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Abstract

Appropriate tools for managing large-scale data, like online texts, images and user pro-

files, are becoming increasingly important. Hierarchical Bayesian models provide a natural

framework for building these tools due to their flexibility in modeling real-world data. In

this thesis, we describe a suite of efficient inference algorithms and novel models under the

hierarchical Bayesian modeling framework.

We first present a novel online inference algorithm for the hierarchical Dirichlet pro-

cess. The hierarchical Dirichlet process (HDP) is a Bayesian nonparametric model that

can be used to model mixed-membership data with a potentially infinite number of com-

ponents. Our online variational inference algorithm is easily applicable to massive and

streaming data and significantly faster than traditional inference algorithms.

Second, we present a generic approximation framework for variational inference in

a large family of nonconjugate models. For example, this includes multi-level logistic

regression/generalized linear models and correlated topic models. With this, developing

variational inference algorithm for many nonconjugate models is much easier.

Finally, we describe two novel models for real-world applications. This first appli-

cation is about simultaneous image classification and annotation. We show that image

classification and annotation can be integrated together using the same underlying proba-

bilistic model. The second application is to better disseminate scientific information using

recommendations. Compared with traditional recommendation algorithms, our algorithm

not only improves the recommendation accuracy, but also provides interpretable structure

of users and scientific articles. This interpretability provides lots of potential for designing

better recommender systems.
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Chapter 1

Introduction

The last two decades have witnessed the explosion of the data that human beings can

not process without the help of appropriate software. For example, iTunes for music or

online web search. These (semi-)automatic tools for organizing and discovering information

from the data are becoming increasingly important. For example, automatic document

categorization and image annotation can be used for enhancing the data quality to aid

browsing. Large-scale hidden structure discovery of documents can be used to improve the

results of information retrieval and recommendations. Reasonable and accurate results of

clustering can be useful for efficient data indexing.

To achieve these goals, researchers build models that are able to capture the desired

properties from the data. My thesis focuses on hierarchical Bayesian models. Hierarchical

Bayesian models naturally take advantage of statistical information shared among the data.

This coincides with the property of real-world applications. For example, in document

modeling, different documents can share similar topics; in image modeling, different images

can share similar objects and annotations; in user modeling, different users can share similar

interests. This is essentially the reason we can generalize our model on unseen data.

Second, the volume of real-world data, such as online texts, images and users, is usually

very large. Traditional algorithms that work well on small-scale data might not be scalable

to the much larger datasets. Thus, we need efficient algorithms that can tackle the large-scale
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computational problems arising in modern applications of hierarchical Bayesian modeling.

This thesis aims to cover the two aspects of hierarchical Bayesian modeling discussed

above. I will present a suite of efficient inference algorithms and several novel models under

the hierarchical Bayesian modeling framework.1 The chapters are organized as follows,

• In Chapter 2, we first review the concept of hierarchical Bayesian modeling and

approximate inference algorithms. Next, we introduce the Bayesian nonparametric

framework, with Dirichlet process (DP) and hierarchical Dirichlet process (HDP)

as exmaples. Finally, we describe the topic modeling as an example of hierarchical

Bayesian models.

• In Chapter 3, we present a novel online inference algorithm for HDP. The HDP, a

Bayesian nonparametric model, can be used for mixed-membership models with an

unbounded number of components. Our online variational inference algorithm that is

easily applicable to massive and streaming data. This is based on our work [109].

• In Chapter 4, we present a novel framework for variational inference in nonconjugate

models. We describe a generic approximation framework for variational inference with

non-conjugate priors for a large family of models. With this, developing variational

inference algorithm for non-conjugate models has a general guidance and is much

easier. This is based on our work [108].

• In Chapter 5, we describe a novel model for simultaneous image classification and an-

notation. We show that image classification and annotation can be integrated together

using the same underlying probabilistic model. This is based on our work [106].

• In Chapter 6, we present a novel model to better disseminate scientific information

using recommendation techniques. Our model not only improves the recommendation

accuracy, but also provides interpretable latent structure of users and scientific articles.

This is based on our work [107].

• In Chapter 7, we summarize the thesis and discuss some future directions.

1All my code about the content in this thesis can be found at http://www.cs.princeton.edu/˜chongw.
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Chapter 2

Hierarchical Bayesian Modeling

In this chapter, we discuss the background of hierarchical Bayesian modeling. This includes

what kind of models we focus in this thesis, approximate inference for these models and

Bayesian nonparametric extensions. Finally, we describe topic models as an example of

hierarchical Bayesian models.

2.1 Hierarchical Bayesian Modeling

Hierarchical Bayesian modeling (HBM) can be considered as a guideline of building

statistical models [47]. In these models, the key assumption is that inference about one

unobserved quantity (for example, a document, an image or a user) affects inference about

another unobserved quantity. For example, suppose we want to build a model of user

interests in a recommendation engine. When we have new users, it is reasonable to assume

that the information we have gathered from the existing users is helpful to model the new

users and vice versa. A good model should be able to leverage different observations and

improve overall predications.

In this thesis, we are mostly considering one type of hierarchical Bayesian models that

have a specific structure depicted in Figure 2.1 using graphical models. This can also be

described using the following generative process,

1. Draw corpus-level (global) hidden variable β ∼ p(β |α), where α indicates the fixed
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Figure 2.1: A general graphical model using to illustrate hierarchical Bayesian modeling.
Here, parameter α indicates the fixed hyper-parameters; unshaded nodes β and zi are hidden
variables, shaded nodes xi are the observed data and n is the number of data points in the
collection. In general, we want to infer the posterior of hidden variables β and zi, so that we
use them to explore the collection or make prediction on future data.

hyper-parameters.

2. For each observed data point xi, i = 1, · · · , n,

(a) Draw data-specific (local) hidden variable zi ∼ p(zi | β).

(b) Draw observed data point xi ∼ p(xi | zi, β).

The joint probability of all the hidden and observed variables is,

p(x1:n, z1:n, β |α) = p(β |α)
∏n

i=1 p(zi | β)p(xi | β, zi). (2.1)

Given the observed data x1:n and the fixed hyper-parameter α, we would like to infer the

posterior distributions over the hidden variables β and z1:n, termed as,

p(z1:n, β |x1:n, α) =
p(x1:n, z1:n, β |α)

p(x1:n |α)
. (2.2)

The marginal probability of the observed data, p(x1:n |α), is also called the “evidence”

of the data. After we obtain the posterior distribution p(z1:n, β |x1:n, α), we can use it to

understand the data collection or make predictions on future data. For example, if we have a
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new data point xn+1, the predictive distribution given previous observed data x1:n is

p(xn+1 |x1:n, α) =

∫
p(xn+1 | zn+1, β)p(zn+1 | β)p(β |x1:n, α)dzn+1dβ,

where we note that p(β |x1:n, α) is the marginalized posterior distribution by integrating out

z1:n from p(z1:n, β |x1:n, α).

This general model described using the generative process above covers a wide range

of popular models, such as mixture models [75], mixed-membership models [26] and

latent factor models [50]. Let us take an example of Bayesian Gaussian mixture models

(GMM) with K mixture components. For simplicity, we assume the variance of each

Gaussian mixture component is fixed as 1. Given this model, the global hidden variable

β = {µ1, µ2, · · · , µK , π}, where µk, k = 1, 2, · · · , K indicates the mixture mean locations

and π is the mixture proportions and the fixed hyper-parameter α = {µ0, η}, where µ0 is the

Gaussian prior mean parameter for µk, k = 1, 2, · · · , K, and η is the Dirichlet parameter

for mixture proportions π. The generative process for this Bayesian GMM is as follows,

1. Draw mixture proportions π | η ∼ Dirichlet(η).

2. For k = 1, 2, · · · , K, draw mixture mean location µk |µ0 ∼ N (µ0, 1).

3. For each observed data point xi, i = 1, · · · , n,

(a) Draw mixture index zi |π ∼ Multinomial(π).

(b) Draw observed data point xi |µzi ∼ N (µzi , 1).

The joint probability of the hidden and observed variables is,

p(x1:n, z1:n, µ1:K , π |µ0, η) = p(π | η)
∏K

k=1 p(µk |µ0)
∏n

i=1 p(zi | π)p(xi |µzi).

And this completes the modeling process of a simple Bayesian GMM model.
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2.2 Approximate Inference

In many hierarchical Bayesian models, even simply like Bayesian mixture models, the

posterior distribution described in Eq. 2.2 is intractable. For convenience, we replicate

Eq. 2.2 again as follows,

p(z1:n, β |x1:n, α) =
p(x1:n, z1:n, β |α)

p(x1:n |α)
.

The main reason is that the evidence term p(x1:n |α) is intractable. That is

p(x1:n |α) =

∫
p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)dz1:ndβ. (2.3)

Again suppose we have a Bayesian mixture model with K components, where z1:n indicates

the mixture indexes for data points x1:n; the brute-force computation of p(x1:n |α) has a

complexity of O(Kn), since the integration over β couples mixture index z1:n all together.

(An alternative is usually impossible as well—the summing over z1:n is possible given β;

however this usually leads the integration over β impossible.)

In next two sections, we will describe two popular approximate inference algorithms

for posterior computation, variational inference and Markov Chain Monte Carlo. The idea

behind both of these methods is to form an approximate posterior distribution over the latent

variables that is used as a proxy for the true posterior.

2.2.1 Variational inference

Variational inference [61] turns the posterior inference problem into optimization. We posit a

family of distributions (usually simpler than the true posterior) over the hidden variables that

is indexed by free parameters. We optimize those free parameters to find the member of the

family that is the closest to the posterior of interest. Closeness is measured with Kullback-

Leibler (KL) divergence. All the content in this thesis relies the variational-inference type

of algorithms.
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Variational inference has some nice properties. It is a deterministic algorithm and easy

to assess the convergence. The downside of variational inference is also obvious—since

it uses a simpler distribution to approximate the true posterior, it is difficult to know how

biased the variational distribution is.

We will briefly describe simplest variational inference algorithm, mean-field variational

inference. Variational inference does not optimize the KL divergence directly because, like

the posterior, it is intractable to compute. Rather, the algorithm optimizes a lower bound

(the evidence lower bound, ELBO) on the log probability of the observations log p(x1:n |α).

According to the Jensen’s inequality, we lower bound the log p(x1:n |α) as follows,

log p(x1:n |α) = log

∫
p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)dz1:ndβ

= log

∫
p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)
q(β, z1:n)

q(β, z1:n)dz1:ndβ

= logEq

[
p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)
q(β, z1:n)

]
≥ Eq [log p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)]−Eq [log q(β, z1:n)]

= L(q)

= log p(x1:n |α)−KL (q(β, z1:n)||p(β, z1:n |x1:n, α)) ,

where the term L(q) is denoted as ELBO and q(β, z1:n) is the variational distribution. Maxi-

mizing the ELBO is equivalent to minimizing the KL-divergence between the variational

distribution and the true posterior. If no restriction is assumed on the form of variational

distribution q(β, z1:n), the optimal q(β, z1:n) is just the true posterior. However this does

not solve our problem. The idea of variational inference restricts the form of variational

distribution q(β, z1:n) to be the family so that the ELBO L(q) is tractable.

In mean-field variational inference, we have the simplest form of the variational distribu-
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tion that is fully factorized,

q(β, z1:n) = q(β)
∏n

i=1 q(zi).

Setting the partial derivatives with respect to q(β) and q(zi) to zero, we obtain the optimal

mean-field variational distribution must satisfy [16],

q(β) ∝ exp
{
Eq(z1:n) [log p(β |α)

∏n
i=1 p(zi | β)p(xi | β, zi)]

}
,

q(zi) ∝ exp
{
Eq(β) [log p(β |α)p(zi | β)p(xi | β, zi)]

}
This actually defines iterative algorithm by alternately optimizing q(β) and q(zi). The exact

forms of q(β) and q(zi) depend on the model specifications. When a model is conditionally

conjugate—p(β|α) is the conjugate prior to p(zi|β) and p(zi|β) the conjugate prior to

p(xi|z,β)—both q(β) and q(zi) will be in closed-form, and they are in the same family as

their node distributions p(β) and p(zi|β) [12]. This leads to the traditional coordinate ascent

algorithm, where we alternate between optimizing q(β) and q(zi). In Chapter 4, we will

describe approach that relaxes the conditional conjugacy assumption, allowing variational

inference to be applied more widely.

2.2.2 Markov Chain Monte Carlo

Unlike variational inference, Markov Chain Monte Carlo (MCMC) is a sampling-based

method [6]. In MCMC, the approximate posterior is formed as an empirical distribution of

samples from a Markov chain whose stationary distribution is the posterior of interest. After

the burn-in phase, we can collect samples and use these samples as the empirical distribution

of the posterior. Theoretically, the estimation of the posterior distribution using the samples

would be unbiased. However, due to the sampling nature, MCMC could be slow and it

is difficult to assess its converge in practice [80, 88]. Nevertheless, MCMC is still a very

powerful tool for Bayesian computation.
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We will briefly describe the simplest MCMC algorithm, Gibbs sampling [48], for

hierarchical Bayesian modeling. In general MCMC algorithms, designing an efficient

proposal distribution is important, otherwise it will lead to high rejection rate. Unlike

general MCMC algorithms, Gibbs sampling always accepts the proposed move. In Gibbs

sampling, we sample each hidden variable using the conditional distribution given all the

other hidden variables and the observations. For the model we consider in Figure 2.1, to

sample the global hidden variable β, we have its conditional distribution,

p(β|zi:n, x1:n, α) ∝ p(β |α)
∏n

i=1 p(zi | β)p(xi | β, zi).

To sample each local hidden variable zi, we have its conditional distribution,

p(zi|β, z−i, x1:n, α) ∝ p(zi | β)p(xi | β, zi).

Note sampling zi does not depend on other local hidden variables zj , j 6= i due to the

conditional independence given the global hidden variable β.

An improved version of Gibbs sampling can be achieved by integrating out certain

hidden variables, leading to faster mixing [71]. For example, in many practical models, such

as mixture models and mixed-membership models, it is possible to integrate out the global

hidden variable β, leading to a better Gibbs sampling algorithm, usually called collapsed

Gibbs sampler. In this case, we will need the conditional distribution,

p(zi|z−i, x1:n, α) ∝
∫
p(zi | β)p(xi | β, zi)p(β | z−i, x−i, α)dβ.

This collapsed sampler removes the step of sampling β. However, since all the local hidden

variables zi, i = 1, 2, . . . , n are tightly coupled, making it difficult for parallelization for

large scale datasets.
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2.3 Bayesian Nonparametric modeling

How do we choose the number of clusters/topics in a document collection? One common

way is to use cross validation. Recently, Bayesian nonparametric models have received much

attention as an appealing alternative to this kind of problems. These models encode a huge

(usually unbounded) family of models to mitigate underfitting, and treat model selection

as posterior inference to avoid overfitting. Next, we will describe two popular Bayesian

nonparametric priors, Dirichlet process and hierarchical Dirichlet process as the priors for

infinite mixture modeling and mixed-membership modeling.

2.3.1 Dirichlet Process

Dirichlet process (DP) [45] is a stochastic process whose sample draws are probabilistic

measures. Let (E, E) be a measurable space. Suppose that G0 a probability measure on the

space and α is a positive scalar. A random probability measure G on the space (E, E) is

said to be a draw from a DP with base measure αG0, if for any finite measurable partition

(A1, A2, . . . , Am) of E,

(G(A1), . . . , G(Am)) ∼ Dirichlet(αG0(A1), . . . , αG0(Am)), (2.4)

where Dirichlet(·) is the Dirichlet distribution. For simplicity, we write G ∼ DP(αG0).

Two related perspectives of DP are the stick-breaking construction [94] and the Chinese

restaurant process through the Pólya urn scheme [18]. We briefly introduce the stick-

breaking construction.

Stick-breaking construction. As shown in [94], a draw G from DP(αG0) can be de-

scribed as

vi ∼ Beta(1, α), πi = vi
∏i−1

j=1(1− vj), yi ∼ G0, for i = 1, 2, . . .

G =
∑∞

i=1 πiδyi ,
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where π are the stick lengths, and
∑∞

i=1 πi = 1 almost surely. This representation also

illuminates the discreteness of a distribution drawn from a DP.

