
Pwnetizer: Improving Availability in Cloud

Computing through Fast Cloning and I/O

Randomization

Diego Perez-Botero

Master’s Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of Computer Science

Princeton University

Adviser: Ruby B. Lee

June 2013

c© Copyright by Diego Perez-Botero, 2013.

All rights reserved.

Abstract

The rise of the Cloud Computing paradigm has led to security concerns amongst its adopters,

given that resources are shared and mediated by a Hypervisor which may be targeted by rogue

guest Virtual Machines (VMs) and remote attackers. We conducted a thorough analysis of the

codebase of two popular open-source Hypervisors, Xen and KVM, followed by an extensive study

of the vulnerability reports associated with them. Based on our findings, we propose a practical

characterization of Hypervisor vulnerabilities. From this analysis, we see that more than one third of

all attacks are due to I/O device emulation and that availability breaches are by far the most common

security breaches, considering the cornerstone security properties of Confidentiality, Integrity and

Availability.

We developed Pwnetizer, a novel VM cloning strategy, to address these weaknesses of virtualized

environments. Pwnetizer facilitates increased availability by rapidly generating clone VMs that can

instantly contribute to the overall throughput, as they increase the resources available to a cloud

customer’s applications (network bandwidth, CPU and RAM). Previously, VM Cloning research

has prioritized the performance of computationally-intensive workloads by enabling the creation of

transient clone VMs that depend on a master VM. Meanwhile, the few alternatives able to generate

fully-independent stateful VM Clones suffer from considerable downtimes (tens of seconds), which

is itself a loss of availability. A KVM-based prototype of our Pwnetizer solution is able to gracefully

generate on-demand independent VM Clones with sub-second downtimes.

At minimal additional overhead, our cloning technology also randomizes the I/O device drivers

employed by each clone VM. This takes advantage of the variety of device drivers with overlapping

functionality supported by commodity Hypervisors. Without having to vet them beforehand, we

defend a set of diversified clone VMs against current and future attacks on I/O device drivers with

security vulnerabilities. This further improves availability by preventing large-scale VM crashes

caused by attacks made possible by device emulation bugs.

iii

Acknowledgements

I would like to thank my Thesis Adviser, Ruby B. Lee, for steering my research in the right direction

and helping me gain a decent understanding of numerous security-related topics in such a short

period of time. Our weekly meetings were an unlimited source of interesting ideas. I would also

like to thank all current members of the PALMS research group (Jakub, Pramod, Fangfei and

Tianwei) for the time they spent listening to my work and providing me with invaluable input. In

particular, Jakub was a great mentor and collaborator, who helped fill in all the necessary voids in

my unimpressive hardware knowledge.

I am infinitely grateful to Jennifer Rexford for the help and guidance that she gave me throughout

this journey. I thoroughly enjoyed having her as my Academic Adviser and working alongside her

as a COS 217 Teaching Assistant. I also want to express my gratitude to Dushyant Arora for his

feedback along the way and for being a very supportive friend/colleague.

I would not have accomplished any of this without my family’s support. My parents, Martha

and Alonso, provided me with all the opportunities that any son could ever ask for, while my sister,

Juliana, has always been an incredible role model and my personal idol. Last but not least, I owe

my sanity to Katie, who stood by me while I faced the immense challenges that come along with

studying in a world-class institution. I look forward to spending the rest of my life with her.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . viii

List of Figures . ix

1 Introduction 1

2 Characterizing Hypervisor Vulnerabilities in Cloud Computing Servers 3

2.1 Chapter Overview . 3

2.2 Background on Hypervisors . 4

2.2.1 Xen . 5

2.2.2 KVM . 6

2.2.3 QEMU . 6

2.2.4 Hardware Virtualization Features . 6

2.3 Overview of Vulnerabilities . 7

2.4 Hypervisor Functionalities as Attack Vectors . 8

2.4.1 Breakdown of Vulnerabilities . 12

2.5 Further Characterization of Hypervisor Vulnerabilities 13

2.5.1 Trigger Sources and Attack Targets . 14

2.5.2 Breakdown of Vulnerabilities . 14

2.6 Hypervisor Attack Paths . 16

2.7 Case Studies and Defenses . 17

2.7.1 Understanding Existing Attacks . 17

2.7.2 Helping Focus Defenses . 21

2.7.3 Assisting in the Discovery of New Attacks . 22

2.8 Related Work . 23

v

3 Availability Fueled by Instantaneous VM Cloning 24

3.1 Motivation . 24

3.1.1 VM Cloning for Availability . 25

3.2 Background on VM Cloning . 27

3.3 Pwnetizer - Orthogonal Issues . 28

3.4 Pwnetizer - Initial Considerations . 29

3.4.1 Live Migration as a Starting Point . 29

3.4.2 Precopy vs Postcopy . 30

3.5 Pwnetizer - Implementation Details . 33

3.5.1 Code Structure . 33

3.5.2 Main Memory . 34

3.5.3 Secondary Storage . 35

3.5.4 Networking . 39

3.5.5 Detecting Cloning . 40

3.5.6 End Product . 42

3.6 Pwnetizer - OpenStack Deployment . 45

3.7 Pwnetizer - Optimizations . 49

3.7.1 No gratuitous ARP packet after cloning . 49

3.7.2 Tweaking process priorities . 49

3.7.3 Tweaking KVM’s pre-copy settings . 50

3.8 Pwnetizer - Results . 50

3.8.1 Fine-Grained Benchmarking . 51

3.8.2 Experimental Evaluation . 57

3.9 Related Work . 63

4 Improved Availability in Commodity Hypervisors Through I/O Randomization 65

4.1 I/O & Network Device Emulation . 65

4.1.1 Normal Operation . 65

4.1.2 Vulnerabilities . 66

4.2 I/O Driver Randomization . 67

4.2.1 Basic Intuition . 67

4.2.2 Actual Implementation . 68

4.3 Experimental Evaluation . 68

vi

4.3.1 Methodology . 68

4.3.2 Clone Liveliness . 69

4.3.3 Computational Workload . 70

5 Closing Words 71

5.1 Conclusions . 71

5.2 Future Work . 72

A Sample CVE Reports 74

B The Different Stages of VM Cloning 76

Bibliography 78

vii

List of Tables

2.1 Breakdown of known vulnerabilities by Hypervisor functionality for Xen and KVM. 13

2.2 Breakdown of known vulnerabilities under trigger source classification for Xen and

KVM. 15

2.3 Breakdown of known vulnerabilities under target-based classification for Xen and KVM. 15

2.4 Xen’s Vulnerability Map in tabular form . 16

2.5 KVM’s Vulnerability Map in tabular form . 17

3.1 Cloud Computing Workloads . 54

3.2 Summary of Pwnetizer VM Cloning performance numbers with typical Cloud Com-

puting workloads. 54

3.3 Detailed Pwnetizer VM Cloning performance numbers with typical Cloud Computing

workloads . 56

A.1 Sample CVEs in Support of the Functionality-Based Classification 74

viii

List of Figures

2.1 Xen Architecture. 5

2.2 KVM Architecture. 6

2.3 Vulnerability type breakdown for Xen (left) and KVM (right). 7

2.4 Memory remapping during normal operation of Q35 chipset. 18

2.5 Memory remapping during attack on Q35 chipset. 19

2.6 Series of events that leads to virtual RTC’s QEMUTimer object being hijacked in Vir-

tunoid attack. 20

3.1 Summary of previous cloning work. 27

3.2 The timeline of (a)pre-copy vs (b)post-copy migration. Taken from [25]. 32

3.3 KVM+Libvirt Architecture. 34

3.4 Storage state before cloning operation. 36

3.5 Pre-cloning preparations. 37

3.6 Storage state during memory page transfer. 37

3.7 Storage operations on last pre-copy iteration. 38

3.8 Storage state after cloning operation. 39

3.9 Prototype’s Internal Networking. 42

3.10 Pwnetizer Prototype Architecture. 43

3.11 Pwnetizer Sequence Diagram. 44

3.12 OpenStack Architecture. 45

3.13 Sequence diagram of Pwnetizer’s OpenStack implementation. 48

3.14 The different stages of Pwnetizer’s OpenStack implementation overlaid on top of the

corresponding sequence diagram. 52

3.15 GlassFish Server throughput under constant web load. 57

3.16 GlassFish Server delay under constant web load. 59

ix

3.17 GlassFish Server throughput under ever-increasing web load. 60

3.18 GlassFish Server delay under ever-increasing web load. 61

3.19 GlassFish Server throughput and delay under ever-increasing web load with cloning

taking place every 30 seconds. 62

3.20 Cajo SHA-256 workload progress with and without cloning. 62

4.1 Interactions between front-end and back-end drivers in Xen (left) and KVM (right). 66

4.2 Liveliness signals recorded with and without I/O driver randomization. Clones

spawned every 30 seconds. 69

4.3 Cajo SHA-256 workload progress with and without I/O driver randomization. Clones

spawned every 30 seconds. 70

x

Chapter 1

Introduction

Virtual Machines (VMs) have become commonplace in modern computing, as they enable the exe-

cution of multiple isolated Operating System instances on a single physical machine. This increases

resource utilization, makes administrative tasks easier, lowers overall power consumption, and en-

ables users to obtain computing resources on demand. Virtualized environments are at the heart of

Cloud Computing and are usually implemented with the use of a Hypervisor, which is a software

layer that lies between the Virtual Machines (VMs) and the physical hardware. The Hypervisor

allocates resources to the VMs, such as main memory and peripherals. It is in charge of providing

each VM with the illusion of being run on its own hardware, which is done by exposing a set of

virtual hardware devices (e.g., CPU, Memory, NIC, Storage) whose tasks are then scheduled on the

actual physical hardware. These services come at a price: Hypervisors are large pieces of software,

with 100,000 lines of code or more. As a result, researchers have been tackling security concerns of

traditional Hypervisors (e.g., [61]), further motivated by numerous bug reports disclosed for popular

Hypervisors (e.g., Xen, KVM, OpenVZ) in a variety of software vulnerability databases, including

SecurityFocus [55] and NIST’s Vulnerability Database [46].

This thesis consists of three sections:

1. We conduct a Hypervisor vulnerability study in Chapter 2 that integrates three new vulnera-

bility classifications into a set of Hypervisor-specific [trigger, attack vector, target] mappings.

From the study, we find that I/O & network device emulation and Availability are the main

weaknesses of commodity Hypervisors.

1

2. In Chapter 3, we develop a novel VM Cloning strategy for increased availability. Our clone

VMs are fully independent, fast to create, and distributed over many Hypervisors. Better

application performance is also attained as a by-product.

3. We enhance our VM Cloning mechanism with a driver randomization technique, which tackles

I/O and network device emulation vulnerabilities. This is covered in Chapter 4.

2

Chapter 2

Characterizing Hypervisor

Vulnerabilities in Cloud

Computing Servers

In this chapter, we characterize Hypervisor vulnerabilities through three novel classifications using

Xen and KVM Code Vulnerability and Exposure (CVE) reports as our dataset. We then integrate

the three classifications into a set of Hypervisor-specific [trigger, attack vector, target] mappings

that indicate (1) where an attack can be initiated, (2) the Hypervisor functionality being exploited

by the attack, and (3) the runtime space that is compromised after the attack’s success. This will

help us gain a deeper understanding of the threats that cloud customers’ applications and data are

exposed to, which will act as the motivation for Chapters 3 and 4.

2.1 Chapter Overview

While software vulnerability databases (e.g., SecurityFocus [55]) provide a plethora of information,

not much analysis of the information has thus far been performed. Our work aims to fill this gap

through an extensive study of the vulnerability reports associated with Xen and KVM.

The goal of this chapter is to characterize the security vulnerabilities of Hypervisors, based on

real attacks. This chapter uses material from [49]. Our key contributions are:

3

1. Three classifications for Hypervisor vulnerabilities based on (1) the Hypervisor functionality

where the vulnerability arises, (2) the source that triggers such vulnerability, and (3) the target

that is affected by the security breach.

2. An integration of these three classifications to:

(a) Show potential attack paths (Section 2.6).

(b) Understand existing attacks (Section 2.7.1).

(c) Help focus defenses (Section 2.7.2).

(d) Assist in the discovery of new attacks (Section 2.7.3).

The rest of the chapter is organized as follows. Section 2.2 provides background on Hypervisors.

Section 2.3 gives a high-level view of Hypervisor vulnerabilities. Sections 2.4, 2.5 and 2.6 describe

our extensive analysis and classification of Hypervisor vulnerabilities and potential attack paths.

Section 2.7 describes an existing attack, and some Hypervisor defenses that have been proposed.

Section 2.8 discusses related work.

2.2 Background on Hypervisors

The virtualization marketplace is comprised of both mature (e.g., VMWare and Xen) and up-and-

coming (e.g., KVM and Hyper-V) participants. Of the four main Hypervisor offerings, which take up

93% of the total market share [28], two are closed-source (VMWare and Hyper-V) and two are open-

source (Xen and KVM). Recent surveys [28] [29] suggest that the number of different Hypervisor

brands deployed in datacenters is broad and expanding, with a multi-Hypervisor strategy becoming

the norm. As such, the percentage of datacenters actively using a specific Hypervisor to host client

VMs is known as that Hypervisor’s presence. Under that definition, VMWare has a total presence of

81%, and 52% of the datacenters use it as their primary Hypervisor, followed by Xen (81% presence,

18% as primary), KVM (58% presence, 9% as primary), and Microsoft’s Hyper-V (43% presence,

9% as primary) [28] [29].

VMWare has dominated the virtualization market since its release in 2003, but some of its

customers are looking elsewhere, driven primarily by cost [33]. Xen’s presence and market share are

expected to grow in the coming years due to the success of Amazon Web services and Rackspace,

both of which use Xen as their main virtualization platform. Its market share doubled from 9% to

18% last year [33], which indicates that there is market interest in using open-source solutions. A

number of vendors (including IBM, Red Hat, Intel and HP) with an interest in building an ecosystem

4

around the other popular open-source Hypervisor, KVM, formed the Open Virtualization Alliance

(OVA) [26]. To date, 241 vendors have joined the OVA [33].

We decided not to study VMWare and Hyper-V because of the dearth of public knowledge about

their internals. Public Code Vulnerabilities and Exposures (CVEs) for VMWare are always from

an outsider’s perspective. As such, most of those CVEs focus on network attacks targeting remote

management software (e.g., Cross-Site Scripting in CVE-2012-5050). Meanwhile, we were only able

to find three CVEs for Hyper-V (i.e., CVE-2011-1872, CVE-2010-3960 and CVE-2010-0026), which

does not constitute a representative sample set. Consequently, we have decided to focus on Xen

and KVM. Considering Xen’s and KVM’s influence over the virtualization marketplace, with 81%

and 51% datacenter presence respectively, understanding their vulnerabilities can benefit millions of

users worldwide.

Below, we briefly summarize Xen’s and KVM’s architectural traits and their different Hypervisor

designs.

2.2.1 Xen

Xen is a very well-known Open Source Hypervisor, in use since 2003. As shown in Figure 2.1, Xen

is a Type-I (bare metal) Hypervisor, running directly on top of the hardware and managing all of

the host’s resources. It also has a privileged VM named Dom0, which carries out all of the VM

management actions (e.g., start, stop and migrate guest VMs). The Dom0 VM is a full custom-

tailored Linux kernel that is aware of the Xen deployment, whereas the normal guest VMs usually run

in full virtualization mode (HVM mode), which emulates the entire system (i.e., BIOS, HDD, CPU,

NIC) and does not require any modifications to the guest OS. In addition to basic administrative

tasks, Dom0 exposes the emulated devices by connecting an instance of a device emulator (i.e.,

QEMU) to each guest VM.

Figure 2.1: Xen Architecture.

5

2.2.2 KVM

KVM is a relatively new open-source project, which dates back to Red Hat’s acquisition of Qumranet

in 2008. Its adoption has spiked since it was made part of the main Linux kernel branch starting from

version 2.6.20, becoming the main virtualization package in Ubuntu, Fedora, and other mainstream

Linux operating systems. From Figure 2.2, one can identify many differences with Xen. Each guest

VM runs as a separate user process and has a corresponding QEMU device emulation instance

running with it. The Hypervisor itself runs as a module inside a host Operating System, which

makes KVM a Type-II (hosted) Hypervisor.

Figure 2.2: KVM Architecture.

2.2.3 QEMU

QEMU is a mature device emulator. Both KVM and Xen use QEMU’s code to present virtual

devices to their guest VMs, including but not limited to optical drives, graphics cards, and network

cards. This is a key piece of software that provides the generic peripherals that an OS expects (e.g.,

mouse, keyboard, hard disk) and carries out the translations between those devices and the physical

ones.

2.2.4 Hardware Virtualization Features

Intel supports the virtualization of x86 processor hardware by way of an additional set of architectural

features (i.e., new instructions and control data structures) referred to as Virtual-Machine Extensions

(VMX) [30]. While the Hypervisor runs in VMX root mode, guest VMs run in VMX non-root mode.

This allows the Hypervisor to retain control of processor resources, given that the non-root operations

are restricted. Throughout a VM’s lifetime, certain sensitive instructions (e.g., CPUID, GETSEC,

INVD) and events (e.g., exceptions and interrupts) cause VM Exits to the Hypervisor. These VM

Exits are handled by the Hypervisor, who decides the appropriate action to take and then transfers

6

control back to the VM via a VM Entry. A Virtual Machine Control Data Structure (VMCS) stores

the data needed by the Hypervisor to restore the guest VM’s state once it has handled the VM Exit

and also contains information regarding the VM Exit’s cause and nature. Most key concepts are

mirrored almost identically in AMD’s x86 virtualization mechanism (AMD-V).

2.3 Overview of Vulnerabilities

We searched a set of well-known vulnerability databases for reports regarding KVM and Xen: NIST’s

National Vulnerability Database (NVD) [46], SecurityFocus [55], Red Hat’s Bugzilla [52] and CVE

Details [10]. Fortunately, all vulnerability reports are assigned a unique CVE Identifier by a CVE

Numbering Authority (CNA) and all CNAs use the MITRE Corporation as an intermediary to

guarantee the uniqueness of their identifiers, making it easy to eliminate duplicate reports. According

to the CVE reports, 59 vulnerabilities have been identified in Xen and 38 in KVM as of July 15,

2012.

Successful exploitation of a vulnerability leads to an attack, which can hinder the Confidentiality,

Integrity, or Availability of the Hypervisor or one of its guest VMs. Each CVE report explicitly

indicates the type of security breach that it can lead to as a combination of those three security

properties. Roughly 50% of vulnerabilities reported so far can lead to security breaches in all three

fronts. The second most common effect of exploiting these vulnerabilities is to only pose a threat to

the availability of the Hypervisors (Denial of Service). This makes sense, taking into account that a

bug in a Hypervisor module will most likely lead to an unforseen state, which often manifests itself

in the form of a guest VM crash or, in the worst case, a complete host crash.

Figure 2.3: Vulnerability type breakdown for Xen (left) and KVM (right).

7

2.4 Hypervisor Functionalities as Attack Vectors

To better understand the different vulnerabilities, we identified the 11 functionalities that a tradi-

tional Hypervisor provides and mapped vulnerabilities to them:

1. Virtual CPUs

2. Symmetric Multiprocessing (SMP)

3. Soft Memory Management Unit (MMU)

4. Interrupt and Timer Mechanisms

5. I/O and Networking

6. Paravirtualized I/O

7. VM Exits

8. Hypercalls

9. VM Management (configure, start, pause and stop VMs)

10. Remote Management Software

11. Hypervisor Add-ons

Categories 1 through 6 present the virtualized hardware infrastructure that VMs require to

operate properly. VM Exits and Hypercalls (Categories 7 and 8) are mechanisms through which

VMs can delegate sensitive operations to the Hypervisor. Category 9 deals with facilities needed

by the Hypervisor to manage VM state. Category 10 deals with non-essential remote management,

while Category 11 allows optional add-on modules to the Hypervisor. We further explain these

categories below. The CVE reports mentioned throughout this section are listed in Appendix A.

