
Content Conditioning and Distribution

for Dynamic Virtual Worlds

Jeff Terrace

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Michael J. Freedman

November 2012

© Copyright by Jeff Terrace, 2012. All rights reserved.

c b
This work is licensed under a Creative Commons

Attribution-3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/

http://creativecommons.org/licenses/by/3.0/us/

Abstract

Metaverses are three-dimensional virtual worlds where anyone can add and script

new objects. Metaverses today, such as Second Life, are dull, lifeless, and stagnant

because users can see and interact with only a tiny region around them, rather than

a large and immersive world. The next-generation Sirikata metaverse server scales

to support large, complex worlds, even as it allows users to see and interact with

the entire world. However, enabling large worlds poses a new challenge to graphical

clients to display high-quality scenes quickly over a network.

Arbitrary 3D content is often not optimized for real-time rendering, limiting the abil-

ity of clients to display large scenes consisting of hundreds or thousands of objects. We

present the design and implementation of Sirikata’s automatic, unsupervised conver-

sion process that transforms 3D content into a format suitable for real-time rendering

while minimizing loss of quality. The resulting progressive format includes a base

mesh, allowing clients to quickly display the model, and a progressive portion for

streaming additional detail as desired.

3D models are large—often several megabytes in size. This poses a challenge for on-

line, interactive virtual worlds like Sirikata, where 3D content must be downloaded

on-demand. When a client enters a scene containing many objects and the models

are not cached locally on the client’s device, it can take a long time to download,

resulting in poor visual fidelity. Deciding how to order downloads has a huge impact

on performance. Should a client download a higher texture resolution for one model,

or stream additional vertices for another? Worse, underpowered clients might not

be able to display a high resolution mesh, resulting in wasted time downloading un-

needed content. Several metrics, such as the distance and scale of an object in the

scene or the camera angle of the observer, can be taken into account when designing

a scheduling algorithm. We present the design and implementation of a framework

iii

for evaluating scheduling algorithms for progressive meshes and we perform this eval-

uation on several independent metrics and methods for combining metrics, including

a linear optimization algorithm. After a thorough evaluation, our results show that

a simple metric—solid angle—consistently outperforms all other metrics.

iv

Acknowledgements

A heartfelt thanks goes to my adviser, Mike Freedman, for his guidance and support

over the years. Mike’s deep passion for academic research and system design has had

a tremendous influence on my character, and I have him to thank for helping me

dramatically improve my professional skills as a researcher and software developer.

I would also like to thank Phil Levis for serving as my unofficial second adviser and

for his evaluation and support of my research.

I thank my committee members—Adam Finkelstein, Vivek Pai, and Szymon

Rusinkiewicz together with Mike and Phil—for their helpful comments on construct-

ing my thesis. I am also grateful for the administrative help from Melissa Lawson

and Nicole Wagenblast that made my graduate career a smooth process.

I have had the pleasure of collaborating with a great team of graduate students from

Stanford, including Ewen Cheslack-Postava, Daniel Horn, Behram Mistree, and Tahir

Azim. Thank you for making me feel a part of the team, even while being on opposite

coasts.

My time at Princeton has been enriched with the friendship of several peers, including

Wyatt Lloyd, Will Clarkson, Michael Golightly, Siddhartha Sen, NG Srinivas, Lindsey

Poole, Bill Zeller, Ari Feldman, Ana Bell, Muneeb Ali, Hao Liu, Aaron Blankstein,

Kay Ousterhout, and Patrick Wendell.

A special thanks goes to my loving parents, Sandy and Bob, for providing for me

and supporting me during my education. My sisters and their families—Rachel, Sam,

Lily, and Tommy; and Debbi, Rob and Emily—have been encouraging and supportive

to me during this time and I thank them for their unconditional love. To my late

grandmother, Carrie, I miss you and thank you for all the advice and great memories.

To my grandparents, Sam and Henny, you have continued to be an inspiration to me

v

in how I live my life and pursue my career. To Chloe, thank you for being a loving

partner and standing by me for the last two years while I finished my thesis.

Thank you to my best friends—Paul C., Craig, Brian, Paul S., Tom, and Stacy—for

adding joy to my life and always standing by me.

The research in this thesis was funded by National Science Foundation NeTS Award

#0904860: Designing a Content-Aware Internet Ecosystem, National Science Foun-

dation NeTS-ANET Award #0831374: A Network Architecture for Federated Vir-

tual/Physical Worlds, and the Intel Science and Technology Center (ISTC) Visual

Computing research initiative.

vi

To my dad, Bob, for his continued encouragement of my work.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Figures . xi

1 Introduction 1

1.1 Scalable Virtual Worlds . 2

1.2 Server-Side Content Conditioning . 3

1.3 Scheduling Client-Side Downloads . 5

2 The Sirikata Metaverse Platform 8

2.1 System Overview . 8

2.2 Space . 10

2.2.1 World Segmentation . 11

2.2.2 Object Discovery . 12

2.2.3 Messaging . 15

2.3 Object Host . 16

2.3.1 Scripting . 17

2.4 Persistence Services . 18

3 The Sirikata Content Distribution Network 20

3.1 External Interface . 20

3.1.1 Website . 21

viii

3.1.2 Application Programming Interface (API) 23

3.2 Datacenter Internals . 25

3.2.1 Web Server . 25

3.2.2 Application Storage . 26

3.2.3 Reliable Messaging . 28

3.2.4 Application Processing . 28

3.2.5 Search . 30

3.3 Cross-Datacenter Replication . 30

4 Content Conditioning 33

4.1 Motivation . 34

4.2 Related Work . 36

4.3 Conversion Process . 36

4.3.1 Cleaning and Normalizing . 37

4.3.2 Creating Charts . 37

4.3.3 Sizing Charts . 40

4.3.4 Packing Charts into Atlas . 41

4.3.5 Simplification . 42

4.3.6 Progressive Encoding . 43

4.4 Results and Analysis . 45

4.4.1 Render Efficiency . 45

4.4.2 File Size . 46

4.4.3 Perceptual Error . 48

5 Download Scheduling 50

5.1 Related Work . 51

5.1.1 Rendering Complex Scenes . 51

5.1.2 Streaming Meshes . 52

ix

5.2 Download Scheduling . 53

5.2.1 Problem . 54

5.2.2 Metrics . 54

5.2.3 Making a Decision . 56

5.3 Implementation . 57

5.3.1 3D Progressive File Format 57

5.3.2 Scheduling Algorithm Evaluation Framework 59

5.4 Evaluation . 60

5.4.1 Test Data . 61

5.4.2 Objective Perceptual Comparison 63

5.4.3 Metric Comparison . 66

5.4.4 Linear Optimization . 67

5.4.5 Example Screenshots . 68

6 Conclusion 70

6.1 Summary of Contributions . 70

6.2 Future Work . 71

Bibliography 73

x

List of Figures

1.1 Disk Throughput vs. Internet Bandwidth Over Time 5

2.1 Sirikata System Overview . 9

2.2 Sirikata World Segmentation Tree . 11

2.3 Solid Angle . 12

2.4 Example Largest Bounding Volume Hierarchy (LBVH) Tree 13

3.1 Open3DHub Browsing Interface . 21

3.2 Open3DHub Object Metadata . 22

3.3 Sirikata URI Fields . 24

3.4 Open3DHub API Methods . 24

3.5 Datacenter Internals . 25

3.6 Open3DHub Cassandra Column Families 27

3.7 Cross-Datacenter Replication . 31

4.1 Test Model Properties . 35

4.2 Example Model Chart Merge . 38

4.3 Chart Merge Error . 39

4.4 Rendering Efficiency . 45

4.5 Mean Size of Progressive Format . 46

4.6 Example Model Resolutions . 47

4.7 Mesh Size Change . 47

xi

4.8 Perceptual Error of Progressive Format 48

5.1 Progressive Format Dependency Graph 58

5.2 Generated Island Scene . 61

5.3 Einstein Test Images . 63

5.4 Image Comparison Algorithms on Einstein Images 64

5.5 Image Comparison Algorithms on Island Scene 65

5.6 Comparison of Download Scheduling Algorithms 65

5.7 Example Spinning Motion Path . 67

5.8 Example Meander Motion Path . 67

5.9 Example Progressive Scene Loading 69

xii

Chapter 1

Introduction

Your avatar can look any way you want it to, up to the limitations of your

equipment. If you’re ugly, you can make your avatar beautiful. If you’ve

just gotten out of bed, your avatar can be wearing beautiful clothes and

professionally applied makeup. You can look like a gorilla or a dragon, or

a giant talking penis in the Metaverse. Spend five minutes walking down

the street, and you will see all of these.

—Neal Stephenson, Snow Crash

With the computer becoming ever more powerful over time, applications which were

previously never thought possible suddenly became a reality. One such application is

the simulation of three-dimensional virtual spaces. Once only available exclusively in

the realm of supercomputing, the early 1990s gave rise to the first widely-successful

commercial 3D applications. Such hits as Wolfenstein 3D for the PC and Star Fox for

the Super Nintendo captivated their audiences with three-dimensional graphics. From

then on, the development of three-dimensional games and applications developed into

a billion-dollar industry.

1

The traditional 3D application is static. A team of developers, artists, and producers

work together to develop a simulated environment using a fixed set of 3D art. The

rules of the virtual world are determined in advance, and users are constrained by

the pre-determined limitations put in place by the designers of the application. This,

however, works well for many types of applications and has given rise to truly awesome

works where one can live the life of a gangster in Grand Theft Auto, take part as

a soldier in the simulated World War II world of Call of Duty, or escape into an

alternate simulated life in The Sims.

An alternative to the static virtual world—depicted in fictional works like Snow

Crash—is the dynamic world. The Metaverse: a place where users are uncon-

strained by the rules of the virtual environment. New 3D art can be added to the

world, new behaviors can be programmed into virtual avatars, and new applications

can be built on a whim.

Similar to the constraints that prevented 3D consumer applications from being

widespread prior the early 1990s, today’s consumer devices and the realities of our

Internet infrastructure so too make developing compelling dynamic virtual worlds

a difficult problem. The goal of the Sirikata research initiative is to develop a

platform for virtual worlds, enabling new and interesting types of applications and

solving the problems associated with creating a metaverse within the constraints of

today’s resources.

1.1 Scalable Virtual Worlds

Metaverses are three-dimensional virtual worlds where anyone can add and script

new objects. Metaverses today, such as Second Life, are dull, lifeless, and stagnant

because users can see and interact with only a tiny region around them, rather than

2

a large and immersive world. Current metaverses impose this distance restriction on

visibility and interaction in order to scale to large worlds, as the restriction avoids

appreciable shared state in underlying distributed systems.

Sirikata is a metaverse platform with a goal of enabling huge, rich, compelling appli-

cations. The Sirikata server scales to support large, complex worlds, even as it allows

users to see and interact with the entire world. It achieves both goals simultaneously

by leveraging properties of the real world and 3D environments in its core systems,

such as a novel distributed data structure for virtual object queries based on visible

size.

Although the focus and contributions of this thesis lie within a single component of the

Sirikata platform—namely, its persistence services—we first present a brief overview

of the entire Sirikata platform’s design in Chapter 2 to familiarize the reader the

components of the system. The design and implementation of Sirikata’s persistence

services component is then presented in Chapter 3.

1.2 Server-Side Content Conditioning

Creating a truly engaging application in a metaverse requires filling it with 3D con-

tent. That content can come from a wide variety of sources: modeling packages like

Blender or Maya, content repositories such as Google’s 3D Warehouse or NASA’s 3D

Resources, or even the increasingly-popular 3D scanners that have recently been intro-

duced to consumer markets. Due to their disparate sources, these models have a wide

array of characteristics, from million-triangle and hundred-megabyte scanned models

to detailed architectural models referencing hundreds of materials and textures to the

plain cube with only eight vertices. A metaverse platform that accepts arbitrary 3D

3

content must transform any model into a form to be rendered in real-time as just one

of thousands of models in a scene.

Metaverses cannot employ the same techniques that other applications, such as games,

use to condition and prepare content. Whereas game developers can work closely

with artists and filter content through a conditioning pipeline to ensure real-time

frame rates, metaverses must handle arbitrary user-provided content. Additionally,

game content is shipped to a client before the application runs, but metaverse users

expect to drop in a new 3D model at any time (uploading it to virtual world servers

“in the cloud”) and use it in the world immediately. The metaverse could reject

unoptimized content, but such narrow constraints drastically decrease the quantity

of readily available content and diminish the usability of the system. Users should

not need to care about the intricate, technical details of 3D content.