Dirichlet process mixtures. A popular application of DP is the infinite mixture models

for density estimation [43]. Given G ∼ DP(αG0), we assume the observed data D =

{x1, . . . , xn} is generated as follow, for j = 1, . . . , n,

θj |G ∼ G,

xj | θj ∼ H(θj), (2.5)

where H(θ) is the data generation distribution given the parameter θ. (For example, a

Gaussian distribution given mean and variance.) Since G is a discrete measure, different

data points have the chance to share the same θ, leading to the effect of mixture models.

And G has infinite many atoms, allowing the number of mixtures unbounded. For ap-

proximate posterior inference for DP mixture models, Gibbs sampling [81] and variational

inference [21] are two popular approaches.

2.3.2 Hierarchical Dirichlet Process

The hierarchical Dirichlet process [99] is a hierarchical generalization of the DP on random

distributions [45]. We will focus on a two-level HDP, which can be used in an infinite

capacity mixed-membership model. In a mixed-membership model, data are groups of

observations, and each exhibits a shared set of mixture components with different proportion.

For example, if we focus on text-based topic modeling, the data are observed words from a

vocabulary grouped into documents; the mixture components are distributions over terms

called “topics.”

In an HDP model mixed-membership model, each group is associated with a draw from
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a shared DP whose base distribution is also a draw from a DP,

G0 ∼ DP(γH)

Gj |G0 ∼ DP(α0G0), for each j,

where j is a group index. At the top level, the distribution G0 is a draw from a DP with

concentration parameter γ and base distribution H . It is almost surely discrete, placing

its mass on atoms drawn independently from H [45]. At the bottom level, this discrete

distribution is used as the base distribution for each per-group distribution Gj . Though they

may be defined on a continuous space (e.g., the simplex), this ensures that the per-group

distributions Gj share the same atoms as G0.

As for the stick-breaking construction for the HDP and its application to topic modeling,

we will cover them in more details when we present the novel online variational inference

algorithm for large scale data in Chapter 3.

2.4 Topic Modeling

Now we describe the topic modeling as an real example of hierarchical Bayesian models.

The idea of topic modeling has been used extensively in this thesis. Topic modeling

algorithms are used to discover a set of “topics” from a large collection of documents, where

a topic is a distribution over terms that is biased around those associated under a single

theme [54, 32, 24]. Topic models provide an interpretable low-dimensional representation

of the documents [35]. They have been used for tasks like corpus exploration, document

classification, and information retrieval.

We use latent Dirichlet allocation (LDA) [26] as the representative of topic models.

Suppose there are K topics, each of which is a distribution over a fixed vocabulary. The

generative process of LDA is as follows.

1. Draw topic distribution βk ∼ Dirichlet(η), for k = 1, 2, · · · , K.
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2. For each article wj in the corpus,

(a) Draw topic proportions θj ∼ Dirichlet(α).

(b) For each word n,

i. Draw topic assignment zjn ∼ Mult(θj).

ii. Draw word wjn ∼ Mult(βzjn).

This process reveals how the words of each document are assumed to come from a mixture

of topics (mixed-membership): the topic proportions are document-specific, but the set of

topics is shared by the corpus.

Given a collection, the posterior distribution of the topics reveals the K topics that likely

generated its documents. Unlike a clustering model, where each document is assigned to one

cluster, LDA allows documents to exhibit multiple topics. For example, LDA can capture

that one article might be about biology and statistics, while another might be about biology

and physics. Since LDA is unsupervised, the themes of “physics” “biology” and “statistics”

can be discovered from the corpus; the mixed-membership assumptions lead to sharper

estimates of word co-occurrence patterns.
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Chapter 3

Online Variational Inference for Hierarchical Dirich-

let Process

As we briefly discussed in Chapter 2, the hierarchical Dirichlet process (HDP) [99] is a

powerful mixed-membership model for the unsupervised analysis of grouped data. Applied

to document collections, the HDP provides a nonparametric topic model where documents

are viewed as groups of observed words, mixture components (called topics) are distributions

over terms, and each document exhibits the topics with different proportions. Given a

collection of documents, the HDP topic model finds a low-dimensional latent structure

that can be used for tasks like classification, exploration, and summarization. Unlike its

finite counterpart, latent Dirichlet allocation [26], the HDP topic model infers the number of

topics from the data.

Posterior inference for the HDP is intractable, and much research is dedicated to develop-

ing approximate inference algorithms [99, 100, 70]. These methods are limited for massive

scale applications, however, because they require multiple passes through the data and are

not easily applicable to streaming data.1 In this chapter, we develop a new approximate

inference algorithm for the HDP. Our algorithm is designed to analyze much larger data sets

than the existing state-of-the-art allows and, further, can be used to analyze streams of data.

1One exception that may come to mind is the particle filter [33, 89]. However, this algorithm still requires
periodically resampling a variable for every data point. Data cannot be thrown away as in a true streaming
algorithm.
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This is particularly apt to the HDP topic model. Topic models promise to help summarize

and organize large archives of texts that cannot be easily analyzed by hand and, further,

could be better exploited if available on streams of texts such as web APIs or news feeds.

Our method—online variational Bayes for the HDP— was inspired by the recent online

variational Bayes algorithm for LDA [53]. Online LDA allows LDA models to be fit to

massive and streaming data, and enjoys significant improvements in computation time

without sacrificing model quality. Our motivation for extending this algorithm to the HDP is

that LDA requires choosing the number of topics in advance. In a traditional setting, where

fitting multiple models might be viable, the number of topics can be determined with cross

validation or held-out likelihood. However, these techniques become impractical when the

data set size is large, and they become impossible when the data are streaming. Online HDP

provides the speed of online variational Bayes with the modeling flexibility of the HDP.

The idea behind online variational Bayes in general is to optimize the variational

objective function of [61] with stochastic optimization [87]. Optimization proceeds by

iteratively taking a random subset of the data, and updating the variational parameters with

respect to the subset. Online variational Bayes is particularly efficient when using the

natural gradient [5] on models in which traditional variational Bayes can be performed by

simple coordinate ascent [93]. (This is the property that allowed [53] to derive an efficient

online variational Bayes algorithm for LDA.) In this setting, online variational Bayes is

significantly faster than traditional variational Bayes [10], which must make multiple passes

through the data.

The challenge we face is that the existing coordinate ascent variational Bayes algorithms

for the HDP require complicated approximation methods or numerical optimization [100, 70,

29]. We will begin by reviewing Sethuraman’s stick-breaking construction of the HDP [46].

We show that this construction allows for coordinate-ascent variational Bayes without

numerical approximation, which is a new and simpler variational inference algorithm for the

HDP. We will then use this approach in an online variational Bayes algorithm, allowing the
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HDP to be applied to massive and streaming data. Finally, on two large archives of scientific

articles, we will show that the online HDP topic model provides a significantly better fit

than online LDA. Online variational Bayes lets us apply Bayesian nonparametric models at

much larger scales.

3.1 A Stick Breaking Construction of the HDP

We describe the stick-breaking construction of the HDP [46] using the Sethuraman’s con-

struction for the DP [94]. This is amenable to simple coordinate-ascent variational inference,

and we will use it to develop online variational inference for the HDP.

A two-level hierarchical Dirichlet process (HDP) [99] (the focus of this chapter) is a

collection of Dirichlet processes (DP) [45] that share a base distribution G0, which is also

drawn from a DP. Mathematically,

G0 ∼ DP(γH) (3.1)

Gj ∼ DP(α0G0), for each j, (3.2)

where j is an index for each group of data. A notable feature of the HDP is that all DPs Gj

share the same set of atoms and only the atom weights differ. This is a result of the almost

sure discreteness of the top-level DP.

In the HDP topic model—which is the focus of this chapter—we model groups of words

organized into documents. The variable wjn is the nth word in the jth document; the base

distribution H is a symmetric Dirichlet over the vocabulary simplex; and the atoms of G0,

which are independent draws from H , are called topics.

The HDP topic model contains two additional steps to generate the data. First we

generate the topic associated with the nth word in the jth document; then we generate the

word from that topic,

θjn ∼ Gj, wjn ∼ Mult(θjn). (3.3)
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The discreteness of the corpus-level draw G0 ensures that all documents share the same

set of topics. The document-level draw Gj inherits the topics from G0, but weights them

according to document-specific topic proportions.

Teh’s Stick-breaking Construction. The definition of the HDP in Eq. 3.1 is implicit. [99]

propose a constructive representation of the HDP using two stick-breaking representations

of a Dirichlet distribution [94]. For the corpus-level DP draw, this representation is

β′k ∼ Beta(1, γ),

βk = β′k
∏k−1

l=1 (1− β′l),

φk ∼ H,

G0 =
∑∞

k=1 βkδφk . (3.4)

Thus, G0 is discrete and has support at the atoms φ = (φk)
∞
k=1 with weights β = (βk)

∞
k=1.

The distribution for β is also written as β ∼ GEM(γ) [85].

The construction of each document-level Gj is

π′jk ∼ Beta
(
α0βk, α0

(
1−∑k

l=1 βl

))
,

πjk = π′jk
∏k−1

l=1 (1− π′jl),

Gj =
∑∞

k=1 πjkδφk , (3.5)

where φ = (φk)
∞
k=1 are the same atoms as G0 in Eq. 3.4.

This construction is difficult to use in an online variational inference algorithm. Online

variational inference is particularly efficient when the model is also amenable to coordinate

ascent variational inference, and where each update is available in closed form. In the

construction above, the stick-breaking weights are tightly coupled between the bottom

and top-level DPs. As a consequence, it is not amendable to closed form variational

updates [100, 70].
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Sethuraman’s Stick-breaking Construction. To address this issue, we describe an alter-

native stick-breaking construction for the HDP that allows for closed-form coordinate-ascent

variational inference due to its full conjugacy. (This construction was also briefly described

in [46].)

The construction is formed by twice applying Sethuraman’s stick-breaking construction

of the DP. We again construct the corpus-level base distribution G0 as in Eq. 3.4. The

difference is in the document-level draws. We use Sethuraman’s construction for each Gj ,

ψjt ∼ G0,

π′jt ∼ Beta(1, α0),

πjt = π′jt
∏t−1

l=1(1− π′jl),

Gj =
∑∞

t=1 πjtδψjt
, (3.6)

Notice that each document-level atom (i.e., topic) ψjt maps to a corpus-level atom φk in G0

according to the distribution defined by G0. Further note there will be multiple document-

level atoms ψjt which map to the same corpus-level atom φk, but we can verify that Gj

contains all of the atoms in G0 almost surely.

A second way to represent the document-level atoms ψj = (ψjt)
∞
t=1 is to introduce a

series of indicator variables, cj = (cjt)
∞
t=1, which are drawn i.i.d.,

cjt ∼ Mult(β), (3.7)

where β ∼ GEM(γ) (as mentioned above). Then let

ψjt = φcjt , (3.8)

Thus, we do not need to explicitly represent the document atoms ψj . This further simplifies

online inference.
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Figure 3.1: Illustration of the Sethuraman’s stick-breaking construction of the two-level
HDP. In the first level, φk ∼ H and β ∼ GEM(γ); in the second level, πj ∼ GEM(α0),
cjt ∼ Mult(β) and ψjt = φcjt .

The property that multiple document-level atoms ψjt can map to the same corpus-

level atom φk in this representation is similar in spirit to the Chinese restaurant franchise

(CRF) [99], where each restaurant can have multiple tables serving the same dish φk. In

the CRF representation, a hierarchical Chinese restaurant process allocates dishes to tables.

Here, we use a series of random indicator variables cj to represent this structure. Figure 3.1

illustrates the concept.

Given the representation in Eq. 3.6, the generative process for the observed words in jth

document, wjn, is as follows,

zjn ∼ Mult(πj), (3.9)

θjn = ψjzjn = φcjzjn , (3.10)

wjn ∼ Mult(θjn). (3.11)

The indicator zjn selects topic parameter ψjt, which maps to one topic φk through the

indicators cj . This also provides the mapping from topic θjn to φk, which we need in

Eq. 3.3.
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3.2 Online Variational Inference for the HDP

With Sethuraman’s construction of the HDP in hand, we now turn to our original aim—

approximate posterior inference in the HDP for massive and streaming data. Given a large

collection of documents, our goal is to approximate the posterior distribution of its latent

topic structure.

We will use online variational inference [93]. Traditional variational inference approx-

imates the posterior over the hidden variables by positing a simpler distribution which is

optimized to be close in Kullback-Leibler (KL) divergence to the true posterior [61]. This

problem is (approximately) solved by optimizing a function equal up to a constant to the

KL of interest. In online variational inference, we optimize that function with stochastic

approximation.

Online variational inference enjoys a close relationship with coordinate-ascent varia-

tional inference. Consider a model with latent variables and observations for which the

posterior is intractable to compute. One strategy for variational inference is the mean-field

approach: posit a distribution where each latent variable is independent and governed by its

own parameter, and optimize the variational parameters with coordinate ascent.

Now, suppose that those coordinate ascent updates are available in closed form and

consider updating them in parallel. (Note this is no longer coordinate ascent.) It turns out

that the vector of parallel coordinate updates is exactly the natural gradient of the variational

objective function under conjugate priors [93]. This insight makes stochastic optimization of

the variational objective, based on a subset of the data under analysis, a simple and efficient

alternative to traditional coordinate-ascent.

Let us now return to the HDP topic model. We will first show that Sethuraman’s

representation of the HDP above allows for closed-form coordinate-ascent updates for

variational inference. Then, we will derive the corresponding online algorithm, which

provides a scalable method for HDP posterior inference.
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3.2.1 A New Coordinate-ascent Variational Inference

When applied to Bayesian nonparametric models, variational methods are usually based

on stick-breaking representations—these representations provide a concrete set of hidden

variables on which to place an approximate posterior [21, 66, 100]. Furthermore, the

approximate posterior is usually truncated. The user first sets a truncation on the number

of topics to allow, and then relies on variational inference to infer a smaller number that

are used in the data. (Two exceptions are found in [67, 104], who developed methods that

allow the truncation to grow.) Note that setting a truncation level is different from asserting

a number of components in a model. When set large, the HDP assumptions encourage the

approximate posterior to use fewer components.

We use a fully factorized variational distribution and perform mean-field variational

inference. The hidden variables that we are interested in are the top-level stick proportions

β′ = (β′k)
∞
k=1, bottom-level stick proportions π′j = (π′jt)

∞
t=1 and the vector of indicators

cj = (cjt)
∞
t=1 for each Gj . We also infer atom/topic distributions φ = (φk)

∞
k=1, topic index

zjn for each word wjn. Thus our variational distribution has the following form,

q(β′,π′, c, z,φ) = q(β′)q(π′)q(c)q(z)q(φ). (3.12)

This further factorizes into

q(c) =
∏

j

∏
t q(cjt|ϕjt),

q(z) =
∏

j

∏
n q(zjn|ζjn),

q(φ) =
∏

k q(φk|λk),

where the variational parameters are ϕjt (multinomial), ζjn (multinomial) and λk (Dirichlet).
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The factorized forms of q(β′) and q(π′) are

q(β′) =
∏K−1

k=1 q(β
′
k|uk, vk),

q(π′) =
∏

j

∏T−1
t=1 q(π

′
jt|ajt, bjt), (3.13)

where (uk, bk) and (ajt, bjt) are parameters of beta distributions. We set the truncations

for the corpus and document levels to K and T . Here, T can be set much smaller than K,

because in practice each document Gj requires far fewer topics than those needed for the

entire corpus (i.e., the atoms of G0). With this truncation, our variational distribution has

q(β′K = 1) = 1 and q(π′jT = 1) = 1, for all j.

Using standard variational theory [61], we lower bound the marginal log likelihood of

the observed data D = (wj)
D
j=1 using Jensen’s inequality,

log p(D|γ, α0, η) ≥ Eq [log p(D,β′,π′, c, z,φ)] +H(q)

=
∑

j

{
Eq

[
log
(
p(wj|cj, zj,φ)p(cj|β′)p(zj|π′j)p(π′j|α0)

)]
+H(q(cj)) +H(q(zj)) +H(q(π′j))

}
+Eq [log p(β′)p(φ)] +H(q(β′)) +H(q(φ))

= L(q), (3.14)

where H(·) is the entropy term for the variational distribution. This is the variational

objective function, which up to a constant is equivalent to the KL to the true posterior.

Taking derivatives of this lower bound with respect to each variational parameter, we can

derive the following coordinate ascent updates.

