
AUTOMATICALLY EXPLOITING

CROSS-INVOCATION PARALLELISM USING

RUNTIME INFORMATION

JIALU HUANG

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSOR DAVID I. AUGUST

SEPTEMBER 2013

c© Copyright by Jialu Huang, 2013.

All Rights Reserved

Abstract

Harnessing the performance potential of multicore processors requires scalable parallel

programs. Automatic parallelization techniques are a promising approach for producing

well-performing parallel programs.

Nevertheless, most existing techniques parallelize only independent loops and insert

global synchronizations at the end of each loop invocation. For programs with few loop in-

vocations, these global synchronizations do not limit parallel execution performance. How-

ever, for programs with many loop invocations, those synchronizations can easily become

the performance bottleneck since they frequently force all threads to wait, losing potential

parallelization opportunities. To address this problem, some automatic parallelization tech-

niques apply static analyses to enable cross-invocation parallelization. Instead of waiting,

threads can execute iterations from follow-up invocations if they do not cause any conflict.

However, static analysis must be conservative and cannot handle irregular dependence pat-

terns manifested by particular program inputs at runtime.

In order to enable more parallelization across loop invocations, this thesis presents two

novel automatic parallelization techniques: DOMORE and SPECCROSS. Unlike existing

techniques relying on static analyses, these two techniques take advantage of runtime in-

formation to achieve much more aggressive parallelization. DOMORE constructs a custom

runtime engine which non-speculatively observes dependences at runtime and synchronizes

iterations only when necessary; while SPECCROSS applies software speculative barriers to

permit some of the threads to execute past the invocation boundaries. The two techniques

are complimentary in the sense that they can parallelize programs with potentially very

different characteristics. SPECCROSS, with less runtime overhead, works best when pro-

grams’ cross-invocation dependences seldom cause any runtime conflict. DOMORE, on

the other hand, has its advantage in handling dependences which cause frequent conflicts.

Evaluating implementations of DOMORE and SPECCROSS demonstrates that both tech-

niques can achieve much better scalability compared to existing automatic parallelization

iii

techniques. Among twenty programs from seven benchmark suites, DOMORE is auto-

matically applied to parallelize six of them and achieves a geomean speedup of 2.1× over

codes without cross-invocation parallelization and 3.2× over the original sequential perfor-

mance on 24 cores. SPECCROSS is found to be applicable to eight of the programs and it

achieves a geomean speedup of 4.6× over the best sequential execution, which compares

favorably to a 1.3× speedup obtained by parallel execution without any cross-invocation

parallelization.

iv

Acknowledgments

First, I would like to thank my advisor David I. August for guiding me throughout my

years in graduate school. I appreciate the opportunities and challenges he gave me, which

made this dissertation possible. David’s passion in research and his insightful vision on

research direction inspired me to find the research topic I am really interested in. During

the years I worked in his research group, I learnt from him how to conduct research and to

write scientific papers. More importantly, I learnt from him never to give up and always

to pursue a bigger goal. I could not have made my way today without his encourage and

support. I believe I will continue to benefit from the knowledge he taught me even after I

graduate.

I would like to thank Prof. David Walker and Prof. Kai Li for reading this dissertation

and providing insightful comments. I thank Kai also for his giving me advice and help

during my first semester in Princeton when I was really stressed and frustrated by study,

research and language problems. Additionally, I want to thank Prof. Jaswinder Singh and

Prof. Doug Clark for serving as my thesis committee member and their feedbacks that

helped me to polish and refine my thesis.

This dissertation would not have existed without the help and support from everyone

in the Liberty Research Group. I have found great friendship with everyone in the Liberty

research group. I would like to thank some senior group members, Neil Vachharajani, Matt

Bridges, and Guilherme Ottoni for their guide and help in my early years into my PhD

study. I must also thank Thomas Jablin, who spent a lot of time helping me improve my

listening and spoken English at my early days in Princeton. I also want to thank Prakash

Prabhu, Souymadeep Ghosh, Jae W. Lee, Stephen Beard, Matthew Zoufaly, Nick Johnson

and Yun Zhang for helping me with my research. Throughout the years, we engaged in

numerous brainstormings, discussions and presentations. I will never forget the sleepless

nights we spent together before paper deadlines and the coffee and junk food we shared.

I also thank the entire staff of Princeton, and of the Department of Computer Science

i

in particular. Their professionalism really makes this such a great place to study and to

do research. I especially thank Melissa Lawson who, as the highly effective Graduate

Coordinator, makes all the bureaucracy so simple and allows us to completely focus on our

studies. I also thank Bob Dondero for teaching me how to be a good TA and lecturer. His

patience with students and passion in teaching left a deep impression on me.

My studies at Princeton have been financially supported by grants from National Sci-

ence Foundation, Gigascale Systems Research Center, DARPA and SPARCHS and gradu-

ate fellowships from Princeton University. I also thank Google for the opportunity to do a

Summer internship, which provided me not only great industrial experience, but also funds

to survive the graduate student life.

There are a lot of friends I met over the years. I thank all of them for making my life

in Princeton happy and unforgettable. I thank Zhiwei Yang for picking me up at the airport

when I first came to the US and driving me around for furniture and grocery shopping.

Jieqi Yu and Yi Li, being my roommates for many years, helped a lot with the cooking and

cleaning especially when I had crazy schedules due to paper deadlines. I also would like

to thank Xiaobai Chen for being a patient listener whenever I had trouble in research or

personal life. And Ke Wan, I thank him for risking his life to teach me how to drive. He is

the most patient coach I’ve ever seen.

I want to thank my parents for their unconditional love and support. Unlike most parents

in Shanghai, They let me, their only child, explore the world in the way I want. I know they

would very much prefer to having me around, but instead, they encouraged me to study

abroad for so many years and to pursue the dreams I have. I cannot imagine how much

they sacrificed to allow me to achieve what I have today. Everything I achieved today, is

truly theirs.

Last, but not the least, I want to thank my fiancé Hâkon Ringberg, for making me

happy and strong. We met each other in Princeton Computer Science Department when

he himself was still a graduate student. Throughout the years, he offered me priceless tips

ii

about how to survive the graduate school. His support and encourage helped me overcome

difficulties and move forward. I also thank him for introducing me to his two families. I

thank his American guardian parents, Bruce and Beverly Shriver for inviting me to their

home and treating me with lots of delicious food. I thank his Norwegian parents, Tore

Larsen and Unni Ringberg for inviting me to their home in Norway. My trips to Tromsø

were fantastic. For the first time in my life, I experienced 24-hour daylight and 24-hour

night. I would very much love to invite all of them to my Chinese home and show them

around the land I love.

iii

Contents

Abstract . iii

Acknowledgments . i

List of Figures . vii

1 Introduction 1

1.1 Limitations of Existing Approaches . 2

1.2 Contributions . 8

1.3 Dissertation Organization . 10

2 Background 11

2.1 Limitations of Analysis-based Approaches in Automatic Parallelization . . 11

2.2 Intra-Invocation Parallelization . 13

2.3 Cross-Invocation Parallelization . 20

3 Non-Speculatively Exploiting Cross-Invocation Parallelism Using Runtime In-

formation 24

3.1 Motivation and Overview . 25

3.2 Runtime Synchronization . 28

3.2.1 Detecting Dependences . 28

3.2.2 Generating Synchronization Conditions 29

3.2.3 Synchronizing Iterations . 30

3.2.4 Walkthrough Example . 30

iv

3.3 Compiler Implementation . 34

3.3.1 Partitioning Scheduler and Worker 34

3.3.2 Generating Scheduler and Worker Functions 35

3.3.3 Scheduling Iterations . 39

3.3.4 Generating the computeAddr function 40

3.3.5 Putting It Together . 41

3.4 Enable DOMORE in SPECCROSS . 43

3.5 Related Work . 46

3.5.1 Cross-invocation Parallelization 46

3.5.2 Synchronization Optimizations . 46

3.5.3 Runtime Dependence Analysis . 47

4 Speculatively Exploiting Cross-Invocation Parallelism 49

4.1 Motivation and Overview . 51

4.1.1 Limitations of analysis-based parallelization 51

4.1.2 Speculative cross-invocation parallelization 52

4.1.3 Automatic cross-invocation parallelization with software-only spec-

ulative barrier . 55

4.2 SPECCROSS Runtime System . 60

4.2.1 Misspeculation Detection . 60

4.2.2 Checkpointing and Recovery . 63

4.2.3 Runtime Interface . 65

4.3 SPECCROSS Parallelizing Compiler . 69

4.4 SPECCROSS Profiling . 73

4.5 Related Work . 73

4.5.1 Barrier Removal Techniques . 73

4.5.2 Alternative Synchronizations . 74

4.5.3 Transactional Memory Supported Barrier-free Parallelization 74

v

4.5.4 Load Balancing Techniques . 75

4.5.5 Multi-threaded Program Checkpointing 76

4.5.6 Dependence Distance Analysis . 76

5 Evaluation 77

5.1 DOMORE Performance Evaluation . 78

5.2 SPECCROSS Performance Evaluation . 82

5.3 Comparison of DOMORE, SPECCROSS and Previous Work 87

5.4 Case Study: FLUIDANIMATE . 88

5.5 Limitations of Current Parallelizing Compiler Infrastructure 91

6 Conclusion and Future Direction 93

6.1 Conclusion . 93

6.2 Future Directions . 94

vi

List of Figures

1.1 Scientists spend large amounts of time waiting for their program to gen-

erate results. Among the 114 interviewed researchers from 20 different

departments in Princeton University, almost half of them had to wait days,

weeks or even months for their simulation programs to finish. 3

1.2 Types of parallelism exploited in scientific research programs: one third of

the interviewed researchers do not use any parallelism in their programs;

others mainly use job parallelism or borrow already parallelized programs. 5

1.3 Example of parallelizing a program with barriers 7

1.4 Comparison between executions with and without barriers. A block with

label x.y represents the yth iteration in the xth loop invocation. 7

1.5 Contribution of this thesis work . 9

2.1 Sequential Code with Two Loops . 13

2.2 Performance sensitivity due to memory analysis on a shared-memory ma-

chine . 13

2.3 Intra-invocation parallelization techniques which rely on static analysis

(X.Y refers to the Y th statement in the X th iteration of the loop): (a)

DOALL concurrently executes iterations among threads and no inter-thread

synchronization is necessary; (b) DOANY applies locks to guarantee atomic

execution of function malloc; (c) LOCALWRITE goes through each

node and each worker thread only updates the node belonging to itself. . . 14

vii

2.4 Sequential Loop Example for DOACROSS and DSWP 16

2.5 Parallelization Execution Plan for DOACROSS and DSWP 16

2.6 Example Loop which cannot be parallelized by DOACROSS or DSWP . . 17

2.7 PDG after breaking the loop exit control dependence 19

2.8 TLS and SpecDSWP schedules for the loop shown in Figure 2.6 19

3.1 Example program: (a) Simplified code for a nested loop in CG (b) PDG

for inner loop. The dependence pattern allows DOALL parallelization. (c)

PDG for outer loop. Cross-iteration dependence deriving from E to itself

has manifest rate 72.4%. 25

3.2 Comparison of performance with and without cross-invocation paralleliza-

tion : (a) DOALL is applied to the inner loop. Frequent barrier synchro-

nization occurs between the boundary of the inner and outer loops. (b)

After the partitioning phase, DOMORE has partitioned the code without in-

serting the runtime engine. A scheduler and three workers execute concur-

rently, but worker threads still synchronize after each invocation. (c) DO-

MORE finalizes by inserting the runtime engine to exploit cross-invocation

parallelism. Assuming iteration 2 from invocation 2 (2.2) depends on it-

eration 5 from invocation 1 (1.5). Scheduler detects the dependence and

synchronizes those two iterations. 27

3.3 Performance improvement of CG with and without DOMORE. 28

3.4 Overview of DOMORE compile-time transformation and runtime synchro-

nization . 31

3.5 Scheduler scheme running example: (a) Table showing original invoca-

tion/iteration, array element accessed in iteration, thread the iteration is

scheduled to, combined iteration number, and helper data structure values

(b) Execution of the example. 33

viii

3.6 Running example for DOMORE code generation: (a) Pseudo IR for CG

code; (b) PDG for example code. Dashed lines represent cross-iteration and

cross-invocation dependences for inner loop. Solid lines represent other de-

pendences between inner loop instructions and outer loop instructions. (c)

DAGSCC for example code. DAGSCC nodes are partitioned into scheduler

and worker threads. (d) and (e) are code generated by DOMORE MTCG

algorithm (3.3.2). 38

3.7 (a) Example loop from Figure 3.1; (b) computeAddr function generated

for this loop . 40

3.8 Generated code for example loop in CG. Non-highlighted code represents

initial code for scheduler and worker functions generated by DOMORE’s

MTCG (Section 3.3.2). Code in grey is generated in later steps for iteration

scheduling and synchronization. 42

3.9 Execution plan for DOMORE before and after duplicating scheduler code

to worker threads. 44

3.10 Optimization for DOMORE technique: duplicating scheduler code on all

worker threads to enable DOMORE in SPECCROSS framework. 45

4.1 Example program demonstrating the limitation of DOMORE transformation 50

4.2 Example of parallelizing a program with different techniques 52

4.3 Overhead of barrier synchronizations for programs parallelized with 8 and

24 threads . 53

4.4 Execution plan for TM-style speculation: each block A.B stands for the

Bth iteration in the Ath loop invocation: iteration 2.1 overlaps with itera-

tions 2.2, 2.3, 2.4, 2.7, 2.8, thus its memory accesses need to be compared

with theirs even though all these iterations come from the same loop invo-

cation and are guaranteed to be independent. 54

ix

4.5 Overview of SPECCROSS: At compile time, the SPECCROSS compiler de-

tects code regions composed of consecutive parallel loop invocations, par-

allelizes the code region and inserts SPECCROSS library functions to enable

barrier speculation. At runtime, the whole program is first executed specu-

latively without barriers. Once misspeculation occurs, the checkpoint pro-

cess is woken up. It kills the original child process and spawns new worker

threads. The worker threads will re-execute the misspeculated epochs with

non-speculative barriers. 57

4.6 Timing diagram for SPECCROSS showing epoch and task numbers. A

block with label <A,B> indicates that the thread updates its epoch num-

ber to A and task number to B when the task starts executing. 58

4.7 Pseudo-code for worker threads and checker thread 59

4.8 Data structure for Signature Log . 63

4.9 Demonstration of using SPECCROSS runtime library in a parallel program . 68

5.1 Performance comparison between code parallelized with pthread barrier

and DOMORE. 81

5.2 Performance comparison between code parallelized with pthread barrier

and SPECCROSS. 85

5.3 Loop speedup with and without misspeculation for execution with 24 threads:

the number of checkpoints varies from 2 to 100. A misspeculation is ran-

domly triggered during the speculative execution. With more checkpoints,

overhead in checkpointing increases; however overhead in re-execution af-

ter misspeculation reduces. 86

5.4 Best performance achieved by this thesis work and previous work 88

5.5 Outermost loop in FLUIDANIMATE . 89

5.6 Performance improvement of FLUIDANIMATE using different techniques. 90

x

Chapter 1

Introduction

The computing industry has relied on steadily increasing clock speeds and uniprocessor

micro-architectural improvements to deliver reliable performance enhancements for a wide

range of applications. Unfortunately, since 2004, the microprocessor industry fell off past

trends due to increasingly unmanageable design complexity, power and thermal issues. In

spite of this stall in processor performance improvements, Moores Law still remains in ef-

fect. Consistent with historic trends, the semiconductor industry continues to double the

number of transistors integrated onto a single die every two years. Since conventional

approaches to improving program performance with these transistors has faltered, micro-

processor manufacturers leverage these additional transistors by placing multiple cores on

the same die. These multi-core processors can improve system throughput and potentially

speed up multi-threaded applications, but the latency of any single-thread of execution

remains unchanged. Consequently, to take full advantage of multi-core processors, appli-

cations must be multi-threaded, and they must be designed to efficiently use the resources

provided by the processor.

1

1.1 Limitations of Existing Approaches

Although one could consider merely requiring the programmers to write efficient multi-

threaded code to take advantage of the many processor cores, this is not a successful strat-

egy for several reasons. First, writing multi-threaded software is inherently more difficult

than writing single-threaded codes. To ensure correctness, programmers must reason about

concurrent accesses to shared data and insert sufficient synchronization to ensure data ac-

cesses are ordered correctly. Simultaneously, programmers must prevent excessive syn-

chronizations from rendering the multi-threaded program no better than its single-threaded

counterpart. Active research in automatic tools to identify deadlock, livelock, race con-

ditions, and performance bottlenecks [14, 17, 21, 38, 66] in multi-threaded programs is a

testament to the difficulty of achieving this balance.

Second, there are many legacy applications that are single-threaded. Even if the source

code for these applications were available, it would take enormous programming effort to

translate these programs into well-performing parallel equivalents.

Finally, even if efficient multi-threaded applications could be written for a particular

multi-core system, these applications may not perform well on other multi-core systems.

The performance of multi-threaded applications is very sensitive to the particular system

for which it was optimized. This variance is due to, among other factors, the relation

between synchronization overhead and memory subsystem implementation and the relation

between number of application threads and available hardware parallelism. For example,

the size and number of caches, the coherence implementation and memory consistency

model, the number of cores and threads per core and the cost of context switch could all

lead to totally different parallelization decisions. Writing a portable application across

multiple processors would prove extremely challenging.

A recent survey [56] conducted by the Liberty Research Group suggested that most

scientists were making minimal effort to parallelize their software, often due to the com-

plexities involved. This survey covered 114 randomly-selected researchers from 20 dif-

2

0-60 Minutes
 22%

1-12 Hours
 18%

12-24 Hours
 14%

Days
 29%

Weeks
 10%

Months
 7%

Figure 1.1: Scientists spend large amounts of time waiting for their program to generate
results. Among the 114 interviewed researchers from 20 different departments in Princeton
University, almost half of them had to wait days, weeks or even months for their simulation
programs to finish.

ferent departments in science and engineering disciples in Princeton University. Among

those researchers, almost half of them had to wait for days, weeks or even months for

their simulation programs to finish (shown in Figure 1.1), though all of them had access

to parallel computing resources that could significantly reduce the computational experi-

mentation latency. This delay in their research cycle prevented them from pursuing bigger

research plans. For example, they had to limit the parameter space to be explored or sac-

rifice the accuracy of the simulation results in exchange for tolerable program execution

time. Figure 1.2 shows that one third of the researchers did not benefit from the parallel

computing resources because they did not use any type of parallelism in their programs.

Among researchers who used parallelism, most only knew how to apply job parallelism.

Job parallelism speeds up execution with multiple input data sets. However, it did not help

execution with a specific input data set. The rare researchers who took advantage of more

3

advanced forms of parallelism (MPI, GPU) mainly borrowed already parallelized code and

did not know how to further adjust the parallelism to their own computing environment.

These survey results implied that researchers need parallelism to achieve bigger research

goals. Nevertheless, they were not competent enough to write scalable parallel programs

by themselves.

A promising alternative approach for producing multi-threaded codes is to let the com-

piler automatically convert single-threaded applications into multi-threaded ones. This

approach is attractive as it removes the burden of writing multi-threaded code from the

programmer. Additionally, it allows the compiler to automatically adjust the amount and

type of parallelism extracted based on the underlying architecture, just as instruction-level

parallelism (ILP) optimizations relieved programmers of the burden of targeting their ap-

plications to complex single-threaded architectures.

Numerous compiler-based automatic parallelization techniques have been proposed in

the past. Some of them [1, 15] achieved success in parallelizing array-based programs with

regular memory accesses and limited control flow. More recent techniques [42, 53, 55,

60, 62, 65] perform speculation and pipeline style parallelization to successfully parallelize

general purpose codes with arbitrary control flow and memory access patterns. However,

all these automatic parallelization techniques only exploit loop level parallelism. A loop is

a sequence of statements that can be executed 0, 1, or any finite number of times. A single

time execution of the sequence of statements is referred to as a loop iteration and one

execution of all iterations within a loop is defined as a loop invocation. These techniques

parallelize each loop iteration and globally synchronize at the end of each loop invocation.

Consequently, programs with many loop invocations will have to synchronize frequently.

These parallelization techniques fail to deliver scalable performance because synchro-

nization forces all threads to wait for the last thread to finish an invocation [45]. At high

thread counts, threads spend more time idling at synchronization points than doing useful

computation. There is an opportunity to improve the performance by exploiting additional

4

 0

 10

 20

 30

 40

 50

 60

Job_Parallelism

M
essage_Passing

Threading

G
PU

_based_Parallelism

Parallel_A
nnotation

O
thers

N
one

P
er

ce
n
ta

g
e

(%
)

Non−Exclusive
Exclusive

27%	

24%	
 16%	

6%	

9%	

2%	

7%	

2%	

3%	

4%	
 4%	

34%	

Figure 1.2: Types of parallelism exploited in scientific research programs: one third of the
interviewed researchers do not use any parallelism in their programs; others mainly use job
parallelism or borrow already parallelized programs.

parallelism. Often, iterations from different loop invocations can execute concurrently

without violating program semantics. Instead of waiting, threads begin iterations from

subsequent invocations.

A simple code example in Figure 1.3(a) can be used to demonstrate the benefits of

exploiting cross-invocation parallelism. In this example, inner loop L1 updates array ele-

ments in array A while inner loop L2 reads the elements from array A and uses the values

to update array B. The whole process is repeated TIMESTEP times. Both L1 and L2 are

DOALLable [1]. However, barriers must be placed between these two loops since data

dependences exist across iterations of the two loops (e.g., iteration 1 of L2 depends on

iteration 1 and 2 of L1).

Figure 1.4(a) shows the execution plan for this program with barriers. Each block in

5

the graph stands for an iteration in a certain loop invocation (e.g., block 1.5 is iteration 5

in the first invocation of loop L1). Typically, threads do not reach barriers at the same time

for a variety of reasons. For instance, each thread may be assigned different number of

iterations and the execution time of each iteration may vary. All threads are forced to stall

at barriers after each parallel invocation, losing potential parallelism. Figure 1.4(b) shows

a parallel execution plan after naı̈vely removing barriers. Without barriers, iterations from

before and after a barrier may overlap, resulting in better performance.

