
Approximability and Mathematical

Relaxations

Rajsekar Manokaran

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Sanjeev Arora

November 2012

© Copyright by Rajsekar Manokaran, 2012.

All rights reserved.

Abstract

The thesis ascertains the approximability of classic combinatorial optimization problems

using mathematical relaxations. The general flavor of results in the thesis is: a problem P

is hard to approximate to a factor better than one obtained from the R relaxation, unless

the Unique Games Conjecture is false.

Almost optimal inapproximability is shown for a wide set of problems including Metric

Labeling, Max. Acyclic Subgraph, various packing and covering problems. The key

new idea in this thesis is in coverting hard instances of relaxations (a.k.a integrality gap

instances) into a proof of inapproximability (assuming the UGC). In most cases, the hard

instances were discovered prior to this work; our results imply that these hard instances are

possibly strong bottlenecks in designing approximation algorithms of better quality for these

problems.

For ordering problems such as Max. Acyclic Subgraph and Feedback Arc Set,

such hard instances were previously unknown. For these problems (see chapter 6), we con-

struct such hard instance by using the reduction designed to prove the inapproximability.

The hard instances show that all ordering problems are hard to approximate to a factor

larger than the expected fraction satisfied by a random ordering: i.e., all ordering CSPs are

approximation resistant.

Techniques involve using mathematical relaxations to obtain local distributions, convert-

ing them into low degree functions defined over the boolean cube and using the invariance

principle to analyse such function.

I believe the thesis will be a good reference, both for the results proven therein, and for

the framework designed in ascertaining approximability from mathematical relaxations.

iii

Acknowledgements

I would like to thank my parents, Bama and Manokaran, and my sister Nithya for providing

a wonderful family. The values imbibed in me by them has always been crucial throughout

my life.

I thank my adviser, Prof. Sanjeev Arora, for his constant support and advice during my

stay here at Princeton. My colloborations with him not only led to this thesis but has also

refined my research methodologies. I am grateful to the complete independence in decisions

regarding research directions, letting me grow a taste for research in theoretical computer

science, while fully supporting me financially. NSF grants MSPA-MCS 0528414, 0830673,

0832797, 528414 and ITR 0205594 were instrumental in this academic freedom.

I thank Princeton University and the Computer Science department for providing a

placid environment, ideal for pursuing research. Special thanks to Melissa Lawson and

Mitra Kelly for handling travel reimbursements, and various other paper work making travel

to conferences and hence public dissemination of my research work easier.

I would like to thank my numerous friends, both in Princeton and elsewhere for providing

a second family, while away from home. This list is by no means complete: special thanks

to Anirudh Badam, Vijay Krishnamurthy, Abishek Kumarasubramanian, Ana Bell, Arul

Shankar, Ila Varma and Aravindan Vijayaraghavan. They were always around during the

toughest of my times, nudging me towards my goals.

I am fortunate to have been mentored by Dr. Ramarathnam Venkatesan. His thoughts

on things both pertaining to research and otherwise have been a guiding light to me.

Almost my entire knowledge of techniques used in theoretical computer science stems

from my collaboration during and before I started pursuing my doctoral degree. I would

like to thank all my collaborators, an incomplete list of whom would be Prasad Raghaven-

dra, Nisheeth Vishnoi, Konstantin Makarychev, Moses Charikar, Aravindan Vijarayaghavan,

iv

Aditya Bhaskara, Ravishankar Krishnaswamy, Venkatesan Guruswami, Johan H̊astad, Dana

Moshkovitz, Sushant Sachdeva and Arnab Bhattacharya.

Lastly, I would like to thank someone initialled D. N., for teaching me how to live.

v

Dedicated to D. N.

vi

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . x

1 Introduction 1

1.1 Overview . 1

1.2 Approximation Algorithm Design . 2

1.3 Inapproximability Reductions . 5

1.4 Systematic Design in Approximability . 6

1.5 Unique Games Conjecture . 7

1.6 Overview of the Reduction . 8

1.7 Organization of this thesis . 9

2 Preliminaries 10

2.1 Setup and Notation . 10

2.2 Mathematical Relaxations . 10

2.3 Fourier Analysis over the Boolean Cube . 13

2.3.1 Notion of Influence for orderings . 15

2.4 Unique Games Conjecture . 18

2.5 Gaussian Stability Estimates . 18

vii

3 Dictatorship Gadget 20

3.1 Construction of the Gadget . 21

3.1.1 Payoff Functions . 22

3.2 Analysis of Gadget Assignments . 23

3.2.1 Invariance Principle . 23

3.2.2 Low Degree Assignments . 25

3.2.3 Metric Like Payoffs on Noise Distributions 26

3.2.4 Connected Payoff Functions . 28

3.2.5 Alphabet Reduction . 30

3.3 Overview of a reduction from UG . 33

4 Approximability of Labeling Problems 34

4.1 Description of Problems . 35

4.2 Earthmover Relaxation . 37

4.3 Results on Labeling Problems . 39

4.4 Reduction to Metric Labeling Problems . 41

4.4.1 Canonical Labeling from UG Labelings 42

4.4.2 Soundness . 43

4.5 Concluding Remarks . 45

5 Approximability of Strict CSPs 46

5.1 Description of Problem . 47

5.2 Linear Relaxations for Strict CSPs . 49

5.3 Results on Strict CSP . 50

5.4 Reduction to Strict CSPs . 52

5.4.1 Deriving an Assignment from a UG Labeling 53

5.4.2 Soundness . 53

viii

5.5 Inapproximabilty of Strict CSPs . 55

6 Ordering Problems 56

6.1 Description of Problems . 56

6.1.1 Organization . 62

6.2 Overview of Reduction . 63

6.3 Multiscale Gap Instances . 65

6.3.1 Gap Instances for general Ordering Problems 66

6.4 Reduction to Ordering CSP . 71

6.4.1 Formal Definitions . 71

6.4.2 Relation to CSPs . 72

6.4.3 SDP Relaxation . 74

6.5 Dictatorship Test for OCSP . 78

6.5.1 Completeness analysis . 78

6.5.2 Soundness of dictatorship test . 80

6.6 Soundness Analysis for q-Orderings . 81

6.6.1 Invariance Principle . 82

6.6.2 Payoff Functions . 83

6.6.3 Local and Global Distributions . 83

6.6.4 Putting It All Together . 84

6.7 SDP Integrality Gap . 87

ix

List of Figures

1.1 New Results in this thesis . 2

1.2 Integer Program for 3-way Cut . 3

1.3 Linear Program for 3-way Cut . 4

2.1 Integer Program (for Vertex Cover) . 11

2.2 Linear Program (for Vertex Cover) . 11

2.3 Semidefinite Program (for Vertex Cover) 13

4.1 Earthmover Relaxation for Metric Labeling 38

4.2 Approximability of Metric Labeling Problems 41

4.3 Reduction from UG to Metric Labeling problems 42

5.1 LP for k-Strict CSP . 49

5.2 Constraint Set of the output instance, I . 52

6.1 Local Relaxation: LC for a Λ-OCSP . 75

6.2 Dictatorship Test for a general Λ-OCSP . 79

6.3 Rounding Scheme for a Λ-OCSP . 86

x

Chapter 1

Introduction

1.1 Overview

A standard approach to coping with the NP-hardness of a combinatorial optimization prob-

lem involves designing algorithms that guarantee a solution within a factor α of the optimum

(a.k.a an α-approximation algorithm). Assuming P 6= NP, this is the best one can hope for,

and the design is aimed at minimizing α. In this context, approximability refers study and

design of the best approximation algorithms. Approximability is, by now a large field and

draws techniques from a wide variety of mathematical tools like metric embeddings, matroid

theory, etc. The analysis has made important and fundamental contributions to the fields it

draws from.

In this thesis, we will focus on one of the most powerful and widely used tool: mathemat-

ical relaxations. We develop techniques to ascertain the approximability of a large number

of locally constrained optimization problems. The general flavor of results in the thesis is:

a problem P is hard to approximate to a factor better than one obtained from the R relax-

ation, unless the Unique Games Conjecture is false. Figure 1.1 tabulates all the new results

shown in this thesis.

1

The Unique Games conjecture, introduced by Khot [38], hypothesizes that a particular

optimization problem known as the Unique Games is NP-hard to approximate upto any

constant factor. This conjecture has proven very useful in obtaining tight inapproximability

results. However, being more recent than traditional complexity assumptions (such as P 6=

NP), the conjecture is not as widely believed.

Problem Result Remarks

3-Multiway Cut 12/11− ε inapprox. Tight inapprox. (see [33].)
k-Multiway Cut θ − ε inapprox. θ is the integrality gap of the earthmover

relaxation (see fig. 4.1) and hence tight.
0-Extension O(

√
log k)-inapprox Tight upto factors hidden in O(·) [10]

k-Metric Labeling O(log k)-inapprox Tight upto factors hidden in O(·) [34]
Max. Acyclic Sub-
graph

1/2 + ε-inapprox. Tight. A random ordering is a 1/2-approx.

Feedback Arc Set ω(1)-inapprox. Improves over a small const. hardness.
Betweenness 1/3 + ε-inapprox. Tight. A random ordering is a 1/3-approx.
Strict CSP θ − ε inapprox. Tight. θ is the integrality gap of the relax-

ation (see fig. 5.1)
Ordering CSP θ + ε inapprox. Tight. θ is the expected payoff of a random

ordering.

Figure 1.1: New Results in this thesis

1.2 Approximation Algorithm Design

For the sake of this exposition, we will consider a simple optimization problem, explaining key

ingredients in designing an approximation algorithm using a mathematical relaxation and

explaining our approach to determining its approximability. The example is the 3-way Cut

problem, defined below.

Example 1.2.1 (3-way Cut). Given a graph J = (V , E), along with three specific terminal

vertices, t1, t2, t3 ∈ V, the 3-way Cut problem asks for the partitioning of the vertices—i.e.,

disjoint sets X, Y and Z— that separates the three terminals from each other with minimum

number of edges crossing partitions.

2

This simple extension of the well-known Min Cut problem is already NP-hard. To-

wards designing an approximation algorithm, one first writes an integer program to solve

the problem. Integer programming, being a non-convex optimization problem is NP-hard.

One would then relax the non-convex constraints in the integer program, obtaining a math-

ematical relaxation. There are two families of relaxations that are widely used: linear (LP)

and semi-definite (SDP) relaxations.

OPT(J)
def
= min

∑
e=(w,v)∈E

1

2
[|xw − xv|+ |yw − yv|+ |zw − zv|] (1.1)

subject to

∀v∈V xv + yv + zv = 1; xv, yv, zv ∈ {0, 1} (1.2)

xt1 = 1; yt1 = 0; zt1 = 0

xt2 = 0; yt2 = 1; zt2 = 0

xt3 = 0; yt3 = 0; zt3 = 1

Figure 1.2: Integer Program for 3-way Cut

The integer program for 3-way Cut is in fig. 1.2. Equation (1.2) in fig. 1.2 is the

non-convex “integer” constraint, which can be relaxed to

xv + yv + zv = 1; xv, yv, zv ∈ [0, 1]

giving us a linear program (see fig. 1.3 for the complete description).

The motive behind this relaxation is to be able to compute the optimum in polynomial

time. The optimum value of the LP denoted by LP(J) is indeed tractable while the optimum

of the IP (denoted by OPT(J)) is NP-hard to compute. Further, since the constraints where

only relaxed, a feasible solution to the IP is already a feasible solution to the LP. Thus, we

know that LP(J) ≤ OPT(J). On the other hand, if there was an α such that

LP(J) ≤ OPT(J) ≤ α · LP(J) (1.5)

3

LP(J)
def
= min

∑
e=(w,v)∈E

1

2
[|xw − xv|+ |yw − yv|+ |zw − zv|] (1.3)

subject to

∀v∈V xv + yv + zv = 1; 0 ≤ xv, yv, zv ≤ 1 (1.4)

xt1 = 1; yt1 = 0; zt1 = 0

xt2 = 0; yt2 = 1; zt2 = 0

xt3 = 0; yt3 = 0; zt3 = 1

Figure 1.3: Linear Program for 3-way Cut

then, we have an approximation to the intractable optimum of 3-way Cut. The value α

measures the quality of the relaxation and is known as the integrality gap of the relaxation.

An integrality gap instance of factor β is an instance J such that OPT(J) ≥ β · LP(J). In

other words, an integrality gap instance potrays the limits to which this relaxation can yield

approximations. For example, the work of Karger et al [33] shows that α = β = 12/11 for the

above relaxation.

Aside: the relaxation described above generalizes to the so called earthmover relax-

ation (see fig. 4.1) for a large class of “cut” problems known as the metric labeling

problems (refer [16, 10, 41]). From the work of Karger et al [33], we know that for the

3-way Cut problem, α = 12/11 (α = log(n) for the general metric labeling problems, where

n is the number of vertices in J [34]).

Rounding Procedure. In the integer program, xv represents vertex v being assigned to

partition 1 (and yv, zv, to partitions 2 and 3 resp.) However, the optimum solution to the LP

might assign real values in [0, 1] to the variable, which is not readily amenable to being read

off as a parititon. To obtain a partitioning of the vertices, one designs a rounding procedure

that converts the solution to the LP into a partition. Of course, since LP(J) is smaller than

OPT(J), the rounding procedure can only produce a partition by increasing (i.e., with a

4

loss in) the objective. Following the terminology above, we say a procedure is a factor γ

rounding if the cost of the solution produced is at most γ · LP(J). For example, Kleinberg

and Tardos [41] designed a simple 2-approximation by rounding this relaxation, which was

later improved to 12/11 [33].

Together, relax-and-round is a powerful paradigm in approximation algorithm design.

1.3 Inapproximability Reductions

The study of approximation algorithms has also lead to the following natural contra-positive

(or dual) question: what is the best polynomial time approximation admitted by a problem?

Such an inapproximability is proven via a polynomial time reduction from 3-SAT. Consider

a polynomial time reduction from 3-SAT to an optimization problem P such that satisfiable

instances of 3-SAT map to instances of P whose optimum is at most ρ while unsatisfiable

instances map to ones whose optimum is at least β ·ρ. Now, assuming P 6= NP, no algorithm

can efficiently approximate instances of P by a factor strictly smaller than β.

The pioneering work on the proof of the PCP theorem showed a self-reduction of 3-

SAT such that unsatisfiable instances map to instances where at most a fraction (1 − ρ)

of the clauses are simultaneously satisfiable while satisfiable instances remain completely

satisfiable [22, 3, 2]. This work spurred a large body of work, the notable of which include

the parallel repetition theorem [60] and the 3-bit PCP showing “tight” inapproximability of

3-SAT (among other problems [29]). Here, tight refers to a factor ρ + ε inapproximability

while a ρ-approximation algorithm is also known (ε is a constant which can be chosen to be

arbitrarily small, while incurring a larger running time for the reduction).

Recently, the conjecture of Khot [38], the Unique Games conjecture has lead to tight

inapproximability for fundamental problems such as Max Cut and Vertex Cover which

had resisted proofs of inapproximability (see [18] for a standard inapproximability proof of

Vertex Cover; [39] for a UG based inapproximability). In all these tight inapproxima-

5

bility results, the reduction looks somewhat magical: although inspired by the structure of

instances that are hard to approximate, it is not at all evident from the reduction.

1.4 Systematic Design in Approximability

This thesis puts forth the following systematic design of approximation algorithms: given

a optimization problem P , one first writes a mathematical relaxation to approximate (the

optimum of instances of) P . Relaxations enforce local constraints, providing us locally

“integral” distributions. For example, the LP solution (call it {(xv, yv, zv)}v) in fig. 1.3 gives

the a distribution De over [3]× [3] for every edge e = (v, w). such that

P
(a,b)∈De

[x 6= y] =
1

2
[|xw − xv|+ |yw − yv|+ |zw − zv|] (1.6)

Thus, we have a local distribution (i.e., one for each edge) whose cost is exactly the cost of

the corresponding edge in the linear program. Of course, unless the linear program has an

integrality gap equal to 1, there is no such global distribution.

Now, we compose an integrality gap instance for the linear program with an instance of

Unique Games (UG), producing instances of 3-way Cut such that:

– if the UG instance is almost completely satisfiable, the instance of 3-way Cut whose

optimum is at most LP(J) + ε.

– on the other hand, almost unsatisfiable instances of UG produce instances whose op-

timum is at least OPT(J)− ε.

– the size of the instance is polynomial in the size of the UG instance.

The Unique Games conjecture says that the UG instances in items 1 and 2 above are

NP-hard to distinguish between. Here, ε is a constant that can be made arbitrarily small

while incurring a increased running time for the reduction. Thus, choosing ε small enough

6

shows a inapproximability (assuming the UGC) of a factor almost OPT(J)/LP(J), the

integrality gap ratio.

Note that when the integrality gap of the problem is some constant β (which is the

case here: β = 12/11), one can always find an instance J of size a function of ε such

that the integrality gap of J is β − ε. Composing with this instance gives almost optimal

inapproximability for 3-way Cut. Further, the only fact needed here is that β is a constant,

and the inapproximabiltiy is in fact, oblivious to the value of β!

As mentioned earlier, the relaxation described above generalizes to a fairly large class of

labeling problems known as Metric Labeling. The reduction, which only uses the the

local distributions, also generalizes to this wide class, giving tight inapproximabilities for

all cases of Metric Labeling where the integrality gap is bounded by a constant (see

chapter 4 for more details). This is a trait of our reduction: since a relaxation generalizes

(or specializes) to particular subcases of a general problem, the reduction also automatically

proves inapproximability results for these special cases.

1.5 Unique Games Conjecture

The Unique Games Conjecture (UGC) is an auxillary hardness assumption similar to P 6=

NP, introduced by Khot [38]. The conjecture has been instrumental in obtaining tight inap-

proximability results for a wide number of problems [38, 39, 58, 27, 48, 55, 5, 4]. The UGC

hypothesizes that a constraint satisfaction problem known as the UG is hard to approximate

in the following strong sense: even instances where almost all the constraints can be satis-

fied are NP-hard to distinguish from instances where almost none of the constraints can be

satisfied.

An instance of UG, Υ of label size R is simply a graph where edges are augmented by

permutations πe : [R] → [R]. An assignment refers to labeling each vertex with a number

between 1 and R. Such an assignment is said to satisfy an edge if the end points are mapped

7

to each other by the permutation corresponding to the edge. The UG problem asks to find

an assignment that satisfies the most number of edges.

1.6 Overview of the Reduction

At the outset, our reduction follows the paradigm of using dictatorship tests introduced

in [29]. Given a UG instance, Υ, we replace each vertex with a gadget, [3]R where R rep-

resents the size of the label set of Υ. Next, we add edges between neigboring gadgets using

a distribution called the dictatorship test: a R-wise direct product of the local distribu-

tion induced by the solution on edges of the integrality gap instance (this is a simplified

presentation. Refer chapter 3 and section 4.4 for a precise description).

Given a labeling of Υ, we use dictator functions: fi : [3]R → [3] given by f(x) = xi to

form an assignment for the instance output from the reduction. For each vertex, i is chosen

as the label assigned to it. In the analysis of the cost, the R-wise product has no effect since

the assignment to a point in the gadget is only dictated by its iˆth coordinate. Thus the cost

of the assignment can be bounded by an equation similar to eq. (1.6), which then relates to

LP(J).

The meat of the proof is in lower bounding the cost when Υ is far from being satisfiable.

Here, the key idea is to prove that most pairs of neighboring gadgets can not have correlated

coordinates controlling the assignment (where i and j are said to be correlated if assigning

i and j to the two neigboring vertices of Υ satisfies the permutation constraint on the edge

connecting the vertices). An averaging argument then says that for most edges of Υ, the

pair of gadgets either is either dictated by coordinates that are uncorrelated or that the

assignment on the gadget does not have a “few” coordinates that dictate the assignment.

In the former case, the assignment can be shown to cost as much as a random assignment

to the instance (which is much larger than LP(J)). The latter case is handled by the R-

wise product structure of the distribution. The behaviour of R-wise product distributions is

8

studied using the invariance principle introuced in [51, 50, 31], proving that the cost is high

and in fact almost as large as OPT(J).

1.7 Organization of this thesis

We begin by setting up notation, and other preliminaries needed in reading the proofs in this

thesis (see chapter 2). Refer here for a quick primer on writing mathematical relaxations

and theorems on the structure of boolean functions. Chapter 3 describes the basic building

block in all our inapproximability reductions: the dictatorship test gadget. The chapter

also contains analysis of this gadget, used in the remaining chapters in proving the inap-

proximability. Our results on metric labeling problems are in chapter 4. Strict constraint

satisfaction problems are analysed in chapter 5 and ordering constraint satisfaction problems

in chapter 6.

