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Abstract

The past twenty years have seen an avalanche of digital information which is overwhelming people
in industry, government, and academics. This avalanche is two-sided: while the past decade has
seen an onslaught of digitized records — as governments, publishers, and researchers race to make
their records digital, the electronic and software tools for computationally analyzing this data have
quickly evolved to face this challenge.

Many of these challenges evolve around recurring patterns, including the presence of text, bits of
information about pairs of items, and sequential observations. In this work we present several meth-
ods to address these challenges in data analysis which take advantage of these recurring patterns.

We begin with a method for identifying influential documents in a collection which evolves over
time. We demonstrate that by encoding our assumptions about influential documents in a statistical
model of the changes in textual themes, we are able to provide an alternative bibliometric which
provides results consistent with—yet different from—traditional metrics of influence such as citation
counts.

We then introduce a model for measuring the relationships between pairs of countries over time.
We will demonstrate that this model is able to learn meaningful relationships between countries
which is extraordinarily consistent across different human labels.

We next address limitations in existing models of legislative voting. In one extention we predict
legislators’ votes by using the text of the bills they are voting on combined with individual legislators’
past voting behavior. We then introduce a method for inferring these lawmakers’ positions on specific
issues.

A recurring theme in the methods we present is that by using a small set of statistical primitives,
we are able to apply known (or mildly adapted) methods to new problems. Several advances in the
past few decades in statistical modeling will make the development and discussion of our models
easier, as they will provide both this set of primitives (which can be interchanged easily) and the tools
for working with them. As a final contribution, we describe a new method for fitting a statistical

model with variational inference, without the time investment typically required of practitioners.
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Variable \ Description
Constants
C Number of nation-states
D Number of documents
K Number of topics
N Number of words (e.g., in a document)
P Dimension of a generic latent space
T Number of discrete time “epochs”
Vv Number of words (e.g., in the vocabulary)
Subscripts
c Country or nation-state
d Document
k Topic
t Time
U Person, e.g., a lawmaker
Random variables
aq Document d’s polarization
ba Document d’s popularity
84 OT S¢y.c, | The sentiment between two nations
Vud Lawmaker u’s vote on item d
wy A collection of words, as in a document d
Ty An ideal point for lawmaker u
Te Position for country ¢ during interaction
Te Mean position for country c
X A generic hidden random variable
Y A generic observed random variable
Zn K —variate topic indicator for term n
zu(Zuk) Lawmaker u’s position (on issue k)
«@ Dirichlet parameter for LDA
B Coeflicients of words in text regression
B(B:) LDA topics (at time t)
n Regression coefficient for sLDA
0, Topic mixture for document d
Variational parameters
Yd Variational parameter for document mixture 6,4
Bt Variational parameter for topic chain [3;
bn Variational parameter for a word’s topic indicator z,
1 Variational parameter for influence score I
ad Variational parameter for polarity aq
ba Variational parameter for popularity by
Ty Variational parameter for lawmaker ideal point x,,
Ads Kd Variational mean of bill parameters agq, by
Td,i Variational mean of lawmaker ideal point x,,

Figure 1: The reader may find the notation in this table a helpful resource in the subsequent chapters.




Chapter 1

Quantitative methods for social

research in the digital age

Quantitative social scientists often attempt to understand the behavior of society with numbers and
data, and digital records are one of the most useful resources available to them. The digital age has
brought to these researchers a deluge of records—particularly in the form of text. This avalanche of
data provides more information to these scientists than they have had in the history of mankind.

Researchers are now able to pore over digital copies of all legally binding opinions written by
United States Supreme Court Justices, or the text of thousands of bills voted on by members of
Congress. Even these numbers are dwarfed by the hundreds of thousands of newspaper articles and
blog posts written each day about the events happening in the world. Unfortunately, this flood of
information obscures the very insights these researchers aim to discover. Researchers trying to make
sense of these collections are subject to the high costs of time spent studying these collections in
search of the few key insights.

The goal of this thesis is to describe several new statistical models that are now available for
data practitioners and the consumers of that data! to better understand society through collections
of text documents. I will focus on four high-level research questions that dovetail off one another to
illustrate the flexibility and interpretability of latent variable models in large-scale settings.

An implicit premise of this thesis is that patterns are ubiquitous in collections of text documents,

and that these patterns can be discovered automatically to describe decisions and behavior of actors

1By a (data) practitioner, I am referring to anyone who applies existing methods for data analysis, possibly tweaking
or combining these methods to answer specific questions (such as database engineers or lab assistants). This contrasts
with fundamental researchers, who research entirely new methods or tools for data analysis. A social scientist may
be a researcher in his or her field but a practitioner in the field of data analysis.



in these collections. I will ground this discussion with the development of several specific statistical
models, but I will stress throughout this thesis that these methods frequently draw from a suite of

common tools which can be used again and again to construct models.

The deluge of information and some statistical tools

Observational social science data — including data about how organizations and the Government
work — has become available on a massive scale. The National Archive, which collects information
from over 500 federal agencies, has been digitizing its collection of twelve billion federal documents
(Lazer et al., 2009; National Archives Workshop, 2012; National Archives Press Release, 2012). The
problem in handling this data has moved from collecting the data to processing and understanding
it. Fortunately for scholars, these data follow recurring patterns which make statistical modeling

possible. In this thesis, I will focus on three specific patterns:

Text data. Text data is the low-hanging fruit of most social science research questions. It is
ubiquitous because it can—indeed, it must—Dbe easily created, digitized, and stored. It serves as an
observation which we can use to better understand the story underlying decisions and politics.
Just as text data is invaluable to researchers, the rate of growth of these text collections is
staggering. A single newspaper like the New York Times publishes hundreds of thousands of articles
each decade. Of the National Archive’s collection, billions of its documents are text (National
Archives Workshop, 2012; National Archives Press Release, 2012). The rate of growth of sources
like the World Wide Web is even more tremendous. As far back as 2008, the Internet was already

growing at a rate of several billion webpages per day (Google Blog, 2008).

Time-series collections. Many datasets comprise time-series observations. Timestamps are one
of the simplest types of metadata to attach to digital collections because they are described by
a single scalar and because they are inexpensive and widely available. In spite of its simplicity,
the addition of a time variable to statistical models can provide rich insight and a useful historical
perspective into collections of documents. It is especially interesting to researchers because it is

helpful in framing questions about causation, prediction, and influence.

Relational observations. One of the simplest ways to represent more complicated phenomena
is to use the interaction between pairs of items. We will refer to such pairs (and their relationships)

as dyadic. In later chapters I will use spatial models to represent interactions between lawmakers



and bills (i.e., how congresspersons voted on bills) and between countries (i.e., countries’ sentiment

toward one another). As we will show, the underlying representation for these cases is very similar.

The role of statistical machine learning

The deluge of information available to researchers means that if researchers want broad coverage
over the available sources, they cannot spend long looking over any single document. For example,
a graduate student studying patterns governing the relationships between pairs of countries, based
on mentions of pairs of countries in the last twenty years of the New York Times, would need to
spend every day of an entire year, twenty-four hours per day, to code the 300,200 interactions per
pair of countries (at two minutes per article). A computational treatment is therefore necessary if
researchers intend to handle large collections of data.

Statistical representations of these data will be useful because they provide an explicit way to
formalize our assumptions. We are fortunate that computers can be programmed to speak in this
language, because they are the only means by which we can achieve broad understanding of large
collections of text documents.

In this thesis, I will use probabilistic models to encode these statistical assumptions. I will
frequently use the paradigm of graphical models (Pearl, 1985) to make our assumptions more clear.
Because these statistical methods provide directed summaries, they can serve as optical lenses for
researchers to analyze entire collections of documents, which I illustrate as a cartoon in Figure 1.1.
Statistical methods enable researchers to describe arbitrarily complex transformations of data with
arbitrarily complex lenses. Because of the simplicity of each of these lenses, we will find that a wide

array of models can be created by nesting and re-using modules across different applications.

Organization

By the end of this thesis, the reader should have a better understanding of several new models that
I have designed for to social scientists. Perhaps more importantly, the reader will be prepared to
design his or her own latent-variable model for similar applications.

To this end, I will provide a lower level of detail about latent-variable models in the early chapters
of this thesis than normally expected in a doctoral thesis when it may help a reader unfamiliar with
this subject to understand the material. I also present some of the most advanced (or uninteresting)
math in the appendix to keep the discussion of applications and modeling at the forefront.

I provide preliminary material in Chapter 2, outlining the statistical “primitives” that I will use



Figure 1.1: A cartoon illustration of the role of statistical models in large-scale data analysis. Left:
large data collections are too large to handle without special tools. Center, Right: statistical models
serve as lenses which can be nested, adjusted, and custom-designed to glean latent structure from
large or complex datasets. Our statistical assumptions define the shape and optical characteristics
of these lenses, and fortunately many of these lenses can be re-used.

as building blocks in later chapters: tools for working with text data, time-series data, and dyadic
data. This chapter also provides a high-level introduction to the algorithms we will use for Bayesian

inference.

Identifying influential documents. After introducing the foundations of this thesis, I will start
with high-level social science questions. In Chapter 3, I look at a common challenge in analyzing
text collections: that of finding the most important and influential documents in a corpus which
has grown over time. This is a challenge in understanding collections of academic articles, legal
opinions, email archives, and many other collections. This question even motivated the algorithm
behind Larry Page and Sergey Brin’s PageRank algorithm, which recursively measures the influence
of Webpages, as measured by the hyperlinks between Webpages (Garfield, 1992; Brin and Page, 1998;
Garfield, 2002). Unlike Web pages and academic articles, of course, explicit citations or hyperlinks
are unavailable, and researchers only see the most basic metadata: documents’ timestamps. To this
end, I will introduce a model for discovering the most influential documents in such a collection. I
will validate this model on a set of several datasets, including several collections of academic articles

and a set of opinions written by judges in the New York Appellate Courts system.

Inferring history from a collection of newspaper articles. In Chapter 4 I will zoom in a
bit to consider the story within a collection of documents and outline a model to better understand
the relationships between pairs of countries over time. I will fit this to a collection of New York
Times articles and demonstrate that this method discovers a more sophisticated latent story among

documents than in Chapter 3. As with the method in Chapter 3, this collection has only the text



of these articles, which I augment with external information such as human labels of sentiment. In
this chapter I also incorporate important ideas from the field of dyadic spatial models, which can

play a role in modeling various social science phenomena.

Inferring lawmakers’ preferences. In Chapters 5 and 6 I will take an even closer look at how
documents can be used to better understand how congresspersons vote on bills. I will address two
important limitations of ideal point models (the state of the art in spatial voting models) by using the
text of bills. One of these limitations is that ideal points cannot be used to predict lawmakers’ votes
on heldout bills. In Chapter 5, I will introduce several models for predicting votes by lawmakers on
previously-unseen bills. I will demonstrate that we can predict lawmakers’ votes with high accuracy
given their prior voting record and the text of the bills on which they vote.

In Chapter 6 I will address a second shortcoming of ideal point models: the limitation of a one-
dimensional latent space. I will do this by using a topic model to identify those issues up for vote
in an item of legislation. I will demonstrate that legislators’ votes can be better modeled and better
understood by describing these lawmakers’ positions on different issues.

These models contrast with those in Chapters 3 and 4 in that I ignore documents’ timestamps.
However, I will use many of the same ideas from these earlier chapters, including mixed-membership
models of text and latent-space models, in which I assume that pairs of items interact (in this case
a lawmaker and a bill), and that text documents attached to those interactions can provide insight

into the interaction.

Additional materials. In Appendix A I discuss details of a new variational inference algorithm
which is used in Chapter 6. This Appendix can be treated as a stand-alone contribution of this
thesis, making a quantitative rather than a substantive contribution. I save this contribution for the
appendix in part to stress my fundamental belief that model development and model implementation
can be treated separately (or should be treated as separate whenever possible to enable practitioners
to do their magic), and because I believe that this thesis will appeal more broadly if it is not bogged
down with mathematical baggage. I provide additional supplementary information for the remaining

chapters in Appendix B.



Chapter 2

Preliminary material: quantitative

methods

The work in this thesis builds upon the foundations built by decades of research in the development
of machine learning. In this chapter, we will describe enough of these foundations for the reader to
understand later chapters. Some of this work builds off of general knowledge in the machine learning
community; when the foundational work is beyond the scope of this introduction, we will provide
references to well-known resources in the community.

In this chapter, we will outline the basic methodology for probabilistic modeling in datasets.
We begin by discussing a “data analysis pipeline” so the reader will understand what is meant by
phrases like “the data”, “fit the model”, and “heldout log-likelihood”, and where it falls in the
overall research pipeline. We then provide basic definitions from the field of probabilistic modeling

and illustrate these ideas with models that will be used as building blocks in later chapters.

2.1 Standards and naming conventions

We begin by outlining naming and variable conventions in this work. Random variables and their
instantiations are given by Roman or Greek characters; the role of a variable will typically be
evident from its context. Multivariate random variables such as vectors are given by boldface, and
collections of random variables are sometimes given by uppercase Roman characters. For the reader’s
convenience, Table 1 provides many of the variables used in this work.

When we refer to a variable, we will sometimes subscript it with multiple indices. For example,



in the next chapter, we will refer to the probability B; s, of word n in topic £ at time ¢t. We
sometimes refer to only a subset of these indices. In such cases, we are referring to the appropriately-
shaped variable: (3, is a scalar; B and B, are vectors; 3; and [ are matrices; and (3 is a
three-dimensional tensor. In the interest of brevity and clarity, the shape of such variables will be

understood from context.

2.2 Latent-variable models, prediction, and exploration

2.2.1 Data analysis pipepline

We will develop the ideas outlined in the last chapter by using the “data analysis pipeline” illustrated
ins Figure 2.1.! This pipeline, which is driven by specific questions about a set of data, serves as a
recipe for answering questions about these data. It will also help to make the contributions of this
thesis more explicit. The pipeline has the following steps (this thesis focuses on those steps which

are colored blue):

1. Questions. One of the first, most critical steps is defining the question at hand. In our case,
the questions include “Which articles in a given collection are the most influential?” and “How

will the Florida Senator vote on pending legislation?”

2. Data. At the same time we are formulating questions, we must also understand which data is
available to answer the question at hand. The questions we ask will be informed by the data

available to us, and vice-versa.

3. Modeling assumptions. Once we have established a set of questions and available data, we

define a set of assumptions that will allow us to capture statistics of interest.

This step arguably allows the practitioner (i.e., someone designing, fitting, and analyzing a
model) wide latitude in defining variables of interest. In following chapters, we will spend a lot
of time discussing modeling assumptions, and they compose one of the biggest contributions

of this work.

4. Model implementation. In this stage, the model is defined, and the practitioner must en-
code these modeling assumptions into an algorithm and run that algorithm. We will variously

refer to this stage of the process as fitting a model, performing inference, and fitting the pos-

1This pipeline is very much inspired by discussions with David Blei, and I imagine he should get credit for it.



Figure 2.1: A data analysis pipeline. In this work, we make contributions in the areas of modeling
assumptions, model implementation, and model revision. We will focus on applications which
use text data.

terior. This step also represents a significant contribution of our work, in Chapters 3-6 and

Appendix A.

5. Model evaluation. The goals of this stage are to evaluate performance of the model and
to criticize the model. The criticism may warrant model revision, in which case the modeling

assumptions are adjusted, the model is refit, and the model is re-evaluated.

6. Conclusions. Finally, the practitioner may draw conclusions from the model. In our case,
this leads to two applications: exploration and prediction. Note that this step may better hang

off of model implementation.
As alluded to above, this work will focus on modeling assumptions and model implementation.

To encode our assumptions, we will use latent variable models.

2.2.2 Latent-variable models

To formalize what we mean by Modeling assumptions, we will assume that observed data can be

described by a probability distribution. By making this assumption, we will gain several benefits,
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which we outline at the end of this section. First, we formalize a latent variable model. A latent

variable model can be fully specified with
e A set of latent random variables X1, ..., Xy, (Xi.p7, for shorthand);
o A set of observed random variables Y1,..., Yy, (Yi., for shorthand);
e A joint probability distribution p(Xi.ar,, Y101, )-

As p is a probability distribution, it satisfies

/ (X1, Yiom, )dwi, , dyia, = 1.
T1: My Y1: My,

For p to be useful, we typically will make distributional assumptions about it. We often describe
assumptions about factorization using a directed graphical model (sometimes called a Bayesian net-
work) (Pearl, 1985).2 A graphical model is a directed, acyclic graph G = (V, E) in which vertices
V=1,...,M = M, + M, represent random variables and edges connote dependence.

We state this more precisely be defining the “parents” function ng : {1,...,M} — o{1L,, M}
which takes the random variable index m € {1,..., M} to its parents {3 : i # m and (Z;, Z,,) € E}.
By definition of a graphical model, a probability distribution described by a graphical model G can

be factorized as

p(Z1,. Zu) = ] po(Zil{Z; 2§ € ma(i)}). (2.1)
i=1,...,M

Note that there is a many-to-many relationship between graphical models and probability distribu-
tions. Each graphical model may describe many different distributions, but all such distributions
must be factorizable based on this graphical model. Conversely, each probability distribution can
be described by multiple graphical models, but each distribution must factorize according to Equa-
tion 2.1 for all of its corresponding graphical models. The language of graphical models makes it
possible to succinctly describe many joint probability distributions, and it makes model implemen-
tation and inference with these models much easier to discuss formally.

Conventionally, a graphical model G is often drawn as a block-and-arrow diagram, where we
write out the graph with each random variable (vertex) drawn as a circle and each edge drawn as
an arrow. An additional convention in these diagrams is that boxes, or plates, represent replication

(with the number of replications shown in a corner of the plate). In the graphical model shown in

2Undirected graphical models are also useful. Here we focus on directed graphical models.
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Unigram language model Latent Dirichlet allocation

Figure 2.2: Left: graphical model for a unigram language model. Documents 1,...,D are treated
as bags of words, or collections of words w,,. Right: graphical model for Latent Dirichlet Allocation.
Circles are random variables, arrows connote dependency, and plates represent replication. The
shaded circles represent observed random variables (words in this case).

Figure 2.2 (right), for example, one corresponding factorization (remember that there are many) is

Hp(/Bk) X H p(gd‘a) H p(zn|9d)p(wn|znvﬂzn)a (22)
K d=1,...,D

n=1,...,Ngq

where we have used the further convention that observed random variables are shaded and hidden
random variables are unshaded. Later in this section we will describe this exact model in more
detail.

We will sometimes point out conditional independence between groups of random variables.
Given random variables Z1, Z5, and Z3, we say that Z; is conditionally independent of Z5 given Z3
it p(Z1, Z21Z3) = p(Z1|Z3)p(Z2|Z3). Conditional independence statements about distributions can
be inferred from these distributions’ factorizations (or from the graph itself) and become important
when one implements a probabilistic model or makes predictions with one. Conditional independence
will permeate much of what we discuss in this thesis.

Before proceeding further, it is worth noting the benefits in using latent-variable models. Several

of the most compelling motivations are:

1. Flexibility. These models can describe, summarize, and explain a wide variety of phenomena

in the physical and social sciences.

2. Embeddability and interpretability. Any quantifiable metric in the dataset can be encoded
as a random variable in a probabilistic model. Relationships found within datasets can be

likewise encoded explicitly.

3. Modularity. Parts of these models can be re-used across different models. This leads to efficient

transfer of resources and common paradigms.

4. Existing toolbox of statistical tools. There is a large and growing body of literature around

12



how to fit these models, and there are many widely supported packages for fitting these models
Bishop (2006). Practitioners no longer need to be experts in statistics to correctly apply many

of these tools.

5. Implementation convenience. Latent-variable models provide explicit objective functions.
Once a latent-variable model is selected, implementing and fitting it may be a (mostly) solved
problem. Over the next couple of decades, increasingly sophisticated and powerful tools will

be developed to make general-purpose model-fitting much easier.

The risk with applying latent-variable models is that the credibility and careful deliberation
we often associate with statistics lends credence to the results of fitting a model. This may lead
researchers to be overconfident in the conclusions they draw from their models, particularly when
the model is incorrectly interpreted, when the data is poorly fit by the model, or when the model is

poorly defined.

2.2.3 Text as a medium for social science analysis

We first illustrate these ideas in an application of text modeling. As noted in the last chapter, text
data is as easy to work with as it is ubiquitous. Importantly, researchers and other practitioners
are becoming more proficient with tools for text analysis. Grimmer and Stewart (2012) provide an
excellent overview of methods for analyzing text for social scientists; we will summarize several such
methods here.

Text data is extremely high-dimensional. A large collection of documents represented by a
sequence w,, of words is unweildly for even the most powerful computer. A number of tools have
been developed over the past several decades to simply find the gist of documents, making it possible
to describe collections succinctly and efficiently.

In this work we will use the simplifying assumption that each text document is described by a
vector wg € RY of word counts. This assumption, known as the bag of words assumption, removes
most of the information in a document (here we use “information” in a very loose sense). At the
same time, this assumption still allows us to capture the “gist” of a document very well. One of the
simplest bag of words models is the unigram model. In the unigram model, every word is assumed
to come from some multinomial distribution 3 over the vocabulary:

D Ny

plwir, ..., wnp) =pB) [ T[] p(wn.alB),

d=1n=1
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where D is the number of documents and N4 is the number of words in document d. We illustrate
this model graphically in Figure 2.2 (left). The bag-of-words assumption in particular is illustrated
by the model’s agnostic treatment of the order between words: these words are fully exchangeable

within each document.

Latent Dirichlet Allocation

We will capture the gist of documents using the topic model Latent Dirichlet Allocation (Blei et al.,
2003). Latent Dirichlet allocation (LDA) posits a set of K topics f1,..., Bk to formalize what we
mean by the gist of a document. LDA describes each document d as a mixture 8, of K topics, where
S O =1 and @4 > 0 for all d, k.

Formally, we can represent this using a generative process for the creation of documents. The
generative process can be interpreted as a recipe for creating the observations—documents, in our

case—in a way that fully specifies the joint probability distribution of all random variables:
1. Draw topics 31,...,8k ~ Dir(n,...,n).
2. For document d =1,...,D:
(a) Draw topic mixture 84 ~ Dir(a, ..., a).
(b) For termn=1,...,N:
i. Draw topic indicator z, ~ Mult(6y).
ii. Draw word w,, ~ Mult(3,, ).

The parameter o > 0 above is a Dirichlet prior (it is often set by topic model researchers to 1/K).

The distribution Dir(ay, ..., apr) refers to the Dirichlet distribution. Its density is given by

Pleimiod) (Zgl ai) ﬁxf‘i_l. (2.3)

p(ry,.. . rumlon, .. am) = —57
Hi:l I'(ev) i=1

We illustrate the graphical model for LDA in Figure 2.2. Given the graphical model, we can imme-

diately write the joint distribution of a collection of D documents as

P(Br, 0,2, Wla) = [[p(Bk) [ [ p(0a) [ | p(2n]0a)p(wn.al2n, B-,.), (2.4)
K D N

where W represents the collection of all random variables w,, 4, and where p(8j) and p(64) are
understood to be conditioned on 1 and « respectively. We treat «,n as hyperparameters and omit

them so they’re not confused with random variables.
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Table 2.1: Example topics from Latent Dirichlet Allocation fit to sentences from the the textbook
Biology by Campbell and Reece. This is a small subset of the 1000 topics. (These topics were

provided by Ricky Wong.)

virus forest population dinosaurs
viruses diversity growth dinosaur
viral plant rate birds
host ectomycorrhizal age pterosaurs
phage fungi rates cretaceous
rna fungal population growth bird
genome treatment populations long
infection emf life flight
cell effects mortality feed

In the vast majority of cases, the practitioner observes the words of a set of documents and
seeks to learn the topics that describe these documents. Before describing how to fit such a model,
however, we point the reader to the four example topics from LDA in Table 2.1. Note that some of
these “words” are instead phrases. This can be done by creating a vocabulary of phrases instead
of words and describing documents as bags of phrases. We describe how to select phrases for a

vocabulary in Appendix B.7.5.

Inference

Of course, we only observe the words Z in a collection of documents, and we are interested in
estimating what the topics § and topic mixtures 8 are. We will generally accomplish this with

posterior inference, in which we aim to estimate the posterior distribution

p(W13,6,Z)p(5,0, %)

p(5.6.2|W) = e

(2.5)

This conditional distribution is impossible to compute efficiently because of the intractable nor-

malizing constant

N
pW) = [ 90T [ p0da) [T S s = HOp(wnlzna = k. )d5d0G=. (2:0)
B D 704 K

n=1

This intractability is common during posterior inference. In Section 2.3.3 we will see details on ways

to get around this intractable integral by approximating the posterior Blei et al. (2003).
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2.2.4 Matrix factorization, latent space models, and multidimensional

scaling

Two of the most common primitives in latent-variable models are probabilistic matrix factorization
(Salakhutdinov and Mnih, 2008) and multidimensional scaling, which describe relationships between
pairs of items, or dyads. We first discuss a specific application of matrix factorization called item
response theory (IRT), which has been used for decades in political science (Clinton et al., 2004;
Martin and Quinn, 2002; Poole and Rosenthal, 1991; Enelow and Hinich, 1984; Albert, 1992).

In IRT, we have two types of objects, and we would like to make predictions about pairs of them.
Each of these objects—suppose that they are lawmakers and bills to be concrete—is represented by
real-valued random variables: lawmaker v € {u = 1,...,U} has a latent value X,, € R, and each

bill d € {1,..., D} has two latent values A4, By € R. We make predictions about pairs of them by

introducing the likelihood function p(V,q = 1| Xy, Ag, Bs) = o(zy,aq + bg), where o(s) = 1i’;‘:§()s).
We illustrate this graphically in Figure 2.3.

In this model, by serves as an intercept describing whether the bill is popular or unpopular,
independent of the lawmaker voting on it. ag4 serves as an indication of how polarizing the bill is,
and x,, interacts with agq to describe the lawmaker’s position on bill d. We will look at this model
in more detail later.

More formally, we can write {V},4 as a matrix of probabilities that boolean random variables

(e.g., votes) are true, factorized as

aq ap

by - bp

exp(s)
1+exp(s)

where the matrix operator &(-) produces a matrix in which the scalar logistic function o(s) =
is applied to each element of its argument.

A wide variety of researchers have used formulations like this for applications such as recommen-
dation and representing the votes of lawmakers (Wang and Blei, 2011; Salakhutdinov and Mnih,
2008; Poole and Rosenthal, 1985, 1991; Clinton et al., 2004). In later chapters, we will use it for
models of legislative voting.

Sometimes these pairs of items that interact in dyads are of the same “type”, and we wish to
model them in the same latent space. Instead of bills and lawmakers interacting, for example, we

will consider in Chapter 4 pairs of countries that interact, and we wish for these countries to be
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Figure 2.3: Probabilistic matrix factorization. We observe interactions V,,4 between users represented
by X, and items represented by Ay, By.

represented in the same latent, interpretable space. In this case, we will still model each country

with a latent position vector x,,, and we will model their interaction as above, with
p(v‘m% xj) = O’(U|.’B;-T$j, 1)7

for a suitable distribution o. We will also frame their relationship using their Euclidean distance in
this latent space:

p(vles, ;) = o(v|Bwi; —log(||@; — ;|3 + 1), 1),

where w;; are observed covariates about the dyad and 3 is hidden along with « (Hoff et al., 2002).
We will motivate these expressions and others like them when we develop a model of foreign relations

in Chapter 4.

2.2.5 Hidden Markov Models and Kalman Filters

We now turn briefly to abstractions for time-series data. One of the simplest assumptions about
a time-series collection is that we have a sequence of observations Yi,...,Yr observed at times
t=1,...,T. Ina hidden Markov model (HMM). We assume that these observations can be explained

by a hidden set of states X1,..., X7, which are temporally linked. The model factorizes as

p(Y1,....Yp, X1,..., X7) = p(X1)p(Y1]| X7) x H (X | X—1)p(Ye| Xy) (2.8)
t=2,...,T

(see Figure 2.4 for the graphical model). Often the transition distribution p(X;|X;_1) is independent
of t (the chain in this case is called time-homogeneous). A wide variety of problems can be modeled

accurately with a well-selected homogeneous HMM. Importantly, inference in these models is very
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Figure 2.4: A hidden Markov model. Observations Y7,...,Yr are observed at discrete times ¢ =
1,...,T, and are conditionally independent given the hidden states Xi,..., Xr.

efficient because the set of conditional independencies yields a tree: inference can usually be reduced
to an application of a forward-backward algorithm, especially when the conditional distribution
of each variable given its neighbor is conjugate (even when this is not the case, methods such
as Paisley, Gerrish, and Blei (2010) provide approximate ways to perform inference on non-tree
graphical models . One of the most famous algorithms for inferring the states of a hidden Markov
model is the Kalman filter, which assumes linear (or quadratic) transitions between the states X
and Gaussian noise: p(Y;|X;) oc N(X;,0?) for some variance o2.

We will use these time-series abstractions in modeling time-series collections of documents. In
these collections, the assumption of a hidden, evolving state will allow us to perform inference
efficiently while inferring a sequence of states which can be interpreted—for example, we will use
this to model themes which evolve over time in Chapter 2 and to infer countries’ positions about
foreign policy issues in Chapter 3.

We have discussed text and time-series assumptions, which are often seen together in the context
of natural language processing. We will not use time-series assumptions at the level of syntactic

language modeling. While sequential modeling is useful for many NLP tasks, we will not use them

in this work, instead deferring to the bag-of-words assumption described in Section 2.2.3.

2.3 Posterior inference and model evaluation

One of the most fundamental problems in statistical machine learning is that of estimating the values
of latent random variables X in a statistical model, given observed random variables Y (i.e., data).

In this thesis, we will frequently need to estimate the posterior distribution p(z|y) = pég(”y’l)’). In this

section we outline several common methods for estimating this posterior.
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2.3.1 MAP estimation

One of the simplest estimates of the value of a random variable is the mazimum-a-posteriori (MAP)

estimate. The MAP estimate X is defined to be the most-likely value of the random variable:

A .
X — arg maxp(X = a]Y) = argmax 2 p(}lf ))p( )

=argmaxp(X =x,Y). (2.9)

The MAP estimate can typically be found by performing gradient or coordinate ascent on p(X,Y)
with respect to X (this is because the normalizer p(Y) is not a function of X). Because MAP
estimates can be fast to estimate, they can shorten the development loop described in Section 2.1.

The MAP provides a point estimate which is often a good summary of the posterior distribution.

2.3.2 MCMC

We briefly review the key components of Markov Chain Monte Carlo (MCMC) estimation. We will
not go into detail about MCMC in this work except to build up to (and draw a contrast with)
variational methods, which are introduced in the next section. Readers unfamiliar with MCMC can
refer to a standard text such as Bishop (2006).