A few automatic parallelization techniques exploit cross-invocation parallelism [22,

50, 72, 76]. Cross-invocation parallelization requires techniques for respecting cross-

invocation dependences without resorting to coarse-grained barrier synchronization. Some

techniques [22, 76] respect dependences by combining several small loops into a single

larger loop. This approach side-steps the problem of exploiting cross-invocation paral-

lelism by converting it into cross-iteration parallelism. Other approaches [50, 72] carefully

partition the iteration space in each loop invocation so that cross-invocation dependences

are never split between threads. However, both techniques rely on static analyses. Con-

sequently, they cannot adapt to the dependence patterns manifested by particular inputs

at runtime. Many statically detected dependences may only manifest under certain input

conditions. For many programs, these dependences rarely manifest given the most com-

mon program inputs. By adapting to the dependence patterns of specific inputs at runtime,

programs can exploit additional cross-invocation parallelism to achieve greater scalability.

6

 main () {

 f();

 }

 f() {

 for (t = 0; t < TIMESTEP; t++) {

L1: for (i = 0; i < M; i++) {

 A[i] = do_work(B[i], B[i+1]);

 }

L2: for (j = 1; j < M+1; j++) {

 B[j] = do_work(A[j-1], A[j]);

 }

 }

 }

 main () {

 for (i = 0; i < NUM_THREADS; i++)

 create_thread(par_f, i);

 }

 par_f(threadID) {

 for (t = 0; t < TIMESTEP; t++) {

L1: for (i = threadID; i < M; i=i+NUM_THREADS) {

 A[i] = do_work(B[i], B[i+1]);

 }

 pthread_barrier_wait(&barrier);

L2: for (j = threadID; j < M+1; j=j+NUM_THREADS) {

 B[j] = do_work(A[j-1], A[j]);

 }

 pthread_barrier_wait(&barrier);

 }

 }

(a) Sequential Program (b) Parallelized Program

Figure 1.3: Example of parallelizing a program with barriers

1.1

Worker thread 1 Worker thread 2 Worker thread 3 Worker thread 4

Barrier

1.2 1.3 1.4

1.5
1.6

2.3 2.42.1
2.2

2.6
2.7

3.3

2.8

3.4

2.5

3.1

3.5

4.1

3.2

3.6

4.2

4.5

4.44.3

Barrier

Barrier

1.1

Worker thread 1 Worker thread 2 Worker thread 3 Worker thread 4

1.2 1.3 1.4

1.5
1.6

2.3
2.4

2.1
2.2

2.6

2.7

3.3

2.8

3.4

2.5

3.1

3.5

4.1

3.2

3.6

4.2

4.5
4.4

4.3

L1

Invocation 1

L2

Invocation 1

L1

Invocation 2

L2

Invocation 2

(a) Parallel Execution with Barriers (b) Naïve Parallel Execution without Barriers

4.6

4.8
4.7

4.6

4.84.7

T
im

e

Figure 1.4: Comparison between executions with and without barriers. A block with label
x.y represents the yth iteration in the xth loop invocation.

7

1.2 Contributions

Figure 1.5 demonstrates the contribution of this thesis work compared to prior works. This

thesis work presents two novel automatic parallelization techniques (DOMORE and SPEC-

CROSS) that capture dynamic cross-invocation parallelism. Unlike existing techniques,

DOMORE and SPECCROSS gather cross-invocation dependence information at runtime.

Even for programs with irregular dependence patterns, DOMORE and SPECCROSS syn-

chronize iterations which depend on each other and allow iterations without dependences

to execute concurrently. As a result, they are able to enable more cross-invocation paral-

lelization and achieves more scalable performance.

As a non-speculative technique, DOMORE first identifies the code region containing

the targeted loop invocations, and then transforms the program by dividing the region into

a scheduler thread and several worker threads. The scheduler thread contains code to detect

memory access conflicts between loop iterations and code to schedule and dispatch loop

iterations from different loop invocations to worker threads. In order to detect access vi-

olations, the scheduler duplicates loops the instructions used for calculating the addresses

of memory locations to be accessed in each loop iteration. As a result, at runtime, it knows

which iterations access the common memory locations and then coordinates the execution

of these conflicting iterations by generating and forwarding synchronization conditions to

the worker threads. A synchronization condition tells the worker thread to wait until an-

other worker thread finishes executing the conflicting iteration. Consequently, only threads

waiting on the synchronization conditions must stall, and iterations from consecutive loop

invocations may execute in parallel.

SPECCROSS parallelizes independent loops and replaces the barrier synchronization

between two loop invocations with its speculative counterpart. Unlike non-speculative

barriers which pessimistically synchronize to enforce dependences, speculative techniques

allow threads to execute past barriers without stalling. Speculation allows programs to op-

timistically execute potentially dependent instructions and later check for misspeculation.

8

LLAutomaticallyLExploitingL
CrossFinvocationLParallelism

LUsingLRuntimeLInformation LUsingLRuntimeLInformation

No Yes

DOALLL[1]L
DOANYL[55]
DOACROSSL[15]
LOCALWRITEL[26]
DSWPL[51]

Speculative

IEL[53] LRPDL[61]
SMTLiteL[42]

No Yes

No Yes

No Yes

LoopLFusionL[22]
TsengL[72] No Yes

DOMORE SpecCross

Speculative

ThisLThesisLWork

Figure 1.5: Contribution of this thesis work

If misspeculation occurs, the program recovers using checkpointed non-speculative state.

Speculative barriers improve performance by synchronizing only on misspeculation.

The two techniques are complimentary in the sense that they can parallelize programs

with potentially very different characteristics. SPECCROSS, with less runtime overhead,

works best when programs’ cross-invocation dependences seldom cause any runtime con-

flict. While DOMORE has its advantage in handling dependences which cause frequent

conflicts. Implementation and evaluation demonstrate that both techniques can achieve

much better scalability compared to existing automatic parallelization techniques. Among

twenty programs from seven benchmark suites, DOMORE is automatically applied to par-

allelize six of them and achieves a geomean speedup of 2.1× over codes without cross-

invocation parallelization and 3.2× over the original sequential performance on 24 cores.

SPECCROSS is found to be applicable to eight of the programs and it achieves a geomean

speedup of 4.6× over the best sequential execution, which compares favorably to a 1.3×

speedup obtained by parallel execution without any cross-invocation parallelization.

9

1.3 Dissertation Organization

Chapter 2 examines existing intra- and inter- invocation parallelization techniques, charac-

terizing their applicability and scalability. This discussion motives DOMORE and SPEC-

CROSS. Chapter 3 describes the design and implementation details of DOMORE, the first

non-speculative runtime technique to exploit cross-invocation parallelism. DOMORE has

been published and presented in 2013 International Symposium on Code Generation and

Optimization [28]. Chapter 4 introduces its speculative counterpart technique SPECCROSS.

A quantitative evaluation of DOMORE and SPECCROSS is given in Chapter 5. Finally,

Chapter 6 summarizes the conclusions of this dissertation and describes future avenues of

research.

10

Chapter 2

Background

Imprecise and fragile static analyses limit the effectiveness of existing cross-invocation

parallelization techniques. Addressing this vulnerability is the focus of this thesis. In this

section we explain the state of the art in automatic parallelization techniques. In Section

2.1 we first identify the limitations of conventional analysis-based approaches to automatic

parallelization. In Section 2.2 we provide a detailed discussion of current intra-invocation

parallelization techniques, explaining how some of them compensate for the conservative

nature of their analyses. Finally, in Section 2.3 we present existing cross-invocation paral-

lelization techniques; in particular, how all of them rely on static analysis, which motivates

the work of DOMORE and SPECCROSS.

2.1 Limitations of Analysis-based Approaches in Automatic

Parallelization

Automatic parallelization is an ideal solution which frees programmers from the difficulties

of parallel programming and platform-specific performance tuning. Parallelizing compilers

can automatically parallelize affine loops [2, 7]. Loop A in Figure 2.1 shows an example

loop. If a compiler proves that all memory variables in the body of the function foo do not

11

alias the array regular via inter-procedural analysis, the loop can be safely parallelized.

Therefore, the utility of an automatic parallelizing compiler is largely determined by the

quality of its memory dependence analysis.

In some cases, static analysis may be imprecise. For example, within the function foo,

assume that there is a read from or write to the array element regular[i+M], (and the

size of the array is greater than (M+N)), where M is an input from the user. In this case,

Loop A may not be DOALL-able depending on the value of M. If M is greater than N, the

loop is DOALL-able; otherwise, it is not. Some research compilers such as SUIF [2] and

Polaris [7, 64] integrate low-cost runtime analysis capabilities to insert a small test code to

check the value of M at runtime to select either a sequential or parallel version of the loop

accordingly. However, the coverage of these techniques is mostly restricted to the cases

when a predicate can be extracted outside the analyzed loop and a low cost runtime test can

be generated [64]. They cannot be applied to Loop B in Figure 2.1, for example, where

an index array is used to access the array irregular and a simple predicate cannot be

extracted outside the loop to test the if condition within the loop body.

Another issue with automatic parallelization is the fragility of static analysis. Figure 2.2

from [33] illustrates how fragile static analysis can be with a small change in the program.

In this example, the automatic parallelizer can easily parallelize the unmodified PolyBench

benchmarks [54] using static arrays. However, if the static arrays are replaced with dy-

namically allocated arrays, it not only suppresses some of the optimizations previously

applied but also blocks parallelization for several benchmarks since heap objects are gen-

erally more difficult to analyze. This leads to runtime performance that is highly sensitive

to the implementation style.

Therefore, analysis-based approaches are not sufficient for parallelization of even array-

based applications, let alone pointer-based ones, having irregular memory accesses and

complex control flows. Moreover, recursive data structures, dynamic memory allocation,

and frequent accesses to shared variables pose additional challenges. Imprecise, fragile

12

 1: Loop_A:
 2: for (int i=0; i<N; i++)
 3: regular[i] += foo(i);
 4:

 5: Loop_B:
 6: for (int i=0; i<N; i++) {
 7: irregular[idx[i]] += foo(i);
 8: if (irregular[idx[i]] > error)
 9: printf(“I/O operation!”);

10: }

Figure 2.1: Sequential Code with Two Loops

 0

 2

 4

 6

 8

 10

2mm
3mm

correlation

covariance

doitgen

gramschmidt

jacobi−2d−imper

seidel
geomean

S
p

ee
d

u
p

 o
v

er
 O

ri
g

in
al

 S
eq

u
en

ti
al

Benchmark

Sequential on dynamic arrays
DOALL on static arrays
DOALL on dynamic arrays

Figure 2.2: Performance sensitivity due to memory analysis on a shared-memory machine

static analysis has severely limited the applicability of conventional automatic paralleliza-

tion. Therefore, this thesis work is interested in addressing this vulnerability.

2.2 Intra-Invocation Parallelization

Intra-invocation parallelization techniques focus on parallelizing iterations within the same

loop invocation. They synchronize the parallel execution at the end of a loop invocation

to respect cross-invocation dependences. Numerous intra-invocation parallelization tech-

niques have been proposed. We categorize them into three groups.

13

1 for (i = 0; i < M; i++){

2 node = Nodes[i];

3 update(node);

 }

(a) DOALL

1 for (i = 0; i < M; i++){

2 Nodes[i] = malloc();

3 update(Nodes[i]);

 }

1 for (i = 0; i < M; i++){

2 node = Nodes[index[i]];

3 update(Nodes[i]);

 }

T1 T2

1.1

1.2

1.3

3.1

3.2

3.3

2.1

2.2

2.3

4.1

4.2

4.3

1.1

1.2

1.3

3.1

3.2

3.3

2.1

2.2

2.3

4.1

4.2

4.3

T1 T2

1.1

1.2

2.1

2.2

2.3

3.1

T1 T2

3.2

4.1

4.2

4.3

1.1

1.2

1.3

2.1

2.2

3.1

3.2

3.3

4.1

4.2

(b) DOANY (c) LOCALWRITE

Figure 2.3: Intra-invocation parallelization techniques which rely on static analysis (X.Y
refers to the Y th statement in the X th iteration of the loop): (a) DOALL concurrently
executes iterations among threads and no inter-thread synchronization is necessary; (b)
DOANY applies locks to guarantee atomic execution of function malloc; (c) LOCAL-
WRITE goes through each node and each worker thread only updates the node belonging
to itself.

Parallelization techniques such as DOALL [1], DOANY [55, 75], LOCALWRITE [26],

DOACROSS [15] and DSWP [51] belong to the first criteria. The applicability and scala-

bility of these techniques fully depend on the quality of static analysis.

DOALL parallelization can be applied to a loop where each iteration is independent of

all other loop iterations. Figure 2.3(a) illustrates such a DOALL loop. In the figure, X.Y

refers to the Y th statement in the X th iteration of the loop. DOALL loops are parallelized

by allocating sets of loop iterations to different threads. Although DOALL paralleliza-

tion often yields quite scalable performance improvement, its applicability is limited. In

most loops, dependences exist across loop iterations. Figure 2.3(b) shows a slightly dif-

14

ferent loop. The cross-iteration dependence derived from malloc() to itself prohibits

DOALL parallelization. DOANY, instead, synchronizes these malloc() function calls

using locks. Locks guarantee only one thread can execute malloc() each time (as shown

in Figure 2.3(b)). Locks enforces atomic execution but do not guarantee a specific exe-

cution order of those malloc() calls. As a result, DOANY requires the protected oper-

ations to be commutative. Figure 2.3(c) demonstrates another loop whose cross-iteration

dependences are caused by irregular accesses to array elements (through an index array).

DOANY fails to parallelize that loop since the execution order of update() matters. In

this case, LOCALWRITE parallelization technique works if it can find a partition of the

shared memory space which guarantees that each thread only accesses and updates the

memory partition owned by itself. For this loop example, LOCALWRITE partitions the

Node array into two sections and assigns each section to one of the worker threads. Each

worker thread executes all of the iterations, but before it executes statement 3, it checks

whether that node falls within its own memory partition. If it does not, the worker thread

simply skips statement 3 and starts executing the next iteration. LOCALWRITE’s perfor-

mance gain is often limited by the redundant computation among threads (statements 1

and 2 in this example). Meanwhile, a partition of the memory space is not always available

at compile time since the dependence patterns may be determined at runtime by specific

inputs. Overall, these three parallelization techniques can only handle limited types of

cross-iteration dependences. They require the static analysis to prove that no other paral-

lelization prohibiting dependences exist.

In contrast to these three techniques, DOACROSS and DSWP parallelization can han-

dle any type of dependences. For example, consider the loop shown in Figure 2.4(a). Fig-

ure 2.4(b) shows the program dependence graph (PDG) corresponding to the code. In the

PDG, edges that participate in dependence cycles are shown as dashed lines. Since the

statements on lines 3 and 6 and the statement on line 5 each form a dependence cycle,

each iteration is dependent on the previous one. The limitations of DOALL, DOANY

15

1 cost = 0;
2 node = list->head;
3 While(node) {
4 ncost = doit(node);
5 cost += ncost;
6 node = node->next;
7 }

3 4

6 5

(a) Loop with cross‐iteration
dependences

(b) PDG

Figure 2.4: Sequential Loop Example for DOACROSS and DSWP

Thread 1 Thread 2

(a) DOACROSS

Thread 1 Thread 2

(b) DSWP

3.1

6.1

4.1

5.1

3.2

6.2

4.2

5.2

3.3

6.3

3.1

6.1

3.2

6.2

4.1

5.1

4.2

5.23.3

6.3 4.3

Figure 2.5: Parallelization Execution Plan for DOACROSS and DSWP

16

1 cost = 0;
2 node = list->head;
3 while(cost < T && node) {
4 ncost = doit(node);
5 cost += ncost;
6 node = node->next;
7 }

3 4

6 5

(a) Loop cannot benefit from
DOACROSS or DSWP

(b) PDG

Figure 2.6: Example Loop which cannot be parallelized by DOACROSS or DSWP

and LOCALWRITE prevent any of them from parallelizing this loop. Similar to DOALL,

DOACROSS parallelizes this loop by assigning sets of loop iterations to different threads.

However, since each iteration is dependent on the previous one, later iterations synchro-

nize with earlier ones waiting for the cross-iteration dependences to be satisfied. The

code between synchronizations can run in parallel with code executing in other threads

(Figure 2.5(a)). Using the same loop, we demonstrate DSWP technique in Figure 2.5(b).

Unlike DOALL and DOACROSS parallelization, DSWP does not allocate entire loop iter-

ations to threads. Instead, each thread executes a portion of all loop iterations. The pieces

are selected such that the threads form a pipeline. In Figure 2.5(b), thread 1 is responsible

for executing statements 3 and 6 for all iterations of the loop, and thread 2 is responsible

for executing statements 4 and 5 for all iterations of the loop. Since statement 4 and 5

do not feed statements 3 and 6, all cross-thread dependences flow from thread 1 to thread

2 forming a thread pipeline. Although neither techniques is limited by the type of de-

pendences, the resulting parallel programs’ performance highly rely on the quality of the

static analysis. For DOACROSS, excessive dependences lead to frequent synchronization

across threads, limiting actual parallelism or even resulting in sequential execution of the

program. For DSWP, conservative analysis results lead to unbalanced stage partitions or

small parallel partition, which in turn limit the performance gain. Figure 2.6 shows a loop

17

example which cannot benefit from either techniques. This loop is almost identical to the

loop in Figure 2.4(a) except this loop can exit early if the computed cost exceeds a thresh-

old. Since all the loop statements participate in a single dependence cycle (they form a

single strongly-connected component in the dependence graph), DSWP is unable to par-

allelize the loop. Similarly, the dependence height of the longest cycle in the dependence

graph is equal to the dependence height of the entire loop iteration rendering DOACROSS

ineffective as well.

To overcome the limitation caused by the conservative nature of static analysis, other

techniques are proposed to take advantage of runtime information. Among these tech-

niques, some observe dependences at runtime and schedule loop iterations correspondingly.

Synchronizations are inserted to respect a dependence between two iterations only if that

dependence manifests at runtime. Inspector-Executor (IE) [53, 60, 65] style parallelization

techniques are representative of this category of techniques. IE consists of three phases: in-

spection, scheduling, and execution. A complete dependence graph is built for all iterations

during the inspecting process. By topological sorting the dependence graph, each iteration

is assigned to a wavefront number for later scheduling. At runtime, iterations with the same

wavefront number can execute concurrently while iterations with larger wavefront numbers

have to wait till those with smaller wavefront numbers to finish. The applicability of IE is

limited by the possibility of constructing an inspector loop at compile time. This inspector

loop goes through all memory addresses being accessed in each iteration and determines

the dependences between iterations. Since inspector loop is duplicated from the original

loop, it is required not to cause any side effect (e.g., update the shared memory). Because

of these limitations, example loop in Figure 2.6 cannot be parallelized by IE since without

actually updating the values of node, we won’t know whether the loop will exit.

IE checks dependences at runtime before it enables any concurrent execution. Another

group of techniques which also take advantage of runtime information allow concurrent

execution of potentially dependent loop iterations even before they check the dependences.

18

3 4

6 5

X

X
X

X

3 4

6 5

Figure 2.7: PDG after breaking the loop exit control dependence

Thread 1 Thread 2

(a) TLS

6.1

Thread 4Thread 3

4.1

5.1

3.1

6.5

4.5

6.2

4.2

5.2

6.6

6.3

4.3

5.3

3.3

6.4

4.4

5.4

3.2

Thread 1 Thread 2

(a) SpecDSWP

6.1

Thread 4Thread 3

6.2

6.3

6.4

6.5

6.6

4.2

4.3

4.4

4.6

5.2

5.3

5.4

5.5

3.2

3.3

3.4

4.5

4.1

5.1

3.1

Figure 2.8: TLS and SpecDSWP schedules for the loop shown in Figure 2.6

19

These techniques are referred to as speculative techniques. There have been many propos-

als for thread-level speculation (TLS) techniques which speculatively break various loop

dependences [61, 42, 58]. Once these dependences are broken, effective parallelization

becomes possible. Using the same loop in Figure 2.6, if TLS speculatively breaks the loop

exit control dependences (2.7), assuming that the loop iterates many times, then the exe-

cution schedule shown in Figure 2.8(a) is possible. This parallelization offers a speedup

of 4 over single threaded execution. Just as in TLS, by speculating the loop exit control

dependence, the largest SCC is broken allowing SpecDSWP to deliver a speedup of 4 over

single-threaded execution (as shown in Figure 2.8(b)).

IE and speculative techniques take advantage of runtime information to more aggres-

sively exploit parallelism. They are able to adapt to dependence patterns manifested at

runtime by particular input data sets. Speculative techniques are best when dependences

rarely manifest as frequent misspeculation will lead to high recovery cost, which in turn

negates the benefit from parallelization. Non-speculative techniques, on the other hand, do

not have the recovery cost, and thus are better choices for programs with more frequent

manifesting dependences.

2.3 Cross-Invocation Parallelization

While intra-invocation parallelization techniques are adequate for programs with few loop

invocations, they are not adequate for programs with many loop invocations. All of these

techniques parallelize independent loop invocations and use global synchronizations (bar-

riers) to respect the dependences between loop invocations. However, global synchro-

nizations stall all of the threads, forcing them to wait for the last thread to arrive at the

synchronization point, causing inefficient utilization of processors and losing the potential

cross-invocation parallelism. Studies [45] have shown that in real world applications, syn-

chronizations can contribute as much as 61% to total program runtime. There is an oppor-

20

tunity to improve performance: iterations from different loop invocations can often execute

concurrently without violating program semantics. Instead of waiting at synchronization

points, threads can execute iterations from subsequent loop invocations. This additional

cross-invocation parallelism can improve the processor utilization and help the parallel

programs achieve much better scalability.