To realize this vision for interactive metaverses, Chapter 4 proposes an unsupervised

content conditioning pipeline for 3D content. Users can upload to a repository, which

automatically transforms the content into a format that ensures good performance

in a real-time rendering environment. The model is transformed to use a single

material (permitting efficient rendering), simplified to a level of detail appropriate

for single model in a scene, and converted to a progressive format to allow clients

to quickly display a low resolution representation, with additional detail streamed

as desired. This unsupervised transformation significantly lowers the bar for user-

generated virtual worlds. Users can contribute arbitrary content, and the system

ensures the content’s feasibility for other, heterogeneous clients.

4

1996 1998 2000 2002 2004 2006 2008 2010 2012
Year

10−1

100

101

102

103

104

M
eg

ab
it

s/
s

Buffered Disk Read Throughput
Median Advertised Consumer Broadband Speed

Figure 1.1: Disk read throughput (source: list of personal Seagate hard drives [27])
vs. Internet bandwidth (source: FCC Broadband Performance Report [50]) over time.

1.3 Scheduling Client-Side Downloads

Most 3D applications, like games, hire artists to create high-quality, efficient 3D

models. This 3D content, often gigabytes in size, is bundled with the application,

and therefore cached locally before the program runs. In contrast, a dynamic virtual

world allows users to insert new content into the world, requiring it to be downloaded

from a remote server. When dynamic worlds grow large, the time between when a

user enters the world and when it can be fully rendered increases, resulting in a poor

user experience.

The problem of downloading 3D content over the Internet is getting worse. The size

of 3D models has been increasing exponentially over time. This is not a problem

in fixed-asset applications because the buffered read throughput of consumer hard

drives have also been increasing exponentially, with current devices being able to

read hundreds of megabytes per second. On the other hand, consumer broadband

speeds have consistently been two orders of magnitude slower than disks, as shown in

Figure 1.1. The same loading screen that takes 30 seconds to read assets from disk

5

might take an hour over the Internet. This is obviously not a reasonable amount of

time for a user to wait for an application to load.

In an age where users demand low latency applications, the only solution is to pro-

gressively load the metaverse. Similar to streaming video services like Netflix and

YouTube, which adaptively change bitrate according to a user’s capabilities, so should

a 3D application render a low-resolution version of the world, shipping pixels to the

screen as fast as possible. Progressively loading a scene, however, requires each indi-

vidual 3D model to either have multiple levels of detail or be encoded in a streamable

format. Otherwise, progressively loading a scene would result in a fragmented world

while individual models (on the order of megabytes) load one-by-one.

The flexibility of a progressive format for individual models allows an end client to

make decisions about what it should download. A client might download the lowest

resolution of all models in a world first to present the user with a crude representation

of the scene, while downloading higher resolutions in the background and swapping

them in as they load. The question then becomes: in what order should it download

the available formats of each model in the scene? Should a high-resolution texture

for a large mountain in the distance be downloaded next, or would the user rather

see a more detailed mesh of the avatar standing next to her? These questions are

difficult to answer, as they are subjective. The right choice in one instance might

be the wrong one in another. The scheduling of downloads might depend on the

makeup of the scene, the form-factor of the user’s device (e.g., a smartphone vs. a

tablet vs. a high-performance desktop), or the application being used in the world.

Chapter 5 attempts to answer these questions in an objective way using a framework

for comparing download scheduling algorithms.

6

Taken together, this thesis describes the design and implementation of a complete

platform for transcoding, hosting, and delivering 3D content in a dynamic virtual

world, helping to enable the metaverse of tomorrow.

7

Chapter 2

The Sirikata Metaverse Platform

In this chapter, we present a high-level overview of the entire Sirikata metaverse plat-

form. Although this thesis focuses on Sirikata’s persistence services (Section 2.4), we

first give a brief description of how the platform is divided into components in Sec-

tion 2.1 and then present the Space, a set of servers simulating a virtual environment,

in Section 2.2 followed by the Object Host, an end-client that connects to a space and

hosts individual objects in the world, in Section 2.3. While this chapter is not part

of the novel contributions of this thesis, it spans the breadth of the Sirikata platform

to provide background and contains pointers to additional resources where detail is

omitted.

2.1 System Overview

The goal of the Sirikata platform is to provide a robust, scalable, easy-to-use platform

for dynamic virtual worlds.

Figure 2.1 shows an overview of the three main Sirikata components. The Space is

the logical unit responsible for simulating the virtual world. Although it could be

8

Space Servers Object Hosts

Persistence Services

Figure 2.1: The Sirikata metaverse platform architecture.

a single server, in practice, it is typically distributed across multiple servers. The

servers coordinate together to simulate the world.

When a new space is created, it is initially empty. To populate it with objects, the

space allows an Object Host to connect to a space server and insert new objects into

the world. While the space is authoritative for the properties of each object being

simulated in the world, the object host can issue updates to any objects it owns. An

object host can be a user’s laptop hosting an avatar object or a server hosting static

content like trees or houses. The space also provides a service that lets an object host

query to discover other objects. Once discovered, the space also provides a means of

communication between objects.

The actual information that the space stores about each object is a small. Part of

the information it stores is a URI pointing to a mesh that should be used to render

the object. This allows for the decoupling of large files needed for rendering a 3D

world from the actual physical properties of objects in the world. The URI for an

object points to a networked server responsible for serving content. The Persistence

Services component of Sirikata, therefore, is responsible for the storage and retrieval

of this large 3D content.

9

2.2 Space

The Sirikata Space is responsible for simulating the virtual world. Its goals are to

support worlds with millions of objects while maintaining a high visual fidelity for

each object connected to the world. Rather than other architectures that partition

the world into fixed regions or limit the radius with which an object can interact,

Sirikata lets users see the entire world. Since there is inherent n2 scaling problem

with allowing each object to see and communicate with every other object, Sirikata

degrades as gracefully as possible: when servers are overloaded, objects can still see

an interact with the most important other objects, rather than some fixed partition or

only the closest objects. To achieve graceful degradation and scalability, the Sirikata

server uses a number of techniques, outlined in the following sections.

The space server only stores a small amount of information about each object:

• a unique identifier

• a vector representing the position of the object

• the radius of the object

• a vector representing the orientation of the object

• a string of text containing a URI pointing to the object’s mesh

• optionally, application-specific information required for implementing physics

This information is intentionally small. It makes simulating the space and sending

information about objects over a network fast and easy.

In the following sections, we describe the high-level architecture of the space server

using a top-down approach. Many of the details are left out here. For a more detailed

explanation of the Sirikata space server, see Cheslack-Postava, et al. [9].

10

Upper
Tree

Server 2

Lower Trees

Y-axis
split

X-axis
split

Server 1

Figure 2.2: An example of the split-axis k-d tree used by the Sirikata world seg-
mentation service.

2.2.1 World Segmentation

A single Sirikata space server can handle a large number of simulated objects, but as a

virtual world grows, it eventually exceeds the capacity of a single server. To continue

scaling to a larger world, the space must be split across multiple space servers.

To do this, Sirikata has a service called Coordinate Segmentation (CSEG) responsible

for assigning regions of the infinite three-dimensional coordinate space of a virtual

world to separate space servers. The service uses a split-axis k-d tree [3], a tree-

based data-structure that partitions a k-dimensional space (here k = 3), using an

alternating axis at each level of the tree.

An example of the split-axis k-d tree provided by the CSEG service is shown in

Figure 2.2. The upper portion of the tree is replicated using a strongly consistent

replication algorithm across multiple CSEG servers to provide fault-tolerance and

availability. The k-d tree has the property that the upper portion of the tree is very

stable, so the throughput requirement for updating the upper tree is low. Most of the

updates to the k-d tree occur in the lower portions of tree. Each lower tree is hosted

on a single CSEG server, allowing it to be quickly updated locally. If a CSEG server

11

Figure 2.3: Solid Angle (left) is the extension of a planar angle (right) into three-
dimensional space. The solid angle of an object is roughly equivalent to the number
of pixels an object would take up on the screen of an observer if they were rendering
the world in all directions.

fails, the lower portion of the tree it was responsible for is lost, but a new server can

take over, querying each space server the CSEG server was responsible for to rebuild

the soft-state tree.

To decide when to split a region of space or join two regions of space together, a

simple metric is used. If the number of objects located in a region of space exceeds

a threshold, T , the region is split in two. On the other hand, if two adjacent regions

of space drop below 1
4
T objects, the regions are joined. This helps prevent a region

of space from being continually split and merged.

2.2.2 Object Discovery

When an object first connects to a space server and joins the world, it usually wants to

discover other objects. Sirikata calls the system that provides this service Potentially

Interesting Objects, or Pinto for short. When queried, it is responsible for returning

a subset of the full objects in the world that are most relevant to the querier. It is

also responsible for standing queries : that is, when a querier wants to be continuously

updated with new results.

The way object importance is determined is based on Solid Angle. As shown in

Figure 2.3, the solid angle of an object is the area it takes up when projected onto a

12

Figure 2.4: An example of the Largest Bounding Volume Hierarchy (LBVH) tree
data-structure used by Sirikata’s object discovery system.

unit sphere centered at the observer. If the observer were to render the world in all

directions, the solid angle of an object would be roughly congruent to the number of

pixels it takes up on the observer’s screen. This means that larger and closer objects

are considered more important than objects that are smaller or farther away.

The problem with using a metric like solid angle to determine object importance is

that the most important objects with respect to an observer could be anywhere in the

world. In contrast to using distance as an importance metric, a space server might

have to search all other space servers to answer a Pinto query. However, using distance

would mean that an observer can only see objects within a fixed distance—resulting

in a poor user experience.

The Pinto service runs as a component of the space server. Let us first consider the

case of answering solid angle queries from a single server. A Pinto query asks a space

server to return a list of object identifiers with a solid angle less than some value S

with respect to an observer. A naive way to answer this query is to simply calculate

the solid angle with respect to the observer for all of a space server’s objects. Since

this is an inefficient, expensive operation, the Pinto service instead maintains a data

structure called a Largest Bounding Volume Hierarchy (LBVH). Similar to a BVH

tree, each object’s bounding volume is a leaf node of the tree, with interior nodes being

a bounding volume encompassing their children, until the root node which contains

13

all objects. An LBVH also maintains the size of the largest child at each interior

node. An example LBVH tree is shown in Figure 2.4. The leaf nodes—A, B, C, and

D—represent objects in the world, while interior nodes—X, Y, and Z—contain their

children.

Consider searching the LBVH tree in Figure 2.4 for objects that satisfy a solid angle

query for observer Q. When the traversal of the tree reaches a node for which the solid

angle of the interior node does not satisfy the query, traversal can stop. However, since

an interior node’s bounding volume is typically much larger than its children, traversal

of the tree instead uses the known largest child of the interior node instead—placing

it as close as possible to the observer. For example, when evaluating node Z, the

largest child node, B, is placed at location B’. The solid angle of B’ from the observer

Q is the largest possible solid angle for any object below Z. This makes traversing the

tree much more efficient because more branches of the tree are immediately cut off.

To distribute the LBVH tree across multiple space servers, each space server main-

tains two LBVH trees. One contains only the objects for which that space server is

responsible for and is used to answer Pinto queries from other space servers. A second

LBVH tree merges together its own local LBVH with Pinto results from other space

servers. When a space server evaluates multiple Pinto queries from its local objects,

it queries each external space server with an aggregated, maximum solid angle so as

to reduce query load.

To increase the stability of the LBVH tree, there are actually two separate LBVH

trees: one for static objects and one for dynamic objects. In most virtual world

workloads, about 95% of objects never move. This makes the static LBVH tree very

stable and makes the dynamic LBVH tree small.

To handle standing queries, the Pinto service maintains a cut through the LBVH

tree for each querier. A pointer to the cut is maintained at each node through which

14

it traverses. When a space server updates the LBVH tree because of a new object

insertion or when an object moves, it checks to see if a querier’s cut needs to be

updated. If so, it streams new object updates to the querier.

A problem with the Pinto service is that a large cluster of small objects in the distance

might not satisfy a solid angle query but could actually be very visibly important to

an observer. Consider, for example, a large forest made up of thousands of trees.

No individual tree is significant on its own, but the forest in aggregate is important.

To alleviate this problem, the space server generates aggregate meshes for interior

nodes of the LBVH tree. These interior nodes can than be returned in Pinto queries,

allowing clients to display a single mesh containing the entire forest.

2.2.3 Messaging

Once an object discovers other objects in the world, it naturally might want to com-

municate. A chess application might have players send their moves to a chess board

object, while an outer-space simulation might have ships fire their guns at each other.

