
Beyond Worst-Case Analysis in

Approximation Algorithms

Aravindan Vijayaraghavan

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Moses Charikar

September 2012

c© Copyright by Aravindan Vijayaraghavan, 2012.

All rights reserved.

Abstract

Worst-case analysis has had many successes over the last few decades, and has been

the tool of choice in analyzing approximation guarantees of algorithms. Yet, for

several important optimization problems, approximation algorithms with good guar-

antees have been elusive.

In this dissertation, we look beyond worst-case analysis to obtain improved ap-

proximation guarantees for fundamental graph optimization problems, given that real-

world instances are unlikely to behave like worst-case instances. We study average-

case models and other structural assumptions that seem to capture properties of

real-world instances, and design improved approximation algorithms in these set-

tings. In some cases, this average-case study also gives us surprising insights into the

worst-case approximability.

In the first part of the thesis, we design better algorithms for realistic average-

case instances of graph partitioning. We propose and study a semi-random model for

graph partitioning problems, that is more general than previously studied random

models, and that we believe captures many real-world instances well. We design

new O(1) approximation algorithms for classical graph partitioning problems like

Balanced Separator, Multicut, Small set expansion and Sparsest cut for these semi-

random instances. We also explore how other assumptions about the stability of a

planted solution can lead to improved approximation guarantees.

In the second part of the thesis, we consider the Densest k-Subgraph problem,

which is an important, yet poorly understood problem, from both average-case and

worst-case perspectives. We first study a natural average-case version of the problem

and design new counting-based algorithms with improved guarantees. These average-

case algorithms directly inspire new worst-case algorithms, which surprisingly match

our guarantees from the average-case: our algorithms use linear-programming hi-

erarchies to give a n1/4+ε factor approximation while running in time nO(1/ε), for

iii

every ε > 0. This natural average-case model also identifies a concrete barrier for

progress on Densest k-subgraph, and seems to captures exactly the extent of current

approaches. These results suggest that the approximability of the Densest k-subgraph

problem may be similar from both worst-case and average-case perspectives, in con-

trast to graph partitioning.

iv

Acknowledgements

I am greatly indebted to my advisor Moses Charikar, for his constant support and

guidance throughout my PhD. I vividly remember going into his office as an first-year

graduate student, who was very excited about the prospect of research, but had little

idea on how to go about it. He patiently taught me how to do research. He has been

the perfect role-model to aspire towards — his brilliance, his clarity of thought, his

style of approaching problems and his ability to captivate the audience were always

truly inspiring. He has been unwavering in his encouragement and support, especially

during the lean patches, and it always seemed like he knew exactly what I needed at

each point in my career. I could not have hoped for anyone better as my advisor.

I am very thankful to Konstantin Makarychev and Yury Makarychev, who have

not only been great collaborators, but have also been my mentors and good friends

too. A good fraction of the contents of this thesis is based on my work with them.

I would like to thank the members on my PhD committee: Moses Charikar, San-

jeev Arora, Mark Braverman, David Blei and Konstantin Makarychev for their time,

and their useful comments and suggestions. I would like to thank the faculty mem-

bers of the theory group at Princeton, particularly Sanjeev Arora and Boaz Barak

who have been very encouraging and helpful in their feedbacks and discussions. I

also thank the friendly staff at Princeton, especially Melissa Lawson and Mitra Kelly

for their administrative help. I gratefully acknowledge my funding through Moses

Charikar’s grants: NSF grants MSPA-MCS 0528414, CCF 0832797, and AF 0916218.

Special thanks are due to my primary collaborator, and friend Aditya Bhaskara.

I have been very lucky to have him around, whenever I have felt the need for a good

sounding-board to discuss my thoughts, whether research or personal.

I have been very fortunate in having some terrific researchers as my collaborators

including Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Julia Chuzhoy, Uriel

Feige, Venkatesan Guruswami, Konstantin Makarychev, Yury Makarychev, Rajsekar

v

Manokaran and Yuan Zhou. I am very grateful for all the fun and learning I have had

during these interactions. I am also very grateful to Ravi Sundaram for introducing

me to the field of approximation algorithms during my undegraduate days.

My five years at Princeton have been an exciting journey, and for this I have

mainly my friends to thank. Many thanks to my friends in the theory group including

MohammadHossein Bateni, Eden Chlamtac, Seshadri Commandur, Rong Ge, Moritz

Hardt, Shi Li, Rajsekar Manokaran, Indraneel Mukherjee, Yonathan Namaad, Huy

Nguyen, Prasad Raghavendra, Sushant Sachdeva, Sid Sen, Srikanth Srinivasan, David

Steurer, Madhur Tulsiani and Anuradha Venugopalan for the useful coffee-room dis-

cussions and creating such a great research atmosphere at Princeton. My thanks

also to Ravishankar for the many long hours on the phone discussing research and

life, right from high school days. My good friends comprising Aditya, Badam, Ketra,

Rajsekar, Chris, Ana, CJ, Sid, Karthik, NG, Easwaran, Arthi and many others, have

been my family away from home, and made my stay at Princeton tremendous fun.

I am very thankful to my family, especially my brother Koushik and Shalini for

all their affection and encouragement.

I thank my fiancée Arthi for her unwavering love and support during my PhD. I

have been very fortunate to have always had her by my side to share all the ups-and-

downs of graduate school life.

Last but not the least, I am deeply indebted to my parents Geetha and Vija-

yaraghavan, without whose encouragement, love and hard work, this thesis would

not have been possible. I dedicate this dissertation to them.

vi

Dedicated to my dearest Appa and Amma.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 The Case Studies . 6

1.1.1 Graph Partitioning . 6

1.1.2 Densest k-subgraph . 8

1.2 Our Contributions . 10

1.2.1 Graph Partitioning in Realistic Average-case Models 11

1.2.2 Graph Partitioning under Stability conditions 16

1.2.3 Densest k-subgraph: An Average-Case Study 18

1.2.4 Densest k-subgraph in the worst-case: an n1/4 approximation . 20

1.2.5 Integrality gaps and Evidence for Hardness of Densest k-subgraph 21

1.3 Organization of the thesis . 22

2 Background 24

2.1 Basic Notation . 24

2.2 Average Case Approximability . 25

2.3 Graph Partitioning . 27

viii

2.3.1 Partitions . 27

2.3.2 Graph Expansion . 28

2.3.3 Partitioning Problems . 29

2.4 Approximation Stability and Relations to Combinatorial Expansion . 29

2.5 Densest k-subgraph . 31

2.6 Prior Average-case models for Graph Partitioning 31

2.6.1 Planted Random Models . 32

2.6.2 Semi-random model of Feige-Kilian 33

3 Our Planted Models for Graph Partitioning 35

3.1 Semi-random Models for Graph Partitioning 35

3.2 Planted Spectral Expander Model. 40

4 Algorithms for Semi-Random Graph Partitioning: Balanced Sepa-

rator 42

4.1 Preliminaries : Φ-feasibility, Heavy vertices and Geometric Expansion 47

4.2 Hidden Solution Sparsification . 49

4.2.1 Heavy Vertices Removal Procedure 53

4.3 Structural Theorem . 57

4.4 Balanced Cut . 63

4.5 Min Multicut . 66

4.6 Further work . 68

5 Semi-Random Small Set Expansion and Recovering Partitions 70

5.1 Local SDP Relaxations . 73

5.2 Hidden Solution Sparsification and Applications 74

5.3 Small Set Expansion . 78

5.4 Sparsest Cut . 85

5.5 Recovering the Partitions in the Planted Model 88

ix

6 Graph Partitioning under Stability: Spectral expanders 94

6.1 Balanced Cut . 96

6.2 Small Set Expansion . 98

7 Densest k-subgraph: an Average-Case Study 101

7.1 Average Case Models for Densest k-subgraph 102

7.1.1 The Random Planted Model 103

7.1.2 Planted DkS: Dense vs Random model 105

7.2 Algorithms for Planted Densest k-subgraph 107

7.3 Analyzing the algorithm . 111

7.3.1 Proof of Theorem 7.11 . 112

7.3.2 Proof of Theorem 7.10 . 113

7.3.3 SDP based approach . 119

8 Worst-Case algorithms for Densest k-subgraph 121

8.1 Simplifications . 123

8.1.1 The Greedy Algorithm . 123

8.1.2 Bounding the product kD . 124

8.1.3 Other simplifications . 125

8.2 The algorithm . 127

8.2.1 The Linear Program relaxation 128

8.2.2 The Algorithm description . 131

8.3 Analysis of the algorithm . 133

8.3.1 The Backbone and Hair steps 133

8.3.2 Performance guarantee of the algorithm 138

8.4 Subsequent Work . 143

9 Integrality Gaps: How Hard is Average-Case Densest k-subgraph? 144

9.1 The Sherali-Adams Relaxation for DkS 146

x

9.1.1 Sherali-Adams SDP hierarchy 148

9.2 Random graph properties . 148

9.3 Integrality Gaps for Sherali-Adams 150

9.3.1 The instance . 150

9.3.2 Feasible solution . 151

9.3.3 The Size Constraint and Minimum Steiner trees in G(n, p) . . 153

9.3.4 Gaps for the mixed hierarchy (SA+) 157

9.4 Conclusions and Subsequent work . 158

10 Open Problems 160

10.1 Algorithms for good Average-case models 161

10.2 Translating Average Case Algorithms to Worst Case 162

10.3 Integrality Gaps and Evidence for Barriers 163

Bibliography 165

xi

List of Tables

1.1 Comparison of the approximation ratios in the worst-case, semi-

random and random models. 11

8.1 Guarantees for Backbone (Lemma 8.11) and Hair steps (Lemma 8.14). 137

xii

List of Figures

4.1 Output of the Hidden Solution Sparsification algorithms 50

4.2 Algorithm for Hidden Solution Sparsification 51

4.3 Algorithm for Removing Heavy Vertices 55

4.4 SDP for minimum Balanced Cut . 64

4.5 SDP for minimum Multicut . 67

5.1 SDP relaxation for Small Set Expansion due to [18] 71

5.2 Crude SDP for Small Set Expansion (SSE) 80

7.1 Caterpillar structures W (r, s) for different values of r and s 110

8.1 Min degree LP for DkS . 129

8.2 Recursive definition of DkS-LPt(G, k, d) 130

9.1 Two Linear Programming relaxations for DkS 147

9.2 Sherali-Adams LP relaxation (r levels) for DkS: SAr 148

9.3 A min Steiner Tree for S ∪ u having u as internal vertex 156

xiii

Chapter 1

Introduction

Over the last five decades, there has been an extensive study on understanding and

designing algorithms for the plethora of combinatorial optimization problems that we

encounter in computer science like scheduling, clustering and graph partitioning. A

canonical example is the (minimum) Balanced Cut problem, a fundamental graph

optimization problem that is particularly useful for divide-and-conquer approaches

and clustering:

Definition 1.1 (Balanced Cut). Given a graph G, find a partition of the vertices

V (G) into two roughly equal pieces,1 that minimizes the number of edges between the

pieces.

To measure the performance of a candidate algorithm, worst-case analysis has

traditionally been the tool of choice. Here, we are concerned with how well the

candidate algorithm performs for every instance (in particular, the worst instance

for this algorithm). The paradigm of worst-case analysis has been very successful

in understanding computational complexity – even for those optimization problems

which do not seem to have polynomial time algorithms (assuming P 6= NP), we have

had success in designing algorithms which compute approximately optimal solutions

1the pieces S and V (G) \ S should have at most size 2n/3

1

efficiently. As an example, for the Balanced Cut problem Arora et al. [13] design

an algorithm, that always computes a cut which is at most a O(
√

log n) factor larger

than the optimum. Formally, an algorithm A has worst-case approximation ratio

α > 1 if for every instance of the problem, A computes a solution which is within a

multiplicative factor of α from the optimal solution 2.

An algorithm with good worst-case guarantees is the best possible scenario, as in

the case of knapsack (FPTAS : 1 + ε factor for any constant ε > 0 [84]), makespan

scheduling (2-factor approximation [67]), network design (2-factor approximation [51])

etc. Moreover, worst-case analysis is more suited to a mathematical treatment, and

it comes with a rich history of mathematical tools and techniques to rely on.

On a contrasting note, for many important problems like graph partitioning, rout-

ing and coloring, the best known worst-case algorithms only give poly-logarithmic,

or even polynomial factor approximations (for example, Balanced Cut). Morever,

progress on better approximation algorithms for these problems seems to have stalled.

In fact, some of these problems are provably hard to approximate upto large factors

in the worst-case (assuming P 6= NP).

However, our primary interest in these optimization problems comes from the

different scenarios that they arise in. Hence, we are chiefly concerned with those

instances that come up from different applications in the real world. Yet, instances

that we encounter in the real world are not worst case instances. Further, instances

that are produced in these hardness reductions are contrived, and we are unlikely to

encounter them in practice. In the absence of good approximations in the worst case,

a compelling research direction is

Question 1. Can we design approximation algorithms with good provable guarantees,

if we focus on instances that tend to come up in practice?

2Unless otherwise stated, we say that an algorithm A is a α approximation if A has worst-case
approximation ratio α

2

Besides, worst-case complexity is too harsh of a metric for potential algorithms.

It may be too hard, if not impossible (for problems with provable inapproximabililty

results) to design algorithms which give good guarantees for every instance of the

problem. In such cases, we would be very satisfied to have algorithms which work

well in most cases. For example, some heuristics for graph partitioning problems (e.g.

[54]) seem to work well empirically for many instances that come up in practice. To

have a more rigorous understanding of how good these approaches are, we need a

metric which captures algorithms which give good guarantees for most instances of

the problem. This notion is captured by average-case analysis.

Moreover, from a more theoretical standpoint, worst case complexity exhibits

only one facet of the algorithm or the problem in question. For instance, it can

not distinguish between trivial algorithms and clever heuristics, which have the same

worst-case complexity. Besides, even among problems with bad worst-case complexity,

some of these problems seem to be easy for most instances, while some other problems

seem to be very hard even on average. In fact, such problems are extremely useful

for cryptographers to base their secure protocols on. A more complete understanding

can come out of a study of average-case complexity.

The average-case analysis of a problem requires a probability distribution over

the instances of the problem to start with. Since we need an algorithm with good

guarantees for “most” instances of the problem, we require that the algorithm gives

good approximation guarantees with high probability over the given distribution i.e.

for all but a negligible fraction of the input, (see Section 2.2 for a more precise

definition). The average-case complexity for a problem can differ widely depending

on the distribution.

Over the last two decades, many works have studied approximation algorithms

for average-case instances of important combinatorial optimization problems. Bui

et al. [26] initiated a study of average-case algorithms for graph partitioning with

3

their random model for Balanced Cut. A series of works [36, 25, 53, 35, 34, 33]

studied spectral approaches and various other heuristics for this problem. Later

[70] extended this random model to a general class of graph partitioning problems

and designed spectral algorithms which recover the partitions for a large range of

parameters. Such random models have also been studied in the context of k-coloring

[24], minimum Steiner tree [62] etc.

Typically, the distribution over instances corresponds to the standard Erdös-Renyi

random graph model, or simple variants of it with a “planted” solution. Such ran-

dom models assume that every edge is chosen independently at random. While the

complete independence in these random models is very useful in algorithm design, it

also renders them very unrealistic. This excess independence seems to be too strong

an assumption to make about real-world instances — for instance, the clustering co-

efficients seen in graphs and networks from practice are much higher than that of a

random graph (see [71] for more details).

Semi-random Models: The Realistic Average-case

Since the average-case approximability can differ widely depending on the distribu-

tion, the choice of the distribution over instances is crucial. The ideal distribution

is one that is both natural and realistic i.e. a distribution that captures most of the

instances that come up in practice. Semi-random models are a class of average-case

models, whose generality lie in between the random model and worst-case. They allow

more structure in the instances, by incorporating adversarial choices while generating

the instances.

Blum and Spencer [24] first introduced a semi-random model for k-coloring, where

random noise corrupted the choices of an adversary who is designing the instance.

Feige and Kilian [39] considered a semi-random model for Balanced Cut, that made

the previous random models more robust, by allowing an adversary to modify a

4

random instance, in such a way that would only make the planted solution even

better. Yet, these semi-random models were more in the spirit of the random models,

with added robustness. Kolla, Makarychev and Makarychev [61] recently studied

semi-random models for the Unique Games Conjecture[56], and showed that the four

most natural ways of introducing randomness to generate instances of Unique Games

render it easy.

The extent of the adversarial choices dictates the generality of the model and how

effective the semi-random model is in capturing real-world instances. On the one

hand, we want to design algorithms with better guarantees than the worst-case. But

on the other hand, we want the semi-random model to be general enough so that it

can capture most instances we see in practice. Hence, the main challenge is

Question 2. Can we design algorithms with better provable guarantees, for a realistic

average-case model of the problem?

The Approximation Stability Assumption

In a very exciting recent work, Balcan, Blum and Gupta [17] considered a different

kind of a condition, called Approximation Stability, in modeling instances from prac-

tice. For many applications of clustering problems, there is a ground-truth clustering

which we hope to get at. While the aim is to get as close to this target as possible,

the objective function is used as a proxy to capture the closeness to the target. De-

signing approximation algorithms for such applications is useful only when we know

that even approximately optimal solutions are close to the target clustering (which

we assume is exactly the optimal solution for now). In such cases, they ask if we can

design better algorithms, if we assume that even approximately optimal solutions are

close to the target.

Blum et al. [17] applied the stability assumption to metric clustering problems

like k-means and k-median, and designed polynomial time approximation schemes

5

(PTAS) for these problems, when only O(1) factor approximations were known in

the worst-case. One of the main questions that arise out of their work is whether

such a stability assumption could lead to better approximations for combinatorial

optimization problems like graph partitioning (a similar question was also posed by

[22] recently). In other words,

Question 3. Can we design better approximation algorithms, if we assume that the

instance has a unique optimal solution with stability?

In this thesis, we address these questions by studying the approximability of im-

portant graph optimization problems both on realistic average-case (semi-random)

models, and under additional conditions like the stability assumption. This study

also provides us surprising insights into the worst-case approximability in some cases.

Before we elaborate on our contributions, we first introduce the problems which we

study in the thesis.

1.1 The Case Studies

We will primarily be concerned with two basic graph optimization problems: Graph

Partitioning and the Densest k-subgraph problem.

1.1.1 Graph Partitioning

Graph Partitioning is a class of problems, where the goal is to divide the vertices

of the graph into a disjoint set of clusters, while (typically) minimizing the number

of edges across the clusters, subject to some problem-specific constraints. An im-

portant problem that falls in this class is Balanced Cut, which was defined earlier

(Definition 1.1). A variant which aims at finding lopsided partitions is Small Set

Expansion

6

Definition 1.2 (Small Set Expansion). Given a graph G, find a partition of the

vertices V (G) into two pieces S and V (G) \ S with |S| = k, that minimizes the

number of edges between the pieces.

Other problems which fall in this class include Minimum Multicut and Small Set

Expansion (definitions in Chapter 2).

Graph partitioning problems are among the most fundamental problems in com-

binatorial optimization. The interest in Graph Partitioning is two-fold. Firstly, they

are ubiquitous in computer science, with numerous applications in image segmen-

tation, machine learning and more broadly, science and engineering. They are also

used as basic building blocks for clustering or divide-and-conquer approaches in many

combinatorial algorithms. Secondly, they are crucial in understanding important al-

gorithmic barriers like the Unique Games Conjecture [56, 76]3.

There has been extensive research on graph partitioning problems, which has been

mostly focused on analyzing the worst case performance of optimization algorithms.

Over the last two decades, poly-logarithmic approximation algorithms were devel-

oped for such fundamental graph partitioning problems as Minimum Bisection [73],

Balanced Cut [66, 13], Multicut [44]. Yet, there has been little success in obtaining

constant factor approximation algorithms for these problems, and some recent re-

sults [57, 59, 74, 77] suggest that this may even be hard, assuming the Unique Games

conjecture [56] and its variants.

Average-case. There has been considerable interest in the past, in studying

average-case models for graph partitioning. These models typically assume that

every edge is chosen independently at random, with the edge probability inside

clusters being more than that between clusters.

3A conjecture about the hardness of Small Set Expansion implies the Unique Games conjecture

7

This random model attracted a lot of attention and was studied in a series of

papers by [36, 25, 53, 35, 34, 33]. These papers explored several techniques for solving

the problem — flow-based, combinatorial, spectral techniques, simulated annealing

and go-with-the-leader technique. The algorithm of Boppana [25] finds the planted

balanced cut (S, V \ S) w.h.p. if ε2 − ε1 > C
√
ε2 log n/n. Later McSherry [70]

obtained similar results for a more general class of graph partitioning problems. Coja-

Oghlan [33] extended the result of Boppana to the case when ε2 − ε1 > C(1
n

+√
ε2 log(nε2)/n). Note that if ε2 − ε1 = o(

√
ε2 log n/n) then the random graph

has exponentially many minimum bisections and with high probability, the planted

bisection is not a minimum bisection [33]. The algorithm of Coja-Oghlan [33] finds

w.h.p. a minimum balanced cut rather than the planted balanced cut. Feige and

Killian [39] later made this model more robust, by allowing the adversary to remove

edges between the clusters, and adding edges inside the two clusters : their algorithms

make the spectral techniques of [25, 70] more robust. However, the main criticism

against these models is that they typically assume too much independence (especially

inside the clusters). Please see Section 2.6 for more details.

1.1.2 Densest k-subgraph

The other problem that we focus on, Densest k-subgraph (abbreviated as DkS) is

the complement of Small Set Expansion. This problem may be seen as a natural

optimization version of the classical NP-complete decision problem k-CLIQUE.

Definition 1.3 (Densest k-subgraph). Given a graph G and a parameter k, find the

subgraph of G on at most k vertices with the maximum number of edges inside it.

The approximability of DkS belies its extremely simple definition: despite much

work on this important problem, it has been notorious in resisting progress on both

the algorithmic and inapproximability fronts.

8

While the problem is believed to fairly hard to approximate, the best known

inapproximability results just show that DkS does not admit a PTAS under various

complexity theoretic assumptions. Feige [38] has shown this assuming random 3-SAT

formulas are hard to refute, while more recently this was shown by Khot [56] assuming

that NP does not have randomized algorithms that run in sub-exponential time (i.e.

that NP 6⊆ ∩ε>0BPTIME(2n
ε
)). Of course, DkS is NP-hard to compute exactly (as

seen by the connection to k-CLIQUE.

The current best approximation ratio of n1/3−ε for some small ε > 0 was achieved

by Feige, Kortsarz and Peleg [40]. Recently, and independently of our work, Goldstein

and Langberg [47] presented an algorithm for which they computed the approximation

ratio to be roughly n0.3159. Other known approximation algorithms have approxima-

tion guarantees that depend on the parameter k. The greedy heuristic of Asahiro

et al. [15] obtains an O(n/k) approximation. Linear and semidefinite programming

(SDP) relaxations were studied by Srivastav and Wolf [82] where they show how they

can be used to get approximation ratios somewhat better than n/k.

Finding small dense subgraphs come up algorithmically in several settings (like de-

tecting emerging communities [63], finding protein complexes and functional discovery

in biological networks [50]). Further, the apparent inapproximability of this problem

is a source of intractability in many problems with a strict budget, like [65, 6, 32]:

the planted variants are particularly useful (see [8, 7, 60]) as an average-case hardness

assumption like the Random 3-SAT assumption [38].

However, even for basic average-case models, the worst-case algorithms of [40]

remain the best known. Thus, understanding the approximability of the problem,

from both worst-case and average-case perspectives is an important challenge.

9

1.2 Our Contributions

In this thesis, we shed new light on the approximability of some fundamental graph

optimizations problems from both average-case and worst-case perspectives.

In the first part of the thesis we design improved algorithms for graph partitioning

in planted models which lie between the basic average-case and worst-case models,

in their generality. First, we design new algorithms with improved approximation

guarantees for realistic average-case models of graph partitioning problems. We first

introduce a new semi-random model for graph partitioning that captures properties

of real-world instances better than previous models. We then design constant fac-

tor approximations in these models for important graph partitioning problems like

Balanced Cut, Multicut and Small Set Expansion, for which only poly-logarithmic

approximations are known in the worst-case. Second, we study graph partitioning

under a stability assumption, and design new algorithms for Balanced Cut and Small

Set Expansion, which give constant factor approximations under this assumption.

In the second part of the thesis we focus on the Densest k-subgraph problem

(DkS), and study it from both average-case and worst-case perspectives. We first

study a natural average-case model of the problem, and design counting-based com-

binatorial algorithms for it. We then show how we can systematically translate these

algorithms using linear programming hierarchies, to obtain the state-of-the-art worst-

case approximation algorithms for Densest k-subgraph, with the same guarantees.

Further, the natural average-case model identifies a concrete barrier for progress, and

seems to captures exactly the extent of current approaches. In particular, this distri-

bution of instances presents a barrier to current techniques involving Sherali-Adams

hierarchy based SDP relaxations4, which are among the most powerful algorithmic

techniques, and capture most classes of known approximation algorithms. In contrast

4Semi-definite programming hierarchies for {0, 1} integer programming problems give a system-
atic way to generate successively stronger relaxations, which converge to the solution set of the
problem.

10

to our results on graph partitioning, these results indicate that the worst-case and

average-case approximabilities of Densest k-subgraph are suprisingly identical, and

seem to go hand in hand. We now elaborate on these results (which are summarized

in Table 1.1) in this section.

Problem Worst Case Semi-random Random
Balanced Cut O(

√
log n)
[13]

O(1)
(this thesis)

FPTASa [25]

Multicut O(log n)
[44]

O(1)
(this thesis)

–

Small Set Expansion
(size k)

O(
√

log n log(n
k
))

[18]
O(1)

(this thesis)
FPTAS a[70]

Sparsest Cut O(
√

log n)
[13]

O(1)
(this thesis)

FPTAS a[70]

Densest k-subgraph n1/4

(this thesis)
n1/4

(this thesis)
n1/4

(this thesis)

arecovers the planted partition for appropriate parameters.

Table 1.1: Comparison of the approximation ratios in the worst-case, semi-random and
random models.

1.2.1 Graph Partitioning in Realistic Average-case Models

Semi-random models for Graph Partitioning

The ideal distribution of instances is specific to the problem and on which use-cases

of the problem we hope to capture. A good model for average-case model for graph

partitioning tries to capture its chief application in graph clustering. When a prac-

tioner tries to solve his or her problem through graph partitioning, there is a belief

that the instance has a good partitioning solutions. In other words, for the clustering

corresponding to the optimal clustering, we expect much fewer edges between the

different clusters, than inside the various clusters. The different average-case models

we will encounter try to capture this property, to varying degrees of generality.

11

Over the last couple of decades, average-case models of graph partitioning prob-

lems like Balanced Cut have been studied in a series of works [26, 25, 35, 39, 70, 33].

However, the main criticism against these models is that they typically assume too

much independence — for instance, every edge is chosen independently at random

(even inside the clusters of the partition).

In Chapter 3, we define a new semi-random model for graph partitioning, which

is more general than previous models, and which we believe capture real-world in-

stances better. Before we proceed with the formal presentation of our model, let

us discuss what we can reasonably assume about real-world instances. A real-world

process that “generates” the graph partitioning (or clustering instance) adds an edge

between clusters only when some random unexpected event happens. Therefore, in

our opinion, it is reasonable to assume that edges between clusters are added at ran-

dom. However, we cannot in general assume anything about edges within clusters

(since their absence or presence does not affect the size of the cut between clusters).

One could also view these edges between the clusters as random noise in an otherwise

perfect clustering (partitioning).

This discussion leads to the following informal definition of semi-random instances:

consider a set of vertices V and some clustering of V . A semi-random graph G on

V is a graph with arbitrary (adversarial) edges inside clusters and random edges ER

between clusters (more generally, the set of edges between clusters might be a subset

of a random set of edges). Please refer to Chapter 3 for more details on the model.

The random edges across clusters reflect the underlying belief of the practitioner

— correlations between different clusters are unexpected (can be viewed as random

noise). Since the correlations between items in a cluster can be arbitrary, our model

is more realistic than previous models, and has good potential of capturing real-world

instances.

12

The random edges ER correspond to the “planted solution” in the semi-random

graph partitioning instance. However, this planted solution ER is not necessarily

the optimal partitioning solution. Hence, we need to measure the approximation

guarantees of algorithms for this semi-random model a little differently.

Measuring performance in semi-random models.

In typical average-case models, there is a clear planted solution, which turns out to

be the optimum solution as well, with high probability. In contrast, semi-random

models have adversarial steps — hence, the planted solution may no longer remain

the optimal solution. For example, in the case of Small Set Expansion, the adversarial

graph inside the larger cluster (of size n − k) could have a much smaller cut of the

correct size (size k) than the planted cut (given by the random edges). In such cases,

obtaining a solution whose cost compares favorably to the optimal solution would

entail a worst-case approximation guarantee for the adversarial graph inside the larger

cluster. To ensure that our task remains easier than worst-case approximations, we

measure the performance of the algorithm against the planted solution.

Definition (Performance Ratio). The performance of the algorithm is measured by

comparing the cost of edges cut by the algorithm (to partition the graph) to the expected

number of edges in planted solution (the random edges ER).

In the rest of this thesis, we will also use approximation ratio to refer to the

performance ratio of algorithms in semi-random models.

Improved approximations in the semi-random model

We design O(1) factor approximation algorithms for “classical” graph partitioning

problems in this semi-random model.

13

Informal Theorem. Given a semi-random instance, there is an algorithm that finds

with high probability a balanced cut (S ′, V \ S ′) with |S ′|, |V \ S ′| = Ω(n) of cost

O
(
|ER|+ n

√
log n(log log n)2

)
.

Particularly if ε >
√

log n(log log n)2/n, the cost of the cut is O(|ER|) = O(εn2).

Informal Theorem. Given a semi-random instance, there is an algorithm that finds

with high probability a solution to the Small Set Expansion problem i.e., a subset

S ⊂ V of size ρn, of cost

O
(
|ER|+ n

√
log n log(1/ρ)(log log n)2

)

Particularly if ερ >
√

log n log(1/ρ)(log log n)2/n, the cost of the cut is O(|ER|) =

O(ερn2).

Such results also hold for other basic graph partitioning problems like the Min-

imum Multicut and Sparsest Cut. The algorithm for the Small Set Expansion is

not only interesting on its own, but can also be used to almost recover the original

balanced cut under certain conditions. See Section 4.2 for a formal statement of the

results.

We remark that as ε decreases, the problem becomes more challenging since the

amount of randomness in the instances decreases. The performance guarantees given

above show that as long as we have sufficient randomness, we can obtain O(1) approx-

imations. Alternately, these results show that we can obtain O(1) approximations for

semi-random instances upto an additive factor of Õ(n
√

log n).

Note that the algorithm does not necessarily find the planted cut (S, V \ S) since

in general this is impossible. Indeed the adversary can just delete all edges between

S and V \ S and obtain an empty graph, or she can add every edge within S and

14

within V \S with probability ε and obtain a random G(n, ε) graph. In either case, our

algorithm has no information about the planted cut (S, V \S). However, if we assume

that graphs induced by S and by V \ S are combinatorial expanders, we can almost

recover sets S and V \ S. This condition is similar to a stability assumption, with

the added assumption of semi-randomness. This assumption for planted partitioning

can be justified in the implicit belief that approximately optimal solutions are close

to the planted partition.

Informal Theorem. There is a constant C > 1, such that for every constant η > 0,

given a semi-random instance G with combinatorial expansion h(G[S]), h(G[V \S]) ≥

Cεn and εη >
√

log n log(1/η)(log log n)2/n, there is an algorithm that finds with high

probability the partition (S, V \ S) up to an error of ±ηn vertices.

A similar result also holds for the Small Set Expansion problem.

Comparison to previous average-case models and algorithms

In our semi-random model, the adversary has more power than in the model of Feige

and Kilian. As in their model, the adversary can remove edges between S and V \ S

but additionally she has absolute control over induced graphs G[S] and G[V \ S]

(whereas in the model of Feige and Kilian, she could only add extra edges to random

G(n
2
, ε2) subgraphs inside G[S] and G[V \ S]).

Our algorithm for Balanced Cut, while designed for a more general model, also

works in a wider range of parameters than the algorithms of Boppana[25], and Feige

and Kilian[37] (note that the objective of our algorithms is slightly different, par-

ticularly we do not aim to recover the original partition precisely). To compare the

algorithms, let us assume that probabilities ε1 and ε2 are of the same order of mag-

nitude, ε1 = Θ(ε) and ε2 = Θ(ε). While the algorithm of Bopanna[25] and Feige and

Kilian [39] require that ε > C log n/n, we require only that ε > C
√

log n(log log n)2/n.

15

Our Techniques

We develop a new algorithmic framework for average-case models capturing many

graph partitioning problems, which is very different from previous approaches. The

core algorithmic idea is the “hidden solution sparsification” procedure which does

the following: if ER is the set of random edges added between different clusters

of the partition (which is unknown to us, of course), we cut O(|ER|) edges and

ensure that the remaining graph has one large component with |ER|/(logΩ(1) n) edges

across the different clusters of the intended clustering: running our favorite poly-

logarithmic factor approximation algorithm on this remaining instance gives a O(1)-

factor approximation overall.

This core algorithm tries to identify the random edges ER, by using a semi-definite

programming relaxation that defines a metric over the vertices. The crucial insight

comes from a structural theorem, which establishes that most random edges in a

semi-random instance are long according to the metric given by a “well-behaved”

high-dimensional SDP solution. In this case, cutting long edges succeeds in removing

half of the current set of random edges. Hence, this core procedure proceeds over

roughly O(log log n) phases — in each phase, we solve the SDP relaxation and use

the vector solution to identify the set of few edges to cut.

1.2.2 Graph Partitioning under Stability conditions

In Chapter 6, we study graph partitioning problems when we have additional condi-

tions about the stability of the optimum solution. One of the main question left open

in the recent exciting work of Blum, Balcan and Gupta [17, 16] is

Question 4. [17, 16] Can we design O(1) approximations for graph partitioning

problems like Balanced Cut, Sparsest Cut under the stability assumption?

16

An assumption about the stability of the optimal solution for graph partitioning

problems is equivalent to a condition about the expansion of the subgraph (please

see Section 2.3.2 for formal definitions of different notions of expansion) inside the

clusters (see Lemma 2.15). With this in mind, we study graph partitioning problems

on instances, where roughly speaking, the expansion inside the clusters of the partition

(for just the smaller cluster, in fact) is a constant factor more than the expansion of

the planted partition. However, we need this condition about a stronger form of

expansion: we assume that the algebraic expansion inside the clusters is a constant

factor more than the combinatorial expansion of the planted partition. We call this

Planted Spectral Expander model.