Prior work has presented some automatic parallelization techniques that exploit cross-

invocation parallelism. Ferrero et al. [22] apply affine techniques to aggregate small parallel

loops into large ones so that intra-invocation parallelization techniques can be applied di-

rectly. Bodin [50] applies communication analysis to analyze the data-flow between each

threads. Instead of inserting global synchronizations between invocations, they apply pair-

wise synchronization between threads if data-flow exits between them. These more fine-

grained synchronization techniques allow for more potential parallelization at runtime since

only some of the threads have to stall and wait while the others can proceed across the in-

vocation boundary. Tseng [72] partitions iterations within the same loop invocation so that

cross-invocation dependences flow within the same working thread. However, all these

techniques share the same limitation as the first group of intra-invocation parallelization

techniques: they all rely on static analysis and cannot handle input-dependent irregular

program patterns.

Some attempts have been made to exploit parallelism beyond the scope of loop invo-

cation using runtime information. BOP [19] allows programmers to specify all potential

concurrent code regions in a sequential program. Each of these concurrent task is treated

as a transaction and will be protected from access violations at runtime. TCC [25] requires

programmers to annotate the parallel version of program. The programmer can specify the

boundary of each transaction and assign each transaction a phase-number to guarantee the

correct commit order of each transaction. However, these two techniques both require man-

ual annotation or manual parallelization by programmers. Additionally, these techniques

do not distinguish intra- and inter-invocation dependences, which means they may incur

21

unnecessary overhead at runtime.

Table 2.1 summarizes the related work. All existing cross-invocation parallelization

techniques are either limited by the conservative nature of static analysis or require pro-

grammers’ effort to achieve parallelization. This motives this thesis work to propose novel

automatic parallelization techniques which bridge the gap in the existing solution space.

22

Te
ch

ni
qu

e
N

am
e

Sy
nc

hr
on

iz
at

io
n

Sp
ec

ul
at

iv
e

R
un

tim
e

So
ft

w
ar

e
A

ut
om

at
ic

In
se

rt
ed

Sy
st

em
U

se
d

O
nl

y
St

at
ic

al
ly

E
xp

lo
iti

ng
In

tr
a-

In
vo

ca
tio

n
Pa

ra
lle

liz
at

io
n

D
O

A
L

L
[1

]
N

on
e

×
N

on
e

X
X

D
O

A
N

Y
[5

5,
75

]
L

oc
k

×
N

on
e

X
X

D
O

A
C

R
O

SS
[1

5]
T

hr
ea

d-
w

is
e

Sy
nc

s
×

N
on

e
X

X
D

SW
P

[5
1]

Pr
od

uc
e

an
d

C
on

su
m

e
×

N
on

e
X

X
IE

[5
3,

60
,6

5]
N

on
e

×
Sh

ad
ow

A
rr

ay
X

X
L

R
PD

[6
2]

N
on

e
X

Sh
ad

ow
A

rr
ay

X
X

ST
M

L
ite

[4
2]

N
on

e
X

ST
M

X
X

SM
T

X
[5

8]
N

on
e

X
SM

T
X

X
×

E
xp

lo
iti

ng
C

ro
ss

-I
nv

oc
at

io
n

Pa
ra

lle
liz

at
io

n
Fe

rr
er

o
et

al
.[

22
]

N
on

e
×

N
on

e
X

X
T

se
ng

[7
2]

N
on

e
×

N
on

e
X

X
T

C
C

[2
5]

N
on

e
X

H
ar

dw
ar

e
T

M
×

×
B

O
P

[1
9]

N
on

e
X

So
ft

w
ar

e
T

M
X

×
D

O
M

O
R

E
(t

hi
s

th
es

is
w

or
k)

N
on

e
×

Sh
ad

ow
A

rr
ay

X
X

S
P

E
C

C
R

O
S

S
(t

hi
s

th
es

is
w

or
k)

N
on

e
X

So
ft

w
ar

e
Sp

ec
ul

at
iv

e
B

ar
ri

er
X

X

Ta
bl

e
2.

1:
C

om
pa

re
d

to
re

la
te

d
w

or
k,

D
O

M
O

R
E

an
d

S
P

E
C

C
R

O
S

S
im

pr
ov

e
th

e
pe

rf
or

m
an

ce
by

au
to

m
at

ic
al

ly
ex

pl
oi

tin
g

cr
os

s-
in

vo
ca

tio
n

pa
ra

lle
lis

m
.

B
ot

h
ta

ke
ad

va
nt

ag
e

of
ru

nt
im

e
in

fo
rm

at
io

n
to

sy
nc

hr
on

iz
e

th
re

ad
s

on
ly

w
he

n
ne

ce
ss

ar
y.

A
nd

ne
ith

er
re

qu
ir

es
an

y
sp

ec
ia

l
ha

rd
w

ar
e

su
pp

or
t.

23

Chapter 3

Non-Speculatively Exploiting

Cross-Invocation Parallelism Using

Runtime Information

This chapter discusses details about DOMORE, the first non-speculative automatic paral-

lelization technique to capture dynamic cross-invocation parallelism. Unlike existing tech-

niques, DOMORE gathers cross-invocation dependence information at runtime. Even for

programs with irregular dependence patterns, DOMORE precisely synchronizes iterations

which depend on each other and allows iterations without dependences to execute concur-

rently. As a result, DOMORE is able to enable more cross-invocation parallelization and

achieves more scalable performance.

The automatic compiler implementation of DOMORE in LLVM [35] provides signifi-

cant performance gains over both sequential code and parallel code with barriers. Evalua-

tion on six benchmark programs shows a loop speedup of 2.1× over codes without cross-

invocation parallelization and 3.2× over the original sequential performance on 24 cores.

24

A. for (i = 0; i < N; i++) {

B. start = A[i];

C. end = B[i];

D. for (j = start; j < end; j++) {

E. update (&C[j]);

 }

 }

A

B C

D

E

D

E

(a) (b)

(c)

cross-iteration Dependences

intra-iteration Dependences

Figure 3.1: Example program: (a) Simplified code for a nested loop in CG (b) PDG for
inner loop. The dependence pattern allows DOALL parallelization. (c) PDG for outer
loop. Cross-iteration dependence deriving from E to itself has manifest rate 72.4%.

3.1 Motivation and Overview

To motivate the DOMORE technique, we present a running example using the program CG

from the NAS suite [48]. Figure 3.1 (a) shows a simplified version of CG’s performance

dominating loop nest. The outer loop computes the loop bounds of the inner loop, and

the inner loop calls the update function, updating values in array C. For the outer loop,

aside from induction variables, the only cross-iteration dependence is between calls to the

update function. Profiling reveals that this dependence manifests across 72.4% of outer

loop iterations. The inner loop has no cross-iteration dependence since no two iterations in

the same invocation update the same element in array C.

The update dependence prevents DOALL parallelization [1] of the outer loop. Spec-

DOALL [62] can parallelize outer loop by speculating that the update dependence does

not occur. However, speculating the outer loop dependence is not profitable, since the

update dependence frequently manifests across outer loop iterations. As a result, DOALL

will parallelize the inner loop and insert barrier synchronizations between inner loop invo-

cations to ensure the dependence is respected between invocations.

Figure 3.2(a) shows the execution plan for a DOALL parallelization of CG. Iterations

in the same inner loop invocation execute in parallel. After each inner loop invocation,

threads synchronize at the barrier. Typically, threads do not reach barriers at the same time

25

for a variety of reasons. For instance, each thread may be assigned different number of

tasks and the execution time of each task may vary. Threads that finish the inner loop early

may not execute past the barrier, resulting in very poor scalability. Experimental results in

Figure 3.3 show that performance is worse than the sequential version and worsens as the

number of threads increases.

Figure 3.2(b) shows the execution plan after DOMORE’s partitioning phase (Sec-

tion 3.3.1). The first thread executes code in the outer loop (statement A to D) and serves

as the scheduler. The other threads execute update code in the inner loop concurrently

and serve as workers. Overlapping the execution of scheduler and worker threads improves

the performance, however, without enabling cross-invocation parallelism, clock cycles are

still wasted at the synchronization points.

Figure 3.2(c) shows the execution plan after the DOMORE transformation completes

and enables cross-invocation parallelization. The scheduler sends synchronization infor-

mation to the worker threads and worker threads only stall when a dynamic dependence

is detected. In the example, most of CG’s iterations are independent and may run concur-

rently without synchronization. However, iteration 1.5 (i.e. when i=1, j=5) updates memory

locations which are later accessed by iteration 2.2. At runtime, the scheduler discovers this

dependence and signals thread one to wait for iteration 1.5. After synchronization, thread

one proceeds to iteration 2.2. As shown in Figure 3.3, DOMORE enables scalable loop

speedup for CG up to 24 threads on an 24-core machine.

Figure 3.4 shows a high-level overview of the DOMORE transformation and runtime

synchronization scheme. DOMORE accepts a sequential program as input and targets hot

loop nests within the program. At compile-time, DOMORE first partitions the outer loop

into a scheduler thread and several worker threads (Section 3.3.1). The scheduler thread

contains the sequential outer loop while worker threads contain the parallel inner loop.

Based on the parallelization technique used to parallelize the inner loop, the code gener-

ation algorithm generates a multi-threaded program with cross-invocation parallelization

26

thread1 thread2 thread3 thread4

A1

B1

C1

D1.1

E1.1

D1.2

E1.2

D1.3

E1.3

D1.4

E1.4

Barrier

D1.5

E1.5

thread1

(c)

thread2 thread3 thread4

A1

B1

C1

D1.1

D1.2

D1.3

D1.4

Schedule

Schedule

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

D2.5

Schedule

Schedule

A2

B2

C2

D2.1

E2.1

D2.2

E2.2

D2.3

E2.3

D2.4

E2.4

E2.5

thread1 thread2 thread3 thread4

A1

B1

C1

E1.1

D1.4

E1.2
E1.3

D1.5

E1.4

E1.5

E2.1

E2.2

E2.3

E2.4

E2.5

E1.1

E1.2

E1.3

E1.4

E1.5

E2.1

E2.2

E2.3

E2.5

E2.4

(a) (b)

D2.5

A2

B2

C2

D2.1

D2.2

D2.3

D2.4

D2.5

D1.1

D1.2

D1.3

Barrier

stall

DOMORE

final

DOALL

DOMORE

after partitioning

Barrier Penalty

Idle Cores

Barrier Penalty

Idle Cores

Barrier

Penalty

Barrier

Penalty

Figure 3.2: Comparison of performance with and without cross-invocation parallelization :
(a) DOALL is applied to the inner loop. Frequent barrier synchronization occurs between
the boundary of the inner and outer loops. (b) After the partitioning phase, DOMORE has
partitioned the code without inserting the runtime engine. A scheduler and three workers
execute concurrently, but worker threads still synchronize after each invocation. (c) DO-
MORE finalizes by inserting the runtime engine to exploit cross-invocation parallelism.
Assuming iteration 2 from invocation 2 (2.2) depends on iteration 5 from invocation 1
(1.5). Scheduler detects the dependence and synchronizes those two iterations.

(Section 3.3.5). At runtime, the scheduler thread checks for dynamic dependences, sched-

ules inner loop iterations, and forwards synchronization conditions to worker threads (Sec-

tion 4.2). Worker threads use the synchronization conditions to determine when they are

ready to execute.

27

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

Figure 3.3: Performance improvement of CG with and without DOMORE.

3.2 Runtime Synchronization

DOMORE’s runtime synchronization system consists of three parts: detection of depen-

dences at runtime, generation of synchronization conditions, and synchronization of iter-

ations across threads. The pseudo-code for the scheduler and worker threads appear in

Algorithms 1 and 2.

3.2.1 Detecting Dependences

DOMORE’s scheduler thread detects dependences which manifest at runtime. Shadow

memory is employed for determining memory dependences. Each entry in shadow memory

contains a tuple consisting of a thread ID (tid) and an iteration number (iterNum). For

each iteration, the scheduler determines which memory addresses the worker will access

using computeAddr function. The computeAddr function collects these addresses

by redundantly executing related instructions duplicated from the inner loop. Details of

automatic generation of computeAddr can be found in Section 3.3.4. The scheduler

28

maps each of these address to a shadow memory entry and updates that entry to indicate

that the most recent access to the respective memory location is by worker thread tid in

iteration iterNum. When an address is accessed by two different threads, the scheduler

synchronizes the affected threads.

Although the use of shadow memory increases memory overhead, our experiments

demonstrate that a shadow array with 65568 entries (about 0.5MB) is efficient enough for

detecting dynamic dependences. However, a more space efficient conflict detecting scheme

can also be used by DOMORE. For example, Mehrara et al. [42] propose a lightweight

memory signature scheme to detect memory conflicts. The best time-space trade-off de-

pends on end-user requirements.

3.2.2 Generating Synchronization Conditions

If two iterations dynamically depend on each other, worker threads assigned to execute

them must synchronize. This requires collaboration between scheduler and worker threads.

The scheduler constructs synchronization conditions and sends them to the sched-

uled worker thread. A synchronization condition is a tuple also consisting of a thread

ID (depId) and an iteration number (depIterNum). A synchronization condition

tells a worker thread to wait for another worker (depId) to finish a particular iteration

(depIterNum).

To indicate that a worker thread is ready to execute a particular iteration, the scheduling

thread sends the worker thread a special tuple. The first element is a token (NO SYNC)

indicating no further synchronization is necessary to execute the iteration specified by the

second element (iterNum).

Suppose a dependence is detected while scheduling iteration i to worker thread T1.

T1 accesses the memory location ADDR in iteration i. Shadow array (shadow[ADDR])

records that the same memory location is most recently accessed by worker thread T2 in

iteration j. The scheduler thread will send (T2,j) to thread T1. When the scheduler

29

Algorithm 1: Pseudo-code for scheduler synchronization
Input: iterNum : global iteration number
addrSet← computeAddr(iterNum)
tid← schedule(iterNum, addrSet)
foreach addr ∈ addrSet do

< depTid, depIterNum >← shadow[addr]
if depIterNum 6= −1 then

if depTid 6= tid then
produce(tid, < depTid, depIterNum >)

shadow[addr]← < tid, iterNum >

produce(tid, < NO SYNC, iterNum >)

thread finds no additional dependences, it will send (NO SYNC,i) to thread T1.

3.2.3 Synchronizing Iterations

Workers receive synchronization conditions and coordinate with each other to respect dy-

namic dependences. A status array is used to assist this: latestFinished records

the latest iteration finished by each thread. A worker thread waiting on synchronization

condition (depId, depIterNum) will stall until latestFinished[depId] ≥

depIterNum. After each worker thread finishes an iteration, it needs to update its status

in latestFinished to allow threads waiting on it to continue executing.

Synchronization conditions are forwarded using produce and consume primitives

provided by a lock-free queue design [31], which provides an efficient way to communicate

information between scheduler and worker threads.

3.2.4 Walkthrough Example

The program CG illustrates DOMORE’s synchronization scheme. Figure 3.5(a) shows the

access pattern (value j) in each iteration for two invocations. Iterations are scheduled to

two worker threads in round-robin order. Figure 3.5(b) shows the change of the helper data

structures throughout the execution.

30

Sequential

 Program

Partitioner

Scheduler

 Code

Worker

 Code

Scheduler

 Thread

Worker

Threads

In
p

u
t

C
o
m

p
il
e
 T

im
e

O
u

tp
u

t
R

u
n

ti
m

e

Synchronization Scheme

Code Generation

Detect Target Loop Nest

Figure 3.4: Overview of DOMORE compile-time transformation and runtime synchroniza-
tion

Iteration I1 accesses array element A1, the scheduler finds shadow[A1] = <⊥,⊥>

meaning no dependence exists. It constructs a synchronization condition (NO SYNC,I1)

and produces it to worker thread T1. It then updates shadow[A1] to be <T1,I1>,

implying thread T1 has accessed array element A1 in iteration I1. Worker thread T1

consumes the condition and executes iteration I1 without waiting. After it finishes, it

updates latestFinished[T1] to be I1. Iteration I2 accesses array element A3 and

no dependence is detected. A synchronization condition (NO SYNC,I2) is produced

to worker thread T2, and worker thread T2 consumes the condition and executes itera-

tion I2 immediately. Iteration I1 in the second invocation accesses element A3 again.

Since shadow[A3] = <T2,I2>, a dependence is detected. So the scheduler pro-

duces (T2,I2) and (NO SYNC,I3) to worker thread T1. Worker thread T1 then waits

31

Algorithm 2: Pseudo-code for worker
< depTid, depIterNum >← consume()
while depTid 6= NO SYNC do

while latestFinished[depTid] < depIterNum do
sleep()

< depTid, depIterNum >← consume()

doWork(depIterNum)
latestFinished[getTid()]← depIterNum

for worker thread T2 to finish iteration I2 (wait until latestFinished[T2] ≥ I2).

Worker thread T1 then consumes the (NO SYNC,I3) and begins execution of iteration

I3.

Using this synchronization scheme, instead of stalling both threads to wait for first

invocation to finish, only thread T1 needs to synchronize while thread T2 can move on to

execute iterations from the second invocation.

32

Original Generated
Invoc. Iter. Access Sched. Combined Iter. shadow

- - - - initialize 〈⊥,⊥〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉
1 1 A1 T1 I1 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈⊥,⊥〉
1 2 A3 T2 I2 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈T2, I2〉
2 1 A3 T1 I3 〈⊥,⊥〉 , 〈T1, I1〉 , 〈⊥,⊥〉 , 〈T1, I3〉
2 2 A2 T2 I4 〈⊥,⊥〉 , 〈T1, I1〉 , 〈T2, I4〉 , 〈T1, I3〉

(a)

�������

�	
��
	������

�������

��������

�������

�	
��
	������

�������

�	
��
	������

�������

�	
��
	������

�������

�	
��
	������

�������

�	
��
	������

�������

�	
��
	������

����

��

����

��

���

����

��

����

��

��!���"�� ���#����� ���#�����

(b)

Figure 3.5: Scheduler scheme running example: (a) Table showing original invocation/it-
eration, array element accessed in iteration, thread the iteration is scheduled to, combined
iteration number, and helper data structure values (b) Execution of the example.

33

3.3 Compiler Implementation

The DOMORE compiler generates scalable parallel programs by exploiting both intra-

invocation and cross-invocation parallelism. DOMORE first detects a candidate code re-

gion which contains a large number of loop invocations. DOMORE currently targets loop

nest whose outer loop cannot be efficiently parallelized because of frequent runtime depen-

dences, and whose inner loop is invoked many times and can be parallelized easily. For

each candidate loop nest, DOMORE generates parallel code for the scheduler and worker

threads. This section uses the example loop from CG (Figure 3.1) to demonstrate each step

of the code transformation. Figure 3.6(a) gives the pseudo IR code of the CG example.

3.3.1 Partitioning Scheduler and Worker

DOMORE allows threads to execute iterations from consecutive parallel invocations. How-

ever, two parallel invocations do not necessarily execute consecutively; typically a sequen-

tial region exists between them. In CG’s loop, statement A, B and C belong to the sequential

region. After removing the barriers, threads must execute these sequential regions before

starting the iterations from next parallel invocation.

DOMORE executes the sequential code in the scheduler thread. This provides a general

solution to handle the sequential code enclosed by the outer loop. After partitioning, only

the scheduler thread executes the code. There is no redundant computation and no need for

special handling of side-effecting operations. If a data flow dependence exists between the

scheduler and worker threads, the value can be forwarded to worker threads by the same

queues used to communicate synchronization conditions.

The rule for partitioning code into worker and scheduler threads is straightforward. The

inner loop body is partitioned into two sections. The loop-traversal instructions belong to

the scheduler thread, and the inner loop body belongs to the worker thread. Instructions

outside the inner loop but enclosed by the outer loop are treated as sequential code and thus

34

belong to the scheduler.

To decouple the execution of the scheduler and worker threads for better latency tol-

erance, they should communicate in a pipelined manner. Values are forwarded in one

direction, from the scheduler thread to the worker threads.

The initial partition may not satisfy this pipeline requirement. To address this problem,

DOMORE first builds a program dependence graph (PDG) for the target loop nest (Fig-

ure 3.6(b)), including both cross-iteration and cross-invocation dependences for the inner

loop. Then DOMORE groups the PDG nodes into strongly connected components (SCC)

and creates a DAGSCC (Figure 3.6(c)) which is a directed acyclic graph for those SCCs.

DOMORE goes through each SCC in DAGSCC : (1) If an SCC contains any instruction

that has been scheduled to the scheduler, all instructions in that SCC should be scheduled to

the scheduler partition. Otherwise, all instructions in that SCC are scheduled to the worker

partition; (2) If an SCC belonging to the worker partition causes a backedge towards any

SCC belonging to the scheduler partition, that SCC should be re-partitioned tothe scheduler.

Step (2) is repeated until both partitions converge.

3.3.2 Generating Scheduler and Worker Functions

After computing the instruction partition for scheduler and worker, DOMORE gener-

ates code for scheduler and worker threads. Multi-Threaded Code Generation algorithm

(MTCG) used by DOMORE builds upon the algorithm proposed in [51]. The major dif-

ference is that [51] can only assign a whole inner loop invocation to one thread while

DOMORE can distribute iterations in the same invocation to different worker threads. The

following description about DOMORE’s MTCG highlights the differences:

1. 1. Compute the set of relevant basic blocks (BBs) for scheduler (Ts) and worker

(Tw) threads. According to algorithm in [51]: A basic block is relevant to a thread Ti

if it contains either: (a) an instruction scheduled to Ti; or (b) an instruction on which

any of Ti’s instruction depends; or (c) a branch instruction that controls a relevant BB

35

to Ti. DOMORE’s MTCG follows these three rules, and requires two more rules: (d)

a BB is relevant to Tw only if it belongs to the original inner loop; and (e) inner loop

header is always relevant to both Ts and Tw. Rule (d) simplifies the control flow

of code generated for Tw. However, since produce and consume instructions

are placed at the point where dependent values are defined, worker thread may not

contain the corresponding BB because of rule (d). Rule (e) guarantees that any value

that is defined in BBs which are not duplicated in Tw can be communicated at the

beginning of the duplicated inner loop headers.

2. 2. Create the BBs for each partition. Place instructions assigned to the partition in

the corresponding BB, maintaining their original relative order within the BB. Add a

loop preheader BB and a loop return BB to Tw.

