], j ∈ Fk. If for all l ∈ [k],

SFlij (Fl) = Fl, the claim is trivial. Thus, let us assume wlog that SF1
ij (F1) 6= F1. Thus,

i /∈ F1 and hence i /∈ F1 ∩ . . . ∩ Fk. Now, if i ∈ SF1
ij (F1) ∩ . . . ∩ SFkij (Fk), we get that

j is replaced by i in the intersection and we are done. Thus, we can assume wlog

that i /∈ SF2
ij (F2). This implies that i /∈ F2 and F2 ∪ {i}\{j} ∈ F2. Now consider

F1 ∩ (F2 ∪ {i}\{j}) ∩ F3 ∩ . . . ∩ Fk. Since we are picking one set from each Fi, it

must have at least t elements, but this intersection does not contain j and hence it is

a subset of SF1
ij (F1) ∩ . . . ∩ SFkij (Fk), implying that |SF1

ij (F1) ∩ . . . ∩ SFkij (Fk)| ≥ t.

Finally, we give a proof of Lemma 9.6 that gives a structural property of cross-

intersecting families.

Proof. (of Lemma 9.6) Let us assume to the contrary that for every i ∈ [k], there

exists a set Fi ∈ Fi such that for all r ≥ 0, |Fi ∩ [t + r]| ≤ (1 − qi)(t + r). The
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following combinatorial argument shows that the families Fi cannot be k-wise t-

cross-intersecting.

Let us construct an arrangement of balls and bins where each ball is colored with

one of k colors. Create n bins labeled 1, . . . , n. For each i and for every x ∈ [n]\Fi,

we place a ball with color i in the bin labeled x. Note that a bin can have several

balls, but they must have distinct colors. Given such an arrangement, we can recover

the sets it represents by defining F c
i to be the set of bins that contain a ball with

color i.

For all r, our initial assumption implies that |F c
i ∩ [t+ r]| ≥ qi(t+ r). Thus, there

are at least d qi(t+ r) e balls with color i in bins labeled 1, . . . , t+r. The total number

of balls in bins labeled 1, . . . , t+ r is,

k∑
i=1

|F c
i ∩ [t+ r]| ≥

k∑
i=1

d qi(t+ r) e ≥
k∑
i=1

qi(t+ r) ≥ t+ r ≥ r + 1,

where the last two inequalities follow using
∑

i qi ≥ 1 and t ≥ 1.

Next, we describe a procedure to manipulate the above arrangement of balls.

for r := 0 to n− t

if bin t+ r is empty

then if a bin labeled from 1 to t− 1 contains a ball then move it to bin t+ r

else if a bin labeled from t to t+ r − 1 contains two balls

then move one of them to bin t+ r

else output “error”

We need the following lemma.

Lemma 9.7. The above procedure satisfies the following properties:

1. The procedure never outputs error.

2. At every step, any two balls in the same bin have different colors.

3. At step r, define G
(r)
i to be the set of labels of the bins that do not contain a ball
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of color i. Then, for all i ∈ [k], G
(r)
i ∈ Fi.

4. After step r, the bins t to t+ r have at least one ball each.

Proof. 1. If it outputs error at step r, there must be at most r balls in bins 1 to

t + r. At the start of the procedure, there are at least r + 1 balls in these bins and

during the first r steps, the number of balls in these bins remain unchanged. This is

a contradiction.

2. Note that this is true at r = 0 and a ball is only moved to an empty bin, which

proves the claim.

3. We first note that for all i ∈ [k], G
(0)
i ∈ Fi. Next, observe that for any left-shifted

family F ⊆ 2[n], and F ∈ F such that i /∈ F and j ∈ F where i < j, the set

(F ∪ {i}\{j}) must be in F . Whenever we move a ball from bin i to j, we have

i < j. Since Fi are left-shifted, by repeated application of the above observation, we

get that at step r, G
(r)
i ∈ Fi.

4. Since the procedure never outputs error, at step r, if the bin t + r is empty, the

procedure places a ball in it while not emptying any bin labeled between [t, t+ r− 1].