More precisely, we are given a graph G with a (planted) balanced cut (S, V \ S)

such that the normalized algebraic expansion of the induced graph G[S] is greater

than the combinatorial expansion (conductance) of the cut (S, V \S) by some constant

factor.

This condition is satisfied for instance, under much the stronger assumption that

the edges of E(S, S) or E(V \ S, V \ S) are chosen independently at random (with a

higher probability) while E(S, V \S) is completely adversarial (this is the opposite of

the semi-random model described earlier). Note that the famous Cheeger’s inequality

(Lemma 2.10) relates these two notions of expansion: hence, when the combinatorial

expansion of the clusters is large enough (enough stability), then they have sufficient

algebraic expansion to fit into our setting.

Results for the Planted Spectral Model We design algorithms which achieve

constant factor bicriteria approximations for Balanced Cut and Small Set Expansion

in this model.

17

Informal Theorem. Given a planted spectral expander instance G, there is an

algorithm that finds a balanced cut (S ′, V \ S ′) with |S ′|, |V \ S ′| = Ω(n) of cost

O(E(S, V \ S).

Note that we do not impose any restrictions on the graph G[V \S] and on edges in

the cut (S, V \S); this result also applies to the case when G[S] is a random graph with

the appropriate parameters. Our algorithms are inspired by the results of [11, 68],

where they infer global correlations between the vectors from local correlations and

algebraic expansion.

1.2.3 Densest k-subgraph: An Average-Case Study

We begin the study of Densest k-subgraph from an average case perspective. We

first describe a natural average-case model for Densest k-subgraph, which will be

central to understand densest k-subgraph even in the worst-case. The average-case

model that we study is inspired by the following simple fact: random graphs do not

have dense subgraphs. Any potential algorithm for DkS should be able to identify a

dense k-subgraph planted inside such a random graph. This leads us to the following

natural average-case model, which we call the Planted DkS model :

Definition 1.4 (Planted DkS model). We are given a set of n vertices V , and three

parameters p ∈ [0, 1], k, d ∈ [n]. The graph is generated as follows:

1. Generate a graph G1 = G(n, p) i.e. ∀u, v ∈ V has an edge between them with

probability p independently.

2. Adversary picks an arbitrary set of k vertices VH ⊆ V , and adds arbitrary graph

H(VH , EH) of density d. H is refered to as the planted k-subgraph.

If the graph H generated in step 2 of the model was also chosen randomly, this

would correspond to a random planted model for DkS (analogous to the random

18

models for graph partitioning). The Planted DkS model can be viewed as a semi-

random model because of the adversarial choices incorporated in step 2.

Any algorithm, that identifies a planted dense k-subgraph should at the very least,

be able to certify that random graphs have no dense k-subgraphs. To this end, we first

look at solving the following distinguishing (promise) problem — distinguish between

G drawn from G(n, p), and G containing a k-subgraph H of certain density planted

in it (generated according to the Planted DkS model).

We first design combinatorial algorithms which can solve the distinguishing prob-

lem in polynomial time for a certain range of parameters. At a high level, our algo-

rithms involve cleverly counting appropriately defined subgraphs of constant size in

G, and use these counts to identify the vertices of the dense subgraph. A key notion

which comes up in the analysis is the following (please see Chapter 7 for details):

Definition 1.5. The log-density of a graph G(V,E) with average degree D is log|V |D.

In other words, if a graph has log-density α, its average degree is |V |α.

For the above average-case model, we show that if the log-density of G is α and

that of H is β, with β > α, we can solve the distinguishing problem in time nO(1/(β−α)).

The distinguishing algorithm is based on the fact that in G(n, p), instances of

any fixed constant size structure appear more often when the graph has a higher

log-density. Our distinguishing algorithms involve cleverly counting appropriately

defined trees of constant size in the graph — large counts indicate the presence of a

dense k-subgraph, and small counts certify the absence of any dense k-subgraph with

high probability.

19

1.2.4 Densest k-subgraph in the worst-case: an n1/4 approxi-

mation

While the above intuition in terms of log-density comes from the average-case, log-

density turns out to be the crucial factor in determining approximations in the worst-

case as well. We design new algorithms for the worst-case, that are directly inspired

by the counting algorithms we design for the average-case problem. Surprisingly, the

approximation guarantees we obtain for arbitrary graphs matches the distinguishing

factor we obtain for the average-case, leading to (roughly) an n1/4 factor approxi-

mation algorithm. To do this systematic translation, we use a linear programming

relaxation given by a standard linear program hierarchy like Lovasz-Schrijver (or

Sherali-Adams).

At an informal level, we give an algorithm that detects whether G has a subgraph

H on k vertices which has higher log-density than G does. That is, if G has log-density

α, and it contains a subgraph H on k vertices with log-density β > α (average degree

kβ), our algorithm will detect this. The most important case we need to consider is

when k = n1−α (that is, Dk = n, where D is the average degree in G): here, the

density of a random k-subgraph is O(1) (log-density 0). In this case, our algorithm

outputs a subgraph on k vertices with non-trivial log-density — in fact, it is roughly

β − α.

Informally, we give a family of algorithms, parametrized by a rational number r/s,

can be stated as follows (see Theorem 8.16 for a more precise statement):

Informal Theorem. Let s > r > 0 be relatively prime integers, let G be an undirected

graph with maximum degree D = nr/s (≤ n/k 5), which contains a k-subgraph H with

average degree d = ρ · kr/s. Then there is an algorithm running in time nO(r) that

finds a k-subgraph of average degree Ω(ρ).

5This assumption can be made upto a loss of O(log n) factor (see Section 8.1.2)

20

This leads to an O(n1/4+ε) factor approximation in time nO(1/ε).

To do this translation to the worst case, we use counts of exactly the same constant

sized trees as before, to identify the vertices of the dense subgraph. One can view

our algorithm as an attempt to certify that the given graph has no dense k-subgraphs

(random-like) — the presence of a large count can be used to identify a dense k-

subgraph. To translate this intuition, we use an linear programming relaxation given

by O(1/ε) levels of a standard linear program hierarchy like Lovasz-Schrijver (or

Sherali-Adams). In fact, our algorithm is one of the few cases (along with [29, 30, 78])

where hierarchies have been used to obtain better approximation algorithms in the

worst-case.

1.2.5 Integrality gaps and Evidence for Hardness of Densest

k-subgraph

The approximation ratio we achieve for general instances of DkS matches the “distin-

guishing ratio” we are currently able to achieve for the average-case. This suggests

the following concrete open problem which seems to be a barrier for obtaining an

approximation ratio of n1/4−ε for DkS— distinguish between the following two dis-

tributions:

D1: graph G picked from G(n, n−1/2), and

D2: graph G picked from G(n, n−1/2) with the induced subgraph on
√
n

vertices replaced with G(
√
n, n−(1/4+ε)).

The believed inapproximability of Densest k-subgraph and its variants also comes

up in various other problems that look for solutions supported on small sets6. How-

ever, considering the absence of good inapproximability results, it is important to

6In fact a public-key cryptosystem was designed in [7] based on the hardness of such an assump-
tion.

21

provide some evidence in support of these barriers — say, using a candidate distri-

bution of instances that seems hard for current techniques (as for 3-SAT [38], Clique

[3]). Such a distribution could also serve as a spot-test for potential algorithms.

In the last part of the thesis, we show polynomial integrality gaps for strong SDP

relaxations of the Densest k-subgraph problem. We study lift-and-project relaxations

for DkS obtained from the Sherali-Adams Semi-definite Programming hierarchy.

We show that even Ω
(

logn
log logn

)
levels of the Sherali-Adams SDP relaxation have an

integrality gap of Õ(n1/4).

We note that prior results exhibiting gap instances for lift-and-project relaxations

do so for problems that are already known to be hard to approximate under some

suitable assumption; based on this hardness result, one would expect lift-and-project

relaxations to have an integrality gap that matches the inapproximability factor. Our

gap constructions for Densest k-Subgraph in this thesis are a rare exception to this

trend, as the integrality gaps we show are substantially stronger than the (very weak)

hardness bounds known for the problem. In the absence of good inapproximabil-

ity results for this problem, we arguably give the strongest evidence that a natural

distribution of instances for the problem is a barrier for current techniques.

1.3 Organization of the thesis

First we discuss the conventions, preliminaries and some background to understand

the rest of the thesis in Chapter 2. This chapter will also give a formal definition of

all the problems we will encounter in the thesis, and then discuss the various average-

case models for graph partitioning that have been studied in the past. The rest of

the thesis is broadly divided into two parts.

Chapters 3,4,5 will deal with designing improved approximation algorithms for

average-case models of graph partitioning. First, in Chapter 3 we motivate and

22

describe formally the semirandom (average-case) model for graph partitioning that

we study in this thesis. In Chapter 4 we describe the basic framework behind our

new algorithms, and show O(1) factor approximations for Balanced Cut and Multicut.

In Chapter 5, we will give our algorithm for semi-random Small Set Expansion and

Sparsest Cut, and show how they also help in successfully recovering the partitions

under some extra assumptions. Finally, in Chapter 6, we will how we can also obtain

O(1) approximations for Balanced Cut and Small Set Expansion under some stability

assumptions. The results in these chapters (3,4,5,6) are based on joint work with

Konstantin Makarychev and Yury Makarychev [69].

The second part of the thesis (Chapters 7, 8, 9) deals the Densest k-subgraph

problem (DkS). In Chapter 7, we first describe an average case model for DkS and

design algorithms for it. In Chapter 8, we show how to translate these average-

case algorithms to an algorithm with good worst-case guanrantees. In Chapter 9,

we show how the average case model also points to a concrete barrier for improved

approximations by showing integrality gaps for the Sherali-Adams SDP hierarchy.

The results in Chapters 7 and 8 are based on joint work with Aditya Bhaskara,

Moses Charikar, Eden Chlamtac and Uriel Feige [20]. The result in Chapter 9 is

based on joint work with Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami

and Yuan Zhou [21].

Finally we conclude the thesis with some open problems and avenues for future

work.

23

Chapter 2

Background

In this chapter we first introduce some basic terminology and tools that we will use

in the rest of the thesis. Later we will review some of the average-case models that

have been studied traditionally, especially in the context of graph partitioning.

2.1 Basic Notation

The following is a list of conventions and basic notations that we will follow in the

thesis unless otherwise stated:

• G(V,E) refers to an input undirected graph on n vertices, with vertex set V

and edge set E.

• E(S, T) will refer to the subset edges in E which have one end-point in S, and

the other end point in T . We will use E(S) to denote E(S, S).

• The density of a subgraph H of G, refers to the average degree of the subgraph

H.

• For v ∈ V , Γ(v) denotes the set of neighbors of v, and for a set of vertices

S ⊆ V , Γ(S) denotes the set of all neighbors of vertices in S.

24

• for any number x ∈ R, will use the notation fr(x) = x − bxc to denote the

fractional part of x.

• H will denote the euclidean space Rn for some sufficiently large finite n.

• For vector ū ∈ Rn, ‖ū‖ will denote its Euclidean norm (`2 norm) i.e. ‖ū‖ =√∑
i u

2
i .

• For vectors ū,v̄ ∈ Rn, we let 〈ū, v̄〉 =
∑

i uivi to represent the inner product

between u and v.

• For a real valued random variable X, E [X] and µ(X) will denote its mean.

• The phrase with high probability or w.h.p will refer to ‘with probability at least

1− 1
q(n)

’, where q(n) is an arbitrary polynomial in n (sometimes there will be a

constant depending on the polynomial).

• Unless stated otherwise C will denote a sufficiently large constant which is ≥ 1.

2.2 Average Case Approximability

Here, we will clarify the notion of average case approximation ratio (or approxima-

bility) that we will use throughout this thesis. First, we recollect the definition of

worst-case approximation ratio:

Definition 2.1 (Worst-case Approximability). Given a minimization problem Π with

set of instances I of size n, we say than a randomized algorithm A has worst-case

approximation ratio at most α(n) if and only if

max
I∈I

EA [A(I)]

OPT (I)
≤ α(n)

where the expectation EA [·] is over the randomness in the algorithm.

25

Given a distribution D over the instances of a problem Π, we will say an algorithm

A has average approximation ratio α for (Π,D) if A achieves an α approximation

with high probability over the distribution D. More formally,

Definition 2.2 (Average-case Approximability). Given a minimization problem Π

and a distribution D over its instances of size n, we say than an algorithm A ≡ {Aγ}γ

has average approximation ratio α(n) if and only if for every γ > 0 there exists a

constant c(γ) > 0 s.t.

Pr
I←D

(
Aγ(I)

OPT (I)
> α(n)

)
<
c(γ)

nγ
.

In the above definition {Aγ}γ is a sequence of algorithms parameterized by γ,

we will hereby use a single algorithm A to refer to it (for an appropriately large γ).

Since we will be concerned with randomized algorithms, we will take into account the

expected performance of the algorithm over its own random bits:

Definition 2.3 (Average-case Approximability for Randomized Algorithms). Given

a minimization problem Π and a distribution D over its instances of size n, we say

than a randomized algorithm A has average approximation ratio α(n) if and only if

for every γ > 0 there exists a constant cγ s.t.

Pr
I←D

(
EA [A(I]

OPT (I)
> α(n)

)
<
cγ
nγ

where the inner expectation EA [·] is over the randomness in the algorithm.

Since for the problems we deal with in this thesis, the solution cost can be bounded

at most a polynomial in the size of the input, this definition is strictly stronger than

a bound on

EI←D [A(I)/OPT (I)]

which is a non-robust quantity, that may not compose well under reductions.

26

2.3 Graph Partitioning

2.3.1 Partitions

Definition 2.4. Let V be a set of vertices. We say that P is a partition of V into

disjoint sets or simply partition, if V =
⋃
P∈P P and every two P ′, P ′′ ∈ P are

disjoint. For every vertex u ∈ V , denote by P(u) the unique set P ∈ P containing u.

Denote by IS : V → {0, 1} the indicator function of the set S ⊂ V :

IS(u) =

1, if u ∈ S;

0, otherwise.

Definition 2.5. Let G = (V,E) be a graph and P be a partition of V . Define the set

of edges cut by the partition as follows

cut(P , E) ≡ {(u, v) ∈ E : P(u) 6= P(v)}.

The cost of the cut equals the size of the set cut(P , E):

cost(P , E) ≡ | cut(P , E)|.

The cost of the cut restricted to a subset O ⊆ V only considers those edges which are

incident on O:

cost|O(P , E) ≡ | {(u, v) ∈ cut(P , E) : u ∈ O or v ∈ O} |

≡
∑

(u,v)∈cut(P,E)

max{IO(u), IO(v)}.

27

2.3.2 Graph Expansion

There are different, yet related notions of graph expansion which we will use through-

out this thesis. The most commonly used notion is that of Combinatorial Expansion

(simply referred to as expansion usually):

Definition 2.6 (Combinatorial Expansion). The expansion h(G) of the graph G =

(V,E) is given by

h(G) ≡ min
S⊂V

0<|S|≤ 1
2
|V |

E(S, V \ S)

|S|
.

A related quantity that is closely related to expansion is the conductance.

Definition 2.7 (Conductance). The conductance Φ(G) of the graph G = (V,E) is

given by

Φ(G) ≡ min
S⊂V

0<E(S,S)≤ 1
2
|E|

E(S, V \ S)

E(S, V)
.

For d-regular graphs, conductance and expansion are equivalent to each other,

and are used interchangeably. We now define an algebraic quantity associated with

graphs which will be crucial for our algorithmic guarantees: algebraic expansion.

Definition 2.8 (Normalized Laplacian). Let G be a graph on n vertices with

adjacency matrix A(G). Let D be the diagonal matrix composed of the de-

grees d1, d2, . . . , dn. Then the normalized Laplacian matrix L is defined by

L = D−1/2(D − A)D−1/2.

Definition 2.9 (Algebraic Expansion). Let G be a graph on n vertices and let L be

its corresponding normalized laplacian matrix. G is said to have algebraic expansion

λG iff λG = λ2 where λ1 = 0, λ2, . . . , λn are the eigenvalues of L in increasing order.

For d-regular graphs with adjacency matrix A, λG = λ1(A)−λ2(A)
d

.

Cheeger’s inequality gives a means of relating algebraic expansion and conductance

(combinatorial expansion):

28

Lemma 2.10 (Cheeger’s Inequality). [2, 49] For a graph G on n vertices with con-

ductance ΦG ∈ [0, 1] and algebraic expansion λG ∈ [0, 1], we have

λG
2
≤ ΦG ≤

√
2λG

2.3.3 Partitioning Problems

We now define three of the graph partitioning problems that we study in this thesis.

Definition 2.11. (Balanced Cut) Given a graph G = (V,E), the aim is to find a

partition P(P1, P2) of V with |P1| = |P2| = n/2 which minimizes cut(P , E).

A constant factor approximation algorithm finds a partition P ′(P ′1, P ′2) with

|P ′1|, |P ′2| ≤ βn/2 for some fixed constant 1 ≤ β < 2, such that cost(P ′, E) ≤

O(1) cost(P∗, E), where P∗ is an optimal balanced cut1.

Definition 2.12. (Small Set Expansion) Given a graph G = (V,E) and a pa-

rameter ρ ∈ (0, 1/2], the aim is to find a partition P(P1, P2) of V with |P1| = ρn that

minimizes cost(P , E). We will also be concerned with constant factor approximations

(defined like in Balanced Cut).

Definition 2.13. (Multicut) Given a graph G = (V,E) and a set of terminal pairs

{(si, ti)}1≤i≤r, the aim is to find a partition P of V that separates all terminal pairs

si,ti (i.e., for all i, P(si) 6= P(ti)) and minimizes cost(P , E).

2.4 Approximation Stability and Relations to

Combinatorial Expansion

Here, we give a formal definition of the notion Approximation Stability we use, and

show how for graph partitioning, it reduces to a condition about expansion in the

1This is sometimes referred to as O(1) pseudo-approximation [13].

29

planted instance. Since we will only be concerned about Approximation Stability for

graph partitioning problems with two clusters, we will use P = (P1, P2) to represent

the planted partition. Note that this is slightly different from the notion used in [17]

for clustering problems (for instance, their target clustering could be different from

the optimal solution).

Definition 2.14 (Approximation Stability for Graph Partitioning). An instance I

is said to be c-approximation stable with planted partition P = (P1, P2) if and only if

for every S such that |S| ≤ n/2 and mini |Pi|/2 ≤ |S| ≤ 2 mini 2|Pi| we have that

cost ((S, V \ S), E) > cost(P , E) + c · min
i∈{1,2}

{|S4Pi|}

where mini{|Pi4S|} represents how much the two partitions differ.

Lemma 2.15 (Stability implies Expansion). In the notation of the Def. 2.14, if G

is c-approximation stable instance with partition P = (P1, P2) s.t. |P1| < |P2|, then

the subgraphs induced by clusters G|Pi have combinatorial expansion at least c i.e.

h(G|P1) > c

Proof. Let |P1| < |P2| without loss of generality. Consider a set T ⊆ P1, with

T ≤ |P1|/2. Consider the partition given by S = P1 ∪ T . By approximation stability,

cost(P , E) + c|P1 \ S| < E(S, V \ S) = cost(P , E) + E(S, T)

But, since T = P1 \ S, we have that |E(T, P1 \ T)| > c|T | as required.

In fact, it is not hard to see that the converse is also true. Hence, this notion

of approximation stability is equivalent to expansion of the subgraphs given by the

clusters.

30

2.5 Densest k-subgraph

Definition 2.16 (Densest k-subgraph). Given a graph G and a parameter k, find the

subgraph of G on at most k vertices with the maximum number of edges inside it.

The following conventions will be used in particular for the chapters 7,8,9 that

deal with the Densest k-subgraph problem:

• D refers to the maximum degree of G.

• k refers to the size of the subgraph we are required to output.

• H will denote the densest k-subgraph (breaking ties arbitrarily) in G, and d

denotes the average degree of H.

2.6 Prior Average-case models for Graph Parti-

tioning

A natural average-case model for graph partitioning should try to capture its chief

application in graph clustering. When a practioner tries to solve his or her problem

through graph partitioning, there is a belief that the instance has a good partitioning

solution. Such a good partitioning solution would have much fewer edges between the

different clusters, than inside the various clusters. The different average-case models

we will encounter try to capture this property, to varying degrees of generality.

Over the last couple of decades, there has been considerable interest in studying

average-case models of graph partitioning problems like Balanced Cut [26, 25, 35, 39,

70]. The average-case models they handle are called the (planted) Random model

and the Semi-Random model.

31

2.6.1 Planted Random Models

The first random model, sometimes called the planted random model was introduced

in 1984 by Bui, Chaudhuri, Leighton and Sipser [26]. Here, the graph is generated

by picking every edge independently at random, in such a way there is an obvious

solution – we call this the planted solution. This planted solution is the intended clus-

tering (partitioning) and the edge probability inside clusters is more than the edges

probability between different clusters. For the Balanced Cut problem, we generate a

graph on a set V of size n as follows:

Definition 2.17 (Planted Random model). We are given a set of n vertices V , and

an arbitrary bipartition of the vertices into two equal parts S and V \ S. The graph

is generated as follows:

• We sample edges between S and V \ S with probability ε1 independently at

random.

• We sample edges within S and every edge within V \S with probability ε2 > ε1,

independently at random.

Note that all choices in the planted random model are random (there are no

adversarial choices), so the model describes a probability distribution on graphs.

Results in the Planted Random model The model attracted a lot of attention

and was studied in a series of papers by Dyer and Frieze [36], Boppana [25], Jerrum

and Sorkin [53], Dimitriou and Impagliazzo [35], Condon and Karp [34] and Coja-

Oghlan [33]. These papers explored several techniques for solving the problem —

flow-based, combinatorial, spectral techniques, simulated annealing and go-with-the-

leader technique. The algorithm of Boppana [25] finds the planted bisection (S, V \S)

w.h.p. if ε2 − ε1 > C
√
ε2 log n/n. Later McSherry [70] obtained similar results for a

more general class of graph partitioning problems, where there could be a partition

32

of V into many clusters (instead of two), with (possibly) different edge probabilities

between different pairs of clusters.

Coja-Oghlan [33] extended the result of Boppana to the case when ε2 − ε1 >

C(1
n

+
√
ε2 log(nε2)/n). Note that if ε2 − ε1 = o(

√
ε2 log n/n) then the random

graph has exponentially many minimum bisections and the planted bisection is not

a minimum bisection w.h.p. [33]. The algorithm of Coja-Oghlan finds a minimum

bisection rather than the planted bisection w.h.p.

The techniques used in these algorithms typically use various statistical properties

of G(n, p) random graphs. For instance, the spectral algorithms of Boppana[25] and

[70] use the fact that all of the eigenvalues (except the top one) of G(n, p) graphs are

bounded by O(
√
np) with high probability. These techniques are not very robust to

noise, and are specific to this distribution. This constitutes the main criticism against

these models — they typically assume too much independence. For instance, every

edge is chosen independently at random (even inside the clusters of the partition).

2.6.2 Semi-random model of Feige-Kilian

In 2000, Feige and Kilian [39] proposed a more flexible semi-random model. The

model adds an extra post-processing step to the random planted model: after a

random graph is generated, the adversary may delete edges between S and V \S and

add new edges within S and within V \ S.

Definition 2.18 (Semirandom model of Feige-Kilian[39]). The graph G is generated

by a process which involves both a random step, and an adversarial step:

• Generate G1 according to the Planted Random model (Def. 2.17).

• Adversary deletes arbitrary edges from G1 between S and V \ S.

• Adversary adds new edges to within S and within V \ S.

33

Semi-random instances of Feige and Kilian can have much more structure than

random planted instances. Therefore, the model arguably captures real–world in-

stances much better than the random model. From an algorithmic point of view,

an important difference is that algorithms for the semi-random model of Feige and

Kilian cannot overly exploit statistical properties of random graphs. In particular,

spectral algorithms do not work for this model. Feige and Kilian [39] developed an

SDP algorithm that finds the planted bisection if ε2 − ε1 > C
√
ε2 log n/n (matching

the bound of Boppana [25]). The SDP-based algorithm of [39] can be seen as a more

robust form of the spectral algorithm of [25]. More technically, the eigenvalue gap

for random graphs is used to provide a dual certificate to show that the semi-definite

program captures the value of the balanced cut.

34

Chapter 3

Our Planted Models for Graph

Partitioning

In this thesis, we study two planted models for graph partitioning, that lie between

the worst-case and the basic average-case models (planted random model) in their

generality. The first one is a semi-random model that generalizes all previous random

models for graph partitioning. It allows the adversary complete power inside the

clusters of the planted partition, and hence, seems to better capture properties of

real-world instances. The second model enforces a stability assumption about the

optimality of the planted partition. This is implemented by placing a condition on

the (spectral) expansion inside the clusters of the planted partition. We now proceed

to the description of the two models.

3.1 Semi-random Models for Graph Partitioning

Before we proceed with the formal presentation of our model, let us discuss what we

can reasonably assume about real-world instances. In a graph partitioning problem,

the goal is to divide graph vertices into several parts, or clusters, so as to minimize

the number of cut edges (subject to constraints that depend on a specific problem).

35

A natural average-case model for graph partitioning should try to capture its chief

application in graph clustering. Since, there is a belief that the instance has a good

partitioning solution, this solution would have much fewer edges between the different

clusters, than inside the various clusters.

When a practitioner solves a graph partitioning problem, she usually expects that

the problem has a good solution — she believes that there is some underlying reason

why there should be very few edges between clusters. That is, a real-world process

that “generates” the graph instance adds an edge between clusters only when some

random unexpected event happens. Therefore, in our opinion, it is reasonable to

assume that edges between clusters are added at random. However, we cannot in

general assume anything about edges within clusters (since their absence or presence

does not affect the size of the cut between clusters). One could also view these edges

between the clusters as random noise in an otherwise perfect clustering (partitioning).

Additionally, in our model we assume that some random edges between cluster might

be removed by the adversary (this assumption makes the model more robust).

This discussion leads to the following informal definition of semi-random instances:

consider a set of vertices V and some clustering of V . A semi-random graph G on V is

a graph with arbitrary (adversarial) edges inside clusters and random edges between

clusters (more generally, the set of edges between clusters might be a subset of a

random set of edges).

Before, we formally define the semi-random model, we refresh some basic notations

from Section 2.3.1.

Definition 3.1. Let V be a set of vertices. We say that P is a partition of V into

disjoint sets or simply partition, if V =
⋃
P∈P P and every two P ′, P ′′ ∈ P are

disjoint. For every vertex u ∈ V , denote by P(u) the unique set P ∈ P containing u.

36

Denote by IS : V → {0, 1} the indicator function of the set S ⊂ V :

IS(u) =

1, if u ∈ S;

0, otherwise.

Definition 3.2. Let G = (V,E) be a graph and P be a partition of V . Define the set

of edges cut by the partition as follows

cut(P , E) ≡ {(u, v) ∈ E : P(u) 6= P(v)}.

The cost of the cut equals the size of the set cut(P , E):

cost(P , E) ≡ | cut(P , E)|.

The cost of the cut restricted to a subset O ⊆ V only considers those edges which are

incident on O:

cost|O(P , E) ≡ | {(u, v) ∈ cut(P , E) : u ∈ O or v ∈ O} |

≡
∑

(u,v)∈cut(P,E)

max{IO(u), IO(v)}.

Our semi-random model for graph partitioning problems is the following:

Definition 3.3. (Semi-random Model for Graph Partitioning)

Consider a set of vertices V and a partition of vertices into disjoint sets P. Let

EK = {(u, v) : P(u) 6= P(v)} be the set containing all vertex-pairs crossing partition

boundaries. Let ẼK = {(u, v) : P(u) = P(v)} be the set containing all vertex-pairs

not crossing partition boundaries. (Thus, (V,EK ∪ ẼK) is the complete graph on V .)

Consider a random subset of edges ER of the set EK: each edge (u, v) ∈ EK belongs

to ER with probability ε and these choices are independent. We define a random set

37

of graphs SR(P , ε) as follows:

SR(P , ε) = {G = (V,E) : E ⊆ ER ∪ ẼK}.

The optimal cost of the semi-random partition is defined as

sr-cost(P , ε) = E|ER| = ε|EK |.

To give an example, the corresponding semi-random model for Balanced Cut is

as follows:

Definition 3.4. (Semi-random Model for Balanced Cut)

We are given a set V of n vertices, and a parameter ε. In our model, a semi-random

graph G is generated as follows.

1. The adversary chooses a subset S ⊂ V of n/2 vertices.

2. The nature chooses a set of random edges ER between S and V \ S and adds

edges from ER to G. For every u ∈ S and v ∈ V \ S, the edge (u, v) belongs to

ER with probability ε; choices for all edges (u, v) are independent.

3. The adversary arbitrarily adds edges within S and within V \ S.

4. The adversary deletes some edges between S and V \ S.

Aim: The performance of the algorithm is measured by comparing the cost of edges

cut to the expected number of edges in ER (the set of edges chosen at step 2 above).

Note that the guarantees are not w.r.t the size of the cut (S, V \ S) after step 4

or with the size of the optimal balanced cut. This is essential, since for example for

ε = 1, ER = S × (V \ S) the adversary can choose any graph G; so if we compared

the cost of the cut with the cost of the optimal cut, our model would be the worst

case model.

38

Justification of our model The random edges across clusters reflect the underly-

ing belief of the practioner — correlations between different clusters are unexpected

(can be viewed as random noise). Since the correlations between items in a cluster

can be arbitrary, our model is more realistic than previous models.

Consider a toy example that illustrates why we believe that real-world instances

are well described by our model. Suppose that we run a wiki website (or online store,

online catalog etc). We track what pages our visitors read and construct a graph G

on the set of all wiki pages V (see e.g., [72, 52]). If a visitor goes from page A to

page B, we connect A and B with an edge. What is the structure of this graph? We

expect that a visitor will read one article, then read an article that explains some term

mentioned in the first one, then read another article related to the second one and

so on. Sometimes, of course, the visitor will move to a completely unrelated article

on a different subject. Consequently, there will be two types of edges in our graph

— edges between pages on the same subject, and edges between pages on different

subjects. Edges of the first type are not random and show real connections between

related articles. However, edges of the second type are essentially random. Say, an

edge between articles “Ravioli” and “Register Allocation” is likely to be completely

random and does not show any connection between articles; it just happened that

the visitor first read an article about ravioli and then decided to read an article on

register allocation; in contrast, an edge between articles “Ravioli” and “Dumplings”

is not random and shows a real connection between these food items. To summarize,

in our example

• edges between pages on one subject are not random (i.e. edges within a cluster);

• edges between pages on different subjects are random (i.e. edges between clus-

ters).

So G is a semi-random graph according to our model.

39

3.2 Planted Spectral Expander Model.

In their recent work, Balcan, Blum and Gupta [17] argued that in many clustering

applications, various objective functions are only used as a proxy for its closeness to

a “ground-truth clustering”, which is intended to be the optimal solution. With this

motivation, they showed that various clustering problems like k-means and k-median

have PTAS under some assumptions about the stability of the optimal solution. The

main challenge left open by their work was whether such stability assumptions could

be used to attain O(1) approximations to graph partitioning problems. Note that such

stability assumptions correspond to a condition about the expansion of the clusters

inside the planted partition (see Lemma 2.15 for the exact correspondence).

With this motivation, in Chapter 6 we study graph partitioning problems on

instances with a planted partition, where one of clusters of the planted partition

is a spectral (algebraic) expander. Consider a graph G with a (planted) balanced

cut (S, V \ S). A graph satisfying this model satisfies that the normalized algebraic

expansion of the induced graph G[S] is greater than the combinatorial expansion

h(S,V \S) of the cut by some constant factor.

Definition 3.5 (Planted Spectral Expander). We are given a graph G = (V,E) on

n vertices with a “planted” bisection P = {P1, P2} with |P1| ≤ |P2| (not known to the

algorithm) of cut value at most εm and a parameter C ′ > 1. G is a Planted Spectral

Expander if it satisfies:

• E1 ⊂ E(G|P1) such that |Ei| = m.

• the graph G′ = (P1, E1) is a regular expander with a (normalized) algebraic

expansion1 λ(G′) > C ′ε.

Note that for Balanced Cut, having this condition for any one of the two pieces

suffices. This is a much weaker condition than edges of E(S, S) or E(V \ S, V \ S)

1eigenvalue gap of the normalized Laplacian (see Def. 2.9)

40

being chosen independently at random. More crucially, in this case, these edges can

be arbitrary.

The famous Cheeger’s inequality (Lemma 2.10) relates the algebraic expansion to

combinatorial expansion: when the combinatorial expansion of the subgraphs G|P1 or

G|P2 is large enough (stability), then they have sufficient algebraic expansion to fit

into our setting.

41

Chapter 4

Algorithms for Semi-Random

Graph Partitioning: Balanced

Separator

In this chapter, we describe our main algorithmic framework for average-case instances

of Graph Partitioning problems like Balanced Cut and Multicut. We show how these

algorithms, which are based on new semi-definite programming (SDP) techniques can

achieve a O(1) bicriteria approximation for the semi-random instances we introduced

in Section 3.1. The ideas that we develop in this chapter will be generalized further to

achieve similar guarantees for the Small Set Expansion and Sparsest Cut problems.

We first give a very brief and informal outline of our approach. The core of our

algorithms is a Hidden Solution Sparsification step (HSS). This step is the same in

all our algorithms. Let ER represent the edges between clusters, which have been

generated by the random process. As described in Chapter 3, to achieve a O(1)

factor approximation in this semi-random model, we need to find a partition which

cuts at most O(|ER|) edges. For sake of convenience, let us think of ER (which is

unknown to us, of course) as constituting the optimal solution OPT . Intuitively,

42

the goal of the Hidden Solution Sparsification step is to find and remove almost all

edges from ER (all but |ER|/polylog(n) of them) by removing at most O(OPT) edges.

On the remaining instance, we can run worst-case algorithms with poly-logarithmic

approximation guarantees to get a O(1) approximation overall.