To handle application-specific messaging between object pairs, the Sirikata space

server has a message routing and forwarding component.

An object can send a message to any other object in the world. As mentioned

previously, the space maintains a unique identifier for each object in the world. This

identifier is included with results from Pinto, so an object can use it to send a message

through the space. Since it can be anywhere in the world, the destination object of

a message could be connected to a different space server than the sender. The space

server must forward this message to the other space, but it first must know which

space server the given object is connected to. To handle this lookup, Sirikata uses a

popular, open-source, reliable key/value database called Redis [38]. The value stored

in Redis maps an object identifier to the server it is currently connected to. The

15

space servers aggressively cache these entries so as to avoid an external lookup when

possible. If an entry is stale and a space tries to send a message to the wrong server,

it invalidates its cache entry and re-queries Redis. As an optimization, when an

object gets migrated from one space server to another, the previous server maintains

a forwarding record for a period of time so as to quickly update servers that try to

route messages to it.

Objects sending messages at a high rate could easily exhaust the messaging capacity of

the space. An ideal message forwarder would allocate its capacity with equal fairness

to each flow being routed through the space, while also allow the full capacity to be

used when under-utilized. When the space receives a low amount of traffic, it simply

forwards all messages. When under load, it uses an algorithm similar to the inverse-

square falloff of electromagnetic radiation in the real-world. That is, objects farther

away from each other in the virtual world receive less bandwidth than those that are

closer. This has the nice property that if an object wants to communicate with another

object at a higher rate, it can simply move closer to it. To efficiently enforce the

forwarding bandwidth weights, the space server uses a forwarding algorithm similar

to Core-Stateless Fair Queueing [47]. For a detailed explanation and analysis of

Sirikata’s forwarder, see Reiter-Horn’s PhD thesis [39].

2.3 Object Host

An Object Host in Sirikata is a process that connects to a space and adds objects to

the world. If an object host disconnects from a space, the objects it was hosting are

removed from the world. An object host can issue updates to the space to change the

location, orientation, scale, or mesh of one of the objects it hosts. If some object in

16

the virtual world sends a message (see Section 2.2.3) to another object, it gets routed

to the object host hosting the object.

An object host can be any application that follows the Sirikata protocol. A user’s

laptop might connect to the space and add a single object, the user’s avatar, to the

world and start rendering other objects on screen using a graphics engine. A headless

server might connect to the world to simulate a group of flocking birds. The reference

Sirikata object host is a C++ application, sometimes called cppoh, designed in a

modular fashion so that it can be a headless host to multiple objects, a graphics host

to a single object, or a hybrid of the two. There is also an experimental JavaScript

object host implementation, allowing an object to be hosted inside a web browser.

2.3.1 Scripting

So far, the Sirikata virtual world has been described as just a collection of objects

in a virtual three-dimensional coordinate system. To give application meaning to a

world, Sirikata’s reference object host has a scripting engine—allowing programmatic

access to the properties of objects and the messaging subsystem.

Sirikata’s scripting language is called Emerson. It is a programming language based

on JavaScript with domain-specific extensions. Emerson provides an easy-to-use in-

terface to an application writer, giving her programmatic access to create new objects,

modify objects, and send messages through the space to other objects in the world.

The Emerson language is extremely extensible because it can transfer script code

from one object host to another. Similar to how a web browser executes JavaScript

in an isolated sandbox, Emerson runs third-party application code inside a secure en-

vironment, such that no script can perform a privileged instruction unless the object

host (and by extension, the user) allows it to. For more details on the power of the

Emerson language, see Chandra et al. [8] and Mistree et al. [26].

17

2.4 Persistence Services

The persistence services subsystem of Sirikata is responsible for hosting and transcod-

ing the large files required for the graphical simulation of a three-dimensional virtual

world. Some examples of file types that might be needed are:

Meshes

A mesh is made up of vertices, edges and faces that together describe the surface

of a three-dimensional object.

Images

An image files are used to map color information (often called texture mapping)

onto the surface of a mesh. Image files can also be used for rendering a billboard:

a flat two-dimensional surface always facing the camera.

Animation

An animation is used to simulate movement of a mesh through space over time.

The most common animation formats are skeletal animation and morph anima-

tion.

Audio

Audio files can be used to create sound in the world.

Scripts

Scripts are text files containing a programming language for execution on the

object host. The Emerson language, described in Section 2.3.1, uses script files.

The Sirikata architecture decouples the servers hosting this content and the servers

simulating the space. In fact, the space servers only store a URI [4] when referencing

an external asset, so the delivery mechanism with which a client might acquire the

18

referenced resources is completely abstract. A URI allows for a multitude of protocols,

e.g., http, ftp, torrent, etc.

The rest of this thesis focuses on the Sirikata Content Distribution Network: the

implementation that provides persistent services to the Sirikata platform. The focus

of this work is on meshes and their associated textures. Chapter 3 details the de-

sign and implementation of this content network, Chapter 4 describes the automatic

transcoding process that converts meshes into an efficient format for real-time render-

ing and transmission, and Chapter 5 describes how the Sirikata object host schedules

the downloading of meshes to maximize visual fidelity given the fixed bandwidth

constraints of delivering content over the Internet.

19

Chapter 3

The Sirikata Content Distribution

Network

In this chapter, we present the design and implementation of the Sirikata Content

Distribution Network (Sirikata CDN). In Section 3.1, we detail the interface the

Sirikata CDN presents to end-users and the Application Programming Interface (API)

that is exposed to application developers. Since the Sirikata CDN is distributed

across multiple geographically separate datacenters, we first describe the design and

implementation of a single datacenter’s architecture in Section 3.2 and then explain

how data replication works in Section 3.3.

3.1 External Interface

The external interface to the Sirikata CDN is how end-users and applications can

interact with the service. The goals of the system are to provide a reliable hosting

platform for 3D assets associated with virtual worlds, provide a searchable index of

20

Figure 3.1: The Open3DHub website allows browsing of 3D meshes.

those assets, and provide an intuitive interface for users and applications to upload

and download assets.

3.1.1 Website

Today’s modern interface of choice to a cloud-hosted Internet service is the website.

Running on almost every consumer device in existence today—from handheld smart-

phones to desktop computers to powerhouse servers—the web browser is one of the

only truly portable application interfaces. As such, our choice for the main interface

for end-users of the Sirikata CDN is a website running at open3dhub.com [30].

As shown in Figure 3.1, the Open3DHub website allows users to browse the site’s 3D

content, showing thumbnail image renderings of each model. Users can also search

the website, returning models that match their search criteria.

The website maintains metadata about each 3D model in its database. Figure 3.2

shows an example list of the metadata a user can see when they go to a model’s page.

This includes properties about the models like the number of triangles, materials and

textures it contains. Users can download any model stored on the site in a convenient

zip file that contains its mesh file and textures.

21

http://open3dhub.com/

Figure 3.2: The Open3DHub website shows users properties of 3D models and links
for downloads.

Users of Open3DHub can upload 3D models with a web upload form. Uploading is

only enabled after a user is authenticated. For authentication, Open3DHub uses the

OpenID [31] protocol: an open standard that allows third-party services to provide au-

thentication details about its users. For example, users can log in to Open3DHub with

their Google or Yahoo! accounts. Once authenticated, 3D models can be uploaded

in the COLLADA [21] format. We chose COLLADA because it is a widely-support,

open standard for exchanging 3D assets. Most 3D authoring tools will export to the

COLLADA format, making it easy for anyone who has 3D models to upload them to

the site.

After a file is uploaded, Open3DHub ensures that it is a valid COLLADA file, converts

it to an efficient format (see Chapter 4), generates screenshots, makes the metadata

22

mentioned above available to users, and makes the file available for download to other

users and the API (see Section 3.1.2).

3.1.2 Application Programming Interface (API)

A robust Application Programming Interface (API) is becoming increasingly impor-

tant for services that operate over the Internet. One of the goals of the Sirikata

platform is to make its components easy to use and flexible for developers to incor-

porate. To this end, the Open3DHub website has an API that runs over the HTTP

protocol, the protocol that underlies the web and is readily available for use in all

modern programming tools.

As mentioned in Section 2.2, the Sirikata platform uses a URI to locate a mesh for

use within the virtual world. The URI scheme used by the Sirikata CDN takes the

form meerkat://[HOSTNAME]/BASENAME/FORMAT[/VERSION] with fields described in

Figure 3.3.

With a URI to a model, an application can perform various actions. A JSON string

containing metadata about a model can be retrieved, latest models can be fetched,

searches can be performed, and new models can be uploaded. The API methods

available to applications are listed in Figure 3.4.

The Sirikata space server also uses these upload URLs to upload aggregate meshes,

as described in Section 2.2.2. Since aggregate meshes are ephemeral—that is, they

get deleted once they are no longer in use—an additional API URL is available at

/api/keepalive for the space to send a keep-alive message.

This has been a very brief overview of the API. For more detailed information about

the Open3DHub API, see the Sirikata CDN API Documentation [45].

23

Field Description

HOSTNAME (Optional) The DNS hostname of the server contain-

ing the referenced asset. If not specified, an object

host can use a configured default. The hostname for

Open3DHub is open3dhub.com. Other implementations

of the Sirikata CDN protocol are free to operate on other

hostnames.

BASENAME The user-chosen path to the referenced resource, e.g.,

/jterrace/duck.dae.

FORMAT The format of the referenced model. The Open3DHub

site defines three formats: original—the uploaded

model in its original format, optimized—a format opti-

mized for real-time rendering, and progressive—a for-

mat that can be progressively streamed (see Chapter 4

for details).

VERSION (Optional) The version number of the model. If not

specified, the latest version is returned.

Figure 3.3: Descriptions of the fields in Sirikata’s URI

Action URL

Metadata Retrieval /api/modelinfo/BASENAME/VERSION
Browsing /api/browse/[?start=TIMESTAMP]
Searching /api/search?q=QUERY&start=START&rows=ROWS
Uploading /api/upload
Upload Status /upload/processing/TASK ID?api&username=USERNAME

Figure 3.4: Descriptions of the Open3DHub API methods

24

Celery
Worker Cassandra

Cassandra

Application
Storage

Apache + wsgi

Web Servers

Apache + wsgi

Celery
Worker

RabbitMQ

Reliable Messaging

RabbitMQ

Application
Processing

Celery
Worker

Celery
Worker

Processing requests

Processing requests
Solr

Search

Solr

Figure 3.5: The Open3DHub Sirikata CDN datacenter internals. Each dashed-line
box makes up a component of the architecture, and the arrows represent communi-
cation between components.

3.2 Datacenter Internals

This section presents the internal implementation of the Open3DHub Sirikata

CDN service. The architecture uses multiple geographically-distance datacenters to

provide fault tolerance, high availability, and good performance, but this section

only describes the internals of a single datacenter. The datacenter architecture of

Open3DHub is shown in Figure 3.5. The following sections describe the implemen-

tation of each component of the datacenter in detail.

3.2.1 Web Server

The web server is the front-end interface to users of the service. Open3DHub uses the

Apache Web Server [1] to serve the HTTP protocol. The application code serving the

website is available with an open-source license as the Sirikata CDN Project [46]. It

25

consists of about 3000 lines of Python [35] code, using the Django [11] web framework.

The Python code gets executed using WSGI [53], a gateway interface between web

servers and Python application code.

The web server processes requests from both the end-user website (Section 3.1.1) and

the API (Section 3.1.2).

All services on Open3DHub are provided with open-access, with the exception of

uploads, which require authentication so that they can be tied to a specific user.

Authentication for end-users is handled using OpenID [31]: an open standard that

allows third-party services to provide authentication details about its users. The API

instead uses the OAuth [29] protocol—an open, secure protocol that enables users to

grant access to applications on their behalf. For example, using an OAuth token, a

user can authorize a third-party application to upload models to Open3DHub on his

behalf.

As shown in Figure 3.5, the web server application interfaces with the application

storage component for retrieving information about models and with the search com-

ponent for executing search queries. When uploads are initiated by a user or through

the API, upload processing requests are sent to the reliable messaging component for

later execute by an application processing server.

3.2.2 Application Storage

At its core, Open3DHub is a storage service for 3D content. The traditional approach

to application storage is to use a Relational Database Management System (RDBMS)

to store application state. Although a valid approach, we decided to instead use

Cassandra [6]—a highly-available, fault-tolerant, scalable NoSQL database with great

support for cross-datacenter replication.

26

Column Family Description

Users Stores a list of users who have authenticated with

OpenID.

Names Stores a list of the 3D models in the database with their

associated metadata.