Document-level Updates: At the document level we update the parameters to the per-

document stick, the parameters to the per word topic indicators, and the parameters to the
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per document topic indices,

ajt = 1 +
∑

n ζjnt, (3.15)

bjt = α0 +
∑

n

∑T
s=t+1 ζjns, (3.16)

ϕjtk ∝ exp (
∑

n ζjntEq [log p(wjn|φk)] +Eq [log βk]) , (3.17)

ζjnt ∝ exp
(∑K

k=1 ϕjtkEq [log p(wjn|φk)] +Eq [log πjt]
)
. (3.18)

Corpus-level Updates: At the corpus level, we update the parameters to top-level sticks

and the topics,

uk = 1 +
∑

j

∑T
t=1 ϕjtk, (3.19)

vk = γ +
∑

j

∑T
t=1

∑K
l=k+1 ϕjtl, (3.20)

λkw = η +
∑

j

∑T
t=1 ϕjtk (

∑
n ζjntI[wjn = w]) , (3.21)

The expectations involved above are taken under the variational distribution q, and are

Eq [log βk] = Eq [log β′k] +
∑k−1

l=1 Eq [log(1− β′l)] ,

Eq [log β′k] = Ψ(uk)−Ψ(uk + vk),

Eq [log(1− β′k)] = Ψ(vk)−Ψ(uk + vk),

Eq [log πjt] = Eq

[
log π′jt

]
+
∑t−1

s=1Eq

[
log(1− π′js)

]
,

Eq

[
log π′jt

]
= Ψ(ajt)−Ψ(ajt + bjt),

Eq

[
log(1− π′jt)

]
= Ψ(bjt)−Ψ(ajt + bjt),

Eq [log p(wjn = w|φk)] = Ψ(λkw)−Ψ(
∑

w λkw),

where Ψ(·) is the digamma function.

Unlike previous variational inference methods for the HDP [100, 70], this method

only contains simple closed-form updates due to the full conjugacy of the stick-breaking
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construction. (We note that, even in the batch setting, this is a new posterior inference

algorithm for the HDP.)

3.2.2 Online Variational Inference

We now develop online variational inference for an HDP topic model. In online variational

inference, we apply stochastic optimization to the variational objective. We subsample

the data (in this case, documents), compute an approximation of the gradient based on the

subsample, and follow that gradient with a decreasing step-size. The key insight behind

efficient online variational inference is that coordinate ascent updates applied in parallel

precisely form the natural gradient of the variational objective function [93, 53].

Our approach is similar to that described in [53]. LetD be the total number of documents

in the corpus, and define the variational lower bound for document j as

Lj = Eq

[
log
(
p(wj|cj, zj,φ)p(cj|β′)p(zj|π′j)p(π′j|α0)

)]
+H(q(cj)) +H(q(zj)) +H(q(π′j))

+ 1
D

[Eq [log p(β′)p(φ)] +H(q(β′)) +H(q(φ))] .

We have taken the corpus-wide terms and multiplied them by 1/D. With this expression,

we can see that the lower bound L in Eq. 3.14 can be written as

L =
∑

j Lj = Ej[DLj],

where the expectation is taken over the empirical distribution of the data set. The expression

DLj is the variational lower bound evaluated with D duplicate copies of document j.

With the objective construed as an expectation over our data, online HDP proceeds as

follows. Given the existing corpus-level parameters, we first sample a document j and

compute its optimal document-level variational parameters (aj, bj,ψj, ζj) by coordinate

ascent (see Eq. 3.15 to 3.18.). Then, take the gradient of the corpus-level parameters (λ,u,v)

of DLj , which is a noisy estimate of the gradient of the expectation above. We follow that
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gradient according to a decreasing learning rate, and repeat.

Natural Gradients. The gradient of the variational objective contains, as a component,

the covariance matrix of the variational distribution. This is a computational problem in

topic modeling because each set of topic parameters involves a V × V covariance matrix,

where V is the size of the vocabulary (e.g., 5,000). The natural gradient [5]—which is the

inverse of the Riemannian metric [5] multiplied by the gradient—has a simple form in the

variational setting [93] that allows for fast online inference.

Multiplying the gradient by the inverse of Riemannian metric cancels the covariance

matrix of the variational distribution, leaving a natural gradient which is much easier to work

with. Specifically, the natural gradient is structurally equivalent to the coordinate updates

of Eq 3.19 to 3.21 taken in parallel. (And, in stochastic optimization, we treat the sampled

document j as though it is the whole corpus.) Let ∂λ(j), ∂u(j) and ∂v(j) be the natural

gradients for DLj . Using the analysis in [93, 53], the components of the natural gradients

are

∂λkw(j) = −λkw + η +D
∑T

t=1 ϕjtk (
∑

n ζjntI[wjn = w]) , (3.22)

∂uk(j) = −uk + 1 +D
∑T

t=1 ϕjtk, (3.23)

∂vk(j) = −vk + γ +D
∑T

t=1

∑K
l=k+1 ϕjtl. (3.24)

In online inference, an appropriate learning rate ρto is needed to ensure the parameters to

converge to a stationary point [93, 53]. Then the updates of λ, u and v become

λ← λ+ ρto∂λ(j), (3.25)

u← u+ ρto∂u(j) (3.26)

v ← v + ρto∂v(j), (3.27)
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1: Initialize λ = (λk)
K
k=1, u = (uk)

K−1
k=1 and v = (vk)

K−1
k=1 randomly. Set to = 1.

2: while Stopping criterion is not met do
3: Fetch a random document j from the corpus.
4: Compute aj , bj , ϕj and ζj using variational inference using document-level updates,

Eq. 3.15 to 3.18.
5: Compute the natural gradients, ∂λ(j), ∂u(j) and ∂v(j) using Eq. 3.22 to 3.24.
6: Set ρto = (τ0 + to)

−κ, to ← to + 1.
7: Update λ, u and v using Eq. 3.25 to 3.27.
8: end while

Figure 3.2: Online variational inference for the HDP

where the learning rate ρto should satisfy

∑∞
to=1 ρto =∞, ∑∞

to=1 ρ
2
to <∞, (3.28)

which ensures convergence [87]. In our experiments, we use ρto = (τ0 + to)
−κ, where

κ ∈ (0.5, 1] and τ0 > 0. Note that the natural gradient is essential to the efficiency of the

algorithm. The online variational inference algorithm for the HDP topic model is illustrated

in Figure 3.2.

Mini-batches. To improve stability of the online learning algorithm, practitioners

typically use multiple samples to compute gradients at a time—a small set of documents in

our case. Let S be a small set of documents and S = |S| be its size. In this case, rather than

computing the natural gradients using DLj , we use (D/S)
∑

j∈S Lj . The update equations

can then be similarly derived.

3.3 Experimental results

In this section, we evaluate the performance of online variational HDP compared with batch

variational HDP and online variational LDA.2

3.3.1 Data and Metric

Data Sets. Our experiments are based on two datasets:

2http://www.cs.princeton.edu/˜blei/downloads/onlineldavb.tar
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• Nature: This dataset contains 352,549 documents, with about 58 million tokens and a

vocabulary size of 4,253. These articles are from the years 1869 to 2008.

• PNAS: The Proceedings of the National Academy of Sciences (PNAS) dataset contains

82,519 documents, with about 46 million tokens and a vocabulary size of 6,500. These

articles are from the years 1914 to 2004.

Standard stop words and those words that appear too frequently or too rarely are removed.

Evaluation Metric. We use the following evaluation metric to compare performance. For

each dataset, we held out 2000 documents as a test set Dtest, with the remainder as training

data Dtrain. For testing, we split documentwj in Dtest into two parts,wj = (wj1,wj2), and

compute the predictive likelihood of the second partwj2 (10% of the words) conditioned on

the first part wj1 (90% of the words) and on the training data. This is similar to the metrics

used in [100, 9], which tries to avoid comparing different hyperparameters. The metric is

likelihoodpw =

∑
j∈Dtest

log p(wj2|wj1,Dtrain)∑
j∈Dtest

|wj2|
,

where |wj2| is the number of tokens inwj2 and “pw” means “per-word.” Exact computation

is intractable, and so we use the following approximation. For all algorithms, let φ̄ be the

variational expectation of φ given Dtrain. For LDA, let π̄j be the variational expectation

given wj2 and α be its Dirichlet hyperparameter for topic proportions. The predictive

marginal probability of wj1 is approximated by

p(wj2|wj1,Dtrain) ≈∏w∈wj2

∑
k π̄jkφ̄kw.

To use this approximation for the HDP, we set the Dirichlet hyperparameter to ᾱ = α0β̄,

where β̄ is the variational expectation of β, obtained from the variational expectation of β′.
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3.3.2 Results

Experimental Settings. For the HDP, we set γ = α0 = 1, although using priors is also

an option. We set the top-level truncation K = 150 and the second level truncation T = 15.

Here T � K, since documents usually don’t have many topics. For online variational LDA,

we set its Dirichlet hyperparameter α = (1/K, . . . , 1/K), where K is the number of topics;

we set K = {20, 40, 60, 80, 100, 150}.3 We set τ0 = 64 based on the suggestions in [53],

and vary κ = {0.6, 0.8, 1.0} and the batch size S = {16, 64, 256, 1024, 2048}. We collected

experimental results during runs of 6 hours each.4

Nature Corpus. In Figure 3.3, we plot the per-word log likelihood as a function of

computation time for online HDP, online LDA, and batch HDP. (For the online algorithms,

we set κ = 0.6 and the batch size was S = 256.) This figure shows that online HDP

performs better than online LDA. The HDP uses about 110 topics out of its potential 150.

In contrast, online LDA uses almost all the topics and exhibits overfitting at 150 topics.

Note that batch HDP is only trained on a subset of 20, 000 documents—otherwise it is too

slow—and its performance suffers.

In Figure 3.5, we plot the per-word likelihood after 6 hours of computation, exploring the

effect of batch size and values of κ. We see that, overall, online HDP performs better than

online LDA. (This matches the reported results in [100], which compares batch variational

inference for the HDP and LDA.) Further, we found that small κ favors larger batch sizes.

(This matches the results seen for online LDA in [53].)

We also ran online HDP on the full Nature dataset using only one pass (with κ = 0.6

and a batch size S = 1024) by sequentially processing the articles from the year 1869 to

2008. Table 3.4 tracks the most probable ten words from two topics as we encounter more

articles in the collection. Note that the HDP here is not a dynamic topic model [22, 105];

we show these results to demonstrate the online inference process.

3This is different from the top level truncation K in the HDP.
4The python package will be available at first author’s homepage.

28



nature

time (in seconds, log scale)

pe
r−

w
or

d 
lo

g 
lik

el
ih

oo
d

−8
.0

−7
.8

−7
.6

−7
.4

−7
.2

−7
.0

●

●
●

●
●

●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●

101.5 102 102.5 103 103.5 104

algorithm

●●●●●● oHDP

bHDP

oLDA−20

oLDA−60

oLDA−100

oLDA−150

Figure 3.3: Experimental results on Nature with κ = 0.6 and batch size S = 256 (for the
online algorithms). Points are sub-sampled for better view. The label “oLDA-20” indicates
online LDA with 20 topics. (Not all numbers of topics are shown; see Figure 3.5 for more
details.) Online HDP performs better than online LDA and batch HDP.

These results show that online inference for streaming data finds different topics at

different speeds, since the relevant information for each topic does not come at the same

time. In this sequential setting, some topics are rarely used until there are documents that

can provide enough information to update them (see the top topic in Figure 3.4). Other

topics are updated throughout the stream because relevant documents occur throughout the

whole collection (see the bottom topic in Figure 3.4).

PNAS Corpus We ran the same experiments on the PNAS corpus. Since PNAS is smaller

than Nature, we were able to run batch HDP on the whole data set. Figure 3.6 shows the

result with κ = 0.6 and batch size S = 2048. Online HDP performs better than online LDA.

Here batch HDP performs a little better than online HDP, but online HDP is much faster.

Figure 3.7 plots the comparison between online HDP and online LDA across different batch

sizes and values of κ.
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Table 1: The top ten words from two topics, displayed after different numbers of documents have been processed for
inference. The two topics are separated by the dashed line. The first line of the table indicates the number of articles seen so
far (beginning from the year 1869). The topic on the top (which could be labeled “neuroscience research on rats”) does
not have a clear meaning until we have analyzed 204,800 documents. This topic is rarely used in the earlier part of the
corpus and few documents provide useful information about it. In contrast, the topic on the bottom (which could be labeled
“astronomy research”) has a clearer meaning from the beginning. This subject is discussed earlier in Nature history.
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Figure 5: Experimental results on PNAS  = 0.6 and batch
size S = 2048 (for the online algorithms). Points are sub-
sampled for better view. (Not all numbers of topics are
shown, please see Figure 6 for more details.) Online HDP
performs better than online LDA, and slightly worse than
batch HDP. Unlike in the Nature experiment, batch HDP is
trained on the whole training set.

rithm is based on a stick-breaking construction of the HDP
that allows for closed-form coordinate ascent variational
inference, which is a key factor in developing the online al-
gorithm. Our experimental results show that for large-scale
applications, the online variational inference for the HDP
can address the model selection problem for LDA and avoid
overfitting.

The application of natural gradient learning to online vari-
ational inference may be generalized to other Bayesian
nonparametric models, as long as we can construct varia-
tional inference algorithms with closed form updates un-
der conjugacy. For example, the Indian Buffet process
(IBP) [25, 26, 27] might be another model that can use
an efficient online variational inference algorithm for large
and streaming data sets.
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3.4 Discussion

We developed an online variational inference algorithm for the hierarchical Dirichlet process

topic model. Our algorithm is based on a stick-breaking construction of the HDP that allows

for closed-form coordinate ascent variational inference, which is a key factor in developing

the online algorithm. Our experimental results show that for large-scale applications, the

online variational inference for the HDP can address the model selection problem for LDA

and avoid overfitting.

The application of natural gradient learning to online variational inference may be

generalized to other Bayesian nonparametric models, as long as we can construct variational

inference algorithms with closed form updates under conjugacy. For example, the Indian

Buffet process (IBP) [51, 98, 39] might be another model that can use an efficient online

variational inference algorithm for large and streaming data sets.
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Chapter 4

Variational Inference in Nonconjugate Models

Variational inference, especially the mean-field variational inference [61] has been used

extensively in my research. Mean-field variational inference lets us efficiently estimate

posterior distributions in complex probabilistic models [61]. The idea is to optimize the

parameters of a factorized distribution so that it is close to the true posterior. When

each variable of the model is part of a conjugate pair, we can easily derive a coordinate

ascent algorithm to perform this optimization. This is the principle behind code bases like

VIBES [17], which let us quickly define models of our data and run variational inference.

Many models of interest, however, do not enjoy the conjugacy properties required to

take advantage of this easily derived algorithm. Such models include Bayesian logistic

regression [59] (or more broadly, Bayesian generalized linear models [112]), discrete

choice models [30], item response models [37], and some probabilistic topic models [23].

Analyzing data in these settings with variational inference requires algorithms tailored to

the specific model at hand. Researchers have developed a variety of ways of handling

nonconjugate priors in specific settings. These include approximations [30, 3], alternative

bounds [23, 63], and quadrature [57]. The recent work of [64] presents a message passing

algorithm for nonconjugate models, which has been implemented in Infer.NET [78].1

In this chapter, we aim to provide easily derived algorithms for mean-field variational

1The technique of [64] applies to a subset of models described in this chapter. It may be generalizable to
the full set, however, how to find the expectations required by [64] would still have to be determined.
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inference in a large class of nonconjugate models. We develop two strategies. We first

develop Laplace variational inference. It embeds Laplace approximations [73]—a technique

for univariate distributions from Bayesian statistics—within a variational optimization

algorithm. We then develop delta method variational inference. This approach optimizes a

Taylor approximation of the variational objective. The details of the algorithm depend on

how the approximation is formed. Formed one way, it recovers Laplace variational inference.

Formed another way, it is equivalent to using a multivariate delta approximation [15] of the

variational objective.2

We studied our algorithms with two nonconjugate models: Bayesian logistic regres-

sion [59] and correlated topic models [23]. We found that our methods usually give better

results than those obtained through special purpose techniques. Further, we show that

Laplace variational inference usually outperforms the delta method approach. These meth-

ods significantly expand the class of models for which mean-field variational inference can

be easily applied.

4.1 Variational Inference in Nonconjugate models

Consider a generic model with the following joint distribution,

p(x, z, θ) = p(x|z)p(z|θ)p(θ). (4.1)

We assume this model has hidden variables θ and z, and observed variable x. The inference

problem is to compute the posterior of θ and z, p(z, θ|x). This is intractable for many

models and we must resort to approximations of the posterior.