1© Virtual CPUs: A set of virtual CPUs (vCPUs) is assigned to each guest VM being hosted

by a Hypervisor. The state of each of these vCPUs is saved to and loaded from their respective VM’s

Virtual Machine Control Structure (VMCS) guest-state area. Since vCPUs must mirror a physical

CPU’s actions for each and every machine language instruction, the Hypervisor must handle register

states appropriately and schedule vCPU tasks to the physical CPUs while making any necessary

translations back and forth.

CVE-2010-4525 is an example of a disclosure of Hypervisor memory contents through vCPU

registers because of an incomplete initialization of the vCPU data structures, where one of the

padding fields was not zeroed-out. Given that the memory for the data structure is allocated in

kernel space, the padding field might end up containing information from data structures previously

used by the Hypervisor.

8

2© Symmetric Multiprocessing (SMP): Hypervisors can host guest VMs with SMP capabil-

ities, which leads to the possibility of two or more vCPUs belonging to a single VM being scheduled

to the physical CPU cores in parallel. This mode of operation adds complexity to the management

of guest VM state and requires additional precautions at the moment of deciding a vCPU’s Current

Privilege Level (CPL – e.g., Ring 0 or Ring 3).

SMP vulnerabilities arise from Hypervisor code making assumptions that only hold true on

single-threaded processes. For example, CVE-2010-0419 refers to a bug that permitted malicious

Ring 3 processes to execute privileged instructions when SMP was enabled because of the presence

of a race condition scenario. To do so, they would invoke a legitimate I/O instruction on one thread

and attempt to replace it with a privileged one from another thread right after KVM had checked

its validity, but before it was executed.

3© Soft MMU: Guest VMs cannot be granted direct access to the MMU, as that would allow

them to access memory belonging to the Hypervisor and other co-hosted VMs. Under the absence

of a virtualization-aware hardware MMU, such as Extended Page Tables (EPT), a Soft MMU is

run by the Hypervisor to maintain a shadow page table for each guest VM. Every page mapping

modification invoked by a VM is intercepted by the Soft MMU so as to adjust the shadow page

tables accordingly.

Vulnerabilities in the Soft MMU’s implementation are dangerous because they may lead to the

disclosure of data in arbitrary address spaces, such as a co-hosted guest VM’s memory segment or

the Hypervisor’s memory segment. In the specific case of CVE-2010-0298, KVM’s emulator always

uses Ring 0 privilege level when accessing a guest VM’s memory on behalf of the guest VM’s code.

Given that MMIO instructions are emulated, an unprivileged (Ring 3) application running inside

a VM can leverage access to an MMIO region (e.g., framebuffer) to trick KVM into executing a

malicious instruction that modifies that same VM’s kernel-space (Ring 0) memory.

4© Interrupt and Timer Mechanisms: A Hypervisor must emulate the interrupt and timer

mechanisms that the motherboard provides to a physical machine. These include the Programmable

Interval Timer (PIT), the Advanced Programmable Interrupt Controller (APIC), and the Interrupt

Request (IRQ) mechanisms.

In the case of CVE-2010-0309, lack of validation of the data contained in the PIT-related data

structures enabled a rogue VM to cause a full host OS crash, a serious denial-of-service attack.

5© I/O and Networking: The Hypervisor also emulates I/O and networking. Xen and KVM

make device emulation possible through division of labor, by having two types of device drivers.

Front-end drivers reside inside the guest VMs and run in Ring 0, providing the usual abstraction

9

that the guest OS expects. Nonetheless, those drivers cannot access physical hardware directly, given

that the Hypervisor must mediate user accesses to shared resources. Therefore, front-end drivers

communicate with back-end drivers, which have full access to the underlying hardware, in order to

fulfill the requested operations. In turn, back-end drivers enforce access policies and multiplex the

actual devices. KVM and Xen employ QEMU’s back-end drivers by default.

I/O & network device emulation is usually implemented in higher-level languages (e.g., C and

C++), so the data abstractions are richer but more dangerous when hijacked. Very elaborate

attacks are enabled by the expressiveness of higher-level languages like C. For example, CVE-2011-

1751 describes a bug that was used to develop the Virtunoid attack [17]. QEMU tried to hot-unplug

whichever device the programmers desired, regardless of the device’s support for hot-unplugging.

Therefore, the lack of state cleanup by some virtual devices resulted in use-after-free opportunities,

where data structures that were previously being used by a hot-unplugged virtual device remained

in memory and could be hijacked with executable code by an attacker.

6© Paravirtualized I/O: paravirtualized VMs run modified guest kernels that are virtualization-

aware and use special hypercall APIs to interact with the Hypervisor directly. Paravirtualization

of I/O operations decreases the number of transitions between the guest VM and the Hypervisor,

resulting in performance gains. This scenario requires special front-end and back-end drivers which

are not necessarily developed by the same vendor as the one responsible for regular device emulation

(e.g., QEMU).

Paravirtualized I/O vulnerabilities and emulated I/O vulnerabilities are very much alike. They

are rooted in the interactions between front-end and back-end drivers, as well as those between

back-end drivers and the outside world. For instance, CVE-2008-1943 describes a vulnerability in

Xen that allowed paravirtualized front-end drivers to cause denial-of-service conditions and possibly

execute arbitrary code with Dom0 privileges. This could be done by sending a malicious shared

framebuffer descriptor to trick Xen into allocating an arbitrarily large internal buffer inside Dom0.

7© VM Exits are the mechanism used by the Hypervisor to intercept and carry out operations

invoked by guest VMs that require Virtual Machine eXtensions (VMX) root privileges. These VM-

to-Hypervisor interfaces are architecture-dependent (e.g., different code for x86 than for AMD64)

and are very well specified in the architecture manuals. They are usually implemented using low-level

programming languages (Assembly or Machine language), relying on restrictive bitwise operations.

For Intel VT-x, this code is the one supporting all operations described in chapters 23 through 33

of Intel’s Software Developer’s Manual [30].

10

The fact that VM Exit-handling code does not possess very rich data structures means that

vulnerabilities hardly have any exploitable effects other than a host or guest VM crash (Denial-of-

Service). For example, all VMCS fields have a unique 32-bit field-encoding, which rules out common

vulnerabilities that arise from variable-size input, such as buffer overflows. According to CVE-2010-

2938, requesting a full VMCS dump of a guest VM would cause the entire host to crash when running

Xen on a CPU without Extended Page Table (EPT) functionality. The reason for this was that Xen

would try to access EPT-related VMCS fields without first verifying hardware support for those

fields, allowing privileged (Ring 0) guest VM applications to trigger a full denial-of-service attack

on certain hosts at any time.

8© Hypercalls are analogous to system calls in the OS world. While VM Exits are architecture-

specific (e.g., AMD64, x86), hypercalls are Hypervisor-specific (e.g., Xen, KVM) and provide a

procedural interface through which guest VMs can request privileged actions from the Hypervisor.

For example, hypercalls can be used to query CPU activity, manage Hard Disk partitions, and create

virtual interrupts.

Hypercall vulnerabilities can present an attacker, who controls a guest VM, with a way to attain

escalated privileges over the host system’s resources. Case in point, CVE-2009-3290 mentions the

fact that KVM used to allow unprivileged (Ring 3) guest callers to issue MMU hypercalls. Since

the MMU command structures must be passed as an argument to those hypercalls by their physical

address, they only make sense when issued by a Ring 0 process. Having no access to the physical

address space, the Ring 3 callers could still pass random addresses as arguments to the MMU

hypercalls, which would either crash the guest VM or, in the worst case, read or write to kernel-

space memory segments.

9© VM Management functionalities make up the set of basic administrative operations that

a Hypervisor must support. The configuration of guest VMs is expressed in terms of their assigned

virtual devices, dedicated PCI devices, main memory quotas, virtual CPU topologies and priorities,

etc. The Hypervisor must then be able to start, pause and stop VMs that are true to the configura-

tions declared by the cloud provider. These tasks are initiated by Xen’s Dom0 and KVM’s Libvirt

toolkit [38].

Kernel images must be decompressed into memory and interpreted by the management domain

when booting up a VM. CVE-2007-4993 indicates that Xen’s bootloader for paravirtualized images

used Python exec() statements to process the custom kernel’s user-defined configuration file, leading

to the possibility of executing arbitrary python code inside Dom0. By changing the configuration

file to include the line shown in Listing 2.1, a malicious user could trick Dom0 into issuing a

11

command that would trigger the destruction of another co-hosted domain (substituting id with the

victim domain’s ID).

1 d e f a u l t ”+s t r (os . sys tem (”xm dest roy id ”))+”

Listing 2.1: Contents of /boot/grub/grub.conf for an attack on Dom0 with a user-provided kernel

10© Remote Management Software: These pieces of software are usually web applications

running as a background process and are not essential for the correct execution of the virtualized

environment. Their purpose is generally to facilitate the Hypervisor’s administration through user-

friendly web interfaces and network-facing virtual consoles.

Vulnerabilities in these bundled applications can be exploited from anywhere and can lead to

full control over the virtualized environment. For example, CVE-2008-3253 describes a Cross-Site

Scripting attack on a remote administration console that exposed all of Xen’s VM management

actions to a remote attacker after stealing an administrator’s authentication cookies.

11© Hypervisor Add-ons: Hypervisors like Xen and KVM have modular designs that enable

extensions to their basic functionalities – Hypervisor Add-ons. For example, the National Security

Agency (NSA) has developed their own version of Xen’s Security Modules (XSM) called FLASK.

Hypervisor add-ons increase the likelihood of Hypervisor vulnerabilities being present, since

they increase the size of the Hypervisor’s codebase. For example, CVE-2008-3687 describes a heap

overflow opportunity in one of Xen’s optional security modules, FLASK, which results in an escape

from an unprivileged domain directly to the Hypervisor.

2.4.1 Breakdown of Vulnerabilities

We analyzed all of KVM’s and Xen’s CVE reports from the 4 vulnerability databases, labeling each

with its functionality-based attack vector. Our resulting vulnerability breakdowns are presented in

Table 2.1. It can be observed that the I/O Device Emulation categories (i.e., I/O and Networking

along with Paravirtualized I/O) account for more than one third of the known vulnerabilities

for each of the Hypervisors (33.9% of Xen’s and 39.5% of KVM’s vulnerabilities). This can be

attributed to the variety of back-end drivers that are supported by both Xen and KVM. A normal

QEMU installation is capable of emulating all sorts of virtual devices (e.g., NIC, display, audio)

and different models of each type (Intel Ethernet i82559C, Realtek Ethernet rtl8139, etc.), leading

to a considerable number of distinct use cases and a fairly large codebase.

12

Table 2.1: Breakdown of known vulnerabilities by Hypervisor functionality for Xen and KVM.

Attack Vector Xen KVM
Virtual CPUs 5 (8.5%) 8 (21.1%)

SMP 1 (1.7%) 3 (7.9%)

Soft MMU 4 (6.8%) 2 (5.3%)

Interrupt and Timer Mechanisms 2 (3.4%) 4 (10.5%)

I/O and Networking 11 (18.6%) 10 (26.3%)

Paravirtualized I/O 9 (15.3%) 5 (13.2%)

VM Exits 4 (6.8%) 2 (5.3%)

Hypercalls 2 (3.4%) 1 (2.6%)

VM Management 7 (11.9%) 2 (5.3%)

Remote Management Software 9 (15.3%) 1 (2.6%)

Hypervisor add-ons 5 (8.5%) 0 (0.0%)

Total 59 38

The number of Remote Management Software vulnerabilities in Xen (accounting for 15.3% of its

vulnerabilities) shows that non-essential services may increase the attack surface significantly. More

interestingly, KVM reports a markedly lower contribution from VM Management vulnerabilities

towards the total (5.3% in KVM vs 11.9% in Xen). This might suggest that KVM’s architectural

decision of running the libvirt toolkit (in charge of VM Management functionalities) as an additional

module inside Hypervisor space is more secure than Xen’s decision of allocating an entire privileged

VM (Dom0) for the same purpose. After all, Xen’s Dom0 domain is a specialized linux kernel,

which means that it needs to execute at least a minimal set of OS services in order to run, therefore

increasing the likelihood of bugs.

2.5 Further Characterization of Hypervisor Vulnerabilities

Our analysis of KVM and Xen vulnerability reports gave rise to two additional complementary

classifications: trigger source and attack target. A Hypervisor vulnerability manifests itself inside

a Hypervisor module’s code, but can be triggered from a variety of runtime spaces and can target

one or more of those runtime spaces. Listed from lowest to highest privilege level: (1) Network, (2)

Guest VM’s User-Space, (3) Guest VM’s Kernel-Space, (4) Dom0/Host OS, (5) Hypervisor.

The trigger source and attack target are of great importance when assessing a vulnerability’s

ease of exploitability and impact, respectively. The trigger source can be determined by comparing

the restrictions of each of the runtime spaces with the execution rights required to reproduce the

vulnerability. Since these five categories correspond to hierarchical privilege levels, we show the least

13

possible privilege level for the trigger source, and the greatest possible privilege level for the attack

target in Tables 2.2 and 2.3.

2.5.1 Trigger Sources and Attack Targets

1© Network: This is the least privileged runtime space, but also the easiest to attain. Any remote

user can initiate an attack on a Hypervisor and its guest VMs if it is located in a subnet from which

the machine running the Hypervisor is reachable.

2© Guest VM’s User-Space: Almost any code can be executed from a guest VM’s Ring 3;

however, some functionalities are reserved for the OS or the Hypervisor (causing an exception).

Nevertheless, it is easiest to get user-space code to run, so any exploits from this ring are attractive

to an attacker. For example, CVE-2010-4525 mentions an attack from a guest VM’s Ring 3 involving

the CPUID x86 instruction.

3© Guest VM’s Kernel-Space: Injecting malicious OS-level (Ring 0) code requires compro-

mising the OS security. Interestingly, in IaaS cloud deployments, tenants can simply lease VMs

and run their OS of choice – one which may already be malicious. For example, CVE-2008-1943

mentions an attack from a Guest VM’s Kernel-Space, as it requires control over the paravirtualized

front-end driver.

4© Dom0/Host OS: Some runtime spaces have privilege levels that lie between those of a

guest VM’s OS and the ones possessed by the Hypervisor. In Xen’s case, Dom0 is a privileged VM

with direct access to I/O and networking devices. At the same time, Dom0 is allowed to invoke VM

Management operations. While KVM does not have a Dom0 equivalent, the fact that the Hypervisor

is part of a fully-operational Linux kernel gives way to other types of threats (e.g., local users in the

host system).

5© Hypervisor: This is the most desired runtime space because it has Ring -1 privileges, so

any command can be run from this space. The Hypervisor can access any resource in the host

system (i.e., memory, peripherals, CPU state, etc), which means that it can access every guest VM’s

resources.

2.5.2 Breakdown of Vulnerabilities

As can be observed in Table 2.2, the most common trigger source is the Guest VM User-Space

(Ring 3), accounting for 39.0% of Xen’s and 34.2% of KVM’s vulnerabilities. This is worrying, as it

indicates that any unprivileged guest VM user has the necessary privileges to pose a threat to the

14

underlying Hypervisor. The Guest VM Kernel-Space is the second most common trigger source, with

roughly 32% of the total in both cases. Hence, 71.2% of all Xen and 65.8% of all KVM vulnerabilities

are triggered from a guest VM. Also note that there are no vulnerabilities with Hypervisor space

as their trigger source, which makes sense because an attacker who has control over the Hypervisor

already has the maximum privilege level attainable.

Table 2.2: Breakdown of known vulnerabilities under trigger source classification for Xen and KVM.

Trigger Source Xen KVM
Network 11 (18.6%) 2 (5.3%)

Guest VM User-Space 23 (39.0%) 13 (34.2%)

Guest VM Kernel-Space 19 (32.2%) 12 (31.6%)

Dom0/Host OS 6 (10.2%) 11 (28.9%)

Hypervisor 0 (0.0%) 0 (0.0%)

Total 59 38

Two differences between the two Hypervisors stand out: Xen is much more vulnerable to network-

based attacks than KVM, but KVM is more sensitive to Host OS-based attacks. The first observation

follows from our attack vector analysis (Section 2.4), which showed that Remote Management Soft-

ware vulnerabilities are a big problem for Xen. On the other hand, KVM’s sensitivity to Host OS

threats is to be expected because, being part of the main Linux kernel branch, its code can be in-

voked by other kernel-space processes running on the host, leaving it exposed to malicious privileged

local users.

Table 2.3: Breakdown of known vulnerabilities under target-based classification for Xen and KVM.

Attack Target Xen KVM
Network 0 (0.0%) 0 (0.0%)

Guest VM User-Space 0 (0.0%) 0 (0.0%)

Guest VM Kernel-Space 12 (20.3%) 9 (23.7%)

Dom0/Host OS 25 (42.4%) 11 (28.9%)

Hypervisor 22 (37.3%) 18 (47.4%)

Total 59 38

It can be observed from Table 2.3 that Dom0 is a more common target than the Hypervisor in

Xen, whereas KVM shows the opposite behaviour (its Host OS is less common than the Hypervisor

as a target). This difference between the two Hypervisors is due to the location of the I/O Device

Emulation back-end drivers, which are found in Dom0 with Xen and in the Hypervisor with KVM.

The I/O & Network Device Emulation functionalities contribute more than one third of the known

15

vulnerabilities in both Hypervisors, so the location of the back-end drivers has great influence over

the relative distribution of vulnerabilities among the possible attack targets.

2.6 Hypervisor Attack Paths

Tables 2.4 and 2.5 show an integration of all of our three attack classifications for Xen and KVM,

respectively. Each row illustrates a potential attack path; starting at some trigger source, exploiting

a specific Hypervisor functionality, to attack a set of targets. In each row, the trigger sources are

less privileged software entities, while the attack targets are the more privileged software entities,

thus enabling privilege escalation. A co-located hostile VM can take multiple iterations through

the attack paths (left to right, wraparound to left to right, etc.) to achieve privilege escalation,

eventually attaining Dom0/Host OS or Hypervisor-level privileges. When the attacker achieves

these elevated privileges, it can see, modify or deny services to a victim VM, thus breaching the

victim’s confidentiality, integrity or availability.

The specially marked X©s in Table 2.4 are an example of a possible 2-step privilege escalation

path that a privileged guest VM user (Ring 0) could follow in order to reach Hypervisor runtime

space (Ring -1) in a Xen deployment. The first step would be to exploit a VM Management

vulnerability to gain control of Dom0. A viable attack to achieve this transition is CVE-2007-4993

(see Section 2.4), which enables the execution of arbitrary python code inside Dom0. Once in

control of Dom0, exploiting a Soft MMU vulnerability could grant the malicious user control over

the most desirable runtime space: Ring -1. The Q35 attack (CVE-2008-7096), covered in the next

section, could be used to that end.