3. 3. Fix branch targets. In cases where the original target does not have a corre-

sponding BB in the same thread, the new target is set to be the BB corresponding to

the closest relevant post-dominator BB of the original target. Insert a sync BB to Tw,

which serves as the closest post-dominator BB for BBs which do not have a relevant

post-dominator BB in Tw. Branch the sync BB in Tw to the loop header.

4. 4. Insert produce and consume instructions. For Loop flow dependences,

produce and consume instructions are inserted in the BB where the value is de-

fined, if that BB is duplicated in both threads. Since inner loop live-in values are

used but not defined inside the inner loop, the respective BB are not duplicated in

Tw. To reduce the amount of communications, live-in values which are outer loop

invariants are communicated at the end of the inner loop preheader. And the other

live-ins will be communicated at the beginning of inner loop header. According to

the partition rules, since instructions generating inner loop live-outs to the outer loop

are partitioned to the scheduler thread, DOMORE does not need to handle those live-

out values. Finally, a timestamp is communicated at the beginning of the inner loop

36

header. This timestamp value gives a global order for iterations from all invocations

and will be used for scheduling and synchronizing iterations.

5. 5. Finalize the communication. To control when each worker thread should return,

an END TOKEN is broadcasted when exiting the outer loop in Ts. That value will

be captured by the first consume instruction in Tw’s duplicated loop header. Two in-

structions are inserted to decide when to return from Tw: (1) a comparison instruction

to check whether that value is an END TOKEN; (2) a branch instruction targeting the

return BB if the comparison instruction generates true value.

Up to this point, DOMORE has generated the initial code for scheduler thread and

worker thread (Figure 3.6(d) and (e)). Later steps generate scheduling code, computeAddr

code which will be inserted into the scheduler function and workerSync code which will

be inserted into the worker function.

37

br BB1

A:ind1 = PHI [0, Outer_Preheader],

 [ind1.next, BB2]

B:ind1.next = ind1 + 1

c:p1 = ind1 >= N

D:br p1, Sync_Block

G:ind2 = PHI [r1, Inner_Preheader],

 [ind2.next, BB3]

H:ind2.next = ind2 + 1;

I:p2 = ind2 > r2

J:br p2, BB1

E:r1 = A[ind1]

F:r2 = B[ind1]

br BB2

Outer_Preheader

Inner_Preheader

BB1

BB2

Sync_Block

A

B C

D

E F

G

H I

J

K

L

K:r3 = getElementPtr(C[ind2])

L:call update(r3)

br BB2

BB3

A B C D

FE

G H I J

K

L

br BB1

A:ind1 = PHI [0, Outer_Preheader],

 [ind1.next, BB2]

B:ind1.next = ind1 + 1

c:p1 = ind1 >= N

D:br p1, Sync_Block

G:ind2 = PHI [r1, Inner_Preheader],

 [ind2.next, BB3]

r4 = load TIME_STAMP

PRODUCE(r4)

r5 = r4 + 1

store r5, TIMESTAMP

PRODUCE (ind2)

H:ind2.next = ind2 + 1

I:p2 = ind2 > r2

PRODUCE(p2)

J:br p2, BB1

E:r1 = A[ind1]

F:r2 = B[ind1]

br BB2

Outer_Preheader

Inner_Preheader

BB1

BB2

Sync_Block

br BB2

BB3

K:r3 = getElementPtr(C[ind2])

L:call update(t3)

br BB2'

BB3'

t = CONSUME()

p = t == END_TOKEN

br p, Return_block

BB2'

Sync_Block'

PRODUCE_TO_ALL(END_TOKEN)

br BB2'

(a) Pseudo IR code

(b) Dep. graph (c) DAGSCC

(d) Scheduler partition (e) Worker partition

Inner_Preheader'

ret

Return_Block

ind2 = CONSUME()

p2 = CONSUME()

br p2, Sync_Block

BB2''

Figure 3.6: Running example for DOMORE code generation: (a) Pseudo IR for CG code;
(b) PDG for example code. Dashed lines represent cross-iteration and cross-invocation
dependences for inner loop. Solid lines represent other dependences between inner loop
instructions and outer loop instructions. (c) DAGSCC for example code. DAGSCC nodes
are partitioned into scheduler and worker threads. (d) and (e) are code generated by DO-
MORE MTCG algorithm (3.3.2).

38

3.3.3 Scheduling Iterations

DOMORE currently supports two scheduling strategies, round-robin and memory parti-

tion based scheduling. Round-robin is used by many parallelization techniques. Memory

partitioning (LOCALWRITE [26]) divides the memory space into disjoint chunks and as-

signs each chunk to a different worker thread, forming a one-to-one mapping. Iterations

are scheduled to threads that own the memory locations being touched by that iteration. If

multiple threads own the memory locations, that iteration is scheduled to all of them. LO-

CALWRITE guarantees that each thread only updates its own memory space. DOMORE

allows for the easy integration of other “smarter” scheduling techniques. Integration of a

work stealing scheduler similar to Cilk [8] is planned as future work.

39

Algorithm 3: Pseudo-code for generating the computeAddr function from the worker
function
Input: worker : worker function IR
Input: pdg : program dependence graph
Output: computeAddr : computeAddr function IR
depInsts← getCrossMemDepInsts(pdg)
depAddr← getMemOperands(depInsts)
computeAddr← reverseProgramSlice(worker, depAddr)

for (i = 0; i < N; i++) {

 start = A[i];

 end = B[i];

 for (j = start; j < end; j++) {

 update (&C[j]);

 }

}

vector<long> computeAddr(int iternum) {

 vector<long> addrSet;

 int addr = (long)&C[j];

 addrSet.push_back(addr);

 return addrSet;

}

(a) (b)

Figure 3.7: (a) Example loop from Figure 3.1; (b) computeAddr function generated for
this loop

3.3.4 Generating the computeAddr function

The scheduler thread uses the computeAddr function to determine which addresses will

be accessed by worker threads. DOMORE automatically generates the computeAddr

function from the worker thread function using Algorithm 3. The algorithm takes as input

the worker thread’s IR in SSA form and a program dependence graph (PDG) describing

the dependences in the original loop nest. The compiler uses the PDG to find all instruc-

tions with memory dependences across the inner loop iterations or invocations. These

instructions will consist of loads and stores. In the worker thread, program slicing [74] is

performed to create the set of instructions required to generate the address of the memory

being accessed. Presently, the DOMORE transformation does not handle computeAddr

functions with side-effects. If program slicing duplicates instructions with side-effects,

the DOMORE transformation aborts. After the transformation, a performance guard com-

pares the weights of the computeAddr function and the original worker thread. If the

computeAddr function is too heavy relative to the original worker, the scheduler would

40

Algorithm 4: Final Code Generation
Input: program : original program IR
Input: partition : Partition of scheduler and worker code
Input: parallelPlan : parallelization plan for inner loop
Input: pdg : program dependence graph
Output: multi− threaded scheduler and worker program
scheduler,worker← MTCG(program, partition)
scheduler← generateSchedule(parallelPlan)
computeAddr← generateComputeAddr(worker, pdg)
scheduler← generateSchedulerSync()
worker← generateWorkerSync()

be a bottleneck for the parallel execution, so the performance guard reports DOMORE

is inapplicable. Figure 3.7 demonstrates the generated computeAddr function for the

example loop in Figure 3.1.

3.3.5 Putting It Together

Algorithm 4 ties together all the pieces of DOMORE’s code-generation. The major steps

in the transformation are:

1. The Multi-Threaded Code Generation algorithm (MTCG) discussed in Section 3.3.2

generates the initial scheduler and worker threads based on the partition from Sec-

tion 3.3.1.

2. The appropriate schedule function (Section 3.3.3) is inserted into the scheduler

based upon the parallelization plan for the inner loop.

3. Create and insert the computeAddr (Algorithm 3) schedulerSync (Algo-

rithm 1), workerSync (Algorithm 2), functions into the appropriate thread to han-

dle dependence checking and synchronizing.

Figure 3.8 shows the final code generated for CG.

41

1

v
o
i
d

s
c
h
e
d
u
l
e
r

(
)

{

2

i
t
e
r
n
u
m

=

0
;

3

f
o
r

(
i

=

0
;

i

<

N
;

i
+
+
)

{

4

s
t
a
r
t

=

A
[
i
]
;

5

e
n
d

=

B
[
i
]
;

6

f
o
r

(
j

=

s
t
a
r
t
;

j

<

e
n
d
;

j
+
+
)

{

7

a
d
d
r
_
s
e
t

=

c
o
m
p
u
t
e
A
d
d
r
(
i
t
e
r
n
u
m
)
;

8

t
i
d

=

s
c
h
e
d
u
l
e
(
i
t
e
r
n
u
m
,

a
d
d
r
_
s
e
t
)
;

9

t
i
d
_
q
u
e
u
e

=

g
e
t
Q
u
e
u
e
(
t
i
d
)
;

1
0

s
c
h
e
d
u
l
e
r
S
y
n
c
(
i
t
e
r
n
u
m
,

t
i
d
,

t
i
d
_
q
u
e
u
e
,

a
d
d
r
_
s
e
t
)
;

1
1

p
r
o
d
u
c
e
(
&
C
[
j
]
,

t
i
d
_
q
u
e
u
e
)
;

1
2

i
t
e
r
n
u
m
+
+
;

}

}

}

1
3

p
r
o
d
u
c
e
_
t
o
_
a
l
l
(
E
N
D
_
T
O
K
E
N
)
;

1

v
o
i
d

s
c
h
e
d
u
l
e
r
S
y
n
c
(
i
t
e
r
n
u
m
,

t
i
d
,

q
u
e
u
e
,

a
d
d
r
_
s
e
t
)

{

2

w
h
i
l
e

(
a
d
d
r

=

g
e
t
_
n
e
x
t
(
a
d
d
r
_
s
e
t
)
)

{

3

d
e
p
T
i
d

=

g
e
t
T
i
d
(
s
h
a
d
o
w
[
a
d
d
r
]
)
;

4

d
e
p
I
t
e
r
N
u
m

=

g
e
t
I
t
e
r
N
u
m
(
s
h
a
d
o
w
[
a
d
d
r
]
)
;

5

i
f

(
d
e
p
T
i
d

!
=

t
i
d

&
&

d
e
p
I
t
e
r
N
u
m

!
=

-
1
)

{

6

p
r
o
d
u
c
e
(
d
e
p
T
i
d
,

q
u
e
u
e
)
;

7

p
r
o
d
u
c
e
(
d
e
p
I
t
e
r
N
u
m
,

q
u
e
u
e
)
;

}

8

s
h
a
d
o
w
[
a
d
d
r
]

=

(
t
i
d
,

i
t
e
r
n
u
m
)
;

}

9

p
r
o
d
u
c
e
(
N
O
_
S
Y
N
C
,

q
u
e
u
e
)
;

1
0

p
r
o
d
u
c
e
(
i
t
e
r
n
u
m
,

q
u
e
u
e
)
;

}

1

v
o
i
d

w
o
r
k
e
r
(
)

{

2

w
h
i
l
e

(
1
)

{

3

d
e
p
T
i
d

=

c
o
n
s
u
m
e
(
)
;

4

i
f

(
d
e
p
T
i
d

=
=

E
N
D
_
T
O
K
E
N
)

5

r
e
t
u
r
n
;

6

i
f

(
d
e
p
T
I
D

=
=

N
O
_
S
Y
N
C
)

{

7

d
o
W
o
r
k
(
)
;

}

8

e
l
s
e

9

w
o
r
k
e
r
S
y
n
c
(
d
e
p
T
i
d
)
;

}

}

1

v
o
i
d

d
o
W
o
r
k
(
)

{

2

i
t
e
r
n
u
m

=

c
o
n
s
u
m
e
(
)
;

3

t
i
d

=

g
e
t
T
i
d
(
)
;

4

a
d
d
r

=

c
o
n
s
u
m
e
(
)
;

5

u
p
d
a
t
e
(
a
d
d
r
)
;

6

l
a
t
e
s
t
F
i
n
i
s
h
e
d
[
t
i
d
]

=

i
t
e
r
n
u
m
;

}

1

v
o
i
d

w
o
r
k
e
r
S
y
n
c
(
d
e
p
T
i
d
)

{

2

i
t
e
r
n
u
m

=

c
o
n
s
u
m
e
(
)
;

3

w
h
i
l
e

(
l
a
t
e
s
t
F
i
n
i
s
h
e
d
[
d
e
p
T
i
d
]

<

i
t
e
r
n
u
m
)

4

s
l
e
e
p
(
)
;

}

S
c
h

e
d

u
le

r
 F

u
n

c
ti

o
n

S
c
h

e
d

u
le

r
S

y
n

c
 F

u
n

c
ti

o
n

W
o
r
k
e
r
 F

u
n

c
ti

o
n

w
o
r
k
e
r
S

y
n

c
 F

u
n

c
ti

o
n

d
o
W

o
r
k
 F

u
n

c
ti

o
n

Fi
gu

re
3.

8:
G

en
er

at
ed

co
de

fo
r

ex
am

pl
e

lo
op

in
C

G
.

N
on

-h
ig

hl
ig

ht
ed

co
de

re
pr

es
en

ts
in

iti
al

co
de

fo
r

sc
he

du
le

r
an

d
w

or
ke

r
fu

nc
tio

ns
ge

ne
ra

te
d

by
D

O
M

O
R

E
’s

M
T

C
G

(S
ec

tio
n

3.
3.

2)
.C

od
e

in
gr

ey
is

ge
ne

ra
te

d
in

la
te

rs
te

ps
fo

ri
te

ra
tio

n
sc

he
du

lin
g

an
d

sy
nc

hr
on

iz
at

io
n.

42

3.4 Enable DOMORE in SPECCROSS

DOMORE transformation partitions the sequential program into a scheduler thread and

multiple worker threads. The scheduler thread executes the sequential code region, com-

putes the dependences between inner loop iterations and schedules iterations correspond-

ingly. This design provides a general solution to handle the sequential code enclosed by

the outer loop. There is no redundant computation and no need for special handling of

side-effecting operations. However, this design prohibits DOMORE to be integrated into

SPECCROSS framework which will be introduced in the next chapter. As a result, we trade

the benefits from having a separate scheduler thread for the applicability of DOMORE

parallelization in SPECCROSS framework by duplicating the scheduler code to all worker

threads. Figure 3.9 demonstrates the parallel execution plan after the duplication. Only

worker threads are spawned for the parallel execution. Each worker thread computes de-

pendences and schedules iterations independently. Each worker only executes the iterations

scheduled to it, but it executes all of the scheduler code to keep a record of the iteration

dependences.

Figure 3.10 shows the new generated code. Compared to the original code in Figure 3.8,

the major differences include: (1) Only worker threads are spawned and each of them starts

by executing the Scheduler function. If an iteration is scheduled to the executing worker

thread, the worker function is invoked to do the actual work for that iteration. (2) Every

worker thread executes computeAddr, schedule and schedulerSync functions

independently. To avoid access conflicts, each worker thread has its own shadow memory

and only updates that shadow memory. (3) Synchronization conditions are still produced

to and consumed from the communication queues; while value dependences between the

original scheduler and the worker threads are passed on as function parameters instead.

43

Worker1 Worker2 Worker3 Worker4

A1

B1

C1

D1.1

D1.2

D1.3

D1.4

Schedule

Schedule

Schedule

D1.5

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

D2.5

Schedule

Schedule

E1.1

E1.2

E1.3

E1.4

E1.5

E2.1

E2.2

E2.3

E2.5E2.4

A1

B1

C1

D1.1

Schedule

D1.2

Schedule

D1.3

D1.4

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

Schedule

D2.5

Schedule

A1

B1

C1

D1.1

Schedule

D1.2

Schedule

D1.3

D1.4

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

Schedule

D2.5

Schedule

A1

B1

C1

D1.1

Schedule

D1.2

Schedule

D1.3

D1.4

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

Schedule

D2.5

Schedule

Schedule

Scheduler

(a) Before duplication

Worker1 Worker2 Worker3

A1

B1

C1

D1.1

D1.2

D1.3

D1.4

Schedule

Schedule

Schedule

D1.5

Schedule

Schedule

D2.1

D2.2

D2.3

D2.4

A2

B2

C2

Schedule

Schedule

Schedule

D2.5

Schedule

Schedule

E1.1

E1.2

E1.3

E1.4

E1.5

E2.1

E2.2

E2.3

E2.5

E2.4

stall

(b) Before duplication

stall

Figure 3.9: Execution plan for DOMORE before and after duplicating scheduler code to
worker threads.

44

1

v
o
i
d

s
c
h
e
d
u
l
e
r

(
)

{

2

i
t
e
r
n
u
m

=

0
;

3

t
h
r
e
a
d
I
D

=

g
e
t
T
i
d
(
)
;

4

f
o
r

(
i

=

0
;

i

<

N
;

i
+
+
)

{

5

s
t
a
r
t

=

A
[
i
]
;

6

e
n
d

=

B
[
i
]
;

7

f
o
r

(
j

=

s
t
a
r
t
;

j

<

e
n
d
;

j
+
+
)

{

8

a
d
d
r
_
s
e
t

=

c
o
m
p
u
t
e
A
d
d
r
(
i
t
e
r
n
u
m
)
;

9

t
i
d

=

s
c
h
e
d
u
l
e
(
i
t
e
r
n
u
m
,

a
d
d
r
_
s
e
t
)
;

1
0

t
i
d
_
q
u
e
u
e

=

g
e
t
Q
u
e
u
e
(
t
i
d
)
;

1
1

s
c
h
e
d
u
l
e
r
S
y
n
c
(
i
t
e
r
n
u
m
,

t
i
d
,

t
i
d
_
q
u
e
u
e
,

a
d
d
r
_
s
e
t
)
;

1
2

i
f

(
t
h
r
e
a
d
I
D

=
=

t
i
d
)

1
3

w
o
r
k
e
r
(
i
t
e
r
n
u
m
,

&
C
[
j
]
)
;

1
4

i
t
e
r
n
u
m
+
+
;

}

}

}

1

v
o
i
d

s
c
h
e
d
u
l
e
r
S
y
n
c
(
i
t
e
r
n
u
m
,

t
i
d
,

q
u
e
u
e
,

a
d
d
r
_
s
e
t
)

{

2

t
h
r
e
a
d
I
D

=

g
e
t
T
i
d
(
)
;

3

w
h
i
l
e

(
a
d
d
r

=

g
e
t
_
n
e
x
t
(
a
d
d
r
_
s
e
t
)
)

{

4

d
e
p
T
i
d

=

g
e
t
T
i
d
(
s
h
a
d
o
w
[
t
h
r
e
a
d
I
D
]
[
a
d
d
r
]
)
;

5

d
e
p
I
t
e
r
N
u
m

=

g
e
t
I
t
e
r
N
u
m
(
s
h
a
d
o
w
[
t
h
r
e
a
d
I
D
]
[
a
d
d
r
]
)
;

6

i
f

(
d
e
p
T
i
d

!
=

t
i
d

&
&

d
e
p
I
t
e
r
N
u
m

!
=

-
1

&
&

t
h
r
e
a
d
I
D

=
=

t
i
d
)

{

7

p
r
o
d
u
c
e
(
d
e
p
T
i
d
,

q
u
e
u
e
)
;

8

p
r
o
d
u
c
e
(
d
e
p
I
t
e
r
N
u
m
,

q
u
e
u
e
)
;

}

9

s
h
a
d
o
w
[
t
h
r
e
a
d
I
D
]
[
a
d
d
r
]

=

(
t
i
d
,

i
t
e
r
n
u
m
)
;

}

1
0

i
f

(
t
h
r
e
a
d
I
D

=
=

t
i
d
)

{

1
1

p
r
o
d
u
c
e
(
N
O
_
S
Y
N
C
,

q
u
e
u
e
)
;

}

}

1

v
o
i
d

w
o
r
k
e
r
(
i
t
e
r
n
u
m
,

a
d
d
r
)

{

2

w
h
i
l
e

(
1
)

{

3

d
e
p
T
i
d

=

c
o
n
s
u
m
e
(
)
;

4

i
f

(
d
e
p
T
I
D

=
=

N
O
_
S
Y
N
C
)

{

5

d
o
W
o
r
k
(
i
t
e
r
n
u
m
,

a
d
d
r
)
;

6

r
e
t
u
r
n
;

}

7

e
l
s
e

8

w
o
r
k
e
r
S
y
n
c
(
d
e
p
T
i
d
)
;

}

}

1

v
o
i
d

d
o
W
o
r
k
(
i
t
e
r
n
u
m
,

a
d
d
r
)

{

2

t
i
d

=

g
e
t
T
i
d
(
)
;

3

u
p
d
a
t
e
(
a
d
d
r
)
;

4

l
a
t
e
s
t
F
i
n
i
s
h
e
d
[
t
i
d
]

=

i
t
e
r
n
u
m
;

}

1

v
o
i
d

w
o
r
k
e
r
S
y
n
c
(
d
e
p
T
i
d
)

{

2

i
t
e
r
n
u
m

=

c
o
n
s
u
m
e
(
)
;

3

w
h
i
l
e

(
l
a
t
e
s
t
F
i
n
i
s
h
e
d
[
d
e
p
T
i
d
]

<

i
t
e
r
n
u
m
)

4

s
l
e
e
p
(
)
;

}

S
c
h

e
d

u
le

r
 F

u
n

c
ti

o
n

S
c
h

e
d

u
le

r
S

y
n

c
 F

u
n

c
ti

o
n

W
o
r
k
e
r
 F

u
n

c
ti

o
n

w
o
r
k
e
r
S

y
n

c
 F

u
n

c
ti

o
n

d
o
W

o
r
k
 F

u
n

c
ti

o
n

Fi
gu

re
3.

10
:

O
pt

im
iz

at
io

n
fo

r
D

O
M

O
R

E
te

ch
ni

qu
e:

du
pl

ic
at

in
g

sc
he

du
le

r
co

de
on

al
lw

or
ke

r
th

re
ad

s
to

en
ab

le
D

O
M

O
R

E
in

S
P

E
C

-
C

R
O

S
S

fr
am

ew
or

k.