9

Chapter 2

Preliminaries

In this chapter, we will setup the notation and other groundwork needed to read the rest

of the thesis. Section 2.1 describes the notation. Section 2.2 is a short primer on mathe-

matical relaxations. Section 2.3 describes definitions and a few basic theorems form har-

monic analysis that come in handy in our application of the invariance principle of Mos-

sel et al [51, 50, 31].

2.1 Setup and Notation

We use boldface letters z to denote vectors z = (z1, . . . zk). For an integer k, Nk or N[k]

denotes all probability distributions on k elements; that is, the convex hull of the set

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)}. In general, for a set S, NS denotes the set of

probability distributions over the sets.

2.2 Mathematical Relaxations

In our setting, an integer program is an optimization procedure written over a set of variables

Y1, Y2, . . . Yn each constrained to belong to the {0, 1}; constrained by another set of linear

10

functions and minimizes a linear objective. For example, fig. 2.1 is an integer program over

a set of variables, indexed by V (and constraints indexed by E). For every e = (v, w) ∈

E , (Yv, Yw) takes values in {(0, 1), (1, 0), (1, 1)} . (enforced in eq. (2.2)). When E is the

edge set of a graph on (the vertex set) V , the objective measures the size of the minimum

Vertex Cover of the graph.

OPT(J)
def
= min

∑
v∈V

Yv (2.1)

subject to

∀e Yv + Yw ≥ 1 Yv ∈ {0, 1} (2.2)

(2.3)

Figure 2.1: Integer Program (for Vertex Cover)

The value of a solution—collection of values Yv one for each v ∈ V , satisfying the above

constraints—val(J , {Yv}) and the optimum, OPT(J) is the minimum over all solutions. In-

teger programming is in general NP-hard and in fact hard to approximate to any polynomial

factor because of non-convex constraint forcing the variables to take on discrete values [62].

For this reason, these constraints are relaxed into a linear program. For instance, a lin-

ear program (used in the design of algorithms for the Vertex Cover problem) is such a

relaxation (refer fig. 2.2).

LP(J)
def
= min

∑
v∈V

Yv (2.4)

subject to

∀e Yv + Yw ≥ 1 Yv ∈ [0, 1] (2.5)

(2.6)

Figure 2.2: Linear Program (for Vertex Cover)

Linear programs can be optimized in time polynomial in the number of variables, number

of constraints and the number of bits of accuracy (refer [24] for a good introduction). Accu-

11

racy will not be an issue in the problems we consider: polynomial bits of accuracy suffices.

As before, we denote the value of a solution Yv to the above relaxation by val(J , {Yv}) and

the minimum such solution by LP(J).

Hierarchies of Linear Programs. We will use sophisticated linear relaxations where the

variables are locally constrained to be a convex combination of valid solutions of the integer

program (while only focussed on the variables in the constraint).

For example, in the linear relaxation above, the constraint in eq. (2.5) says that for every

(v, w), the variables (Yv, Yw) takes values in the convex hull of the set ((0, 1), (1, 1), (1, 0)).

However, for a set of three variables (v, w, u), the solution (1/2, 1/2, 1/2) is valid for the

linear program while not for the integer program if every pair of vertices is an edge (this

example is instructive to verify).

On the other hand, such constraints can be enforced by LP hierarchies (refer [46, 64]).

Given a integer program (say, over n variables and poly(n) constraints) and an integer k,

one can write a linear program in O(nk) variables and constraints such that for every subset

S of the variables of size at most k, a valid solution to the elements in S, (say YS) is a

convex combination of valid integer solutions (projected onto the set S). Thus, if such a set

is known before hand, say C ⊂ {0, 1}k, then we write the constraint:

YS ∈ N(C) (2.7)

Semidefinite Programming. A more sophisiticated family of mathematical relaxations

are semidefinite relaxations (SDP) (a.k.a vector programming relaxation). In a vector pro-

gram, the variables are replaced with vectors (Yv) and constraints with linear constraints

over the inner product.

Hierarchies for semidefinite programs [44] are known, and will be used as a building block

in writing complex SDPs.

12

SDP(J)
def
= min

∑
v∈V

〈Yv,Y0〉 (2.8)

subject to

∀e 〈Yv,Y0〉+ 〈Yw,Y0〉 ≥ 1 (2.9)

∀v 〈Yv,Y0〉 ≥ 0 (2.10)

Figure 2.3: Semidefinite Program (for Vertex Cover)

Integrality Gap. The integrality gap of a relaxation (for a certain problem P) is the

supremum (or inf. if the objective is to max.) over instances J of P , of the ratio of

the optimum to the optimum of the relaxation: OPT(J)/SDP(J) (and similarily for LP

relaxations). An integrality gap instance for a relaxation is simply an instance of the problem,

J , and set of solution to the relaxation for the instance. Yv. The relaxation one is interested

in, for a particular problem, will be clear from the context.

2.3 Fourier Analysis over the Boolean Cube

Given a measure Ω over a finite probability space X , we will work with random variables

Z from (X ,Ω) to R that are square integrable. The space of such random variables has an

orthonormal basis {χ0, χ1, . . . χt−1} where t is the size of X (χ0 = 1 is customary). The R-

wise product XR with a product measure has a orthonormal basis indexed by sets S ∈ [t]R.

The fourier decomposition is this multilinear polynomial of Z:

Z =
∑
S

Ẑ(S)χS (2.11)

The norm of Z is ‖Z‖2
2 =

∑
S Ẑ

2
S. The influence of coordinate j ∈ [R] in Z is:

Infj(Z) =
∑

{S∈[t]R|Sj 6=0}

Ẑ2(S)

13

where Ẑ is the coefficient of χS when Z is written in the orthonormal basis. The degree of

a random variable is D = maxS|S| where the size of a set S is the number of coordinates j

such that Sj 6= 0.

The following simple lemmas will come in handy in our analysis.

Lemma 2.3.1. For every D-degree random variable Z, there are at most ‖Z‖2
2D/τ coordi-

nates such that Infj(Z) ≥ τ.

Proof. Every coordinate whose influence is at least τ contributes at least τ/D towards the

norm of the random variable. �

Lemma 2.3.2. Let {Zk} be a finite collection of random variables and let Z = Ek[Zk] be

the average random variable (where the expectation is over a uniform k from the collection.

Then,

E
k

[Infj(Zk)] ≥ Infj(E
k

(Zk)) = Infj(Z).

In particular, if coordinate j has influence at least τ , then at least a fraction τ/2 of Zk have

influence at least τ/2.

Proof. The first statement follows from convexity:

τ = Infj(Z) =≤
∑
S|Sj 6=0

Ẑ2(S) ≤
∑
S|Sj 6=0

E
k

[f̂ 2(S)] = E
k

[Infj(Zk)].

The second statement follows from an averaging argument. �

Correlated Prob. Space. A product space such as X ×Y is said to be a correlated space

if it is endowed with a measure Ω. The maximum correlation coefficient of the space is:

ρ(X × Y ,Ω) = max
Z1,Z2

E
(x,y)∈X×Y

Z1(x)Z2(y) (2.12)

14

where Z1 and Z2 are random variables in X and Y respectively, and have mean 0 and variance

1 (in their respective marginal measures).

Definition 2.3.3 (Correlation Coeff.). Let X1 × X2 × . . . × Xk denote a probability space

with a measure Ω. The maximum correlation coefficient of this space is:

ρ(X1 × . . .×Xk,Ω) = max
S,T⊆[k]

S∪T=[k];S∩T=∅

ρ(XS ×XT ,Ω) (2.13)

Noise Operator and Low Degree Random Variables. The noise operator of param-

eter ρ acts on a random variable Z to give:

Tρ(Z) =
∑
S

Ẑ(S) · ρ|S| · χS (2.14)

The truncation operator of order D acts on a random variable Z producing:

Z(≤D) =
∑

S||S|≤D

Ẑ(S) · χS, (2.15)

a D-degree truncation of the random variable Z.

2.3.1 Notion of Influence for orderings

As before, let Ω denote the finite probability space corresponding to the uniform distribution

over [t]. Let {χ0 = 1, χ1, χ2, . . . , χt−1} be an orthonormal basis for the space L2(Ω) - of real

valued functions over [m] with the inner product 〈f, g〉 = Ex∈[t][f(x)g(x)]. For σ ∈ [t]R,

define χσ(z) =
∏

k∈[R] χσi(z
(k)).

An ordering of [t]R is a permutation of [t]R, denoted by O : [t]R → [t]R. Such a function

can be expressed as a multilinear polynomial as O(z) =
∑

σ Ô(σ)χσ(z). The L2 norm of O

in terms of the coefficients of the multilinear polynomial is ||O||22=
∑

σ Ô2(σ)

15

Definition 2.3.4. For a function O : ΩR → R, define Infk(O) = Ez[Vz(k) [O]] =∑
σk 6=0 Ô2(σ).

Here Vz(k) [O] denotes the variance of O(z) over the choice of the kth coordinate z(k).

Definition 2.3.5. For a function O : ΩR → R, define the function TρO as follows:

TρO(z) = E[O(z̃) | z] =
∑

σ∈[m]R

ρ|σ|Ô(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal to z(k) with probability ρ and with

the remaining probability, z̃(k) is a random element from the distribution Ω.

Lemma 2.3.6. For every ε > 0, there exists a µ0 > 0 such that for all µ < µ0 the following

holds: Let O,Q : [m]R → [0, 1] be any two functions with E[O] = E[Q] = µ, and

Infk(T1−εO), Infk(T1−εQ) ≤ τ

for all k. Let x,y be random vectors in [m]R whose marginal distributions are uniform over

[m]R but are arbitrarily correlated. Then,

E
x,y

[T1−2εO(x)T1−2εQ(y)] ≤ µ1+ε/2 + oτ (1)

Proof. The lemma essentially follows from the Majority is Stablest theorem (see Theorem

4.4 in [51]). We bound each factor individually as follows:

||T1−2εO||22=
∑
σ∈[k]R

(1− 2ε)2|σ|Ô2(σ) ≤
∑
σ∈[k]R

(1− ε)|σ|Ô(σ)(1− ε)2|σ|Ô(σ)

≤ E[(T1−εO)(x)T1−ε(T1−εO)(x)] .

16

Since the influences of T1−εO are low, we can apply Theorem 4.4 from [51] to bound the last

expression by noise stability in Gaussian space Γ1−ε(µ).

E[(T1−εO)T1−ε(T1−εO)] ≤ Γ1−ε(µ) + oτ (1)

By Theorem B.2 from [51], Γ1−ε(µ) is bounded by µ1+ε/2 for µ small enough compared to ε.

Applying a similar bound for O and applying Cauchy-Schwartz gives the result:

E
x

[T1−2εO(x)T1−2εO(y)] ≤
√
||T1−2εO||22||T1−2εO||22 ≤ µ1+ε/2 + oτ (1)

(for µ small enough)

�

The following lemma is useful in bounding the number of influential coordinates of a

function.

Lemma 2.3.7 (Sum of Influences Lemma). Given a function O : [m]R → [0, 1], if O =

T1−εO then
∑R

k=1 Infk(O) ≤ 1
2e ln 1/(1−ε) ≤

1
ε

Proof. Let O(x) =
∑

σ Ô(σ)χσ(x) denote the multilinear expansion of O. The function O

is given by O(x) =
∑

σ(1− ε)|σ|Ô(σ)χσ(x). Hence we get,

R∑
i=1

Infi(O) =
R∑
i=1

∑
σ,σi 6=0

(1− ε)2|σ|Ô2(σ) =
∑
σ

(1− ε)2|σ||σ|Ô2(σ)

≤ max
σ∈[m]R

(
(1− ε)2|σ||σ|

)
·
∑
σ

Ô(σ)2 ≤ max
σ

(1− ε)2|σ||σ|

The function h(x) = x(1− ε)2x achieves a maximum at x = −1/2 ln(1− ε). Substituting we

get
∑R

i=1 Infi(O) ≤ 1
2e ln 1/(1−ε) ≤

1
ε
. �

17

2.4 Unique Games Conjecture

Definition 2.4.1. An instance of Unique Games represented as Υ = (A,B, E,Π, R),

consists of a bipartite graph over node sets A, B with the edges E between them. Also part of

the instance is a set of labels [R] = {1, . . . , R}, and a set of permutations πa→b : [R] → [R]

for each edge e = (a, b) ∈ E. An assignment A of labels to vertices is said to satisfy an edge

e = (a, b), if πa→b(A(a)) = A(b). The objective is to find an assignment A of labels that

satisfies the maximum number of edges.

A subset of vertices is said to be strongly satisfied by an assignment if every edge incident

on the subset is satisfied by the assignment. For sake of convenience, we shall use the

following version of the Unique Games Conjecture which was shown to be equivalent to the

original conjecture [39].

Conjecture 2.4.2 (Unique Games Conjecture). For every η > 0, the following problem is

NP-hard for a sufficiently large choice of R: Given a bipartite Unique Games instance

Υ = (A,B, E,Π, R) with number of labels R, distinguish between the following two cases:

– (1 − η)-strongly satisfiable instances: There exists an assignment A of labels such that

for 1− η fraction of vertices w ∈ AΥ are strongly satisfied, i.e., all the edges (w, v) are

satisfied.

– Instances that are not η-satisfiable: No assignment satisfies more than a η-fraction of

the edges E.

2.5 Gaussian Stability Estimates

The Gaussian noise stability Γρ is defined as follows:

18

Definition 2.5.1. Given µ ∈ [0, 1], let t = Φ−1(µ) where Φ denotes the distribution function

of the standard Gaussian. Then,

Γρ(µ) = P[X ≤ t, Y ≤ t]

where (X, Y) is a two-dimensional Gaussian vector with covariance matrix

1 ρ

ρ 1

.

Lemma 2.5.2. There is constants ε0, c1, and c2 such that, for every ε < ε0, and for every

µ < 1− c1

√
ε,

µ− Γ1−ε(µ) ≥ c2 · (1− µ) ·
√
ε

Proof. Let g, h denote independent gaussian random variables with mean 0 and variance 1

and let t be such that P[g < t] = µ. Then,

µ− Γ1−ε(µ) = P
X∼1−εY

[X < t ∧ Y > t] = P
g,h

[g < t ∧ (1− ε)g +
√

2ε− ε2h > t]

= P
g,h

[
t−
√

2ε− ε2h

1− ε
< g < t

]
=

1

2π

∫ ∞
−∞

e−h
2/2dh

∫ t

t−
√

2ε−ε2h
1−ε

e−g
2/2dg

≥ 1

2π

∫ ∞
t
√

ε
2−ε

e−h
2/2dh

[
e−t

2/2

(
t− t−

√
2ε− ε2h

1− ε

)]
(for small enough ε)

=
e−t

2/2
√

2ε− ε2

2π(1− ε)

{∫ ∞
t
√

ε
2−ε

he−h
2/2dh

}
− e−t

2/2(ε)t√
2π(1− ε)

{
1√
2π

∫ ∞
t
√

ε
2−ε

e−h
2/2dh

}

≥ e−t
2/2
√

2ε− ε2

2π(1− ε)

(
e

t2(ε)
2(2−ε)

)
− e−t

2/2(ε)t√
2π(1− ε)

[
1

2

]

=
e−

t2(1−ε)
(2−ε)

2π(1− ε)
√

2ε− ε2 − tεe−t
2/2

2
√

2π(1− ε)

≥ (1− µ) ·
√
ε

10
− t2θε ≥ c2 · (1− µ) ·

√
ε

(
t

1 + t2
≤ θ

e−t2/2
≤ 1

t
≤ 1

10

)
�

19

Chapter 3

Dictatorship Gadget

In this chapter, we describe the dictatorship test and analyse its properties. The test (and

the accompanying gadget) form the core of our inapproximability reductions. Dictatorship

gadgets have been widely used and have proven to be extremely powerful in proving tight

inapproximability results (both assuming the UGC and otherwise [30]). Almost all known

unique games based inapproximability results use this gadget and the study of this gadget

has led to important results in analysis [51].

Our contribution is a design of the dictatorship test directly using local distributions

guaranteed by the relaxation that is written down for a problem. Recollect the general

flavor of the reduction: each vertex in the unique game by a gadget: [t]R. Depending on

the problem in hand, a distribution over k-tuples of points in [t]R is sampled from and a

constraint spanning the gadgets of multiple vertices is added. The dictatorship test is a

distribution over k-tuples of elements in [t]R which is used to design the final distribution

over different cubes; the final distribution is obtained by a somewhat standard procedure

from the dictatorship test.

The overall output of the reduction, including the interplay between the gadgets corre-

sponding to different vertices and the implications to inapproximability of various problems

20

arising from the use of the gadget is described in the chapters corresponding to the problem

in hand in their respective chapters.

Depending on the problem, we have a payoff (or a cost) function on assignments to the

cube. The analysis of the gadget involves studying the payoff of certain canonical assignments

known as the dictator assignment, compared to assignments “far” from being like a dictator

assignment. The payoff is also part of the specification, when designing the gadget, and

goes hand-in-hand with the distribution used to design the gadget. In particular, the payoff

directly encodes either the objective function of the relaxation, or in some cases, constraints

set by the problem in hand.

3.1 Construction of the Gadget

Our dictatorship tests have the following simple form: it is obtained by a direct-product of

a distribution obtained from the local constraints enforced by the relaxation.

Definition 3.1.1. Given a positive integer, k denoting the arity of the constraints; a positive

integer, t denoting the alphabet size; a positive integer R and a probability distribution D

over [t]k, the gadget is the following distribution DictR(D) over k-tuples of elements from

[t]R:

– Pick R independent samples (zi1, zi2, . . . , zik) from D; 1 ≤ i ≤ R.

– Output ((z11, z21, . . . , zR1), (z12, z22, . . . , zR2), . . . , (z1k, z2k, . . . , zRk)).

Canonical Dictator Assignments. An assignment or labeling of the gadget is a function

f : [t]R → N[t]. The assginment is said to be proper, if f maps every point in its domain to

[t] (as opposed to a probability distribution over [t]).

The gadget is designed such that certain canonical assignments of labels, known as the

dictator assignments are preferred over others. There is one dictator assignment per coordi-

21

nate; the dictator “along” coordinate i is the function fi defined as:

fi(z) = zi.

3.1.1 Payoff Functions

As mentioned before, the analysis of the gadget involves studying the performance of a

dictator assignment (along any coordinate), comparing it with assignments far from a dic-

tator. The performance is measured by a payoff function (also referred to as a cost function

depending on the context.)

Definition 3.1.2. A payoff (or a cost) function of degree k is a function, p : [t]k → [−1, 1],

used to measure the performance of an assignment f on the gadget. The payoff of a proper

assignment f is defined to be:

P(f) = E[p(f(z1), f(z2), . . . f(zk))].

Our application will require us to work on improper assignments (arising from averaging

over a bunch of proper assignments). The payoff or cost of a (general) assignment: f :

[t]R → N[t] is:

P(f) = E
z

∑
x∈[t]k

p(x)
∏
j

f(zj)xj (3.1)

Note that the general definition reduces to the simpler one when f is a proper assignment.

Since Dict(·) is simply a direct-product of the input distribution, the assignment of any

dictator assignment is simply a function of the input distribution.

22

Lemma 3.1.3. For every k, R, D, P as above, and any index i, if fi denotes the dictator

along coordinate i, then the payoff of fi on DictR(D) is:

P(fi) = E
x∈D

[p(x)]

Proof.

P(fi) = E
Dict(D)

[p(fi(z1), fi(z2), . . . fi(zk))] = E[p(z1i, z2i, . . . , zki)] = E
x∈D

[p(x)] .

�

3.2 Analysis of Gadget Assignments

The bulk of the analysis of the gadget involves assignments that are far from being like

the dictator assignments described above. The main tool used here is the invariance princi-

ple (introduced in [51, 50]), a powerful method used in analysing low-degree function defined

over a probability space.

3.2.1 Invariance Principle

Invariance principle, introduced in [51, 50] is a tool to analyse low degree functions on a

probability space. A simple invariance theorem is the following restatement of Berry-Esseen’s

theorem (see 16.5 in [23]).

Theorem 3.2.1 (Berry-Esseen’s theorem). Let x1, x2, . . . xn be i.i.d. bernoulli rand. vari-

ables (i.e., ±1 with equal probability), and let x = (x1 + x2 + . . . + xn)/
√
n. Similarily, let

g1, g2, . . . gn be i.i.d standard gaussian variables (i.e. gaussian: mean 0, variance 1), and let

g = (g1 + g2 + . . . gn)/
√
n. Then, the total variational distance between the distribution of x

23

and g is bounded as follows:

‖x− g‖TV ≤ O(1/
√
n) (3.2)

The theorem shows that the (linear) formal polynomial (x1+x2+. . .+xn)/
√
n is invariant

under the two different ensemble of random variables. Invariance principle gives a general

method to obtain such bounds on any low-degree polynomial. Our application of the principle

is on the payoff of an assignment to the dictatorship gadget. Consider the 3-way Cut

problem introduced in chapter 1. The gadget used for reductions to this problem is [3]R for

some large R. Let f be an assignment to the cut problem; f : [3]R → [3]. Suppose we are

interested in the probability that f(x) = f(y) when x is picked uniformly at random and

y is obtained by randomly picking εR coordinates of x and replacing the entries there with

a independent uniform entry (i.e., yj ∈R [3] if j is among the coordinates picked). Such a

quantity arises in the analysis of the cost of an assignment (the edges are picked to match

the weights from the above distribution).