Table 2.4: Xen’s Vulnerability Map in tabular form

Trigger Source
Attack Vector

Attack Target
NW Usr OS Dom0 OS Dom0 HV

X X Virtual CPUs X X
X SMP X
X X X© Soft MMU X X©
X X I&T. Mech. X

X X X I/O and NW X X
X X Paravirt. I/O X X
X X VM Exits X X

X Hypercalls X
X X© X VM Management X© X

X Rem. Mgmt. SW X
X X X HV add-ons X X

16

Table 2.5: KVM’s Vulnerability Map in tabular form

Trigger Source
Attack Vector

Attack Target
NW Usr OS Host OS Host HV

X X X Virtual CPUs X X X
X SMP X X
X X Soft MMU X X
X X X I&T. Mech. X X

X X X X I/O and NW X X X
X X Paravirt. I/O X X X

X VM Exits X X
X Hypercalls X

X VM Management X
X Rem. Mgmt. SW X

HV add-ons

Legend: NW = Network; Usr = Guest VM User-Space; OS = Guest VM Kernel-Space; Host =

Host OS; HV = Hypervisor; I&T Mech. = Interrupt and Timer Mechanisms; Paravirt. I/O =

Paravirtualized I/O; Rem. Mgmt. SW = Remote Management Software

2.7 Case Studies and Defenses

The goal of our exploration of the vulnerabilities, their classification, and creation of the vulnerability

maps, is to help researchers better understand attacks on Hypervisors and determine where defenses

should be concentrated. We now first show how two real world attacks can be analyzed using the

maps.

2.7.1 Understanding Existing Attacks

For our case studies, we present one Xen and one KVM attack. The first is the Dom0 Attack on Xen

from Black Hat USA 2008 [54]. The second is the Virtunoid Attack on KVM from DEFCON/Black

Hat 2012 [17].

Case Study: Dom0 Attack on Xen (Black Hat USA 2008)

This attack [54] revolves around Intel’s Q35 chipset for the Core 2 Duo/Quad platforms. In Q35

chipsets, the processor provides the capability to re-claim the physical memory overlapped by the

Memory Mapped I/O logical address space. Under normal operation, the REMAPBASE and

REMAPLIMIT registers are calculated and loaded by the BIOS. The amount of memory remapped

is the range between Top of Low Usable DRAM (TOLUD) and 4 GB. This physical memory will

17

be mapped to the logical address range defined between the REMAPBASE and the REMAPLIMIT

registers. The end result is shown in Figure 2.4.

The Invisible Things team [54] managed to hijack Xen’s Hypervisor memory from the Dom0

domain in Q35 chipsets by exploiting the host system’s remapping registers. Xen’s Dom0 has write

access to the host system’s REMAPBASE and REMAPLIMIT registers, so a malicious Dom0 kernel

is able to set up a memory remapping range pointing to the Hypervisor’s physical memory, as shown

in Figure 2.5. As a result, the Dom0 attacker can read and modify the Hypervisor’s memory space

during runtime. This constitutes a serious confidentiality and integrity breach, making it possible

for the attacker to run any series of instructions with Ring -1 privilege level.

Note that the Invisible Things team [54] employed an already-compromised Dom0 kernel to carry

out the Q35 attack. Therefore, in terms of the Xen vulnerability map shown in Table 2.4, the initial

trigger source for the original Q35 attack is Dom0 (which runs in Ring 0). The attack vector is via

part of the Soft MMU because memory management and memory control is mediated incorrectly.

A mechanism to lock the remapping registers after the BIOS has set them up is a possible defense,

eliminating the possibility for a rogue Dom0 domain to write new values to them. Finally, the attack

target is the Hypervisor (Ring -1), whose memory space is completely compromised.

Figure 2.4: Memory remapping during normal operation of Q35 chipset.

18

Figure 2.5: Memory remapping during attack on Q35 chipset.

Case Study: Virtunoid Attack (DEFCON/Black Hat 2011)

The Virtunoid attack [17] illustrates a combination of two attack steps that achieve privilege esca-

lation to Hypervisor privilege level in KVM. The first step exploits an I/O hot-unplug vulnerability,

and the second step uses this to achieve privilege escalation. The specific vulnerability exploited

was CVE-2011-1751.

PIIX4 is the default South Bridge emulated by KVM and supports PCI hot-plugging and hot-

unplugging. A security researcher discovered that KVM’s emulated RTC (real time clock, a type

of clock source for the operating system) was not designed to be hot-unplugged. A use-after-free

opportunity occurs when the virtual RTC is hot-unplugged, as it leaves around dangling pointers

to QEMUTimer objects. Dangling pointers store references to objects that are no longer valid. This

happens when objects are freed from memory and pointers referencing them are not updated to

reflect those changes. QEMUTimer objects are part of a circular linked list that is continuously

traversed by following the next struct pointer (see Listing 2.2). The opaque struct field points to

the function that is to be invoked once the timer expires. Therefore, if an attacker managed to

inject data into the memory segment previously occupied by a QEMUTimer object belonging to the

virtual RTC, the object’s opaque field could be overwritten to point to malicious code, which would

in turn be automatically executed by the PIIX4 emulator after some time.

19

1 s t r u c t QEMUTimer {

2 QEMUClock ∗ c l o ck ;

3 int64 \ t exp i r e \ t ime ;

4 QEMUTimerCB ∗cb ;

5 void ∗opaque ;

6 s t r u c t QEMUTimer ∗next ; } ;

Listing 2.2: QEMUTimer struct definition in KVM.

One way to inject data into the memory space previously occupied by a QEMUTimer object is to

take advantage of the fact that QEMU emulates a variety of other devices. Therefore, any emulated

device requiring new memory in the stack immediately after the hot-unplugging of the virtual RTC

will most likely be allocated the same memory segment that has just been freed (where the QEMUTimer

object was located at). The Virtunoid attack takes advantage of the emulated Network Card, given

that it responds to ICMP Echo (Ping Request) packets by synchronously generating a second packet

whose contents can be controlled through the contents of the incoming packet (RFC 1122 states that

data received in the Echo Request must be entirely included in the Echo Reply). Consequently, the

emulated Network Card provides a way for the attacker to trigger calls to malloc by the QEMU

process, as the second packet (Echo Reply) requires memory in the stack. The basic steps followed

for the memory hijacking to take place are summarized in Figure 2.6.

Figure 2.6: Series of events that leads to virtual RTC’s QEMUTimer object being hijacked in Virtunoid
attack.

Once the QEMUTimer object is hijacked, the opaque pointer can be changed to reference any code

found in the QEMU memory space, so hard-coded QEMU functions and even code sent in other

ICMP packets could be invoked through that pointer.

Referring to the KVM vulnerability map in Table 2.5, the initial trigger source for the Virtunoid

attack is a Guest VM’s Kernel-Space. In order to request the hot-unplugging of QEMU’s RTC timer,

20

the attacker must write the value 2 to I/O port 0xae08, which requires root (Ring 0) privileges inside

a guest VM. The attack vector is I/O and Networking, since the presence of dangling QEMUTimer

pointers is attributed to errors in the code related to I/O device emulation. Finally, the attack

target is the Hypervisor, given that KVM runs its back-end drivers (main QEMU process) inside

the Hypervisor runtime space. After this first attack path through Table 2.5, no privilege escalation

has occurred, as the attacker remains in Guest VM Kernel-Space.

Privilege Escalation occurs during the second step of the attack (a second pass through Table 2.5).

The trigger source for this step can be the Guest VM User-Space or even the Network, since ICMP

Echo Request packets do not require any special privileges besides having internet connectivity.

The attack vector is again the I/O and Network device emulation functionality, as it requests stack

memory in a predictable and controllable way. The attack target is the Hypervisor. When this step

is completed, the memory segment that has been hijacked belongs to the Hypervisor (Ring -1) and

allows the attacker to run arbitrary code with Hypervisor privilege level, so a privilege escalation

condition has been attained. Therefore, the attacker ends up transitioning from Guest VM Kernel-

Space to Hypervisor runtime space. From then onwards, any Hypervisor functionality or runtime

space can be reached by the attacker through clever manipulation of the opaque pointer.

It is worth noting that the actual privilege escalation is from the Guest VM kernel code on the

first step to the Hypervisor code at the end of the second step.

2.7.2 Helping Focus Defenses

While we believe this to be the first categorization of Hypervisor vulnerabilities, researchers have

been aware of various attacks on Hypervisors and have proposed a number of defenses. We summarize

some of these, then suggest areas to focus defenses based on our Hypervisor vulnerability maps.

One defense strategy against attacks is to make the Hypervisor codebase more resilient to attacks.

Projects such as HyperSafe [67] have looked at hardening the code to make it more difficult to inject

code and subvert the control flow of the Hypervisor through clever programming techniques. This

aims to address attack paths targeting the Hypervisor; however, this does not mean that all attack

vectors with the Hypervisor as the attack target are mitigated.

Protecting the Hypervisor kernel from an untrusted management OS [37] is another approach

that has been proposed. Such work covers Dom0/Host OS trigger sources, and especially paths with

a VM Management attack vector.

21

Another defense strategy is to use hardware-assisted techniques for protecting the software in-

tegrity of the Hypervisor to detect the attacks before they can do damage. For example, Copilot

[50] employs a special purpose PCI device to read the physical memory of the target system. Hy-

perCheck [66] looks at using features of the microprocessor, namely the system management mode

(SMM) to inspect the Hypervisor. HyperSentry [3] also used the SMM to bypass the Hypervisor

for integrity measurement purposes. Such work aims to cover paths toward the Hypervisor attack

target.

A fourth defense strategy is removing the Hypervisor altogether. The NoHype [31, 61] architec-

ture for Cloud Computing eliminates the Hypervisor layer and places VMs directly on top of the

physical hardware while still being able to start, stop and run multiple VMs at the same time.

From our analysis of CVEs, we believe that defenses for commodity Hypervisors should start by

focusing on Hypervisor correctness. Thorough input validation, proper tracking of context changes,

complete initialization of control structures, complete clearing of sensitive data on process termi-

nation, and full awareness of the underlying hardware’s capabilities would immediately reduce the

Hypervisor’s attack surface. The emulation of I/O and networking devices proves to be a common

point of failure, so Hypervisor vendors should aim at developing a small set of secure back-end drivers

instead of trying to provide a large number of virtual devices with overlapping functionality (e.g.,

e1000, ne2k pci and rtl8139 networking cards) that are hard to maintain.

2.7.3 Assisting in the Discovery of New Attacks

While many proposed defenses exist, numerous paths through the Hypervisor vulnerability maps

(Tables 2.4 and 2.5) are not yet covered. However, it should be noted that some of them can be

dismissed. For example, it is inconceivable for a remote (network-bound) attacker to directly exploit

VM Exit-related vulnerabilities because VM Exits are a mechanism that only exists in the boundary

between a VM and the Hypervisor, so the attacker must first gain access to a VM. Even though

some attack paths can be ruled out, most of them are valid. The absence of current attacks with a

specific [source, vector, target] combination does not necessarily rule out the possibility of a future

attack leading to those conditions. For instance, KVM’s vulnerability map (Table 2.5) does not

report any existing attacks with a VM’s Kernel-Space as the source and the Hypervisor as a target

using Hypercalls as an attack vector (i.e., [OS, Hypercalls, HV]), which we know for a fact to be a

possibility judging from Xen’s vulnerability map (Table 2.4).

22

Our vulnerability maps provide a way to assess the coverage of each protection mechanism that a

cloud provider can employ. Equally important, they provide a way of identifying weak spots before

an actual attack surfaces. If a given [source, vector, target] combination is not addressed by a secure

Hypervisor, a malicious user will be able to decide where to concentrate his efforts. Conversely, our

work suggests specific areas where the cloud provider can focus hardening efforts to minimize the

risk of such attacks.

2.8 Related Work

To the best of our knowledge, there has been no detailed categorization of Hypervisor vulnerabilities

as presented in this chapter. Many researchers have looked at security issues in Cloud Computing

and produced surveys of those issues. The surveys (e.g., [62], [71]) focus on various threats for the

cloud environment as a whole: abuse of Cloud Computing resources, insecure APIs, etc. There has

also been work on classification of threats based on the different service delivery models of Cloud

Computing [57]. Other works have presented classifications of security issues at different levels, such

as network, host or application [4].

As one of its contributions, our work aims to categorize different attack vectors. Outside of Cloud

Computing, researchers have explored categorizing kernel-level rootkits to aid future detection [36].

Others have looked at attack surfaces in Cloud Computing, however, at the level of user, services

and cloud without diving into details of the attack surfaces on the virtualization layer itself [23].

Attack surface inflation [21] has been explored, including the change of the attack surface as new

components are integrated into an existing system (e.g., adding virtualization). Researchers have

also looked at the classification of threats and challenges faced by different components of an IaaS

(infrastructure-as-a-service) Cloud Computing deployment – components such as cloud software,

platform virtualization, network connectivity, etc. [11]. Different from all these works, our work

focuses on the Hypervisor attack surface.

Interesting work on mapping cloud infrastructure [53] has given insights on how to find a specific

target cloud server to attack. There have not been, however, other works which aim, as we do, to

map the cloud infrastructure attack paths.

23

Chapter 3

Availability Fueled by

Instantaneous VM Cloning

In Chapter 2, we identified Availability and I/O and network device emulation as the two

main security weaknesses of commodity Hypervisors (see Sections 2.3 and 2.4.1). In this chapter,

we try to deal with availability issues caused by the use of commodity Hypervisors in a Cloud

Computing context through the development of a new VM Cloning strategy.

3.1 Motivation

When addressing availability concerns, we find that VM Cloning is a viable strategy. We know for a

fact that Hypervisors can be compromised in many ways, so we do not want a client’s applications

and data to depend on a single Hypervisor instance. VM Cloning is interesting because it allows

us to have a VM’s state present in many different hosts at once. It is also faster than powering

on a new VM, since you avoid having to load the operating system and all of the system services

from scratch, which requires a considerable amount of disk reads and CPU time. Furthermore, VM

Cloning replicates the runtime state, including all changes made to a VM’s configuration since the

moment it was turned on. Thus, a clone VM is fully-functional without requiring any intervention

on behalf of the cloud customer. Replicated runtime state also means that software caches are

preserved, so the original VM’s pre-cloning performance levels can almost instantly be reached by

the clone VM.

24

3.1.1 VM Cloning for Availability

There are two availability goals that we want to achieve:

• Resilience to crashes: service disruption and data loss should be minimized when a VM or

Hypervisor instance goes down.

• Micro-elasticity: if a VM does not possess enough resources (i.e., RAM, disk, CPU, network

bandwidth) to provide acceptable performance to its users, it should be possible to dynamically

increase its available resources in a timely manner and with minimal service disruption.

Resilience to crashes is the most obvious property of VM Cloning. If a VM and its clones are

guaranteed to be consistent with each other, one of the clones can quickly take over the VM’s

responsibilities without any loss of data if a crash occurs. To fulfill this availability requirement,

passive (suspended) clones are ideal, as they can be kept fully-consistent by just transferring the

original VM’s main memory pages over the network. Keeping the clones powered down helps us

avoid networking conflicts and makes it so that a single disk file (for secondary storage) is sufficient

because only one live VM will be reading and writing to disk at any given time. Considering that

a clone is only needed to be turned on after the original VM is compromised, the passive cloning

scheme is simple and effective when it comes to crash resilience.

Micro-elasticity is a more ambitious availability goal. Once a VM is instantiated, the RAM

and CPU resources allocated to it cannot be changed without restarting the VM1. Given that the

detection of RAM and CPU resources happens during boot time, the VM’s OS does not contemplate

the possibility of those hardware characteristics changing thereafter. This means that, if a VM is

running a workload that (1) requires more RAM than what is available to it (leading to page

swapping and degraded performance) or (2) runs unbearably slowly under 100% CPU utilization,

the VM’s users are left with two options: (1) power off the VM, increase its RAM and/or CPU

allocation, then restart, resulting in considerable downtime or (2) keep using the VM despite its

unsatisfying performance, giving way to sub-optimal quality of service. A VM’s network bandwidth

suffers from other limitations – the host’s network card imposes a physical limit to the amount of

network bandwidth that the VM can utilize. If the host’s network card reaches its saturation point,

1Memory Ballooning [65] is not a RAM hot add feature; it is limited by a VM’s original RAM allocation. The
balloon is just a process that runs inside the VM and expands/contracts its memory usage, leaving less/more space
for the other applications running inside the VM. The balloon’s expansion can be used to force the VM to swap out
some memory pages to disk and reduce its main memory footprint, which is useful when oversubscribing RAM on
top of a host. However, a 2GB VM with memory ballooning will never have more than 2GB of RAM available to it
during its lifetime. If it needs more than 2GB of total RAM, one must power it off, increase its RAM allocation, and
boot it up again.

25

the VM’s networked applications will encounter long delays and/or packet loss, which inevitably

leads to sub-optimal user experience. Live VM migration is a way of dealing with such a scenario,

but the VM will always end up being limited by a single host’s network bandwidth.

With VM Cloning, one can envision the possibility of generating clone VMs that are actually

active and, thus, contribute to the overall throughput of the original VM’s internal workloads, pro-

viding us with micro-elasticity. Considering that each clone VM is given the same amount of CPU,

RAM and network resources as the original VM, this would allow us to effectively multiply the

resources available to a cloud customer’s applications under the presence of appropriate collabora-

tion mechanisms (e.g., network load balancers and application-layer task distribution frameworks).

However, we would like to preserve the crash resilience of passive cloning. Due to the fact that each

active clone VM will have to be writing to a separate disk file and attain a unique network identity

for them not to conflict with each other, every clone VM’s security-critical data will end up diverging

from the original VM’s security-critical data unless they have some way of synchronizing the data

that should not be lost after a VM’s crash. This, which seems to be a disadvantage of active cloning,

can actually be seen as an advantage – instead of replicating the original VM’s entire state, active

clone VMs are given the option to decide what state they care about and eliminate unnecessary

network traffic generated by the replication of non-critical state (e.g., memory pages used by state-

less services). Section 3.3 includes a more detailed treatment of data replication, concurrency, and

consistency issues that arise with active cloning.

From this discussion, we can conclude that active VM clones can help us fulfill both of our

availability objectives (crash resilience and micro-elasticity) when proper inter-clone collaboration

and data replication mechanisms are in place. We will focus on developing an efficient VM Cloning

strategy for the creation of active VM clones; researchers in the area of distributed systems have

already come up with solutions for collaboration and data replication. Our cloning technique should

provide us with the following consistency and independence guarantees between the original VM

and its clones:

• Main memory consistency at cloning time, independence after cloning.

• Persistent storage consistency at cloning time, independence after cloning.

• No networking conflicts.

The rest of this chapter describes how we successfully developed Pwnetizer, a cloning approach

that quickly generates VM clones while satisfying those guarantees.

26

3.2 Background on VM Cloning

If we look at existing VM Cloning work, we can identify four main trends, whose characteristics are

summarized in Figure 3.1. Cells highlighted in red are weaknesses from a security perspective, while

those highlighted in green indicate advantages. For a detailed description of the listed works, please

refer to Section 3.9. To accomplish our availability goals, what we are looking for is a mechanism

with all the properties listed on the last row. Ideally, clones should be fully independent, fast to

create, and distributed over many Hypervisors.

Figure 3.1: Summary of previous cloning work.

The first group of works (SnowFlock [34], Kaleidoscope [5] and FlurryDB [42]) focuses on

computationally-intensive workloads. They create small single-purpose VMs that depend on a mas-

ter VM’s main memory pages and die off after they complete a specific task. While the clones are

generated with little downtime, the cloning procedure is never-ending because of the ongoing master-

worker relation. Given that we want to avoid a single point of failure, this sort of strategy is not very

effective. Furthermore, the application code needs to be modified to use a specific cloning-related

API, which limits the deployability of these mechanisms.

