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Abstract

Precise vehicle localization, whether performed via visual scene registration or special-

ized sensors such as GPS, is currently limited in robustness and accuracy. We propose

a computer vision-based localization system that improves precision by matching fea-

tures in small patches of asphalt or carpet imaged with a downward-facing camera.

The key insight is that such images will have enough near-random detail to retrieve

their correct position in the environment.

In our system, the environment is first processed to construct a knowledge base.

Then during the retrieval phase, we apply multilevel search to precisely localize the

observed patch in the known environment. We adjust the patch registration algo-

rithms previously developed for natural scenes to the case of ground environments

with near-random textures. Our system is marker-free and robust against orientation

as well as illumination changes. By combining temporal coherence with classification

techniques, we can instantaneously provide accurate localization predictions. We also

envision several potential applications including vehicle navigation system and precise

control for 3D fabrication.
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Chapter 1

Introduction

Localization is a challenging problem of finding accurate positions in a known envi-

ronment. It is mostly used for robot navigation tasks which has been a prominent

field since 1980s. There are two main approaches proposed in literature. One is sen-

sor facilitaed localization system. Inertial measurements and GPS sensors combined

with temporal based models such as Kalman Filter are used to recover the outdoor

position of the robot [4]. On the other hand, there are also computer vision based

localization systems focusing on landmark registration in 3D scenes. The main idea is

to recognize and track reference objects in the scene and use stereo vision to retrieve

the position in the environment [39]. Unfortunately, the former approach is often

less accurate and suffers from long term drift in sensor readings; the later approach

relies on correct scene registrations which could be difficult due to occlusions, viewing

angles and dynamic changes in the environment.

In this work, we propose a computer vision based localization system based on

feature matching with a down-facing camera looking at the ground. Therefore, we

simplify the problem by keeping our observations relatively at the same scale and

from the same viewing angle. In addition, it is also easier to control occlussions and
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lighting conditions on the ground. Besides, comparing to complicated 3D scenes,

dynamic changes due to human activity can be also reduced in our setting.

However, in spite of the advantages it brings, ground surfaces such as carpet,

wood or concrete usually contain near-random textures. Thus, there are less intu-

itively unique structures to differentiate one part from the rest, at least from the large

scale. Fortunately, given the fact that the ground surface is not consisted of perfect

replicas of the same pattern, there still exist enough details to distinguish one patch

from the others. One early success of this idea is now widely used inside the optical

mouse. A built-in low resolution camera takes a series of images as the mouse moves;

cross correlation is used to solve for changes in positions due to motion. Nonetheless,

this system usually requires taking large amount of images with small offsets between

consecutive frames. Another previous attempt appears in the paper [9] where they

perform image feature matching on fine-scaled scans of the votes in order to authen-

ticate voting paper. Motivated by these successes, we decide to evaluate this idea in

larger and more general enviroments for localization purpose.

The localization system presented in this work is divided into two phases, training

and testing. In training phase, we first preprocess input image data with different

image filters and then extract features from it to build up our knowledge base. We

also apply a feature selection algorithm to reduce the size of the knowledge base to

keep it compact. In testing phase, the observed patches will first go through the same

preprocessing steps. Then we will extract the same image features from them and

match against our knowledge base.

In the following chapters of this thesis, we will first review some related work.

Secondly, we will introduce the data acquisition and ground truth derivation process.

Then we will describe our main algorithm step by step in more details. Finally, we

will conclude this work by analyzing our experimental results and discussing possible

future directions.
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Chapter 2

Related Work

Our localization system involves techniques in image filtering, feature extraction,

feature matching using nearest neighbor search and patch registration. The pipeline

is depicted in Figure 4.1. In this chapter, we will discuss some previous works relating

to these areas.

2.1 Image Filtering

To improve the consistency among input images, preprocessing becomes a necessity

to reduce the variations in appearance. During the years, many image filtering algo-

rithms have been developed to address this issue. Many of them focus on frequency

analysis in Fourier space. The particular algorithm we chose for this project is band-

pass filtering [13]. The idea is to select an appropriate frequency band to decrease the

influences from both high-frequency noise and low-frequency overall intensity changes.

Furthermore, we also experimented with other filtering techniques such as median fil-

ter and laplacian filter [13]. In addition, to adjust the different luminance level due

to different lighting conditions, we also tried to apply histogram equalization [19] and

luminance remapping [17] as a normalization procedure between our knowledge base

and observed testing patch to achieve better matching result.
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2.2 Feature Detection

In order to efficiently and effectively describe our environment, we extract features

using feature detection algorithms. Over the past decade, different feature detectors

have been proposed focusing on different aspects. Some look for corners: Harris Cor-

ner Detector [16, 40, 52] thresholds on high response in both directions of the gradient;

Smallest Univalue Segment Assimilating Nucleus (SUSAN) Corner Detector [44] uses

circular mask and relies on brightness dissimilarity; Wavelet Based Multi-Scale Anal-

ysis [22] thresholds on high-high component of an image decomposed by a B-spline

wavelet in several scales. Some other detectors try to identify interesting regions:

Maximally Stable Extremal Region Detector (MSER) [27] imposes thresholds on dif-

ferent intensity levels to slice input image into a serie of binary images and merging

blobs of local minimums; Salient Region Detector [18] relies on probability density

function of intensity values computed over an elliptical region and select the entropy

extrema over scales; Scale Invariant Feature Transform (SIFT) [26] detects local spa-

tial extrema between consecutive layers within a Gaussian pyramid. In this work as

the first attempt, we choose SIFT detector for its stability in detection and compati-

bility with SIFT descriptor.

2.3 Feature Description

After identifying the interest points using feature detectors, we would like to design a

concise representation to describe them. Therefore, accompanied with detection algo-

rithms, many feature discriptors are developed on the side. Filter-Based Descriptors

such as Steerable Filters [14] and Gabor Filters [10] focus on single filter response

whereas Textons [24, 48] usually consist of a set of filter responses from a selected

filter bank; Phase-Based Local Features [8] uses both phase and amplitude responses

from complex-valued steerable bandpass filters; Distribution-Based Discriptors such
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as SIFT descriptor [26] builds a histogram over quantized gradient orientations and

Rotation Invariant Feature Transform (RIFT) [50] constructs a similar orientation

histogram yet within concentric rings after circular normalization; Derivative-Based

Descriptors such as Local Grayvalue Invariants [38] computes a group of differential

invariants up to third-order local derivatives; Color-Based Descriptors [49] collects

normalized RGB as well as opponent/spherical angles. In this project, we choose

SIFT descriptor to work with SIFT detector.

2.4 Nearest Neighbor Search

We applied nearest neighbor search for feature matching process. Unfortunately,

exhaustive search is usually time-consuming which prevents us from developing real-

time applications. Therefore, we choose approximate nearest neighbor (ANN) to

accelarate the localization system. There are two common methods for ANN search

proposed in literature. One attempts to partition the space while the other tries to

cluster the data. In this work, we choose FLANN (Fast Library for Approximate

Nearest Neighbors) based matching algorithm [32] which consists of randomized kd-

trees and hierarchical k-means trees.

The first kd-tree model proposed by Feidman et al. dates back to 1977 [15] where

they split data in half at each level of the tree along the dimension with largest

variance. A recent continuing work constructs a randomized kd-tree [42] who chooses

randomly from the first D dimensions where data varies the most. In addition, the

search space is quantized into bins and a randomized tree is grown in each bin. Then,

during searching phase, a priority queue is maintained across all randomized kd-trees

and the search is ordered by increasing distances to the boundary of each bin.

On the other hand, the hierarchical k-means tree [23] is a direct extension from k-

means clustering algorithm with clustering performed recursively at each level of the
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tree. Simliar to searching among randomized kd-trees, a prioirty queue of unexplored

branches is maintained at each node to generate a heuristic according to which the

search is performed in a greedy manner of best-bin-first.

2.5 Patch Registrtion

Feature matching using nearest neighbor search can sufficiently narrow down the

search space for localization problem. Unfortunately, matches among multiple interest

points against the knowledge base may not always agree with each other. Greedily

selecting the one with the least feature space distance is shown to be misleading

sometimes. Therefore, template matching techniques are used as an extra selection

mechanism to determine which nearest neighbor match is most reliable.

In general, patch registration algorithms often choose to calculate the difference

between given patch (or the template) and its potential matches. Widely used simi-

larity metrics include cross correlation, bi-directional distance [43] and etc. In order

to achieve rotation and scale invariant, people also attempted to map original data

from spatial domain to log-polar space using Fourier-Mellin transform [11]. In this

work, we choose to use normalized cross correlation [51] to refine nearest neighbor

search results from feature matching step.
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Chapter 3

Data

The data used in this work is captured by camera phones with different resolutions.

The image data include different materials, such as carpet, wall, concrete and etc.,

under different lighting conditions. All of them are taken with cameras fixed at

roughly the same height from the captured surface. Furthermore, the data set is

divided into two parts for training and testing purpose. The testing image is a shifted

and rotated version of the training one with limited changes in scale. The lighting

conditions may or may not vary between training and testing sets. Some of the

samples are shown in Figure 3.1. The data also comes with two different resolutions,

640×480 and 1632×1224, covering different size of areas e.g. 126cm×94.5cm for

carpet data, which means in the low resolution, each pixel is a square of side length

roughly 2mm. During testing phase, a patch of size 30×30 pixels (120mm×120mm) is

clipped around an arbitrary position from the testing image. The overlapped region

between training and testing images varies from 50% to 90% across different pairs.