MCMC methods are often used to inspect a posterior distribution p(z|y). The input to an
MCMC sampler is typically an unnormalized probability density p(z,y) o< p(x|y). 3 Given p(z,y),
an MCMC sampler produces a collection of samples from p(z|y). These samples are often used to
summarize statistics such as marginal means and variances of p(z|y). They are unbiased and, given
enough time, will accurately represent p(z|y).

MCMC methods are used widely, but they have limitations. One of these limitations is runtime:
while one may need N iid samples from a distribution p(x|y) to estimate its mean and variance, she
typically needs many more MCMC samples to estimate these statistics. In some MCMC algorithms,
one must select a proposal distribution for sampling; a poorly-chosen proposal distribution can affect
runtime, as a Markov chain needs more samples to converge. MCMC algorithms can also suffer from
memory bottlenecks, as samples are stored and convergence is measured.

Even when memory is not a bottleneck, the practitioner is often interested in only the marginals of
the posterior (as with most mixture-of-Gaussian applications); a large number of discarded samples

indicates that there is an inefficiency in the inference pipeline.

3For numerical and algebraic convenience, p(x,y) is often specified by log p(z, ).

19



2.3.3 Variational inference

Variational methods address some of the shortcomings of MCMC by providing a fast, deterministic
alternative to MCMC (Wainwright and Jordan, 2003; Jordan et al., 1999). These algorithms have
been successfully applied to many kinds of topic models, where corpus size and vocabulary dimension
are large. We review the key ideas of variational inference here for use in later chapters.
Variational methods posit a simplified* family of probability distributions, indexed by variational
parameters v, and select the member g, of this family that is closest in KL-divergence to the true

posterior p(x|y):

. . qv(z)
argmin KL(g, ||p) = arg mln/ qv () log dz. (2.10)
v v s p(zly)

Finding the optimal variational distribution g, is equivalent to optimizing an “evidence lower bound”

(ELBO) (£,) on the data likelihood

logp(y) > Eq[logp(z,y) —log g, ()] (2.11)
= E,[logp(x,y)] — H(q()) (2.12)
= L., (2.13)

where H(q,(z)) is the entropy of that distribution and the slack of the bound is equal to the KL
divergence from Equation 2.10.

The family is chosen by the practitioner to make the resulting algorithm tractable and to cap-
ture the parameters of interest. A common assumption is that the posterior is fully-factorized into
simple marginal distributions; such an assumption is known as naive mean-field variational infer-
ence. Though simpler, the fitted variational distributions are found to be good proxies for the true
posterior (Jordan et al., 1999; Gerrish and Blei, 2011).

For example, a multivariate posterior p(z|Y),z € R” might be represented by the product
q(z1.p) = [1pN(zalpa,o?) of D Gaussian distributions, and a multinomial posterior might be
represented by a Dirichlet distribution (Bishop, 2006). In the case of Latent Dirichlet Allocation,
for example, Blei et al. (2003) assume that the indicators z,, can be described by a fully-factorized
product of multinomial distributions, and they assume that the posterior distribution of topics 8 and
mixture proportions v can be represented by a fully-factorized product of Dirichlet distributions.

Once a family is selected, the bound in Equation 2.13 is evaluated symbolically, as a practitioner

4Simplified compared to the true posterior.

20



{a,(X)}\

\
\
\
1
1
|
\
\

~ ——
— s -

N\,
\\
-

—_———,

" Q’ﬁ(X) //

——— b
\\

KL@{X) Il p(Xly) ¢ N

p(XIy)‘f

Figure 2.5: Illustration of variational inference. Practitioners define a variational family (shaded
yellow region) and find the member of that family ¢;(z) which is closest (by KL divergence) to the
true posterior.

fully expands E, [logp(z,y) — log ¢, ()] and (usually) its gradient using pencil, paper, and algebra.
As we will show in subsequent chapters, this bound may itself be bounded or approximated with a
Taylor approximation such as the delta method (Bickel and Doksum, 2007; Braun and McAuliffe,
2010). These simplifying assumptions — an approximate, fully factorized posterior with further sim-
plifying bounds — make it possible to express the lower bound in terms of the variational parameters
v. The practitioner then uses these bounds and gradients in a coordinate or gradient ascent algo-
rithm. This process, and the role of variational inference in statistical machine learning will become
more clear as we develop several algorithms using these methods over the next few chapters.

We have not yet described a limitation of variational inference: with each new set of model
assumptions, variational inference requires that the variational lower bound £ be algebraically eval-
uated, which is a significant time investment by a practitioner for each new model she creates. We
will also introduce an alternative method for performing variational inference in Appendix A. This
alternative method removes the onus of deriving new variational update equations, making it easy

for the practitioner to perform rapid model development on a range of models.

2.3.4 Model evaluation

After a model has been fit with an approach such as variational inference, it is important to evaluate
the model (see again the data analysis pipeline in Section 2.2.1). The goal of model evaluation is

to evaluate performance of the model and to criticize the model. The criticism may warrant model
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revision, in which case the modeling assumptions are adjusted, the model is refit, and the model is
re-evaluated.
In general, different practitioners will have different goals in modeling data, so they will have

different goals in model evaluation. However, several standard approaches exist.

Likelihood of training data

We first describe one of the simplest metrics of how well a model is fit: its ability to model training
data Yophgqs -5 Yobs n,,. As before, one of the most frequently used metrics for this is the
training log-likelihood log p(Yyhg 1s- - -5 Yobs, n,,,) Of these observations. When these observations
are conditionally independent given the observed data (nearly always the case), the log-likelihood
can be written 7" log P(Yobs,n)- The downfall of this metric is of course that it does not measure
whether a model is overfit. However, it is usually the objective function used to define a stopping
criterion when an MAP or MLE estimate is fit. In addition, it can be used to measure the “flexibility”
of a model.

Likelihood of heldout observations Y7, ..., YNheldout

A common measure of a model is its ability to represent unseen, heldout observations Y q¢ 1, -,

Yhdt, Ny, 8iven a set of “training” observations Y}, 1, ..., ¥}, . One of the most frequently used

metrics for this is the log-likelihood

Ing(Yhdt,l’ cee Yhdt,tht |Yobs,1’ oo vYobs,Nobs)

of these observations, where we condition on the observed data because a “fit” model effectively
captures the information in these observations. When these observations are conditionally in-
dependent given the observed data (nearly always the case), the log-likelihood can be written
Py 10g p(Yhdt,nYobs,1:+ - 7Yobs,NobS)-

When training data is scarce, practitioners often use k-fold cross-validation. Cross-validation
requires that the training data be partitioned into K equal-size parts Py, ..., Pk, fit K times on
each of the K — 1 subsets which omit exactly one of the partitions, and evaluated on the omitted

partition. Such a model has the benefit that all of the data is used for training and evaluation.
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Relationship with external data

In this thesis we will use external data sources to validate the results of our model. External data
sources are useful because they can confirm a model’s assumptions. When a model’s inferences do
not correspond with a secondary data source, then this can also be useful, because it can be used to
inform model development or to confirm that the model can produce new, useful results.? We will
find this, for example, when we compare influence scores learned from our model in Chapter 3 with

citation counts.

2.4 Using these tools to understand influence and decision-
making

The ideas outlined in this chapter cover only the tip of the iceberg of tools used by statistical machine
learning researchers (and this is only a subset of all machine learning researchers). However, they
will serve as important building blocks for future chapters. In the next chapter we will use some of
these ideas as we return to the original questions that motivated this thesis: how can we understand
patterns of behavior in society using text? How do documents interact with one another, and how
can we use them to tell us how people interact with the world?

We will use the tools discussed in the preceding sections to shed light on these questions, and
we will do this with exactly the data-analysis recipe that we outlined in Section 2.2.1. This recipe
involves defining a question, describing a model to answer that question using data, fitting that
model, and drawing inferences using the model.

In the next chapter we will return to a fundamental challenge in managing the huge volumes
of text now inundating researchers and companies: how to find the most important and influential
documents in a collection. As we will show in the next chapter, a latent-variable treatment of
this question will allow us to make our assumptions explicit. This in turn will in turn make the

subsequent analysis straightforward.

5This was pointed out in a helpful discussion with Matthew Salganik.
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Chapter 3

A method for discovering influence

in text documents

A fundamental problem in research and industry is that of organizing collections of documents. In
many cases this problem can be reduced to identifying those documents which have been the most
influential. This is an important and common problem in many fields, including research in academic
fields such as political science, history, and science. Influence measurements are used to assess the
quality of academic instruments, such as journals, scientists, and universities; as such, they can
play a role in decisions surrounding publishing and funding. These measurements are critical for
academic researchers: finding and reading the influential articles of a field is central to good research
practice.

Measurements of influence are also significant in industry, as regulations such as Sarbanes Oxley
require public companies to retain documents. E-discovery is another field in which identifying
influential documents is critical. A recent New York Times article cited the need for such tools in

industry:

“The economic impact will be huge,” said Tom Mitchell, chairman of the machine learn-
ing department at Carnegie Mellon University in Pittsburgh. “We’re at the beginning of a
10-year period where we’re going to transition from computers that can’t understand lan-
guage to a point where computers can understand quite a bit about language.” (Markoft,

2011).

The article continues, noting that recent solutions use either keyword-based search methods or take

advantage of metadata such as citations or links in emails, which can be helpful when available.
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Metadata can be a boon for finding the most influential documents in a collection, but often such
metadata is unavailable.

In this chapter, we will describe an approach to identifying influential articles in a collection
without the use of metadata like citations. The key assumption of our method is that an influential
article will affect how future articles are written and that this effect can be detected by examining
the way corpus statistics change over time. We will take advantage of the tools discussed in the
last chapter by using them to encode this intuition in a model to measure influence in sequential

collections of documents.

Measuring influence with citations

A traditional method of assessing an article’s influence is to count the citations to it. The impact
factor of a journal, for example, is based on aggregate citation counts (Garfield, 2002). This is
intuitive: if more people have cited an article, then more people have read it, and it is likely to have
had more impact on its field. Citation counts are used with other types of documents as well. The
Pagerank algorithm, for example, uses hyperlinks of web-pages to identify the most influential Web-
pages on the Internet, and it was essential to Google’s early success in Web search (Brin and Page,
1998). There is a large literature on these and other methods for citation analysis and bibliometrics.
See Osareh (1996) for a review.

Though citation counts can be powerful, they can be hard to use in practice. Some collections,
such as news stories, blog posts, or legal documents, contain articles that were influential on others
but lack explicit citations between them. Other collections, like OCR scans of historical scientific
literature, do contain citations, but they are difficult to read in reliable electronic form. Finally,
citation counts only capture one kind of influence. All citations from an article are counted equally
in an impact factor, when some articles of a bibliography might have influenced the authors more

than others.

Using text to measure influence

One possible solution might be to predict citation counts, by proposing features and training a
regression. Tang and Zhang (2009) and Lokker et al. (2008) have used methods like this; successful
features include the publishing journal’s impact factor, previous citations to last author, key terms,
and number of authors (Tang and Zhang, 2009; Lokker et al., 2008). Such research has had measured

success: 56% explained variance (Lokker et al., 2008), and 91.5% prediction accuracy (Ibdnez et al.,
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2009).

However, we seek a model that is applicable to collections for which the notion of citation may
not exist. Therefore, predicting citations is an explicit non-goal. Further, work toward predicting
citations uses specialized classifiers and restrictive features for narrow application domains; Lokker
et al. (2008) even note that their results “may not be readily transferable to... basic science articles
or journals”. They further noted that earlier work in their field of predicting citations to medical
journals had only achieved 14% to 20% explained variance (Lokker et al., 2008).

In this chapter we will use a text-based approach to measure influence. We will base our as-
sumptions on a topic model which allows topics to drift over time in a corpus (Blei and Lafferty,
2006). Though our algorithm aims to capture something different from citation, we will validate the
inferred influence measurements by comparing them to citation counts.

We begin with a discussion of previous work aimed at modeling influential documents. We
then describe the Document Influence Model (DIM), our unsupervised model for determining the
influence of a document using the changes in language used by documents over time. We follow this
with experiments to compare this model with citation counts on three well-known scientific corpora
and a collection of legal opinions. We will also provide the reader with an intuition for the model
with several real-world examples. With only the language of the articles as input, our algorithm

produces a meaningful measure of each document’s influence in the corpus.

3.1 The Document Influence Model

In this section we will develop a probabilistic model that captures how past articles exhibit varying
influence on future articles. The hypothesis is that an article’s influence on the future is corroborated
by how the language of its field changes subsequent to its publication. In the model, the influence
of each article is encoded as a hidden variable; the posterior distribution of these variables (given

the text of documents) reveals the influential articles of the collection.

Past approaches

A number of algorithms link the text of documents to citation counts. This work often models the
information in citations by predicting them or modeling them with topics (Nallapati and Cohen,
2008; Chang and Blei, 2009; Dietz et al., 2007; Cohn and Hofmann, 2001) or other semantic tools
(McNee et al., 2002; Ibaniez et al., 2009). Other work in this area uses the text of documents

along with citations to summarize documents (Qazvinian and Radev, 2008) or to propose new

26



P P

®

D é D
?N N N N N

e
2
©
c}

<

3) N (' 3) ) g
®) B ® ®) () Ol
Time ) Time )

(a) (b)
Figure 3.1: The Dynamic Topic Model (a) and the the Document Influence Model (b).

bibliometrics: Mann et al. (2006) use topic models and citations to map topics over time and define
several new bibliometric measurements such as topic Impact Factor, topical diffusion, and topic
longevity.

Some work in this area uses the link structure of citation networks to extract higher level struc-
ture. Borner et al. (2003), for example, have used author and citation networks to understand the

evolution of ideas in the history of science.

Dynamic Topics

Our model is based on the dynamic topic model (DTM) (Blei and Lafferty, 2006), a model of
sequential corpora that allows language statistics to drift over time. Probabilistic topic models such
as LDA (introduced in the last chapter) usually assume that the underlying distribution over words
is fixed (Blei et al., 2003; Deerwester et al., 1990; Hofmann, 1999). The DTM introduced a Markov
chain of topics (i.e., term distributions) to capture probabilities that drift over the course of the
collection. The idea is simple: topics drift in discrete steps over time. At each “epoch”, some

number of documents are generated based on topics at that epoch.

Drifting Topics. We can formalize these assumptions in a statistical model as in Blei and Lafferty
(2006). First let V' be the number of terms in a vocabulary and consider the natural parameters
B of a term distribution at time ¢, where the probability of a word w is given by the soft-max

transformation of the unconstrained vector,

p(w| Br) o< exp(Brw)- (3.1)
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The corresponding distribution over terms, i.e., the “topic,” is a point on the vocabulary simplex.

In the logistic normal Markov chain, this distribution drifts with the stationary Markov process

ﬁt+1 ‘ ﬁt ~ N(ﬁta U2I)a (32)
where o2 is the transition variance.

Documents generated at time ¢. Now consider a corpus broken up into discrete epochs ¢ €
{1,...,T}, with D, articles at each time t. Let W, ;.p denote the articles as vectors of word counts,
where row w¢ 4 of W¢ 1.p represents the word counts in article d.

At each epoch t, the documents of these articles are drawn independently using the topics
described by Equation 3.1. More formally, documents are generated according to the generative

process
1. For timet=1,...,T":

(a) For topics k =1,...,K:
i. Draw topics B¢ | Br,e—1 ~ N (Br—1,0%1)

(b) For document d =1,...,D;:
i. Draw topic mixture 4 ~ Dir(a, ..., a).
ii. For positionn=1,...,N:

A. Draw topic indicator z, ~ Mult(6,).

B. Draw the word for the nth term in document d according to Equation 3.1.

We illustrate the graphical model for in Figure 3.1 (a). With this model in hand and a collection
of documents, one can then estimate the positions of these topics by computing the posterior distri-
bution of the sequence of topics 81.7 conditioned on the observed documents. This summarizes the

corpus as a smooth trajectory of word frequencies.

The Document Influence Model

We now turn to the original problem: certain ideas are influential in the progression of a field, and
we aim to discover what these ideas are (as doing so will allow us to find those documents that are

influential). The text of documents will provide a window into these underlying patterns.
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In our model, each article is assigned a normally distributed influence score 4 for this topic,
which is a scalar value that describes the influence that the dth article at time ¢ has on the topic.
The higher the influence, the more the words of the article affect how the topic drifts.

This is encoded in the time series model. The more influential a document is, the more its words

“nudge” the topic’s natural parameters at the next time step,

D, Na
Bes1 | Bes (w, D10 ~ N (ﬁt +exp(—B) Y Y wralia, 021) ; (3.3)

d=1n=1

where the exponential exp(5;) is a vector containing the exponentiated elements of 3;. The words of
an article with a high influence will have a higher expected probability in the next epoch; the words
of an article with zero influence will not affect the next epoch.

The form of Equation 3.3 is no accident. Specifically, we use this equation to enforce that the
increase in words’ probability at each time ¢ be proportional to the number of words across the
corpus, as well as proportional to the influence ¢; 4 of each document.

We illustrate this further by motivating the exp(3) with an appeal to the chain rule of calculus.

Writing the unit change Ay = )~ wy gy q for brevity, we have:

exp(B) = exp(Bi_1) + Ay <= 1 =exp(Bi_1 — Bi) + exp(—B) A,
= 1—exp(—f)As = exp(Bi-1 — Br)
— log(1 —exp(—B)As) = Bi_1 —
= [y = fi-1 — log(1 — exp(—5)Ay)

(3.4)

When exp(—0;)A; is small, we have that 8; = B;—1 + exp(—)A;.

We call this model the document influence model (DIM). Conditioned on a corpus, the posterior
distribution of the topic and influence scores gives a trajectory of term frequencies and a retrospective
estimate of the influence of each article. An article whose words can help explain the way the word
frequencies change will have a high posterior influence score. We will show in Section 3.3 that this

estimate of influence is meaningful.

Multiple topics. Corpora typically contain multiple persistent themes. Accordingly, the full
document influence model contains multiple topics, each associated with a time series of distributions.

Conditioned on the topics, articles at each time are modeled with latent Dirichlet allocation (LDA).
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Each article exhibits the topics with different random proportions 64; each word of each article is
drawn by choosing a topic assignment from those proportions zg,,, and choosing a word from the
corresponding topic (Blei et al., 2003).

Modeling multiple topics is important to the influence model because an article might have
different impact in the different fields that it discusses. For example, an article about computational
genomics may be very important to biology but less important to computer science. We want to
discern its influence on each of these topics separately.

As with the DTM, we posit K topic trajectories, and each document of each time point is modeled
with LDA. For each document, we now associate an influence score ¢4 j for each topic k. Each of
the K topics drifts according to an adapted version of Equation 3.2, where we restrict attention to

the influence score for that topic and to the words of each document that were assigned to it,

d=1 n

D,
Brtv1 | Bt (W, 4, 2)e1.0 ~ N (ﬁk,t + exp(—Pk,1) Z o Z Wi, d,n2t,d,n. ks sz) . (3.5)

Here, 2z 4.n,% is the indicator that the nth word in the dth document at time ¢ is assigned to topic
k. We illustrate the graphical model for this distribution in Figure 3.1 (b).

Although we presented our model in this section with influence spanning one year, we also
adapted it to accommodate an “influence envelope”, where an article’s influence spans W years. This
provides a more realistic model of influence (Porter et al., 1988), but it complicates the inference
algorithm and may not be necessary, as we note in section 3.3.

To use this model, we analyze a corpus through posterior inference. This reveals a set of K
changing topics and influence scores for each article and each topic. The posterior provides a thematic
window into the corpus and can help identify which articles most contributed to the development of

its themes.

Work with similar goals

It is worth pointing out two pieces of recent research which have similar goals. Leskovec et al.
(2009) describe a framework for tracking the spread of memes, or ideas, in document collections,
and investigate the direction in which ideas tend to percolate. Shaparenko and Joachims (2007)
describe a measure of influence by modeling documents as unigram mixtures of earlier documents
and use a likelihood ratio test to predict citations between documents. In contrast to this work,
the DIM uses dynamic topics to explicitly model the change in topic language. Further, we do not

attempt to model links between documents, as in Shaparenko and Joachims (2007).
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3.2 Inference and parameter estimation

Our computational challenge is to compute the posterior distribution of the latent variables—the
sequences of topics and the per-document influence values—conditioned on observed documents
in the corpus. As for simpler topic models, this posterior is intractable to compute exactly. We
therefore employ variational methods—introduced in Chapter 2—to fit this posterior.

Before proceeding further, we note that this section is particularly dense, in part because varia-
tional methods require laborious algebra. We will use variational methods again in Chapter 5, but
we introduce a method in Appendix A to mitigate some of the pain of variational inference. We will
apply this in Chapter 6.

To apply variational methods, we begin by specifying a variational distribution for the DIM
posterior. First, the word assignments z,, and topic proportions 64 are governed by multinomial pa-
rameters ¢4 and Dirichlet parameters 74, as in LDA (Blei et al., 2003); we refer to these distributions
as q(zn|¢n) and q(04|7a)-

The variational distribution for topic trajectories {8k 1, ..., Bk} is described by a linear Gaus-
sian chain. It is governed by parameters {5;6_’1, . ,Bk,T}, which are interpreted as the “variational
observations” of the chain. These induce a sequence of means 7, and variances V;. Blei and Lafferty
(2006) call this a “variational Kalman filter.”

Finally, the variational distribution of the document influence value ¢4 ;, is a Gaussian with mean
Zd,k and fixed variance o7.

In full, the variational distribution is

Nia

K T D,
4(8:4,2,013,0,6,7) = [ [ a(BrrrlBrar) [ [ H (Or.alve.a)a(talla) [T a(ztanlbr.an)-
k=1 t=1d=1 n=1

Using this variational family, our goal is to maximize the Evidence Lower Bound (ELBO) £ on the

model evidence of the observed words W:

Inp(W) >L(3, ,7) (3.6)

=> B np(Bilfe-1)] + D D Eq Inp(la)] + Eq Mnp(dale)] (3.7)

T Dy

+ Z Z Z E; Inp(zn]6a)] + Eq Inp(wy, |25, Br)] + H(q). (3.8)

T D¢ Ng

Note also that the variational parameters B, ¢, and y are implicit in lines 3.7 and 3.8 of the above

equation because they parameterize the variational distribution ¢, and the expectation is taken with
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respect to this distribution.

Optimizing the variational bound

This bound is optimized by variational EM, with an update schedule similar to that of Blei and
Lafferty (2006):

1. For Topick=1,...,K:
(a) Update parameters Br.
2. For timet=1,...,T":

(a) For document dy4,...,dp, +:
i. Update parameters ¢4, and v4

(b) Update parameters /; (i.e., update {4 as a block for all documents at time ),

where the variational parameters are optimized sequentially in blocks. These updates are repeated
until the relative increase in the lower bound is below a threshold (which we specify in the experi-

ments section).

Influence values. In the DIM, changes in a topic’s mean parameters are governed by a normal
distribution. As a consequence of this choice, updates for the influence parameters lﬁtﬁk solve a
linear regression. In this regression, documents’ words at time ¢ explain the expected topic drift
Apt k= (Bi41,k — Bik), where the contributions of each document’s words are given by the design
matrix X = Diag (exp(—0¢x)) (Wi i 0 ¢r ). (Diag(z) refers to the matrix having the elements of x
on its diagonal, and o refers to the element-wise product.)

The parameter updates for document influence llk are defined, for each time ¢ and each topic k,

by the variational normal equation

~ 2 —
b = (S5 I +E, [XTX]) B, X" Apen] . (3.9)
d

The expectation E, [XTX] is a matrix with dimension D; x D;. Its elements are

E, [XTX] ddr = Zexp(—th,k,n + 2Vi k) (Wed,n Wi, Bt e din Pt e, )
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when d # d’ and
E, [XTX] dd= Zexp(—2mt,k7n + 2‘257k7n>(wt2’d7n¢t,k7d7n)

otherwise. The expectation [E, [X TAg,t,k] is a D;-dimensional matrix with elements

E, (X" Apix], = Zwt,d,n¢t,k,d,n X (Mt 1 kn = Mt kon + Vikn/2) X exp(=itt gn + Vi gn/2)-
n

Topic proportions and topic assignments. Updates for the variational Dirichlet on the topic
proportions 8, have a closed-form solution, exactly as in LDA (Blei et al., 2003); we omit details
here.

The variational parameter for each word w,’s hidden topic z, is the multinomial ¢,,. We solve

for ¢, 1 by the closed-form updates

_ 1 - - ~ - _ ~
log(énk) =V (&) + Mt pn + ;wtgdn,k exp(—my k+ Vi /2)(Met16 — e + Vik)

1 ) _ )
~ —3Wn [ﬂdn,k exp(—2msk + 2Vi k) Wi n\d,, © ¢t,n,k,\dn)£t,k,\dn}

1 i o
- ;win eXp(—?mth + 2w7k)(£§,n,k + al2)7 (310)

where ¥ is the digamma function and \d,, refers to the set of all documents exzcept d,,. Solving the

¢w,k

constrained optimization problem, this update is followed by normalization ¢, < P
K Pk

3.3 Empirical study

We studied the DIM with four text corpora: three collections of scientific articles and a collection of
opinions written by judges in the New York Appellate Court system. For each corpus, we estimated
and examined the posterior distributions of its articles’ influence.

In this section, we demonstrate that the estimate of an article’s influence is robustly correlated to
the number of citations it received. While the DIM model is designed for corpora without citations—
and, indeed, only the documents’ text and dates are used in fitting the model—citations remain an
established measure of influence. This study provides validation of the DIM as an exploratory tool

of influential articles.
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Data

The three scientific corpora we analyzed were the ACL Anthology, The Proceedings of the National
Academy of Science, and the journal Nature (we discuss the New York Courts in a later section).
For each corpus, we removed short documents, terms that occurred in too few documents, and terms
that occurred in too many documents (by thresholds). We also removed terms whose statistics did
not vary over the course of the collection, as such terms would not be useful for assessing change in
language (a sample of such non-varying terms from Nature is “ordinarily”, “shake”, “centimetre”,
“traffic”, and “themselves”). By applying these filters, we retained the most interesting words from
the perspective of a time-series analysis.

ACL Anthology. The Association for Computational Linguistics Anthology is a digital collec-
tion of publications about computational linguistics and natural language processing (Bird et al.,
2008). We analyzed a 50% sample from this anthology, spanning 1964 to 2002. Our sample contains
7,561 articles and 11,763 unique terms after preprocessing. For this corpus we used article citation
counts from the ACL Anthology Network (Radev et al., 2009).

PNAS. The Proceedings of the National Academy of Sciences is a leading, highly-cited, mul-
tidisciplinary scientific journal covering biological, physical, and social sciences. We sampled one
seventh of the collection, spanning 1914 (when it was founded) to 2004. Our sample contains 12,145
articles and 14,504 distinct terms after preprocessing. We found citations using Google Scholar for
78% of this collection.

Nature. The journal Nature is the world’s most highly cited interdisciplinary science jour-
nal (Thompson Reuters, 2009) with content on a range of scientific fields. We analyzed a 10%
sample from this corpus, spanning 1869 (when it was founded) to 2008. Our sample contains 34,418
articles and 6,125 distinct terms after preprocessing. We found citations using Google Scholar for
31% of these documents.

Inference for 10 topics on each corpus above took about 11 hours to converge on a desktop Intel
2.4GHz Core 2 Quad CPU. Our convergence criterion was met when the evidence lower bound
increased by no more than 0.01%. For the experiments described below, we set topics’ Markov chain
variance 02 = 0.005 and o4 = 0; = 0.0001. These values were selected to make the topics change at

a reasonable, “coherent” rate.
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Figure 3.2: Spearman rank correlation between citation counts and posterior influence score, con-
trolling for date (top) and fraction of citations explained by posterior influence (bottom).

Relating posterior influence and citation

We studied the DIM with varying numbers of topics (5, 10, 15, 20, 50, 75, and 100). We measured
the relationship between the posterior influence values of each article 74 and its citation count cg.
We first aggregate the influence values across topics. Recall that each document has an influence
value ¢ for each topic. For the nth word of document d, we compute its expected posterior influence
score, with the expectation taken with respect to its (random) topic assignment z. Omitting time

indices, this is E[z4,, - £4]. We then sum these values over all words in the document,

F(la) = Elzan - la]. (3.11)

This weights each word by the influence associated with its assigned topic. When we are done with
it, f (Ed) provides a metric for influence which is topic-independent. (Using the maximum value of
influence across topics yielded similar results.)

Figure 3.2 displays the Spearman rank correlation between the aggregated posterior influence
score of Equation 3.11 and citation counts. The DIM posterior—which is estimated only from the
texts of the articles—has a positive correlation to the number of citations. All of these numbers

were found significant up to p < 10™%, using permutation tests on the influence scores.
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Correlation goes up when we model multiple topics within a corpus. Moving from 2 to 5 topics in
the ACL corpus increases correlation from 0.25 to 0.37. Nature is likewise better with more topics,
with a correlation of 0.28 at 20 topics; while PNAS performs best near 5 topics, with a correlation
of 0.20.

Figure 3.2 also shows the fraction of citations explained by DIM scores: Nature documents with
the highest 20% of posterior influence, for example, received 56% of citations. The flat regions in

ACL and PNAS are due to aggregate influence scores very close to zero.

Heuristic model. The DIM is a complicated model. To justify its complexity, we describe a simple
baseline (the heuristic) which captures our intuition with a single topic, is easy to implement, and
runs quickly. For this heuristic, we define a word’s weight at time ¢ as:

- Frequency of w in [t,t+f]
t*~ Frequency of w in [t—p,1]’

for fixed distances f into the future and p into the past. A document’s score is the weighted average
of its words’ weights. This heuristic captures the intuition that influential documents use language
adopted by other documents.

The heuristic performed best with large values of its parameters (f = p = 200). With these
settings, it achieves a correlation of 0.20 for the ACL, 0.20 for PNAS, and 0.26 for Nature. For Nature,
the model is more correlated with citations than the heuristic for 20, 50, and 75 topics. Correlation
is matched for PNAS, the model slightly beating the heuristic at 5 topics. ACL outperforms the

heuristic for all numbers of topics.

Shuffled corpus Though we have eliminated date as a confounder by controlling for it in correla-
tions, there may be other confounders such as document length or topic distribution. We therefore
measured the DIM’s relationship to citations when dates were randomly shuffled, keeping all docu-
ments which share a date together. If non-date confounders exist, then we might see correlation in
the shuffled data, marking observed correlation as dubious.