27

All other works aim at producing complete VM clones as opposed to single-purpose ones. The

second row in Figure 3.1 lists projects that aim at generating clone VMs as fast as possible on

top of the same host – Potemkin [64] and Sun et al. [59]. This is accomplished by powering up

new VMs comprised of copy-on-write pages. While this is great for creating large numbers of VMs

with minimal memory footprint, all of the clones rely on a single Hypervisor instance. Hence, these

cloning strategies do not satisfy our crash resilience requirements.

A third approach, materialized in CloneScale [58], ends up generating fully-independent clones

on remote Hypervisors. Sadly, its performance figures are lacking, with downtimes in the order of

tens of seconds. In this case, the cloning procedure itself becomes an availability threat.

The fourth and most common type of VM Cloning has to do with keeping passive backups of a

VM in case it crashes. Once the VM crashes, the replica goes up and replaces it. This is what Cully

et al.’s REMUS [9] and most commercial products currently offer (e.g., Hyper-V Replica, VMWare

vSphere Replication), but the performance impact can be high depending on the sampling rate. For

example, using REMUS to create replication checkpoints with a frequency of 40 times per second

translates into a 103% performance overhead for computational workloads [9]. In addition, clone

VMs are always suspended, so we lose the micro-elasticity property of cloning. Lastly, REMUS can

only keep one replica per active VM, which limits the levels of redundancy that we can reach. Two

consecutive crashes within a short time window could still lead to the loss of security-critical data.

3.3 Pwnetizer - Orthogonal Issues

Some issues may arise when creating clones of VMs that are running certain types of applications.

If state changes (e.g., writes to disk) made by one VM are expected to cascade to the other clone

VMs, the cloud customer must employ frameworks with appropriate concurrency and consistency

guarantees for his applications. For instance, two clones running a normal MySQL database will

end up giving inconsistent sets of results after different database updates are executed on each of

them. If this is not the expected behavior, a solution would be to use MySQL Cluster [45] – a

cluster-friendly version of MySQL that fixes those symptoms. Many papers have tackled these sort

of issues and we do not aim at solving age-old questions related to distributed systems.

Valid approaches to handling concurrency in distributed applications include, but are not limited

to, Tame’s [32], SEDA’s [68], and Flash’s [48] event-driven architectures. On the distributed state

management front, examples of different levels of filesystem redundancy and system-wide consis-

tency (weak vs strong) are found in Harp’s [39] replicated filesystem, Lamport’s [35] event-ordering

28

algorithm, Chubby’s [6] distributed filesystem locks, COPS’s [40] casual consistency in key-value

stores, and Dynamo’s [14] loosely-consistent key-value stores.

Another orthogonal problem is that having a single Network File System (NFS) share to store

the disk files used by all VMs in a Cloud does not scale well. However, the main insights presented

in Section 3.5.3 still hold true for deployments using scalable networked shares (i.e., clustered file

systems), such as Oracle Cluster File System (OCFS), VMWare’s Virtual Machine File System

(VMFS) and Cluster Shared Volumes (CSV).

The simplest types of workloads that handle cloning gracefully are those that are read-only.

Thus, Big Data processing frameworks (e.g., Cajo [7], MapReduce [13], Piccolo [51], CIEL [44],

Spark [70]) work out-of-the-box. Other safe workloads are those that are self-contained or stateless,

such that local changes made by a single VM do not need to be reflected by the other VMs. P2P

network nodes (e.g., Skype, BitTorrent, Gnutella), firewalls (e.g., Snort), and static websites (e.g.,

Apache HTTP Server) are examples of those.

3.4 Pwnetizer - Initial Considerations

3.4.1 Live Migration as a Starting Point

At first glance, VM Cloning sounds relatively simple. Why not just conduct Live VM Migration and

leave the source VM turned on at the end? This would leave us with two VMs with the same main

memory contents. However, both VMs would be writing to the same disk file, which is problematic

because normal Operating Systems assume that they have dedicated access to the local hard disks.

As a result, neither of the VMs would be able to determine what the other VM may have written

to disk, which inevitably leads to data loss and corruption after some time. For two VMs to be

able to properly share the same disk file, a clustered filesystem and a custom OS would be required.

Nonetheless, such arrangement would mean that a single compromised VM could take over the

secondary storage used by all other clone VMs, which is undesirable.

Suppose that we decide to leave the source VM turned on after migration. For us to rule out

persistent storage conflicts and guarantee VM independence, we require a disk cloning mechanism

to ensure that the original VM and the clone VM are writing to separate disk files, which must be

completely identical at cloning time and can diverge thereafter. Unfortunately, given that disk files

represent a VM’s entire filesystem (i.e., OS files, application binaries and data, and user documents),

they can be several Gigabytes in size. For the cloned disk file to be fully-consistent with respect

29

to the clone VM’s main memory state, the disk cloning procedure must be performed during live

migration’s stop-and-copy phase, when both VMs are suspended and no writes are being issued to

the original VM’s disk. Consequently, disk cloning becomes the main downtime bottleneck, taking

into account that modern hard disks have write speeds in the order of 50 MB/s, which means that

making a copy of a 1GB disk file would require roughly 20 seconds of downtime. Our Pwnetizer

cloning strategy minimizes this downtime by maintaining a local mirror of the networked filesystem

share, which will be covered in Section 3.5.3.

Leaving the source VM turned on after Live VM Migration leads to another problem: the two

VMs will end up having the exact same network configuration (i.e., MAC and IP addresses), which

translates into connectivity issues for both. Hence, one of them must acquire a new network identity

to avoid networking conflicts. The main challenge in this case is for the clone VM to detect that

cloning has happened so that it can begin reconfiguring its network. A way of doing this is described

in Section 3.5.5.

From this discussion, it is clear that Live VM Migration serves as a good starting point for

VM Cloning, as it results in a new VM with fully-consistent main memory state. Nonetheless, two

non-trivial challenges (secondary storage independence and network reconfiguration) must be dealt

with for the two VMs (original and clone) to coexist with each other.

3.4.2 Precopy vs Postcopy

In this section, we summarize the two most popular memory migration algorithms and evaluate

their suitability for the VM Cloning scenario.

Pre-Copy

The pre-copy algorithm proposed by Clark et al. [8] keeps the source VM running for most of

the migration procedure. It uses an iterative push phase, followed by a minimal stop-and-copy

phase. The iterative nature of the algorithm is the result of what is known as dirty pages: memory

pages that have been modified in the source VM since the last page transfer must be sent again to

the destination VM. At first, iteration i will be dealing with less dirty pages than iteration i − 1.

Unfortunately, the available bandwidth and workload characteristics will make it so that some pages

will be updated at a faster rate than the rate at which they can be transferred to the destination

VM. At that point, the stop-and-copy procedure must be executed. The stop-and-copy phase is

30

when the CPU state and any remaining inconsistent pages are sent to the new VM, leading to a

fully consistent state.

Post-Copy

Post-copy migration defers the memory transfer phase until after the VM’s CPU state has already

been transferred to the target and resumed there. As opposed to pre-copy, where the source VM is

powered on during the migration process, post-copy delegates execution to the destination VM. In

the most basic form, post-copy first suspends the migrating VM at the source node, copies minimal

processor state to the target node, resumes the virtual machine at the target node, and begins

fetching memory pages from the source over the network. Variants of post-copy arise in terms of

the way pages are fetched. The main benefit of the post-copy approach is that each memory page

is transferred at most once, thus avoiding the duplicate transmission overhead of pre-copy [25].

Suitability for VM Cloning

The key difference between VM Migration and VM Cloning is that the former switches computation

from one host to the other, whereas the latter must end up with computation running on both

hosts. Figure 3.2 contrasts the pre-copy and post-copy procedures’ timelines. From a performance

standpoint, post-copy hinders the VM’s performance the most because page faults must be fetched

over the network, which takes something in the order of milliseconds as opposed to the nanoseconds

that local DRAM accesses take. On the other hand, the total amount of data transferred is larger

in the case of pre-copy due to its iterative nature; post-copy transfers each memory page only once

because page dirtying is taking place at the destination side. Consequently, it is hard to decide

between pre-copy and post-copy solely based on performance.

VM Cloning puts two new dimensions on the table: secondary storage consistency and network-

ing conflicts. At the end of VM Cloning, both VMs must have internet connectivity and be assigned

a secondary storage device that coincides with their operating system’s view of the filesystem. The

easiest way to tackle connectivity in VM Cloning is to leave the original VM’s network configuration

untouched and have the clone VM drop all ongoing sessions and assume a different IP+MAC address

set. Under the pre-copy scheme, the source VM remains active while its memory pages are trans-

ferred, so connectivity is not an issue. Meanwhile, the post-copy scheme initially pauses the source

VM and starts the clone VM, requiring an immediate update in the LAN’s packet forwarding rules

(through a gratuitous ARP reply) to preserve connectivity and keep TCP sessions up and running

on the clone VM. At the end, the source VM will have to assume a new network identity, given

31

Figure 3.2: The timeline of (a)pre-copy vs (b)post-copy migration. Taken from [25].

that its clone will have taken its place inside the network. Of course, this is burdensome because

packet forwarding rules have to be forcefully updated to redirect TCP/IP packets to the clone VM

even though the source VM is to come alive once again. Nevertheless, this inconvenience might be

justified by the guarantee that post-copy provides in terms of network efficiency (i.e., each memory

page needs to be transferred only once).

Secondary storage consistency is the defining criterion when evaluating suitability in the VM

Cloning scenario. When employing pre-copy, page dirtying is happening on the source VM’s side;

hence, by the time the clone VM comes alive, both VMs will possess a main memory state that is

consistent with the source VM’s secondary storage. Thus, the problem in that case lies in making

a copy of that secondary storage for the clone VM to use. Post-copy further complicates things by

having the dirtied pages in the clone VM’s side once the process is over, which means that the clone

VM’s memory state will be consistent with a secondary storage that does not correspond to the one

that existed when the source VM was paused. Consequently, the source VM will travel back in time

when it is resumed and will require a copy of the secondary storage made at the beginning of the

cloning process. This is clearly suboptimal, as it will force some computations that have already

been carried out by the clone VM to be executed once more inside the source VM. It may also trigger

system clock issues inside the source VM as a result of having paused its Operating System for an

extended period of time (several seconds), which is a problem when maintaining application logs.

Simply updating the clock time is not a viable solution, as it will lead to time-based jobs (e.g., cron

jobs on UNIX) being skipped. In addition, mechanisms to speed up the clock to get to the correct

32

time (e.g., ntpdate on UNIX) require a reliable NTP server or Hypervisor support (e.g., VMware

Tools) and are OS-dependent.

Taking all factors into account, the pre-copy page transfer algorithm seems to fit better with the

VM Cloning scenario than its counterpart. For this reason, Pwnetizer will extend pre-copy rather

than post-copy in order to materialize full VM Cloning with negligible downtime.

3.5 Pwnetizer - Implementation Details

In this section, we will discuss the logic behind key design decisions that had to be made when

implementing our first Pwnetizer prototype. The main objectives for our prototype were high

deployability and minimized downtime. As such, already-existing technologies should be leveraged

as much as possible and the time period during which the source VM must be paused should be

minimal.

3.5.1 Code Structure

Most commodity Hypervisors use the pre-copy algorithm to carry out live migration of VMs, includ-

ing VMware, Xen, KVM, VirtualBox, Microsoft Hyper-V and OpenVZ. Given that, as mentioned in

Section 3.4.2, the aforementioned algorithm is well-suited for full VM Cloning, the most straightfor-

ward approach to materializing Pwnetizer is to extend a Hypervisor’s live migration module. Ideally,

our code should be cross-compatible amongst a wide range of Hypervisors, which is why we opted

to modify Libvirt instead of a specific Hypervisor.

Libvirt is an open-source management tool for virtualized platforms. It runs in kernel space (Ring

0) and presents a Hypervisor-agnostic API to perform common tasks (e.g., stop, resume and launch

VMs) on any supported Hypervisor. Internally, each Hypervisor-specific code module is known as

a driver. The drivers available at the moment cover 8 popular virtualization platforms, including

Xen, KVM, VMware, VirtualBox and Hyper-V. All drivers use Libvirt’s Hypervisor-independent core

logic. This enables Libvirt users to declare guest domains (i.e., VMs), storage pools, storage volumes,

and host devices in a generic XML format. During runtime, the XML files and Libvirt’s management

console commands are interpreted and translated appropriately to the underlying Hypervisor by its

corresponding Libvirt driver.

The Pwnetizer Libvirt extension is divided into two separate modules: a Hypervisor-independent

module and a modified KVM driver, where the former comprises most of the codebase and can

be reused by any future Pwnetizer-enabled driver implementations. The choice of KVM as the

33

base Hypervisor for our prototype comes from the fact that KVM’s adoption has spiked since it

was made part of the main Linux kernel branch starting from version 2.6.20, becoming the main

virtualization package in Ubuntu, Fedora, and other mainstream Linux distributions. Figure 3.3

shows the architecture of a KVM host system running Libvirt. The management user interface

(virsh) sends Libvirt commands to the Libvirt daemon, which in turn communicates with KVM

to perform the corresponding actions. The runtime behaviour is similar with other virtualization

configurations and Pwnetizer support for other Hypervisors can be easily implemented because of

its modular design.

Figure 3.3: KVM+Libvirt Architecture.

3.5.2 Main Memory

VM’s Memory Space

Section 3.4.2 explains why the pre-copy algorithm is the most appropriate page transfer mechanism

when conducting on-demand full VM Cloning with negligible downtime. Thus, all of the issues

related to main memory consistency between a VM and its clone are solved by reusing existing live

migration code.

Hypervisor’s Memory Space

Hypervisors store state associated with every guest VM that they are hosting. For example, KVM

loads a full description of each running VM in main memory, with details regarding CPU and RAM

allocation, the architecture being emulated (e.g., x86, AMD64), and the VM’s peripherals (e.g.,

network devices, storage devices, video cards, optical drives). This description also includes domain

metadata, such as the domain’s name and its unique identifier (or UUID).

34

The main purpose of Pwnetizer’s VM Cloning mechanism is to obtain an independent clone of

a specific VM. This does not necessarily mean that both VMs will end up having the same exact

domain description. As will be covered in Section 3.5.3, the clone VM’s filesystem must be redirected

to a disk file other than the one originally used by the source VM. Other changes that must be made

include modifying the MAC addresses of network cards (refer to Section 3.5.4) and giving the clone

VM a new domain name and UUID. Therefore, the Hypervisor responsible for hosting the clone

VM will have to alter the runtime domain object that resides in the Hypervisor’s memory space

if it is to provide an appropriate virtualized environment for that VM. Hence, even though main

memory consistency is the expected outcome at the VM level when conducting full VM Cloning,

some controlled inconsistencies will have to arise at the Hypervisor level to ensure the independence

of the resulting clone VM with respect to its source VM.

3.5.3 Secondary Storage

VM’s Persistent Storage

Secondary storage is not a concern when carrying out VM migration, given that a single VM will be

reading and writing to disk at any given time during and after the migration process. This does not

hold true in the case of full VM Cloning, where two different VMs will result from the procedure and

both will want to read and write to their secondary storage. If secondary storage of one of the VMs

is not redirected to a new (yet consistent) disk file, the original filesystem will become corrupted

shortly after in the sense that neither of the VMs will have a correct view of the filesystem’s state.

Our main challenge in this case is to achieve full consistency between each VM’s Operating System

and its persistent storage without hindering the liveliness of our cloning process. In other words, we

need to preserve the negligible downtime offered by Live VM Migration while still duplicating the

relevant networked file shares in a consistent manner.

Figures 3.4 through 3.8 summarize our proposed disk cloning technique, which complies with

the aforementioned consistency and liveliness constraints. We use a Linux package called rsync to

maintain a mirror of the NFS share being used by the VMs (see Figure 3.4). Rsync uses delta

encoding to synchronize two files that contain a similar, but not identical, version of the same

data. Consequently, the utility needs to transfer relatively little data to synchronize the files if it is

invoked every time a new write is issued on the NFS share. For simplicity, we run an rsync thread

that invokes the mirroring command every second. The key insight is that, if both the NFS share

and its local mirror are kept in different directories inside the same filesystem, a disk file can be

35

moved from the local mirror into the NFS share almost instantly, as such operation only requires

modifications to the filesystem’s metadata (i.e., unix inode tables); actual file data does not have

to be physically copied to the other folder. Consequently, our mirroring arrangement allows us to

provide the illusion of creating a copy of an arbitrary-sized disk file in sub-second time, as will be

explained below.

Figure 3.4: Storage state before cloning operation.

For storage efficiency, our virtual machines use QCOW2 (QEMU copy-on-write) disk images

derived from a master disk image. The master disk image contains a basic OS installation, so it

provides the standard file structure (approximately 4.5 GB of data for an Ubuntu Desktop instal-

lation) that all VMs initially require. The copy-on-write images grow and diverge from each other

as data is written by the VMs. Considerable storage savings are achieved with this arrangement as

the number of VM clones increases.

The first step in order to clone a VM is to allocate a new instance of the same VM on a remote

Hypervisor and keep it paused. We call this second instance the clone VM, while the original VM

is referred to as the source VM. As Figure 3.5 illustrates, the clone VM’s secondary storage must

be redirected to a disk file other than the one being used by the source VM, but with the same

contents. This preparation step can be executed without requiring any data to be copied by simply

invoking a move+rename command that brings the backup copy of the source VM’s disk file found

in the local mirror into the actual NFS share and gives it a new name.

36

Figure 3.5: Pre-cloning preparations.

With the clone VM’s storage correctly configured, the pre-copy algorithm can begin. Figure

3.6 portrays this phase of the cloning process, during which main memory consistency is gradually

attained. The fact that the source VM is still running at the time means that its disk file’s data may

change as I/O write buffers get flushed by the VM’s operating system. For this reason, a separate

rsync thread is spawned to constantly synchronize the clone VM’s disk file with that of the source

VM.

Figure 3.6: Storage state during memory page transfer.

The last pre-copy iteration entails pausing the source VM to transfer what is known as the

writeable working set (WWS) or hot pages, which is a small, but frequently updated set of pages.

We take advantage of this stop-and-copy phase that is inherent to the pre-copy algorithm to also

ensure secondary storage consistency. As can be seen in Figure 3.7, we kill the rsync thread that

37

was previously spawned and execute a final rsync instruction to update the clone VM’s disk file

with all of the changes exhibited by that of the source VM. Both VMs remain paused until this final

synchronization completes.

Figure 3.7: Storage operations on last pre-copy iteration.

The final step in the cloning operation is to resume both the source VM and its clone (see Figure

3.8). They now have completely independent disk files, so any updates to their filesystems will not

affect the other VM. Full consistency between each VM’s view of the filesystem and their associated

disk file’s state has been achieved. If the source VM’s I/O buffers are not empty before the stop-and-

copy phase, the clone VM and source VM will eventually commit those writes to their corresponding

filesystems once they are resumed. Therefore, both disk files will end up reflecting the appropriate

changes needed to preserve the aforementioned consistency. It should also be noted that the local

mirror will start obtaining a new copy of the source VM’s disk file, as well as a copy of the clone

VM’s disk file. These can be used for future cloning operations.

Pwnetizer generalizes what has been discussed in this subsection to clone VMs attached to N

different disk files. This is easily accomplished by executing N move+rename commands mimicking

the one in Figure 3.5, spawning N rsync threads inside the NFS share like the one in Figure 3.6, and

invoking N final synchronizations such as the one in Figure 3.7.

38

Figure 3.8: Storage state after cloning operation.