45

3.5 Related Work

3.5.1 Cross-invocation Parallelization

Loop fusion techniques [22, 76] aggregate small loop invocations into a large loop invoca-

tion, converting the problem of cross-invocation parallelization into the problem of cross-

iteration parallelization. The applicability of these techniques is limited to mainly affine

loops due to their reliance upon static dependence analysis. Since DOMORE is a run-

time technique, it is able to handle programs with input-dependent dynamic dependences.

Tseng [72] partitions iterations within the same loop invocation so that cross-invocation

dependences flow within the same working thread. Compared to DOMORE, this technique

is much more conservative. DOMORE allows dependences to manifest between threads

and synchronizations are enforced only when real conflicts are detected at runtime.

While manually parallelizing a sequential program, programmers can use annotations

provided by BOP [19] or TCC [25] systems to specify the potential concurrent code re-

gions. Those code regions will be speculatively executed in parallel at runtime. Both

techniques can be applied to exploit cross-invocation parallelism. However, they require

manual annotation or parallelization by programmers while DOMORE is a fully automatic

parallelization technique.

3.5.2 Synchronization Optimizations

Optimization techniques are proposed to improve the performance of parallel programs

with excessive synchronizations (e.g, locks, flags and barriers).

Fuzzy Barrier [24] specifies a synchronization range rather than a specific synchroniza-

tion point. Instead of waiting, threads can execute some instructions beyond the synchro-

nization point. Speculative Lock Elision [57] and speculative synchronizations [40] design

hardware units to allow threads to speculatively execute across synchronizations. Grace [4]

wraps code between fork and join points into transactions, removing barrier synchroniza-

46

tions at the join points and uses a software-only transactional memory system to detect

runtime conflicts and do recovery.

These techniques are designed to optimize already parallelized programs. DOMORE,

instead, takes a sequential program as input and automatically transforms it into a scal-

able parallel program. DOMORE’s runtime engine synchronizes two iterations only when

necessary, and thus, does not require further optimization for synchronizations.

3.5.3 Runtime Dependence Analysis

Within the category of runtime dependence analysis, there are techniques which perform

preprocessing of loops to identify dependences (i.e. scheduling based) and those which

identify dependences in parallel with execution of the loop (i.e. speculative techniques such

as transactional memory [27, 34, 67] and the LRPD family of tests [16, 62]). DOMORE is

a scheduling based technique.

Generally, scheduling techniques have a non-negligible fixed overhead that changes

very little based upon the number of data dependences in the program. For DOMORE, this

is the overhead introduced by the scheduler. Speculative techniques typically have a small

amount of fixed overhead with a highly variable amount of dynamic overhead based upon

the number of data dependences, which translate to misspeculation, in a program. There-

fore, for programs with a small number of dynamic dependences, speculative techniques

will typically see better performance improvements. However, for programs that have more

than some small number of dynamic dependences, the fixed scheduling overhead can prove

to be much less than the overhead of mis-speculation recovery.

DOMORE instruments the program to detect dynamic dependences between iterations

at runtime. A similar idea has been used to exploit parallelism by the Inspector-executor

(IE) model [53, 60, 65], which was first proposed by Saltz et al. IE consists of three phases:

inspection, scheduling, and execution. A complete dependence graph is built for all iter-

47

ations during the inspecting process. By topological sorting the dependence graph, each

iteration is assigned to a wavefront number for later scheduling. There are two important

differences between DOMORE and IE. First, DOMORE is able to exploit cross-invocation

parallelism while IE is a parallelization technique limited to iterations from the same in-

vocation. Second, IE’s inspection process is serialized with the scheduling process. DO-

MORE overlaps the inspecting and scheduling processes for efficiency.

Cilk [8] uses a work stealing scheduler to increase load balance among processors.

DOMORE can use a similar work stealing technique as an alternative scheduling policy.

Baskaran et al. [3] proposed a technique that uses an idea similar to IE to remove barriers

from automatically parallelized polyhedral code by creating a DAG of dependences at run-

time time and using it to self-schedule code. This technique can only be used for regular

affine codes whose dependences are known at compile-time while DOMORE is designed

for irregular codes with dependences that cannot be determined statically. However, the

DAG scheduling technique could also be integrated into DOMORE as another potential

scheduling choice.

Predicate-based techniques resolve dependences at runtime by checking simple con-

ditions. Moon et al. [43] inserts predicates before the potential parallel region. If the

predicates succeed, the parallel version is executed. If they fail, the sequential version will

be used instead. The same idea is used by Nicolau et al. [47] to remove synchronizations

between threads. This predicate-based dependence analysis can be used by DOMORE as

an efficient way to detect conflict between two iterations.

48

Chapter 4

Speculatively Exploiting

Cross-Invocation Parallelism

DOMORE provides a non-speculative solution to exploiting cross-invocation parallelism

using runtime information. However, DOMORE’s transformation requires the construction

of a scheduler thread. If the code duplication causes any side effect, DOMORE cannot be

applied. Figure 4.1 demonstrates such a loop nest. The cross-invocation dependence pat-

tern between loop invocations L1 1 and L1 0 is determined by the index array C. However,

array C itself is updated in Loop L2, preventing the inspector from getting the addresses

accessed in L1 without updating the values in array C. Among the candidate benchmark

programs, we observe that two of them cannot be parallelized by DOMORE because of

this limitation. Alternatively, since speculative solutions do not check the accessed mem-

ory addresses before scheduling and executing a loop iteration, they do not have the same

constraints and can achieve better applicability.

This motivates the idea of SPECCROSS, the first automatic parallelization technique

designed to aggressively exploit cross-invocation parallelism using high-confidence spec-

ulation. SPECCROSS parallelizes independent loops and replaces the barrier synchroniza-

tion between two loop invocations with its speculative counterpart. Unlike non-speculative

49

 for (t = 0; t < STEP; t++) {

L1: for (i = 0; i < M; i++) {

 A[i] = update_1(B[C[i]]);

 B[C[i]] = update_2(i);

 }

L2: for (k = 0; k < M; k++)

 C[D[k]] = update_3(k);

 }

t = 0

L1_0: for (i = 0; i < M; i++) {

 A[i] = update_1(B[C[i]]);

 B[C[i]] = update_2(i);

 }

L2_0: for (k = 0; k < M; k++)

 C[D[k]] = update_3(k);

t = 1

L1_1: for (i = 0; i < M; i++) {

 A[i] = update_1(B[C[i]]);

 B[C[i]] = update_2(i);

 }

L2_1: for (k = 0; k < M; k++)

 C[D[k]] = update_3(k);

 .

 .

 .

t = STEP

L1_STEP: for (i = 0; i < M; i++) {

 A[i] = update_1(B[C[i]]);

 B[C[i]] = update_2(i);

 }

L2_STEP: for (k = 0; k < M; k++)

 C[D[k]] = update_3(k);

(a) Original program

(b) After unrolling the outermost loop

Figure 4.1: Example program demonstrating the limitation of DOMORE transformation

barriers which pessimistically synchronize to enforce dependences, speculative techniques

allow threads to execute past barriers without stalling. Speculation allows programs to op-

timistically execute potentially dependent instructions and later check for misspeculation.

If misspeculation occurs, the program recovers using checkpointed non-speculative state.

Speculative barriers improve performance by synchronizing only on misspeculation.

An evaluation over eight benchmark applications on a 24-core machine shows that

SPECCROSS achieves a geomean speedup of 4.6× over the best sequential execution. This

compares favorably to a 1.3× speedup obtained by parallel execution without any cross-

invocation parallelization.

In the following sections, we first motivate software-only speculative barrier by com-

paring it with all other options including non-speculative barrier and hardware-based spec-

ulative barrier. Then details about design and implementation of SPECCROSS are given,

50

after which we describe how SPECCROSS is applied for automatic parallelization.

4.1 Motivation and Overview

4.1.1 Limitations of analysis-based parallelization

Figure 4.2(a) shows a code example before parallelization. In this example, loop L1 up-

dates array elements in array A while loop L2 reads the elements from array A and uses

the values to update array B. The whole process is repeated STEP times. Both L1 and L2

can be individually parallelized using DOALL [1]. However, dependences between L1 and

L2 prevent the outer loop from being parallelized. Ideally, programmers should only syn-

chronize iterations that depend on each other, without stalling the execution of independent

iterations. If static analysis [50, 72, 78] could prove that each thread accesses a separate

section of arrays A and B, no synchronization is necessary between two adjacent loop invo-

cations (Figure 4.2(b)). However, since arrays A and B are accessed in an irregular manner

(through index arrays C and D), static analysis cannot determine the dependence pattern

between L1 and L2. As a result, this naı̈ve parallelization may lead to incorrect runtime

behavior.

Alternatively, if static analysis could determine a dependence pattern between itera-

tions from two invocations, e.g., iteration 1 from L2 always depends on iteration 2 from

L1, then fine-grained synchronization can be used to synchronize only those iterations. But

this requires accurate analysis about the dependence pattern, which is in turn, limited by the

conservative nature of static analysis. Instead, barrier synchronization is used to globally

synchronize all threads (Figure 4.2(c)). Barrier synchronization conservatively assumes de-

pendences between any pair of iterations from two different loop invocations. All threads

are forced to stall at barriers after each parallel invocation, which greatly diminishes ef-

fective parallelism. Figure 4.3 shows the overhead introduced by barrier synchronizations

on eight programs parallelized with 8 and 24 threads. Barrier overhead refers to the total

51

sequential_func() {

 for (t = 0; t < STEP; t++) {

L1: for (i = 0; i < M; i++) {

 A[i] = calc_1(B[C[i]]);

 }

L2: for (j = 0; j < M; j++) {

 B[j] = calc_2(A[D[j]]);

 }

 }

}

naïve_parallel_func() {

 for (t = 0; t < STEP; t++) {

L1: for (i = TID; i < M; i = i + THREADNUM) {

 A[i] = calc_1(B[C[i]]);

 }

L2: for (j = TID; j < M; j = j + THREADNUM) {

 B[j] = calc_2(A[D[j]]);

 }

 }

}

barrier_parallel_func() {

 for (t = 0; t < STEP; t++) {

L1: for (i = TID; i < M; i = i + THREADNUM) {

 A[i] = calc_1(B[C[i]]);

 }

 pthread_barrier_wait(&barrier);

L2: for (j = TID; j < M; j = j + THREADNUM) {

 B[j] = calc_2(A[D[j]]);

 }

 pthread_barrier_wait(&barrier);

 }

}

transaction_parallel_func() {

 for (t = 0; t < STEP; t++) {

L1: for (i = TID; i < M; i = i + THREADNUM) {

 TX_begin();

 A[i] = calc_1(B[C[i]]);

 TX_end();

 }

L2: for (j = TID; j < M; j = j + THREADNUM) {

 TX_begin();

 B[j] = calc_2(A[D[j]]);

 TX_end();

 }

 }

}

(a) Sequential Program (b) Naïve Parallelization without Synchronizations

(c) Parallelization with Barrier Synchronization (d) Parallelization with Transactions

Figure 4.2: Example of parallelizing a program with different techniques

amount of time threads sit idle waiting for the slowest thread to reach the barrier. For most

of these programs, barrier overhead accounts for more than 30% of the parallel execution

time and increases with the number of threads. This overhead translates into an Amdahl’s

law limit of 3.33× max program speedup.

4.1.2 Speculative cross-invocation parallelization

The conservativeness of barrier synchronization prevents any cross-invocation paralleliza-

tion and significantly limits performance gain. Alternatively, the optimistic approach un-

locks potential opportunities for cross-invocation parallelization. It allows the threads to

execute across the invocation boundary under the assumption that the dependences rarely

manifest at runtime. Two major optimistic solutions have been proposed in literature so

far: one relies on transactional memory and the other uses speculative barriers.

52

 0

 20

 40

 60

 80

 100

8 24 8 24 8 24 8 24 8 24 8 24 8 24 8 24

P
er

ce
n

ta
g

e
(%

)

C
G

EQ
U

A
K

E

FD
TD

FLU
ID

A
N

IM
A

TE

JA
C
O

B
I

LLU
B
EN

C
H

LO
O

PD
EP

SY
M

M

Barrier overhead

Useful Execution

Figure 4.3: Overhead of barrier synchronizations for programs parallelized with 8 and 24
threads

Figure 4.2(d) demonstrates the basic idea of speculative parallelization using transac-

tional memory systems (TM) [27]. In this example, each inner loop iteration is treated as

a separate transaction. The commit algorithms proposed in Grace [4] and TCC [25] allow

transactions within the same inner loop invocation to commit out of order but guarantee

transactions from later invocations should commit after those from earlier ones. How-

ever, this approach assumes that every transaction may conflict with another transaction

and must be compared against each other for violation detection. It ignores the important

fact that for most programs which could benefit from cross-invocation parallelization, all

iterations from the same invocation are often guaranteed to be independent at compile time

and wrapping them in separate transactions introduces unnecessary runtime checking and

commit overhead. For example, in Figure 4.4, the execution of the first iteration of the

second loop invocation (annotated as 2.1) overlaps with that of iterations 2.2, 2.3, 2.4,

2.7 and 2.8. Even though they come from the same loop invocation, the TM framework

needs to check them for access violations before 2.1 can commit. More coarse-grained

transactions can reduce this checking overhead, but they also increase the possibility of

misspeculation between two transactions.

Speculative barrier synchronization, on the other hand, preserves the DOALL prop-

53

1.1

Worker

thread 1

1.2 1.3 1.4

1.5
1.6

2.3
2.4

2.1
2.2

3.3

3.43.1

3.5

3.2

T
im

e

Worker

thread 2

Worker

thread 3

Worker

thread 4

Figure 4.4: Execution plan for TM-style speculation: each block A.B stands for
the Bth iteration in the Ath loop invocation: iteration 2.1 overlaps with iterations
2.2, 2.3, 2.4, 2.7, 2.8, thus its memory accesses need to be compared with theirs even though
all these iterations come from the same loop invocation and are guaranteed to be indepen-
dent.

erty of each loop invocation while still allowing threads to execute past the barrier without

stalling. Since all existing speculative barrier synchronization techniques [30, 40, 45] re-

quire specialized hardware support, we refer to these techniques collectively as hardware-

based barrier speculation (HWBS).

The work of Martı́nez et al. [40] is representative of the HWBS techniques. In this

work, all worker threads start executing non-speculatively and are allowed to update the

shared memory concurrently. A worker thread becomes speculative once it exceeds the

barrier boundary while other worker threads are still executing before the barrier. When

a worker thread becomes speculative, it first executes a checkpoint instruction to back up

54

the architectural register values. During the speculative execution, values updated by the

speculative thread are buffered in the cache and corresponding cache lines are marked as

speculative. Later, access to a speculative cache line by other threads will trigger an access

conflict. When that happens, the speculatively executing thread is squashed and resteered

to the checkpoint. Compared to execution models supported by TM, HWBS distinguishes

speculative and non-speculative threads to avoid unnecessary value buffering and violation

checking. Non-speculative worker threads can commit their writes concurrently without

waiting. As a result, HWBS is regarded as a better solution for a program pattern, where

tasks in the same loop invocation are independent while tasks from different invocations

may depend on each other.

Despite its effectiveness, HWBS requires specialized hardware to detect misspeculation

and recover. Programs parallelized for commodity hardware cannot benefit from it. This

limitation motivates us to design and implement the first software-only speculative bar-

rier for SPECCROSS, which aims at generating scalable parallel programs for commodity

multicore machines.

4.1.3 Automatic cross-invocation parallelization with software-only spec-

ulative barrier

SPECCROSS is implemented to generate multi-threaded programs running on commodity

multi-core machines. SPECCROSS consists of three components: a parallelizing compiler,

a profiling library and a runtime library. The parallelizing compiler automatically detects

and parallelizes a code region with many loop invocations. The profiling library determines

how aggressively to speculate and is the key to achieving high confidence speculation. The

runtime library provides support for speculative execution, misspeculation detection, and

recovery.

SPECCROSS’s runtime library implements a software-only speculative barrier, which

works as a light-weight substitution for HWBS on commodity hardware. This runtime

55

library provides efficient misspeculation detection. In order to check for misspeculation,

all threads periodically send memory access signatures to a dedicated checker thread. A

memory access signature summarizes which bytes in memory have been accessed since the

last check. The checker thread uses signatures to verify that speculative execution respects

all memory dependences. If the checker thread detects misspeculation, it kills all the spec-

ulative threads and resumes execution from the last checkpoint. If two threads calculate

and send signatures while they are executing in code regions guaranteed to be independent,

these signatures will be safely skipped to avoid unnecessary checking overhead.

To avoid high penalty from misspeculation, SPECCROSS uses a profiler to determine

the speculative range, which controls how aggressively to speculate. The speculative range

is the distance between a thread with a high epoch number and thread with a low epoch

number. In SPECCROSS, an epoch number counts the number of barriers each thread

has passed. Non-speculative barriers ensure that all threads have the same epoch number,

whereas speculative barriers allow each thread’s epoch number to increase independently.

When the difference of two threads’ epoch numbers is zero, misspeculation is impossible,

since nothing is speculated. When the difference is high, misspeculation is more likely,

since more intervening memory accesses are speculated. The SPECCROSS runtime system

uses profiling data to compute a limit for the speculative range. When the program reaches

the limit, SPECCROSS stalls the thread with the higher epoch number until the thread with

the lower epoch number has caught up. Choosing the correct limit keeps misspeculation

rates low.

Figure 4.5 gives an overview of the SPECCROSS system. The SPECCROSS compiler

takes a sequential program as input and detects a SPECCROSS code region as the transfor-

mation target. A SPECCROSS code region is often an outermost loop composed of consec-

utive parallelizable inner loops. SPECCROSS parallelizes each independent inner loop and

then inserts SPECCROSS library function calls to enable cross-invocation parallelization.

At runtime, the original process spawns multiple worker threads and a checker thread for

56

Sequential Program

Detect Target Loop Nests

Parallelize Independent

 Loop Invocations

Insert Calls to SpecCross Library

Parallel Program

Worker
WorkerWorker

Worker Thread
Checker Thread

Checkpoint

 Process

original Process

fork

kill

misspeculation

C
o
m

p
il
e
 T

im
e

R
u

n
ti

m
e checking

request

In
p

u
t

O
u

tp
u

t

 Profile

Dependence

 Distance

configure

speculative range

Figure 4.5: Overview of SPECCROSS: At compile time, the SPECCROSS compiler detects
code regions composed of consecutive parallel loop invocations, parallelizes the code re-
gion and inserts SPECCROSS library functions to enable barrier speculation. At runtime,
the whole program is first executed speculatively without barriers. Once misspeculation
occurs, the checkpoint process is woken up. It kills the original child process and spawns
new worker threads. The worker threads will re-execute the misspeculated epochs with
non-speculative barriers.

misspeculation detection. Each worker thread executes its code section and sends requests

for misspeculation detection to the checker thread. The checker thread detects dependence

violations using access signatures computed by each worker thread. When the checker

thread detects a violation, it signals a separate checkpoint process for misspeculation re-

covery. The checkpoint process is periodically forked from the original process. Once

recovery is completed by squashing all speculative workers and restoring state to the last

checkpoint, misspeculated epochs are re-executed with non-speculative barriers.

57

Worker

thread 1

<1,1>

<1,2>

<2,1>

<2,2>

<3,1>

<3,2>

<4,1>

<4,2>

<1,1>

<1,2>

<2,1>

<2,2>

<3,1>

<3,2>

<4,1>

<4,2>

<1,1>

<2,1>

<2,2>

<3,1>

<4,1>

<4,2>

T
im

e

Figure 4.6: Timing diagram for SPECCROSS showing epoch and task numbers. A block
with label <A,B> indicates that the thread updates its epoch number to A and task number
to B when the task starts executing.

58

for each epoch i {

 for each task j in epoch i {

 update(epoch_number, task_number);

 other_epoch_task_nums = collect_other_threads();

 signature = do_task(i, j);

 store_signature(signature, SIGLOG);

 request = compose_request(other_epoch_task_nums);

 send_to_checker(request);

 }

}

send_to_checker(END_TOKEN);

while (true) {

 for each worker thread w {

 if (finished[w] != true) {

 request = consume_request();

 if (request == END_TOKEN)

 finished[w] = true;

 ret = check_request(request);

 if (ret == MISSPECULATION)

 send_signal(checkpoint_process, FAIL);

 }

 }

 for each worker thread w

 if (all finished[w] == true)

 return SUCCESS;

}

Worker thread :

Checker thread :

Figure 4.7: Pseudo-code for worker threads and checker thread

59

4.2 SPECCROSS Runtime System

4.2.1 Misspeculation Detection

The runtime system of SPECCROSS implements a software-only speculative barrier. Non-

speculative barriers guarantee all code before a barrier executes before any code after the

barrier. Speculative barriers violate this guarantee to achieve higher processor utilization

and thus higher performance. However, to maintain the same semantics as non-speculative

barriers, speculative barriers check for runtime dependence violations. Upon detecting a

violation, the runtime system triggers a misspeculation and rolls back to non-speculative

state using the most recent checkpoint.

SPECCROSS uses signature-based violation detection [12, 42, 68, 77], which avoids

the overhead of logging each memory access. A signature is an approximate summary of

memory accesses, providing a customizable tradeoff between signature size and false pos-

itive rates. SPECCROSS provides a general API for users to provide their own signature

generators. However, our experiments have shown very simple signatures are effective in

practice. By default, SPECCROSS summarizes the accesses by saving the minimum and

maximum addresses speculatively accessed. In this signature scheme, threads are indepen-

dent if their signatures do not overlap. Range-based signature schemes work well when

memory accesses are clustered. For random access patterns, a Bloom filter-based signature

offers lower false positive rates.