We shuffled dates in the corpora and refit the DIM. We found a maximum date-controlled
correlation of 0.018 for 29 shuffles of ACL; 0.001 for 5 shuffles of Nature; and 0.012 for 28 shuffles of
PNAS. While this shuffled experiment and controlling for date do not entirely preclude confounding,

they eliminate many potential confounders.
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A closer look

Experiments showing correlation with citations demonstrate consistency with existing bibliometrics.
However, the DIM also finds qualitatively different articles than a bibliometric based on citation
counts finds. In this section we describe several documents to give the reader an intuition behind

the kind of analysis that the DIM provides.

IBM Model 3 The second-most cited article in the ACL Anthology Network is The Mathematics
of Statistical Machine Translation: Parameter Estimation (Brown et al., 1993). It has 450 intra- ACL
citations and 2,130 total citations listed on Google Scholar. This seminal work describes parameter
estimation for five word-based statistical models of machine translation; it provided widely accepted
statistical models for word alignment and introduced the well-known “IBM models” for machine
translation. The posterior influence score for Brown et al. (1993) ranked 6 out of 7,561 articles in a
10-topic model.

This article was most influential in a topic about translation, which had a trend toward “align-
ment for machine translation.” The largest-moving words are shown in Figure 3.3 (left). Upward
trends for “alignment”, “brown”, and “equation” are evident (although it is not clear whether

“brown” refers to the author or the corpus).

The Penn Treebank The most-cited article in our subset of the ACL Anthology Network is
Building a large annotated corpus of English: the Penn Treebank (Marcus et al., 1993), with 1,622
ACL citations and 2,810 citations on Google Scholar. This article describes the large-scale part-
of-speech and syntax tagging of a 4.5-million word corpus. It falls in a topic about part-of-speech
tagging and syntax trees; “treebank” had become one of the top words in the topic by 2004.

The DIM assigned a relatively low influence score to this article, ranking it 2,569 out of 7,561
articles. While Marcus et al. (1993) introduces a powerful resource, most of the article uses con-
ventional language and ideas to detail the annotation of the Penn Treebank. As such, the paper
does not discuss paradigm-changing ideas and the model scores it low. We emphasize that this does
not undermine the tremendous influence that the Penn Treebank has had on the field of natural

language processing. The DIM is not designed to discover this kind of influence.

Success in 1972 1In 1967, The College Science Improvement Program was established to assist pre-
dominantly undergraduate institutions. Two years later Nature published a short column, which has

the highest of our posterior influence in a 20-topic model, out of 34,418 Nature articles. No citation
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Figure 3.3: Most active words appearing in Brown et al. (1993) (left) which have changed the most
in a topic about translation. On right are words appearing in Toole et al. (1984) in a topic about
DNA and genetics. Terms are sorted by increase over 10 years.
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information was available about this article in Google Scholar. The column, How to be Quvertaken
by Success, discusses a debate about the “Miller bill”, which considers funding for postgraduate ed-
ucation (Nature, 1969). Overtaken by Success provides few research resources to researchers, which
may explain lack of citation information. Instead, it presciently discusses a paradigm shift in a topic
about science, industry, research, and education: “The record of the hearings [on the bill] is not
merely an indication of the way the wind is blowing but an important guide to some of the strains
which are now accumulating within the system of higher education...”

In 1972, three years after this article’s publication, The NSF Authorization Act of 1973 made the
NSF explicitly responsible for science education programs at all levels (NSF Website, 2010). Where
this may have been missed by those using citation counts to study the history of science education,

the DIM has provided a metric with which to gauge interest in the article.

Genetics in Nature The sixth most influential document by the DIM in a 20-topic model of
Nature is Molecular cloning of a cDNA encoding human antihaemophilic factor, an article describing
successful cloning of a human mRNA sequence important in blood clotting (Toole et al., 1984). With
584 citations, this article is among the top 0.2% of these 34,418 documents. The most active words
appearing in this article are shown in Figure 3.3 (right). The plot shows some of the document’s

key words — “expression”, “primer”, “blot” — become prominent words in the topic.

An application to the New York Appellate Courts.

The New York Appellate Court system hears appeals cases within the state of New York. This
court “was established to articulate statewide principles of law in the context of deciding particular
lawsuits” (NY CA Website, 2012), acting as a form of “Supreme Court” for the state of New York.
Judges who hear these cases make decisions about the cases and write opinions summarizing their
reasoning for these decisions. These decisions and opinions are extremely important within the court
system because they set precedent for later decisions.

These opinions written by judges are therefore written expressly to be influential on later court
decisions, and judges’ opinions frequently make explicit citations to earlier cases. However, these
citations are limited in two respects. First, multiple opinions may exist per case, stating the majority
opinion, supporting it in part, or entirely disagreeing with it. Although judges’ citations are explicit
and well-formatted, their citations do not make this distinction machine-readable, making large-scale
analyses difficult without expensive hand-coding. Second, lawmakers may have different reasons for

citing opinions; it has been hypothesized by some political methodologists (people who use formal
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Figure 3.4: Citations explained by influence score in the New York Appellate Courts. Each point
on the curve represents a different threshold of the influence score. The x-axis describes threshold
on the influence score, and the y-axis describes the fraction of citations for all documents which fall
below this threshold.

and quantitative methods to study political science) that researchers do not cite dissenting opinions
because dissenting opinions are considered to hold little if any legal sway; citing dissenting opinions
is therefore seen as a sign of weakness (Beim correspondence, 2011).

We analyzed this collection, splitting 9,266 appellate court cases into 10,618 distinct opinions,
written by judges representing the majority opinion, a concurrence in part (i.e., supporting the
majority decision but with a different rationale for reaching that decision), or a dissenting opinion.
Our collection contained 13,568 distinct terms after pre-processing. We also scraped citations within
this collection and found 37,348 intra-corpus citations.

Based on the analysis of the scientific corpora, we fit a 40-topic model to this collection to
discover influential documents. Consistent with the scientific corpora, we measured a Spearman
rank-correlation coefficient between posterior influence scores and the logarithm of citation counts
at p = 0.24. We illustrate the fraction of citations explained by documents above different influence
thresholds in Figure 3.4. Across all four corpora, the model is consistently correlated with citation

counts.

3.4 Conclusions

Traditional bibliometrics like citations are widely used for understanding collections of text docu-
ments. Much of the past work for identifying influential documents focuses on measuring or pre-
dicting citations for corpora which have citations. In this chapter we described the DIM, which is

developed for time-series corpora without bibliometrics. We have demonstrated measured consis-
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tency with citations with the model, controlling for confounders like document length. However,
the information provided by the model transcends this: the influence score has anecdotally been
demonstrated to provide qualitatively different information than citations.

Based only on the changing statistics of the language in a corpus, we computed a measure of
influence that is significantly related to observed citation counts. That said, it would be useful to
better understand how this metric is qualitatively different from citations and other bibliometrics:
expert judgment or usage information obtained from digital libraries might be some avenues. We
leave this for future work.

We considered several documents evaluated by the model: Brown et al. (1993) and Toole et al.
(1984), which both had high citations and high posterior influence; and Marcus et al. (1993), which
had high citations and low posterior influence. These results demonstrate not just that the model is
correlated with citations; it also suggests that the model provides qualitatively different information

than citations.

3.4.1 Avenues for future work

The DIM could be made more realistic and more powerful in many ways. In one variant, individual
documents might have their own “windows” of influence. Other improvements may change the way
ideas themselves are represented, e.g. as atomic units, or memes (Leskovec et al., 2009). Further
variants might differently model the flow of ideas, by modeling topics as birth and death processes,
using latent force models (Alvarez et al., 2009), or by tracking influence between documents, building
on the ideas of Shaparenko and Joachims (2007) or Dietz et al. (2007).

We also believe that it would be useful to better understand models like the DIM in the context
of traditional metrics of influence, such as academic citations, and other metrics of influence, such
as usage data. Having a better understanding of when this model and established metrics differ
will uncover where our metric may provide new information that is not yet captured by existing

statistics.

3.4.2 Next steps

The work presented in this chapter assumes that the collection of documents is described by a set
of themes, and that these themes evolve over time. It describes each document using a mixture over
themes and a vector describing its influence on each of those themes. This provides a sense of the

current of ideas coursing through a collection of documents.
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A limitation of this approach is that it provides too broad a view of a corpus: it does not
provide explicit detail of the underlying story within a collection. This model describes a corpus as
a collection of topics, and it describes documents as mixtures of themes and influence weights, but
it does not provide any further sense of a story which changes over time.

In the next chapter we will discuss a model to explore some of these shortcomings by explicitly
modeling the “story” within a collection of text documents. This approach will use some of the same
ideas from this chapter. Again we will assume that a collection of text documents serve as a window
into the events within the collection of historical documents, and again we will encode assumptions by
explicitly modeling them with latent random variables, linked by a time-series model. However, by
modeling the interactions of entities within the collection explicitly, and applying posterior inference,

we will learn a story about them.
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Chapter 4

A time-series model of foreign
affairs: predicting sentiment

between nation-states

In this chapter we use the text of newspaper articles to infer a history of the relationships between
different nations. An assumption of our work is that the tension between two nations—or a warm
and robust relationship between them—is reflected by the language that is used to discuss them. In
developing this assumption, we discuss two models designed to infer the relationships between pairs

of nations.

Text and latent spaces

The basic unit of analysis in this chapter is paragraphs of text from newspaper articles which
discuss pairs of nations. We choose paragraphs because they are small enough to have just one or
two concrete ideas but large enough to describe interesting relationships.

We use some of the same ideas presented in the last chapter to model the text of these paragraphs,
but we use one of the primitives introduced in Chapter 2 to model relationships between pairs of
nations. This allows us to build a history of nations’ relationships over time. An advantage of a
text-based approach to history is that we can incorporate information from all articles of a given
collection with modest computational cost. This means that historians and political scientists can

then search and review thousands of historical documents at the push of a button—or identify
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forgotten and overlooked incidents in history.

The primitive from Chapter 2 that we use amounts to an assumption that each nation can be
summarized by its position in a latent space, so that the sentiment between two nations is determined
(up to stochasticity) by the relationship between their positions in this latent space. By making this
assumption, we gain two benefits: the ability to interpret these nations’ positions, since they provide
statistically meaningful summaries of these nations’ positions; and the ability to make predictions
about the relationships between nations, based on their latent positions. While the last chapter’s
Document Influence Model allowed us to discover themes which evolved over time and individual
documents’ influence on these themes, the assumptions we make in this chapter allow us to create

a more rich story about the interaction of specific textual entities—nations—over time.

Organization of this chapter

In the next two sections we develop several computational models that link the text of a news source
to the relationships between nations.

We begin with a model which infers these relationships by using two sources of labels about the
the relationship, or sentiment, between pairs of nations: expert labels and labels assigned by lay paid
“workers”. To design this model, we develop a set of spatio-temporal assumptions that allow us to
describe the sentiment between nations by inspecting their relative positions in this latent space (and,
inversely, to interpret their positions based on observed sentiment). We demonstrate that modeling
nations in this way allows us to create a history of foreign relations over time. Importantly, we
demonstrate that the sentiment inferred from two very different sources of sentiment labels leads to
strikingly similar measures of inter-state sentiment.

After developing this supervised model, we invert this question and ask: what sentiment is
implied by the text alone of news articles? To answer this question, we describe an unsupervised
model of the relationship between nations to qualitatively describe these relationships. We then
demonstrate a connection between the unsupervised relationships and the sentiment labels we had

used for the supervised model.

4.1 A supervised model of dyadic sentiment

In the last chapter we described a model for identifying influential documents. A defining feature of
that model was that it was unsupervised; only after fitting the model could we compare the inferred

influence of an article with the number of citations it had received. In this section we will take a
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more direct approach, fitting a model with labels defined to represent the information that we seek:
whether there is a positive or negative relationship between pairs of nations.

In outlining this model, we will provide more detail into the two assumptions made in this
chapter: first, that there is a relationship between text and the sentiment between pairs of nations;
and second, that we can model the sentiment between nations by representing these nations as
vectors in a latent space. After describing these assumptions we adjust the model to extend it to

the time-series domain.

4.1.1 Inferring sentiment from text

The first assumption that we make in this chapter is that the relationship between pairs of nations
can be described by (at least) a one-dimensional sentiment s € R, and that when a news source
discusses these nations, the author’s choice of words wy reflects the relationship between them.
Consider, for example, the relationship between the state of Israel and Palestine in the following

passage (emphasis added by me):?!

“In Government and opposition circles questions have swirled about how a Palestinian
truck laden with explosives could have sailed past Israeli soldiers stationed at Gaza
Strip checkpoints. Some news reports said the vehicle had the required Israeli permits.”

Fuailed Truck-Bomb Plot Chills Israel-P.L.O. Autonomy Talks (Haberman, 2005)

Israel and Palestine have a tense relationship, as suggested by the author’s choice of the words
“explosives”, “questions”, and even “required”. This relationship is negative, so let’s say that the

sentiment between them is —3. Now consider the following passage about Egypt and Jordan:

“The leaders of Egypt and Jordan too have invested their prestige in the peace plan
and would rejoice in private to see Islamic militants crushed.” Middle East Talks are

Effort to Aid Peres and Arafat (Jehl, 1996)

The relationship between Egypt and Jordan—while not fabulous—is certainly more positive, as
suggested by words such as “invested”, “peace”, and “rejoice”. Let’s say that the sentiment between
Egypt and Jordan is 0.5.

The numbers -3 and 0.5 are of course arbitrary, but they convey some sense of the relationship,
or “sentiment”, between pairs of nations. Our intuition is that the words selected by authors when

describing pairs of nations often provide a direct indication of the sentiment between these nations,

1The statehood of Palestine is disputed. We considered a collection of of states and territories.
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and that we can estimate this sentiment for a new snippet of text (up to a constant factor) with the
right model.

To do this, we will use paragraphs of text which mention a pair of nations as the basic unit
of analysis in this chapter. We will assign labels to enough of these paragraphs to fit a text-based
model, and then we will fit a sentiment model to their text. 2 Paragraphs of text (like the two above)
are small enough to contain simple ideas yet large enough to discuss complete ideas—appropriate
also for discussing the relationship between pairs of nations.

To relate an author’s text to the sentiment between nations, we use a model called text regression
(Kogan et al., 2009). In text regression, we model the sentiment s; in document d using a linear
combination of the wordcounts wy € N+ (omitting the names of the nations and major cities) of

each article:

salwg, B ~ N(wj B, o)

B~ N(0,03). (4.1)

For the remainder of this section, we will assume that 3 is observed, so that the s; is normally

distributed with mean w7} 3. We describe how to fit B with human labels in Section 4.1.5.

A brief comment on notation. Before we describe how to fit this model, we pause to summarize
our use of notation. In this chapter, we will use notation flexibly when it is convenient. The typical
unit of discussion will be the dth document occurring at time ¢. The dth document discusses two
nations, ¢; and cg; these define a tuple ({c1,c2},d,t) (where the set {ci,ca} = {c2,c1}). We will
generally use d to index documents, ¢t to index time, and c¢ to index a nation. When document d is
given, we may refer to its time as tq (which is unique) or to the two interacting nations as cq,1, cq,2
or c1,cp. Alternatively, we may refer to the documents in which a nation c appears as d¢ 1, ..., de,p.
As another example, we may describe a nation’s position x(., 4, variously as ., ,, 4,1, or even
x. if the context is clear. Finally, the sentiment between two nations (when described by a specific

document) might be variously described as sq, S¢, ¢y, Sd,ts O Scycp,d,t-

4.1.2 Modeling interactions with a latent space

The second assumption we make in this chapter is that each nation can be described by a vector in

some p-dimensional latent space, and that the relationship between two nations is determined (up to

2We provide more detail about tagging nations in the experiments section.
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Description F(xy,x2) where ...
distance —log(||z1 — 22|53 + 1) 21 = T12.p,22 = T12:.D
inner product 2Tz, 21 = X1, 22 = T2
intercept Y1+ Y2 Y1 =T1,1,Y2 = T21
intercept /inner product | y; +y2 + 2{ 2o Y1 =2T1,1,Y2 = T2 1,

21 = X1,2:D, 22 = L22:D
intercept /distance y1+y2 —log(l[z1 — z2]3+ 1) | 1 = 211,92 = 221,

21 = X1,2:D, 22 = £22:D

Figure 4.1: Link functions F : RP x R? — R. Intercept link functions introduce per-nation inter-
cepts that indicate how prone a nation is to war; distance link functions are based on the distance
between nation’ vectors; and inner-product link functions represent sentiment as a function of na-
tions’ political “orientations”. The notation 2 : D refers to a collection of indices, so that xs.p is a
D — 1-dimensional vector.

stochasticity) by the relationship between these nations’ vectors. We formalize this assumption by
letting each nation c¢ take a position Z. o € RP. As above, the sentiment of the relationship between
these two nations ¢y, ¢y is described by the scalar sq4 = s¢, ., € R (we change notation for s as

appropriate given the context). This sentiment is determined by the interaction of their positions:

Ley,d ™~ N(fChO?UQD)
Ley,d ™~ N(‘%Cz,OvJ%)

Sd = f(xcl,da xCQ,d)? ) (4'2)

for some suitable function F : R? x R? — R (see Table 4.1.2 for examples of F), and where we
interpret s4 as the sentiment between ¢; and ¢y as reflected by article d (which appeared at time tg4).
We have also introduced the auxiliary random variables z., and z.,, which can be interpreted as
the positions these nations take during interaction in an article. We include them for the algebraic
convenience that will become evident later.

If F is continuous and ¢; and ¢y are similar (as measured by the distance between ., and Zc, ),
then ¢; and ¢ will interact with other nations in similar ways. Further, by selecting F carefully,
we can ensure that a poor relationship (F(x,, z.,) < 0) between ¢; and ¢y corresponds to intuitive
relationships between Z., and Z.,, such as a large distance.

A spatial model provides us with two benefits. First, it provides interpretability: we can summa-
rize nations’ relationships with other nations succinctly with their positions Z.. Second, this allows
us to draw on existing work from multidimensional scaling, which has been used successfully in both
political science (Martin and Quinn, 2002; Jackman, 2001) and social network modeling (Hoff et al.,

2002; Chang and Blei, 2009). We will empirically validate this model later, but first we extend it to
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Figure 4.2: A time-series model of nations’ interactions. Pseudo-observations of “zero” are added for
regularization. Amazon Mechanical Turk labels are used to fit 3, which is used to infer unobserved
sentiments.

the time-series domain.

4.1.3 A temporal model of interaction

Foreign relations are not static; nations’ alliances and preferences change over time with the evolution
of economies, technology, and culture. Therefore we make this a fully temporal model by allowing
each nation’s mean position (formerly Z.) to take a position at each time t. We assume that = drifts

with the Markov transition

fc7t|‘fcyt—1 ~ N(fc,t—la O—(?hain)’ (43)

as shown in Figure 4.2. At any time ¢, we may observe the relationship between states ¢; and ¢z in
an article d. As before, the distribution of the sentiment between these nations is entirely specified

by their positions at this time:

Ley,d NN(i‘Cht’UQD)
Leg,d NN(ECmt’J%)

Sd ‘= ]:(wcl,dy xcz,d)' <44)

We reconcile p(sq|w,3) (see Equation 4.1) with Equation 4.4 by recalling that 3 is treated as
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constant once it is initially fit. This means that the joint distribution of nations’ sentiment is

P(8ds Ty ds Tey,d|Was B, Tey ds Tey,d)
o8 p(]:(wcl,dvmcmd)'wdaﬁ) X p(xclad‘fcl,t) X p(wcmdmcmt)

= N(]:(wchd’ $Cz,d)|wdTﬁ7012xv) X N(wclyd‘jcht’ U2D) X N(xcz,d|£c27t70-2D)' (45)

Regularization and zero-reversion. To complete this model, we add a standard normal prior to
the ends of the chain, so that, for all nations ¢, p(Z.,0) = p(ZT.r) = N(0,1). We also add an additional
regularization term which we call zero-reversion. This term manifests itself as artificial observations
of zero coming from the hidden Markov model. In the joint distribution, this is an additional
product HCC:1 HtT:O N(0|Z.4,02.,). Zero-reversion can be motivated anecdotally by noting that, in
the absence of news, we can assume that nations tend to have neutral interaction with other nations.

We find that for certain link functions F it improves empirical performance.

Related work

The field of sentiment analysis has received considerable attention in the last couple of decades
and is used in a variety of industry fields, ranging from automated trading strategies to restaurant
recommendation sites. Models in which individual words are assigned a weight are common; Pang
and Lee (2008) provide a review of recent developments in this field. See Taddy (2012) for a model
which uses inverse regression on word counts for results which compare favorably with alternatives.

Spatial models such as Item Response Theory (IRT) have been developed over the past century
by quantitative social scientists for analyzing behavior. While much of this work has been used
to model parliamentary voting behavior, these techniques have also been used to model nations’
positions based on their votes in the UN General Assembly. Gartzke et al., for example, use these
votes and alliance models to study the nations’ affinities (Gartzke, 1998).

These models have been developed for dyadic data more fully in network models such as the latent
space model (Hoff et al., 2002; Sarkar and Moore, 2005), in which the probability of a link between
two nodes is a function of their latent-space distance. The qualitative relationship of entities’ dyadic
relationships has been more fully developed with text by the relational topic model, which uses free
text to model the relationship between actors in an unsupervised setting (Chang and Blei, 2009).

The areas of sentiment analysis and dyadic models have been combined in recent work focused

on content recommendation and unsupervised network discovery. Recommendation systems have
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been specialized to items with text for recommending content such as Web content (Agarwal and
Chen, 2010) and academic journals (Wang and Blei, 2011); both of these applications used latent
Dirichlet allocation for modeling text. Chang and Blei (Chang and Blei, 2009; Chang et al., 2009)

have also used unsupervised topic models to discover relationships between entities.

4.1.4 Inference

We fit the MAP objective of this probabilistic model. By using a MAP estimate, we will avoid the
tedious derivations from the last chapter. Further, the MAP estimate can be interpreted as a form
of unregularized variational inference (by letting variance around the posterior estimates go to zero).

We optimize the MAP objective in this model using an expectation maximization (EM) algorithm.

An expectation maximization algorithm

The MAP solution to this problem can be approximated using an expectation maximization (EM)
algorithm because of the way we have specified p(z¢q|Zc,). This makes inference much simpler
and allows us to take advantage of a Kalman smoother. Instead of optimizing each variable in the
objective, we alternate between optimizing the variables x4+, 54 in an E step and the variable Z

in the M step.

M Step. In the M step, we seek to estimate the mean Z..|z,(,s of each nation c¢’s position.

Because the Markov blanket of each variable Z.: is specified by Gaussian distributions, we have

that argmax p(Z|z) = E [Z|z]. More generally, this expectation is the optimal value of Z given the
T

other variables:
arg max p(s, z, 7|8, w) = arg max p(Z, r) = arg max p(Z|r) = E[Z|z]. (4.6)

We can estimate Z|s, z, 3, w = E [Z|x] using a variant of the traditional Kalman smoother (Kalman,
1960), where we treat = as observations of the hidden state Z. This step differs from a standard
Kalman smoother in that we have no observations on some dates and multiple observations on other

dates.

Kalman updates. As with a standard Kalman smoother, the modified Kalman smoother requires

a forward filter step and a backward filter step. The forward filter estimates the mean position given
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all previous observations:

- 2 Det—1 2
Trorimet—1/Tionnt—1 T 2ogel  Tedt—1/00,

jf‘forth,c,t|jforth,c,t717 {‘/I“C7d7t71}d — 1/0_2 i1 + 1/0_2 (4'7)
forth,t— obs
1
2 2
. 4.8
Ufoz'tl),t — 1/0'f2()rt}17t71 + _Dat,l/o'gbs + achaln’ ( )

where we have used x4+ to describe the position of nation c at time ¢ for interaction d and there
are D documents at time ¢ discussing nation c. We also use initial condition Z.o = 0,02 ,, , = 10.

The backward step estimates the chain’s mean given all current and future observations:

_ D
xback,c,t+1/0'f,2+1 + Zd;f xc,d,t/afbs
1/O-gack,t—1 + l/o-gbs

9 1

jback,c,t Thack,c o419 {xc,d,t}d —

o — (4.9)
back,t 2 2 2 0
1/(0back,t+1 + Uchain) + Dc,t/aobs
with initial conditions Ty, r = O,USMWr .7 = 10. The smoothed means—that is, the mean of
nations’ positions at time ¢ given observations before and after t—are
_ _ - 2 2
xc7t|x0,t =E [Z’c,t] |$for:h,c,m Thack,c,t1 Obacks Tforth
- 2 - 2
o xforthac’t/o'furth,t + xbaCk,Cat/Uback,t (4 10)

2 2
l/Uforth,t + l/aback,t

E-Step. In the E-step, our goal is to infer each nation’s position z., ,|Zc 4., Tc, 5, Sa, wq during
interaction d given its expected mean Z., , ¢, and the text wy describing this interaction, and given
the other nation’s position for this interaction. Assuming that this nation is indexed by cq41 in each

document d, we find these positions by gradient ascent on each interaction:

xcd,l;t < argmax p(l‘, mcd,z,ta fcd,htd ‘wdy ﬂ)
x

= argmax N (F (2, we, ,.0)[wg B, 03 )N (2|Te, 1 14, D), (4.11)

x
For convenience, we iterate between updating x(. .y for all interactions involving nation ¢ and up-

dating Z.; with the M step for all times ¢.

4.1.5 Empirical studies: comparisons with ground truth

We now turn to an experimental analysis of this model. Our goal in this analysis is to demonstrate

first that the model captures statistically meaningful patterns in a time-series collection of newspaper
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documents and second that it can provide a meaningful view into nations’ relationships with one
another. We first describe the two distinct label types that we used to define sentiment sy for this
model and summarize the newspaper archive to which we fit this model. We then evaluate the
model’s ability to infer the relationships between nations and compare results from models inferred

with the two different label types.

Parsing the New York Times

We fit and evaluate this model over news articles discussing 245 nations and territories from twenty
years of the New York Times (NYT). This collection spanned the years 1987 to 2007, a period which
included both the Persian Gulf and Iraq wars; the collapse of the Soviet Union; the reunification of

Germany; September 11th, 2001; and countless other world events.

Data preparation. We used articles from the Foreign, Business, Financial, and Magazine desks of
the newspaper during this period. As noted in Section 4.1.1, we split this collection into paragraphs,
which were defined by Times editors, and selected the subset of paragraphs which discuss exactly
two nations as “documents” d. This resulted in 257,472 paragraphs. We then defined a vocabulary

to be those words which satisfied three criteria:
e Appeared at least twenty times,
e Appeared in no more than 40% of documents, and
e Appeared in at least 0.1% of documents.

This resulted in a vocabulary of 5,958 words, mentioned in 40,356 paragraphs. We randomly selected
80% of these paragraphs (32,249) as training examples and used the remaining examples to evaluate

our model.

Coding sentiment

We next estimated 3 by fitting ridge regression (i.e., Equation 4.1 with a Gaussian prior on )
on a subset of the training examples. We labeled training examples with information from both
inexperienced “workers” and “expert labels”, representing vastly different ends of the label spectrum

(as we will see, however, they result in strikingly similar predictions).
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although israel and neighboring jordan agreed with fanfare
in late july to end their technical state of war and have since
behaved in public like old and dear friends they have yet to
sign a peace treaty and have no official links.

‘What is the relationship between israel and jordan as suggested by the text above?
There was no obvious relationship between these countries, or they were not discussed.

Very Positive++ These states have a very good relationship.
Positive+ These states have a very good relationship.
Slightly Positive These states are on decent terms.

Slightly Negative There is a little tension between these states (tariffs might exist,
for example.)

Negative- These states have a bad relationship (e.g. the states are using negative,
threatening remarks.)

Very Negative-- These states are mortal enemies.

Figure 4.3: A screenshot of a Mechanical Turk labeling task. Sometimes relationships may be
complicated; both raters gave this example a score of “slightly positive”.

Novice labels: Amazon Mechanical Turk ratings

Amazon Mechanical Turk (AMT) is a crowd-sourcing platform which provides a requester with
access to thousands of workers who perform simple tasks over the Internet. Although the requester
can use tests to ensure that workers are high-quality, as well as reject the work of low-quality workers,
these workers are very much non-experts.

To fit the model, we asked Amazon Mechanical Turk workers to rate the sentiment between two
nations mentioned in the text of a paragraph on the scale -5 (mortal enemies), ..., 5 (very good
relationship). We illustrate a rating task (as seen by a Mechanical Turk worker) in Figure 4.1.5.
Raters were asked to review a random subset of 3607 paragraphs like this from the original collection.
Before fitting the model, we manually disqualified eight raters (out of 85) who performed poorly (as
measured by inconsistency with other raters).

With all rated paragraphs which were in the training set, we fit the coefficients 3 of the text
regression discussed in Section 3.1. This coefficient was then treated as constant in the joint model
in Figure 4.2 to allow us to infer sentiment from the words of all 32,249 training paragraphs. This

resulted in a regression weight 3,, for each word w, which we illustrate in Figure 4.4 (left).

Expert labels: Correlates of War

We also used a combined set of expert labels based on the Correlates of War (Sarkees and Warman,

2012) and Issue Correlates of War (Hensel, 2001).

e The Correlates of War project “seeks to facilitate the collection, dissemination, and use of
accurate and reliable quantitative data in international relations” (CoW Homepage, 2012).

The project provides labels describing the relationships between pairs of nations from 1823 to
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2003. At-war is a binary relationship (either nations are at war, or they are at peace). We
used a list of CoW inter-state wars (version 4.0) from 1823 to 2003 (Sarkees and Warman,

2012).

e The Issue Correlates of War project “is a research project that is collecting systematic data
on contentious issues in world politics” (ICoW Homepage, 2012), and they provide expert
labels on a variety of inter-state conflicts that do not require militarized conflict. However,
these issue labels do require documented evidence of contention between states; such issues
include maritime and territorial disputes (ICoW Homepage, 2012; Hensel, 2001). The Issue
Correlates of War are not part of the same project (or produced by the same researchers) as

the Correlates of War.

We used these two sets of ratings to label the collection of New York Times paragraphs by
combining them and treating two nations as having a rating of -5 if they are at war at the time an
article was written in the Correlates of War codes and -1 if there was any contentious issue between
the nations in the Issue Correlates of War. All other pairs of nations were treated as having a rating
of 0.1. These values are somewhat arbitrary (we could have chosen -6.3 for a bad relationship), but
they were selected to correspond roughly to the range of the Mechanical Turk labels. Further, they
were selected once and kept fixed—changing them during analysis could compromise the statistical
power of the results below.

As before, we fit the text regression parameters (3 using these labels on the training set and
evaluated nations’ ratings on the test dataset. We illustrate the coefficient 3 fit to CoW-labeled

paragraphs in Figure 4.4 (right).