This proves the claim.

The above lemma implies that at the end of the procedure (after r = n− t), there

is a ball in each of the bins labeled from [t, n]. Thus, the sets Gi = G
(n−t)
i satisfy

∩iGi ⊆ [t − 1] and hence | ∩i Gi| ≤ t − 1. Also, we know that Gi ∈ Fi. Thus, the

families Fi cannot be k-wise t-cross-intersecting. This completes the proof of Lemma

9.6.

9.4 Multi-Layered PCP

In this section, we describe the Multi-Layered PCP constructed in [DGKR05] and

its useful properties. An instance Φ of the Multi-Layered PCP is parametrized by

integers L,R > 1. The PCP consists of L sets of variables X1, . . . , XL. The label set
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(or range) of the variables in the lth set Xl is a set RXl , where |RXl | = RO(L). For

any two integers 1 ≤ l < l′ ≤ L, the PCP has a set of constraints Φl,l′ in which each

constraint depends on one variable x ∈ Xl, and one variable x′ ∈ Xl′ . The constraint

(if it exists) between x ∈ Xl and x′ ∈ Xl′ (l < l′) is denoted and characterized by a

projection πx→x′ : RXl → RXl′
. A labeling to x and x′ satisfies the constraint πx→x′ if

the projection (via πx→x′) of the label assigned to x coincides with the label assigned

to x′.

The following useful ‘weak-density’ property of the Multi-Layered PCP was de-

fined in [DGKR05].

Definition 9.8. An instance Φ of the Multi-Layered PCP with L layers is weakly-

dense if for any δ > 0, given m ≥ d2
δ
e layers l1 < l2 < · · · < lm and given any sets

Si ⊆ Xli, for i ∈ [m] such that |Si| ≥ δ|Xli |; there always exist two layers li′ and li′′

such that the constraints between the variables in the sets Si′ and Si′′ is at least δ2

4

fraction of the constraints between the sets Xli′
and Xll′′

.

The following inapproximability of the Multi-Layered PCP was proven by Dinur

et al. [DGKR05] based on the PCP Theorem [AS98, ALM+98] and Raz’s Parallel

Repetition Theorem [Raz98].

Theorem 9.9. There exists a universal constant γ > 0 such that, for any integer

parameters L,R > 1, there is a weakly-dense L-layered PCP Φ =
⋃

Φl,l′ such that it

is NP-hard to distinguish between the following two cases:

• YES Case: There exists an assignment of labels to the variables of Φ that

satisfies all the constraints.

• NO Case: For every 1 ≤ l < l′ ≤ L, not more that 1/Rγ fraction of the

constraints in Φl,l′ can be satisfied by any assignment.
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9.5 Hardness Reduction for HypVC-Partite

9.5.1 Construction of the Hypergraph

Fix a k ≥ 3, an arbitrarily small parameter ε > 0, and let r = d10ε−2e. We shall

construct a (k + 1)-uniform (k + 1)-partite hypergraph as an instance of (k + 1)-

HypVC-Partite. Our construction will be a reduction from an instance Φ of the

Multi-Layered PCP with number of layers L = 32ε−2, and parameter R which shall

be chosen later to be large enough. It involves creating, for each variable of the PCP,

several copies of the Long Code endowed with different biased measures as explained

below. Our construction is motivated by the integrality gap constructed by Aharoni

et al. [AHK96] that has been described in Section 9.6.

Over any domain T , a Long Code H is a collection of all subsets of T , i.e., H = 2T .

A bias p ∈ [0, 1] defines a measure µp on H such that µp(v) = p|v|(1− p)|T\v| for any

v ∈ H. In our construction, we need several different biased measures defined as

follows. For all j = 1, . . . , r, define qj
def
= 2j

rk
, and biases pj

def
= 1 − qj − ε. Each pj

defines a biased measure µpj over a Long Code over any domain. Next, we define the

vertices of the hypergraph.