This core algorithm tries to identify the random edges ER, by using a semi-definite

programming relaxation, that defines a metric over the vertices. The crucial insight

comes from a structural theorem, which establishes that most random edges in a

semi-random instance are long according to the metric given by a well-behaved high-

dimensional SDP solution. This we refer to as Geometric Expansion of the edges ER

(see Def. 4.5 for a formal definition). Geometric Expansion of ER guarantees that in a

“well-behaved” SDP solution, at most an O(δ2) fraction of edges from ER are shorter

than δ for length scales δ ∈ {2−t : t = 1, 2, . . . , log log n}. This core procedure will

run over O(log log n) phases (corresponding to these O(log log n) length scales) — in

each phase, cutting long edges (corresponding to the scale) succeeds in removing a

constant fraction of the remaining random edges ER. This successfully “sparsifies”

the edges ER by a poly-logarithmic factor.

To understand the Geometric Expansion property, let us compare this to the local-

global phenomenon in [11]. Cheeger’s inequality relates global correlations to local

correlations in algebraic expanders: this implies that the SDP assigns on average a

length of 1/4 to the edges (we in fact use this property in Chapter 6). However,

this only helps in removing a constant fraction of the random edges ER (by cutting

edges of length ≥ 1/4). However, we need to remove all but |ER|/poly(log n) random

edges. While we might try to achieve this by recursing on the remaining instance and

repeating this procedure O(log log n) times, this recursion fails because we lose the

randomness of the edges ER after removing some edges in the first step. Geometric

Expansion can thus be seen as a stronger property over multiple length-scales, which

43

includes the local-global property of [11] in random graphs at one scale (of length

Ω(1)).

To show this Geometric Expansion property for semi-random instances, we first

show that the set of feasible solutions to an SDP relaxation that imposes a metric on

the vertices (`2
2 metrics) can be “approximated” by a small family of representative

SDP solutions. For a fixed well-behaved SDP solution (one where the geometric neigh-

borhood of every vertex is not abnormally large for a high-dimensional solution), we

show that geometric expansion is satisfied with very large probability. Finally, using

the union bound and the fact that there are much fewer representative SDP solutions

than semi-random instances, we prove that every well-behaved feasible SDP solution

has the required geometric expansion property w.h.p. However, we can not expect

that every feasible solution satisfies this property — for instance, the intended SDP

solution is low-dimensional and assigns all vertices to one of two fixed vectors. Our

algorithm will have a sub-routine (called Heavy Vertices Removal Procedure) which

will take advantage of such ”low-dimensional” solutions to find a cheap partitioning

solution. We now describe our algorithmic framework in more details.

The algorithmic framework: an informal description.

The HSS procedure finds a set of edges E− and divides the graph G−E− into a set

M and a number of sets Zi such that:

1. The cost of the optimal solution for the sub-instance on G[M]−E− is at most

OPT/ logO(1) n.

2. Roughly speaking, each Zi does not have to be further partitioned. Formally,

we call this condition Φ-feasibility. Say, for the Balanced Cut problem, this

condition means that each set Zi contains at most cn vertices (for c < 1); for

Multicut, it means that each Zi contains at most one terminal from each source

terminal pair.

44

3. All edges between M and Zi and between sets Zi lie in E−.

4. There are “few” edges in E−. For Balanced Cut and Multicut, we require that

|E−| < O(OPT); for Small Set Expansion we have a more involved condition.

Then we run an existing logO(1) n-approximation algorithm for the sub-instance

on the graph G[M]−E− (e.g. run the algorithm of Arora, Rao and Vazirani [13] for

Balanced Cut). The first condition guarantees that the algorithm finds a partition

{Mi} of M of cost O(OPT). We consider the combined partition {Mi, Zj} of V .

When we solve Balanced Cut or Multicut, the total number of edges cut by this

partition is O(OPT). We join together some sets in {Mi, Zj} and obtain a feasible

solution of cost O(OPT) (this step depends on the problem at hand).

Hidden Solution Sparsification. Let us now focus on the Balanced Cut problem,

to illustrate our approach. We find the partition M, {Zi} as follows. We start with

the trivial partition M = V and then iteratively cut sets Zi from M . Once we cut a

set Zi, we do not further subdivide it. We ensure that after t rounds the cost of the

optimal solution for the sub-instance on G[M]−E− is O(OPT/2t) and that properties

(2)–(4) hold. Then after O(log log n) iterations, we get the desired partitioning.

At iteration t, we solve the SDP relaxation for the problem on G[M] − E− and

obtain an SDP solution ϕ : M → Rn (the solution assigns vector ϕ(u) to each vertex

u). Since the cost of the optimal solution for G[M] − E− is O(OPT/2t), the cost

of the SDP solution is also O(OPT/2t). The solution defines a metric d(u, v) =

‖ϕ(u)−ϕ(v)‖2 on the set M . We analyze the metric at scale δt = δ0/2
t (where δ0 > 0

is an absolute constant). For every vertex u, consider the set Bu = {v : d(u, v) ≤ δt}

of vertices at distance at most δt from u. Let us say that a vertex u is δt-light if

|Bu| < δ2
t n, and that u is δt-heavy if |Bu| ≥ δ2

t n. Denote the set of heavy vertices by

H and light vertices by L. Broadly speaking, we first use a procedure to remove the

heavy vertices H (and further process them to get Φ-feasible sets Zi), while cutting

45

only a few edges (these cut edges are added to E−). In the remaining graph G[M]−E−

all vertices are light. We show that in such a solution, at most an O(δ2
t) fraction of

edges from ER are shorter than δt/2. Here we crucially use that ER is a random set

of edges (and, thus, the graph G = (V,ER) is “geometrically expanding” according

to Def. 4.5). We cut all edges in G[M] − E− longer than δt/2 and add them to E−.

In the obtained graph G[M]−E− all edges are shorter than δt/2, hence it contains at

most O(δ2
tOPT) edges from ER. Thus in the next iteration, the cost of the optimal

solution for the sub-instance on G[M]− E− is O(δ2
t+1OPT) (as we need).

The Heavy Vertex Removal procedure finds new sets Zi that cover all heavy ver-

tices H in several rounds. In each round, we define a few sets Zi; each Zi contains a

subset of heavy vertices together with their r-neighborhoods (where r ∈ (δt, 2δt)). We

cut sets Zi away, add edges from Zi to the rest of the graph to E− and then process

remaining heavy vertices. We ensure that all sets Zi have a small diameter and this

implies that sets Zi are Φ-feasible. We cut sets Zi so that sets Zi cut in one round are

far away from each other and the total number of rounds is small. This guarantees

that the total number of cut edges by this procedure is small (here, we use that each

set Zi contains a ball Bu for some heavy vertex u, and hence Zi is not very small).

To upper bound the number of edges cut by removing edges longer than δt/2, we

observe that the SDP value in iteration t is O(δ2
tOPT). The number of these cut

edges is O(δ2
tOPT/δt) = O(δtOPT). Thus, the number of edges cut in all iterations

is O(
∑

i δiOPT) = O(OPT).

In the rest of the chapter, after introducing some basic notations, we first de-

scribe the main technical ingredient — Hidden Solution Sparsification subroutine,

and then prove the structural theorem for semi-random instances which is crucial

towards proving the required guarantees. We finally show how to obtain O(1) ap-

proximation guarantees for Balanced Cut, Multicut and Minimum Uncut.

46

4.1 Preliminaries : Φ-feasibility, Heavy vertices

and Geometric Expansion

Definition 4.1. Let V be a set of vertices. We say that a map ϕ : V → H is an

SDP solution if vectors in ϕ(V) satisfy `2
2–triangle inequalities: for every u, v, w ∈ V ,

‖ϕ(u)− ϕ(v)‖2 + ‖ϕ(v)− ϕ(w)‖2 ≥ ‖ϕ(u)− ϕ(w)‖2.

For instance, solutions to the SDP relaxations in Chapters 4,5 (Figures 4.4,4.5,5.2)

satisfy the above definition. The SDP solution ϕ coming from these relaxations define

a metric on the vertices V (given by ‖ϕ(u) − ϕ(v)‖2 for u, v ∈ V) because of their

triangle inequality constraints. The cost of a solution ϕ corresponds to the total

length of edges according to metric given by ϕ (note that there are no constraints

corresponding to the edges in these relaxations).

Definition 4.2. Let G = (V,E) be a graph, P be a partition of V , and O be a subset

of V . Define the cost of an SDP solution ϕ : V → H to be

sdp-cost(ϕ,E) ≡ 1

2

∑
(u,v)∈E

‖ϕ(u)− ϕ(v)‖2,

and the cost of the SDP solution restricted to the set O to be

sdp-cost|O(ϕ,E) ≡ 1

2

∑
(u,v)∈E

u∈O or v∈O

‖ϕ(u)− ϕ(v)‖2.

Φ–feasibility captures sets that require no further processing, to belong to a solu-

tion. For example, Φ-feasible sets correspond to small enough sets for the Balanced

Cut or Small Set Expansion problems, and to sets which do not contain any terminal

pairs for the Multicut problem.

Definition 4.3. Let V be a set of vertices and Φ ⊂ {ϕ : V → H} be a set of SDP

solutions. We say that a subset S ⊂ V is Φ–feasible if there exists ϕ∗ ∈ Φ such that

47

for every u, v ∈ S,

‖ϕ∗(u)− ϕ∗(v)‖2 ≤ 1

4
.

An SDP solution ϕ classifies the vertices into two types (heavy or light) depending

on the number of vertices in their δ–neighborhoods.

Definition 4.4. Let V be a set of n vertices, and M ⊆ V . Consider an SDP solution

ϕ : V → H. We say that a vertex u ∈ M is δ–heavy in M if the `2
2-ball of radius

δ around ϕ(u) contains at least δ2n vectors from ϕ(M) i.e., |{v ∈ M : ϕ(v) ∈

Ball(ϕ(u), δ)}| ≥ δ2n. We denote the set of all heavy vertices by Hδ,ϕ(M).

The following property of semi-random instances is crucially used in our algo-

rithms.

Definition 4.5. (Geometric Expansion) A graph G = (V,E) satisfies the ge-

ometric expansion property with cut value X at scale δ if for every SDP solution

ϕ : V → H and every subset of vertices M ⊆ V satisfying Hδ,ϕ(M) = ∅,

|{(u, v) ∈ E ∩ (M ×M) : ‖ϕ(u)− ϕ(v)‖2 ≤ δ/2}| ≤ 2δ2X.

A graph G′ = (V,E ′) satisfies the geometric expansion property with cut value X

up to scale 2−T (T ∈ N) if it satisfies the geometric expansion property for every

δ ∈ {2−t : 1 ≤ t ≤ T}.

We can slightly simplify the definition1 above by requiring that ϕ satisfies the

condition Hδ,ϕ(V) = ∅ and M = V . See Section 4.3 for details.

In section 4.3, we will see that in semi-random instances SR(P , ε), the graph con-

sisting of the random edges (V,ER) is geometrically expanding w.h.p. for sufficiently

large ε.

1We note that every Ramanujan expander is geometrically expanding with some parameters.
However, we omit the details here.

48

4.2 Hidden Solution Sparsification

The main technical ingredient of the algorithm is the Hidden Solution Sparsification

step, which guarantees the following

Theorem 4.6. (Hidden Solution Sparsification)

There exists a polynomial-time randomized algorithm that given a graph G = (V,E),

a SDP relaxation Φ of a partition P (note: the partition P are “hidden” and are not

known to the algorithm), and a parameter D = 2T (T ∈ N, T > 1), partitions the set

of vertices V into a set M and a collection of disjoint sets Z

V = M ∪
⋃
Z∈Z

Z,

and also partitions the set of edges into two disjoint sets E+ and E−

E = E+ ∪ E−

such that

• all edges cut by the partition V = M ∪
⋃
Z∈Z Z lie in E−, i.e.,

E+ ⊂ (M ×M) ∪
⋃
Z∈Z

(Z × Z);

• if the graph (V, cut(P , E)) satisfies the geometric expansion property with cut

value X up to scale 1/
√
D, then then cost of the optimal solution in the remain-

ing instance

E[cost|M(P , E+)] ≤ C X/D; (4.1)

(the expectation is taken over random bits of the algorithm) and the number of

cut edges

|E−| ≤ C X; (4.2)

49

• each Z ∈ Z is Φ–feasible.

Figure 4.1: Output of the Hidden Solution Sparsification algorithms

Figure 4.1 on page 50 shows the output of the HSS algorithm in Fig. 4.2 on a

graph G. The algorithm runs in O(log log n) phases. In each round, we first solve the

SDP on the current instance. The heavy vertices w.r.t. to this vector solution are

first processed and removed using the algorithm from Section 4.2.1. In the remaining

graph, we remove (cut) long edges to further “sparsify” the hidden solution (ER) and

produce the instance for the next phase.

Proof of Theorem 4.6. We analyze the algorithm given in Figure 4.2 on page 51.

We note that the step A of finding ϕk can be performed in polynomial-time using

semidefinite programming; the step B is performed using the algorithm described in

the next subsection.

At every iteration, the algorithm removes all edges crossing the partition ∆Zt

from E+
t and adds them to E−t , hence the first item of Theorem 4.6 holds. The third

item holds, because every set Z ∈ Z belongs to some ∆Zt and, thus by Lemma 4.7

(see below), diam(ϕt(Z)) ≤ 1/4.

50

Hidden Solution Sparsification Algorithm

Input: a graph G = (V,E) and a separation oracle for a set of SDP solutions
Φ ⊂ {V → H}.
Output: partitions V = M ∪

⋃
Z∈Z Z and E = E+ ∪ E−.

• Let M0 = V , Z0 = ∅, E+
0 = E, E−0 = ∅, T = 1

2
log2D, and δt = 2−t for all

t = 1, . . . , T .

• for t = 1, . . . , T do

A. Solve the SDP for the remaining graph: Find

ϕt = arg min
ϕ∈Φ

sdp-cost(ϕ,E+
t−1 ∩ (Mt−1 ×Mt−1)).

B. Remove δt–heavy vertices: run Heavy Vertices Removal Algorithm (de-
scribed in Section 4.2.1) with parameters V , Mt−1, ϕt, and obtain a col-
lection of Φ–feasible sets ∆Zt. Add edges in E+

t−1 cut by ∆Zt to the set
∆E−t . Let

Zt = Zt−1 ∪∆Zt; Mt = Mt−1 \
⋃

Z∈∆Zt

Z.

C. Remove δt–long edges from E+: Find

Lt = {(u, v) ∈ E+ : u, v ∈Mt, ‖ϕt(u)− ϕt(v)‖2 ≥ δt}.

Let
E+
t = E+

t−1 \ (∆E−t ∪ Lt); E−t = E−t−1 ∪ (∆E−t ∪ Lt).

• return M = MT , Z = ZT , E+ = E+
T , E− = E−T .

Figure 4.2: Algorithm for Hidden Solution Sparsification

51

We now show that the second item of Theorem 4.6 holds. We first prove that

cost|Mt(P , E+
t) ≤ 2 X · δ2

t

for every t ∈ {0, . . . , T}. The Heavy Vertices Removal Procedure returns set Mt that

does not contain any δt–heavy vertices w.r.t. ϕt i.e., Hδt,ϕt(Mt) = ∅ (see Lemma 4.7).

Using the geometric expansion property of the graph (V, cut(E,P)), we get

∣∣{(u, v) ∈ cut(P , E) ∩ (Mt ×Mt) : ‖ϕt(u)− ϕt(v)‖2 ≤ δt/2}
∣∣ ≤ 2δ2

tX.

The algorithm removes all δt/2–long edges at step C, thus the set E+
t ∩ (Mt ×Mt)

contains only edges (u, v) for which ‖ϕt(u) − ϕt(v)‖2 ≤ δt/2. Combining this ob-

servation with the previous inequality, and using that edges in E+
t do not cross the

boundary of Mt, we get

cost|Mt(P , E+
t) =

∣∣cut(E,P) ∩ E+
t ∩ (Mt ×Mt)

∣∣ ≤ 2δ2
tX. (4.3)

For t = T , we get cost|M(P , E+) ≤ 2 X/D, as required.

Finally, to estimate the size of the set |E−|, we use the fact that Φ is a relaxation

of the partition P . For graph G = (V,E+
t−1 ∩ (Mt−1 ×Mt−1)), we obtain inequality

sdp-cost(ϕt, E
+
t−1 ∩ (Mt−1 ×Mt−1)) ≤ C1 cost|Mt−1(P , E+

t−1) ≤ 2CX · δ2
t−1

= 8C1δ
2
tX.

The third line of the inequality follows from (5.3).

Now, we bound the number of edges removed from E+
t−1 and added to E−t in terms

of “sdp-cost”. At step t, we add two sets of edges to E−: the edges coming out of the

cut-out pieces ∆E−t and the long edges Lt. Since all edges (u, v) in Lt are δt/2–long

52

(i.e., ‖ϕ(u)− ϕ(v)‖2 ≥ δt/2),

sdp-cost(ϕt, E
+
t−1 ∩ (Mt−1 ×Mt−1)) ≡

∑
(u,v)∈E+

t−1∩(Mt−1×Mt−1)

‖ϕ(u)− ϕ(v)‖2

2

≥ |Lt| · δt/2
2

.

Hence, |Lt| ≤ 32C1δtX. The probability that the Heavy Vertices Removal Procedure

separates two vertices u and v connected with an edges in E+
t−1 is at most (from

Lemma 4.7)

C2

(
δ−1
t + δ−2

t E|Mt−1 \Mt|/n
)
· ‖ϕ(u)− ϕ(v)‖2

Thus, the expected total number of edges in the set ∆E−t is at most

E
[
|∆E−t |

]
≤ C2

(
δ−1
t + δ−2

t

E|Mt−1 \Mt|
n

)
· sdp-cost(ϕt, E

+
t−1 ∩ (Mt−1 ×Mt−1))

≤ 8C1C2

(
δt +

E|Mt−1 \Mt|
n

)
X.

The total number of edges in E− (in expectation) is bounded by

E
[
|E−|

]
≤

T∑
t=1

(32C1δt + 8C1C2δt + 8C1C2 ·
E|Mt−1 \Mt|

n
)X

≤ (32C1 + 8C1C2 + 8C1C2)X.

4.2.1 Heavy Vertices Removal Procedure

In this section, we describe the algorithm which deals with the heavy vertices in a

vector solution. Note that in the intended vector solution for all the above problems,

all vertices are heavy (the intended solution for Balanced Cut has n/2 vectors at a

fixed unit vector v̄0 and the rest n/2 of them at −v̄0). This algorithm also shows how

53

we can take advantage of vector solutions which look like the intended solution (say,

roughly low-dimensional solutions), with many heavy vertices.

Lemma 4.7. There exists a polynomial-time algorithm that given a set of vertices V ,

an SDP solution ϕ : V → H, a subset M ⊆ V , finds a set of vertices M ′ ⊂M and a

partition of M \M ′ into disjoint sets Z ∈ ∆Z such that

• the set M ′ does not contain any δ–heavy vertices w.r.t. ϕ (that is, (Hδ,ϕ(M ′) =

∅)).

• diam(ϕ(Z)) ≤ 1/4 for every Z ∈ ∆Z;

• for every two vertices u∗ and v∗, the probability that u∗ and v∗ are separated by

the partition is bounded as follows:

Pr(∃Z ∈ ∆Z s.t. IZ(u∗) 6= IZ(v∗))

≤ C
(
δ−1 + δ−2 E[|M \M ′|]

n

)
‖ϕ(u∗)− ϕ(v∗)‖2.

We remark that some of the heavy vertices Hδ,ϕ(M) may belong to M ′, but they

are not heavy anymore (w.r.t M ′).

Proof. We use the following algorithm. If δ ≥ 1/32, we run the algorithm with

δ′ = 1/32.

Analysis. It is clear that the algorithm in Figure 4.3 on page 55 always terminates

in polynomial-time (since at every step at least one vertex is removed). When the

algorithm terminates Hδ,ϕ(M) = ∅ by the condition of the “while” loop. Every set

ϕ(Bu) removed from M and added to ∆Z at one of the iterations is contained in a

ball of radius at most 2δ; every set ϕ(BU) is contained in the 2δ–neighborhood of a

set ϕ(U) (for some U ∈ U) whose diameter is at most 1/8. Thus, the diameter of

each ϕ(Bu) and ϕ(BU) is at most 1/8 + 4δ ≤ 1/4.

54

Heavy Vertices Removal Procedure

Input: a set of vertices V , a subset M ⊆ V , an SDP solution ϕ : V → H, a parameter
δ ∈ (0, 1/32];
Output: a set M ⊆ V , partition V \M =

⋃
Z∈∆Z Z;

• while (Hδ,ϕ(M) 6= ∅)

– Connect heavy vertices in M at `2
2 distance at most 4δ with an edge and

denote the new set of edges by A = {(u, v) ∈ Hδ,ϕ(M)×Hδ,ϕ(M) : ‖ϕ(u)−
ϕ(v)‖2 ≤ 4δ}.

– Break graph (Hδ,ϕ(M), A) into connected components.

– Pick a random r ∈ [δ, 2δ).

– Remove components of small diameter: For each connected component U
with diam(ϕ(U)) ≤ 1/8, let

BU = {v ∈M : ∃u ∈ U s.t. ‖ϕ(u)− ϕ(v)‖2 ≤ r}.

Denote the set of all connected components of diameter at most 1/8 by U .

– Remove a maximal independent set: In the remaining set Hδ,ϕ(M)\
⋃
U∈U U

find a maximal independent set2 S. For each u ∈ S, let Bu = {v : ϕ(v) ∈
Ball(u, r)}.

– Remove sets BU and Bu from M :

M = M \
(⋃
U∈U

BU ∪
⋃
u∈S

Bu

)
;

• return M ′ = M .

Figure 4.3: Algorithm for Removing Heavy Vertices

55

Let us now verify the third item of Lemma 4.7. Fix two vertices u∗ and v∗; and

consider one iteration of the algorithm. We may assume that the algorithm first picks

the independent set S and a collection of connected components U , and only then

chooses random r ∈ [δ, 2δ). Observe, that the distance between (images of) any two

vertices in S is at least 4δ (because S is an independent set), the distance between

every two sets in U is at least 4δ (because every U ∈ U is a connected component),

and the distance between every U ∈ U and u ∈ S is at least 4δ (again because U

is a connected component, and u /∈ U). Thus, ϕ(u∗) may belong to at most one

Ball(U, 2δ) or Ball(u, 2δ). If ϕ(u∗) ∈ Ball(u, 2δ), then

Pr
[
ϕ(u∗) ∈ Ball(u, r), ϕ(v∗) /∈ Ball(u, r)

]
≤ δ−1‖ϕ(u)− ϕ(v)‖2.

Of course, if ϕ(u∗) /∈ Ball(u, 2δ), then

Pr
[
ϕ(u∗) ∈ Ball(u, r), ϕ(v∗) /∈ Ball(u, r)

]
≤ Pr

[
ϕ(u∗) ∈ Ball(u, r)

]
= 0.

The same statements hold if we replace u ∈ S with U ∈ U . Thus, at one iteration, the

probability that u∗ belongs to a removed ball but v∗ does not belong to the same ball

is at most δ−1‖ϕ(u)−ϕ(v)‖2. Denote by T the number of iterations of the algorithm.

Then, the probability that u∗ and v∗ are separated at one of the iterations is at most

2δ−1E[T]‖ϕ(u)− ϕ(v)‖2.

We now prove that at every iteration but possibly the last, the algorithm removes

at least δn vertices from M . Thus, E[T] ≤ 1 + E|M ′ \ M |/(δn), and the third

item of Lemma 4.7 follows. Observe, that if the independent set S = ∅, then the

algorithm terminates. If S 6= ∅, there exists at least one connected component L with

diam(ϕ(L)) ≥ 1/8. The maximal independent set in L must contain at least Ω(δ−1)

vertices, since for every edge (u, v) ∈ A, ‖ϕ(u) − ϕ(v)‖2 ≤ 4δ. Thus, |S| ≥ Ω(δ−1).

Since each u ∈ S is δ–heavy and r ≥ δ, |Bu| ≥ δ2n. Hence (using the fact that sets

56

Bu are disjoint), ∣∣∣⋃
u∈S

Bu

∣∣∣ =
∑
u∈S

|Bu| ≥ δn.

4.3 Structural Theorem

We now prove that semi-random graphs are geometrically expanding, namely we prove

that with high probability for every semi-random graph G = (V,E) ∈ SR(P , ε) the

graph (V, cut(P , E)) is geometrically expanding. This establishes that the conditions

under which the guarantees of Theorem 4.6 hold, to be true for semi-random instances.

Theorem 4.8. I. For every set of vertices V of size n, every partition P, and every

ε ∈ (0, 1), D = 2T (T ∈ N, T > 1), with high probability, the random set SR(P , ε)

satisfies the following property: for every graph G = (V,E) ∈ SR(P , ε), the graph

(V, cut(P , E)) is geometrically expanding with cut cost

X = C max{sr-cost(P , ε), nD(log2D)}

up to scale 1/
√
D.

II. Moreover, a slightly stronger statement holds. For every set of vertices V of

size n, every partition P, and every ε ∈ (0, 1), D = 2T (T ∈ N, T > 1) with high

probability, the random set SR(P , ε) satisfies the following property: for every graph

G = (V,E) ∈ SR(P , ε) and every U ⊂ V , the graph (U, cut(P , E) ∩ (U × U)) is

geometrically expanding with cut cost

X = C max{sr-cost(P|U , ε), nD(log2D)}

57

up to scale 1/
√
D. Here P|U = {P ∩ U : P ∈ P} denotes the restriction of the

partition P to the subset U .

We defined Geometric Expansion in Section 4.1. We now give a slightly different

definition of Geometric Expansion which is equivalent to Definition 4.5, but is more

convenient for proving Theorem 4.8.

Definition 4.9. (Geometric Expansion; see Definition 4.5) A graph G =

(V,E) satisfies the geometric expansion property with cut value X at scale δ if for

every SDP solution ϕ : V → H satisfying Hδ,ϕ(V) = ∅,

|{(u, v) ∈ E : ‖ϕ(u)− ϕ(v)‖2 ≤ δ/2}| ≤ 2δ2X.

A graph G = (V,E) satisfies the geometric expansion property with cut value X

up to scale 2−T (T ∈ N) if it satisfies the geometric expansion property for every

δ ∈ {2−t : 1 ≤ t ≤ T}.

Claim 4.10. Definitions 4.5 and 4.9 are equivalent.

Proof. It is easy to see that every graph satisfying Definition 4.5 satisfies Defini-

tion 4.9: we simply let M = V . We show that the converse follows by a simple

modification of the SDP solution. Assume that G = (V,E) satisfies Definition 4.9.

Consider an SDP solution ϕ : V → H and a set M such that ϕδ,ϕ(M) = ∅. Replace ϕ

with ϕ′: ϕ′(u) = ϕ(u) if u ∈M , and ϕ′(u) = eu otherwise, where {eu}u is a collection

of orthogonal unit vectors, orthogonal to all vectors ϕ(u). The `2
2–distance between

every vector ϕ′(u) = eu (u ∈ V \M) and any other vector ϕ′(v) is at least 1. Thus,

Hδ,ϕ(M) ⊂ Hδ,ϕ(V) = ∅. Hence,

∣∣{(u, v) ∈ E ∩ (M ×M) : ‖ϕ(u)− ϕ(v)‖2 ≤ δ/2}
∣∣ =

=
∣∣{(u, v) ∈ E : ‖ϕ′(u)− ϕ′(v)‖2 ≤ δ/2}

∣∣ ≤ 2δ2X.

58

Proof of Theorem 4.8. We use Definition 4.9 in this proof. Let EK = {(u, v) ∈ V ×V :

P(u) 6= P(v)} and ER ⊂ EK be the set of random edges chosen for the set SR(P , ε)

as in Definition 3.3. Since cut(P , E) ⊂ ER it suffices to show that the graph (V,ER) is

geometrically expanding with high probability. We fix the parameter δ = 2−t (where

1 ≤ t ≤ T), and prove that the graph (V,ER) is geometrically expanding with cut

value X at scale δ. Then we apply the union bound for all T = log2D possible choices

of δ.

We use the technique developed by Kolla, Makarychev and Makarychev [61]. Ob-

serve that the condition Hδ,ϕ(V) = ∅ implies that

∀u ∈ V, |{v ∈ V : ‖ϕ(u)− ϕ(v)‖2 ≤ δ}| ≤ δ2n,

and, consequently,

|{(u, v) ∈ V × V : ‖ϕ(u)− ϕ(v)‖2 ≤ δ}| ≤ δ2n2.

Thus we need to bound the probability of the bad event: there exists an SDP solution

ϕ : V → H such that

|{(u, v) ∈ V × V : ‖ϕ(u)− ϕ(v)‖2 ≤ δ}| ≤ δ2n2 (4.4)

and

|{(u, v) ∈ ER : ‖ϕ(u)− ϕ(v)‖2 ≤ δ

2
} ≥ 2δ2X. (4.5)

We now show that if such ϕ exists then there exists an embedding ϕ′ : V → Nδ

to a relatively small set Nδ ⊂ H such that similar conditions hold. Then, we show

59

that these bounds do not hold with high probability, after a union bound over the all

feasible solutions from the smaller set.

Easier bound : Geometric Expansion of max{sr-cost(P , ε), nD log n(log2D)}.

We use the following simple lemma proved in [61].

Lemma 4.11. (Lemma 3.7 [61], arXiv version) For every positive ζ, η and ν,

there exists a set Nδ of unit vectors of size at most

exp
(
O(ζ−2 log(1/η) log(1/ν))

)
such that for every set of unit vectors Z there exists a randomized mapping ψ : Z → N

satisfying the following property: for every u, v ∈ Z,

Pr
(

(1 + ζ)−1‖u− v‖2 − η2 ≤ ‖ψ(u)− ψ(v)‖2 ≤ (1 + ζ)‖u− v‖2 + η2
)
≥ 1− ν.

(4.6)

The proof of Lemma 4.11 is based on the Johnson–Lindenstrauss lemma: The set

N is an “epsilon–net” in a low dimensional space. To construct ψ we first project

Z in a low dimensional space using the Johnson–Lindenstrauss transform and then

“round” each vector to the closest vector in N . See [61] for details.

We now show that if such ϕ exists, then there exists an embedding ϕ′′ : V → Nδ

to a relatively small set Nδ ⊂ H satisfying

|{(u, v) ∈ V × V : ‖ϕ′′(u)− ϕ′′(v)‖2 ≤ 3

4
δ}| ≤ δ2n2, (4.7)

and,

|{(u, v) ∈ ER : ‖ϕ′′(u)− ϕ′′(v)‖2 ≤ 3

4
δ}| ≥ 2δ2X. (4.8)

60

We set parameters ζ = 1/7, η2 = δ/8 and ν = 1/n4 and pick Nδ as in Lemma 4.11.

Hence Nδ ⊂ H is a set of size exp(O(log n log2(1/δ)).

Then we choose a deterministic ψ(u) : ϕ(V)→ N such that the condition

7

8
‖ϕ(u)− ϕ(v)‖2 − δ

8
≤ ‖ψ(ϕ(u))− ψ(ϕ(v))‖2

≤ 8

7
‖ϕ(u)− ϕ(v)‖2 +

δ

8

holds for all pairs u, v ∈ V and all edges (u, v) ∈ ER w.h.p. Define ϕ′′(u) = ψ(ϕ(u)).

We get, with probability 1− o(1):

• for all pairs u, v ∈ V , if ‖ϕ(u)−ϕ(v)‖2 > δ, then ‖ϕ′′(u)−ϕ′′(v)‖2 ≥ 7δ/8−δ/8 =

3δ/4;

• for all edges (u, v) ∈ ER if ‖ϕ(u) − ϕ(v)‖2 ≤ δ/2, then ‖ϕ′′(u) − ϕ′′(v)‖2 ≤

8/7 · δ/2 + δ/8 < 3δ/4.

Therefore, inequalities (4.7) and (4.8) hold.

Observe, that E|ER| = sr-cost(P , ε) ≤ X. Hence, by the Chernoff bound (for

some absolute constant C1),

Pr(|ER| ≥ 2X) ≤ e−C1X .

Similarly, by the Chernoff bound, inequalities (4.7) and (4.8) simultaneously hold with

probability at most e−C2δ2X . Thus, a fixed ϕ′′ : V → N satisfies (4.7) and (4.8) with

probability (over random choice of ER) at most e−C3δ2X . Since δ ≥ 1/
√
D, the total

number of different embeddings ϕ′′ : V → N equals |N |n ≤ exp(C4n log n log2D).

By the union bound the probability that at least one such ϕ′ exists is at most

e−C3δ2X+C4n logn log2D ≤ e−n. Hence, the first bound follows.

61

Improved Bound : Geometric Expansion of max{sr-cost(P , ε), nD(log2D)}.

To get the improved bound, we observe that while performing dimension reduction,

we do not need all the distances to be well-preserved. It suffices that at least 1−O(δ2)

fraction of both the edge distances, and of all pairwise distances are preserved.

Hence, we show that if ϕ satisfying equations (4.5) and (4.4) exists then there

exists an embedding ϕ′ : V → Nδ to a relatively small set Nδ ⊂ H satisfying slightly

relaxed conditions:

|{(u, v) ∈ V × V : ‖ϕ′(u)− ϕ′(v)‖2 ≤ 3

4
δ}| ≤ 5

4
δ2n2, (4.9)

and,

|{(u, v) ∈ ER : ‖ϕ′(u)− ϕ′(v)‖2 ≤ 3

4
δ}| ≥ 3

2
δ2X. (4.10)

Here Nδ ⊂ H is a set of size exp(O(log2(1/δ)) depending only on δ. Then, we argue

that such ϕ′ exists with very small probability.

Claim 4.12. If |ER| ≤ 2X and there exists ϕ : V → H satisfying (4.4) and (4.5),

then there exists ϕ′ : V → Nδ satisfying (4.9) and (4.10).

Proof. We set parameters ζ = 1/7, η2 = δ/8 and ν = δ2/8 and pick Nδ as in

Lemma 4.11. Then we choose a deterministic ψ(u) : ϕ(V) → N such that the

condition

7

8
‖ϕ(u)− ϕ(v)‖2 − δ

8
≤ ‖ψ(ϕ(u))− ψ(ϕ(v))‖2

≤ 8

7
‖ϕ(u)− ϕ(v)‖2 +

δ

8

holds for at least a (1− δ2/4) fraction of all pairs u, v ∈ V and at least a (1− δ2/4)

fraction of all edges (u, v) ∈ ER (the existence of such ψ follows from (4.6), by the

probabilistic method). Define ϕ′(u) = ψ(ϕ(u)). We get:

62

• for all but at most δ2n2/4 pairs u, v ∈ V , if ‖ϕ(u)− ϕ(v)‖2 > δ, then ‖ϕ′(u)−

ϕ′(v)‖2 ≥ 7δ/8− δ/8 = 3δ/4;

• for all but at most δ2|ER|/4 ≤ δ2X/4 edges (u, v) ∈ ER if ‖ϕ(u)−ϕ(v)‖2 ≤ δ/2,

then ‖ϕ′(u)− ϕ′(v)‖2 ≤ 8/7 · δ/2 + δ/8 < 3δ/4.