3.1 Preprocessing

In order to reduce the influence from different intensity level due to different illu-

mination conditions, two normalization techniques, histogram equalization [19] and
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(a) Carpet Data (b) Woolen Data

(c) Concrete Data (d) Wood Data

Figure 3.1: Data Images

luminance remapping [17] are implemented and compared in this work. For simplic-

ity purpose, all input images are converted to grayscale first and applied a band pass

filter to attenuate the noise and remove the base color of the surface.

3.1.1 Band Pass Filter

Treating images as signals enables us to analyze structures at different scales in the

frequency domain (Figure 3.2b). High frequency information would correspond to

sudden intensity changes such as sharp edges or undesirable noise from capturing

process. In addition, specific to this work, we would like to tolerate certain amount

of subtle surface geometry changes, for instance, stepping on the carpet. Therefore,

smoothing out some high frequency information allows us to match the rough shape
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of the textures themselves. On the other hand, we would also like to filter out some

low frequency information to adjust the overall illumination changes for directional

lighting and remove the base color of the surface.

To achieve this goal, we convolve our input images with a band pass filter kernel

(Figure 3.2c). For time efficiency, we apply 2D fast Fourier transform on the input

image (Figure 3.2b) and then perform convolution as a multiplication in Fourier space

(Figure 3.2d). As shown in Figure 3.2e, we can extract certain patterns after applying

band pass filter to the noisy input image patch.

(a) Image Patch (b) 2D Fourier Transform (c) Band Pass Filter

(d) Apply Band Pass Filter (e) Inverse Fourier Transform

Figure 3.2: Band Pass Filter on Carpet Image Patch

3.1.2 Histogram Equalization

The first intensity normalization algorithm we experimented is histogram equaliza-

tion [19]. The idea is similar to inverse sampling. Its purpose is to improve the

9



contrast and stretch the intensity distribution. The density function of intensity is

first accumulated to form its cumulative distribution. Then this distribution is nor-

malized to the range from 0 to 255. Finally, we remap it back to achieve equalized

intensities. The result is shown in Figure 3.3 and as we can see, more details are

revealed after contrast enhancement. Unfortunately, the normalization is not uni-

form across the entire image. Assuming the intensities follow a Gaussian distribution

(which they usually do), after remapping, the central mass spreads out to the two

sides causing loss in contrast in brighter and darker regions. Thus, on the right side

of the wall with less light reached, we lose details after histogram equalization. This

observation shows that this technique is very sensitive to light directions. Although

filtering out low frequency information could help to alleviate this drawback, enhanc-

ing contrast might introduce more high frequency artifects. As stated in previous

section, high frequency information could lead to difficulties in matching. Therefore,

this technique is not included in the final version of our system.

(a) Wall Data (b) Apply Histogram Equalization

Figure 3.3: Intensity Normalization Using Histogram Equalization

3.1.3 Luminance Remapping

Instead of normalizing every intensity distribution to 0 to 255 range, luminance

remapping [17] tries to map one distribution to the other according to Eq 3.1. Vi-
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sually, luminance remapping will make a darker image brighter (Figure 3.4b and

Figure 3.4c). Unlike the non-uniform behavior from histogram equalization in Fig-

ure 3.4d, luminance remapping preserves details in darker areas (upper-right corner).

Y(p) ← σB
σA

(Y(p)− µA) + µB (3.1)

Y(p) denote the pixels in image A; µA, µB and σA, σB are the means and standard

deviations of the intensities in image A and B respectively.

(a) Image 1 (b) Image 2 (c) Image 2 (Luminance
Remapping)

(d) Image 2 (Histogram
Equalization)

Figure 3.4: Comparison between Luminance Remapping and Histogram Equalization

(a) Image 1 (b) Image 2 (c) Image 2 (Luminance
Remapping)

(d) Image 2 (Histogram
Equalization)

Figure 3.5: Comparison between Luminance Remapping and Histogram Equalization
after Band Pass Filter

In addition, the undesirable increase in contrast from histogram equalization mag-

nifies the subtle changes in surface geometry as shown in Figure 3.5. These reintro-

duced high frequency structures go against the purpose of applying band pass filter

11



at the first place. In general, our experiments found luminance remapping preserves

enough details from the input images while adjusting them to the same intensity level.

3.2 Ground Truth Derivation

In order to evaluate the performance of our system, we first need to generate the

groud truth mapping between training and testing images. Under similar lighting

conditions, matching SIFT features with RANSAC [13] on the raw input images will

usually provide reasonably high quality stitching result as in Figure 3.6c.

(a) Carpet Image 1 (b) Carpet Image 2

(c) Stitched Image

Figure 3.6: Image Stitching Using SIFT Matching with RANSAC

Nonetheless, to ensure the reliability of the ground truth, we also use more so-

phisticated state-of-the-art image composition tools such as i2k [1] and ICE [2] with

markers while stitching.
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Chapter 4

Algorithm

Our localization system is divided into two phases, training and testing, as shown

in Figure 4.1. To begin with, we preprocess raw input images with image filters

described in Section 3.1.1. During training phase, we first extract image features

using feature detectors and represent them using feature discriptors; we then perform

feature selection using local search algorithm; finally, we use the feature descriptors

and compressed input images to construct the knowledge base. During testing phase,

we use nearest neighbor search and patch registration techniques to match testing

patch against the knowledge base. In this chapter, we will discuss each step of our

algorithm in details.

4.1 Feature Extraction

In this work, we experiemtned with three different feature detectors, Harris corner

detector [16], Scale Invariant Feature Transform (SIFT) [26] and Maximally Stable

Extremal Region Detector (MSER) [27]. On the other hand, we start from using

simple point feature descriptor, i.e. gradient magnitude and orientation, and then

continue to more complicated region feature descriptors e.g. SIFT descriptor, polar
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Figure 4.1: System Pipeline

descriptor and Fourier shape descriptor. In this section, we will describe each of the

detection and description algorithm in details.

4.1.1 Feature Detection

Harris Corner Detector

Propsed by Harris and Stephens in 1988 [16], the Harris Corner detector tries to

identify key points in the image corresponding to corners. Given a grayscale image I,

we perfom a swap window over an area (u, v) weighted by w(u, v) centered at (x, y).

The weighted sum-squared difference is given by Eq. 4.1.

S(x, y) =
∑
u,v

w(u, v)(I(x+ u, y + v)− I(u, v))2 (4.1)
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Using Tylor expansion, I(x+u, y+ v) can be approximated as Eq. 4.2, where Ix and

Iy are the partial derivatives of I approximated using finite difference along x and y

direction respectively.

I(x+ u, y + v) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (4.2)

Then, plug Eq. 4.2 into Eq. 4.1 we get,

S(x, y) ≈
∑
u,v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)2 (4.3)

In martix notation, we have,

S(x, y) ≈
(
x y

)
M

x
y

 , M =
∑
u,v

w(u, v)

 I2
x IxIy

IxIy I2
y

 (4.4)

To determine the possibility of a corner, we threshold on the response in Eq. 4.5.

R = det(M)− k(trace(M ))2 (4.5)

(a) Original Image (b) Detected Corners

Figure 4.2: Corners Detected Using Harris Detector

Note that det(M ) and trace(M ) are the product and sum of two eigenvalues λ1

and λ2 of M respectively. Therefore, if the intensity changes rapidly in two different
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directions i.e. the magnitudes of both λ1 and λ2 are sufficiently large, the current

window would probably contain a corner (Figure 4.2).

SIFT Detector

Scale Invariant Feature Transform or SIFT [26] is a commonly used image feature

for image stitching. It is shown to be reliable from previous works. To find the

interest points, we first need to build the Gaussian pyramid, a pyramid by repeatedly

smoothing and subsampling from the input image. By subtracting two consecutive

layers, we can obtain the Difference-of-Gaussian (DoG) pyramid as in Figure 4.3a.

(a) Gaussian Pyramid and DoG Pyramid (b) Spatial Extrema

Figure 4.3: SIFT Feature Detector

(a) All Interest Points (b) Discard Low Contrast
Interest Points

(c) Filter out Edge-Like
Interest Points

Figure 4.4: Key Points Using SIFT Dectector
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Then, the interest points are the spatial extrema of its 26 neighbors, i.e. 8 neigh-

bors in the same layer, and 9 neighbors from each of the two adjacent layer (Fig-

ure 4.3b). The extracted interest points are unique to the scale they were found. A

sample result on a natural scene image is shown in Figure 4.4.

MSER Detector

Maximally Stable Extremal Region (MSER) [27] is another common image feature

for finding correspondences in nature scenes. It is also argued to sometimes have

better localization accuracy than SIFT detectors. To describe the detection process,

we first need to define some terminologies. A region R is defined to be a connected

component of pixels. The outer boundary of R is denoted as ∂R which is a set of

pixels having at least one adjacent pixel to R but not belonging to R. An extremal

region is a region R such that for all pixels p ∈ R and q ∈ ∂R, the intensities

I(p) > I(q). The stability of a region R is measured by the relative area variation

ri of R at intensity level i with the intensity threshold increasing (decreasing) by the

parameter ∆. Formally, the relative area variation ri is defined as Eq. 4.6, where | · |

denotes the cardinality or the size of the region R and Ri+∆ (Ri−∆) is the region Ri

with ∆ increase (decrease) from intensity level i. The MSER detector tries to identify

the regions with the intensity level i′ where ri′ reaches a minimum.

ri =
|Ri+∆ \ Ri−∆|

|Ri|
(4.6)

A comparison study by Mikolajczyk et al. [31] shows that MSER is arguably bet-

ter than other region detectors, Harris-affine [29, 37], Hessian-affine [30], edge-based

regions [46], intensity extrema [47], and salient regions[21]. MSER can detect in-

terest points with relatively robustness to scale, viewpoint and illumination changes
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(Figure 4.5). However, MSER tends to focus smaller regions which may cause more

confusions for matching especially in the context of near-random textures.