Casual vs. expert labels

The CoW represent a data source which is modestly related to Mechanical Turk ratings. In the
NYT dataset, CoW ratings and Mechanical Turk ratings were correlated at o = 0.196. To illustrate

the difference between these ratings, consider the following two examples:
e AMT rating= 1, CoW rating= —5:

As an indication of the dangers the damage occurred in waters where military spokes-
men said no mines had been suspected before but where a Saudi officer said today
that some 22 were later found. Iraqi mines widely deployed [sic] (Cushman, Febru-
ary 1991).
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Figure 4.4: Coefficients 3, for selected words w fit on text labeled by Amazon Mechanical Turk
workers (left) and Correlates of War data (right). Coefficients fit from Mechanical Turk labels are
more clearly separated than those fit to Correlates of War labels; this is likely due to explicit positive
sentiment in that dataset. The z-axis is 3, and the y-axis is used for display (it corresponds to no
variable). Size of each word is proportional to v/frequency, and color corresponds to 3.

This example outlines a limitation in our modeling assumptions: a single paragraph is some-
times too small a unit of discussion. Here Mechanical Turk workers likely missed the larger
context of the article about the Gulf War (including the article’s title, War in the Gulf: Sea

Mines; Allied Ships Hunt Gulf for Iraqi Mines).
e AMT rating= —5, CoW rating= 0.1:

Not since the grim old days of the cold war have relations between the United States
and Russtia been quite as problematic as they are this weekend on the eve of president
Clinton’s visit for celebrations marking the 50th anniversary of the allied victory in

Europe in World War II (Apple, May 1995).

The second example represents a limitation of both data sources. The two Mechanical Turk
ratings of -5 were clearly too strong, as the nations are not at war; but AMT workers likely
based their rating in part on the reference to World War II (the instructions provided to
MTurk workers suggest that a rating of -3 or -1 would have been more appropriate). In 1995,
the United States and Russia were not at war and had no documented territorial conflicts. This
means that this sentiment was not reflected in the CoW labels, and their sentiment defaulted

to 0.1.
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Figure 4.5: The dyadic sentiment model captures text well . Each colored line represents performance
of the supervised model on a collection of heldout documents across twenty years of New York Times
articles. The black dotted line represents performance based on estimating with the empirical mean
of the dataset. An inner-product model with four dimensions (plus intercepts) performs well for
most settings. A distance model with many dimensions but no intercepts also performs well across
a range of assumptions, performing best with many dimensions.
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Quantitative results
Inference and Prediction

We next turn to an empirical validation of the model laid out so far in this chapter. After fitting 3
to each set of labels on a subset of training documents, we estimated the MAP solution Z, z, s|3, w
using the entire training set described in Section 4.1.4.

For two nations ¢; and cp; mentioned together at time ¢, we predict their sentiment to be 5., ., =
F(Zey t,%e, ) and calculate the mean-squared error between that prediction and their predicted
sentiment BT wy under text regression. We made the latter choice so we could analyze the text
regression part of the model separately from the latent-space assumption (analyzing them together

would make it difficult to discern the effect of each model).

Text regression. The text-regression model for CoW labels predicted heldout labels with MSE
0.98, compared with 1.02 if we estimate using the empirical mean 5§ = —0.21 of training examples.
The text-regression model for AMT predicted heldout labels with MSE of 6.37, compared with 6.78
under the empirical mean.

While these errors are very large compared to the variance of the sentiment label, the scale of
these errors is a result of the small number of training examples, the large number of features (1998
in each case), and the sparsity of these word-features. Still, we find that the coefficients Bcow, Bamr
learned from the respective CoW and AMT labels are subjectively intuitive. We illustrate the
coefficients fit with these labels in Figure 4.4. The coefficients Bc.w and Bayur are correlated at

o =0.18.

Static latent space. With the text model in place, we next turn to evaluating the latent-space
assumption. To do this, we hold fixed the coefficients Beow, Bamr. This makes the mean 87wy of
sentiment sg available to the latent-space models.

We first check the assumptions described in Section 4.1.2, which model nations’ pairwise sen-
timent but do not assume that they change over time. We predict the sentiment between nations
interacting in document d to be 84 = F(Z,,,T.,) and evaluated the latent-space assumption based
on its ability to reproduce predictions from the text-based sentiment model s4 = wgﬁ.

We evaluated this model for the five link functions F(z.,,®.,) summarized in Table 4.1.2 and
for a range of dimensions p = dim(z) = 1,...,9. We report the MSE for this range of experiments
in Figure 4.1.5 and compare these models with a baseline model, which uses the empirical mean of

the ratings.
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We find that the the inner product assumption 221 Zc, alone is poor because it provides no nat-
ural way to model nations which are in frequent conflict with others. When the inner product link
function and the distance link function are endowed with the intercepts yc, , yc,, their performance
improves substantially: they consistently represent inter-nations’ sentiment better than other mod-
els, with the intercept/inner product model consistently outperforming intercept/distance
for most values of the latent-space dimension p. Based on the intercept/inner product model,
the space of political sentiment appears to have dimension four or five. This is consistent between
both label types.

The improvement of these intercept models over their counterparts appears to be largely because
intercepts enable these models to explain how conflict-prone a nation is. At the same time, they
can use z to explain how each nation interacts with others; both intercept/inner product and
intercept/distance outperform intercept for most values of p. Interestingly, the distance link
function is able to model data well as p grows large without an indication that the model overfits

(we only measured this up to 9 dimensions).

The benefit in adding a time-series assumption. We can add more flexibility to this model —
and an ability to model much more interesting behavior—by extending it to the time-series domain
as described in Section 4.1.3. Under this assumption, we allow Z. to drift over time for each nation
c. Again we fit the model to a range of latent-space dimensions p = 1...9. We illustrate these
results in Figure 4.1.5.

The inner product model again performed poorly, often worse than the baseline model. Adding
an intercept term harms performance for the distance model. The time-series assumption overall
improved performance for correlates of war and harmed performance for Mechanical Turk labels.

We note that the time-series models performed better than the static model for the CoW labels
but not for the Mechanical Turk labels. One possible explanation is that the formal relationships
between nations — as accurately represented by expert labels — is indeed changing over time; while
the lay relationships between these nations — as determined by lay interpretations of nations’ rela-

tionships — remains more static over time.

Improvement due to zero-reversion regularization A further explanation for the decrease in

performance for the time-series models (compared to the static model) is sensitivity to parameters.

2

The static models have one parameter for each link function: the prior of nations’ positions ¢7. In

the dynamic model, we must set the priors over nations’ positions 0? g4 for each interaction, chain
,
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Figure 4.6: Positions of selected nations according to the static issue-adjusted model for articles
labeled with Amazon Mechanical Turk (left) and Correlates of War (right). Nations’ positions were
inferred with the intercept / distance model, with distance dimension p=2. Intercepts are illustrated
by color.

2

chain ?

and zero-reversion variance 2. We selected chain variance o2 = 0.0001 and

variance o e 2 ain

2:

» = 1 and 0.01 by grid search for these models at 3 dimensions and report

zero-reversion variance o
results above based on the setting which worked best for each model. Setting ag had a substantial

impact on model performance for the inner product models.

A closer look

What relationships between nations does this model infer? Because the relationships between nations
are treated as functions of their positions @ € RP, we can interpret these nations’ positions x as
summaries of nations’ geopolitical orientations. We illustrate the positions of selected nations in
Figure 4.6.

With both CoW and AMT labels, the relationships between nations can be inferred from the
distance between their positions. In Figure 4.6, the United States stands out from a cluster of other
nations, with Iraq, Iran, and Afghanistan—mnations with which the U.S. has been at odds in the past
twenty years—furthest away.

Correlates of War and Mechanical Turk labels provide different patterns of inter-nation sentiment.
Nations’ positions under CoW tend to be very clustered, with a few outliers, while their positions
under AMT labels are more uniformly distributed. However, the two datasets provide extraordinarily
consistent measures of nations’ relationships.

To measure the consistency of these two models, we measured the Spearman rank correlation
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coefficient

Correlation (dayr(c1, €2), deow(c1, €2))
c1,c2€C,c1#c2

between all pairs of nations ¢y, ¢2 in the set C of nations. The two-dimensional intercept/distance
models have a Spearman rank correlation coefficient of o = 0.900. Of course, these (lgl) distances
are far from independent, and a single outlier in each model could skew the correlation. To mitigate

any such effect, we also measured the average correlation coefficient

e chgcfflce;‘;ign(dAMT(ci, ca2), doow(Cis C2)),
c1€C
which was even higher, at ¢ = 0.901. Recall that this is higher than the correlation coefficient
between the original labels (¢ = 0.196) — an effect possible because these models remove noise.
Under the second metric of correlation, most per-nation correlations were very high: over 90% of
nations had correlation coefficient higher than 0.86. One of the most-differently-represented nations
in this collection under the two different label types was Iran, which accounted for 7% of documents;
the per-Tran correlation coefficient  Cor  (damr(Iran, ¢), doow (Iran, ¢) was 0.65 (higher only than

ce€C,c#Iran
Eritrea, which was 0.62 but accounted for 0.2% of documents).

Mutual sentiment with the United States and differences between CoW and AMT
model fits. We illustrate mutual sentiment with the United States for a selection of these nations
over time in Figure 4.1.5. To estimate the sentiment in these plots, we fit the intercept/distance

model with dim(z) = 2. We summarize major events for two of these nations below.

e Ukraine was emancipated in 1991 with the dissolution of the Soviet Union. The U.S. has given
Ukraine over $4.1 billion in aid, targeted to “promote political, security, and economic reform
and to address urgent social and humanitarian needs” (State Department, 2012b). In return,
Ukraine has been an active member of the UN and has assisted the NATO allies with defense
aid in Kosovo (1999), Afghanistan (2011), Iraq, the Middle East, and Africa. Ukraine adopted
its first post-Soviet constitution June 28, 1996, the same year taking part in the Olympics
for the first time as an independent nation (the Olympics were hosted in the U.S. that year).
At the same time, Ukraine has been taking active steps in eliminating the nuclear weapons
program it inherited, permanently closing the last operating reactor at the Chernobyl site in

2000 (State Department, 2012b).
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Ukraine’s sentiment with Iraq, as inferred from the AMT model, was at its lowest in January
1993, January 1998, and again in April 2006. Its CoW sentiment with Iraq was at its lowest
in May 2006, April 2003, and February 1991 (technically before its independence, during the
Persian Gulf War). Its relationship with the U.S. was much stronger than with Iraq, peaking
in 1996 (AMT) and June 2002 (CoW), when it supported the U.S. invasion of Iraq.

e Iran has had a poor relationship with the United States since the U.S. Embassy seizure in
1981. Between 1987 and 1988, U.S. and Iranian forces clashed in the Persian Gulf. (CIA Fact-
book, 2012). Transfers of power have since then increased political tension, with the election
of a reformist president in 1997 and a reformist legislature in 2000, followed by conserva-
tive re-elections starting in 2003 and continuing through 2004. Hardliner President Mahmud
Ahmadinejad was inaugurated in August 2005 and re-elected in 2009 (CIA Factbook, 2012).

Ahmadinejad’s rule has been met with increasing pressure from the United Nations. The
Council has made successive resolutions imposing sanctions on Iran in 2006, 2007, 2008, and

2010 (State Department, 2012a).

The Mechanical Turk sentiment between Iran and the U.S. has clearly dropped in the lead-up
to Ahmadinejad’s election (see again Figure 4.1.5), but this contrasts with the Correlates of

War sentiment, which was lowest in 1988, when AMT sentiment was not as low.

Both of these low periods with Iran are clearly periods of bad relationships between these nations,
but why did one model pick up sentiment in one case and not the other? This could be explained
in part because the tension picked up by the CoW labels was unilateral, while the tension picked
up in the later period did not fall under the dictum of CoW labels: the U.S. and Iran were neither
at war nor having a territorial dispute. Instead, the U.S., as a member of the U.N., has supported

Iran sanctions.

4.2 A comparison with unsupervised relationship mining

The preceding approach has limitations, of course. First, sentiment labels measure only one kind
of interaction: whether nations are at war or peace. In reality, relationships between nations may
be characterized in many ways, some of which are independent of the [war, peace] dimension. For
example, the relationship between nations may be characterized by trade in goods, or by the exchange
of culture and ideas. Another limitation to a supervised sentiment model is that labels of the

sentiment between nations may be unavailable or limited, or (as we saw before), the labels may be
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Figure 4.7: Selected nations’ relationships with the United States over time. Fach line in the
plot above represents a specific nation’s relationship with the United states inferred with the in-
tercept/distance link function, with a two-dimensional distance space, using CoW labels (top) and
AMT labels (bottom). Sentiment between all nations and either Iran or Pakistan was least consistent
between CoW and AMT. Ukraine was the most consistently represented with these labels.

noisy.

In this section we will briefly compare the results of the previous model with the results of
an unsupervised model. Because the unsupervised model is preliminary, we leave details of it in
Appendix B.4. The unsupervised sentiment model uses the same latent-space assumption that we
introduced in Sections 4.1.2 and 4.1.3. The curious reader can refer to the appendix for a fuller

description of these assumptions.

Topics

A key assumption behind the unsupervised sentiment model is that each document can be described
by a mixture of four topics. Two of these topics correspond to the two nations discussed in the
paragraph (there are C' of these topics, one for each nation). A third topic is a “background” topic,
and the fourth topic is one of two sentiment topics. This sentiment topic is linked to a distance-based
latent-space model exactly as in the last section, but with a binary sentiment indicator instead of a
real-valued sentiment.

By fitting the unsupervised model, we learn which words are most-likely in each of these topics.
With these assumptions, we inferred a set of topics using the same NYT corpus for the supervised

sentiment model. Table 4.8 lists the most-likely words from a sample of topics fit to these twenty
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years of articles.

State-specific topics S¢,.. The state-specific topics describe words used when one of these nations
is mentioned in text. Many of these topics are intuitive: “oil” shows up in the Iran topic, and “drug”
is the top word in the Mexico topic. As these nations are mentioned in a major U.S. news source,
the topics are sometimes biased toward ideas specific to the U.S. relationship with these nations (for
example, “border” and “traffickers” in the Mexico topic). The U.S. topic contains phrases specific
to policy and leadership.

While these topics are intuitive, they serve little role in analyzing this collection. From a modeling
perspective, they serve as a “sponge” to explain away words commonly used to describe a nation,

especially when those words might otherwise be interpreted to refer to a specific relationship.

An economics/military dichotomy. The sentiment topic, on the other hand, appears to demon-
strate that one of the most prominent directions of variance in the text of paragraphs corresponds
to the sentiment that we have been measuring.

Again using the convention that x4y = 1 indicates negative sentiment between nations, the
negative-sentiment topic (s matches our intuition: it contains words typically associated with
conflict: military, officials, soldiers, killed, troops, and police are among the top words. On the
other hand, the words most likely in the supplementary topic (s are associated more with eco-
nomics: million, percent, people, billion, oil, and officials.

Are these words the same words that tend to be associated with expert labels of sentiment? To
quantify this, we used coeflicients from the text regression fit to Mechanical Turk ratings in the
last section. Among the top 12 words in this topic (shown in Table 4.8), we estimated the average
coefficient learned in the supervised sentiment model. The average coefficient for these terms was
-0.225, which is less than the mean 0.007 of the entire vocabulary (p < 0.02 by a 2-sample ¢-test).
The mean of the per-word sentiment [ for this collection of words was at the 20th percentile of
words in the vocabulary.

This contrasts with the top words in either the complementary topic Bg or the background
topic Bg. The top words in these topics had respective mean sentiments 3 of —0.11, —0.08. Neither

of these was statistically noteworthy (p = 0.15,0.16).
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Background topic (Gg) Economics topic (8s) vs. Military topic (8s,1)
war million military
political percent officials
officials people soldiers
country billion killed
people oil troops
military officials police
international country forces
peace money people
confirmed aid attack
week government border
following companies near
government military air

Pakistan (5c paxistan) | MeXiCO (50 mexico) | ISTael (8¢ iaraer)
nuclear drug peace
weapons officials territories
military border occupied
officials law talks
terrorism enforcement officials
border traffickers negotiations
war agents agreement
government police state
aid authorities settlement
support trade security
United States (8¢, united states) | Iran (8¢ nan) | China (8¢ cnina)
officials nuclear rights
military war human
official program trade
policy weapons relations
political officials officials
support arms nuclear
government oil visit
meeting hostages political
leaders gulf democracy
administration uranium economic

Figure 4.8: Per-nation topics (8¢,.), a background topics (8p,0), and the two interaction topics

(Bs,0,Bs,1)-
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4.3 Conclusions

In this chapter we took a closer look at the story within a collection of documents. To do this, we
reviewed a model for representing the relationship between countries, and we saw that this model
provides an empirically meaningful benefit over simpler baselines. We also demonstrated that the
predicted sentiment between pairs of countries with two entirely different sets of labels was strikingly
similar. We finally demonstrated that an unsupervised model can produce a sentiment dimension
aligned with our conception of inter-nation sentiment.

The set of assumptions we used in this chapter provide a broad view of global politics. Unfor-
tunately it provides no sense for the internal factors motivating the positions countries take within
the latent space. In the following chapter we will zoom in to take a closer look at how politicians
within a country—the United States in particular—make decisions. To do this, we will use the text
of the bills on which they are voting to better understand the positions they take. By using the text
of bills, we will also overcome some limitations of a traditional model of how lawmakers vote.

We will continue to see two of the primitives discussed in this chapter. The traditional model of
how lawmakers vote is in fact very much like the latent-space model we described in this chapter,
and lawmakers’ positions within this latent space are widely disseminated statistics. Second, we will
continue to see that tools for text analysis — both mixed-membership models and text regression —

can provide meaningful extensions of this model.
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Chapter 5

Predicting Legislative Votes with
Text Models

In the United States, as in many Western democracies, laws are made by committees of lawmakers.
A defining characteristic of these committees is that each member casts a vote indicating whether
she supports or rejects the proposed legislation. Legislative behavior centers around these votes, and
it is a common goal of quantitative political science to characterize patterns of lawmakers’ behavior
with these votes. Voting behavior exhibits enough of a regularity that simple statistical models
easily capture the broad political structure of legislative bodies.

One of these models is the ideal point model, a mainstay in quantitative political science for
analyzing votes (Clinton et al., 2004). It posits a latent “political space” along the real line and
assumes each lawmaker has a position in that space; bills take a position in a related latent space
(look ahead to Figure 5.2 for an intuition of these positions). A lawmaker’s probability of voting Yea
on pending legislation is then characterized by her position on this real line and parameters specific
to that legislation.

Just as we saw with the last chapter’s spatial models, ideal point models can be used to interpret
lawmakers’ positions on the political spectrum and to represent votes meaningfully.! However, ideal
point models have certain limitations. One important limitation of these models is that they are not
predictive models: while they can be used to model the bills that have been voted on, they cannot
be used to predict lawmakers’ votes on new bills. (A second limitation of these models is that

lawmakers do not fit neatly into the assumptions made by such models. We address this limitation

1The interpretation of a lawmaker’s latent position and a bill’s position in the same space are slightly more nuanced
than the last chapter. We clarify this relationship in the next section.
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in the next chapter.) In this chapter we will extend the ideal point model so that we can make
predictions about how lawmakers will vote on bills before these bills have seen a single vote. We

will do this by using the text of bills to make this prediction.

Using text to predict future votes

These limitations dovetail with increasing access to both public records and tools for algorithmic
text analysis. In the past decade, the text of congressional bills and other government records has
become readily available to the broad public and research scientists. Websites like the Library of
Congress’s thomas.loc.gov release this information to the public, and sites like www.govtrack.us
collect this information, synthesize it, and make it available for researchers and the public to better
understand both the content and behavior around legislative decision-making (Govtrack website,
2010).

Just as text has become more available in this field in digitized formats, tools for text analysis
have matured. Tools which were once available only to computational linguistics are becoming more
familiar to political methodologists (Zimmer and Stewart, 2012). Topic models have evolved from
vector-space models such as latent semantic analysis (Deerwester et al., 1990) into probabilistic
topic models (Hofmann, 1999; Blei et al., 2003), which can be used as modules in more sophisticated
statistical models.

In the next two chapters, we will take advantage of this broader availability of digitized text
collections and tools for text analysis to address the above shortcomings of ideal point models. We
begin this chapter by reviewing ideal point models (Poole and Rosenthal, 1985, 1991; Jackman, 2001;
Martin and Quinn, 2002; Clinton et al., 2004). After describing ideal point models, we will describe
how to combine ideal point models with the models of text used in Chapters 3 and 4, including topic
models (Blei et al., 2003) and text regression (Kogan et al., 2009), to enable us to predict votes
on previously-unseen bills. Through this chapter and the next, the abstraction enabled by latent
variable models will enable us to address these shortcomings of ideal point models with intuitive

solutions.

5.1 The ideal point model

U.S. lawmakers’ votes are captured during roll call votes, public records of lawmakers’ votes on
pending legislation. We can represent these votes as a matrix, with lawmakers in the rows and

proposed legislation in the columns. We illustrate a sample of roll call votes for the United States
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Senate in Figure 5.1.

Ideal points

Roll-call votes like this are often modeled with ideal point models. Ideal point models are based
on item response theory, a statistical theory that models how members of a population judge a
set of items. Loosely, an ideal point model assumes that each lawmaker u is described by a latent
position z,, € R summarizing her political preferences. A lawmaker’s (stochastic) voting behavior
is characterized by the relationship between her position in this space and the bill’s position (Poole
and Rosenthal, 1985, 1991; Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004).

In fact, we can motivate ideal points with explicit behavioral assumptions. Following the treat-
ment in Clinton et al. (2004), we assume that a proposed item of legislation d would, if passed, move
the current state of the world from the status quo {4 € R? to a new location ¥4 € RP. Lawmaker u
observes the utility of each of these positions based on her ideal point x,, € RP with noisy quadratic
loss ||[€q — @u||? + &1 and ||thg — T, ||? + €2, where €1, &3 follow an extreme value distribution. She
will cast a vote toward whichever outcome maximizes her utility. These positions therefore represent
each lawmaker’s ideal “state of the world” (where passage of a bill moves this state of the world).
For this reason, lawmakers’ positions x, are often called their ideal points.

Reparameterizing, we can write the probability p(vyq| X, (4, ¥q) of an affirmative vote with the
probit or logistic function (Clinton et al., 2004). Setting by = 2({q — ¥q) and aq = (Y1 pa — 4 a),
we have

p(vua = Yealagq, by, @,,) = U(wfad + ba), (5.1)

Example roll call votes

Lawmaker Ttem of legislation
Bill S. 3930 H.R.5631 H.R.6061 H.R.5682 S. 3711
Mitch McConnell (R) Yea Yea Yea Yea Yea
Olympia Snowe (R) Yea Yea Yea Nay
John McCain (R) Yea Yea Yea Yea Yea
Patrick Leahy (D) Nay Yea Nay Nay Nay
Paul Sarbanes (D) Nay Yea Nay Yea Nay
Debbie Stabenow (D) Yea Yea Yea Yea Yea

Figure 5.1: A sample roll-call matrix illustrating lawmakers’ votes on items of legislation. These
votes are from the Senate in the 109th Congress (2005-2006). The party of each Senator — (D)emocrat
or (R)epublican — is provided in parentheses. The matrix of roll calls is sometimes incomplete (see
Snowe’s vote on S. 3930, for example).
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Figure 5.2: Example one-dimensional ideal points from the 111th House of Representatives. Ideal
points represent lawmakers’ voting preferences. Democrats are blue and Republicans are red.

exp(s)

Trexp(s) " 2 Legislation d can therefore be fully characterized by

where o (s) is the logistic function
specifying its polarity aq and its popularity by. > When the popularity of a bill by is high, nearly
everyone votes “Yea” on bill d; when the popularity is low, nearly everyone votes “Nay”. When the
popularity is near zero, the probability that a lawmaker votes “Yea” depends on how her ideal point
T, interacts with bill polarity ay. We will make the common assumption that the latent variables
ag, bq, and z,, have standard normal priors (Clinton et al., 2004).

Given a matrix of votes, we use posterior inference to estimate the ideal point of each lawmaker,
which reveal their intuitive political preferences. Figure 5.2 illustrates that ideal points fit to the U.S.
House of Representatives from 2009-2010 clearly separate lawmakers by their political party. In U.S.

politics, these inferred positions correspond to the commonly-known political spectrum: right-wing

lawmakers are at one extreme, and left-wing lawmakers are at the other.

5.2 A model for predicting votes with the text of new bills

In this section, we extend ideal point models to use the text of bills to estimate a bill’s polarity and
popularity. This gives a new way of exploring and analyzing the government record and, further,
gives a useful predictor of government. While traditional methods can only fill in missing votes, we
develop tools that can predict how lawmakers will vote on a new bill. We will study the predictive
accuracy of votes on new bills, where we use a spatial voting model as a “cold” prediction mechanism.

We will describe several models that connect the voting patterns of lawmakers to the original text
of bills. One of these models embeds the statistical assumptions of supervised topic modeling (Blei
and McAuliffe, 2008) into the ideal point model, where the locations of the bills are predicted from
the latent topics in their texts. This model-—the ideal point topic model-—can predict complete votes
on pending bills and provides a new way of exploring how legislative language is correlated with
political support. The other models predict inferred ideal points using different forms of regression

on phrase counts.

2The probability o is sometimes taken to be probit; this amounts to 1,2 taking on the Normal distribution.

SPopularity is also called difficulty, and polarity is called discrimination, in the context of educational testing
applications of this model (Clinton et al., 2004). We move away from these terms in favor of more appropriate terms
for this application.
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In the following sections, we review the details of ideal point estimation and develop several
models for predicting votes from legislative text. We derive an approximate posterior inference
algorithm for ideal point models based on variational methods and analyze six Congresses (12 years)
of legislative data from the United States Congress. Given a legislative history, these models can
accurately predict votes on future legislation. One of these models, the ideal point topic model, can
help summarize and visualize the political landscape of a government body based both on the voting
patterns of its members and the language of its issues.

We now develop models relating the text of a bill to the variables aq and by. Associating text
to bill variables has a predictive advantage because new bills can be situated in the space of ideal
points. It also has an interpretive advantage because language becomes associated with political
sentiment.

Modeling ideal points with text regression. We developed two predictive ideal-point models
which use text regression (Kogan et al., 2009). For these, we first fit an ideal-point model to a training
set of bills and all lawmakers using the variational algorithm described in Section 5.1. We then fit
Lasso regression? (LARS)® and Ridge regression (L2) to these bills’ parameters ag4, by using a vector
of their n-gram® counts wy as covariates.

Modeling ideal points with supervised topics. The text regression models link individual

words or phrases to bill sentiment. In this section, we connect textual themes with bill sentiment.

4Implemented in the “penalized” package for R
Simplemented with the “lars” package for R
6See Section 5.3 for details.
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We refer to this model as an ideal point topic model (IPTM).

To model themes, we use the assumptions of supervised Latent Dirichlet Allocation (sLDA) (Blei
and McAuliffe, 2008). As in Latent Dirichlet Allocation (Blei et al., 2003), each bill is represented
as a mixture of latent topics 6,, where each of K topics (i is a multinomial probability distribution
over terms. For the n'" term of bill d, we draw topic zg, from Mult(;), and then draw word wg,
from the topic 3,,,.

Like sLDA, the ideal point topic model further assumes each bill d is attached to a response
variable. In this case, the response variable is the 2-component vector of bill variables (a4, bq). The
distribution of the response is a linear model whose covariates are the empirical distribution of the

topics z4 for the bill,

aq ~ N(nl—zda 052{)

bd ~ N(nl;rzdvo'g)a

where Zg = (1/N) ", Zan. This setting is more complex than the original sSLDA model: the response
variables are hidden—they are not observed directly, but are used downstream in the voting model.
Finally, we add a Gaussian prior to 1. The full model is represented as a graphical model in
Figure 6.2.
The only observed variables in the model are the bill texts and votes. Our goal in fitting this

model is to uncover the posterior

p(ad,bd,zu,n,ﬂ,z,9|W,V), (52)

which can then be used in exploratory or predictive tasks. Conditioned on these variables, our anal-
ysis proceeds with the posterior distribution of the ideal points, polarities and popularities, topics,
and coefficients. Computing the posterior exactly is intractable, so we use variational inference to
approximate it. We describe this in further detail in Section 6.2.

This posterior allows us to explore the connection between language and political tone. For
example, the coefficients 1 are a direct connection between bills’ topics and the political tone of
these bills. Examples of this are provided in Section 5.3. The topics 3, learned from both text and
votes, provide a lexical window into legislative issues. The parameters 1, 8 together also allow us to

predict votes using the text of new bills; Section 6.2 provides detail about this.
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Multimodal solutions and identification

Note that a fit of the ideal point model has multiple modes. In one mode, Democrats tend to have
positive ideal points, while Republicans are negative; in another, Republicans are positive, while
Democrats are negative. To keep fits of the different models identifiable, several researchers have
applied nonzero priors over specific lawmakers to encourage the model to prefer one of these modes
(Jackman, 2001; Clinton et al., 2004; Martin and Quinn, 2002).

In the study in Section 5.3, we anchor four lawmakers with strong priors (04 = 1073) at ideal
points +4. We select two congresspersons from each chamber and two from each party: Kennedy
(S-Dem) and Waxman (H-Dem) are centered at +4 and Enzi (S-Rep) and Donald Young (H-Rep)
are centered at -4.” We selected these Senators for consistency with previous work such as Clinton
et al. (2004). We selected the Representatives because they have held long offices in the House.
Without these sharp priors, the model still discovers ideal points which cleanly separate political
parties but may converge on “opposite” modes in different fits. With the priors, we obtain consistent

ideal points at the expense of predictive performance.

Related work

Ideal point models, a form of spatial voting model, have roots as far back as the 1920s (Enelow
and Hinich, 1984). They are fit by both frequentist (Poole and Rosenthal, 1985; Heckman and
Snyder, 1996) and Bayesian methods (Jackman, 2001; Martin and Quinn, 2002; Clinton et al.,
2004), have been embedded in a time series (Martin and Quinn, 2002; Wang et al., 2010), and have
been developed for higher dimensional political spaces (Jackman, 2001; Heckman and Snyder, 1996).

Topic models have been applied to Senate speeches, such as to discern “the substantive structure
of the rhetorical [legislative] agenda” (Quinn et al., 2006). They have also been used with legislative
speeches to gauge lawmakers’ sentiment toward legislation using roll-calls (Thomas et al., 2006).
Modeling sentiment in text is more generally discussed in the field of sentiment analysis; see Pang
and Lee (2008) for a review.