TempFiles Temporarily stores the binary file data of uploaded files

until they have been processed.

Files Stores the binary file data for uploaded and verified files.

Sessions Stores HTTP session information used by the Django

framework to look up session state associated with a

user’s browser cookie.

OpenIdAssocs,

OpenIdNonces

Stores OpenID authentication information for users.

CeleryResults Stores the result of application processing tasks (see

Section 3.2.3).

APIConsumers Stores a list of consumers of the API for use with the

OAuth protocol.

Figure 3.6: A list of Open3DHub’s Cassandra column families and their descriptions

A full discussion of our database schema is out of the scope of this thesis, but we

present a brief description of each of the column families (Casandra’s name for what

an RDBMS calls a table) in Figure 3.6.

Cassandra has a flexible consistency model. For example, applications within the

datacenter can read or write from a single database server or from a quorum of

servers, ensuring strong consistency and durability.

27

The data stored within Cassandra is actually distributed across multiple datacenters.

See Section 3.3 for a discussion of cross-datacenter replication.

3.2.3 Reliable Messaging

The life of a web request is typically short-lived. The Open3DHub web application

is responsible for web and API requests to the service, but background tasks are

handled with the application processing component. When the web server application

has a task to be performed that would take longer than a typical web request, it

inserts a message to the reliable messaging component that contains a task name and

arguments.

We use RabbitMQ [36]—a reliable messaging queue that ensures messages get de-

livered. The messaging services writes message contents to stable storage before

acknowledging receipt, ensuring that they will eventually get delivered. RabbitMQ

is designed as a queue of messages. The web server inserts messages to the queue

and the application processing servers take messages off the front of the queue to be

processed.

3.2.4 Application Processing

The application processing component uses the Celery [7] distributed task framework

for handling background operations. Celery allows the Open3DHub web server to

asynchronously execute a task on a remote server and poll for the result of the task.

The reliable messaging layer that Celery runs on ensures that tasks are eventually

executed on an application processing server.

There are several background processing tasks available for execution:

28

Upload Processing

When a file is uploaded to Open3DHub, it must be validated and inserted into the

database. The application processing component uses pycollada [34], a Python

library for parsing and modifying COLLADA [21] files and meshtool [25], a Python

library for executing operations on COLLADA files using pycollada. This task also

executes additional processing tasks after the upload is validated.

Generating Metadata

After an upload is validated, this task uses meshtool to export metadata about

the 3D model: properties such as the number of triangles in the mesh and the

number of textures referenced by the model.

Generating Screenshots

After an upload is validated, this task uses the Panda3D [32] graphics engine

to render the model. Since the application processing servers are running in a

headless environment, the X virtual frame buffer (Xvfb) is used to simulate a

display.

Search Index Updates

When a model is first uploaded or after it’s been edited, the search index needs

to be updated. This is done in a background task, contacting the search server to

issue the update.

Transcoding

After a file is uploaded, it gets automatically converted to an efficient format for

real-time rendering and delivery. See Chapter 4 for details.

29

3.2.5 Search

To allow users and API clients to search the contents of the Open3DHub repository,

we use Apache Solr [2], which supports full-text indexing and faceted search. It

can also distribute the search index across multiple servers and supports replication.

We currently only index the text-based fields of 3D models: title, description, tags,

and filename. However, Solr can also index other types of information, so we could

index models based on their metadata. For example, a useful search query might

be to find all models in the database that have less than N triangles. We leave this

implementation as future work.

3.3 Cross-Datacenter Replication

The Sirikata CDN architecture allows for replicating its services across multiple

geographically-diverse datacenters. This is beneficial for fault-tolerance and avail-

ability. It also allows for low-latency access to the CDN for faster downloads. Our

prototype implementation currently has datacenters hosted at Princeton University

in Princeton, New Jersey and at Stanford University in Stanford, California. To route

clients to the nearest datacenter, we use the DONAR [52] DNS routing system.

A distributed datacenter architecture raises interesting questions about consistency

and replication. The two main components that need to be replicated from the

Open3DHub datacenter components outlined in Section 3.2 are the Cassandra

database and Solr search. A depiction of our replication scheme is shown in

Figure 3.7.

Cassandra has cross-datacenter wide-area replication built-in to its architecture. It

uses an eventually-consistent approach to replication across the wide-area. Within

a datacenter, all operations that read from and write to Cassandra within the

30

Stanford Datacenter Princeton Datacenter

Cassandra Cassandra

Apache Solr Apache Solr

•  Slave servers
•  Read local
•  Write remote

•  Master servers
•  Read local
•  Write local

•  Read local
•  Write local
•  Async Replication

•  Read local
•  Write local
•  Async Replication

replication

replication

Figure 3.7: Replication between datacenters in the Open3DHub Sirikata CDN.

Open3DHub code base use Cassandra’s LOCAL QUORUM consistency flag, which re-

quires that a quorum of servers in the local datacenter respond to the given query.

Since clients are pinned to a single datacenter by DONAR, client applications will

get predictable semantics, such as read-after-write consistency. It is possible for data

loss to occur if a datacenter goes down before it has a chance to replicate outstanding

data to an additional datacenter. However, as long as the datacenter eventually

comes back online, replication will continue as expected.

There is one inconsistency that can occur with our Cassandra architecture. If a

Sirikata client uploads content to Open3DHub and immediately adds it to a space

server, another client connecting to a different Open3DHub datacenter might not

immediately have access to the new content. We circumvent this issue by having

clients retry requests to the CDN if a valid URI from the space is not yet available.

Once the data is eventually replicated, the client will be able to download it as

expected.

The Apache Solr service provides replication by using a master server and a number

of slave servers. Writes can only be issued to the master server, with replication

being performed asynchronously to slave servers. The way we handle this is to have

31

a single datacenter contain the master Solr server, with writes to the search index

from that datacenter being local operations. The rest of the datacenters only contain

a slave server, so writes cannot be issued locally. Writes from slave datacenters write

remotely to the master datacenter, but we encapsulate the search index updates into

a Celery task. If the remote datacenter is not available when the task is run, the task

gets re-executed later, using an exponential backoff for the amount of time to wait

before re-executing. Once the remote datacenter comes back online, the Celery task

will succeed in updating the search index. The search tasks are executing using the

reliable messaging layer, ensuring that tasks will eventually get executed.

32

Chapter 4

Content Conditioning

A key feature of Sirikata, and dynamic virtual worlds in general, is to allow users

to insert new content into the world. Arbitrary 3D content, however, is often not

optimized for real-time rendering or streaming over a network. To provide a stream-

able, efficient format to end-users, this chapter presents an automated, unsupervised

conditioning pipeline for 3D content, which Sirikata’s CDN servers execute upon up-

load of content from a user. Started primarily as an engineering task to build the

content conditioning and encoding pipeline needed for large-scale, 3D, interactive

metaverses, our conversion process leverages several known techniques. However, in

providing a complete, robust, and unsupervised system for dynamic virtual worlds, we

have solved several problems that arose with previous techniques. Our contributions

include several algorithms and novel heuristics for:

• A stopping point for existing supervised algorithms, chosen to work well for a

large collection of models;

• Apportioning constrained texture space to areas of a 3D model, with the goal

of minimizing loss in quality;

33

• A new progressive encoding for meshes and textures that balances the trade-offs

between efficient transmission and efficient display; and

• A complete, robust conversion framework.

In doing so, we present a framework for the unsupervised conversion of 3D content

for use in user-generated virtual worlds. The conversion process produces models in a

consistent format, increasing the number of models that can be rendered at real-time

frame rates and decreasing the amount of data that needs to be downloaded to first

display a model.

4.1 Motivation

During the summer of 2009, a group of 15 students at Stanford and Princeton were

asked to create sample Sirikata applications. As part of this process, they uploaded

3D models to the Sirikata CDN hosted at Open3DHub. Most content came from

external sources, while a small percentage were created by the users themselves.

Unfortunately, we quickly ran into problems.

Modern consumer graphics cards are only efficient for models with specific properties.

Since a GPU can only render a full scene with a few million triangles at interactive

frame rates, an individual model with hundreds of thousands of triangles does not

leave room for complex scenes. Excessively large textures are similarly limiting. Fur-

ther, a GPU is only efficient when geometry is submitted in a batch, sharing the same

set of vertices, textures, and material properties. Modern GPUs only support a few

thousand draw calls at real-time rates.

Figure 4.1 shows a graph of the number of triangles, texture RAM (32 bits per pixel),

and number of draw calls (marker size) for the 748 models uploaded over a period

of three months. More than half the models uploaded by our users fail to satisfy at

34

0 101 102 103 104 105 106

Number of Triangles

0
101
102
103
104
105
106
107
108

Te
xt

ur
e

R
A

M
(b

yt
es

)

Figure 4.1: Number of triangles (x-axis), texture RAM (y-axis), and number of
draw calls (marker size) for 748 test models.

least one of these properties required for efficient rendering in a scene with thousands

of models.

To enable users to add arbitrary content, we needed a way to convert the models into

a format for real-time rendering The goals of the conversion process are as follows:

1. Reducing Draw Calls: A major bottleneck for large scenes is the maximum

draw calls per second the graphics card supports. Our primary goal is to reduce

the number of draw calls to a small, constant number.

2. Simplifying Mesh: Clients might want to load a complex mesh at lower

resolution, e.g., if the object is far in the distance or the client is running on a

low-power mobile device.

3. Reducing Texture Space: Since graphics cards have a fixed amount of tex-

ture RAM (and for the same reason a simplified mesh is desired), a client might

want to load a model’s texture(s) at lower resolution.

4. Progressive Transmission: A progressive encoding allows a client to start

rendering the model with only a subset of the data. This is especially desirable

35

when connected via a low-bandwidth link or when a model covers only a small

part of the user’s field of view.

4.2 Related Work

Early work on the simplification of polygonal models was focused on reducing the

complexity of geometry alone [13, 20], while later work also considered additional at-

tributes such as colors, normals, and texture coordinates [14, 19]. The first progressive

encoding [17] allowed for a model’s full resolution to be progressively reconstructed.

However, textured models that are simplified with this method produce poor results,

which led to simplification algorithms based on texture stretch [10, 42]. Our work

closely follows Sander, et al. [42] with a few modifications (see Section 4.3), most

importantly to allow the process to run unsupervised.

4.3 Conversion Process

Our unsupervised conversion process turns any 3D model into an efficient, progressive

encoding for use within a real-time rendering environment. The conversion process

works by executing a series of steps:

• Cleaning and normalizing the model (Section 4.3.1);

• Breaking the model into charts, contiguous submeshes used to map the mesh

into a texture (Section 4.3.2);

• Fairly allocating texture space to charts (Section 4.3.3);

• Packing charts into a texture atlas (Section 4.3.4);

• Simplifying the model (Section 4.3.5); and

36

• Encoding the result into a progressive, streamable format (Section 4.3.6).

4.3.1 Cleaning and Normalizing

Before the conversion process, the system normalizes the model by performing the

following standard steps:

• Quads and polygons are converted to triangles. The mesh simplification algo-

rithms require triangles, and clients would otherwise need to triangulate the

model for rendering.

• Missing vertex normals are generated, enabling consistent client-side shading.

• Extraneous data is deleted, including unreferenced data and duplicate triangles.

• Complex scene hierarchies and instanced geometry is flattened to a single mesh.

This can increase file size but makes simplification and charting easier, as well

as simplifying client model parsing.

• Vertex data is scaled to a uniform size, in order to normalize error values in

subsequent steps.

4.3.2 Creating Charts

A model requires multiple draw calls to render it primarily when it uses multiple

materials and textures for submeshes. To reduce the draw calls required (Goal 1),

the model’s materials must be combined such that the mesh can be rendered in a

single batch1. A naive approach would simply combine all textures into a texture

atlas [28]. The problem with this approach is twofold. First, input models often

1 For simplicity, our implementation currently only considers the diffuse channel, but the same
technique can be repeated for additional color channels, e.g., normal maps, specular highlights, glow
maps, etc.

37

(a) Rendering (b) Wireframe (c) All Merges (d) Heuristic

Figure 4.2: Example model of a duck, showing its original rendering (4.2a), wire-
frame (4.2b), result of merging its charts completely (4.2c), and result of merging its
charts when using the heuristic in Formula 4.1 for determining when to stop (4.2d).

waste texture space by using only small subsets of large textures, e.g., a few leaves

from a photograph of a tree. Second, models that use texture wrapping (i.e., use

texture coordinates beyond the dimensions of the texture that must be wrapped)

require duplicating the texture many times so that these coordinates do not wind up

in neighboring textures. This duplication is wasteful and can consume a large fraction

of the texture budget.