Therefore, inequalities (4.9) and (4.10) hold.

As before we get by a simple Chernoff bound, that(for some absolute constant

C1),

Pr(|ER| ≥ 2X) ≤ e−C1X .

Similarly, by the Chernoff bound, inequalities (4.9) and (4.10) simultaneously hold

with probability at most e−C2δ2X . Thus, a fixed ϕ′ : V → N satisfies (4.9) and (4.10)

with probability (over random choice of ER) at most e−C3δ2X . Since δ ≥ 1/D, the total

number of different embeddings ϕ′ : V → N equals |N |n ≤ exp(C4n log2D). By the

union bound over the different embeddings and the O(logD) scales, the probability

that at least one such ϕ′ exists is at most e−C3δ2X+C4n log2D ≤ e−n here we use that

δ2X ≥ Cn(log2D) for sufficiently large C.

Part II follows from Part I by taking the union bound over all 2n possible choices

of the set U .

4.4 Balanced Cut

We show that there exists a constant factor bi-criteria approximation algorithm for the

Balanced Cut problem in the semi-random model with ε ≥ Ω(
√

log n(log log n)2/n).

Theorem 4.13. There exists a randomized polynomial-time algorithm and absolute

constants C, CBC, such that for every set of vertices V of size n (for simplicity assume

n is even), every partition P = {L,R}, |L| = |R| = n/2, and every ε ∈ (0, 1) with

high probability over the random choices of SR(P , ε) the following statement holds:

63

for every G = (V,E) ∈ SR(P , ε) the algorithm returns a balanced partition of V into

sets L′ and R′ with |L′|, |R′| ≥ n/C and expected cost of the cut at most:

E
[
cost({L′, R′}, E) | SR(P , ε)

]
≤ CBC max{sr-cost(P , ε), n

√
log n(log log n)2}.

Particularly, if ε ≥
√

log n(log log n)2/n, then

E
[
cost({L′, R′}, E) | SR(P , ε)

]
≤ 4CBC sr-cost(P , ε) = CBCεn

2.

We use the standard SDP relaxation for the Balanced Cut problem from Arora et

al. [13] (given in Figure 4.4).

min
1

4

∑
(u,v)∈E(G)

‖ū− v̄‖2

subject to

1

4

∑
u,v∈V

‖ū− v̄‖2 ≥ n2

2
(Spreading constraint)

for all u, v, w ∈ V, ‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 (`2
2–triangle inequalities)

for all u ∈ V, ‖ū‖2 = 1

Figure 4.4: SDP for minimum Balanced Cut

The SDP relaxation has a unit vector ū for every vertex u ∈ V and all vectors

satisfy `2
2 triangle inequalities. The spreading constraint (we count every pair as (u, v)

and (v, u)) tries to ensure that the partition is balanced. The SDP relaxation defines

a set of feasible solutions Φ.

In the algorithm below, we use the algorithm of Arora, Rao, and Vazirani [13] for

finding a balanced cut (in the worst-case). We denote the approximation factor of

the algorithm by DARV = O(
√

log n). For simplicity of exposition we assume that

DARV is a power of 4.

64

Balanced Cut Algorithm in Semi-random Model

Input: a graph G = (V,E) ∈ SR(P , ε)

Output: a cut (L′, R′), with |L′|, |R′| ≥ n/C

• Run the Hidden Solution Sparsification Algorithm with a separation oracle for

Φ and obtain a set M ⊂ V , a partition Z of V \M in disjoint Φ–feasible sets

and two disjoint sets of edges E+ and E− (with parameter D = DARV).

• Run the ARV algorithm on the graph G = (V,E+), and obtain a balanced

partition (L′, R′);

• return (L′, R′).

Analysis. We show that every set Z in Z is balanced. Every set Z ∈ Z is

Φ–feasible, that is, for some ϕ ∈ Φ, ϕ(Z) has `2
2 diameter at most 1/4. Thus,

1

2

∑
u,v∈V

‖ϕ(u)− ϕ(v)‖2

≤ 1

2

∑
u,v∈V

max
u,v∈V

(‖ϕ(u)− ϕ(v)‖2)−

− 1

2

∑
u,v∈Z

(
max
u,v∈V

(‖ϕ(u)− ϕ(v)‖2)− max
u,v∈Z

(‖ϕ(u)− ϕ(v)‖2)
)

≤ n2 − 7

8
|Z|2.

By the SDP spreading constraint, the left hand side is greater than or equal to n2/2,

thus |Z| ≤
√

4/7 n ≤ 4/5 n.

By the Structural Theorem 4.8, with high probability for every graphG = (V,E) ∈

SR(P , ε), the graph (V, cut(P , E)) is geometrically expanding with cut cost

X = C max{sr-cost(P , ε), n
√

log n(log log n)2}
65

up to scale 1/
√
DARV . Thus, by Theorem 4.6,

cost|M({L,R}, E+) ≤ C X/DARV .

Hence, there are at most C X/DARV edges in E+ going from L ∩ M to R ∩ M .

Observe, that |L ∩M | ≤ |L| = n/2 and |R ∩M | ≤ |R| = n/2. Therefore, there are

at most C X/DARV edges in E+ cut by the the partition

V = (M ∩ L) ∪ (M ∩R) ∪
⋃
Z∈Z

Z

(the only edges cut are the edges between M ∩ L and M ∩ R) and each of the sets

in the partition has size at most 4/5 n. These sets can be grouped into two balanced

sets L∗ and R∗ with |L∗|, |R∗| ≥ 1/5 n. The ARV algorithm finds a possibly different

balanced cut (L′, R′) (with slightly weaker bounds on |L′|, |R′|). The number of edges

cut in E+ is bounded (in expectation) by DARV × C X/DARV = C X. The number

of edges cut in E− is bounded by |E−| ≤ C X.

4.5 Min Multicut

The algorithm for the Multicut problem is similar to the algorithm for Balanced Cut.

We use the standard SDP relaxation for Multicut: The SDP has a unit vector ū for

every vertex u; vectors s̄i, t̄i corresponding to source–sink pairs si, ti are orthogonal

(〈s̄i, v̄i〉 = 0); all vectors satisfy the `2
2 triangle inequality constraints.

The key observation is that every Φ–feasible set Z ∈ Z does not contain a source–

sink pair si, ti.

Lemma 4.14 (Multicut: Φ-feasibility). Given a multicut instance G(V,E) with

source-sink pairs {(si, ti)}1≤i≤r, any Φ-feasible Z does not contain any of the source-

sink pairs ∀i, (si, ti).

66

min
1

2

∑
(u,v)∈E(G)

‖ū− v̄‖2

subject to

for all 1 ≤ i ≤ k, 〈s̄i, t̄i〉 = 0

for all u, v, w ∈ V, ‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 (`2
2–triangle inequalities)

for all u ∈ V, ‖ū‖2 = 1

Figure 4.5: SDP for minimum Multicut

Proof. For any feasible SDP solution ϕ, we know that for all source-sink pairs i ∈ [r],

〈ϕ(si), ϕ(ti)〉 = 0

Hence,
1

2
‖ϕ(si)− ϕ(ti)‖2 = ‖ϕ(si)‖2 + ‖ϕ(ti)‖2 = 1

Since Z is Φ-feasible, there exists a feasible sdp solution ϕ for G such that

∀u, v ∈ Z, ‖ϕ(u)− ϕ(v)‖2 ≤ 1/4

Thus, Z can not both si and ti for any of the i ∈ [r] source-sink pairs.

Theorem 4.15. There exists a randomized polynomial-time algorithm and an abso-

lute constant C, such that for every set of vertices V of size n, every partition P, and

every ε ∈ (0, 1) with high probability over random choice of SR(P , ε) the following

statement holds: for every G = (V,E) ∈ SR(P , ε) and every set of demands (si, ti)

(satisfying P(si) 6= P(ti)), the algorithm returns a partition P ′ of V separating the

demands (P ′(si) 6= P ′(ti)) with expected cost of the cut at most:

E
[
cost(P ′, E) | SR(P , ε)

]
≤ C max{sr-cost(P , ε), n log n(log log n)2}.

67

Proof. The proof follows exactly as in the proof of Theorem 4.13. We use the O(log n)

worst-case approximation algorithm of Garg, Vazirani, and Yannakakis [44], on the

remaining instance. Hence we set D = log n.

By the Structural Theorem 4.8, with high probability for every graphG = (V,E) ∈

SR(P , ε), the graph (V, cut(P , E)) is geometrically expanding with cut cost

X = C max{sr-cost(P , ε), n log n(log log n)2}

up to scale 1/
√

log n. Thus, by Theorem 4.6,

cost|M({L,R}, E+) ≤ C X/ log n.

Hence, there is a multicut solution in (V,E+) of cost at most C X/ log n. Hence, the

algorithm of [44] on G(V,E+) results in a cut of cost O(log n ·X/ log n) = O(X).

We need to ensure that after cutting the edges in the solution, all the source-sink

pairs are disconnected. By Lemma 4.14, we know that each of the Φ-feasible pieces

Z ∈ Z has no source-sink pair. The number of edges cut in E− is at most C X.

Hence, we get a constant factor approximation algorithm for the Multicut problem

in the semi-random model with ε ≥ log n(log log n)2/n.

4.6 Further work

A similar statement holds for the Min Uncut problem if ε ≥
√

log n(log log n)2/n.

A semi-random instance of Min Uncut is generated as follows: the adversary first

chooses an arbitrary subset S of vertices, then the nature connects each pair of vertices

(u, v) ∈ S × S ∪ (V \ S) × (V \ S) with an edge with probability ε, finally the

adversary adds arbitrary edges between S and V \ S, and removes some random

edges. The problem can be restated as a cut minimization problem that falls in

68

our framework (see e.g. [1]). Our algorithm for Min Uncut first runs the Hidden

Solution Sparsification algorithm and then uses the algorithm of Agarwal, Charikar,

Makarychev, and Makarychev [1] for Min Uncut. We defer the details to [69].

69

Chapter 5

Semi-Random Small Set Expansion

and Recovering Partitions

In the previous chapter, we discussed how we can obtain O(1) approximations using

the Hidden Solution Sparsification (Theorem 4.6) for semi-random instances of Bal-

anced Separator and Multicut. Unfortunately, the guarantees of Theorem 4.6 are not

strong enough to yield similar approximations for Small Set Expansion (and Sparsest

Cut). The difficulty for Small Set Expansion (SSE) is that we get a weaker guarantee

on the size of the cut edges (the set E− in Chapter 4), so the cost of the partition

({Mi, Zj} in the notation of Chapter 4) might be very high. In the notation of Chap-

ter 4, we use an extra post-processing step to find a subset of edges in E− that we

really need to cut.

The main reason for the difficulty is that we cannot use the corresponding SDP

relaxation of Bansal et al. [18] for SSE (given in figure 5.1).

Loosely speaking, it may “find” a good fractional cut that assigns zero vectors to

the real solution, since the required set size |S| could be much smaller than n. In that

case, the SDP solution may provide little information about the hidden solution S.

70

min
1

2

∑
(u,v)∈E(G)

‖ū− v̄‖2

subject to

for all u ∈ V,
∑
v∈V

max{〈ū, v̄〉, ‖ū‖2} ≤ ρn‖ū‖2 (Spreading constraints)

for all u, v, w ∈ V, ‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 (`2
2–triangle inequalities)∑

u∈V

‖ū‖2 ≤ ρn (Size constraint)

for all u, v ∈ V 〈ū, v̄〉 ≥ 0

for all u ∈ V, ‖ū‖2 ≤ 1

Figure 5.1: SDP relaxation for Small Set Expansion due to [18]

This happens for instance, when the adversarial instance inside V \S is comprised of

an integrality gap instance for the SDP relaxation given in figure 5.1.

To overcome this issue, we instead use a “Crude SDP” (C-SDP) for the problem

(Figure 5.2 on page 80). C-SDPs were recently introduced in the work of Kolla,

Makarychev and Makarychev [61]. The C-SDP for the Small Set Expansion is not a

relaxation for the problem; its objective value may be much larger than the value of

the optimal integral solution (in particular, the value of a C-SDP can be large even

if the cost of the optimal solution is 0).

The algorithm for Small Set Expansion (SSE) requires several new ingredients. In

fact, our algorithm for the Small Set Expansion (SSE) problem is the most involved,

and uses the full power of the Hidden Solution Sparsification theorem. To solve a

semi-random instance of the Small Set Expansion problem, we first apply the Hidden

Solution Sparsification step. However, the number of edges in E− is bounded in

expectation by the cost of the C-SDP solution and may be much larger than the

cost of the optimal solution. So our algorithm cannot afford to cut all these edges.

Nevertheless, we prove that the number of edges in E− incident to the set S (S is the

71

optimal solution, which is not known to the algorithm) is bounded by O(OPT) (the

total number of edges in E− can be much larger than OPT). This gives our more

powerful guarantees given in Theorem 5.3. Then we show how to find a good solution

by combining the SDP based SSE algorithm [18] with a new linear programming

relaxation based algorithm.

We extend this to an algorithm for semi-random Sparsest Cut as well, by first

guessing the number of vertices in the Sparsest Cut and then using our algorithm for

semi-random Small Set Expansion. While our algorithms for Small Set Expansion

and Sparsest Cut are of interest in their own right, they are also useful primitives to

recover the partitions, when we are given extra conditions about the expansion inside

the partitions.

Recovering Partitions through Solution Purification. We show how we

use our algorithm for semi-random Sparsest Cut to iteratively get closer and closer

to the hidden partitions, under some additional assumptions about the stability of

the optimal solution. More precisely, if we additionally assume that graphs G[S] and

G[V \ S] are combinatorial expanders in the Balanced Cut or Small Set Expansion

problem, then we can almost recover sets S and G \ S (see Theorem 5.9) upto any

accuracy. We do that by first finding a good approximate solution using our algo-

rithm for Balanced Cut (or Small Set Expansion) and then improving the solution

by repeatedly solving (semi-random) instances of the Sparsest Cut problem to obtain

successively finer approximations to the planted partition.

Before we describe the more general Hidden Solution Sparsification theorem, we

first introduce the concept of O-local SDPs which will be important for the rest of

the chapter.

72

5.1 Local SDP Relaxations

Let us first recollect how we measure the cost of the SDP solution ϕ.

Definition 5.1. Let G = (V,E) be a graph, P be a partition of V , and O be a subset

of V . Define the cost of an SDP solution ϕ : V → H to be

sdp-cost(ϕ,E) ≡ 1

2

∑
(u,v)∈E

‖ϕ(u)− ϕ(v)‖2,

and the cost of the SDP solution restricted to the set O to be

sdp-cost|O(ϕ,E) ≡ 1

2

∑
(u,v)∈E

u∈O or v∈O

‖ϕ(u)− ϕ(v)‖2.

For any SDP relaxation, the cost of the optimum (minimum) SDP solution lower

bounds the value of the best integral solution. However, this lower bound may not

hold when restricted to a subset O ⊆ V . This motivates the following definition:

Definition 5.2. Let V be a set of vertices, P be a partition of V and O ⊆ V . We say

that a non-empty set of SDP solutions Φ is a O–local relaxation of P if there exists

a constant C ≥ 1 such that for every graph G = (V,E) on V and for

ϕ = arg min
ϕ∈Φ

sdp-cost(ϕ,E) ≡ arg min
ϕ∈Φ

1

2

∑
(u,v)∈E

‖ϕ(u)− ϕ(v)‖2,

the following inequality holds

sdp-cost|O(ϕ,E) ≤ C cost|O(P , E).

Note that an SDP relaxation of a problem is always a V -local SDP relaxation of

the optimal integral solution.

73

5.2 Hidden Solution Sparsification and Applica-

tions

We now present the more general Hidden Solution Sparsification Algorithm and prove

the following.

Theorem 5.3. (Hidden Solution Sparsification)

There exists a polynomial-time randomized algorithm that given a graph G = (V,E),

a separation oracle for an O–local SDP relaxation Φ of a partition P (note: the set

O ⊂ V and partition P are “hidden” and are not known to the algorithm), and a

parameter D = 2T (T ∈ N, T > 1), partitions the set of vertices V into a set M and

a collection of disjoint sets Z

V = M ∪
⋃
Z∈Z

Z,

and also partitions the set of edges into two disjoint sets E+ and E−

E = E+ ∪ E−

such that

• all edges cut by the partition V = M∪
⋃
Z∈Z Z lie in E− (i.e., cut({M}∪Z, E) ⊂

E−), or in other words,

E+ ⊂M ×M ∪
⋃
Z∈Z

Z × Z;

• if the graph (V, cut(P , E)) satisfies the geometric expansion property with cut

value X up to scale 1/
√
D, then (the expectation is taken over random bits of

the algorithm)

E[cost|O∩M(P , E+)] ≤ C X/D; (5.1)

74

and

|{(u, v) ∈ E− : u ∈ O or v ∈ O}| ≤ C X; (5.2)

• each Z ∈ Z is Φ–feasible.

The algorithm for Hidden Solution Sparsification is exactly the same as in Section

4.2. However, we present it here again for completeness. As before, the algorithm

runs in O(log log n) phases, and in each phase, we first solve the SDP on the current

instance and then cut out the heavy vertices w.r.t. to this vector solution before

sparsifying the hidden solution in the remaining graph by cutting the long edges.

Hidden Solution Sparsification Algorithm

Input: a graph G = (V,E) and a separation oracle for a set of SDP solutions

Φ ⊂ {V → H}.

Output: partitions V = M ∪
⋃
Z∈Z Z and E = E+ ∪ E−.

• Let M0 = V , Z0 = ∅, E+
0 = E, E−0 = ∅, T = 1

2
log2D, and δt = 2−t for all

t = 1, . . . , T .

• for t = 1, . . . , T do

A. Solve the SDP for the remaining graph: Find

ϕt = arg min
ϕ∈Φ

sdp-cost(ϕ,E+
t−1 ∩ (Mt−1 ×Mt−1)).

B. Remove δt–heavy vertices: run Heavy Vertices Removal Algorithm (de-

scribed in Section 4.2.1) with parameters V , Mt−1, ϕt, and obtain a col-

lection of Φ–feasible sets ∆Zt. Add edges in E+
t−1 cut by ∆Zt to the set

∆E−t . Let

Zt = Zt−1 ∪∆Zt; Mt = Mt−1 \
⋃

Z∈∆Zt

Z.

75

C. Remove δt–long edges from E+: Find

Lt = {(u, v) ∈ E+ : u, v ∈Mt, ‖ϕt(u)− ϕt(v)‖2 ≥ δt}.

Let

E+
t = E+

t−1 \ (∆E−t ∪ Lt); E−t = E−t−1 ∪ (∆E−t ∪ Lt).

• return M = MT , Z = ZT , E+ = E+
T , E− = E−T .

Proof of Theorem 5.3. The proof follows along the same lines as in Theorem 4.6 —

however, the cost of solution is analysed in terms of an O-local relaxation, to only

consider the edges incident on O.

As in Theorem 4.6, we first note the algorithm runs in polynomial time. At

every iteration, the algorithm removes all edges crossing the partition ∆Zt from E+
t

and adds them to E−t , hence the first item of Theorem 4.6 holds. The third item

holds, because every set Z ∈ Z belongs to some ∆Zt and, thus by Lemma 4.7,

diam(ϕt(Z)) ≤ 1/4.

We now show that the second item of Theorem 5.3 holds. We first prove that

cost|Mt(P , E+
t) ≤ 2 X · δ2

t

for every t ∈ {0, . . . , T}. The Heavy Vertices Removal Procedure returns set Mt that

does not contain any δt–heavy vertices w.r.t. ϕt i.e., Hδt,ϕt(Mt) = ∅ (see Lemma 4.7).

Using the geometric expansion property of the graph (V, cut(E,P)), we get
∣∣{(u, v) ∈

cut(P , E) ∩ (Mt ×Mt) : ‖ϕt(u) − ϕt(v)‖2 ≤ δt/2}
∣∣ ≤ 2δ2

tX. The algorithm removes

all δt/2–long edges at step C, thus the set E+
t ∩ (Mt ×Mt) contains only edges (u, v)

76

for which ‖ϕt(u) − ϕt(v)‖2 ≤ δt/2. Combining this observation with the previous

inequality, and using that edges in E+
t do not cross the boundary of Mt, we get

cost|Mt(P , E+
t) =

∣∣cut(E,P) ∩ E+
t ∩ (Mt ×Mt)

∣∣ ≤ 2δ2
tX. (5.3)

For t = T , we get cost|M(P , E+) ≤ 2 X/D.

Finally, we estimate the size of the set {(u, v) ∈ E− : u ∈ O or v ∈ O}. To

do so, we use that Φ is a O–local relaxation of the partition P . For graph G =

(V,E+
t−1 ∩ (Mt−1 ×Mt−1)), we obtain inequality

sdp-cost|O(ϕt, E
+
t−1 ∩ (Mt−1 ×Mt−1)) ≤ C1 cost|O(P , E+

t−1 ∩ (Mt−1 ×Mt−1))

= C1 cost|O∩Mt−1(P , E+
t−1) ≤ 2CX · δ2

t−1

= 8C1δ
2
tX.

The third line of the inequality follows from (5.3).

Now, we bound the number of edges removed from E+
t−1∩O and added to E−t ∩O

in terms of “sdp-cost”. At step t, we add two sets of edges to E−: ∆E−t and Lt. Since

all edges (u, v) in Lt are δt/2–long (i.e., ‖ϕ(u)− ϕ(v)‖2 ≥ δt/2),

sdp-cost|O(ϕt, E
+
t−1 ∩ (Mt−1 ×Mt−1)) ≡

∑
(u,v)∈E+

t−1∩(Mt−1×Mt−1)

(u,v)∈O×V

‖ϕ(u)− ϕ(v)‖2

2

≥ |Lt ∩ (O × V)| · δt/2
2

.

Hence, |Lt ∩ (O× V)| ≤ 32C1δtX. The probability that the Heavy Vertices Removal

Procedure separates two vertices u and v connected with an edges in E+
t−1 is at most

C2

(
δ−1
t + δ−2

t E|Mt−1 \Mt|/n
)
· ‖ϕ(u)− ϕ(v)‖2 (see Lemma 4.7). Thus, the expected

77

total number of edges cut in the set O × V is

E
[
|∆E−t ∩ (O × V)|

]
≤ C2

(
δ−1
t + δ−2

t

E|Mt−1 \Mt|
n

)
· sdp-cost|O(ϕt, E

+
t−1 ∩ (Mt−1 ×Mt−1))

≤ 8C1C2

(
δt +

E|Mt−1 \Mt|
n

)
X.

The total number of edges in E− ∩ (O × V) is bounded by

T∑
t=1

(32C1δt + 8C1C2δt + 8C1C2 ·
E|Mt−1 \Mt|

n
)X

≤ (32C1 + 8C1C2 + 8C1C2)X.

We now show how to construct constant factor approximation algorithms for Small

Set Expansion and Sparsest Cut in semi-random instances.

5.3 Small Set Expansion

We now show how the more general Hidden Sparsification procedure gives our O(1)

for Small Set Expansion.

Theorem 5.4. There exists a randomized polynomial-time algorithm and an absolute

constant C, such that for every set of vertices V of size n, every partition P =

{S, V \ S}, |S| = ρn (for ρ ∈ (0, 1/2)) and every ε ∈ (0, 1) with high probability

over the random choices of SR(P , ε) the following statement holds: for every G =

(V,E) ∈ SR(P , ε), the algorithm given G and ρ, returns a partition P ′ = (S ′, V \ S ′)

of V such that |S ′| = Θ(ρn), |S ′| ≤ |V |/2 with expected cost of the cut at most:

E
[
cost(P ′, E) | SR(P , ε)

]
≤ C max{sr-cost(P , ε), n

√
log n log(1/ρ)(log log n)2}.

78

Particularly, if ερ ≥
√

log n log(1/ρ)(log log n)2/n, then

E
[
cost({L,R}, E) | SR(P , ε)

]
≤ C sr-cost(P , ε)

= Cερ(1− ρ)n2.

Moreover, instead of requiring that G = (V,E) ∈ SR(P , ε), it suffices that the graph

(V, cut(P , E)) is geometrically expanding with cut cost

X = C ′max{sr-cost(P , ε), n
√

log n log(1/ρ)(log log n)2}

(for some absolute constant C ′) up to scale

s(n, ρ) = Ω(

√
log n log

1

ρ
).

By Theorem 4.8, for every graph G ∈ SR(P , ε), the graph (V, cut(P , E)) is geo-

metrically expanding with cut cost

X = C ′max{sr-cost(P , ε), n
√

log n log(1/ρ)(log log n)2}

up to scale s(n, ρ) = Ω(
√

log n log 1
ρ
) with probability 1 − o(1) over random choice

of SR(P , ε). We assume that the graph (V, cut(P , E)) is geometrically expanding.

Otherwise, the algorithm fails (this happens with probability o(1)).

We use an analog of the Crude SDP (C–SDP) introduced in the paper of Kolla,

Makarychev and Makarychev [61]. For each vertex u ∈ V the C–SDP has a unit vector

ū ∈ H. All vectors satisfy triangle inequality constraints and spreading constraints

(similar to constraints introduced in Bansal et al. [18]) : for every u ∈ V ,

∑
v∈V

〈u, v〉 ≤ ρn.

79

We give the C-SDP in its entirety in figure 5.2.

min
1

2

∑
(u,v)∈E(G)

‖ū− v̄‖2

subject to

for all u ∈ V,
∑
v∈V

〈ū, v̄〉 ≤ ρn (Spreading constraints)

for all u, v, w ∈ V, ‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 (`2
2–triangle inequalities)

for all u, v ∈ V 〈ū, v̄〉 ≥ 0

for all u ∈ V, ‖ū‖2 = 1

Figure 5.2: Crude SDP for Small Set Expansion (SSE)

Note that this SDP is not a relaxation for SSE. However, it turns out that this is

a S–local SDP relaxation of partition (S, V \ S).

Lemma 5.5. The set Φ of feasible solutions of the Crude SDP (C-SDP) given in

Figure 5.2 on page 80 for the Small Set Expansion problem is a S-local relaxation of

every partition P = {S, V \ S} (where |S| = ρn).

Proof. Let ϕ = arg minϕ∈Φ sdp-cost(ϕ,E). Denote ū = ϕ(u). Define a new SDP

solution

ū′ =

ē⊥ if u ∈ S

ū otherwise.

where ē⊥ is a unit vector orthogonal to all the vectors {v̄}v∈V (G). This solution also

satisfies the `2
2–triangle inequalities, the spreading constraints (because |S| ≤ ρn and

for all u ∈ S, v ∈ V \ S, 〈ū′, v̄′〉 = 0 ≤ 〈ū, v̄〉), and for all u, v ∈ V , 〈ū′, v̄′〉 ≥ 0. Thus,

it lies in Φ.

80

Compute the cost of the new solution and compare it with the cost of the optimal

solution:

sdp-cost(u→ ū′, E) =
1

2

∑
(u,v)∈E(G)

‖ū′ − v̄′‖2

=
1

2

∑
(u,v)∈E(G)
u∈S or v∈S

‖ū′ − v̄′‖2 +
1

2

∑
(u,v)∈E(G)
u,v∈V (G)\S

‖ū′ − v̄′‖2

= cost|S(P , E) +
1

2

∑
(u,v)∈E(G)
u,v∈V (G)\S

‖ū− v̄‖2.

The cost sdp-cost(u→ ū, E) of the optimal solution ū equals

sdp-cost|S(u→ ū, E) +
1

2

∑
(u,v)∈E(G)
u,v∈V (G)\S

‖ū− v̄‖2.

Thus, sdp-cost|S(u→ ū, E) ≤ cost|S(P , E).

We now use the Hidden Solution Sparsification algorithm to find the set M and

a partition of V \M into Φ–feasible sets Z ∈ Z. Here Φ is the set of feasible C–SDP

solutions. We set the weight of every vertex u ∈M to be the number of edges in E−

incident on u: wu = |{v : (u, v) ∈ E−}|. wu corresponds to the cost we would pay

for cutting the wu edges incident on u from E−, if u were included in the solution

(small set). Observe, that the weight of the “hidden” set S is at most C1X (for

some absolute constant C1, see (5.2)). Then, we consider two cases: |M ∩ S| ≥ |S|/2

and |(V \M) ∩ S| ≥ |S|/2, depending on whether most of the hidden set S vertices

belong to M or the pieces Z ∈ Z of the partition (the algorithm does not know

which of the inequalities holds and tries both options). In the first case, since there

is a good fraction of S is inside M , we just apply a worst-case algorithm for Small

Set Expansion on M , as in Section 4.4. In the second case, the hidden solution S is

81

spread across the many small pieces {Zi}. Here, we use a linear program to pick out

the vertices in the solution from the many pieces.

Case I: This case is handled similar to the proof in Section 4.4. Since most of

S (the hidden solution) belongs to M , we know that there is a good solution M ∩ S

in G(V,E+) i.e. S ∩M has size ∈ [ρn/2, ρn] with weight w(M ∩ S) ≤ C1X, and

there are at most CX/DSSE from E+ going out of S ∩M . Now, we use the following

theorem of Bansal et al. [18] which finds small non-expanding sets.

Theorem 5.6. (Special case of Theorem 2.1 [18],

arXiv version) There exists a polynomial-time algorithm (“SSE algorithm”) that

given as input a graph G = (V,E), a set of positive weights wu (u ∈ V), ρ ∈ (0, 1/2]

and W ∈ R+, finds a non-empty set S ⊂ V satisfying |S| ∈ [Ω(ρn), 3ρn/2], and

w(S) ≡
∑

u∈S wu ≤ CW , such that

E(S, V \ S) ≤ DSSE ·min
{
E(S, V \ S) : |S| = ρn, w(S) ≤ W

}
,

where DSSE = O(
√

log n log(1/ρ)).

We use this SSE algorithm on G(V,E+) to find a set S ′ with |S ′| ∈ [Ω(ρn), 3ρn/2],

w(S ′) ≡
∑

u∈S′ wu ≤ C · C1X, and

cost({S ′, V \ S ′}, E+) ≤ DSSE × CX/DSSE ≤ CX.

The total cost of the cut E(S ′, V \ S ′) is bounded by the number of edges cut in E+

and E− which is at most CX and CC1X respectively, which is O(X) as needed.

If ρ ∈ (1/3, 1/2), the set S ′ may contain more than n/2 vertices, but no more than

3ρn/2 ≤ 3
4
n. Then the algorithm returns S ′′ = V \ S ′ satisfying |S ′′| ∈ [n/4, n/2].

Case II: In this case, the hidden solution S could mostly be spread arbitrarily

among the pieces Z ∈ Z in V \ M . Here, our algorithm uses an LP to extract

82

the solution from the set V \ M . The key observation is that this set is already

partitioned into pieces of small size. Indeed, every Z ∈ Z is Φ–feasible, and thus for

some ϕ ∈ Φ, diam(ϕ(Z)) ≤ 1/4 and, consequently, for every u, v ∈ Z, 〈ϕ(u), ϕ(v)〉 =

(‖ϕ(u)‖2 +‖ϕ(v)‖2−‖ϕ(u)−ϕ(v)‖2)/2 ≥ 7/8. Using the C-SDP spreading constraint

(for an arbitrary u ∈ Z), ∑
v

〈ϕ(u), ϕ(v)〉 ≤ ρn,

we get |Z| ≤ 8/7 ρn.

The LP has a variable xv ∈ [0, 1] for every vertex v ∈ V \ M ; and the only

constraint is that
∑

u∈V \M xu ≥ ρn/2). The objective function is

min
∑

u∈V \M

wuxu +
∑

(u,v)∈E+

u,v∈V \M

|xu − xv|. (5.4)

The canonical solution to this LP is as follows: xu = 1, if u ∈ S ∩ (V \M); xu = 0,

otherwise. The LP cost of this solution is at most CX, because the first term in the

objective function is bounded by C1 X (see (5.2)), the second term is bounded by

the size of the cut(P , E), which is at most C2 X (The expected size of the cut equals

sr-cost(P , ε); by the Chernoff bound the size of the cut is less than 2 sr-cost(P , ε)

with very high probability). Thus, the cost of the optimal solution {x∗u}, which we

denote by LP ∗, is at most C X = (C1 + C2)X. For an integral solution S ′ ⊂ V , we

define the cost

f(S ′) =
∑
u∈S′

wu + |E+(S ′, V \ S ′)}| (5.5)

≡
∑
u∈S′

wu + |{(u, v) ∈ E+ : u ∈ S ′, v /∈ S ′}|.

For every r ∈ [0, 1] define Sr = {u : x∗u ≥ r}. The algorithm finds r∗ that

minimizes the ratio f(Sr)/|Sr| subject to |Sr| ≥ ρn/4 (note: |S1| = |V \M | ≥ ρn/2).

83

Then it sorts all sets Z ∈ Z in order of increasing ratio f(Sr∗ ∩Z)/|Sr∗ ∩Z| (ignoring

empty sets) and gets a list Z1, . . . ZK . It picks the first k pieces such that

|Z1 ∩ Sr∗|+ |Z2 ∩ Sr∗|+ · · ·+ |Zk ∩ Sr∗| ∈ [ρn/4, 2ρn],

and returns

S ′ =
k⋃
i=1

Zi ∩ Sr∗ .

Note, that such k exists because each piece Zi ∩ Sr∗ has size at most 8/7 ρn (as

|Zi| ≤ 8/7 ρn) and
∑n

i=1 |Zi ∩ Sr∗| ≡ |Sr∗ | ≥ ρn/4.

Analysis of Case II. We first prove that

f(Sr∗) ≤ 4LP ∗/(ρn) · |Sr∗|.

Observe that ∫ 1

0

f(Sr)dr = LP ∗
∫ 1

0

|Sr|dr ≥
ρn

2
.

The first equality easily follows from (5.4) and (5.5), the second equality follows from

the LP constraint. Let R = {r : |Sr| ≥ ρn/4}. Then

∫
R

|Sr|dr ≥
ρn

2
−
∫

[0,1]\R
|Sr|dr ≥

ρn

4
,

and, since r∗ = min{f(Sr)/|Sr| : r ∈ R},

LP ∗ =

∫
R

f(Sr)dr ≥
∫
R

f(Sr∗)

|Sr∗|
|Sr|dr ≥

f(Sr∗)

|Sr∗|
· ρn

4
.