The ideal point topic model relates closely to user-recommendation models based on matrix
factorization (Salakhutdinov and Mnih, 2008). Matrix factorization methods for recommendation
are akin to large-scale spatial behavior models (though usually with no “popularity” term, which
acts as an intercept). Many of these matrix factorization models for user recommendation do not

provide a method of predicting one user’s item preference without other users’ preferences on the

7This value was selected to be large yet not completely out of the ordinary.
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same item.

Two works stand out as closely related to this work. One of these is fLDA, which models binary
or continuous ratings with user affinity to topics (Agarwal and Chen, 2010). Another is Wang et al.
(2010), who describe a similar application by combining topic models and matrix completion. Their
work also draws on ideal point models, models transitions over time, and is designed to learn the
dimensionality of the latent factors. Under the generative assumptions of their model, bills and
matrix cells (e.g., votes) are conditioned on a shared mixture; in our model, votes are conditioned

on words’ topics.

Posterior estimation for the ideal point topic model

Computing the posterior in Equation 5.2 is intractable. Posterior inference for traditional Bayesian
ideal point models is traditionally implemented with MCMC methods such as Gibbs sampling (John-
son and Albert, 1999; Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004). However, in
the ideal point topic model, fast Gibbs samplers are unavailable because the conditionals needed
are not analytically computable; an MCMC strategy would require a more complicated sampling
scheme. We therefore use an alternative algorithm—which can be applied to both the standard ideal
point model and the ideal point topic model—which uses variational methods (Jordan et al., 1999).

Recall from Chapters 2 and 3 that variational inference requires specification of a variational
distribution which will serve as a proxy for the true posterior distribution. Word assignments z4,
and topic proportions are governed by multinomial parameters ¢4 and Dirichlet parameters 4, as in
LDA (Blei et al., 2003). The variational distribution for lawmakers’ ideal points x,,; bills’ parameters

aq,bq; and coefficients 1 are Gaussian with respective means 7, Gq4, b, ) and variances o2, o2, 02

T Uaa 0-57

and 0727. The variational distribution is

q(TaaT, d7 Oa, (ba 9) = H Q(xulTU7 Uz) H Q(ad7 bd|a/d7 0-?1) H Q<9d|’7d) Hp(zn|¢n)Q("7|ﬁ, Uﬁ) (53)

D D Na

Inference proceeds by minimizing the KL between the variational posterior (Equation 5.3) and
the true posterior (Equation 5.2), which is equivalent to maximizing a lower bound on the marginal
probability of the observations. Coordinate ascent only works for some of the random variables, but
we must use gradient ascent on a4, by, and x,,. We give further details of the variational inference
algorithm in Appendix B.5.

Prediction After they are fit to lawmakers’ votes and bill text, the variational parameters T,
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7, and 8 can be used to estimate the vote of each lawmaker on a new bill d using its text. To
predict whether lawmaker u votes yea on d, the per-word parameters ¢,, of d are estimated using
the topics 5. Once ¢ has been estimated, the probability of a yea vote is given by p(v,q = yea) =
o (Tu(Patp) + Gafa) &, where ¢4 is Nid ZNd ¢n. In practice, we fit 7 with no regularization after the

model has converged. This gives slightly better results which are more robust to parameter selection.

5.3 An empirical analysis

Analyzing the U.S. House and Senate

We studied the performance of these models on 12 years of data from the United States House of
Representatives and Senate. We first demonstrate how the ideal point topic model can be used to
explore legislative data; then we evaluate the models’ generalization performance in predicting votes
from bill texts.

We collected roll-call votes for Congressional sessions 106 through 111 (January 1997 to January
2011). We used votes about bills and resolutions, and only votes regarding the legislation as a whole
(as opposed to, e.g., amendments of the legislation). We downloaded the data from www.govtrack.
us, an independent Website which provides comprehensive legislative information to the public. Our
collection contains 4,447 bills, 1,269 unique lawmakers, and 1,837,033 yea or Nay roll-call votes.

To select the vocabulary, we lemmatized (i.e., normalized the forms of) words in the bills with
Treetagger (Schmid, 1994). Then we retained a vocabulary of statistically significant n-grams (1 <
n < 5) using likelihood ratios. These n-grams were treated as terms.” We removed n-grams occurring
in fewer than 0.2% of all bills and more than 15% of bills. We also removed an n-gram if it accounted
for more than 0.2% of all tokens or fewer than than 0.001% of all tokens. After this process, our
vocabulary contained 4,743 unique n-grams.

We used the anchor lawmakers described in Section 5.1. We ran variational inference until the

change in increase in the objective function was less than 0.01%.

Exploring topics and bills

In this section, we examine a fit of the ideal point topic model for all the bills and votes of a session.

This demonstrates the model’s use as an exploratory tool of political data. For this analysis, we used

8The estimate Eq [0(zw(Z4mp) + ZaMa)] can be more theoretically justified, but results from the two estimates are
(in practice) identical.
9When one n-gram subsumes another, we chose to observe the longer of the two
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Figure 5.4: Vote log likelihood on heldout votes. Models are shown by color for different regular-
izations (x axis), for Congresses 106 to 111. For LARS and L2, the regularization is the complexity
parameter; for the I'TPM, the regularization is the the number of topics. The yea baseline is the
horizontal black line. LARS is below the fold for 106-107. The ideal point topic model performs
with less variance across its regularization parameter.
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Figure 5.5: Topics can be visualized in the same latent political space as lawmakers and bills. This
plot shows selected topics by coefficients 7j, for a 64-topic model (s are normalized by mean and
variance). Two topics (people, month, recognize, ... and clause, motion, chair, ...) with popularity
4.68 and polarity 7.4 (respectively) are not shown.

dispersion o4 = 0, = 1.0 and 64 topics. We focus on the 111*" session (January 2009 to January
2011).

Exploring topics with 7j. As noted in Section 5.1, the coefficients 7 relate each topic’s weight
in a bill with the bill’s popularity and polarity parameters. Figure 5.5 shows some example topics
and their corresponding coefficients 7. Below we describe some of these topics in more detail and
connect them to the data.

One popular topic in the 111th Congress focused on national recognition: people, month, recog-
nize, history, week, woman. In contrast, the least-supported topic was more procedural, frequently
appearing in bills under consideration or with many amendments (clause, motion, chair, print, offer,
read). In this case, such legislation is sometimes summarily rejected before further consideration;
the language of amendments is a signal that legislation is contentious.

While these topics often explained overwhelming support or rejection of legislation, much legis-
lation was considerably more partisan.

Health Care. One contentious topic was about qualification for public health care: care,
subparagraph, applicable, coverage, hospital, eligible. This topic was among the most-Democratic
10% of topics, in large part because it helped to explain the Patient Protection and Affordable Care
Act, i.e. the “Health Care Bill” of 2009. Although this 906-page bill was barely passed: of the
311 Democrats voting on it, 276 voted in favor; of the 217 Republicans voting on it, none voted in
favor. The model was moderately accurate on this bill: it correctly predicted 93.8% of votes. The

two other topics highly expressed in this bill were about different aspects of public health, including
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one about government health options (medicare and social security) and one about health insurance
coverage; both were slightly Democratic.

NASA Authorization. Another contentious topic was about spaceflight: space, flood, NASA,
administrator, research, transportation. This topic was expressed in one of the most-poorly predicted
bills of the 111*" Congress. This bill, the NASA Authorization Act of 2010, was a “compromise
between the Obama administration, which wants... a commercial space industry in which private
companies would transport astronauts, and House lawmakers, who wanted... one government-owned
rocket” (Herszenhorn, 2010). In the house vote (a Senate record was not kept), of 249 Democrats
voting on the bill, 185 voted in favor; of the 173 Republicans, 119 voted in favor. Because this bill
had mixed but nonpartisan support, the model could not represent it well, with only 72% of votes

correctly predicted.

Checking the ideal points

We can also use the in-sample fit to assess the quality of the ideal points of the lawmakers. In
classical ideal point modeling, this is done via in-sample accuracy: How well does the model explain
the observed votes?

The average per-lawmaker accuracy in the in-sample fit was 96% (only 10% of lawmakers had
accuracy lower than 90%). As expected, accuracy increases with more votes (p = 0.51). Among
lawmakers with over 100 votes, only two stand out. Donald Young (713 votes; accuracy 0.83) had
a pre-defined ideal point (see Section 5.1). Ron Paul, a Republican in the 111*" Congress, was also
poorly predicted (761 votes; accuracy 0.84). Paul is known for his Libertarian beliefs, even having
run for President for the Libertarian party in 1988.

The poor prediction of Paul points to a limitation of the 1-dimensional ideal-point model, which
can only capture the two main parties, instead of a limitation of the supervised prediction: fitting
votes to the classical ideal point model (ignoring bill text), Paul’s in-sample accuracy was consistently
poor across sessions. We will address this limitation in the next chapter by incorporating a bill’s

issues in the prediction task.

Predicting votes from text

Prediction on heldout bills. We measured predictive accuracy and log likelihood for these models
under a variety of regularization settings (LARS is parameterized by 0 < f < 1, L2 is parameterized

by regression coefficient A > 0, and IPTM is parameterized by topics K).
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We also devised two baselines for comparison with the three models described so far. The first
of these provides a lower bound: assume all votes are yea. Because the majority (85%) of votes in
our corpus were yea votes, this presents a more reasonable overall baseline than random guessing
(at 50%). We call this model the yea model. The second baseline fit a logistic regression trained for
members of each party (with a separate one for mixed or independent lawmakers), with terms as
covariates. This baseline (implemented with the R glm library) used too much memory to use more
than 800 terms and therefore led to results worse than the yea baseline. We believe that a better
baseline could be used.

For each 2-year period (called a Congress), the bills were partitioned into 6 folds. For each model,
we iteratively (1) remove a fold, (2) fit the model to the remaining folds (by Congress), and (3) form
predictions on the bills in the removed fold. Across folds, we thus obtain a complete data set of
held-out votes.

Across all sessions, the yea baseline predicts votes correctly 85% of the time. The ideal point
topic model is better, correctly predicting 89% of votes with 64 topics (this means that 62,000 more
votes are correctly predicted). Overall performance for L2 was best for A = 1000 (90%), and LARS
was best at f = 0.01 (82%). While the ideal point topic model had lower accuracy than L2, its
log-likelihood was nearly the same. These results are summarized in Figure 5.3, and further details
are in Appendix B.6.

Sequential prediction. Our final study examined the performance of these models on predict-
ing future votes from past votes. To do this, we fit a 64-topic IPTM and L2 predictive models on the
first 3,6,9,...,21 months of a Congress.' We then tested these each of these fits on the following
three months of unseen votes. The ideal-point topic model correctly predicted 87.0% of votes, and
L2 correctly predicted 88.1% of votes; their log-likelihood was identical.

With these models, one could predict 31,000 to 55,000 votes above the baseline, based only on

the text of the bills. The simpler of the two models, L2, performs better at prediction.

5.4 Conclusions and limitations of these models

We have developed several models associating the text of legislation to lawmakers’ voting patterns.
These models provide a way of exploring large collections of legislative data and predicting the votes
of new bills. The text-regression models and the ideal point topic model have incorporated bill texts

into the simplest kind of ideal point model of roll call data.

10A bug prevented LARS from completing in most runs of this setting
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Though we were motivated by (and focused on) political science data, we note that these models
are among several (e.g., Agarwal and Chen (2010)) that can be applied in a variety of collaborative
filtering settings. They provide a way to model a collection of users and their decisions about
collections of textual items.

One of the central advantages of latent-variable models is their modularity. Because we have
modeled the text of legislation as a vector of topics (or a vector of word counts), it is straightforward
to incorporate other elements of the legislative process, such as speech transcripts (Quinn et al.,
2006; Thomas et al., 2006) or bill sponsor, into this model’s supervision. This could improve both
the predictive power and exploratory capabilities of the ideal point topic model. The modularity of
latent-variable models allows us to swap in modeling assumptions for each of these types of data.

However, even optimal features for prediction would be limited by the power of the downstream
model for lawmakers’ votes on bills. Here we have studied multiple topics with a one-dimensional
political space. As noted in Section 5.3, this is a predictive bottleneck. (The “true” number of
dimensions is debatable—Heckman and Snyder (1996) argued that there are at least 6 statistically
significant dimensions in roll-call data, while Jackman (2001) barely found more than one.) One
solution is to increase the dimension of the lawmaker and bill variables or use a mixture model as in
Wang et al. (2010), which can increase the strength of the model at the expense of interpretability.

An alternative solution is to model individual lawmakers’ affinities to issues, using ideas explored
by Agarwal and Chen (2010) and Wang and Blei (2011) for matching users with text content. We
will use these ideas in the following chapter, where we explicitly model lawmakers’ positions on a
variety of issues. This will allow us to represent lawmakers’ votes better than an ideal point model

while providing an interpretable window into individual lawmakers’ voting behavior.
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Chapter 6

Lawmakers’ issue preferences in

the U.S. Congress

In the last chapter we introduced several models for predicting lawmakers’ votes on previously-unseen
bills. One limitation of these models—and one-dimensional ideal point models in general—is that
they were designed around a restrictive latent space: lawmakers are described by a single number,
and the predictive performance of these models is bottlenecked by lawmakers for whom a single
number is not sufficient.

Indeed, there are some votes that the traditional ideal point given in Equation 5.1 fails to capture.
For example, Ronald Paul, Republican representative from Texas, and Dennis Kucinich, Democratic
representative from Ohio, are poorly modeled by ideal points because they diverge from the left-right
spectrum on issues like foreign policy. Because some lawmakers deviate from their party on certain
substantive issues, their positions on these issues are not captured by ideal point models.

In this chapter we will develop the issue-adjusted ideal point model, a latent variable model of
roll-call data that accounts for the contents of the bills that lawmakers are voting on. The idea is
that each lawmaker has both a general position and a sparse set of position adjustments, one for
each issue. The votes on a bill depend on a lawmaker’s position, adjusted for the bill’s content. The
text of the bill encodes the issues it discusses. Our model can be used as an exploratory tool for
identifying exceptional voting patterns of individual lawmakers, and it provides a richer description
of lawmakers’ voting behavior than the models traditionally used in political science.

In the following sections, we develop our model and describe an approximate posterior inference

algorithm based on variational methods. We will again analyze six Congresses (12 years) of legislative
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Figure 6.1: In a traditional ideal point model, lawmakers’ ideal points are static (top line of each
figure). In the issue-adjusted ideal point model, lawmakers’ ideal points change when they vote on
certain issues, such as Tazation (top) and Health (bottom).

data from the United States Congress. We finally show that our model gives a better fit to legislative
data and provides an interesting exploratory tool for analyzing legislative behavior.

An additional contribution of this chapter is that we will also motivate an alternative algorithm
for variational inference (which we fully describe in Appendix A) that will allow practitioners to

iterate more quickly with their modeling assumptions.

6.1 A model of exceptional voting patterns

A one-dimensional ideal point model fit to the House of Representatives from 2009-2010 correctly
models 98% of all lawmakers’ votes on training data. But it only captures 83.3% of Baron Hill’s
(D-IN) votes and 80.0% of Ronald Paul’s (R-TX) votes. Why is this?

The ideal point model assumes that lawmakers are ordered. Each bill d, described by polarization
aq and popularity by, splits them at a cut point —>%¢. Lawmakers to one side of the cut point are
more likely to support the bill, and lawmakers to the other side are likely to reject it. For lawmakers
like Paul and Hill, this assumption is too strong because their voting behavior does not fit neatly
into a single ordering. Their location among the other lawmakers changes with different bills.

These lawmakers do not change their positions randomly. They vote consistently within indi-
vidual areas of policy, such as financial regulation and education. Paul consistently votes against
United States involvement in foreign military engagements, a position that contrasts with other Re-

publicans. Democratic representatives from New York are more likely to hold conservative positions
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Figure 6.2: Left: the issue-adjusted ideal point model, which models votes v,4 from lawmakers and
legislative items. Classic item response theory models votes v using z,, and ag,by. For our work,
documents’ issue vectors @ were estimated fit with a topic model (left of dashed line) using bills’
words w and labeled topics 5. Expected issue vectors E, [@|w] are then treated as constants in the
issue model (right of dashed line). Right: Top words from topics fit using labeled LDA (Ramage
et al., 2009).

on financial services regulation, even though they vote Democratically on social issues.

We refer to voting behavior like this as issue voting. An issue is any federal policy area, such

i MW

as “financial regulation,” “foreign policy,” “civil liberties,” or “education,” on which lawmakers
are expected to take positions. Lawmakers’ positions on these issues will often diverge from their
traditional left/right stances. The model we develop in this chapter captures this intuition, which
we illustrated in Figure 6.1. Charles Djou is more similar to Republicans on Tazation (right) and
more similar to Democrats on Health (left), while Ronald Paul is more Republican-leaning on Health

and less extreme on Taxation.

6.1.1 Issue-adjusted ideal points

Suppose that there are K issues in the political landscape. We will use the words w, of each bill d to
code it with a mixture 64 of issues, where each element 64 corresponds to an issue; the components
of 8, are positive and sum to one. (These vectors will come from a topic model, which we describe
below.) In our proposed model, each lawmaker is also associated with a K-vector z, € R¥, which
describes how her ideal point changes for bills about each issue.

We use these variables in a model based on the traditional ideal point model of Equation 5.1.
As above, x,, is the ideal point for lawmaker u and a4, by are the polarity and popularity of bill d.

In our model, votes are modeled with a logistic regression

P(Vud|@d, by 2w, Ty, Wq) = O ((zIEq [Oalwa] + zu)aa + ba) , (6.1)
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where we use an estimate E, [04|wg] of the bill’s issue vector from its words wqy as described below.

We put standard normal priors on the ideal points, polarity, and difficulty variables. We use
Laplace priors for z,: p(zuk | A1) < exp (—=A1]|zuk||1). This enforces a sparse penalty with MAP in-
ference and a “nearly-sparse” penalty with Bayesian inference. See Figure 6.2 (left) for the graphical
model.

To better understand this model, assume that bill d is only about Finance. This means that 8,
has a one in the Finance dimension and zero everywhere else. With a classic ideal point model, a
lawmaker u’s ideal point, z,, gives his position on each issue, including Finance. With the issue-
adjusted ideal point model, his effective ideal point for Finance, T, + Zy rinance, gives his position
on Finance. The adjustment 2y rinanc. affects how lawmaker u feels about Finance alone. When
2y, = 0 for all u, k, this model becomes the classic ideal point model.

This model lets us inspect lawmakers’ overall voting patterns by issue. Given a collection of votes
and a coding of bills to issues, posterior estimates of the ideal points and per-issue adjustments give

us a window into voting behavior that is not available to classic ideal point models.

6.1.2 Using Labeled LDA to associate bills with issues.

Equation 6.1 adjusts a lawmaker’s ideal point by using the conditional expectation of a bill’s thematic
labels 8, given its words wg. We estimate this vector using labeled latent Dirichlet allocation
(LDA) (Ramage et al., 2009).

Labeled LDA is a topic model, a bag-of-words model that assumes a set of themes for the
collection of bills and that each bill exhibits a mixture of those themes. The themes, called topics,
are distributions over a fixed vocabulary. In unsupervised LDA (Blei et al., 2003) they are learned
from the data. In labeled LDA, they are defined by using an existing tagging scheme. Each tag is
associated with a topic; its distribution is found by taking the empirical distribution of words for
documents assigned to that tag.! This gives interpretable names (the tags) to the topics.

We used tags provided by the Congressional Research Service (Congressional Research Service,
2011), which provides subject codes for all bills passing through Congress. These subject codes
describe the bills using phrases which correspond to traditional issues, such as Civil rights and
National security. Each bill may cover multiple issues, so multiple codes may apply to each bill.
(Many bills have more than twenty labels.) We used the 74 most-frequent issue labels. Table 6.2

2

(right) illustrates the top words from several of these labeled topics.® We fit the issue vectors

IRamage et al. (2009) explore more sophisticated approaches, but we found this simplified version to work well.
2 After defining topics, we performed two iterations of unsupervised LDA with variational inference to smooth the
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E [64]w,] as a preprocessing step. In the issue-adjusted ideal point model (Equation 6.1), E [64] was
treated as observed when estimating the posterior distribution p(z,, aq,bd, 24|E [04|wa] , vua). We

summarize all 74 issue labels in Appendix B.7.4

Related Work

Item response theory has been used for decades in political science (Clinton et al., 2004; Martin
and Quinn, 2002; Poole and Rosenthal, 1985); see Enelow and Hinich for a historical perspective
(Enelow and Hinich, 1984) and Albert for Bayesian treatments of the model (Albert, 1992). Some
political scientists have used higher-dimensional ideal points, where each lawmaker is attached to a
vector of ideal points @, € R¥ and each bill polarization ay takes the same dimension K (Heckman
and Snyder, 1996). The probability of a lawmaker voting “Yea” is o(xLay + bg). The principle
component of ideal points explains most of the variance and explains party affiliation. However,
other dimensions are not attached to issues, and interpreting beyond the principal component is
painstaking (Jackman, 2001).

Note that our goal in this chapter is fundamentally different than it was in the last chapter. The
last chapter describes how to predict votes on bills which had not yet received any votes. Those
models fit ay and by using supervised topics, but the underlying voting model is one-dimensional:
it cannot model individual votes better than a one-dimensional ideal point model. Along the same
lines, Wang et al. created a Bayesian nonparametric model of votes and text over time (Wang et al.,
2010). Predicting votes on new bills is a non-goal in this chapter, in contrast to these related works
(which do not model individuals’ affinity toward issues).

The issue-adjusted model is conceptually more similar to recent models for content recommen-
dation. Specifically, Wang and Blei (2011) describe a method to recommend academic articles to
individuals, and Agarwal and Chen (2010) propose fLDA to match users to Web content (Agarwal
and Chen, 2010). Agarwal et al. learn a separate user-item offset 3,4 and a user-topic affinity which
interacts with E, [64|wq]. Wang and Blei (2011) fit a linear regression, again learning a user-topic
affinity. Our model differs in its introduction of the polarity a4: lawmakers take a position z,; on
issue k which only creates an affinity toward k if the bill leans the correct way. Finally, we have an

explicit goal of interpretability.

word counts.
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6.2 Inference for the adjusted ideal point model

With a way to map bills to issues, we turn to fitting lawmakers’ issue adjustments z,. We estimate
issue adjustments z,, by using the observed votes v and bills’ issues 84 with the posterior distribution
p(z, z,a,b|v, 0).

Bayesian ideal point models are usually fit with Gibbs sampling (Johnson and Albert, 1999;
Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004). However, fast Gibbs samplers are
unavailable for our model because the conditionals needed are not analytically computable. We
therefore estimated the posterior with variational Bayes.

Recall that in variational Bayes, we posit a family of distributions {g,} over the latent variables
that is likely to contain a distribution similar to the true posterior (Jordan et al., 1999) and select n
to minimize the KL divergence between the variational and true posteriors. In the ideal point topic

model, we let {¢g,} be the family of fully factorized distributions
g(z,z,a,bn) = [ [N (@ulu, 03 )N (20|20, Az,) [ [N (adlda, o2, )N (balba, 07,), (6.2)
U D

where above we parameterize our variational posterior with 5 = {(Z4,04), (3u,02,), (@, 04), (b, o) }.
Above we assumed full factorization to make inference tractable. Though simpler than the true
posterior, fitted variational distributions can be excellent proxies for it. The similarity between ideal
points fit with variational inference and MCMC has been demonstrated in particular (Gerrish and
Blei, 2011).

As seen in Chapters 2, 3 and 5, variational inference usually proceeds by optimizing £, =
Eq, [logp(, 2,a,b,v,0)] —E,, [log gy (7, 2z, a,b)], with gradient or coordinate ascent. Optimizing this
bound is challenging when the expectation is not analytical, which makes computing the exact
gradient V, L, more difficult. In this chapter we will take a different approach, by optimizing
this bound with stochastic gradient ascent (Robbins and Monro, 1951; Bottou and Cun, 2004),

approximating the gradient with samples from g,:

1 Oqn
Valn ~ 57 > an (log p(Ym., v, 6) — 1og g5 (ym)), (6.3)

Ym ~qn

where Y, = (T, Zm, @m, by) is a sample from ¢,,. The algorithm proceeds by following this stochas-
tic gradient with decreasing step size; we provide much more complete details of this algorithm, along

with an empirical analysis of it, in Appendix A.
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6.3 Understanding twelve years of U.S. congressional votes

In this section we will summarize the data on which we fit the issue-adjusted ideal point model and
the methods we used to fit the model. In the subsequent sections we will fit models to this data to
evaluate these models’ performance on votes from this period and provide a qualitative look at U.S.
lawmakers’ issue preferences. We begin this section with a closer look at votes in the U.S. Congress

from 1999-2010.

The United States Congress from 1999-2010

We studied U.S. Senate and House of Representative roll-call votes from 1999 to 2010. This period
spanned Congresses 106 to 111, the majority of which Republican President George W. Bush held
office. Bush’s inauguration and the attacks of September 11th, 2001 marked the first quarter of
this period, followed by the wars in Iraq and Afghanistan. Democrats gained a significant share of
seats from 2007 to 2010, taking the majority from Republicans in both the House and the Senate.
Democratic President Barack Obama was inaugurated in January 2009.

Not all votes in the U.S. Congress are recorded during roll-calls. Some bills are simply passed
when no lawmaker objects to an anonymous vote and a voice vote is unambiguous. We ignored
votes on such bills. Bills with roll-call votes, which are explicitly recorded, are more interesting,
because some lawmaker wanted an explicit record of votes on the bill. Such records are useful for
demonstrating lawmakers’ (and lawmakers’ opponents’) positions on issues. Roll calls serve as an
incontrovertible record for any lawmaker who wants such a record.

We downloaded both roll-call tables and bills from www.govtrack.us, a nonpartisan website
which provides records of U.S. Congressional voting (Govtrack website, 2010). Not all bills were
available in text form, but we had over one hundred for each Congress. Votes on bills without text
were discarded. We provide a summary of statistics for our datasets in these Congresses in Table 6.3.

We fit both models to two-year periods in the House and (separately) to two-year periods in the
Senate. Some bills received votes in both the House and Senate; in those cases, the issue-adjusted
model’s treatment of the bill in the House was completely independent of its treatment by the model

in the Senate.

Vocabulary

To fit the labeled topic model to each bill, we represented each bill as a vector of phrase counts (the

vocabulary). This “bag of phrases” is similar to the “bag of words” assumption commonly used in
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Figure 6.3: Roll-call data sets used in the experiments. These counts include votes in both the
House and Senate. The number of lawmakers within each House and Senate varies by congress
because there was some turnover within each Congress. In addition, some lawmakers never voted
on legislation in our experiments (recall, we used legislation for which both text was available and

for which the roll-call was recorded).
Statistics for the U.S. Senate

Congress Years Lawmakers Bills Votes
106 1999-2000 81 101 7,612
107 2001-2002 78 76 5,547
108 2003-2004 101 83 7,830
109 2005-2006 102 74 7,071
110 2007-2008 103 97 9,019
111 2009-2010 110 62 5,936

Statistics for the U.S. House of Representatives

Congress  Years Lawmakers Bills Votes
106 1999-2000 437 345 142,623
107 2001-2002 61 360 18,449
108 2003-2004 440 490 200,154
109 2005-2006 441 458 187,067
110 2007-2008 449 705 287,645
111 2009-2010 446 810 330,956

natural language processing. This vocabulary omitted content-free phrases such as “and”, “when”,
and “the” (known as stop words) and awkward, non-informative phrases such as “and the”. The
full vocabulary consisted of 5,000 n-grams. We provide further details of vocabulary selection in
Appendix B.7.5. We used these words to algorithmically define topics and assign issue weights to

bills as described in Section 6.1.2.

Identification

We discussed in Section 5.2 the ways in which the ideal point model is under-specified. The issue-
adjusted ideal point model has similar identification nuances. We address this by flipping ideal
points (and bill polarities) if necessary to make Republicans positive and Democrats negative. As

with the ideal point model, this does not affect model performance.

Traditional ideal points vs. issue-adjusted ideal points

The issue-adjusted ideal point model in Equation 6.1 is a generalization of the classic ideal point
model (they are the same when z,; = 0 for all u, k). The goal of this section is to empirically justify
this increased complexity with a comparison of issue-adjusted ideal points and traditional ideal
points. We first give a qualitative discussion of these differences and follow this with quantitative

validation of the issue-adjusted model.
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Examples: adjusting for issues

We give a side-by-side comparison of traditional ideal points x, and issue-adjusted ideal points
(7, + 2I0) for the ten most-improved bills of Congress 111 (2009-2010) in Table 6.4. For each bill,
the top row shows the ideal points of lawmakers who voted “Yea” on the bill and the bottom row
shows lawmakers who voted “Nay”. The top and bottom rows are a partition of votes rather than
separate treatments of the same votes. On these bills, “Yea” and “Nay” votes fall to the correct
sides of the split more often when lawmakers’ issue-adjusted ideal points are used instead of their

traditional ideal points.

A comparison of issue-adjusted ideal points z, and traditional ideal points

The traditional ideal point model (Equation 5.1) uses one parameter per lawmaker—a,,—to explain
all of her voting behavior. In contrast, the issue-adjusted model (Equation 6.1) uses x, along with
seventy-four other parameters—one per issue—to describe each lawmaker. How does x,, under these
two models differ? We fit ideal points to the 111th House (2009 to 2010) and issue-adjusted ideal
points Z,, to the same period (A = 1) and compare these ideal points in Figure 6.5

In this figure we use an alternative to a scatterplot called a parallel plot. In a parallel plot (which
we will use several more times in this chapter), we plot the two variables we wish to compare along
parallel axes and draw line segments connecting two points when they represent the same variable
under different treatments. In Figure 6.5, the top axis axis represents a lawmaker’s ideal point x,,
under traditional IRT, and the bottom “treatment” axis represents his ideal point z, under the
issue-adjusted model. Here and later we will use the convention that the bottom row represents a
special treatment. When it is helpful, we use darker line segments for those items which change the
most under treatment.?

In the parallel plot in Figure 6.5, the traditional ideal point model’s Z,, and the issue-adjusted
model’s un-adjusted ideal points &, are similar — their correlation coefficient is 0.998. The most
noteworthy change is that lawmakers appear more partisan under the traditional ideal point model
— enough that Democrats are completely separated from Republicans — while issue-adjusted ideal
points provide a softer split. This is not surprising, because the issue-adjusted model is able to
use lawmakers’ adjustments z, to more than make up for this difference. For the same reason,

issue-adjusted ideal points are slightly less extreme than classic ideal points.