Host’s Persistent Storage

Section 3.5.2 talks about changes that must be made to the runtime domain object found in the

Hypervisor’s main memory for the clone VM to run properly. These are modifications to the domain’s

name and UUID, along with new MAC addresses for the network cards and new secondary storage

disk files. Those changes must also be written to a persistent medium for them to still be present

next time the clone VM is launched. As mentioned in Section 3.5.1, Libvirt declares domains in a

Hypervisor-agnostic XML format, so the Pwnetizer component’s task in this respect is to translate

the new domain object into an XML description compliant with Libvirt’s XML schema and write it

to the host’s filesystem for later use.

3.5.4 Networking

VM Cloning requires runtime changes inside the cloned VM in order to avoid networking conflicts.

There are three things that need to be different between the source VM and the target VM: MAC

addresses, IP addresses, and hostnames. While MAC addresses are a physical property of the network

cards and can be altered by the Hypervisor (see Section 3.5.2 and Section 3.5.3), IP addresses and

hostnames are part of the VM’s OS configuration. In addition, hardware features that are expected to

remain the same (e.g., motherboard serial number, CPU model) are detected by the VM’s operating

system during boot-up and are not monitored thereafter; MAC addresses are one of these features.

Thus, changes to the VM’s internal state are also required if MAC address changes are to be reflected

during runtime.

39

The clone VM must somehow detect that it has come alive (see Section 3.5.5) and immediately

power off its network interface. That way, ongoing sessions and buffered packets are invalidated by

the clone VM and are left for the original VM to handle without any interference. This action must

be followed by swift modifications in the clone VM’s configuration so that it can assume its new

network identity and resume normal operation as soon as possible. In a typical Linux distribution,

the steps to be followed by the clone VM are:

1. Turn off all network interfaces.

2. Modify any static IP configurations found in /etc/network/interfaces to adopt unused IP

addresses and edit /etc/hostname to give the VM a unique hostname. These changes ensure

that the new hostname and IP addresses become persistent in case the clone VM is rebooted

some time in the future.

3. Use hostname and ifconfig commands to force the OS to update the VM’s hostname and

MAC addresses during runtime.

4. Turn all network interfaces back on. This will trigger DHCP requests if non-static IP config-

urations are being used by the VM.

Our Pwnetizer prototype runs a daemon inside every VM that detects the end of a cloning

process (refer to Section 3.5.5) and takes care of all of these steps on the clone VM’s side. This

daemon is compatible with most popular Linux distributions (i.e., Fedora, Ubuntu, Gentoo, Debian,

OpenSuSE, Mandrake) and is written in Java to avoid having to recompile its code on every platform.

3.5.5 Detecting Cloning

We need to find a way for the clone VM to realize that cloning has happened in order for it to

begin reconfiguring its network settings. Even though virtualization infrastructure attempts to

provide guest VMs with the illusion that they are running on top of physical hardware, researchers

have discovered various methods to detect the presence of a Hypervisor from within a VM. For

instance, Ferrie [19] [20] describes techniques of determining if an OS is running on top of VMWare,

Bochs, Xen, QEMU. Unfortunately, we face a greater challenge: not only do we need to detect

virtualization, we also need a VM to determine whether it is the clone VM or the original VM

after a cloning operation. Only the clone VM should change its network settings; the original VM’s

configuration should remain unchanged. This means that we have to find some property that allows

us to tell the underlying hosts apart. If the underlying host has changed for a VM, this would

indicate that it is the clone VM instead of the original one.

40

VM Introspection

There are very limited ways for a VM to tell itself apart from others. In KVM, a VM’s UUID is acces-

sible from inside the VM through a special file (/sys/devices/virtual/dmi/id/product uuid).

However, an update to the VM’s UUID is not reflected by the special file until the next time the

VM is booted up, so this introspection mechanism does not meet our needs.

Hypercalls

A viable option to tell two VMs apart would be to take advantage of hypercalls. Hypercalls are

Hypervisor-specific (e.g., Xen, KVM) and provide a procedural interface through which guest VMs

can directly interact with the Hypervisor. By way of a hypercall, a VM could obtain information

about the Hypervisor instance running beneath it and establish the underlying host’s identity. How-

ever, this would require a virtualization-aware OS and would not be easily transferable from KVM

to other virtualization platforms.

External Changes

Changes in the VM’s surrounding environment may be easier to detect. One could envision the

possibility of querying the network topology to find out whether or not a VM has changed its

vantage point from inside the network. If so, that specific VM must be a clone VM. The main

drawback of network-based detection methods comes from the fact that the original VM and the

clone VM have the same network identity during the detection phase, which means that the clone

VM could take over the forwarding rules associated with the original VM if it sends ICMP, ARP, or

any other type of TCP/IP packets to the external network. This is attributed to the self-learning

nature of ethernet switches, which update their forwarding tables as new packets pass through them.

For our Pwnetizer prototype, we employ our own network-based detection strategy that does

not require packets to leave the host, thus minimizing the possibility of the original VM’s network

connectivity being disrupted by the clone VM before it changes its MAC and IP addresses. In a

Cloud Computing scenario, a VM’s network cards usually have a direct bridge to the host’s physical

Network Interface Card (NIC), which looks like the eth1-br1-eth1 arrangement in Figure 3.9.

This allows the VMs to be reachable from the outside because they are directly connected to the

LAN, which is necessary when running any type of networked service based on incoming connections

(e.g., mail server, web server, database server). As shown in Figure 3.9, we add a virtual Network

Address Translation (NAT) gateway, virbr0, that runs inside each host and is presented to every

41

VM on a new NIC (i.e., eth0). While the fully-bridged interface (i.e., eth1) is used by the VMs

to communicate with the external network, the virtual NAT gateway is used for the sole purpose of

identifying the underlying host. Taking into account that each host presents a NAT gateway with

the same IP address (i.e., 192.168.101.1) and a different MAC address, the guest VMs can easily

detect if they have switched hosts by querying virbr0’s MAC address. With this addition, each

VM needs to store the NAT gateway’s MAC address that is detected when the VM is powered on,

followed by periodically checking if that MAC address has changed to determine whether or not a

cloning operation has taken place. Since the original VM remains on the same host, no changes

will be detected. On the other hand, the clone VM will recognize a different MAC address on the

virtual NAT gateway, so the clone VM knows that its networking configuration must be updated

as described in Section 3.5.4. These tasks are carried out by PwnetizerClient, an application-

space program running inside the VM (see Section 3.5.6). It should be noted that querying the

NAT gateway’s MAC address is done by sending an ARP request containing virbr0’s IP address

(192.168.101.1) to the 192.168.101.0/24 network segment, so the query packet never leaves the

VM’s host2. Consequently, this strategy is fast (small round-trip-times) and does not generate

networking conflicts in the external network.

Figure 3.9: Prototype’s Internal Networking.

3.5.6 End Product

Our KVM-based Pwnetizer prototype is comprised of three software components highlighted in

Figure 3.10, for a total of 3,602 lines of code (LOC):

• PwnetizerLibvirt – a modified Libvirt that runs on each host and orchestrates the entire

cloning procedure. It required an extra 2,362 lines of C code on top of Libvirt’s original 484,349

LOC.

2The virtualized 192.168.101.0/24 network segment is entirely contained within each host.

42

• PwnetizerServer - manages the networked share where VM disk files are stored and takes

care of efficient disk cloning. It is materialized in 1,109 lines of C code. Refer to Section 3.5.3

for details about its core tasks.

• PwnetizerClient - runs inside every VM and takes care of cloning detection as well as network

reconfiguration. It is a small program, taking up only 131 lines of Java Code. Refer to Sections

3.5.4 and 3.5.5 for details about its core tasks.

Figure 3.10: Pwnetizer Prototype Architecture.

Figure 3.11 summarizes all of the interactions that take place during a Pwnetizer VM Cloning

procedure. The cloning action is triggered on the source Hypervisor instance, where the original VM

is running. A full XML description of the VM (e.g., RAM size, number of vCPUs, NICs and their

MAC addresses, etc) is generated and sent to the target Hypervisor, where the clone VM will reside.

Once the target Hypervisor is done modifying the VM’s definition to ensure that the clone VM is

unique and does not interfere with the original VM’s persistent storage or network, it contacts the

PwnetizerServer application and gives it a list of disk files that will have to be cloned. Based on

this information, PwnetizerServer prepares the clone VM’s disk files and makes them available in

the NFS share. With the new disk files now present in the NFS share, the target Hypervisor is able

to launch the clone VM in suspended state and becomes ready for the pre-copy main memory page

transfer to begin.

The pre-copy algorithm iteratively transfers main memory pages from the original VM to the

clone VM while the original VM is powered on. When the time comes for the stop-and-copy phase,

both Hypervisors notify PwnetizerServer and the original VM is paused. PwnetizerServer then

proceeds to kill the synchronization threads between the original VM’s and the clone VM’s disk

files, and issues a final synchronization call between them. As soon as the final synchronization is

completed, both VMs have fully-consistent main memory and secondary storage states, so it is safe

43

to power them back on, which is what happens when PwnetizerServer’s DONE message reaches

the two Hypervisor instances.

With both VMs now running, the PwnetizerClient application located inside the clone VM will

detect a change in the host’s virtual NAT gateway’s MAC address (see Section 3.5.5), which makes it

realize that it is dealing with the clone VM. As a result, the clone VM’s PwnetizerClient proceeds to

turn off all network interfaces, update the VM’s network configuration to avoid connectivity issues

with the original VM, and bring all network interfaces back online. Once this is done, both VMs are

fully independent from each other and can be used to provide crash resilience and micro-elasticity

for the cloud customer’s applications and data, as mentioned in Section 3.1.1.

Figure 3.11: Pwnetizer Sequence Diagram.

44

3.6 Pwnetizer - OpenStack Deployment

Our KVM-based Pwnetizer prototype only offers the VM management facilities that come with

Libvirt. These are sufficient for a small private cloud, but do not satisfy the scalability needs and

usage scenarios of real public and private clouds. Furthermore, this limitation leads to burdensome

host configuration and requires a lot of user expertise for it to be used. To improve Pwnetizer’s

usability, we decided to make it part of OpenStack [47], a full-blown open-source cloud environment

that was launched in 2010 as a joint effort between Rackspace and NASA. OpenStack is now included

in many popular Linux distributions, including Ubuntu, Fedora and OpenSUSE, and is actively being

used to power large cloud services for big-name companies like CERN, NASA, HP Public Cloud and

AT&T. When it comes to academic work, we believe that integrating Pwnetizer with OpenStack

enables future research in Cloud Computing security. Princeton’s PALMS research group has picked

OpenStack as a unified platform for multiple security-related projects and has obtained satisfactory

results.

Figure 3.12: OpenStack Architecture.

Pwnetizer’s OpenStack prototype required an extra 194 lines of Python code on top of Open-

Stack’s original 151,227 LOC. Figure 3.12 highlights all OpenStack components that were affected

by those changes. The modifications made are summarized below:

45

• Nova-Compute: A Nova-Compute instance manages every host in an OpenStack cloud.

Nova-Compute delegates much of its functionality to Libvirt. Therefore, besides having to

change every host’s Libvirt to PwnetizerLibvirt, the Nova-Compute code was extended to

contemplate the cloning scenario and handle it properly.

• Nova DB: The Nova DB stores information about the state of the cloud (e.g., VM instances,

DHCP leases to VMs, disk volumes, resources available on each host). Once a cloning operation

has successfully completed, a new VM instance corresponding to the clone VM is added to

Nova DB, along with information about its disk volumes.

• Nova-Volume and Volume Storage: Nova-Volume and Volume Storage manage the net-

worked file shares that contain all of the VM’s disk files. For this reason, a PwnetizerServer

must run alongside them to handle disk cloning operations related to VM Cloning. Our mod-

ified Nova-Volume makes sure to register every cloned volume appropriately.

• Nova-Network: The most challenging modifications were those made to Nova-Network,

which is the component in charge of setting up firewall rules and allocating both private

and public IP addresses to VM instances. After a cloning operation is finished, Nova-Network

must allocate a new set of IP addresses for the clone VM. The DHCP entries related to those

IP addresses must be tied to randomly-generated MAC addresses corresponding to the clone

VM’s virtual interfaces.

Figure 3.13 summarizes all of the interactions that take place during a VM Cloning procedure

inside our Pwnetizer OpenStack prototype. It all begins when a CLONE command is issued through

Nova-API, which can be done by either the cloud provider or the cloud customer. This command

reaches the source Nova-Compute, where the original VM is currently located. In turn, the source

Nova-Compute notifies the target Nova-Compute, which is running on top of the host where the

clone VM will be generated. Once network filtering rules are set on the target side to allow for

the VM’s main memory pages to be transferred, both Nova-Compute instances communicate with

their corresponding PwnetizerLibvirt to initiate a cloning procedure that is nearly identical to the

one described in Section 3.5.6. The main variation is that, in this case, PwnetizerServer provides

the target Hypervisor with a clone VM name generated based on the next available VM id so that

it complies with OpenStack naming conventions. Throughout the pre-cloning and during cloning

stages, the two Nova-Compute instances are just waiting while the Hypervisors perform the actual

cloning.

46

The post-cloning phase is where most differences between this prototype and the previous one

can be found. Once the Hypervisors have done their part, PwnetizerServer adds the clone VM’s

information to Nova DB and signals the source Nova-Compute to wake up by setting the original

VM’s state to ACTIVE. This re-activates the source Nova-Compute, who notifies the target Nova-

Compute that it is time to make the finishing touches. Subsequently, the target Nova-Compute takes

care of asking Nova-Network to allocate all the network resources required by the clone VM (i.e.,

private and public IP addresses, random MAC address, and firewall rules). Nova-Network promptly

updates Nova DB with the resulting allocations, so the target Nova-Compute is able to find out what

MAC address Nova-Network expects the Clone VM to have in order to fulfill its DHCP requests. To

trigger the necessary network reconfiguration on the clone VM, the target Nova-Compute sends a

broadcast packet indicating the (1) MAC address of the original VM along with the (2) MAC address

that the clone VM must acquire. This packet is received by PwnetizerClient instances running inside

every VM, which check if their VM’s current MAC address matches the MAC address of the VM that

has just been cloned. If so, they query the virtual NAT gateway’s MAC address to check whether it

has changed or not (see Section 3.5.5). Only the PwnetizerClient running inside the clone VM will

notice a change in the virtual NAT gateway’s MAC address, so it updates the VM’s MAC address

to the one contained in the broadcast packet and asks for a new DHCP lease on behalf of the clone

VM. Meanwhile, the PwnetizerClient running inside the original VM sends a series of ping packets

to an arbitrary external server in order to safeguard the network’s forwarding rules corresponding

to the original VM, as they may be hijacked by the clone VM before it acquires its new MAC and

IP addresses. This minor tweak is necessary because of the self-learning nature of ethernet switches,

which update their forwarding tables as new packets pass through them.

Once the post-cloning phase is over, both VMs are fully independent from each other and can be

used to provide crash resilience and micro-elasticity for the cloud customer’s applications and data,

as mentioned in Section 3.1.1.

47

Figure 3.13: Sequence diagram of Pwnetizer’s OpenStack implementation.

48

3.7 Pwnetizer - Optimizations

Minimizing VM Cloning downtime and total time were high-priority objectives. For this reason, we

had to tweak the Pwnetizer OpenStack prototype as much as possible to favor those two metrics.

We now give three examples of optimizations that helped us achieve improved performance.

3.7.1 No gratuitous ARP packet after cloning

Pwnetizer uses KVM’s live migration module as a building block. One minor detail that has serious

implications is that, after migration, it is common practice for a gratuitous ARP packet to be

broadcast on the network to redirect network packets designated to the IP address of the migrated

VM from the source host to the destination host. However, in the case of VM Cloning, this action

leads to the original VM’s network identity being hijacked by the clone VM. Even though we could

change Pwnetizer so that the original VM was the one in charge of acquiring a new MAC and IP

address, it is wasteful to force an update in the LAN’s forwarding rules if there is no need to do that

in the first place.

We found that not sending the gratuitous ARP packet after cloning led to significantly faster

network convergence because the forwarding rules associated with the original VM were preserved,

so the clone VM’s network reconfiguration procedure did not require traffic to switch back to the

original VM. This was accomplished by changing a single line of code in KVM.

3.7.2 Tweaking process priorities

In a normal OpenStack deployment, both the NFS share and the controller node are installed on the

same host. A controller node orchestrates an entire cloud and runs a variety of services, including

the main Nova-Network service, which is in charge of managing all of the DHCP leases. There exists

a single controller node in an OpenStack cloud; the rest of the hosts act as compute nodes. During

our initial VM Cloning experiments, we realized that PwnetizerServer’s synchronization threads that

maintain the NFS share’s local mirror (see Section 3.5.3) interfere with time-critical tasks during

Pwnetizer’s post-cloning phase (see Section 3.6). Once a cloning procedure is underway, copies of

the original VM’s disk files are moved from the local mirror into the NFS share (see Section 3.5.3),

so the synchronization threads will attempt to re-generate them on the local mirror right away.

Unfortunately, this non-critical task will take up CPU time from bottleneck tasks, such as allocating

the clone VM’s network resources through Nova-Network.

49

Linux schedulers take niceness values into account when deciding how much CPU time to allocate

to each running process. Although it may be counter-intuitive, niceness values of -20 indicate the

highest priority and values of 19 translate into the lowest priority. Niceness values of 0 are the

default for any process. By assigning niceness values of -20 to all OpenStack processes and setting

PwnetizerServer’s niceness value to 19, we observed an improvement of approximately 30% in post-

cloning times, which stands for a 10-second improvement in total cloning times.

3.7.3 Tweaking KVM’s pre-copy settings

KVM’s live migration code, which is at the heart of Pwnetizer’s VM Cloning prototype, has two

problematic default values: the maximum network bandwidth to be used is set to 32 Mbps and

the target downtime of the process is set to 30 ms. Imposing a bandwidth limit to page transfers

results in more pre-copy iterations and longer cloning times than could be achieved by taking full

advantage of the host’s network resources. Meanwhile, setting the downtime goal to a very small

value (i.e., 30 ms) forces the pre-copy algorithm to continue iterating until the writeable working set

(WWS) is reduced to a tiny fraction of the VM’s total memory, which can take extended periods of

time and might not even happen in some cases – the result being a never-ending cloning procedure

in the worst case. Fortunately, Libvirt’s API provides two commands (migrate-setspeed and

migrate-setmaxdowntime) that overwrite those values once a migration operation is ongoing. In

our Pwnetizer prototype, we execute those commands as soon as cloning begins. We instruct KVM

to use up as much bandwidth as possible and to aim for a 500 ms downtime, which we found to

be an optimal trade-off between downtime and total cloning time. These subtle changes gave us

an average time reduction of approximately 300% in the during cloning phase, which stands for a

30-second improvement in total cloning times.

3.8 Pwnetizer - Results

Up until now, we have described the motivation and design decisions behind our Pwnetizer VM

Cloning technique, as well as some of the prototype’s inner workings. To evaluate the degree to which

we have accomplished our objectives, we now run detailed benchmarks on the Pwnetizer OpenStack

prototype and conduct a series of experiments with popular network-intensive and computationally-

intensive applications.

50

Test Bed

Our test bed is comprised of two hosts with identical hardware and software configurations. Each

host runs Ubuntu 12.04 LTS with kernel version 2.6.38.8 and comes with dual quad-core Intel

Nehalem CPUs (1.6GHz) as well as 6 GB of RAM. The network connecting both hosts supports

1Gbps speeds. Meanwhile, the VMs being cloned are m1.small instances with 2 GB of dedicated

RAM and 1 vCPU core. All VMs run Ubuntu 12.04 LTS Server Edition.

Just like in a normal OpenStack deployment, one host runs both the NFS share and the controller

node, while the other one acts as a simple compute node. Refer to Section 3.7.2 to learn about the

implications of this arrangement.