Instead, the system copies only the referenced parts of textures into the atlas. To do

so, the mesh is first partitioned into charts, or contiguous groups of triangles in the

mesh [42]. The system creates a chart for each triangle and a greedy algorithm merges

adjacent charts that create the least additional error using a priority queue. The

process closely follows the algorithm from Sander et al. [42] and Garland et al. [15],

where each merge operation is assigned a cost that measures both its planarity and

compactness. However, we had to make a few modifications. First, merging identical

but opposite-facing triangles is disallowed, so that double-sided geometry does not

result in charts that cannot be parameterized into texture space (see Section 4.3.3).

Second, our algorithm only allows merging two charts if they are both textured or

both contain the same color. This allows an entire color-based chart to be trivially

paramaterized to a small fixed-size region.

38

0 1000 2000 3000 4000
Merge Step

103

104

105

106

107

E
rr

or
Va

lu
e

0 1000 2000 3000 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
eu

ri
st

ic
Va

lu
eHeuristic

Maximum
Current

Figure 4.3: The current error term, maximum error term in the priority queue, and
a heuristic formula during each step of an example chart-merging operation. The
vertical line is the chosen stopping point when using a threshold value of 0.9.

While prior work [42] required an operator to manually choose when to stop the merge

process, our algorithm must determine this stopping point automatically. Figure

4.2 demonstrates why selecting a stopping point is important. If the merge process

is left to run to completion, only four charts remain (per Figure 4.2c). However,

planarity is important when paramaterizing the charts into 2D texture space, because

texture stretch increases when planarity decreases. This is the motivation behind

using planarity and compactness in the cost assigned to merge operations [15].

Ideally, the process should stop at a point that produces disc-like, planar charts that

can be paramaterized into texture space with minimal error. Figure 4.3 plots the

error term at each step of the merging process for the model in Figure 4.2a, as well

as the the maximum error term in the priority queue at each step. The error term

becomes doubly exponential (note the log scale of the y-axis) around step 3800. The

maximum error also remains stable until this point.

Our algorithm stops the merging process around such a point that corresponds to

a phase change in the error rate. To automatically detect it, we use the following

39

heuristic, which is also plotted in the figure:

log(1 + Ecurrent)

log(1 + Emax)
(4.1)

where Ecurrent and Emax are the current error term and the maximum error term

seen at each step, respectively. This represents how close the current error term is

to the maximum in a log scale. We use a threshold of 0.9, which coincides with the

error term becoming doubly exponential. Figure 4.2d shows the model’s charts when

stopped according to this heuristic metric. This heuristic and threshold work well in

practice across a range of models: the error during the merge process for all models

in the testing set are similar to that shown in Figure 4.3.

4.3.3 Sizing Charts

Once the charts for the mesh have been defined, each chart is paramaterized from 3D

into 2D texture space, so that they can be packed into an atlas. We paramaterize

the charts using an optimization algorithm based on texture stretch [42]. For charts

that are only a single color, however, this paramaterization is trivial: we map all

coordinates within the chart to a single coordinate in texture space containing the

color.

Each chart has to be given a size in texture space. Sander et al. [42], on which our

approach is based, define two texture stretch norms over a triangle T : (i) L2(T), the

root-mean-square stretch over all directions, and (ii) L∞(T), the maximum singular

value. The L2 norm is used because, as noted, unfortunately there are a few triangles

for which the maximum stretch remains high. However, we found that, with a large

sample of models, the L2 norm can also be too large for some charts, leaving very

40

little room for other charts. This is particularly bad when a chart covering a small

portion of the mesh has high texture stretch.

Instead, we select a fixed target size for the texture, and we allocate texture space

fairly across all charts based on texture stretch, relative surface area in 3D, and

relative area in the original textures. The target texture size T is set as the minimum

of the total original texture area referenced by all triangles and the maximum texture

size for modern graphics cards (we currently use 4096x4096). Each chart is assigned

a 2D area equal to:

A
′′

c = 3

√
(

L2
c∑
L2

)(
Ac∑
A

)(
A′

c∑
A′) · T

where L2
c is the chart’s texture stretch, Ac is the chart’s surface area in 3D, A′

c is

the chart’s area in the original texture space, and
∑

L2,
∑

A, and
∑

A′ are the

sum across all charts of texture stretch, 3D surface area, and original texture area,

respectively.

4.3.4 Packing Charts into Atlas

After each chart has been paramaterized, they must be combined into a texture at-

las. To enable an atlas to be resized into lower resolutions (Goal 3), a chart must not

cross a power-of-two boundary of the atlas. Otherwise, it could bleed into adjacent

charts [28]. We developed an efficient chart-packing algorithm to perform this encod-

ing. The algorithm maintains a tree-based data structure, with each node in the tree

representing a region of the atlas. Each chart is inserted in decreasing order by size,

with the goal of finding a spot containing enough room for the chart’s image without

crossing a power-of-two boundary. To choose a placement for each chart, the tree is

traversed recursively until a valid placement is found; the chosen node is split into

41

the placement and any remaining free space. For all models in the testing set, this

method successfully packs charts into a texture atlas within a power of two of the

target size chosen in Section 4.3.3.

4.3.5 Simplification

While creating charts and mapping them to a single texture addresses Goal 1, achiev-

ing Goal 2 requires reducing the complexity of the model. As in Sander et al. [42], we

use a greedy edge-collapse algorithm based on a combined metric of quadric error [13]

and texture stretch. The algorithm generates a low resolution base mesh and a list

of refinements which can be applied to reconstruct the original mesh.

The mesh could be simplified until there are no longer any valid edge collapses,

but this often results in parts of the mesh’s volume collapsing completely, e.g., an

avatar’s fingers disappear. We found that the combined error metric for mesh sim-

plification follows the same property as the error term for merging charts. To avoid

oversimplifying a model, therefore, we apply Equation 4.1 from Section 4.3.2 and stop

simplification once the metric reaches a threshold of 0.9. This approach works well

for the models tested, simplifying the models to reduce their complexity, but leaving

the base mesh at an appropriate level-of-detail so as to not lose too much volume.

Some models are not worth simplifying because the cost of sending a batch of triangles

to the GPU dominates the cost of rendering the full mesh. For example, sending

10,000 triangles often has no additional cost over sending 5,000 triangles. Therefore,

if a model is less than 10,000 triangles or if the progressive stream is less than 10%

of the size of the original mesh, we revert the simplification process and encode the

base mesh as the full resolution model.

42

4.3.6 Progressive Encoding

The ideal progressive encoding (Goal 4) would satisfy the following three properties:

1. The simplified base mesh can be downloaded and displayed without download-

ing the rest of the data.

2. Progressive refinements can be streamed, allowing a client to continuously in-

crease detail.

3. The mesh’s texture can be progressively streamed, allowing a client to increase

texture detail.

While there are existing progressive mesh formats, to our knowledge none support

complex meshes with textures and materials, and none are widely used. To provide

such a progressive format, we start by encoding the base mesh using COLLADA, as

it is an open, widely-supported format for 3D interchange. It allows for referencing

complex materials and textures, and since it is widely-adopted, existing platforms

can use the base mesh without modification.

Mesh data in COLLADA is encoded as indexed triangles. A vertex in a triangle

contains an index into a source array for each attribute (e.g., positions, normals, and

texture coordinates). This per-attribute indexing allows for the efficient deduplication

of source data (i.e., eliminating redundancy), which serves to reduce file size. When

sending mesh data to a graphics card, however, a client must create a single set of

indices, such that the source attributes are aligned in memory.

The progressive stream format for meshes must balance these opposing requirements.

It should be encoded efficiently so as to require less bandwidth. But, it also should

not require a client to maintain both the original and converted data to efficiently

apply mesh updates, i.e., vertex additions, triangle additions, and index updates.

43

Our progressive stream is encoded as a sequence of refinements, each comprising a

list of individual updates to be applied together. However, it is encoded assuming

it will be applied to the decoded base mesh where indices for vertex data have been

converted to a single index while deduplicating index tuples to minimize data size.

Because it uses a single index, the progressive stream is slightly larger but allows a

client to efficiently add progressive detail to a loaded mesh.

Unfortunately, there are also no existing widely-supported progressive texture formats

that meet our needs. We require a format which provides good overall compression,

allows a client to download and load a low resolution version, and supports the pro-

gressive addition of detail. Decoding most progressive formats, such as JPEG or

PNG, require a client to use a full-resolution buffer regardless of how much of the im-

age is loaded. The DDS format encodes compressed mipmaps, but it uses fixed-rate

compression for hardware-accelerated texture mapping, resulting in poor compres-

sion. Additionally, because it is not a common image format, some platforms (e.g.,

web browsers) do not have decoders readily available.

Instead, our encoding resizes the full-resolution texture to generate multiple levels of

detail in the form of power-of-two mipmaps, each encoded as a JPEG. The mipmaps

are then concatenated in a tar file. This approach has several practical benefits: it

achieves good compression, allows a client to directly index offsets into the file, e.g.,

using a simple HTTP range request if content is served over the web, and supports

multiple, contiguous resolutions being downloaded with a single request. As with the

progressive mesh format, this requires downloading more data overall, but allows a

client to load low-resolution textures much more quickly. Critically, the full resolution

texture may never be required if an object is far in the distance, a client is moving

quickly through a scene, or a client is rendering a scene at low resolution.

44

0.0 0.2 0.4 0.6 0.8 1.0
Mesh

0
100
200
300
400
500
600
700

F
ra

m
es

Pe
r

Se
co

nd
Base Progressive
Full Progressive
Original Flattened
Original

Figure 4.4: Render throughput of the original, flattened, base, and full progressive
format for each model in the testing set.

4.4 Results and Analysis

As part of our Sirikata platform, we created a web service where users upload

3D models in COLLADA format which are converted using the process in Sec-

tion 4.3. The conversion is implemented in an open-source library, available at

https://github.com/sirikata/sirikata-cdn. The library is currently running on a

production server at open3dhub.com.

4.4.1 Render Efficiency

The primary goal of the conversion process is to improve the rendering efficiency of

models by reducing the number of draw calls. Figure 4.4 shows the throughput, in

frames per second, attained when rendering each model using a Macbook Pro with a

2.4 GHz P8600, 4GB RAM, and 256MB NVIDIA GeForce 9400M graphics card. The

original models span a wide range, with many showing poor performance. Even after

flattening the original model, an expensive operation that a client might be able to

perform, the models still span a large range. The converted progressive base format

45

https://github.com/sirikata/sirikata-cdn
http://open3dhub.com

Progressive 128 256 512 1024 2048

0% 0.53 0.63 0.81 1.03 1.35
25% 0.65 0.75 0.97 1.16 1.45
50% 0.74 0.85 1.02 1.26 1.58
75% 0.79 0.95 1.11 1.34 1.70

100% 0.88 0.99 1.20 1.44 1.82

Figure 4.5: Mean size of progressive format as a fraction of the original across all
test models, shown as a function of the progressive stream downloaded and texture
resolution.

both improves performance and gives more consistent frame rates for the majority of

models. The full version of the progressive format predictably has lower throughput

for some large models. About 10% of models always have low throughput, however.

These models are difficult to simplify because they are not well-connected, e.g., trees.

Other techniques could be used for these models, such as image-based rendering.

4.4.2 File Size

The size of the converted mesh is also important for performance, as metaverses

stream content to clients on-demand. Table 4.5 shows the mean file size of the pro-

gressive encoding as a fraction of the original, across a range of texture resolutions

and fraction of the progressive stream downloaded, both cumulative. The mean size

for the lowest resolution is half the original, so clients can begin displaying the model

earlier. The higher texture resolution is responsible for a large fraction of the full

download size, so clients that use lower texture resolution receive a significant band-

width savings. An example model at multiple resolutions is shown in Figure 4.6.

Figure 4.7 plots the change in the number of kilobytes required to display each model.

It compares the original against the base mesh with textures no more than 128x128

pixels (corresponding to the top-left cell of Table 4.5). For 80% of models, the amount

of data that has to be downloaded by a client before being able to display the model

46

(a) Base Mesh +
128x128 Texture (334
KB)

(b) Base Mesh + 25%
Stream + 256x256 Tex-
ture (568 KB)

(c) Base Mesh + 50%
Stream + 512x512 Tex-
ture (923 KB)

(d) Base Mesh + 75%
Stream + 1024x1024
Texture (1755 KB)

(e) Base Mesh + 100%
Stream + 2048x2048
Texture (4385 KB)

(f) Original Mesh (913
KB)

Figure 4.6: Example of a teddy bear model at different resolutions of the progressive
format (1 draw call) and its original format (16 draw calls). The size in KB assumes
downloading progressively, e.g., 4.6e‘s size includes lower-resolution textures.