Vertices. We shall denote the set of vertices by V . Consider a variable x in the

layer Xl of the PCP. For i ∈ [k+1] and j ∈ [r], let Hx
ij be a Long Code on the domain

RXl endowed with the bias µpj , i.e., µpj(v) = pj
|v|(1−pj)|RXl\v| for all v ∈ Hx

ij = 2RXl .

The set of vertices corresponding to x is V [x]
def
=
⋃k+1
i=1

⋃r
j=1Hx

ij. We define the weights

on vertices to be proportional to its biased measure in the corresponding Long Code.

Formally, for any v ∈ Hx
ij,

wt(v)
def
=

µpj(v)

L|Xl|r(k + 1)
. (9.1)
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The above conveniently ensures that for any l ∈ [L],

∑
x∈Xl

wt(V [x]) = 1/L , and
∑
l∈[L]

∑
x∈Xl

wt(V [x]) = 1 .

In addition to the vertices for each variable of the PCP, the instance also contains

k+ 1 dummy vertices d1, . . . , dk+1, each with a very large weight given by wt(di)
def
= 2

for i ∈ [k + 1]. Clearly, this ensures that the total weight of all the vertices in the

hypergraph is 2(k+ 1) + 1. As we shall see later, the edges shall be defined in such a

way that, together with vertex weights, we would be guaranteed that the maximum

weight independent set will contain all the dummy vertices. Before defining the edges

we define the (k + 1) partition (V1, . . . , Vk+1) of V to be:

Vi =

( L⋃
l=1

⋃
x∈Xl

r⋃
j=1

Hx
ij

)⋃{
di
}
, (9.2)

for all i = 1, . . . , k + 1. We now define the hyperedges of the instance. In the rest

of the section, we shall think of the vertices of the long codes as subsets of their

respective domains.

Hyperedges. For every pair of variables x and y of the PCP such that there is

a constraint πx→y, we construct edges as follows.

(1.) Consider all permutations σ : [k+1]→ [k+1] and sequences (j1, . . . , jk, jk+1)

such that, j1, . . . , jk ∈ [r] ∪ {0} and jk+1 ∈ [r] such that:
∑k

i=1 1{ji 6=0} qji ≥ 1.

(2.) Add all possible hyperedges e such that for all i ∈ [k]:

(2.a) If ji 6= 0 then e ∩ Vσ(i) =: vσ(i) ∈ Hx
σ(i),ji

, and,

(2.b) If ji = 0 then e ∩ Vσ(i) = dσ(i) and,

(2.c) e ∩ Vσ(k+1) =: uσ(k+1) ∈ Hy
σ(k+1),jk+1

,

157



which satisfy,

πx→y

( ⋂
i: i∈[k]
ji 6=0

vσ(i)

)⋂
uσ(k+1) = ∅. (9.3)

Let us denote the hypergraph constructed above by G(Φ). From the construction it

is clear that G(Φ) is (k + 1)-partite with partition V = ∪i∈[k+1]Vi.

The role of the dummy vertices {d1, . . . , dk+1} is to ensure that each hyperedge

contains exactly k + 1 vertices – without them we would have hyperedges with fewer

than k + 1 vertices. Also note that the hyperedges are defined in such a way that

the set {d1, . . . , dk+1} is an independent set in the hypergraph. Moreover, since the

weight of each dummy vertex di is 2, while the total weight of all except the dummy

vertices is 1, this implies that any maximum independent set I contains all the dummy

vertices. Thus, V \ I is a minimum vertex cover that does not contain any dummy

vertices. For convenience, the analysis of our reduction, presented in the rest of this

section, shall focus on the weight of (I ∩ V ) \ {d1, . . . , dk+1}.

The rest of this section is devoted to proving the following theorem which implies

Theorem 9.1.

Theorem 9.10. Let Φ be the instance of Multi-Layered PCP from which the hyper-

graph G(Φ) is derived as an instance of (k + 1)-HypVC-Partite. Then,

• Completeness: If Φ is a YES instance, then there is an independent set I∗ in

G(Φ) such that,

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) ≥ 1− 1

k
− 2ε.