3.8.1 Fine-Grained Benchmarking

For us to better understand the performance characteristics of our VM Cloning strategy, we break

down the entire process into 17 different stages and characterize their behavior with several standard

Cloud Computing-specific workloads.

Considering that our Pwnetizer OpenStack code is comprised of more than 4 distinct soft-

ware modules (i.e., PwnetizerLibvirt, PwnetizerClient, PwnetizerServer, modified Nova-Compute)

distributed over multiple hosts, we decided to simplify benchmarking by storing time measure-

ments inside a centralized SQL database. Every module connects to the database and adds simple

[event name, timestamp] tuples whenever a new cloning stage begins or ends. This scheme elimi-

nates the need to synchronize the clocks of the various hosts, since all SQL updates can use SQL’s

current timestamp keyword to generate timestamps based on the database server’s system clock.

High-Level Metrics

Figure 3.14 shows the various stages that we identified in our prototype. Appendix B provides a

short description for each stage.

51

Figure 3.14: The different stages of Pwnetizer’s OpenStack implementation overlaid on top of the
corresponding sequence diagram.

52

From these stages, five high-level metrics can be calculated:

1. Pre-cloning time – Time taken to get ready for the main memory page transfer to begin.

It starts with the TRIGGER DELAY 1 phase and ends when the MAIN PRE-COPY

stage begins.

2. During cloning time – Time interval during which main memory and secondary storage

consistency is reached between the original VM and the clone VM. It begins with the MAIN

PRE-COPY stage and ends when the RESUME stage is over.

3. Post-cloning time – Time taken by all the operations leading to a new network identity for

the clone VM after it is powered on. It goes from the end of the RESUME stage until the

completion of the NETWORK RECONFIGURATION stage.

4. Downtime – It is a measure of liveliness and corresponds to the time taken by the FINAL

PRE-COPY, STORAGE FINALIZATION and RESUME stages, which is when in-

coming packets are lost and no computational tasks are scheduled due to the fact that both

the original VM and the clone VM are paused.

5. Total cloning time – Time elapsed between the moment when the CLONE command is

issued and the instant when the clone VM’s network reconfiguration is over. It begins at the

start of the TRIGGER DELAY 1 phase and ends when the NETWORK RECONFIG-

URATION stage is over.

Typical Workloads

Applications can be divided into two categories: (1) those that are purely computational and (2)

those that mix computation with disk I/O and/or network I/O. The latter are more common in

a Cloud Computing setting, where 7 different types of workloads arise [27]. Table 3.1 lists those

workloads and describes the benchmarks that we used to simulate them in a standardized way.

For all client-server benchmarks, the VM was assigned the task of running the server-side process,

which is what is expected from a VM deployed in the cloud.

Methodology

For each workload, we ran 20 trials. We then averaged those results to obtain a faithful idea of the

overall metrics associated with each workload.

53

Table 3.1: Cloud Computing Workloads

Workload Benchmark
Mail Server mstone [43] as remote SMTP client; smtp-sink [56] as SMTP server inside VM
App Server Faban Benchmarking Framework [18] as remote client; GlassFish Server [22]

with sample Java EE application inside VM
File Server Dbench [12] inside VM
Web Server Faban Benchmarking Framework [18] as remote client; Apache HTTP Server

[1] inside VM
DB Server Sysbench [60] inside VM
Stream Server VideoLAN [63] inside VM; Wireshark [69] capturing stream packets remotely
Idle Server No workload

Performance Overview

Table 3.2 shows the five high-level metrics obtained with the various workloads. It can be seen

that we achieve sub-second downtimes in most cases and experience total cloning times ranging

between 11 and 33 seconds. Furthermore, the worst-case downtime of 1.10 seconds is still very close

to the 1-second mark. These numbers are considerably better than those attained when employing

CloneScale’s [58] technique for creating fully-independent clone VMs, with downtimes in the order

of tens of seconds and total times of at least 30 seconds.

Table 3.2: Summary of Pwnetizer VM Cloning performance numbers with typical Cloud Computing
workloads.

Workload Downtime (s) Pre-Cloning (s) Cloning (s) Post-Cloning (s) Total (s)
Mail Server 0.46 3.60 4.44 4.67 12.71
App Server 0.50 3.46 7.33 4.62 15.42
File Server 0.63 9.29 5.73 17.96 32.99
Web Server 0.90 7.31 6.57 11.41 25.29
DB Server 0.49 4.60 12.27 8.45 25.31
Stream Server 1.10 4.34 14.43 7.30 26.07
Idle Server 0.41 3.48 3.75 3.92 11.15
Average 0.64 5.15 7.79 8.33 21.28

The best-case scenario is the Idle Server – a VM without any processes running other than its

basic OS services. Under those circumstances, the clone VM is fully-functional after only 11.15

seconds and the original VM experiences a negligible 410-millisecond downtime. When it comes to

more realistic scenarios, the Mail Server and App Server workloads are very close to the ideal case,

both with total cloning times below 13 seconds and downtimes of 500 milliseconds or less.

Pre-cloning and post-cloning times are mostly dependent on the disk cloning tasks. Therefore,

it makes sense that the worst pre-cloning and post-cloning times are exhibited by the File Server

workload, since it is the one issuing the largest amount of disk writes. This leads to longer waits and

54

increased CPU load in OpenStack’s controller node when synchronizing the original VM’s and the

clone VM’s disk files in the NFS share. Given that synchronization threads attempt to re-generate

the original VM’s disk files in the local mirror as soon as the cloning operation is underway, they

interfere with the controller node’s OpenStack-related tasks. These symptoms are aggravated if

the NFS share is receiving large amounts of write requests, which is the case with the File Server

workload.

Cloning times and downtimes are dominated by page dirtying inside the VM. It can be observed

that the Stream Server generates the worst results in both of those metrics, which can be explained

by the fact that video streaming requires live transcoding of video files. Video transcoding is the

conversion of a previously-compressed video signal into another one with different characteristics

(i.e., bit rate, frame rate, frame size, compression standard). Thus, the Stream Server generates

the highest computational load amongst all workloads, which translates into a higher page dirtying

rate. Consequently, the Stream Server requires more pre-copy iterations during the cloning stage,

resulting in a longer MAIN PRE-COPY stage. The Stream Server also has a larger writeable

working set (WWS), leading to increased downtimes due to a longer stop-and-copy phase.

Detailed Performance Analysis

Table 3.3 shows the numbers obtained at a per-stage granularity (see Appendix B for a description

of every stage). This allows us to identify the main bottleneck operations for VM Cloning. The

first thing that can be noticed is that, out of the 17 stages, 13 of them consistently stay below the

1-second mark. The four events that govern the overall performance of our Pwnetizer OpenStack

prototype are: TRIGGER DELAY 2, CLONE LAUNCH, MAIN PRE-COPY, and NOVA-

NETWORK. Times associated with the CLONE LAUNCH phase do not raise any alarms, so

we will concentrate on the other three bottleneck events.

The MAIN PRE-COPY stage takes care of transferring all main memory pages from the

original VM to the clone VM, so the fact that it lasts several seconds is unsurprising. MAIN PRE-

COPY times are a function of the size of the VM’s main memory space (i.e., its allocated RAM),

the workloads running inside the VM, and the available network bandwidth. Therefore, two ways

to further decrease those times are: (1) using smaller VMs (e.g., 512MB instead of 2GB of RAM)

and (2) increasing the network’s bandwidth (e.g., 10Gbps instead of 1 Gbps).

TRIGGER DELAY 2 and NOVA-NETWORK have something in common: they both issue

calls to a third-party application. While the former requires Nova-Compute to invoke a Pwnetiz-

erLibvirt command, the latter requires Nova-Network to interact with a third-party DHCP server

55

Table 3.3: Detailed Pwnetizer VM Cloning performance numbers with typical Cloud Computing
workloads

Event Name Mail
Server
(s)

App
Server
(s)

File
Server
(s)

Web
Server
(s)

DB
Server
(s)

Stream
Server
(s)

Idle
Server
(s)

Avg.
(s)

TRIGGER DELAY 1 0.12 0.10 0.52 0.69 0.19 0.08 0.11 0.26
TRIGGER DELAY 2 1.52 1.45 3.85 2.54 1.81 1.82 1.47 2.07
SETUP TIME 1 0.06 0.06 0.82 1.27 0.15 0.53 0.07 0.42
DB OVERHEAD 1 0.05 0.04 0.69 0.09 0.07 0.04 0.05 0.15
CLONE DEF. & ANN. 0.41 0.43 0.96 0.84 0.53 0.40 0.41 0.57
STORAGE INIT. 0.12 0.10 0.57 0.53 0.22 0.11 0.11 0.25
CLONE LAUNCH 1.31 1.27 1.88 1.35 1.63 1.35 1.25 1.44
MAIN PRE-COPY 3.99 6.83 5.10 5.66 11.78 13.32 3.35 7.15
FINAL PRE-COPY 0.13 0.15 0.32 0.37 0.14 0.83 0.13 0.30
STORAGE FIN. 0.23 0.23 0.22 0.39 0.25 0.22 0.21 0.25
RESUME 0.09 0.12 0.09 0.14 0.10 0.06 0.07 0.09
DB OVERHEAD 2 0.44 0.41 1.09 0.72 0.60 0.22 0.22 0.53
DETECT. OVERHEAD 0.26 0.35 0.63 0.20 0.29 0.27 0.21 0.31
DB OVERHEAD 3 0.19 0.17 1.52 1.18 0.48 0.17 0.13 0.55
NOVA-NETWORK 3.46 3.34 13.95 8.30 6.31 6.25 3.00 6.37
DB OVERHEAD 4 0.11 0.07 0.50 0.80 0.38 0.05 0.05 0.28
NETWORK RECONF. 0.31 0.41 0.37 0.35 0.49 0.40 0.38 0.39
DOWNTIME 0.46 0.50 0.63 0.90 0.49 1.10 0.41 0.64
PRE-CLONING 3.60 3.46 9.29 7.31 4.60 4.34 3.48 5.15
DURING CLONING 4.44 7.33 5.73 6.57 12.27 14.43 3.75 7.79
POST-CLONING 4.67 4.62 17.96 11.41 8.45 7.30 3.92 8.33
TOTAL CLONING 12.71 15.42 32.99 25.29 25.31 26.07 11.15 21.28

(Dnsmasq [16]). The use of a Remote Procedural Call or some other inter-process communica-

tion mechanism explains TRIGGER DELAY 2’s two-second overhead. Nonetheless, NOVA-

NETWORK takes up to 14 seconds in some cases and has an average time of 6.37 seconds, which

is still very significant. We believe that Nova-Network has to carry out a considerable amount of

work (i.e., set up new DHCP entries, update Nova DB, generate random MAC addresses, set up

LAN-wide firewall rules) during the NOVA-NETWORK phase, so we still expect it to require

more time than a typical cloning stage. To reduce Nova-Network’s impact over the total cloning

time, we recommend deploying the NFS share along with PwnetizerServer on a separate host to

stop disk cloning-related processes from interfering with Nova-Network’s tasks (see Section 3.7.2).

It should be noted that the STORAGE FINALIZATION stage always takes less than 400

milliseconds and has an average of 250 millisecomds across all workloads. This proves that our disk

cloning procedure described in Section 3.5.3 successfully reduces disk cloning-related downtimes to

the same order of magnitude as page transfer -related downtimes associated with traditional Live

VM Migration.

56

3.8.2 Experimental Evaluation

The fine-grained benchmarking results showed us that our Pwnetizer OpenStack prototype can

generate fully-independent clone VMs in a timely manner with negligible downtime regardless of the

VM’s internal workload. Now, we are interested in analyzing the effects that Pwnetizer VM Cloning

can have on an application’s performance (i.e., throughput, delay, running time). To this end, we

study two common types of Cloud Computing applications: (1) a web application server (GlassFish

Server [22]), and (2) a distributed computing framework (Cajo [7]). All load-balanced scenarios use

an instance of HAProxy [24] between the client programs and the VMs.

Constant Web Load

Figure 3.15 shows the throughput numbers obtained when a VM running a GlassFish server is

exposed to a constant web load generated by a remote Faban’s [18] CoreHTTP client. The dotted

line represents the case where no cloning is performed. Meanwhile, the continuous line corresponds

to a trial in which cloning is initiated at the 50-second mark while load balancing is being performed

between the original VM and the clone VM. Finally, the dashed line corresponds to a similar trial,

but without load balancing between the VMs.

Figure 3.15: GlassFish Server throughput under constant web load.

57

Let us first analyze the application’s throughput when cloning takes place under the absence of a

load balancer. The initial throughput of approximately 1,073 requests per second (reqs/s) is the best

that a single VM can provide. Between t=50s and t=70s, we observe the performance degradation

caused by cloning. Once VM Cloning is done, throughput goes back to its original levels. It should

be noted that no packet loss is observed. Over the course of 140 seconds, the average throughput is

of 925 reqs/s as opposed to the 1073 reqs/s seen in the No Cloning scenario. Thus, the performance

overhead in this case is of 13.8%.

A similar behavior is seen when we place a load balancer between the client and the VMs. There

is a 20-second interval of degraded performance (t=50s to t=70s) because of the cloning operation

followed by a swift throughput recovery. However, load balancing allows the application to provide

a higher level of throughput than was possible with a single VM. While pre-cloning throughput was

stable at 1,073 reqs/sec, the post-cloning throughput stabilized at approximately 1,300 reqs/sec,

corresponding to a 21.2% improvement. Given that we now have two VMs handling web requests, it

would be reasonable to naively expect double the throughput. In reality, the application’s capacity

has indeed doubled, but the client’s web load has stayed the same. Therefore, the application’s

quality of service is only marginally improved by the presence of a clone VM because it helps decrease

the time that web packets spend in a server’s queue before being serviced. Since the VMs still have

to wait for the client to actually send its web requests, throughput can only improve up to a certain

point under constant web load. Over the course of 140 seconds, the average throughput in this case

is of 1110 reqs/s, which is a 3.4% improvement over the 1073 reqs/sec of the No Cloning scenario.

This indicates that, 90 seconds after cloning was triggered, the added throughput resulting from

load balancing between the two VMs had already compensated for the performance cost inflicted by

the cloning operation.

We now turn our attention to Figure 3.16, which shows the delays measured during the same

experiments. The No Cloning scenario holds a stable 92-millisecond delay per request. On the

other hand, the two trials that result in a clone VM exhibit a noticeable delay spike once the cloning

operation starts at t=50s. The highest delays are below 200 ms, so they are still tolerable under most

situations. After the clone VM is ready (t=70s), the delays start dropping back to normal levels.

At the 100-second mark, the cloning scenario without a load balancer reaches its pre-cloning state.

In contrast, the load-balanced VMs improve the application’s quality of service by converging to a

stable 74-millisecond delay – 19.6% less than pre-cloning delays. Over the course of the experiments,

the cloning scenario without a load balancer reported an average delay of 104 ms, which is a 13.0%

increase with respect to the No Cloning run. Meanwhile, the load-balanced trial had an average

58

delay of 89 ms, which translates into a 3.3% improvement. Thus, as with throughput, the load-

balanced VMs had already compensated for VM Cloning’s performance impact just 90 seconds after

cloning was triggered.

Figure 3.16: GlassFish Server delay under constant web load.

Ever-Increasing Web Load

We now investigate what happens when the web load increases at a constant rate in time. This will

give us a sense of the application’s maximum capacity under the same three scenarios that were

previously tested with a constant web load: (1) no cloning, (2) cloning with no load balancing, and

(3) cloning with load balancing.

For these experiments, we expose VMs running GlassFish server to an ever-increasing workload

generated using Autobench [2]. Web load on the servers increases at a rate of 1 req/sec. Unlike all

previous experiments, these ones use smaller VM instances with 512 MB of RAM, as opposed to the

usual 2 GB, in order to allow for a large number of clones to be alive at the same time.

The throughput results are shown in Figure 3.17. From them, we see that the VM Cloning

operation, which begins at t=70s, only takes 10 seconds because we are dealing with smaller VM

instances than in previous occasions. By the 90-second mark, both scenarios involving cloning have

recovered from the cloning procedure’s performance impact. At approximately t=110s, a single VM’s

saturation point of 117 reqs/sec is reached. Without any cloning or the presence of a load balancer,

the application cannot keep up with any subsequent increases in the web load, as illustrated by

59

the No Cloning and Cloning, No LB curves. However, the load-balanced VMs (i.e., Cloning, LB)

do manage to exceed that threshold and continue increasing their throughput to match the ever-

increasing load, being able to keep up with 200 reqs/sec (71% more than a single VM’s saturation

point) without showing any signs of saturation.

Figure 3.17: GlassFish Server throughput under ever-increasing web load.

Delay measurements for the same experiments are shown in Figure 3.18. As expected, the VM

Cloning operation leads to a transient spike in the application’s delays. At the beginning, delays are

consistently below 10 ms, but the cloning procedure at t=70s generates peak delays in the order of

400 ms that gradually fade away until they are back in the close-to-zero zone just 20 seconds after

cloning was triggered. What is more interesting is what happens when a single VM’s saturation

point of 117 reqs/sec is reached. Given that the No Cloning and Cloning, No LB arrangements

cannot handle any more load from that point onwards, all subsequent load increases translate into

higher delays. These new delays are the result of ever-growing packet queues on the server’s side. In

contrast, the load-balanced cloning setup gracefully handles loads beyond the single VM’s saturation

point and maintains good quality of service, with delays remaining below the 10 ms mark.

To further test the micro-elasticity offered by Pwnetizer’s VM Cloning strategy, we decided

to spawn a new load-balanced clone VM every 30 seconds until we reached the load balancer’s

saturation point. Figure 3.19 shows the experiment’s outcome. The continuous line corresponds

to the application’s throughput, while the dotted line illustrates the application’s delay. As can be

60

Figure 3.18: GlassFish Server delay under ever-increasing web load.

seen, our cloning mechanism allows us to scale cloud services in real time, providing external clients

with the illusion of them interacting with a single large-capacity VM. Without cloning, the static

nature of a VM’s allocated resources is what limits a web application’s performance. With cloning,

the cloud provider’s network becomes the bottleneck, which is an easier problem to fix.

Computational Workload

For our last cloning experiment, we look at a parallelizable computationally-intensive workload.

With only 183 lines of Java code and leveraging the Cajo Project [7] library for distributed com-

puting, we developed an application capable of calculating SHA-256 hashes on large inputs in a

master-worker arrangement. New worker nodes announce themselves using multicast packets and

the master node dynamically distributes the computational load across all active workers. This is

similar to what is done by other Big Data processing frameworks, such as MapReduce [13], Piccolo

[51], CIEL [44] and Spark [70].

Figure 3.20 illustrates a standard SHA-256 workload’s progress with and without cloning. The

continuous line corresponds to a trial in which the creation of a worker VM’s clone starts at t=0, while

the dashed line is the result obtained when a single worker VM carries out the entire computation

without any interruptions. From the graph, it can be seen that the clone VM comes alive after

approximately 12 seconds, as evidenced by a change in the Clone at 0 sec line’s slope. From then

61

Figure 3.19: GlassFish Server throughput and delay under ever-increasing web load with cloning
taking place every 30 seconds.

onwards, the clone VM allows for a faster overall throughput than can be accomplished with a single

worker VM, which translates into a 15% improvement in the workload’s final running time. Thus,

on top of absorbing the transient performance overhead of the cloning procedure, we are also able

to reap considerable benefits from the additional VM in under 60 seconds. It should be noted that

the performance gain is even larger when running a longer workload.

Figure 3.20: Cajo SHA-256 workload progress with and without cloning.