Note that the problem attempts to minimize the size of a cut, and therefore the above

probability is to be minimized in picking an assignment. For example, the dictator assign-

ment (along any coordinate) “cuts” with probability O(ε). As mentioned in the overview, our

reduction prohibits such assignments from occurring (on an average) when the UG instance

is almost completely unsatisfiable.

Using the invariance principle, one can show that any non-influential assignment which

splits the gadget into 3 equal components cuts with probability at least
√
ε. Let f =

(f1, f2, f3) be an assignment (where fi is the indicator of f assining i). The probability

an edge is cut is P(x,y)[
∑

i 6=j fi(x)fj(y)]. Consider a single term, Px,y[f1(x)f2(y)]. Now, f1

(and similarily f2) can be written in a orthnormal basis of [3]R endowed with the uniform

measure as:

f1(x) =
∑
S∈[3]R

f̂1(S)χS(x) (3.3)

24

and suppose the degree of this expansion is at most D.

Let {GS}S denote a gaussian ensemble with matching moments as {χS}S. and let f̃1(x) =∑
S f̂1(S)JS(x). Now, the invariance principle says that if for a parameter τ , every coordinate

in f1 are at most τ , then

‖f̃1 − f1‖TV ≤ δ(τ,D)

where ‖·‖TV denotes total variational distance and δ(τ,D) is a quantity that tends to 0 as

τ → 0 or if D → ∞. Further, E[f1f2] is equal to E[f̃1f̃2] since the two ensembles have

matching moments of degree upto 2. This allows one to equate the minimum cut value to

the best partitions in gaussian space, where estimates are known about such isoperimetric

questions (see section 3.2.3 for a complete analysis of such assignments.)

3.2.2 Low Degree Assignments

In the above discussion, the f had to be a low-degree polynomial (that is << R, the dimen-

sion of the gadget) which is not necessarily true of an arbitrary assignment. However, as

we show below, under certain mild conditions, the assignment can always be approximated

by one of low-degree. Fortunately, our applications satisfy these constraints, hence allowing

this approximation while only losing a small arbitrary constant in the final guarantees of the

reduction.

Lemma 3.2.2. For every ε > 0, ρ < 1, and integer k, if p : [t]k → [−1, 1] is a degree-k

payoff function, and D is a distribution on [t]k whose max-correlation coefficient is at most

ρ, then, for every assignment f on [t]R for the dictatorship test DictR(D), there exists an

assignment f ′ of degree at most c1 · k log2(1/ε)
ε(1−ρ)

such that,

∣∣∣PDictR(D)(f)− PDictR(D)(f
′)
∣∣∣ ≤ ε

25

Proof. Let f j(z) = 1 if f(z) = j and 0 otherwise.

PDictR(D)(f) =
∑

(j1,j2,...jk)∈[t]k

p(j1, j2, . . . jk) E
z

[f j1(z1)f j2(z2) . . . f jk(zk)] (3.4)

=
∑

(j1,j2,...jk)

p(j1, j2, . . . jk)
∑

S1,S2,...Sk∈[t]k

f̂ j1(S1) . . . f̂ jk(Sk) E
z

[χS1(z1)χS2(z2) . . . χSk
(zk) (3.5)

Each expectation in eq. (3.5) is at most ρD if any of the sets Sj is of size D. Thus, the total

contribution of such terms is at most ε if D ≥ Ω(k log2(1/ε)/ε(1−ρ)). Setting f ′ = f (≤D) shows

the result. �

3.2.3 Metric Like Payoffs on Noise Distributions

A simple, but already useful setup is when the cost function is metric-like and the distribution

is a very lazy random walk on a probability space. We use this setup in the analysis of our

reductions to metric labeling problems (see chapter 4.)

Definition 3.2.3. A function, p : [t]k → [−1, 1], is said to be metric-like if it is non-negative

and:

p(x1,x2, . . .xk) = 0⇔ x1 = x2 = . . . = xk.

The interesting parameter of the cost function is the minimum non-zero cost assigned:

β = min
x1,x2,...xk

p(x1,x2, . . .xk).

Note that β fixes the aspect ratio of the cost function since the range is already bounded by

1 in magnitude.

Definition 3.2.4. For a parameter ε, given a measure Ω on [t], the lazy random walk

distribution D(Ω)
1−ε (also known as the noise operator distribution) over [t]k is obtained by:

– sampling x from Ω

26

– for each i from 1 to k, set zi = x with probabilty 1− ε and to a new sample yi from Ω;

this choice is made independent of every other choice, for each i.

– output z = (z1, z2, . . . , zk)

Consider the dictatorship test constructed using the above distribution, Dict(D(Ω)
1−ε). A

dictator assignment has a cost of at most k · ε since the cost is bounded by 1 and the

distribution outputs the same points with probability 1− kε. However, as we will see next,

the cost of assignments far from dictator is significantly larger.

Theorem 3.2.5. Let Ω be a measure on [t] such that the minimum probability of any atom

is α ∈ (0, 1) and let Dict(D(Ω)
1−ε) be the dictatorship test generated from the noise operator

distribution of Ω. For an assignment f , let µj = E
Dict(D(Ω)

1−ε)
[f(zi) = j] and let µ = maxj µj.

Then, for there is an ε0, c1 and c2 such that for all ε < ε0, α, β > 0 and integers k,D there

exist a τ such that if f is a degree D assignment such that every coordinate has influence at

most τ and µ ≤ 1 − c1

√
ε; and if p is a k-degree metric-like cost function whose minimum

non-zero cost is atleat β, then the cost of f on Dict(D(Ω)
1−ε):

P(f) ≥ 2βc2

√
ε · (1− µ)

Proof. First, note that µj are well defined since the marginal distribution of each zi is the

same. For 1 ≤ j ≤ t, let f j be the indicator of the set of points where f assigns j. The

gadget Dict(D(Ω)
1−ε) is a distribution over k tuples of elements in [t]R. Fix two indices i1, i2 in

{1, . . . k}. Now, using the invariance principle, the probability that f(zi1) = f(zi2) is:

∑
j

E
[
f j(zi1) = f j(zi2) = 1

]
= E

[
f j · T1−εf

j
]
≤ Γ1−ε(µj) + oτ,D(1)

where the final term, oτ,D(1) is an expression that decays to 0 as τ → 0 and D →∞.

27

The payoff of the labeling is then,

P(f) ≥ β · P
(z1,z2,...zk)∈Dict(D(Ω)

1−ε)

[f(zi1) 6= f(zi2)]

≥ β
∑
j

[µj − Γ1−ε(µj)]

The function Γ is superadditive and hence the minimum value the above expression attains

is when one of the µj is large. Now, using lemma 2.5.2, we know that the last expression is

at least Ω((1− µj) ·
√
ε) if ε is small enough. Now, picking τ and D appropriately gives the

required result. �

From lemma 3.2.2, the constraint on the degree of f can be removed if the influence is

measured on the low-degree truncation of f .

Corollary 3.2.6. For ε, µ, k, α, β and p as described above (theorem 3.2.5), there exist τ

and D such that if an assignment f is such that f (≤D) has influences at most τ , then the

cost of f on Dict(D(Ω)
1−ε) is:

P
Dict(D(Ω)

1−ε)
(f) ≥ 4βc2

√
ε · (1− µ)

3.2.4 Connected Payoff Functions

The analysis of assignments under a metric-like cost can be generalized as follows. Suppose

([t]k,D) is a correlated space whose correlation coefficient, ρ(D) is strictly smaller than 1.

Let p be a cost function that assigns no cost to points in the support of D.

A dictator assignment to DictR(D) would cost nothing at all. However, assignments with

low influence and low degree have a strictly positive cost unless no significant fraction takes

that value that leads to a positive cost.

28

This forms the basis of the reduction to Strict CSP in chapter 5. These problems

have a set of strict constraints which need to satisfied in any solution. For these problems,

we construct a dictatorship test from distributions arising from a “local” relaxation. Here,

assignments far from being dictator-like can be shown to be almost a constant assignment

unless they violate a few constraints.

Theorem 3.2.7. For every integers k,D, numbers ρ < 1, 0 < α < 1/2, and every µ > 0,

there is a δ > 0 such that, if D is a distribution with max. correlation coefficient at most ρ,

f a D-degree labeling of DictR(D) and x ∈ [t]k is a pattern such that if:

min
j

P
z∈DictR(D)

[f(zj) = xj] ≥ µ, (3.6)

then the probability that

P
z∈DictR(D)

[∧if(zi) = xi] ≥ δ (3.7)

Proof. As before, let fj denote the indicator of the assignment f taking the value j in [t].

The probability f takes the patter x is:

P
z∈DictR(D)

[f(z1) = x1 ∧ f(z2) = x2 ∧ . . . ∧ f(zk) = xk] = P
z

[Πifxi(zi)]. (3.8)

Since f is of degreeD, the components fj are too; hence, applying the invariance principle,

we have that

P
z

[Πfxi(zi)] ≥ min
{S1,S2,...St}

P
g

[∧i {gi ∈ Sxi}]− δτ,D(1) (3.9)

where Sj are partitions of Rt such that µ(Sj) = µ(fj) = P[fj(z) = 1]; gi are the analogously

correlated gaussian random variables; and δτ,D is a quantity that tends to 0 as D → ∞

or τ → 0. Although the exact partition that minimizes the expression in eq. (3.9), the

minimum can be lower bounded by a function ∆(ρ, α, µ). Picking τ small enough proves the

theorem. �

29

As before, we prove a version where f is not restricted to be of low-degree (using

lemma 3.2.2); the influences are measured for a truncation of f .

Corollary 3.2.8. For every k, ρ, α and µ, there is a δ > 0, τ and D such that, if D is a

distribution with max. correlation coefficient at most ρ, f a labeling for DictR(D) such that

Infjf
(≤D) ≤ τ for every coordinate j and x ∈ [t]k is a pattern such that if:

min
j

P
z∈DictR(D)

[f(zj) = xj] ≥ µ, (3.10)

then the probability that

P
z∈DictR(D)

[∧if(zi) = xi] ≥ δ (3.11)

3.2.5 Alphabet Reduction

Semidefinite relaxations are widely used in the design of approximation algorithms for con-

straint satisfaction problems (CSPs). The seminal work of Raghavendra [56], shows that a

semidefinite program gives the best approximation assuming the Unique Games Conjecture.

An instance of a CSP of arity k and alphabet size t is J = (V , E) where V is a set of

vertices and E is a collection of ordered k-tuples (v1, . . . vk) along with constraint / payoff:

p : [t]k → R. The goal is to find an assignment L : V → [t] that maximizes:

∑
(v1,...vk)∈E

p(L1(v1), L2(v2), . . . Lk(vk)) (3.12)

The following theorem is a restatement of the inapproximability proven in [56].

Theorem 3.2.9 (Theorem 7.1 in [56]). For every CSP J , there is a SDP relaxation such

that, for every η > 0, it is hard (assuming the UGC) to distinguish instances of the CSP, I

such that OPT(I) ≥ SDP(J)− η from instances with OPT(I) ≤ OPT(J) + η.

30

In the theorem above, it is necessary that the J is hard-coded in the algorithm per-

forming the reduction: the running time is only fixed-parameter tractable in the parameters

describing J . In particular, the running time is exponential in the label or alphabet size of

the CSP, t.

On the other hand, ordering problems are examples of CSPs if the label size is allowed

to depend on the total number of points. Here, we show that such extended CSPs (CSPs in

the sense described in [56] have a constant alphabet size), can be analysed in an interesting

manner.

An ordering of [t]R is a permutation of [t]R, denoted by O : [t]R → [t]R. (Aside: the

notion of influence for ordering is not intuitive; we refer the readers to section 2.3.1) for

a quick reference of the definition and theorems on this notion). We show that when the

ordering is not influential, it might as well be approximated by the t-bucket version described

below. On the other, when the distribution D is itself from an ordering problem, dictator

orderings have a better payoff.

Payoffs for orderings are defined as follows. Let Πk→N denote the set of one to one maps

from [k] → N. The domain of a payoff function P can be extended naturally from the set

of permutations Πk to Πk→N. In particular, an injective map f ∈ Πk→N, along with the

standard ordering on the range N induces a permutation πf on [k]. To extend the payoff,

just define p(f) = p(πf) for all f ∈ Πk→N.

To explain this method, consider the following bucket version of an ordering problem.

Given an instance J of Ordering CSP, and a parameter t, the t-bucket version of J asks

for an assignment σt : V → [t]. The payoff of a labeling σt is the expected payoff of a random

ordering that is consistent with σt in the following sense: for every v1 and v2 such that

σt(v1) > σt(v2), v1 is placed after v2 in the ordering. In other words, the random ordering

is picked by randomly permuting the set of vertices assigned the same value in the bucket

version, while preserving the ordering between such sets. Let OPTt(J) denote the optimum

31

of the t-bucket version. At the one end, setting t = ∞ gives us the original problem; while

setting t = 1 gives a trivial instance where the optimum is exactly the payoff of a purely

random ordering. Let pt denote the payoff of the (proxy) t-CSP.

The key theorem is that if an ordering does not have influential variables (say, ≥ τ),

then,

PDictR(D)(O) = E
z∈DictR(D)

p(O(z1), . . . ,O(zk)) (3.13)

≤ E
z∈DictR(D)

pt(O(z1), . . . ,O(zk)) + θ (3.14)

= P(t)

DictR(D)
(O) + θ (3.15)

where θ → 0 as t→∞ or as τ → 0.

Theorem 3.2.10. For every θ, there exists τ , D and t such that if O is an ordering such

that if infj(O(≤D)) ≤ τ for all j, then

PDictR(D)(O) ≤ P(t)

DictR(D)
(O) + θ

Proof. Given an ordering O, construct Ot by bucketing into t (almost) equal pieces. Fix

i1, i2 ∈ [k]. Since ρ < 1, applying lemma 2.3.6 with µ = 1/t gives that:

P
z∈DictR(D)

{Ot(zi1) = Ot(zi2) + t−ε + oτ,D(1)} (3.16)

Thus, the difference between P and P(t) is at most
(
k
2

)
t−ε. Setting t large enough shows

that P and P(t) differ by at most θ/2, while setting τ small enough makes the second term

smaller than θ/2. �

32

3.3 Overview of a reduction from UG

In the next chapters, we will show inapproximability of various class of problems using

the dictatorship test we construct here. All the reductions involved transform a given UG

instance by replacing each right hand vertex by the gadget, [t]R. The key insight is that one

can use dictator assignments along coordinates corresponding to the labels assigned to the

vertices. This leads to aligned coordinates in most neighboring pair of vertices.

A dictatorship test is constructed out of a “input” distribution; a random pair (or gen-

erally, a random k tuple) having a common left neighbor is picked and the test is used to

sample vertices from gadgets corresponding to the vertices picked. However, the order of

the labels for each of these gadgets is also permuted by the permutation specified on the

edge. Now, the dictator assignments inspired by the labeling of the instance gives a global

labeling of all the gadgets such that most dictatorship tests see a dictator labeling. This is

the reason we have a higher payoff (or a lower cost as the case maybe) when the UG instance

is almost completely satisfiable. This higher payoff is often proportional to the objective of

a relaxation.

In fact, a stronger converse can also be shown: if the payoff of some assignment is larger

than a threshold, one can find a small set of “influential” coordinates for each vertex such that

for a good fraction of the edges, some pair in the corresponding set of influential coordinates

satisfy the constraint on the edge. This suggests a “list decoding” algorithm that samples

one of these coordinates at random and assigns to the vertex. The expected payoff of this

algorithm is then proven to be significant (at least a constant away from 0). Assuming

the UGC, this is indistinguishable from when the instance is almost fully satisfiable. The

argument is completed by showing that this threshold is indeed a integer optimum of the

problem.

33

Chapter 4

Approximability of Labeling Problems

In this chapter, we will focus on the approximability of a fairly general class of labeling

problems known as Metric Labeling. Using this framework developed in the previous

chapters, we show that a simple linear relaxation already captures the approximability of

these problems (and certain interesting special cases of them). The relaxation has been

previously studied in designing approximation algorithms for these problems. We show that

a gap instance of this relaxation implies an inapproximability of the integrality gap ratio

upto an arbitrarily small additive constant.

Roadmap. We begin my describing metric labeling problems and their special cases, cit-

ing previous work in the design of approximation algorithms. We follow this up with the

description of the relaxation, followed by our reduction and its analysis. Finally, we describe

a simple rounding scheme for the relaxation and show its optimality. Most of the work

presented in this chapter is from joint work with Joseph (Seffi) Naor, Prasad Raghavendra,

and Roy Schwartz[48].

34

4.1 Description of Problems

Metric labeling problems fall under the class of edge deletion problems along with many

other classic optimization problems. In an edge deletion problem, given an undirected graph

G = (V,E) and weights w on E, the goal is to find a minimum weight set of edges E ′ such

that G′ = (V,E − E ′) satisfies certain properties. A special case is when the set of deleted

edges form a cut. For example, the simplest and probably most familiar problem in this

class is the minimum (s, t) cut problem. Given two terminals s and t the goal is to find

a minimum weight cut that separates s and t, i.e., s and t belong to different connected

components as a result of removing the cut from the graph. This problem can be solved

precisely in polynomial time following the classic work of Ford and Fulkerson. Metric

Labeling is a more general edge deletion problem, with applications in computer vision,

network design and clustering, to name a few ([41]).

We will describe a few special metric labeling problems, which are interesting in their

own right, finally leading upto the general Metric Labeling. Refer fig. 1.1 for a quick

overview of our results for the problem and its special cases.

Multiway Cut. The Multiway Cut problem is a natural generalization of the mini-

mum (s, t) cut problem when more than two terminals are involved. An instance of Multi-

way Cut is a graph J = (V , E) and a set X ⊆ V of terminals. The graph can be weighted,

in which case, a probability distribution over the edges, ΩE is part of the specification. The

problem asks for a minimum collection of edges separating every pair of terminals. This

problem is NP-hard and a (2 − 2
t
)-approximation algorithm that uses the classic min-cut

algorithm as a subroutine is known [17] (here, t = |X |). Based on a novel geometric relax-

ation, which was later generalized to the relaxation we work with, Calinescu, Karloff and

Rabani [16] obtained a 3
2
− 1

t
approximation for the problem. Continuing this line of work,

Karger et al[33] obtained tight integrality gaps when the instance has exactly 3 terminals.,

35

and improved approximation factors for the general case. However, nothing better than

APX-hardness [17] was known prior to this work.

0-Extension. The 0-Extension problem, introduced in [36, 37] is a generalization of

Multiway Cut in which a metric d is defined on the terminal set X . The goal is to as-

sign to each vertex v ∈ V a terminal x(v) in X , while minimizing the total cost given by∑
w,v∈E w(w, v)d(x(w), x(v)). When the metric assigns a distance, 1 to all distinct terminal

pairs (and 0 otherwise), the problem reduces to the Multiway Cut described above. Ca-

linescu et al [10] obtained an O(log|X |)-approximation algorithm for 0-Extension. With

a better analysis, the guarantee was improved to O(log |X |/log log |X |) in [20]. The ideas

from the 0-Extension problem [20, 10] have found applications in metric embedding [42]

and analysis [45]. Building on the work of [15], [34] showed that there is no polynomial

time algorithm that approximates 0-Extension within a factor of O((log|X |) 1
4
−ε), unless

NP ⊆ DTIME(npoly(logn))

Metric Labeling. Motivated by applications in computer vision, Kleinberg and Tardos

[41] introduced the Metric Labeling problem. An instance is a (weighted) graph J =

(V , E ,ΩE), a metric d on a set of labels, X , and a non-negative assignment cost function, C,

on vertex-label pairs. The objective is to find an assignment L of labels to the vertices while

minimizing: ∑
v∈V

C(v, x(v)) + E
(w,v)∈ΩE

d(t(w), t(v)).

It is known that the cost function can be assumed to assign only 0 or ∞ to its domain

without loss of generality. We will denote the cost by a function C : w → 2X .

If the cost function is 0 for all vertices except for a selected bunch of terminals, where

the cost is 0 when the terminals are assigned a pre-determined label and ∞ otherwise, the

instance turns into an instance of the aforementioned 0-Extension problem.