• Soundness: If Φ is a NO instance, then for all independent sets I in G(Φ),

wt (I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.
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The completeness case of the above theorem is proved in Section 9.5.2, and the

soundness case in Section 9.5.3.

9.5.2 Completeness

In the completeness case, the instance Φ is a YES instance, i.e., there is a labeling A

which maps each variable x in layer Xl to an assignment in RXl for all l = 1, . . . , L,

such that all the constraints of Φ are satisfied.

Consider the set of vertices I∗ which satisfies the following properties:

(1) di ∈ I∗ for all i = 1, . . . , k + 1.

(2) For all l ∈ [L], x ∈ Xl, i ∈ [k + 1], j ∈ [r],

I∗ ∩Hx
ij = {v ∈ Hx

ij : A(x) ∈ v}. (9.4)

Suppose x and y are two variables in Φ with a constraint πx→y between them. Consider

any v ∈ I∗∩V [x] and u ∈ I∗∩V [y]. The above construction of I∗ along with the fact

that the labeling A satisfies the constraint πx→y implies that A(x) ∈ v and A(y) ∈ u

and A(y) ∈ πx→y(v)∩u. Therefore, Equation (9.3) of the construction is not satisfied

by the vertices in I∗, and so I∗ is an independent set in the hypergraph. By Equation

(9.4), the fraction of the weight of the Long Code Hx
ij which lies in I∗ is pj, for any

variable x, i ∈ [k + 1] and j ∈ [r]. Therefore,

wt(I∗ ∩ V [x])

wt(V [x])
=

1

r

r∑
j=1

pj = 1− 1

k

(
1 +

1

r

)
− ε, (9.5)

by our setting of pj in Section 9.5.1. The above yields that

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) = 1− 1

k

(
1 +

1

r

)
− ε ≥ 1− 1

k
− 2ε, (9.6)

for a small enough value of ε > 0, and our setting of the parameter r.
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9.5.3 Soundness

For the soundness analysis we have that Φ is a NO instance as given in Theorem

9.9, and we wish to prove that the size of the maximum weight independent set in

G(Φ) is appropriately small. For a contradiction, we assume that there is a maximum

independent set I in G(Φ) such that,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≥ 1− k

2(k + 1)
+ ε. (9.7)

Define the set of variables X ′ to be as follows:

X ′
def
=

{
x a variable in Φ :

wt(I ∩ V [x])

wt(V [x])
≥ 1− k

2(k + 1)
+
ε

2

}
. (9.8)

An averaging argument shows that wt(
⋃
x∈X′ V [x]) ≥ ε/2. A further averaging implies

that there are ε
4
L = 8

ε
layers of Φ such that ε

4
fraction of the variables in each of these

layers belong to X ′. Applying the Weak Density property of Φ given by Definition

9.8 and Theorem 9.9 yields two layers Xl′ and Xl′′ (l′ < l′′) such that ε2
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fraction of

the constraints between them are between variables in X ′. The rest of the analysis

shall focus on these two layers and for convenience we shall denote X ′∩Xl′ by X and

X ′ ∩Xl′′ by Y , and denote the respective label sets by RX and RY .

Consider any variable x ∈ X. For any i ∈ [k + 1], j ∈ [r], call a Long Code Hx
ij

significant if µpj(I ∩ Hx
ij) ≥ ε

2
. From Equation (9.8) and an averaging argument we

obtain that,

∣∣{(i, j) ∈ [k + 1]× [r] : Hx
ij is significant.}

∣∣ ≥ (1− k

2(k + 1)

)
(r(k + 1)) =

rk

2
+ r.