To determine when checking is needed, SPECCROSS assigns each thread an epoch num-

ber and a task number. An epoch is defined as the code region between two consecutive

speculative barriers, and the epoch number counts how many speculative barriers a thread

has passed. A task is the smallest unit of work that can be independently assigned to a

thread, and the task number counts how many tasks a thread has executed since the last

barrier. For many parallel programs, a task is one loop iteration. When a thread begins a

new task, it reads the current epoch and task numbers of all other threads and later com-

60

municates these numbers to the checker thread. The checker compares the task’s access

signature with all signatures from epochs earlier than the signature’s epoch, but at least as

recent as the epoch-task number pair recorded when the task began. Signatures from the

same epoch are safely ignored since they are not separated by a barrier. This avoids unnec-

essary comparisons between two tasks in the same epoch to reduce the runtime overhead

of the checker thread.

Figure 4.6 is a timing diagram for speculative barrier execution. In the timing diagram,

a task marked as <A,B> indicates that the thread updates its epoch number to A and task

number to B when the task starts executing. Epoch number-task number pairs are not

unique across threads, since each thread counts tasks independently. When worker thread

3 starts task <3,1>, the other worker threads are still executing task <2,2> in the second

epoch. The access signatures of these three tasks need to be checked against that of task

<3,1>. Before task <3,1> finishes, all other threads have already begun the fourth epoch.

As a result, the access signatures of task <4,1> in threads 1, 2, and 4 and <4,2> in thread

4 need to be checked against that of task <3,1>.

Figure 4.7 shows the order of operations for worker threads. At the beginning of a task,

the worker thread updates the epoch and task numbers, then records the current epoch and

task numbers for the other threads. Next, the worker executes the task. While executing

the task, the worker computes the memory access signature. Finally, the worker thread

saves its signature in a signature log and sends information to the checker thread so the

checker thread can detect misspeculation asynchronously. Figure 4.8 demonstrates the data

structure used for signature logging. Each worker threads has one thousand entries in the

signature log because checkpointing is operated every thousandth epochs. Worker threads

synchronize at the checkpoint and signature log entries can be re-used after checkpointing.

Each entry of the signature log contains a pointer to an array used for saving signatures

within a single epoch. The size of the array is initialized to store 1024 signatures and

expand if the number of tasks exceeds the array size. For 24 threads, this signature log

61

takes up to 200MB memory space.

To detect misspeculation, the checker thread needs the memory access signatures, the

worker thread’s epoch and task numbers and the epoch and task numbers of the other

worker threads when the task began. After sending the data to the checker thread, a worker

thread may stall to wait for other worker threads if continuing execution would exceed the

speculative range. In Figure 4.6, thread 4 stalls after executing task <4,2>. When thread

4 tries to start task <5,1>, it determines the distance to thread 3’s task <3,1> is three. In

the example, the speculative range limit is two, so thread 4 stalls until thread 3 finishes task

<3,1>. The example is simplified, since in real programs the speculative range is always

at least the number of threads and usually much larger.

There are two subtle memory consistency issues with the checking scheme described

above. First, the checking scheme assumes that updates to the epoch and task numbers

will be globally visible after all other stores in the previous task. If the memory consis-

tency model allows the architecture to reorder stores, this assumption will be false. In other

words, the checking methodology assumes a Total Store Order (TSO) architecture. Modern

TSO architectures include: x86, x86-64, SPARC, and the IBM zSeries [41]. For architec-

tures that do not support TSO, such as ARM and POWER, each thread should execute a

memory fence before updating the epoch and task numbers. The costs of memory fences

may be greater than the costs of speculative barriers when the number of tasks per epoch is

high.

Second, the epoch and task numbers must update together atomically. The easiest way

to accomplish this is to store these numbers as the high and low bits of a 64-bit word and

use an atomic write operation. For x86-64, 64-bit writes are atomic by default, so no special

handling is required.

62

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
Worker1 Log Worker2 Log

s1.1 s1.2 s1.3

s2.1

s1.1 s1.2 epoch1

epoch2

task1task2task3task1task2task3

epoch1

epoch2

taskM taskM

epochN epochN

Signature Log

log entries

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 4.8: Data structure for Signature Log

4.2.2 Checkpointing and Recovery

Periodically, the worker threads checkpoint so that their state can be restored after mis-

speculation. Infrequent checkpointing reduces the overhead of the runtime system, but

increases the cost of misspeculation. SPECCROSS’s profiling library enables very low rates

of misspeculation, thus infrequent checkpointing is efficient in practice. By default, SPEC-

CROSS checkpoints at every thousandth speculative barrier, though it can be re-configured

based on program characteristics. Checkpoints act as non-speculative barriers. All worker

threads synchronize at the checkpoint waiting for the checker thread to finish all checking

requests before the checkpoint, ensuring the checkpoint’s state is safe.

In SPECCROSS, checkpointing is divided into two parts. SPECCROSS first saves the

register state of each thread, and then saves the memory of the entire process. The C

standard library’s setjmp function is used to save the register state of each thread. After

each thread is saved, the process forks, duplicating the state of the entire process. The

newly forked child sleeps until the checker thread detects misspeculation. To restore a

63

checkpoint, the child spawns new worker threads, and each newly spawned thread executes

longjmp to inherit the program state of an original thread.

SPECCROSS explicitly allocates worker threads’ stacks to ensure they will not be deal-

located by fork. This is necessary, because the POSIX standard allows processes to

deallocate the stacks of associated threads after forking. Explicitly allocating the worker

threads’ stacks ensures that longjmp will restore a valid stack.

Experiments show recovering from misspeculation requires about one millisecond.

The execution time for recovering non-speculative state is dominated by the kill and

clone syscalls. The main thread invokes kill to asynchronously terminate misspecu-

lating threads and awaken the checkpoint process, then invokes clone (internally called

by pthread create) to create new worker threads. The number of syscalls scales lin-

early with the number of threads, but performance is not affected by the program’s memory

footprint or the size of speculative state.

Some epochs contain irreversible operations (for example I/O) which must be executed

non-speculatively. Before entering an irreversible epoch, all worker and checker threads

synchronize. Just like checkpointing, synchronizing all threads ensures non-speculative

execution. After exiting the irreversible region, the program checkpoints. Otherwise, later

misspeculation could cause the irreversible region to be repeated.

There are three conditions which trigger misspeculation. First, the checker thread trig-

gers misspeculation if it finds a pair of conflicting signatures. Second, misspeculation

occurs if any of the worker threads triggers a segmentation fault. Third, misspeculation

can be triggered in response to a user defined timeout. Timeouts are necessary, since spec-

ulative updates to the shared memory may change the exit condition of a loop and cause

infinite execution. After detecting misspeculation, the most recent checkpoint is restored.

After restoring the checkpoint, the misspeculated epochs are re-executed with all specula-

tive barriers replaced with their non-speculative counterparts.

64

4.2.3 Runtime Interface

This section describes the runtime interface exposed by SPECCROSS. Table 4.1 lists the

interface functions along with a short description of each function’s semantics. Figure 4.9

shows an instantiation of these functions in a parallel program which will serve as a running

example. In the example, each inner loop invocation is treated as an epoch, and each inner

loop iteration is considered a task. SPECCROSS provides the same interface functions for

both profiling and speculation purposes. As a result, these function calls only need to be

inserted once for both profiling run and speculative execution. Whether to do profiling

or speculation is decided by defining the environment variable MODE. Depending on the

current MODE, functions will either speculate or profile. The MODE value can also be set to

NON-SPECULATIVE. In non-speculative mode, most interface functions do nothing and

speculative barriers are replaced with non-speculative ones. This non-speculative mode is

enabled when re-executing the misspeculated epochs after recovering from misspeculation.

The details of SPECCROSS’s profiling and speculation functions are as follows:

65

O
pe

ra
tio

n
D

es
cr

ip
tio

n
Fu

nc
tio

ns
fo

r
B

ot
h

Pr
ofi

lin
g

an
d

Sp
ec

ul
at

io
n

in
it(

)
In

iti
al

iz
e

da
ta

st
ru

ct
ur

es
us

ed
fo

rb
ar

ri
er

pr
ofi

lin
g

or
sp

ec
ul

at
iv

e
ex

ec
ut

io
n.

If
in

sp
ec

ul
at

io
n

m
od

e,
ch

ec
kp

oi
nt

th
e

pr
og

ra
m

be
fo

re
be

gi
nn

in
g

th
e

pa
ra

lle
le

xe
cu

tio
n.

ex
it

ta
sk

(t
hr

ea
dI

D
)

R
ec

or
d

th
e

si
gn

at
ur

e
of

th
e

cu
rr

en
tt

as
k

in
gl

ob
al

si
gn

at
ur

e
lo

g.
In

cr
em

en
tt

he
ta

sk
nu

m
be

r.
If

in
pr

ofi
lin

g
m

od
e,

co
m

pa
re

th
e

si
gn

at
ur

e
of

cu
rr

en
tt

as
k

w
ith

si
gn

at
ur

es
of

ta
sk

s
be

lo
ng

in
g

to
pr

ev
io

us
ep

oc
hs

an
d

re
tu

rn
th

e
m

in
im

um
de

pe
nd

en
ce

di
st

an
ce

.
If

in
sp

ec
ul

at
io

n
m

od
e,

re
tu

rn
va

lu
e

is
0.

sp
ec

ac
ce

ss
(t

hr
ea

dI
D

,c
al

lb
ac

k,
ad

dr
lis

t)
A

pp
ly

ca
llb

ac
k

fu
nc

tio
n

to
ea

ch
ad

dr
es

s
in

th
e

ad
dr

lis
tt

o
co

m
pu

te
th

e
si

gn
at

ur
e.

en
te

r
ba

rr
ie

r(
th

re
ad

ID
,l

oo
p

na
m

e)
In

cr
em

en
tt

he
ep

oc
h

nu
m

be
r.

If
in

pr
ofi

lin
g

m
od

e,
ex

ec
ut

e
th

e
ac

tu
al

no
n-

sp
ec

ul
at

iv
e

ba
rr

ie
ro

pe
ra

tio
n.

If
in

sp
ec

ul
at

io
n

m
od

e,
ch

ec
kp

oi
nt

ac
co

rd
in

g
to

th
e

ch
ec

kp
oi

nt
in

g
fr

eq
ue

nc
y.

cr
ea

te
th

re
ad

s(
th

re
ad

s,
at

tr
s,

st
ar

t
ro

ut
in

es
,a

rg
s)

C
re

at
e

w
or

ke
rt

hr
ea

ds
an

d
if

in
sp

ec
ul

at
io

n
m

od
e,

cr
ea

te
a

ch
ec

ke
r

th
re

ad
fo

rv
io

la
tio

n
de

te
ct

io
n.

cl
ea

nu
p(

)
W

ai
tf

or
w

or
ke

rt
hr

ea
ds

an
d

ch
ec

ke
rt

hr
ea

d
to

fin
is

h.
Fr

ee
da

ta
st

ru
ct

ur
es

al
lo

ca
te

d
fo

rp
ro

fil
in

g
or

sp
ec

ul
at

io
n.

Fu
nc

tio
ns

fo
r

Sp
ec

ul
at

io
n

O
nl

y
en

te
r

ta
sk

(t
hr

ea
dI

D
,s

pe
c

di
st

an
ce

)
C

ol
le

ct
ep

oc
h

nu
m

be
r

an
d

ta
sk

nu
m

be
r

of
ot

he
rw

or
ke

rt
hr

ea
ds

an
d

se
nd

th
em

to
th

e
ch

ec
ke

rt
hr

ea
d.

T
he

pa
ra

m
et

er
sp

ec
di

st
an

ce
sp

ec
ifi

es
th

e
sp

ec
ul

at
io

n
di

st
an

ce
be

tw
ee

n
tw

o
ta

sk
s.

se
nd

en
d

to
ke

n(
th

re
ad

ID
)

Se
nd

an
E

N
D

TO
K

E
N

to
ch

ec
ke

rt
hr

ea
d

to
in

fo
rm

it
of

th
e

co
m

pl
et

io
n

of
a

w
or

ke
rt

hr
ea

d.
sy

nc
()

Sy
nc

hr
on

iz
e

al
lt

hr
ea

ds
be

fo
re

en
te

ri
ng

th
e

ne
xt

ep
oc

h.
ch

ec
kp

oi
nt

()
C

he
ck

po
in

tp
ro

gr
am

st
at

e
be

fo
re

en
te

ri
ng

th
e

ne
xt

ep
oc

h.

Ta
bl

e
4.

1:
In

te
rf

ac
e

fo
r

S
P

E
C

C
R

O
S

S
R

un
tim

e
L

ib
ra

ry

66

1. Initialization. The init function performs initialization by setting up bookkeep-

ing data structures, including allocating memory for signatures, the epoch number,

and the task number. In speculation mode, init checkpoints the program before

beginning parallel execution.

2. Thread Creation. The create threads function spawns new threads in both

profiling and speculation modes. Unlike pthreads, a SPECCROSS thread’s stack is

not deallocated after the thread exits. This implementation detail is vital for check-

pointing and recovery, because it allows a new thread to reclaim an old thread’s stack

using longjmp.

3. Barrier Entry. The enter barrier function increments the epoch number upon

entry into a new epoch. In profiling mode or non-speculative mode, it executes the

non-speculative barrier. The parameter loop name is set to be the name of the loop

header basic block so that profiling could compute a minimum dependence distance

for each independent loop. While in speculation mode, it skips barrier synchroniza-

tion. The enter barrier function is also responsible for periodically checkpoint-

ing speculative state.

4. Dependence Tracking. To compute the access signatures for each task, its mem-

ory accesses (loads and stores) are instrumented using the spec access function.

Loads and stores need to be instrumented if they belong to different epochs and may

alias with each other. For typical programs, only a few memory accesses require

instrumentation. The spec access function takes as input the memory location

referred in the memory access instruction and a pointer to the signature generator

function. Passing a pointer to the signature generator provides users with the flexi-

bility to choose customized functions that are specific to each parallel program. This

in turn enables SPECCROSS to achieve low conflict rate across programs with differ-

ing memory access patterns.

67

Main thread:

main() {

 init();

 create_threads(threads, attrs, SpecCross_parallel_func, args);

 cleanup();

}

Worker thread:

SpecCross_parallel_func(threadID) {

 for (t = 0; t < STEP; t++) {

 enter_barrier(threadID, "L1");

L1: for (i = threadID; i < M; i = i + THREADNUM) {

 enter_task(threadID, minimum_distance_L1);

 spec_access(threadID, callback, &A[i], &C[i]);

 A[i] = do_work(B[C[i]]);

 exit_task(threadID);

 }

 enter_barrier(threadID, "L2");

L2: for (j = threadID; j < M; j = j + THREADNUM) {

 enter_task(threadID, minimum_distance_L2);

 spec_access(threadID, callback, &C[D[j]], &A[j]);

 B[j] = do_work(A[D[j]]);

 exit_task(threadID);

 }

 }

 send_end_token(threadID);

}

Figure 4.9: Demonstration of using SPECCROSS runtime library in a parallel program

5. Task Initialization. Function enter task is inserted before each task. It is not

used in profiling mode. In speculation mode, it collects epoch number and task

number of worker threads other than the caller thread and sends the number pairs

to the checker thread. The value of spec distance specifies the speculation distance

between two tasks. This value is set according to the minimum distance returned by

the profiling run. The worker thread is stalled if it is executing beyond the minimum

distance compared to other worker threads.

6. Task Finalization. Once a task completes execution, exit task is called. In

profiling mode, this function logs the access signature of the task, compares this ac-

68

cess signature with signatures of tasks executed by other threads in previous epochs.

When detecting memory access conflicts, it records the dependence distance between

pairs of conflicting tasks. After recording the minimum dependence distances be-

tween all conflicting tasks, it increments the task number. In speculation mode, it

simply increments the task number of the caller thread.

7. Thread Completion. In speculation mode, after completing the execution of all

epochs, function send end token sends an END TOKEN to the checker thread. In

profiling mode, it does nothing.

8. Enforcing Synchronization. Two functions, sync and checkpoint, can be in-

serted before any epoch to synchronize all threads or to do an extra checkpoint. This

is useful when a certain epoch is known to cause conflicts or contain irreversible op-

erations (e.g. I/O). Users can use sync to synchronize all threads before entering

this epoch and do an extra checkpoint operation before starting the execution of the

next epoch.

9. Speculation Finalization. Function cleanup is inserted at the end of the program

which waits for worker threads and checker thread to exit and then frees memory

allocated for profiling or speculation.

4.3 SPECCROSS Parallelizing Compiler

SPECCROSS targets a code region composed of large amounts of parallel loop invoca-

tions. Often, such a code region is an outermost loop which contains multiple parallelizable

inner loops. To locate these code regions, we analyze all hot loops within the sequential

program. A lot loop accounts for at least 10% of the overall execution time during the pro-

filing run. A hot loop is a candidate for SPECCROSS if it satisfies three conditions: first, the

outermost loop itself cannot be successfully parallelized by any parallelization technique

69

implemented in the Liberty parallelizing compiler infrastructure; second, each of its in-

ner loop can be independently parallelized by a none-speculative and none partition-based

parallelization technique such as DOALL and LOCALWRITE; finally, the sequential code

between two inner loops can be privatized and duplicated among all worker threads.

After locating the candidate loops, SPECCROSS transformation is applied on each of

them. SPECCROSS transformation consists of two major steps: first, we parallelize the hot

loop by applying DOALL or LOCALWRITE to each inner loop and duplicate the sequen-

tial code among all worker threads; then SPECCROSS library function calls are inserted in

the parallel program to enable barrier speculation. Algorithm 5 demonstrates how these

function calls are inserted:

1. A code region between two consecutive enter barrier functions is considered

as an epoch. For simplicity, each inner loop invocation is usually treated as an epoch.

As a result, enter barrier functions are inserted at the beginning of each inner

loop’s preheader basic block.

2. Function enter task marks the beginning of each task. Since an inner loop itera-

tion is usually treated as a separate task, enter task functions are inserted at the

beginning of each inner loop’s header.

3. Function exit task is invoked at the end of each task. In other words, it is invoked

before the execution exits an inner loop iteration or before the execution enters an-

other inner loop iteration. Algorithm 5 (line 18-36) goes through each basic block

in an inner loop, checking its terminator instruction. If a terminator instruction is an

unconditional branch which either exits the loop or branches back to the header of

the loop, an exit task call is inserted right before the terminator instruction. If the

terminator instruction is a conditional branch instruction and (1) if one of its targets is

a basic block outside the loop and the other is the loop header, an exit task func-

tion is also inserted before the terminator instruction; (2) if one target is a basic block

70

outside the loop and the other is a basic block within the loop except the loop header,

the exit task function is invoked only when the execution exits the loop; (3) if

one target is the header of the loop and the other is some other basic block within the

loop, an exit task function is invoked only when the execution branches back to

the loop header.

4. Function spec access is used to calculate the access signature for each task. It

is inserted before each memory operation (store or load) that is involved in a cross-

invocation dependence (line 40-49).

71

Algorithm 5: Pseudo-code for SPECCROSS Library Function Calls Insertion
1: Input ParallelLoops: Doallable or Localwritable loops in a SPECCROSS code region
2: Input CrossInvocationDeps: cross-invocation dependences
3: for all Loop l ∈ ParallelLoops do
4: blocks = getBasicBlocks(l)
5: // get the loop preheader and header
6: preheader = getLoopPreheader(l)
7: header = getLoopHeader(l)
8: // get the loop exit basic blocks
9: loopExits = getLoopExitBlocks(l)

10: // get the basic blocks containing the loop backedge
11: backEdgeBlocks = getBackEdgeBlocks(l)
12: // insert enter barrier
13: insertP t = BeginningOfBlock(preheader);
14: insertEnterBarrier(insertP t);
15: // insert enter task
16: insertP t = BeginningOfBlock(header);
17: insertEnterTask(insertP t);
18: // insert exit task
19: for all basic block block ∈ blocks do
20: termInst = getTerminatorInst(block)
21: inertP t = Before(termInst);
22: if block ∈ loopExits then
23: if isUnconditional(termInst) ‖ block ∈ backEdgeBlocks then
24: insertExitTask(insertP t);
25: else
26: insertInvokeExitTaskWhenExitTaken(insertP t);
27: end if
28: else if block ∈ backEdgeBlocks then
29: if isUnconditional(termInst) then
30: insertExitTask(insertP t);
31: else
32: insertInvokeExitTaskWhenBackEdgeTaken(insertP t);
33: end if
34: end if
35: end for
36: end for
37: // insert spec access
38: for all Dependence dep ∈ CrossInvocationDeps do
39: srcInst = getSrcInstruction(dep);
40: dstInst = getDstinstruction(dep);
41: srcAddress = getAddress(srcInst);
42: dstAddress = getAddress(dstInst);
43: insertP t = Before(srcInst);
44: insertSpecAccess(insertP t);
45: insertP t = Before(dstinst);
46: insertSpecAccess(insertpt);
47: end for

72

4.4 SPECCROSS Profiling

SPECCROSS provides a profiling API to determine whether speculation is profitable or not.

In order to detect dependences, the signature of each task is compared with signatures of

tasks belonging to earlier epochs. After dependences are detected between two tasks, the

profiling function records the dependence distance between them. Dependence distance is

defined as the number of tasks between two conflicting tasks. After profiling, a minimum

dependence distance is determined. If the minimum dependence distance is smaller than a

threshold value, speculation will not be done. By default, the threshold value is set to be

equal to the number of worker threads.

If the dependence distance is large, it means the program has an access pattern suit-

able for barrier speculation. To reduce the possibility of misspeculation, the minimum

dependence distance is passed as an input parameter to the speculation runtime library. At

runtime, the leading thread stalls if it executes beyond this distance.

4.5 Related Work

4.5.1 Barrier Removal Techniques

Barrier synchronization is often inserted in parallel applications conservatively. Some bar-

riers can be removed using static analysis if there is no cross-thread data flow. Several

barrier removal techniques are based on disproving cross-thread dependences [50, 72, 78].

Other techniques restructure code to avoid the need for barrier synchronization. Zhao et

al. [79] transform an inner DOALL loop to an outer DOALL loop in order to remove bar-

riers between two consecutive parallel loop invocations. Ferrero et al. [22] aggregate small

parallel loops into large ones for the same purpose. All these barrier removal techniques

rely on static analysis to remove barriers. Compared to them, SPECCROSS is not limited

by the conservativeness of static analysis. These approaches are complementary to SPEC-

73

CROSS, since SPECCROSS can be applied on code that has already been optimized using

static barrier removal techniques.