36

Using an approximation of the metric as a combination of dominating tree metrics [8, 41],

gave an approximation algorithm for Metric Labeling. Its approximation factor can

be shown to be O(log|X |) using the later improvement of [21] in embedding metrics into

dominating tree metrics. On the other hand, Chuzhoy and Naor [15] showed that there is no

polynomial time approximation, better than O(log1/2−ε|X |) unless NP ⊆ DTIME(npoly logn).

Another important special case is the Uniform Metric Labeling, where the metric is

the uniform metric (assigning 1 to distinct labels). A 2-factor approximation algorithm[41]

is known for Uniform Metric Labeling. Constant factor approximation algorithms

[41, 25, 13, 1] are known for many other special cases of metrics.

4.2 Earthmover Relaxation

Now, we describe the linear relaxation used to tailor the inapproximability. Note that our

goal in this chapter is to show that the particular linear relaxation provides the best approx-

imation assuming the UGC.

Earthmover Metric. Given a metric d on a set of points, X , the earthmover metric

corresponding to d, denoted by d./, specifies distances between fractional points from X

(that is, points in NX).

Definition 4.2.1 (Earthmover Distance). Given a metric d : X × X → R, and two points

x, y ∈ NX , the earthmover distance between x and y is:

d./(x, y) =minimize
∑
i,j

d(i, j)fij

subject to
∑
i

fij = yj;
∑
j

fij = xi ∀i, j ∈ X

0 ≤ fij ≤ 1 ∀i, j ∈ X

37

In words, the earthmover distance is the minimum cost of moving the probability mass

from distribution x to y, given the distance metric d on the labels. It is easy to see that this

defines a metric on the simplex of the label set of the metric, NX . The distance is measured

by optimizing a “flow” from the source point to the destination point in the simplex. Note

that the distance can be calculated in a linear relaxation. We will use this fact in embedding

this metric in the linear relaxation for Metric Labeling problems.

We now prove a simple and yet important property of the earthmover metric: given two

points x, y ∈ NX , there is a distribution over X × X such that the expected distance is

exactly the earthmover distance.

Theorem 4.2.2. For every metric d : X × X , and every two points x,y ∈ NX , there is a

distribution D over X × X such that:

E
(z1,z2)∈D

[d(z1, z2)] = d./(x,y)

and for every z ∈ X ,

P
(z1,z2)∈D

[z1 = z] = (x)z P
(z1,z2)∈D

[z2 = z] = (y)z

Linear Relaxations for Metric Labeling Problems. As described above, the Metric

Labeling is the most general case. We now describe the relaxation for an instance of

Metric Labeling. Given an instance, J = (V , E ,ΩE); a metric d on X and assignment

constraints C : V → 2X , the relaxation asks to:

minimize LP(J) = E
(v,w)∈ΩE

d./(Yv, Yw) (EMLP)

such that Yv ∈ NC(v) ∀v ∈ V

Figure 4.1: Earthmover Relaxation for Metric Labeling

38

Structured Integrality Gap. The inapproximability of Metric Labeling problems

involves a reduction from Unique Games and a integrality gap instance of the above re-

laxation to another instance of Metric Labeling. We will need minor “pre-processing”

of the integrality gap instance for our reduction; we denote such a pre-processed integrality

gap a structured integrality gap instance whose properties are listed below.

Definition 4.2.3 (Structured Integrality Gap). A structured integrality gap of a Metric

Labeling problem is an instance, J = (V , E ,ΩE); a metric d on X ; assignment constraints

C : V → 2X and a feasible solution of the earthmover relaxation(see fig. 4.1), {Yv}. Further,

the metric is such that: (1) distinct points in the metric have a positive distance between

them; (2) the maximum distance between the points is at most 1. The structured integrality

gap is specified by the tuple (J = (V , E ,ΩE), d,X , C, {Yv}).

∑
e∈E(J)

we = 1 d(i, j) ≤ 1, for all 1 ≤ i, j ≤ k

4.3 Results on Labeling Problems

Using our framework, we convert integrality gaps for all the problems mentioned above to

inapproximability for the problem, upto a ratio equal to the integrality gap ratio discounting

an arbitrarily small additive constant.

Theorem 4.3.1 (Main). For every number θ > 0, integers m, t, and every structured

integrality gap instance, J = (V , E ,ΩE ,X , d, C), {Yv}V , where |V| = m and |X | = k, , there

is a η > 0 and δ, and a polynomial time reduction from a Unique Games instance Υ to a

Metric Labeling instance I = (W , E ,ΩE ,X , d, F) such that:

– If Υ is (1− η)-strongly satisfiable, then OPT(I) ≤ δ · LP(J) · (1 + θ),

– while, if Υ is at most η satisfiable, then OPT(I) ≥ δ ·OPT(J) · (1− θ)

39

– the output instance, I has the same metric d over the same space X as J

– further, if J is a 0-Extension instance, then I is a 0-Extension; and similarily

with Multiway Cut and Uniform Metric Labeling instances.

Remark 4.3.2. The size of the output instance, I is polynomial in n, the size of the UG

instance, Υ; however, doubly exponential in m and k. This restricts the application to

constant m and k.

The constraint—m and k being fixed constants—is not too restrictive. For example,

suppose the integrality gap of Metric Labeling restricted to a fixed metric d0 on X0 is θ.

That is,

θ = sup
J |d=d0,X=X0

inf
Y

OPT(J)

LP(J , Y)
.

Then, for every ε > 0, there is a instance J whose size solely depends on ε and |X0| = t that

attains an integrality gap of θ − ε. Further, such an instance can be searched for in time

solely dependent on ε and k. This together with theorem 4.3.1 gives the following strong

corollary.

Corollary 4.3.3 (Almost Optimal Inapproximability). For Metric Labeling or 0-

Extension on any fixed metric d (on X), Multiway Cut for a fixed k or the Uniform

Metric Labeling on a fixed metric space, the earthmover relaxation fig. 4.1 gives an

almost optimal polynomial-time approximation assuming the Unique Games Conjecture.

Note that the exhaustive search is not always necessary. For Uniform Metric Label-

ing, Metric Labeling and 0-Extension on a metric of size k (but otherwise arbitrary)

integrality gaps almost matching the corresponding approximation factor of the best ap-

proximation algorithm are already known. However, for Multiway Cut where k > 3, our

exhaustive-search argument is necessary to show optimal approximability result. We end

the discussion with a table displaying the approximability of the various metric labeling

problems emphasizing results from this work (see fig. 4.2).

40

Problem Metric Size Best Approx. LP Gap Inapproximabilty

Multiway Cut 3 12/11 12/11− ε 12/11− ε[48]
Multiway Cut k 1.2313 1.0123 θ − ε[48]
Uniform Metric Labeling k 2[41] 2− ε[41] 2− ε[48]
0-Extension k O(

√
log k) O(

√
log k) O(

√
log k)[48]

Metric Labeling k O(log k) O(log k) O(log k)[48]

Metric Labeling poly(n) O(log n) O(log n) O(log
1/2−ε(n)[15]

Figure 4.2: Approximability of Metric Labeling Problems

4.4 Reduction to Metric Labeling Problems

We now describe the reduction from Unique Games to Metric Labeling problems. Given

a UG instance, Υ = (A,B, E,Π, R), an instance of the metric labeling problem, J =

(V , E ,ΩE ,X , d, C), and a solution to the relaxation, Y ; construct another instance, I, of

Metric Labeling as described below.

The label set and the distance metric on the labels remain the same: X and d. The

vertex set of the instance, W = B × V × XR. The assignment constraints extend from the

assignment constraint of J as follows: vertex (b, v, x) can only be assigned labels from the

set corresponding to v.

Edge Distribution. The probability distribution describing the edges (and their weights)

— denoted by ΩE — uses the dictatorship test constructed from two types of distribution.

The overall distribution is the random process described in fig. 4.3; parameters δ and ε are

set in the analysis.

For Metric Labeling, the output of the reduction is the instance I = (W , E ,ΩE ,X , d, F).

For 0-Extension and Multiway Cut, the instances produced by the reduction have too

many terminals. We handle this by collapsing the gadgets corresponding to a terminal

vertex. That is, for every terminal t ∈ X (J), contract the set St = {(b, t, z)} into one vertex

t and make it a terminal.

41

Random Process describing ΩE (parameters: δ, ε):

1. Pick a ∈ A and two neighbors of a, b1, b2 ∈ B. Let π1, π2 denote the permutations of
the constraint on edge (a, b1) and (a, b2) respectively.

2. With probablity δ,

(a) pick an edge e = (v, w) ∈ E ,

(b) sample (z1, z2) from DictR(D./(Y (v), Y (w))

(c) output the edge ((b1, v, π1(z1)), (b2, w, π2(z2))).

3. otherwise (that is, with probability 1− δ),

(a) pick a vertex v from V ,

(b) sample (z1, z2) from DictR(D1−ε(Y (v)))

(c) output the edge ((b1, v, π1(z1)), (b2, v, π2(z2)))

Figure 4.3: Reduction from UG to Metric Labeling problems

4.4.1 Canonical Labeling from UG Labelings

The first part of the main theorem is simple to prove. Given a labeling Λ of the UG

instance, Υ, we design a labeling for Metric Labeling instance output by the reduction.

This labeling uses dictator assignments.

Lemma 4.4.1. For every θ, J and Y , there is exists η, ε and δ such that, if Λ strongly

satisies at least a 1−η fraction of the constraints of a UG instance Υ, the Metric Labeling

problem instance, I output by the reduction in fig. 4.3 is such that:

OPT(I) ≤ δ LP(J) + ε+ η

Proof. Construct a labeling A : B × V × XR → X as follows: A(b, v, z) = (z)Λ(b).

Assume a picked in item 1 of the reduction be such that Λ satisfies every edge incident

on a. Since a is picked at random, this happens with probability 1− η.

42

With probablity 1 − ε, edges from item 3 of the reduction have cost 0 because they are

assigned the same point in the metric. Otherwise, the cost is at most 1. Thus, the total cost

from this step is at most ε.

Since both (a, b1) and (a, b2) are satisfied by Λ, π1(Λ(b1)) = π2(Λ(b2). Using theo-

rem 4.2.2, the expected cost of edges from item 2 is exactly the cost of the LP solution.

Thus, the total cost of A is:

(1− η) · [δ LP(J) + (1− δ)ε] + η ≤ δ LP(J) + ε+ η

�

4.4.2 Soundness

The harder part of theorem 4.3.1 is the contrapositive of lemma 4.4.1: if the assignment

costs less than δ · OPT(J) · (1 − θ), then the UG instance, Υ is at least η satisfiable. Fix

such an assignment A : B × V × XR → X . We show that any such labeling A of I can be

used to “decode” an assignment for Υ that is more than η-satisfiable. For each b ∈ B and

each v ∈ V , define functions fb,v : XR → X and ga,v : XR → NX as follows:

fb,v(z) = A(b, v, z)

ga,v(z) = E
b∈N(a)

[
fb,v(π(a,b)(z))

]
For each a ∈ A, let valVt(a) denote the cost of the edges from item 3 in fig. 4.3 when a is

picked as the left vertex (item 1 in fig. 4.3). Similarily, let valEd(a) denote cost from item 2

of the reduction. The total cost of the solution is:

val(A) = E
a∈A

[
δ · valEd(a) + (1− δ) · valVt(a)

]
(4.1)

43

Parameters. We describe how we set the paramters before delving into the analysis. Pa-

rameters that arise from the structured gap instance should be considered constants. These

are: m, the size of J ; α, the minimum non-zero value taken by any coordinate of any vari-

able xv in the LP solution; β, the minimum non-zero cost assigned by the metric d; the LP

optimum, LP(J); and the (integral) optimum, OPT(J).

We set ε and δ based on the error, θ, we can tolerate (see theorem 4.3.1). The rest of

the parameters are fixed by these three. We would like ε + η ≤ δθ LP(J) to prove item 1

of theorem 4.3.1. Thus, δ = Ω(ε/θ). On the other hand, as we show below, we need to set

δ = O(θ
√
ε) to prove item 2. With this in mind, we set C =

√
LP(J)β

10m
. Now, given the error

parameter θ, set ε = C4θ4. The main structure theorem follows.

Theorem 4.4.2. For every θ, ε, δ > 0, there is τ , D such that, for every a ∈ A, one of the

three hold:

– There is a v ∈ V and a coordinate i such that Infi(ga,v
(≤D)) ≥ τ

– valVt(a) ≥ θ
√
εβ
m

– valEd(a) ≥ δ(1− θ/2) ·OPT(J)

Proof. Set ε = C4θ4 and µ = 1− θ/2. Let τ and D be as obtained from corollary 3.2.6. Fix

an a ∈ A. Suppose case 1 in the statement does not hold for any v ∈ V . If there is a v ∈ V

and a j ∈ [t] such that Ez[(ga,v)j] ≤ µ, then, applying corollary 3.2.6, we know that:

valVt(a) ≥ 1

m
Ω(θ
√
εβ).

On the other hand, if every v has a jv such that the expectation is at least µ, then the

assignment, ga,v, induces an almost integral assignment. Each v is assigned the coordinate

jv; being an integral assignment, the cost of the edge tests is at least as much as the best

integral solution:

valEd(a) ≥ δ ·OPT(J) · µ ≥ δOPT(J)(1− θ/2) �

44

Note that the weights in a structured integrality gap are scaled so that OPT(J) ≤ 1.

Setting δ = O(θ
√
εβ
m

), makes sure that if a vertex, a does not have any influential coordinates,

then the total cost of edges corresponding to a is at least δ(1− θ/2) ·OPT(J).

The decoding procedure is to simply pick τ -influential coordinates of ga,v
(≤D) (for any v)

and τ/2-influential coordinates of fb,v
(≤D). That is, set Sa, Sb as follows:

Sa = ∪v
{
j| Infj(ga,v

(≤D)) ≥ τ
}

and Sb = ∪v
{
j| Infj(fb,v

(≤D)) ≥ τ/2
}

Suppose A is such that OPT(I, A) ≤ δOPT(J) · (1 − θ). Then, from theorem 4.4.2,

we know that at least a θ/2 fraction of a have non-empty Sa. Further, using lemma 2.3.2,

we know that for every such a, at least a τ/2 fraction of b adjacent to it have at least one

element j in Sb such that j ∈ πa,b(Sa).

Consider a (random) assignment Λ obtained by picking a random element out of Sa for

each a and similarily for b. From lemma 2.3.1, we know that each of these sets are bounded

by 2Dkm/τ in size. Thus, this random assignment satisfies at least a (τ 2/4D2k2m2) · θ/2

fraction of the edges. Finally, picking η smaller than this quantity and ε proves theorem 4.3.1.

4.5 Concluding Remarks

In this chapter, we show a direct conversion of integrality gaps for a mathematical relax-

ation to a proof of inapproximability of Metric Labeling problem. This method was

expounded in the work of Raghavendra [55], to show a similar coversion procedure for every

constraint satisfaction problem (CSP). In his work, the relaxation used is stronger than a

linear program; a semi-definite programming relaxation.

45

Chapter 5

Approximability of Strict CSPs

In this chapter, we will study the approximability of “strict” constraint satisfaction problems.

This class is fairly general and includes important problems such as Vertex Cover, Hy-

pergraph Vertex Cover, numerous covering and packing problems and certain schedul-

ing problems. The flavor of the result is similar to the previous result: we describe a simple

linear relaxation that capture the approximability of these problems. That is, an integrality

gap instance of this relaxation can be turned into a proof of inapproximability1. Further, we

show a rounding procedure inspired by the above conversion procedure. The work presented

is based on a paper with Amit Kumar, Madhur Tulsiani, and Nisheeth Vishnoi [43].

Roadmap. We begin by describing the class of problems we study here, formalizing the

notion of a Strict CSP (see section 5.1). The relaxation we analyse is described in sec-

tion 5.2. Our results on strict constraint satisfaction problems are in section 5.3. The

inapproximability reduction is in section 5.4.

1Caveat: the gap instance needs to satisfy a connectedness property; hence any general instance does not
suffice.

46

5.1 Description of Problem

Strict CSP is a generalization of the classic Vertex Cover, Hypergraph Vertex

Cover, Independent Set problems. An instance of Vertex Cover is a graph J =

(V , E). The goal is to find a subset of the vertices such that every edge is incident on the

subset (i.e., at least one endpoint belongs to the subset). Modeled as a constraint satisfaction

problem, the problem seeks an assignment L : V → {0, 1} such that every edge e = (v, w)

satisfies the predicate (L(v) ∨ L(w)).

Similarily, a Strict CSP is specified by positive integers k and t denoting the arity

and the alphabet size. An instance of a Strict CSP is a tuple J = (V , E , C,X) where

V is a set of vertices; E is a collection of k-tuples of vertices; C is a collection of objective

functions Cv : [t] → [−1, 1], one per vertex; and X is a collection of constraints, one per

edge: Xe ⊆ [t]k. The goal in a Strict CSP is to figure out an assignment, L : V → [t] such

that:

– For every edge e = (v1, . . . , vk),(L(v1), . . . , L(vk)) belongs to Xe.

– The objective
∑

v Cv(L(v)) is minimized

For example, Vertex Cover is a Strict CSP with k = t = 2 where the objective

is always the function: f(1) = 1; f(0) = 0; and the constraints are always the subset

{(0, 1), (1, 0), (1, 1)} ∈ {0, 1}2.

Fixing k and restricting the choice of the constraints Ae allowed in the specification (as

opposed to allowing arbitrary subsets of [q]k) gives raise to particular classes of strict-CSPs

– we shall often abuse notation and refer to these classes as problems. Many important

optimization problems are captured by this specification: Vertex Cover, Hypergraph

Vertex Cover, Independent Set, covering and packing problems to name a few.

Note that strict-CSPs are different from the CSPs considered by Raghavendra [55] where

the goal, given a set of constraints, is to find an assignment which maximizes a payoff func-

47

tion associated with whether a constraint is satisfied or not and, in particular, assignments

which satisfy only part of the constraints are feasible, e.g., Maximum Cut. We refer to

them as strict-CSPs precisely for this reason. Even though optimal inapproximability and

approximability for several problems such as Maximum Cut which fell in Raghavendra’s

framework were known before (see [55]), the main feature of his result was the use of semi-

definite programming (SDP)-integrality gaps to come up with Unique Games Conjecture

(UGC)-based hardness reductions, complementing the result of Khot and Vishnoi [40] who

show how to use UGC-based hardness reductions to come up with SDP-integrality gaps.

He gave a generic SDP for this class of CSPs and showed how the approximability of each

problem is determined by the corresponding SDP up-to an arbitrarily small additive error

assuming the UGC. He noted in his paper that his techniques do not apply to strict-CSPs

such as Vertex Cover and Graph-3-Coloring.

In this chapter we present a framework similar to the one in [55] which applies to a

large class of strict-CSPs. In particular, we show that a natural linear program (LP) cap-

tures precisely (up-to arbitrarily small additive error) the approximability of strict-CSPs

such as covering-packing problems, which include Vertex Cover, Hypergraph Vertex

Cover and Independent Set, as observed by Guruswami and Saket [28] - the k-partite-

k-uniform-Hypergraph Vertex Cover problem, and the concurrent open shop problem

in scheduling [49], [7]. We show how to convert integrality gap for the LP for these problems

to a Unique Games-based hardness of approximation result in a principled way. Thus,

the above results are obtained by invoking known integrality gaps for the above-mentioned

problems. In addition, for covering-packing problems we give a simple rounding algorithm

which achieves the integrality gap, again up-to an arbitrarily small additive constant. The

rounding result is an analogue in the strict-CSP world of that obtained by Raghavendra and

Steurer [57].

48

We do not attempt to list all the corollaries and, rather, focus on providing a systematic

framework to compose LP integrality gap instances for strict-CSPs with Unique Games

instances and to demonstrate how the rounding algorithm comes out as a natural by-product

of the analysis.

5.2 Linear Relaxations for Strict CSPs

We describe the linear relaxation for a general k-Strict CSP problem. The relaxation is

inspired by the Sherali-Adams [64] relaxation and plays a crucial role in our results. Given

a Strict CSP instance J = (V , E , C,X), the relaxation we consider is described in fig. 5.1.

LP(J)
def
= min

∑
v∈V

Cv(Yv) (5.1)

subject to

∀e=(v1,v2,...,vk)∈E (Yv1 , Yv2 , . . . , Yvk) ∈ N(Xe) (5.2)

∀v∈V Yv ∈ N[t] (5.3)

(5.4)

Figure 5.1: LP for k-Strict CSP

Here, for a hyper-edge e = (v1, . . . , vl), ConvexHull(Ae) denotes the convex hull of all

assignments σ ∈ {0, 1}l which satisfy the constraint Ae. For an instance I, let LP(I) denote

the optimum of the LP of Figure fig. 5.1 for I. Let val(I, x) denote the value of LP(I) for

a feasible x to it. Also, let OPT(I) denote the value of the optimal integral solution for I.