84

Thus, f(Sr∗) ≤ 4LP ∗/(ρn) · |Sr∗|. Using that edges in E+ do not cross the boundaries

of sets Zi, we get

f(Sr∗) =
K∑
i=1

f(Zi ∩ Sr∗) ≤
4LP ∗

ρn

K∑
i=1

|Sr∗ ∩ Zi|.

Recall, that {f(Zi ∩ Sr∗)/|Sr∗ ∩ Zi|}i is an increasing sequence, thus

f(S ′) ≡ f
(k⋃
i=1

Zi ∩ Sr∗
)

=
k∑
i=1

f(Zi ∩ Sr∗)

≤ 4LP ∗

ρn

k∑
i=1

|Sr∗ ∩ Zi| =
4LP ∗

ρn
· |S ′| ≤ 16LP ∗.

5.4 Sparsest Cut

We now show how to find an approximate sparsest cut in a semi-random graph G

using the algorithm for Small Set Expansion. Specifically, we give an algorithm that

for every subset U ⊆ V intersecting each of the pieces of the planted partition (S, T)

(see below for details), returns a cut (A,U \ A) of sparsity

E(A,U \ A)

|A|
≤ O(εn).

In Section 5.5, we show that the Sparsest Cut algorithm can be used to recover pieces

S and T assuming that the graphs G[S] and G[T] have large expansion. We remark

that while we are usually concerned with the case when U = V for the sparsest cut

problem, the following stronger statement is also useful for Section 5.5.

Theorem 5.7. There exists a randomized polynomial-time algorithm and an absolute

constant C, such that for every set of vertices V of size n, every partition P =

{S, V \ S} and every ε, η ∈ (0, 1) satisfying εη ≥
√

log n(log log n)2/n with high

probability over the random choices of SR(P , ε) the following statement holds: for

85

every G = (V,E) ∈ SR(P , ε), every U ⊆ V such that |U ∩S| ≥ ηn and |U ∩T | ≥ ηn,

the algorithm given G, returns a partition (A,U \ A) of G[U] with |A| ≤ |U |/2 such

that with probability exponentially close to 1,

|E(A,U \ A)|
|A|

< CSCεn. (5.6)

Sketch. We first give a proof assuming εη ≥
√

log n log(1/η)(log log n)2/n.

Our algorithm guesses the size of |S∩U |, computes the size of |T∩U | = |U |−|S∩U |.

Then, it runs the Small Set Expansion algorithm on G[U] with ρ = min(|S ∩U |, |T ∩

U |)/|U |, obtains a set A (|A| ≤ |U \A|) of size Θ(ρ|U |) and returns the cut (A,U \A).

We need to show that the size of the cut (A,U \A) is at most O(ερ|U |n), so that the

sparsity of the cut is then O(εn).

Let us explain why we can use the Small Set Expansion algorithm for the graph

G[U] and why the algorithm finds a cut of cost at most O(ερ|U |n). By the structural

theorem (Theorem 4.8 part II), with probability 1− o(1), for every U ⊂ V , the graph

(U,E ∩ (U ×U)∩ (S×T)) (i.e., the bipartite graph between pieces U ∩S and U ∩T)

is geometrically expanding up to scale
√

log n log(1/η) with cut value

X = C max{sr-cost(P|U , ε), n
√

log n log(1/η)(log log n)2}

= C max{ε|S ∩ U | · |T ∩ U |, n
√

log n log(1/η)(log log n)2}.

Below, we assume that the graph (U,E∩(U×U)∩(S×T)) is geometrically expanding;

otherwise our algorithm fails (which happens with probability o(1) over the choice of

SR(P , ε)). Write the lower bound on εη and a trivial inequality on ε|S ∩U | · |T ∩U |:

√
log n log(1/η)(log log n)2 ≤ εηn ≤ εmin(|S ∩ U |, |T ∩ U |)n;

ε|S ∩ U | · |T ∩ U | ≤ εmin(|S ∩ U |, |T ∩ U |)n.

86

Together these inequalities give us an upper bound on X:

X ≤ Cεmin(|S ∩ U |, |T ∩ U |)n ≤ Cερ|U |n.

By Theorem 5.3, the Small Set Expansion algorithm returns a cut of size O(X) (Here

we use that the graph (U,E ∩ (U × U) ∩ (S × T)) is geometrically expanding up to

scale
√

log n log(1/η) ≥
√

log n log(1/ρ)).

We showed that the algorithm finds a cut of sparsity α = O(εn) in expectation.

By Markov’s inequality, it finds a cut of sparsity at most 2α with probability at least

1/2. So by repeating the algorithm many times and then picking the best solution,

we can get a solution of cost at most 2α with probability exponentially close to 1.

Finally, let us briefly explain how to get rid of the
√

log(1/η) factor in the lower

bound on εη. Observe that it suffices for our algorithm to find a set A of size |A| ∈

[Θ(ρ|U |), |U |/2] i.e., we do not need a bound |A| ≤ O(ρ|U |). So we slightly modify the

Small Set Expansion algorithm so that it works for smaller εη, but possibly returns

|A| � ρ|U |. In Case I of the algorithm (see Theorem 5.4), we use Theorem 2.1 (part

I) instead of Theorem 2.1 (part II) of Bansal et al. [18] with ρ = 1/2. This algorithm

returns a sparse cut of size at most ρ|U | = |U |/2 of sparsity O(
√

log n)OPT (where

OPT is the optimal sparsity of the cut). We repeatedly apply this algorithm and

obtain disjoint sets A1, . . . , AT . After we get a set Ai, we remove it from U . We stop

when | ∪ At| ≥ ρ|U |/4. We let A = ∪At. It is not hard to show that the sparsity of

A is at most O(
√

log n)OPT (where OPT is the value of the sparsest cut in (U,E+))

and |A| ∈ [Θ(ρ|U |), 1/2|U |]. The proof is similar to the proof of Theorem 2.1 (part

II) in [18].

87

5.5 Recovering the Partitions in the Planted

Model

In the case of the Balanced Cut and Small Set Expansion problems, we can obtain

better guarantees when the sets of the partition P = {S, T} have enough expansion

within them. Note that to recover the planted partition, we need some conditions on

the graph expansion inside G[S] and G[T]: otherwise, there may exist a sparse cut

in G cutting both S and T (for example, if the graphs G[S] and G[T] are random

G(n/2, ε) graphs, then the graph G is a G(n, ε), and thus the sets S and T are

indistinguishable from other sets of size n/2). This assumption is in the flavor of

planted instances of Balanced Cut (or Small Set Expansion problem), where the cut

given by the partition (S, T) is much sparser (sparser by a constant factor) than any

cut inside the (adversarial) graph restricted to S or T . (This assumption is also

similar to the stability assumption of Balcan, Blum, and Gupta [17] for clustering

problems, where a c-factor approximation to the partitioning problem is η(c)-close

to the target partition.) In this case, we can find the partition (S, T) up to (1 + η)-

accuracy for some sub-constant η > 0 i.e., a partition differing from (S, T) in at

most ηn vertices. We obtain these guarantees by repeatedly defining instances of the

Sparsest Cut problem, and using our algorithms for the semi-random model to obtain

increasingly finer approximations to the planted partition.

Definition 5.8. Denote by h(G) the expansion of the graph G = (VG, EG):

h(G) ≡ min
S⊂VG

0<|S|≤ 1
2
|VG|

E(S, VG \ S)

|S|
.

Theorem 5.9. There exists a randomized polynomial-time algorithm and positive ab-

solute constants C,Cexp, such that for every set of vertices V of size n, every partition

88

P = {S, T}, |S| = ρn (for ρ ∈ (0, 1/2]) and every ε ∈ (0, 1), η ∈ (0, 1), satisfying

η ≥ C
√

log n(log log n)2

εn
,

the following statement holds with high probability over the random choices of

SR(P , ε): For every G = (V,E) ∈ SR(P , ε) satisfying h(G[S]) ≥ Cexpεn and

h(G[T]) ≥ Cexpεn, the algorithm given G and ε, returns a partition (X, Y) of V such

that

|X4S| = |Y4T | ≤ ηn or |X4T | = |Y4S| ≤ ηn.

Remark 1: The conditions h(G[S]) ≥ Cexpεn and h(G[T]) ≥ Cexpεn can be slightly

relaxed, by requiring that only sets of size at least ηn expand in G[S] and G[T].

Remark 2: We assume that η ≤ ρ/3. Otherwise, if ρ ≤ η, then the trivial solution

(∅, V) satisfies the conditions of the theorem. If η ∈ [ρ/3, ρ], we may replace η with

η′ = ρ/3 and slightly change the absolute constant C.

Our algorithm relies on the Sparsest Cut algorithm for the semi-random model

presented in Section 5.4. We denote the approximation factor of the Sparsest Cut

algorithm by CSC (see 5.6). We let Cexp = 4CSC . We will use this algorithm for finding

approximate sparsest cuts in G[X] for various X ⊂ V satisfying |X ∩ S|, |X ∩ T | ≥

ηn/2 (sometimes these conditions on X may be violated, then we assume that the

algorithm returns a solution A, but the cut (A,X \ A) may be arbitrarily bad). By

Theorem 5.7, the Balanced Cut algorithm finds a cut of sparsity at most CSCεn with

probability exponentially close to 1 unless the graph G does not satisfy the “strong

geometric expansion” property described in Theorem 4.8, part II. This happens with

probability o(1); and in this case, the partition recovering algorithm described below

fails as well.

89

We introduce a potential function f that measures the quality of a partition

(X, Y):

f(X, Y) = CSCεnmin(|X|, |Y |)− |E(X, Y)|. (5.7)

The algorithm presented below tries to maximize f by finding non-expanding subsets

A in X and moving them to Y and finding non-expanding subsets B in Y and moving

them to X.

Algorithm. The algorithm first finds an approximate sparsest cut (X0, Y0) in

G using the Sparsest Cut algorithm for semi-random graphs. Then, it repeats the

following refinement procedure: find approximate sparsest cuts (A,Xt \ A) in the

graph G[Xt] and (B, Yt \B) in the graph G[Yt] using the Sparsest Cut algorithm for

semi-random graphs and

• if f(Xt \A, Yt∪A) ≥ f(Xt, Yt)+ 1
4
, move A from Xt to Yt i.e., set Xt+1 = Xt \A

and Yt+1 = Yt ∪ A; otherwise,

• if f(Xt∪B, Yt \B) ≥ f(Xt, Yt)+ 1
4
, move B from Yt to X i.e., set Xt+1 = Xt∪B

and Yt+1 = Yt \B.

The order in which the algorithm considers the cases above does not matter. After

each iteration the algorithm increases the counter t. The algorithm stops and outputs

the cut (Xt, Yt), when neither moving A from X to Y , nor moving B from Y to X

increases f(X, Y) by at least 1
4
.

Analysis. Notice that the number of iterations of the algorithm is polynomial,

since f(X, Y) is upper bounded by CSCεn
2, lower bounded by −|E|, and at every

iteration (but last) f is increased by at least 1
4
. Thus, the algorithm runs in polynomial

time. To prove that the algorithm works correctly, we need to show that the algorithm

does not stop till (Xt, Yt) is η-close to the planted solution (S, T) i.e., till |Xt4S| ≤ ηn

or |Yt4S| ≤ ηn.

90

We first prove that f(Xt, Yt) is positive for every t. The Sparsest Cut al-

gorithm finds a cut (X0, Y0) of sparsity at most CSCεn, hence f(X0, Y0) ≡

CSCεnmin(|X0|, |Y0|) − |E(X0, Y0)| > 0. Since the sequence f(Xt, Yt) is increasing,

f(Xt, Yt) is positive for every t. Consequently, the sparsity of every cut (Xt, Yt) is at

most CSCεn.

We show that every relatively small set in G expands.

Claim 5.10. For every set U ⊂ V of size at most 2ρn/3, E(U, V \U) ≥ Cexpεn|U |/2.

Proof. Since h(G[S]) ≥ Cexpεn, we have

E(U ∩ S, S \ (U ∩ S)) ≥ Cexpεn ·min(|U ∩ S|, |S \ (U ∩ S)|)

≥ Cexpεn|U ∩ S|/2,

where the second inequality follows from |U ∩ S| ≤ 2ρn/3 ≤ 2(|S| − |U ∩ S|) =

2|S \ (U ∩ S)|. Similarly,

E(U ∩ T, T \ (U ∩ T)) ≥ Cexpεn|U ∩ T |/2.

Thus, E(U, V \ U) ≥ Cexpεn|U |/2.

As a corollary, we get that |Xt| ≥ 2ρn/3 and |Yt| ≥ 2ρn/3 for every t (otherwise,

the sparsity of the cut (Xt, Yt) would be large). To argue that the Sparsest Cut

algorithm finds a CSCεn sparse cut in G[Xt] or G[Yt], we need to prove the following

claim.

Claim 5.11. Suppose that the partition (Xt, Yt) is not ηn close to the planted partition

(S, T) i.e., |Xt4S| = |Yt4T | > ηn and |Xt4T | = |Yt4S| > ηn, then one of the

following two statements holds:

• |Xt ∩ S| ≥ ηn/2 and |Xt ∩ T | ≥ ηn/2; or

91

• |Yt ∩ S| ≥ ηn/2 and |Yt ∩ T | ≥ ηn/2.

Proof. The set Xt is covered by S and T , and thus |Xt ∩ S| ≥ |Xt|/2 or |Xt ∩ T | ≥

|Xt|/2. Assume that |Xt ∩ S| ≥ |Xt|/2. Then |Xt ∩ S| ≥ |Xt|/2 ≥ ρn/3 ≥ ηn. If

also |Xt ∩ T | ≥ ηn/2, we are done. Otherwise, |Xt ∩ T | ≤ ηn/2, and |Xt \ S| =

|Xt ∩ T | ≤ ηn/2. Consequently, |Yt ∩ S| = |Xt4S| − |Xt \ S| ≥ ηn − ηn/2 = ηn/2.

Also, |Yt ∩ T | = |T | − |Xt ∩ T | ≥ ρn− ηn/2 ≥ ηn.

The case |T ∩Xt| ≥ |Xt|/2 is handled similarly. (Note that we have not used in

the proof that |S| ≤ |T |; we only used that |T | ≥ ρn.)

Apply Claim 5.11 and suppose without loss of generality that |Xt∩S| ≥ ηn/2 and

|Xt∩T | ≥ ηn/2. Then, the set Xt is partitioned in two pieces Xt∩S and Xt∩T each

of size at least ηn/2. Thus (as discussed in the beginning of the proof), the Balanced

Cut algorithm finds a cut (A,Xt \A) (where |A| ≤ |Xt|/2) of sparsity at most CSCεn.

We now show that the cut (A, V \ A) is large.

Claim 5.12. Suppose that the graph G is partitioned into three non-empty sets U1,

U2, U3, then one of the sets Ui has large expansion: for some i,

E(Ui, V \ Ui) ≥ Cexpεn|Ui|.

Proof. Observe that for one of the sets Ui, |Ui ∩S| ≤ |S|/2 and |Ui ∩ T | ≤ |T |/2. For

this set, E(Ui ∩ S, S \ Ui) ≥ Cexpεn|Ui ∩ S| and E(Ui ∩ T, T \ Ui) ≥ Cexpεn|Ui ∩ T |.

Hence, E(Ui, V \ Ui) ≥ Cexpεn|Ui|.

Consider the partition of G into three sets Xt ∩ A, Xt \ A and Yt. One of them

has expansion Cexpεn. It cannot be the set Yt, since the expansion of Yt is at most

92

CSCεn. Then,

E(Xt \ A,V \ (Xt \ A)) ≤ E(Xt, Yt) + E(Xt \ A,A)

≤ CSCεn|Xt|+ CSCεn|A|

≤ 3CSCεn|Xt \ A| < Cexpεn|Xt \ A|.

Thus the set with expansion at least Cexpεn is A, that is, E(A, V \ A) ≥ Cexpε|A|n.

Estimate the change in the potential function f after moving A from Xt to Yt:

f(Xt \ A, Yt ∪ A)− f(Xt, Yt) ≥ −CSC |A|εn−
(
E(A,Xt \ A)

− E(A, Yt)
)

= −CSC |A|εn− E(A,Xt \ A)

+ (E(A, V \ A)− E(A,Xt \ A)) = −CSC |A|εn

− 2E(A,Xt \ A) + E(A, V \ A) ≥ −CSC |A|εn

− 2CSCε|A|n+
3

4
Cexpε|A|n+

1

4
E(A, V \ A)

=
1

4
E(A, V \ A) ≥ 1

4
.

93

Chapter 6

Graph Partitioning under

Stability: Spectral expanders

In the previous chapters, we have seen how we can get much better approximation

algorithms for basic graph partitioning problems in the average-case: the semi-random

instances we considered in Chapter 4 and Chapter 5 have the property that the edges

EK crossing the boundaries of a hidden partition P satisfy a structural property

(geometric expansion), which we can exploit.

In their recent exciting work, Balcan, Blum and Gupta [17] ask if we can design

better algorithms, if we assume that even approximately optimal solutions are close

to the target. To reiterate Question 3,

Question 3. Can we design better approximation algorithms, if we assume that the

instance has a unique optimal solution with stability?

Balcan et al. [17] applied the stability assumption to metric clustering problems

like k-means or k-median, and designed PTAS for these problems, when only O(1)

factor approximations were known in the worst-case 1. One of the main questions

they left open was

1In fact, the k-median problem is known to be APX-hard to approximate [84] in the worst-case

94

Question 4. [17, 16] Can we design O(1) approximations for graph partitioning

problems like Sparsest Cut under the stability assumption?

In Section 5.5, we saw how such a stability assumption in semi-random instances

actually allows us to even recover the optimal solution (target) upto any accuracy. In

this chapter, we will see how we can design O(1) approximations for graph partitioning

problems under some (strong) stability assumptions, even when the instance is not

semi-random.

We obtain good approximation algorithms for Balanced Cut and Small Set Ex-

pansion, when the edges ẼK not crossing the partition boundaries satisfy an algebraic

expansion condition. In particular, if the expansion given by the planted partition

P (whose edges are ẼK) is ε, then we need that the normalized algebraic expansion

(see 2.9 for details) of the subgraphs inside the partitions (say, G|P1) is larger than

ε. The famous Cheeger’s inequality Lemma 2.10 relates the algebraic expansion to

combinatorial expansion: when the combinatorial expansion of the subgraph G|P1 is

large enough (stability), then they have sufficient algebraic expansion to fit into our

setting.

This is a much weaker condition than edges of ẼK being chosen independently at

random. More crucially, in this case, the edges EK can be arbitrary. Our algorithms

are inspired by the results of [11, 68], where they infer global correlations between

the vectors from local correlations and algebraic expansion. We first define our model

more formally.

Definition ((same as 3.5) Planted Spectral Expander). We are given a graph G =

(V,E) on n vertices with a “planted” bisection P = {P1, P2} having |P1| ≤ |P2| (not

known to the algorithm) of cut value at most εm and a parameter C ′ > 1. G is a

Planted Spectral Expander if it satisfies:

• A subset of its edges E1 ⊆ E(G|P1) has size m.

95

• the graph G′ = (P1, E1) is a regular expander with a (normalized) algebraic

expansion2 λ(G′) > C ′ε.

Note that in the definition of a Planted Spectral Expander, for Balanced Cut we

only need one of the subgraphs G|P1 or G|P2 to satisfy the required properties. We

now present the O(1)-approximations in the Planted Spectral Expander model, when

the parameter C ′ is a large enough constant. We will also see how this implies O(1)

factor approximations under strong stability assumptions.

6.1 Balanced Cut

We will in fact show the following stronger theorem:

Theorem 6.1 (Balanced Cut). There is a polynomial-time algorithm, that given a

graph G = (V,E) on n vertices with a “planted” bisection P = {P1, P2} (not known

to the algorithm) of cut value εm, such that for some subset of edges E1 ⊂ E of size

|E1| = m, the graph G1 = (P1, E1) is a regular expander with a (normalized) algebraic

expansion λ(G1) > 64ε, finds a balanced cut of sparsity O(ε).

Proof. Consider the Balanced Cut SDP used in Section 4.4. Since this is a relaxation,

the SDP value SDP ≤ εm. In particular,

1

2
sdp-cost(u→ ū, E1) ≡ 1

4

∑
(u,v)∈E1

‖ū− v̄‖2 ≤ εm,

and, since |E1| = m,

1

4
E(u,v)∈E1

[
‖ū− v̄‖2

]
=

1

4|E1|
∑

(u,v)∈E1

‖ū− v̄‖2 ≤ ε.

2eigenvalue gap of the normalized Laplacian (see 2.9)

96

For the regular graph G1, we have

λ(G1) ≡ min
{ū}u∈V

E(u,v)∈E1 [‖ū− v̄‖2]

Eu,v∈P1 [‖ū− v̄‖2]
,

thus

1

4
Eu,v∈P1

[
‖ū− v̄‖2

]
≤ ε

λ(G1)
<

1

64
.

Hence, there exists u∗ ∈ P1 such that Ev∈P1 [‖ū∗ − v̄‖2] ≤ 1/16. Denote d(u, v) =

‖ū− v̄‖2. By Markov’s inequality,

|Balld(u
∗,

1

8
) ∩ P1| ≥

|P1|
2

=
n

4
.

On the other hand, |Balld(u
∗, 1/4)| < 4/5 n (as shown in Section 4.4).

We are ready to describe the algorithm: The algorithm guesses the vertex u∗ and

picks a ball S = Balld(u
∗, r) of radius r ∈ [1/16, 1/4] around u∗ with the smallest

edge boundary. The cost of the cut (S, V \ S) is at most 32 · SDP , and (since

Ball(u∗, 1/16) ⊂ S ⊂ Ball(u∗, 1/4)),

n

8
≤ |S| ≤ 4n

5
.

This immediately leads to the following corollary:

Corollary 6.2 (Balanced Cut). There is a polynomial-time algorithm, that given a

graph G = (V,E) which is a planted spectral expander with parameter C ′ > 64, finds

a balanced cut of sparsity O(ε).

The following corollary to Theorem 6.1 shows how we can obtain O(1) approxi-

mations under strong stability assumptions.

97

Corollary 6.3 (Balanced Cut under Stability). There is a polynomial-time algorithm,

that given a graph G = (V,E) on n vertices with a “planted” bisection P = {P1, P2}

(not known to the algorithm) of cut value εm, such that if for some subset of edges

E1 ⊂ E of size |E1| = m, the graph G1 = (P1, E1) is a regular expander with conduc-

tance Φ(G1) > C
√

128ε, finds a balanced cut of sparsity O(ε).

Proof. G1 is a regular expander with Φ(G1) > C
√

128ε. By Cheeger’s inequality

Lemma 2.10, we have

λ(G1) ≥ Φ(G1)2/2 > 64ε

as required for Theorem 6.1.

6.2 Small Set Expansion

The algorithm and guarantees for Small Set Expansion follow a similar approach. Let

P1 be the side of the partition with the required properties. The main difficulty for

Small Set Expansion is that the set S may contain vertices from P2 and, moreover,

it may cut many edges in E(P2 ∩ S, V \ S). However, we overcome this issue using

an additional Linear programming relaxation as in Section 5.3.

Theorem 6.4 (Small Set Expansion). There is a randomized polynomial-time al-

gorithm, that given a graph G = (V,E) with a “planted” partition P = {P1, P2}

(|P1| = ρn) (not known to the algorithm) with E(P1, P2) ≤ εm such that for some

subset of edges E1 ⊂ V of size |E1| = m, the graph G1 = (P1, E1) is a regular ex-

pander with a (normalized) algebraic expansion λ(G1) > 16ε, finds a set S of size

ρn/4 ≤ |S| ≤ 2ρn with expected cost of the cut O(εm).

98

Proof. Let {ū}u∈V (G) be the solution of the C-SDP for the Small Set Expansion

considered in Section 5.3. Denote

SDP|P1 = sdp-cost(u→ ū, E1) ≡ 1

2

∑
(u,v)∈E1

‖ū− v̄‖2.

Since SDP is P1-local relaxation of P , SDP|P1 ≤ OPT ≡ εm (see Lemma 5.5).

We first proceed similarly to the proof of Theorem 6.1. Write,

λ ≡ min
{ū}u∈V

E(u,v)∈E1 [‖ū− v̄‖2]

Eu,v∈P1 [‖ū− v̄‖2]
,

then

Eu,v∈P1

[
‖ū− v̄‖2

]
≤
SDP|P1

λ(G1)
≤ OPT

λ(G1)
≤ 1

16
.

Hence, there is a vertex u∗ ∈ P1, such that

Ev∈P1

[
‖ū− v̄‖2

]
≤ 1/16.

Let d(u, v) = ‖ū − v̄‖2. By the SDP spreading constraint (as shown in Section 5.3),

Balld(u
∗, 1

4
) ≤ 8/7 ρn.

Thus, for some radius r ∈ [1/16, 1/4] (the algorithm can guess u∗ and r by con-

sidering all possibilities), the set S = Balld(u
∗, r) contains at least |P1|/2 vertices

from P1, but at most 8/7 ρn vertices in total. Furthermore, the cost of the cut

E(P1 ∩ S, V \ S) is at most 32OPT .

The main difference in this proof (as opposed to the proof of Theorem 6.1 is

that the set S may contain vertices from P2 and, moreover, it may cut many edges

in E(P2 ∩ S, V \ S). However, we have already dealt with a similar problem in

Section 5.3. We use the LP (from the proof of Theorem 5.4, Case 2) to extract solution

of cost at most O(OPT) from S. The LP is feasible with LP value at most O(OPT),

99

because one integral “canonical” solution exists: it is the set S ′ = P1 ∩ S. Indeed,

E(P1∩S, P2∩S) ≤ E(P1, P2) ≡ OPT , and thus E(P1∩S, V \(P1∩S)) ≤ 33OPT .

This immediately leads to the following corollary

Corollary 6.5 (Small Set Expansion). There is a polynomial-time algorithm, that

given a graph G = (V,E) which is a planted spectral expander that has a “planted”

partition P = {P1, P2} (|P1| = ρn) and the parameter C ′ > 64, finds a set S of size

ρn/4 ≤ |S| ≤ 2ρn with expected cost of the cut O(εm).

The following corollary of Theorem 6.4 shows how we can obtain O(1) approxi-

mations under strong stability conditions.

Corollary 6.6 (Small Set Expansion under Stability). There is a randomized

polynomial-time algorithm, that given a graph G = (V,E) with a “planted” partition

P = {P1, P2} (|P1| = ρn) (not known to the algorithm) with E(P1, P2) ≤ εm such

that for some subset of edges E1 ⊂ V of size |E1| = m, the graph G1 = (P1, E1)

is a regular expander with conductance Φ(G1) > C
√

128ε, finds a set S of size

ρn/4 ≤ |S| ≤ 2ρn with expected cost of the cut O(εm).

Proof. G1 is a regular expander with Φ(G1) > C
√

128ε. By Cheeger’s inequality

Lemma 2.10, we have

λ(G1) ≥ Φ(G1)2/2 > 64ε

as required for Theorem 6.4.

100

Chapter 7

Densest k-subgraph: an

Average-Case Study

In the last few chapters, we have seen how we can obtain better approximation guar-

antees by considering realistic average-case models : such algorithms show that these

problems can be much easier in practice, than in the worst case. In the rest of thesis,

we will focus on the Densest k-subgraph problem1, a fundamental combinatorial

problem which is notorious for its poor understanding from both algorithmic and in-

approximability perspectives (please see Section 1.1.2 for details about its definition

and history). Here, we will see that the guarantees that we can obtain in the worst-

case will be identical to the best guarantees in the average-case. In fact, we will see

how algorithms that we develop for a natural average case model can be translated

systematically to algorithms for the worst-case which achieve the state-of-the-art al-

gorithms for Densest k-subgraph: an approximation ratio of (roughly) n1/4. This

average-case study of Densest k-subgraph will also help capture the extent of cur-

rent algorithmic approaches for the problem. This suggests that the approximability

of the problem is similar from both worst-case and average-case perspectives.

1given a graph G and a parameter k, find the subgraph on at most k vertices with highest density
(or the most number of edges)

101

Densest k-subgraph is closely related to two problems of very different complexity.

If we remove the size restriction, we have the problem of finding the subgraph in G of

maximum density — one that has a polynomial time algorithm [43, 27]. On the other

hand, the k-clique problem 2 is a famous NP -hard problem (in fact, Max Clique

can not be approximated within n1−o(1) factor unless P = NP). The main challenge

for Densest k-subgraph seems to arise from the size constraint : the difficulty

involved in identifying a small dense subgraph, in a graph which otherwise does not

contain dense subgraphs. This inspires the average-case models we will study in this

chapter.

The average-case models for DkS are reminiscent of the well-studied average-case

variant of k-Clique : the Planted Clique problem [3, 41]. Here, we need to find

a clique of size k that is planted inside a random graph drawn from G(n, 1/2) (the

largest clique in G(n, 1/2) is of size 2 log n with high probability). The best known

algorithms use spectral techniques to identify planted cliques of size Ω(
√
n).

In this chapter, we will first study average-case models for Densest k-subgraph,

with increasing levels of generality, leading up to the Planted DkS model that forms

the heart of our approach. We will then develop counting-based algorithms for the

Planted DkS model, which will directly inspire our worst-case algorithms in Chapter

8.

7.1 Average Case Models for Densest k-subgraph

Random graphs have no dense subgraphs. In a G(n, p) random graph, every k-

subgraph has density (average degree) Õ(kp) with high probability. Any potential

algorithm for DkS should be able to certify that random graphs have no dense k-

subgraph, and better still identify a dense k-subgraph planted inside such a random

2The corresponding optimization problem Max Clique involves finding the largest clique in G

102

graph. This defines a natural average-case problem: the task is to distinguish between

a random graph and a random graph with a dense k-subgraph planted inside it.

We will explore two different models, of increasing generality, depending whether

the dense k-subgraph is random or arbitrarily chosen. The Random model is the

simplest model, and it will motivate the notion of log-density, which will play a

crucial role in understanding algorithms for DkS. This is analogous to the random

planted models for graph partitioning [70]. Then, we will study the Planted DkS

model and design the counting-based algorithms which will also form the basis for

the worst-case algorithms. The Planted DkS model will allow adversarial choices in

the choice of the dense k-subgraph, and hence, this can be seen as a semi-random

model for DkS.

7.1.1 The Random Planted Model

The simplest setting is one where both the planted graph and the ambient graph are

random:

Definition 7.1 (Random Planted Model). Distinguish between:

• D1: Graph G is picked from G(n, p).

• D2: G is picked from G(n, p) as before. A set S of k vertices is chosen arbi-

trarily, and the subgraph on S is replaced with a random graph H from G(k, q)

on S.

To distinguish these two distributions, one approach is look for constant size

subgraphs L which act as ‘witnesses’. If G ∼ D1, we want that w.h.p. G will not have

a subgraph isomorphic to L, while if G ∼ D2, w.h.p. G should have such a subgraph.

Question 5. For what parameters p, q does this approach work?

103

Here, we exploit the well-known threshold phenomenon for presence of subgraphs

in random graphs. If a graph G ∼ G(n, p = n−θ), standard probabilistic analysis

(cf. [4]) shows that there exist constant size graphs H on `1 vertices and with `2

edges3 (for example, K5 is a witness for θ = −1/2) such that if α < −`1/`2, then

G will not contain any copy of L (no subgraph isomorphic to L) w.h.p, whereas

if α > `1/`2, then G will have at least one copy of L. This motivates the following

simple notion of log-density, which will play a crucial role in understanding the extent

of algorithms for DkS over the next few chapters:

Definition 7.2 (Log-density). A graph on n vertices has log-density δ, if its average

degree is nδ.

By using the above-outlined approach of counting constant-sized subgraphs, we

can distinguish (with high probability) between the following two distributions when-

ever α, β are constants with 0 ≤ α < β ≤ 1:

1. D1 : Random graph on n vertices of log-density α i.e. G(n, p = nα/n).

2. D2 : Random graph on n vertices with some subgraph on k-vertices replaced by

a random graph H of log-density β i.e. G(k, q = kβ/k) (this we refer to as the

planted k-subgraph).

The algorithm will pick constants r, s with α < r/s ≤ β, use a witness on (s − r)

vertices and with s edges.

Observe that for G ∼ D1, a k-subgraph would have expected average degree

kp = knα−1. Further, it can be shown that densest k-subgraph in G will have average

degree max{knα−1, 1}, w.h.p. Thus if we can solve the above distinguishing problem

Def. 7.1, its ‘distinguishing ratio’ would be minβ(kβ/max{knα−1, 1}), where β ranges

over all values for which we can distinguish (for the corresponding values of k, α). If

3Most “symmetric” graphs on `1 vertices, with `2 edges will work.

104

this is the case for all β > α, then (as follows from a straightforward calculation), the

distinguishing ratio is never more than

kα

max{knα−1, 1}
= min

{(n
k

)1−α
, kα
}

= nα(1−α) ·min

{(
n1−α

k

)1−α

,

(
k

n1−α

)α}

≤ nα(1−α)

≤ n1/4.

The algorithms for random planted model above, though interesting, does not

lead to algorithms which work for the general DkS problem. In particular, if the

planted k-subgraph were an arbitrary graph of log-density β, simply looking for the

occurrence of subgraphs need not work, as the planted graph could be very dense

and yet not have the subgraph we are looking for (for example, a complete bipartite

graph will not have any triangles or odd-cycles). This leads us to the more general

average-case model where the planted dense k-subgraph is adversarially chosen.

7.1.2 Planted DkS: Dense vs Random model

In the random planted model, we saw that when can detect higher log-densities i.e.

a random graph of log-density δ has a random k-subgraph of higher log-density > δ

(average degree kδ+ε), then we can detect it. Here we ask:

Question 6. Can we detect arbitrary k-subgraphs of higher log-density inside a ran-

dom graph?

This leads to the following natural average-case model:

Definition 7.3 (Planted DkS model). We are given n vertices and parameters D

and d.

105

1. Generate G ∼ G(n, p = D/n).

2. Choose an arbitary set of k vertices S, and replace them by an arbitrary subgraph

H on k vertices, with average degree d.

The Planted DkS model can be viewed as a semi-random model because of the

adversarial choices incorporated in step 2. As before, we will try to solve the cor-

responding problem of distinguishing between a random graph and a random graph

with an arbitrary k-subgraph of larger density. Since our aim is a n1/4 approxima-

tion for DkS (or distinguishing ratio in this case), we will design algorithms for the

following problem:

Definition 7.4 (Planted DkS: Dense vs Random). Given n and a constant δ ∈ (0, 1),

distinguish between:

• D1: Random graph G of log-density δ i.e. G(n, p = nδ−1).