(a) Viewpoint 1 (b) Viewpoint2

Figure 4.5: Originally Detected Shape Regions by MSER

4.1.2 Feature Description

After identifying the locations of keypoints (interest points), we would like to describe

them before matching process. In this work, we experimented with four different

kinds of feature descriptors, gradient descriptor using gradients at a keypoint, SIFT

descriptor using a weighted histogram of gradient orientations over certain neigh-

borhood around a keypoint, polar descriptor sampling intensities along concentric

circles centered at a keypoint and Fourier descriptor on texture shape contours near

a keypoint. In this section, we will explain them in details.

Local Gradient Descriptor

Starting at the finest scale, our first attempt is to use the local gradients at the

keypoint itself to construct a descriptor. Given the structure tensor M defined in

Eq. 4.4, our descriptor is a 4 dimensional vector consisting of the orientations of two

eigenvectors −→e1,
−→e2 and the magnitudes of two eigenvalues |λ1|, |λ2| of M .
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One obvious drawback of this descriptor is that it is hardly reproducible. Thus,

if the training and testing images are captured roughly at the same time, this simple

descriptor may produce reasonably good matching results. However, our experiments

found that it is very sensitive to lighting and high frequency information changes such

as noise or slight variations in surface geometry. Therefore, we only used it at the

very early stage of this work to validate the idea.

SIFT Descriptor

Discover the flaws in only considering the keypoint itself, we decided to use a region

descriptor instead. The one we experimented the most is the SIFT descriptor [26].

Given a keypoint, we first compute the gradient magnitude and orientation at

each image sample point within certain neighborhood. A Gaussian weight is assigned

to each sample point according to its distance to the keypoint at the center indicated

by the overlaid circle in Figure 4.6. Then, these samples are accumulated into ori-

entation histograms summarizing the structures over a 4×4 grid in each quadrant.

Each arrow in the histograms is of length equal to the Gaussian weighted sum of

gradient magnitudes in the corresponding orientation bin of the quadrant. Then we

can construct a 2×2 descriptor shown on the right of Figure 4.6.

Figure 4.6: SIFT Descriptor
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In this work, we used 4×4 descriptors computed from 16×16 grid. Within each

subregion of the descriptor, the orientation is quantized into 8 equally spaced bins.

Furthermore, we normalized the histogram according to the dominant direction of

the gradient of the keypoint at the center to achieve rotation invariance.

Polar Descriptor

Comparing to gradient-based feature descriptors, we also attempted to build descrip-

tors using only intensities. The one we experimented is the polar descriptor which

is to transform a patch around a keypoint to polar space (Figure 4.7). However, we

observed that under conventional polar transform, the sampling is not uniform. The

rings with smaller radius get denser samples comparing to those with larger radii.

Figure 4.7: Polar Transform Sampling

Figure 4.8: Adaptive Polar Transform Sampling

To adjust the bias, we applied the adaptive sampling strategy proposed by

Matungka et al. [28]. At each radius Ri, the number of pixels the corresponding ring

covers is roughly 2πRi. Assuming we want to sample n points along the unit ring,

then for a ring of radius Ri, the angular sampling rate θi would be 2π
nRi

. This result
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yields an adaptive polar transform as in Figure 4.8. One example on the Lena image

is shown in Figure 4.9.

Figure 4.9: Adaptive Polar Transform on Lena Image

In this work, we sampling along three different radii, 25%, 50% and 75% of the

given patch radius. Since the patches are preprocessed with band pass filter, each

sample is a weighted average of nearby pixels in the original image. Finally, we stack

them together to form a 2-dimensional feature descriptor. Then, we can use Fast

Fourier Transform with phase correction [34] to recover the transformation.

Although adaptive polar transform performs well in patch registration for natural

images, due to the nature of near-random textures, its performance often depends on

the number of different radii used for sampling. In addition, matching two different

descriptors requires FFT which is an expansive operation for pairwise comparisons.

Having considered that, we decide not to use it in the final version of our system.

Fourier Shape Descriptor

The last descriptor we tried is Fourier descriptor developed for matching shape con-

tours. The contour-finding algorithm we choose for this work is one proposed by

Suzuki and Abe [45]. We calculate the center of contour points and take angular

samples evenly along the contour with linear interpolation on subpixels. Finally, we

use FFT and extract the Fourier coefficients to form a shape descriptor. Moreover,

we normalize the scale by dividing the magnitudes of other Fourier coefficients by

the first one, i.e. the DC component. The main problem with this approach is that
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the contour may break or merge when the patch shifted (Figure 4.10b, Figure 4.10c).

Furthermore, the shape contours of the surface textures may vary under different

lighting conditions and subtle changes on surface geometry. Therefore, it is not as

robust as we required from our experiments.

(a) Input Image Patch (b) Contours (c) Contours from Shifted Patch

Figure 4.10: Contour Extraction

4.2 Feature Selection

In order to keep our knowledge base compact and reduce the matching time, we

also implemented a local search algorithm for feature selection purpose. There are

two major sources of redundancy embedded in the collection of feature descriptors

from previous step: some detected keypoints are clustered in image space; some

clustered in feature space, which causes confusions in matching. Therefore, we form

an optimization problem by selecting a subset of features to address this issue.

Objective Function

The objective function we maximizing in Eq. 4.7 aims to optimize the keypoint dis-

tribution in both image space and feature space.

S(f1, f2, ..., fn) = αSf (f1, f2, ..., fn) + (1− α)Ss(f1, f2, ..., fn) (4.7)
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Sf (f1, f2, ..., fn) =

i≤n∑
i=1

Df (fi) (4.8)

Ss(f1, f2, ..., fn) =

i≤n∑
i=1

σ(Ds(fi)−Dcutoff ) (4.9)

S is the score function for a given set of features. f1, f2, ..., fn are the n selected

features in the current set. Sf is the score function for a given set of features in

feature space. Ss is the score function for a given set of features in image space. α is

the weight between the two score functions. Df (fi) is the normalized distance from

feature fi to its nearest neighbor in feature space. Ds(fi) is the distance from feature

fi to its nearest neighbor in image space. σ(Ds(fi) − Dcutoff ) is the the standard

sigmoid function (σ(x) = 1/(1 + e−x)) sifted by Dcutoff such that we penalize the

score when the distance in image space is less then the threshold given by Dcutoff .

Optimization

Given the objective function, we search for an optimal (or often a sub-optimal) solu-

tion using local search algorithm with Simulated Annealing [20]. Let us denote the

set of all features detected by some algorithm in Section 4.1 as U and the subset we

selected as S ⊆ U . We start the search by randomly selecting m features to form the

initial collection S0. In iteration i, we randomly swap n features from the current

collection Si with n features from U \ Si. If the objective function increases, we

keep the current swaps or otherwise we discard them with probability 1− p. As the

search proceeds, both parameters n and p decrease towards zero. A typical choices

for n and p are 5 and 0.1 at the beginning. The searching process terminates if the

relative increment of the objective function falls under some threshold (e.g. 0.01) or

the search reaches a predefined maximum number of iterations (e.g. 1000). Moreover,

to raise the chance of overcoming a local optimal, we maintain several search chains

and select the one yielding highest score as the final output.
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Sliding Window

Performing local search over the entire environment is too time-consuming to be

practical. Thus we use a sliding window algorithm to accelarate the searching process.

We quantize the space into N × N halfly overlapped windows. Therefore, we only

need to optimize within each window while keeping consistency among overlapped

regions. We start sliding window from the upper-left corner of the environment and

sweep the space from top to bottm, left to right. After search terminates with m

features seleted, we identify those inside the overlapped region with the next window

and use them as part of the initialization for future search (Figure 4.11).

(a) Search End in First Window (b) Search in Next Overlapped Window

(c) Search End in Second Window (d) Search in Next Overlapped Window

Figure 4.11: Sliding Window Feature Selection
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4.3 Knowledge Base Construction

The next stage of our system is to construct the knowledge base. To further decrease

the memory cost, we first perform the Principal Component Analysis (PCA) [33] to

reduce the dimensionality of SIFT features. Then, we feed them to FLANN-based

ANN matcher to build up kd-trees and k-means trees. In addition, to support patch

registration using template matching, we can also compress and store the preprocessed

image data and dynamically expand them during testing phase.

4.3.1 Principal Component Analysis

The idea of PCA is to use an orthogonal transformation to convert a set of observa-

tions with possibly correlated variables into a set of values of linearly uncorrelated

variables called principal components. Given a data matrix X whose m rows repre-

sent observations with zero empirical mean and n columns represent each dimension

of the data, we perform Singular Value Decomposition to find an m ×m matrix W

with eigenvectors of XXT , an n × n matrix V with eigenvectors of XTX and an

m × n singular value matrix Σ such that X = WΣV T . Then to find the d dimen-

sional representation Xd that minimizes the sum of squares reconstruction error, we

project X into the space spanned by d eigenvectors of W corresponding to the d

largest singular values in Σ, i.e. Xd = W T
dX. The parameter d is usually selected

from empirical analysis such that the reconstruction error is below some threshold.

Specific to our data, we used two plots to find this parameter d, the cumulative sin-

gular values plot (Figure 4.12a) and the empirical matching error plot (Figure 4.12b).