Some techniques speculatively remove barriers using specialized hardware. Nagarajan

and Gupta [45] speculatively execute parallel programs past barriers and detect conflicts

by re-designing the Itanium processor’s Advanced Load Address Table (ALAT) hardware.

Martı́nez and Torrellas [40] apply thread level speculation [49, 70] to speculatively remove

barriers. A speculative synchronization unit (SSU) is designed to detect conflict and recover

from misspeculation at runtime. ECMon [44] exposes cache events to software so that

barrier speculation could efficiently detect violations at runtime. These techniques are

not limited by complicated dependence patterns; however, they require special hardware

support. By contrast, SPECCROSS is a software-based technique that runs on existing

multi-core machines.

4.5.2 Alternative Synchronizations

The Fuzzy Barrier [24] specifies a synchronization range rather than a specific synchroniza-

tion point. However, it also relies on the static analysis to identify instructions that can be

safely executed while a thread is waiting for other threads to reach the barrier. Fuzzy barri-

ers cannot reduce the number of barriers; it can only reschedule barriers for more efficient

execution.

4.5.3 Transactional Memory Supported Barrier-free Parallelization

Transactional Memory (TM) [27] was first introduced as a hardware technique providing a

way to implement lock-free data structures and operations. The idea was later implemented

as a software-only construct [67]. The key idea behind TM is to make a sequence of mem-

ory reads and writes appear as a single transaction; all intermediate steps are hidden from

the rest of the program. A log of all memory accesses is kept during the transaction. If a

transaction reads memory that has been altered between the start and end of the transac-

74

tion, execution of the transaction is restarted. This continues until the transaction is able

to complete successfully, and its changes are committed to memory. Original TM systems

do not support inter-loop speculation since it does not enforce the commit order between

transactions from different loop invocations. Grace [4] and TCC [25] extend existing TM

systems to support inter-loop speculation. Grace automatically wraps code between fork

and join points into transactions, removing barrier synchronizations at the join points. Each

transaction commits according to its order in the sequential version of code. TCC [25]

relies on programmers to wrap concurrent tasks into transactions. It requires special hard-

ware support for violation checking and transaction numbering, which ensures the correct

commit order of each transaction. As discussed in Section 4.1, both systems ignore the

important fact that large amounts of independent tasks do not need to be checked for ac-

cess violations. Instead, SPECCROSS is customized for this program pattern, thus it avoids

unnecessary overhead in checking and committing.

4.5.4 Load Balancing Techniques

Work stealing techniques, implemented in many parallel subsystems like Cilk [8], Intel

TBB [63], and X10 [13], balance load amongst parallel threads by allowing one thread to

steal work from another thread’s work queue. Balancing workloads in turn reduces the im-

pact of barrier synchronization on program performance. However, existing work stealing

implementations only allow workers to steal work from the same epoch at any given time.

This is because these implementations do not leverage knowledge about program depen-

dences to steal work from multiple epochs (across barriers) at the same time. As a result,

programs that have a limited number of tasks in a single epoch (for example, CG in our eval-

uation) do not benefit from work stealing techniques. In contrast, SPECCROSS allows tasks

from different epochs to overlap and achieve better load balance across epochs. Other load

balancing techniques such as guided-self scheduling [52], affinity-based scheduling [39],

and trapezoidal scheduling [73] also suffer from the same limitations as the work stealing

75

techniques.

Synchronization via scheduling [5] is a method of load balancing that employs static

and dynamic analyses to capture runtime dependences between tasks in a task graph. The

task graph is exposed to a scheduler that schedules the tasks onto threads in a way so as to

minimize idling times of each thread. While being able to handle more general dependence

patterns than working stealing, this technique still does not overlap tasks from successive

executions of the same task graph in parallel.

4.5.5 Multi-threaded Program Checkpointing

Several prior techniques implement multithread program checkpointing. Dieter et al. [18]

propose a user-level checkpoint system for multi-threaded applications. Carothers et al. [11]

implement a system call to transparently checkpoint multi-threaded applications. SPEC-

CROSS checkpoints the multi-threaded programs for misspeculation recovery. These check-

pointing techniques could be merged into the SPECCROSS framework.

4.5.6 Dependence Distance Analysis

If dependence distance manifests in a regular manner, programs can still be parallelized by

assigning dependent tasks to the same worker thread. Dependence distance analysis [71]

has been proposed to achieve that purpose. As other static analysis, these techniques tend to

be conservative and cannot handle irregular dependence patterns. The SPECCROSS takes

advantage of profiling information to get a minimum distance and speculates it remains

with other input set to further reduce the misspeculation rate. Since the information comes

from profiling, it applies to programs with irregular dependence patterns as well.

76

Chapter 5

Evaluation

The implementations of DOMORE and SPECCROSS systems are evaluated on a single

platform: a 24-core shared memory machine which has four Intel 6-core Xeon X7460

processors running at 2.66 GHz with 24 GB of memory. Its operating system is 64-bit

Ubuntu 9.10. The sequential baseline compilations are performed by the clang compiler

version 3.0 at optimization level three.

The benchmark programs evaluated in this dissertation are from seven benchmark suites.

Table 5.1 gives their details. These programs were automatically chosen because they share

two characteristics: their performance dominating loop nests cannot be successfully paral-

lelized by parallelization techniques implemented in Liberty parallelizing compiler infras-

tructure, including DOALL, LOCALWRITE, DSWP and PS-DSWP. Meanwhile, although

these loop nests contain parallelizable inner loops, inner loop parallelization introduces

frequent barrier synchronizations limiting overall scalability. These two characteristics are

required for DOMORE and SPECCROSS to have a potential benefit.

In section 5.1 and 5.2, we demonstrate the performance improvement achieved by DO-

MORE and SPECCROSS and discuss the applicability and scalability of both techniques.

In section 5.3, we compare DOMORE and SPECCROSS with previous works, showing that

through exploiting additional cross-invocation parallelism, DOMORE and SPECCROSS are

77

Source Benchmark Function % of execution Parallelization DOMORE SPECCROSS
suite program time plan for inner loop applicable applicable

PolyBench [54]
FDTD main 100 DOALL × X
JACOBI main 100 DOALL × X
SYMM main 100 DOALL X X

OMPBench [20] LOOPDEP main 100 DOALL × X

Parsec [6]
BLACKSCHOLES bs thread 99 Spec-DOALL X ×
FLUIDANIMATE-1 ComputeForce 50.2 LOCALWRITE X ×
FLUIDANIMATE-2 main 100 LOCALWRITE × X

SpecFP [69] EQUAKE main 100 DOALL × X
LLVMBENCH [37] LLUBENCH main 50.0 DOALL X X
NAS [48] CG sparse 12.2 LOCALWRITE X X
MineBench [46] ECLAT process inverti 24.5 Spec-DOALL X ×

Table 5.1: Details about evaluated benchmark programs.

Benchmark Program % of Scheduler/Worker
BLACKSCHOLES 4.5
CG 4.1
ECLAT 12.5
FLUIDANIMATE-1 21.5
LLUBENCH 1.7
SYMM 1.5

Table 5.2: Scheduler/worker ratio for benchmarks

able to achieve better or at least competitive performance results than previous works. Then

in section 5.4, we provide a detailed case study of program FLUIDANIMATE, whose per-

formance improvement requires the integration of both DOMORE and SPECCROSS tech-

niques. Finally, a discussion is given in section 5.5 about the next step to be done to further

improve the applicability of the Liberty parallelizing compiler infrastructure.

5.1 DOMORE Performance Evaluation

Six programs are chosen to evaluate the DOMORE system (as shown in Table 5.1). We

compare the performance of inner loop parallelization with pthread barriers [9] with the

performance of outer loop parallelization with DOMORE. Figure 5.1 shows the evaluation

results for the outer loop speedup relative to the best sequential execution. For the orig-

inal parallelized version with pthread barriers between inner loop invocations, none scale

beyond a small number of cores. DOMORE shows scalable performance improvements

78

for CG, LLUBENCHMARK and BLACKSCHOLES because their scheduler threads are

quite small compared to the worker threads (< 5% runtime, as shown in Table 5.3) and

processor utilization is high. ECLAT, FLUIDANIMATE and SYMM do not show as much

improvement. The following paragraphs provide details about those programs.

ECLAT from MineBench [46] is a data mining program using a vertical database for-

mat. The target loop is a two-level nested-loop. The outer loop traverses a graph of nodes.

The inner loop traverses a list of items in each node and appends each item to corresponding

list(s) in the database based upon on the item’s transaction number. Since two items might

share the same transaction number, and the transaction number is calculated non-linearly,

static analysis cannot determine the dependence pattern. Profiling information shows that

there is no dynamic dependence in the inner loop. For the outer loop, the same dependence

manifests in each iteration (99%). As a result, Spec-DOALL is chosen to parallelize the

inner loop and a barrier is inserted after each invocation. Spec-DOALL achieves its peak

speedup at 3 cores. For DOMORE, a relatively large scheduler thread (12.5% scheduler/-

worker ratio) limits scalability. As we can see in Figure 5.1, DOMORE achieves scalable

performance up to 5 processors. After that, the sequential code becomes the bottleneck and

no more speedup is achieved.

FLUIDANIMATE from the PARSEC [6] benchmark suite uses an extension of the

Smoothed Particle Hydrodynamics (SPH) method to simulate an incompressible fluid for

interactive animation purposes. The target loop is a six-level nested-loop. The outer loop

goes through each particle while an inner loop goes through the nearest neighbors of that

particle. The inner loop calculates influences between the particle and its neighbors and

updates all of their statuses. One particle can be neighbor to multiple particles, resulting

in statically unanalyzable update patterns. LOCALWRITE chooses to parallelize the in-

ner loop to attempt to reduce some of the computational redundancy. Performance results

show that parallelizing the inner loop does not provide any performance gain. Redundant

computation and barrier synchronizations negate the benefits of parallelism. DOMORE is

79

applied to the outermost loop, generating a parallel program with the redundant code in the

scheduler thread and each inner loop iteration is scheduled only to the appropriate owner

thread. Although DOMORE reduces the overhead of redundant computation, partition-

ing the redundant code to the scheduler increases the size of the sequential region, which

becomes the major factor limiting the scalability in this case.

SYMM from the PolyBench [54] suite demonstrates the capabilities of a very simple

multi-grid solver in computing a three dimensional potential field. The target loop is a

three-level nested-loop. DOALL applicable to the second level inner loop. As shown

in the results, even after DOMORE optimization, the scalability of SYMM is poor. The

major cause is that the execution time of each inner loop invocation only takes about 4,000

clock cycles. With increasing number of threads, the overhead involved in multi-threading

outweighs all performance gain.

The performance of DOMORE is limited by the sequential scheduler thread at large

thread counts. To address this problem, we could parallelize the computeAddr function.

The algorithm proposed in [36] can be adopted to achieve that purpose. This will be the

future work.

80

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(a) BLACKSCHOLES

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(b) CG

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(c) ECLAT

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(d) FLUIDANIMATE-1

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(e) LLUBENCH

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

DOMORE

Pthread Barrier

(f) SYMM

Figure 5.1: Performance comparison between code parallelized with pthread barrier and
DOMORE.

81

5.2 SPECCROSS Performance Evaluation

Eight programs are evaluated for SPECCROSS. As DOMORE evaluation, We compared

two parallel versions of these programs: (a) pthreads-based [9] parallelization with non-

speculative pthread barriers; and (b) pthreads-based parallelization with SPECCROSS.

SPECCROSS is used with a pthreads-based implementation, since the recovery mechanism

relies on the properties of POSIX threads. For the performance measurements, the best

sequential execution of the parallelized loops is considered the baseline.

For most of these programs, the parallelized loops account for more than 90% of the

execution time. When parallelizing using SPECCROSS, each loop iteration is regarded as a

separate task and the custom hash function used for calculating the access signatures keeps

track of the range of memory locations (or array indices) accessed by each task. This choice

is guided by the predominantly array-based accesses present in these programs. Each par-

allel program is first instrumented using the profiling functions provided by SPECCROSS.

The profiling step recommends a minimum dependence distance value for use in spec-

ulative barrier execution. All benchmark programs have multiple input sets. We chose

the training input set for profiling run. Table 5.3 shows the minimum dependence distance

results for the evaluated programs using two different input sets (a training input set for pro-

filing run and another reference input set for performance run). Four of the eight programs

had runtime dependences detected by profiling functions while the rest do not. The mini-

mum dependence distance between two inner loops in program FLUIDANIMATE varies a

lot. Some of the loops do not cause any runtime access conflicts while others have a very

small minimum dependence distance. For the latter case, SPECCROSS basically serves as

a non-speculative barrier. The results of the profiling run were passed to speculative barrier

execution which used the minimum dependence distance value to avoid misspeculation.

Figure 5.2 compares the speedups achieved by the parallelized loops using pthread

barriers and SPECCROSS. It demonstrates the benefits of reducing the overhead in barrier

synchronization. The best sequential execution time of the parallelized loops is considered

82

of Minimum
Benchmark # of tasks # of epochs checking Distance

requests train ref
CG 63000 7000 40609 * *
EQUAKE 66000 3000 55181 * *
FDTD 200600 1200 96180 599 799
FLUIDANIMATE-2 1379510 1488 295000 54 / * 54 / *
JACOBI 99400 1000 67163 497 997
LLUBENCH 110000 2000 81965 * *
LOOPDEP 245000 1000 98251 500 800
SYMM 500500 2000 369731 * *

Table 5.3: Details of benchmark programs. * indicates no access conflicts are detected in
profiling.

as the baseline. The original execution with pthread barriers does not scale well beyond a

small number of cores. Among the eight programs in barriers, CG performs the worst since

each of its epochs only contains nine iterations. With higher thread counts, the overhead

caused by barriers increases without any gains in parallelism.

The speculative barrier solution provided by SPECCROSS enables all programs to scale

to higher thread counts when compared to an equivalent execution with pthread barriers.

At lower thread counts, pthread barrier implementation for some programs yields better

performance than SPECCROSS. This happens for two reasons: (a) SPECCROSS requires an

extra thread for violation detection. At lower thread counts, one fewer thread is available

to do actual work which is significant when total number of threads is small; (b) the over-

head of barrier synchronization increases with increasing thread counts. As a result, the

effectiveness of SPECCROSS is more pronounced at higher thread counts.

In our evaluation, the program state is checkpointed once every 1000 epochs. For the

eight programs evaluated, profiling results are accurate enough to result in high-confidence

speculation and no misspeculation is recorded at runtime. As a result, the operations that

contribute to major runtime overheads include computing access signatures, sending check-

ing requests, detecting dependence violation, and checkpointing.

Table 5.3 shows for each program, the number of tasks executed, the number of epochs,

83

and the number of checking requests for execution with 24 threads. The performance

results (Figure 5.2) indicate that with higher thread counts, the checker thread may become

the bottleneck. In particular, the performance of SPECCROSS scales up to 18 threads and

either flattens or decreases after that. The effects of checker thread in limiting performance

can be illustrated by considering the example of LLUBENCH. The number of checking

requests for LLUBENCH increases by 3.3× when going from 8 threads to 24 threads,

with the resulting performance improvements being minimal. Parallelizing dependence

violation detection in the checker thread is one option to solve this problem and is part of

future work.

Checkpointing is much more expensive than signature calculation or checking opera-

tions and hence is done infrequently. For benchmark programs evaluated, there are less

than 10 checkpoints, since SPECCROSS by default checkpoints every 1000 epochs. How-

ever, frequency of checkpointing can be reconfigured depending on desired performance

characteristics. As a demonstration of the impact of checkpointing on performance, Fig-

ure 5.3 shows the geomean speedup results of increasing the number of checkpoints from

2 to 100, for all of the eight benchmark programs.

In order to evaluate the overhead of the whole recovery process, we randomly triggered

a misspeculation during the speculative parallel execution. Evaluation results are shown in

Figure 5.3. As can be seen, more checkpoints increases the overhead at runtime, however

also reduce the time spent in re-execution once misspeculation happens. Finding an optimal

configuration for them is important and will be part of the future work.

84

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(a) CG

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(b) EQUAKE

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(c) FDTD

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

Pr
og

ra
m

 S
pe

ed
up

Number of Threads

Pthread Barrier

SpecCross

(d) FLUIDANIMATE-2

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(e) JACOBI

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(f) LLUBENCH

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
oo

p
Sp

ee
du

p

Number of Threads

SpecCross

Pthread Barrier

(g) LOOPDEP

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

 2 4 6 8 10 12 14 16 18 20 22 24

L
o
o
p
 S

p
ee

d
u
p

Number of Threads

SpecCross

Pthread Barrier

(h) SYMM

Figure 5.2: Performance comparison between code parallelized with pthread barrier and
SPECCROSS.

85

0x

1x

2x

3x

4x

5x

6x

7x

8x

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

G
eo

m
ea

n
L

oo
p

Sp
ee

du
p

Number of Checkpointing

no misspec.

with misspec.

Figure 5.3: Loop speedup with and without misspeculation for execution with 24 threads:
the number of checkpoints varies from 2 to 100. A misspeculation is randomly triggered
during the speculative execution. With more checkpoints, overhead in checkpointing in-
creases; however overhead in re-execution after misspeculation reduces.

86

5.3 Comparison of DOMORE, SPECCROSS and Previous

Work

In this section, we compare the performance improvement achieved by DOMORE and

SPECCROSS with the best performance improvement reported in previous work [6, 10, 20,

23, 29, 58]. Figure 5.4 shows the comparison results. For most programs evaluated, DO-

MORE and SPECCROSS achieve better, or at least competitive performance improvement.

Programs JACOBI, FDTD and SYMMwere originally designed for Polyhedral optimiza-

tions [23]. They can be automatically parallelized by Polly optimizer in LLVM compiler

infrastructure. Polly uses an abstract mathematical representation to analyze the memory

access pattern of a program and automatically exploits thread-level and SIMD parallelism.

Polly successfully achieves promising speedup for 16 out of 30 Polyhedral benchmark

programs. However, it fails to extract enough parallelism for programs JACOBI, FDTD

or SYMM due to the irregular access patterns of the outermost loops. Compared to Polly,

SPECCROSS applies DOALL to the inner loops and exploits cross-invocation parallelism

using speculative barriers, and therefore achieves much better performance.

Raman et al. manually parallelized BLACKSCHOLES using pipeline style paralleliza-

tion with a multi-threaded transactional memory runtime system (SMTX [58]). They report

quite scalable performance improvement on BLACKSCHOLES. DOMORE is limited by the

runtime overhead at large thread counts. Potential performance improvement is possible if

the scheduler thread could be parallelized.

CG and ECLAT were manually parallelized by DSWP+ technique [29]. DSWP+ per-

forms as a manual equivalent of DOMORE parallelization. As shown in the graph, DO-

MORE is able to achieve close performance gain as the manual parallelization.

Both LOOPDEP and FLUIDANMIATE have a parallel implementation in their bench-

mark suites. We compare the best performance results of their parallel versions with the

best performance achieved by DOMORE and SPECCROSS. Helix parallelized EQUAKE

87

 0

 5

 10

 15

 20

B
LA

C
K

SC
H

O
LES

C
G

EC
LA

T

EQ
U

A
K

E

FD
TD

FLU
ID

A
N

IM
A

TE

JA
C
O

B
I

LLU
B
EN

C
H

LO
O

PD
EP

SY
M

M

S
p
ee

d
u
p
 (

x
)

This thesis

 Previous work

Figure 5.4: Best performance achieved by this thesis work and previous work

and its performance gain is presented in [10]. We compare the best performance re-

ported with that achieved by DOMORE and SPECCROSS. All these three programs are

parallelized in a similar way: each inner loop within the outermost loop is independently

parallelized by DOALL or DOACROSS and non-speculative barrier synchronizations are

inserted between inner loops to respect cross-invocation dependences. Those synchroniza-

tions limit the scalability of the performance. More details about FLUIDANMIATE will be

given in section 5.4.

We cannot find any existing parallelization result for LLUBENCH, so in Figure 5.4,

best performance result of DOMORE and SPECCROSS is compared against the best per-

formance achieved by inner loop DOALL with pthread barrier synchronizations. These

comparison results again demonstrate the benefits from exploiting cross-invocation paral-

lelism.

5.4 Case Study: FLUIDANIMATE

Figure 5.5 shows the simplified code for the outermost loop in program FLUIDANIMATE.

This outermost loop cannot be parallelized successfully by parallelization techniques sup-

88

 for (int i = 0; i < framenum; i++) {

L1: ClearParticles();

L2: RebuildGrid();

L3: InitDensitiesAndForces();

L4: ComputeDensities();

L5: ComputeDensities2();

L6: ComputeForces();

L7: ProcessCollisions();

L8: AdvanceParticles();

 }

Figure 5.5: Outermost loop in FLUIDANIMATE

ported in the Liberty parallelizing compiler infrastructure due to frequent manifesting cross-

iteration dependences and irregular memory access patterns. The outermost loop is com-

posed of eight consecutive inner loops. Inner loop L4 and L6 can be parallelized by

DOANY, LOCALWRITE or DOMORE, while all the other inner loops can be parallelized

by DOALL. As a result, a variety of parallelization plans can be applied.

The manually parallelized version of FLUIDANMIATE in Parsec benchmark suite di-

vides the shared data grids among threads. It applies DOANY to inner loop L4 and L6

and DOALL to the other inner loops. Pthread barriers are inserted between two inner loop

invocations to respect cross-invocation dependences. To protect the shared data structure,

DOANY applies locks to guarantee atomic accesses. Meanwhile, to avoid over synchro-

nization caused by locks, it allocates an array of locks instead of using a single global

lock. Each lock protects a section of the shared data structure. Threads accessing different

sections of the shared data do not have to synchronize at the same lock. Figure 5.6 demon-

strates the performance improvement of the manual parallelization. Since the manual par-

allelization only supports thread number that is to the power of 2, only three performance

results are shown in the figure.