(9.9)

Using an analogous argument we obtain a similar statement for every variable y ∈ Y

and corresponding Long Codes Hy
ij. The following structural lemma follows from the

above bound.
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Lemma 9.11. Consider any variable x ∈ X. Then there exists a sequence

(j1, . . . , jk+1) with ji ∈ [r] ∪ {0} for i ∈ [k + 1]; such that the Long Codes

{Hx
i,ji
| i ∈ [k + 1] where ji 6= 0}, are all significant. Moreover,

k+1∑
i=1

ji ≥
rk

2
+ r . (9.10)

Proof. For all i ∈ [k+1] choose ji as follows: if none of the Long Codes Hx
ij for j ∈ [r]

are significant then let ji
def
= 0, otherwise let ji

def
= max{j ∈ [r] : Hx

ij is significant}. It

is easy to see that ji is an upper bound on the number of significant Long Codes in

{Hx
ij}j. Therefore,

k+1∑
i=1

ji ≥
∣∣{(i, j) ∈ [k + 1]× [r] : Hx

ij is significant.}
∣∣

≥ rk

2
+ r (From Equation (9.9)), (9.11)

which proves the lemma.

Next, we define the decoding procedure to define a label for any given variable

x ∈ X.

Labeling for variable x ∈ X

The label A(x) for each variable x ∈ X is chosen independently via the following

three step (randomized) procedure.

Step 1. Choose a sequence (j1, . . . , jk+1) yielded by Lemma 9.11 applied to x.

Step 2. Choose an element i0 uniformly at random from [k + 1].

Before describing the third step of the procedure, we require the following lemma.
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Lemma 9.12. There exist vertices vi ∈ I ∩Hx
iji

for every i : i ∈ [k+ 1] \ {i0}, ji 6= 0,

and an integer t := t(ε) satisfying:

∣∣∣∣ ⋂
i:i∈[k+1]\{i0},

ji 6=0

vi

∣∣∣∣ < t . (9.12)

Proof. Since ji0 ≤ r it is easy to see,

∑
i∈[k+1]\{i0}

ji ≥
rk

2
⇒

∑
i:i∈[k+1]\{i0},

ji 6=0

qji ≥ 1. (9.13)

Moreover, since the sequence (j1, . . . , jk+1) was obtained by Lemma 9.11 applied to

x, we know that µpji (I ∩H
x
iji

) ≥ ε
2
, ∀i : i ∈ [k+ 1] \ {i0}, ji 6= 0. Combining this with

Equation (9.13) and Lemma 9.4 we obtain that for some integer t := t(ε) the collection

of set families {Hx
iji

: i ∈ [k+1]\{i0}, ji 6= 0} is not k′-wise t-cross-intersecting, where

k′ = |{i ∈ [k + 1] \ {i0} : ji 6= 0}|. This proves the lemma.

The third step of the labeling procedure is as follows:

Step 3. Apply Lemma 9.12 to obtain the vertices vi ∈ I ∩ Hx
iji

for every i : i ∈

[k + 1] \ {i0}, ji 6= 0 satisfying Equation (9.12). Define B(x) as,

B(x)
def
=

⋂
i:i∈[k+1]\{i0},

ji 6=0

vi, (9.14)

noting that |B(x)| < t. Assign a random label from B(x) to the variable x and call

the assigned label A(x).
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Labeling for variable y ∈ Y

After labeling the variables x ∈ X via the procedure above, we construct a labeling

A(y) for any variable y ∈ Y by defining,

A(y)
def
= argmaxa∈RY |{x ∈ X ∩N(y) | a ∈ πx→y(B(x))}| , (9.15)

where N(y) is the set of all variables that have a constraint with y. The above process

selects a label for y which lies in maximum number of projections of B(x) for variables

x ∈ X which have a constraint with y.

The rest of this section is devoted to lower bounding the number of constraints

satisfied by the labeling process, and thus obtaining a contradiction to the fact that

Φ is a NO instance.