As a tradeoff between performance and time cost for nearest neighbor search, we

choose to reduce SIFT descriptors from 128 to d = 35 dimensions for our system.

Even though this value is purely determined from carpet data (Figure A.1), it also

performs reasonably well with other data we have. Furthermore, considering the per-
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formance degradation of kd-tree based nearest neighbor search algorithms on high

dimensional data, dimensionality reduction on SIFT decsriptors also contributes to

the overall localization performance. We then input the low dimentional data to the

FLANN based matcher [32] described in Section 2.4.

(a) Cumulative Singular Value Plot (b) Low-Dim Projection Performance

Figure 4.12: Principal Component Analysis on Carpet Data

4.3.2 Image Compression

Explicitly storing all the image data for a large environment takes up too much

space in practice. Therefore, we use image compression algorithms to compress our

preprocessed image data. We first quantize the environment into partially overlapped

bins. Then the image patch in each bin is compressed using 2D discrete wavelet

compression algorithm [5]. The basic idea is to recursively perform wavelet transform

on the image where we only store the differences while passing on the sum to the next

level. One example of wavelet compression used in JPEG2000 is shown in Figure 4.13.

The three large images are derived from applying high pass filtering to the original

image. Then the original image is low pass filtered and downsampled to generate

the next level. By repeatedly alternating between these two steps, we can achieve a

predefined compression ratio. However, there is still a tradeoff between how much
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we can compress and the reconstruction quality. In this work, we haven’t thoroughly

explored the factor of compression ratio to our localization performance.

Figure 4.13: Wavelet Compression

The decompression process can be performed dynamically as we move around the

environment. In the outdoor scenario, we can use GPS or landmarks to acquire a

rough guess on the initial position such that we only need to expand the image data

associated within the neighborhood. On the other hand, for indoor cases, we can use

sensors or heuristics, such as which floor or room we are currently in, to initialize the

search space for our localization system. After we acquired the initial position, we

can dynamically decompress and fetch the nearby image(s) as we move around.
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4.4 Matching Process

The major component of computer vision based localizaiton system is feature match-

ing. In natural images, feature matching using SIFT descriptors usually performs

reasonably well. However, our experiments found that in the context of near-random

textures with lighting and slight surface geometry changes, naively choosing the clos-

est nearest neighbor match on SIFT descriptors may not always yield expected pre-

cision. Therefore, we propose a two-stage matching algorithm shown in Figure 4.14.

In this section, we will decribe the matching process in more details.

Figure 4.14: Matching Process

4.4.1 Nearest Neighbor Matching

For each testing patch, we can extract multiple keypoints. We perform nearest neigh-

bor search for each of them using FLANN based ANN matcher [32]. Then, for each

matching pair, we use the position of the matching keypoint to predict the central

position of an arbitrary testing patch in the known environment.

Figure 4.15 shows a situation where the green SIFT feature in the red testing

patch on the right matches to the blue keypoint in the environment on the left. If

we only use the relative position from the green keypoint to the red patch center,

i.e. the angle φ and distance d, we will predict the matching patch center at A′ as
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in Figure 4.15a. However, by using the orientations assigned to the green and blue

keypoint (the green and blue arrows), we can recover the rotation offset θ and correct

the prediction to A (Figure 4.15b).

(a) Nearest Neighbor Matching (b) Matching with Angle Correction

Figure 4.15: Nearest Neighbor Prediction

4.4.2 Voting

Observed that the closest nearest neighbor may not always yield a prediction close

enough to the ground truth, a voting strategy is used to identify possible consen-

sus among different nearest neighbor predictions. Given the nature of near-random

textures, a wrong match could potentially map a testing patch to any position in

the environment with equal probability. Therefore, when multiple predictions agree

with each other, it is highly likely that their predictions would be close to the ground

truth. There are many possible algorithms to implement voting. For instance, we

can quantize space into bins and let each of the SIFT predictions vote for one bin

and the nearby 8 neighbors. Then we can use a hashtable to store the votes. In this

work, we propose a simple algorithm described in Algorithm 1.

The idea is to calculate the pairwise distances from a SIFT prediction candidate

n to the others. If the pixel-wise distance between candidate n and m is below some
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threshold τdist, we count as one vote from m to n. Finally, if any candidate gets

enough votes to pass the threshold τvote, we will consider the voting successful.

Algorithm 1 Nearest Neighbor Voting

procedure NNVoting(points[], τvote, τdist)
n ← Length(points[])
marked[] ← true
maxVoteCount ← 0
minAvgDist ←∞
for i = 1 to n do

if marked[i] == false then Continue

(votes[], center, voteCount) ← Vote(i, points[], marked[], τdist)
if voteCount == 0 then

marked[i] ← false
else if voteCount ≥ τvote then

avgDist ← GetAvgDist(votes[], center)
if avgDist < minAvgDist then

minAvgDist ← avgDist
maxCenter ← center
maxCount ← voteCount

return maxCount, maxCenter, minAvgDist

Algorithm 2 Voting

procedure Vote(i, points[], marked[], τdist)
n ← Length(points[])
center ← (0, 0)
for j = 1 to n do

if marked[j] == false then Continue

dist ← Distance(points,points[j])
if dist ≤ τdist then

voteCount ← voteCount + 1
center ← center + points[j]
Add(votes[], points[j])

center ← center / Length(votes[])
return votes[], center, voteCount

We also group each candidate n and its voters into a set of predictions Vn and

calculate the average distance dn from the gravity center cn to each of member in Vn.
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In case of ties in voting, we would prefer the one with smaller within-group average

distance. In addition, dn is also used as the search range to refine the prediction of

cn using template matching.

The time complexity of Algorithm 1 is O(n2), yet if n is small, e.g. 10 or 20,

the performance may not compromise too much comparing to the cost for computing

hash values in the hashtable implementation. The parameters for this algorithm are

estimated from experiments. Empirically, if voting only involves the first 10 SIFT

predictions, the typical parameter values are τvote = 2, τdist = 15.

4.4.3 Template Matching

In case of voting failure, we fall back to the idea of applying template matching around

every SIFT predictions, i.e. given a patch clipped around a SIFT prediction as tem-

plate T , we want to register it to an image I. In this work, we choose Normalized

Cross Correlation (NCC) as the matching distance metric Eq. 4.10. However, calcu-

lating NCC score on intensities in Cartesion space is subject to orientation and scale.

Therefore, we attempted two different approaches to compensate for this drawback.

NCC(x, y) =

∑
x′,y′(T (x′, y′) · I(x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(4.10)

Fouier-Mellin Transform

To achieve rotation invariance, we can apply polar transform as described in Sec-

tion 4.1.2. For scale invariance, we can perform sampling in log space. Therefore

in log-polar space, rotation and scale become translations, which can be effeciently

recovered using Fast Fourier Transform (FFT). To overcome the initial translation in

Cartisian space, we can apply FFT on original image patches as well. Hence, we yield

the entire pipeline of Fourier-Mellin Transform [11] as demonstrated in Figure 4.16.
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(a) Input (b) Fourier Transform (c) Log Polar Transform

Figure 4.16: Fourier-Mellin Transform

Figure 4.17: Phase Image

To start with, we first pad zeros to the template to make it the same size as

the matching image patch. To reduce the additional low frequency from padding

(Figure 4.16a), we apply a high pass filter after Fourier transform (Figure 4.16b).

Log-polar transform will map rotation and scale into translations as in Figure 4.16c.

Then, we can apply phase correction using FFT. However, this algorithm discards

the rotation information recovered from SIFT matching. Moreover, our experiments

show that the global optimum in the phase image (Figrue 4.17) sometimes diverges

from the ground truth. One possible explanation is that the confusions caused by

the nature of near-random textures increase the difficulty for matching. In addition,

the excessive cutoff on low frequency information after high pass filtering may also
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be another reason to consider. Granted, one can argue that by carefully selecting the

kernel size of the high pass filter, this method is still possible to work.

Brute Force Search

An alternative approach is to apply brute force search for the correct rotation offset

by rotating the testing patch with bilinear interpolation on subpixel resolution. How-

ever, if we search over all possible rotations, i.e. 0 to 2π, we found that the global

maximum NCC score does not seem to be a good indicator for the actual prediction

error. Fortunately, our empirical study suggests that the rotation recovered from

SIFT prediction θ̂ is often close enough to the ground truth θ. In addition, the local

maximum of the NCC score around θ̂ can be used to select the best SIFT prediction

with reasonably small error.

(a) NCC Curve with No Rotation (b) NCC Curve with Rotation

Figure 4.18: NCC Curve from Brute Force Search in Rotation

One example of such NCC curve is shown in Figure 4.18. The x axis denotes the

rotation on testing patch whereas the y axis labels the NCC score. The red vertical

line indicates the SIFT predicted rotation θ̂. The upper two plots correspond to

template matching over a larger area around SIFT prediction (around 30 to 35 pixels
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radius in offset). The bottom two plots depict the same template matching scenario

but within a much smaller neighborhood (around 3 to 5 pixels radius in offset).

In an easier case with only translation Figure 4.18a, we observe that θ̂ coincides

with the ground truth, i.e. 0 degree. Furthermore, searching over different sizes of

neighborhood does not affect much to the shape of the NCC curve. On the other

hand, in Figure 4.18b, the ground truth rotation θ is around -20 degrees whereas the

local maximum of NCC score occurs a bit left to the SIFT predicted rotation θ̂ = -15,

yet it is still not too far away from θ. Nonetheless, the lower and more flactuated NCC

curve could result from slight surface geometry changes and subpixel interpolations

while rotating the testing patch.