For the sake of readability, we will assume that all the hyper-edges are exactly of size k.

Connected Integrality Gap Instance. Our inapproximability of Strict CSP requires

a gap instance of the relaxation with the following properties:

49

– Satisfiability: Every constraint is such that, for every assignment fixing all but one

variable involved, there is one assignment for the unfixed variable that satisfies the

constraint.

– Connectedness: The solution YV is such that the distribution induced on each edge has

a max. correlation coefficient less than 1.

– Scale: The maximum cost of any assignment is at most 1.

A connected integrality gap instance is simply an instance J = (V , E , C,X) along with

a solution YV satisfying the above properties.

5.3 Results on Strict CSP

The general theme of the results is that for a particular (and amenable) class of Strict CSP,

the linear relaxation in fig. 5.1 gives the best approximation to the optimum for problems in

this class assuming the UGC. We state the result formally for interesting special cases.

We start with the Vertex Cover and Hypergraph Vertex Cover problems. Ver-

tex Cover has a simple 2-approximation; and Hypergraph Vertex Cover a simple

k-approximation. Assuming the UGC, these problems are known to be hard to approximate

to a better factor [39]. However, the reduction in [39] does not give an insight into why a

simple linear program obtains this approximation factor. Our results convert integrality gap

instances of this linear program into inapproximability results.

Theorem 5.3.1 (Vertex Cover inapprox.). For every δ > 0, every Vertex Cover

instance J = (V , E) and a solution, YV to the relaxation in fig. 5.1, there is a η > 0 and a

polynomial time reduction from Unique Games to Vertex Cover such that:

– If Υ is (1− η)-strongly satisfiable, then OPT(I) ≤ LP(J) + δ,

– while, if Υ is at most η satisfiable, then OPT(I) ≥ OPT(J) + δ.

50

Structure Preserving Reduction. While not improving on the results obtained in [39],

our reduction shows a direct connection between the relaxation and the problem. To the best

of our knowledge, this connection has not been explicit potrayed and used. The reduction

in [6] obtains inapproximability of degree-bounded instances of Vertex Cover using a

reduction similar to the one in this chapter.

Our reduction has the characteristic of preserving certain structures present in the in-

tegrality gap instance. For instance, for Hypergraph Vertex Cover, if the integrality

gap instance is k-partite, the output is also k-partite. Incidentally, Hypergraph Vertex

Cover on a k-partite, k-uniform instance has been studied and a k/2-approximation is

known for this subclass. Using our reduction, [28] show that this factor is in fact tight.

Packing and Covering Problems. A covering problem is a Strict CSP with t =

2 where the constraints have a covering property: if an assignment (x1, x2, . . . xk) to the

incident vertices of an edge satisfies the constraint on it, then changing any xj from 0 to 1

also produces an assignment that satisfies that constraint. The problem seeks an assignment

with a minimum set of vertices set to 1 while satisfying all the covering constraints. Packing

problems are the natural complement of this problem. For example, Vertex Cover and

Independent Set are covering and packing problems that are complements of each other.

Theorem 5.3.2 (Covering Problems). For every δ > 0, every coverint Strict CSP in-

stance J = (V , E , C,X) and a solution, YV to the relaxation in fig. 5.1, there is a η > 0 and

a polynomial time reduction from Unique Games to Strict CSP such that:

– If Υ is (1− η)-strongly satisfiable, then OPT(I) ≤ LP(J) + δ,

– while, if Υ is at most η satisfiable, then OPT(I) ≥ OPT(J) + δ.

51

5.4 Reduction to Strict CSPs

We now describe the reduction from Unique Games to the Strict CSP in hand using a

connected integrality gap instance. Given a UG instance, Υ = (A,B, E,Π, R), an instance

of Strict CSP, J = (V , E , C,X) and a connected solution to the relaxation in fig. 5.1;

construct another instance of Strict CSP as described below.

The vertex set of the instance, W = B × V × [t]R. The set of (strict) constraints of

the instance is the support of the a “edge distribution” detailed in fig. 5.2. The reason for

describing the constraints using a distribution even though strict constraints do not need

weights will be evident in the analysis.

Vertices are weighted as follows. The weight of the vertex (b, v, z) is given by the formula:

w(b, v, z) =
∏
j

(Yv)(zj)

1. Pick a ∈ A and k neighbors of a, b1, b2, . . . bk ∈ B. Let π1, π2, . . . πk denote the
permutations of the constraint on corresponding edges.

2. Pick an edge e = (v1, v2, . . . vk) ∈ e. Let Xe be the subset representing the constraint
on edge e.

3. Let D = D(Yv1 , Yv2 , . . . Yvk) denote the correlated distribution over [t]k given by the
relaxation. Sample (z1, z2, . . . zk) from D.

4. Output the constraint ((b1, v1, π1(z1)), (b2, v2, π2(z2)), . . . (bk, vk, πk(zk))) and constraint
Xe.

Figure 5.2: Constraint Set of the output instance, I

The followign inapproximability is proven in the rest of this section.

Theorem 5.4.1. For every θ, and gap instance J = (V , E , C,X), there is a η such that:

– If Υ is (1− η)-strongly satisfiable, then OPT(I) ≤ LP(J) + θ,

– while, if Υ is at most η satisfiable, then OPT(I) ≥ OPT(J)− θ.
52

– further, the collection of constraints in I is the same as in J .

5.4.1 Deriving an Assignment from a UG Labeling

As in the previous chapter, we will derive an assignment to the instance from a labeling of

the UG instance. This assignment will have a cost corresponding to the value of the solution

to the relaxation.

Theorem 5.4.2 (Completeness). Given a labeling Λ that strongly satisies at least a 1 − η

fraction of the constraints of the UG instance Υ, the Strict CSP instance, I output by the

reduction in fig. 5.2 is such that OPT(I) ≤ LP(J) + η.

Proof. Construct a labeling A : B×V× [t]R → [t] as follows:A(b, v, z) = zΛ(b). The relaxation

enforces local constraints such that D (see item 3 in fig. 5.2) is supported only on satisfying

assignments for the constraint inducing D. If a is such that every permutation constratint

induced by a neighbor b of it is satisfied by Λ, then the assignment A satisfies all the

constraints involving the those vertices. This handles the the neighborhood of a fraction

1− η of a. For the rest, assign arbitrarily to satisfy the constraints. It is easy to verify that

the weights are designed such that the cost of this assignment is at most LP(J) + η. �

5.4.2 Soundness

Now, we delve into the harder part of the main theorem. As before, we prove this in the

contrapositive: if OPT(I) ≤ OPT(J)− θ, then one can find a labeling Λ for Υ that satisfies

at least θΩ(1) fraction of the UG constraints.

Let A be such an assignment: A : B × V × [t]R → [t]. That is, val(I, A) ≤ OPT(J)− θ.

For each b ∈ B and each v ∈ V , define functions fb,v : [t]R → [t] and and ga,v : [t]R → N[t] as

53

follows:

fb,v(z) = A(b, v, z); ga,v(z) = E
b∈N(a)

[
fb,v(π(a,b)(z))

]
Let val(a) denote the cost of the neighborhood of a single a. The total cost of A is the

average over val(a):

val(I, A) = E
a

[val(a)]

Parameters. As before, the parameters arising out of the gap instance should be consid-

ered fixed constants. These are ρ, the maximum over the max. corr. coefficient of every edge

distribution induced by the relaxation; m, the size of the instance, α, the minimum non-zero

value taken by any coordinate of any variable Yv in the LP solution; and k the arity of the

problem. Let µ = θ
2k

.

Theorem 5.4.3. For every θ, there exists τ , D such that, of A is an assignment to I such

that val(I, A) ≤ OPT(J)− θ, then one of the following hold for every a ∈ A:

– There is a v ∈ V and a coordinate i such that Infi(ga,v
(≤D)) ≥ τ

– val(a) ≥ OPT(J)− θ/2

Proof. Let k, ρ, α and µ be as fixed above. Let δ, τ and D be as obtained by applying

corollary 3.2.8. Consider an assignment to J , L obtained as follows: v is assigned j with

probability pj,v = P(b,v,z)∈N(a)[A(z) = j] if pj,v is at least µ and unassigned otherwise. Finally,

assign the unassigned vertices arbitrarily. Corollary 3.2.8 says that the assignment satisfies

all the constraints. Now, since the assignment was induced from A (unless when unassigned)

we know that:

val(a) = val(I, A) ≥ val(J , L)− µk ≥ OPT(J)− µk ≥ OPT(J)− θ/2 �

54

The decoding procedure is as in the previous chapter: pick τ -influential coordinates of

ga,v
(≤D) (for any v) and τ/2-influential coordinates of fb,v

(≤D). Set Sa, Sb as follows:

Sa = ∪v
{
j| Infj(ga,v

(≤D)) ≥ τ
}

and Sb = ∪v
{
j| Infj(fb,v

(≤D)) ≥ τ/2
}

Suppose A is such that OPT(I, A) ≤ OPT(J) − θ Then, from theorem 5.4.3, we know

that at least a θ/2 fraction of a have non-empty Sa. Further, using lemma 2.3.2, we know

that for every such a, at least a τ/2 fraction of b adjacent to it have at least one element j

in Sb such that j ∈ πa,b(Sa).

Consider a (random) assignment Λ obtained by picking a random element out of Sa for

each a and similarily for b. From lemma 2.3.1, we know that each of these sets are bounded

by 2Dkm/τ in size. Thus, this random assignment satisfies at least a (τ 2/4D2k2m2) · θ/2

fraction of the edges. Finally, picking η smaller than this quantity and θ proves the main

theorem.

5.5 Inapproximabilty of Strict CSPs

We derive the approximation for Hypergraph Vertex Cover (incl. Vertex Cover

and Independent Set) and packing and covering Strict CSP using the reduction shown

above.

Vertex Cover and related problems. Any known integrality gap instance of these

problems can be used. To make sure the LP solution is connected, we perturb the solution

by a small amount.

Proof of theorem 5.3.1. Optimal integrality gaps are known for the relaxation. For example,

even constant rounds of the integrality gaps constructed in [61] suffice. �

Further, theorem 5.4.1 directly proves theorem 5.3.2.

55

Chapter 6

Ordering Problems

In this chapter, we show that ordering constraint satisfaction problems are approxima-

tion resistant using our framework. Ordering CSP includes important problems such

as Max. Acyclic Subgraph (MAS) and Feedback Arc Set (FAS) and the approxi-

mation resistance of ordering problems has been a significant open question. We show that

all Ordering CSP are approximation resistant assuming the UGC. The results are from

a collection of published work with Moses Charikar, Venkatesan Guruswami, Johan Hastad,

and Prasad Raghavendra [27, 11, 26].

Roadmap. We will first describe ordering problems, and known study on the approx-

imation of ordering problems (MAS and FAS in particular). The results are described in

section 6.1. The reduction is more involved than the one in the previous chapters; a overview

is in section 6.2.

6.1 Description of Problems

Ordering constraint satisfaction problems are a fairly large class of problems, containing

classic problems such as the Max. Acyclic Subgraph, Feedback Arc Set and the

56

Betweenness problem; the first example being the simplest in this class. Below, we de-

scribe Max. Acyclic Subgraph, stating our results on approximating it, followed by the

generalizations.

Maximum Acyclic Subgraph. Given a directed acyclic graph G, one can efficiently

order (“topological sort”) its vertices so that all edges go forward from a lower ranked vertex

to a higher ranked vertex. But what if a few, say fraction ε, of edges of G are reversed?

Can we detect these “errors” and find an ordering with few back edges? Formally, given

a directed graph whose vertices admit an ordering with many, i.e., 1 − ε fraction, forward

edges, can we find a good ordering with fraction α of forward edges (for some α→ 1)? This

is equivalent to finding a subgraph of G that is acyclic and has as many edges as possible;

hence this problem is called the Max. Acyclic Subgraph problem.

Max. Acyclic Subgraph is a classic optimization problem, figuring in Karp’s early list

of NP-hard problems [35]; the problem remains NP-hard on graphs with maximum degree

3, when the in-degree plus out-degree of any vertex is at most 3. Max. Acyclic Sub-

graph is also complete for the class of permutation optimization problems, MAX SNP[π],

defined in [54], that can be approximated within a constant factor. It is shown in [52] that

Max. Acyclic Subgraph is NP-hard to approximate within a factor greater than 65
66

.

On the positive side, the problem is known to be efficiently solvable on planar graphs [47,

32] and reducible flow graphs [59]. Berger and Shor [9] gave a polynomial time algorithm

with approximation ratio 1/2 + Ω(1/
√
dmax) where dmax is the maximum vertex degree in

the graph. When dmax = 3, Newman [52] gave a factor 8/9 approximation algorithm. Note

that a 1/2-approximation is trivial: a random ordering of the vertices has a fraction 1/2 of

forward edges in expectation. In fact, the better of an arbitrary ordering and its reverse

would have half the edges going forward.

Charikar, Makarychev, and Makarychev[12] gave a factor (1/2+Ω(1/log n))-approximation

algorithm for Max. Acyclic Subgraph, where n is the number of vertices. In fact, their

57

algorithm is stronger: given a digraph with an acyclic subgraph consisting of a fraction

(1/2 + δ) of edges, it finds a subgraph with at least a fraction (1/2 + Ω(δ/log n)) of edges.

This algorithm, and in particular an instance showing tightness of its analysis from [12],

plays a crucial role in our work. However, despite much effort, no efficient ρ-approximation

algorithm for a constant ρ > 1/2 has been found for Max. Acyclic Subgraph.

The complementary objective of minimizing the number of back edges, or equivalently

deleting the minimum number of edges in order to make the graph a DAG, leads to the

Feedback Arc Set (FAS) problem. This problem admits a factor O(log n log log n) ap-

proximation algorithm [63] based on bounding the integrality gap of the natural covering

linear program for FAS; see also [19]. Using this algorithm, one can get an approximation

ratio of 1
2

+ Ω(1/(log n log log n)) for Max. Acyclic Subgraph.

We prove that this problem is hard to approximate to a factor better than 1/2 assuming

the UGC.

Theorem 6.1.1. For every ε, there is a η such that:

– (1−η)-strongly satisfiable UG instances can be reduced to a Max. Acyclic Subgraph

instance whose optimum is at least 1− ε.

– The reduction converts ≤ η satisfiable instances into instances whose optimum is at-

most 1/2 + ε.

– The reduction runs in polynomial time, for fixed ε.

For Feedback Arc Set the above theorem leads to an equivalent “no constant approx-

imation” inapproximability.

Corollary 6.1.2. For every ε, unless the UGC is false, there is no algorithm that can

distinguish instances whose FAS optimum (minimization problem) is at most ε from ones

whose optimum is at least 1/2 + ε.

58

3-ary Ordering: Betweenness. Apart from Max. Acyclic Subgraph, the other Or-

dering CSP that has received some attention is the Betweenness problem. Between-

ness is an Ordering CSP where all the constraints are of the form “X appears between

Y and Z” for variables X, Y and Z. In [14], a 1
2
-approximation algorithm is presented for

Betweenness on instances that are promised to be perfectly satisfiable.

A special case of our result is that the Betweenness problem is hard to approximate

beyond a factor 1/3. The Betweenness problem consists of constraints of the form “j lies

between i and k” corresponding to the subset {123, 321} of S3.

Indeed, our result holds in a more general setting where the OCSP could consist of a

mixture of predicates. We refer the reader to section 6.4 for the formal statement.

Ordering CSPs: Approximation Resistance. Note that a random ordering would

again satisfy at least a fraction 1/3 of the constraints. This is because the set of accepting

permutations of the vertices involved in a constraint is 6 (size of S3) while there are 2 accepted

permutations. This is a fairly general phenomenon: a problem is approximation resistant

if improving on the the trivial algorithm (in this case a random ordering) is already hard.

We show that a fairly general class known as the ordering constraint satisfaction (OCSP)

problems are all approximation resistant assuming the UGC.

An example of a OCSP would be all instances that contain 75% of constraints of the form

“i before j” and 25% of constraints of the form “i between j and k”. Hence the definition

not only fixes the set of predicates but also the proportion of each predicate that appears in

an instance.

We will use the notation P ∼ Λ to denote a payoff sampled from the distribution Λ.

Notice that every payoff P ∼ Λ is assumed to be on the set of permutations of exactly

k elements. However, there is no loss of generality since for every q ≤ k, a payoff on set

Πq of permutations on q elements can be expressed as a payoff on Πk by including dummy

variables.

59

Let Πk→N denote the set of one to one maps from [k] → N. The domain of a payoff

function P can be extended naturally from the set of permutations Πk to Πk→N. In particular,

an injective map f ∈ Πk→N, along with the standard ordering on the range N induces a

permutation πf on [k]. To extend the payoff, just define P (f) = P (πf) for all f ∈ Πk→N.

Definition 6.1.3 (Λ-OrderingConstraintSatisfactionProblem (OCSP)). An in-

stance I of Ordering Constraint Satisfaction Problem Λ is given by I = (V ,P) where

– V = {y1, . . . , ym} is the set of variables that need to be ordered. Thus an ordering O is

a one to one map from V to natural numbers N.

– P is a probability distribution over constraints/payoffs applied to subsets of at most k

variables from V. More precisely, a sample P ∼ P would be a payoff function from Λ,

applied on a sequence of variables yS = (ys1 , . . . , ysk). If O|S denotes the injective map

from yS → N obtained by restricting O to yS, then the payoff returned is P (O|S).

Moreover, the type of a payoff P ∼ P sampled from P, is identical to the distribution

associated with the OCSP Λ.

For a payoff P ∈ P, we define V(P) ∈ V to denote the set of variables on which P is applied.

The objective is to find an ordering O of the variables that maximizes the total weighted

payoff/expected payoff, i.e.,

E
P∼P

[
P (O|P)

]
Here O|P denotes the ordering O restricted to the variables in V(P). We define the value

OPT(P) as

OPT(I)
def
= max

O:ΠV→N
E
P∼P

P (O|P) .

Observe that if the payoff functions P are predicates, then maximizing the payoff amounts

to maximizing the number of constraints satisfied. The notions “payoff function” and “con-

straint” will be used interchangeably.

60

Definition 6.1.4. Given an OCSP Λ, let

Λmax = max
σ∈Πk

E
P∼Λ

[P (σ)] Λrandom = E
P∼Λ

E
σ∈Πk

[P (σ)]

With these definitions, we can state the following general UG-hardness for OCSPs.

Theorem 6.1.5 (General UG-hardness). For every η > 0 and every OCSP of bounded arity

k, the following holds: Given an instance of the OCSP Λ that admits an ordering with payoff

at least Λmax − η, it is Unique Games-hard to find an ordering of the instance that achieves

a payoff of at least Λrandom + η.

Notice that theorem 6.1.5 corresponds to the special case where the probability distri-

bution Λ consists of a single payoff function. For the sake of exposition, we will present the

proof of theorem 6.1.5 here. The proof of the more general theorem 6.4.3 is syntactically the

same.

We define our notion of a ordering CSP and state our results. An ordering constraint

satisfaction problem (OCSP) Λ of arity k is specified by a constraint payoff function P :

Πk → [−1, 1] where Πk is the set of permutations of {1, 2, . . . , k}. An instance of such

an ordering CSP consists of a set of variables V and a collection of constraint tuples each

of which is an ordered k-tuple of V . The objective is to find a global ordering σ of V that

maximizes the expected payoff E[P (σ|T)] for a random T ∈ T where σ|T ∈ Πk is the ordering

of the k elements of T induced by the global ordering σ. This is just the natural extension of

CSPs to the world of ordering problems. (For generality, we allow payoff functions with range

[−1, 1] instead of {0, 1} which would correspond to True/False constraints.) As with CSPs,

we say that an ordering CSP of arity k and payoff function P is approximation resistant if

its approximation threshold equals Eα∈Πk
[P (α)], which is the expected payoff obtained by a

random permutation of the variables.

61

Note that in this language, Max. Acyclic Subgraph corresponds to the simplest

ordering CSP: the arity 2 ordering CSP with payoff function that gives value 1 to the identity

permutation and 0 to its reverse.

Our main result is that every ordering CSP, of arity bounded by a fixed k, is approxi-

mation resistant. Specifically, for every such OCSP, outperforming the trivial approximation

ratio achieved by random ordering is Unique Games-hard.