Lower bounding the number of satisfied constraints

Fix a variable y ∈ Y . Let U(y)
def
= X ∩ N(y), i.e., the variables in X which have a

constraint with y. Further, define the set P (y) ⊆ [k + 1] as follows,

P (y) = {i ∈ [k + 1] | ∃j ∈ [r] such that µpj(I ∩ H
y
ij) ≥ ε/2}. (9.16)

In other words, P (y) is the set of all those indices in [k + 1] such that there is a

significant Long Code corresponding to each of them. Applying Equation (9.9) to y

we obtain that there at least r(k+2)
2

significant Long Codes corresponding to y, and

therefore |P (y)| ≥ k+2
2
≥ 1. Next we define subsets of U(y) depending on the outcome

of Step 2 in the labeling procedure for variables x ∈ U(y). For i ∈ [k + 1] define,

U(i, y)
def
= {x ∈ U(y) | i was chosen in Step 2 of the labeling procedure for x},

(9.17)
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and,

U∗(y)
def
=

⋃
i∈P (y)

U(i, y). (9.18)

Note that {U(i, y)}i∈[k+1] is a partition of U(y). Also, since |P (y)| ≥ k+1
2
, and the

labeling procedure for each variable x chooses the index in Step 2 uniformly and

independently at random, we have,

E[|U∗(y)|] ≥ |U(y)|
2

, (9.19)

where the expectation is over the random choice of the indices in Step 2 of the labeling

procedure for all x ∈ U(y). Before continuing, we need the following simple lemma

(proved as Claim 5.4 in [DGKR05]).

Lemma 9.13. Let A1, . . . , AN be a collection of N sets, each of size at most T ≥ 1.

If there are not more than D pairwise disjoint sets in the collection, then there is an

element that is contained in at least N
TD

sets.

Now consider any i′ ∈ P (y) such that U(i′, y) 6= ∅, and a variable x ∈ U(i′, y).

Since i′ ∈ P (y), there is a significant Long Code Hy
i′j′ for some j′ ∈ [r]. Furthermore,

since I is an independent set there cannot be a u ∈ I ∩Hy
i′,j′ such that πx→y(B(x))∩

u = ∅, otherwise the following set of k + 1 vertices,

{vi | i ∈ [k + 1] \ {i′}, ji 6= 0} ∪ {di | i ∈ [k + 1] \ {i′}, ji = 0} ∪ {u}

form an edge in I, where vi, ji (i ∈ [k+1]) are as constructed in the labeling procedure

for x.

Consider the collection of sets πx→y(B(x)) for all x ∈ U(i′, y). Clearly, each

set is of size less than t. Let D be the maximum number of disjoint sets in this

collection. Each disjoint set independently reduces the measure of I ∩ Hy
i′,j′ by a

factor of (1− (1− pj′)t). However, since µpj′ (I ∩H
y
i′,j′) is at least ε

2
, this implies that
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D is at most log( ε
2
)/ log(1 − (2/rk)t), since pj′ ≤ 1 − 2

rk
. Moreover, since t and r

depends only on ε, the upper bound on D also depends only on ε.

Therefore by Lemma 9.13, there is an element a ∈ RY such that a ∈ πx→y(B(x))

for at least 1
Dt

fraction of x ∈ U(i′, y). Noting that this bound is independent of j′

and that {U(i′, y)}i′∈P (y) is a partition of U∗(y), we obtain that there is an element

a ∈ RY such that a ∈ πx→y(B(x)) for at least 1
(k+1)Dt

fraction of x ∈ U∗(y). Therefore,

in Step 3 of the labeling procedure when a label A(x) is chosen uniformly at random

from B(x), in expectation, a = πx→y(A(x)) for at least 1
(k+1)Dt2

fraction of x ∈ U∗(y).

Combining this with Equation (9.19) gives us that there is a labeling to the variables

in X and Y, which satisfies at least 1
2(k+1)Dt2

fraction of the constraints between

variables in X and Y which is in turn at least ε2

64
fraction of the constraints between

the layers Xl′ and Xl′′ . Since D and t depend only on ε, choosing the parameter R of

Φ to be large enough we obtain a contradiction to our assumed lower bound on the

size of the independent set. Therefore in the Soundness case, for any independent set

I,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.

Combining the above with Equation (9.6) of the analysis in the Completeness case

yields a factor k2

2(k+1)
− δ (for any δ > 0) hardness for approximating (k+ 1)-HypVC-

Partite .