Despite of the differences in the two situations above, we notice that there is al-

ways a local peak near SIFT predicted rotation θ̂ (the red vertical line in all four

plots). Therefore, to improve the time efficiency, we restrict the search neighborhood

for rotation to be (θ̂ − δ, θ̂ + δ). More interestingly, the maximum NCC score within

a smaller window also tends to be more robust than that in global scale. Our ex-

periments found that sometimes the global maximum NCC score from a wrong SIFT

prediction can overrun that from the correct one.

4.4.4 Learning Error

After manually examined a collection of NCC curves accociated with correct SIFT

predictions, we found some common shape characteristics shared among them. A

close up look is shown in Figure 4.19.

From the observations, we can make the following hypothesis: for a good SIFT

prediction, there is usually a salient peak θmax near the SIFT prediction θ̂. Then,

to testify this hyphothesis, our first experiment is to train a linear regression model

mapping the curve itself to the corresponding prediction error value. However, the
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experiment was unsuccessful due to low signal to noise ratio in the NCC data and

lack of clear correspondences between NCC curve shapes and exact error values.

Figure 4.19: NCC Curve Close Up

Fortunately, in the context of precise localization, what we care about the most

is whether a prediction will generate error small enough. Therefore, we can simplify

the continuous regression problem to a binary classification problem. To state for-

mally, given a NCC curve from template matching over rotations, classify whether

the prediction error is small or large comparing to a predefined threshold.

In this work, we select two different kinds of classifiers: logistic regression [7],

which produces linear decision boundary, and neural network, [36] which is a more

sophisticated non-linear classifier. We also conduct a comparison study on using

different kinds of input as the training data: raw NCC curve, simple heuristics (e.g.

∆θ and ∆NCC in Figure 4.19), derivatives and cum-sum features.

Cum-Sum Feature

To better characterize the behavior of the NCC curve, we also designed a feature

called “cum-sum” feature as an alternative to the raw NCC curve as training input

(Figure 4.20). We first smooth the raw NCC curve (upper-left plot) and subtract the

mean (bottom-left plot). Then, we apply a Gaussian weight (upper-right plot) and use

Riemann sum to approximate the area under the curve. The cumulative summation

begins from the center, i.e. the SIFT predicted rotation θ̂, and then grows on both
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sides to generate the cumulative sum curve (bottom-right plot). Therefore, if the

hypothesis is true, the cum-sum curve would increase rapidly at first, then gradually

become flat and finally end with large overall sum.

Figure 4.20: Cumulative Sum Feature Generation

Figure 4.21: Cum-Sum Feature Failure Case

Our experiment shows that the cum-sum feature can very well characterize our

hypothesis. For a positive example with prediction error 2.21 pixels in Figure 4.20,

the cum-sum curve behaves correctly as described before. On the other hand, when
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the NCC curve is flactuating (Figure 4.22a with error 118.58) or the nearest peak is

far away from θ̂ (Figure 4.22b with error 284.15), the corresponding cum-sum feature

would end up with smaller final sum as we expected.

(a) NCC Curve with Flactuation

(b) NCC Curve with Futher Mode

Figure 4.22: Cum-Sum Feature on Negative Cases

Unfortunately, the size of the Gaussian weight kernel still requires to be estimated.

This parameter is essentially the estimated error of SIFT rotation prediction which

we found a little hard to fit in practice. One failure case is shown in Figure 4.21.
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Logistic Regression

Unlike linear regression which produces unbounded continuous predictions, logistic

regression uses the logistic function (also sometimes referred to as the sigmoid func-

tion) in Figure 4.23 to map any number in R to [0, 1]. Similar to linear regression,

each dimension of the input data xi is weighted by a coefficient βi and then a bias β0

is added before feeding to the logistic function as in Eq. 4.11.

y =
1

1 + e−(β0+βx)
(4.11)

The parameters β0,β can be learned using maximum likelihood estimation (MLE).

Unfortunately, the formulation of the logistic function prevents us from finding a

closed-form solution to the coefficients through MLE. Therefore, we apply gradient

descent to iteratively learn the parameter values.

Figure 4.23: Logistic Function

Neural Network

A more complicated non-linear classifier is neual network [36]. The basic structure

is depicted in Figure 4.24. In this example, there are three layers of nodes in this

network, input layer, hidden layer and output layer.

Each dimension of the input data is fed into each input node in the input layer.

Then we compute a linear combination of each input node and use them as the

input for the hidden layer. The non-linearity is added by putting each node in the
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hidden layer through a non-linear activation function, usually sigmoid or arctangent.

Finally, a linear combination of the output from the hidden layer is fed into each node

in the output layer as the network outputs. To form a binary classifier, we can utilize

softmax to convert the outputs into a probability distribution.

Figure 4.24: Neural Network

(a) Linear Decision Boundary (LR) (b) Non-Linear Decision Boundary (NN)

Figure 4.25: Comparision between Logistic Regression and Neural Network

Same as the learning process for logistic regression, we need to use MLE to fit

the model parameters, i.e. the weights between each pair of nodes. We use gradient

descent with backpropagation [36] to train the network. Comparing to logistic regres-

sion, neural network can produce much more complicated decision boundary. One
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example is shown in Figure 4.25 (Figure 4.25a by logistic regression and Figure 4.25b

by neural network).

Although the non-linearity enables us to separate data that are not linear sepa-

rable, this gain in learning power also comes with the risk of overfitting. To reduce

this risk, we performed n-fold cross validation [7] as a model selection mechanism.

Emsemble Method

Having experimented with both classifiers, we discovered that the improvement in

localization performance is not significant (the detailed results will be further analyzed

in Section 5.2). By examining the failure cases during classification, we found the two

classes are largely overlapped. There seems to be no clear linear or non-linear decision

boundary that could easily separate one from the other. Thus, an overkilled approach

would be to use the ensemble method. The pipeline is shown in Figure 4.26.

Figure 4.26: Pipeline of Ensemble Method

The idea is to collect a series of classifiers each learning different aspects of the

data in a cascading fashion. Then, a testing example is piped through each classifier

one by one and accepted immediately at the one having high positive confidence on.
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In the context of our system, we use logistic regression as the base classifier and

interpret their continuous outputs as confidence levels. Nevertheless, thresholding on

high confidence yields higher precision in prediction but at the cost of lower recall. As

a consequence, each of the classifier may not be able to cover many positive examples

during learning. In our experiment, we focus on the top 20 SIFT matches from

1000 randomly selected patches in the testing image. If there is any high confidence

positive prediction from a classifier ci among the 20 SIFT matches for a patch pn, we

consider patch pn to be accepted by the classifier ci. As it turns out, we can train the

first classifier c1 with over 99% precision but only 67% recall, yet with an acceptance

rate of 49%. In other words, 49% of the training cases can be successfully accepted

by c1. Then, we train the second classifier c2 on the remaining 51% training data and

repeat this process on the leftover data from c2. We stop adding new classifiers until

the acceptance rate is less than 50% on the current training set with precision rate

over 95%. To clean up the remaining data (usually 13% to 17% after three rounds

of training), we can either greedily select the one with the maximum NCC score or

again train a non-linear classifier on them e.g. neural network. The performance of

this approach will be discussed in further details in the next chapter.
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Chapter 5

Result

In this chapter, we are going to discuss the preformance of the proposed system from

some experimental results. We will first describe and analyze the baseline implemen-

taion which always predicts according to the closest SIFT nearest neighbor match.

Then we will compare it to our whole system pipeline on more challenging cases.

5.1 Baseline Implementation

Surprisingly, even without preprocessing and the final matching mechanism, greedily

selecting the closest nearest neighbor from SIFT matches could already achieve high

precision in localization predictions. The summary statistics are listed in Table 5.11.

The testing image pairs are P-Carpet Figure A.1, Wall Figure A.2, Wood Figure A.3

and Concrete Figure A.4. In addition, we compare the preformances of different

feature detectors as mentioned in Section 4.1.1 with the SIFT descriptor. To obtain

an estimated upper bound on how well these detectors could perform, we intend to set

the quality threshold for keypoints lower, e.g. the response in Harris Corner detector,

the number of nearby layers in MSER and the contrast threshold in SIFT.

1The measurement in actual scale is up to pixel level accuracy only; all experiments reported in
this chapter are conducted with at least 3000 testing cases
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Our experiments suggest that Harris Corner detector can usually detect more

keypoints from the input image, yet all of them are of the same size. MSER detector is

more sensitive to image contrast and usually focuses on small features. SIFT detector

appears to be more compatible with SIFT descriptor considering that it often extracts

less features yet providing competitive performance. In terms of running time, both

Harris Corner and MSER detectors are often faster than SIFT, yet none of the three

goes beyond any reasonable time limit.

Data Images Harris Corner MSER SIFT

Number of Features Detected

P-Carpet 7007 6444 5253

Wall 8200 23 7968

Wood 6900 156 2925

Concrete 7854 3676 2615

Average Prediction Error (mm)

P-Carpet 1.34 ± 0.01 81.34 ± 0.79 1.19 ± 0.01

Wall 0.47 ± 0.01 –2 0.40 ± 0.01

Wood 2.91 ± 0.36 65.73 ± 1.25 2.47 ± 0.08

Concrete 1.96 ± 0.02 220.13 ± 2.83 6.03 ± 0.72

Small Error Percentage (error ≤ 5 pixels)

P-Carpet 100.00 ± 0.00% 63.11 ± 0.51% 100.00 ± 0.00%

Wall 99.76 ± 0.20% – 99.63 ± 0.12%

Wood 94.75 ± 0.43% 8.89 ± 0.37% 93.76 ± 0.17%

Concrete 98.75 ± 0.19% 11.75 ± 0.24% 97.03 ± 0.44%

Table 5.1: Localization Performance on Baseline Implementation

We evaluate the performance of localization using two measurements. One is

the average error from the predicted position to the ground truth; the other is the

percentage of smaller error, i.e. predictions within 5-pixel radius to the ground truth.