Variational inference approximates the posterior by minimizing the Kullback-Leibler

(KL) divergence between a simpler distribution and the true posterior p(θ, z|x) [61]. Mean-

field variational inference is simplest and most widely used. It uses a fully factorized

2The delta method was first used in variational inference by [30] in the context of the discrete choice model.
Our method generalizes their approach.
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variational distribution,

q(z, θ) = q(z)q(θ).

Under the standard variational theory, minimizing the KL-divergence between q(z, θ) and

p(θ, z|x) is equivalent to maximizing a lower bound of the log marginal likelihood of the

observed data x. We obtain this bound with Jensen’s inequality,

log p(x) = log
∫
p(x, z, θ)dzdθ ≥ Eq [q] log p(x, Z, θ) +H[q] = L(q), (4.2)

where Eq [q] · is the expectation taken with respect to q and H[q] the entropy. Setting

∂L(q)/∂q = 0 shows that the optimal solution satisfies the following [16],

q∗(θ) ∝ exp {Eq [q(z)] log p(Z|θ)p(θ)} , (4.3)

q∗(z) ∝ exp {Eq [q(θ)] log p(x|z)p(z|θ)} . (4.4)

A model is conditionally conjugate—when p(θ) is the conjugate prior to p(z|θ) and

p(z|θ) the conjugate prior to p(x|z)—in this setting, both q∗(θ) and q∗(z) will be in closed-

form, and they are in the same family as their prior distributions p(θ) and p(z|θ). This leads

to the traditional coordinate ascent algorithm, where we alternate between optimizing q(θ)

and q(z) [16].

However, when the variable θ is not part of a conjugate pair, we cannot find closed-form

updates for either distribution. In the next section, we define a wider class of models that

includes Bayesian logistic regression, correlated topic models [23] and discrete choice

models [30] as special cases. We develop variational inference for this more general class of

models.
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4.1.1 Inference in Nonconjugate Models

Before describing our algorithms, we present the modeling assumptions with reference to

Eq. 4.1.

1. Recall that θ is real-valued. The distribution p(θ) is twice differentiable with respect

to θ. If we require θ > θ0 (θ0 is a constant), we may define a distribution over log(θ − θ0).

2. The distribution p(z|θ) is in the exponential family [31],

p(z|θ) = h(z) exp
{
η(θ)>t(z)− a(η(θ))

}
, (4.5)

where h(z) is a function of z; t(z) is the sufficient statistic; η(θ) is the natural parameter; and

a(η(θ)) is log partition function. We emphasize that p(θ) is not necessarily the conjugate

prior.

3. The distribution p(x|z) is in the exponential family with z as the natural parameter,

p(x|z) = h(x) exp
{
z>t(x)− a(z)

}
, (4.6)

and we require the distribution p(z|θ) is conjugate [13]. Consequently, the term t(z)

in Eq. 4.5 is

t(z) = [z,−a(z)]. (4.7)

Note that t(x) and a(z) are overloaded. They are different from t(z) and a(η(θ)).

These assumptions are weaker than those of conditional conjugacy. This family includes

nonconjugate models like the correlated topic model (CTM) [23], Bayesian logistic regres-

sion [59] and discrete choice models [30]. For these models, we can no longer implement

the closed form updates for the variational distributions in Eq. 4.3 and Eq. 4.4. Because

p(θ) is not assumed conjugate to p(z | θ), the update in Eq. 4.3 does not necessarily have the

form of an exponential family we can work with. As a further consequence, it is difficult to
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use Eq [q(θ)] p(z | θ) in Eq. 4.4.

We will develop two variational inference algorithms for this class of models. They both

use coordinate ascent to optimize the variational parameters, iterating between updating q(θ)

and q(z). First in Laplace variational inference, we use Laplace approximations [73] within

the coordinate ascent updates of Eq. 4.3 and Eq. 4.4—we approximate the update for q(θ)

in Eq. 4.3. Second, in delta method variational inference, we apply Taylor approximations

to approximate the variational objective in Eq. 4.2, then derive the corresponding updates.

Different ways of taking the Taylor approximation lead to different algorithms. Formed one

way, it also recovers the Laplace algorithm. Formed another way, it is equivalent to using a

multivariate delta approximation [15] of the variational objective function—we name this

way delta method variational inference.

In both algorithms, the variational distribution q(θ) is a Gaussian; the distribution q(z)

is in the same family as p(z|θ) in Eq. 4.5. These forms emerge from the derivation of

Laplace variational inference; they are assumed in the derivation of delta method variational

inference. We will first derive the algorithms for updating q(θ). We then show how to update

q(z).

4.1.2 Laplace Variational Inference

We first review the Laplace approximation [73]. Then we show how to use it in variational

inference.

The Laplace Approximation. Laplace approximations use a Gaussian to approximate an

intractable density [73]. Consider approximating an intractable posterior p(θ|x). (There

is no hidden variable z in this set up.) Assume the joint distribution p(x, θ) = p(x|θ)p(θ)

is tractable. Laplace approximations use a Taylor approximation around the maximum a

posterior (MAP) to construct a Gaussian proxy for the posterior. First, notice the posterior

is proportional to the exponentiated log joint

p(θ|x) = exp{log p(θ|x)} ∝ exp{log p(θ, x)}.
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Let θ̂ be the MAP of p(θ|x), found by maximizing log p(θ, x). A Taylor expansion around θ̂

gives

log p(θ|x) ≈ log p(θ̂|x) + 1
2
(θ − θ̂)>H(θ̂)(θ − θ̂). (4.8)

The term H(θ̂) is the Hessian of log p(θ|x) evaluated at θ̂, H(θ̂) , O2 log p(θ|x)|θ=θ̂.

In the Taylor expansion of Eq. 4.8, the first-order term (θ − θ̂)>O log p(θ|x)|θ=θ̂ equals

zero. The reason is that θ̂ is the maximum of log p(θ|x) and so its gradient O log p(θ|x)|θ=θ̂
is zero. Exponentiating Eq. 4.8 gives the approximate Gaussian posterior

p(θ|x) ≈ 1
C

exp
{
−1

2
(θ − θ̂)>

(
−H(θ̂)

)
(θ − θ̂)

}
,

where C is a normalizing constant. In other words, p(θ|x) can be approximated by

p(θ|x) ≈ N (θ̂,−H(θ̂)−1). (4.9)

This is the Laplace approximation. It is difficult to use in multivariate settings, for ex-

ample, when there are discrete hidden variables. Now we describe how we use Laplace

approximations as part of variational inference for a complex model.

Laplace Updates. We use Laplace approximations to update the variational distribution

q(θ). First, we combine the coordinate update in Eq. 4.3 with the exponential family

assumption in Eq. 4.5,

q(θ) ∝ exp
{
η(θ)>Eq [q(z)] t(z)− a(η(θ)) + log p(θ)

}
. (4.10)
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Now define

t̄z , Eq [q(z)] t(Z), (4.11)

f(θ) , η(θ)>t̄z − a(η(θ)) + log p(θ). (4.12)

We approximate q(θ) by taking a second-order Taylor approximation of f(θ) around its

maximum, following the same logic as from Eq. 4.8. Let θ̂ be the value that maximizes f(θ)

and O2f(θ̂) be the Hessian matrix evaluated at θ̂. Adapting Eq. 4.9 and Eq. 4.10 to this

setting gives

q(θ) ≈ N
(
θ̂,−O2f(θ̂)−1

)
. (4.13)

The Gaussian form of q(θ) stems from using the Taylor approximation. This is an ap-

proximate update for q(θ) and can be embedded in a coordinate ascent algorithm for a

nonconjugate model. Notice we need to use numerical optimization to obtain θ̂.

4.1.3 Delta Method Variational Inference

In Laplace variational inference, the variational distribution q(θ) Eq. 4.13 is solely a function

of θ̂, the maximum of f(θ) in Eq. 4.12. A natural question is, would other values of θ be

suitable as well?

To consider such alternatives, we describe a different way of performing variational

inference. We approximate the variational objective L in Eq. 4.2 and then optimize that

approximation.

Again we focus on q(θ) and postpone the discussion of q(z). The variational distribution

q(θ) is a Gaussian q(θ) = N (µ,Σ). We isolate the terms related to q(θ) in the objective,

then substitute the exponential family assumption about p(z|θ) in Eq. 4.5 into L(q) in
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Eq. 4.2,

L(q(θ)) = Eq [q(θ)] η(θ)>Eq [q(z)] t(z)− a(η(θ)) + log p(θ) +H[q(θ)].

The entropy of the Gaussian is H[q(θ)] = 1
2

log |Σ| + C, where C is a constant. Notice

the first three terms are the same function f(θ) defined in Eq. 4.12. We simplify the lower

bound L(q(θ)),

L(q(θ)) = Eq [q(θ)] f(θ) + 1
2

log |Σ|.

We cannot easily compute the expectation in the first term. We use a Taylor expansion of

f(θ) around a chosen value θ̂,

f(θ) ≈ f(θ̂) + Of(θ̂)(θ − θ̂) + 1
2
(θ − θ̂)>O2f(θ̂)(θ − θ̂).

With this Taylor approximation, L(q(θ)) can be approximated with

L(q(θ)) ≈ f(θ̂) + Of(θ̂)>(µ− θ̂) + 1
2
(µ− θ̂)>O2f(θ̂)(µ− θ̂)

+ 1
2
(Tr
{
O2f(θ̂)Σ

}
+ log |Σ|), (4.14)

where Tr(·) is the Trace operator. This is the function we optimize w.r.t. the variational

parameters of q(θ), {µ,Σ}. The form of this optimization, however, depends on how

we choose θ̂, the point around which to approximate f(θ). Unlike in Laplace variational

inference, θ̂ can be any value.

We will describe three options. First, we can choose θ̂ to be the maximum of f(θ). Then

maximizing the approximation in Eq. 4.14 gives µ = θ̂ and Σ = −O2f(θ̂)−1. This is the

update derived in Section 4.1.2. It gives a different derivation of Laplace inference.

A second choice is θ̂ = µ, i.e., the mean of the variational distribution q(θ). With this
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choice, the variable around which we center the Taylor approximation becomes part of the

optimization problem. The objective in Eq. 4.14 is

L(q(θ)) ≈ f(µ) + 1
2
Tr {O2f(µ)Σ}+ 1

2
log |Σ|. (4.15)

This is the multivariate delta method for evaluating Eq [q(θ)] f(θ) [15]. We call this choice

delta method variational inference. To optimize L(q(θ)), we use coordinate ascent on µ and

Σ. We use gradient methods to find µ. Note this is more expensive than Laplace inference

because it requires the third derivative O3f(θ). Given a value of µ, we optimize Σ in closed

form, Σ = −O2f(µ)−1. [30] is the first to use the delta method in a variational inference

algorithm, developing this technique for the discrete choice model . If we assume p(θ) is

Gaussian then we recover their algorithm. With the ideas presented here, we can now use

this strategy in many models.

A final choice is to guess θ̂, for example, as the mean of the variational distribution from

the previous iteration of coordinate ascent. If p(θ) is a Gaussian distribution, this recovers

the updates derived in [3] for the correlated topic model.3 We found this simple guess did

not work well on our data. (It did not always converge.) We thus focus on Laplace and delta

method variational inference.

4.1.4 Updating q(z)

We have derived variational updates for q(θ) using two methods. We now turn to the update

for q(z). We will show that Laplace (Section 4.1.2) and delta method variational inference

(Section 4.1.3) lead to the same update form for q(z). Further, we have implicitly assumed

that Eq [q(z)] t(z) in Eq. 4.11 and Eq. 4.12 is easy to compute. We will confirm this as well.

3In their paper, these updates were derived from the perspective of generalized mean-field theory [113].

41



Laplace variational inference. First, we apply the exponential family form in Eq. 4.5 to

the exact update of Eq. 4.4,

log q(z) = C + log p(x|z) + log h(z) +Eq [q(θ)] η(θ)>t(z),

where C is a constant not depending on z. Now we use p(x|z) from Eq. 4.6 and t(z) from

Eq. 4.7 to obtain

q(z) ∝ h(z) exp
{

(Eq [q(θ)] η(θ) + [t(x), 1])> t(z)
}
, (4.16)

which is in the same family as p(z|θ) in Eq. 4.5. This is the update for q(z). Further, because

it is in a simple exponential family form, we can compute Eq [q(z)] t(z) from Eq. 4.11. Note

we have additionally assumed the tractability of Eq [q(θ)] η(θ). To approximate this, we

take a Taylor approximation of η(θ) around the variational parameter µ,

η(θ) ≈ η(µ) + Oη(µ)>(θ − µ) + 1
2
(θ − µ)>O2η(µ)(θ − µ).

Since q(θ) ≈ N (µ,Σ), this means that

Eq [q(θ)] η(θ) ≈ η(µ) + 1
2
Tr {O2η(µ)Σ} . (4.17)

(Note that the linear term Eq [q(θ)]Oη(µ)T (θ − µ) = 0.)

Delta method variational inference. Using the delta method to update q(θ), the update

for q(z) is identical to that in Laplace variational inference. We isolate the relevant terms in

Eq. 4.2,

L(q(z)) = Eq [q(z)] log p(x|z) + log h(z) +Eq [q(θ)] η(θ)>t(z) +H[q(z)].
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1: Initialize variational distribution q(θ) and q(z).
2: repeat
3: Compute the statistics Eq [q(z)] t(z) in Eq. 4.11.
4: To obtain q(θ),

Option a): in Laplace variational inference, compute Eq. 4.13.

Option b): in delta method variational inference, optimize Eq. 4.15.

5: Approximate the statistics Eq [q(θ)] η(θ) in Eq. 4.17.
6: Update q(z) in Eq. 4.16.
7: until Mean of |change in Eq [q] θ| < 0.0001.
8: return q(θ) and q(z).

Figure 4.1: The approximation framework in variational inference.

Setting the partial gradient ∂L(q(z))/∂q(z) = 0 gives the same optimal q(z) of Eq. 4.4.

Computing this update reduces to the approach for Laplace variational inference.

4.1.5 The Algorithm

We have described the updates for q(θ) and q(z). Alternately between these updates

defines an iterative algorithm. Our algorithms no longer guarantee a strict lower bound of the

true variational objective. However, as also observed in [30], we found that the algorithms

converge in practice.

See Figure 4.1 for an outline of this algorithm. We have reduced deriving variational

updates to somewhat mechanical work—calculating derivatives and calling a numerical

optimization library.

Regarding the variants of our algorithm, Laplace variational inference is simpler to derive

because it only requires first derivatives of the function in Eq. 4.12, while delta variational

inference requires third derivatives. We empirically study the differences between these

methods in Section 4.3.

4.2 Example Models

We now discuss how several nonconjugate models from the research literature on which we

can use the generic algorithm described above.
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Correlated topic models. The correlated topic model (CTM) [23] is an extension of the

latent Dirichlet allocation (LDA) [26] topic model. Topic models are hierarchical mixed

membership models of documents. Each document is treated as a collection of observed

words that are drawn from a mixture model. The mixture components, called “topics,” are

distributions over terms. Each document exhibits its own topic proportions, but the corpus

shares the same set of topics.

The CTM extends LDA by replacing the Dirichlet prior on the topic proportions with a

logistic normal prior [4]. This captures correlations between the components. While the

CTM is more expressive, it is no longer conditionally conjugate. Suppose there are K topic

parameters β1:K (fixed for now), each of which is a distribution over V terms. Let π be the

topic proportions for a document and n be the index of an observed word xn. The CTM

assumes the following generative process of a document,

θ ∼ N (µ0,Σ0), π ∝ exp(θ)

zn | π ∼ Mult(π), xn | zn, β ∼ Mult(βzn), ∀n.

In this model, the topic proportions π are drawn from a logistic normal distribution. Their

correlation structure is captured in Σ0. The variable zn indicates which topic the nth word is

drawn from.

Our variational distribution for parameter θ is q(θ) = N (µ,Σ). In delta method infer-

ence, as in [30], we assume the covariance matrix Σ is diagonal. Laplace inference does not

require this. The detailed derivations are in Appendix A.