Thus, we obtain a factor k
2
−1+ 1

2k
−δ hardness for approximating k-HypVC-Partite.

9.6 Integrality Gap construction of Aharoni et al.

Our construction of the dictatorship test is motivated by the integrality gap for

k-HypVC-Partite constructed by Aharoni et al. [AHK96]. Hence, for completeness,

we describe the natural linear programming (LP) relaxation for k-HypVC-Partite

and the k
2
− o(1) integrality gap construction from [AHK96] in this section.
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Let G = (V,E) be a k-uniform hypergraph. Let h(v) be a real variable for every

vertex v ∈ V . Figure 9.1 describes LP, the natural relaxation for vertex cover in

hypergraphs.

minimize
∑

v∈V h(v)

subject to
∑

vi∈e h(vi) ≥ 1 ∀e = {v1, . . . , vk} ∈ E,
1 ≥ h(v) ≥ 0 ∀v ∈ V.

Figure 9.1: Relaxation LP for Hypergraph Vertex Cover.

We now restate the result of Aharoni et al.

Theorem 9.14 (Aharoni et al. [AHK96]). The integrality gap of LP for an instance

of k-HypVC-Partite is at least k/2− o(1).

Integrality Gap Construction. The hypergraph that is constructed is un-

weighted. Let r be a (large) positive integer. The vertex set V of the hypergraph is

partitioned into subsets V1, . . . , Vk where, for all i = 1, . . . , k,

Vi = {xij | j = 1, . . . , r} ∪ {yil | l = 1, . . . , rk + 1}. (9.20)

Before we define the hyperedges, for convenience we shall define the LP solution. The

LP values of the vertices are as given by the function h : V → [0, 1] as follows: for all

i = 1, . . . , k,

h(xij) =
2j

rk
, ∀j = 1, . . . , r

h(yil) = 0, ∀l = 1, . . . , rk + 1.
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The set of hyperedges is naturally defined to be the set of all possible hyperedges,

choosing exactly one vertex from each Vi such that the sum of the LP values of the

corresponding vertices is at least 1. Formally,

E = {e ⊆ V | ∀i ∈ [k], |e ∩ Vi| = 1 and
∑
v∈e

h(v) ≥ 1}. (9.21)

Clearly the graph is k-uniform and k-partite with {Vi}i∈[k] being the k-partition of

V .

The value of the LP solution is

∑
v∈V

h(v) = k
∑
j∈[r]

2j

rk
= r + 1. (9.22)

Now let V ′ be a minimum vertex cover in the hypergraph. To lower bound the

size of the minimum vertex cover, we first note that the set {v ∈ V | h(v) > 0} is

a vertex cover of size rk, and therefore |V ′| ≤ rk. Also, for any i ∈ [k] the vertices

{yil}l∈[rk+1] have the same neighborhood. Therefore, we can assume that V ′ has no

vertex yil, otherwise it will contain at least rk + 1 such vertices.

For all i ∈ [k] let define indices ji ∈ [r] ∪ {0} as follows:

ji =


0 if: ∀j ∈ [r], xij ∈ V ′,

max {j ∈ [r] | xij 6∈ V ′} otherwise.

(9.23)

It is easy to see that since V ′ is a vertex cover,

∑
i∈[k]

h(xiji) < 1,

which implies, ∑
i∈[k]

ji <
rk

2
.
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Also, the size of V ′ is lower bounded by
∑

i∈[k](r − ji). Therefore,

|V ′| ≥
∑
i∈[k]

(r − ji) ≥ rk −
∑
i∈[k]

ji ≥ rk − rk

2
=
rk

2
. (9.24)

The above combined with the value of the LP solution yields an integrality gap of

rk
2(r+1)

≥ k
2
− o(1) for large enough r.

Notes

The material presented in this chapter is based on the paper “Nearly Optimal NP-

hardness of Vertex Cover on k-Uniform k-Partite Hypergraphs”, joint with Rishi

Saket. A preliminary version of this paper appeared at APPROX 2011 [SS11].
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