62

3.9 Related Work

Recent work on VM Cloning has concentrated on parent-child and master-worker arrangements.

SnowFlock [34] was the first project to define the VM Forking primitive. The cloning operation is

initiated by an application running inside the VM using the fork API. Clone VMs are created by

way of a modified post-copy live migration procedure, where a minimal processor state is trans-

ferred to the remote host and the clone VM is immediately resumed. Each of the clone VM’s

memory pages must be fetched over the network from its parent VM the first time they are ac-

cessed, so the cloning procedure’s completion time is unbounded unless page prefetching strategies

are employed. SnowFlock requires a custom guest OS and modified application code, along with a

highly-customized Xen to work. Consequently, the cloud user’s choice of OS is limited and the cloud

provider has to stick with an old version of Xen, which may raise security concerns.

Kaleidoscope [5] clones VMs into fractional workers that are single-purpose and transient in order

to handle load spikes. It uses SnowFlock, but introduces VM state coloring, a technique that bridges

the gap between Hypervisor and OS knowledge. By reading metadata in the x86 page table entries,

they can categorize pages into 5 colors: Kernel Code, User Code, Kernel Data, User Data, and Page

Cache Data. That way, they do not need to copy the entire parent VM’s memory, but only the

subset that is required for the worker to fulfill its task. Once the worker is done, it is powered off.

For every parent VM (i.e., booted from scratch), you have N worker clones and a gateway VM. The

gateway VM distributes the load between the workers and is the interface with the outside world.

The gateway VM and parent VM act as single points of failure, which is a disadvantage from a

security perspective. The clone VMs are not self-sufficient and will not function without access to

the parent VM’s memory pages.

Flurry DB [42] leverages SnowFlock to dynamically scale a MySQL database while presenting

a consistent view of the system to external clients. It uses a cloning-aware proxy that issues read

operations to any one of the clone VMs, but redirects write requests to all the clones. FlurryDB is

a good example of how a complex stateful service can be modified to take advantage of VM Cloning

for increased throughput.

Other research has focused on efficiently creating clone VMs on top of the same host. Sun et al.

[59] and the Potemkin project [64] both take advantage of copy-on-write memory pages to spawn

clones with sub-second downtimes. While the Potemkin project maximizes memory sharing amongst

the clone VMs in order to emulate thousands of internet honeypots using only a handful of physical

servers, Sun et al.’s approach supports more general applications and minimizes the performance

63

impact that cloning has on the parent VM. Although very low cloning times are achieved by these

works, all clones of a particular VM instance depend on a single host, which does not provide good

crash resilience guarantees and limits the extent to which micro-elasticity can be achieved because

the host’s physical resources can easily become a bottleneck.

Researchers have also looked at the creation of fully-independent clones on remote hosts.

CloneScale [58] supports two types of VM Cloning on a KVM prototype: hot cloning and cold

cloning. The hot cloning variant stops a VM temporarily and transfers the main memory contents

to an external state file, which can then be used to power on fully-stateful clones. The hot cloning

procedure incurs in downtimes of approximately 35 seconds with a 1GB VM, so it is not very lively.

Cold cloning, on the other hand, does not suspend any running VMs; it uses a pre-configured VM

template. Thus, cold clones can be launched in a matter of seconds, but they do not resemble the

state of any of the active VMs.

The most common use of VM Cloning seen in commercial products is based on passive replication.

Similar to what is done by Microsoft’s Hyper-V and VMWare’s vSphere, REMUS [9] maintains a

fully-consistent VM replica on a separate host to enable fast failover in case a security-critical VM

goes down. The replica is a full VM clone that remains powered down as long as its parent VM

is alive. Every set number of milliseconds, an incremental pre-copy operation is carried out to

update the replica with the active VM’s most recent main memory state. Unfortunately, REMUS

replicas do not contribute to the overall application throughput. Furthermore, keeping them up-to-

date is costly, with performance overheads on a VM’s internal workloads of 103% when taking 40

checkpoints per second [9].

64

Chapter 4

Improved Availability in

Commodity Hypervisors Through

I/O Randomization

In Chapter 2, we identified Availability and I/O and network device emulation as the two

main security weaknesses of commodity Hypervisors (see Sections 2.3 and 2.4.1). Chapter 3 used

this as a motivation for the development of Pwnetizer, a new VM Cloning technique that can be

used to provide increased availability for a cloud customer’s applications and data in the form of

crash resilience and micro-elasticity. Now, we take advantage of our new VM Cloning technique

and complement it with a randomization-based strategy in order to reduce the impact of I/O and

network device emulation vulnerabilities.

4.1 I/O & Network Device Emulation

This section gives a short overview of how I/O and network device emulation works in commodity

Hypervisors. It then points out the reasons why this core Hypervisor functionality constitutes a

weak point from a security perspective.

4.1.1 Normal Operation

Given that a VM’s OS is usually unaware of the fact that it is running on a virtualized environment,

I/O device emulation is necessary in order for the Hypervisor to mediate all VM accesses to the host’s

65

physical resources. If we provided a VM with direct access to the host’s I/O devices, the VM’s actions

would interfere with tasks being run by the host and other co-hosted VMs on the same devices.

Furthermore, this situation would enable any VM to read/write data or send/receive network packets

on behalf of other co-hosted VMs, which would be a serious integrity and confidentiality breach.

Hypervisors enforce access policies and multiplex a host’s physical devices through a design based

on the division of labor. They make use of two types of drivers: front-end and back-end. Front-end

drivers cannot access physical hardware directly; they run inside the guest VMs and provide the

usual abstractions that a guest OS expects. Back-end drivers run inside a more privileged runtime

space (i.e., Dom0 in Xen and Hypervisor space in KVM) with full access to the host’s hardware.

They communicate with a VM’s front-end drivers, forwarding I/O requests and replies to and from

the physical I/O devices. Figure 4.1 highlights the interactions between front-end and back-end

drivers in Xen and KVM.

Figure 4.1: Interactions between front-end and back-end drivers in Xen (left) and KVM (right).

4.1.2 Vulnerabilities

In terms of lines of code, the I/O and network device emulation module is the largest Hypervisor

module in both Xen and KVM; hence, bugs are more likely to occur there. The module’s size is

explained by the fact that it is in charge of emulating many different types of devices (i.e., network,

video, audio, usb, etc). In addition, I/O & network device emulation is usually implemented in

higher-level languages (e.g., C and C++), which have richer data abstractions and give way to

more elaborate attacks. In Section 2.4.1, we found that more than one third of all Hypervisor

vulnerabilities studied used I/O and network device emulation as their attack vector.

When compromising a Hypervisor’s I/O and network device emulation functionality, there are

two approaches: (1) employing a rogue front-end driver inside a guest VM and (2) attacking the

back-end driver from the outside world. For example, a NIC back-end driver must contemplate the

possibility of being exposed to malicious front-end drivers as well as network-bound attacks.

66

4.2 I/O Driver Randomization

A vulnerable back-end driver is the root cause of any breach based on I/O and network device

emulation. In the case of commodity Hypervisors, there are no provably secure back-end drivers

at the user’s disposal. However, we find a large number of virtual I/O devices with overlapping

functionality (e.g., e1000, ne2k pci and rtl8139 networking cards), each of them implemented as a

unique [front-end, back-end] driver pair. This further increases the device emulation module’s size

in terms of lines of code, but might be advantageous when clone VMs come into play.

4.2.1 Basic Intuition

Virtual I/O devices are practically independent from the host’s physical hardware. As long as the

capabilities presented to the VMs by a virtual device are a subset of the host’s actual capabilities,

the virtual device can be used. Back-end drivers use normal C++ read/write instructions, which in

turn make use of the drivers loaded by the host’s OS to communicate with the actual hardware. As

a result, the hardware’s make and model has little influence over the selection of back-end drivers

that can be employed. For example, a virtualized Intel Ethernet i82559C network card can be

presented to VMs running on top of a host with Realtek RTL8139 Ethernet cards in its physical

hardware, assuming that the Intel Ethernet i82559C back-end driver does not expose any advanced

features that are not supported by Realtek RTL8139 Ethernet cards. This means that there are

many possible combinations of back-end drivers that can be selected by the Hypervisor in order to

satisfy the I/O needs of a specific VM on top of a single host. For example, KVM has 8 different

NIC back-end drivers: i82551, i82559er, virtio, ne2k pci, i82557b, rtl8139, e1000, and pcnet. Any

one of them can be presented to a VM to provide it with internet connectivity on a typical host

with a modern NIC.

Each back-end driver is susceptible to a different set of vulnerabilities. Thus, if we launch every

clone VM with a new set of randomly-picked back-end drivers that still satisfy the original VM’s

needs, we will end up with a diversified group of clones. This way, we can defend against current and

future attacks on back-end drivers by spreading out the risk across all clone VMs, which reduces the

likelihood of large-scale VM crashes. This defense strategy has the added advantage of not requiring

us to vet any of the drivers beforehand.

67

4.2.2 Actual Implementation

For our proof-of-concept prototype, we opted to concentrate on NIC driver randomization, since net-

work cards are crucial I/O devices in a Cloud Computing scenario. We began by randomly switching

the clone VM’s back-end driver before powering on the clone VM. This proved to be problematic,

given that the VM’s OS had already loaded another NIC’s front-end driver. Furthermore, standard

operating systems detect network cards during boot-up and rule out the possibility of them changing

during runtime, so the clone’s OS would start complaining about the NIC’s voltage being different

to what had been measured during boot-up and would then deactivate all networking services.

Our driver randomization solution ended up being simpler. We start every VM instance with

several network cards, each card corresponding to a different [front-end, back-end] driver pair. They

all carry the exact same MAC address and only one of them is used by the VM at any given time;

the rest remain disabled. Inside the VM, a modified PwnetizerClient (see Section 3.5.6) awaits for

cloning to take place. If a VM’s PwnetizerClient instance detects cloning and concludes that it is

dealing with the clone VM, it (1) turns off all network cards, (2) changes all of their MAC addresses

to the appropriate one (see Section 3.6), and (3) randomly picks one of the cards as the new active

NIC. For this solution to work, we had to increase KVM’s hard-coded limit of 8 PCI devices in order

to be able to instantiate VMs with all possible NIC models as separate devices. No changes had to

be made to the guest OS. Finally, this solution’s additional overhead with respect to non-randomized

cloning is of only 20 milliseconds, which we consider to be inconsequential.

4.3 Experimental Evaluation

To test the effectiveness of I/O driver randomization in dealing with device emulation attacks, we

test our enhanced Pwnetizer prototype against an actual attack. CVE-2010-0741 [41] reported that

an improper implementation of TCP Segment Offloading (TSO) in NIC back-end drivers allowed

remote attackers to cause a full guest OS crash by sending a large amount of network traffic to a

TCP port. This vulnerability affected 3 of KVM’s network card back-end drivers (i82551, i82559er,

virtio), while the other 5 drivers (ne2k pci, i82557b, rtl8139, e1000, pcnet) were unaffected.

4.3.1 Methodology

CVE-2010-0741 caused guest VMs running Linux 2.6.27 and older to crash when their virtual NICs

were saturated with TCP traffic. Thus, we use Ubuntu 8.04 Hardy LTS (Linux kernel 2.6.24) inside

68

our VMs. During our experiments, we spawn a new clone every 30 seconds and continuously attack

all clone VMs. We keep an initial VM with all of its network interfaces disabled, which makes

it immune to the attack. That way, the initial VM can be used as the source for every cloning

procedure.

4.3.2 Clone Liveliness

We start off with a simple experiment. Every clone VM sends a liveness signal of 90,000 bps to an

external server. The final objective is to obtain 5 live VMs at some point in time.

Figure 4.2 contrasts the results of employing randomized clones (continuous line) with the results

offered by the non-randomized alternative (dashed line). As can be observed, an original VM with

a vulnerable back-end driver always generates clones with the same flaw under the absence of I/O

randomization, leading to liveness signal bursts lasting no more than 15 seconds. Consequently, the

non-randomized approach offers intermittent uptimes under attack conditions and fails to reach the

goal of having 5 live VMs at the same time. On the other hand, our randomized strategy yields

more promising results, eventually providing us with 5 clone VMs that are stable regardless of the

fact that the attack is still going. Even though the clone VMs that were created at t=33s, t=155s,

t=343s, t=371s and t=430s selected vulnerable NIC drivers and ended up crashing, every clone VM

that picked an unaffected driver stayed up indefinitely waiting for other ones to join it.

Figure 4.2: Liveliness signals recorded with and without I/O driver randomization. Clones spawned
every 30 seconds.

69

4.3.3 Computational Workload

To analyze the effects of randomized I/O over an actual application’s performance, we ran the

Cajo SHA-256 workload used in Section 3.8.2 with the randomized and non-randomized cloning

approaches. Figure 4.3 illustrates the workload’s progress as a function of time. In the Non-

Randomized curve, many sections with horizontal slope can be identified, which indicate a temporary

absence of worker nodes. Meanwhile, the Randomized curve shows steady progress starting from

t=202s, which can be explained by the presence of a clone VM with an unaffected NIC driver. At

the end, the non-randomized clones took 1238 seconds (224%) longer than the randomized clones to

complete the same computational task.

Figure 4.3: Cajo SHA-256 workload progress with and without I/O driver randomization. Clones
spawned every 30 seconds.

These experiments prove that our I/O randomization strategy significantly improves an appli-

cation’s availability and throughput when I/O and network device emulation attacks are

being used against it.

70

Chapter 5

Closing Words

5.1 Conclusions

To successfully compromise a system, malicious users must characterize the attack surface available

to them and evaluate their possible targets while considering the restrictions of their vantage point

(trigger source). In Chapter 2, we conducted a thorough analysis of the codebase of two popular

Hypervisors, Xen and KVM, followed by an extensive study of vulnerability reports associated with

them. Based on our findings, we are the first to propose and integrate three Hypervisor Vulnerability

classifications: by Hypervisor functionality, by trigger source, and by attack target. Our integration

of these three classifications gives a clear picture of the different Hypervisor modules and runtime

spaces that are traversed during the course of a successful attack. We demonstrated the practicality

of this abstract model for vulnerability analysis by describing the flow of events involved in two

well-known attacks that achieved privilege escalation in virtualized systems. By clearly exposing

potential attack paths, our Hypervisor vulnerabilities characterization is also actionable: it enables

us to see what vulnerabilities have been covered by proposed solutions in past work, and what needs

to be covered by new defenses. Our work can assist in better establishing a specific user’s security

needs and determining the scope of the solutions that might be proposed to address them.

Our Hypervisor vulnerability study brought two core security issues in virtualized systems to

our attention: availability and I/O & network device emulation. With availability in mind, we

developed Pwnetizer, a VM Cloning mechanism that can improve both performance and security.

Our cloning technique creates full, independent, and active clone VMs that help us fulfill both of our

availability objectives (crash resilience and micro-elasticity) when proper inter-clone collaboration

71

and data replication mechanisms are in place. Our benchmarks show that we can consistently achieve

negligible downtimes with typical Cloud Computing workloads. Total cloning times range between

10 and 33 seconds, which is a considerable improvement from other similar cloning strategies. Lastly,

the Pwnetizer prototype has been integrated into a full-blown Cloud Computing environment (i.e.,

OpenStack) to increase its usability and facilitate future research. Our experiments with real web-

based and computationally-intensive applications demonstrate that an application’s performance

(i.e., throughput, delay, running time) can be significantly improved by leveraging Pwnetizer’s on-

demand micro-elasticity.

By extending the Pwnetizer cloning technique to launch every clone VM with a new set of

randomly-chosen back-end drivers, we effectively manage to protect a set of VMs against current

and future attacks exploiting I/O & network device emulation vulnerabilities. Without having to

vet the device drivers beforehand, our I/O randomization extension yields better liveliness and

throughput metrics for applications under attack. This fact was proven by running experiments

that tested our enhanced Pwnetizer prototype against an actual device emulation attack.

5.2 Future Work

While we have successfully characterized vulnerabilities present in two open-source Hypervisors, we

invite closed-source Hypervisor vendors, such as Microsoft and VMWare, to employ our methodology

and share their results with the academic community. This would allow us to determine whether or

not a high proportion of availability and I/O and network device emulation threats are a common

denominator for virtualized systems as a whole. Furthermore, having access to a closed-source Hy-

pervisor’s vulnerability distributions would enable us to discover any important differences between

open-source and closed-source virtualization practices.

In terms of Pwnetizer VM Cloning, there are many optimizations that can be made to extend its

applicability as a security mechanism. Our development efforts focused on the creation of clones for

one VM at a time. We should also consider the scenario where more than one VM is to be cloned

from the same Hypervisor, which is a plausible occurrence inside a public or private cloud running

multiple security-sensitive VMs. Deshpande et al. [15] tackled this problem with respect to Live

VM Migration by de-duplicating identical content across VMs, resulting in a 45% improvement in

the total migration time for the simultaneous migration of 24 co-hosted 1GB VMs with respect to

KVM’s default algorithm. Something similar could be done in the VM Cloning domain.

72

A non-trivial question is: when should we trigger VM Cloning? This requires a detailed analysis

of different VM workloads and usage scenarios. For example, it would be interesting to employ

load-prediction algorithms in order to preemptively trigger cloning before critical levels of network

bandwidth, CPU, and/or RAM usage are reached. Furthermore, this sort of analysis would have

to be coupled with a characterization of the costs associated with VM Cloning inside a public or

private cloud. Given that clone VMs consume cloud resources, their lifespan should be restricted

to time intervals in which they are completely indispensable for a cloud customer’s applications to

provide adequate quality of service.

Last but not least, our I/O randomization prototype focused on NIC driver randomization.

However, many other types of devices could benefit from this technique. For instance, USB back-

end drivers could be targeted by an attacker with physical access to the servers. Our randomization

idea could mitigate the risk of such an insider threat.

73

Appendix A

Sample CVE Reports

Table A.1 lists details about the CVE reports mentioned in Section 2.4, taken verbatim from [46],

[55], [52] and [10].

Table A.1: Sample CVEs in Support of the Functionality-Based Classification

Virtual CPUs: CVE-2010-4525 (KVM-related)
Some versions of the Linux kernel forgot to initialize the kvm vcpu events.interrupt.pad field before be-
ing copied to userspace. kvm vcpu events.interrupt.pad field must be initialized before being copied to
userspace, otherwise kernel memory is leaked.

SMP: CVE-2010-0419 (KVM-related)
The x86 emulator in KVM 83, when a guest is configured for Symmetric Multiprocessing (SMP), does not
properly restrict writing of segment selectors to segment registers, which might allow guest OS users to
cause a denial of service (guest OS crash) or gain privileges on the guest OS by leveraging access to a (1)
IO port or (2) MMIO region, and replacing an instruction in between emulator entry and instruction fetch.

Soft MMU: CVE-2010-0298 (KVM-related)
Gleb Natapov found a bug in KVM that allows code that runs in CPL3 (inside a guest) to modify memory
in CPL0 (inside a guest). The bug is in x86 emulator code. When emulator accesses guest’s memory on
behalf of the guest’s code it does this with the CPL0 privilege, so if emulated instruction is executed by
unprivileged code it can still modify memory that otherwise is not accessible to it.

Interrupts and Timers: CVE-2010-0309 (KVM-related)
A flaw was found in the Programmable Interval Timer (PIT) emulation. Access to the internal data
structure pit state, which represents the data state of the emulated PIT, was not properly validated in the
pit ioport read() function. A privileged guest user could use this flaw to crash the host.

I/O and Networking: CVE-2011-1751 (KVM-related)
Writing the value 2 to I/O port 0xae08 initiates the PIIX4 PCI-ISA bridge removal. Unplugging this
causes all of the ISA devices to be unplugged and right now the ISA (in particularly the RTC) devices
cannot handle unplug gracefully.