• D2: Random graph G of log-density δ with arbitrary planted k-subgraph of log-

density ≥ δ + ε for some small constant ε > 0 i.e., first pick G according to

D1, and then replace the subgraph on k of its vertices by an arbitary graph on

k vertices with density d = kδ+ε.

We will design an algorithm for this distinguishing problem that uses a more clever

counting of certain kinds of “witness structures”. We will ensure that a large number

of these witness structures will exists when there is any k-subgraph of log-density

> δ, whereas very few (polylogarthmic number) of them will exist in random graphs

of log-density δ with high probability.

106

7.2 Algorithms for Planted Densest k-subgraph

We now present the algorithm which identifies the presence of k-subgraphs of higher

log-density in the model we defined in Section 7.1.2. In fact our algorithms will work

for a stronger model, as stated in the following theorem.

Theorem 7.5. Let k be a given parameter which is (log n)ω(1), and 0 < δ < 1 be a

(given) constant. Then for any ε > 0, there exists a polynomial time algorithm that

can distinguish between

YES: G has a k-subgraph of density kδ+ε, and

NO: G is a random graph drawn from G(n, p), with p = nδ/n.

That is, we need a procedure that always outputs YES if G has a subgraph of the

specified density, and outputs NO on almost all graphs (of specified degree). Note

that we consider graphs with degree nδ for 0 < δ < 1, so the theorem does not say

anything about very dense graphs (like G(n, 1/2)). To simplify the presentation, we

may assume (please see Lemma 8.8) that the minimum degree in H is kβ as opposed

to average degree (this will greatly simplify the counting argument).

To overcome the problem with the algorithm in the previous section, we will use a

different kind of “local” witness that will involve special constant-size trees, which we

call templates. In a template witness based on a tree T , we fix a small set of vertices

U in G, and count the number of trees isomorphic to T whose set of leaves is exactly

U . The templates are chosen such that a random graph with log-density below a

threshold will have a count at most poly-logarithmic for every choice of U , while we

will show by a counting argument that in any graph (or subgraph) with log-density

above the same threshold, there exists a set of vertices U which coincide with the

leaves of at least nε copies of T (for some constant ε > 0). Let us now formally define

what we mean by local counting.

107

Definition 7.6 (Witness Template). 1. W = (W,L) is said to be a witness tem-

plate if (a) W is a tree, and (b) L is the set of leaves (vertices of degree 1) of

W .

2. An occurrence of W in graph G is a subgraph W ′ of G that is isomorphic to W .

W ′ is said to be supported on the vertices L ⊆ V (W ′) which are the images of

vertices in G under the isomorphism.

3. u ∈ G is a candidate for a node w ∈ W , if there exists an occurence of W such

that u is the image of w in the isomorphism.

The particular witness templates we will use are caterpillars (trees of depth 1).

Before they define them in general, let us look at the example when the log-density

is 2/3.

Example: log-density δ = 2/3. In this case, the template W we consider is the

tree K1,3 (a claw with three leaves). For any triple of vertices U , we count the number

of copies of W with U as the set of leaves – in this case this is precisely the number

of common neighbors of the vertices in U .

If G ∼ D1, with δ ≤ 2/3 (i.e. p = n−1/3)

E [Number of common neighbors for triple U] = n · p3 = O(1)

Hence, using standard concentration bounds followed by a union bound over all

triples, we can see that every triple of vertices has at most O(log n) common neigh-

bors.

For the planted k-subgraph H, however, the log-density is 2/3 + ε (average degree

d = k2/3+ε). There are k3 triples U supported in just H. The total number of

108

occurences W ′ of the structure, with all vertices in H is

Number of occurences of W = Ω(
∑
u∈H

dH(u)3)

= Ω(k · d3) by convexity

= Ω(k3+3ε)

Hence, there exists some triple in H with at least kε common neighbors. Since for

ranges of parameters of interest kε = ω(log n), we have a distinguishing algorithm.

Witness Templates for general δ. Let us now consider a log-density threshold

of r/s (for some relatively prime integers s > r > 0). The tree W we will associate

with the corresponding template witness will be a caterpillar – a single path called

the backbone from which other paths, called hairs or leaves, emerge. More formally,

Definition 7.7 (Witness W (r, s)). An (r, s)-caterpillar is a tree constructed induc-

tively as follows:

1. Begin with a single vertex as the leftmost node in the backbone.

2. For s steps, do the following:

• At step i, if the interval [(i − 1)r/s, ir/s] contains an integer, add a hair

of length 1 to the rightmost vertex in the backbone.

• Otherwise, add an edge to the backbone (increasing its length by 1).

Let B = {b1, b2, . . . } denote the vertices on the backbone.

Figure 7.1 on page 110 shows some examples of caterpillars for various values of

δ. We also call the end-points of the hair steps as leaves, and the backbone vertices

also as internal vertices. We now make a few simple, yet important observations:

Observation 7.8. In the notation of Def. 7.7, we have

109

Figure 7.1: Caterpillar structures W (r, s) for different values of r and s

• The first and last steps are always hair steps.

• There are r + 1 leaves (hair steps) and s− r vertices in the backbone.

• The number of hair steps encountered in the first t steps is btr/sc+ 1.

Lemma 7.9. In the notation of Def. 7.7, the structure W (r, s) is symmetric i.e. if

tth step is a hair step iff the (s+ 1− t)th step is a hair step.

Proof. First, observe that this is true for t = 1, because the first and last steps are hair

steps. Further, t is a hair step iff there is an integer a such that (t− 1) · r
s
< a < t · r

s
.

Then (t− j) · r
s
< t+ 1− a < (t− j + 1) · r

s
.

The distinguishing algorithm is in fact a set of algorithms which are parameterized

by r, s. Given an input of log-density δ, we choose the algorithm corresponding to

the witness template W (r, s) satisfying δ ≤ r/s < δ + ε.

110

DistinguishRandom DRr,s

• For all L ⊆ V (G) with |L| = r + 1,

– Count the number of occurrences of structures W (r, s) in G which

are supported on L.

– If this count is greater than logs−r n, declare YES.

• Else declare NO.

Note that the algorithm has a running time of ns−r, which is polynomial for any

fixed rational number δ.

These are not the only template witnesses that can be used for distinguishing for

a particular δ, but they turn out to be useful when we consider the general case. Also,

they have some properties that help in analyzing the distinguishing algorithm: for

instance, they are ‘symmetric’ (see Lemma 7.9), which will help us bound the number

of such structures in a random graph.

7.3 Analyzing the algorithm

To prove the correctness of the algorithm, we need to prove the following two the-

orems. The first one establishes that for the correct choice of r, s, for every choice

of (r + 1)-sized tuple in the random graph will have few occurence of the template

W (r, s). This forms the bulk of the technical content to show the correctness of

the algorithm. The second theorem shows that when there is a tuple in the dense

k-subgraph which has many occurence of the witness W (r, s).

Theorem 7.10. Let G be a G(n, p) random graph with log-density δ (p = nδ−1) and

let δ ≤ r/s. Then for any set L ⊆ V of size r + 1, the number of occurrences of

W (r, s) supported on L is at most O(logs−r n) with high probability.

111

Theorem 7.11. Suppose H is a graph on k vertices with average degree d ≥ kδ+ε for

some constant ε > 0. If r/s < δ + ε, then there exists a set L of size r+ 1 in H such

that the number of occurrences of W (r, s) supported on L is at least kε.

Since we are interested in k super-logarithmic, when G has a dense enough k-

subgraph, Theorem 7.11 ensures that the algorithm always outputs YES.

Let us start with some observations and definitions.

In what follows, fr(x) = x− bxc is the fractional part of x.

We first show the proof of the simpler theorem, which gives the lower bound on

the number of structures.

7.3.1 Proof of Theorem 7.11

The proof is by a simple counting argument. Note that we may assume that the

minimum degree is Ω(d), because we can just remove the vertices of degree < d/4

and work with the remaining graph (see Lemma 8.8). For now suppose the minimum

degree is d.

Let us count the total number of structures W (r, s) in the graph. We do this as

follows: view the tree as being rooted at b1 – we have k choices for this, then we will

move along the tree in a breadth first manner, filling the vertices. At an intermediate

vertex v during this process, we have to choose d(v) − 1 vertices for the next level.

Our structure needs distinct vertices of G, and since the degree of any vertex in G is

at least d, there are at least d− |r| > d/2 neighbors that are not in any of the slots.

So there are at least (d/2)d(v)−1 ways of filling the slots neighboring v.

Proceeding this way, it follows that the number of tuples after fixing a root is at

least (d/2)s, where s is the number of edges in W (r, s). Since s is a constant, it follows

that the total number of structures is Ω(kds), and kds = k · k1+r+sε > kr+1 · ksε. Now

r + 1 is precisely the number of leaves in W (r, s), and each tree is supported on one

112

of the kr+1 leaf tuples. Thus some tuple has ksε structures supported on it, finishing

the proof.

7.3.2 Proof of Theorem 7.10

Outline.

The structure W (r, s) has a backbone of size s− r and r+1 leaves (hairs) distributed

among these s − r backbone vertices (internal vertices). We bound the number of

structures supported on any fixed set of leaves by showing that having fixed the set

of leaves, the number of candidates for each internal vertex (backbone vertex) bj is

bounded by O(log n). Hence, for any fixing of the leaves (hairs), the number of copies

of the template supported on it is O(logs−r n).

We now concentrate on showing that for every fixing of all the leaves, the number

of each internal vertex is bounded. We do this as follows: inductively, for any prefix

Zt (the first t steps) of the template W (r, s) we will bound the “number of candidates”

for the rightmost backbone vertex of Zt after fixing the leaves of Zt. We will show

that this quantity is roughly nfr(tr/s) with high probability. Since, the structure is

symmetric (see Lemma 7.9), we can also achieve a similar bound from the right i.e.

for every suffix of W (r, s). The template witness structure is chosen such that for

δ ≤ r/s, we have that these two upper bounds will combine to show that for every

internal vertex, the number of candidates in O(1) in expectation and O(log n) with

high probability.

Upper bounding the number of candidates.

Let us fix the leaves to be L = {v0, v1, . . . , vr}. From Observation 7.8, we know that

among the first t steps, we have btr/sc hair steps (leaves).

Definition 7.12. In the notation of Def. 7.7, given parameters r, s

113

• Prefix Zt of the caterpillar template W (r, s) is the subgraph of W (r, s) defined

by the first t steps of the inductive process given in Def. 7.7.

• For each t = 1, . . . , s, we denote by S(t) the set of candidates for the rightmost

backbone vertex in prefix Zt, after fixing the leaves of Zt to be v0, v1, . . . , vbtr/sc.

We begin by bounding the number of candidates for the rightmost backbone ver-

tex of Zt. However, counting näıvely would involve random variables which are

not independent. We get around this by assuming that V (G) is partitioned in to

V1, . . . , Vj, . . . V(s−r), and bound only the number of structures with the property that

the backbone (internal) vertex bj is from Vj. If there are many structures supported

on L, and the partitioning is done randomly, this number will also be large w.h.p.

This is due to the “color coding” trick of Alon, Yuster and Zwick [5].4

In each backbone step the expected number of candidates increases by a factor of

np = D, whereas for each hair step, the expected number of candidates goes down

by a factor of p = D/n. The structure of the witness template was chosen in such a

way that for np = nr/s (the correct log-density), the expected number of candidates

|Sv0,...,vbtr/sc(t)| = nfr(tr/s). For 1 < t < s, this number is always in [nε
′
, n1−ε′] for some

small constant ε′ > 0 (since r and s are co-prime). The following lemma in fact shows

that this number is concentrated around its expectation i.e. nfr(tr/s):

Lemma 7.13 (Inductive upper bound on candidates). Suppose G is drawn from

G(n, p), with p ≤ nr/s−1. Then for every 1 ≤ t ≤ s, every sequence of vertices

Ut = v0, . . . , vbtr/sc, we have with high probability (over the randomness in the input)

|Sv0,...,vbtr/sc(t)| ≤ nfr(tr/s)(1 + o(1)). (7.1)

4Roughly, the color coding theorem says the following: suppose we randomly color the vertices of
a graph G with C colors. Suppose G has M copies of some structure W that has C vertices. Then
w.h.p. there exist M/CC ‘colorful’ copies of L (a copy is said to be colorful if each vertex in W has
a different color).

114

Proof. We will show this inductively, like the construction of the template.

Base case t = 1. We know from Obs.7.8 that the first step is a hair (leaf) step.

The prefix Z1 consists of just one leaf and the internal vertex b1. Now, after fixing

the leaf to be v0, the candidates b1 are just neighbors of v0.

Hence |Sv0(t = 1)| ≤ (1 + o(1))np = (1 + o(1))nr/s, as required.

Inductive claim. Let us assume that the statement is true for all t′ ≤ t− 1.

We have two cases depending on whether step t is a hair step or a backbone step.

Case 1: Step t is a hair(leaf) step. Since step t is a hair step, the interval

[(t − 1)r/s, tr/s] contains an integer: this has to be d(t − 1)r/se (since t ≤ s). The

candidates S(t) are precisely those candidates for S(t−1) which are also neighbors of

vbtr/sc. Since the leaves are all disjoint, events involving the leaf vbtr/sc are independent

of the all previous events (till step t− 1). Hence,

Pr [u ∈ S(t)] ≤ Pr [u ∈ S(t− 1)] · Pr
[
(u, vbtr/sc) ∈ E(G)

]
For u ∈ S(t − 1), let Xu denote the event that (u, vbtr/sc) ∈ E(G). Hence for

u ∈ S(t − 1), Xu = 1 with probability p and 0 with probability 1 − p. Further,

|S(t)| =
∑

uXu.

Each of the events Xu are independent, and the expectation of this quantity

E [|S(t)|] = |S(t− 1)| · p

≤ (1 + o(1))nfr((t−1)r/s) · nr/s−1

= (1 + o(1))nfr(tr/s)

The last equality is true since the interval [(t− 1)r/s, tr/s] contains an integer.

115

As we have seen earlier, nfr(tr/s) ∈ [nΩ(1), n1−Ω(1)]. Hence, by Chernoff bounds with

high probability, ∑
u

Xu = |S(t)| ≤ (1 + o(1))nfr(tr/s)

Case 2: Step t is a backbone step. Since step t is a backbone step, Zt has the

same set of leaves as Zt−1. So, b(t−1)r/sc = btr/sc and fr(tr/s) = fr((t−1)r/s)+r/s.

Let bj−1 and bj be the righmost backbone vertices of Zt−1 and Zt respectively.

Hence, the candidates S(t) are precisely the neighbors of the candidates for the

previous backbone vertex bj−1 i.e. Γ
(
S(t− 1)

)
which are in Vj.

For u ∈ Vj, let Xu denote the event that ∃v ∈ S(t − 1) such that (u, v) ∈ E(G).

Hence, if Xu = 1, u is in the candidate set S(t).

Pr [Xu = 1] = Pr [∃v ∈ S(t− 1) : (u, v) ∈ E(G)]

By the color-coding trick, Vj is disjoint from the candidates for the previous back-

bone vertices, and in particular, S(t− 1).

Pr [Xu = 1] ≤ p · |S(t− 1)|

≤ (1 + o(1))nr/s−1 · nfr((t−1)r/s) by inductive hypothesis

≤ (1 + o(1))nfr(tr/s)−1 since fr(tr/s) = fr((t− 1)r/s) + r/s

Again, since the events {Xu}u∈Vj are independent events, we see that
∑

uXu concen-

trates around its mean, by Chernoff bounds. Hence with high probability,

|S(t)| ≤ (1 + o(1))nfr(tr/s)

116

This completes the proof by induction.

We know from Lemma 7.9 that the witness template is symmetric. If S ′(t′) rep-

resents the set of candidate vertices for the position s + 1− t′ after having fixed the

leaves vr−b(s+1−t′)r/sc, vr−1, vr, then we have the following lemma by an identical proof:

Lemma 7.14. Suppose G is drawn from G(n, p), with p ≤ nr/s−1. Then for every

1 ≤ t′ ≤ s, every sequence of vertices Ut = vr, vr−1, . . . , vb(s+1−t′)r/sc, we have with

high probability (over the randomness in the input)

|S ′(t′)| ≤ nfr(t′r/s)(1 + o(1)). (7.2)

Completing the proof.

Let us denote by C(j) the set of candidates for the backbone vertex bj after having

fixed all the leaves v0, v1, . . . vr. We will see that the expected number of candidates

C(j) is O(1), and due to concentration, we can say that C(j) = O(log n) with high

probability.

Let t be the largest integer such that bj−1 is the rightmost vertex in the prefix tree

Zt. Similarly, let t′ ∈ [1, s] be the largest integer such that bj+1 is leftmost vertex in

the suffix Z ′s−t′ , and let Lj be the fixing of the leaves attached to backbone vertex bj.

Clearly s = t+ |Lj|+ t′ + 2 (s is the total number of steps).

For u ∈ Vj, let Xu be the indicator of the event u has an edge to each leaf in Lj

and that u has a neighbor in both S(t) and S ′(t′). Since Vj is disjoint from the set of

candidates for other backbone vertices, we have that

117

Pr [Xu = 1] = Pr [∃v ∈ S(t) : (u, v) ∈ E(G))] · Pr [∃v ∈ S ′(t′) : (u, v) ∈ E(G)]×

× Π`∈Lj Pr [(u, `j) ∈ E(G)]

≤ p|S(t)| · p|S ′(t′)| · p|Lj |

≤ p|Lj |+2 · |S(t)| · |S ′(t′)|

From Lemma 7.13 and Lemma 7.14, we have

|S(t)| ≤ nfr(tr/s)(1 + o(1))

|S ′(t′)|] ≤ nfr((t′r/s)(1 + o(1)).

Simplifying, we see that

Pr [Xu = 1] ≤ O(1)

Hence, E [|C(j)|] = O(1). Since the Xu are independent variables, by Chernoff

bounds, taking a union bound over all fixing of the r leaves, we see that C(j) =

O(r log n) w.h.p. Thus the number of structures is at most (r log n)s−r w.h.p., thus

finishing the proof of the theorem.

This shows that if G is a random graph with density at most nδ, then with high

probability, every subset S of V of size |G| has O(logl n) structures supported on it.

Distinguishing factor.

Our algorithms distinguish random graphs of degree nδ from graphs with k-subgraphs

of density kδ+ε. For fixed δ, we compute the distinguishing factor of our algorithms,

i.e. the ratio between the densities of the optimal k-dense subgraph solutions in the

YES and NO instances for which our algorithms succeed. For convenience, we ignore

118

log factors and ε here. For k ≤ n1−δ, the optimal density in the random case is

constant and the distinguishing ratio is kδ ≤ nδ(1−δ). For k = n1−γ where γ < δ,

the optimal density in the random case is nδ−γ. Hence the distinguishing ratio is

kδ/nδ−γ = nδ(1−γ)−δ+γ = nγ(1−δ) < nδ(1−δ), which is at worst n1/4.

7.3.3 SDP based approach

We have so far seen one way to distinguish random graphs of density nδ from graphs

with subsets of size k and density kδ+ε. The natural question is if this is some kind

of a lower bound. We now show that when k is sufficiently large (k >
√
n), a natural

SDP can can detect k subgraphs with density just above nδ/2, which turns out to be

smaller than kδ.

We now consider a natural SDP relaxation for the densest k subgraph problem

considered by Feige and Seltser [42], and show that this does better than the algorithm

presented earlier when k is bigger than
√
n. The SDP is as follows

maximize
∑

(i,j)∈E(G)Xij subject to∑
iXii = k∑

j Xij = kXii for all i

Xij ≤ Xii for all i, j

X � 0

This is a relaxation for the problem since it is easy to see that there exists an SDP

solution of value |E(H)|, where H is a k-subgraph. We now show that the SDP value

for a random graph is upper bounded by exhibiting a suitable dual solution.

Theorem 7.15. For a random graph G(n, p), the value of the SDP is at most k(nδ/2+

kn1−δ) w.h.p.

Proof. (of theorem 7.15) Let us consider the dual. We have the variables t, yi, zij

corresponding to the first, second and third constraints resp. The dual is

119

minimize kt subject to

U − A � 0

Uii = t− kyi −
∑

j zij for all i

Uij = yi + zij for all i, j

For a random graph, note that

d

n
J − A+ λ2I � 0

where J is the all-ones matrix (It is easy to see this considering two cases: the all

ones vector, and vectors orthogonal to it). Hence if we set yi = d
n
, t = λ2 + kd

n
and

the rest to 0, we get a feasible dual solution of value k2d
n

+ kλ2 ≤ k2 nδ

n
+ knδ/2. In

the last step, we used the fact that the second eigenvalue is at most
√
np w.h.p. This

completes the proof.

As an immediate corollary, we have

Corollary 7.16. The SDP described above can be used to distinguish between a

random graph G(n, p), with p = nδ/n and a graph with a k-subgraph of density

nδ/2 + knδ/n.

Proof. Observe that the second term is always smaller than kδ, while the first is better

for k >
√
n. Hence the SDP is better in this range.

120

Chapter 8

Worst-Case algorithms for Densest

k-subgraph

We now give a algorithm for worst-case Densest k-subgraph, which achieve the

same guarantees as in the average-case setting (Section 7.1.2). In fact, this algorithm

is directly inspired by the counting based algorithms in Section 7.2. We will actually

use a family of algorithms, each parameterized by integers r, s (as in Section 7.2) and

output the best k-subgraph found. The best algorithm will depend on the degree

(roughly log-density) — for a graph G with maximum degree D = nr/s (log-density

≤ r/s), we will use an algorithm corresponding to the (r, s)-caterpillar template as

in Section 7.2. The worst-case algorithm (for W (r, s)) will also depend roughly on

the number of occurences of the template witnesses W (r, s). However, our objective

is to find a dense k-subgraph and not just output YES/NO as in the distinguishing

problem. To this end, we will instead use the candidate sets of vertices S(t) (that was

used in the analysis of our average-case algorithm in Section 7.3) in our algorithm

to find the dense k-subgraph in the general case. To carry forth our intuition from

the algorithms for average-case to the worst-case, we will use a linear programming

121

relaxation (see Section 8.2.1). Our algorithm will have worst-case approximation ratio

of roughly n1/4:

Theorem 8.1. For any constant ε > 0, there is an algorithm which gives a O(n1/4+ε)

approximation for Densest k-subgraph and runs in time O(nO(1/ε)).

In fact, these worst-case guarantees will match the distinguishing ratio of our

average-case algorithm in Section 7.2. For the Planted DkS problem (average-case),

we give a family of algorithms parameterized by r, s whose guarantees can be stated

very succintly in terms of log-densities: in a graph G with log-density r/s (degree

nr/s), we can identify a k-subgraph H of log-density r/s + ε (degree kr/s+ε) in time

nO(r). Our main technical contribution is that a result of this nature can be proven for

the worst-case as well. We give a family of algorithms, parameterized by r, s whose

worst-case guarantees can be informally stated as follows (see Theorem 8.16 for a

more precise statement):

Theorem 8.2 (Informal). For relatively prime integers 0 < r < s, given a graph G

with maximum degree D = nr/s, which contains a k-subgraph H with average degree

d, our algorithm finds a k-subgraph of average degree Ω(d/D(s−r)/s) in time nO(r).

While the above statement does not particularly resemble our average-case guar-

antees in terms of log-densities, we can perform some simple pre-processing of the

graph to ensure that we restrict ourselves to the case when kD ≤ n (see Lemma 8.5),

in which case we get the following statement:

Corollary 8.3 (Detecting Log-densities (informal)). For relatively prime integers

0 < r < s, given a graph G having degree D = nr/s such that Dk ≤ n, which contains

a k-subgraph H with average degree d = kr/s+ε, our algorithm runs in time nO(r) and

finds a k-subgraph of average degree Ω(kε).

122

Hence, even in worst-case, we can recover a k-subgraph of log-density ε, if a graph

G of log-density δ has a k-subgraph H of log-density δ+ ε1 Before we proceed to our

algorithm, we present a few simplifications (with proof), which will be useful for ease

of exposition.

8.1 Simplifications

We present here a few simplifying assumptions which can be made with at most a

constant factor loss in the approximation guarantee.

8.1.1 The Greedy Algorithm

It would be convenient for us to view G as a graph with maximum degree D rather

than average degree D. For random graphs, maximum and average degrees are

roughly the same. But for general graphs, they are not. In our context, it will

be possible to think of D as the maximum degree, without losing any benefits that

one may obtain by having D also be the average degree. The only use that we have

for D being an average degree rather than maximum degree is that we can claim that

G necessarily has a k-subgraph with average degree Dk/n (a random subgraph will

do in expectation). The following argument, which is taken from [40] (Lemmas 3.2

and 3.3) allows us to make a related claim based on maximum degree rather than

average degree.

In summary, we may assume that G has maximum degree D, and that neverthe-

less, one can extract a k-subgraph of average degree at least max{Dk/n, 1}.

Lemma 8.4 (Greedy algorithm). There exists a polynomial time algorithm which,

given a graph G containing a k-subgraph with average degree d, outputs a k-subgraph

H ′ and an (n− k/2)-subgraph G′ s.t.

1While the theorem deals with the maximum degree in G instead of average degree (which defines
the log-density), it turns out that this upper-bound on the log-density will suffice

123

1. For some D > 0, G′ has maximum degree ≤ D and H ′ has average degree

max{Ω(Dk/n), 1}.

2. Either G′ contains a k-subgraph with average degree Ω(d), or H ′ has average

degree Ω(d).

Proof. Let U be the set of k/2 vertices of highest degree in G (breaking ties arbitrar-

ily), and let D = minu∈U deg(u). Let U ′ be the set of k/2 vertices of G of highest

degree into U . Let H ′ be the graph induced on U∪U ′. Observe that H ′ has Ω(Dk2/n)

edges and average degree Ω(Dk/n) (it also has average degree at least 1, assuming G

has at least k/2 edges).

Now let G′ be the subgraph induced on V \ U (note that by definition, G′ has

maximum degree ≤ D). Let H be the densest k-subgraph in G, and let α be the

fraction of edges of H that are incident with vertices of U . If α ≤ 1/2, then the

dk/2 of the edges in H remain in G′ (and thus G′ still has a k-subgraph with average

degree Ω(d). On the other hand, if α ≥ 1/2 then it is not hard to see that the H ′

must have average degree Ω(d).

8.1.2 Bounding the product kD

It may simplify some of our manipulations if we can assume that kD ≤ n. While we

do not formally make this assumption anywhere, it is often instructive to consider

this case for illustrative purposes. In fact, we can make this assumption, however at

the cost of introducing randomness to the algorithm, and, more significantly, losing

an O(
√

log n) factor in the approximation guarantee.

Lemma 8.5. Approximation algorithms for DkS lose at most a O(
√

log n) factor by

assuming the maximum degree of the input graph G has maximum degree D satisfying

kD ≤ n .

124

Proof. Assume that contrary to our assumption, D > n/k. In this case, take a

random subgraph G′ of G by keeping every edge with probability n/(kD). The

new maximum degree D′ now satisfies roughly D′ = Dn/(kD) = n/k as desired.

A standard probabilistic argument (involving the combination of a Chernoff bound

and a union bound) shows that for every vertex induced subgraph, if d denotes its

average degree in G, then its average degree in G′ is at most O((1 + dD′/D)(1 +√
log n/(1 + dD′/D))).

Let ρ be the approximation ratio that we are aiming at. For H, the densest k-

subgraph, we may assume that d ≥ ρ
√

log nkD/n, as otherwise the greedy algorithm

in Lemma 8.4 provides a ρ
√

log n factor approximation. (This is where our argument

loses more than a constant factor in the approximation ratio). Hence the average

degree of H in G′ is at least ρ
√

log n. An approximation algorithm with ratio ρ will

then find in G′ a subgraph of average degree at least
√

log n. Such a subgraph must

have average degree a factor of D/D′ higher in G, giving an approximation ratio of

ρ.

8.1.3 Other simplifications

We now justify the weakened requirement, that the algorithm should return a sub-

graph of size at most k (rather than exactly k).

Lemma 8.6. Given an algorithm which, whenever G contains a k-subgraph of average

degree Ω(d) returns a k′-subgraph of average degree Ω(d′), for some (non specific)

k′ < k), we can also find a (exactly) k-subgraph with average degree Ω(d′) for such G.

Proof. Apply the algorithm repeatedly, each time removing from G the edges of the

subgraph found. Continue until the union of all subgraphs found contains at least

k vertices. The union of subgraphs each of average degree d′ has average degree at

least d′. Hence there is no loss in approximation ratio if we reach k vertices by taking

125

unions of smaller graphs. Either we have not removed half the edges from the optimal

solution (and then all the subgraphs found – and hence their union – have average

degree Ω(d′)), or we have removed half the edges of the optimal solution, in which

case our subgraph has at least dk/2 edges.

Note that this algorithm may slightly overshoot (giving a subgraph on up to 2k

vertices), in which case we can greedily prune the lowest degree vertices to get back

a k-subgraph with the same average degree (up to a constant factor).

Also, sometimes we return a subgraph of size 2k instead of k, but this only leads

to a loss of a constant factor by sampling k vertices from it.

We now treat the assumption that G (and hence H) is bipartite:

Lemma 8.7. Given an f(n)-approximation for DkS on n-vertex bipartite graphs, we

can approximate DkS on arbitrary graphs within a Ω(f(2n))-factor.

Proof. Take two copies of the vertices of G, and connect copies of vertices (in two

different sides) which are connected in G. Thus the densest 2k-subgraph in the new

bipartite graph has at least the same average degree as the densest k-subgraph in

G. Now take the subgraph found by the bipartite DkS approximation on the new

graph, and collapse the two sides (this cannot reduce the degree of any vertex in the

subgraph). Note that the subgraph found may be a constant factor larger than k, in

which case, as before, we can greedily prune vertices and lose a constant factor in the

average degree.

Finally, we note that it suffices to consider minimum degree in H, rather than

average degree.

Lemma 8.8. Approximation algorithms for DkS lose at most a constant factor by

assuming the densest k-subgraph has minimum degree d as opposed to average degree.

Proof. Let H be the densest k-subgraph in G. Iteratively remove from H every

vertex whose remaining degree into H is less than d/2. Since less than kd/2 edges

126

are removed by this procedure, a subgraph on k′ ≤ k vertices and minimum degree at

least d/2 must remain. As noted in Lemma 8.6, the fact that now we will be searching

for subgraphs with k′ 6= k vertices can affect the approximation guarantee by at most

a constant factor.

8.2 The algorithm

Our worst-case algorithm for DkS mimicks our inductive proof in Lemma 7.13. We

can imagine our algorithm as trying to show that the input graph G has no dense

k-subgraph (no k-subgraph of higher log-density than G), by simulating the proof of

Lemma 7.13. The steps of our algorithm correspond to the s steps in the inductive

proof for the template W (r, s).

We are given a graph G which contains a k-subgraph H with average degree d.

Our goal is to find a k-subgraph of average degree ρ (which is Ω(d/D(s−r)/s)). Let us

first recall the definition of S(t) from Section 7.3:

Definition 8.9 (Same as Def. 7.12). In the notation of Def. 7.12, given a graph G

for each t = 1, . . . , s, we denote by S(t) the set of candidates in G for the rightmost

backbone vertex in prefix of W (r, s) defined by the first t steps, after fixing the leaves

(hair steps) encountered so far to be v0, v1, . . . , vbtr/sc.

We will use S to represent S(t) when it is clear that we are at step t of the

algorithm.

Our algorithm is roughly based on the following idea. In step t of Algr,s, we try

to find a dense k-subgraph of sufficient density (by rounding a linear program) : if

we succeed, we just output this k-subgraph, otherwise we show that G also satisfies

the same upper bounds for candidate sets S(t) as in the average-case (Lemma 7.13).

However, these bounds can not hold for all of the s steps, since Theorem 7.11 tells us

that if G contains any subgraph H of higher log-density, the number of candidates

127

S(s) (for the rightmost backbone vertex) from just H after the correct fixing of all

the leaves has to be large. Hence we should have found a dense k-subgraph in one of

s steps from the rounding algorithm.

To carry forth this idea, we would like to inductively keep track of the size of the

candidate set S(t), and on the candidates (lower-bound) from the dense subgraph

H (which is unknown to us, of course). The right quantity to look at is the ratio

|S(t) ∩ H|/|S(t)|. At the start of each step t + 1 of the algorithm, we will have a

lower bound on |S(t−1)∩H|/|S(t−1)|. Depending on whether step t of W (r, s) is a

backbone step or a hair step, we will use a slightly different procedure. In case we do

not find a k-subgraph of sufficient density, we will inductively obtain a lower bound

on |S(t+ 1)∩H|/|S(t+ 1)| if it is a backbone step. If it is a hair step, we will find a

good choice for the leaf (hair vertex) so that we can obtain the correct lower bound

for |S(t+ 1) ∩H|/|S(t+ 1)| (as dictated by our average-case intuition).

To this end, we will need a linear program which allows us to keep track of counts

(like |S(t) ∩ H|) even after fixing (conditioning on) some of the leaves. These are

perfectly captured by linear programs that are obtained by systematic lift-and-project

relaxations.

8.2.1 The Linear Program relaxation

Let us start by describing the LP relaxation.

Taking into account the simplification from Lemma 8.8, we can assume that there

is a subgraph H of size at most k with minimum degree d. Hence, we get the following

simple LP relaxation for DkS. While the program as stated is not linear, we guess

the degree d and consider the feasibility linear program that is obtained.

We can define a hierarchy of LPs which is satisfied by a graph which contains a

subgraph of size at most k with minimum degree at least d. This hierarchy is obtained

128

max d

s.t.
∑
i∈V

xi ≤ k, and

∃{xij | i, j ∈ V } s.t.

∀i ∈ V
∑
j∈Γ(i)

xij ≥ dxi

∀i, j ∈ V xij = xji

∀i, j ∈ V 0 ≤ xij ≤ xi ≤ 1

Figure 8.1: Min degree LP for DkS

from a subset of constraints of the Sherali-Adams relaxation for DkS in Figure 9.2

on page 148.

max d, s.t.