For the P-Carpet and Wall image data, both Harris Corner and SIFT can produce high

precision prediction results. Harris Corner detecter outperforms SIFT on Concrete

2No statistics for MSER performance due to insufficient number of features detected
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data mainly due to more detected keypoints. However, none of the three detecters

performs equally well with Wood data, though most of the times Harris Corner and

SIFT would generate predictions sufficiently close to the ground truth.

Unfortunately, these preliminary results appear to be a little too optimistic. In

ideal situations where there are almost no lighting or surface geometry changes, this

simple baseline implementation could achieve satisfactory accuracy. But, when more

variations are involved between testing patch and the knowledge base, the perfor-

mance degrades a lot. We will discuss this issue in further detail later.

Feature Selection

We also evaluate our feature selection algorithm using the baseline implementation.

As described in Section 4.2, there are two main parameters for the selection process,

N the number of overlapped windows in one row (N × N of them in total) and m

the number of features we want to keep within each window. The summary plot on

the P-Carpet data is shown in Figure 5.13.

Figure 5.1: Feature Selection Performance

3#i Match denotes the ith nearest neighbor match of SIFT predictions
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From 5253 detected SIFT features, the local search algorithm selects 2125 of them

to achieve average prediction error of 1.37 using the closest nearest neighbor matching.

This result is generated from selecting 21 features within each 18×18 halfly overlapped

windows. In addition, we notice that the prediction performance drops down as the

nearest neighbor matching error in feature space goes up. This observation indicates

that the ordering of SIFT nearest neighbor matches may correspond to the prediction

error they generate.

Patch Size Selection

Another important parameter we need to estimate is the the size of the testing patch.

The desired patch size may vary according to different properties of the surface. The

size summary plot of the four image data we experiemented is shown in Figure 5.2.

(a) In Actual Scale (mm) (b) In Relative Scale (pixel)

Figure 5.2: Testing Patch Size Plot in Diameter

Notice that in both plots, increase in testing patch size may not always bring

performance boost. One common cause is that there are always some high quality

false positive matches in each image data, usually in high frequency. Therefore, larger

testing patch size would be more likely to include such matches. Because these false

matches having smaller error in feature space, they often will become the closest

nearest neighbor and overrun other ”correct” nearest neighbor predictions.
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On the other hand, different image data do have their unique additional reasons

for this performance degradation as well. For instance, we observed that for Wall data

(cyan line), when testing patch size goes up, some larger scale features are detected

and selected as the closest nearest neighbor. Most of the time, they will match to

the ones with similar feature size in the knowledge base, yet sometimes they could

also match to features with much smaller size. This could be due to the fact that

the resolution of SIFT descriptor may not be sufficiently high to capture enough

details in larger scale. Since the plain wall is uniformly colored, there are not much

helpful patterns we can extract from color contrast. Thus, potentially there could be

confusions among observations at different scales.

Another interesting observation is that from relative scale (Figure 5.4b), the irreg-

ular high frequency patterns from the surface geometry in the Wall data improve the

distinctiveness of a single patch even with small radius. Unfortunately, our following

experiments show that due to lack of color contrast, image features purely created by

shadows can be very sensitive to light directions. One example is shown in Figure 5.3.

In this case, the stitching result could not be generated without markers.

(a) Training Data (b) Testing Data (c) Stitch Result

Figure 5.3: Wall Data with Flash Light

The SIFT features detected in this data highly depend on lighting and surface

geometry. We can get a more clear view when we remove the background color using

high pass filter to reveal the circular structure around the highlight spot (Figure 5.4).
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As a result, the captured surface changes its appearance as light source moves around,

which makes image feature matching problematic.

(a) High Pass Filter on Training Data (b) High Pass Filter on Testing Data

Figure 5.4: High Pass Filter on Wall Data with Flash Light

(a) Color Difference (b) Surface Concavity

Figure 5.5: Concrete Surface Close Look

Comparing to Wall data, Concrete data (red line) seems to be more robust to

patch size changes. If we look closely, there are some irregular patterns caused by

color differences on the surface (Figure 5.5a). Moreover, we also found that surface

concavities are often helpful too (Figure 5.5b). Because of the concave geometry, not

enough light can be reflected into the camera. Therefore, we can observe some dark

dots distributed irregularly across the surface. Since these dots are usually darker than

its surrounding area, they can be easily detected. Furthermore, the unique patterns

they formed can be captured by SIFT descriptors. However, the distribution of these

“marker-like” dots are often sparse. Thus, it would require observations at larger

scale to cover at least some of them for localization purpose.
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5.2 System Evaluation

Even though the initial results using the simple baseline implementation is encour-

aging, when more variations happen on the lighting conditions and surface geometry,

greedily selecting the closest nearest neighbor does not always appear to perform

well. In this section, we will discuss experiments on more challenging image data and

evaluate the whole pipeline we proposed.

Preprocessing

As mentioned in Section 3.1.1, the purpose of applying band pass filtering is to reduce

the noise and adjust for the overall intensity changes due to lighting. We repeated

the same experiment on the four data sets we used to evaluate the baseline imple-

mentation. The resulting statistics are listed in Table 5.24.

(a) Concrete Patch without Band Pass Filter (b) Concrete Patch with Band Pass Filter

Figure 5.6: Comparison on Band Pass Filtering

(a) Detected Keypoints without Band Pass Filter (b) Detected Keypoints with Band Pass Filter

Figure 5.7: Comparison on Keypoint Distribution (Green box indicates patch size)

4We only include experiments using the SIFT detector and descriptor for space-saving purpose
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Data Images Band Pass Filter No Band Pass Filter

Number of Features Detected

P-Carpet 9158 5253

Wall 10565 7968

Wood 5973 2925

Concrete 6077 2615

Average Prediction Error (mm)

P-Carpet 1.08 ± 0.01 1.19 ± 0.01

Wall 0.40 ± 0.01 0.40 ± 0.01

Wood 2.99 ± 0.38 2.47 ± 0.08

Concrete 1.92 ± 0.02 6.03 ± 0.72

Small Error Percentage (error ≤ 5 pixels)

P-Carpet 100.00 ± 0.00% 100.00 ± 0.00%

Wall 99.93 ± 0.04% 99.63 ± 0.12%

Wood 95.26 ± 0.56% 93.76 ± 0.17%

Concrete 99.83 ± 0.05% 97.03 ± 0.44%

Table 5.2: Comparison on Preprocessing Using Band Pass Filter

Our first observation is that the increase in number of features detected. One

possible reason is that after removing some low frequency information (sometimes

corresponding to the base color of the surface as in Figure 5.6), details become much

more salient. In addition, we discover that for the same testing patch, the matching

error in feature space for the closest nearest neighbor decreases after band pass fil-

tering. Therefore, it seems that the newly detected features are more distinctive and

stable than what we had before.

Besides band pass filtering, we did not find intensity normalization process neces-

sary i.e. Histogram Equalization or Luminance Remapping, since SIFT is based on

gradients which makes it robust to overall intensity level changes.
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Voting

Unfortunately, the closest nearest neighbor may not always yield a close prediction

to the ground truth, especially while facing lighting changes and data corruptions.

For instance, let us consider the same concrete surface Figure A.4a (Figure A.5a)

as in the previous experiment. If the testing patch is captured from different time

(Figure A.5b, which is taken after more than half a year later from Figure A.5a), the

baseline implementation tends to perform worse (Table 5.3). Therefore, instead of

the greedy strategy, we decide to employ a collaborative approach, i.e. voting. Our

voting experiment only involves the top 20 closest nearest neighbor SIFT predictions

with over 3 votes as success threshold τvote as described in Section 4.4.2.

Data Images Voting Without Voting

Average Prediction Error (mm)

Concrete2 84.41 ± 2.83 84.47 ± 2.97

Concrete2 (BPF5) 28.90 ± 0.54 34.6 ± 0.30

Small Error Percentage (error ≤ 5 pixels / 5.47mm)

Concrete2 59.85 ± 0.42% 60.94 ± 0.24%

Concrete2 (BPF) 85.52 ± 0.35% 80.08 ± 0.17%

Small Error Average (mm)

Concrete2 2.52 ± 0.12 2.61 ± 0.14

Concrete2 (BPF) 1.69 ± 0.05 2.58 ± 0.07

Table 5.3: Performance Summary on Voting Strategy

In the case with band pass filtering (BPF), i.e. second rows, around 60% of the

times voting will succeed; otherwise, the closest nearest neighbor is selected as final

prediction. In contrast, without BPF, the voting success rate is merely above 10%.

This result indicates that pre-filtering forces the SIFT detector to focus on the actual

near-random textures rather than unstable high frequency details; therefore more

consensus can be established among different SIFT nearest neighbor predictions.