3Specifically, we fit a linear model to predict the bottom row from the top row and color line segments with opacity
proportional to the squared residual of this pair. We specified opacity in ggplot for R with the alpha parameter.
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Figure 6.4: Issue-adjusted ideal points can explain votes better than standard ideal points. The
x-axis of each small plot shows ideal point or issue-adjusted ideal point for a lawmaker. Each bill’s
indifference point —Z—Z is shown as a vertical line. Positive votes (orange) and negative votes (purple)
are better-divided by issue-adjusted ideal points.

Bill description

Votes by ideal point

Votes by adjusted point

H. Res 806 (amending an ed-
ucation/environment trust
fund)

Providing for conditional
adjournment /recess of
Congress

Establish R&D program for
gas turbines

Recognizing ~ AmeriCorps
and community service

Providing for conditional
adjournment of Congress

Providing for the sine die
adjournment of Congress

Providing for an adjourn-
ment / recess of Congress

Preventing child marriage in
developing countries

Providing for a conditional
House adjournment

Congratulating UMD Men’s
basketball
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Figure 6.5: Classic issue-adjusted ideal points z, (bottom row) separate lawmakers by party better
than un-adjusted ideal points z,, from the issue-adjusted model (top row). Republicans are colored
red, and Democrats are blue. These ideal points were estimated in the 111th House of Represen-
tatives. The line connecting ideal points from each model has opacity proportional to the squared
residuals in a linear model fit to predict issue-adjusted ideal points from ideal points.
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Evaluation of the predictive distribution

The issue-adjusted model contains the ideal point model as the special case z,r = 0,Vu, k. Does this
greater expressivity—74 extra random variables per lawmaker—model meaningful patterns? We

answer this question by comparing the issue-adjusted ideal point model with two alternatives:

1. A variational ideal point model (Equation 5.1), which treats lawmakers with the single variate

Ty

2. A permutation test. The goal of this test is to attribute any improvement over traditional
ideal points to the issues assigned to bills. In this test, we randomly permute topic vectors’
document labels: (01,...,0p) = (0x,(1)...0x, (D)), for five random permutations m, ..., 7s.
This permutation test removes information contained in the matching from bills and topic
mixtures. At the same time, the empirical distribution over topic mixtures 84 stays the same,
and each bill is still matched to a topic mixture with ), 64 = 1. This is important because
it any improvement we see over traditional ideal points is due to the bills’ topics, not due to

spurious factors (such as the change in dimension).

Sensitivity to \. The main parameter in the issue-adjusted model is the regularization A, which
is shared for all issue adjustments. We report the effect of different A by fitting the issue-adjusted
model to the 109th Congress (1999-2000) of the House and Senate for a range A = 0.0001, .. .,1000
of regularizations. We performed 6-fold cross-validation, holding out one sixth of votes in each

fold, and calculated average log-likelihood log p(vud\zﬁu,iu,dd,i)d) for votes Viaou: I

Vud € Vieldout
the heldout set. Following the algorithm described in Section 6.2, we began with M = 21 samples
to estimate the approximate gradient (Equation 6.3) and scaled it by 1.2 each time the ELBO £
dropped below a threshold, until it was 500. We also fixed variance 02,02, 02,02 = exp(—5). We
summarize these results in Table 6.6.

The variational implementation generalized well for the entire range, representing votes best in
the range 1 < A < 10. Log-likelihood dropped modestly for A < 1. In the worst case, log-likelihood
was -0.159 in the House (this corresponds with 96% heldout accuracy) and -0.242 in the Senate (93%

heldout accuracy).

Performance across all sessions. We fit the issue-adjusted model to both the House and Senate
for Congresses 106 to 110 (1999-2010) with A = 1. For comparison we also fit an ideal point model

to each of these congresses and fit an issue-adjusted model to each congress with topics’ document
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Figure 6.6: Average log-likelihood of heldout votes by regularization A. Log-likelihood was averaged
across folds using six-fold cross validation for Congress 109 (2005-2006). The variational distribution
represented votes with higher heldout log-likelihood than traditional ideal points for 1 < A < 10.
In a model fit with permuted issue labels (Perm. Issue), heldout likelihood of votes was worse than
traditional ideal points for all regularizations .

Model Senate
A le-4 le-3 le-2 le-1 1 10 100 1000
Ideal -0.188 -0.189 -0.189 -0.189 -0.189 -0.190 -0.189 -0.189

Issue (LDA) | -0.191 -0.191 -0.188 -0.18 -0.188 -0.189 -0.189 0.198
Perm. Issue | -0.242 -0.245 -0.231 -0.221 -0.204 -0.208 -0.208 -0.208

Model House
A le-4 le-3 le-2 le-1 1 10 100 1000
Ideal -0.119 -0.119 -0.119 -0.119 -0.120 -0.119 -0.119 -0.119

Issue (LDA) | -0.159 -0.159 -0.158 -0.139 -0.118 -0.119 -0.119 0.119
Perm. Issue | -0.191 -0.192 -0.189 -0.161 -0.122 -0.120 -0.120 -0.120

Figure 6.7: Average log-likelihood of heldout votes across all sessions for the House and Senate.
Log-likelihood was averaged across folds using six-fold cross validation for Congresses 106 to 111
(1999-2010) with regularization A = 1. The variational distribution had higher heldout log-likelihood
for all congresses in both chambers than the the ideal point model and the issue-adjusted distribution
fit from permuted data.

Model Senate
Congress 106 107 108 109 110 111
Ideal -0.209 -0.209 -0.182 -0.189 -0.206 -0.182

Issue (LDA) | -0.208 -0.209 -0.181 -0.188 -0.205 -0.180
Issue (label) | -0.208 -0.209 -0.182 -0.189 -0.206 -0.181
Perm. Issue | -0.210 -0.210 -0.183 -0.203 -0.211 -0.186

House

Ideal -0.168 -0.154 -0.096 -0.120 -0.090 -0.077
Issue (LDA) | -0.167 -0.151 -0.095 -0.118 -0.089 -0.076
Issue (label) | -0.167 -0.151 -0.094 -0.117 -0.088 -0.075
Perm. Issue | -0.167 -0.155 -0.096 -0.122 -0.090 -0.077
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labels permuted (€ (1), . ., 0x(1)). We summarize these results in Table 6.7. In all chambers in both
Congresses, the issue-adjusted model represents heldout votes with higher log-likelihood than an
ideal point model. Further, every permutation represented votes with lower log-likelihood than the

issue-adjusted model. In most cases they were also lower than an ideal point model.

Human labels vs. inferred text-based labels. The issue-adjusted model assumes a fixed issue
vector @y for each bill. We described a method in Section 6.1.2 for inferring this issue vector based
on the text of bills using labeled LDA; this method uses the original Congressional Research Service
(CRS) labels. What happens if we skip this preprocessing step and just use the original CRS labels?
We checked this by converting the original CRS issue labels into a K-vector of issues. For each
document d having issue labels J C K, each issue 8y, was assigned a weight of 1/|J] if k € J and
zero if k ¢ J. We fit an issue-adjusted model using these with CRS labels and performed six-fold
cross validation as described above and illustrate predictive performance in Table 6.7 in the “Issue
(label)” row.

Across Congresses, the predictive benefit in using text-based issue vectors over labels provided
by the CRS is negligible. However, we see at least two benefits in using text-based labels. First,
they provide a defensible way to distribute weight to each issue: an issue should receive less than
1/|J| weight if it is mentioned only in passing in a bill. Second, this method allows us to fit issue

vectors to the 107 bills which were missing CRS labels.

Changes in bills’ parameters. Bills’ polarity ay and popularity by are similar under both the
traditional ideal point model and the issue-adjusted model. We illustrate bills’ parameters in these
two models in Figure 6.8 and note two exceptions. First, procedural bills stand out from other
bills in becoming more popular overall. In Figure 6.8, procedural bills have been separated from
traditional ideal points. We attribute the difference in procedural bills’ parameters to procedural
cartel theory, which we describe further in Section 6.3.1. Second, the remaining bills have become
less popular but more polarized under the issue-adjusted model. This is because the model depends
more on lawmakers’ positions to explain votes, because it has many more dimensions with which it

can describe each lawmaker.

Sparsity of Z,;. The variational estimates Z,; of issue adjustments were not sparse, although a
high mass of these issue adjustments was concentrated around zero: twenty-nine percent of issue

adjustments were within [—0.01,0.01], and eighty-seven percent of issue adjustments were within
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Figure 6.8: Procedural bills are more popular under the issue-adjusted voting model. Top: popularity
bgq of procedural bills under the issue-adjusted voting model is greater than with traditional ideal
points. Bottom: consistent with Cox and Poole (2002) and procedural cartel theory, the polarity
of procedural bills is generally more extreme than that of non-procedural bills. However, issue
adjustments lead to increased polarity (i.e., certainty) among non-procedural votes as well. The
procedural issues include Congressional reporting requirements, Government operations and politics,
House of Representatives, House rules and procedure, Legislative rules and procedure, and Congress.

[-0.1,0.1]. We illustrate the distribution of lawmakers’ offsets for selected issues in Figure 6.10 and

describe them further in Section 6.3.1.

6.3.1 Issues and Lawmakers

We illustrate Representatives’ issue adjustments for the issues Finance and the procedural issue
Congressional sessions in Figure 6.11 for the 111th House. These adjustments illustrate the way
in which the issue-adjusted voting model allows us to better understand how lawmakers feel about
specific issues, but they do not tell us which issues were well-fit by the model, or whether these
issue adjustments were systemic (i.e., predictable using lawmakers’ ideal points) or even statistically
significant.

The goal of this section is to address these concerns by providing a qualitative look at lawmakers’
issue preferences such as those in Figure 6.11. We begin by identifying those issues which were
best- and worst-represented by the issue-adjusted model. We then look at when lawmakers’ issue
adjustments can be explained by party affiliation and discuss how to control for these systemic
biases to identify lawmakers who transcend party lines. We finally describe a theory explaining why
certain lawmakers have such different preferences on procedural issues like Congressional sessions

than substantive issues like as Finance.

Issues improved by issue adjustment

Those issues which tended to move lawmakers the most (by standard deviation of %) also tended to

give issue-adjusted ideal points an edge over traditional ideal points. We measure the performance
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Figure 6.9: Log-likelihood increases when using adjusted ideal points most for procedural and strate-
gic votes and less for issues frequently discussed during elections. Imp,, is shown on the x-axis, while
issues are spread on the y-axis for display. The size of each issue k is proportional to the logarithm
of the weighted sum Zvud 0,4 of votes about the issue.

improvement for any issue by first taking the issue-adjusted log likelihood of each vote

Jud = 1y, ;=yeayp — log(1 + exp(p)), (6.4)

where 1 is an indicator function and p = (z,, + zf@d)ad + by is the log-odds of a vote under the
issue adjusted voting model. We also measure the corresponding log-likelihood 1,4 under the ideal
point model, using p = z,ag + bg with an ideal point model. The improvement of issue k is then

the sum of the improvement in log-likelihood, weighted by issue k:

> vy Oduk(Jud — Lua)
Dy Ok '

Imp,, = (6.5)

A high value of Imp,, indicates that issue k is associated with an increase in log-likelihood, while a
low value is associated with a decrease in log-likelihood.

We illustrate Imp,, for a selection of issues in Figure 6.9. All issues increased log-likelihood;
those associated with the greatest increase tended to be related to procedural votes. For example,
Women, Religion, and Military personnel issues are nearly unaffected by lawmakers’ offsets. These
improvements Imp,, were correlated with the standard deviation of residual offsets 2 (ocor = 0.68),
but not with coefficients g (ocor = 0.05), indicating that issue offsets, and not ideal points, explain

most of the improvement.

94



Issues associated with worse predictions. We also note several poorly-fit issues. We evaluated
issues by taking the number of incorrectly-fit votes under the issue-adjusted model minus the number
of incorrectly-fit votes under a traditional ideal point model. We call this the number of “new mis-
predicted votes” for each issue. Those issues which had the most “new mis-predicted votes” also
had the most “new correctly-predicted votes”, which is largely because votes on these issues are
simply hard to predict. For example, Athletics was one of the issues which saw the most most
newly-mispredicted votes. Postal Facilities and Military Personnel were other examples.

Bills which expressed many issues were also less-well fit. The bill which decreased the most
by log-likelihood of its votes from the ideal point model in the 111th House was the Consolidated
Land, Energy, and Aquatic Resources Act of 2010 (H.R. 3534). This bill had substantial weight
in five issues, with most in Public lands and natural resources, Energy, and Land transfers, but its
placement in many issues appears to have harmed its performance. This effect was common, and
it suggests that methods which represent bills with fewer issues (such as unsupervised topics) may

perform better, at the expense of interpretability.

Understanding lawmakers’ voting amidst party bias

Many lawmakers’ issue adjustments can be explained by party affiliation (hence, their ideal point).
We illustrate the distribution across lawmakers of Z, for selected issues k in Figure 6.10. This figure
shows this distribution for the four issues with the greatest variance in Z,; across lawmakers and the
four issues with the least variance across lawmakers. Note the systematic bias in Democrats’ and
Republicans’ issue preferences: they become more partisan on certain issues, particularly procedural

ones.

Controlling for ideal points. A typical Republican tends to have a Republican offset on taxation,
but this surprises nobody. Instead, we are more interested in understanding when this Republican
lawmaker deviates from behavior suggested by her ideal point. We can shed light on this systemic
issue bias by explicitly controlling for it. To do this, we fit a regression for each issue k to explain

away the effect of a lawmaker’s ideal point x, on her offset z,:

zr = (X + €,

where 0, € R. Instead of evaluating a lawmaker’s observed offsets, we use her residual Z,; =

Zuk — Brxy, which we call the corrected issue adjustment. By doing this, we can evaluate lawmakers
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Figure 6.10: Histogram of issue adjustments for selected issues. Democrats are in the left column,
and Republicans are in the right column. Both Democrats and Republicans tend to have small issue
adjustments for traditional issues. Their issue adjustments differ substantially for procedural issues.
A more-dispersed distribution of issue adjustments does not mean that these lawmakers tend to feel
differently from one another about these issues. Instead, it means that lawmakers deviate from their
ideal points more.

96



o \
oS c.‘69° y ‘6%“?\“ AN 6‘\‘]'\‘3\0‘(\9\ o \\\\c. “\o( \d?a\)\
., 3 90%2““ \,\a“‘* NS \\1\\0“ Qo )
< gy ) Ideal point
Finance-adjusted
P igeal point
) ! |4
4
Ideal pomt
\
W ‘(\'5\ N \)
o 3 20 o 69“1\3 N0 e\\l\@c’0 oot o
36‘55 o3¢ \ya“‘ \(\a“\i N\\“—(\“\O \\\\c“ e o™

) Ideal point
Congressional sessions-
adjusted ideal point

Ideal point

Figure 6.11: Ideal points z, and issue-adjusted ideal points z, + 2z, from the 111th House for the
substantive issue Finance and the procedural issue Congressional Sessions. Democrats are blue and
Republicans are red. Votes about Finance and Congressional Sessions were better fit using issue-
adjusted ideal points. For procedural votes such as Congressional sessions, lawmakers become more
polarized by political party, behavior predicted by procedural cartel theory (Cox and McCubbins,
1993).

in the context of other lawmakers who share the same ideal points: a positive offset Z,; for a
Democrat means she tends to vote more liberally about issue k& than others with the same ideal
point (most of whom are Democrats).*

Most issues had only a moderate relationship to ideal points. House rules and procedure was
the most-correlated with ideal points, moving the adjusted ideal point 8x = 0.26 right for every
unit increase in ideal point. Public land and natural resources and Tazation followed at a distance,
moving an ideal point 0.04 and 0.025 respectively with each unit increase in ideal point. Health, on

the other hand, moved lawmakers (B = 0.04 left for every unit increase in ideal point. The issues

Women, Religion, and Military personnel were nearly unaffected by lawmakers’ offsets.

Finding exceptional issue-adjustments. We next use these corrected issue adjustments to
identify lawmakers’ exceptional issue preferences. To identify adjustments which are significant, we
turn again to the same nonparametric check described in the last section: permute issue vectors’
document labels, i.e. (61,...,0p) = (0,(1)-..0x,(p)), and refit lawmakers’ adjustments using both
the original issue vectors and permuted issue vectors, for permutations mq,...,m9. By mixing up
the matching between issue vectors and bills, this serves to separate issue adjustments that might

arise accidentally from noise in the data from issue adjustments that arise from the observed data.

4We also fit a model with this regression explicitly encoded. That model performed slightly worse in experiments
on heldout data.
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Ronald Paul (House Republican) Donald Young (House Republican)

Figure 6.12: Significant issue adjustments for exceptional senators in Congress 111. Each illustrated
issue is significant to p < 0.05 by a permutation test.

We then compare a corrected issue adjustment Z,;’s absolute value with corrected issue adjustments
estimated with permuted issue vectors O, -

This provides a nonparametric method for finding issue adjustments which are more extreme
than expected by chance: an extreme issue adjustment has a greater absolute value than all of its

permuted counterparts. We use these to discuss several unique lawmakers.

Extreme lawmakers. Using corrected issue adjustments, we identified several of the most-unique
lawmakers. We focused this analysis on votes from 2009-2010, the most recent full session of
Congress, using A\ = 1. We fit the variational model to all votes in the House and computed
lawmakers’ corrected issue adjustments 2, which are conditioned on their ideal points as described
in Section 6.3.1. Figure 6.12 illustrates those issue preferences for two lawmakers from this Congress

which significant under 20 permutation replications (p < 0.05).

e Ron Paul. We return to Ron Paul, one of the most unique House Republicans, and a lawmaker
who first motivated this analysis. Paul’s offsets were very extreme; he tended to vote more
conservatively than expected on health, human rights and international affairs. He voted more
liberally on social issues such as racial and ethnic relations, and broke with behavior expected
under a procedural cartel (congressional sessions). The issue-adjusted training accuracy of

Paul’s votes increased from 83.8% to 87.9% with issue offsets, placing him among the two
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most-improved lawmakers with this model.

The issue-adjusted improvement Imp (Equation 6.5) when restricted to Paul’s votes indicate
significant improvement in international affairs and Fast Asia (he tends votes against U.S.
involvement in foreign countries); congressional sessions; human rights; and special months

(he tends to vote against recognition of months as special holidays).

e Donald Young. One of the most exceptional lawmakers in the 111th House was Donald
Young, Alaska Republican. Young stood out most in a topic used frequently in House bills
about naming local landmarks. In many cases, Young voted against the majority of his party
(and the House in general) on a series of largely symbolic bills and resolutions. For example, in
the commemorative events and holidays topic, Young voted (with only two other Republicans
and against the majority of the House) not to commend “the members of the Agri-business
Development Teams of the National Guard and the National Guard Bureau for their efforts...

to modernize agriculture practices and increase food production in war-torn countries.”

Young’s divergent symbolic voting was also evident in a series of votes against naming various
landmarks—such as post offices—in a topic about such symbolic votes. Yet Donald Young’s
ideal point is -0.35, which is not particularly distinctive (see Figure 5.2): using the ideal point

alone, we would not recognize his unique voting behavior.

Procedural Cartels

Above we briefly noted that Democrats and Republicans become more partisan on procedural issues.
Lawmakers’ more partisan voting on procedural issues can be explained by theories about partisan
strategy in the House. In this section we summarize a theory underlying this behavior and note
several ways in which it is supported by issue adjustments.

The sharp contrast in voting patterns between procedural votes and substantive votes has been
noted and studied over the past century (Jr., 1965; Cox and McCubbins, 1993; Cox and Poole,
2002). Cox and McCubbins (1993) provide a summary of this behavior: “parties in the House
— especially the majority party — are a species of ’legislative cartel’ [ which usurp the power | to
make rules governing the structure and process of legislation.” A defining assumption made by Cox
and McCubbins (2005) is that the majority party delegates an agenda-setting monopoly to senior
partners in the party, who set the procedural agenda in the House. As a result, the cartel ensures that
senior members hold agenda-setting seats (such as committee chairs) while rank-and-file members

of the party support agenda-setting decisions.
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This procedural cartel theory has withstood tests in which metrics of polarity were found to be
greater on procedural votes than substantive votes (Cox and McCubbins, 1993; Cox and Poole, 2002;
Cox and McCubbins, 2005). We note that issue adjustments support this theory in several ways.
First, lawmakers’ systematic bias for procedural issues was illustrated and discussed in Section 6.3.1
(see Figure 6.10): Democrats systematically lean left on procedural issues, while Republicans sys-
tematically lean right. Importantly, this discrepancy is more pronounced among procedural issues
than substantive ones. Second, lawmakers’ positions on procedural issues are more partisan than
expected under the underlying un-adjusted ideal points (see Section 6.3.1 and Figure 6.11). Finally,
more extreme polarity and improved prediction on procedural votes (see Section 6.3 and Figure 6.8)
indicate that that issue adjustments for procedural votes are associated with more extreme party

affiliation — also observed by Cox and Poole (2002).

Conclusions

In the last two chapters we took a closer look at the decision-making process in the U.S. by addressing
two important shortcomings of ideal point models: their inability to predict votes on previously-
unseen bills and their inability to represent lawmakers with nontrivial voting behavior. In this
chapter we addressed the latter limitation by developing and studying the issue-adjusted ideal point
model, a model designed to tease apart lawmakers’ preferences from their general political positions.
This is a model of roll-call data that captures how lawmakers vary, issue by issue, and it gives a
new way to explore legislative data. On a large data set of legislative history, we demonstrated
that it is able to represent votes better than a classic ideal point model and illustrated its use as an
exploratory tool.

This work could be extended in several ways. One of the most natural ways is to incorporate
lawmakers’ stated positions on issues — which may differ from how they actually vote on these issues;
in preliminary analyses, we have found little correlation to external sources. We might also study
lawmakers’ activities outside of voting to understand their issue positions. For example, lawmakers’
fund-raising by industry area might (or might not) be useful in predicting their positions on different
issues. Additional work includes modeling how lawmakers’ positions on issues change over time, by
incorporating time-series assumptions as in Martin and Quinn (2002).

The ideal point model introduced in the last chapter represents one of the simplest models of
dyadic data. By framing it as a latent variable model as in Clinton et al. (2004), we were able

to use it as a modular piece of larger latent-variable models. By combining it with other modules
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for analyzing text data, including Latent Dirichlet Allocation and text regression, we were able to
address two important shortcomings of ideal points. As in chapters 3 and 4, this allowed us to

explicitly state nontrivial assumptions in interesting ways.
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Chapter 7

Conclusions

In the past five chapters we introduced several models to address important problems in social
science research. We accomplished this by framing our assumptions as latent variable models, using
data sources to estimate the values of the latent random variables, and empirically validating these
models. Throughout, we repeatedly made use of a small set of statistical primitives.

We introduced the reader to these primitives in Chapter 2. Having been developed over the past
century, these ideas were sufficient to provide the majority of the scaffolding for our assumptions.
The most important of these assumptions were models for text analysis, including topic models and
text regression, which have seen huge advances in the past two decades. We also used hidden Markov
models for time-series applications and latent spatial assumptions to model interaction between pairs
of items.

In Chapter 3 we explored the problem of finding influential documents in text corpora which
have evolved over time. This problem affects a wide range of fields, with concrete motivations in
both academia and industry. We introduced a model which uses the change in language to find
documents which use language that becomes more popular over time in a field. We then fit this
model to four corpora: three scientific journals and a corpus of legal opinions. We consistently found
a correlation between our measure of influence and unseen citation counts for these corpora, and we
explored several anecdotal examples within these collections.

We then used some of the same time-series assumptions to build a recent history of the sentiment
between nations in Chapter 4. To do this, we encoded assumptions about how nations interact into
a dyadic model of the sentiment between two nations. We defined the sentiment between nations

using hand-labeled codes from both experts and novices. Upon fitting this model, we discovered
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that the sentiment between nations predicted by this model was extraordinarily correlated between
a model fit with expert labels and a model fit with novice labels.

In Chapters 5 and 6, we used primitives from text analysis to improve the ideal point model,
a well-known dyadic model of legislative voting. Using models of text, we first constructed models
to enable us to predict lawmakers’ votes on unseen documents. We demonstrated that such models
allow us to accurately predict lawmakers’ votes on unseen bills.

We then made ideal point models more interpretable by extending it to incorporate lawmakers’
positions on different issues. We then used supervised topic models to assign interpretable labels to
bills and fit lawmakers’ positions. We demonstrated that, in doing this, we were able to improve
the ideal point model’s representation of heldout votes while providing an interpretable description

of each lawmaker.

7.1 Latent variable models for understanding the social sci-
ences

The core tools we used to build the models in these chapters were outlined in the introductory
materials chapter. By framing our questions as latent-variable models, we were able to use a hand-
ful of “statistical primitives” to encode our assumptions, make predictions, and interpret hidden
random variables. These primitives were tools for text data, including bag-of-words models like
latent Dirichlet allocation (Blei and Lafferty, 2006) and text regression (Kogan et al., 2009). The
time-series primitive we used was that of a hidden Markov model. Finally, we modeled interactions
between pairs of items — whether they were a pair of warring nations or lawmakers and bills — using
simple distributions over pairs of variables with well-defined distributions.

Our ability to use these primitives has been made possible by several recent advances in the past
few decades. These include the wider availability of documents in digital form — including the text
of millions of academic articles on sites like JSTOR (www. jstor.org), millions of newspaper articles
like the New York Times, and billions of government records such as those on independent sites like
Govtrack (www.govtrack.us) and government sites like the National Archives (www.archives.gov).

Just as these corpora have become more widely available, the tools for gleaning information
from them have continued to improve. These include first Judea Pearl’s abstraction of graphical
models, which now allow us to piece together latent variable models as easily as children build cars

from Legos™ (Pearl, 1985). Since graphical models have become mainstream, old primitives such
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as HMMs have been ported to this paradigm, while new primitives such as LDA and text regression
have been developed within this paradigm.

At the same time, the statistical tools for fitting these models has continued to improve, as tools
such as variational inference improve model runtime and tools like stochastic variational optimization
(which T introduce in Appendix A) decrease model development time. Finally, Moore’s law now
enables us to fit these models on larger and larger collections of data, as the speed and memory of

researchers’ workstations allows us to process millions of observations per minute.

7.2 Future work

The conclusion section of each chapter in this thesis describes future research directions for the work
in that chapter. In this section I outline high-level work I see ahead for this research community
around the themes discussed in this thesis.

The explosion of text data and tools for working with text suggest that fundamental research will
continue around model-building, primitive development, and posterior inference. As this happens,
analysis and model-building will become easier for the casual “practitioner”. As we researchers
better understand how to abstract away details about inference without compromising the quality
of posterior estimation and without compromising data integrity, it will become our responsibility
to develop tools for data practitioners.

The primitives I have recapitulated throughout this thesis are only a handful of the primitives
available to practitioners. I have focused on these primitives because they are simple enough to
recur frequently while still retaining enough power to provide meaningful utility to practitioners.
There exist a variety of other primitives for researchers working with text, including alternative
models of documents and alternative models for time-series analysis. While books such as Bishop
(2006) describe many of these abstractions from a machine learning perspective, I expect many of
these abstractions to receive explicit attention in future resources for practitioners in fields outside

of machine learning.

104



Appendix A

Optimizing the variational bound

stochastically

Estimating an arbitrary probability distribution p(z) is a fundamental problem in statistical model-
ing. This problem arises in posterior inference, for example, where we seek to estimate a conditional
p(zxly) of latent variables x given observations y. There are two main classes of solutions—Markov
chain Monte Carlo (MCMC) (Bishop, 2006) and variational methods (Jordan et al., 1999). In
MCMC, we define a Markov chain whose stationary distribution is the target distribution. We run
the chain to try to collect independent samples from the stationary distribution, and then use them
to form an approximation. In variational inference, we posit a parameterized family of distributions
go(z) and find the member of that family that is “closest” to the true posterior. This turns the
problem of inference into one of optimization.

Deriving and implementing a variational inference algorithm can be painstaking, as evidenced
in the tedious update equations in Appendix B. It involves defining the variational family, forming
an objective function, taking derivatives with respect to the variational parameters, and running
an optimization algorithm. In this appendix, we present an alternative algorithm for variational
inference. Our algorithm circumvents many of the challenges to using variational inference by
optimizing the variational objective function stochastically.

To do this, we form the derivative of the variational objective as an expectation with respect
to the variational distribution. We then sample from that distribution to obtain realizations of
a stochastic gradient. Our algorithm is a “black box” algorithm in that it only requires that we

evaluate the joint likelihood p(z, y) of the hidden and observed variables (up to a constant factor), the
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variational likelihood ¢(x) (up to a constant factor), and the derivative of log ¢(x). (Note that this
derivative can be reused across variational inference problems.) Unlike other automated approaches
to variational inference (Winn and Bishop, 2001), we have no other restrictions on the model or
variational family, e.g., that the hidden variables come in conjugate pairs or that the variational
distributions are in the exponential family.

There have been several recent algorithms that are similar in spirit to ours. Both Carbonetto
et al. (2009) and Graves (2011) perform variational inference by taking samples from the variational
posterior to estimate a gradient. Carbonetto et al. assume that the variational distribution comes
from the exponential family (Carbonetto et al., 2009). Graves (2011) approximates the first-order
gradient for fitting a neural network.

Our work significantly expands on this research. We make weaker assumptions than Carbonetto
et al. (2009) on the forms of p and go(z). Our posterior p(z|y) and g(x) must be well-behaved—the
KL-divergence between p(z|y) and ¢(z) must exist, log gg(x) must be differentiable almost every-
where, and gy must have finite variance—but is otherwise unrestricted. Our method can be used
for a wider variety of statistical models, with benefits over both MCMC and traditional variational

inference.

A.1 Stochastic optimization of the variational objective

We begin this section by reviewing variational inference for approximating posterior distributions.
We then derive our algorithm for optimizing the variational objective with stochastic optimization.

We discuss an illustrative example and describe several extensions to the algorithm.

A.1.1 Variational inference

Variational methods are a fast, deterministic alternative to MCMC for approximate inference (Wain-
wright and Jordan, 2003; Jordan et al., 1999). Variational methods posit a parameterized family of
distributions ¢y () and try to find the member (i.e., the setting of variational parameters ) that is

closest in KL-divergence to the posterior p(z|y),

. . qo(x)
KL = I . A1l
arg min KL(go||p) = arg min / qo(x)log o (@ly) dx (A1)

We select the family to make this optimization problem tractable. A commonly chosen family is

the mean-field family, where the variational distribution is fully factorized. For example, if = is a
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collection of real-values that are dependent in p(z|y) then the mean-field distribution might be a
product []x N (ux,o}) of independent Gaussian distributions.