Other than DOANY, inner loops L4 and l6 can also be parallelized by LOCALWRITE

89

0x

1x

2x

3x

4x

5x

6x

 2 4 6 8 10 12 14 16 18 20 22 24

P
ro

g
ra

m
 S

p
ee

d
u

p

Number of Threads

LOCALWRITE+Barrier
LOCALWRITE+SpecCross

DOMORE+Barrier
DOMORE+SpecCross

MANUAL(DOANY+Barrier)

Figure 5.6: Performance improvement of FLUIDANIMATE using different techniques.

and DOMORE. We apply both of them and compare these two implementations with the

manual one. As shown in Figure 5.6, DOMORE + Barriers yields the best performance

among these three. DOMORE does not have the overhead in redundant computation or the

overhead in locking. With small number of threads, LOCALWRITE + Barriers performs

better than the manual parallelization, implying the overhead in redundant computation is

less than the overhead in locking. However, since the redundancy problem deteriorates

with increasing number of threads, the manual implementation scales better than the LO-

CALWRITE + Barrier one.

All these three parallelization implementations use pthread barriers between inner loops,

prohibiting potential parallelism across loop invocations. SPECCROSS can be applied to

further improve the performance. Figure 5.6 demonstrates the performance gain by us-

ing LOCALWRITE + SPECCROSS. LOCALWRITE + SPECCROSS is always better than

90

LOCALWRITE + Barriers because of the additional parallelism enabled by SPECCROSS.

However, LOCALWRITE + SPECCROSS does not perform as well as DOMORE + Bar-

rier. The benefits from cross-invocation parallelism is negated by the overhead in redundant

computation. This also explains why with large thread counts, LOCALWRITE + SPEC-

CROSS does not perform as well as the manual parallelization.

DOMORE is capable of reducing the redundancy execution and improving the scalabil-

ity of performance. However, SPECCROSS transformation does not support partition-based

parallelization technique such as DOMORE. To make SPECCROSS and DOMORE work

together to achieve better performance scalability, we modify the DOMORE code gener-

ation (section 3.4). Instead of having a separate scheduler thread, the scheduler code is

duplicated on each worker thread. This optimization works for FLUIDANIMATE because

the duplication of scheduler code does not cause any side effect. Figure 5.6 shows the

combiniation of SPECCROSS and DOMORE achieves the best performance among all.

Another interesting thing to notice is that compared to DOMORE with pthread barriers,

DOMORE with SPECCROSS does not yield much better performance gain. For high con-

fidence speculation, a speculative distance is applied to avoid conflict-prone speculation.

According to the profiling results, some of the loop invocations have very small speculative

range. In that case, speculative barriers basically serve as a non-speculative barrier and the

effect of SPECCROSS is limited.

5.5 Limitations of Current Parallelizing Compiler Infras-

tructure

In the previous sections, we’ve demonstrated the applicability and scalability of DOMORE

and SPECCROSS systems using ten programs. Besides these ten programs, DOMORE and

SPECCROSS evaluated many other programs. Some of those programs can be directly par-

allelized by DOALL, DOANY or PS-DSWP [32, 33, 55], so they are not good candidates

91

for DOMORE and SPECCROSS. Others (e.g., GROMACS and LBM in SpecBench [69])

can potentially benefit from DOMORE and SPECCROSS if the following limitations are

addressed.

SPECCROSS does not support speculative or partition-based inner loop parallelization.

For some programs, the inner loops have to be parallelized using Spec-DOALL, PS-DSWP

or DOMORE. To enable speculative parallelization, SPECCROSS runtime must check both

inter- and intra-invocation dependences of the inner loops. This is not a trivial extension.

The evaluation results already show that runtime violation checking may become the major

bottleneck at large thread counts. Checking both types of dependences will further increase

the workload of the checker thread and dramatically degrade the performance. Besides,

SPECCROSS calculates a signature to summarize the memory access pattern in a loop it-

eration. Considering the intra-invocation dependences adds extra work to the signature

calculation and increases the possibility of false positive. To address the first concern, one

possible solution is to parallelizing the checker thread. For the other concern, a better sig-

nature mapping function, which distinguishes the intra- and inter-invocation dependences,

will be essential to avoiding high runtime overhead or high false positive rate.

Supporting partition-based parallelization also adds various complexities. For exam-

ple, after partition, cross-invocation dependences may unevenly distributed among stages:

one stage never causes any runtime conflict while another stage causes frequent conflicts.

Since SPECCROSS sets one speculative range for each loop, the latter stage will limit the

potential parallelism within the former stage. Current SPECCROSS profiler does not un-

derstand code partitioning, and therefore cannot provide speculative range information per

partition. Meanwhile, PS-DSWP partitioner does not take the speculative range into con-

sideration either, thus cannot achieve an optimal partition for the programs. As a result,

SPECCROSS profiler must collaborate with the partitioner to achieve a balanced partition

without limiting too much potential parallelism.

92

Chapter 6

Conclusion and Future Direction

6.1 Conclusion

Exploiting the performance of multi-core processors requires scalable parallel programs.

Most automatic parallelization techniques parallelize iterations within the same loop in-

vocation and synchronize threads at the end of each parallel invocation. Unfortunately,

frequent synchronization limits the scalability of many software programs. In practice,

iterations in different invocations of a parallel loop are often independent. In order to ex-

ploit additional cross-invocation parallelism, this thesis work proposes two novel automatic

parallelization techniques. DOMORE and SPECCROSS synchronizes iterations using run-

time information, and can therefore adapt to dependence patterns manifested by particular

inputs. As a non-speculative technique, DOMORE is designed for programs with more

frequently manifesting cross-invocation dependences. SPECCROSS, on the other hand,

yields better performance when those dependences seldom manifest at runtime. Evalua-

tion demonstrates that among twenty programs from seven benchmark suites, DOMORE

can be automatically applied to parallelize six of them and achieves a geomean speedup

of 2.1× over codes without cross-invocation parallelization and 3.2× over the original se-

quential performance on 24 cores. SPECCROSS is found to be applicable to eight of the

93

programs and it achieves a geomean speedup of 4.6× over the best sequential execution,

which compares favorably to a 1.3× speedup obtained by parallel execution without any

cross-invocation parallelization.

6.2 Future Directions

Most existing automatic parallelization techniques focus on loop level parallelization and

ignore the potential parallelism across loop invocations. This limits the potential perfor-

mance scalability especially when there are many loop invocations causing frequent syn-

chronizations. A promising research direction is to extend the parallelization region beyond

the scope of a single loop invocation. This thesis work takes one step forward but there are

still numerous exciting avenues for future work.

Interesting research could be done in designing and implementing efficient and adaptive

runtime systems for region parallelization. A limitation of both the DOMORE and SPEC-

CROSS runtime systems is that they do not scale well enough with increasing number of

threads. The overhead in violation checking and iteration scheduling ultimately becomes

the performance bottleneck at high thread counts. One possible solution, as discussed

above, is to parallelizing the checker thread. Instead of assigning all checking tasks to a

single thread, multiple threads are used for checking concurrently. However, this optimiza-

tion brings about other questions such as how to optimally allocate threads to workers and

checkers. The optimal trade-off could vary significantly for different runtime environment.

An adaptive runtime system such as DoPE [59] could potentially be exploited to help the

parallel execution adjust to the actual runtime environment and to achieve more scalable

performance. Additionally, DOMORE and SPECCROSS have a lot of configurable param-

eters that are currently specified at compile time. The checkpointing frequency and the

speculative range are both set in advance using profiling information. However, profiling

information is not necessarily consistent with actual execution. Ideally, these parameters

94

should also adapt to real execution (e.g., the speculative range could change to a larger

value based on the actual input data set to enable more parallelism).

Current profiling techniques are not sufficient for automatic region parallelization. First,

it takes too long for most profilers to generate profiling results. These profilers simply ex-

amine all dependences that cannot be broken at compile time without considering which

dependences are actually of interest for parallelization techniques to be applied. For exam-

ple, DOALL parallelization only cares about cross-iteration dependences while for SPEC-

CROSS, it requires a minimum dependence distance between two iterations instead. By

profiling “smartly”, we could dramatically reduce the time spent on profiling and make it

feasible for much larger programs. Another interesting research direction is asking the pro-

filer to return useful information to the parallelizer, helping it achieve a better paralleliza-

tion plan. For example, COMMSET [55] implements a profiler which examines the de-

pendences and hints the programmers where to insert the annotations so that parallelization

prohibiting dependences could be broken. Similarly, the profiler could tell the SPECCROSS

scheduler that if a certain iteration is scheduled to another worker thread, the speculative

range will be enlarged significantly to enable more potential parallelization. We envision

a system in which the profiler collaborates with the parallelizer to iteratively improve the

parallelization.

Other possible research directions include designing a parallelizer which can extract

parallelism on whole-program scope, or evaluating approaches for effectively integrating

various intra- and inter-invocation parallelization techniques to work on the same program.

We believe any of these avenues for future work could meaningfully improve the state of

the art in automatic software parallelization.

95

Bibliography

[1] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A

dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[2] S. P. Amarasinghe and M. S. Lam. Communication optimization and code genera-

tion for distributed memory machines. In Proceedings of the 14th ACM SIGPLAN

conference on Programming Language Design and Implementation (PLDI), 1993.

[3] M. M. Baskaran, N. Vydyanathan, U. K. R. Bondhugula, J. Ramanujam, A. Rountev,

and P. Sadayappan. Compiler-assisted dynamic scheduling for effective paralleliza-

tion of loop nests on multicore processors. In Proceedings of the 14th ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming (PPoPP), 2009.

[4] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded programming

for C/C++. In Proceeding of the 24th ACM SIGPLAN conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA), 2009.

[5] M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and A. Brownsword.

Synchronization via scheduling: techniques for efficiently managing shared state. In

Proceedings of the 32nd ACM SIGPLAN conference on Programming Language De-

sign and Implementation (PLDI), 2011.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: char-

acterization and architectural implications. In Proceedings of the 17th international

conference on Parallel Architectures and Compilation Techniques (PACT), 2008.

96

[7] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,

B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The next generation

in parallelizing compilers. In Proceedings of the 6th workshop on Languages and

Compilers for Parallel Computing (LCPC), 1994.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of the

5th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming

(PPoPP), 1995.

[9] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Pub-

lishing Co., Inc., 1997.

[10] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks. He-

lix: automatic parallelization of irregular programs for chip multiprocessing. In Pro-

ceedings of the 10th international symposium on Code Generation and Optimization

(CGO), 2012.

[11] C. D. Carothers and B. K. Szymanski. Checkpointing multithreaded programs. Dr.

Dobbs, August 2002.

[12] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of speculative

threads in multiprocessors. In Proceedings of the 33rd annual International Sympo-

sium on Computer Architecture (ISCA), 2006.

[13] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen. Solving

large, irregular graph problems using adaptive work-stealing. In Proceedings of the

37th International Conference on Parallel Processing (ICPP), 2008.

[14] J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE

Transactions on Software Engineering, volume 22, pages 161–180, 1996.

97

[15] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proceedings

of the 11th International Conference on Parallel Processing (ICPP), 1986.

[16] F. H. Dang, H. Yu, and L. Rauchwerger. The R-LRPD test: Speculative paralleliza-

tion of partially parallel loops. In Proceedings of the 16th International Parallel and

Distributed Processing Symposium (IPDPS), 2002.

[17] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java

programs. Software: Practice and Experience, volume 29, pages 577–603, 1999.

[18] W. R. Dieter and J. E. Lumpp Jr. A user-level checkpointing library for posix threads

programs. In Proceedings of the 29th annual international symposium on Fault-

Tolerant Computing (FTCS), 1999.

[19] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior

oriented parallelization. In Proceedings of the 28th ACM SIGPLAN conference on

Programming Language Design and Implementation (PLDI), 2007.

[20] A. J. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez-Escribano. The OpenMP

source code repository. In Proceedings of the 13th Euromicro conference on Parallel,

Distributed and Network-Based Processing (PDP), 2005.

[21] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallel

programs. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on

Parallel and Distributed Debugging, 1988.

[22] R. Ferrer, A. Duran, X. Martorell, and E. Ayguadé. Unrolling loops containing task

parallelism. In Proceedings of the 21st workshop on Languages and Compilers for

Parallel Computing (LCPC), 2009.

[23] T. C. Grosser. Enabling polyhedral optimizations in llvm. Diploma thesis, Department

of Informatics and Mathematics, University of Passau, Germany, April 2011.

98

[24] R. Gupta. The fuzzy barrier: a mechanism for high speed synchronization of proces-

sors. In Proceedings of the 3rd international conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 1989.

[25] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coher-

ence and consistency. In Proceedings of the 31st annual International Symposium on

Computer Architecture (ISCA), 2004.

[26] H. Han and C.-W. Tseng. Improving compiler and run-time support for irregular

reductions using local writes. In Proceedings of the 11th international workshop on

Languages and Compilers for Parallel Computing (LCPC), 1999.

[27] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-

free data structures. In Proceedings of the 20th annual International Symposium on

Computer Architecture (ISCA), 1993.

[28] J. Huang, T. B. Jablin, S. R. Beard, N. P. Johnson, and D. I. August. Automatically

exploiting cross-invocation parallelism using runtime information. In Proceedings

of the 2013 International Symposium on Code Generation and Optimization, April

2013.

[29] J. Huang, A. Raman, Y. Zhang, T. B. Jablin, T.-H. Hung, and D. I. August. Decoupled

Software Pipelining Creates Parallelization Opportunities. In Proceedings of the 8th

international symposium on Code Generation and Optimization (CGO), 2010.

[30] K. Z. Ibrahim and G. T. Byrd. On the exploitation of value predication and producer

identification to reduce barrier synchronization time. In Proceedings of the 15th In-

ternational Parallel & Distributed Processing Symposium (IPDPS), 2001.

99

[31] T. B. Jablin, Y. Zhang, J. A. Jablin, J. Huang, H. Kim, and D. I. August. Liberty

Queues for EPIC Architectures. In Proceedings of the 8th workshop on Explicitly

Parallel Instruction Computing Techniques (EPIC), 2010.

[32] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative separation

for privatization and reductions. In Proceedings of the 33rd ACM SIGPLAN confer-

ence on Programming Language Design and Implementation (PLDI), 2012.

[33] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic specu-

lative doall for clusters. In Proceedings of the 10th international symposium on Code

Generation and Optimization (CGO), 2012.

[34] T. Knight. An architecture for mostly functional languages. In Proceedings of the

1986 ACM conference on LISP and functional programming, 1986.

[35] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program anal-

ysis & transformation. In Proceedings of the 2nd international symposium on Code

Generation and Optimization (CGO), 2004.

[36] S.-T. Leung and J. Zahorjan. Improving the performance of runtime parallelization.

In Proceedings of the 4th ACM SIGPLAN symposium on Principles and Practice of

Parallel Programming (PPoPP), 1993.

[37] LLVM Test Suite Guide.

http://llvm.org/docs/TestingGuide.html.

[38] G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva. Deadlock detection in

MPI programs. Concurrency and Computation: Practice and Experience, volume 14,

pages 911–932, 2002.

100

[39] E. P. Markatos and T. J. LeBlanc. Using processor affinity in loop scheduling on

shared-memory multiprocessors. In Proceedings of the 1992 ACM/IEEE conference

on Supercomputing (SC), 1992.

[40] J. F. Martı́nez and J. Torrellas. Speculative synchronization: applying thread-level

speculation to explicitly parallel applications. In Proceedings of the 10th interna-

tional conference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), 2002.

[41] P. E. Mckenney. Memory barriers: a hardware view for software hackers, 2009.

[42] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications

on commodity hardware using a low-cost software transactional memory. In Proceed-

ings of the 30th ACM SIGPLAN conference on Programming Language Design and

Implementation (PLDI), 2009.

[43] S. Moon, B. So, M. W. Hall, and B. R. Murphy. A case for combining compile-time

and run-time parallelization. In Selected papers from the 4th international workshop

on Languages, Compilers, and Run-Time Systems for Scalable Computers (LCR),

1998.

[44] V. Nagarajan and R. Gupta. Ecmon: exposing cache events for monitoring. In

Proceedings of the 36th Annual International Symposium on Computer Architecture

(ISCA), 2009.

[45] V. Nagarajan and R. Gupta. Speculative optimizations for parallel programs on multi-

cores. In Proceedings of the 21st workshop on Languages and Compilers for Parallel

Computing (LCPC), 2009.

[46] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary.

Minebench: A benchmark suite for data mining workloads. IEEE Workload Char-

acterization Symposium, 2006.

101

[47] A. Nicolau, G. Li, A. V. Veidenbaum, and A. Kejariwal. Synchronization optimiza-

tions for efficient execution on multi-cores. In Proceedings of the 23rd International

conference on Supercomputing (ISC), 2009.

[48] NAS Parallel Benchmarks 3.

http://www.nas.nasa.gov/Resources/Software/npb.html.

[49] C. E. Oancea and A. Mycroft. Software thread-level speculation: an optimistic library

implementation. In Proceedings of the 1st International Workshop on Multicore Soft-

ware Engineering (IWMSE), 2008.

[50] M. F. P. O’Boyle, L. Kervella, and F. Bodin. Synchronization minimization in a

SPMD execution model. J. Parallel Distrib. Comput., volume 29, pages 196–210,

September 1995.

[51] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with

decoupled software pipelining. In Proceedings of the 38th annual IEEE/ACM inter-

national symposium on Microarchitecture (MICRO), 2005.

[52] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: a practical schedul-

ing scheme for parallel supercomputers. IEEE Transactions on Computers, volume

C-36, December 1987.

[53] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation techniques for

data partitioning and communication schedule reuse. In Proceedings of the 1993

ACM/IEEE conference on Supercomputing (SC), 1993.

[54] L.-N. Pouchet. PolyBench: the Polyhedral Benchmark suite.

http://www-roc.inria.fr/ pouchet/software/polybench/download.

[55] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative set:

A language extension for implicit parallel programming. In Proceedings of the 32nd

102

ACM SIGPLAN conference on Programming language design and implementation

(PLDI), 2011.

[56] P. Prabhu, T. B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P. Johnson, F. Liu,

S. Ghosh, S. Beard, T. Oh, M. Zoufaly, D. Walker, and D. I. August. A survey of

the practice of computational science. In State of the Practice Reports, SC ’11, pages

19:1–19:12, 2011.

[57] R. Rajwar and J. Goodman. Speculative lock elision: enabling highly concurrent

multithreaded execution. In Proceedings of the 34th international symposium on Mi-

croarchitecture (MICRO), 2001.

[58] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative par-

allelization using software multi-threaded transactions. In Proceedings of the 15th

international conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2010.

[59] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism orchestration using

DoPE: the Degree of Parallelism Executive. In Proceedings of the 32nd ACM SIG-

PLAN conference on Programming Language Design and Implementation (PLDI),

2011.

[60] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method for run-time loop

parallelization. International Journal of Parallel Programming (IJPP), volume 26,

pages 537–576, 1995.

[61] L. Rauchwerger and D. Padua. The Privatizing DOALL test: A run-time technique

for DOALL loop identification and array privatization. In Proceedings of the 8th

International Conference on Supercomputing (ICS), 1994.

103

[62] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time parallelization

of loops with privatization and reduction parallelization. ACM SIGPLAN Notices,

volume 30, pages 218–232, 1995.

[63] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work stealing

in TBB. In IEEE International Symposium on Parallel and Distributed Processing

(IPDPS), 2008.

[64] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: static & dynamic mem-

ory reference analysis. Int. J. Parallel Program., volume 31, pages 251–283, August

2003.

[65] J. Saltz, R. Mirchandaney, and R. Crowley. Run-time parallelization and scheduling

of loops. IEEE Transactions on Computers, volume 40, 1991.

[66] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dy-

namic data race detector for multithreaded programs. ACM Transactions on Computer

Systems, volume 15, pages 391–411, 1997.

[67] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the 14th

annual ACM symposium on Principles of Distributed Computing (PODC), 1995.

[68] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable transactions

with a single atomic instruction. In Proceedings of the 20th annual Symposium on

Parallelism in Algorithms and Architectures (SPAA), 2008.

[69] Standard Performance Evaluation Corporation (SPEC).

http://www.spec.org/.

[70] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to

thread-level speculation. ACM Transactions on Computer Systems, volume 23, pages

253–300, February 2005.

104

[71] P. Swamy and C. Vipin. Minimum dependence distance tiling of nested loops with

non-uniform dependences. In Proceedings of the 6th IEEE Symposium on Parallel

and Distributed Processing (IPDPS), 1994.

[72] C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In Pro-

ceedings of the 5th ACM SIGPLAN symposium on Principles and Practice of Parallel

Programming (PPOPP), 1995.

[73] T. Tzen and L. Ni. Trapezoid self-scheduling: a practical scheduling scheme for par-

allel compilers. Parallel and Distributed Systems, IEEE Transactions on, volume 4,

January 1993.

[74] M. Weiser. Program slicing. In Proceedings of the 5th International Conference on

Software Engineering (ICSE), 1981.

[75] M. Wolfe. Doany: Not just another parallel loop. In Proceedings of the 4th workshop

on Languages and Compilers for Parallel Computing (LCPC), 1992.

[76] M. J. Wolfe. Optimizing Compilers for Supercomputers. PhD thesis, Department of

Computer Science, University of Illinois, Urbana, IL, October 1982.

[77] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and

D. A. Wood. LogTM-SE: Decoupling hardware transactional memory from caches.

In Proceedings of the 13th IEEE international symposium on High Performance Com-

puter Architecture (HPCA), 2007.

[78] N. Yonezawa, K. Wada, and T. Aida. Barrier elimination based on access dependency

analysis for openmp. In Parallel and Distributed Processing and Applications. 2006.

[79] J. Zhao, J. Shirako, V. K. Nandivada, and V. Sarkar. Reducing task creation and ter-

mination overhead in explicitly parallel programs. In Proceedings of the 19th inter-

105

national conference on Parallel Architectures and Compilation Techniques (PACT),

2010.

106