5BPF: preprocessed with Band Pass Filtering
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Template Matching

Observed that the size of SIFT features extracted from testing patch may not be

large enough to cover the entire patch. Thus, only considering partial information

from the patch via SIFT feature matching could be misleading. This may not be

an issue if there are less environmental changes between the image we builing our

knowledge base from and the one we using for testing. But, when changes in lighting

or surface conditions are involved, we may not be able to extract the same features as

we seen before. Therefore, the localization performance may suffer from only trust-

ing the SIFT nearest neighbor predictions. Granted, voting strategy would leverage

this drawback by collectively considering multiple matches, yet this inconsistency in

extracted features will also jeopardize the voting success rate. Therefore, in situa-

tions where voting fails and cloest nearest neighbor may not be reliable, we need an

additional mechanism to help us choosing the “correct” prediction if there is any.

Figure 5.8: Small Error Percentage among First k SIFT Predictions

Following the idea of matching the entire testing patch as a whole rather than part

of it, we apply template matching techniques to solve this problem. As described in

Seaction 4.4.3, we choose NCC as our distance metric. However, performing template

matching over the entire environment may not be practical due to time efficiency.
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Thus, we only focus on small neighborhoods around each of the SIFT nearest neighbor

predictions. The reason why we can use SIFT predictions to narrow down the search

space is based on the observation in Figure 5.8. Notice that around 99% of the

time, the top 20 SIFT matches will contain at least one prediction close enough to

the ground truth. Therefore, we can even further narrow down the search by only

focusing on top 20 SIFT matches instead of all of them, which could be up to 80

or more. Additionally, to compensate for the fact that template matching in image

space is not robust to rotation, we utilize the SIFT predicted rotation as a prior.

Then, we can rotate the testing patch within a small neighborhood aroung this prior

and generate the NCC curve as Figure 4.18.

Data Images V-MaxNCC6 MaxNCC V-CNN7

Average Prediction Error (mm)

Concrete2 214.77 ± 2.23 240.62 ± 0.68 84.41 ± 2.83

Concrete2 (BPF) 25.36 ± 3.15 36.75 ± 3.17 28.90 ± 0.54

Small Error Percentage (error ≤ 5 pixels / 5.47mm)

Concrete2 15.94 ± 0.16% 8.10 ± 0.44% 59.85 ± 0.42%

Concrete2 (BPF) 91.61 ± 0.84% 88.52 ± 1.15% 85.52 ± 0.35%

Small Error Average (mm)

Concrete2 2.36 ± 0.16 2.52 ± 0.05 2.52 ± 0.12

Concrete2 (BPF) 1.32 ± 0.01 1.31 ± 0.01 1.69 ± 0.05

Table 5.4: Comparison between Max NCC and Voting Strategies

One greedy strategy is to select the match who possesses the highest NCC score

from associated NCC curve. Reusing the same concrete data from previous section,

we can compare its performance shown in the middle column of Table 5.4.

Without preprocessing, the unstable high frequency details prevent NCC template

matching from finding the correct match, yet with proper amount of filtering in

6V-MaxNCC: Voting + Max NCC to resolve voting failure
7V -CNN: Voting + Closest Nearest Neighbor to resolve voting failure
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frequency space, NCC becomes much more effective in prediction. Furthermore,

in addition to using NCC curve for selection purpose, our experiments show that

the position recovered from the maximum response in template matching is often

more accuate then the corresponding SIFT prediction. Finally, combined with voting

strategy, we can achieve more than 90% small error with 1.32mm over all predictions.

Error Learning

We also attempt to learn a potential mapping from the shape of the NCC curve

mentioned in last section to the error range the patch generates in prediction. Thus,

we conduct a series of experiments using different kinds of input data, i.e. raw

NCC curve, simple heuristics8, derivatives and cum-sum features (Section 4.4.4). We

compare the performance between using logistic regression and neural network as the

classifier. The image data we used in our analysis is Carpet-FR data (Figure A.8). In

this case, the training image is captured under natural lighting and testing image is

taken under flash light. The rotation is about −20◦ with a scale change of 5%− 10%.

Moreover, the carpet has no obvious pattern. In addition, we captured a similar pair

of carpet data without rotation and scale (Figure A.7). We use one pair for learning

and the other for validation to prevent overfitting. We randomly sampled 15000 NCC

curves from 1500 testing patches (i.e. top 10 SIFT predictions) from each image pair.

The size ratio between training set and testing set is 1:2 (we experimented with 2:1

ratio, but the performance did not improve significantly). We test our model on both

testing sets from the same image pair and validation pair (Figure 5.99).

The result shows that the classifiers tend to overfit easier training data with no

rotation, so that they do not generalize well to rotation data as in Figure 5.9a. On

the other hand, when train on rotation data, the classifiers can also generalize to no

8Heuristics include the distance from SIFT predicted rotation θ̂ to the local mode of the NCC
curve, the ratio between max and mean of the NCC scores and the absolute max value of NCC curve

9Figure 5.9a is generated when training on no rotation data and validate on rotation data and
Figure 5.9b is derived the other way around
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(a) Train on No Rotation

(b) Train on Rotation

Figure 5.9: Comparison on Different Training Strategies

The corresponding experiments for each pair of bars are: 1. Logistic regression on
raw data; 2. Logistic regression on simple heuristics; 3. Logistic regression on deriva-
tives; 4. Neural network on raw data; 5. Neural network on simple heuristics; 6.
Neural network on derivatives; 7. Logistic regression on cum-sum features; 8. Neural
network on cum-sum features; 9. Best SIFT prediction within top 10 predictions; 10.
Maximum NCC predictions; 11. Closest nearest neighbor predictions
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rotation cases, i.e. Figure 5.9b. This observation also coindices with our intuition: no

rotation data is generally more consistent and ideal. As a result, the learned classifier

would not be able to tolerate small changes in rotation and scale. Furthermore, it

seems like the Cum-Sum feature we designed (bar 7 and 8) tends to cause overfitting.

More importantly, with the extra overhead in training and classifying, the overall

performance does not improve significantly comparing to greedily selecting the match

with absolute maximum NCC score (bar 10). Therefore, one may argue that the

extra training process does not worth its efforts.

We also experiment with the ensemble method to see if we can make any improve-

ments using more sophisticated learning mothod. As described before in Section 4.4.4,

we deliberately hold the confidence level of a classifer so high that any positive pre-

diction from it would most likely to be a true positive case. Therefore, by combining

multiple linear classifiers, we can create a complicated decision bounary to partition

the space. Figure 5.1010 shows an experiment with 3 rounds of logistic regression fit-

ting with maximum NCC strategy on leftover data. The model is trained on rotation

data and test on both testing sets. Unfortunately, the resulting classifier does not buy

us much improvements. Therefore, we decided not to go for this overkilled approach.

To sum up, our learning experiments suggest that the positive examples learned

by the classifiers are usually the same as those with highest NCC scores. However,

we can still use these classifier in a different way to improve the time efficiency.

High confidence level trades recall to precision. Therefore, when a classifier is almost

certain on the current example being positive, we can trust its judgement and stop

the template matching process with the remaining SIFT predictions in the list. This

early-stop trick may not seem to earn us much benefits at the first glance, yet our

study shows around 60% of the time, the classifier would be satisfied with the closest

10The performance of max NCC strategy improved comparing to those in Figure 5.9 since we
search over a smaller neighborhood around SIFT predicted rotation θ̂
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(a) Test on No Rotation

(b) Test on Rotation

Figure 5.10: Three Rounds Ensemble Method Using Logistic Regression

nearest neighbor. The more detailed histogram on pruning is given in Figure 5.11.

Thus, in practice, this simple strategy does improve the running time.
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Figure 5.11: Early Stop Pruning Distribution

More Results

A more comprehensive plot for the performance comparison on Carpet-FR data with

near-random texture (Figure A.8) is shown in Figure 5.12.

The result shows that we can achieve near 90% of small error among all predictions

(about 6300) using our current best predication strategy, i.e. Vote-SIFT-MaxNCC

(black line). The template mathing neighborhood size can be interprated as the es-

timated error in best SIFT prediction. If we only consider top 10 closest nearest

neighbor predictions from SIFT given the ground truth, our final algorithm can pro-

vide competitive accuracy with only 5% less than optimum whereas closest nearest

neighbors from baseline implementation can merely get close to 60% overall. In ad-

dition, the early stop version of max NCC prediction (cyan line) yields roughly the

same as selecting the max NCC after examing all 10 predictions (magenta line).

In terms of running time, the summary plot is shown in Figure 5.13. Notice

that, early stop reduces the running time by nearly half comparing to examing all

predictions. Furthermore, voting appears to be the most time efficient strategy since

when it succeeds, only one prediction needs to be further examined.
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(a) Train on No Rotation

(b) Train on Rotation

Figure 5.12: Performance Comparison on Different Prediction Strategies

The x-axis denotes the neighborhood size template matching is searching over; the
y-axis denotes the percentage of small error, i.e. less than 5 pixels or 11.72mm. Best
SIFT (yellow line): the best SIFT prediction among all predictions; Best SIFT Top
k (green line): the best SIFT prediction among top 10 closest nearest neighbor pre-
dictions; Nearest (red line): the closest nearest neighbor; MaxNCC-SIFT (blue line):
using the SIFT prediction selected from max NCC; MaxNCC-NCC (magenta line): us-
ing template matching prediction selected from max NCC; FitNCC-NCC (cyan line):
MaxNCC-NCC with early stop; Vote-SIFT-MaxNCC (black line): voting combined
with max NCC
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Figure 5.13: Running Time Comparison on Different Prediction Strategies

The same experiment is repeated on other image data, Wood (Figure A.3), Con-

crete (Figure A.4), Carpet-NL (Figure A.6), Concrete2 (Figure A.5), Carpet-F (Fig-

ure A.7) and Carpet-E (Figure A.9). The system performance is summarized in

Table 5.5. The experiments are conducted using the whole system pipeline. The

statistics reflect the performance of our current best localization strategy.