Note that this algorithm is only for inference at the document level. As in [23], we

estimate the corpus-level topic parameters β1:K and logistic normal parameters (µ0,Σ0)

with variational EM.
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Bayesian Logistic regression. Standard Bayesian logistic regression is a well-studied

model for binary classification [59].4 Let tn is be a p-dimensional observed feature vector

for the nth sample and zn be its class (an indicator vector of length two). Let θ be the real-

valued parameter vector in Rp; there is a component for each feature. The usual Bayesian

logistic regression is the following:

p(θ) = N (µ0,Σ0), (4.18)

p(zn | θ, tn) = σ(θ>tn)zn,1σ(−θ>tn)zn,2 , ∀n

where σ(y) , 1/ (1 + exp(−y)) is the logistic function. The variable z is observed and

there is no additional variable x downstream as assumed in Section 4.1.1. Our variational

distribution for parameter θ is q(θ) = N (µ,Σ). If we use Laplace variational inference, this

becomes the standard Laplace approximation for Bayesian logistic regression [16]. Delta

method inference provides an alternative. The detailed derivations are in Appendix B.

Hierarchical Bayesian logistic regression considers multiple related logistic regression

problems and solves them together [47]. Taking an empirical Bayes approach, we treat the

parameters for each problem from a shared prior and then estimate the hyperparameters of

that prior with maximum likelihood or MAP. If we have M related problems, we construct

the following hierarchical model,

µ0 ∼ N (0, Σ̂0), Σ−10 ∼Wishart(ν̂, Φ̂0), (4.19)

p(θm) = N (µ0,Σ0), ∀m, p(zmn | θm, tmn) = σ(θ>mtmn)zmn,1σ(−θ>mtmn)zmn,2 , ∀m,n.

We construct f(θm) in Eq. 4.12 separately for each m, and fit the hyperparameters µ0 and

Σ0 using reguarlized variational EM [16]. This amounts to MAP estimation, with priors as

specified above.

4Logistic regression is a generalized linear model with a binary response and canonical link function [74].
It is straightforward to use our algorithm with other Bayesian generalized linear models.
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4.3 Empirical Study

We studied the Laplace and delta method variational inference for the CTM and Bayesian

logistic regression model on several real-world datasets.

Correlated topic models (CTM). For the CTM, we analyzed two document collections.

The Associated Press data contains 2,246 documents from the Associated Press, with

436K observed words and a vocabulary size of 10,473 terms. The New York Times data

contains 9,238 documents from the New York Times, with 2.3 million observed words and a

vocabulary size of 10,760 terms.

We measured per-word held-out log likelihood to evaluate the models’ fit to the data. For

each collection, we held out 20% of the documents as a test set. We split each documentwd

in Dtest into halves, wi = (wd1,wd2), and computed the log likelihood of wd2 conditioned

on wd1 and Dtrain, similar to [9]. A better predictive distribution gives higher likelihood to

the second half.

Let π̄d be the variational expectation of the topic proportions givenwd1. The predictive

probability ofwd2 givenwd1 is approximated by p(wd2|wd1,Dtrain) ≈∏w∈wd2

∑
k π̄dkβkw.

Then the per-word held-out log likelihood is

likelihoodpw ,
∑

d∈Dtest
log p(wd2|wd1,Dtrain)/

∑
d∈Dtest

|wd2|.

This evaluation lets us compare methods regardless of whether they provide a bound. It is a

measure of the quality of the estimated predictive distribution. We compared the original

method of [23] to Laplace and delta method variational inference. We varied the number

of topics from 20 to 80. We stopped fitting when the relative change of the (approximated)

lower bound in the corpus-level EM algorithm was smaller than 10e-5.

Figure 4.2(a) shows per-word held-out log likelihood as a function of the number of

topics. On both data sets, the original algorithm of [23], tailored for this model, usually

performed worse than both generic algorithms. Our conjecture is that [23] gives a strict
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Figure 4.2: Comparison on per-word held-out log likelihood. Higher numbers are better. Laplace
inference is “Lap-Var”; delta method inference is “Delta-Var”; the method by Blei and Lafferty
in [23] is BL. (a) Held-out likelihood against number of topics. Delta-Var performs better BL.
Lap-Var performs best. (b) Held-out likelihood against running time when K = 60. Lap-Var is faster
and gives performs better than Delta-Var.

lower bound, which might be loose; our method uses an approximation which, while not

a bound, might be closer to the objective and give better predictive distributions. Laplace

inference was always better than both other algorithms. This might be because the delta

method uses a diagonal covariance matrix of the variational distribution and Laplace method

can use a full matrix. (This might also explain when K = 80 for NYT, the delta method

performs slightly worse than [23].)

We also compared the running times of Laplace inference and delta method inference.

For a model with 60 topics, Figure 4.2(b) shows the per-word held-out log likelihood as a

function of time.5 (Other topic settings looked similar.) In addition to finding a better fit to

the data, Laplace inference is faster.

Bayesian logistic regression. We studied our algorithms on Bayesian logistic regression

in both standard and hierarchical settings. In the standard setting, we analyzed two datasets.

The Yeast data [42] is formed by micro-array expression data and phylogenetic profiles.

There are 1500 genes in the training set and 917 genes in the test set. The input dimension

is 103. One gene is associated with up to 14 different edges (14 labels), corresponding

to 14 independent binary classification problems. The Scene data [28] contains 1,211

training and 1,196 test images, with 294 images features and up to 6 scene labels per image,

5We did not formally compare [23]’s method on running time because we used the authors’ C implementa-
tion while ours in Python. We observed, however, that their method took about 5 times longer.
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corresponding to 6 independent binary classification problems.

In the hierarchical setting, we analyzed the School data. This data was from the Inner

London Education Authority and consists of examination records from 139 secondary

schools in 1985, 1986 and 1987. It is a random 50% sample with 15,362 students. The

students’ features contain four student-dependent features (year of the exam, gender, VR

band and ethnic group) and four school-dependent features (percentage of students eligible

for free school meals, percentage of students in VR band 1, school gender and school

denomination). We coded the binary indicator of whether each was below the median

(“bad”) or above (“good”). We use the same 10 random splits of the data as [8]. In this data,

we can either treat each school as a separate classification problem, consider all the schools

together as a single big school, or analyze them with hierarchical logistic regression.

We used two metrics: 1) accuracy, i.e., the proportion of examples correctly labeled, 2)

averaged log predictive likelihood. Given test input t with label z, the predictive likelihood

is computed as

log p(z |µ, t) = z1 log σ(µ>t) + z2 log σ(−µ>t),

where µ is the mean of variational distribution q(θ) = N (µ,Σ). Higher likelihood is better.

We compared the following methods on (hierarchical) Bayesian logistic regression. (1)

Jaakkola: the variational approach in [59]. (2) Lap-Var: Laplace variational inference

in Section 4.1.2. (3) Delta-Var: delta method variational inference in Section 4.1.3. (4)

Hier-Lap-Var: the hierarchical version of Lap-Var. This is only performed on School. (5)

Hier-Delta-Var: the hierarchical version of Delta-Var. This is only performed on School.

In Jaakkola, Lap-Var and Delta-Var, we set µ0 = 0 and Σ0 = I in Eq. 4.18 to favor

sparsity. In Hier-Lap-Var and Hier-Delta-Var, we set Σ̂0 = 0.01I , ν̂ = p+ 100, Φ̂0 = 0.01I

in Eq. 4.19 also to favor sparsity. Here p is the dimensionality of the input feature.

Table 4.1 shows the results on standard Bayesian logistic regression on Yeast and Scene

data. Lap-Var and Delta-Var gave slightly better accuracy but much better log predictive
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Table 4.1: Comparison of different methods
on standard Bayesian logistic regression using
accuracy (Acc.) and averaged log predictive like-
lihood (Lik.)—the higher, the better. Results are
averaged from five random starts. Variance is too
small to show. The best results are highlighted.
Lap-Var and Delta-Var gives slightly better accu-
racy but much better predictive log likelihood.

Yeast
Algorithm Acc. Lik.
Jaakkola 79.7% -0.678
Lap-Var 80.1% -0.449

Delta-Var 80.2% -0.450
Scene

Algorithm Acc. Lik.
Jaakkola 87.4% -0.670
Lap-Var 89.4% -0.259

Delta-Var 89.5% -0.265

Table 4.2: Comparison of different methods on
School data using accuracy (Acc.) and averaged
log predictive likelihood (Lik.). Results are av-
eraged from 10 random splits. Variance is too
small to show. The best results are highlighted.
Lap-Var-all indicates the case where we treats
all schools together. The hierarchical approach
performs the best.

School
Algorithm Acc. Lik.
Jaakkola 70.5% -0.684
Lap-Var 70.8% -0.569

Delta-Var 70.8% -0.571
Jaakkola-all 71.2% -0.685
Lap-Var-all 71.3% -0.557

Delta-Var-all 71.3% -0.557
Hier-Lap-Var 71.9% -0.549

Hier-Delta-Var 71.9% -0.559

likelihood than the Jaakkola method.6

Table 4.2 shows the results on School data. The hierarchical Bayesian logistic regression

performed the best on both accuracy and predictive log likelihood.

4.4 Conclusions

We have developed two strategies for variational inference in a large class of nonconjugate

models, Laplace and delta method variational inference. Although our methods no longer

guarantee a strict lower bound, they work well in practice, forming approximate posteriors

that lead to good predictions. In the examples we analyzed, these methods work better than

methods tailored for specific models. Further, we showed that Laplace inference is better

and faster than delta method inference. One area of future work is that in more complicated

models, we may not want to assume full conditional conjugacy of z. In those settings, we

may be able to use moment matching [101] to develop efficient variational algorithms.

6Previous literature, e.g., [114, 7] also treat Yeast and Scene as multi-task problems. This is slightly
non-standard, since each sub-problem does share the same input features. We found the standard Bayesian
logistic regression performed competitively with the multi-task algorithms reported in [7] in terms of accuracy.
We also found the hierarchical version did worse in this setting.
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Chapter 5

Simultaneous Image Classification and Annotation

Staring from this chapter, we focus on developing novel models for real-world applications.

In this chapter, we consider the problem of modeling image data that are both labeled with a

category and annotated with free text. In such data, the class label tends to globally describe

each image, while the annotation terms tend to describe its individual components. For

example, an image in the outdoor category might be annotated with “tree,” “flower,” and

“sky.”

Image classification and image annotation are typically treated as two independent

problems. Our motivating intuition, however, is that these two tasks should be connected.

An image annotated with “car” and “pedestrian” is unlikely to be labeled as a living room

scene. An image labeled as an office scene is unlikely to be annotated with “swimming pool”

or “sunbather.” In this chapter, we develop a probabilistic model that simultaneously learns

the salient patterns among images that are predictive of their class labels and annotation

terms. For new unknown images, our model provides predictive distributions of both class

and annotation.

We build on recent machine learning and computer vision research in probabilistic topic

models, such as latent Dirichlet allocation (LDA) [26] and probabilistic latent semantic

indexing [55] (pLSI). Probabilistic topic models find a low dimensional representation of

data under the assumption that each data point can exhibit multiple components or “topics.”

50



While topic models were originally developed for text, they have been successfully adapted

and extended to many computer vision problems [20, 11, 40, 44, 27].

Our model finds a set of image topics that are predictive of both class label and annota-

tions. The two main contributions of this work are:

1. We extended supervised topic modeling [25] (sLDA) to classification problems. SLDA

was originally developed for predicting continuous response values, via a linear

regression. We note that the multi-class extension presented here is not simply a

“plug-and-play” extension of [25]. As we show in Section 5.1.2, it requires substantial

development of the underlying inference and estimation algorithms.

2. We embed a probabilistic model of image annotation into the resulting supervised

topic model. This yields a single coherent model of images, class labels and annotation

terms, allowing classification and annotation to be performed using the same latent

topic space.

We find that a single model, fit to images with class labels and annotation terms, provides

state-of-the-art annotation performance and exceeds the state-of-the-art in classification

performance. This shows that image classification and annotation can be performed simulta-

neously.

This chapter is organized as follows. In Section 2, we describe our model and derive

variational algorithms for inference, estimation, and prediction. In Section 3, we describe

related work. In Section 4, we study the performance of our models on classification and

annotation for two real-world image datasets. We summarize our findings in Section 5.

5.1 Models and Algorithms

In this section, we develop two models: multi-class sLDA and multi-class sLDA with

annotations. We derive a variational inference algorithm for approximating the posterior

distribution, and an approximate parameter estimation algorithm for finding maximum
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(a)

 class: snowboarding 

annotations: skier, ski, tree, water, 
boat, building, sky, residential area 

predicted class: snowboarding 

predicted annotations: athlete, sky, 
tree, water, plant, ski, skier 

(b)

Figure 5.1: (a). A graphical model representation of our model. Nodes represent random
variables; edges denote possible dependence between random variables; plates denote
replicated structure. Note that in this model, the image class c and image annotation wm
are dependent on the topics that generated the image codewords rn. (b). An example image
with the class label and annotations from the UIUC-Sport dataset [69]. The italic words are
the predicted class label and annotations, using our model.

likelihood estimates of the model parameters. Finally, we derive prediction algorithms for

using these models to label and annotate new images.

5.1.1 Modeling images, labels and annotations

The idea behind our model is that class and annotation are related, and we can leverage that

relationship by finding a latent space predictive of both. Our training data are images that

are categorized and annotated. In testing, our goal is to predict the category and annotations

of a new image.

Each image is represented as a bag of “codewords” r1:N , which are obtained by running

the k-means algorithm on patches of the images [62, 72]. (See Section 5.3 for more details

about our image features.) The category c is a discrete class label. The annotation w1:M is a

collection of words from a fixed vocabulary.

We fix the number of topics K and let C denote the number of class labels. The

parameters of our model are a set of K image topics π1:K , a set of K annotation topics

β1:K , and a set of C class coefficients η1:C . Each coefficient ηc is a K-vector of real values.

Each “topic” is a distribution over a vocabulary, either image codewords or annotation terms.

Our model assumes the following generative process of an image, its class label, and its

annotation.

1. Draw topic proportions θ ∼ Dir(α).
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2. For each image region rn, n ∈ {1, 2, . . . , N}:

(a) Draw topic assignment zn | θ ∼ Mult(θ).

(b) Draw region codeword rn | zn ∼ Mult(πzn).

3. Draw class label c | z1:N ∼ softmax(z̄, η), where z̄ = 1
N

∑N
n=1 zn is the empirical

topic frequencies and the softmax function provides the following distribution,

p(c | z̄, η) = exp
(
ηTc z̄
)
/
∑C

l=1 exp
(
η>l z̄

)
.

4. For each annotation term wm, m ∈ {1, 2, . . . ,M}:

(a) Draw region identifier ym ∼ Unif{1, 2, . . . , N}

(b) Draw annotation term wm ∼ Mult(βzn).

Figure 5.1(a) illustrates our model as a graphical model.

We refer to this model as multi-class sLDA with annotations. It models both the image

class and image annotation with the same latent space.

Consider step 3 of the generative process. In modeling the class label, we use a similar

set-up as supervised LDA (sLDA) [25]. In sLDA, a response variable for each “document”

(here, an image) is assumed drawn from a generalized linear model with input given by

the empirical distribution of topics that generated the image patches. In [25], that response

variable is real valued and drawn from a linear regression, which simplified inference and

estimation.

However, a continuous response is not appropriate for our goal of building a classifier.

Rather, we consider a class label response variable, drawn from a softmax regression

for classification. This complicates the approximate inference and parameter estimation

algorithms (see Section 5.1.2 and 5.1.3), but provides an important extension to the sLDA

framework. We refer to this multi-class extension of sLDA (without the annotation portion)

as multi-class sLDA. We note that multi-class sLDA can be used in classification problems
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outside of computer vision.

We now turn to step 4 of the generative process. To model annotations, we use the same

generative process as correspondence LDA (corr-LDA) [20], where each annotation word

is assumed to be drawn from one of the topics that is associated with an image patch. For

example, this will encourage words like “blue” and “white” to be associated with the image

topics that describe patches of sky.

We emphasize that Corr-LDA and sLDA were developed for different purposes. Corr-

LDA finds topics predictive of annotation words; sLDA finds topics predictive of a global

response variable. However, both approaches employ similar statistical assumptions. First,

generate the image from a topic model. Then, generate its annotation or class label from a

model conditioned on the topics which generated the image. Our model uses the same latent

topic space to generate both the annotation and class label.

5.1.2 Approximate inference

In posterior inference, we compute the conditional distribution of the latent structure given

a model and a labeled annotated image. As for LDA, computing this posterior exactly is

not possible [26]. We employ mean-field variational methods for a scalable approximation

algorithm.