0.0 0.2 0.4 0.6 0.8 1.0
Mesh

−104
−103
−102
−101

0
101
102
103
104

C
ha

ng
e

in
K

B

Figure 4.7: The change in download size between original models and base converted
models at 128x128 texture size.

47

0 10 20 30 40 50 60 70 80 90 100
Progressive Stream

0
2
4
6
8

10
12

D
el

ta
E

Mean
Median

Figure 4.8: The perceptual error between original model and converted model as a
function of the percentage of progressive stream downloaded. Texture size at x = 0
starts at 128x128, increasing by a power of two for each 10%.

decreases. The majority of the rest only have a small increase in file size, while a select

few increase substantially. Some of the increase can be attributed to adding extra

information to the model that was not present before (e.g., normals and texture

coordinates), but the majority is due to flattening instanced models. For heavily

instanced models (e.g., trees and grass), this can result in a significant increase in file

size, although it still preserves the ability the use a single draw call. As previously

mentioned, we are exploring other techniques such as image-based rendering to handle

these models.

4.4.3 Perceptual Error

Besides improving performance, the conversion process should not compromise the

appearance of models. We evaluate the visual fidelity by comparing screenshots of the

progressive mesh to a screenshot of the original. We start with the base mesh with

128x128 textures and then, at each step of the experiment, increase the mesh quality

of the progressive stream by 10% and the texture quality by a power of two. We

compare screenshots using the CIEDE2000 [44] (Delta E) color comparison metric,

48

disregarding background pixels 2. A CIEDE2000 delta of less than 1 is not noticeable

by the average human observer, while deltas between 3 and 6 are commonly-used

tolerances for commercial printing. Although this method is dependent on the camera

angle and more advanced comparison techniques exist [37], it offers a simple and

intuitive measurement of perceptual error. As shown in Figure 4.8, the perceptual

error declines quickly, with the majority of the error becoming indistinguishable once

40% of the progressive stream is loaded.

2 The CIEDE metric is a subset of the perceptualdiff metric used in Section 5.4.2 and produces
an equivalent output on our datasets.

49

Chapter 5

Download Scheduling

Chapter 4 presents an automated process that converts 3D content into an efficient

format. This enables 3D models to be progressively streamed to an end-client, but

large scenes can be made up of hundreds of objects. The order in which a client

downloads pieces of each 3D model’s progressive stream has a large impact on the

visual makeup of the scene. Therefore, in this chapter, we present a framework for

comparing download scheduling algorithms for progressive meshes in dynamic virtual

worlds. Our goal is to define an objective metric with which to evaluate scheduling

algorithms, attempting to minimize visual error over time for a client downloading

resources from a remote server. Our framework records the rendering of the world

as a scheduler runs, using an image comparison metric to find an objective measure

of how well one algorithm performs compared to another. Armed with this frame-

work, we evaluate several different individual metrics for scheduling downloads as

well as combinations of these metrics. We also run two different linear optimization

algorithms to try and reach an optimal scheduling algorithm. After a thorough eval-

uation, we find that a single, simple metric—solid angle—consistently outperforms

all other metrics.

50

5.1 Related Work

5.1.1 Rendering Complex Scenes

Previous work by Funkhouser et al. [12] is similar to our work in that it estimates

a cost and benefit of available levels of detail for each object in a 3D scene. A

optimization algorithm greedily chooses as many objects as it can to minimize visual

error while maintaining an interactive frame rate. A key difference is that rendering

a model’s LOD from memory is several orders of magnitude faster than loading via

a networked link. The work focuses on optimizing for a consistent frame rate, rather

than minimizing visual error. As the latency required to load a model increases,

the importance of the metric used to decide what to load next increases. Therefore,

we evaluate multiple possibilities for a benefit calculation rather than using a fixed

formula.

Methods for accelerating walkthroughs [43] of complex 3D scenes have been devised

that construct a tree-based structure of the scene and then cache rendered frames for

later use. This works well in reducing the rendering time of subsequent frames, allow-

ing a client to maintain interactive frame rates for complex environments. This work

does not apply to download scheduling in dynamic virtual worlds, where end clients

still have to download large amounts of information before a frame can be rendered.

This method could, however, be used to accelerate the rendering of subsequent frames

after an object has been downloaded locally.

View-Dependent Level-of-Detail calculation and rendering [18] has been used to accel-

erate the rendering of very complex meshes, with a particular application to terrain.

A preprocessing step generates a set of geomorphs that are then used to stream pro-

gressive meshes [17] depending on the view of the camera. Although the work focuses

on single, complex objects, it could easily be extended to scenes. However, it requires

51

preprocessing the scene, which isn’t possible in a dynamically changing environment.

Each individual object could instead have its own view-dependent stream, considered

separately from other objects, but no indiciation is given on how to prioritize multiple

objects, which is what we deal with here.

5.1.2 Streaming Meshes

A method for progressive transmission of multi-resolution models from To et al. [49]

uses a progressive mesh file, along with state maintained at a server that allows a

client to stream a mesh progressively according to its viewing angle. In our system,

we avoid server state to scale the virtual world, so a view-dependent stream method

such as this would be difficult to provide. The choice given to the client of what to

download next is made using a simple metric based on its distance and size, without

further evaluation of different scheduling algorithms.

Rather than using a progressive mesh format, subdivision surfaces can be progres-

sively transmitted [24] instead, with a similar goal of allowing clients to selectively

stream additional detail. The main advantage of subdivision surfaces over progressive

meshes is that they allow for unordered transmission and reconstruction of the mesh.

On the other hand, since we use a large progressive mesh chunk size and ordered-

delivery via TCP, this advantage wouldn’t gain much unless the network medium was

unusually lossy.

QSplat [40] uses a point-based rendering system together with a bounding-volume

hierarchy to allow objects to be progressively refined in detail. Its followup work [41]

allows this format to be streamed over a network by explicitly requesting nodes of

the hierarchy to be transmitted from server to client. These nodes are ordered based

on their screen size, without discussion for other possible ordering schemes.

52

Work from Yang et al. [54] divides each mesh into several partitions, allowing each

partition to be individually streamed to end-clients. A server computes visibility and

decides what partitions to stream to a client next, e.g., occluded objects would receive

a lower resolution than visible objects. Unfortunately this technique does not scale

with an increased number of clients. Servers would have to continually update this

visibility information, thereby requiring a linear increase in work as the number of

clients increase. In the Sirikata architecture, we avoid maintaining state on the server,

instead pushing work to the client when possible.

Kim et al. [22] provide a framework for view-dependent streaming of progressive

meshes. Their technique scales well from the client’s perspective because a compact

data structure is maintained at the server indicating which parts of the progressive

mesh have been transmitted so far. The client sends its current viewing angle to the

server, receiving back a list of refinements. As mentioned previously, maintaining

and updating this state at the server doesn’t scale well to large, distributed worlds

or large numbers of clients.

5.2 Download Scheduling

In this section, we describe the problems and questions associated with the scheduling

of downloads in an interactive 3D application, present several metrics that might

be used when deciding on the priority of downloads, and then discuss the methods

for combining multiple metrics together to make a decision about what should be

downloaded next.

53

5.2.1 Problem

Unlike in application where assets are fixed and can therefore be preloaded, a dynamic

3D environment allows users to add new objects to the world. For another client to

display this object, it must download the data needed to load it into its GPU.

When a client enters a virtual world, it gets a list of objects in the world that need to

be displayed. Some objects might have associated model data cached on the local disk

that was previously downloaded: either at the full resolution or some lower, partial

resolution version. Other objects might have nothing available locally and can’t be

displayed until something is downloaded over a network.

The goal of the client should be to minimize the visual error of each rendered frame

with respect to the full-resolution version of that frame. The client has a fixed amount

of bandwidth with which to download missing objects, so the question the client needs

to answer is: given the list of objects in the scene and the list of model data that has

already been downloaded, what should be downloaded next to minimize visual error?

Since the latency of downloading an object is several orders of magnitude greater

than the latency of rendering a frame, the order in which downloads are executed

determines what the user sees when loading a scene. We outline the exact objective

metric we use to compute visual error, modeled after how a human would perceive

it, in Section 5.4.2.

5.2.2 Metrics

There are many possible metrics that a client could take into account when deciding

how to schedule its next download:

54

Distance

How far away the object is from the user’s camera. Objects that are closer might

be more important to download before objects that are farther away.

Scale

How large the object is in the scene. A larger object might be more important.

Solid Angle

How large the object appears when looking from the user’s camera. Encompassing

both distance and scale, the solid angle roughly approximates how many pixels

the object would take up on the user’s screen. An object with a larger solid angle

might be more important for scheduling downloads.

Camera Angle

The angle of rotation between the center of the camera and the object. Objects

closer to the center of the field of view of the observer might be more important

than, eg an object behind the camera.

Precomputed Perceptual Error

The perceptual error (see Section 5.4.2) between a lower-resolution version of the

model and its full resolution. Given a model format that is streamable (see Sec-

tion 5.3.1), having an indication of the benefit of downloading a higher resolution

version of a model could be helpful for scheduling downloads.

Motion Prediction

A prediction of what the user’s location will be in the future. If the user is moving

very fast in some direction, objects located in the vicinity of that direction might

be more important. This could be implemented with simple linear interpolation

or a more complicated algorithm.

55

Occlusion

Whether or not the object is occluded by another object. If an object is not visible

because it is occluded, downloading it might be less important. This might be

estimated based on the bounding volume of each object in the scene or calculated

using an advanced raytracing technique.

5.2.3 Making a Decision

Given several of the metrics from Section 5.2.2 for each object in a scene, deciding

how to use the information to generate a decision for what to download next is an

open problem. Although the space of possible combinations is infinite, we propose

several feasible strategies:

Single Metric

One option is to ignore all of the metrics except for a single choice. For example,

the scheduler could simply always download the largest object in the scene first,

thereby only taking into account the Scale metric. This has the advantage of being

very easy to implement, but might not be the optimal choice.

Linear Combination

Combining multiple metrics in a linear fashion. That is, normalize each metric

to a numerical value between 0 and 1, weighting each value by a constant factor,

and taking the sum to get a result value. The difficulty with this method is how

to decide what the weights should be for each metric. This is particularly difficult

because the scale of the independent metrics varies.

Multiplication

Combining multiple metrics by multiplying their normalized values. This allows

each metric to contribute to the final result value in an intuitive way. The problem

56

with this approach is that because of the independent scale of each metric, a single

metric could end up dominating the ordering of the result.

Other

There are various other methods that could be devised, such as a combination of

linear weights and multiplication or a non-linear combination of metrics.

To get an idea for how each metric contributes to the scheduler, we first thoroughly

explored each individual metric in isolation. This presents a baseline for how well

the metric does at approximating visual utility. We also explore linear combinations

and multiplications in our evaluation in Section 5.4. Although other metrics could be

devised, we could think of no immediately apparent justificiation for more complex

approaches to combining metrics. We leave this as a possible avenue of exploration

for future work.

5.3 Implementation

This section presents a detailed explanation of the 3D progressive file format we use

for our implementation and describes the comprehensive testing framework we built

for evaluating download scheduling algorithms.

5.3.1 3D Progressive File Format

As mentioned in Section 1.3, a progressive file format is necessary to allow clients

to have fine-grained control over what they download. The progressive file format

we use is based on our previous work [48], presented in Chapter 4, on designing

an unsupervised conversion framework for 3D models. A user can upload any valid

57

Metadata

Base Mesh
& Texture

Texture 2

Texture 3

…	

Mesh	 Refinement	 1	

Mesh	 Refinement	 2	

…	

Figure 5.1: Dependency graph for progressive format downloads

3D model to the content repository and it gets automatically converted into the

progressive format.

The progressive file format consists of three types of downloads:

Base Mesh

A base, low-resolution version of the mesh that is small in download size and

efficient to render

Mesh Refinement

A chunk of vertex additions, triangle additions, and triangle index updates that

refines the mesh from its current level of detail into a higher level of detail

Texture Update

A new texture image that can be swapped in to increase the model’s texture detail,

e.g., from 128x128 to 256x256.

The base mesh must be downloaded before a mesh refinement or texture update

can be applied. Each mesh refinement depends on the mesh refinement before it.