Optimizing Equation A.l is equivalent to optimizing the “evidence lower bound” (ELBO) Ly
Bishop (2006):

logp(y) > B, [log p(,y) —logge(z)] =: Lo, (A.2)

where the slack of the bound is equal to the KL divergence from Equation A.1. Typical vari-
ational inference algorithms optimize this bound by coordinate ascent. This requires evaluating
E, [log p(x,y) — log go(x)] and its gradient with respect to #. If the variational distribution is not
conjugate to the joint distribution p(x,y), the expectation E, [log p(x,y)] will not be analytically
tractable. We may then need to perform further bounds or approximations (Jaakkola and Jordan,
2000; Jordan et al., 1999; Bickel and Doksum, 2007; Braun and McAuliffe, 2010).

This procedure makes variational methods challenging for two reasons. First, they require a steep
learning curve and careful attention to detail to derive the coordinate updates. Second, this process
must be repeated each time the model p(x,y) changes form. Deriving the variational algorithm

becomes a bottleneck when we seek rapid model development.

A.1.2 An algorithm for stochastic optimization of the variational objec-
tive

We now describe an alternative method for optimizing the ELBO £. We form a noisy estimate of

the gradient using Monte-Carlo integration (Graves, 2011; Wei and Tanner, 1990; Carbonetto et al.,

2009), and follow it with stochastic optimization (Robbins and Monro, 1951). This avoids difficult

derivations; we need ounly evaluate log p(z,y), go(z), and V log gg(x).

We now show that the gradient of Equation A.2 can be written as an expectation. We first

exchange integration and differentiation!, and apply the chain the rule,

VLo = V| [ a0(a)0gp(a,1) - log an(w))ie| (A3)
= /V[qe(x)(logp(fcyy) —log qa(x))]dff

- / V4o () (log p(, y) — log s () — 1)

1This assumes the support of gg is not a function of §, and that loggg(z) and Vloggy(x) are continuous with
respect to 6.
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We can write this as an expectation by using the identity gg(z)V log gg(x) = Vg (),

VL =E,[Vloggy(z) (logp(z,y) —logge(x) — 1)] (A4)

Now we use Monte Carlo integration to form an unbiased estimate of the gradient at 8 = 6y. We

obtain M samples from the variational distribution gg, (z), {x1,..., 2} and approximate,

M
VL~ Z Vlog qo(zm) (logp(xm, y) — log qo, () — C). (A.5)

Note we replaced the one in Equation A.4 with a constant C'. This follows because E, [V log gg(x)] =
0. For now we will assume C' equals zero, but see Section A.1.2 for how to improve performance by
adjusting this constant.

Related estimates of similar gradients have been studied in recent work (Carbonetto et al., 2009;
Graves, 2011) and in the context of expectation maximization (Wei and Tanner, 1990).

The quality of this estimate depends on the sample size M. A small number of samples leads to
a fast but crude approximation, while a large number of samples will be slower but more accurate.
We will explain in Section A.1.2 how to decrease the variance of this approximation by using batches
of carefully selected, non-7id samples and provide an experiment to explore the effect of sample size.

With regard to the model, the gradient estimate in Equation A.5 only requires we can evaluate
the joint distribution. This means that variational inference can take the form of a “black box”: we
do not need to compute expectations of p(x,y) or gradients of Ly with respect to gg or 6. The other
requirements—that we can sample from the variational distribution gs(x) and evaluate its log and
gradient of its log—are usually easy. (And, if not, they can be worked out once and then placed
in reference for use in many variational algorithms.) We give concrete examples of the gradient of
the log for several types of distributions in Section A.1.2, Section A.2.4 and in the supplementary
materials.

Stochastic optimization. We can now embed this approximation in a stochastic optimization
algorithm. In this algorithm, we proceed with a sequence of estimates gy, , gs,, . . . of the variational
distribution. On the nth iteration, we use Monte-Carlo samples from the previous distribution gg, ,

to stochastically estimate the gradient to find the next distribution:

0,, —0,,_ 1+ Veﬁo , (A.G)

n—1
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Figure A.1: A non-conjugate posterior density (dashed) and a Gaussian variational approximation
(solid).

where 7 > 0 is a learning rate parameter and k € (0.5,1.0] (Carbonetto et al., 2009). Importantly,
the expectation of the stochastic gradient, Ep {W}, is the gradient of the objective (up to a
constant factor). We call this method first-order Stochastic Variational Optimization (SVO) and
summarize it in Algorithm 1.

Convergence. We apply these updates until a predefined convergence criterion is met (we give
details in the next section). In most stochastic optimization settings, the sampling distribution
D is stationary, and many theoretical results demonstrate when and how stochastic optimization
converges to an optimum of the objective with this assumption (Bottou and Cun, 2004; Robbins
and Monro, 1951). We violate this assumption because the distribution gy changes in each iteration.

Still, we find that this method reliably converges in practice.

Example: Gaussian variational marginal

In the next section we will describe ways to improve this gradient ascent algorithm (Equation A.6),
but first we illustrate this method by estimating an “unknown” posterior with a Gaussian variational
posterior.

We let p(x,y) be the joint likelihood. In this example, p(z,y) is a synthetic distribution: a
unimodal mixture of two Gaussians, A(z|5.1,12) (with component weight 0.5) and N (z|5,3) (with
component weight 1). We illustrate this distribution in Figure A.1. We will make only the joint
likelihood log p(z,y) of this posterior available to SVO (note that y is a dummy variable in this
example).

We initialize the Gaussian variational posterior to the distribution g,,, ,2(z) = N (z|p,0%), with
w1 = 0 and 07 = 4. We proceed by drawing samples 1, ..., 215 ~ N(z|u1,0%) and calculating, for

each sample, the gradients

810g qﬂv”? (.’Iﬁm) _ g _(xm - /~L)2 _ Tm — M1 (A 7)

ou Hn1 ou 20’% H1 01
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Figure A.2: A comparison of our algorithm using first-order vs. second-order updates (top vs.
bottom); and estimating gradients using iid samples from ¢ vs. quasi-Monte Carlo samples from ¢
(left vs. right).

using the Gaussian density 4y, ,02- We estimate a gradient of the objective by combining these

samples (Equation A.5)

~ 1 Ty — 1
VL = ZT(logp(xm,y) —logq,, oz (fﬂm))

w,0%
1238 M 1

and finally update the mean p (Equation A.6):

Ny &
M2 < p1 + levuﬁu,af " (A.8)

The update for variance is similar, but we optimize v = log o2 instead of o2:2

REDIC o

=1

vl”cﬂlﬂf

x (log p(xm,y) — log Auy (zm)) ] .

The variance is then updated with Equation A.6: vy «— vy + %@ch,u’

V1.

Testing convergence. We repeated this process for iterations n = 1,2, ... until convergence. The
variational estimate of the mean by the total number of samples is shown in Figure A.2 (top-left

corner). To test convergence, we estimated the evidence lower bound at each iteration,

1
L, = M Z (Ing(xnma y) —log q9,, (xnm)) .
M

262 must be strictly positive, so v is a more natural choice for stochastic updates).
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We performed these updates until the exponential moving average Aggt ,, < 0.8A¢gt, 1 +0.2(Ly, —
Ln—1) of the ELBO dropped below one. Any time this happened, we scaled the number M of
samples by a factor of 1.2. When the moving average dropped below one and M > 500, we stopped
the algorithm.

Note that the functional form of p(x,y) was never used in these updates: only the form of ¢(z)
was used. A variety of other variational posteriors are used in practice. We provide these gradients
for Dirichlet and multinomial posteriors, which are conjugate to multinomial and indicator random
variables respectively, in the supplementary materials. To fit these variational distributions, we need

to compute % as in Equations A.7 and A.9; the other steps are mechanical.

Improving performance

The algorithm described above lays the foundation for our approach. We now make several adjust-
ments to complete the algorithm. These adjustments revolve around (1) improving samples used

to estimate the gradient, which we can do because we have intimate knowledge of gy, , and (2)

n?

improving step sizes with second-order updates.

Minibatch sampling

The stochastic gradients in Equation A.5 were estimated with “minibatches” of M iid samples
from ¢. As Figure A.2 (top left) shows, the first-order estimate may need many samples to reach
satisfactory convergence, a common observation in stochastic optimization.

One key insight for our algorithm is that we have more control over samples because we have
perfect knowledge of gy. This contrasts with many stochastic optimization methods, in which samples
may be drawn #id from an unknown distribution D. By carefully selecting minibatches with non-
7id samples, we can decrease the variance of our estimate of the ELBO %. Quasi-Monte Carlo
methods such as the Latin hypercube design have been developed for exactly this purpose (Tang,
1993; Owen, 1998; Niederreiter, 1992).

To sample values from a univariate variational distribution g, we select M equidistant points
from the uniform distribution and pass these points through the inverse CDF of ¢.® To sample from
multivariate distributions IIpqy, we select M samples from each of the D distributions, randomly
permute samples from each distribution, and group them into M D-variate samples. We increase

the number of samples as the algorithm converges as described in the experiments section (Wei

3For a truly unbiased minibatch sample from g, these points could be jittered with uniform noise within each
interval.
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Figure A.3: First-order SVO (left) and second-order SVO (right). In each, we begin with a variational
distribution gg,(x) and joint likelihood p(z, y).

and Tanner, 1990). Figure A.2 (top right) illustrates the effect of quasi-Monte Carlo sampling on
convergence of SVO.

Numerical estimates with these samples can be vectorized, which can speed up computation sig-
nificantly.* This use of samples contrasts with standard MCMC methods, which require sequential,
dependent samples from a given random variable. When MCMC does not require sequential samples
(e.g., updates to variables which are conditionally independent), SVO does not require sequential

samples.

Second-order updates

We also note that the step size parameters 1 and k have a large impact on convergence to an
optimal solution: they must be carefully tuned in both stochastic optimization and our algorithm.
We circumvent the challenge of selecting step size with second-order updates, which are sometimes
used in stochastic optimization (Robbins and Monro, 1951; Bottou and Cun, 2004) and were used by
Carbonetto et al. (2009) and Wei and Tanner (1990). To derive the second-order updates, we make
a Taylor approximation of the variational objective Ly (Equation A.2) around the current estimate

902

oL,
a0 e,

)

Lo Lo, +( 58507 |5,

)TA(; + AGT(

where Ay = 0 — 6y. This approximation becomes exact as 6y approaches the optimal solution.

4Vectorization uses software libraries such as BLAS and hardware such as GPUs to use samples more efficiently.
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. 2
, we also estimate the curvature 389529

In addition to estimating the gradient % , , empirically
0 0

with samples:

a2£9 1 alOg qe(xnm) ?
002~ M %: ( ( o0 oo) (4.10)

X (Ing(JUnm, y) — log qs, (xnm) - 1)

9?1 nm
n (W‘e ) (log p(Tnm, y) — 1ogq90(xnm))>~

The estimate of the optimum is then

—1
0Ly

This algorithm is summarized in Figure A.3 (right), and it can be used instead of the first-order

00

algorithm (Figure A.3 (left)), just as in stochastic optimization (Bottou and Cun, 2004). The
results of applying this algorithm to the synthetic dataset described in the last section is shown in
Figure A.2 (bottom two panels). Second order methods can help to avoid both high variance in a
posterior estimate and poor learning rates.

We can approximate both the gradient and curvature arbitrarily well by increasing the number
of samples M, provided that ¢ and p are well-behaved. This turns the problem into approximate
Newton-Raphson optimization, which means that this approach can converge more reliably than
stochastic optimization by using more (and better) samples during the final updates. It also means

that a tunable learning rate is no longer necessary.

Decreasing variance of the gradient

In Section A.1.2, we noted that C' can be set arbitrarily without changing E,[VLe]. However,
changing C' does affect the variance of VLy, and we can set it to minimize this variance. Specifically,

we set
S (2RoBd@m) )2 (160 (2, ) — log q(@m))

S pg(2loEd(Em) y2

This minimizes the variance of the estimate of the gradient; we find that it works well in practice.

C= . (A.12)

If the gradient of logp(x,y) is available to the user, he may also use this to improve the estimated

gradient, as described in §A.2.
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A.1.3 Multivariate distributions

Most interesting latent-variable models are multivariate, so we now describe our algorithm in the
multivariate setting. With traditional variational inference, we update the posterior estimate gy of
each hidden random variable x; successively, given the current estimate of the remaining variables’
distributions. This update is typically accomplished by gradient or coordinate ascent. In these cases,
the distributions of hidden random variables are usually represented by their expectation under the
variational distribution.

SVO optimizes the objective similarly: the distribution of each hidden random variable z; is
updated by holding the distributions of the remaining hidden variables fixed. To represent the

distributions of variables in x;’s Markov blanket, SVO uses samples from their variational posteriors.

Related work

Stochastic optimization. SVO differs from traditional stochastic optimization in several impor-
tant ways. We draw a contrast from methods which optimize a variational lower bound with #id
training examples (Hoffman et al., 2010) from an unknown distribution; we optimize the probability
distribution with respect to which we are taking an expectation. Further, the samples we use to
optimize this bound are drawn from this distribution. This is not the case for stochastic optimiza-
tion in general. We address a specific problem using ideas from stochastic optimization, making
improvements for the specific problem at hand. Many of these improvements do not apply in the

general stochastic optimization setting.

Stochastic sampling with variational inference. Carbonetto et al. (2009) used stochastic
optimization in an approach conceptually very similar to ours. They sample from the variational
posterior and use importance sampling along with second-order updates to estimate a similar gradi-
ent. They further assume that the family of variational distributions includes an unbiased estimate
of the true posterior, and that both the variational posterior and true posterior come from the same
exponential family.

We make weaker assumptions on the forms of p and gp(z). Our posterior p(z|y) and g(z) must be
well-behaved: the KL-divergence between p(z|y) and g(x) must exist, and it must be approximable
with Monte-Carlo methods. We further require that (1) log go(x) be differentiable almost everywhere
and (2) gp have finite variance.

Carbonetto et al. (2009) used importance sampling to approximate a gradient and require learn-
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ing rates to be carefully set. We address both of these by using the sampling methods discussed in
Section A.1.2.

Wei and Tanner (1990) use Monte-Carlo sampling to perform the E-step of EM using a finite-
sum approximation of an integral. While they explicitly outline the gradient and Hessian of the

expectation, they never use these values.

A.2 Empirical study

In this section we studied SVO in the synthetic toy example of Section A.1.2, Bayesian logistic
regression, probit ideal point models, and the switching Kalman filter. We compared SVO to MCMC,

classical variational inference, and an “oracle” sampler (when one was available).

A.2.1 Univariate examples

We return to the toy example presented in Section A.1.2 and compare our estimates of the posterior
mean for second-order SVO with two sampling methods. As before, we assume that the synthetic
dataset has a posterior distribution that is a logistic distribution with mean v = 5 and scale v = 2,
illustrated in Figure A.1. We make only logp(z,y) available to SVO.

Second-order SVO. We used second-order SVO (Figure A.3) with quasi-Monte Carlo samples.
We assessed convergence using the method described in Section A.1.2, tracking an exponential
moving average of the ELBO £ and doubling sample size each time the moving average was low.
We illustrate SVO’s estimate of the mean as a function of the number of samples (and evaluations
of the joint) in Figure A.5.

MCMC estimate. We compare this estimate with a Metropolis Hastings (MH) sampler, a
“typical” sampler for such a problem. This sampler used a standard normal proposal distribution.
We assumed a burn-in period of 100 samples. For n > 101, we plot the mean of samples 101,...,n
in Figure A.5. SVO approaches the posterior mean much more quickly than the MH estimate.

Oracle sample The above comparison with a specific MCMC sampling method depends on
our choice of MCMC algorithm and parameters such as the proposal distribution. Therefore we
also compare with an oracle sampler, which provides error bounds on the best possible ¢d sampling
algorithm (most standard MCMC algorithms produce samples which, when thinned, are treated as
itd). An oracle sampler is able to draw 4id samples from p(x, y) to estimate the mean. For each
sample size M, we explicitly calculate the 95% standard error confidence intervals of an estimated

mean from M samples. We plot these error bars around the true mean in Figure A.5. Even with a
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Probit Item Response Theory
Metric SVO | Variational | Gibbs
Heldout LL -0.181 -0.214 -0.214
Time 27 sec. 5 sec. 122 sec.
“True” MSE | 0.048 0.031 0.001
Switching Kalman filter (well log data)
Metric SVO Gibbs
Heldout MSE 3.6e6 3.5e6
Time 92 sec. 104 sec.
“True” MSE | 2.2e6 2.4e6

Figure A.4: Experimental results comparing SVO and MCMC estimates. We show lawmaker pos-
teriors in the probit IRT model (left) and observation means from a change point model (right). In
each table we illustrate runtime, log-likelihood (LL) or mean-squared error (MSE) on heldout ob-
servations. We also estimate MSE against the “True” posterior means, estimated using long Gibbs
runs (500K and 50K samples for left and right respectively).

perfect sampler, an estimate of the mean takes much longer to converge than univariate SVO.

A.2.2 Probit regression and ideal points

We next studied SVO for approximating a complex posterior in a large high-dimensional model.

We fit a matrix of U.S. lawmakers’ votes using Item Response Theory (IRT), a class of models
frequently used in political science (Poole and Rosenthal, 1991; Martin and Quinn, 2002; Albert,
1992). IRT is used to position each lawmaker [ in a latent space with positions z; € R; these
positions are often studied by political scientists to understand the lawmakers’ political preferences.
Lawmakers’ positions interact with latent bill variables a4, by € R; all latent variables take a standard
normal prior. The probability of lawmaker I voting “Yes” on bill d is then given by p(vq = Yes) =
probit(z;aq + bg) (Clinton et al., 2004).

Experiments. Political methodologists usually implement these models with MCMC methods
(Albert, 1992) (a variational implementation was introduced by Gerrish and Blei (2011), although
that used the logistic response). We fit these models with MCMC, traditional variational Bayes,
and SVO. We chose fully-factorized Gaussian posterior distributions.

We can use an auxiliary random variable to yield a fast Gibbs sampler and a variational algorithm
(Armagan and Zaretzki, 2011) (this is not possible with a logistic response). We fit the posterior
with these algorithms as well as with second-order SVO.

Results. We estimated the means of these random variables for 68 Senate bills, 95 senators,
and 5,145 votes during the years 2009-2010 (this was 219 dimensions). We fit these models and
compared the estimated means Z,a,b of ideal points and bill variables; we summarize the results

in Figure A.4. MCMC was the slowest, while traditional variational inference was the fastest. The
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Figure A.5: figure
SVO can converge quickly to a univariate non-conjugate posterior p(x|y). Solid blue: the estimated
mean of a variational posterior against the number of samples (and evaluations of the joint) us-
ing second-order SVO. Dashed red: estimated mean of the posterior using a Metropolis-Hastings
sampler. Shaded: 95% confidence intervals of the mean estimate from an oracle sampler.
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Figure A.6: Well-log data (grey) fit with a variational switching Kalman filter. The inferred means
[ of the filter are shown in black. Each timestamp also has an associated variational change point
¢; which indicates the probability that the filter is making a large transition. Transitions at change
points with mean ¢; > % are marked in red.
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latter is not surprising because variational Bayes uses coordinate ascent, while SVO uses slower
Newton-Raphson updates on coordinates. (Further, the variational algorithm takes advantage of
the derivatives of the ELBO, which we do not need to derive for SVO.)

We estimated the “true” posterior mean using 500,000 MCMC samples and found that the means
estimated with both variational Bayes and MCMC samplers were closer to the “true” mean than
means estimated with SVO. However, we also assessed the posteriors by their predictive distribution,
using six-fold cross validation to measure log-likelihood on held-out votes. SVO formed much better
predictions than the other two algorithms. (The difference between SVO and the variational Bayes

estimates is explained by the auxiliary variable.)

A.2.3 Switching Kalman filter

We next illustrate this method in the task of identifying change points—positions of large changes—
in a time-series dataset. To this end, we assume a series of real-valued observations y;.r arising
from underlying means p1.7. These means transition with low variance but occasionally make a
large transition. These changes are characterized by random switch variates, ¢; € {0, 1}, which may
indicate a large transition (¢; = 1) with low probability. This distribution—a switching Kalman

filter (Murphy, 1998)—has the density

plerr, prr, yir) = pl)p(ur) TT—y p(ed)p(ye e )p (el e-1), (A.13)

with Gaussian observation density p(y:|u:—1) and Gaussian transition probabilities (with variance
depending on ¢;). p(c¢;) is the probability of a change point, with p(¢;) = 0.001. While the con-
ditional distributions are conjugate (enabling fast Gibbs samplers), there is no analytical solution
to describe the posterior distribution, so variational approximations are sometimes used (Ghahra-
mani and Hinton, 1996; Murphy, 1998). (The derivation of the variational inference algorithm in
Ghahramani and Hinton (1996) was 2.5 pages.)

Experiments. We implemented this model using both a Gibbs sampler and SVO. We used the
fully-factorized posterior [ [ q(ct|¢¢)q(pe|fi¢) of Bernoulli and Gaussian variational distributions. We
fit this model to a set of 809 measurements taken during the drilling of a well using nuclear magnetic
resonance (NMR). The well log data were “used to interpret the geophysical structure of the rock
surrounding the well” (Adams and MacKay, 2007) and have been studied previously using change
point models (Ruanaidh and Fitzgerald, 1996; Adams and MacKay, 2007). We illustrate these data

(along with SVO posterior means) in Figure A.6. We fixed the variances and 7 by a-priori estimation
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for the well data before fitting any models.

Results. We summarize these results in Figure A.4 and in Figure A.6. We first observe that
SVO takes nearly as long to converge as a 1500-sample (after 500 burn-in) Gibbs run. Why is this?
In this specific case, the Gibbs sampler is very high-quality, drawing “oracle” examples with high
probability once it has burned in. SVO’s time performance suffers because it wastes effort updating
variables that are highly dependent.

We compared these posterior estimates with posterior means from a 49,500-sample Gibbs run,
which we treat as ground truth. In contrast to the IRT experiment, the SVO fit estimated better
posterior means than the 1500-sample Gibbs estimate, and SVO estimated a predictive distribution
which is no better than the Gibbs estimate. This is surprising but may be because the Gibbs
sampler had not converged. Although the estimated means u; of these distributions were similar,
the variational distribution discovered nearly three times as many active change points (i.e., ¢; > 0.5)

as either Gibbs posteriors, illustrating the inherent bias in variational methods.

A.2.4 Alternative variational distributions: Laplace variational posterior

We have discussed variational Gaussian and multinomial posteriors, which are both commonly used
in variational inference. But SVO opens the door to many kinds of variational distributions, as
all we require is to sample from them and compute the gradient of their logs. In §A.4, we re-
port a study fitting Li-regularized logistic regression with a multivariate Laplace variational pos-
terior on two standard datasets. This factorized Laplace posterior had the density g, .(8) =
exp(—exp(k) Y, |8 — wil), with free variational parameters pi1, ..., uq and . This leads to a “fat-
tailed” posterior which estimates posterior means which are closer to the prior mean. Importantly,
these posterior distributions yielded higher held-out log-likelihood performance This and similar

alternative posteriors are interesting avenues for future work.

A.3 Discussion

We described stochastic variational optimization, a generic method for variational inference that does
not require taking gradients of the evidence lower bound. SVO uses stochastic optimization, taking
advantage of second-order updates and quasi-Monte Carlo sampling to improve this optimization.
The main benefit of SVO is that it is independent of the functional form of p(z,y). With a cache of
sampling methods and gradients of variational distributions, we can us SVO to rapidly build and fit

many kinds of models. We demonstrated that SVO provides a good fit to the variational objective,
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often forming superior predictive distributions to competing algorithms.
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Appendix B

Supplementary materials

B.1 Derivation of update equations for the Document Influ-
ence Model

In this section, we describe the evidence lower bound and expand its terms to derive the variational

updates for Chapter 3. The evidence is given by the following formula:

L(q) = log p(di.1) (B.1)

> 1.0, 2|3,1,7, )1 P(ﬂ;l,@,z)p(fl|@,l,9,z))d.
> /Q(ﬁ zl8,1,7,9) og( 0B 1,0, 28, 1,7, 0) ) T

=E, logH 11 p(zm)] (B.3)
+E, logHHHp znl04,) } (B.4)

T Dy Ny,
+E, |log H |G m] (B.5)
L t=1 K
+E(1 IOgHH Hp wn|2n ] (B.ﬁ)
T D¢ Ng,
+ H(q) (B.7)
+..., (B.8)

where we have left out some terms (B.8) which are not relevant to this model’s derivation. To max-

imize this lower bound, we find locally optimal values for the parameters ¢, ﬁ, l~, and v numerically
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through the variational updates described below.

To derive these updates, we expand each term symbolically and find the gradient of the evidence
lower bound with respect to each parameter. We then solve for the optimal value of the parameter
if possible or perform gradient ascent on the parameter of interest.

We can expand B.3 as:

557 (log 21 + log o3) (B.9)

1
=222 .- QUz(ldfk+0e)—*(10g27r+logod)
T D, K d

Equation B.4 can be expanded as demonstrated in the original LDA algorithm (Blei et al., 2003):

E, [log [TTT TTp(znlba) | =D By llogp(za,[64,)] (B.10)

T D; Na, T D; Na,

:Zz¢n7k \II z Z,YJ
N K
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Finally, we expand B.5, first defining convenience functions g,, and h:

gw(s) _<Wsk o(bs k)w s,k (Bll)
h(‘S? q) = ((Ws7k © ¢SJ€)ISJ€)T AeXP(—Qﬁlq,k‘i‘?Vq,k) ((Ws,k o d)s,k)ls,k)T
+ eXp(_Qﬁlq,k + 2Vq7k)T(Ws,k o Ws,k: o <¢s k — (bs k© (bs k:))( s,k © ls kTt UZD )

+ exp(72mq.k + Q‘Zl,k)T(Ws,k o Ws,k © ¢s,k © d)s,k)o—gDs-

IOgHHP BrlBe-1,k)

t=1 K
T

22_22.2 [/Btk:w—"_ﬂt lkw}
K W

1
+ ? q [Bt.kewBt—1 k)

1
- ? q [(ﬂt—l,k,w - 6t,k,w) o eXP(—ﬁt—l,k,w)(Wt—l,w o [Zw]k:)lt—l,k}

t=1

1

+ 5B, [exp(=26-100) (Wimtkw © [20))li-2)?
VT

— 7(log o? + log 2m)

T
=— VT(log o? + log 2r)

1 e, - 1 ~
PR 5 (Te(Vo) = (Vi)
— g — )

1

20

t
1
72—2 h(t —i,t—1)
1=0

t
= 55 Mk + Vicrk = M- 1k)w exp(—u 1k + Vicr6/2w D r(D)gu(t —i)  (B.12)
=0

Above, o refers to the Hadamard element-wise product and Az refers to a diagonal matrix having
the elements of & on its diagonal. At the line indicated by Equation B.12, we have also used the
fact that E, [8; exp(—B3:)] = (i — V) exp(—m + V/2). Finally, we use the notation r(s) to represent

the envelope of influence over time. r(s) satisfies r(s) > 0 for s =1,...,T and Zle r(s) =1.

B.1.1 Update equations

We update 6 as in the DTM. The updates for B and ¢ are different in the Document Influence Model,
and the document weights I must also be updated. As shown in Equation 3.9, the document weights

are updated with a regression. We determine this regression by collecting terms with [, taking the
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derivative, and setting equal to zero.

To find the updates for ¢, we gather all terms from the evidence lower bound containing ¢ and

form the Lagrangian to enforce the constraint Zjil ¢n,; =1

gw,k(s) = (Ws,k o d)s,k)is,k:

K
Ligl =Y )" (asn,k —log én i + (U(v) = (D 75)) + Mnk)
N K j=1

K
+ 20D bny - 1)
j=1

T—1
1 . _ ~ _ _ ~

t3 > v — ) exp(—ri; + Vi/2) (i1 — 1t + Vi) by kWi nla
1=t
T-1 R ~
3 r(i — t) exp(—2mi + 2V)dnpwinlan > ((Wj o b )i p.a,r(i — j))
i=t §=0...t,j#i
1 T-1

- r(i — )% exp(—21m; + 2V3) b kWi n (A\a, e © W\zdn)(l?dn)
i=t
T-1
b SN2 o (7. 2 (72 2
r(i —t)" exp(—2m; + 2V;)bn xwi (I3, +07)

i=t

T-1
- = r(i —t)% exp(—2m; + 2‘/;)¢n,kwi2,n(o-lg\d”)
it
T-1 -
- = (i — t)? exp(—2m; + 2V;) (1 — an,k)w?,n(l?in + U?dn)

1=t

1

o2
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Next, take the derivative with respect to ¢, ;:

a¢ p ZZ( 10g G ke + W (k) — Z% ) + e + An (B.13)
j=1
1 T—1 } 3
+ —5tala, Zt (i — t) exp(—i; + Vi /2) (g1 — i + V;)
1 T—1 ~
_ ;wnldn z; r(i —t) exp(—2m; + 2V;) vzo: | ((W °djk )\D J, k\D”T(Z - j))
1= 7=0...1
1 T—1 } .
——3Wn Z r(i — t)% exp(=2mm; + 2Vi)(¢p, \wk © Wb, \w) (D)
1=t
T-—1 ~
~ 2 Z (i — t)2 exp(—2m; + 2V;)w 215, +07)
1=t
K
=ZZ< 108 bk + (1) = U(Y_7) + Mk + An
N K j=1
1 T—1 5 5
+—3 Z; 7 (i — t) exp(—mm; 4+ Vi/2) (i1 — i + Vi)wi kla.n
1 T-1 ) }
— Wil Z (i — ) exp(~2i; +2V) Z ((Wj o ¢ )i p.a,r(i — j))
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1 Tl .
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1=t
T—1 _
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K
=2 <_log¢n,k+‘1’(7k) — WD) + i+ A (B.14)
N K j=1
T-1
+ iw l Z (i — t) exp(—1; + Vi/2) (g1 — ms + Vi)
0_2 ntD,, - ) 1 1+1 ) 7
| T2 i -
> r(i — t) exp(—2i; + 2V Ywnlan 20: | (95 0 B (i — 1)
= 7=0...7
1 N . T-1 .
+ ;(wi(l%nasn%?t —(Ih, +07p,)) Y r(i —t)exp(—2m; + 2V5),
i=t
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=2 <log¢n,k+\lf(~yk) —U(Y ) + M+ A (B.15)
N K j=1
T-1
1 _ o o
+ ﬁwnlpn Z r(i — t) exp(—m; + Vi/2)(Miy1 — i + V)
i=t
1 -1 i ~
— —swalp, Y r(i —t) exp(~2 +2V)) ((Wj o PASHT 4 r(i — j))
i=t §=0...i
1 | T-1
2 ast 72 72 2 . 2 - ~
o) la, —la, = —t —2m; + 2V3),
+o,2wt,n( nk d, — ld, Uz);r(l ) exp(—2m; + 2V;)

where we have introduced ¢1ast, which is the last known value of ¢. Therefore the update equation

can be found by solving for ¢:

K
log() —¥(y) = D7) + titn i + An (B.16)
j=1
T—1
1 _ o L
+ 72Wt,kldn Z T(Z - t) exp(—mi + ‘/;/2)(77744_1 —m; + V;)
o i=t
1 = N 3
— Stwinla, Y (i —t)exp(=2m; +27) Y ((Wj 0 GBSO, 4 (i — j))
i=t §=0...0
1 last 7 ~ =1 -
+ gwgn(%&}gtzfln — B~ )Y r(i —t)? exp(—2m; + 2V5),
1=t

The update for 3 can be found by collecting terms containing 3 from Equation B.1. We then
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maximize with respect to 3, again using two new helper functions g and h:

9(s) =Eq [exp(—LBs,k,0) (Wi kw © Zs k,w) s k]
= exp(—1s kw + Vaow/2) (W ke © Bs ko) sk
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B.1.2 Topic trajectories.