Variational methods consider a simple family of distributions over the latent variables,

indexed by free variational parameters, and try to find the setting of those parameters that

minimizes the Kullback-Leibler (KL) divergence to the true posterior [61]. In our model, the

latent variables are the per-image topic proportions θ, the per-codeword topic assignment

zn, and the per-annotation word region identifier ym. Note that there are no latent variables

explicitly associated with the class; its distribution is wholly governed by the per-codeword

topic assignments.

The mean-field variational distribution is,

q(θ, z,y) = q(θ|γ)
∏N

n=1 q(zn|φn)
∏M

m=1 q(ym|λm), (5.1)
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where φn is a variational multinomial over the K topics, γ is a variational Dirichlet, and λm

is a variational multinomial over the image regions. We fit these parameters with coordinate

ascent to minimize the KL divergence between q and the true posterior. (This will find a

local minimum.)

Let Θ = {α, β1:K , η1:C , π1:K}. Following Jordan et al. [61], we bound the log-likelihood

of a image-class-annotation triple, (r, c,w). We have:

log p(r, c,w|Θ) = log

∫
p(θ, z,y, r, c,w|Θ)q(θ, z,y)

q(θ, z,y)
dθdzdy

≥ Eq [log p(θ, z,y, r, c,w|Θ)]−Eq [q(θ, z,y)]

= L(γ, φ, λ; Θ). (5.2)

The coordinate ascent updates for γ and λ are the same as those in [26], which uses the

same notation:

γ = α +
∑N

n=1 φn (5.3)

λmn ∝ exp
(∑K

i=1 φni log βi,wm

)
. (5.4)

We next turn to the update for the variational multinomial φ. Here, the variational

method derived in [25] cannot be used because the expectation of the log partition function

for softmax regression (i.e., multi-class classification) cannot be exactly computed. The

terms in L containing φn are:

L[φn] =
K∑
i=1

φni

(
Ψ(γi)−Ψ(

K∑
j=1

γj) + log πi,rn +
M∑
m=1

λmn log βi,wm

)
+

1

N
ηTc φn

−Eq
[

log

(
C∑
l=1

exp(ηTl z̄)

)]
−

K∑
i=1

φni log φni. (5.5)

The central issue here is that exactly computing−Eq
[
log
(∑C

l=1 exp(ηTl z̄)
)]

takes O(KN)
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time. To address this, we lower bound this term with Jensen’s inequality. This gives:

Eq

[
log

(
C∑
l=1

exp(ηTl z̄)

)]
≥ − log

(
C∑
l=1

Eq

[
exp(ηTl z̄)

])

= − log

(
C∑
l=1

N∏
n=1

(
K∑
j=1

φnj exp

(
1

N
ηlj

)))
. (5.6)

Plugging Equation 5.6 into Equation 5.5, we obtain a lower bound of L[φn], which we will

denote L′[φn].

We present a fixed-point iteration for maximizing this proxy. The idea is that given an

old estimation of φold
n , a lower bound of L′[φn] is constructed so that this lower bound is tight

on φold
n [77]. Then maximizing this lower bound of L′[φn] is solved in closed-form and φold

n is

updated correspondingly. We note that
∑C

l=1

∏N
n=1

(∑K
j=1 φnj exp

(
1
N
ηlj
))

is only a linear

function of φn, thus can be written as hTφn, where h = [h1, · · · , hi, · · · , hK ]T and does not

contain φn. For convenience, define bi as follows,

bi = Ψ(γi)−Ψ(
K∑
j=1

γj) + log πi,rn +
M∑
m=1

λmn log βi,wm .

Now, the lower bound L′[φn] can be written as

L′[φn] =
K∑
i=1

φnibi +
1

N
ηTc φn − log(hTφn)−

K∑
i=1

φni log φni.

Finally, suppose we have a previous value φold
n . For log(x), we know log(x) ≤ ζ−1x+

log(ζ)− 1,∀x > 0, ζ > 0, where the equality holds if and only if x = ζ . Set x = hTφn and

ζ = hTφold
n . Immediately, we have:

L′[φn] ≥
K∑
i=1

φnibi +
1

N
ηTc φn − (hTφold

n )−1hTφn − log(hTφold
n ) + 1−

K∑
i=1

φni log φni.

(5.7)
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This lower bound of L′[φn] is tight when φn = φold
n . Maximizing Equation 5.7 under the

constraint
∑K

i=1 φni = 1 leads to the fixed point update,

φni ∝πi,rn exp
(

Ψ(γi) +
∑M

m=1 λmn log βi,wm + 1
N
ηci − (hTφold

n )−1hi

)
. (5.8)

Observe how the per-feature variational distribution over topics φ depends on both class

label c and annotation information wm. The combination of these two sources of data

has naturally led to an inference algorithm that uses both. The full variational inference

procedure repeats the updates of Equations 5.3, 5.4 and 5.8 until Equation 5.2, the lower

bound on the log marginal probability log p(r, c,w|Θ), converges.

5.1.3 Parameter estimation

Given a corpus of image data with class labels and annotations, D = {(rd,wd, cd)}Dd=1,

we find the maximum likelihood estimation for image topics π1:K , text topics β1:K and

class coefficients η1:C . We use variational EM, which replaces the E-step of expectation-

maximization with variational inference to find an approximate posterior for each data point.

In the M-step, as in exact EM, we find approximate maximum likelihood estimates of the

parameters using expected sufficient statistics computed from the E-step.

Recall Θ = {α, β1:K , η1:C , π1:K}. The corpus log-likelihood is,

L(D) =
D∑
d=1

log p(rd, cd,wd|Θ). (5.9)

(We do not optimize α.) Again, we maximize the lower bound of L(D) by plugging

Equations 5.2 and 5.6 into Equation 5.9.

Let Vr denote the number of codewords, the terms containing π1:K (with Lagrangian

multipliers) are:

L[π1:K ](D) =
D∑
d=1

Nd∑
n=1

K∑
i=1

φdni log πi,rn +
K∑
i=1

µi

(
Vr∑
f=1

πif − 1

)
.
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Setting ∂L[π1:K ](D)/∂πif = 0 leads to

πif ∝
D∑
d=1

Nd∑
n=1

1[rn = f ]φdni. (5.10)

Next, let Vw denote the number of total annotations, and the terms containing β1:K (with

Lagrangian multipliers) are:

L[β1:K ](D) =
M∑
m=1

N∑
n=1

K∑
i=1

λmnφni log βi,wm +
K∑
i=1

νi

(
Vw∑
w=1

βiw − 1

)
.

Setting ∂L[β1:K ](D)/∂βiw = 0 leads to

βiw ∝
D∑
d=1

M∑
m=1

1[wm = w]
∑
n

φdniλdmn. (5.11)

Finally, terms containing η1:C are:

L[η1:C ](D) =
D∑
d=1

(
ηTcdφ̄d − log

(
C∑
c=1

Nd∏
n=1

(
K∑
i=1

φdni exp

(
1

Nd

ηci

))))
.

Setting ∂L[η1:C ](D)/∂ηci = 0 does not lead to a closed-form solution. We optimize with con-

jugate gradient [82]. Let κd =
∑C

c=1

∏Nd

n=1

(∑K
i=1 φdni exp

(
1
Nd
ηci

))
. Conjugate gradient

only requires the derivatives:

∂L[η1:C ](D)

∂ηci
=

D∑
d=1

(
1[cd = c]φ̄di

)
−

D∑
d=1

κ−1d Nd∏
n=1

(
K∑
j=1

φdnj exp

(
1

Nd

ηcj

)) Nd∑
n=1

 1
Nd
φdni exp

(
1
Nd
ηci

)
∑K

j=1 φdnj exp
(

1
Nd
ηcj

)
 . (5.12)

5.1.4 Classification and annotation

With inference and parameter estimation algorithms in place, it remains to describe how

to perform prediction, i.e. predicting both a class label and annotations from an unknown
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image. The first step is to perform variational inference given the unknown image. We can

use a variant of the algorithm in Section 5.1.2 to determine q(θ, z). Since the class label and

annotations are not observed, we remove the λmn terms from the variational distribution

(Equation 5.1) and the terms involving ηc from the updates on the topic multinomials

(Equation 5.8).

In classification, we estimate the probability of the label c by replacing the true posterior

p(z|w, r) with the variational approximation

p(c|r,w) ≈
∫

exp

(
ηTc z̄ − log

(
C∑
l=1

exp(ηTl z̄)

))
q(z)dz

≥ exp

(
Eq

[
ηTc z̄
]
−Eq

[
log

(
L∑
l=1

exp(ηTl z̄)

)])
,

where the last equation comes from Jensen’s inequality, and q is the variational posterior

computed in the first step. The second term in the exponent is constant with respect to class

label. Thus, the prediction rule is

c∗ = arg max
c∈{1,...,C}

Eq

[
ηTc z̄
]

= arg max
c∈{1,...,C}

ηTc φ̄. (5.13)

There are two approximations at play. First, we approximate the posterior with q. Second,

we approximate the expectation of an exponential using Jensen’s inequality. While there

are no theoretical guarantees here, we evaluate this classification procedure empirically in

Section 5.3.

The procedure for predicting annotations is the same as in [20]. To obtain a distribution

over annotation terms, we average the contributions from each region,

p(w|r, c) ≈
N∑
n=1

∑
zn

p(w|zn, β)q(zn). (5.14)
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5.2 Related work

Image classification and annotation are both important problems in computer vision and

machine learning. Much previous work has explored the use of global image features

for scene (or event) classification [83, 102, 97, 103, 69], and both discriminative and

generative techniques have been applied to this problem. Discriminative methods include

the work in [36, 116, 111, 68]. Generative methods include the work in [44, 34, 86, 69].

In the work of [27], the authors combine generative models for latent topic discovery [56]

and discriminative methods for classification (k-nearest neighbors). LDA-based image

classification was introduced in [44], where each category is identified with its own Dirichlet

prior, and that prior is optimized to distinguish between them. The multi-class sLDA model

combines the generative and discriminative approaches, which may be better for modeling

categorized images (see Section 5.3).

For image annotation, several studies have explored the use of probabilistic models

to learn the relationships between images and annotation terms [11, 40, 60]. Our model

is most related to the family of models based on LDA, which were introduced to image

annotation in [40]. But the idea that image annotation and classification might share the

same latent space has not been studied. We will compare the performance of our model

to corr-LDA [20]. (Corr-LDA was shown to provide better performance than the previous

LDA-based annotation models in [11] and [40].)

5.3 Empirical results

We test our models with two real-world data sets that contain class labels and annotations: a

subset from LabelMe [90] and the UIUC-Sport data from [69]. In the LabelMe data, we

used the on-line tool to obtain images from the following 8 classes: “highway,” “inside

city,” “tall building,” “street,” “forest,” “coast,” “mountain,” and “open country.” We first

only kept the images that were 256× 256 pixels, and then randomly selected 200 images

for each class. (In doing this, we attempted to obtain the same image data as described
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Figure 5.2: Comparisons of average accuracy over all classes based on 5 random train/test
subsets. multi-class sLDA with annotations and multi-class sLDA (red curves in color) are
both our models. left. Accuracy as a function of the number of topics on the LabelMe
dataset. right. Accuracy as a function of the number of topics on the UIUC-Sport dataset.

in [44].) The total number of images is 1600. The UIUC-Sport dataset [69] contains 8 types

of sports: “badminton,” “bocce,” “croquet,” “polo,” “rockclimbing,” “rowing,” “sailing”

and “snowboarding.” The number of images in each class varies from 137 (bocce) to 250

(rowing). The total number of images is 1792.

Following the setting in [44], we use the 128-dimensional SIFT [72] region descriptors

selected by a sliding grid (5×5). We ran the k-means algorithm [62] to obtain the codewords

and codebook. We report on a codebook of 240 codewords. (Other codebook sizes gave

similar performance.) In both data sets, we removed annotation terms that occurred less than

3 times. On average, there are 6 terms per annotation in the LabelMe data, and 8 terms per

annotation in the UIUC-Sport data. Finally, We evenly split each class to create the training

and testing sets.

Our procedure is to train the multi-class sLDA with annotations on labeled and annotated

images, and train the multi-class sLDA model on labeled images. All testing is on unlabeled

and unannotated images. See Figure 5.4 for example annotations and classifications from

the multi-class sLDA with annotations.

Image Classification. To assess our models on image classification, we compared the

following methods,
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1. Fei-Fei and Perona, 2005: This is the model from [44]. It is trained on labeled images

without annotation.

2. Bosch et al., 2006: This is the model described in [27]. It first employs pLSA [56]

to learn latent topics, and then uses the k-nearest neighbor (KNN) classifier for

classification. We use unsupervised LDA1 to learn the latent topics and, following

[27], set the number of neighbors to be 10. As for the other models considered here,

we use SIFT features. We note that [27] use other types of features as well.

3. multi-class sLDA: This is the multi-class sLDA model, described in this chapter.

4. multi-class sLDA with annotations: This is multi-class sLDA with annotations, de-

scribed in this chapter.

Note all testing is performed on unlabeled and unannotated images.

The results are illustrated in the graphs of Figure 5.2 and in the confusion matrices

of Figure 5.3.2 Our models—multi-class sLDA and multi-class sLDA with annotations—

perform better than the other approaches. They reduce the error of Fei-Fei and Perona, 2005

by at least 10% on both data sets, and even more for Bosch et al., 2006. This demonstrates

that multi-class sLDA is a better classifier, and that joint modeling does not negatively affect

classification accuracy when annotation information is available. In fact, it usually increases

the accuracy.

Observe that the model of [27], unsupervised LDA combined with KNN, gives the worst

performance of these methods. This highlights the difference between finding topics that are

predictive, as our models do, and finding topics in an unsupervised way. The accuracy of

unsupervised LDA might be increased by using some of the other visual features suggested

by [27]. Here, we restrict ourselves to SIFT features in order to compare models, rather than

feature sets.
1According to [96], pLSA performs similarly to unsupervised LDA in practice.
2Other than the topic models listed, we also tested an SVM-based approach using SIFT image features.

The SVM yielded much worse performance than the topic models (47% for the LabelMe data, and 20% for
the UIUC-Sport data). These are not marked on the plots.
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Figure 5.3: Comparisons using confusion matrices, all from the 100-topic models using multi-
class sLDA with annotations and multi-class sLDA. (a) multi-class sLDA with annotations
on the LabelMe dataset. (b) multi-class LDA on the LabelMe dataset. (c) multi-class sLDA
with annotations on the UIUC-Sport dataset. (d) multi-class sLDA model on the UIUC-Sport
dataset.

As the number of topics increases, the multi-class sLDA models (with and without

annotation) do not overfit until around 100 topics, while Fei-Fei and Perona, 2005 begins to

overfit at 40 topics. This suggests that multi-class sLDA, which combines aspects of both

generative and discriminative classification, can handle more latent features than a purely

generative approach. On one hand, a large number of topics increases the possibility of

overfitting; on the other hand, it provides more latent features for building the classifier.

Image Annotation. In the case of multi-class sLDA with annotations, we can use the

same trained model for image annotation. We emphasize that our models are designed for

simultaneous classification and annotation. For image annotation, we compare following

two methods,

1. Blei and Jordan, 2003: This is the corr-LDA model from [19], trained on annotated

images.

2. multi-class sLDA with annotations: This is exactly the same model trained for image

classification in the previous section. In testing annotation, we observe only images.

To measure image annotation performance, we use an evaluation measure from informa-

tion retrieval. Specifically, we examine the top-N F-measure3, denoted as F-measure@N ,

where we set N = 5. We find that multi-class sLDA with annotations performs slightly

3F-measure is defined as 2 ∗ precision ∗ recall/(precision + recall).
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better than corr-LDA over all the numbers of topics tested (about 1% relative improvement).

For example, considering models with 100 topics, the LabelMe F-measures are 38.2% (corr-

LDA) and 38.7% (multi-class sLDA with annotations); on UIUC-Sport, they are 34.7%

(corr-LDA) and 35.0% (multi-class sLDA with annotations).

These results demonstrate that our models can perform classification and annotation

with the same latent space. With a single trained model, we find the annotation performance

that is competitive with the state-of-the-art, and classification performance that is superior.