Theorem 6.1.6 (Main). Let k be a positive integer and let Λ be a Ordering CSP as-

sociated with a payoff function P : Πk → [−1, 1] on the set of k-permutations, Πk. Let

Λmax = maxα∈Πk
P (α) be the maximum payoff of P , and Λrandom = Eα∈Πk

P (α) the average

payoff of P (expected value achieved by a uniform random ordering). Then for every ε > 0,

the following hardness result holds. Given an instance of the OCSP specified by payoff func-

tion P that admits an ordering with payoff at least Λmax − ε, it is Unique Games-hard to

find an ordering of the instance that achieves a payoff of at least Λrandom + ε with respect to

the payoff function P .

Combining the unique game integrality gap instance of Khot-Vishnoi [40] along with the

UG reduction, we obtain SDP integrality gaps for Max. Acyclic Subgraph problem. Our

integrality gap instances also apply to a related SDP relaxation studied by Newman [53]. This

SDP relaxation was shown to obtain an approximation better than half on random graphs

which were previously used to obtain integrality gaps for a natural linear program [52].

6.1.1 Organization

We begin with an outline of the key ideas of the proof in section 6.2. The groundwork

for the reduction is laid in section 6.3, where we define and construct multiscale gap in-

stances. We present the dictatorship test in section 6.5, and convert it to a UG-hardness

result in section 6.6. Using this UG-hardness result, we present SDP integrality gaps for

Max. Acyclic Subgraph in section 6.7.

62

Towards generalizing these hardness results, we begin with formal definition of Order-

ing CSPs and the natural semidefinite program for Ordering CSPs in section 6.4. The

construction of dictatorship tests for an Ordering CSP starting from an object termed as

multi-scale gap instance is presented in section 6.5. In section 6.3.1, we exhibit an explicit

construction of multi-scale gap instances for every Ordering CSP. Finally, in section 6.6,

we sketch the component of the soundness analysis for Max. Acyclic Subgraph and

Ordering CSP hardness results, that is mostly borrowed from [55].

6.2 Overview of Reduction

The outline of the reduction to ordering problems is similar to the reduction in the previous

chapters. We model the ordering problem as a CSP in order to use the techniques developed

in [55]. An ordering σ : V → [n] is really an assignment of [n] to V . Since the goal is

to maximize satisfying assignments, it does not pay to set the “position” of two distinct

vertices, v1, v2 to the same value. However, all the reduction used in earlier chapters needs

the range of the assignment (the set [n] here) to be of a fixed size independent of the size of

the instance. This is because the reduction has a size doubly exponential in this alphabet

size. In order to circumvent this issue, we show a alphabet reduction method.

To explain this method, consider the following bucket version of an ordering problem.

Given an instance J of Ordering CSP, and a parameter t, the t-bucket version of J asks

for an assignment σt : V → [t]. The payoff of a labeling σt is the expected payoff of a random

ordering that is consistent with σt in the following sense: for every v1 and v2 such that

σt(v1) > σt(v2), v1 is placed after v2 in the ordering. In other words, the random ordering

is picked by randomly permuting the set of vertices assigned the same value in the bucket

version, while preserving the ordering between such sets. Let OPTt(J) denote the optimum

of the t-bucket version. At the one end, setting t = ∞ gives us the original problem; while

63

setting t = 1 gives a trivial instance where the optimum is exactly the payoff of a purely

random ordering.

We then use the work of [55] to reduce UG instances to a t-ordering instance for a fixed t

(thus making the problem amenable to the techniques in [55].) However, we treat the output

instance as an instance of the original ordering problem. The catch is that the reduction

does not guarantee anything about OPT(I) and only about OPTt(I). We fix this by using

the alphabet reduction developed in section 3.2.5, proving the intermediate theorem.

Theorem 6.2.1. For every δ, and every Ordering CSP instance J , there is are t, η and

a polynomial time reduction from Unique Games to Ordering CSP such that:

– If Υ is at least 1−η, then the optimum of the output instance, I is at least OPT(J)−δ;

– while if Υ is at most η satisfiable, then OPT(I) ≤ OPTt(J) + δ.

– The output instances uses the same payoff functions as J .

The intermediate theorem is roughly in the scheme of our previous reductions. We

compose a gap instance with an instance of unique games and argue about the two cases

above. However, unlike the previous chapters, or even unlike Raghavendra’s work [56] which

we use in our analysis, our gap instance does not arise from a relaxation.

Our gap instances have a gap between the true optimum and the optimum of the bucketed

version (for const. t) described above. We use techniques developed in section 3.2.5 to show

that the alphabet size can always be a constant independent of the size of the instance. This

is only true when the payoff respects permutations in a way orderings do (see section 3.2.5

for a precise formulation of this).

Finally, to show approx. resistance, we construct a multiscale gap instance: an instance

J such that OPT(J) ≥ Λmax − δ while OPTt(J) ≤ Λrandom + δ where Λ is the class

J belongs to (refer theorem 6.1.6). Section 6.3 shows the construction of such instance

64

for Max. Acyclic Subgraph and for a general Ordering CSP. The two components

together prove the main result (see theorem 6.1.6).

6.3 Multiscale Gap Instances

In this section, we construct the multiscale gap instances for Max. Acyclic Subgraph and

Ordering CSP, that are used in the inapproximability reduction. The construction follows

from the work by Charikar et al on designing algorithms for Max. Acyclic Subgraph [12].

Definition 6.3.1. For η > 0 and a positive integer q, a (η, q)-Multiscale Gap instance is a

weighted directed graph G = (V,E) with the following properties:

– OPT(G) = 1 and OPTq(G) ≤ 1
2

+ η

– There exists a solution {bu,i |u ∈ V, i ∈ [|V |]} to LC relaxation with objective value at

least 1− η such that for all u ∈ V and 1 ≤ i ≤ |V |, we have ‖bu,i‖2
2 = 1

|V | .

Theorem 6.3.2 (Theorem 3.1, [12]). If a directed graph G on n vertices has a maximum

acyclic subgraph with at least a 1
2

+ δ fraction of the edges, then, ||G||C≥ Ω
(

δ
logn

)
.

The following lemma and its corollary construct Multiscale Gap instances starting from

graphs that are the “tight cases” of the above theorem.

Lemma 6.3.3. Given η > 0 and a positive integer q, for every sufficiently large n, there

exists a directed graph G = (V,E) on n vertices such that OPT(G) = 1, OPTq(G) ≤ 1
2

+ η .

Proof. Charikar et al (Section 4, [12]) construct a directed graph, G = (V,E), on n vertices

whose cut norm is bounded by O (1/log n). The graph is represented by the skew-symmetric

matrix W , where wij =
∑n

k=1 sin π(j−i)k
n+1

. It is easy to verify that for every 0 < q < n,∑n
k=1 sin

(
πqk
n+1

)
≥ 0. Thus, wij ≥ 0 whenever i < j, implying that the graph is acyclic (in

other words, OPT(G) = 1).

65

We bound OPTq(G) as follows. Let OPTq(G) = 1
2

+δ and let O : V → [q] be the optimal

q-ordering. Construct a graph H on q vertices with a directed edge from O(u) to O(v) for

every edge (u, v) ∈ E with O(u) 6= O(v). Now, using theorem 6.3.2, the cut norm of H

is bounded from below by Ω
(

δ
log q

)
. Moreover, since O is a partition of V , the cut norm

of G is at least the cut norm of H. Thus, Ω
(

δ
log q

)
≤ ||H||C≤ ||G||C≤ O (1/log n)Thus,

δ ≤ O
(

log q
logn

)
implying that OPTq(G) ≤ 1

2
+ O

(
log q
logn

)
. Choosing n sufficiently large gives

the required result. �

Corollary 6.3.4. For every η > 0 and positive integer q, there exists a (η, q)-Multiscale

Gap instance with a corresponding SDP solution {bu,i|u ∈ V, i ∈ [|V |]} and µ = {µe|e ∈ E}

satisfying ‖bu,i‖2
2 = 1/|V | for all u ∈ V, i ∈ [|V |].

Proof. Let G = (V,E) be the graph obtained by taking d1/ηe disjoint copies of the graph

guaranteed by lemma 6.3.3 and let m = |V |. Note that the graph still satisfies the required

properties: OPT(G) = 1, OPTq(G) ≤ 1
2

+ η. Let O be the ordering of [m] that satisfies

every edge of G. Let D denote the distribution over labellings obtained by shifting O by

a random offset cyclically. For every u ∈ V, i ∈ [m], P[D(u) = i] = 1/m. Further, every

directed edge is satisfied with probability at least 1 − η. Being a distribution over integral

labellings, D gives raise to a set of vectors satisfying the constraints in definition 6.3.1. G

along with these vectors form the required (η, q)-multiscale gap instance. �

6.3.1 Gap Instances for general Ordering Problems

Theorem 6.3.5. For every positive integer q, k, for every OCSP Λ of arity k and η > 0

there exists a (q,Λmax,Λrandom + η)-multiscale gap instance I of Λ.

Theorem 6.3.6. For every η > 0 and positive integers q, k, there is a m = m(k, q, η) and a

distribution, D, over k-tuples of [m] such that:

– The support of D is only over strictly increasing k-tuples of [m].

66

– For any f : [m]→ [q], let Df denote the distribution over permutations of [m] obtained

by extending f as in section 6.4.2. For any σ = (σ1, σ2, . . . σk) ∈ Πk,

∣∣∣∣ P
y∈Df ;(d1,d2,...dk)∈D

[y(dσ1) < y(dσ2) < . . . y(dσk)]− 1
k!

∣∣∣∣ ≤ η

Before delving into the proof of the above theorem, let us see why it implies a proof of

theorem 6.3.5.

Proof. (Proof of theorem 6.3.5) Let P be the payoff associated with OCSP Λ and let σ ∈

Πk maximize P (σ). Let m = m(k, q, η/k!) and D be the distribution as promised by

theorem 6.3.6. Let I = ([m], σ(D)) be an OCSP instance with payoff P where σ(D) denotes

a distribution with the output permuted by σ. It is easy to check that the value obtained

by the trivial ordering of [m] is P (σ) = maxπ∈Πk
P (π).

Now, viewing I as an instance of the OCSP Λ, define f to be an optimal q-ordering of I.

Then, OPTq(I) can be bounded as follows:

OPT
q

(I) = val(f) = EDEπ∈Df
[P (π)] ≤

∑
σ

P (σ)

k!
+ η ≤ Λrandom + η .

�

We will be interested in the set [m] for m = ks for positive integers k and s. We will

think of [m] as the s-tuples of [k], ordered by the lexicographic ordering of the tuples. A

k-adic interval of order j, is a interval of [m] specified by an element r ∈ [k]j and denotes the

subset of [k]s whose first j coordinates match those in r. It is easy to check that for every j

and r, such a set is, in fact, an interval of [m] (due to the lexicographic ordering) and is of

length k(s−j). A random k-adic interval of order j is a k-adic interval of order j where r is

chosen uniformly at random from [k]j. Unless otherwise specified, the intervals we will talk

about in this section will be a k-adic interval.

67

Every k-adic interval, I, of order j strictly smaller than s naturally contains k disjoint

intervals of order j + 1, denoted by I1, I2, . . . Ik in the order of they appear in I. A random

sub-interval J is obtained by chosen by picking one of these k sub-intervals uniformly at

random.

The distribution we will analyse is parametrized by k, the arity of the CSP and a param-

eter s (that will be chosen depending on η and t in theorem 6.3.6.

Definition 6.3.7. For positive integers k and s, the distribution D(k, s) is a distribution

over k-tuples (or equivalently a k-MO instance on [m] for m = ks as follows.

1. Pick a random j uniformly in 1 ≤ j ≤ s− 1

2. Pick a random k-adic interval of order j from [m]

3. Pick xj uniformly at random from the sub-interval Ij

4. Output (x1, x2, . . . xk)

The first claim of theorem 6.3.6 follows immediately from the definition since the elements

chosen are always in increasing order in the obvious ordering of [m].

In the rest of this section, we will prove that in fact, no function f : [m]→ [q] obtains more

than negligible (for large enough s) advantage over random with respect to any permutation

π for the distribution D = D(k, s).

Fix a particular function f : [m] → [q]. For p ∈ [q] and an interval I, let µp(I) denote

the fraction of I set to p in f .

Lemma 6.3.8. For a random interval I chosen as in definition 6.3.7 and a random sub-

interval, J , of I, we have
q∑
p=1

E[µp(I)− µp(J)] ≤
√

q/s

68

Proof. Let βj,p be E[µp(I)2] when I is a random k-adic interval of order j. For any p ∈ [q],

EI,J [|µp(I)− µp(J)|] ≤
(
E[(µp(J)− µp(I))2]

)1/2
=

(
EI [

1

k

k−1∑
i=0

(µp(Ii)− µp(I))2]

)1/2

≤

(
E[

1

k

k−1∑
i=0

(µp(Ii)
2 − µp(I)2]

)1/2

= (βj−1,r − βj,r)1/2

Thus,

q∑
p=1

E[µp(I)− µp(J)] ≤ 1

s

q−1∑
r=0

s∑
j=1

(βj−1,r − βj,r)1/2 ≤ 1

s

q−1∑
r=0

(
s∑
j=1

1

)1/2(s∑
j=1

βj−1,r − βj,r

)1/2

≤ 1√
s

q−1∑
r=0

β
1/2
0,r ≤

√
q/s

(
t−1∑
r=0

β0,r

)1/2

=
√
q/s

�

Lemma 6.3.9. Given positive numbers a
(j)
i , b

(j)
i , i ∈ [q], j ∈ [k] such that for every j,∑

i a
(j)
i =

∑
i b

(j)
i = 1,

∑
σ∈[q]k

∣∣∣∣∣
k−1∏
j=0

ajσ(j) −
k−1∏
j=0

bjσ(j)

∣∣∣∣∣ ≤
k−1∑
j=0

q−1∑
i=0

∣∣∣ a(j)
i − b

(j)
i

∣∣∣ .
Proof. The proof follows by a simple induction over k. The two sides of the expression are

equal for k = 1. For k > 1,

∑
σ∈[q]k

∣∣∣∣∣
k−1∏
j=0

a
(j)
σ(j) −

k−1∏
j=0

b
(j)
σ(j)

∣∣∣∣∣ =
∑
σ∈[q]k

∣∣∣∣∣a(0)
σ(0)

k−1∏
j=1

a
(j)
σ(j) − a

(0)
σ(0)

k−1∏
j=1

b
(j)
σ(j)

∣∣∣∣∣+

∣∣∣∣∣a(0)
σ(0)

k−1∏
j=1

b
(j)
σ(j) − b

(0)
σ(0)

k−1∏
j=1

b
(j)
σ(j)

∣∣∣∣∣
≤

∑
σ∈[q]k−1

∣∣∣∣∣
k−1∏
j=1

a
(j)
σ(j−1) −

k−1∏
j=1

b
(j)
σ(j−1)

∣∣∣∣∣+

q−1∑
i=0

∣∣∣a(0)
i − b

(0)
i

∣∣∣
≤

k−1∑
j=0

q−1∑
i=0

∣∣∣ a(j)
i − b

(j)
i

∣∣∣
�

69

We can now finish the proof of theorem 6.3.6 using the above two lemmas. For any

σ ∈ [q]k, let P (σ) denote the probability of the event f(xi) = σi when x = (x1, x2, . . . xk) is

chosen according to the distribution D = D(k, s). For an interval I, let P (σ, I) denote the

above probability conditioned on D(k, s) choosing I in step 2.

∑
σ

∣∣∣∣∣P (σ)− E
I

∏
j

µσ(j)(I)

∣∣∣∣∣ ≤ E
I

∑
σ

∣∣∣∣∣P (σ, I)−
∏
j

µσj(I)

∣∣∣∣∣
= E

I

∑
σ

∣∣∣∣∣∏
j

µσj(Ij)−
∏
j

µσj(I)

∣∣∣∣∣
≤ E

I

∑
j

∑
p∈[q]

|µp(Ij)− µi(I)| (By lemma 6.3.9)

≤ k
√

q/s (By lemma 6.3.8)

For any permutation π ∈ Sk, the value of the q-ordering f with respect to π, valπt (D, f) =∑
σ P (σ)Payoffπ(σ). Since Payoff takes values in [0, 1], from the above argument,

∣∣∣∣∣ valπt (D, f)−
∑
σ

Payoffπ(σ) E
I

[
Πjµσj(I)

] ∣∣∣∣∣ ≤ k
√

q/s.

Further, since the value of the second term on the left hand side is invariant of the permu-

tation π, we get that ∣∣valπt (D, f)− 1
k!

∣∣ ≤ k
√

q/s.

Chosing s large enough depending on q and η, we immediately obtained the statement

of theorem 6.3.6.

70

6.4 Reduction to Ordering CSP

In this section, we outline the ideas of the proof of theorem 6.1.5. To this end, we begin by

formally defining a class of ordering constraint satisfaction problems.

6.4.1 Formal Definitions

Definition 6.4.1. An Ordering Constraint Satisfaction Problem (OCSP) Λ is specified by

a probability distribution over the family of payoff functions P : Πk → [−1, 1] on the set Πk

of permutations on k elements. The integer k is referred to as the arity of the OCSP Λ.

An example of a OCSP would be all instances that contain 75% of constraints of the form

“i before j” and 25% of constraints of the form “i between j and k”. Hence the definition

not only fixes the set of predicates but also the proportion of each predicate that appears in

an instance.

We will use the notation P ∼ Λ to denote a payoff sampled from the distribution Λ.

Notice that every payoff P ∼ Λ is assumed to be on the set of permutations of exactly

k elements. However, there is no loss of generality since for every q ≤ k, a payoff on set

Πq of permutations on q elements can be expressed as a payoff on Πk by including dummy

variables.

Let Πk→N denote the set of one to one maps from [k] → N. The domain of a payoff

function P can be extended naturally from the set of permutations Πk to Πk→N. In particular,

an injective map f ∈ Πk→N, along with the standard ordering on the range N induces a

permutation πf on [k]. To extend the payoff, just define P (f) = P (πf) for all f ∈ Πk→N.

Observe that if the payoff functions P are predicates, then maximizing the payoff amounts

to maximizing the number of constraints satisfied. The notions “payoff function” and “con-

straint” will be used interchangeably.

71

Definition 6.4.2. Given an OCSP Λ, let

Λmax = E
P∼Λ

[
max
σ∈Πk

P (σ)

]
Λrandom = E

P∼Λ
E

σ∈Πk

[P (σ)]

With these definitions, we can state the following general UG-hardness for OCSPs.

Theorem 6.4.3 (General UG-hardness). For every η > 0 and every OCSP of bounded arity

k, the following holds: Given an instance of the OCSP Λ that admits an ordering with payoff

at least Λmax − η, it is Unique Games-hard to find an ordering of the instance that achieves

a payoff of at least Λrandom + η.

Notice that theorem 6.1.5 corresponds to the special case where the probability distri-

bution Λ consists of a single payoff function. For the sake of exposition, we will present the

proof of theorem 6.1.5 here. The proof of the more general theorem 6.4.3 is syntactically the

same.

6.4.2 Relation to CSPs

An ordering O can be thought of as an assignment of values from {1, . . . ,m} to each variable

yi such that yi 6= yj for all i 6= j. By suitably extending the payoff functions P ∈ Λ, it is

possible to eliminate the “one to one” condition (yi 6= yj whenever i 6= j). More precisely,

we shall extend the domain of payoff functions P ∈ Λ from Πk→[m] to N[k] - the set of all

maps from [k] to N.

Given an arbitrary function f : [k]→ N, define a probability distribution Df on the set of

permutations Πk by the following random procedure: 1) For each j ∈ N with f−1(j) 6= φ, pick

a uniform random permutation πj of elements in f−1(j). 2) Concatenate the permutations

πj in the natural ordering on j ∈ N to obtain the permutation π ∈ Πk. For a payoff P ∈ Λ,

define

P (f) = E
π∼Df

[P (π)] (6.1)

72

With this extension of payoff functions, the following lemma shows that optimizing over

all orderings is equivalent to optimizing over all assignments of values in [m] to variables

{y1, . . . , ym}.

Lemma 6.4.4. For an instance I = (V ,P) of a Λ-OCSP with |V|= m, we have

max
O∈ΠV→N

E
P∈P

P (O|P) = max
f∈[m]V

E
P∈P

P (f|P)

Here [m]V denotes the set of all functions from V to [m].

Proof. For every injective map O : V → N, there is an injective map O′ : V → [m] corre-

sponding to the permutation induced by O. Clearly, the objective value of O is the same as

O′. Since O′ ∈ [m]V , we have

max
O∈ΠV→N

E
P∈P

P (O|P) ≤ max
f∈[m]V

E
P∈P

P (f|P)

Given an arbitrary function f : V → [m], define a probability distributionDf on the orderings

O ∈ ΠV→[m] by the following random procedure: 1) For each j ∈ [m] with f−1(j) 6= φ, pick

a uniform random permutation πj of elements in f−1(j). 2) Concatenate the permutations

πj in the natural ordering on j ∈ N to obtain the ordering O ∈ ΠV→[m]. By our definition of

extended payoffs P , it easily follows that,

E
P∈P

[
P (f|P)

]
= E

P∈P

[
E

O∈Df

P (O|P)
]

= E
O∈Df

[
E
P∈P

P (O|P)
]
.