Paravirtualized I/O: CVE-2008-1943 (Xen-related)
The PVFB backend is a user space program running as root in dom0. A buggy or malicious frontend can
describe its shared framebuffer to it in a way that makes it map an arbitrary amount of guest memory,
malloc an arbitrarily large internal buffer, or copy arbitrary memory to that buffer.

VM Exits: CVE-2010-2938 (Xen-related)
When an Intel platform without Extended Page Tables (EPT) functionality is used, the virtual-machine
control structure (VMCS) implementation accesses VMCS fields without verifying hardware support for
these fields, which allows local users to cause a denial of service (host OS crash) by requesting a VMCS
dump for a fully virtualized Xen guest.

74

Hypercalls: CVE-2009-3290 (KVM-related)
The kvm emulate hypercall function in arch/x86/kvm/x86.c in KVM in the Linux kernel 2.6.25-rc1, and
other versions before 2.6.31, when running on x86 systems, does not prevent access to MMU hypercalls
from ring ¿ 0, which allows local guest OS users to cause a denial of service (guest kernel crash) and read
or write guest kernel memory via unspecified ”random addresses.”

VM Management: CVE-2007-4993 (Xen-related)
Pygrub (tools/pygrub/src/GrubConf.py) in Xen 3.0.3, when booting a guest domain, allows local users
with elevated privileges in the guest domain to execute arbitrary commands in domain 0 via a crafted
grub.conf file whose contents are used in exec statements.

Remote Management SW: CVE-2008-3253 (Xen-related)
Cross-site scripting (XSS) vulnerability in the XenAPI HTTP interfaces in Citrix XenServer Express,
Standard, and Enterprise Edition 4.1.0; Citrix XenServer Dell Edition (Express and Enterprise) 4.1.0; and
HP integrated Citrix XenServer (Select and Enterprise) 4.1.0 allows remote attackers to inject arbitrary
web script or HTML via unspecified vectors.

Hypervisor Add-Ons: CVE-2008-3687 (Xen-related)
Heap-based buffer overflow in the flask security label function in Xen 3.3, when compiled with the
XSM:FLASK module, allows unprivileged domain users (domU) to execute arbitrary code via the flask op
hypercall.

75

Appendix B

The Different Stages of VM

Cloning

Below is a short description of each Pwnetizer OpenStack stage marked in Figure 3.14:

1. TRIGGER DELAY 1 – Time taken for the source Nova-Compute’s message to go through

OpenStack’s messaging queue and reach the target Nova-Compute.

2. TRIGGER DELAY 2 – Time taken for the source Nova-Compute to communicate with

PwnetizerLibvirt and trigger the cloning operations.

3. SETUP TIME 1 – Interval during which the original VM’s XML description is generated

by the source Hypervisor and interpreted by the target Hypervisor on the other host.

4. DB OVERHEAD 1 – PwnetizerServer queries Nova DB to find the next available VM id,

which is used to generate an OpenStack-compliant name for the clone VM.

5. CLONE DEFINITION AND ANNOUNCEMENT –The target Hypervisor sends Pwne-

tizerServer all the information required for it to carry out the appropriate disk cloning tasks.

6. STORAGE INITIALIZATION – PwnetizerServer moves copies of the original VM’s disk

files from the local mirror into the NFS share, so that they can be used by the clone VM.

Appropriate storage synchronization threads are spawned.

7. CLONE LAUNCH – The clone VM is launched in suspended state on the target Hypervisor.

8. MAIN PRE-COPY – Main memory pages are iteratively sent to the target Hypervisor

using the pre-copy algorithm while the original VM remains powered on.

76

9. FINAL PRE-COPY – The source Hypervisor pauses the original VM and performs the last

pre-copy iteration. This is where the downtime begins.

10. STORAGE FINALIZATION – Final synchronization calls are issued to ensure full con-

sistency between the original VM’s and the clone VM’s disk files.

11. RESUME – The original VM is resumed, putting an end to the cloning procedure’s downtime.

12. DB OVERHEAD 2 – PwnetizerServer updates the original VM’s state in Nova DB as a

way of signaling the source Nova-Compute to wake up. The clone VM’s information is also

added to Nova DB.

13. DETECTION OVERHEAD – Time taken for the source Nova-Compute to notice that the

original VM is active again.

14. DB OVERHEAD 3 – Minor Nova DB update issued by the target Nova-Compute so that

the clone VM’s information is complete.

15. NOVA-NETWORK – The target Nova-Compute asks for all the network resources required

by the clone VM and waits for Nova-Network to fulfill the request.

16. DB OVERHEAD 4 – The target Nova-Compute queries Nova DB to find the MAC address

that the clone VM must acquire in order to obtain a valid DHCP lease. It then sends a

broadcast packet with sufficient information for the clone VM and original VM to realize that

cloning has taken place and take the appropriate actions.

17. NETWORK RECONFIGURATION – Time taken by the clone VM to change its MAC

address and obtain a new network identity.

77

Bibliography

[1] The Apache HTTP Server Project. http://httpd.apache.org/.

[2] Autobench. http://www.xenoclast.org/autobench/.

[3] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and Nathan C. Skalsky.
Hypersentry: enabling stealthy in-context measurement of hypervisor integrity. In Proceedings
of the ACM Conference on Computer and Communications Security, CCS, pages 38 – 49,
October 2010.

[4] Rohit Bhadauria, Rituparna Chaki, Nabendu Chaki, and Sugata Sanyal. A survey on security
issues in cloud computing. arXiv, http: // arxiv. org/ abs/ 1109. 5388 , September 2011.

[5] Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaustubh Joshi, Matti Hiltunen,
Andres Lagar-Cavilla, and Eyal de Lara. Kaleidoscope: cloud micro-elasticity via vm state
coloring. In Proceedings of the sixth conference on Computer systems, EuroSys ’11, pages 273–
286, New York, NY, USA, 2011. ACM.

[6] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings
of the 7th symposium on Operating systems design and implementation, OSDI ’06, pages 335–
350, Berkeley, CA, USA, 2006. USENIX Association.

[7] Cajo, the easiest way to accomplish distributed computing in Java. http://www.

javacodegeeks.com/2011/01/cajo-easiest-way-to-accomplish.html.

[8] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach,
Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation - Volume 2,
NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[9] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew
Warfield. Remus: high availability via asynchronous virtual machine replication. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08,
pages 161–174, Berkeley, CA, USA, 2008. USENIX Association.

[10] Cve security vulnerability database. http://www.cvedetails.com/.

[11] W. Dawoud, I. Takouna, and C. Meinel. Infrastructure as a service security: Challenges and
solutions. In Proceedings of the International Conference on Informatics and Systems, INFOS,
pages 1 – 8, March 2010.

[12] Dbench filesystem benchmark. http://dbench.samba.org/.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

78

http://httpd.apache.org/
http://www.xenoclast.org/autobench/
http://arxiv.org/abs/1109.5388
http://www.javacodegeeks.com/2011/01/cajo-easiest-way-to-accomplish.html
http://www.javacodegeeks.com/2011/01/cajo-easiest-way-to-accomplish.html
http://www.cvedetails.com/
http://dbench.samba.org/

[15] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang migration of virtual
machines. In Proceedings of the 20th international symposium on High performance distributed
computing, HPDC ’11, pages 135–146, New York, NY, USA, 2011. ACM.

[16] Dnsmasq - a DNS forwarder for NAT firewalls. http://www.thekelleys.org.uk/dnsmasq/

doc.html.

[17] N. Elhage. Virtunoid: Breaking out of KVM. nelhage.com/talks/kvm-defcon-2011.pdf,
August 2011.

[18] Faban Harness and Benchmark Framework. http://java.net/projects/faban/.

[19] P Ferrie. Attacks on virtual machine emulators, white paper, symantec corporation, january
2007.

[20] Peter Ferrie. Attacks on more virtual machine emulators. Symantec Technology Exchange, 2007.

[21] D.E. Geer. Attack surface inflation. IEEE Security Privacy Magazine, 9(4):85 – 86, July –
August 2011.

[22] GlassFish - Open Source Application Server. http://glassfish.java.net/.

[23] N. Gruschka and M. Jensen. Attack surfaces: A taxonomy for attacks on cloud services. In
Proceedings of the IEEE International Conference on Cloud Computing, CLOUD, pages 276 –
279, July 2010.

[24] HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer. http://haproxy.

1wt.eu/.

[25] Michael R. Hines and Kartik Gopalan. Post-copy based live virtual machine migration us-
ing adaptive pre-paging and dynamic self-ballooning. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09, pages
51–60, New York, NY, USA, 2009. ACM.

[26] Martin Hingley. The OVA pushes KVM as the next big virtualisation ecosystem. http://

rainmakerfiles.com/2012/02/ova/.

[27] Dawei Huang, Deshi Ye, Qinming He, Jianhai Chen, and Kejiang Ye. Virt-lm: a benchmark for
live migration of virtual machine. In Proceedings of the second joint WOSP/SIPEW interna-
tional conference on Performance engineering, ICPE ’11, pages 307–316, New York, NY, USA,
2011. ACM.

[28] Nexenta Hypervisor Survey. http://www.nexenta.com/corp/nexenta-hypervisor-survey.

[29] Is the Hypervisor Market Expanding or Contracting? http://www.aberdeen.com/Aberdeen-

Library/8157/AI-hypervisor-server-virtualization.aspx.

[30] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual., Octo-
ber 2011. http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-

software-developer-manual-325462.pdf.

[31] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. Nohype: virtualized cloud
infrastructure without the virtualization. In Proceedings of the Annual International Symposium
on Computer Architecture, ISCA, pages 350 – 361, June 2010.

[32] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Events can make sense. In 2007
USENIX Annual Technical Conference on Proceedings of the USENIX Annual Technical Con-
ference, ATC’07, pages 7:1–7:14, Berkeley, CA, USA, 2007. USENIX Association.

[33] Will KVM Follow Hyper-V in Its Adoption Curve? http://www.clabbyanalytics.com/

uploads/KVM_Final.pdf.

79

http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
nelhage.com/talks/kvm-defcon-2011.pdf
http://java.net/projects/faban/
http://glassfish.java.net/
http://haproxy.1wt.eu/
http://haproxy.1wt.eu/
http://rainmakerfiles.com/2012/02/ova/
http://rainmakerfiles.com/2012/02/ova/
http://www.nexenta.com/corp/nexenta-hypervisor-survey
http://www.aberdeen.com/Aberdeen-Library/8157/AI-hypervisor-server-virtualization.aspx
http://www.aberdeen.com/Aberdeen-Library/8157/AI-hypervisor-server-virtualization.aspx
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.clabbyanalytics.com/uploads/KVM_Final.pdf
http://www.clabbyanalytics.com/uploads/KVM_Final.pdf

[34] H. Andrés Lagar-Cavilla, Joseph A. Whitney, Roy Bryant, Philip Patchin, Michael Brudno,
Eyal de Lara, Stephen M. Rumble, M. Satyanarayanan, and Adin Scannell. Snowflock: Virtual
machine cloning as a first-class cloud primitive. ACM Trans. Comput. Syst., 29(1):2:1–2:45,
February 2011.

[35] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[36] J.F. Levine, J.B. Grizzard, and H.L. Owen. Detecting and categorizing kernel-level rootkits to
aid future detection. IEEE Security Privacy Magazine, 4(1):24 – 32, January – February 2006.

[37] Chunxiao Li, Anand Raghunathan, and Niraj K. Jha. Secure Virtual Machine Execution under
an Untrusted Management OS. In Proceedings of the Conference on Cloud Computing, CLOUD,
pages 172 – 179, July 2010.

[38] Libvirt: The virtualization API. http://libvirt.org/.

[39] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba Shrira. Replica-
tion in the harp file system. SIGOPS Oper. Syst. Rev., 25(5):226–238, September 1991.

[40] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: scalable causal consistency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 401–416,
New York, NY, USA, 2011. ACM.

[41] Petr Matousek. Cve-2010-0741 qemu: Improper handling of erroneous data provided by linux
virtio-net driver. bugzilla.redhat.com/show_bug.cgi?id=577218.

[42] Michael J. Mior and Eyal de Lara. Flurrydb: a dynamically scalable relational database with
virtual machine cloning. In Proceedings of the 4th Annual International Conference on Systems
and Storage, SYSTOR ’11, pages 1:1–1:9, New York, NY, USA, 2011. ACM.

[43] mstone multi-protocol testing system. http://sourceforge.net/projects/mstone/.

[44] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Mad-
havapeddy, and Steven Hand. Ciel: a universal execution engine for distributed data-flow
computing. In Proceedings of the 8th USENIX conference on Networked systems design and
implementation, NSDI’11, pages 9–9, Berkeley, CA, USA, 2011. USENIX Association.

[45] MySQL Cluster CGE. http://www.mysql.com/products/cluster/.

[46] National vulnerability database. http://web.nvd.nist.gov/view/vuln/search.

[47] OpenStack: Open Source Cloud Computing Software. http://www.openstack.org/.

[48] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: an efficient and portable web server.
In Proceedings of the annual conference on USENIX Annual Technical Conference, ATEC ’99,
pages 15–15, Berkeley, CA, USA, 1999. USENIX Association.

[49] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. Characterizing hypervisor vulnerabilities
in cloud computing servers. In Proceedings of the 2013 international workshop on Security in
cloud computing, Cloud Computing ’13, pages 3–10, New York, NY, USA, 2013. ACM.

[50] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a
coprocessor-based kernel runtime integrity monitor. In Proceedings of the USENIX Security
Symposium, pages 179 – 194, August 2004.

[51] Russell Power and Jinyang Li. Piccolo: building fast, distributed programs with partitioned
tables. In Proceedings of the 9th USENIX conference on Operating systems design and imple-
mentation, OSDI’10, pages 1–14, Berkeley, CA, USA, 2010. USENIX Association.

80

http://libvirt.org/
bugzilla.redhat.com/show_bug.cgi?id=577218
http://sourceforge.net/projects/mstone/
http://www.mysql.com/products/cluster/
http://web.nvd.nist.gov/view/vuln/search
http://www.openstack.org/

[52] Red hat bugzilla. https://bugzilla.redhat.com/.

[53] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In Proceedings of the ACM
Conference on Computer and Communications Security, CCS, pages 199 – 212, November 2009.

[54] Joanna Rutkowska and Rafa Wojtczuk. Preventing and detecting xen hypervisor subversions.
invisiblethingslab.com/resources/bh08/part2-full.pdf, July 2008.

[55] Securityfocus. http://www.securityfocus.com/.

[56] smtp-sink(1) - Linux man page. http://linux.die.net/man/1/smtp-sink.

[57] S. Subashini and V. Kavitha. A survey on security issues in service delivery models of cloud
computing. Journal of Network and Computer Applications, 34(1):1 – 11, 2011.

[58] Sethuraman Subbiah. Clonescale: Distributed resource scaling for virtualized cloud systems.
Master’s thesis, North Carolina State University, 2011.

[59] Yifeng Sun, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, Binbin Zhang, Haogang Chen, and
Xiaoming Li. Fast live cloning of virtual machine based on xen. In High Performance Computing
and Communications, 2009. HPCC ’09. 11th IEEE International Conference on, pages 392–399,
2009.

[60] SysBench: a system performance benchmark. http://sysbench.sourceforge.net/.

[61] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. Eliminating the hypervisor
attack surface for a more secure cloud. In Proceedings of the Conference on Computer and
Communications Security, CCS, October 2011.

[62] Luis Vaquero, Luis Rodero-Merino, and Daniel Morn. Locking the sky: a survey on iaas cloud
security. Computing, 91:93 – 118, 2011.

[63] VLC media player. http://www.videolan.org.

[64] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Geof-
frey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in the potemkin virtual
honeyfarm. In Proceedings of the twentieth ACM symposium on Operating systems principles,
SOSP ’05, pages 148–162, New York, NY, USA, 2005. ACM.

[65] Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Oper.
Syst. Rev., 36(SI):181–194, December 2002.

[66] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hypercheck: A hardware-assisted integrity
monitor. In Recent Advances in Intrusion Detection, volume 6307 of Lecture Notes in Computer
Science, pages 158 – 177. 2010.

[67] Zhi Wang and Xuxian Jiang. Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In Proceedings of the IEEE Symposium on Security and Privacy, S&P,
pages 380 – 395, May 2010.

[68] Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for well-conditioned, scal-
able internet services. In Proceedings of the eighteenth ACM symposium on Operating systems
principles, SOSP ’01, pages 230–243, New York, NY, USA, 2001. ACM.

[69] Wireshark: the world’s foremost network protocol analyzer. http://www.wireshark.org/.

[70] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

81

https://bugzilla.redhat.com/
invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.securityfocus.com/
http://linux.die.net/man/1/smtp-sink
http://sysbench.sourceforge.net/
http://www.videolan.org
http://www.wireshark.org/

[71] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, and Aoying Zhou. Security and privacy
in cloud computing: A survey. In Proceedings of the International Conference on Semantics
Knowledge and Grid, SKG, pages 105 –112, November 2010.

82

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Characterizing Hypervisor Vulnerabilities in Cloud Computing Servers
	2.1 Chapter Overview
	2.2 Background on Hypervisors
	2.2.1 Xen
	2.2.2 KVM
	2.2.3 QEMU
	2.2.4 Hardware Virtualization Features

	2.3 Overview of Vulnerabilities
	2.4 Hypervisor Functionalities as Attack Vectors
	2.4.1 Breakdown of Vulnerabilities

	2.5 Further Characterization of Hypervisor Vulnerabilities
	2.5.1 Trigger Sources and Attack Targets
	2.5.2 Breakdown of Vulnerabilities

	2.6 Hypervisor Attack Paths
	2.7 Case Studies and Defenses
	2.7.1 Understanding Existing Attacks
	2.7.2 Helping Focus Defenses
	2.7.3 Assisting in the Discovery of New Attacks

	2.8 Related Work

	3 Availability Fueled by Instantaneous VM Cloning
	3.1 Motivation
	3.1.1 VM Cloning for Availability

	3.2 Background on VM Cloning
	3.3 Pwnetizer - Orthogonal Issues
	3.4 Pwnetizer - Initial Considerations
	3.4.1 Live Migration as a Starting Point
	3.4.2 Precopy vs Postcopy

	3.5 Pwnetizer - Implementation Details
	3.5.1 Code Structure
	3.5.2 Main Memory
	3.5.3 Secondary Storage
	3.5.4 Networking
	3.5.5 Detecting Cloning
	3.5.6 End Product

	3.6 Pwnetizer - OpenStack Deployment
	3.7 Pwnetizer - Optimizations
	3.7.1 No gratuitous ARP packet after cloning
	3.7.2 Tweaking process priorities
	3.7.3 Tweaking KVM's pre-copy settings

	3.8 Pwnetizer - Results
	3.8.1 Fine-Grained Benchmarking
	3.8.2 Experimental Evaluation

	3.9 Related Work

	4 Improved Availability in Commodity Hypervisors Through I/O Randomization
	4.1 I/O & Network Device Emulation
	4.1.1 Normal Operation
	4.1.2 Vulnerabilities

	4.2 I/O Driver Randomization
	4.2.1 Basic Intuition
	4.2.2 Actual Implementation

	4.3 Experimental Evaluation
	4.3.1 Methodology
	4.3.2 Clone Liveliness
	4.3.3 Computational Workload

	5 Closing Words
	5.1 Conclusions
	5.2 Future Work

	A Sample CVE Reports
	B The Different Stages of VM Cloning
	Bibliography