5.4 Discussion

We have developed a new graphical model for learning the salient patterns in images that are

simultaneously predictive of class and annotations. In the process, we have derived the multi-

class setting of supervised topic models and studied its performance for computer vision

problems. On real-world image data, we have demonstrated that the proposed model is on

par with state-of-the-art image annotation methods and outperforms current state-of-the-art

image classification methods. Guided by the intuition that classification and annotation are

related, we have illustrated that the same latent space can be used to predict both.
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Chapter 6

Collaborative Topic Modeling for Recommenda-

tions

In this chapter, we consider building a model for recommending scientific articles for the

researchers. In this intenet era, modern researchers have easy access to large archives of

scientific articles. These archives are growing as new articles are placed online and old

articles are scanned and indexed. While this growth has allowed researchers to quickly

access more scientific information, it has also made it more difficult for them to find articles

relevant to their interests. Modern researchers need new tools for managing what is available

to them.

Historically, one way that researchers find articles is by following citations in other

articles that they are interested in. This is an effective practice—and one that we should

continue—but it limits researchers to specific citation communities, and it is biased towards

heavily cited papers. A statistician may miss a relevant paper in economics or biology

because the two literatures rarely cite each other; and she may miss a relevant paper in

statistics because it was also missed by the authors of the papers that she has read. One of

the opportunities of online archives is to inform researchers about literature that they might

not be aware of.

A complementary method of finding articles is keyword search. This is a powerful

approach, but it is also limited. Forming queries for finding new scientific articles can be

66



difficult as a researcher may not know what to look for; search is mainly based on content,

while good articles are also those that many others found valuable; and search is only

good for directed exploration, while many researchers would also like a “feed” of new and

interesting articles.

Recently, websites like CiteULike1 and Mendeley2 allow researchers to create their

own reference libraries for the articles they are interested in and share them with other

researchers. This has opened the door to using recommendation methods [65] as a third

way to help researchers find interesting articles. In this chapter, we develop an algorithm

for recommending scientific articles to users of online archives. Each user has a library of

articles that he or she is interested in, and our goal is to match each user to articles of interest

that are not in his or her library.

We have several criteria for an algorithm to recommend scientific articles. First, rec-

ommending older articles is important. Users of scientific archives are interested in older

articles for learning about new fields and understanding the foundations of their fields. When

recommending old articles, the opinions of other users plays a role. A foundational article

will be in many users’ libraries; a less important article will be in few.

Second, recommending new articles is also important. For example, when a conference

publishes its proceedings, users would like see the recommendations from these new articles

to keep up with the state-of-the-art in their discipline. Since the articles are new, there is

little information about which or how many other users placed the articles in their libraries,

and thus traditional collaborative filtering methods has difficulties making recommendations.

With new articles, a recommendation system must use their content.

Finally, exploratory variables can be valuable in online scientific archives and communi-

ties. For example, we can summarize and describe each user’s preference profile based on

the content of the articles that he or she likes. This lets us connect similar users to enhance

the community, and indicate why we are connecting them. Further, we can describe articles

1http://www.citeulike.org
2http://www.mendeley.com
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in terms of what kinds of users like them. For example, we might detect that a machine

learning article is of strong interest to computer vision researchers. If enough researchers

use such services, these variables might also give an alternative measure of the impact of an

article within a field.

With these criteria in mind, in thsi chapter, we develop a machine learning algorithm for

recommending scientific articles to users in an online scientific community. Our algorithm

uses two types of data—the other users’ libraries and the content of the articles—to form

its recommendations. For each user, our algorithm can finds both older papers that are

important to other similar users and newly written papers whose content reflects the user’s

specific interests. Finally, our algorithm gives interpretable representations of users and

articles.

Our approach combines ideas from collaborative filtering based on latent factor mod-

els [91, 92, 65, 1, 115] and content analysis based on probabilistic topic modeling [26, 35,

99, 2]. Like latent factor models, our algorithm uses information from other users’ libraries.

For a particular user, it can recommend articles from other users who liked similar articles.

Latent factor models work well for recommending known articles, but cannot generalize to

previously unseen articles.

To generalize to unseen articles, our algorithm uses topic modeling. Topic modeling

provides a representation of the articles in terms of latent themes discovered from the

collection. When used in our recommender system, this component can recommend articles

that have similar content to other articles that a user likes. The topic representation of articles

allows the algorithm to make meaningful recommendations about articles before anyone has

rated them.

We combine these approaches in a probabilistic model, where making a recommendation

for a particular user is akin to computing a conditional expectation of hidden variables.

We will show how the algorithm for computing these expectations naturally balances the

influence of the content of the articles and the libraries of the other users. An article that has
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not been seen by many will be recommended based more on its content; an article that has

been widely seen will be recommended based more on the other users.

We studied our algorithm with data from CiteULike: 5, 551 users, 16, 980 articles,

and 204, 986 bibliography entries. We will demonstrate that combining content-based and

collaborative-based methods works well for recommending scientific articles. Our method

provides better performance than matrix factorization methods alone, indicating that content

can improve recommendation systems. Further, while traditional collaborative filtering

cannot suggest articles before anyone has rated them, our method can use the content of new

articles to make predictions about who will like them.

6.1 Background

We first give some background. We describe two types of recommendation problems we

address; we describe the classical matrix factorization solution to recommendation; and we

review latent Dirichlet allocation (LDA) for topic modeling of text corpora.

6.1.1 Recommendation tasks

The two elements in a recommender system are users and items. In our problem, items are

scientific articles and users are researchers. We will assume I users and J items. The rating

variable rij ∈ {0, 1} denotes whether user i includes article j in her library [58]. If it is in

the library, this means that user i is interested in article j. (This differs from some other

systems where users explicitly rate items on a scale.) Note that rij = 0 can be interpreted

into two ways. One way is that user i is not interested in article j; the other is that user i

does not know about article j.

For each user, our task is to recommend articles that are not in her library but are

potentially interesting. There are two types of recommendation: in-matrix prediction and

out-of-matrix prediction. Figure 6.1 illustrates the idea.

In-matrix prediction. Figure 6.1 (a) illustrates in-matrix prediction. This refers to the

problem of making recommendations about those articles that have been rated by at least
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Figure 6.1: Illustration of the two tasks for scientific article recommendation systems, where√
indicates “like”, × “dislike” and ? “unknown”.

one user in the system. This is the task that traditional collaborative filtering can address.

Out-of-matrix prediction. Figure 6.1 (b) illustrates out-of-matrix prediction, where arti-

cles 4 and 5 have never been rated. (This is sometimes called “cold start recommendation.”)

Traditional collaborative filtering algorithms cannot make predictions about these articles

because those algorithms only use information about other users’ ratings. This task is

important for online scientific archives, however, because users want to see new articles

in their fields. A recommender system that cannot handle out-of-matrix prediction cannot

recommend newly published papers to its users.

6.1.2 Recommendation by matrix factorization

The traditional approach to recommendation is collaborative filtering (CF), where items

are recommended to a user based on other users with similar patterns of selected items.

(Note that collaborative filtering does not use the content of the items.) Most successful

recommendation methods are latent factor models [91, 92, 65, 1, 115], which provide better

recommendation results than the neighborhood methods [52, 65]. In this chapter, we focus

on latent factor models.

Among latent factor methods, matrix factorization performs well [65]. In matrix factor-

ization, we represent users and items in a shared latent low-dimensional space of dimension

K—user i is represented by a latent vector ui ∈ RK and item j by a latent vector vj ∈ RK .
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We form the prediction of whether user i will like item j with the inner product between

their latent representations,

r̂ij = uTi vj. (6.1)

Biases for different users and items can also be incorporated [65].

To use matrix factorization, we must compute the latent representations of the users

and items given an observed matrix of ratings. The common approach is to minimize the

regularized squared error loss with respect to U = (ui)
I
i=1 and V = (vj)

J
j=1,

minU,V
∑

i,j(rij − uTi vj)2 + λu||ui||2 + λv||vj||2, (6.2)

where λu and λv are regularization parameters.

This matrix factorization for collaborative filtering can be generalized as a probabilistic

model [92]. In probabilistic matrix factorization (PMF), we assume the following generative

process,

1. For each user i, draw user latent vector ui ∼ N (0, λ−1u IK).

2. For each item j, draw item latent vector vj ∼ N (0, λ−1v IK).

3. For each user-item pair (i, j), draw the response

rij ∼ N (uTi vj, c
−1
ij ), (6.3)

where cij is the precision parameter for rij .

(Note that IK is a K-dimensional identity matrix.) This is the interpretation of matrix

factorization that we will build on.

When cij = 1, for ∀i, j, the maximum a posteriori estimation (MAP) of PMF corresponds

to the solution in Eq. 6.2. Here, the precision parameter cij serves as a confidence parameter

for rating rij . If cij is large, we trust rij more. As we mentioned above, rij = 0 can be
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interpreted into two ways—the user i is either not interested in item j or is unaware of it.

This is thus a “one-class collaborative filtering problem,” similar to the TV program and

news article recommendation problems studied in [58] and [84]. In that work, the authors

introduce different confidence parameters cij for different ratings rij . We will use the same

strategy to set cij a higher value when rij = 1 than when rij = 0,

cij =

 a, if rij = 1,

b, if rij = 0,
(6.4)

where a and b are tuning parameters satisfying a > b > 0.

We fit a CF model by finding a locally optimal solution of the user variables U and item

variables V , usually with an iterative algorithm [58]. We then use Eq. 6.1 to predict the

ratings of the articles outside of each user’s library.

There are two main disadvantages to matrix factorization for recommendation. First, the

learnt latent space is not easy to interpret; second, as mentioned, matrix factorization only

uses information from other users—it cannot generalize to completely unrated items.

6.1.3 Probabilistic topic models

Topic modeling algorithms [24] are used to discover a set of “topics” from a large collection

of documents, where a topic is a distribution over terms that is biased around those associated

under a single theme. Topic models provide an interpretable low-dimensional representation

of the documents [35]. They have been used for tasks like corpus exploration, document

classification, and information retrieval. Here we will exploit the discovered topic structure

for recommendation.

The simplest topic model is latent Dirichlet allocation (LDA) [26]. Assume there are

K topics β = β1:K , each of which is a distribution over a fixed vocabulary. The generative

process of LDA is as follows. For each article wj in the corpus,

1. Draw topic proportions θj ∼ Dirichlet(α).
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Figure 6.2: The graphical model for the CTR model.

2. For each word n,

(a) Draw topic assignment zjn ∼ Mult(θj).

(b) Draw word wjn ∼ Mult(βzjn).

This process reveals how the words of each document are assumed to come from a mixture

of topics: the topic proportions are document-specific, but the set of topics is shared by the

corpus.

Given a corpus of documents, we can use variational EM to learn the topics and decom-

pose the documents according to them [26]. Further, given a new document, we can use

variational inference to situate its content in terms of the topics. Our goal is to use topic

modeling to give a content-based representation of items in a recommender system.

6.2 Collaborative topic regression

In this section, we describe the collaborative topic regression (CTR) model. CTR combines

traditional traditional collaborative filtering with topic modeling.

A first approach to combining collaborative filtering and topic modeling is to fit a model

that uses the latent topic space to explain both the observed ratings and the observed words.

For example, we can use the topic proportion θj in place of the latent item latent vector vj in

Eq. 6.3,

rij ∼ N (uTi θj, c
−1
ij ). (6.5)
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(We note that [95] proposed a similar approach to Eq. 6.5, but based on correlated topic

models [23]. It showed modest improvement over matrix factorization on several movie

recommendation datasets.)

This model suffers from the limitation that it cannot distinguish topics for explaining

recommendations from topics important for explaining content. Consider two articles A and

B that are both about machine learning applied to social networks. They are similar and,

therefore, have similar topic proportions θA and θB . Now further suppose that these articles

are interesting to different kinds of users: Article A might give an interesting machine

learning algorithm that is applied to social network applications; article B uses standard

machine learning techniques, but gives an important piece of data analysis on social network

data.

Users that work in machine learning will prefer article A and rarely consider article

B; users that work in social networks will prefer the opposite. However, using the topic

proportions as in Eq. 6.5 will be likely to make similar recommendations for both articles to

both types of users. Collaborative topic regression can detect this difference—that one type

of user likes the first article and another type likes the second.

As above, collaborative topic regression (CTR) represents users with topic interests

and assumes that documents are generated by a topic model. CTR additionally includes a

latent variable εj that offsets the topic proportions θj when modeling the user ratings. As

more users rate articles, we have a better idea of what this offset is. This offset variable can

explain, for example, that article A is more interesting to machine learning researchers than

it is to social network analysis researchers. How much of the prediction relies on content

and how much it relies on other users depends on how many users have rated the article.

Figure 6.2 shows the graphical model. Again, assume there are K topics β = β1:K . The

generative process of CTR is as follows,

1. For each user i, draw user latent vector ui ∼ N (0, λ−1u IK).

2. For each item j,
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(a) Draw topic proportions θj ∼ Dirichlet(α).

(b) Draw item latent offset εj ∼ N (0, λ−1v IK) and set the item latent vector as

vj = εj + θj .

(c) For each word wjn,

i. Draw topic assignment zjn ∼ Mult(θ).

ii. Draw word wjn ∼ Mult(βzjn).

3. For each user-item pair (i, j), draw the rating

rij ∼ N (uTi vj, c
−1
ij ). (6.6)

The key property in CTR lies in how the item latent vector vj is generated. Note that

vj = εj + θj , where εj ∼ N (0, λ−1v Ik), is equivalent to vj ∼ N (θj, λ
−1
v IK), where we

assume the item latent vector vj is close to topic proportions θj , but could diverge from it if

it has to. Note that the expectation of rij is a linear function of θj ,

E[rij|ui, θj, εj] = uTi (θj + εj).

This is why we call the model collaborative topic regression.

Learning the parameters. Given topic parameter β, computing the full posterior of ui, vj

and θj is intractable. We develop an EM-style algorithm to learn the maximum a posteriori

(MAP) estimates.

Maximization of the posterior is equivalent to maximizing the complete log likelihood

of U , V , θ1:J , and R given λu, λv and β,

L = −λu
2

∑
i u

T
i ui − λv

2

∑
j(vj − θj)T (vj − θj) (6.7)

+
∑

j

∑
n log

(∑
k θjkβk,wjn

)
−∑i,j

cij
2

(rij − uTi vj)2.

We have omitted a constant and set α = 1. We optimize this function by coordinate ascent,
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iteratively optimizing the collaborative filtering variables {ui, vj} and topic proportions θj .

For ui and vj , maximization follows in a similar fashion as for basic matrix factoriza-

tion [58]. Given the current estimate of θj , taking the gradient of L with respect to ui and vj

and setting it to zero leads to (recall the matrix definition U = (ui)
I
i=1 and V = (vj)

J
j=1)

ui ← (V CiV
T + λuIK)−1V CiRi (6.8)

vj ← (UCjU
T + λvIK)−1(UCjRj + λvθj). (6.9)

where Ci is a diagonal matrix with cij, j = 1 · · · , J as its diagonal elements and Ri =

(rij)
J
j=1 for user i. For item j, Cj and Rj are similarly defined. Eq. 6.9 shows how topic

proportions θj affects item latent vector vj , where λv balances this effect. Finally, we note

that the complexity is linear in the number of articles in the users’ libraries. This follows

from the special structure of cij defined in Eq. 6.4. (See [58] for details.)

Given U and V , we now describe how to learn the topic proportions θj .3 We first define

q(zjn = k) = φjnk. Then we separate the items that contain θj and apply Jensen’s inequality,

L(θj) ≥ −λv
2

(vj − θj)T (vj − θj) +
∑

n

∑
k φjnk

(
log θjkβk,wjn

− log φjnk
)

= L(θj,φj). (6.10)

Let φj = (φjnk)
N×K
n=1,k=1. The optimal φjnk satisfies

φjnk ∝ θjkβk,wjn
. (6.11)

The L(θj,φj) gives the tight lower bound of L(θj). We cannot optimize θj analytically,

so we use projection gradient [14]. We use coordinate ascent to optimize the remaining

parameters, U , V , θ1:J and φ1:J .

3On our data, we found that simply fixing θj as the estimate from vanilla LDA gives comparable perfor-
mance and saves computation.
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After we estimate U , V and φ, we can optimize β,

βkw ∝
∑

j

∑
n φjnk1[wjn = w]. (6.12)

Note this is the same M-step update for topics as in LDA [26].

Prediction. After all the (locally) optimal parameters U∗, V ∗, θ∗1:J and β∗ are learned,

the CTR model can be used for both in-matrix and out-of-matrix prediction. Let D be the

observed data, in general each prediction is estimated as

E[rij|D] ≈ E[ui |D]T (E[θj |D] + E[εj |D]) . (6.13)

For in-matrix prediction, we use the point estimate of ui, θj and εj to approximate their

expectations,

r∗ij ≈ (u∗i )
T (θ∗j + ε∗j) = (u∗i )

Tv∗j , (6.14)

where recall that vj = θj + εj .