Texture updates are encoded as a full, independent image at each resolution. Sim-

58

ilar to mipmapping techniques, this results in a 33% overhead vs. storing only the

full-resolution texture or a progressive texture encoding. We chose to encode each

resolution independently for compatibility with platforms (e.g., the web) that only

support decoding standard image formats. We treat texture updates as if they were

dependent on the previous resolution to enable using a progressive, streamable image

format in the future.

Before downloading anything for a model, a client must first find out what is available

to download. Given a URL for the model, it downloads a small chunk of metadata that

contains information about the base mesh, mesh refinements, and texture updates

and details about the model such as how many triangles and vertices it has. The

dependency tree for model downloads is shown in Figure 5.1.

5.3.2 Scheduling Algorithm Evaluation Framework

To evaluate download scheduling algorithms, we built a framework in Python con-

sisting of about 2500 lines of code. At the core of the framework is a progressive

scene loader that renders a scene using the Panda3D graphics engine [16], allowing

for a pluggable algorithm when determining how to schedule its downloads. The

scene loader takes a scene file as input that determines the objects in the scene, and

a motion path file containing camera positions and orientations over time. The scene

loader then interpolates the movement of the camera through the scene, taking a

screenshot once a second.

To decide how to download the scene, a priority algorithm is given a set of inputs

about the current state of the scene and outputs the next item for download. Multi-

ple TCP connections are opened to the content server, allowing multiple downloads

(currently 4) to be outstanding at the same time, a common approach used in, e.g.,

59

web browsers, to get good throughput. When a download slot becomes empty, the

priority algorithm gets queried for the next download that should be started.

The input to the priority algorithm is the set of metrics described in Section 5.2.21 for

each object and the state of each object in its download dependency tree (Figure 5.1).

Each metric is normalized to a value between 0 (lower priority) and 1 (higher priority).

The expected output from the priority algorithm is a number representing the utility

of that object, Ui. Since each model, m, can be instanced multiple times in the scene,

represented by Im, the utility values of each instance for the model are summed

together to get a final utility value for the download. Each final utility value is

then divided by the number of bytes that would be required for the download. This

resulting priority value, Pm, is calculated as:

Pm =

∑
i∈Im Ui

Sm

Given c free download slots, the scheduler chooses the c items with the highest value

for Pm. When a download completes, the client can cache the result on disk to avoid

having to download it again in the future. A simple least-recently-used algorithm can

be used to discard items from the cache if it grows beyond a user-specified threshold.

5.4 Evaluation

In this section, our testing dataset is first presented, followed by an analysis of the per-

ceptual image comparison metric that is then used to compare and analyze different

scheduling algorithms.

1 The exception being occlusion because we found it too difficult to accurately estimate object
occlusion in real-time using only the CPU.

60

Figure 5.2: Rendering of the generated island scene

5.4.1 Test Data

Acquiring free, high-quality 3D content is a notoriously difficult problem. There

are a number of commonly used open datasets of 3D models and scenes, but they

typically only have a small number of low-quality models. As part of an evaluation

of the Sirikata metaverse platform [9], 15 users were asked to create a set of sample

applications. To aid in this process, they uploaded 3D models to a content distribution

server for use with the platform. Most content came from external sources, while a

small percentage were created by the users themselves. In total, about a thousand

openly-licensed 3D models of varying quality were uploaded to the Sirikata content

repository at open3dhub.com.

There are a few 3D scenes available for benchmarks, but they tend to be very small,

indoor scenes. Instead, we could create a random large scene made up of an as-

61

http://open3dhub.com

sortment of models from our repository, but we wanted to create a representative,

compelling scene that one might find in an online virtual world. We chose to use

an island map generator tool [33] that generates a large island consisting of regions

that are each assigned a biome (e.g., ocean, lake, sand, forest, desert, etc.). We then

randomly placed appropriate categories of models in different locations around the

island, such as residential houses, trees, flying object, boats, vehicles, and commercial

buildings. We think this scene is representative of what a common dynamic virtual

world might look like. A rendering of the island scene is shown in Figure 5.2. The

island scene comprises 2227 objects, 237 of which are unique. The scene is made up

of 65 million triangles, requiring 3GB of (uncompressed) texture RAM and a down-

load size of 577MB 2. At that size, the entire scene would take about 8 minutes to

download on a 10Mbit connection, or 50 minutes on a 1.5Mbit connection.

To simulate user movement through the scene, we recorded camera angles and motion

paths of a human, with the goal of spanning a large range of the typical application

use cases. The following is the list of motion paths we used, where the number in the

label is the duration of the motion capture, in seconds.

• brownian-45s - moving straight in a direction for 5 seconds, then switching to

a new, random direction.

• meander-75s - meandering along the hills of the island.

• spinning-45s - spinning in-place in the center of the island.

• still-15s - standing still facing a small hill.

• still-90s - standing still high above the island with all objects in view.

• straight-fast-10s - moving in a straight line quickly.

2 Textures are compressed into the JPEG format before transmission, while numerical data is
gzipped text.

62

(a) Original (b) Meanshift (M) (c) Contrast (C)

(d) Impulse (I) (e) Blur (B) (f) JPG (J)

Figure 5.3: Einstein images for evaluating image comparison algorithms.

• straight-slow-30s - moving in a straight line slowly.

Although we only use this single island scene with the seven motion paths for our

evaluation, it would be actually be ideal to include several more scenes and hundreds

of motion paths through each scene. Unfortunately, as mentioned before, openly-

licensed, free, high-quality scenes are hard to acquire, and the running time of ex-

periments increases linearly with the number of scene/motion path pairs. Since the

framework outlined in Section 5.3 is available under an open-source license, it can

easily be used in the future as more scenes become available.

5.4.2 Objective Perceptual Comparison

To evaluate different scheduling algorithms, an objective measure of how each al-

gorithm is performing is needed. This is a well-studied problem in the vision and

graphics literature. The classic approaches for comparing two images are to use the

63

0
5

10
15
20
25
30 M C I B J

PSNR
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

M

C
I

B

J

SSIM

0
200
400
600
800

1000

M

C

I
B

J

perceptualdiff

0.00
0.01
0.02
0.03
0.04
0.05 M C I B J

RMSE

Figure 5.4: Image comparison algorithms evaluated on Einstein image dataset.
Note: SSIM and PSNR values are inverted for easier comparison to perceptualdiff.

Root Mean Square Error (RMSE) or Peak Signal-to-Noise Ratio (PNSR). The prob-

lem with these methods is they don’t take into account human perception. More

recent methods such as SSIM [51] and perceptualdiff [55] try and estimate the human

perceptual difference between two images. Using sample images of Albert Einstein

(Figure 5.3) that have each been modified in a different way, we evaluate these dif-

ferent algorithms. The results in Figure 5.4 show that RMSE and PNSR are not

useful at differentiating these images. SSIM and perceptualdiff agree (up to scale)

on the error rates of Meanshift and JPG, but differ on their ordering of Contrast,

Impulse and Blur. However, these standard test images are not representative of our

workload.

To analyze how these algorithms compare in our domain, namely screenshots of a

rendered 3D scene, we evaluate the four algorithms over time for a sample run of the

download scheduler. The results are shown in Figure 5.5. Here we see a different

story. RMSE and SSIM seem to be almost identical (with respect to their scale)

and PNSR and perceptualdiff also show similar shapes. All of the metrics seem to

compare about equally within our domain. We chose to use perceptualdiff as our

64

0 10 20 30 40 50 60 70

5
10
15
20
25
30
35

PSNR
0 10 20 30 40 50 60 70

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

SSIM

0 10 20 30 40 50 60 70
0K

100K
200K
300K
400K
500K
600K

perceptualdiff

0 10 20 30 40 50 60 70
0.0
0.1
0.2
0.3
0.4
0.5
0.6

RMSE

Figure 5.5: Image comparison algorithms for a sample run of the download sched-
uler. Note that lower values on the y-axis mean lower error.

A B C D E F G H I J K L M N O P
0

10

20

30

40

50

M
ea

n
Pe

rc
ep

tu
al

E
rr

or

So
lid

A
ng

le
+2

4.8

O
pt

im
iz

at
io

nR
es

ul
t

4.8

So
lid

A
ng

le

5.1

Pe
rc

ep
tu

al
E

rr
E

xp
*

SA
ng

5.3

M
ul

ti
pl

y

5.3

So
lid

A
ng

le
+5

5.3

Pe
rc

ep
tu

al
E

rr
E

xp
*

Sc
al

e

14.1

Sc
al

e

14.2

D
is

ta
nc

e

20.9

C
am

er
a

A
ng

le
E

xp
38.6

R
an

do
m

44.2

C
am

er
a

A
ng

le
+5

51.8

C
am

er
a

A
ng

le

52.0

C
am

er
a

A
ng

le
+2

52.0

Pe
rc

ep
tu

al
E

rr
E

xp

52.0

Pe
rc

ep
tu

al
E

rr

52.0

Figure 5.6: Comparison of download scheduling algorithms

evaluation metric because it provides an intuitive output value: the number of pixels

that are perceptually different to a human observer, and also because it uses MPI to

scale linearly with the number of cores in a machine.

65

5.4.3 Metric Comparison

To compare the different metrics outlined in Section 5.2.2, Figure 5.6 shows a com-

parison of several different download scheduling algorithms. Each bar is the mean of

the seven motion paths from Section 5.4.1. Each motion path is the mean of three

trials. The variance between each trial is low (≈ 1%), indicating that the results are

reproducible. A metric followed by “Exp” is the metric with an exponential falloff.

We included exponential falloff versions of camera angle and perceptual error because

these metrics tend to cluster around 1.0, so an exponential falloff helps to separate

different values. A metric followed by “+N” is the metric predicted N seconds into

the future using linear interpolation. Bar K, Random, is an algorithm that randomly

chooses the next download, useful for a baseline comparison.

We see that Solid Angle (C), Scale (H), Distance (I) and Camera Angle Exp (J) are

individual metrics that perform better than random. We also see that predicting

metrics into the future (A, F, L, and N) is negligibly different than the metrics at the

present time. The motion prediction does do slightly better for motion paths that

are moving straight, but a more complicated non-linear approach to predicting future

motion paths would be needed to perform well on other motion paths. We leave this

as future work.

Perceptual Error by itself (O and P) is not a good metric for scheduling downloads.

Multiplying Perceptual Error by both Scale (G) and Solid Angle (D) produce similar

results as Scale and Solid Angle themselves. This is likely attributable to Perceptual

Error being an estimate of error that doesn’t take into account the user’s viewing

angle.

Multiplying all metrics together (E) performs about as well as Solid Angle, indicating

that multiplying the multiple metrics together ends up being dominated by the scale

of solid angle.

66

0 10 20 30 40 50

Time (s)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

ep
tu

al
E

rr
or

(%
sc

re
en

si
ze

)

SingleCameraAngleExp OptimizationResult SingleSolidAngle
Random

SingleDistance
SingleScale

Figure 5.7: Example motion path run (Spinning), showing the perceptual error over
time for several of the download scheduling algorithms.

0 10 20 30 40 50 60 70 80

Time (s)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

ep
tu

al
E

rr
or

(%
sc

re
en

si
ze

)

SingleCameraAngleExp OptimizationResult SingleSolidAngle
Random

SingleDistance
SingleScale

Figure 5.8: Example motion path run (Meander), showing the perceptual error over
time for several of the download scheduling algorithms.

5.4.4 Linear Optimization

Given that we have several metrics that perform better than random, a linear com-

bination of these metrics might perform better than any individual metric. Since the

scale of each metric is independent, finding appropriate weights for each individual

metric is non-intuitive. To find weights, we tried two different linear optimization

techniques, BFGS [5] and Simulated Annealing [23]. Our objective function to mini-

67

mize for the optimization is the mean perceptual error over all motion paths, or the

value of the bar in Figure 5.6. For the input variables, we decided to choose the four

independent metrics that perform better than random: Solid Angle, Distance, Scale,

and Camera Angle Exp. We initially set the weights for each metric to 1.0 and let

the optimization algorithm choose a new set of weights for each iteration.

After running both optimization algorithms, we find that no linear combination of

metrics performs better than the single Solid Angle metric. The optimization algo-

rithms end up converging on weighting solid angle alone, while using a zero weight

for all other metrics. This result is shown as bar F from Figure 5.6. We show two

example motion paths with the perceptual error rate for each of the individual met-

rics, Random, and the result of the optimization algorithm in Figures 5.7 and 5.8.

A clear oscillating behavior can be seen when the camera is spinning, while a strict

downward trend is seen in the meandering motion path.

5.4.5 Example Screenshots

Example screenshots of the progressive scene loader compared with the full-quality

island scene can be seen in Figure 5.9.