The variational update for (3 is similar to that in Blei and Lafferty (2006). For each topic, we update

the variational Kalman “observations” by applying gradient ascent:

oL 1 3 O Ot 1w Ot 120
~ = - 7Z(mtw *mtfl,w *Gt 1w) < i - th L +Gt1,wTrLEL>
a/BSUJ U t=1 3/8910 8/8910 aﬂsw
V’U) 8~ w
+ 37 Nue = NG expling,,, + —52) | S5
T 865w
1

T ~
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2 Z = (Ht—l,w f 1 w 2 E Gtﬂ)‘/t'll)7
aﬁsw

where

Q

sn = [eXp< Bs k n)( s,k,n © zs,k,n)&ak]

H,, = ]Eq [exp(72ﬂs,k,n) ((Ws,k,n o Zs,k,n)es,k)z } .
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Note also that we have added the additional variational parameter (; and the term %’;?f" , which
are both described in Blei and Lafferty (2006). The former can be updated once per iteration with
Gt — 2 exp(men + f/tn /2). The latter can be derived from the variational Kalman filter updates

(see Appendix B.1 and Blei and Lafferty (2006)).

B.2 A parallel implementation of the model

The algorithm described in Section 6.2 takes approximately 11 hours on a modern desktop com-
puter!, for about 30,000 documents. For a larger dataset—such as all scientific articles in Nature,
Science, and PNAS combined—this naive implementation takes considerably longer to complete,
and it requires too much memory to fit on a traditional desktop computer.?

In this section, we describe a parallel implementation for this model. As with the standard
algorithm, the parallel algorithm optimizes the evidence lower bound by local coordinate ascent.
Here, however, many of these steps are made in parallel. While most of this algorithm involves
simply scheduling these updates across many computers, we also describe below how to handle an
update that cannot be distributed without modification.

In this section, we will refer to a single computer as a processor. We will differentiate between
the roles a processor may take by referring to a “master”, which coordinates the entire algorithm,
and the “workers”, which perform lower-level computing. The master launches workers, checks when
they are complete, and monitors model convergence. Each worker performs updates for a partition

of the entire collection of random variables.

Algorithm overview

With both the parallel implementation and the standard implementation, we initialize the model
with LDA topics. We therefore first fit LDA in parallel. The parallel implementation of LDA
distributes the work of the E step among the many workers during each iteration. The LDA M step
for each iteration—which simply aggregates sufficient statistics—is then run on the master.
Following this initialization with LDA topics, the DIM model is fit. This is driven by a single

master program which alternates between two steps: a topic M-step and a document E-step.

I This was a 2.2GHz, 1MB cache, Dual core AMD Opteron 275 processor
2Circa 2009.
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The parallel topics M-step

In the topic step of the original algorithm, our goal is to re-fit topics ﬁk|q§k,gk, w by adjusting their
variational observations. Topic chains Bk are conditionally independent given the documents’ varia-
tional parameters, so the parallel algorithm performs the same operations as the original algorithm,

but in parallel. We simply split the work among W distinct workers.

The parallel documents E-step

In the documents E-step of the algorithm, our goal is to re-fit each document’s parameters v, ¢|[7, /3’ , W
and /| |0, B, w using the topics estimated in the M-step. In this step the master partitions the entire
collection of documents into time-contiguous chunks and assigns each chunk to a worker. The
algorithm can update v and ¢ using the same operations as the original algorithm because the
Markov blanket of v contains variables from a single timestamp and because each ¢ is conditionally
independent given the remaining variational parameters. Therefore we fit these using alternating

updates of ¢4 and 4 as in LDA.

Parallel update dampening

The update for l7|¢, B, w is a bit trickier because the influence of documents at time ¢ is not condi-
tionally independent of the influence of documents at a different time s # ¢. This means that we
cannot simply estimate the optimal influence of documents independently in W different workers
because it is not guaranteed to improve the variational objective. In a worst-case scenario, updating
l; in parallel for all times t = 1,...,T might result in over-estimating gt, over-explaining influence.

We address this with parallel update dampening. In parallel update dampening, we use the
fact that documents have been partitioned into W sets, and workers w = 1,..., W each manage one

of those sets. In parallel update dampening;:

1. Each worker calculates the optimal variational influence gk,w for its managed documents, given
all other (unmanaged) documents. Each worker then has a list of all influence scores, this list
comprising its unmanaged documents’ scores (which take the old values) and its managed

documents’ scores (which are assigned new values).

2. After each worker has run and saved its scores, a master then calculates the average of scores

in these lists.
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Importantly, this process maintains the requirement that the variational lower bound never decrease.
In the first step, each of the “local” estimates has not decreased the variational bound. The varia-
tional lower bound is concave in £y, so the average of these estimates does not decrease the variational
bound. Therefore, both the first and second steps guarantee that the variational objective never
decrease.

Instead of taking the global average in a second stage, this can be implemented in each worker

by taking the estimate of the optimal solution ng’,gk‘", and dampening it with the current estimate,

Jold .
d,k*
gnew - W - 1gold + ifworker
d,k: W d,k W d,k: ?

or, equivalently,
_ _ 1 -
new old 'worker old
ik — la% + *W( a = la%)-

We stress again that we can only guarantee that parallel update dampening increases the varia-

tional objective because the objective is concave in the parameter l.

B.3 Notes on the unsupervised sentiment model

B.4 Additional notes on unsupervised sentiment analysis

In this section we describe a model for inferring relationships between countries in an unsupervised
fashion. This model is based on the model in the last section, but it requires no explicit labels of the
relationship between pairs of countries. Instead it infers a qualitative relationship between countries
— a relationship which we can attempt to interpret post-hoc. The significance of this approach is
that it infers a relationship between countries based more on the discussion of these countries than
explicit labels. Particularly, if there is a relationship which has been overlooked by historians, then
we might be able to learn it.

In the remainder of this section we will outline a probabilistic model for inferring sentiment
between pairs of countries. We will outline the key assumptions of this model — first, a language
model inspired by the Networks Uncovered by Bayesian Inference model (Chang et al., 2009); and
second, a spatial model of dyadic relationships. We will then describe inference for this model, and
finally provide an empirical analysis of this model.

This section necessarily represents a very cursory look at unsupervised sentiment analysis. Be-

cause there are many parts to the model, we focus on the intercept/distance link function defined
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in Table 4.1.2. As our goal is to qualitatively observe the inferred sentiment topic, we will focus on

that and skip a rigorous analysis of this model’s performance.

B.4.1 A model of unsupervised foreign relations

A key variable in this model is that each document has a sentiment parameter xg. This become
important when we link this sentiment model to text. Intuitively, if two countries are far apart in
the latent space at time ¢, we expect that x is more likely to be 1 when they interact. Otherwise, x
is more likely to be 0. As we develop the language model, we will use this random variable to decide

which topic is used to describe the pair of countries.

Binary Relational language model

We incorporate text using a mixed-membership language model similar to LDA. Recall that in
LDA, each word comes from a specific topic. In our model, which we dub the binary relational
language model, we assume that the words describing a pair of countries come from topics about

those countries.

A mixture of four topics. To be concrete, consider a document discussing Iran and the United

States. We assume that each word in this document will serve one of four roles:
1. It discusses the U.S. only,
2. It discusses Iran only,
3. It discusses the relationship between the U.S. and Iran.
4. Tt is a “filler” word, providing little contribution to the discussion.

The first two roles for a word are self-explanatory. The relationship in (3) above could be any type
of relationship — the goal of this section is of course to discover the relationships in a collection
of documents about these countries. The “filler” words in (4) above are those words found in any
document — stopwords, for example — that are unrelated to either country or the relationship between
them.

We therefore keep (N, +2+1) topics—topics B¢ 1, . - ., Bc,n, for each of the N, countries, exactly
two sentiment topics Og0,8s,1, and a single, global background topic Spo (Chemudugunta et al.,
2006). We assume, as in LDA, that a document about the United States and Iran is a mixture

of topics; in contrast to LDA, however, we constrain this document’s topics to be exactly the four
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topics enumerated above: B¢ nan, 50, united statess 88,0, and either 8s o or g1 (we describe below how
to make the choice between (s and 8s1). A document about Hungary and Germany, in contrast,
would be a mixture of the topics B¢, cermanys BC, Hungarys 8B,0, and either Bg o or Bs 1.

Once these topics are fixed for a document, the language model proceeds as with LDA for
each word: each word in the document comes from one of four topics, with probability for topic k
proportional to the topic mixture E [6],. We illustrate this model graphically in Figure B.1. Note
that we keep the topic mixture € global instead of local to each document because the topics are

already very constrained.

Determining the sentiment topic: connecting dyadic sentiment and text

Up to now the dyadic sentiment model and the language model have been developed independently.
We connect the two models by using the binary sentiment parameter xg to index the sentiment
topic for a document: document d takes topic Bs ., for its sentiment topic.® In other words, if two
countries are far apart in the latent space, then when they interact in document d, this interaction
is likely to be negative (i.e., kg = 1, and the language used to describe their relationship will come
from topic Bg,1. If they were instead close together in this latent space, the language used to describe
their relationship would come from topic 8g,.

We can now specify the generative model of a document language, given the sentiment x4 for

each interaction between countries. We begin by specifying the global topics.
1. First, draw topics:
(a) For nation c=1,...,C:
e Draw topic f¢ , ~ Dir(1,...,1).
(b) Draw background topic BB,O ~ Dir(1,...,1).
(¢) Draw positive-interaction topic Bg ~ Dir(1,...,1)
(d) Draw negative-interaction topic 58,1 ~ Dir(1,...,1)
2. Next, draw the global topic mixture 6 ~ Dir(1,1,1,1).

3. Finally, draw documents.

For document d =1, ..., D, each representing interactions between pairs of countries ¢4, 1, ¢4 2:

3We also make a small adjustment to ensure that the model converges to a reasonable mode. There are two main
components of this model: a language model and a sentiment model. We introduce a parameter v ~ N(¥, ¥44) and
per-document parameters vg ~ R(v,0.001) and define the binary sentiment kg ~ o(sqvq).-
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(a) Draw sentiment index kg ~ o(sq)
(b) For word n =1,..., Ng:
e Draw z, ~ Mult(0y).

o Switch(zy,):

If 2, = (1,0,0,0), draw w,, ~ ﬂcy%l.
— If z, =(0,1,0,0), draw w,, ~ ﬁqcm.
— If 2, = (0,0,1,0), draw w,, ~ BB,O'

( )

— If 2, = (0,0,0,1), draw wnNﬂSnd'

We illustrate the combined model in Figure B.1.

Related work

The binary relational language model is founded on ideas discussed by several recent models. Chang
et al. (2009) developed a model to describe the relationships between “entities” (e.g., countries)
with a similar assumption of entity-specific and relationship-specific topics. In Chang et al. (2009)’s
Networks Uncovered by Bayesian Inference (Nubbi) model, each entity had its own entity-specific
topic, which was active when that country is discussed. An additional mixture of topics was then
used to describe the relationship between countries. Nubbi was then be used to infer relationships
between countries that have been tagged in a collection of text documents.

Nubbi inferred relationships between countries by finding similar topic weights between docu-
ments. In contrast, we use sentiment to select between topics, with an “upstream” model in which
actors are embedded in a latent space. This idea of merging topics at different levels of a hierarchy
has also been explored by Chemudugunta et al. (2006). Neither of these approaches included a
switch variable for selecting between topics.

As noted in the last section, the idea of associating language with sentiment has been explored
in considerable detail lately. Some of the most successful supervised approaches handle this with
regression methods such as text regression (Kogan et al., 2009). Supervised topic models (Blei and
McAuliffe, 2008) offer a fully probabilistic generative model of documents which have an attached
label. A key assumption behind supervised topics is that the model can learn topics that capture the
underlying sentiment. Supervised topic models do this by assuming that the distribution of docu-
ments’ sentiment parameters sg are fully specified given their words’ topic indices z4 and regression

coefficients p(sq4|z4,m). This requires that p(sqlwg,n,3) they are fully specified given the text of
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Figure B.1: The dynamic sentiment model (A), a binary mask mixed-membership language model
(B), and the full unsupervised foreign relations model (C) (which is a combination of (A) and
(C). In (B) and (C), we assign each country its own topic G¢,.. Interactions between countries are
characterized by sentiment sq, which is reflected in the sentiment topic s ,,. The background topic
Bp is provided to “soak up” background noise.

documents and 7. This means that the topics learned by a standard LDA algorithm will differ from
those learned by a supervised LDA algorithm, because they adjust to explain documents’ sentiment.

The unsupervised sentiment model is similar to supervised LDA in that the topics adjust as
the underlying sentiment parameter sy differs. In contrast to supervised topics, we assume an
inverted conditional independence: words of two documents are conditionally independent given the
document’s and other model parameters: p(wq|sq, 3), while supervised LDA assumes that sentiment

is conditionally independent given words and regression coefficients 7.

B.4.2 Inference

As before, we only observe a collection {(wg, c4.1,¢4,2) }aep of interactions between countries. Each
of these interactions takes the form of a vector of wordcounts wy and a pair of countries interacting.

To perform an empirical analysis with this model, we must estimate the latent positions of countries
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and the latent topics associated with documents. These are described by the hidden random variables
T, 0, and B. We accomplish this with posterior inference, which will provide us with an estimate of
the distribution p(Z., 8, B|{(wq, c4,1,¢a,2) }aeD)-

We fit this model with mazimum a posteriori (MAP) inference, which has the benefit of a simpler

derivation than variational inference. As the reader may recall, the MAP estimate is

5307 97 ﬁ =arg gn%)%p(jm 67 6'{(“’(17 Cd,1, cd,Q)}dED)

csVy

= arg max p(Z., 0,5, {(wq,ca,1,ca2) }daeD)- (B.17)

Ze,U,

Deriving the algorithm for MAP estimation requires expanding the full likelihood objective,
lower-bounding this objective, and maximixing the lower bound with respect to the parameters. We
have designed the model in such a way that updates can be performed by a combination of exact
coordinate ascent on each parameter (or its expectation), with the exception of countries’ mean
position Zc, , ¢, during interactions.

The lower bound on the likelihood uses the expectations E [k4] and E [z,]. This means that each
interaction is manifested as a mixture E k4] of sentiment, and the observed words are treated as
mixtures E [z4] of topics. We estimate countries’ mean positions z using a Kalman filter (Kalman,

1960) as in the last section. This inference step is exactly as in the last section.

Countries’ per-interaction positions z.,, .,,. As in the last section, we infer countries’ po-

sitions during an interaction by gradient ascent on the objective with respect to their positions

xcd,lacdj'

Estimating topics (¢, 0s,., and Bg. The update for topics is similar to that in LDA. In both
cases, we aggregate the sufficient statistics and normalize during an M-step. We also use Laplace

smoothing by adding pseudo counts of 0.1 to these statistics.

Estimating E [] and E [z,]. During inference, we compute the expectations E [k4] and E [z,], to

perform EM. The goal of performing EM is to optimize the bound

q(Kd, zq)

q(lid,Zd)p(de’d7Zd7ﬂ7Sd):| (BlS)

log p(wq|B, 54) > log E, [

p(wd|kd, 24,8, 54)
>E, [q(md7 zg4) log oOsa. 20) } (B.19)
=B, [p(walka, 24, B, 5a)] — H(q(ka, 2a)) (B.20)
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on the likelihood of documents, where we specify ¢(k4, z4) to be the factorized distribution ¢(kq)q(z4)
and write the expectations ¢(kq = 1) = E, K4, ¢(2an = 1) = E; [(2a,n)]-

As an aside, note the similarity between Equation B.20 and the variational objective (Equa-
tion 2.13). MAP inference using EM can be interpreted as variational inference, in which we use
point estimates for many of the random variables and distributions to represent the remaining vari-
ables.

Letting Sy and S7 index the sentiment word-topic distributions, and letting .S index the sentiment

topic in the topic indicators z, and recalling that the indicator z,, describes word w,,, this update is:

Ng
K0 % Y B850, E [2n,5]
n=1

Na
K/d71 o8 eXp(Sd) Z ﬁslywnE [ZTL,S}

n=1
Rd,m

E[kaq] = ZT
k ,m

(B.21)

The update for E [z,] is similar. Again letting S(Sp, S1) refer to the sentiment topic indices, and

describing the remaining indices with C7, Cy, B, we have:

Zn,s X E [05] (ﬂSo,wnE [Hdz,O] + 651,wnE [Kdz,l])
znakcl X E [901] Bclan
Zn,key X E [002] ﬂC'z,wn

ZnJcb X E [eB] ﬁB;wn

Zn,i
E[Zn,i]ziz - (B.22)
k ~n,

The update for E [0] is similar to kg, but we use sufficient statistics from all documents:

D Ng

Qk X Z Z E [Zn,k]

d=1n=1

E[0;] = S o

(B.23)
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B.4.3 Empirical analysis

In this section we perform a very cursory empirical discussion of this model. For this analysis, we
used the same New York Times (NYT) articles described in the last section. The dimension of the

latent space was p = 2.

B.5 Derivation of update equations for the Ideal Point Topic
Model

Variational inference for the ideal point topic model

Inference for the ideal point topic model requires variational updates (see Jordan et al. (1999) for
more details about variational inference). Minimizing the KL between the variational distribution
and the true posterior is equivalent to maximizing the following lower bound on the model evidence

(called the “evidence lower bound”, or ELBO):

log p(W, V) = / p(W, V|80, 1, X, 2, 0)p(B.m, I, X, . 6)

>E,

Z Z log p(wn|zn, B) + logp(zn|9d)‘|

D N

+E, Zlogp(Ad7 Balza,1:n,m) + log p(n)
D

+E, Z logp(x,,) + Z log p(vua|®wu, Ad, Ba)
U D

+Eq | logp(fal)
D

+ H(q)

= ‘C(ﬁ7aa7a ¢7 7)7 (B24)

where the expectations are taken with respect to the variational distribution ¢. This bound is
optimized by block coordinate ascent. We repeatedly optimize each variational parameter until the
relative increase in the lower bound is below a specified threshold.

One important detail in this equation is that E, [log p(vyd|Ty, Aq, Bq)] is not available in closed
form under the variational distribution. We approximate the expectation in Equation B.24 by
applying the second-order multivariate Delta method Bickel and Doksum (2007), also applied to the
logit distribution in Chang and Blei (2009); Braun and McAuliffe (2010). This Taylor approximation

no longer guarantees that our objective is a lower bound; however, Braun and McAuliffe (2010) have
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found it to work better than a first-order approximation (which does maintain the lower bound).

We now turn to the coordinate updates.

Updates for nn The variational update for 7} can be found by collecting terms in the evidence
lower bound, taking the derivative with respect to 7, setting this to zero, and solving for 7j. Letting

KQisc be a bill’s discrimination parameters, we have the the exact update for the vector ;g

2

-1

. 151 O -

Ndisc < (Eq [ZTZ] + Ug) E, [Z]T”‘diso
n

The update for fg;g, controlling a bill’s difficulty parameter kg;g, is analogous.

Updates for 3, ¢, and v The updates for 8 and ~ are exactly as in LDA Blei et al. (2003), and

the update for ¢ is exactly as in sSLDA Blei and McAuliffe (2008); we omit details here.

Updates for x4 and 7, We cannot solve for x and 7 exactly, so they must be optimized via

gradient ascent. For bill d, the gradient with respect to  is

Rd,i — 77‘$ ~ ~
Via Llkai) =D~ e S LFu,i — Tuyifud
D d vEV (u)

= Y (02T ) + 2 r)

veV(d)

X i’uv,i (pud - 2/)121(1 + 2pid) )

1
- Z 50';% (fid,i o (pud - pid) )7

veV(d)

exp(T,,T Kd—ad)

WheTe pud = GG —aa) +1

and 1, is an indicator describing whether vote v was a yea-vote.

To optimize this, we apply second-order gradient ascent to the sum ), g—é, repeating the updates

o 1000

Kg = Kq — — WHA (Vi L(Kq))

until convergence. In implementation, we constructed the Hessian H numerically by evaluating the
above gradient with coordinates perturbed by 107°. For the data we used, this was sufficiently fast;
if a bill has enough votes, an alternative implementation might use more frequent updates and fewer

iterations through the votes.
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The gradient for the user-ideal parameter 7, is nearly identical to that for x:

T
VTu7iL(Tu,i) = Z - JU; + Z 1vl'idv,i — KRd,,iPud
U u veV (u)

1
- > 5@k a) + o)
veV (u)

X Ky i (Pud — 2054 + 205 4) )

1
— Z EU:(Tu,iO(pud—pid)).

Again, we update this via second-order gradient ascent.

Updates for o, and oz. Once per iteration, we update the the variances o, and oz. As with 7,

these updates are exact:

o2 ND
" ZD,UGV(d) T T (Puyd — pivd)n + ND/Ug
g

T (72 T — 2 NU/o2 )
U,weV (u) Ka ’%d<pUdv pudv)’ﬂ + /Uu

where above we have U users, D bills, and an N-dimensional ideal-point model.

B Implementation details

We provided details of a variational implementation of the ideal point topic model. Here we describe

several modifications to improve this algorithm.

Second order updates. Note that the second-order updates for x and 7 may violate the convexity
assumption. To mitigate this, and to prevent the parameters from diverging for large o4 or o,, we
add a constant to each element of the diagonal Levenberg (1944). We add a sufficiently large constant
to guarantee that all 1 x 1 and 2 x 2 principal minors have positive determinant (this is necessary
but not sufficient to guarantee that H is positive definite). We have observed that H only requires

this adjustment for early model iterations.

Identifiability. In the modeling section, we discussed using nonzero priors for certain legislators

to make the posterior identifiable. These priors may not be sufficient to guarantee that the model
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Model | Regularization | Accuracy | Log Expected
Likelihood | Correct
Probability

lars 0.001 0.819 -0.855 0.792
lars 0.01 0.822 -0.984 0.793
lars 0.03125 0.817 -1.091 0.792
lars 0.0625 0.807 -1.214 0.787
lars 0.125 0.799 -1.337 0.781
lars 0.25 0.786 -1.479 0.770
lars 0.5 0.770 -1.640 0.755
lars 1 0.735 -1.903 0.723

12 0.01 0.815 -0.914 0.793

12 0.1 0.832 -0.794 0.811

12 1 0.850 -0.636 0.829

12 10 0.876 -0.498 0.853

12 100 0.891 -0.371 0.866

12 1000 0.897 -0.302 0.868
12 10000 0.873 -0.324 0.841
iptm 4 0.871 -0.370 0.849
iptm 8 0.869 -0.348 0.845
iptm 16 0.883 -0.321 0.858
iptm 32 0.883 -0.314 0.856
iptm 64 0.887 -0.306 0.858
iptm 128 0.873 -0.456 0.845
yea 0.853 -0.417 0.749

Figure B.2: Prediction metrics for heldout prediction experiments.

Model | Accuracy | Log Expected
Likelihood | Correct
Probability
12 0.881 -0.346 0.852
iptm 0.870 -0.346 0.824
yea 0.851 -0.422 0.746

Figure B.3: Prediction metrics for time-series prediction experiments.

finds specific modes. To encourage the model to converge to the desired optimum, we allow the first

two iterations of this model one extra dimension for the ideal point. We believe this ”blessing of

dimensionality” allows the model to rotate ideal points toward the desired mode.

Annealing. We set the model parameters y for 0’3 to 1.0 before the first iteration and update it

with y « yo‘g(aﬁ)o'l

B.6 Experimental Results

The experimental results for cross-fold validation are presented in Figure B.3. Top performers by

various metrics are highlighted in bold.
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We also display ideal points for all Senators (Figure B.5) and all legislators (Senators and House

representatives) (Figure B.4) in the fit of the 111th Congress.

B.7 Additional notes for the Issue-Adjusted Ideal Point Model

B.7.1 Sparsity

Issue adjustments z, ranged widely, moving some lawmakers significantly. The variational estimates
were not sparse, although a high mass was concentrated around 0. Twenty-nine percent of issue
adjustments were within [—0.01,0.01], and eighty-seven percent of issue adjustments were within

[—0.1,0.1].

B.7.2 Hyperparameter settings

The most obvious parameter in the issue voting model is the regularization term A. The Bayesian
treatment described in the Inference section of How they Vote demonstrated considerable robustness
to overfitting at the expense of precision. With A = 0.001, for example, issue adjustments z,x
remained on the order of single digits, while the MAP estimate yielded adjustment estimates over
100.

We recommend a modest value of 1 < § < 10. At this value, the model outperforms ideal points
in validation experiments on both the House and Senate while maintaining stability in the two-stage

model.

B.7.3 Implementation

When performing the second-order updates described in the Inference section, we skipped variable
updates when the estimated Hessian was not positive definite (this disappeared when sample sizes

grew large enough). We also limited step sizes to 0.1 (another possible reason for smaller coefficients).

B.7.4 Issue labels

In the empirical analysis, we used issue labels obtained from the Congressional Research Service.
There were 5,861 labels, ranging from World Wide Web to Age. We only used issue labels which
were applied to at least twenty five bills in the 12 years under consideration. This filter resulted in
seventy-four labels which correspond fairly well to political issues. These issues, and the number of

documents each label was applied to, is given in Table B.1.
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Table B.1: Issue labels and the number of documents with each label (as assigned by the Congres-
sional Research Service) for Congresses 106 to 111 (1999 to 2010).

Issue label Bills
Women 25
Military history 25
Civil rights 25
Government buildings; facilities; and | 26
property
Terrorism 26
Energy 26
Crime and law enforcement 27
Congressional sessions 27
East Asia 28
Appropriations 28
Business 29
Congressional reporting requirements 30
Congressional oversight 30
Special weeks 31
Social services 31
Health 33
Special days 33
California 33
Social work; volunteer service; charitable | 33
organizations
State and local government 34
Civil liberties 35
Government information and archives 35
Presidents 35
Government employees 35
Executive departments 35
Racial and ethnic relations 36
Sports and recreation 36
Labor 36
Special months 39
Children 40
Veterans 40
Human rights 41
Finance 41
Religion 42
Politics and government 43
Minorities 44
Public lands and natural resources 44

Issue label

Bills
Europe 44
Military personnel and dependents 44
Taxation 47
Government operations and politics 47
Postal facilities 47
Medicine 48
Transportation 48
Emergency management 48
Sports 52
Families 53
Medical care 54
Athletes 56
Land transfers 56
Armed forces and national security 56
Natural resources 58
Law 60
History 61
Names 62
Criminal justice 62
Communications 65
Public lands 68
Legislative rules and procedure 69
Elementary and secondary education 74
Anniversaries 82
Armed forces 83
Defense policy 92
Higher education 103
Foreign policy 104
International affairs 105
Budgets 112
Education 122
House of Representatives 142
Commemorative events and holidays 195
House rules and procedure 329
Commemorations 400
Congressional tributes 541
Congress 693

142




B.7.5 Corpus preparation

In this section we provide further details of vocabulary selection. We began by considering all phrases
with one to five words. From these, we immediately ignored phrases which occurred in more than
10% of bills and fewer than 4 bills, or which occurred as fewer than 0.001% of all phrases. This
resulted in a list of 40603 phrases.

We then used a set of features characterizing each word to classify whether it was good or bad to
use in the vocabulary. Some of these features were based on corpus statistics, such as the number of
bills in which a word appeared. Other features used external data sources, including whether, and
how frequently, a word appeared as link text in a Wikipedia article. For training data, we used a
manually curated list of 458 “bad” phrases which were semantically awkward or meaningles (such as
the follow bill, and sec ammend, to a study, and pr) as negative examples in a Lo-penalized logistic

regression to select a list of 5,000 “good” words.
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Table B.2: Features and coefficients used for predicting “good” phrases. Below, test is a test
statistic which measures deviation from a model assuming that words appear independently;

large values indicate that they occur more often than expected by chance. We define it as
Observed count—Expected count

test = vExpected count under a language model assuming independence
Coefficient Summary
Weight|

log(count + 1) Frequency of phrase in corpus -0.018
log(number.docs + 1) Number of bills containing phrase 0.793
anchortext.present TRUE Occurs as anchortext in Wikipedia 1.730
anchortext Frequency of appearing as anchortext in | 1.752

Wikipedia
frequency.sum.div.number.docs Frequency divided by number of bills -0.007
doc.sq Number of bills containing phrase, squared | -0.294
has.secTRUE Contains the phrase sec -0.469
has.parTRUE Contains the phrase paragra -0.375
has.strikTRUE Contains the phrase strik -0.937
has.amendTRUE Contains the phrase amend -0.484
has.insTRUE Contains the phrase insert -0.727
has.clauseTRUE Contains the phrase clause -0.268
has.provisionTRUE Contains the phrase provision -0.432
has.titleTRUE Contains the phrase title -0.841
test.pos In(max(—test,0) 4+ 1) 0.091
test.zeroTRUE 1 if test =0 -1.623
test.neg In(max(test,0) + 1) 0.060
number.terms1 Number of terms in phrase is 1 -1.623
number.terms2 Number of terms in phrase is 2 2.241
number.terms3 Number of terms in phrase is 3 0.315
number.terms4 Number of terms in phrase is 4 -0.478
number.termsb Number of terms in phrase is 5 -0.454
log(number.docs + 1) * anchortext In(Number of bills containing phrase) -0.118

X 1{Appeaurs in Wikipedia anchortext}
log(count + 1) * log(number.docs + 1) | In(Number of bills containing phrase + 1) | 0.246

x In(Frequency of phrase in corpus + 1)
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Figure B.4: All legislator ideal points in the 111th Congress. Using votes, ideal points can sep-
arate the U.S. political parties Democrats (blue) and Republicans (red). The Y axis contains no
information; it is used to stack names for display purposes.
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Figure B.5: All Senator ideal points in the 111th Congress. Using votes, ideal points can separate
the U.S. political parties Democrats (blue) and Republicans (red).
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