In turn, this implies that

max
O∈ΠV→N

E
P∈P

P (O|P) ≥ max
f∈[m]V

E
P∈P

P (f|P) ,

thus finishing the proof. �

73

By virtue of Lemma lemma 6.4.4, the Λ-OCSP instance I = (V ,P) is transformed into a

constraint satisfaction problem over variables V , albeit over a domain [m] whose size is not

fixed. Specifically, the problem of finding an optimal ordering O for the Λ-OCSP instance

can be creformulated as computing

OPT(I) = max
y∈[m]V

E
P∈P

[
P (yV(P))

]
(6.2)

Here P refers to the extended payoff function as defined in eq. (6.1). For the sake of conve-

nience, we will use yP to denote yV(P).

Taking the analogy with CSPs a step further, one can define a CSP Λq for every positive

integer q > 0. Given an instance I = (V ,P) of Λ-OCSP, the corresponding Λq problem is

to find a q-ordering that maximizes the expected payoff. Formally, the goal of the Λq-CSP

instance I is to compute an assignment y ∈ [q]m that is the maximizes the following:

OPT
q

(I) = max
y∈[q]m

E
P∈P

[
P (yP)

]
(6.3)

The following claim is an easy consequence of the above definitions:

Claim 6.4.5. For every Λ-OCSP instance I = (V ,P), and integers q ≤ q′

OPT
q

(I) ≤ OPT
q′

(I) ≤ OPT(I) ,

Further, if |V|= m then OPTm(I) = OPT(I).

6.4.3 SDP Relaxation

Inspired by the interpretation of a Λ-OCSP as a CSP over a large domain, one can formulate

a generic semidefinite program along the lines of [55]. The details of the generic semidefinite

program are described here.

74

Given a Λ-OCSP instance I = (V ,P), the goal is to find a collection of vectors

{vi,a}i∈V,a∈[m] in a sufficiently high dimensional space and a collection {µP}P∈supp(P) of

distributions over local assignments. For each payoff P ∈ P , the distribution µP is a

distribution over [m]V(P) corresponding to assignments for the variables V(P). We will write

Px∈µP {E} to denote the probability of an event E with under the distribution µP .

LC Relaxation

maximize E
P∼P

E
x∼µP

P (x) (LC)

subject to 〈bs,i, bs′,j〉 = P
x∼µP

{
xs = i, xs′ = j

}
(P ∈ supp(P), s, s′ ∈ V(P), i, j ∈ [m]) .

(6.4)

µP ∈ N([m]V(P)) ∀P ∈ supp(P)

Figure 6.1: Local Relaxation: LC for a Λ-OCSP

We claim that the above optimization problem can be solved in polynomial time. To

show this claim, let us introduce additional real-valued variables µP,x for P ∈ supp(P) and

x ∈ [m]V (P). We add the constraints µP,x ≥ 0 and
∑

x∈[m]V (P) µP,x = 1. We can now make

the following substitutions to eliminate the distributions µP ,

E
x∼µP

P (x) =
∑

x∈[m]V (P)

P (x)µP,x , P
x∼µP

{
xi = a

}
=

∑
x∈[m]V (P)

xi=a

µP,x ,

P
x∼µP

{
xi = a, xj = b

}
=

∑
x∈[m]V (P)

xi=a,xj=b

µP,x .

After substituting the distributions µP by the scalar variables µP,x, it is clear that an optimal

solution to the relaxation of P can be computed in time poly(mk, |supp(P)|).

The LC relaxation succinctly encodes several constraints. In the following claim, we

present some of the additional properties that a feasible solution to LC can be assumed to

satisfy.

75

Claim 6.4.6. Given a feasible solution {bs,i|s ∈ V , i ∈ [m]}, µ = {µe|e ∈ E} to the fig. 6.1

relaxation, the vectors can be transformed to another SDP solution {b∗s,i} with the same

objective value such that for some unit vector I the following hold:

〈b∗s,i, b∗s,j〉 = 0 ∀ i, j ∈ [m], i 6= j (6.5)∑
i∈[m]

〈b∗s,i, b∗s,i〉 = 1 (6.6)

∑
i∈[m]

b∗s,i = I ∀s ∈ V , (6.7)

〈b∗s,i, I〉 = ‖b∗s,i‖2
2 ∀s (6.8)

∈ V , i ∈ [m] , (6.9)

‖I‖2
2 = 1 (6.10)

(6.11)

Note that while an integrality gap instance to the above relaxation would be an Λ-OCSP

instance, I such that SDP(I) is “large” while OPT(I) is “small”. A multiscale gap instance

on the other hand has much weaker properties — only requiring OPTq(I) to be small —

thus making it easier to construct.

Definition 6.4.7. An instance I of a Λ-OCSP is a (q, c, s)-multiscale gap instance if

SDP(I) ≥ c and OPTq(I) ≤ s.

Smoothing Coarsening Gaps

Definition 6.4.8. For α > 0, a (q, c, s)-multiscale gap instance I = (V ,P) over m variables

is said to be α-smooth if for every P ∈ P and x ∈ [m]k, µP,x ≥ α.

Here we will outline a transformation on multiscale gap instance I∗, to another multi-

scale gap instance I with certain special properties including α-smoothness. Note that the

smoothness parameter of the resulting solutions is α = η
10mk .

76

Lemma 6.4.9. For all η > 0 the following holds, given a (q, c, s)-multiscale gap instance

I∗ = (V∗,P∗) of a Λ-OCSP, for large enough m, there exists a (q, c−η/5, s+η/5)-multiscale

gap instance I = (V ,P) on m variables, an SDP solution {bs,i}s∈V,i∈[m], {µP}P∈supp(P) and a

vector I satisfying

〈bv,i, bv,i〉 =
1

m
∀v ∈ V , i ∈ [m] , (6.12)

µP,x ≥
η

10mk
∀P ∈ P , x ∈ [m]k , (6.13)

and

E
P∼P

E
x∼µP

P (x) ≥ c− η

5
OPT
q

(I) ≤ s+
η

5

Proof. Intuitively, the SDP solution corresponding to instance I assigns each of the variables

yi ∈ V each of the locations in [m] with equal probability. I is constructed by taking many

copies of I∗ and joining them side by side such that cyclic shifts of orderings obtain around

the same payoff.

More formally, let L = d20
η
e and set V = V∗ × [L]. The distribution P is obtained by

simply the product distribution of P∗ and the uniform distribution over [L]. That is, for every

p = (y1, y2, . . . yk) in the support of P∗ and for every l ∈ [L], PP((y1, l), (y2, l), . . . , (yk, l)) =

PP∗(p)/L.

Let O be an optimal ordering for I. Let m = |V|= L|V∗|. For every i ∈ [m], define

ordering O∗(i) : V → [m] to be O∗(v, k) = i+ k|V|+O(v) (addition modulo m). Since except

for at most one copy of P∗, every other constraint is ordered as in O, the payoff of O∗(i) is at

least c− η/20.

Further, since the q-ordering value of P is simply the average of the q-ordering values of

the individual pieces, valq(P) ≤ s.

77

To construct the vectors, we consider the distribution over assignments obtained by

taking, with probability 1−η/10, one of O∗(i) with equal probability and taking a completely

random assignment with probability η/10. It is easy to see that the probability y ∈ V is

assigned a ∈ [m] is exactly 1/m. Further, since we take a completely random assignment

with probability η/10, for any constraints p ∈ P and x ∈ [m]k, the distribution assigns

x to p with probability at least η
10mk . The payoff obtained by this distribution is at least

(1 − η/10)(c − η/20) ≥ c − η/5. The distribution over assignments naturally gives vectors

satisfying the required constraints. �

6.5 Dictatorship Test for OCSP

In this section, we will construct a dictatorship test for an OCSP Λ starting with a multi-

scale gap instance I for the problem. Formally, let I∗ = (V∗,P∗) be a (q, c, s) multiscale gap

instance with |V|= m. Let I = (V ,P) denote the (q, c − η
5
, s + η

5
)-multiscale gap instance,

which is α = η/10mk-smooth, obtained from lemma 6.4.9. Let (V ,µ) denote the SDP

solution associated with the instance I. Define a dictatorship test Dε
V ,µ on orderings O of

[m]u as follows:

6.5.1 Completeness analysis

It is fairly simple to check that the completeness of the dictatorship test Dε
V ,µ is close to the

SDP value of I. Specifically, we will now show,

Lemma 6.5.1.

Completeness(Dε
V ,µ) ≥ val(V ,µ)− 2εk = c− η

5
− 2εk

78

Dε
V ,µ Test

Let I = (V ,P) denote a (q, c− η
5
, s+ η

5
)-multiscale gap instance, which is α = η/10mk-smooth.

Let (V ,µ) denote the SDP solution associated with the instance I.

– Sample a payoff P from the distribution P . Let V(P) = S = {s1, s2, . . . , sk}.

– Sample zS = {zs1 , . . . , zsk} from the product distribution µuP , i.e. For each 1 ≤ j ≤ R,

z
(j)
S = {z(j)

s1 , . . . , z
(j)
sk } is sampled using the local distribution µP on [m]V(P).

– For each si ∈ S and each 1 ≤ j ≤ R, sample z̃jsi as follows: With probability (1 − ε),
z̃

(j)
si = z

(j)
si , and with the remaining probability z̃

(j)
si is a uniform random element from

[m].

– Query the ordering values O(z̃s1), . . . , O(z̃sq).

– Return the Pay-Off : P
(
O(z̃s1), . . . , O(z̃sk)

)

Figure 6.2: Dictatorship Test for a general Λ-OCSP

Proof. A dictator “m-ordering” O is given by O(z) = z(j). The expected payoff returned by

the verifier Dε
V ,µ on O is given by

E
P∈P

E
zS

E
z̃S

[
P
(
O(z̃s1), . . . , O(z̃sk)

)]
= E

P∈P
E
zS

E
z̃S

[
PS

(
z̃(j)
s1
, . . . , z̃(j)

sk

)]

With probability (1 − ε)k, z̃(j)
si = z

(j)
si for each si ∈ S. Further the payoff functions P ∈ P

take values in [−1, 1]. Hence a lower bound for the expected payoff is given by

E
P∈P

E
zS

E
z̃S

[
P
(
O(z̃s1), . . . , O(z̃sq)

)]
≥ (1− ε)k E

P∈P
E
zS

[
P
(
z(j)
s1
, . . . , z(j)

sq

)]
+ (1− (1− ε)k) · (−1)

The jth coordinates z
(j)
S = {z(j)

s1 , . . . , z
(j)
sq } are generated from the local probability distribution

µP . Thus we get,

E
P∈P

E
zS

[
P
(
z(j)
s1
, . . . , z(j)

sq

)]
= E

P∈P
E

x∈µP

[
P (x)

]
= val(V ,µ) (6.14)

79

The expected payoff is at least (1− ε)k · val(V ,µ)− (1− (1− ε)k) ≥ val(V ,µ)− 2εk. �

6.5.2 Soundness of dictatorship test

The following soundness claim is an immediate consequence of lemma 6.5.4 and lemma 6.5.3.

Theorem 6.5.2. (Soundness Analysis) For every ε > 0, for any τ -pseudorandom ordering

O of [m]u,

val(O) ≤ OPT
q

(I) +O(q−
ε
2) + oτ (1)

where oτ (1)→ 0 as τ → 0 keeping all other parameters fixed.

Lemma 6.5.3. For every ε > 0, for any τ -pseudorandom ordering O of [m]u

val(O) ≤ valq(O
∗) +

(
k

2

)
q−

ε
2 + oτ (1)

where O∗ is the q-coarsening of O and k denotes the arity of the OCSP Λ.

Proof. Let OF [s,t] : [m]u → {0, 1} denote the functions associated with the q-ordering O∗.

For the sake of brevity, we shall write OF i for OF [i,i].

Note that the loss due to coarsening arises because for some payoffs P the k variables in

V(P) do not fall into distinct bins during coarsening. Let us upper bound the probability

that some two of the variables queried z̃si , z̃sj fall into same block during coarsening, i.e.

O∗(z̃si) = O∗(z̃sj). Observe that,

P
(
O∗(z̃si) = O∗(z̃sj)

)
=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

E
z̃si ,z̃sj

[
OF i(z̃si) ·OF i(z̃sj)

]
=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

[
T1−2εOF

i(zsi) · T1−2εOF
i(zsj)

]

80

As O is a q-coarsening of O, for each value i ∈ [q], there are exactly 1
q

fraction of z for

which O∗(z) = i. Hence for each i ∈ [q], Ez[OF
i(z) = 1

q
]. Further, since the ordering O∗ is

τ -pseudorandom, for every j ∈ [u] and i ∈ [q], Infj(T1−εOF
i) ≤ τ . Hence using lemma 2.3.6,

for sufficiently large q, the above probability is bounded by q · q−1− ε
2 + q · oτ (1). By a simple

union bound, the probability that two of the queried values fall in the same bin is at most(
k
2

)(
q · q−1− ε

2 + q · oτ (1)
)

As all the payoffs are bounded by 1 in absolute value, we can write

val(O) ≤ valq(O
∗) + P

(
∃i, j ∈ [k] such that O∗(z̃si) = O∗(z̃sj)

)
≤ valq(O

∗) +

(
k

2

)
q−

ε
2 + oτ (1)

�

Lemma 6.5.4. For every choice of m, q, ε, and any τ -pseudorandom q-ordering O∗ of [m]u,

valq(O
∗) ≤ OPTq(I) + oτ (1).

Proof. Let OF [s,t] : [m]u → {0, 1} denote the functions associated with the q-ordering O∗.

For the sake of brevity, we shall write OF i for OF [i,i], and F = (OF (1), . . . , OF (q)). The

expected payoff returned by the verifier in the dictatorship test Dε
V ,µ is given by,

valq(O
∗) = E

P∈P
E
zS

E
z̃S

[
P
(
OF (z̃s1), . . . , OF (z̃sk)

)]
.

Further, since the ordering O∗ is τ -pseudorandom, for every j ∈ [u] we have Infj(T1−εOF
i) ≤

τ . The proof follows from Lemma lemma 6.6.5 which we prove in the next section. �

6.6 Soundness Analysis for q-Orderings

In this section, we will sketch the proof of lemma 6.5.4. The proof of lemma 6.5.4 closely

resembles the soundness analysis of dictatorship tests for the case of Generalized CSPs in

[55]. However, in [55], the dictatorship test is analyzed for functions with domain [q]u and

81

range Nq. In our application, we are interested in functions whose domain is [m]u while the

output is in Nq for some q. Hence lemma 6.5.4 is not an a formal consequence of the lemmas

in [55].

For the sake of completeness we include a sketch of the proof here. By the preceding

argument, to prove Lemma lemma 6.5.4 all that remained was to prove Lemma lemma 6.6.5.

We will accomplish this in Section section 6.6.4 after developing some of the necessary

preliminaries and tools.

6.6.1 Invariance Principle

The following invariance principle is an immediate consequence of the of Theorem 3.6 in the

work Isaksson-Mossel [31].

Theorem 6.6.1. (Invariance Principle [31]) Let Ω be a finite probability space with the least

non-zero probability of an atom at least α ≤ 1/2. Let L = {`1, `1, . . . , `m} be an ensemble of

random variables over Ω. Let G = {g1, . . . , gm} be an ensemble of Gaussian random variables

satisfying the following conditions:

E[`i] = E[gi] E[`2
i] = E[g2

i] E[`i`j] = E[gigj] ∀i, j ∈ [m]

Let K = log(1/α). Let F = (F1, . . . , Fd) denote a vector valued multilinear polynomial and

let Hi = (T1−εFi) and H = (H1, . . . , Hd). Further let Infi(H) ≤ τ and V[Hi] ≤ 1 for all i.

If Ψ : Rd → R is a Lipschitz-continous function with Lipschitz constant C0 (with respect

to the L2 norm). Then,

∣∣∣E [Ψ(H(Lu))
]
− E

[
Ψ(H(Gu))

]∣∣∣ ≤ Cd · C0 · τ ε/18K = oτ (1)

for some constant Cd depending on d.

82

6.6.2 Payoff Functions

For the sake of the proof, we will extend the payoff functions P corresponding to the CSP

Λq to a multilinear polynomial on Nkq . Specifically, the payoff functions P ∈ Λq are defined

over the set [q]k where k is the arity of Λ. Given a payoff function P : [q]k → [−1, 1], we

shall define a function P ′ : Rtk → R in two steps as follows:

– Define the function P ′ on ∆k
q as follows:

P ′(eβ1 , . . . , eβk) = P (β) ∀β ∈ [q]k

– Extend the function P ′ from ∆k
q to Nkq as a multilinear polynomial.

P ′(x1, . . . ,xk) =
∑
β∈[q]k

P (β)
k∏
i=1

x(i,βi) ∀{x1, . . . ,xk} ∈ Nkq

Abusing notation, we shall use P ∈ Λq to denote both the payoff function over [q]k and

the corresponding multilinear function over Nkq . The domain of the input to P will be clear

from the context.

6.6.3 Local and Global Distributions

Now, we shall describe two ensembles of random variables, namely the local integral ensem-

bles LP for each payoff P , and a global Gaussian ensemble G.

Definition 6.6.2. For every payoff P ∈ P of size at most k, the Local Distribution µP

is a distribution over [m]V(P). In other words, the distribution µP is a distribution over

assignments to the CSP variables in set V(P). The corresponding Local Integral Ensemble

is a set of random variables LP = {`s1 , . . . , `sk} each taking values in ∆m.

83

Definition 6.6.3. The Global Ensemble G = {gs|s ∈ V , j ∈ [m]} are generated by setting

gs = {gs,1, . . . , gs,m} where

gs,j = 〈I, bs,j〉+ 〈(bs,j − (〈I, bs,j〉)I), ζ〉

and ζ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up

to degree two.

Observation 6.6.4. For any set P ∈ P, the global ensemble G matches the following mo-

ments of the local integral ensemble LP

E[gs,j] = E[`s,j] = 〈I, bs,j〉 E[g2
s,j] = E[`2

s,j] = 〈I, bs,j〉

E[gs,jgs,j′] = E[`s,j`s,j′] = 0 ∀j 6= j′, s ∈ V(P)

6.6.4 Putting It All Together

Finally, we will now show the following lemma which forms the core of the soundness argu-

ment in lemma 6.5.4.

Lemma 6.6.5. For a function F : [m]u → Nq satisfying Infj(T1−εF) ≤ τ for all j ∈ [u],

E
P∈P

E
zS

E
z̃S

[
P
(
F(z̃s1), . . . ,F(z̃sk)

)]
≤ OPT

q
(I) + oτ (1)

Here oτ (1)→ 0 as τ → 0 while all other parameters are fixed.

Proof. Let us denote H = T1−εF . Let F(x),H(x) denote the multilinear polynomials

corresponding to functions F ,H respectively. Let us denote,

Dε
V ,µ(F) = E

P∈P
E
zS

E
z̃S

[
P
(
F(z̃s1), . . . ,F(z̃sk)

)]
84

Each vector zsi is independently perturbed to obtain z̃si . The payoff functions P are multi-

linear when restricted to the domain Nq. Consequently, we can write

Dε
V ,µ(F) = E

P∈P
E
zS

[
P
(

E
z̃s1

[F(z̃s1)|zs1], . . . , E
z̃s1

[F(z̃sq |zsk])
)]

= E
P∈P

E
zS

[
P
(
H(zs1), . . . ,H(zsk)

)]

The last equality is due to the fact Ez̃si
[F si(z̃si)|zsi] = T1−εF si(zsi) = Hsi(zsi). For each

s ∈ S, the coordinates of zs are generated by the distribution µP . Thecrefore the above

expectation can be written in terms of the polynomial H applied integral ensemble LP .

Specifically, we can write

Dε
V ,µ(F) = E

P∈P
E
zS

[
P
(
H(zs1), . . . ,H(zsk)

)]
= E

P∈P
E
LuP

[
P
(
H(`us1), . . . ,H(`usk)

)]
(6.15)

The following procedure roundF returns an ordering for the original Λ-OCSP instance I.

Let roundF(V ,µ) denote the expected payoff of the ordering returned by the rounding

scheme roundF on the SDP solution (V ,µ) for the Λ-OCSP instance I. By definition, we

have:

roundF(V ,µ) ≤ OPT
q

(I) (6.16)

In the remainder of the proof, we will show the following inequality:

roundF(V ,µ) ≥ Dε
V ,µ(F)− oτ (1)

Along with Equation (eq. (6.16)), this would imply that Dε
V ,µ(F) is less than OPTq(I) +

oτ (1), thus showing the required claim. To this end, we will arithmetize the value of

roundF(V ,µ). Notice that the gi are nothing but samples of the Global Ensemble G asso-

85

roundF Scheme

Input: A Λ-OCSP instance I = (V ,P) withm variables and an SDP solution {bv,i}, {µP}.