Data Images Average Error (mm) Small Error Percentage

Wood 0.50 ± 0.04 99.73 ± 0.03%

Concrete 1.26 ± 0.14 99.97 ± 0.05%

Carpet-NL 1.83 ± 0.01 99.98 ± 0.02%

Concrete2 25.36 ± 3.15 91.61 ± 0.84%

Carpet-F 29.12 ± 2.32 94.74 ± 0.37%

Carpet-E 332.01 ± 2.61 51.33 ± 0.45%

Table 5.5: Evaluation on Other Image Data

The results demonstrate certain level of robustness of our system under environ-

mental changes. With similar lighting condition (Wood, Concrete, Carpet-NL), our

system can produce high precision localization results. Under more challenging cases

with lighting variations (Concrete2, Carpet-F), we can still achieve over 90% of small

error predictions. In an extreme situation under insufficient lighting (Carpet-E), the
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performance drops down to around 51%, yet still better than closest nearest neighbors

with 21%. More importantly, the loss in localization accuracy is not a consequence

of incorrect algorithm we proposed but the fact that SIFT matches become unreli-

able. In this case, among top 20 SIFT predictions, the best we can get is merely

51% of small error percentage as well. One possible reason for this degradation in

SIFT matching performance is that the influence of insufficient lighting overruns the

contributions from colored near-random textures on the surface itself.
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Chapter 6

Conclusion

In this study, we presented a novel computer vision based localization system using

feature matching in near-random textures. The proposed system is accurate in pre-

dictions, robust to environmental changes and marker-free. Our experimental results

in this work indicate the potential of applying such algorithm in real world applica-

tions. In addition, the multi-level search pipeline we described can be adopted by

plugging in other image features for feature matching or other distance metrics for

template matching, e.g. bi-directional distance [43]. In this chapter, we will envision

some potential applications and discuss some future directions for continuing work.

6.1 Applications

Indoor Robot Navigation

Most of the existing indoor robot localization systems are based on sensors [41].

For instance, people have tried to use ultrasonic sensors to measure the distance

between the robot and the reflecting surface. Moreover, Espinace et al. [12] proposed

a multi-sensor approach combined with indoor structure information to estimate the

current position. In addition, researchers also attempted to measure WIFI signal
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strength to identify locations [3]. However, sensor based navigation system usually

suffer from the noise in readings and reception strength. Even in the idea case, the

precision is still not as good as expected. Another solution to this problem is based on

applying computer vision techniques in 3D scene registration using markers [25], yet

the accuracy is often compromised by occussion and dynamic changes in the scene.

However, our system can more precisely recover the position, usually within 2cm or

less comparing to 10-30cm for sensors. It is also easier to match near-random textures

on the ground than recognize markers in 3D scene as argued before. In addition, by

constantly re-estimating the position, it is also possible to avoid the cumulative error

in the long run. Nevertheless, the robustness of our system still requires further

evaluations, yet the current results do show potential for this application.

3D Fabrication

The paper from Rivers et al. in 2012 [35] suggests another potential application for our

system: the 3D fabrication. In that study, they built a computer vision based control

system to cut out interesting objects from wood by following human guildance and

markers. Our proposed system can be more flexible by removing the dependency to

markers and reducing the amount of human interventions. If our algorithm is robust

enough, we can even incorporate it into other reduction based fabrication systems

e.g. milling machines to create reliefs.

Dynamic Map

Another way to look at the localization system is to identify whether a robot or

vehicle goes to a place it has been to before. For example, in 3D scanning (especially

to scann large outdoor objects), it would be helpful to know the exact offset while

aligning multiple scans. More interestingly, the map or the knowledge base needs

not to be acquired in advance. We can dynamically expand our knowledge base
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about the environment on the fly, which is a well-known problem called Simultaneous

Localization and Mapping or SLAM. An overview of this probalem can be found in [6].

Admitted, the challenges still remain in how to design a reliable yet “marker-free”

expansion system to grow the map.

6.2 Future Work

In this section, we will discuss some future directions for continuing work. Further-

more, we will also show our preliminary results for some of them.

Higher Resolution

Although we have higher resolution image data, we haven’t thoroughly examined our

system using them. One experiment we did with the high resolution version of the

Concrete2 data (Figure A.5) suggests that the localization accuacy may be improved

with more accruate acquisitions. The performance summary is shown in Table 6.1.

Data Images Avg. Err mm Small Error % Avg. SE mm1

CNN2 52.48 ± 1.98 74.74 ± 0.29% 1.03 ± 0.01

MaxNCC 25.59 ± 0.60 89.80 ± 0.23% 0.78 ± 0.01

F-MaxNCC3 32.82 ± 1.70 87.03 ± 0.37% 0.77 ± 0.01

V-MaxNCC 23.88 ± 0.42 90.92 ± 0.08% 0.79 ± 0.01

Table 6.1: High Resolution Performance

Comparing to the performance with lower resolution version (Table 5.4), higher

resolution actually gains us higher precision in all our error measures. However, we

also observe that the early stop strategy with trained classifier (F-MaxNCC) does

not generalize as good as before on the same carpet data, yet its performance is still

1Avg. SE mm: average among small error in mm
2CNN: closest nearest neighbor prediction from SIFT feature matching
3F-MaxNCC: MaxNCC with early stop using classifiers
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comparable to MaxNCC strategy in this case. More interestingly, we do not have

to double the testing patch size in pixel, which means a smaller patch in actual size

with higher resolution would be sufficient for localization purpose. Unfortunately,

we cannot gain the same performance without doubling the testing patch size on

Wall data (Figure A.2). But, when we do double the size, we can achieve a similar

performance of over 96% of small error rate with around 0.2mm average error overall.

Reliable Region

Another interesting line of experiments is to identify the statistical properties of the

reliable regions for our system. For example, in Figure 6.1, we plot the color-coded

map for our system performance. Green regions correspond to those with small

prediction error by our algorithm; red regions correspond to those with low SIFT

prediction quality; yellow regions correspond to those failure cases of our algorithm,

i.e. the final output is worse than the best SIFT prediction(s) we considered in our

algorithm. Therefore, we would like to explore if there exist certain patterns either

in the actual testing patches or the SIFT descriptors themselves to help us detect

failure localization predictions.

Figure 6.1: Reliable Regions

64



Temporal Coherence

One effective augmentation to improve the performance of our system is to incorpo-

rate temporal coherence from dynamic models or sensor readings. By restricting the

overall search area, we can bound the localizatoin error from above. In addition, given

the nature of near-random textures, a false positive match in feature space could lead

to localization predictions in any random position with roughly equal probabilities.

Therefore, narrowing down search space could also improve the precision in local-

izaion. Some preliminary results are shown in Figure 6.2 given some hypothetical

temporal coherence on the Carpet-FR data (Figure A.8) usd in Section 5.2.

If we can effectively narrow down our search space to within 164mm from the

ground truth, we can achieve over 97% of small error (error < 11.72mm) over all

predictions (Figure 6.2a). Moreover, given a rough guess of half a meter radius, we can

still improve the small error percentage from near 90% to above 93% (Figure 6.2b).

Other Directions

Our current experiments in this work are mostly conducted within small environment.

Therefore, the next step would be to solve the scalability issue. However, if we can

obtain a rough guess to the scale of the current testing size (listed in Appendix A), our

experimental results could provide an estimate on how well our system would perform.

In addition, we would also like to experiment with greater variaty of surfaces such as

sidework, bricks walls and etc. Furthermore, we would hope to develop a mechanism

to detect failure cases of our system such that we can respond accordingly, especially

to corrupted data. One possible proposal to handle corrupted data is to use larger

patch for SIFT voting yet smaller patch for refinement using tempalte matching.

Finally, if we can deploy our system on a real moving vehicle, the captured image

would also be blurred due to motion. Moreover, there would also be physical errors
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(a) Search Range of 70 pixel / 164mm

(b) Search Range of 210 pixel / 492mm

Figure 6.2: Performance with Temporal Coherence

in actual motions from the motors. In addition, dynamically building and updating

the knowledge base would also be an interesting topic to further explore.

In conclusion, it seems that our proposed algorithm would still face many chal-

lenges both in precision and time efficiency under real world applications, yet our

current results do show the potential for continuing research.
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Appendix A

Testing Environments

Here is a subset of the testing images we used in this work. All images are cap-

tured using a camera phone. The homography is estimated using markers but not

included in the image data below. Low Resolution is 640×480 and High Resolution

is 1632×1224.

(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.1: Patterned Carpet Low Resoltion (0.56m×0.42m)
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(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.2: Wall Low Resoltion (0.15m×0.13m)

(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.3: Wood Low Resoltion (0.24m×0.18m)
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(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.4: Concrete Low Resoltion (0.7m×0.52m)

(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.5: Concrete Low Resoltion under Different Natural Lighting (0.7m×0.52m)
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(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.6: Random-Textured Carpet Low Resoltion under Different Natural Light-
ing (1.2m×0.8m)

(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.7: Random-Textured Carpet Low Resoltion with Flash Light (1.2m×0.8m)
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(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.8: Random-Textured Carpet Low Resoltion with Flash Light (1.2m×0.8m)

(a) Training Data (b) Testing Data

(c) Stitch Result

Figure A.9: Random-Textured Carpet Low Resoltion with No Light (1.2m×0.8m)
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