∃{xT | T ⊆ V, |T | ≤ r} s.t. x∅ = 1 and

∀T ⊆ V s.t |T | ≤ r − 2 :∑
i∈V

xT∪{i} ≤ kxT (8.1)

∀i ∈ V
∑
j∈Γ(i)

xT∪{i,j} ≥ dxT∪{i} (8.2)

0 ≤ xT∪{i} ≤ xT ≤ 1 (8.3)

In the intended solution, xT is 1, if all the vertices in T belong to the dense sub-

graph H. This LP allows us to condition on upto r − 2 variables : when xT 6= 0,

{xT∪{i,j}
xT
}i,j∈V (G) form a valid solution to the basic LP in Figure 8.1 on page 129, which

represents the LP solution after conditioning on the event that the vertices of T were

chosen to be in our dense k-subgraph.

129

The exact linear programming relaxation that we need is the one presented be-

low in Figure 8.2 on page 130. It uses a recursive definition which which will be

easier for exposition. This hierarchy is at most as strong as the Lovász-Schrijver

LP hierarchy based on the usual LP relaxation and is possibly weaker (see [31] for

details). Specifically, for all integers t ≥ 1, we define DkS-LPt(G, k, d) to be the set

of n-dimensional vectors (y1, . . . yn) satisfying: Given an LP solution {yi}, we write

∑
i∈V

yi ≤ k and (8.4)

∃yij : i, j ∈ V s.t.

∀i ∈ V
∑
j∈Γ(i)

yij ≥ dyi (8.5)

∀i, j ∈ V yij = yji (8.6)

∀i, j ∈ V 0 ≤ yij ≤ yi ≤ 1 (8.7)

if t > 1, ∀i ∈ V s.t. yi 6= 0, we have

{yi1/yi, . . . , yin/yi} ∈ DkS-LPt−1(G, k, d) (8.8)

Figure 8.2: Recursive definition of DkS-LPt(G, k, d)

LP{yi}(S) =
∑

i∈S yi. When the solution is clear from context, we denote the same

by LP(S). We call this the LP-value of S. When the level in the hierarchy will not

be important, we will simply write DkS-LP instead of DkS-LPt. A standard argu-

ment shows that a feasible solution to DkS-LPt(G, k, d) (along with all the recursively

defined solutions implied by constraint (8.8)) can be found in time nO(t).

As before, we can think of the LP as giving a distribution over subsets of V ,

with yi being the probability that i is in a subset. Similarly yij can be thought

of as the probability that both i, j are ‘picked’. We can now think of the solution

{yij/yi : 1 ≤ j ≤ n} as a distribution over subsets, conditioned on the event that i is

picked.

130

8.2.2 The Algorithm description

Let us now describe the algorithm in detail. The algorithm will take two kinds of

steps, backbone and hair, corresponding to the two types of caterpillar edges. While

these steps differ in the updates they make, both use the same procedure to search

locally for a dense subgraph by looking at the current candidate set S(t) and its set

of neighbors Γ(S(t)). Let us now describe this procedure. From now onwards, we will

use S to refer to S(t) when we are at step t of the algorithm.

DkS-Local(S, k)

• Consider the bipartite subgraph induced on (S,Γ(S)).

• For all k′ = 1, . . . , k, do the following:

– Let Tk′ be the set of k′ vertices in Γ(S) with the highest degree (into

S).

– Take the min{k′, |S|} vertices in S with the most neighbors in Tk′ ,

and let Hk′(S) be the bipartite subgraph induced on this set and

Tk′ .

• Output the subgraph Hk′(S) with the largest average degree.

We note that DkS-Local(S, k) can be just be executed for k′ = dLP (Γ(S))e (the

proof of Claim 8.10 is unchanged). While this would speed up the algorithm, we

present it as above to highlight that DkS-local is just a simple greedy algorithm.

The overall algorithm takes as input a graph G, a parameter k, and {yi}, a solution

to DkS-LPr+2(G, k, d). We will in fact use a family of algorithms Algr,s parameterized

by positive integers r, s (r < s and gcd(r, s) = 1), which will correspond to the

caterpillar template W (r, s). Throughout, a set S ⊆ V , and an LP solution {yi} are

maintained. The description is not complete, since one of the steps depend on the

description of Lemma 8.14.

131

DkS-Catr,s(G, k, {yi})

• Let S0 = V .

• For all t = 1, . . . , s, do the following:

– For t > 1, let Ht be the output of Procedure DkS-Local(S(t−1), k).

– If [(t− 1)r/s, tr/s] contains an integer, perform a hair step:

Choose some vertex jt given by Lemma 8.14 (or for t = 1, choose

any j1 such that yj1 > 0), and

∗ Let S(t) = S(t− 1) ∩ Γ(jt).

∗ Replace the LP solution {yi} with {yijt/yjt | i ∈ V }.

– Otherwise, perform a backbone step:

Let S(t) = Γ(S(t− 1)).

• Output the subgraph Ht with the highest average degree.

Note that since the “conditioning” step (replacing yi’s by yij/yj) in the hair steps

is only performed r+ 1 times, then by constraint (8.8), at every step of the algorithm

{yi} satisfies DkS-LP(G, k, d).

To summarize, the final algorithm first performs the pre-processing Section 8.1

(especially Section 8.1.1) and then runs DkS-Catr,s for the correct value of r, s (such

that maximum degree after preprocessing D ≤ nr/s)2. Then we return the denser of

the subgraphs found by the Greedy algorithm of Section 8.1.1 and DkS-Catr,s. The

running time is dominated by the time required to solve the LP , which as we saw

earlier is nO(r).

2We can also run the algorithm for several values of co-prime r, s and output the densest subgraph
found.

132

8.3 Analysis of the algorithm

8.3.1 The Backbone and Hair steps

We will analyze separately the performance of the procedure DkS-Local in the con-

text of a hair-step (leaf) and that of a backbone-step.

It is useful to have in mind the case when kD ≤ n. From Lemma 8.5, we know

that this assumption is without loss of generality upto a O(log n) factor. However,

this simplification gives more intuition to the bounds presented and draws a better

parallel to the average-case. To that end, we also present the bounds for the case

when kD ≤ n as corollaries. We begin by relating the performance of this procedure

to an LP solution. In the analysis, we will ignore the roundoff error from LP(Γ(S))

since it affects the bounds neglibly in the context of the algorithm (we lose a small

constant factor in total).

Claim 8.10. Given a set of vertices S ⊆ V , and an LP solution {yi} ∈

DkS-LP(G, k, d). Then DkS-Local(S, k) outputs a subgraph with average degree

at least

1

max{|S|,LP(Γ(S))}
·
∑
j∈Γ(S)

yj|Γ(j) ∩ S|.

Proof. By constraint (8.4), dLP(Γ(S))e ≤ k. Consider the iteration where

k′ = dLP(Γ(S))e. In Procedure DkS-Local, the vertices in Tk′ must have at

least
∑

j∈Γ(S) yj|Γ(j)∩S| edges to S (since Tk′ is the best k′ in Γ(S)). After choosing

the min{k′, |S|} vertices in S with highest degree, the remaining subgraph Hk′(S)

has average degree at least

min{k′, |S|}
|S|

· 1

k′
·
∑
j∈Γ(S)

yj|Γ(j) ∩ S|.

This proves the claim.

133

The backbone step in the algorithm first performs DkS-Local on the current S,

and then sets S to be Γ(S). The following lemma gives a way to inductively maintain

a lower bound on LP(S(t))/|S(t)| assuming DkS-Local does not find a sufficiently

dense subgraph.

Lemma 8.11 (Backbone step). Given S ⊆ V , and an LP solution {yi} for DkS-

LP(G, k, d): for any ρ ≥ 1 such that LP(S)/|S| ≥ ρ/d, either DkS-Local(S, k) out-

puts a subgraph with average degree at least ρ or we have

LP(Γ(S)) ≥ dLP(S)

ρ
(8.9)

LP(Γ(S))/|Γ(S)| ≥ d

ρD
LP(S)/|S| (8.10)

We immediately have the following corollary when kD ≤ n:

Corollary 8.12 (Backbone step when kD ≤ n). We are given a graph G with max-

imum degree D = nr/s = n/k, having a k-subgraph H of minimum degree d = ρkr/s.

If we have S ⊆ V , and an LP solution DkS-LP(G, k, d) s.t. LP(S)/|S| ≥ ρ/d,

either DkS-Local(S, k) outputs a k-subgraph with average degree at least ρ or

LP(Γ(S)) ≥ kr/sLP(S) (8.11)

LP(Γ(S))/|Γ(S)| ≥ kr/s

nr/s
LP(S)/|S| (8.12)

Proof of Lemma 8.11. We note that the second part follows from the first part by

combining it with the knowledge that the maximum degree is D: hence |Γ(S)| ≤ D|S|.

By the LP constraints (8.7) and (8.5), we have

∑
j∈Γ(S)

yj|Γ(j) ∩ S| ≥
∑
j∈Γ(S)

∑
i∈Γ(j)∩S

yij

=
∑
i∈S

∑
j∈Γ(i)

yij ≥ dLP(S).

134

By Claim 8.10, Dks-Local(S, k) outputs a subgraph with average degree ≥

dLP(S)/max{|S|, k′}, where k′ = LP(Γ(S)).

This suffices if k′ ≤ |S|, since by our assumption dLP(S)/|S| ≥ ρ.

Now suppose k′ ≥ |S|. The output graph has average degree at least dLP(S)/k′.

If this is at least ρ, then we have output a ρ-dense subgraph, as required.

If not, k′ = LP(Γ(S)) ≥ dLP(S)/ρ, which gives our required bound.

Let us now consider a hair step. In this case, the algorithm performs DkS-Local

on the current set, and then picks a vertex j ∈ V to act as a “leaf”. The new S is

then set to equal S ∩ Γ(j). The following lemmas prove that either DkS-Local finds

a sufficiently dense subgraph, or we can pick j so as to inductively maintain certain

bounds. Let us first prove a simple averaging lemma.

Lemma 8.13. Let xj, (1 ≤ j ≤ n) be reals in [0, 1], with
∑

j xj ≤ k. Let Pj and Qj

be some non-negative real numbers such that for some P,Q > 0,

∑
j

xjPj ≥ P , and
∑
j

xjQj ≤ Q. (8.13)

Then there exists a j such that Pj ≥ P/(2k) and Pj/Qj ≥ P/(2Q).

Proof. By our assumption
∑

j xj
(
Pj− P

2k

)
≥ P − P

2
= P

2
. Thus from (8.13), it follows

that there exists a j such that xj > 0 and

Pj −
P

2k
≥ P

2Q
·Qj.

This choice of j clearly satisfies the required properties.

Lemma 8.14 (Hair step lemma). Let S ⊆ V , and let {yi} ∈ DkS-LP(G, k, d) be an

LP solution (for which there exist corresponding {yij}). Then for any ρ ≥ 1, either

DkS-Local(S, k) outputs a ρ-dense subgraph, or there exists some vertex j ∈ G, such

135

that yj > 0, and

LP{yij/yj |i∈V }(S ∩ Γ(j)) ≥
d · LP{yi}(S)

2k
(8.14)

LP{yij/yj |i∈V }(S ∩ Γ(j))

|S ∩ Γ(j)|
≥ d

2ρ
·

LP{yi}(S)

max{k, |S|}
(8.15)

We immediately have the following corollary when kD ≤ n:

Corollary 8.15 (Hair step when kD ≤ n). Suppose graph G has maximum degree

D = nr/s = n/k, and a k-subgraph H of minimum degree d = ρkr/s.

If S ⊆ V , and {yi} ∈ DkS-LP(G, k, d) is an LP solution (with corresponding

{yij}), then either DkS-Local(S, k) outputs a ρ-dense k-subgraph, or there exists some

vertex j ∈ G, such that yj > 0, and

LP{yij/yj |i∈V }(S ∩ Γ(j)) ≥ ρkr/s

2k
· LP{yi}(S) (8.16)

LP{yij/yj |i∈V }(S ∩ Γ(j))

|S ∩ Γ(j)|
≥ kr/s

2
·

LP{yi}(S)

max{k, |S|}
(8.17)

Proof of Lemma 8.14. By constraints (8.5) of the LP we have

∑
j∈Γ(S)

yjLP{yij/yj |i∈V }(S ∩ Γ(j)) =
∑
j∈Γ(S)

∑
i∈Γ(j)∩S

yij

=
∑
i∈S

∑
j∈Γ(i)

yij

≥ dLP{yi}(S) (8.18)

From Claim 8.10, it follows that if the subgraph found by DkS-Local has average

degree less than ρ, we must have ρ >
∑

j∈Γ(S) yj|Γ(j) ∩ S|/max{|S|, k′}, or in other

words ∑
j∈Γ(S)

yj|Γ(j) ∩ S| ≤ ρmax{|S|, k′} ≤ ρmax{|S|, k}. (8.19)

136

By using Lemma 8.13 with Pj = LP{yij/yj |i∈V }(S ∩Γ(j)) and Qj = |S ∩Γ(j)|, and

equations (8.18) and (8.19), we get the required guarantee.

Before going into the rest of the proof, we summarize the guarantees for the Hair

step and Backbone step in Table 8.1 and give more intuition into these bounds by

drawing out parallels to the bounds in the average case. When S is updated and we

do not find a dense k-subgraph, the lower bound on the ratio of LP(S)/|S| decreases

by a multiplicative factor of d/(ρD) for every backbone step, and increases by a factor

of d/ρ for a hair step (when the correct conditions are met). The structure W (r, s) is

so designed that after all s steps, if we never found a ρ-dense k-subgraph, we get that

LP(S)/|S| becomes > 1, which is a contradiction! This argument forms the crux of

the proof of Lemma 8.17 and hence Theorem 8.16. This is reminiscent of the average-

case where the design of the structure W (r, s) ensured that the inductively updated

upper bounds for |S(t)| brought about a contradiction in the final step. To note the

similarity, notice that the ratio of the lower bounds for LP(S(t)) and LP(S(t))/|S(t)|

in the worst-case matches the upper bound for |S(t)| in the average-case (upto a

factor ρ).

Step New Candidates LP(S(t)) LP(S(t))/|S(t)| Average-case
S(t+ 1) ≥ ≥ |S(t)| ≤

Backbone step
(Lemma 8.11)

Γ(S) d/ρ a d/(ρD) a D

Hair step
(Lemma 8.14)

S ∩ Γ(j) for a
chosen leaf j

d/2k d/2ρ b 1/k

awhen LP(S(t))/|S(t)| ≤ ρ/d.
bwhen |S(t)| ≥ k.

Table 8.1: Guarantees for Backbone (Lemma 8.11) and Hair steps (Lemma 8.14).

Recall that in the random case, the sets S(t) had cardinality tightly concentrated

around nfr(tr/s). Similarly here, if we assume that k = n/D(= D(s−r)/r), and that d

(the density of the subgraph implied by the LP) is at least ρkr/s (for some ρ ≥ 1),

then we show (see Corollary 8.18) that if until step t the algorithm has not found an

137

Ω(ρ)-dense subgraph, then the current candidate set satisfies

LP(S(t))

|S(t)|
> ρ−fr(tr/s)·s/r

(
k

n

)fr(tr/s)

=

(
1

D

)fr(tr/s)

,

which will yield a contradiction at the final step (for t = s).

One difficulty is that we avoid making the assumption that kD = n (which is

possible, but would incur a O(
√

log n) loss in the approximation guarantee). Instead,

we use the fact that the greedy algorithm finds a k-subgraph with average degree

γ ≥ max{1, Dk/n}. Specifically, we show that at step t of the algorithm, either a

subgraph with average degree Ω(ρ) has already been found, or the greedy algorithm

gives the desired approximation (i.e. γ ≥ ρ), or we have the desired lower bounds on

LP(S(t)) and LP(S(t))/|S(t)|.

8.3.2 Performance guarantee of the algorithm

The analysis is quite straightforward. We follow the various steps, and each time

apply Lemma 8.11 or Lemma 8.14, as appropriate. Our main result is the following:

Theorem 8.16. Let s > r > 0 be relatively prime integers, let G be an undirected

(bipartite) graph with maximum degree ≤ D = nr/s, let {yi} ∈ DkS-LPr+1(G, k, d),

and define γ = max{Dk/n, 1}. Then if d′ is the average degree of the subgraph found

by DkS-Catr,s(G, k, {yi}), we have

max{d′, γ} = Ω(d/D(s−r)/s).

From Section 8.1.1, we know that the Greedy algorithm produces a k-subgraph

of density at least γ. Note that when the log-density α of G is not rational, we

can choose rational α ≤ r/s ≤ α + ε for any small ε > 0. We then still appeal to

Theorem 8.16 as before, though the greedy algorithm might only return a subgraph of

138

average degree γ′ > γ/nε. Thus, the loss in the approximation ratio is at most nε. A

fairly straightforward calculation shows that this implies a O(n1/4+ε)-approximation

in nO(1/ε) time for all ε > 0 (including ε = 1/ log n).

Notation. In what follows, we let ρ = d/(2D(s−r)/s) denote the desired average

degree of the output subgraph (up to a constant factor). We use bb(t) = t−btr/sc−1

to denote the number of backbone steps among the first t steps, and `f(t) = btr/sc+1

to denote the number of hair/leaf steps in the first t steps.

We now state the main technical lemma.

Lemma 8.17. Suppose G be an undirected (bipartite) graph with maximum degree

at most D = nr/s, which contains a k-subgraph with minimum degree at least d > 0.

Let s > r > 0 be relatively prime integers, let and let {yi} be a solution to DkS-

LPr+1(G, k, d). Let γ = max{Dk/n, 1}. If ρ > γ and none of the subgraphs found by

DkS-Catr,s(G, k{yi}) upto step t has average degree Ω(ρ), then

LP(S(t)) ≥ d ·
(
d

ρ

)bb(t)
·
(
d

2k

)`f(t)−1

(8.20)

LP(S(t))

|S(t)|
≥ d

Dγ
·
(
d

2ρ

)`f(t)−1

·
(
d

ρD

)bb(t)
(8.21)

The following simple corollary immediately implies Theorem 8.16 (by contradic-

tion) when we take t = s.

Corollary 8.18. In the notation of Lemma 8.17, either the density d′t of the densest

k-subgraph found by DkS-Catr,s satisfies max{d′t, γ} = Ω(d/D(s−r)/s), or we have

LP(S(t))

|S(t)|
≥ 2t−btr/sc

Dfr(tr/s)
.

139

Proof. By definition, ρ = d
2D(1−r/s) ≥ 1. Hence, 2ρD = dDr/s. The corollary follows

just from the guarantees of Lemma 8.17:

LP(S(t))

|S(t)|
≥ d

D
·
(
d

2ρ

)`f(t)−1

·
(
d

ρD

)bb(t)
By Lemma 8.17

≥
(
d

2ρ

)`f(t)−1

·
(
d

ρD

)bb(t)+1

ρ ≥ γ

≥
(
D1−r/s)`f(t)−1 ·

(
2D−r/s

)bb(t)+1

≥ 2bb(t)+1D−tr/s ·D`f(t)−1

=
2t−btr/sc

Dtr/s−btr/sc

Let us now proceed to the proof of Lemma 8.17.

Proof of Lemma 8.17. We prove by induction that if the algorithm does not find any

Ω(ρ) dense subgraph in steps 1 through t, the lower bounds (8.20) and (8.21) hold.

Intuitively, the lemma follows if the bounds given by in the table 8.1 hold (if we plug

in the correct bounds for the first step). Hence, we will just need to check that the

conditions of Lemma 8.11 hold and handle the case when |S(t)| < k in Lemma 8.14.

For t = 1, the bounds hold trivially: Fix a node j1 s.t. yj1 > 0. Then

LP{yij1/yj1 |i∈V }(S(1)) ≥ d (by constraint (8.5)) and so LP(S(1))/|S(1)| ≥ d/|Γ(j1)| ≥

d/D (in particular ≥ d/(γD)), which is exactly what we need.

Now assume the lemma holds for some 1 ≤ t ≤ s − 1. We will show it for t + 1,

considering separately backbone and hair steps.

First, suppose t+ 1 is a backbone step. Since t+ 1 is a backbone step [tr/s, (t+

1)r/s] does not contain an integer. Hence, fr(tr/s) < 1 − r/s. By Lemma 8.11,

if LP (S(t))/|S(t)| ≥ ρ/d, since we did not find a Ω(ρ) dense subgraph, the claims

(corresponding to (8.20) and (8.21)) follows immediately from the inductive hypoth-

esis. Thus it suffices to show that indeed LP (S(t))/|S(t)| ≥ ρ/d. This follows from

140

Corollary 8.18 upto step t (induction hypothesis), which gives

LP(S(t))

|S(t)|
≥ 2bb(t)+1

Dfr(tr/s)
>

2bb(t)+1

D1−r/s =
2bb(t)+2ρ

d
.

Now, on the other hand, suppose t+1 is a hair step. Then the interval [tr/s, (t+1)r/s]

does contain an integer. Assuming Procedure DkS-Local(S(t), k) does not return a

subgraph with average degree at least ρ, by Lemma 8.14, there is some choice of

vertex jt+1 such that, denoting y′i = yijt+1 for all i ∈ V , the following inequalities hold

simultaneously:

LP{y′i}(S(t+ 1)) = LP{y′i}(S(t) ∩ Γ(jt+1))

≥
d · LP{yi}(S(t))

2k
, (8.22)

LP{y′i}(S(t+ 1))/|S(t+ 1)| ≥
d · LP{yi}(S(t))

2ρ ·max{k, |S(t)|}
. (8.23)

Note that lower bound we require for LP(S(t + 1)) follows easily from (8.22)

and the inductive hypothesis. If |S(t)| ≥ k, the bound on LP(S(t + 1))/|S(t + 1)|

similarly follows from (8.23) and the inductive hypothesis. Thus, it remains to show

the required bound when |S(t)| < k. Here is where we use the lower bounds for

LP(S(t+1)) that we have been maintaining inductively all along. In this case, we show

that while LP(S(t+1))/|S(t+1)| may not grow multiplicatively over LP(S(t))/|S(t)|,

141

the lower bound claim corresponding to (8.21) still holds. We have from (8.23) that

LP(S(t+ 1))/|S(t+ 1)| ≥ dLP(S(t))

2ρk

≥ d

2kρ
× d

(
d

ρ

)bb(t)
·
(
d

2k

)`f(t)−1

inductive hypothesis

≥ d

ρ
·
(
d

ρ

)bb(t+1)

·
(
d

2k

)`f(t+1)−1

since (t+ 1) is a leaf step

≥ d

Dγ

(
d

2ρ

)`f(t+1)−1

·
(
d

ρD

)bb(t+1)

×

× γD1+bb(t+1)ρ`f(t+1)−2

k`f(t+1)−1

We just need to show that the last term in this expression is ≥ 1.

γD1+bb(t+1)ρ`f(t+1)−2

k`f(t+1)−1
=
γD1+bb(t)ρ`f(t)−1

k`f(t)
since t+ 1 is a leaf step

≥ D1+t

n`f(t)
since ρ > γ ≥ Dk/n

≥ n(1+t)r/s−(1+btr/sc)

≥ 1 since [tr/s, (t+ 1)r/s] contains an integer.

This concludes the proof.

A combinatorial algorithm. Note that the only time the algorithm uses the LP

values is in choosing the leaves. Thus, even in the absence of an LP solution, the

algorithm can be run by trying all possible sequences of leaves (the analysis will still

work by replacing the LP solution with the optimum 0−1 solution). While this would

take time O(nr+1) as opposed to linear time (for the LP-based rounding algorithm),

this is comparable to the time needed to solve the LP. An interesting open question

is if it is possible to avoid the dependence on r, the number of leaves.

142

8.4 Subsequent Work

We mention in brief, a couple of extensions towards improving upon the O(n1/4) ap-

proximation algorithm presented above. In [20], we describe an algorithm which gives

an approximation ratio strictly better than n1/4 for arbitrary graphs in subexponential

(2n
O(ε)

) time.

The algorithm is an extension to the caterpillar based algorithm presented in

Section 8.2 to the case when the log-density of the subgraph H is (slightly) less

than the log-density of the host graph (a crucial case if one wants to go beyond

n1/4-approximations). This is done at the expense of running time – we obtain a

modification of our caterpillar-based algorithm, which yields an approximation ratio

of O(n(1−ε)/4) in time 2n
O(ε)

. The main modification is that for each leaf, rather than

picking an individual vertex, we will pick a cluster of roughly O(nε) vertices (which

is responsible for the increased running time). The cluster will be used similarly to a

single leaf vertex: rather than intersecting the current set with the neighborhood of

a single vertex, we will intersect the current set with the neighborhood of the cluster

(i.e. with the union of all neighborhoods of vertices in the cluster).

143

Chapter 9

Integrality Gaps: How Hard is

Average-Case Densest k-subgraph?

The clinching evidence for the hardness of a problem is through reductions from

other well-known problems, which are believed to be hard (say, 3-SAT). For instance,

from seminal works starting from the PCP theorem [14, 12, 55], we know that it is

impossible to approximate MAX CLIQUE within n1−o(1) factor unless P = NP . When

such satisfying evidence is not forthcoming, the next best alternative are lower bounds

in restricted models of computation.

While only constant factor approximations for DkS have been ruled out, it is

commonly believed that DkS is much harder to approximate (even upto polynomial

factors in n). This believed inapproximability of DkS seems to come up in various

other problems that look for solutions supported on small sets. Problems in net-

work design (minimum λ-connected subgraph [65]), network reliability (finding small

k-route cuts [32]), clustering (capacitated metric labeling [6]) have very large inap-

proximability assuming nΩ(1) factor inapproximability for DkS. In fact, this hardness

is believed to be true even on average (for a natural distribution on hard instances).

Recently, average-case hardness assumptions based on the hardness of “planted” ver-

144

sions of DkS were used for public key cryptography [7] and in showing that financial

derivates can be fraudulently priced without detection [8]. Given the importance of

DkS as an average-case hardness assumption, it is much more satisfactory if we had

some evidence for the average-case hardness of DkS.

In the context of approximation algorithms, linear programming (LP) and semi-

definite programming (SDP) techniques are one of the most powerful tools at our

disposal, and capture most of the state-of-the-art approximation algorithms known

today [84]. Integrality gaps are lower bounds against these mathematical program-

ming techniques, showing that such powerful methods can not be used to obtain

good approximations. Lift-and-project methods (hierarchies) are systematic itera-

tive procedures to obtain sequences of increasingly stronger linear and semi-definite

programming relaxations for an integer optimization problem (e.g. Lovász-Schrijver,

Sherali-Adams and Lasserre hierarchies. Please see the recent survey by Chlamtac

and Tulsiani for details [31])). Typically, the relaxation obtained after r levels of

these strengthenings can be solved in nO(r) time. In most cases of approximation

algorithms that use strengthened LP and SDP relaxations, such relaxations can be

obtained from a few levels of such lift-and-project procedures. Starting from the work

of [9], a number of recent papers have studied the strength and limitations of such

relaxations as a basis for designing approximation algorithms for various problems

[9, 28, 29, 30, 45, 58, 75, 80, 79, 83]. In fact, the algorithms from chapter 8 give

a O(n1/4+ε) approximation for DkS uses a linear programming relaxation which is

weaker than that obtained from O(1/ε) levels of the Sherali-Adams hierarchy. [20]

also show that the integrality gap becomes O(n1/4−ε) after nO(ε) levels of the Sherali

Adams LP hierarchy.

In this chapter, we show that polynomial time algorithms based on Sherali-

Adams hierarchy based SDP relaxations can not give good approximations even in

145

the average-case. In particular, we show that even Ω(logn
log logn

) levels of this hierachy

can not distinguish between the following two distributions (roughly):

D1: graph G picked from G(n, n−1/2), and

D2: graph G picked from G(n, n−1/2) with the induced subgraph on
√
n

vertices replaced with G(
√
n, n−(1/4+ε)).

In what follows L will denote the number of levels of the hierarchy SAL given in

Fig. 9.2.

Theorem 9.1. Let L ≤ logn
10 log logn

. In the notation given above, the integrality gap of

SAL is at least Ω
(

n1/4

L log2 n

)
.

To prove Theorem 9.1, we present instances G where the relaxation has a solution

with value d = Ω(n1/4/L), while the integer optimum, i.e., the largest density of a

k-subgraph in G is only O(log2 n). It will be notationally convenient to construct

gaps for L/2 levels.

Before we proceed further, we will first remind ourselves about the Sherali-Adams

relaxation for Densest k-subgraph and then prove some simple random graph

properties which will be useful for the proofs that follow.

9.1 The Sherali-Adams Relaxation for DkS

Let us first consider the basic linear program for DkS. The natural LP relaxation for

DkS (LP1 in Fig. 9.1) was used in [82, 42]. It has variables {xi} to denote if vertex

i belongs to the solution, and edge variables {xij}(i,j)∈E(G) to denote if both i, j are

in the subgraph. This LP has an integrality gap of Ω(n
k
) ([40, 42]). We can also write

another linear program (LP2 in Fig. 9.1), which is slightly stronger. Intuitively, LP2

tries to find a k-subgraph H where the minimum degree dH is maximized (see Lemma

8.8 for why this is feasible). While the program as stated is not linear, we guess the

degree d and consider the feasibility linear program that is obtained.

146

Natural LP (LP1): Min. degree LP (LP2):

max
∑

(i,j)∈E(G)

xij

s.t.
∑
i∈V

xi ≤ k

∀i, j ∈ V, 0 ≤ xij ≤ xi ≤ 1

max d (guess d)

s.t.
∑
i∈V

xi ≤ k, and

∃{xij | i, j ∈ V } s.t.

∀i ∈ V
∑
j∈Γ(i)

xij ≥ dxi

∀i, j ∈ V xij = xji

∀i, j ∈ V 0 ≤ xij ≤ xi ≤ 1

Figure 9.1: Two Linear Programming relaxations for DkS

The Sherali-Adams hierarchy starts with a simple LP relaxation of a {0, 1} integer

program, and obtains a sequence of successively tighter relaxations with more levels.

For our integrality gaps, we will in fact start with the stronger basic (first-level) linear

program (LP2 in Fig.9.1) that was used in the previous chapter (Figure 8.1 on page

129). From Lemma 8.6, it can be easily seen that the two LPs are almost equivalent

upto a factor of 2.

We consider strengthening this LP by considering r levels of the Sherali-Adams

hierarchy (SAr, shown in Fig 9.2). In the lifted LP, the variable xS is supposed

to capture whether every vertex in S belongs to the chosen k-subgraph (i.e., xS =∏
i∈S xi). Further if we take two sets S, S ′ of ≤ r vertices, the local distributions

induced by a feasible solution (using the inclusion-exclusion constraints), agree on

the variables in the intersection S ∩ S ′. We follow the notation established in [31]

while defining the hierarchy. We present the entire relaxation here again for the

benefit of exposition.

147

max d, s.t.

∃{xS | S ⊆ V, |S| ≤ r} s.t. x∅ = 1 and

∀S, T ⊆ V s.t |S|+ |T | ≤ r :∑
i∈V

∑
J⊆T

(−1)|J |xS∪J∪{i} ≤ k
∑
J⊆T

(−1)|J |xS∪J (9.1)

∀i ∈ V
∑
j∈Γ(i)

∑
J⊆T

(−1)|J |xS∪J∪{i,j} ≥ d
∑
J⊆T

(−1)|J |xS∪J∪{i} (9.2)

0 ≤
∑
J⊆T

(−1)|J |xS∪J ≤ 1 (9.3)

Figure 9.2: Sherali-Adams LP relaxation (r levels) for DkS: SAr

9.1.1 Sherali-Adams SDP hierarchy

The Sherali-Adams SDP hierarchy (also refered to as the mixed hierarchy or SA+)

imposes an additional SDP constraint on top of the Sherali-Adams LP relaxation. In

particular, it asks for the values xij to come from vector inner products i.e. the matrix

X = (xij) is p.s.d. Most known algorithms which proceed by rounding a relaxation

obtained from an SDP hierarchy [29, 30, 19] work with this mixed hierarchy. [75,

64] and [46] studied this hierarchy for constraint satisfaction problems and obtained

integrality gaps for Unique Games and approximation-resistant CSPs respectively.

One level of the mixed h ierarchy for DkS gives the SDP relaxation introduced

in [42, 82]. In fact, we showed in Chapter 7 how the mixed hierarchy performs better

than log-density based arguments (which are captured by just the LP hierarchy) in

the parameter range D < n1/2. It is interesting in this light to obtain integrality gaps

for mixed hierarchy.

9.2 Random graph properties

We prove that the properties used in our gap construction hold for G(n, p), with

p = n−1/2(log n)1/2. These properties are listed in Section 9.3.1. In what follows fix

148

p to be the value above. As in previous chapters, the phrase “with high probability”

(w.h.p.) refers to ‘with probability at least 1 − 1
q(n)

’, where q(n) is an arbitrary

polynomial in n (sometimes there will be a constant depending on the polynomial).

Lemma 9.2. Every vertex of G (as defined above) has degree between (n1/2 log n)/2

and 2n1/2 log n w.h.p.

Proof. Let u ∈ V . The degree d(u) (as a random variable) is the sum of n i.i.d.

Bernoulli random variables each having parameter p = n−1/2 log n. The expected

value is thus n1/2 log n. This is� log n, and thus by Chernoff bounds, the probability

that Pr[|d(u)−n1/2 log n| > t] ≤ e−t
2/4np(1−p) < 1

nq(n)
, for any polynomial q(n). Taking

union bound gives the claim.

Lemma 9.3. Every pair of vertices in G (as defined above) have at most 2 log2 n

common neighbours w.h.p.

Proof. Let u, v ∈ V . Let Xi be a random variable which is an indicator for i ∈

Γ(u) ∩ Γ(v). In G(n, p), we have E [Xi] = p2 = log2 n/n. Thus E [|Γ(u) ∩ Γ(v)|] =

np2 = log2 n. Thus the probability that it is > 2 log2 n is at most e− log2 n/4. Taking

union bound over all u, v, we obtain that this is smaller than any polynomial.

Lemma 9.4. In the notation of this section, every pair of vertices have at least one

common neighbour w.h.p.

Proof. As above, consider some u, v; we have E [|Γ(u) ∩ Γ(v)|] = np2 = log2 n. Thus

Pr[|Γu ∩ Γ(v)| < log n] ≤ e− log2 n/4 (since we can use Chernoff bounds as long as the

expectation � log n). Taking union bound again implies the result.

Lemma 9.5. In the notation of this section, no induced subgraph on n1/2 vertices has

density > 5 log n w.h.p.

149

Proof. Let S ⊆ V of size n1/2. Then E [E(S, S)] =
(
n1/2

2

)
· p = n1/2 log n/2. Further

the variance of this quantity is
(
n1/2

2

)
p(1− p) < n1/2 log n. Thus by Chernoff bound,

Pr[|E(S, S)− E [E(S, S)] | > t] ≤ e−t
2/4n1/2 logn.