Truncation Function Let fN : Rq → Nq be a Lipschitz-continous function such that
for all x ∈ Nq, fN(x) = x. Clearly, a function fN of this nature can be constructed with a
Lipschitz constant Cq depending on q.

Scheme Sample R vectors ζ(1), . . . , ζ(R) with each coordinate being i.i.d normal random
variable.
For each ys ∈ V do

– For all 1 ≤ j ≤ R and c ∈ [m], compute the projection g
(j)
s,c of the vector bs,c as

follows:

g(j)
s,c = 〈I, bs,c〉+

[
〈(bs,c − (〈I, bs,c〉)I), ζ(j)〉

]
– Evaluate the function H = T1−εF with g

(j)
s,c as inputs. In other words, compute

ps = (ps,1, . . . , ps,q) as follows:
ps = H(gs)

– Round ps to p∗s ∈ Nq by using a Lipschitz-continous truncation function fN : Rq →
Nq.

p∗s = fN(ps) .

– Assign the Λ-OCSP variable ys ∈ V the value j ∈ [q] with probability p∗s,j.

Figure 6.3: Rounding Scheme for a Λ-OCSP

ciated with I. By definition, the expected payoff is given by

roundF(V ,µ) = E
P∈P

E
GuP

[
P
(
fN(H(gus1)), . . . , fN(H(gusk))

)]
(6.17)

We will show that the quantities in equation (eq. (6.15)) and equation (eq. (6.17)) are roughly

equal. Fix a payoff P ∈ P . Let ΨP : Rqk → R be a Lipschitz continous function defined as

follows:

ΨP (p1,p2, · · · ,pk) = P
(
fN(p1), . . . , fN(pk)

)
∀p1, . . .pk ∈ Nq .

86

Applying the invariance principle (theorem 6.6.1) with the ensembles LP , GP , Lipschitz

continous functional Ψ and the vector of kq multilinear polynomials given by (H ,H , . . . ,H)

where H = (H1, . . . , Hq), we get the required result:

roundF(V ,µ) = E
P∈P

E
GuP

[
ΨP

(
H(gus1), . . . ,H(gusk)

)]
≥ E

P∈P
E
LuP

[
ΨP

(
H(`us1), . . . ,H(`usk)

)]
− oτ (1) (∵ InvariancePrinciple(theorem 6.6.1))

≥ E
P∈P

E
LuP

[
P
(
H(`us1), . . . ,H(`usk)

)]
− oτ (1) (∵ ΨP (p1, . . . ,pk) = P (p1, . . . ,pk) if ∀i,pi ∈ Nq)

= Dε
V ,µ(F)− oτ (1) (∵ eq. (6.15))

�

6.7 SDP Integrality Gap

In this section, we construct integrality gaps for the fig. 6.1 relaxation using the unique

games hardness reduction. We show the following result.

Theorem 6.7.1. For any γ > 0, there exists a directed graph G such that the value of semi

definite program fig. 6.1 is at least 1− γ, while OPT(G) ≤ 1
2

+ γ.

The proof uses a bipartite variant of the Khot-Vishnoi [40] Unique Games integrality gap

instance as in [55, 48]. Specifically, the following is a direct consequence of [40].

The integrality gap instance U = (AU ∪ BU , E,Π = {πe : [u] → [u] | e ∈ E}, [u])

presented in [40] is not bipartite. To obtain a bipartite unique games instance U ′, duplicate

the vertices by setting AU = {(b, 0)|b ∈ V } and BU = {(b, 1)|b ∈ V }. Further for each edge

(a, b) ∈ E, introduce two edges ((a, 0), (b, 1)) and ((a, 1), (b, 0)) in U ′. The SDP solution for

the bipartite instance U ′ is obtained by assigning the vector corresponding to b ∈ V to both

vertices (b, 0) and (b, 1). Except for these minor modifications, the following theorem is a

direct consequence of [40]

87

Theorem 6.7.2. [40] For every η > 0, there exists a UG instance, U = (AU ∪ BU , E,Π =

{πe : [u]→ [u] | e ∈ E}, [u]) and vectors {vb,`} for every b ∈ BU , ` ∈ [u] and a unit vector

I such that the following conditions hold:

– No assignment satisfies more than η fraction of constraints in Π.

– For all b, b′ ∈ BU , `, `′ ∈ [u] , 〈vb,`,vb′,`′〉 ≥ 0 and 〈vb,`,vb,`′〉 = 0.

– For all b ∈ BU ,
∑

`∈[u] vb,` = I and 〈vb,`, I〉 = ‖vb,`‖2
2.

– The SDP value is at least 1− η: Ea∈AU ,b,b′∈BU

[∑
`∈[u]〈vb,πa→b(`),vb′,π′

a→b′ (`)
〉
]
≥ 1− η

Proof of theorem 6.7.1. Let G be a (η, t)-multiscale gap instance with m vertices. Apply

theorem 6.7.2, with a sufficiently small η to obtain a UGC instance U and SDP vectors

{vb,`|b ∈ BU , ` ∈ [u]}. Consider the instance Ψ constructed by running the UG-hardness

reduction in section 6.4 on the UG instance U . The set of vertices of Ψ is given by BU× [m]u.

Set M = |BU |×mu and N = |BU |.

The program fig. 6.1 on the instance Ψ contains M vectors {W(b,z)
i |i ∈ [M]} for each

vertex (b, z) ∈ BU × [m]u

Define a solution to fig. 6.1 as follows: Set the vector I to be the corresponding vector in

the instance U . For each vertex (b, z) of the graph Ψ define SDP vectors {W(b,z)
i |i ∈ [M]}

as follows:

W
(b,z)
i =

∑

z`=i
vb,` ∀i ∈ [m], (b, z) ∈ BU × [m]u

0 ∀i /∈ [m]

Now we will check that the SDP vectors {W(b,z)
i } satisfy conditions eq. (6.10)–eq. (6.7) of

the fig. 6.1 relaxation.

– (Constraint eq. (6.8)) Since the vectors {vb,`} have non-negative dot-product, the vec-

tors {W(b,z)
i } have non-negative inner-products too.

88

– (Constraint eq. (6.10)) For a fixed b and z, the vectors {W(b,z)
i } are constructed by

partitioning the vectors {vb,`} and assigning the vector sum over the partitions. Hence,

for any i, j, the vectors W
(b,z)
i and W

(b,z)
j sum over disjoint set of `. Thus,

〈W(b,z)
i ,W

(b,z)
j 〉 = 〈

∑
z`=i

vb,`,
∑
z`′=j

vb,`′〉 = 0 .

– (Constraint eq. (6.5)) For every vertex (b, z) we have,

∑
i,j∈[M]

〈W(b,z)
i ,W

(b,z)
j 〉 =

∑
`,`′∈[u]

〈vb,`,vb,`′〉 =
∑
`∈[u]

〈vb,`,vb,`〉 = 1 .

– (Constraint eq. (6.6)) For i /∈ m, we have W
(b,z)
i = 0, thereby trivially satisfying

constraint eq. (6.6). For i ∈ [m], we can write:

〈I,W(b,z)
i 〉 =

∑
z`=i

〈I,vb,`〉 =
∑
z`=i

‖vb,`‖2
2 .

Due to orthogonality of the vectors {vb,i} for every vertex b ∈ BU , we get

〈W(b,z)
i ,W

(b,z)
i 〉 = 〈

∑
z`=i

vb,`,
∑
z`=i

vb,`〉 =
∑
z`=i

‖vb,`‖2
2 = 〈I,W(b,z)

i 〉

– (Constraint eq. (6.7)) is satisfied by choice of I.

To prove that the SDP value is close to 1, we first fix a particular choice of a ∈ AU ,

b, b′ ∈ BU . Set π = πa→b, π
′ = πa→b′ . The SDP value of edges from (b, ∗) to (b′, ∗) is:

89

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(zu))
i ,W

(b′,π′(zv))
j 〉 = E

e∈G
E

z̃u,z̃v

∑
i<j

〈(
∑
z̃`u=i

vb,`), (
∑
z̃`′v =j

vb′,`′)〉

≥
∑
`

(〈vb,π(`),vb′,π′(`)〉) E
e∈G

P
z̃u,z̃v

[z̃`u < z̃`v]

With probability at least (1− 2ε)2, z̃u = zu, z̃v = zv. Further, since the coordinates of zu, zv

are generated from the multiscale gap instance, G, P[z`u < z`v] ≥ 1− η. Hence,

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(zu))
i ,W

(b′,π′(zv))
j 〉 ≥ (1− 2ε)2(1− η)

∑
`

〈vb,π(`),vb′,π′(`)〉

Thus, the expected payoff over the whole instance is:

E
a,b,b′

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(zu))
i ,W

(b′,π′(zv))
j 〉 ≥ (1− 2ε)2(1− η) E

a∈AU ,b,b′∈BU

∑
`

〈(vb,π(`)vb′,π′(`))〉

≥ (1− 2ε)2(1− η)(1− η) .

Hence for sufficiently small choice of parameters ε, η and η, the SDP value for Ψ is greater

than 1− γ. On the other hand, the soundness analysis in section 6.4 (theorem 6.1.6) implies

that the integral optimum for Ψ is at most 1
2

+ γ with sufficiently small choice of ε, η and

η. �

90

Bibliography

[1] Aaron Archer, Jittat Fakcharoenphol, Chris Harrelson, Robert Krauthgamer, Kunal

Talwar, and Éva Tardos. Approximate classification via earthmover metrics. In SODA

’04: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1079–1087, 2004. 37

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–

555, 1998. 5

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-

tion of np. J. ACM, 45(1):70–122, 1998. 5

[4] Per Austrin. Balanced max 2-sat might not be the hardest. In STOC ’07: Proceedings

of the 39th Annual ACM Symposium on Theory of Computing, pages 189–197, 2007. 7

[5] Per Austrin. Towards sharp inapproximability for any 2-csp. In FOCS ’07: Proceedings

of the 48th Annual IEEE Symposium on Foundations of Computer Science, pages 307–

317, 2007. 7

[6] Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and

independent set in bounded degree graphs. Theory of Computing, 7(1):27–43, 2011. 51

[7] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and

applications to scheduling problems. In Manuscript, 2009. 48

91

[8] Yair Bartal. On approximating arbitrary metrices by tree metrics. In STOC ’98:

Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 161–

168, 1998. 37

[9] Bonnie Berger and Peter W. Shor. Tight bounds for the Maximum Acyclic Subgraph

problem. J. Algorithms, 25(1):1–18, 1997. 57

[10] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for

the 0-extension problem. In SODA ’01: Proceedings of the 12th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 8–16, 2001. 2, 4, 36

[11] Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation

CSP of arity 3 is approximation resistant. In Proceedings of the 24th Annual IEEE

Conference on Computational Complexity, 2009. 56

[12] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advantage

over random for maximum acyclic subgraph. In FOCS, pages 625–633. IEEE Computer

Society, 2007. 57, 58, 65

[13] Chandra Chekuri, Sanjeev Khanna, Joseph (Seffi) Naor, and Leonid Zosin. Approxima-

tion algorithms for the metric labeling problem via a new linear programming formula-

tion. SIAM J. Disc. Math., 18:608–625, 2005. 37

[14] Benny Chor and Madhu Sudan. A geometric approach to betweenness. SIAM Journal

on Discrete Mathematics, 11(4):511–523, November 1998. 59

[15] Julia Chuzhoy and Joseph (Seffi) Naor. The hardness of metric labeling. SIAM J.

Comput., 36(5):1376–1386, 2006. 36, 37, 41

[16] Gruia Cvalinescu, Howard Karloff, and Yuval Rabani. An improved approximation algo-

rithm for multiway cut. In STOC ’98: Proceedings of the 30th Annual ACM Symposium

on Theory of Computing, pages 48–52, 1998. 4, 35

92

[17] Elias Dahlhaus, David Johnson, Christos Papadimitriou, Paul Seymour, and Mihalis

Yannakakis. The complexity of multiway cuts (extended abstract). In STOC ’92:

Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 241–

251, 1992. 35, 36

[18] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover.

Annals of Mathematics, 162(1):439–485, 2005. 5

[19] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum

feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998. 58

[20] Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An improved

approximation algorithm for the 0-extension problem. In SODA ’03: Proceedings of the

14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 257–265, 2003. 36

[21] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Approximating metrics by tree

metrics. SIGACT News, 35(2):60–70, 2004. 37

[22] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Inter-

active proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.

5

[23] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd

Edition. Wiley, 3rd edition, January 1968. 23

[24] M. Grtschel, L. Lovsz, and A. Schrijver. Geometric Algorithms And Combinatorial

Optimization, volume 2 of Algorithms and Combinatorics. Springer, second ed. edition,

1993. 11

[25] Anupam Gupta and Éva Tardos. A constant factor approximation algorithm for a

class of classification problems. In STOC ’00: Proceedings of the 32nd Annual ACM

Symposium on Theory of Computing, pages 652–658, 2000. 37

93

[26] Venkatesan Guruswami, Johan H̊astad, Rajsekar Manokaran, Prasad Raghavendra, and

Moses Charikar. Beating the random ordering is hard: Every ordering csp is approxi-

mation resistant. SIAM J. Comput., 40(3):878–914, 2011. 56

[27] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the

random ordering is hard : Inapproximability of maximum acyclic subgraph. In FOCS

’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer

Science, 2008. 7, 56

[28] Venkatesan Guruswami and Rishi Saket. On the inapproximability of vertex cover on

k-partite k-uniform hypergraphs. In Manuscript, 2010. 48, 51

[29] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

5, 8

[30] Johan H̊astad. Every 2-csp allows nontrivial approximation. In Harold N. Gabow and

Ronald Fagin, editors, STOC, pages 740–746. ACM, 2005. 20

[31] Marcus Isaksson and Elchanan Mossel. Maximally stable gaussian partitions with dis-

crete applications, August 03 2009. 9, 10, 82

[32] A. Karazanov. On the minimal number of arcs of a digraph meeting all its directed

cutsets. Graph Theory Newsletters, 8, 1979. 57

[33] David R. Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E. Young. Round-

ing algorithms for a geometric embedding of minimum multiway cut. In STOC ’99:

Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 668–

678, 1999. 2, 4, 5, 35

[34] Howard Karloff, Subhash Khot, Aranyak Mehta, and Yuval Rabani. On earthmover

distance, metric labeling, and 0-extension. In STOC ’06: Proceedings of the 38th Annual

ACM Symposium on Theory of Computing, pages 547–556, 2006. 2, 4, 36

94

[35] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-

puter Computations. New York: Plenum, pages 85–103, 1972. 57

[36] Alexander Karzanov. Minimum 0-extension of graph metrics. Europ. J. Combinat.,

19:71–101, 1998. 36

[37] Alexander Karzanov. A combinatorial algorithm for the minimum (2, r)-metric problem

and some generalizations. Combinatorica, 18:549–569, 1999. 36

[38] Subhash Khot. On the power of unique 2-prover 1-round games. In IEEE Conference

on Computational Complexity, page 25, 2002. 2, 5, 7

[39] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within

2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008. 5, 7, 18, 50, 51

[40] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap

for cut problems and embeddability of negative type metrics into l1. In FOCS, pages

53–62. IEEE Computer Society, 2005. 48, 62, 87, 88

[41] Jon Kleinberg and Éva Tardos. Approximation algorithms for classification prob-

lems with pairwise relationships: metric labeling and markov random fields. J. ACM,

49(5):616–639, 2002. 4, 5, 35, 36, 37, 41

[42] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent:

A new embedding method for finite metrics. In FOCS ’04: Proceedings of the 45th

Annual IEEE Symposium on Foundations of Computer Science, pages 434–443, 2004.

36

[43] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On

lp-based approximability for strict csps. In SODA, pages 1560–1573, 2011. 46

95

[44] Jean B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1

programs. SIAM Journal on Optimization, 12(3):756–769, 2002. 12

[45] James R. Lee and Assaf Naor. Extending lipschitz functions via random metric parti-

tions. Inventiones Mathematicae, 160(1):59–95, 2005. 36

[46] L. Lovsz and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.

SIAM JOURNAL ON OPTIMIZATION, 1:166–190, 1991. 12

[47] Cláudio Lucchesi and Daniel H. Younger. A minimax theorem for directed graphs.

Journal London Math. Society, 17:369–374, 1978. 57

[48] Rajsekar Manokaran, Joseph (Seffi) Naor, Prasad Raghavendra, and Roy Schwartz. Sdp

gaps and ugc hardness for multiway cut, 0-extension and metric labelling. In STOC

’08: Proceedings of the 40th ACM Symposium on Theory of Computing, 2008. 7, 34,

41, 87

[49] Monaldo Mastrolilli, Maurice Queyranne, Andreas S. Schulz, Ola Svensson, and Nel-

son A. Uhan. Minimizing the sum of weighted completion times in a concurrent open

shop. In Manuscript, 2009. 48

[50] Elchanan Mossel. Gaussian bounds for noise correlation of functions and tight analysis

of long codes. In FOCS, pages 156–165. IEEE Computer Society, 2008. 9, 10, 23

[51] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of func-

tions with low influences: invariance and optimality. In FOCS, pages 21–30. IEEE

Computer Society, 2005. 9, 10, 16, 17, 20, 23

[52] Alantha Newman. Approximating the maximum acyclic subgraph. Master’s thesis,

MIT, June 2000. 57, 62

96

[53] Alantha Newman. Cuts and orderings: On semidefinite relaxations for the linear order-

ing problem. In APPROX-RANDOM, pages 195–206, 2004. 62

[54] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and

complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. 57

[55] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp?

In STOC ’08: Proceedings of the 40th ACM Symposium on Theory of Computing, 2008.

7, 45, 47, 48, 63, 64, 74, 81, 82, 87

[56] Prasad Raghavendra. Limits to Approximability : Understanding the power of Semi-

denite Programming. PhD thesis, University of Washington, Seattle, June 2009. 30, 31,

64

[57] Prasad Raghavendra and David Steurer. How to round any csp. In FOCS, pages 586–

594, 2009. 48

[58] Prasad Raghavendra and David Steurer. Towards computing the grothendieck constant.

In SODA ’09: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2009. 7

[59] V. Ramachandran. Finding a minimum feedback arc set in reducible flow graphs. J.

Algorithms, 9:299–313, 1988. 57

[60] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. 5

[61] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps for

lovasz-schrijver lp relaxations of vertex cover and max cut. In David S. Johnson and

Uriel Feige, editors, STOC, pages 302–310. ACM, 2007. 55

[62] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience

series in discrete mathematics and optimization. Wiley, 1999. 11

97

[63] Paul Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281–288,

1995. 58

[64] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous

and convex hull representations for zero-one programming problems. SIAM J. Discrete

Math., 3(3):411–430, 1990. 12, 49

98

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Overview
	Approximation Algorithm Design
	Inapproximability Reductions
	Systematic Design in Approximability
	Unique Games Conjecture
	Overview of the Reduction
	Organization of this thesis

	Preliminaries
	Setup and Notation
	Mathematical Relaxations
	Fourier Analysis over the Boolean Cube
	Notion of Influence for orderings

	Unique Games Conjecture
	Gaussian Stability Estimates

	Dictatorship Gadget
	Construction of the Gadget
	Payoff Functions

	Analysis of Gadget Assignments
	Invariance Principle
	Low Degree Assignments
	Metric Like Payoffs on Noise Distributions
	Connected Payoff Functions
	Alphabet Reduction

	Overview of a reduction from UG

	Approximability of Labeling Problems
	Description of Problems
	Earthmover Relaxation
	Results on Labeling Problems
	Reduction to Metric Labeling Problems
	Canonical Labeling from UG Labelings
	Soundness

	Concluding Remarks

	Approximability of Strict CSPs
	Description of Problem
	Linear Relaxations for Strict CSPs
	Results on Strict CSP
	Reduction to Strict CSPs
	Deriving an Assignment from a UG Labeling
	Soundness

	Inapproximabilty of Strict CSPs

	Ordering Problems
	Description of Problems
	Organization

	Overview of Reduction
	Multiscale Gap Instances
	Gap Instances for general Ordering Problems

	Reduction to Ordering CSP
	Formal Definitions
	Relation to CSPs
	SDP Relaxation

	Dictatorship Test for OCSP
	Completeness analysis
	Soundness of dictatorship test

	Soundness Analysis for q-Orderings
	Invariance Principle
	Payoff Functions
	Local and Global Distributions
	Putting It All Together

	SDP Integrality Gap