68

(a) 6 seconds (b) 12 seconds

(c) 18 seconds (d) 24 seconds

(e) 30 seconds (f) full resolution

Figure 5.9: Example screenshots from a sample run of the progressive loader com-
pared with a screenshot taken from the same location at full-resolution. The loader
was connected to the content repository with a 10Mbit connection.

69

Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we have discussed the goals for providing a robust, scalable implemen-

tation of the persistence services required of a dynamic virtual world. The algorithms

and techniques described have been implemented and are currently deployed in a

production environment, serving the developers and users of the Sirikata metaverse

platform.

Specifically, this thesis provided:

• A high-level overview of the complete Sirikata metaverse platform, broken down

into its subcomponents.

• A description of the production-quality implementation of the persistence ser-

vices for the Sirikata platform, currently running at open3dhub.com.

• A complete, robust conversion framework that automatically conditions 3D con-

tent into an efficient format for real-time rendering and transmission over a

network. We devised algorithms for choosing a stopping point for existing su-

70

http://open3dhub.com/

pervised algorithms, allowing the techniques to be executed without supervi-

sion, and we apportion the constrained texture space of 3D models efficiently,

minimizing loss in quality.

• A framework for comparing scheduling algorithms for progressively downloading

3D models over a network. We used this framework with an objective measure of

perceptual image quality loss to evaluate several possible metrics and algorithms

for the scheduling of downloads. We found that a single, simple metric—solid

angle—consistently outperforms all other algorithms we evaluated.

6.2 Future Work

There is still much work to be done with the Sirikata platform:

• Ongoing work is continuing to improve the scalability and effectiveness of

Sirikata’s space server. A new version of the Pinto object discovery mechanism

described in Section 2.2.2 is in development that drastically reduces the number

of aggregate meshes that need to be generated within the LBVH tree, gives

flexibility to the object host to modify its object discovery queries, and reduces

load on space servers.

• The generation of aggregate meshes using instance-aware simplification tech-

niques is in development that will improve the efficiency of rendering large

worlds.

• The conversion process outlined in Chapter 4 currently only handles the diffuse

color channel of 3D models. More engineering effort is needed to implement

techniques required for preserving other color channels, such as transparency,

normal maps, and glow effects. The process could also benefit from a more

71

efficient texture atlas packing algorithm and more advanced compression tech-

niques.

• The scheduling framework outlined in Chapter 5 was only evaluated on a single

island scene and a handful of motion paths. As the Sirikata platform gains

more users, more data will be available with which to re-evaluate the scheduling

techniques.

Every piece of software developed for the Sirikata platform is available under an open,

free software license. This enables other researchers to freely use the platform to eval-

uate their new ideas for improving dynamic virtual worlds. The Sirikata developers

are proud to make our software available, and hope that our effort inspires an active

community around the platform, with the eventual goal of realizing the dream of a

truly flexible, scalable, immersive platform for hosting a metaverse.

72

Bibliography

[1] Apache httpd. http://httpd.apache.org/.

[2] Apache Solr. http://lucene.apache.org/solr/.

[3] J. L. Bentley. Multidimensional Binary Search Trees used for Associative Search-
ing. Communications of the ACM, 18(9):509–517, 1975.

[4] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: Uniform Resource
Identifiers (URI): Generic Syntax, 1998.

[5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory Algorithm
for Bound Constrained Optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[6] Cassandra. http://cassandra.apache.org/.

[7] Celery. http://celeryproject.org/.

[8] B. Chandra, E. Cheslack-Postava, B. F. T. Mistree, P. Levis, and D. Gay. Emer-
son: Scripting for Federated Virtual Worlds. In Proc. CGAMES ’10, 2010.

[9] E. Cheslack-Postava, T. Azim, B. F. T. Mistree, D. Reiter-Horn, J. Terrace,
P. Levis, and M. J. Freedman. A Scalable Server for 3D Metaverses. In Proc.
USENIX ATC ’12, 2012.

[10] J. Cohen, M. Olano, and D. Manocha. Appearance-Preserving Simplification. In
Proc. SIGGRAPH ’98, 1998.

[11] Django. https://www.djangoproject.com/.

[12] T. A. Funkhouser and C. H. Séquin. Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments. In Proc.
SIGGRAPH ’93, 1993.

[13] M. Garland and P. S. Heckbert. Surface Simplification using Quadric Error
Metrics. In Proc. SIGGRAPH ’97, 1997.

[14] M. Garland and P. S. Heckbert. Simplifying Surfaces with Color and Texture
using Quadric Error Metrics. In Proc. VIS ’98, 1998.

73

http://httpd.apache.org/
http://lucene.apache.org/solr/
http://cassandra.apache.org/
http://celeryproject.org/
https://www.djangoproject.com/

[15] M. Garland, A. Willmott, and P. S. Heckbert. Hierarchical Face Clustering on
Polygonal Surfaces. In Proc. I3D ’01, 2001.

[16] M. Goslin and M. R. Mine. The Panda3D Graphics Engine. Computer,
37(10):112–114, 2004.

[17] H. Hoppe. Progressive Meshes. In Proc. SIGGRAPH ’96, 1996.

[18] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its Application
to Terrain Rendering. In Proc. Visualization ’98, 1998.

[19] H. Hoppe. New Quadric Metric for Simplifying Meshes with Appearance At-
tributes. In Proc. VIS ’99, 1999.

[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
Optimization. In Proc. SIGGRAPH ’93, 1993.

[21] Khronos Group Inc., The. COLLADA - Digital Asset Schema Release 1.4.1
Specification (2nd Edition). http://www.khronos.org/files/collada_spec_1_
4.pdf, 2008.

[22] J. Kim, S. Lee, and L. Kobbelt. View-Dependent Streaming of Progressive
Meshes. In Proc. SMI ’04, 2004.

[23] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[24] U. Labsik, L. Kobbelt, R. Schneider, and H. P. Seidel. Progressive Transmission
of Subdivision Surfaces. Computational Geometry, 15(1):25–39, 2000.

[25] meshtool. https://github.com/pycollada/meshtool.

[26] B. F. T. Mistree, B. Chandra, E. Cheslack-Postava, P. Levis, and D. Gay. Emer-
son: Accessible Scripting for Applications in an Extensible Virtual World. In
Proc. OOPSLA ’11, 2011.

[27] T. Muth. A Little Hard Drive History and the Big
Data Problem. http://tylermuth.wordpress.com/2011/11/02/
a-little-hard-drive-history-and-the-big-data-problem/, 2011.

[28] NVIDIA. SDK White Paper: Improve Batching Using Texture At-
lases. http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/
Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/
Batching_Via_Texture_Atlases.pdf, 2004.

[29] OAuth. http://oauth.net/.

[30] Open3DHub. http://open3dhub.com/.

[31] OpenID. http://openid.net/.

74

http://www.khronos.org/files/collada_spec_1_4.pdf
http://www.khronos.org/files/collada_spec_1_4.pdf
https://github.com/pycollada/meshtool
http://tylermuth.wordpress.com/2011/11/02/a-little-hard-drive-history-and-the-big-data-problem/
http://tylermuth.wordpress.com/2011/11/02/a-little-hard-drive-history-and-the-big-data-problem/
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMOS/Direct3D9/src/BatchingViaTextureAtlases/AtlasCreationTool/Docs/Batching_Via_Texture_Atlases.pdf
http://oauth.net/
http://open3dhub.com/
http://openid.net/

[32] Panda3D. http://www.panda3d.org/.

[33] A. Patel. Polygonal Map Generation for Games. http://www-cs-students.
stanford.edu/˜amitp/game-programming/polygon-map-generation/, 2010.

[34] pycollada. https://github.com/pycollada/pycollada.

[35] Python. http://www.python.org/.

[36] RabbitMQ. http://www.rabbitmq.com/.

[37] G. Ramanarayanan, K. Bala, and J. A. Ferwerda. Perception of Complex Ag-
gregates. ACM Transactions on Graphics (TOG), 27(3):60, 2008.

[38] Redis. http://redis.io/.

[39] D. Reiter-Horn. Using a Physical Metaphor to Scale Up Communication in Vir-
tual Worlds. PhD thesis, Stanford University, 2011.

[40] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering
System for Large Meshes. In Proc. SIGGRAPH ’00, 2000.

[41] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A Viewer for Networked
Visualization of Large, Dense Models. In Proc. I3D ’01, 2001.

[42] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture Mapping Progres-
sive Meshes. In Proc. SIGGRAPH ’01, 2001.

[43] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hierarchical
Image Caching for Accelerated Walkthroughs of Complex Environments. In Proc.
SIGGRAPH ’96, 1996.

[44] G. Sharma, W. Wu, and E. N. Dalal. The CIEDE2000 Color-Difference Formula:
implementation notes, supplementary test data, and mathematical observations.
Color research and application, 2005.

[45] Sirikata CDN API Documentation. http://sirikata.com/wiki/index.php?
title=CDN_API_Documentation.

[46] Sirikata CDN Project. https://github.com/sirikata/sirikata-cdn.

[47] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High Speed Networks. In ACM
SIGCOMM Computer Communication Review, volume 28, pages 118–130. ACM,
1998.

[48] J. Terrace, E. Cheslack-Postava, P. Levis, and M. J. Freedman. Unsupervised
Conversion of 3D Models for Interactive Metaverses. In Proc. ICME ’12, 2012.

[49] D. S. P. To, R. W. H. Lau, and M. Green. A Method for Progressive and Selective
Transmission of Multi-Resolution Models. In Proc. VRST ’99, 1999.

75

http://www.panda3d.org/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
https://github.com/pycollada/pycollada
http://www.python.org/
http://www.rabbitmq.com/
http://redis.io/
http://sirikata.com/wiki/index.php?title=CDN_API_Documentation
http://sirikata.com/wiki/index.php?title=CDN_API_Documentation
https://github.com/sirikata/sirikata-cdn

[50] U.S. Federal Communications Commission. Broadband Performance OBI Tech-
nical Paper. Technical Report 4, Federal Communications Commission, Aug
2010.

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Trans. on
Image Processing, 13(4):600–612, 2004.

[52] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR: Decentralized
Server Selection for Cloud Services. In Proc. SIGCOMM ’10, 2010.

[53] WSGI. http://wsgi.org/.

[54] S. Yang, C. S. Kim, and C. C. J. Kuo. A progressive View-Dependent Technique
for Interactive 3-D Mesh Transmission. IEEE Trans. on CSVT, 14(11):1249–
1264, 2004.

[55] H. Yee, S. Pattanaik, and D. P. Greenberg. Spatiotemporal Sensitivity and Visual
Attention for Efficient Rendering of Dynamic Environments. ACM Trans. on
Graphics (TOG), 20(1):39–65, 2001.

76

http://wsgi.org/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Scalable Virtual Worlds
	1.2 Server-Side Content Conditioning
	1.3 Scheduling Client-Side Downloads

	2 The Sirikata Metaverse Platform
	2.1 System Overview
	2.2 Space
	2.2.1 World Segmentation
	2.2.2 Object Discovery
	2.2.3 Messaging

	2.3 Object Host
	2.3.1 Scripting

	2.4 Persistence Services

	3 The Sirikata Content Distribution Network
	3.1 External Interface
	3.1.1 Website
	3.1.2 Application Programming Interface (API)

	3.2 Datacenter Internals
	3.2.1 Web Server
	3.2.2 Application Storage
	3.2.3 Reliable Messaging
	3.2.4 Application Processing
	3.2.5 Search

	3.3 Cross-Datacenter Replication

	4 Content Conditioning
	4.1 Motivation
	4.2 Related Work
	4.3 Conversion Process
	4.3.1 Cleaning and Normalizing
	4.3.2 Creating Charts
	4.3.3 Sizing Charts
	4.3.4 Packing Charts into Atlas
	4.3.5 Simplification
	4.3.6 Progressive Encoding

	4.4 Results and Analysis
	4.4.1 Render Efficiency
	4.4.2 File Size
	4.4.3 Perceptual Error

	5 Download Scheduling
	5.1 Related Work
	5.1.1 Rendering Complex Scenes
	5.1.2 Streaming Meshes

	5.2 Download Scheduling
	5.2.1 Problem
	5.2.2 Metrics
	5.2.3 Making a Decision

	5.3 Implementation
	5.3.1 3D Progressive File Format
	5.3.2 Scheduling Algorithm Evaluation Framework

	5.4 Evaluation
	5.4.1 Test Data
	5.4.2 Objective Perceptual Comparison
	5.4.3 Metric Comparison
	5.4.4 Linear Optimization
	5.4.5 Example Screenshots

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography

