
Understanding Resource Usage and

Performance in Wide-Area Distributed

Systems

Wonho Kim

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Vivek S. Pai

November 2012

c© Copyright by Wonho Kim, 2012.

All rights reserved.

Abstract

Many Internet services employ wide-area frameworks to deliver exponentially

growing network traffic to end users with low response time. These systems typically

leverage a large number of remote nodes at the edge of the Internet, which makes

the systems difficult to develop and test. Therefore, federated testbeds are essential

infrastructures for developing wide-area systems because they allow researchers to

deploy new services under realistic network conditions. In this dissertation, we study

resource usage in PlanetLab to understand and characterize user behavior in federated

testbeds. We also present Lsync, a low-latency file transfer system for coordinating

remote nodes in wide-area platforms, including testbeds.

To support the development of new network services on a global scale, the next

generation of federated testbeds are under active development, but very little is known

about resource usage in these shared infrastructures. We conduct an extensive study

of the usage profiles in PlanetLab that we collected for six years by running CoMon,

a PlanetLab monitoring service. We examine various aspects of node-level behavior

as well as experiment-centric behavior, and describe their implications for resource

management in federated testbeds. We find that the usage is much different from

shared compute clusters, that conventional wisdom does not hold for PlanetLab, and

that several properties of PlanetLab as a network testbed are largely responsible for

this difference.

We also present a low-latency file transfer system, Lsync, that can be used as

a synchronization building block for wide-area distributed systems where latency

matters. While many distributed systems depend on fast data synchronization for

coordinating remote nodes, current data dissemination systems focus on efficiency for

open client populations, rather than focusing on completion latency for a known set

of nodes. In examining this problem, we find that optimizing for latency produces

strategies radically different from existing distribution tools, and can dramatically

iii

reduce latency across a wide range of scenarios. Lsync performs novel node selection,

scheduling, and adaptive policy switching that dynamically chooses the best synchro-

nization method using information available at runtime. Our evaluation results show

that Lsync reduces latency by more than a factor of 14 compared to a widely used

synchronization tool, and makes most remote nodes fully synchronized even under

frequent file updates.

iv

Acknowledgements

First and foremost, I cannot thank enough my advisor, Professor Vivek S. Pai, for

his incredible inspiration, support and patience. Throughout my graduate career, he

encouraged me to explore important problems and to stay passionate about discover-

ing right solutions. I learned from him that self-confidence comes only if a researcher

is fully accountable for and knowledgeable about what he or she has done. All these

lessons will never be forgotten.

I am extremely grateful to the members of my dissertation committee, Professor

Larry Peterson, Professor Michael Freedman, Professor David Walker, Professor Brian

Kernighan, and Professor Jennifer Rexford. They were generous with their time and

provided thoughtful reviews of the original manuscript of this dissertation.

I have also benefited greatly from the advice and assistance of senior Korean

colleagues. In particular, I owe a debt of gratitude to KyoungSoo Park who was a

former Ph.D. student in our research group and is now a professor at KAIST. Not

only did he give me valuable comments on my research but he was also an invaluable

personal mentor starting in my first year. I also thank Changhoon Kim, Yung Yi,

and Sangtae Ha who have always been willing to share their valuable time with me.

I thank Ajay Roopakalu and Katherine Y. Li who were great colleagues armed with

amazing research skills. I was fortunate to have friends who are both academically

enthusiastic and warmhearted. Discussions with Sunghwan Ihm, Anirudh Badam,

Chris Park, Taewook Oh, Donghun Lee, David Shue, Wyatt Lloyd, Sid Sen, Hanjun

Kim, Ana Bell, and CJ Bell cheered me on through my ups and downs. I also thank

my roommates, Ilhee Kim and Ringi Kim, who were willing to bear the burdens of

sharing their apartment with me from time to time.

I am indebted to incredible administrative support from Melissa Lawson. She

was understanding and always came up with effective solutions at times when I had

difficulties handling administrative issues.

v

I thank my mentors and collaborators at HP Labs: Sujata Banerjee, Puneet

Sharma, Jean Tourrilhes, and Praveen Yalagandula. During my two internships at

HP Labs, they kindly helped me understand network issues in datacenters. My sin-

cere gratitude goes to Sung-Ju Lee and Jeongkeun Lee who have always supported

me from the very beginning of my research career.

I also thank my former advisors in Seoul National University: Professor Yanghee

Choi and Professor Taekyoung Kwon. The start of my research career would not have

been possible without their continuous support.

I sincerely thank my father Moonbong Kim, my mother Youngsim Ko, and my

dear sisters, Mihyung and Mihee for their unconditional love. I also thank my mother-

in-law Kyoungsook Kim and late father-in-law Dongshik Shin. Their encouragement

and deep understanding helped me stay focused on my research work.

Last, but not least, I am greatly thankful to my wife Nah-Yoon Shin, who has

stood by me through a very difficult period of my life. I could never have finished

this long journey without her love, patience, and support. Thank you Nah-Yoon.

This dissertation was supported by the NSF Awards CNS-0615237 and CNS-

0916204.

vi

To my loving wife Nah-Yoon Shin.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xi

List of Figures . xii

1 Introduction 1

1.1 Resource Allocation in Federated Testbeds 2

1.1.1 Previous Approach . 3

1.1.2 Our Approach and Contributions 4

1.2 Reducing Latency in File Dissemination 5

1.2.1 Previous Approach . 6

1.2.2 Our Approach and Contributions 6

1.3 Dissertation Overview . 8

2 PlanetLab Resource Usage 9

2.1 Introduction . 9

2.2 Background and Datasets . 12

2.3 Slice Resource Usage . 15

2.3.1 Active Periods . 15

2.3.2 Local Resource Consumption 18

2.3.3 Slice Sizes and Dynamics . 20

viii

2.3.4 No Tragedy of the Commons 22

2.4 Resource Allocation . 23

2.4.1 Total Resource Consumption 24

2.4.2 Resource Usage by Experiment Type 25

2.4.3 Resource Allocation Systems 27

2.5 Workload Imbalance . 34

2.5.1 Origins of Imbalance . 36

2.5.2 Nodes with Failures . 40

2.5.3 Alternative Experiment Placement 41

2.6 Policing of Slices in PlanetLab . 45

2.6.1 Spin-loop Slices in PlanetLab 45

2.6.2 Pruning Spin-loop Slices . 47

2.7 Related Work . 48

3 Lsync: Low-latency File Transfer System 50

3.1 Introduction . 50

3.2 Synchronization Environment . 53

3.3 Server Bandwidth Allocation . 56

3.3.1 Node Scheduling . 57

3.3.2 Node Selection . 59

3.4 Leveraging Overlay Mesh . 62

3.4.1 Startup Latency in Overlay Mesh 62

3.4.2 Completion Time Estimation 64

3.4.3 Selective Use of Overlay Mesh 65

3.4.4 Using Spare Bandwidth in Server 67

3.4.5 Adaptive Switching in Remote Nodes 68

3.5 Implementation . 69

3.6 Evaluation . 70

ix

3.6.1 Settings . 71

3.6.2 Startup Latency in CDN/P2P Systems 71

3.6.3 Comparison with Other Systems 74

3.6.4 Frequently Added Files . 77

3.6.5 Lsync Contributing Factors 79

3.6.6 Nodes Division and Adaptive Switching 81

3.7 Related Work . 83

4 Conclusion 87

Bibliography 90

x

List of Tables

2.1 Summary statistics for CoMon datasets. Each row contains means and

standard deviations of online nodes, in-memory slices, and live slices

per day in each year. The size of CoMon logs has increased over time

as PlanetLab has expanded itself in its size and user base. 14

2.2 The distribution of slice groups. The majority of slices are in the short

or medium slice groups. 25

2.3 The 90th percentile values (in milliseconds) of the system lag metrics

in nodes with low, medium, and high CPU load. 35

3.1 Division of Nodes between E2E and overlay mesh. r is 0.5, and file

size is 5 MB. We also tested small files (up to 30 KB), but E2E out-

performed all these systems. δr is in seconds, and Br
cdn is in Mbps. . . 72

xi

List of Figures

2.1 Overview of PlanetLab Architecture. PlanetLab consists of nodes dis-

tributed at different sites. PlanetLab Central (PLC) manages user ac-

counts and creates virtual machines called slivers for PlanetLab users.

Multiple slivers can run at a node at any given time, and the set of

slivers assigned to one account is called a slice. 12

2.2 The scale of PlanetLab over time. PlanetLab nodes and live slices have

increased as more researchers have joined the testbed in general. . . 14

2.3 The distribution of slice total active period. While most slices are

short-lived, a number of slices were active for an entire year. 16

2.4 CDFs of the relative activity of slices over their lifetimes. Versus their

lifetimes, most slices are active for relatively short periods of time

(Live/Lifetime). The ratio of activity is even low when compared to

the time a slice is instantiated (Live/In-memory). 17

2.5 Per-sliver usage of CPU, memory, and bandwidth for slices in 2006,

2008, and 2010. Most slices have low resource consumption except for

the heaviest 5% of slices. The CPU usage shows the heaviest slices

gaining a larger share over time, while memory usage shows flatter

curves. The heaviest bandwidth consumers typically provide services

to large external user populations. 18

xii

2.6 The average and maximum daily sliver counts for slices in 2006, 2008,

and 2010. Most slices have a low average number of slivers, but a large

number of them have relatively high maximum sliver counts in their

lifetimes. 21

2.7 The distribution of network reach that PlanetLab sites used in 2010.

More than 50% of all active sites used remote nodes in half of all

available sites and every accessible continent in PlanetLab. 22

2.8 Total CPU consumptions by slices in 2006, 2008, and 2010. Only 3%

of all slices can account for 80% of all CPU usage in PlanetLab. . . . 24

2.9 The distribution of each slice’s total active period and coefficient of

variation in its sliver count over time. Long-running slices show rela-

tively lower variability than short-lived slices. 25

2.10 Time series of the distributions of CPU usage by each slice type in

2010. The y-axis represents the fraction of available CPUs consumed

by slices per day. The Long-intermittent slices consume the largest

amount of the resources with high variation. 26

2.11 Balance accounts in bartering and banking. In bartering, each site has

separate balance accounts for the other sites. In banking, each site has

a single balance account managed in a centralized bank. 28

2.12 Time series of the distributions of CPU/Memory usage that could be

addressed by several resource peering schemes. Barter and Bank can

account for only 17% of the total CPU usage on PlanetLab while most

CPU usage is from Slop. Memory usage shows a similar distribution.

Bank and Barter schemes show slightly higher percentages (19% total)

than for CPUs, but most memory usage still comes from Slop. . . . 30

xiii

2.13 The total balances amassed at all sites. Without balance limits, the

total balances will exceed the daily capacity of PlanetLab within 3

days, leading to inflation of virtual currency. 32

2.14 The distribution of bank balances among sites. There are bimodal

distributions with most sites being near the limits. 33

2.15 CDFs of average CPU/Memory utilization of all PlanetLab nodes in

2010. 34

2.16 CDFs of system lags in nodes grouped by their average CPU load. . . 36

2.17 The number of live slivers per node in 2010. The recently registered

nodes serve lower number of live slivers than older nodes. The error

bars represent standard deviations. 37

2.18 The distribution of slivers in nodes based on the number of CPU cores

per node. The number of in-memory and live slivers shows a generally

decreasing trend as the number of cores increases, which is responsible

for some of the measured workload imbalance. The error bars represent

standard deviations. 38

2.19 The memory usage by node memory size. The nodes with more mem-

ory see relatively little extra usage of that memory. The error bars

represent standard deviations. 39

2.20 Popularity of nodes based on failure modes. PlanetLab users avoid

nodes with high DNS failures, low bandwidth, and unstable operation.

The error bars represent standard deviations. 41

2.21 CDFs of node popularity. Each node’s popularity is measured as its

sliver count. 42

xiv

2.22 CDFs of live slivers per core in simulations of alternative node place-

ment policies. Since lightly loaded and all-good nodes are selected, the

workload is well balanced among nodes while any undesirable failures

are avoided. 43

2.23 The distribution of per-day CPU loads on PlanetLab nodes in 2010.

Each day, nodes are divided into five categories according to their per-

day CPU usage. The nodes with more than 90% CPU usage account

for up to 49% of all PlanetLab nodes (July 22). 44

2.24 The CPU consumption of spin-loop slices in 2010. Although there are

only a few spin-loop slices (4.8 slices among 152.7 live slices per day),

the average CPU consumption of the spin-loop slices accounts for 31%

of the total CPU usage of all slices. 46

2.25 Time series of the updated distributions of per-day CPU loads after

pruning spin-loop slices. The number of overloaded nodes is reduced

by 71% (150 to 43) on average. 47

3.1 Slow Nodes in Overlay – Peering strategies in scalable one-to-many

data transfer systems are not favorable to slow nodes. 51

3.2 Synchronization Environment – the server has files to transfer to re-

mote nodes with low latency. The remote nodes construct an overlay

mesh for providing a scalable data transfer service to external clients. 54

3.3 End-to-End Synchronization – The completion time Tcmp is determined

by the node with the latest finish time among the target nodes Ntarget.

The server can control tipend and Ntarget with node scheduling and node

selection policies. 56

3.4 Node Scheduling and Node Selection – Pruned Slow First captures both

the initial speed advantage of Fast First, as well as the total overall

advantage of Slow First. 58

xv

3.5 Synchronizing Frequent Updates – While Fast First synchronizes

quickly at first, Pruned Slow First actually reaches the upper bound

more quickly. 61

3.6 Synchronization Latency for Frequent Updates – While Slow First leads

to failure, integrating node selection with the Slow First scheduling

reduces latency for all target ratios (y-axis is in log-scale). 61

3.7 Startup Latency in CDN/P2P – To leverage a given overlay system,

Lsync estimates the startup latency for fetching a new file f from the

server and propagating to the remote nodes ni in the overlay. 63

3.8 End-to-End Connections vs. Overlay Mesh – For small file, the latency

of overlay mesh is hampered by the long setup time, but its efficient

bandwidth usage outweighs the cost for large file. 66

3.9 Optimality of the Division – The split between overlay and E2E is not

improved by moving some nodes to the other mechanism, suggesting

that Lsync’s split is close to optimal. 68

3.10 Comparison with Other Systems – We compare Lsync with various

data transfer systems in terms of the latency for synchronizing CoBlitz

web proxy executable file (600 KB). 73

3.11 Distribution of CloudFront first fetch latency in all PlanetLab nodes –

while most nodes have low latency, more than 10% of nodes are slow

in fetching the uncached file via the overlay. 76

3.12 Frequently Added Files – Lsync makes most nodes fully synchronized

during the entire period of the experiment. 78

3.13 Distribution of Completion Times – For all file sizes, Lsync outperforms

the other systems because Lsync adjusts its file transfer policies based

on file size as well as network conditions. 78

xvi

3.14 Consistency Duration – low-latency synchronization enables Lsync to

achieve high consistency duration across all synchronization ratios. . . 79

3.15 Lsync Contributing Factors – We see the individual contributions of

node selection, node scheduling, and using the overlay. Each compo-

nent contributes to the overall time reduction. Slow First scheduling

improves the completion time for every target ratio, but that intelli-

gent node selection is more critical at lower ratios. Using the overlay is

slow for high target ratio because some nodes have very high startup

latency. 80

3.16 Division of Nodes in Lsync – We see that the fraction of nodes served

by overlay mesh changes across target ratios, and that the fraction is

not monotonically changing with target ratio. 81

3.17 Adaptive Switching in Lsync – At 80 seconds, 12 nodes dynamically

switch to end-to-end connections and finish downloading from the ori-

gin server. 82

3.18 Stable File Transfers in Lsync – Adaptive switching in Lsync lowers

variance of the latency. 83

xvii

Chapter 1

Introduction

Many Internet services employ wide-area platforms [2, 6, 22, 23, 24, 68] to deliver

their exponentially-growing network traffic over the public Internet. These systems

typically leverage servers at the edge of the Internet to improve user experience. In

addition to caching static objects, the edge servers implement enhanced protocols,

optimize routes, and even host business applications.

However, it is well known that wide-area distributed systems are notoriously dif-

ficult to build [18, 78]. The systems have to manage a large number of remote nodes

and adapt to dynamically-changing network conditions at runtime. Also, it is com-

mon that rare corner cases are found after the systems are deployed at scale. This

means that, to develop production quality wide-area systems, system developers need

a way to deploy and test new wide-area services under realistic network conditions in

the Wide Area Network (WAN).

The next generation of testbeds have been under active development to provide

large-scale experimental facilities to researchers. These testbeds aim to federate ex-

isting testbeds or donated servers. However, we note that very little is known about

resource usage and user behavior in federated testbeds, leading to the development

of conservative resource allocation policies. In this dissertation, we analyze and char-

1

acterize resource usage in PlanetLab [1], a global network testbed that has served

a variety of research projects since it was launched in 2002. Based on real usage

patterns we identify, we discuss their design implications for future network testbeds

that have similar architectures and design goals.

From the measurement study of PlanetLab usage, we find that most experiments

are short-lived but a large number of them often expand to over half the testbed.

This means that software development process in PlanetLab is not interactive because

long deployment delay will hamper every develop/deploy/test cycle during the short

period of the usage. Besides testbeds, the delay is also a problem for many wide-area

systems that attempt to continuously coordinate or change the behaviors of their

remote nodes for their operations at runtime.

In the second part of this dissertation, we address this delay issue by developing

Lsync [40], a low-latency file transfer system for wide-area systems. In our setting,

latency is measured as completion time of file transfer to all target remote nodes in the

WAN. We find that existing file transfer systems are suboptimal for this metric and

that we need radically different resource allocation strategies for reducing completion

time in one-to-many file transfer in the WAN.

1.1 Resource Allocation in Federated Testbeds

Building on the unprecedented success of PlanetLab, the next generation of testbeds

have been under active development recently. In its design phase, the GENI [31]

project aims to federate multiple testbeds that are owned and operated by au-

tonomous organizations. It plans to cover diverse networks including PlanetLab-like

wide-area testbeds, fiber optics, and even sensor grids.

In the designs of federated testbeds, resource allocators are considered to be key

components of the platforms. The resource allocator defines how to allocate the

2

testbed’s available resources to multiple users from different organizations. PlanetLab

provides simple fair sharing between concurrent experiments running on the same

server, but the common belief is that the federated infrastructures need an extensive

policy framework and more sophisticated incentive systems because users will be

competing for the shared resources across organizational boundaries.

1.1.1 Previous Approach

Designing a resource allocation policy requires a deep understanding of user behavior

in the target system. Unfortunately, very little is known about the usage of the

federated testbeds because they are much different from traditional compute clusters.

Given the limited knowledge of the usage, it is not surprising that research efforts

have been focused on developing resource reservation systems as conventional wisdom

suggests that shared testbeds would suffer from a tragedy of the commons if no proper

regulation is enforced.

Market-based resource allocation systems [10, 44, 75] attempt to allocate resource

in an economically efficient way. The systems take user’s valuation of resources as

input and provide auction mechanisms to trade resources. Distributed resource man-

agement systems [29] provide secure resource peering between autonomous parties

through cryptographically-protected tickets. PlanetLab implements a brokerage ser-

vice to allow users to request more than their fair shares for a fixed amount of time [72].

However, the proposed systems received very little usage when deployed on Planet-

Lab, though users could obtain free and dedicated resources from the systems with

a simple sign-up process. This implies that PlanetLab users may not perceive the

amount of resources as the main utility of the wide-area testbeds.

3

1.1.2 Our Approach and Contributions

Our approach is to conduct a data-driven analysis of usage logs to understand how the

wide-area testbeds are actually utilized by real users [41]. Instead of assuming what

features users appreciate the most, we attempt to identify the usage patterns from

activity logs in PlanetLab and discuss their design implications for similar federated

testbeds.

Characterizing PlanetLab usage is a challenging task because (1) the testbed runs

a mixture of different kinds of services at any given time and (2) its workload is

affected by external events such as major conference deadlines. Therefore, examining

a few snapshots is not sufficient for characterizing the overall usage. For this analysis,

we used large-scale (1.8 TB) and long-term (six years) datasets that we have collected

from 2005 to 2010 through CoMon [55], a scalable monitoring system in PlanetLab.

From the datasets, we characterize various aspects of node-centric behavior as

well as experiment-centric behavior. We examine resource consumption (CPU, mem-

ory, bandwidth), network reach, workload distribution, and failures in every node

and every experiment available during the period. We also explore the effectiveness

of previously proposed market-based resource allocation systems by simulating the

approaches against the datasets.

Our extensive analysis results provide the following main observations:

• PlanetLab shows no indication of the tragedy of the commons.

• Unlike in compute clusters, PlanetLab users are not aggressive in acquiring

available resources, but active in extending their network reach.

• Market-based resource allocation schemes can account only for a small fraction

of total resource usage in testbeds.

4

• Workload is persistently unbalanced among PlanetLab nodes because users do

not migrate to new and powerful nodes, but prefer to stay with known healthy

nodes.

1.2 Reducing Latency in File Dissemination

Unlike P2P systems, many wide-area systems attempt to maintain a close control over

their remote nodes at runtime, which requires low-latency one-to-many file dissem-

ination. For instance, commercial Content Distribution Network (CDN) providers

generate new configurations as frequently as every 10 seconds [71]. These updates

should be disseminated to the remote nodes with minimal latency to provide guar-

anteed performance to their customers. Other systems often require coordinating

multiple remote nodes for their operations. One of the examples is distributed moni-

toring systems [39, 79] that start a measurement phase only after multiple nodes are

coordinated. Reducing the latency has a direct impact on the overall performance

and responsiveness of the systems.

System developers also rely on low-latency file dissemination to deploy their mod-

ules to remote nodes. Deploying files to remote nodes takes several minutes when

hundreds of nodes are distributed in the WAN. As a result, programmers are con-

stantly interrupted by the long deployment delay in every develop/deploy/test cy-

cle. This non-interactive environment can seriously degrade the productivity of the

software engineers because people spend more time in recovering from the frequent

interruptions than the time they are interrupted [37]. Given that software engineers

are much more expensive than hardware servers and network bandwidth now, this

loss cannot be ignored.

5

1.2.1 Previous Approach

Numerous systems have been proposed for scalable data transfer in the WAN. CDN

and P2P systems [16, 28, 51, 52, 56, 60, 69] construct overlay meshes among partic-

ipating nodes and implement request redirection to serve a large number of clients.

Likewise, overlay-based multicast systems [11, 19, 38] create multicast trees in the

overlay to improve aggregate bandwidth utilization. Gossip-based broadcast sys-

tems [15, 27, 46] provide robust file dissemination through random peering and short-

term gossip rounds.

The existing systems aim to serve an open client population with a limited band-

width. In an open client population, there is no upper bound on the number of clients

being served. Therefore, the main goal of the systems should be to improve average

performance in individual clients or aggregate throughput in the system. These per-

formance metrics shaped the design of the systems so that they are mainly optimized

for bandwidth efficiency, not the latency in file dissemination.

1.2.2 Our Approach and Contributions

In this dissertation, we design and develop a file transfer system optimized for a

different performance metric, latency, in the WAN. Specifically, latency is measured

as the completion time of file transfer to multiple remote nodes. In coordinating

remote nodes in wide-area systems, it is important to reduce the latest finish time

among a fixed client population because the application should wait until all target

nodes are synchronized.

Focusing on completion time is a completely different problem that requires dif-

ferent file transfer strategies. As nodes have heterogeneous network conditions in the

WAN, the completion time is determined by the slowest node in the system. However,

existing systems are not favorable to the slow nodes because improving the slow nodes

does not help optimize the average performance of individual clients in the system.

6

We develop Lsync, a low-latency one-to-many file transfer system for wide-area

distributed systems. The completion time metric drives us to examine new opti-

mization opportunities that may not be advisable for other systems. For instance,

Lsync aggressively uses available bandwidth in the server for aiding slow nodes at

runtime, because the bandwidth would remain unused otherwise. We deploy Lsync

on PlanetLab and compare it against a file synchronizer, CDN/P2P systems includ-

ing commercial systems, and gossip-based systems. The results of the experiments

demonstrate that Lsync drastically reduces latency compared to the tested systems

under various scenarios. We also show that Lsync provides stable performance in the

presence of unexpected bandwidth fluctuation in the remote nodes, which is common

in wide-area systems. Lsync’s file transfer policy is not tied to a specific protocol but

designed to be easily pluggable into many systems. We integrate Lsync into existing

data transfer systems [6, 16, 56] to improve their latency.

The design principles that we discovered from Lsync are summarized as follows:

• Scheduling slow nodes earlier can mask the effects of the bottleneck nodes on

the completion time.

• Late-binding the selection of target nodes significantly improves the completion

time.

• Using an overlay does not always help reduce completion time, so it should be

used only for the nodes that benefit.

• Runtime policy switching not only improves completion time but also provides

stable performance.

7

1.3 Dissertation Overview

This dissertation is structured as follows: Chapter 2 describes the analysis of Planet-

Lab resource usage. We analyze per-experiment characteristics using six years (2005

to 2010) of usage logs that we collected through CoMon. PlanetLab provides fair shar-

ing between experiments running on the same node. We examine the effectiveness

of alternative resource allocation schemes that have been proposed for PlanetLab-

like federated testbeds. Our simulation results show that they can address only a

small percentage of total usage. We also examine the workload imbalance problem

in PlanetLab and show that failures are the main cause for the different popularity

of nodes.

Chapter 3 describes Lsync, a low-latency one-to-many file transfer system for

wide-area systems. We show that existing systems are suboptimal for completion

time because they are not favorable to slow nodes, though those nodes typically be-

come bottleneck during a file transfer. We describe a new file transfer policy that

gives preference to the slow nodes, adaptively uses an existing overlay, and dynami-

cally switches policies at runtime to address unexpected performance problems in the

overlay. We deploy Lsync on PlanetLab and compare it against a variety of wide-area

file transfer systems.

Chapter 4 summarizes the lessons learned and concludes the dissertation.

8

Chapter 2

PlanetLab Resource Usage

2.1 Introduction

In this chapter, we analyze resource usage in PlanetLab and discuss its design impli-

cations for emerging federated testbeds. We note that PlanetLab itself is a federated

platform. The nodes in PlanetLab are managed by a trusted intermediary named

PlanetLab Central (PLC), but each site retains ultimate control over its own nodes.

Since it was launched in 2002, PlanetLab has tried to balance fairness and the utility

of the system without imposing strict resource controls [14, 57]. Thus, we believe

that understanding resource usage in PlanetLab can help shape the policy decisions

of future testbeds that have similar design requirements. Since planned testbeds such

as GENI have architectures similar to PlanetLab, the lessons we have learned from

our analysis can be generalized beyond PlanetLab to many federated systems that

need to control shared resources donated by autonomous organizations.

Characterizing PlanetLab’s resource usage is challenging because it is highly dy-

namic and evolves with changes in the underlying platform. For example, some ex-

periments are active year-round and consume an almost constant amount of resources

while many other experiments show heavy and bursty demand over short time peri-

9

ods. As a result, large-scale, long-term analysis is necessary to capture usage patterns

and their evolution.

To address this challenge, we have collected detailed statistics on every online

PlanetLab node and the active experiments running on the node since August 2004

through the PlanetLab monitoring system CoMon [55]. The collected datasets have

detailed information about both node-centric and experiment-centric data at a five

minute granularity. In addition to passively recording OS-provided metrics, CoMon

also actively gathers information about each node’s status by periodically running a

set of test programs. In this chapter, we analyze six years of PlanetLab usage, from

2005 to 2010. Our three main observations follow:

No tragedy of the commons Conventional wisdom suggests that network

testbeds should suffer from a tragedy of the commons, and this belief has led

to much development on PlanetLab, including two deployed resource reservation

schemes [44, 72], two deployed resource discovery systems [3, 5], and papers inves-

tigating resource allocation and migration [29, 53]. This belief has even shaped the

requirements of testbeds like GENI, which are devoting much attention and software

development cost to resource reservation systems [30].

However, we observe no indication of the tragedy of the commons on PlanetLab,

and we find several measurements indicating that these kinds of network testbeds are

unlikely to suffer such effects. Unlike compute clusters where users try to utilize every

available resource, most PlanetLab users are not aggressive in using resources in the

testbed. While PlanetLab hosts some long running services, most PlanetLab exper-

iments have bursty resource consumption, and this resource consumption is tied to

network activity. As a result, the resource consumption shows bimodal distributions

along many axes. The primary reason for the non-aggressive behavior of PlanetLab

users is that the main utility of PlanetLab comes from its wide network vantage

points, not the aggregate amount of resources.

10

Limitations of market-based resource allocation Using data-driven analysis,

we explore the effectiveness of two representative resource allocation schemes pro-

posed for PlanetLab-like federated systems: pair-wise bartering and market-based

banking. We find that the bartering and banking systems can account only for 3%

and 14% of the total resource usage, respectively, because most resource usage is

from sites that use more resources than they donate. Since the remaining 83% of the

resources need to be allocated, market-based allocation approaches are not sufficient

for network testbeds, and some mechanism must be employed to ensure that the

bulk of the testbed’s resources are used appropriately.

Improving utility of PlanetLab We examine factors that degrade the overall util-

ity of PlanetLab, and discuss how to mitigate their impact. We find that the workload

is persistently unbalanced among PlanetLab nodes, resulting in high resource con-

tention in overloaded nodes as well as inefficient resource usage. Several factors are

responsible for this imbalance, ranging from users staying with known-good nodes

to node utility being degraded due to DNS failures, node unreliability, bandwidth

limitations, and other reasons. We also find unstable experiments consume a dis-

proportionately high share of the resources, typically dwarfing stable long-running

services. We simulate pruning the problematic experiments to measure their impact

on other well-behaved experiments in PlanetLab.

The rest of this chapter is structured as follows. In Section 2.2, we describe some

background on PlanetLab and the CoMon datasets. We analyze per-slice character-

istics in Section 2.3, and examine several resource allocation systems in Section 2.4.

We examine the workload imbalance problem in Section 2.5, and discuss policing of

slices in Section 2.6. We compare our observations with related work in Section 2.7.

11

��������������

�	
��� �	
��� �	
�

�
�� �� �
�����

���� ��

�	
��� �	
���

�� �� ��

�	��������������	������

Figure 2.1: Overview of PlanetLab Architecture. PlanetLab consists of nodes distributed
at different sites. PlanetLab Central (PLC) manages user accounts and creates virtual
machines called slivers for PlanetLab users. Multiple slivers can run at a node at any given
time, and the set of slivers assigned to one account is called a slice.

2.2 Background and Datasets

To better understand the analysis in this chapter, some background on PlanetLab and

its terminology is provided here. Figure 2.1 illustrates the architecture of PlanetLab

and its components. When organizations join PlanetLab, they host physical servers at

one or more locations. Each location is called a site, and the servers are called nodes.

All account creation and node management is handled by a centralized database,

called PlanetLab Central (PLC). Users create accounts on one or more PlanetLab

nodes to perform their experiments. The nodes host one virtual machine per account,

and users can run any number of processes within their own slivers. The virtual

machines are called slivers, and the set of virtual machines assigned to one account

12

is called a slice. PlanetLab is a shared testbed, so multiple slivers are running on the

same node at any given time.

We classify a sliver as an in-memory sliver if it contains at least one instantiated

process, regardless of whether the process is running or blocked. An in-memory sliver

is called a live sliver if it uses more than 0.1% of the CPU per day.1 A slice that has

at least one live sliver is called a live slice. We say that a slice uses a node if the slice

has in-memory slivers on the node. A node is considered to be live if it responds to

CoMon requests.

In this chapter, we analyze six years (2005 to 2010) of data from CoMon, a scalable

monitoring system for PlanetLab. Since August 2004, CoMon has collected and

reported statistics on PlanetLab nodes to help PlanetLab users monitor their services

and spot problems. CoMon runs daemons on every PlanetLab node to gather values

that are provided by operating systems, and values that are actively measured by

means of test programs running on the nodes. A central CoMon server collects data

from all PlanetLab nodes every 5 minutes.

CoMon monitors and collects node-centric and slice-centric data. The node-

centric datasets consist of 51 fields that represent node health and aggregate resource

consumption, including CPU utilization, memory usage, timing behavior, DNS re-

solver behavior, bandwidth consumption, etc. The slice-centric data contains infor-

mation about each sliver’s resource usage on its node, which is an aggregate resource

used by all processes within the sliver in the node. The measured metrics include

CPU usage, memory consumption, and transmit/receive bandwidths.

Table 2.1 shows the basic statistics about our datasets. The size of the datasets has

increased over time because PlanetLab’s node count has increased and more metrics

have been added to CoMon over time. The slice-centric datasets contain resource

usage of each sliver, and can be aggregated into slices as needed. Since CoMon

10.1% is the minimum CPU time that CoMon measures for a sliver’s CPU usage at any given
time.

13

Year Nodes Slices LiveSlices Size
2005 354 (62) 215 (14) 106 (8) 164.8 GB
2006 433 (33) 278 (38) 136 (18) 232.9 GB
2007 438 (77) 371 (54) 133 (21) 260.7 GB
2008 474 (85) 254 (66) 139 (25) 291.2 GB
2009 613 (55) 349 (103) 145 (19) 430.1 GB
2010 683 (67) 421 (62) 158 (15) 503.9 GB
Total 1883.6 GB

Table 2.1: Summary statistics for CoMon datasets. Each row contains means and standard
deviations of online nodes, in-memory slices, and live slices per day in each year. The size
of CoMon logs has increased over time as PlanetLab has expanded itself in its size and user
base.

05/Jun 06/Jun 07/Jun 08/Jun 09/Jun 10/Jun

Year/Month

0

200

400

600

800

1000

C
o

u
n

t

Nodes

Live Slices

Available Sites

Active Sites

Figure 2.2: The scale of PlanetLab over time. PlanetLab nodes and live slices have increased
as more researchers have joined the testbed in general.

fetches data from all PlanetLab nodes in parallel, the aggregated values estimate the

total amount of resources that a slice uses across multiple nodes at a given time. We

associate the two kinds of datasets to study the effect of an experiment’s behavior on

a node’s status, and vice versa.

CoMon’s task has grown over time as the testbed itself has expanded, since CoMon

tries to monitor information about every sliver in the system. Figure 2.2 presents the

numbers of online nodes, live slices, sites running online nodes (labeled as “Available

14

Sites”), and sites having live slivers in other remote nodes (“Active Sites”) per month.

We find that the scale of the testbed has persistently increased over the period (2005

to 2010) that we examine. The number of available sites and their nodes has increased

by 179% and 82%. The active site count has increased at a slower rate (95%) because

most PlanetLab users intermittently run their experiments in the testbed, and their

usage of the testbed is spread over time. Similarly, the number of live slices has

increased by 48%. In particular, it is notable that live slice count has been fluctuating

over time, which implies that resource demands on PlanetLab are synchronized to

some degree with external events such as conference submission deadlines. Sliver

count has increased at a faster rate (123%) than slices because slivers counts grow as

a result of slice growth and node growth. Most slices only create slivers on a fraction

of the nodes, but some slices, particularly those related to infrastructure, are typically

created on every node in the system.

2.3 Slice Resource Usage

Examining the slice resource usage in PlanetLab allows us to determine how experi-

ments are using the system, and the patterns of resource consumption on the testbed.

We find that PlanetLab experiments are typically bursty along several dimensions,

and that most use relatively few resources at any given time. This likely stems from

the network-centric experiments on PlanetLab – their resource consumption is tied

to their network activity, rather than the total resource pool on PlanetLab.

2.3.1 Active Periods

Since PlanetLab slices share nodes, we begin our per-slice analysis by examining how

long slices tend to run and actively use resources. We define a sliver’s active period

to be the number of hours during which the sliver is continuously live on its node.

15

0 50 100 150 200 250 300 350

Total Active Period (Days)

10
0

10
1

10
2

10
3

S
lic

e
s

Figure 2.3: The distribution of slice total active period. While most slices are short-lived,
a number of slices were active for an entire year.

Experimenters typically leave slivers instantiated on nodes for long periods of time,

and only use the slivers when actively performing experiments, resulting in multiple

active periods separated by idle periods in CoMon datasets. We consider a slice active

if any of its slivers are active, even if sliver count changes over time.

We find that slice activity is largely bimodal, with a great many short-lived slices

and a number of very long-lived slices, as shown in Figure 2.3. The number of

short-lived slices is not surprising, since many classes use PlanetLab for hands-on

measurement projects and short assignments. It is also notable that there are 26

slices that were active longer than 360 days in 2010. These slices include 6 manage-

ment slices (e.g., root and SliceStat [73]), and 20 long-running services that run on

PlanetLab [17, 18, 28, 36, 56].

One possible observation from this data is that short-lived slices are an important

aspect of PlanetLab usage, and that it may serve as a training facility for future

developers. As such, all of the setup overhead on PlanetLab may be an issue for this

class of user, who has to perform these tasks and then amortizes that effort over a

16

0.0 0.2 0.4 0.6 0.8 1.0

Slice Activity

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Live / Lifetime

Live / In-memory

In-memory / Lifetime

Figure 2.4: CDFs of the relative activity of slices over their lifetimes. Versus their lifetimes,
most slices are active for relatively short periods of time (Live/Lifetime). The ratio of
activity is even low when compared to the time a slice is instantiated (Live/In-memory).

relatively short usage. Testbed designers may be well advised to focus on simplicity

as a way of gaining usage.

The other implication of this result is that most slices do not use a significant

amount of resources, even when they are active. Shown in Figure 2.4 is that the

total active periods of the slices is often spread over a much longer slice lifetime

(Live/Lifetime), so many of those slices are idle for most of their lifetimes. The ratio

of activity is even low when compared to the time a slice is instantiated (Live/In-

memory). Slices often tend to also disappear and re-appear over time, with large

gaps in time when they are not present at all on the testbed. Any attempt at in-

troducing heavyweight resource allocation mechanisms would therefore have two side

effects – it would burden the users of most slices, and it would often require resource

overcommitment anyway in order to ensure that the resources are being used.

17

80 85 90 95 100

Fraction of Slices (%)

0

10

20

30

40

50

C
P

U
 p

e
r

N
o
d
e
 (

%
)

2006

2008

2010

(a) CPU

80 85 90 95 100

Fraction of Slices (%)

0

2

4

6

8

10

M
e
m

o
ry

 p
e
r

N
o
d
e
 (

%
)

(b) Memory

80 85 90 95 100

Fraction of Slices (%)

0

100

200

300

400

500

B
a
n
d
w

id
th

 p
e
r

N
o
d
e
 (

K
b
p
s
)

(c) Bandwidth

Figure 2.5: Per-sliver usage of CPU, memory, and bandwidth for slices in 2006, 2008, and
2010. Most slices have low resource consumption except for the heaviest 5% of slices. The
CPU usage shows the heaviest slices gaining a larger share over time, while memory usage
shows flatter curves. The heaviest bandwidth consumers typically provide services to large
external user populations.

2.3.2 Local Resource Consumption

Understanding the distribution of slice resource usage and its change over time pro-

vides insight into the workload profiles of PlanetLab experiments. We focus on three

resources – CPU, memory, and network bandwidth, and examine them on a per-sliver

basis when the sliver is active. We do not include disk usage in our analysis because

PlanetLab disk space is partitioned into per-sliver quotas (5 GB), and not shared by

multiple users in a node.

18

Since most slivers have fairly low resource consumption, we focus only on the

heaviest quintile of resource consumers, shown in Figure 2.5. The three graphs have

similar characteristics, in that the aggregate resource consumption is a few percent

at most, and increases sharply as we approach the heaviest 5% of slices. However,

important differences are apparent when examined in closer detail. The CPU usage,

for example, shows the heaviest slices gaining a larger share over time, while memory

usage shows the exact opposite.

We believe these differences are a result of PlanetLab policy and the changes in

hardware over time. PlanetLab uses a modified CPU scheduler [57], which allocates

CPU evenly across slices (not threads/processes), and then allocates any unused CPU

on demand. Over time, as more machines enter the PlanetLab testbed, and more

powerful machines enter the system, the aggregate CPU in the system increases. As

a result, more slices can have their CPU demands met, and the remaining CPU

is used by the heaviest consumers. However, these heavy CPU consumers are not

heavyweight long-running services, but instead are classified as spin-loop slivers that

consume many CPUs but do not generate any network traffic, which we cover in more

detail in Section 2.6. This result suggests that CPU contention in PlanetLab has been

decreasing over time.

The CDF of memory consumption differs in that the curves are much flatter, and

that the opposite effect occurs over time, with the heaviest consumers using less of the

testbed. One reason that partly explains both features is that PlanetLab’s policy for

memory allocation is that when a node runs out of swap space, the heaviest consumer

of physical memory is killed on that node. As a result, slices have a tendency to police

their own memory usage to avoid being the heaviest consumer, leading to a flatter

memory consumption profile among slices. Over time, as the memory capacities of

the nodes have increased, the self-policing behavior introduced by the memory-killing

policy results in slices consuming a smaller fraction of memory over time.

19

Bandwidth consumption is related to the testbed itself – for those experiments

without a large user population, bandwidth consumption is driven by the experiment

itself and whatever bandwidth caps the nodes have been assigned. The heaviest band-

width consumers typically involve large external (non-PlanetLab) user populations,

such as content distribution networks or peer-to-peer systems, and the consumption

of these systems is not captured on this graph.

2.3.3 Slice Sizes and Dynamics

As we have seen that PlanetLab’s resource distribution and slice distribution has many

bimodal properties, it is worth investigating whether PlanetLab is monopolized by

only a handful of researchers, or whether it has a broader utility to the community.

As we believe that PlanetLab’s main differentiator versus other testbeds is its network

reach, one measure of this utility would be to see how different slices use PlanetLab’s

scale.

To visualize the range of sliver usage within slices, we want to view the average

and maximum daily sliver counts for the slices. However, viewing this data sorted

by only one of these values results in garbled images since the average and maximum

values are not necessarily correlated. To address this problem, we divide slices into

20 groups by their daily average sliver counts. We then sort slices within each group

by their maximum sliver counts. The sort order alternates between ascending and

descending for the different groups for aesthetic appeal. The results for 2006, 2008,

and 2010 are shown in Figure 2.6.

These graphs show a number of interesting features – the first is that most slices

have a relatively low average number of slivers, with 75% of the slices using less

than 7% of the available nodes on average, and only 4% use more than half the

available nodes on average. However, we also see that the maximum number of nodes

used approaches the total size of PlanetLab for virtually every range of average node

20

0 20 40 60 80 100

Fraction of Slices (%)

0

200

400

600

800

N
o
d
e
s

Available

Max

Average

(a) 2006

0 20 40 60 80 100

Fraction of Slices (%)

0

200

400

600

800

N
o
d
e
s

(b) 2008

0 20 40 60 80 100

Fraction of Slices (%)

0

200

400

600

800

N
o
d
e
s

(c) 2010

Figure 2.6: The average and maximum daily sliver counts for slices in 2006, 2008, and 2010.
Most slices have a low average number of slivers, but a large number of them have relatively
high maximum sliver counts in their lifetimes.

counts. This result suggests that while much of the development of experiments may

happen at low sliver counts, many researchers are in fact expanding their experiment

to a large fraction of the available nodes at some point in the slice’s lifetime.

This usage pattern becomes more apparent when we aggregate the slices into the

sites that created them, and then examine network reach, as shown in Figure 2.7. For

each site, we combine the locations of all slivers created by researchers from that site,

and examine the locations of those slivers, by site and continent. We find that 105

sites were purely donating resources in 2010, and did not run any slices of their own

on the rest of the network. At the same time, 132 sites (35%) used more than 200

remote sites (53%). Taking the inactive sites into account, this result implies that

21

0 50 100 150 200 250 300 350 400

Sites

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o

n
 o

f
S

it
e

s
/C

o
n

ti
n

e
n

ts
 U

s
e

d

Sites Used

Continents Used

Figure 2.7: The distribution of network reach that PlanetLab sites used in 2010. More than
50% of all active sites used remote nodes in half of all available sites and every accessible
continent in PlanetLab.

50% of all active sites used more than half of all available sites for their experiments,

which would be impossible without PlanetLab-like global testbeds. Similarly, 73%

of all active sites used nodes in every accessible continent (North America, South

America, Europe, and Asia) in PlanetLab.

Combined, these two results demonstrate the main utility of PlanetLab – it allows

researchers much larger network reach than they would have from just their own

sites. Snapshots over small time periods are likely to understate this usage, since

most experiments run on a small number of nodes for most of their lifetimes, but a

large number of them expand to over half the testbed at some point in their lifetimes.

This kind of utilization of the network is not likely to be captured by examining CPU

or memory resources, as would be appropriate for computer clusters.

2.3.4 No Tragedy of the Commons

From the details presented earlier in this section, we find no measurement-based

support for the idea that there is a tragedy of the commons on PlanetLab. Most

22

experiments are relatively small most of their lifetimes, and use a large fraction of the

testbed in a bursty manner. Likewise, resource consumption is relatively low for most

slices, and the fact that the largest CPU consumers are runaway processes suggests

that many more slices could get more CPU if needed.

The related question is that if PlanetLab appears to have excess capacity, why is

that capacity not being (even surreptitiously) tapped by non-networking researchers?

We believe that several PlanetLab policies make it unappealing for compute-intensive

researchers. The first is that PlanetLab is organized with a small number of nodes

(typically 2) per site, and a large number of sites. This model is different from

compute grids, which have a large number of nodes per site connected with high-

bandwidth local-area networks. In comparison, the external bandwidth capacity at

many PlanetLab sites is in the range of 1-10 Mbps, so the ratio of CPU to band-

width is much different than compute grids. Not only does PlanetLab have a worse

bisection bandwidth than LANs, but the latency between nodes is much higher due

to the physical distance. The other issue is the available memory – a large memory

footprint increases the chances of a sliver being killed, so memory-intensive com-

pute applications are not well-matched to PlanetLab. This combination of high CPU

and low bandwidth is typical of certain bag-of-tasks parallel applications, such as

SETI@home [70], but volunteers can provide far more CPUs than are available on

PlanetLab.

2.4 Resource Allocation

Since the usage behavior of PlanetLab experiments is very different from compute-

intensive testbeds, decisions on resource allocation policy are likely to also be im-

pacted. In this section, we use the historical usage data to examine the resource

allocation systems that have been proposed for federated network testbeds.

23

0 1 2 3 4 5

Fraction of Slices (%)

0.0

0.5

1.0

1.5

2.0

2.5

C
P

U
-d

a
y
(

×
1

0
4

) 2006

2008

2010

(a) Per-slice CPU usage

95 96 97 98 99 100

Fraction of Slices (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) CDF of total CPU usage

Figure 2.8: Total CPU consumptions by slices in 2006, 2008, and 2010. Only 3% of all
slices can account for 80% of all CPU usage in PlanetLab.

2.4.1 Total Resource Consumption

To understand the impact of resource allocation proposals, we must first understand

resource consumption, which has many dimensions, such as node count, length of

running time, resource consumption per node, etc. To capture the different usage

patterns and to reduce the dimensions of the problem, we focus on the contended

resources, CPU and memory, and aggregate per-slice usage across time and across

the entire testbed.

We represent a slice’s total resource usage in units of CPU-day and MEM-day.

A CPU-day means the total CPU time that a single CPU core provides per day.

Likewise, we define a MEM-day as the total memory space that a node provides per

day. If a sliver uses 20% of CPU time and 10% of memory space in 10 nodes for 2

days, its total resource usage is 4 CPU-days and 2 MEM-days.

Figure 2.8(a) presents the distributions of per-slice total CPU usage in decreasing

order. The top 1% of slices use more than 103 CPU-days while the medians are

below 0.1 CPU-days in the years that we examined. PlanetLab slices consumed in

total 0.9 × 105, 1.2 × 105, 2.2 × 105 CPU-days in 2006, 2008, and 2010 respectively.

Figure 2.8(b) presents a detail from the CDFs of the total CPU usage. We find that

24

0 50 100 150 200 250 300 350 400

Total Active Period (Days)

0

5

10

15

20

V
a

ri
a

b
ili

ty
 o

f
S

liv
e

rs

Figure 2.9: The distribution of each slice’s total active period and coefficient of variation
in its sliver count over time. Long-running slices show relatively lower variability than
short-lived slices.

Slice group name Slice count Percentage
Short 718 56
Medium 370 29
Long-intermittent 171 13
Long-continuous 16 2
Total 1275 100

Table 2.2: The distribution of slice groups. The majority of slices are in the short or medium
slice groups.

only 3% of all slices can account for more than 80% of all CPU usage in PlanetLab.

Memory usage has a similar pattern, with 4% of all slices account for more than 80%

of all memory usage.

2.4.2 Resource Usage by Experiment Type

To understand what kinds of slices are creating resource demands and the extent of

their demands, we categorize slices into several groups and compare their aggregate

resource usages.

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

10

20

30

40

50

60

F
ra

c
ti
o

n
 o

f
A

va
ila

b
le

 C
P

U
s
 (

%
)

Long-interm Medium Short Long-cont

Figure 2.10: Time series of the distributions of CPU usage by each slice type in 2010. The
y-axis represents the fraction of available CPUs consumed by slices per day. The Long-
intermittent slices consume the largest amount of the resources with high variation.

We first divide slices along two axes, the variability in the number of slivers and the

lifetime of the slice. Using these groupings, we would expect an infrastructure service

to have a long live and a stable sliver count, while a bursty experiment would have a

short life and a variable sliver count. Figure 2.9 plots each slice’s total active period

and variability of its slivers. The variability of slivers is measured as the coefficient

of variation in a slice’s sliver count over time. We find that long-running services

show relatively lower variability than short-lived slices in general. For simplicity, we

pick some break points, with Short slices having less than a week of total activity

per year, Medium slices having between one week and 100 days of activity, and Long

slices having more than 100 days. We further divide the long slices into continuous or

intermittent based on the normalized deviation of sliver count, with continuous slices

having a deviation of less than 0.25. The number of slices in each of these groups is

shown in Table 2.2.

Daily aggregate CPU usage across the testbed, divided by the slice types, is shown

in Figure 2.10. We first calculate the total CPU usages by all slices per day. The

26

Short slices, despite being over half of all slices, show virtually no CPU usage, while

the Long-continuous slices, at 2% of all slices, consume roughly 5-12% of all available

CPUs over time. The Medium and Long-intermittent slices are much more bursty

in their CPU usage, with the Medium slices showing the least activity during the

summer months and the start of the academic year. This behavior would correlate

with PlanetLab being used for coursework and projects during the academic year.

Upon closer inspection of the slice groups, we find that the slices in the Long-

continuous group run infrastructure services. The slices provide package manage-

ment [18], monitoring [45, 55, 73], or scalable file distribution services [28, 56, 78].

These slices, while often heavy bandwidth consumers, are surprisingly not a huge

impact on PlanetLab’s CPU, presumably because a production-quality service that

has external users must take some care to run stably. On the other hand, the Long-

intermittent slices are the primary source of the fluctuation in the workloads of the

testbeds. For example, we find that many spin-loop slices, described in Section 2.6,

belong to this group.

2.4.3 Resource Allocation Systems

We extend our analysis to explore the effectiveness of alternative resource allocation

schemes in PlanetLab. Among the various resource allocation systems proposed for

federated platforms, we focus on two representative approaches in this section: pair-

wise bartering and centralized banking. Other schemes, such as chaining resources

among a subset of the nodes [29], would fall between these two extremes. We examine

how well the PlanetLab workload could be addressed by the alternative resource

allocation systems if they were widely deployed in PlanetLab.

The two schemes we have selected represent the envelope of resource allocation

schemes, since pair-wise barter is the most restrictive and banking is the most per-

missive. The two schemes assume that users trade their resources with each other,

27

A

B

C

balAB

balAC

resAB = 10

resBA = 5

resCA = 5

(a) Bartering

A

B

C

balA

resBA = 10

resCA = 5

(b) Banking

Figure 2.11: Balance accounts in bartering and banking. In bartering, each site has separate
balance accounts for the other sites. In banking, each site has a single balance account
managed in a centralized bank.

or bid their resources to reserve remote resources in other sites. In bartering, a site

A grants certain units of A’s resources to site B in exchange for access to the same

units of B’s resources. This peering enables the sites to trade their resources without

central agreement. In the central banking system, a site earns virtual currency bud-

gets based on the amount of its donated resources, and obtains remote resources by

spending its balance.

To calculate the amount of the PlanetLab workload that could be addressed by

the resource peering schemes, we break each site’s total resource usage into four

categories: Self, Barter, Bank, and Slop. If a slice from site A runs on nodes owned

by the same site A, we classify the slice’s resource usage as Self.

In bartering, each site keeps separate balances for the other sites. Figure 2.11(a)

shows three sites A, B, and C. A has two balance accounts, balAB and balAC , for site

B and C, respectively. balAB increases when B uses resources at A’s nodes. resBA

represents the amount of resources that B uses at A’s nodes. Likewise, the balance

decreases when A uses B’s nodes. Given resource usage between PlanetLab sites, we

28

calculate the amount of the bartering usage as

Barter =
∑
A,B∈S

min(resAB, balAB) (2.1)

for every pair of sites in all PlanetLab sites S. In Figure 2.11(a), Barter is 5 while

the total CPU usage is 20.

In banking, each site has a single balance across the testbed. In Figure 2.11(b),

A’s balance balA increases when other sites use resources at A’s nodes. A can use B’s

resources by spending its balance. First, we calculate the total resources that A uses

at other sites as

resA =
∑

B∈S,B 6=A

resAB (2.2)

Then we compute the sum of the usages of all sites that can be addressed by each

site’s balance account.

Bank =
∑
A∈S

min(resA, balA) (2.3)

In Figure 2.11(b), A uses C’s resources by spending the balance that it earned from

B. The Bank is 5 while the total CPU usage is 15 in this example.

Lastly, the remaining resource usage is called Slop, which is the amount of re-

sources that sites used beyond what they contributed.

For simplicity and generality, we make a number of assumptions about the re-

source allocation schemes, but these do not lead to a loss of generality in the results.

For bartering schemes, we assume a uniform exchange rate, rather than a dynamic

exchange rate proposed by some systems [10, 20, 44], since the dynamic rate would

only restrict some of the exchanges we observe. Similarly, in central banking, we do

not impose any upper limit on resource balances, which allows us to capture all ex-

changes that could be performed in a central banking model. We consider the effect

of resource limits later in this section.

29

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

20

40

60

80

100

C
P

U
 (

%
)

Slop Bank Barter Self

(a) CPU usage

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

20

40

60

80

100

M
e

m
o

ry
 (

%
)

Slop Bank Barter Self

(b) Memory usage

Figure 2.12: Time series of the distributions of CPU/Memory usage that could be addressed
by several resource peering schemes. Barter and Bank can account for only 17% of the total
CPU usage on PlanetLab while most CPU usage is from Slop. Memory usage shows a
similar distribution. Bank and Barter schemes show slightly higher percentages (19% total)
than for CPUs, but most memory usage still comes from Slop.

Figure 2.12 presents the amount of testbed-wide CPU/Memory usage addressed

by each category. As expected, the percentage of Self usage is low, since sites would

30

have little reason to join PlanetLab and use solely their own machines. The Barter

approach handles on average less than 3% of the CPU usage on PlanetLab, and the

Bank approach handles an additional 14% beyond Barter. The vast majority of the

CPU usage, however, cannot be handled by any of these approaches, and is allocated

from Slop. This implies that, no matter the underlying exchange rate mechanism,

there is not much demand for resources that the resource peering schemes are able to

handle. It also means that there has to be a policy to handle allocation when bartering

or banking fails since most resources will be allocated via Slop. For memory usage,

the Bank and Barter schemes show slightly higher percentages (19% total) than for

CPUs, but the results are consistent with CPU usage in that most memory usage

also comes from Slop. The underlying cause of these results is that CPU demand

is unbalanced, with most sites using a large network reach but relatively little CPU.

Schemes that attempt to allocate resources must contend with the fact that, for the

vast majority of users, CPU is in relatively low demand.

We extend our simulation of the pair-wise bartering scheme to examine the effec-

tiveness of resource routing in PlanetLab, which enables sites to access resources in

more remote sites through some transitive ticket redemption paths. If site A has a

ticket to claim on B’s resources and B has a ticket to claim on C’s resources, A could

request C’s resources using the chained redemption of its ticket to B (A→ B → C).

For conservative evaluation, we assume that every site has the global knowledge of

the distribution of tickets at a given time, and we set no limit on the length of the

path that can be used to claim resources.

We find that such resource routing enables PlanetLab sites to find 3.2 times more

CPUs than with the pair-wise bartering scheme, but that the total usage addressable

by chained approaches is still less than 7% of total CPU usage. Even with unlimited

chain lengths, the chained bartering schemes have a result that is much closer to

pair-wise bartering than to central banking, which suggests that the chains are likely

31

01 04 07 10 13 16 19 22 25 28 31

Day

0

1000

2000

3000

4000

5000

6000

7000

8000

T
o

ta
l
B

a
n

k
 B

a
la

n
c
e

s
 (

C
P

U
-d

a
y
s
)

No Limit

Limit=25

Limit=10

Available

Limit=5

Limit=1

Figure 2.13: The total balances amassed at all sites. Without balance limits, the total
balances will exceed the daily capacity of PlanetLab within 3 days, leading to inflation of
virtual currency.

to be fairly short. Indeed, we find that the maximum length of the used path was

18 hops, but most of the CPU addressed (85% of the 7%) in bartering was found in

sites within 4 hops.

Despite the Bank approach addressing only 14% beyond Barter, any feasible im-

plementation would achieve even less since some limit has to be placed on the balances

each site can accumulate. Using the data for January 2010, we examine the bank bal-

ance growth in Figure 2.13, and show the effect of various limits. With no limit

on balances, the total bank balances grow quickly and exceed the daily capacity of

PlanetLab (“Available”) within three days. Beyond this limit, the virtual currency

becomes inflated, as more currency is accumulated than can ever be spent. With

balance limits enforced, the total balance converges at certain points. We find that

five CPU-days limit (or lower) can prevent the total balances from growing beyond

what PlanetLab can serve. Since most nodes in PlanetLab are dual-core or quad-core

machines (82%), the five CPU-days correspond to two physical machines, which is

what each site typically provides.

32

0.0 0.2 0.4 0.6 0.8 1.0

Balance (CPU-day)

0

50

100

150

200

250

300

S
it
e

s

(a) 1 CPU-day Limit

0 5 10 15 20 25

Balance (CPU-day)

0

50

100

150

200

250

300

S
it
e

s

(b) 25 CPU-day Limit

Figure 2.14: The distribution of bank balances among sites. There are bimodal distributions
with most sites being near the limits.

Even if the total balance is bounded, the utility of banking and resource auctions

depends on users willing to outbid each other in order to get access to resources.

However, we find that bank balances tend toward bimodal distributions, as shown in

Figure 2.14. The majority of sites hit the balance limit, and a fraction of sites are

constantly at a zero balance, with similar patterns at balance limits of 1 CPU-day

and 25 CPU-days.

If banking is intended to solve the problem of demand before external events,

such as conference submission deadlines, this bimodal wealth distribution suggests

that auctions will fail, since all sites have the same amount of currency to bid on

the same resource, and the utility of the resource presumably drops to zero after the

paper submission deadline.

Conversely, when no external deadline exists, the bank balances provide little

benefit, since PlanetLab already has most of its resources being allocated via Slop.

Therefore, a banking scheme would allow all of the current demand to be satisfied,

without providing any additional benefit beyond what is currently present.

If banking were employed to reduce the resources being allocated via Slop, then

a policy decision has to be made regarding the testbed. From our earlier examina-

33

0 20 40 60 80 100

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CPU

Memory

Figure 2.15: CDFs of average CPU/Memory utilization of all PlanetLab nodes in 2010.

tion of consumption, the Long-continuous slices were responsible for far less CPU

consumption than the Long-intermittent slices. One may decide that Slop should

be allocated preferentially to continuously-running services in order to increase the

visibility (internally and externally) of PlanetLab. In any case, the decision becomes

how to allocate the Slop, not how to use banking, suggesting that banking by itself

provides little utility.

2.5 Workload Imbalance

Despite the availability of resources on PlanetLab, some level of contention does occur

from the testbed being shared, leading to workload imbalance. In this section, we

examine the workload distribution in 2010, and analyze the degree of imbalance in

PlanetLab and its effects on the system. We analyze some reasons for the distribution,

and explore solutions based on these observations.

By measuring average CPU and memory utilization by node, we can see a persis-

tent difference during the year, as shown in Figure 2.15. The effects of this imbalance

34

Field CPU-Low Med High
ServTest-max 2.71 12.95 150.57
ServTest-avg 0.29 0.62 3.66
Timer-max 38.02 282.75 3247.94
Timer-avg 10.35 10.62 15.01
SleepLoop 1.28 4.15 27.72
SpinLoop 0.49 0.98 7.48

Table 2.3: The 90th percentile values (in milliseconds) of the system lag metrics in nodes
with low, medium, and high CPU load.

are also quantifiable, using CoMon’s metrics regarding system lag and timing. These

metrics are related to the responsiveness of networked systems, so load-induced timing

problems would degrade PlanetLab’s overall utility. The metrics used are

• ServTest – Measure latency to make a loopback connection and receive a byte

from it. Calculate maximum and average values over previous 60 runs. Used to

measure connectivity responsiveness.

• Timer – Measure latency in wake-ups from 10 msec sleeps. Calculate maximum

and average values over last 60 runs. Used to measure load on the scheduler.

• SleepLoop – Run 11 spin-loops with 10 msec sleeps in-between. Measure gaps

between the loops and calculate (max - min) of the gaps. Used to simulate the

behavior of low-rate measurement activity.

• SpinLoop – Run 11 spin-loops without sleeps. Calculate a diff value like

SleepLoop. Used to simulate the behavior of high-rate measurement activity.

We divide PlanetLab nodes into three groups based on their CPU load shown in

Figure 2.15: top 25%, bottom 25%, and the remaining 50% of all nodes. Then we

compare the values of the lag-related metrics between the groups (Figure 2.16). It

is noticeable that the nodes with high CPU load show two orders of magnitude of

increase in the metrics compared to other lightly loaded nodes. This latency may

degrade responsiveness of network services or add measurement noise to running

35

0 50 100 150
msec

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bottom 25%

Middle

Top 25%

(a) ServTest-max

0 500 1000 1500 2000 2500

msec

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Timer-max

0 5 10 15 20 25

msec

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) SleepLoop

Figure 2.16: CDFs of system lags in nodes grouped by their average CPU load.

experiments. Table 2.3 summarizes the 90th percentile values of all the metrics in

each group. We observe similar results in the nodes grouped by their memory load.

Such timing increases complicate experiment design and add noise to measurements.

On the positive side, long-running services will have to develop mechanisms to deal

with these issues, which are also likely to occur in the real world, thereby making

their services more robust outside of testbed environments.

2.5.1 Origins of Imbalance

While one may expect that a certain amount of workload imbalance is naturally to

be expected in a large testbed, we believe that the imbalance on PlanetLab has other

more identifiable causes. Identifying these causes can help researchers in improving

36

05 06 07 08 09 10

Node Registration Year

0

5

10

15

20

25

30

L
iv

e
 S

liv
e

rs
 p

e
r

N
o

d
e

Figure 2.17: The number of live slivers per node in 2010. The recently registered nodes serve
lower number of live slivers than older nodes. The error bars represent standard deviations.

the resources their experiments use, and it can help future testbed operators determine

policies that would help alleviate imbalance.

One of our observations regarding PlanetLab nodes is that newer, more powerful

nodes are often very lightly used, and that older, less capable nodes are in heavy

demand, which is the opposite behavior of what one would expect from researchers

seeking out the most available CPU resources. We can quantify this behavior by

examining the sliver counts on different nodes. Figure 2.17 shows the number of

live slivers per node, broken down by the year the node entered PlanetLab. We see

that the older nodes have more than twice as many slivers as the newer nodes, and

this metric understates the difference, since these sliver counts include many of the

long-running services.

The same behavior is evident if we examine the type of machine involved, since

older nodes would tend to have fewer CPU cores, and newer machines would have

more cores. Figure 2.18 plots the numbers of slivers in nodes, based on the number

of CPU cores per node. The trend is clear – not only do fewer slices run on the more

37

1 2 4 8 Other

CPU Cores

0

20

40

60

80

100

120

S
liv

e
rs

In-memory Sliver

Live Sliver

Figure 2.18: The distribution of slivers in nodes based on the number of CPU cores per node.
The number of in-memory and live slivers shows a generally decreasing trend as the number
of cores increases, which is responsible for some of the measured workload imbalance. The
error bars represent standard deviations.

powerful machines, but even if we look at just the instantiated slices (the in-memory

slivers), fewer of those exist on the more powerful machines. Even the most powerful

nodes (labeled as “Other”) are the least popular among the nodes. This breakdown

is even more apparent when calculated the slivers per core, with the 8-core nodes

serving only 1.53 slivers per core at a given time while single-core machines were

busy with running 23.16 slivers.

We observe similar patterns in memory usage when compared to node memory

size. Figure 2.19 shows the average memory usage of nodes, grouped by the memory

size of the node. We see that nodes with more memory see relatively little extra

usage of that memory. We believe that the reason that more memory is not used

is because experiments that are deployed across multiple nodes have to plan for the

lowest common denominator, and therefore restrict their memory usage to avoid being

killed. At the same time, the reason we see any growth in memory usage on larger

nodes is likely due to more memory-intensive experiments avoiding the smaller nodes,

38

0.5-1 1-2 2-3 3-4 Other

Memory Size (GB)

0.0

0.5

1.0

1.5

2.0

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

Figure 2.19: The memory usage by node memory size. The nodes with more memory see
relatively little extra usage of that memory. The error bars represent standard deviations.

perhaps as a result of having found their slivers killed on those nodes. Regarding live

sliver counts, we see some of the same trends observed for the node’s CPU cores. The

nodes with the largest memory space (“Other”) host only 6.64 live slivers on average

while the most memory-constrained nodes (“0.5 - 1GB”) are busy with running 20.14

live slivers.

Several possible explanations can explain this behavior, ranging from the history

of PlanetLab to human nature. One may expect that users obtain a list of work-

ing nodes, and do not regularly update their lists, leading to a bias against newly-

introduced nodes. Older nodes may also reflect more established hosting sites that

joined PlanetLab earlier since they had more active network research groups. These

sites may have a larger user population keeping their nodes well-maintained, and may

be connected to the Internet using better-quality links. Users may also flock to more

busy nodes precisely because other users have found them desirable – knowing noth-

ing else about two nodes, the one with more active users may actually be the better

39

node to use, because other users have already found the node to be more useful for

their experiments.

2.5.2 Nodes with Failures

While it may be argued that there is little harm letting users flock to known-good

nodes, it can also be useful to explore why users avoid other nodes. From a policy

perspective, the testbed itself has reasons to encourage a flatter load balance, because

it can increase the capacity of the testbed, reduce experimental variance, and alleviate

congestion. The testbed operators may also want to ensure that the participating

sites are really contributing resources of value, instead of pro-forma resources that

are useless to the rest of the testbed.

Since resource pressure on a node is not a main concern for users, we focus on

the types of failures that could significantly limit network experiments on the node.

CoMon records a set of metrics about node health. Among them, we selected four

fields that we believe users are likely to correlate with the stability and the quality of

network connections that a node provides. They are DNS failure rates, provisioned

bandwidth, system uptime, and availability of each PlanetLab node.

We define several failure modes for nodes. A node is considered to have a non-

working DNS system if its DNS failure rate is over 90% on average in the node. A

node has low bandwidth if its 90th percentile of the achieved bandwidth in the node is

less than 1 Mbps. For stability, we define a node to be unstable if its average system

uptime is less than a week. Lastly, a node’s availability is classified as low if the node

was online for less than a month in total during 2010. These choices are meant to be

conservative, in that users may still prefer higher quality values than our thresholds.

We classify PlanetLab nodes based on each failure mode that we define, and

compare their popularity using sliver counts as a proxy. Figure 2.20 presents the

average number of live slivers in both failed nodes and healthy nodes. In contrast

40

DNS bandwidth uptime availability comb.

Field

0

5

10

15

20

25

30

L
iv

e
 S

liv
e

rs

w
o

rk
in

g

fa
ili

n
g

h
ig

h

lo
w

s
ta

b
le

u
n
s
ta

b
le

h
ig

h

lo
w

a
ll-

g
o

o
d

a
ll-

b
a

d

Figure 2.20: Popularity of nodes based on failure modes. PlanetLab users avoid nodes
with high DNS failures, low bandwidth, and unstable operation. The error bars represent
standard deviations.

to resource availability, we find that PlanetLab users do react to the failures in the

nodes. We find that healthy nodes have twice as many live slivers compared to

failing nodes, and since many of these slivers are due to infrastructure services, the

difference in experimental slivers is likely to be even higher. The “all-bad” nodes in

the combination failures (labeled as “comb.”) represent nodes that exhibit all the

four failures. Those nodes had only 3 live slivers while other healthy nodes hosted

18.5 live slivers on average. Figure 2.21 plots the distribution of node popularity

measured as live slivers per node and in-memory slivers per node. We find that the

all-bad nodes are in the bottom 3% of the unpopular nodes. Roughly 65% of nodes

were “all-good” nodes that do not have any failures. Those nodes serve 20 live slivers

on average, which is in the 64th percentile in node popularity.

2.5.3 Alternative Experiment Placement

In the previous sections, we showed that PlanetLab users seem to stay with the nodes

they have been known to work well over time while avoiding non-working nodes for

41

0 20 40 60 80 100 120 140

Node Popularity (Slivers)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Live Sliver

In-memory Sliver

Figure 2.21: CDFs of node popularity. Each node’s popularity is measured as its sliver
count.

their experiments. However, this conservative placement strategy can collectively lead

to inefficient resource allocation and undesirable system lags in the popular nodes.

Also, the manual deployment prevents a new participant’s nodes from being adopted

by existing users, which can hamper the growth of the testbed in the long term.

We examine how the workload would change if researchers were to deploy their

systems in a different manner. In PlanetLab, heavily loaded nodes are easily avoidable

because there are available services to help users identify such nodes. CoMon provides

a set of interfaces to allow users to pick lightly loaded nodes based on web-based

queries. Similarly, CoMon provides interfaces to filter out failing nodes in using

various metrics. Some available execution management systems [3, 5] locate resources

based on high-level queries in XML given by users.

We consider a “what if” scenario that all PlanetLab users query CoMon-like mon-

itoring systems to find the set of lightly loaded all-good nodes when they deploy their

experiments. We simulate the scenario using the CoMon data of 2010. We assume

that a sliver is placed on the node selected by a monitoring service only when it

42

0 5 10 15 20 25 30

Live Slivers per Core

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Original

100Km

Country

Continent

BestFit

Figure 2.22: CDFs of live slivers per core in simulations of alternative node placement
policies. Since lightly loaded and all-good nodes are selected, the workload is well balanced
among nodes while any undesirable failures are avoided.

is started, and that continuously live slivers do not migrate between nodes in our

simulation.

Figure 2.22 plots the distribution of slivers with several alternative service-

placement policies. Original plots the number of live slivers per core that we

observed in the datasets. BestFit represents a policy that places a new sliver in

the least loaded all-good node regardless of its location. However, it is not always

desirable to deploy services in this way, because users may want to deploy their

experiments at a certain range of network vantage points. Continent and Country

represent policies that find nodes from the same continent or the same country as its

original node in the dataset, respectively. Lastly, since some countries have a large

number of nodes, we simulate a policy to find a node for a sliver within a configurable

distance, 100 Kilometers, from its initial node. We compare against an ideal policy,

BestFit, in which all good nodes host an equal number of slivers, and any nodes that

exhibit failures (201 in total) are avoided entirely.

43

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r

o
f

N
o

d
e

s

90~ 75~89 50~74 25~49 ~24

Figure 2.23: The distribution of per-day CPU loads on PlanetLab nodes in 2010. Each day,
nodes are divided into five categories according to their per-day CPU usage. The nodes
with more than 90% CPU usage account for up to 49% of all PlanetLab nodes (July 22).

Our simulation result shows that the dynamic experiment placement could greatly

improve the load balancing in PlanetLab while still largely avoiding problematic

nodes. The 90th percentile of per-node live slivers decreases from 16.1 to 13.7 (in

100 km) and 10.3 (in Country). As the placement restrictions are loosened, not only

does it become possible to more evenly distribute load, but it also becomes more likely

that the bad nodes are avoided entirely. The 100-km policy still allocates a substan-

tial fraction of nodes from the bad set, whereas continent-level placement avoids them

almost entirely. If a user wants to use a set of specific nodes, she should be able to

deploy her service on the nodes, but many other users could benefit from the intelli-

gent service placement. The primary reason for the improved load-balancing is that

most experiments are short-lived (Section 2.3), so the dynamic experiment placement

can help spread well the load over available nodes.

44

2.6 Policing of Slices in PlanetLab

In this section, we show that PlanetLab’s resources are affected by a few problematic

slices. We examine the impact of those slices on PlanetLab and consider the implica-

tions for policing of resource usage in the testbed. We also explore how PlanetLab’s

workloads would change if stricter form of policing is introduced in PlanetLab.

2.6.1 Spin-loop Slices in PlanetLab

PlanetLab is a shared infrastructure, and while it provides some mechanisms to pre-

vent experiments from interfering with each other, it also relies on the cooperation

of researchers. For example, local tests and incremental rollouts are recommended

before a new service is fully deployed in PlanetLab [74]. We observed that most slices

follow this practice well in Figure 2.6. To minimize centralized control, PlanetLab

typically does not police resource usage of a slice unless there are significant risks of

system crashes or security concerns that need to be addressed immediately.

However, some experiments may behave poorly because of design or implementa-

tion flaws, and negatively affect many other well-behaved experiments. We analyze

the problem using CoMon data collected in 2010. We divide nodes into several cat-

egories according to their per-day CPU usage, and observe the distribution of the

nodes over time. Figure 2.23 presents the distribution of per-day CPU loads on Plan-

etLab nodes in 2010. In this analysis, we define a node to be overloaded on a given

date if its per-day CPU usage is over 90%, and up to 49% of all live PlanetLab nodes

are overloaded. The number of overloaded nodes varies over time, but we did not find

any noticeable correlation between the numbers of overloaded nodes and live slices a

day (the graph is omitted for brevity). This implies that the overloaded nodes are

not caused by the increase of active users.

45

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

200

400

600

800

1000

1200

C
P

U
 U

s
a

g
e

 (
C

P
U

-d
a
y
)

Well-behaved Spin-loop

Figure 2.24: The CPU consumption of spin-loop slices in 2010. Although there are only a
few spin-loop slices (4.8 slices among 152.7 live slices per day), the average CPU consump-
tion of the spin-loop slices accounts for 31% of the total CPU usage of all slices.

The largest testbed-wide CPU consumers are often a few slices that use many

aggregate CPU cycles without generating network traffic. We define a spin-loop sliver

as a sliver that consumes more than 20% of a CPU and has an average bandwidth

consumption (Tx + Rx) below a minimum value, 1 Kbps. We classify a slice as a

spin-loop slice if the majority of its slivers are spin-loop slivers.

We believe that most of the spin-loop slices are caused by unintentional mistakes

in their designs or implementations, but it is also possible that some slices process

meaningful jobs without generating network traffic. We found that a few slices used

PlanetLab for running simulators or data analysis on the nodes such as social network

data analysis. However, PlanetLab is designed for network experiments, not resource-

intensive computations. In our analysis, we classify the slices as spin-loop slices

because the simulation experiments or grid computations are not consistent with the

testbed’s purpose.

Figure 2.24 presents the CPU consumption of the spin-loop slices in 2010. We find

that the problematic slices accounted for on average 31% of the total CPU across all

46

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2010

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r

o
f

N
o

d
e

s

90~ 75~89 50~74 25~49 ~24

Figure 2.25: Time series of the updated distributions of per-day CPU loads after pruning
spin-loop slices. The number of overloaded nodes is reduced by 71% (150 to 43) on average.

of PlanetLab. Since spin-loop slices average 4.8 per day among the 152.7 live slices

per day, the 31% resource consumption is significantly large. Also, we see the CPU

consumption of the spin-loop slices is the main cause for the fluctuation of the overall

workload in the testbed.

2.6.2 Pruning Spin-loop Slices

We simulate pruning the spin-loop slices to measure their impact on other slices. For

a spin-loop slice, we subtract its sliver’s CPU consumption from the node’s CPU

usage. If a spin-loop sliver had been pruned by PlanetLab, more CPUs might have

been available to non-spinloop slivers in the node. Therefore, for each non-spinloop

sliver, we select the larger of its CPU usage in a day or the median of its CPU usage

throughout the year, to recompute the node’s CPU usage after pruning.

Figure 2.25 plots the updated distribution of CPU load after spin-loop slices are

pruned by PlanetLab. We find that the number of overloaded nodes is reduced from

150 to 43 nodes by policing only 4.8 spin-loop slices a day on average. It is notable

47

that there are still some overloaded nodes even after pruning all identified spin-loop

slices on PlanetLab nodes. We examine the nodes in order to understand what other

factors made them remain overloaded. We find that 56% of the overloaded nodes are

single core machines, which represent only 13% of all PlanetLab nodes.

2.7 Related Work

Several resource management frameworks have been proposed for PlanetLab-like fed-

erated distributed computing infrastructures. In Sharp [29], multiple autonomous

parties can exchange their resources using tickets. A ticket represents the holder’s

claim over a certain amount of resources in other peers, which can be issued, delegated,

and redeemed in a cryptographically secure manner. Millennium [21], Mirage [20],

Tycoon [44], Amoeba [75], and Bellagio [10] propose market-based mechanisms for

trading resources in an economically efficient way. The systems focus on maximiz-

ing the values delivered to users by providing a means to express their valuation

of resources. In Bellagio, participating users receive virtual currency budgets based

on their resources that they contributed, and submit their preferences in the form

of auction bids. The market-based systems are not widely deployed in PlanetLab

because user valuation of resources is useful in the systems where resource demand

exceeds resource supply (e.g., sensor network testbed). We expect that our analysis

results will provide insights into user behavior in the federated infrastructures, which

is required for designing similar economic resource allocation models.

Previous studies in traditional cluster resource management largely focused on re-

source utilization for compute-intensive applications in time-sharing or batch-queue

systems. The job scheduling and resource allocation in the systems are designed

to improve performance metrics such as throughput and mean response time. Dis-

tributed batch queue systems (Condor [47], Matchmaking [67]) provide resource shar-

48

ing across loosely coupled pools of distributively owned machines. Load balancing

systems (MOSIX [13], LSF [62]) balance CPU load across nodes in cluster by actively

migrating processes across cluster machines. However, these cluster resource man-

agement systems do not address non-aggressive user behavior in wide-area network

testbeds that are much different from compute clusters.

Our work relates to research projects that help PlanetLab users monitor and lo-

cate resources in the testbed. SWORD [5] is a resource discovery service deployed

in PlanetLab. In SWORD, users describe desired resources such as per-node charac-

teristics in XML and submit the queries, and then the service locates an appropriate

set of resources for the user based on the given specification. CoMon [55] provides

a comprehensive view of statistics about every node and slice in PlanetLab. It also

provides a mechanism to select nodes based on queries provided by users. Also, sev-

eral execution management systems [3, 9, 18] are available to provide GUI interfaces

to help users deploy and monitor their systems across multiple remote nodes.

49

Chapter 3

Lsync: Low-latency File Transfer

System

3.1 Introduction

In the previous chapter, we showed that most PlanetLab experiments are short-lived

but often expand to a large fraction of available nodes in the testbed. Given the

usage pattern, reducing deployment delay is required for improving programmer pro-

ductivity in wide-area testbeds. Besides testbeds, low-latency file transfer is essential

for many wide-area systems that want to maintain a close control over their remote

nodes. These systems frequently distribute new configurations [71], coordinate task

lists among multiple endpoints [79], and optimize system performance under dynam-

ically changing network conditions [52]. All of the scenarios involve latency-sensitive

synchronization, where the enforced synchronization barrier can limit overall system

performance. If these systems face long synchronization delays, possibilities include

service disruption, inconsistent behavior at different replicas visible to end users, or

increased application complexity to try to mask such effects.

50

Overlay Multicast CDN/P2P Epidemic Routing

Fast nodes Slow nodes

Figure 3.1: Slow Nodes in Overlay – Peering strategies in scalable one-to-many data transfer
systems are not favorable to slow nodes.

Latency is measured as the total completion time of file transfer to all target

remote nodes. In wide-area systems, it is usual that a number of nodes experience

network performance problems and lag far behind up-to-date synchronization state

at any given time. We observe these slow nodes typically dominate the completion

time, which means that managing their tail latency is crucial for latency-sensitive

synchronization.

Although numerous systems have been proposed for scalable one-to-many data

transfer [15, 19, 28, 43, 56, 60], they largely ignore the latency issue because resource

efficiency is typically their primary concern for serving an open client population.

In an open client population, there is no upper bound on the number of clients, so

the systems aim to maximize average performance or aggregate throughput in the

system.

As a result, existing systems are not favorable to slow nodes (Figure 3.1). For

instance, many overlay multicast systems attempt to place well-provisioned fast nodes

close to the roots of their multicast trees while pushing slow nodes down the trees.

Likewise, the peering strategies used in CDN/P2P systems prevent slow nodes from

peering with fast nodes. The random gossiping in the epidemic routing protocols

helps slow nodes peer with fast nodes, but only for short-term periods. These peering

51

strategies produce long completion times with high variations because they make slow

nodes download more slowly. However, it is common that existing services rely on

one of the data transfer schemes for coordinating their remote nodes.

In this chapter, we explore general file transfer policies for latency-sensitive syn-

chronization with the goal of minimizing completion time in a fixed client population.

This completion time metric drives us to examine new optimization opportunities

that may not be advisable for systems with open client populations. In particular, we

aggressively use spare bandwidth in the origin server to assist nodes that experience

performance problems in the overlay at runtime. The server allocates its bandwidth

to slow nodes in a manner favorable to slow nodes while synchronizing other nodes

through the existing overlay. This server-assisted synchronization reduces the tail la-

tency caused by slow nodes without sacrificing scalable data transfers in the overlay,

which drastically improves the completion time and achieves stable file transfer.

We design and develop Lsync, a low-latency one-to-many file transfer system.

Lsync can be used as a synchronization building block for wide-area distributed sys-

tems where latency matters. Lsync continuously disseminates files in the background,

monitoring file changes and choosing the best strategy based on information available

at runtime. Lsync is designed to be easily pluggable into existing systems. Users can

specify a local directory to be synchronized across remote nodes, and give Lsync the

information about target remote nodes. Other systems can use Lsync by simply drop-

ping files into the directory monitored by Lsync when the files need latency-sensitive

synchronization.

Lsync implements the techniques that we develop for reducing latency in this

work, including: (1) unified node selection with synchronization that outperforms

other approaches; (2) dynamic node scheduling to give preference to bottlenecked

nodes; (3) one-to-many file distribution service characterization using a black-box

52

approach; and (4) adaptively choosing the best synchronization mechanism, which

depends heavily on the environment and the data to be synchronized.

We evaluate Lsync against a wide variety of data transfer systems, including a

commercial CDN. Our evaluation results from a PlanetLab [1] deployment show that

Lsync can drastically reduce latency compared to existing file transfer systems, often

needing only a few seconds for synchronizing hundreds of nodes. When we generate

a 1-hour workload similar to the frequent configuration updates in Akamai CDN [2],

Lsync makes most PlanetLab nodes full synchronized throughout the experiment.

The rest of this chapter is organized into following sections. In Section 3.2, we

describe the model and assumptions for our problem. Based on the model, we discuss

how to allocate the server’s bandwidth to slow nodes in Section 3.3. In Section 3.4, we

describe how to divide nodes between the server and the overlay in a way to minimize

completion time. We describe the implementation in Section 3.5 and evaluate it on

PlanetLab in Section 3.6.

3.2 Synchronization Environment

In this section, we describe the basic operational model used for Lsync, along with

the assumptions we make about its usage.

Operational model We assume one dedicated server that coordinates a set of re-

mote nodes, N , geographically distributed in the WAN, as shown in Figure 3.2. The

management server has an uplink capacity of C, and can communicate with each

remote node ni with bandwidth bie2e. The C value is configurable, and represents the

maximum bandwidth that can be used for remote synchronization. The bie2e values

are updated using a history-based adaptation technique, described in Section 3.4.5,

to adjust to variations in available bandwidth. The server knows the amount of new

data by detecting file changes in the background as described in Section 3.5.

53

Upload

capacity C

Overlay mesh

Files
Server

b
i

e2e

ni

Remote

Nodes N

Clients ...

Figure 3.2: Synchronization Environment – the server has files to transfer to remote nodes
with low latency. The remote nodes construct an overlay mesh for providing a scalable data
transfer service to external clients.

Many distributed systems construct overlay meshes among their remote nodes to

use scalable data transfer systems. If an overlay mesh is available and certain con-

ditions are met, Lsync leverages it for fast synchronization. To make Lsync easily

pluggable into existing systems, we do not require modification of a given overlay’s

behavior. Instead, Lsync characterizes the overlay mesh using a black-box approach

to estimate its startup latency. Based on the estimation, Lsync determines how to

partition the workload across the server and the overlay.

Target environments This model is appropriate for our target environments, where

a large number of nodes are geographically distributed without heavy concentrations

in any single datacenter.1 Our target environments also require that we exclude IP

multicast, due to the problems stemming from lack of widespread deployment and

coordination across different ASes.

1The intra-datacenter bandwidths are sufficient to make the synchronization latency less of an
issue in that environment.

54

Examples of current systems where our intended approach may be applicable in-

clude distributed caching services [6, 52], WAN optimization appliances [22, 68], dis-

tributed computation systems [70], edge computing platforms [24], wide-area testbeds

(PlanetLab, OneLab), and managed P2P systems [58, 59, 77]. In addition, with most

major switch/router vendors announcing support for programmable blades for their

next-generation networks, virtually every large network will soon be capable of being

a distributed service platform.

Target remote nodes Lsync uses different file transfer strategies for different tar-

get remote nodes. In Lsync, users can specify target remote nodes in various ways.

For global updates, users will configure Lsync to optimize the latency for updating all

remote nodes. However, it is not always feasible to wait until 100% of nodes are syn-

chronized. In wide-area systems, it is common that some nodes are left disconnected

for extended periods of time. Therefore, Lsync should also support partial update

scenarios. Users can specify a certain fraction of nodes that need to be synchronized

quickly. We name the input parameter target synchronization ratio denoted by r for

the rest of this chapter. Given r, Lsync will automatically pick the best set of nodes

that can deliver the lowest latency to users, and focus available network resources

on the selected nodes while synchronizing remaining nodes in the background. Our

evaluation results show that this late-binding of nodes significantly reduces latency.

This partial update is useful for interactive development in wide-area testbeds, incre-

mental rollouts of new configurations, and maintaining quorum in wide-area systems.

For global updates, users can simply set r to 1. Likewise, when users want a partial

update for a specific set of remote nodes, they can set r to 1 for the manually selected

nodes.

Parallel transfer control The server limits the number of simultaneous transfers

in order to avoid self-congestion and associated problems stemming from server over-

load [4, 65]. While many existing tools have static configuration for maximum con-

55

0
t cmpT

i

pendt

i

prevf
newf

in

1+in

2+in

1−in

2−in

i

eeb 2

Ntarget

t

Cb
i

ee <∑ 2

Figure 3.3: End-to-End Synchronization – The completion time Tcmp is determined by the
node with the latest finish time among the target nodes Ntarget. The server can control
tipend and Ntarget with node scheduling and node selection policies.

nections, when beneficial, we expect to dynamically adjust the number of end-to-end

transfers such that the total bandwidth demand does not overwhelm the upload ca-

pacity of the server.

3.3 Server Bandwidth Allocation

Lsync’s file transfer policy combines multiple factors that contribute to the overall

latency reduction. Lsync exploits the server’s available bandwidth to speed up syn-

chronizing remote nodes. In this section, we begin by examining the effects of the

server’s bandwidth allocation policies on completion time. This end-to-end synchro-

nization scenario serves as a useful starting point both because of its simplicity as well

as the fact that many tools operate in this manner [3, 54, 76]. We will later extend

our discussion to incorporate more scalable data distribution systems in Section 3.4.

Figure 3.3 shows an example of end-to-end synchronizations where the server

transfers files to a set of target remote nodes, Ntarget ⊂ N . The server detects a

new file, fnew, at time t0. Each horizontal bar corresponds to a remote node, ni ∈

56

Ntarget, that has variable-sized unsynchronized data f iprev remaining from previous

transfers. The areas of f iprev and fnew represent the sizes of the files, |f iprev| and |fnew|

, respectively. The height of the bar, bie2e, is the end-to-end bandwidth from the server

to ni that starts its transfer after a pending time tipend. At any given time t, the sum

of the heights of the bars should not exceed the server’s upload capacity C in order to

avoid self-congestion and associated problems stemming from the server overload [4].

The completion time, Tcmp, is calculated as

Tcmp = t0 + max
i

(
tipend +

|f iprev|+ |fnew|
bie2e

)
(3.1)

for ni ∈ Ntarget. There are two variables that the server can control transparently to

the remote nodes. The server can determine tipend that ni should wait before starting

its transfer. The server can also select nodes for Ntarget if a target synchronization

ratio is given. From the perspective of the server, controlling these two variables corre-

sponds to node scheduling and node selection policies in the server, respectively. The

basic intuition behind the policies is that we could reduce the latency by giving low

tipend to slow nodes and carefully selecting nodes for Ntarget. In the following sections,

we compare different policies on PlanetLab to examine their effects on latency.

3.3.1 Node Scheduling

We begin by examining how we schedule transfers when the number of transfers

exceeds the outbound capacity of the server. This is the problem of minimizing

makespan, which is NP-hard. The proof of NP-hardness is simple. We reduce the bin

packing problem to the problem of minimizing completion time in node scheduling

in Figure 3.3. The bin packing problem is defined as follows: Given a set of items of

different sizes, determine the minimum number of bins of capacity V needed to pack

all the items. Let si be the size of a given item. We set C, fnew and f iprev to V , 0 and

57

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

Fraction of Syncd Nodes

Fast First

Slow First

Pruned Slow First

Figure 3.4: Node Scheduling and Node Selection – Pruned Slow First captures both the
initial speed advantage of Fast First, as well as the total overall advantage of Slow First.

si, respectively. Then the NP-hard bin packing problem is reduced to the problem

of finding the scheduler that can minimize the completion time Tcmp in Figure 3.3.

Hence the node scheduling problem is NP-hard.

We compare two basic scheduling heuristics, Fast First and Slow First. The Fast

First policy is similar to Shortest Remaining Processing Time (SRPT) scheduling in

that the server’s resource is allocated to the node that has the shortest expected

completion time. SRPT is known to be optimal for minimizing mean response

time [12, 33]. The Slow First policy is the opposite of the Fast First policy, and

selects the nodes with the longest expected completion time when the server has

available bandwidth.

We measure the performance of the two schedulers on PlanetLab nodes. We

implement the policies in a dedicated server that has 100 Mbps upload capacity. Then

we generate two files – fnew (1 MB), and fprev (10 MB) that has been in the process

of synchronization on the nodes, from 1% to 99% complete. We measure the time to

synchronize all live PlanetLab nodes (559 nodes at the time of the experiments) with

either of the two scheduling modes enabled.

58

The result of the measurement is shown in Figure 3.4. Fast First synchronizes

most nodes faster than Slow First, but at high target ratios, Fast First performs

much worse. The reason for the difference is somewhat obvious: near the end of

the transfers in Fast First, only slow nodes remain, and the server’s uplink becomes

underutilized. This underutilization occurs for the final 175 seconds in Fast First,

but only for 0.5 seconds in Slow First. We also evaluated Random scheduling, which

selects a random node to allocate available bandwidth. From 10 repeated experiments,

we found that the Random scheduling yields completion times between Fast First and

Slow First, but generally closer to Slow First for all target ratios.

This result implies that slow nodes dominate the completion time in the WAN

and that Slow First scheduling can mask their effects on latency. Another implication

of the result is that offline optimization will provide little benefit to Lsync in this

scenario. When Slow First is used, the server’s bandwidth is underutilized only for

last 0.5 seconds. This means that no scheduler can outperform the Slow First policy

by more than 0.5 seconds in the setting. In addition, our evaluation results show

that runtime adaptation has a significant impact on latency, which offline schedulers

cannot address.

3.3.2 Node Selection

In this section, we examine the effect of node selection on latency. In Lsync, users

can specify their requirements in the form of target synchronization ratio, a fraction

of nodes that need to be synchronized fast. If the ratio is given, Lsync attempts to

find the best set of nodes that can deliver the lowest latency to users.

We show that integrating node selection with Slow First scheduling can blend the

best behaviors of Slow First and Fast First. Given target ratio r, we first sort all

nodes in an increasing order of their estimated remaining synchronization time. We

then pick Ns ·r nodes where Ns denotes the number of nodes in N , and use Slow First

59

scheduling for the selected nodes. The remaining Ns · (1− r) nodes are synchronized

using Slow First after the selected nodes are finished. As a result, the completion time

does not suffer either from the slow synchronization in the beginning (Slow First) or

the long tail at the end (Fast First). We name the integrated scheme Pruned Slow

First for comparison. Figure 3.4 shows that Pruned Slow First outperforms the other

scheduling policies across all target ratios.

We examine a dynamic file update scenario where new files are frequently added

to the server, which is common in large-scale distributed services. For instance, con-

figuration management systems [71] continuously generate new updates for remote

nodes. Also, many distributed systems expect all nodes to share global state, includ-

ing those where all nodes are expected to know each other [15, 25] and the systems

that periodically distribute monitoring results [49, 79]. For an in-depth analysis, we

use simulations for the experiment. We generate 2000 nodes with bandwidths drawn

from the distribution of the inter-node bandwidths on PlanetLab.

We study how these frequent updates affect the synchronization process. Given

information about available resources, we can determine how much change the server

can afford to propagate. We define an update rate, u, as the amount of new content to

be synchronized per unit time (one second). Then, Ns · u is the minimum bandwidth

required to synchronize all Ns nodes with u rate of change. The upper bound on the

achievable synchronization ratio is C
Ns·u where C is the server’s upload capacity. C is

set to 100 Mbps in the experiment.

Figure 3.5 shows each policy’s performance under frequent updates. As before,

the server has two files, 1 MB and 10 MB that are in the process of synchronization,

and new files are constantly added to the server with an update rate 100 Kbps. The

upper bound is 0.5 in this setting, and no policy can reach beyond this limit.

We see that the completion time drastically changes as we use different policies.

In particular, the synchronization ratio of Slow First drops over time and reaches 0

60

0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000 20000

F
ra

c
ti

o
n

 o
f

S
y
n

c
d

 N
o

d
e
s

Time (s)

Upper Bound

Fast First

Pruned Slow First

Slow First

Figure 3.5: Synchronizing Frequent Updates – While Fast First synchronizes quickly at
first, Pruned Slow First actually reaches the upper bound more quickly.

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

Target Sync Ratio

Slow First

Fast First

Pruned Slow First

Figure 3.6: Synchronization Latency for Frequent Updates – While Slow First leads to
failure, integrating node selection with the Slow First scheduling reduces latency for all
target ratios (y-axis is in log-scale).

near 6800 seconds because it gives high priority to the nodes that can never be fully

synchronized. Fast First synchronizes nodes quickly in the beginning, but asymp-

totically approaches the upper bound since the remaining slower nodes make little

forward progress given the rate of change.

61

To examine the performance of Pruned Slow First, we set r to 0.49, which is

slightly below the upper bound 0.5 in this setting. In Figure 3.5, Pruned Slow First

is worse than Fast First in the beginning, but it reaches its target ratio much earlier

than the other policies. Pruned Slow First reduces the completion time by 56%

compared with Fast First, showing that the best policy can provide significant latency

gains, while the worst policy, Slow First, actually leads to failure in this scenario. In

Figure 3.6, we show the completion time of each policy for a range of feasible r values.

The Pruned Slow First policy outperforms the other policies for every target ratio

(the y-axis is in log-scale).

We showed that the Slow First scheduling helps reduce completion latency, and

integrating node selection with the Slow First scheduling can further reduce latency

particularly when handling frequent updates.

3.4 Leveraging Overlay Mesh

With a better understanding of the bandwidth allocation policies in the server, we

focus on understanding how to leverage scalable one-to-many data transfer systems

which we collectively call CDN/P2P systems for the rest of the chapter. Many large-

scale distributed services construct overlay meshes for scalable data transfers to ex-

ternal clients, and often use the overlay for internal data dissemination to remote

nodes as well [71]. In this section, we explore how to leverage the overlay mesh to

reduce synchronization latency without changing its behavior.

3.4.1 Startup Latency in Overlay Mesh

To leverage a given overlay mesh, Lsync needs to predict startup latency for dis-

tributing a new file that is not cached on the remote nodes in the overlay. However,

CDN/P2P systems typically have diverse peering strategies and dynamic routing

62

Server
Ps Pd

α copies

ni

Overlay mesh (CDN/P2P)

Tprop

Re2ebe2e
i

,

Rcdn

Bcdn

Rcdn

Bcdn

Peer lookups, probing,

exchange of control information,

network delays, etc

File f

Figure 3.7: Startup Latency in CDN/P2P – To leverage a given overlay system, Lsync
estimates the startup latency for fetching a new file f from the server and propagating to
the remote nodes ni in the overlay.

mechanisms. To allow easy integration with existing systems, Lsync uses a black-box

approach to characterizing a given overlay mesh to estimate its startup latency.

Figure 3.7 presents a general model showing how a new file f in the server is

propagated to a remote node ni via overlay mesh. Ps is a peer node contacting the

server to fetch f , and Pd is a peer node that ni contacts. If f is already cached in

Pd, ni will receive it directly from Pd. However, in latency-sensitive synchronization,

all target nodes attempt to fetch f as soon as it is available in the server. In case f

should be fetched from the server, the CDN/P2P system selects node Ps to contact

the server. Depending on the system’s configuration, multiple copies of the file can be

fetched into the overlay mesh. The fetched file is propagated from Ps to Pd possibly

through some intermediate overlay nodes, and delivered to ni. Tprop is the propagation

delay from Ps to Pd. In addition to the network delay between peer nodes, Tprop also

includes other overheads such as peer lookups and exchange of control messages,

which are system-specific. The bandwidth and RTT between CDN/P2P peer nodes

are Bcdn and Rcdn respectively.

63

For the simplicity of the model, we begin with an ideal assumption that nodes

in CDN/P2P are uniformly distributed, and thus the bandwidth and RTT between

neighboring nodes are constants, Bcdn and Rcdn. However, we will adjust the param-

eter values later to account for their variations in real deployments in the WAN. This

model is not tied to a particular CDN/P2P system or any specific algorithms such

as peer selection and request redirection. We apply the model to different types of

deployed CDN/P2P systems in Section 3.6.2. We show that the model captures the

salient characteristics of these systems, and that Lsync can adjust its transfers to

utilize each of these systems.

3.4.2 Completion Time Estimation

To partition the workload across the server and the overlay, Lsync first estimates the

expected completion time in the overlay mesh. The setup cost, δ, measures the first-

byte latency for fetching newly-created content through the overlay mesh. Specifically,

δ is defined as

δ = 2 ·Rcdn + Tprop (3.2)

The overall overlay completion time, Tcdn, can be calculated as follows: To dis-

tribute f to ni, the server informs ni of the new content availability, taking time Re2e.

Then, ni contacts Pd, and starts receiving the file with delay δ. Delivering the entire

file to ni with bandwidth Bcdn requires time fs
Bcdn

where fs denotes the size of f . The

total time, Tcdn is then the sum,

Tcdn = Re2e + δ +
fs
Bcdn

(3.3)

Note that Tcdn does not depend on r because all target nodes fetch f simultane-

ously via the overlay. In comparison, the end-to-end completion time, Te2e(r), for

64

transferring f to remote nodes using Pruned Slow First is

Te2e(r) = Re2e +
Ns · r · fs

C
(3.4)

where C is the server’s upload capacity.

3.4.3 Selective Use of Overlay Mesh

If a given CDN/P2P system has high startup latency, it will outperform end-to-end

transfers only when its bandwidth efficiency can outweigh the cost. After the server

estimates Tcdn and Te2e(r), the server can dynamically choose between end-to-end

transfers and the overlay mesh to get better latency. In this section, we examine the

conditions under which a selective use of the overlay can provide benefits in a real

deployment.

To get a more accurate estimation of the completion time, we extend Tcdn in

(3.3) to reflect the fact that the bandwidth distribution of a CDN/P2P system is

not uniform. Rather than modeling each node’s bandwidth separately, we use the

minimum bandwidth value for the top Ns · r nodes, yielding

Tcdn(r) = Re2e + δr +
fs
Br
cdn

(3.5)

Br
cdn is the Ns · r th largest Bcdn, and δr is the Ns · r th smallest setup cost. As we

increase r, by definition, Br
cdn will monotonically decrease, and δr will monotonically

increase.

Now we can compare Tcdn(r) with Te2e(r) and then use either end-to-end con-

nections or the overlay mesh as appropriate. The decision process can be formally

defined as following. The server uses end-to-end connections when either of the fol-

65

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

Target Sync Ratio

CDN

Pruned Slow First

(a) Small file (5 KB)

0

30

60

90

120

150

0 0.1 0.2 0.3 0.4 0.5

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

Target Sync Ratio

(b) Large file (5 MB)

Figure 3.8: End-to-End Connections vs. Overlay Mesh – For small file, the latency of overlay
mesh is hampered by the long setup time, but its efficient bandwidth usage outweighs the
cost for large file.

lowing conditions is met.

fs < δr · C ·Br
cdn

Ns · r ·Br
cdn − C

(3.6)

Br
cdn <

C

Ns · r
(3.7)

From the above test conditions, we can draw the following general guidelines. Using

end-to-end connections is better when (1) the file size fs is small, (2) the overlay

setup cost δr is large, (3) the server’s upload capacity C is high, (4) the target

synchronization ratio r is low, (5) the client population Ns is small, or (6) the overlay

bandwidth Br
cdn is significantly smaller than the server’s bandwidth.

We examine the potential benefits of the scheme by comparing end-to-end transfers

with the CoBlitz CDN [56] on PlanetLab. Beyond PlanetLab, CoBlitz has been used

in a number of commercial trial services [23], and we believe CoBlitz represents one

of the typical CDN services currently available. For end-to-end transfers, we use the

Pruned Slow First policy for allocating the server’s bandwidth.

Figure 3.8 shows the latency for synchronizing a small file (5 KB) and a large file

(5 MB). For a small file, using end-to-end transfers shows better performance than

the CDN because the completion time of the CDN is hampered by its setup cost.

66

When transferring a large file, the CDN shows better performance since its efficient

bandwidth usage outweighs the setup cost in the CDN.

Wide-area systems typically disseminate files of varying sizes. For instance, Aka-

mai management server has file transfers spanning 1 KB to 100 MB. The measurement

results in Figure 3.8 imply that Lsync will need different strategies for different file

sizes to address the tradeoffs between the startup latency and the bandwidth efficiency

of the overlay mesh.

3.4.4 Using Spare Bandwidth in Server

When nodes are being served by the overlay mesh, the origin server load is greatly

reduced, leading to spare bandwidth that can then be used to serve some additional

nodes, bypassing the overlay. Given r, Lsync divides remote nodes into two groups.

One group directly contacts the origin server, and the other group downloads the file

via the overlay mesh. Lsync adds nodes with the worst overlay performance to the

end-to-end group until the expected end-to-end completion time matches the overlay

completion time.

More formally, Lsync calculates re2e, the ratio of nodes to place in the end-to-end

group. After re2e is determined, Lsync selects the Ns · (r − re2e) nodes having the

fastest overlay connections. From (3.5), the overlay completion time is estimated as

Tcdn(r − re2e). The remaining Ns · re2e nodes will use end-to-end connections. To

estimate the spare bandwidth in the server, we consider a CDN load factor α, which

represents how many copies are fetched from the origin server into the overlay mesh.

Different systems have different load factors, and CoBlitz fetches 9 copies from the

origin server. As the origin server is supposed to send α copies of f to the overlay

group, Lsync should reserve Bload bandwidth which is α·fs
Tcdn(r−re2e)

for overlay traffic,

yielding a value of (C − Bload) for the server’s spare bandwidth. Using this spare

67

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

Target Sync Ratio

Lsync (+10% E2E)

Lsync (-10% E2E)

Lsync

Figure 3.9: Optimality of the Division – The split between overlay and E2E is not improved
by moving some nodes to the other mechanism, suggesting that Lsync’s split is close to
optimal.

bandwidth, the end-to-end completion time is

Te2e(re2e) = Re2e +
Ns · re2e · fs
C −Bload

(3.8)

Then, Lsync calculates re2e that makes the two groups complete at the same time.

We simulate synchronizing PlanetLab nodes using the bandwidths and setup costs

measured in all PlanetLab nodes. Figure 3.9 shows a sensitivity analysis of re2e, with

two other simulations for slightly higher and lower values of re2e, in sending a 5 MB

file. Lsync outperforms both for all target ratios, suggesting that it is choosing the

optimal balance of the two groups.

3.4.5 Adaptive Switching in Remote Nodes

To mitigate the effect of real-world bandwidth fluctuations, we add a dynamic adap-

tation technique to Lsync. The main observation behind the technique is that minor

variations in performance do not matter for most nodes, since most nodes will not be

68

the bottleneck nodes in the transfer. However, when a node that is close to being the

slowest in the overlay group becomes slower, it risks becoming the bottleneck during

file transfer. The lower bound on the overlay bandwidth is Br−re2e
cdn .

When the origin server informs the remote nodes of new content availability, the

server sends Br−re2e
cdn and Tcdn(r − re2e). After Tcdn(r − re2e) passes, if a node is not

finished, it compares the current overlay performance with Br−re2e
cdn . If the current

performance is significantly lower than the expected lower bound, the node stops

downloading from the overlay mesh, and directly goes to the origin server to download

the remaining data of the file. In our evaluation, we configure the node to switch to

the origin server when its overlay performance drops below 75% of its expected value.

Our evaluation results show that using adaptive switching improves the completion

time while lowering variations.

3.5 Implementation

Lsync is a daemon that performs two functions – in one setting, it operates in the

background on the server to detect file changes, manage histories, and plan the syn-

chronization process. In its second setting, it runs on all remote nodes to coordinate

the synchronization process. Both modes of operation are implemented in the same

binary, which is created from 6,586 lines of C code. The Lsync daemon implements

the file transfer policy described in the previous sections.

Lsync configuration is relatively simple, with the most basic case consisting of the

user providing one or more local directories to be synchronized, and a set of remote

nodes that will receive the directories. The node list can simply be a long list of

nodes and one synchronization ratio, or can be broken into multiple node groups

with individual synchronization ratios. In this manner, simple policies such as “half

of all nodes” can easily be specified. If a particular node or set of nodes must always

69

be in the synchronization group, it can be placed in a group with a synchronization

ratio of 1, allowing manual node selection.

Since Lsync is intended to be easily deployable, it operates entirely in user space.

Using Linux’s inotify mechanism, the daemon specifies files and directories that are

to be watched for changes – any change results in an event being generated, which

eliminates the need to constantly poll all files for changes.

When the Lsync daemon starts, it performs a per-chunk checksum of all files in all

of the directories it has been told to watch using Rabin’s fingerprinting algorithm [66]

and SHA-1 hashes. Once Lsync is told a file has been changed, it recomputes the

checksums to determine what parts of the file have been changed. If new files are

created, Lsync receives a notification that the directory itself has changed, and the

directory is searched to see if files have been created or deleted.

Once Lsync detects changes, it writes the changes into a log file, along with other

identifying information. This log file is sent to the chosen remote Lsync daemons,

either by direct end-to-end transfer, or by copying the log file to a Web-accessible

directory and informing the remote daemons to grab the file via the overlay. Once

the remote daemon receives a log file, it applies the necessary changes to its local

copies of the file.

3.6 Evaluation

In this section, we evaluate Lsync and its underlying policies on PlanetLab. Each

experiment is repeated 10 times with each setting, and 95th percentile confidence

intervals are provided where appropriate.

70

3.6.1 Settings

We deploy Lsync on all live PlanetLab nodes (528 nodes at the time of our exper-

iments), and run a dedicated origin server with 100 Mbps outbound capacity. The

server has a 2.4 GHz dual-core Intel processor with 4 MB cache, and runs Apache

2.2.6 on Linux 2.6.23. We measure latency for a set of target synchronization ratios

including 0.05, 0.25, 0.5, 0.75, and 0.98. We use a maximum synchronization ratio

of 0.98 to account for nodes that may become unreachable during our experiments.

Lsync attempts to achieve the given target ratio quickly while leaving other available

nodes synchronized via overlay in the background.

Since Lsync runs in the background, it can store the history of its activity to use

when performing calculations. This history is used to determine parameter values for

its models, especially for end-to-end and overlay bandwidths. Lsync uses an Expo-

nentially Weighted Moving Average (EWMA) for updating the parameters because

history-based prediction is much more accurate than formula-based prediction when

there is a short history of recent TCP transfers along the same path [34]. For the ex-

periments, we use passive bandwidth measurements from repeated network transfers

by the clients, which provides enough history of recent TCP transfers.

3.6.2 Startup Latency in CDN/P2P Systems

CDN/P2P designers typically expect that the steady state of the CDN/P2P system

is that the content is already pulled from the origin, and is being served to clients

over a much longer lifetime with high cache hit ratio. However, for synchronization,

remote nodes typically request changes that are not in their overlay mesh. Therefore,

Lsync monitors the performance of first fetching content from the origin server, which

was not a major issue for the typical workload in existing CDN/P2P systems.

Using our black-box model described in Section 3.4.1, we measured parameters, δr

and Br
cdn, for four existing systems. We used two academic CDNs running on Plan-

71

Systems δr Br
cdn

Division Ratio
E2E Overlay

CoBlitz 1.4 1.2 0.24 0.76
Amazon CloudFront 2.9 6.4 0.06 0.94
Coral 7.6 0.6 0.52 0.48
BitTorrent 29.7 4.7 0.30 0.70

Table 3.1: Division of Nodes between E2E and overlay mesh. r is 0.5, and file size is 5 MB.
We also tested small files (up to 30 KB), but E2E outperformed all these systems. δr is in
seconds, and Br

cdn is in Mbps.

etLab, CoBlitz [56] and Coral [28], and a commercial CDN, Amazon CloudFront [6].

We also deployed BitTorrent [16] on PlanetLab nodes for the measurement.

Table 3.1 shows the setup costs and bandwidths of the four systems. Each system

was characterized by simply fetching new content from the remote nodes, and measur-

ing each node’s first-byte latency and bandwidth. The four systems show interesting

differences in behavior. BitTorrent spends more time getting the content initially,

but then has higher bandwidth. The CDN systems show relatively low setup costs

because they were designed for delivering web objects to clients rather than sharing

large files.

The table also shows how Lsync would allocate nodes between overlay transfers

and end-to-end transfers for a synchronization ratio of 0.5. For small file transfers,

Lsync opts to use end-to-end connections rather than any of the systems. For larger

transfers, the fraction assigned to direct end-to-end transfers is determined by the

tradeoff between latency and bandwidth. CoBlitz assigned 76% of the target nodes

to the overlay group. For Coral, Lsync assigns nodes roughly equally between the

overlay group and the end-to-end group. Although BitTorrent has the highest latency,

it shows a similar distribution to CoBlitz because nodes have high overlay bandwidth

after the startup latency. For CloudFront, Lsync assigns most of the nodes to the

overlay group to exploit the high bandwidth in the well-provisioned CDN nodes.

However, for small file transfers, Lsync still opts to use direct end-to-end transfers.

72

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T
im

e
 (

s
)

Epidemic Routing

Epidemic Routing (best)

Rsync

BitTyrant

BitTorrent

Lsync-CoBlitz

CloudFront

Lsync-CloudFront

(a) Target Sync Ratio 0.50

 0

 100

 200

 300

 400

 500

 600

 700

T
im

e
 (

s
)

BitTyrant

BitTorrent

Rsync

Epidemic Routing

CloudFront

Epidemic Routing (best)

Lsync-CoBlitz

Lsync-CloudFront

(b) Target Sync Ratio 0.98

Figure 3.10: Comparison with Other Systems – We compare Lsync with various data trans-
fer systems in terms of the latency for synchronizing CoBlitz web proxy executable file
(600 KB).

We select CoBlitz for the rest of our experiments, mostly due to its low latency, but

we will also integrate Lsync with CloudFront from some comparisons.

73

3.6.3 Comparison with Other Systems

We compare Lsync with different types of data transfer systems. We transfer the

CoBlitz web proxy executable file (600 KB) to all PlanetLab nodes using each of the

systems, and measure completion times (Figure 3.10). Each system is designed for

robust broadcast (epidemic routing), simple cloning (Rsync), bandwidth efficiency

(CDN), and high throughput and fairness (P2P systems). We evaluate the perfor-

mance of the systems when they are used for latency-sensitive synchronization in the

WAN.

Rsync Rsync [76] is an end-to-end file synchronization tool widely used for cloning

files across remote machines. It uses delta encoding to minimize the amount of trans-

ferred data for changes in existing files. In this experiment, however, the server

synchronizes a newly generated file not available in remote nodes, so the amount of

the transferred data is the same as in the other tested systems. The Rsync server

relies only on end-to-end connections to remote nodes for synchronizing the file, and

does not use any policies in allocating the server’s bandwidth. Therefore, the result

of Rsync represents the performance of end-to-end transfers with no policy applied.

P2P systems We use BitTorrent [16] and BitTyrant [60] as examples of P2P sys-

tems. Although BitTorrent has a high setup cost (Table 3.1), it performs better

than end-to-end copying tools (Rsync) for the target ratio of 0.5 because the major-

ity of nodes have high throughput. However, BitTorrent ends up with a very long

completion time (424 seconds) and high variations (standard deviation 193) for the

target ratio of 0.98. This is because, with BitTorrent, slow nodes have little chance to

download from peer nodes with good network conditions, which makes the slow nodes

finish more slowly than in other systems. We see a similar trend with BitTyrant, but

its performance is slightly worse than BitTorrent. This means that slow nodes are in

a worse position if other peers behave strategically in the swarm.

74

Epidemic routing We also implemented an epidemic routing (or gossip) proto-

col [15] to measure its latency in the WAN. In the protocol, each node picks a random

subset of remote nodes periodically, and exchanges file chunks. To evaluate it in the

best possible scenario, we assume that every node has the full membership informa-

tion to avoid membership management, which is known to be the main overhead of

the protocol [27].

There are two key parameters in the gossip protocol: how often the nodes perform

gossip (step interval) and how many peers to gossip with (fanout). These two pa-

rameters directly impact on the protocol’s performance, but it is hard to tune them

because of their sensitivity to network conditions. To find the best configuration for

our experiments, we tried a range of values for step interval (0.5, 1, 5, and 10 sec-

onds) and fanout (1, 5, 10, 50, and 100 nodes). Then we picked a configuration that

generated the shortest latency.

Since we use our own implementation of the protocol, we first compared our im-

plementation with published performance results of the protocol in a similar setting.

CREW [25] used the gossip protocol for rapid file dissemination in the WAN and

outperformed Bullet [43] and SplitStream [19] in terms of completion time in the eval-

uation. Our implementation showed better performance (141 seconds) than CREW’s

result (200 seconds) with a similar environment (60 nodes, 600 KB file, 200 Kbps

bandwidth). As the topology is not specified in the CREW experiments, we ran-

domly selected 60 PlanetLab nodes, and averaged over 10 repeated experiments. We

used a user-level traffic shaper, Trickle [26], for setting bandwidth on the selected

PlanetLab nodes.

“Epidemic Routing (best)” in Figure 3.10 represents the results with the best con-

figuration that we found, (1 second interval and 10 fanout), and “Epidemic Routing”

shows the average performance of all configurations that we tested (excluding cases

with 30 minutes timeout). The result with the tuned configuration always outper-

75

0 100 200 300 400 500 600

Nodes

10
0

10
1

10
2

10
3

10
4

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Figure 3.11: Distribution of CloudFront first fetch latency in all PlanetLab nodes – while
most nodes have low latency, more than 10% of nodes are slow in fetching the uncached file
via the overlay.

forms the average case. Both of the results show interesting patterns in completion

time. The protocol works worse than both Rsync and P2P systems at low target

ratios because file chunks are disseminated only during gossip rounds. The file data

is disseminated relatively slow in the beginning. However, the gossip protocol outper-

forms the other systems at the target ratio of 0.98. Unlike in P2P systems, the slow

nodes have better chances to peer with fast nodes during file transfer. As a result,

they do not become the bottleneck in overall completion time. The random peering

policy in the gossip protocol helps slow nodes to catch up with other nodes, but the

protocol is typically more optimized for robust dissemination than latency.

Commercial CDNs Since our CDN is deployed on PlanetLab, one may think its

performance is adversely affected by some of overloaded PlanetLab nodes. We mea-

sure synchronization latency using a commercial CDN, Amazon CloudFront. Cloud-

Front is faster than the other systems for the low target ratio tests due to its well-

provisioned CDN nodes.

76

However, we observe that some nodes are still slow in fetching new file from the

CDN for the high target ratio. Figure 3.11 shows the distribution of first fetch la-

tency measured in all PlanetLab nodes. Most nodes have low startup latency, but

11% of nodes spend more than 20 seconds downloading the file via the CloudFront

overlay. The nodes with poor CDN connectivity are in Egypt, Tunisia, Argentina,

and Australia. As the file is not cached in the CDN, the slow nodes should fetch

the file possibly through multiple intermediate nodes in the overlay. This internal

behavior depends on system-specific routing mechanisms, which is not visible outside

of the overlay.

We implemented another version of Lsync, Lsync-CloudFront, which incorporates

CloudFront as its underlying overlay mesh. Lsync-CloudFront estimates the overlay’s

startup latency, and focuses the server’s resource on the bottleneck nodes at runtime.

We find that the slow nodes can be served better from the server than via the well-

provisioned overlay for uncached files, leading to the best performance among the

tested systems.

3.6.4 Frequently Added Files

In large-scale distributed services, file updates occur frequently, and new files can be

added to the server before the previous updates are fully synchronized across nodes.

To evaluate Lsync under frequent updates, we generate a 1-hour workload based on

the reported workload of Akamai CDN’s configuration updates [71]. A new file is

added to the server every 10 seconds, and the file size is drawn from the reported

distribution in Akamai. We compare Lsync with CoBlitz and Rsync. The two systems

represent alternative approaches: using the overlay mesh only (Overlay) and using

end-to-end transfers only (Rsync).

When a new file is added, we measure how many remote nodes are fully synchro-

nized with all previous files and compute the average of the synchronization ratios

77

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

S
y
n

c
 R

a
ti

o

Time (minute)

Lsync Overlay Rsync

Figure 3.12: Frequently Added Files – Lsync makes most nodes fully synchronized during
the entire period of the experiment.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Completion Time (s)

Lsync

Overlay

Rsync

(a) 10 KB

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Completion Time (s)

(b) 100 KB

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Completion Time (s)

(c) 1 MB

Figure 3.13: Distribution of Completion Times – For all file sizes, Lsync outperforms the
other systems because Lsync adjusts its file transfer policies based on file size as well as
network conditions.

78

0!

0.2!

0.4!

0.6!

0.8!

1!

0! 0.2! 0.4! 0.6! 0.8! 1!

C
on

si
st

en
cy

 D
ur

at
io

n!

Target Sync Ratio!

Lsync!
Overlay!
Rsync!

Figure 3.14: Consistency Duration – low-latency synchronization enables Lsync to achieve
high consistency duration across all synchronization ratios.

over one minute. Figure 3.12 shows the results over the tested 1-hour period. The

ratio temporarily drops for several large file transfers, but Lsync makes 90% of nodes

remain fully synchronized for 72% of the tested period while the other approaches do

not reach the synchronization ratio 0.9. Figure 3.13 shows the distributions of the

completion latency for 10 KB, 100 KB, and 1 MB files.

We also calculate the total duration of time when a given target synchronization

ratio is satisfied, consistency duration, during the experiment. In Figure 3.14, we

plot the duration for every target synchronization ratio. Lsync shows higher consis-

tency duration than Rsync and CoBlitz because of its low-latency synchronization

of individual files. If a system requires 95% of nodes to be full synchronized for its

consistent views, Lsync can satisfy the consistency requirement for 50% of the time

while the other two approaches cannot reach the ratio at all.

3.6.5 Lsync Contributing Factors

Lsync combines various techniques discussed in the chapter, including node schedul-

ing, node selection, workload division across server and overlay, and adaptive switch-

ing in remote nodes. We examine the contribution of each factor individually. We

79

 0

 50

 100

 150

 200

 250

 300

0.05 0.25 0.50 0.75 0.98

T
im

e
 (

s
)

Target Sync Ratio

No Policy

Slow First Scheduling

Fast Node Selection

Node Selection + Scheduling

Using Overlay

Lsync

Figure 3.15: Lsync Contributing Factors – We see the individual contributions of node
selection, node scheduling, and using the overlay. Each component contributes to the overall
time reduction. Slow First scheduling improves the completion time for every target ratio,
but that intelligent node selection is more critical at lower ratios. Using the overlay is slow
for high target ratio because some nodes have very high startup latency.

transfer the CoBlitz web proxy executable file (600 KB) to all remote nodes as before.

The results of these tests are shown in Figure 3.15. Variations of Lsync are shown

with no scheduling or node selection (No Policy), with only node scheduling (Slow

First Scheduling), with only node selection (Fast Node Selection), with only overlay

mesh (Using Overlay), and with all factors enabled (Lsync).

At a high level, we see that the individual contributions are significant, reducing

the synchronization latency by a factor of 4-5 versus having no intelligence in the

system. We see that performing scheduling improves the completion time for every

target ratio, but that intelligent node selection is more critical at lower ratios. This

result makes sense, since finding the fast nodes is more important when only a small

fraction of the nodes are needed. However, when the ratio is high and even slower

nodes are being included in the synchronization process, scheduling is needed to mask

the effects of the slow nodes on the latency. Using the overlay is slow at low target

ratios, and becomes comparable to the best end-to-end synchronization latency at

80

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.25 0.50 0.75 0.98

N
o

rm
a
li
z
e
d

 R
a
ti

o

Target Sync Ratio

Overlay E2E

Figure 3.16: Division of Nodes in Lsync – We see that the fraction of nodes served by overlay
mesh changes across target ratios, and that the fraction is not monotonically changing with
target ratio.

high ratios due to its scalable file transfers. However, it shows the worst latency with

high variations at the target ratio of 0.98 because some nodes experience performance

problems in the overlay. Lsync combines all the factors in a manner to reduce the

latency for all target ratios.

3.6.6 Nodes Division and Adaptive Switching

To see how Lsync partitions the workload across the server and the overlay, we further

analyze how nodes are divided into the overlay group and the end-to-end group.

The nodes in the groups are selected so that both groups are expected to finish a

file transfer at the same time. In Figure 3.16, we plot the normalized sizes of the

two groups during a large file (5MB) transfer. As the target synchronization ratio

increases, a smaller fraction of nodes are served using end-to-end transfers. However,

for the target ratio of 0.98, the overlay group’s estimated completion time increases

because of nodes with slow overlay connectivity. Therefore, the ratio for the origin

server increases compared to the case of target ratio of 0.75.

81

0

100

200

300

400

0 20 40 60 80 100 120

U
n

s
y

n
c

h
ro

n
iz

e
d

N

o
d

e
s

Time (s)

Overlay

E2E

Adaptive switching
in 12 nodes

Figure 3.17: Adaptive Switching in Lsync – At 80 seconds, 12 nodes dynamically switch to
end-to-end connections and finish downloading from the origin server.

Lsync makes adjustment at runtime, as can be seen in Figure 3.17, where we plot

the number of pending nodes during file synchronization. The target synchronization

ratio is 0.98, and re2e, the ratio of nodes for end-to-end connections, is 0.29. The

two groups start downloading a 5 MB file through the overlay mesh and end-to-end

connections respectively. At 80 seconds, however, 12 nodes in the overlay group

detect that they are having unexpected overlay performance problems, and could

negatively affect the completion time. The nodes dynamically switch to the end-to-

end connections, and directly download the remaining content from the origin server.

This behavior explains the small bump near 80 seconds – when these nodes switch

from the overlay group to the end-to-end group, the number of unsynchronized end-

to-end nodes increases.

During 10 repeated experiments, an average of 27 nodes dynamically switched

to end-to-end connections. By assisting a few nodes in trouble, Lsync reduces the

completion time by 16%. In addition to the reduced completion time, the adaptive

switching in Lsync provides stable file transfers because it masks unpredictable vari-

ations in the overlay performance at runtime. Figure 3.18 plots the variations of the

82

 0

 0.1

 0.2

 0.3

 0.4

0.05 0.25 0.50 0.75 0.98

C
o

e
ff

ic
ie

n
t

o
f

V
a
ri

a
n

c
e

Target Sync Ratio

w/o Switching

w/ Switching

Figure 3.18: Stable File Transfers in Lsync – Adaptive switching in Lsync lowers variance
of the latency.

completion times with/without adaptive switching in Lsync. The vertical bars plot

the coefficient of variance (normalized deviation) of completion times during repeated

experiments. For every target ratio, Lsync shows smaller variations compared to the

version with the switching disabled.

3.7 Related Work

CDNs and P2P systems [16, 28, 51, 52, 56, 60, 69] scalably distribute the content to a

large number of clients through dynamic content replication, overlay construction, and

request routing. While these systems achieve bandwidth efficiency and load reduction

at the origin server, they typically sacrifice start-up time and total synchronization

latency for smaller node groups. Likewise, peer-assisted swarm transfer systems [59]

manage server’s bandwidth using a global optimization, but they address bandwidth

efficiency in multi-swarm environments, not latency.

Our work on managing latency in distributed systems is related in spirit to par-

tial barrier [4] that is a relaxed synchronization barrier for loosely coupled networked

83

systems. The proposed primitive provides dynamic knee detection in the node arrival

process, and allows applications to release the barrier early before slow nodes arrive.

Mantri [7] uses similar techniques to improve job completion time in Map-Reduce

clusters. The monitoring system detects outlier nodes and performs restarting or

duplicating the straggling tasks based on resource constraints. For our target envi-

ronments, it is not allowed to drop the slow nodes because some nodes may have

persistent poor connections but still need to be synchronized to serve clients close to

the nodes. Lsync’s approach gives preference to the slow nodes suffering from either

persistent or transient performance problems, keeping the overall latency low.

Lsync aggressively uses available resources as suggested in buffet principle [48].

When CDN/P2P systems are used, the server’s spare bandwidth can be greedily

exploited because it would otherwise remain unused. Lsync uses the spare bandwidth

to assist nodes that are not covered well by the overlay mesh or that are experiencing

unexpected performance problems. Our measurements demonstrate that using the

spare bandwidth can significantly reduce latency as well as its variation. Another

example is dsync [64] that aggressively draws data from multiple sources with varying

performance. dsync schedules the resources based on the estimated cost and benefit

of operations on each resource, and makes locally-optimal decisions, whereas Lsync

tries to perform globally-optimal scheduling to reduce overall latency.

Lsync uses content fingerprinting [66] to find new chunks on file updates, which is

widely adopted by network file systems and file transfer systems [8, 35, 50, 64]. Since

these systems use end-to-end connections or overlay mesh to exchange chunks, Lsync

can be applied in the systems for fast synchronization of particular chunks.

Execution management systems are developed for easing system development and

maintenance in wide-area testbeds. AppManager [9] and PlMan [63] provide GUI-

based interfaces that users can use for deploying files on remote nodes. Plush [3] takes

high level specification of planned tasks, finds available resources, and monitors the

84

execution of the tasks on the remote nodes. Stork [18] provides an efficient software

package management in PlanetLab by enabling slices to share the packages in a secure

manner. These systems need rapid system deployment because most experiments on

PlanetLab are short-lived and repeated with different configurations. We believe that

Lsync can be easily integrated into the systems and improve the productivity of the

users using the systems.

EdgeComputing [24] uses distributed Akamai CDN nodes as a platform for client-

facing applications. The system allows service providers to deploy parts of their

web application logic to the edge servers close to end users. The approach improves

response time for interactive applications by processing user requests at the edge lo-

cations without traversing to the origin server over the public Internet. Likewise,

NaDa [77] is a managed P2P system that uses ISP-controlled home gateways for stor-

age and computing services. This decentralized approach reduces the infrastructure

cost compared to large-scale centralized datacenters. Since software modules are dis-

tributed to the edge locations, these systems require a close control over their remote

nodes. Lsync will improve the overall responsiveness of wide-area distributed systems

by reducing the completion time of dissemination of new configuration or software

modules.

File synchronizer tools provide an efficient way to replicate a shared folder across

multiple machines. Rsync [76] uses a delta encoding to transfer only changed parts of

the file over a low bandwidth link. Rsync server does not use any bandwidth allocation

policy for sending the computed differences to multiple remote nodes. Unison [32,

61] provides safe two-way synchronization between two replicas based on a formal

specification, but does not provide scalable transfer to multiple clients. Shotgun [42]

is a set of extensions to Rsync to enable the server to efficiently synchronize a large

number of remote clients. Shotgun runs Rsync in batch mode to locally compute the

differences of old and new files, then the server uses Bullet [43], an overlay system to

85

disseminate the changes. Lsync adaptively uses the overlay because using the overlay

does not always help improve completion time in the WAN.

Gossip-based broadcast [15, 27] provides scalable and robust event dissemination

to a large number of nodes. Our measurements demonstrate that the random peering

strategy in the protocol helps reduce latency because slow nodes are likely to find

nodes with the disseminated data after most fast nodes are synchronized. Lsync

shows better latency than the gossip protocol because it targets the slow nodes from

the beginning of file transfers, preventing the slow nodes from being the bottleneck.

Similarly, overlay-based multicast systems [11, 19, 38] typically optimize for network

topology and put slow nodes at the bottom of the multicast trees. This topology can

improve aggregate bandwidth utilization, but lead to long synchronization latency in

the system.

86

Chapter 4

Conclusion

Developing wide-area systems requires an infrastructure that allows system developers

to deploy and test new services under realistic network conditions in the WAN. The

next generation of network testbeds have been under active development recently,

but very little is known about resource usage and user behavior in federated testbeds,

leading to the development of conservative resource allocation policies.

In this dissertation, we conducted an extensive and in-depth analysis of six years of

PlanetLab measurements to understand and characterize PlanetLab’s resource usage.

Based on the data-driven analysis, we discussed its design implications for future

federated network testbeds. We found that the usage is much different from shared

compute clusters, that conventional wisdom does not hold for PlanetLab, and that

several properties of PlanetLab as a network testbed are largely responsible for this

difference. We found that experiments typically utilize PlanetLab to expand their

network reach, and that this metric of utility is a far better indicator of PlanetLab’s

effectiveness than compute-oriented metrics like CPU utilization.

We also showed that approaches focusing on compute-oriented metrics are likely

to be inapplicable to PlanetLab-like workloads. In particular, we found that resource

usage is very bursty, and that the vast majority of experiments consume very few

87

resources over much of their lifetimes. Based on the measurement of total resource

usage, we explored the effectiveness of several resource allocation systems, and found

that both pair-wise bartering and centralized banking systems can address only a

small percentage of total resource usage. This result implies that resource manage-

ment systems in federated network testbeds still need policies to fairly allocate avail-

able resources for the vast majority of the workload. We examined some policies for

better resource discovery, node management, and pruning of runaway experiments.

From the measurement study of PlanetLab usage, we found that most PlanetLab

experiments are short-lived but expand to a large fraction of available nodes in the

testbed. This means that developing systems in the wide-area testbed is not inter-

active because long deployment delays will hamper every develop/deploy/test cycle

during the short period of the usage.

In the second part of this dissertation, we presented Lsync, a low-latency one-

to-many file transfer system for wide-area distributed systems. Low-latency data

dissemination is an essential service for many wide-area platforms including federated

testbeds, but latency has been largely ignored in existing data transfer systems. We

measure the latency as the completion time of file transfer to all target remote nodes.

We found that existing systems are suboptimal for this metric because they are not

favorable to bottleneck nodes during a file transfer.

To solve this problem, we have identified the sources of the latency and described

techniques to reduce their impact on the latency. We demonstrated that slow-first

node scheduling and late-binding of the nodes can greatly reduce latency under various

scenarios. The measurements on running CDN systems showed that using overlays

can be slow and unpredictable when the file is not cached in the overlay. We developed

techniques to adjust workload across a server and an overlay and dynamically switch

policies to address unpredictable variation in overlay performance. Lsync integrates

all of these techniques in a manner to minimize latency based on information available

88

at runtime. In addition to stand-alone applications, we expect that Lsync is useful to

many wide-area distributed systems that need to coordinate the behavior of remote

nodes with minimal latency.

89

Bibliography

[1] PlanetLab. http://www.planet-lab.org/.

[2] Akamai Inc. www.akamai.com/.

[3] Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tut-
tle, Alex C. Snoeren, and Amin Vahdat. Remote control: Distributed applica-
tion configuration, management, and visualization with Plush. In Proceedings of
USENIX Large Installation System Administration Conference (LISA), 2007.

[4] Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose
synchronization for large-scale networked systems. In Proceedings of USENIX
Annual Technical Conference (ATC), 2006.

[5] Jeannie R. Albrecht, David L. Oppenheimer, Amin Vahdat, and David A. Pat-
terson. Design and implementation trade-offs for wide-area resource discovery.
ACM Transactions on Internet Technology (TOIT), 8(4), September 2008.

[6] Amazon CloudFront. http://aws.amazon.com/cloudfront/.

[7] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica,
Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers in Map-Reduce
clusters using Mantri. In Proceedings of USENIX Operating Systems Design and
Implementation (OSDI), 2010.

[8] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières. Shark:
Scaling file servers via cooperative caching. In Proceedings of USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), 2005.

[9] AppManager. http://appmanager.berkeley.intel-research.net/.

[10] Alvin AuYoung, Brent N. Chun, Alex C. Snoeren, and Amin Vahdat. Resource
allocation in federated distributed computing infrastructures. In Workshop on
Operating System and Architectural Support for the Ondemand IT Infrastructure
(OASIS), 2004.

[11] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable
application layer multicast. In Proceedings of ACM SIGCOMM, 2002.

90

http://www.planet-lab.org/
www.akamai.com/
http://aws.amazon.com/cloudfront/
http://appmanager.berkeley.intel-research.net/

[12] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: investi-
gating unfairness. In Proceedings of ACM SIGMETRICS, 2001.

[13] Amnon Barak and Oren Laadan. The MOSIX multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems,
13(4-5), March 1998.

[14] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve Muir,
Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawrzoniak. Op-
erating system support for planetary-scale network services. In Proceedings of
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2004.

[15] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. ACM Transactions on Computer Systems,
pages 41–88, May 1999.

[16] BitTorrent. http://bittorrent.com/.

[17] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle: A
platform for educational cloud computing. In Proceedings of ACM Technical
Symposium on Computer Science Education, 2009.

[18] Justin Cappos, Scott Baker, Jeremy Plichta, Duy Nyugen, Jason Hardies, Matt
Borgard, Jeffry Johnston, and John H. Hartman. Stork: Package management
for distributed VM environments. In Proceedings of USENIX Large Installation
System Administration Conference (LISA), 2007.

[19] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. SplitStream: High-bandwidth multicast in cooper-
ative environments. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[20] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C. Parkes,
Jeffrey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A microeco-
nomic resource allocation system for sensornet testbeds. In Proceedings of IEEE
Workshop on Embedded Networked Sensors, 2005.

[21] Brent N. Chun and David E. Culler. User-centric performance analysis of market-
based cluster batch schedulers. In Proceedings of IEEE International Symposium
on Cluster Computing and the Grid, 2002.

[22] Cisco Wide Area Application Services (WAAS). www.cisco.com/.

[23] CoBlitz Inc. http://www.verivue.com/.

[24] Andy Davis, Jay Parikh, and William E. Weihl. EdgeComputing: Extending
enterprise applications to the edge of the internet. In ACM International Con-
ference on World Wide Web (WWW), 2004.

91

http://bittorrent.com/
www.cisco.com/
http://www.verivue.com/

[25] Mayur Deshpande, Bo Xing, Iosif Lazardis, Bijit Hore, Nalini Venkatasubrama-
nian, and Sharad Mehrotra. CREW: A gossip-based flash-dissemination system.
In IEEE International Conference on Distributed Computing Systems (ICDCS),
2006.

[26] Marius A. Eriksen. Trickle: A userland bandwidth shaper for unix-like systems.
In Proceedings of USENIX Annual Technical Conference (ATC), 2005.

[27] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M.
Kermarrec. Lightweight probabilistic broadcast. ACM Transactions on Com-
puter Systems, pages 341–374, November 2003.

[28] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing
content publication with Coral. In Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2004.

[29] Yun Fu, Jeffrey S. Chase, Brent N. Chun, Stephen Schwab, and Amin Vahdat.
SHARP: an architecture for secure resource peering. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[30] GENI Aggregate Manager API. http://groups.geni.net/geni/wiki/

GeniApi/.

[31] GENI: Global Environment for Network Innovations. http://www.geni.net/.

[32] Michael B. Greenwald, Sanjeev Khanna, Keshav Kunal, Benjamin C. Pierce, and
Alan Schmitt. Agreeing to agree: Conflict resolution for optimistically replicated
data. In International Symposium on Distributed Computing (DISC), 2006.

[33] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal.
Size-based scheduling to improve web performance. ACM Transactions on Com-
puter Systems, 2003.

[34] Qi He, Constantine Dovrolis, and Mostafa Ammar. On the predictability of large
transfer TCP throughput. In Proceedings of ACM SIGCOMM, 2005.

[35] Sunghwan Ihm, Kyoungsoo Park, and Vivek S Pai. Wide-area network accel-
eration for the developing world. In Proceedings of USENIX Annual Technical
Conference (ATC), 2010.

[36] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson.
Privacy-preserving P2P data sharing with OneSwarm. In Proceedings of ACM
SIGCOMM, 2010.

[37] Thomas Jackson, Ray Dawson, and Darren Wilson. Case study: evaluating
the effect of email interruptions within the workplace. In Proceedings of the 6th
International Conference on Evaluation and Assessment in Software Engineering
(EASE), 2002.

92

http://groups.geni.net/geni/wiki/GeniApi/
http://groups.geni.net/geni/wiki/GeniApi/
http://www.geni.net/

[38] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and Jr.
James W. O’Toole. Overcast: Reliable multicasting with an overlay network. In
Proceedings of USENIX Operating Systems Design and Implementation (OSDI),
2000.

[39] Ethan Katz-Bassett, Harsha V. Madhyastha, Vijay Kumar Adhikari, and Colin
Scott. Reverse traceroute. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

[40] Wonho Kim, Kyoungsoo Park, and Vivek S Pai. Server-assisted latency man-
agement for wide-area distributed systems. In Proceedings of USENIX Annual
Technical Conference (ATC), 2012.

[41] Wonho Kim, Ajay Roopakalu, Katherine Y Li, and Vivek S Pai. Understanding
and characterizing PlanetLab resource usage for federated network testbeds. In
Proceedings of ACM Internet Measurement Conference (IMC), 2011.

[42] Dejan Kostic, Ryan Braud, Charles Killian, Erik Vandekieft, James W. Ander-
son, Alex C. Snoeren, and Amin Vahdat. Maintaining high bandwidth under
dynamic network conditions. In Proceedings of USENIX Annual Technical Con-
ference (ATC), 2005.

[43] Dejan Kostic, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[44] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huberman.
Tycoon: An implementation of a distributed, market-based resource allocation
system. Multiagent and Grid Systems, 1(3), August 2005.

[45] Sung-Ju Lee, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Rodrigo Fon-
seca. Measuring bandwidth between PlanetLab nodes. In Proceedings of Passive
and Active Measurement Conference (PAM), 2005.

[46] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy,
Lorenzo Alvisi, and Michael Dahlin. BAR gossip. In Proceedings of USENIX
Operating Systems Design and Implementation (OSDI), 2006.

[47] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a hunter of
idle workstations. In IEEE International Conference on Distributed Computing
Systems (ICDCS), 1988.

[48] Ratul Mahajan, Jitendra Padhye, Ramya Raghavendra, and Brian Zill. Eat all
you can in an all-you-can-eat buffet: A case for aggressive resource usage. In
Proceedings of ACM Hot Topics in Networks (HotNets), 2008.

[49] Ratul Mahajan, Ming Zhang, Lindsey Poole, and Vivek Pai. Uncovering perfor-
mance differences among backbone ISPs with Netdiff. In Proceedings of USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2008.

93

[50] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[51] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:
A read/write peer-to-peer file system. In Proceedings of USENIX Operating
Systems Design and Implementation (OSDI), 2002.

[52] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Akamai network:
A platform for high-performance internet applications. ACM Operating Systems
Review, 2010.

[53] David Oppenheimer, Brent Chun, David Patterson, Alex C. Snoeren, and Amin
Vahdat. Service placement in a shared wide-area platform. In Proceedings of
USENIX Annual Technical Conference (ATC), 2006.

[54] Parallel SSH. http://www.theether.org/pssh/.

[55] KyoungSoo Park and Vivek S. Pai. CoMon: A mostly-scalable monitoring system
for planetlab. ACM Operating Systems Review, 2006.

[56] KyoungSoo Park and Vivek S. Pai. Scale and performance in the CoBlitz large-
file distribution service. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2006.

[57] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. Experiences
building PlanetLab. In Proceedings of USENIX Operating Systems Design and
Implementation (OSDI), 2006.

[58] Ryan S. Peterson and Emin Gun Sirer. Antfarm: Efficient content distribution
with managed swarms. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[59] Ryan S. Peterson, Bernard Wong, and Emin Gun Sirer. A content propagation
metric for efficient content distribution. In Proceedings of ACM SIGCOMM,
2011.

[60] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and
Arun Venkataramani. Do incentives build robustness in BitTorrent? In Proceed-
ings of USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2007.

[61] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? a formal speci-
fication and reference implementation of a file synchronizer. Technical Report
MS-CIS-03-36, University of Pennsylvania, 2004.

[62] Platform Computing Load Sharing Facility (LSF). http://www.platform.com/.

[63] PlMan. http://www.cs.washington.edu/research/networking/cplane/.

94

http://www.theether.org/pssh/
http://www.platform.com/
http://www.cs.washington.edu/research/networking/cplane/

[64] Himabindu Pucha, Michael Kaminsky, David G. Andersen, and Michael A.
Kozuch. Adaptive file transfers for diverse environments. In Proceedings of
USENIX Annual Technical Conference (ATC), 2008.

[65] Lili Qiu, Yin Zhang, and Srinivasan Keshav. On individual and aggregate TCP
performance. In Proceedings of IEEE ICNP, 1999.

[66] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-15-81, Harvard University, 1981.

[67] Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Dis-
tributed resource management for high throughput computing. In Proceedings
of IEEE International Symposium on High Performance Distributed Computing
(HPDC), 1998.

[68] Riverbed Technology Inc. http://www.riverbed.com/.

[69] Brad Karp John Kubiatowicz Sylvia Ratnasamy Scott Shenker Ion Stoica
Sean Rhea, Brighten Godfrey and Harlan Yu. OpenDHT: a public DHT ser-
vice and its uses. In Proceedings of ACM SIGCOMM, 2005.

[70] SETI@home. http://setiathome.berkeley.edu/.

[71] Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein. ACMS: The
Akamai configuration management system. In Proceedings of USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), 2005.

[72] Sirius: A Calendar Service for PlanetLab. https://snowball.cs.uga.edu/

~dkl/pslogin.php/.

[73] SliceStat: Slice monitoring sensor on PlanetLab. http://codeen.cs.

princeton.edu/slicestat/.

[74] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for
network research: Myths, realities, and best practices. ACM Operating Systems
Review, 40(1), January 2006.

[75] Andrew Tanenbaum, Sape Mullender, and Robert Van Renesse. Using sparse
capabilities in a distributed operating system. In Proceedings of IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), 1986.

[76] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD
thesis, The Australian National University, 1999.

[77] Vytautas Valancius, Nikolaos Laoutaris, Laurent Massoulie, Christophe Diot,
and Pablo Rodriguez. Greening the internet with nano data centers. In Proceed-
ings of ACM International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2009.

95

http://www.riverbed.com/
http://setiathome.berkeley.edu/
https://snowball.cs.uga.edu/~dkl/pslogin.php/
https://snowball.cs.uga.edu/~dkl/pslogin.php/
http://codeen.cs.princeton.edu/slicestat/
http://codeen.cs.princeton.edu/slicestat/

[78] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai, and Larry Peter-
son. Reliability and security in the CoDeeN content distribution network. In
Proceedings of USENIX Annual Technical Conference (ATC), 2004.

[79] Ming Zhang, Chi Zhang, Vivek S. Pai, Larry Peterson, and Randolph Y. Wang.
PlanetSeer: Internet path failure monitoring and characterization in wide-area
services. In Proceedings of USENIX Operating Systems Design and Implementa-
tion (OSDI), 2004.

96

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Resource Allocation in Federated Testbeds
	1.1.1 Previous Approach
	1.1.2 Our Approach and Contributions

	1.2 Reducing Latency in File Dissemination
	1.2.1 Previous Approach
	1.2.2 Our Approach and Contributions

	1.3 Dissertation Overview

	2 PlanetLab Resource Usage
	2.1 Introduction
	2.2 Background and Datasets
	2.3 Slice Resource Usage
	2.3.1 Active Periods
	2.3.2 Local Resource Consumption
	2.3.3 Slice Sizes and Dynamics
	2.3.4 No Tragedy of the Commons

	2.4 Resource Allocation
	2.4.1 Total Resource Consumption
	2.4.2 Resource Usage by Experiment Type
	2.4.3 Resource Allocation Systems

	2.5 Workload Imbalance
	2.5.1 Origins of Imbalance
	2.5.2 Nodes with Failures
	2.5.3 Alternative Experiment Placement

	2.6 Policing of Slices in PlanetLab
	2.6.1 Spin-loop Slices in PlanetLab
	2.6.2 Pruning Spin-loop Slices

	2.7 Related Work

	3 Lsync: Low-latency File Transfer System
	3.1 Introduction
	3.2 Synchronization Environment
	3.3 Server Bandwidth Allocation
	3.3.1 Node Scheduling
	3.3.2 Node Selection

	3.4 Leveraging Overlay Mesh
	3.4.1 Startup Latency in Overlay Mesh
	3.4.2 Completion Time Estimation
	3.4.3 Selective Use of Overlay Mesh
	3.4.4 Using Spare Bandwidth in Server
	3.4.5 Adaptive Switching in Remote Nodes

	3.5 Implementation
	3.6 Evaluation
	3.6.1 Settings
	3.6.2 Startup Latency in CDN/P2P Systems
	3.6.3 Comparison with Other Systems
	3.6.4 Frequently Added Files
	3.6.5 Lsync Contributing Factors
	3.6.6 Nodes Division and Adaptive Switching

	3.7 Related Work

	4 Conclusion
	Bibliography