Picking t = 4n1/2 log n, the probability upper bound is e−4n1/2 logn. Thus we can take

a union bound over all the
(

n
n1/2

)
subsets S. This proves the claim.

9.3 Integrality Gaps for Sherali-Adams

9.3.1 The instance

The distribution over instances will be given by D1, and prove that the desired gap

holds with high probability. The instances we consider are G(n, p = n−1/2 log n) (thus

the expected degree of each vertex is D = n1/2 log n). The parameter k is chosen to

be n1/2. An easy calculation shows that in any k subgraph, the density (and hence

the min-degree) is at most O(log2 n) (see Section 9.2). The meat of the argument

is thus to show that there exists an LP solution to SAL/2 (Equations (9.1)-(9.3)) of

value d = Ω(n1/4/L) even for L of the order log n/ log log n.

The following are the properties of the distribution G(n, p) (with above param-

eters) we will truly be using [see Section 9.2 for proofs]. Any graph with these

properties admits the solution to SAL/2 which we describe.

1. Every vertex has degree between (n1/2 log n)/2 and 2n1/2 log n.

2. Any two vertices i, j have at least one common neighbor and has at most

O(log n) common neighbours.

150

9.3.2 Feasible solution

Before formally giving the xS values, we give intuition as to what they ought to be.

First, we start out setting xi = n−1/2 (equal for all vertices, since
∑

i xi ≤ k = n1/2

and no vertex is special). Next, suppose S ⊂ V with i ∈ S and think of d ≈ n1/4. Now

(9.2) implies that
∑

j∈Γ(i) xS∪j ≥ n1/4xS. Further from (9.1), we obtain
∑

j∈V xS∪j ≤

n1/2xS. Thus we conclude that xS∪j must be roughly n−1/4xS for j ∈ Γ(S), while for

j 6∈ Γ(S), it should be only n−1/2xS. Now consider T ⊂ V which span a tree: we

could imagine starting with one vertex and adding vertices one by one (each added

vertex is a neighbour of the previous ones), and thus conclude that xT is roughly

n−(|T |+1)/4 (since xi = n−1/2 to begin with). Now let S be an arbitrary set of vertices

and consider a tree T ⊇ S: by monotonicity (a corollary of (9.3)), xS ≥ xT , and since

this is true for every such T , we need to set xS to be at least n−(st(S)+1)/4, where st(S)

is the number of vertices (size) in the minimum Steiner tree of S.

These, with additional ‘dampening’ factors (L-terms), are precisely the values we

will set. More precisely we consider the solution

xS = n−
1
4
·(st(S)+1) · L−|S|, (9.4)

where st(S), as above, is the size of the minimum Steiner tree of S. Thus for instance

xi = n−1/2/L, while x{i,j} = 1/(n3/4L2) when (i, j) ∈ E and 1/(nL2) otherwise

(the latter is because there is a path of length-2 between any i, j ∈ G with high

probability).

Let us fix L ≤ log n/(10 log log n). We now show that the LP solution presented

above is feasible for SAL/2 with high probability. The following lemma is useful

in simplifying the analysis: it implies that we need to only consider T = ∅ while

showing that the LP solution satisfies constraints (9.1) and (9.2). This is where the

’dampening’ factors come into play.

151

Lemma 9.6. Let S, T be disjoint subsets of V of size at most t and xS be the solution

described above. Then

xS ≥
∑
J⊆T

(−1)|J |xS∪J ≥
xS
2

Proof. One property of the assignment (9.4) is that xS∪i ≤ xS/L for i 6∈ S. Further

all the xS are ≥ 0, and thus in the sum above, the term corresponding to J ⊆ T

contibutes positively when |J | is even and negatively otherwise. Hence,

∑
J⊆T

(−1)|J |xS∪J ≥
`=b |T |

2
c∑

`=0

∑
J⊆T
|J |=2`

(
xS∪J −

∑
i∈T\S

xS∪J∪{i}
)

≥
b |T |

2
c∑

`=0

∑
J⊆T
|J |=2`

xS∪J(1− |T |/L)

≥
b |T |

2
c∑

`=0

1

2
·
∑
J⊆T
|J |=2`

xS∪J ≥
xS
2

(since |T | ≤ L/2)

A similar proof shows the upper bound, since the xS∪{i} terms for i ∈ T dominate

the contributions of xS∪J for |J | > 1.

Corollary 9.7. In checking feasibility, it suffices to check (9.1) and (9.2) with T = ∅.

Proof. Lemma 9.6 allows us to ‘remove’ the
∑

J⊆T on both sides of the equations

(and set T = ∅) by losing a factor of 2. Since we allow constant slack, the claim

follows.

We refer to the constraints (9.1) and (9.2) as the size and the density constraints

respectively, because the former says that we should pick only a k-subgraph, and the

latter says the minimum degree (density) is at least d. The assignment we described

allows us to prove the density constraint easily.

Lemma 9.8. (Density Constraint) The xS described above satisfy constraints (9.2).

152

Proof. Let S ⊂ V and i ∈ S. We need to check that
∑

j∈Γ(i) xS∪j ≥
n1/4

L
·xS. It is easy

to see that for every j ∈ Γ(i), st(S ∪ j) ≤ st(S) + 1, and thus xS∪j ≥ n−1/4

L
· xS (the

L term is due to the dependence on |S| in (9.4)). Since there are at least n1/2 log n/2

terms in the LHS, the inequality follows.

9.3.3 The Size Constraint and Minimum Steiner trees in

G(n, p)

By the above corollary, it suffices to check (noting k = n1/2) that

∑
i∈V

xS∪i ≤ n1/2xS for all S ⊂ V, |S| < t. (9.5)

We show this by proving that st(S ∪ i) ≥ st(S) + 2 for most i ∈ V , in particular

we bound the number of exceptions (lemmas below state the precise bounds). This

then implies that (9.5) holds.

We start with some basic facts (and notation) about Minimum Steiner trees

(minST) of S(⊂ V) in G(n, p), with our parameters. We will refer to the vertices

in S as the terminals, and the rest of the vertices in a minST as the non-terminals.

First, the minST must have all its leaves to be terminals. Further, since every two

vertices in G have a path of length two, we must have st(S) ≤ 2|S|−1 for all S. This

helps us bound the number of tree structures the minST of S can have. We define

this formally.

Given S ⊂ V , a tree structure for S is a tree T along with a mapping g : V (S)→

V (T) which is one-one (not necessarily onto). The vertices in T without an inverse

image in S are called internal vertices and the rest are also called fixed vertices. A

tree structure for S is valid if it is possible to ‘fill in’ the internal vertices with distinct

vertices from V such that all the edges in the tree are also present in G. [The relation

to Steiner trees is apparent – the internal vertices are the Steiner vertices]. Given an

153

internal vertex in T , the vertices of G which take that position in some valid ‘filling

in’ are called the set of candidates for that position.

Before we get to the lemmas, we note that the number of tree structures for S of

size ≤ 2|S| is at most (2|S|)2|S| (this is just by a näıve bound using the number of

trees). Let us now bound the number of i ∈ V for which st(S ∪ i) ≤ st(S) + 1.

Lemma 9.9. Let G ∼ G(n, p) (p fixed above), S ⊂ V (G) and T be a tree structure

for a min Steiner tree of S (so the leaves of T are elements of S). Then the number

of candidates for each of the positions in T is at most (log n)|S|.

Proof. The proof is by induction on the size of S. The base case |S| = 1 is trivial.

Assume the result for all tree structures of sets of size ≤ |S| − 1. Now consider S.

We may assume that T has at least one non-terminal, as otherwise there is nothing

to prove.

First, note that there exists a vertex u ∈ T which is adjacent to at most one non-

leaf vertex in T . This is because deleting all the leaves in T gives a tree (which is not

empty as there is at least one non-terminal in T), and a leaf in this tree our required

u. If u is a terminal, we could remove the leaves attached to u (thus obtaining a

subset S ′ of the terminals), and the remaining tree structure would be a valid min

Steiner tree for S ′. Further, the set of non-terminals is precisely the same, and thus

the inductive hypothesis implies the claim for S. Thus suppose u is a non-terminal.

If the degree of u (in T) is 2, then u has precisely one leaf attached to it (call it

`). Consider the tree T ′ obtained by removing u, `, and let S ′ = S \ `. Now T ′ is

a min Steiner tree for S ′ (if not, we could consider use this smaller tree for S ′ along

with a path of length 2 to ` to obtain a smaller minimum steiner tree for S). If

b is the vertex in T ′ attached to u, there are at most (log n)|S|−1 candidates for b,

by Induction Hypothesis. For each candidate b, the number of candidate u is only

(log n), and since ` is a terminal. Thus the number of candidates for u is at most

154

(log n)|S|. The rest of the non-terminals in T are also present in T ′, and this gives the

result.

If degree(u) > 2, then there are at least two leaves attached to u, thus the number

of candidates for u is only log n. Consider one candidate x for u. Let T ′ be the tree

obtained by removing all the leaves attached to u (thus u is now a leaf), and S ′ be

S∪x minus the set of leaves attached to u. Now T ′ is a min Steiner tree structure for

S ′ (otherwise we can obtain a smaller tree for S). Thus by the inductive hypothesis,

the number of candidates for any internal vertex in T ′ is at most (log n)|S|−1. Since

there are only log n of the x’s, it follows that the total #(candidates) for an internal

vertex is at most (log n)|S|.

This completes the proof, by induction.

An easy corollary is the following.

Corollary 9.10. Let S ⊂ V , as in Lemma 9.9. There are at most (2|S| log n)2|S|

vertices i such that st(S ∪ i) = st(S).

Proof. Each such i must be the internal vertex of some min Steiner tree for S, and

there are at most (2|S|)2|S| tree structures. Lemma 9.9 now implies the claim.

Lemma 9.11. Let S ⊂ V (G) where G ∼ G(n, p) (p fixed above). There are at most

(4|S| log n)4|S| × n1/2 vertices i such that st(S ∪ i) = st(S) + 1.

Proof. Let i be such a vertex. First, note that if there exists a min Steiner tree for

S ∪ i with i as a leaf, we are done. This is because removing i gives a min Steiner

tree for S, and thus i is a neighbour of an internal vertex in a min Steiner tree for S.

Thus by 9.10 there are only (2|S| log n)2|S| × (2n1/2 log n) such i.

Thus suppose that the min Steiner tree for S ∪ i has i as an internal vertex. We

will prove the bound as follows: we consider a tree structure T of size st(S) + 1 with

leaves being terminals from S; then we show that the number of candidates for any

155

fixed position in T is at most (2|S| log n)2|S|n1/2. This suffices, because the number

of choices of tree structures adds an additional factor of (2|S|)2|S|.

Figure 9.3: A min Steiner Tree for S ∪ u having u as internal vertex

Let us consider a structure T as above (in Figure 9.3), and a position u. Since

u is not a leaf, it has degree at least 2. Let the degree be d, and let T1, . . . , Td be

the subtrees of T formed by removing u (see figure ...). Now if for some i, Ti is the

min Steiner tree for the terminals in Ti, we are done, because then, each candidate

for u must be neighbour of an internal vertex in the tree, and by 9.10 there are only

√
n × (2|S| log n)2|S| candidates. Thus for each i, Ti must have a strictly smaller

tree T ′i . Let the vertex in T1 connected to u be called b1. Now construct a new

tree as follows: leave T1 intact, and replace T2, . . . , Td by T ′2, . . . , T
′
d; connect b1 to

T ′2, . . . , T
′
d using paths of length 2. The number of edges in the new tree is now at

most |T | − d − (d − 1) + 2(d − 1). The first term is the original cost, followed by

removal of u, followed by the decrease by using T ′i as opposed to Ti, followed by the

cost of adding length-2 paths.

Thus the new tree has cost at most |T | − 1, and thus it is optimal for S! Further,

u is adjacent to b1 which is an internal vertex, and thus the number of candidates is

bounded by the desired quantity.

156

Putting things together. Consider the sum
∑

i∈V xS∪i. 9.10 implies that there

are at most (L log n)L terms which contribute a value xS/L. Lemma 9.11 implies that

there are at most n1/2 · (2L log n)2L terms which contribute a value xS/(n
1/4L). Thus

if we pick (2L log n)2L < n1/4, we have the bound that the sum is at most n1/2xS, as

desired.

Thus we have verified each of the constraints (9.1)-(9.3). This completes the proof

of Theorem 9.1.

9.3.4 Gaps for the mixed hierarchy (SA+)

Consider the relaxation SAt described in (9.1)-(9.2), along with the constraint: Z =

(xij)1≤i,j≤n � 0. The solution considered earlier (Equation (9.4)) turns out to also

satisfy this PSD condition with high probability. The entries of Z are

Zij =

n−1/2/L if i = j

n−
3
4/L2 if (i, j) ∈ E(G)

n−1/L2 otherwise

Thus we have

Z =
1

L
·
[1

nL
J +

1

n1/2
I +

1

n3/4L
A
]
,

where A is the adjacency matrix of G. Now A is a G(n, p) matrix with p = n−1/2 log n.

Thus the least eigenvalue is at least −2
√
np(1− p) with high probability (by the

Semicircle law). This is at least −4n1/4(log n)1/2.

Thus we have A + 4n1/4
√

log nI � 0. Using the fact that J � 0, we obtain that

Z � 0.

This shows that adding an SDP constraint at the first level does not give us

any additional power – the relaxation obtained after Ω(logn
log logn

) levels also has an

integrality gap of Õ(n1/4).

157

9.4 Conclusions and Subsequent work

These results are based on joint work with Bhaskara, Charikar, Guruswami and Zhou

[21]. In the same work, we also consider the much stronger Lasserre hierarchy of

relaxations for DkS. We show an integrality gap of polynomial ratio (nε, for small

enough constant ε) for almost linear (n1−O(ε)) levels of the Lasserre relaxation. If we

only aim at an integrality gap for polynomial (nε) levels of the Lasserre relaxation,

the ratio of the gap can be as large as n2/53−O(ε). However, these gap instances do

not correspond to the natural average-case model for DkS. The distribution instead

corresponds to the image of gadget reductions on random instances of a constraint

satisfaction problem with large arity, over a large alphabet.

While prior results exhibiting gap instances for lift-and-project relaxations do so

for problems that are already known to be hard to approximate under some suitable

assumption; based on this hardness result, one would expect lift-and-project relax-

ations to have an integrality gap that matches the inapproximability factor. Our

gap constructions for Densest k-Subgraph are a rare exception to this trend, as the

integrality gaps we show are substantially stronger than the (very weak) hardness

bounds known for the problem.

In the absence of inapproximability results for Densest k-Subgraph, our results

show that beating a factor of nΩ(1) is a barrier for even the most powerful SDPs, and

in fact even beating the best known n1/4 factor is a barrier for current techniques.

These results are perhaps indicative of the hardness of approximating DkS within

nΩ(1) factors.

Our work leaves open two intriguing questions

Question 7. 1. Does Theorem 9.1 hold for L� log n?

2. Does the n1/4 gap also hold for the Lasserre hierarchy?

158

We conjecture that even L ≈ nε levels does not reduce the integrality gap sub-

stantially. We need a different approach (involving a better argument for bounding

the number of trees) to extend the arguments above to this range of L.

Relation to the Small Set Expansion and Unique Games. A problem related

to DkS is the Small Set Expansion (SSE) problem, which has received a lot of recent

attention due to strong connections to the Unique Games conjecture [76]. One way

to state the SSE conjecture [76] (which would imply the Unique Games conjecture)

is as follows: for all ε > 0, there exists δ,D (think of D as a constant), such that the

following problem is hard:

Definition 9.12 (The Gap-SSE problem). Given a D-regular instance G(V,E) with

k = δn, the Gap-SSE problem is to distinguish between the following two cases.

• Yes case. There exists a subgraph of k vertices with average degree at least

(1− ε)D.

• No case. All subgraphs of k vertices have average degree at most εD.

Clearly, DkS is hard to approximate within any constant factor, assuming the

Small Set Expansion conjecture. On the other hand, our results indicate that ap-

proximating DkS even within a polynomial factor may be a harder problem than

Unique Games or Small Set Expansion, because these problems were recently shown

to be solvable using nΩ(1) rounds of the Lasserre hierarchy [19, 48].

159

Chapter 10

Open Problems

In this thesis we tried to better understand the approximability of two fundamental

graph optimization problems : Graph Partitioning and Densest k-subgraph, by study-

ing different average-case models and structured assumptions about the instances. We

showed that we can design much better approximation algorithms for problems like

Balanced Cut for realistic average-case models. The algorithmic framework that we

introduced was fairly general and applies to several graph partitioning problems. Our

average-case study of Densest k-subgraph revealed crucial insights into the approx-

imability of the problem: the algorithms we designed for the average-case directly

inspired worst-case approximation algorithms with the same guarantees. Besides,

the natural average-case model exactly captured the extent of current techniques for

Densest k-subgraph.

This average-case study of the two problems undertaken in this dissertation moti-

vates such a study for other important classes of graph optimization problems, which

are not well understood from an approximability standpoint. Our results also lead to

many other interesting directions for future research, some of which we outline below.

160

10.1 Algorithms for good Average-case models

Improved approximations for Realistic average-case models

The broad research direction of looking beyong the rigorous demands of worst-case

guarantees, in our search for good approximation algorithms seems like a direction

with much promise for progress. The challenge is to identify average-case models

which are realistic and natural, and yet, design improved algorithms for them.

Question 8. Can we design good models and algorithms for “real-world” instances

of important optimization problems?

One example is the case of ordering problems, the simplest of which is the Feedback

Arc Set problem [84], for which we know only O(log n log log n) approximation in the

worst-case. An appropriate average-case could be one where we view the backward

edges in the optimal ordering as random noise. Another problem which would be

interesting to study is minimum (balanced) Vertex Separator problem. A model

where the vertices involved in the separator are chosen randomly may be a natural

setting, and also pose a challenge to our techniques because of the limited randomness

in such a model.

Semi-random Graph Partitioning

In Chapter 4 and Chapter 5 we gave O(1) approximations for semi-random instances

for various graph partitioning problems. We believe that our model can capture fairly

general instances that come up in practice — in this light, it would be very propitious

to have practical algorithms that achieve small constant factor approximation, or

better still a Polynomial Time Approximation Scheme.

Question 9. Can we design practical near-linear time algorithms achieve O(1) ap-

proximations for semi-random instances of graph partitioning?

161

Another obvious direction in the context of graph partitioning is to develop good

approximations for more general or other realistic models for graph partitioning. For

instance, it would be very interesting to design a O(1) approximation under weak

stability assumptions in the spirit of [17, 16]. The most ambitious question in this

mould would be to design such approximations for an appropriate smoothed version

of graph partitioning problems (please refer to [81] for the challenges in designing

smoothed models for discrete optimization problems).

10.2 Translating Average Case Algorithms to

Worst Case

In Chapter 8, we saw how we could systematically translate the counting algorithms

for a natural average-case model for Densest k-subgraph to the worst case using linear

programming hierarchies. It would be very interesting if this can be generalized to

find use in other problems.

A concrete problem where such an effort can be fruitful is the classic problem

of approximate 3-coloring. The current best algorithm [29] combines combinato-

rial techniques of Blum[23] with the SDP-based approaches using three levels of the

Lasserre hierarchy (see also [10] for more details). Blum’s algorithm tries to find a

large independent set in the distance-2 neighborhood of some vertex : this approach

is motivated by a similar algorithm for the random model.

Question 10. Can an algorithm that uses k-rounds of the Lasserre hierarchy (in-

spired by the length-k path counting algorithms of [24] for the semi-random model)

give an nO(1/k)-coloring of a 3-colorable graph?

Another problem with a Densest k-subgraph flavor, that could benefit by a study

of a suitable average-case version is the Label Cover problem (and its variants): its

approximation factor dictates the best inapproximability results for several problems.

162

These questions are a part of the following broader direction:

Question 11. Can we characterize a class of algorithms (say, local-counting al-

gorithms) and problems, for which we can systematically translate algorithms from

average-case to the worst-case, by rounding a suitable lift-and-project relaxation?

10.3 Integrality Gaps and Evidence for Barriers

Densest k-subgraph

The most interesting question left open by this thesis on the Densest k-subgraph

problem is whether we can break the “log density barrier”. This is captured by the

following simple question about random graphs:

Question 12. Can we distinguish between the following two distributions:

• D1: graph G picked from G(n, n−1/2).

• D2: graph G picked from G(n, n−1/2) with the induced subgraph on
√
n vertices

replaced with G(
√
n, n−(1/4+ε)).

This setting and other average-case variants of Densest k-subgraph seems to

present a barrier for algorithmic progress in many optimization problems with strict

budgets. An advantage with using these barriers as average-case assumptions is that

we have a candidate distribution of hard instances (unlike the Unique Games conjec-

ture, for instance). Stronger evidence for these average-case assumptions (building

on our work in [21]) would place them on a firmer footing.

An important research direction in this context, is to identify a unifying hardness

assumption about finding small dense subgraphs:

Question 13. Can we identify a broad family of problems, that become intractable

based on an assumption about the hardness of Densest k-subgraph?

163

Candidate Hard Distribution for Graph Partitioning

A complementary research question that comes up from our work on average-case

algorithms for graph partitioning problems is identifying candidate hard distributions

for basic problems like Balanced Cut or Small Set Expansion. Our algorithms in

Chapter 4 and Chapter 6 show that sufficient randomness either within the clusters

or between clusters to generate instances make them easy. However, there is a strong

belief that these problems may not have constant factor approximations in the worst-

case — in that case, it would be more satisfying to have a candidate distribution of

hard instances, with some evidence viz. integrality gaps.

Question 14. Is there a natural distribution of instances for Balanced Cut or Small

Set Expansion which give ω(1) for strong SDP hierarchies?

164

Bibliography

[1] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(
√

log n) approximation algorithms for min uncut, min 2cnf deletion, and di-
rected cut problems. In Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, STOC ’05, pages 573–581, New York, NY, USA, 2005.
ACM.

[2] N. Alon and V. Milman. Isoperimetric inequalities for graphs, and supercon-
centrators. Journal of Combinatorial Theory, Series B, 38(1):73–88, February
1985.

[3] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden
clique in a random graph. Random Structures & Algorithms, 13(3-4):457–466,
1998.

[4] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[5] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–
856, 1995.

[6] Matthew Andrews, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Ankur
Moitra. Capacitated metric labeling. In Dana Randall, editor, SODA, pages 976–
995. SIAM, 2011.

[7] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography
from different assumptions. In Leonard J. Schulman, editor, STOC, pages 171–
180. ACM, 2010.

[8] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational
complexity and information asymmetry in financial products. In Proceedings of
the First Symposium on Innovations in Computer Science (ICS), 2010.

[9] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving
integrality gaps without knowing the linear program. Theory of Computing,
2(1):19–51, 2006.

[10] Sanjeev Arora and Rong Ge. New tools for graph coloring. In Leslie Ann
Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim, editors, APPROX-
RANDOM, volume 6845 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2011.

165

[11] Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur Tul-
siani, and Nisheeth K. Vishnoi. Unique games on expanding constraint graphs
are easy: extended abstract. In Proceedings of the 40th annual ACM symposium
on Theory of computing, STOC ’08, pages 21–28, New York, NY, USA, 2008.
ACM.

[12] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, 1998.

[13] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric
embeddings and graph partitioning. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, STOC ’04, pages 222–231, New York,
NY, USA, 2004. ACM.

[14] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new char-
acterization of np. J. ACM, 45(1):70–122, 1998.

[15] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense
subgraphs. Discrete Appl. Math., 121(1-3):15–26, 2002.

[16] Maria-Florina Balcan. Better guarantees for sparsest cut clustering. In COLT,
2009.

[17] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate cluster-
ing without the approximation. In Proceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’09, pages 1068–1077, Philadel-
phia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[18] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Joseph Naor, and Roy Schwartz. Min-max graph parti-
tioning and small set expansion. In Rafail Ostrovsky, editor, IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 17–26. IEEE, 2011.

[19] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite
programming hierarchies via global correlation. In Rafail Ostrovsky, editor,
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 472–481. IEEE, 2011.

[20] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravin-
dan Vijayaraghavan. Detecting high log-densities: an O(n1/4) approximation for
Densest k-subgraph. In Proceedings of the 42nd ACM symposium on Theory of
computing (STOC ’10), pages 201–210, New York, NY, USA, 2010. ACM.

[21] Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Gu-
ruswami, and Yuan Zhou. Polynomial integrality gaps for strong SDP relaxations
of Densest k-subgraph. In Proceedings of the Twenty-Third Annual ACM-SIAM

166

Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 388–405. SIAM, 2012.

[22] Yonatan Bilu and Nathan Linial. Are stable instances easy? In ICS’10, pages
332–341, 2010.

[23] A. Blum. Some tools for approximate 3-coloring. Proceedings on the Annual
IEEE Symposium on Foundations of Computer Science., 0:554–562 vol.2, 1990.

[24] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable
graphs. J. Algorithms, 19:204–234, September 1995.

[25] Ravi B. Boppana. Eigenvalues and graph bisection: An average-case analysis. In
28th Annual Symposium on Foundations of Computer Science., pages 280 –285,
oct. 1987.

[26] Thang Nguyen Bui, F. Thomson Leighton, Soma Chaudhuri, and Michael Sipser.
Graph bisection algorithms with good average case behavior. Combinatorica,
7:171–191, June 1987.

[27] Moses Charikar. Greedy approximation algorithms for finding dense components
in a graph. In APPROX ’00: Proceedings of the Third International Workshop
on Approximation Algorithms for Combinatorial Optimization, pages 84–95, Lon-
don, UK, 2000. Springer-Verlag.

[28] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps
for Sherali-Adams relaxations. In Michael Mitzenmacher, editor, STOC, pages
283–292. ACM, 2009.

[29] E. Chlamtac. Approximation algorithms using hierarchies of semidefinite pro-
gramming relaxations. In Proceedings of the 48th Annual IEEE Symposium on
the Foundations of Computer Science. FOCS ’07., pages 691 –701, oct. 2007.

[30] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through
higher levels of SDP hierarchies. In Ashish Goel, Klaus Jansen, José D. P. Rolim,
and Ronitt Rubinfeld, editors, APPROX-RANDOM, volume 5171 of Lecture
Notes in Computer Science, pages 49–62. Springer, 2008.

[31] Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps.
Handbook on Semidefinite, Cone and Polynomial Optimization, 2011.

[32] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou.
Approximation algorithms and hardness of the k-route cut problem. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 780–799. SIAM,
2012.

167

[33] Amin Coja-Oghlan. A spectral heuristic for bisecting random graphs. In Pro-
ceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’05, pages 850–859, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

[34] Anne Condon and Richard Karp. Algorithms for graph partitioning on the
planted partition model. In Dorit Hochbaum, Klaus Jansen, Jos Rolim, and Al-
istair Sinclair, editors, Randomization, Approximation, and Combinatorial Opti-
mization. Algorithms and Techniques, volume 1671 of Lecture Notes in Computer
Science, pages 221–232. Springer Berlin / Heidelberg, 1999.

[35] Tassos Dimitriou and Russell Impagliazzo. Go with the winners for graph bi-
section. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’98, pages 510–520, Philadelphia, PA, USA, 1998. Society for
Industrial and Applied Mathematics.

[36] M. E. Dyer and A. M. Frieze. Fast solution of some random np-hard problems.
In 27th Annual Symposium on Foundations of Computer Science (FOCS)., pages
331 –336, oct. 1986.

[37] U. Feige and J. Kilian. Heuristics for finding large independent sets, with applica-
tions to coloring semi-random graphs. In Proceedings of 39th Annual Symposium
on Foundations of Computer Science., pages 674 –683, nov 1998.

[38] Uriel Feige. Relations between average case complexity and approximation com-
plexity. In Proceedings of the 34th annual ACM Symposium on Theory of Com-
puting (STOC’02), pages 534–543. ACM Press, 2002.

[39] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Com-
put. Syst. Sci., 63:639–673, December 2001.

[40] Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem.
Algorithmica, 29(3):410–421, 2001.

[41] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden
clique in a semirandom graph. Random Struct. Algorithms, 16:195–208, March
2000.

[42] Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Technical
Report CS97-16, Weizmann Institute of Science, Rehovot, Israel, 1997.

[43] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. Comput., 18(1):30–55, 1989.

[44] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow
min-(multi)cut theorems and their applications. In Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, STOC ’93, pages 698–707,
New York, NY, USA, 1993. ACM.

168

[45] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis.
Integrality gaps of 2-o(1) for vertex cover SDPs in the Lovász–Schrijver hierarchy.
SIAM J. Comput., 39(8):3553–3570, 2010.

[46] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. Optimal Sherali-
Adams gaps from pairwise independence. In Irit Dinur, Klaus Jansen, Joseph
Naor, and José D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lec-
ture Notes in Computer Science, pages 125–139. Springer, 2009.

[47] Doron Goldstein and Michael Langberg. The dense k subgraph problem. CoRR,
abs/0912.5327, 2009.

[48] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigen-
values, and approximation schemes for graph partitioning and quadratic integer
programming with PSD objectives. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 482–491. IEEE, 2011.

[49] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematics Society (N.S, 43:439–561,
2006.

[50] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou.
Mining coherent dense subgraphs across massive biological networks for func-
tional discovery. Bioinformatics, 21 Suppl 1:i213–21, Jun 2005.

[51] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner
network problem. Combinatorica, 21(1):39–60, 2001.

[52] M. Jalali, N. Mustapha, A. Mamat, and M.N.B. Sulaiman. A new clustering
approach based on graph partitioning for navigation patterns mining. In Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1 –4,
dec. 2008.

[53] Mark Jerrum and Gregory Sorkin. Simulated annealing for graph bisection. In in
Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer
Science, pages 94–103, 1993.

[54] George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Order-
ings of Sparse Matrices, September 1998.

[55] S. Khot. Improved inapproximability results for maxclique, chromatic number
and approximate graph coloring. In Proceedings on the 42nd IEEE Symposium
on Foundations of Computer Science, FOCS ’01., pages 600 – 609, oct. 2001.

[56] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, STOC ’02,
pages 767–775, New York, NY, USA, 2002. ACM.

169

[57] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J.
Comput., 37(1):319–357, 2007.

[58] Subhash Khot and Rishi Saket. SDP integrality gaps with local `1-embeddability.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 565–574. IEEE Com-
puter Society, 2009.

[59] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, inte-
grality gap for cut problems and embeddability of negative type metrics into
`1. In Proceedings of the 44th Annual IEEE Symposium on the Foundations of
Computer Science, FOCS’04, pages 53–62. IEEE, 2005.

[60] Pascal Koiran and Anastasios Zouzias. On the certification of the restricted
isometry property. CoRR, abs/1103.4984, 2011.

[61] Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play
unique games against a semi-random adversary. In Rafail Ostrovsky, editor,
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.

[62] Ludek Kucera, Alberto Marchetti-Spaccamela, Marco Protasi, and Maurizio Ta-
lamo. Near optimal algorithms for finding minimum steiner trees on random
graphs. In Mathematical Foundations of Computer Science 1986, pages 501–511,
London, UK, UK, 1986. Springer-Verlag.

[63] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.
Trawling the web for emerging cyber-communities. In Proceedings of the eighth
international conference on World Wide Web, WWW ’99, pages 1481–1493, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

[64] Ravi Kumar and D. Sivakumar. On polynomial approximation to the shortest
lattice vector length. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’01, pages 126–127, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics.

[65] Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R. Salavatipour, and Mohit Singh.
Survivable network design with degree or order constraints. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, STOC ’07, pages
651–660, New York, NY, USA, 2007. ACM.

[66] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46:787–832, November
1999.

[67] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

170

[68] Konstantin Makarychev and Yury Makarychev. How to play unique games on
expanders. In Klaus Jansen and Roberto Solis-Oba, editors, WAOA, volume
6534 of Lecture Notes in Computer Science, pages 190–200. Springer, 2010.

[69] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan.
Approximation algorithms for semi-random graph partitioning problems. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Sym-
posium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 367–384. ACM, 2012.

[70] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd
IEEE symposium on Foundations of Computer Science, FOCS ’01, pages 529–,
Washington, DC, USA, 2001. IEEE Computer Society.

[71] Mark E. J. Newman. Random graphs as models of networks, pages 35–68. Wiley-
VCH Verlag GmbH and Co. KGaA, 2005.

[72] Mike Perkowitz and Oren Etzioni. Towards adaptive web sites: conceptual frame-
work and case study. Artif. Intell., 118:245–275, April 2000.

[73] Harald Räcke. Optimal hierarchical decompositions for congestion minimization
in networks. In Proceedings of the 40th annual ACM symposium on Theory of
computing, STOC’08, pages 255–264, New York, NY, USA, 2008. ACM.

[74] Prasad Raghavendra. Optimal algorithms and inapproximability results for ev-
ery CSP? In Proceedings of the fortieth annual ACM symposium on Theory of
computing, STOC ’08, pages 245–254, 2008.

[75] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relax-
ations of unique games. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pages 575–585. IEEE Computer Society, 2009.

[76] Prasad Raghavendra and David Steurer. Graph expansion and the unique games
conjecture. In Proceedings of the 42nd ACM symposium on Theory of computing,
STOC ’10, pages 755–764, New York, NY, USA, 2010. ACM.

[77] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between
expansion problems. In To appear in the proceedings of International Colloquium
on Automata, Languages and Programming (ICALP), 2012.

[78] Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality
constraints using sdp hierarchies. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 373–387. SIAM, 2012.

171

[79] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In
Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 593–602, Washington, DC, USA, 2008. IEEE Computer
Society.

[80] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower
bound for Lovász-Schrijver SDP relaxations of vertex cover. In IEEE Conference
on Computational Complexity, pages 205–216. IEEE Computer Society, 2007.

[81] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis (motivation and
discrete models). In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Michiel H. M.
Smid, editors, WADS, volume 2748 of Lecture Notes in Computer Science, pages
256–270. Springer, 2003.

[82] Anand Srivastav and Katja Wolf. Finding dense subgraphs with semidefinite
programming. In Proceedings of the International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), pages 181–191, 1998.

[83] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Pro-
ceedings of the 41st annual ACM symposium on Theory of computing, STOC ’09,
pages 303–312, New York, NY, USA, 2009. ACM.

[84] David P. Williamson and David B. Shmoys. The Design of Approximation Al-
gorithms. Cambridge University Press, 1 edition, April 2011.

172