In out-of-matrix prediction the article is new, and no other ratings are available. Thus,

E[εj] = 0 and we predict with

r∗ij ≈ (u∗i )
T θ∗j . (6.15)

To obtain the topic proportions θ∗j for a new article, we optimize Eq. 6.10. The first term is

dropped because vj = θj .

Related work. Several other work uses content for recommendation [79, 76, 1, 2]. Among

these, the closest work to ours is fLDA by [2]. FLDA generalizes the supervised topic

model (sLDA) [25], using the empirical topic proportions z̄j = (1/N)
∑N

n=1 zjn as well as

several other covariates to form predictions. In our settings, where we do not have additional
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covariates, their approach is roughly akin to setting vj = θj . We show in Section 6.3 that a

similar setting does not perform as well as the CTR model because it largely ignores the

other users ratings.

Other recent work considers the related problem of using topic modeling to predict

legislative votes [110, 49]. Neither of these methods introduces offset terms to account for

votes (i.e., ratings). Legislative votes might be an interesting application for the CTR model.

Most recently, [41] presented an influence-based approach to find relevant articles given

a set of query articles. This is similar to the recommendation scenario we consider in this

chapter, although no specific users were used in [41].

6.3 Empirical study

We demonstrate our model by analyzing a real-world community of researchers and their

citation files.4

Dataset. Our data are users and their libraries of articles obtained from CiteULike.5 At

CiteUlike, registered users create personal reference libraries; each article usually has a title

and abstract. (The other information about the articles, such as the authors, publications and

keywords, is not used in this chapter.)

We merged duplicated articles, removed empty articles, and removed users with fewer

than 10 articles to obtain a data set of 5, 551 users and 16, 980 articles with 204, 986 observed

user-item pairs. (This matrix has a sparsity of 99.8%; it is highly sparse.) On average, each

user has 37 articles in the library, ranging from 10 to 403. 93% of the users have fewer than

100 articles.

For each article, we concatenate its title and abstract. We remove stop words and use

tf-idf to choose the top 8, 000 distinct words as the vocabulary [24]. This yielded a corpus of

1.6M words. These articles were added to CiteULike between 2004 and 2010. On average,

each article appears in 12 users’ libraries, ranging from 1 to 321. 97% of the articles appear

4A demo of the results can be found at http://www.cs.princeton.edu/˜chongw/citeulike/
5http://www.citeulike.org/faq/data.adp
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in fewer than 40 libraries.

Evaluation. In our experiments, we will analyze a set of articles and user libraries. We

will evaluate recommendation algorithms on sets of held-out articles and ratings. We will

(hypothetically) present each user with M articles sorted by their predicted rating and

evaluate based on which of these articles were actually in each user’s library.

Two possible metrics are precision and recall. However, as we discussed earlier, zero

ratings are uncertain. They may indicate that a user does not like an article or does not

know about it. This makes it difficult to accurately compute precision. Rather, since ratings

of rij = 1 are known to be true positives, we focus on recall. Recall only considers the

positively rated articles within the top M—a high recall with lower M will be a better

system. For each user, the definition of recall@M is

recall@M =
number of articles the user likes in top M

total number of article the user likes
.

The recall for the entire system can be summarized using the average recall from all users.

The recall above we defined is user-oriented. We also consider article-oriented recall for

testing the system’s predictive performance on a particular article. For article j, we consider

the population of users that like the article and the proportion of those for whom that article

appears in their top M recommended articles. This evaluates the predictive power of the

system on a chosen set of articles.

As we discussed in section 6.1, we consider two recommendation tasks users, in-matrix

prediction and out-of-matrix prediction.

In-matrix prediction. In-matrix prediction considers the case where each user has a set

of articles that she has not seen, but that at least one other user has seen. We ask the question,

how good is each system at rating that set of articles for each user?

As discussed in section 6.1.1, this task is similar to traditional collaborative filter-

ing. We split the data into a training set and test set, ensuring that all articles in the
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test set have appeared in the training set. Content information is not required to perform

recommendations—though we will see that it helps—and thus matrix factorization can be

used.

We use 5-fold cross-validation. For every article that appears at least 5 times in the users’

libraries, we evenly split their user-item pairs (both 1’s and 0’s) into 5 folds. We iteratively

consider each fold to be a test set and the others to be the training set. For those articles that

appear fewer than 5 times, we always put them into the training set. This guarantees that all

articles in the test set must appear in the training set. (9% of the articles are always in the

training set, since they appear fewer than 5 times.)

For each fold, we fit a model to the training set and test on the within-fold articles for

each user. (Note: each user has a different set of within-fold articles.) We form predictive

ratings for the test set, and generate a list of the top M recommended articles.

Out-of-matrix prediction. Out-of-matrix prediction considers the case where a new set

of articles is published and no one has seen them. Again we ask, how good is each system

at rating that set of articles for each user?

We again use 5-fold cross validation. First, we evenly group all articles into 5 folds.

For each fold, we fit the model to the submatrix formed by the out-of-fold articles and then

test the recommendations for each user on the within-fold articles. Note that in this case,

each user has the same set of within-fold articles and we are guaranteed that none of these

articles is in the training set for any user. Again, we form predictive ratings for the test set,

and generate a list of the top M recommended articles.

These two experimental set-ups—in-matrix and out-of-matrix predictions—are designed

to be comparable—the top M articles are computed from the same size of candidate

populations.

Experimental settings. For matrix factorization for collaborative filtering (CF), we used

grid search to find that K = 200, λu = λv = 0.01, a = 1, b = 0.01 gives good performance

on held out recommendations. We use CF to denote this method.
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For collaborative topic regression (CTR), we set the parameters similarly as for CF,

K = 200, λu = 0.01, a = 1 and b = 0.01. In addition, the precision parameter λv

balances how the article’s latent vector vj diverges from the topic proportions θj . We vary

λv ∈ {10, 100, 1000, 10000}, where a larger λv increases the penalty of vj diverging from

θj .

We also compare to the model that only uses LDA-like features, as we discussed in the

beginning of section 6.2. This is equivalent to fixing the per-item latent vector vj = θj in

the CTR model. This is a nearly content-only model—while the per-user vectors are fit to

the ratings data, the document vectors θj are only based on the words of the document.6 We

use LDA to denote this method. (Note that we use the resulting topics and proportions of

LDA to initialize the CTR model.)

The baseline is the random model, where a user see M random recommended articles.

We note that the expected recall for the random method from a pool of Mtot articles is

irrelevant to library size. It is always M/Mtot.

Comparisons. Figure 6.3 shows the overall performance for in-matrix and out-of-matrix

prediction, when we vary the number of returned articles M = 20, 40, · · · , 200. For CTR,

we pick λv = 100; Figure 6.4 shows the performs when we change λv for the CTR model

compared with CF and LDA when we fix M = 100.

Figure 6.3 and 6.4 shows that matrix factorization works well for in-matrix prediction,

but adding content with CTR improves performance. The improvement is greater when the

number of returned documents M is larger. The reason is as follows. Popular articles are

more likely to be recommended by both methods. However, when M becomes large, few

user ratings are available to ensure that CF gives good recommendations; the contribution of

the content becomes more important.

Compared to both CF and CTR, LDA suffers for in-matrix prediction. It does not
6We also implemented a pure text-based baseline method. We represent a user’ interest using all the

documents in the library using the tf-idf representation of the articles. For recommendations, we find the most
similar documents to those in users’ library. We found this baseline performed slightly better for out-of-matrix
prediction but still much worse for in-matrix prediction.
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Figure 6.3: Recall comparison on in-matrix and out-of-matrix prediction tasks by varying
the number of recommended articles. For CTR, we set λv = 100. Error bars are too small
to show. The maximum expected recall for random recommendation is about 6%. CF can
not do out-of-matrix prediction. CTR performs best.

account enough for the users’ information in forming its predicted ratings. The gap between

CF and LDA is interesting—other users provide a better assessment of preferences than

content alone.

Out-of-matrix prediction is a harder problem, as shown by the relatively lower recall.

In this task, CTR performs slightly better than LDA. Matrix factorization cannot perform

out-of-matrix prediction. (Note also that LDA performs almost the same on both in-matrix

and out-of-matrix predictions. This is expected because, in both settings, it makes its

recommendations almost entirely based on content.) Overall, CTR is the best model.

In Figure 6.4 we study the effect of the precision parameter λv. When λv is small in

CTR, the per-item latent vector vj can diverge significantly from the topic proportions θj .

Here, CTR behaves more like matrix factorization where no content is considered. When

λv increases, CTR is penalized for vj diverging from the topic proportions; this brings the

content into the recommendations. When λv is too large, vj is nearly the same as θj and,

consequently, CTR behaves more like LDA.

We next study the relationship, across models, between recommendation performance
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Figure 6.4: Recall comparison on in-matrix and out-of-matrix prediction tasks by fixing
the number of recommended articles at M = 100. Error bars are too small to show. This
shows how the precision parameter λv affects the performance of CTR. The expected recall
of random recommendation is about 3%. CF can not do out-of-matrix prediction.

and properties of the users and articles. For this study we set the number of recommended

articles M = 100 and the precision λv = 100. Figure 6.5 shows how the performance

varies as a function of the number of articles in a user’s library; Figure 6.6 shows how the

performance varies as a function of the number of users that like an article.

As we see from Figure 6.5, for both in-matrix and out-of-matrix prediction, users with

more articles tend to have less variance in their predictions. Users with few articles tend to

have a diversity in the predictions, whose recall values vary around the extreme values of 0

and 1. In addition, we see that recall for users with more articles have a decreasing trend.

This is reasonable because when a user has more articles then there will be more infrequent

ones. As we see next, these articles are harder to predict.

From Figure 6.6, on in-matrix prediction for CF, CTR and LDA articles with high

frequencies tend to have high recalls for in-matrix prediction and their predictions have less

variance. This is because these articles have more collaborative information than infrequent

ones, and, furthermore, CF and CTR make use of this information. For LDA, this trend

is much smaller. In out-of-matrix predictions, since predictions are made on new articles,
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Figure 6.5: These scatter plots show how the number of articles a user has affects his or her
recall. Red lines indicate the average. In these plots, the number of recommended articles is
100. CF can not do out-of-matrix prediction. This shows that CTR performs the best over
user-oriented recall.
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Figure 6.6: These scatter plots show how the number of users that like an article affects its
recall. Red lines indicate the average. In these plots, the number of recommended articles
is 100. CF can not do out-of-matrix prediction. This shows that CTR performs best over
article-oriented recall as well.

these frequencies do not have an effect on training the model.

We now turn to an exploratory analysis of our results on the CTR model. (In the

following, the precision λv = 100.)

Examining User Profiles. One advantage of the CTR model is that it can explain the user

latent space using the topics learned from the data. For one user, we can find the top matched

topics by ranking the entries of her latent vector ui. Table 6.1 shows two example users and

their top 3 matched topics along with their top 10 preferred articles as predicted by the CTR

model.

The learned topics serve as a summary of what users might be interested in. For user I,

we see that he or she might be a researcher working on machine learning and its applications
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user I in user’s lib?

top 3 topics
1. image, measure, measures, images, motion, matching, transformation
2. learning, machine, training, vector, learn, machines, kernel, learned
3. sets, objects, defined, categories, representations, universal, category

top 10 articles

1. Information theory inference learning algorithms X
2. Machine learning in automated text categorization X
3. Artificial intelligence a modern approach ×
4. Data mining: practical machine learning tools and techniques ×
5. Statistical learning theory ×
6. Modern information retrieval X
7. Pattern recognition and machine learning, information science and statistics X
8. Recognition by components: a theory of human image understanding ×
9. Data clustering a review X
10. Indexing by latent semantic analysis X

user II in user’s lib?

top 3 topics
1. users, user, interface, interfaces, needs, explicit, implicit, usability
2. based, world, real, characteristics, actual, exploring, exploration, quite
3. evaluation, collaborative, products, filtering, product, reviews, items

top 10 articles

1. Combining collaborative filtering with personal agents for better . . . ×
2. An adaptive system for the personalized access to news X
3. Implicit interest indicators ×
4. Footprints history-rich tools for information foraging X
5. Using social tagging to improve social navigation X
6. User models for adaptive hypermedia and adaptive educational systems X
7. Collaborative filtering recommender systems X
8. Knowledge tree: a distributed architecture for adaptive e-learning X
9. Evaluating collaborative filtering recommender systems X
10. Personalizing search via automated analysis of interests and activities X

Table 6.1: Two example users. We show their position in latent space via their highest
weighted topics. We list the top 10 preferred articles as predicted by CTR. The last column
shows whether each article is in the user’s library.

to texts and images. Although the predicted top 10 articles don’t contain a vision article,

we see such articles when more articles are retrieved. For user II, he or she might be a

researcher who is interested in user interfaces and collaborative filtering.

Examining the Latent Space of Articles. We can also examine the latent space of articles

beyond their topic proportions. Here we inspect the articles with the largest overall offsets

εj . Table 6.2 shows the top 10 articles with the largest offsets measured by the distance

between vj and θj , εTj εj = (vj − θj)T (vj − θj). The last two columns show the average of

predicted ratings over those users who actually have that article (avg–like) and those users

who do not have that article (avg–dislike).
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title # dataset # Google avg–like avg–dis.
1. The structure and function of complex networks 212 5,192 0.909 0.052
2. Emergence of scaling in random networks 193 8,521 0.899 0.058
3. R: a language and environment for statistical computing 113 837 0.827 0.047
4. A mathematical theory of communication 129 39,401 0.817 0.062
5. Maximum likelihood from incomplete data via the EM algorithm 157 22,874 0.864 0.055
6. A tutorial on hidden Markov models and selected applications . . . 135 11,929 0.822 0.048
7. The structure of collaborative tagging systems 321 648 0.903 0.055
8. Why most published research findings are false 161 713 0.846 0.049
9. Phase-of-firing coding of natural visual stimuli in . . . 8 64 1.057 -0.004
10. Defrosting the digital library bibliographic tools . . . 179 37 0.840 0.042

Table 6.2: The top 10 articles with the largest discrepancy between their item latent vector
vj and topic proportions θj , measured by (vj − θj)T (vj − θj). Column 2 and 3 show how
often they appear in the data, as well as the number of citations (retrieved from Google
Scholar on Feb 17, 2011). Most of these articles are popular. The last two columns give the
average values of “predicted” ratings over those users who have the article (avg–like) in the
library and those who do not (avg–dis.).

These articles are popular in this data. Among the top 50 articles by this measure, 94%

of them have at least 50 appearances. Articles with large offsets enjoy readership from

different areas, and their item latent vectors have to diverge from the topic proportions to

account for this. For example, Figure 6.7 illustrates the article that is the main citation

for the expectation-maximization algorithm, “Maximum likelihood from incomplete data

via the EM algorithm” [38]. Its top topic (found by k = arg maxk θjk), is shown as topic

1. It is about “parameter estimation,” which is the main focus of this article. We can also

examine the topics that are offset the most, k = arg maxk |εjk| = arg maxk |vjk − θjk|. The

maximum offset is for topic 10, a topic about “Bayesian statistics.” Topic 10 has a low value

in θj—the EM paper is not a Bayesian paper—but readers of Bayesian statistics typically

have this paper in their library.

Examining the offset can yield the opposite kind of article. For example, consider

the article “Phase-of-firing coding of natural visual stimuli in primary visual cortex” in

Figure 6.8. Its most probable topic is topic 1 (about “Computational Neuroscience”). Taking

into account the offset, the most probable topic does not change and nor are new topics

brought in. This indicates that the offset εj only adjusts vj so that the objective function is
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Figure 6.7: Maximum likelihood from incomplete data via the EM algorithm. Here, “theta”
denotes θj and “theta correction” denotes the offset εj . The 10 topics are obtained by joining
the top 5 topics ranked by θjk and another top 5 topics ranked by |εjk|, k = 1, · · · , K. Under
CTR, an article of wide interest is likely to exhibit more topics than its text exhibits. For
example, this article brings in several other topics, including one on “Bayesian statistics”
(topic 10). Note that the EM article is mainly about parameter estimation (topic 1), though
is frequently referenced by Bayesian statisticians (and scholars in other fields as well).

well minimized. This article is not as interesting to users outside of Neuroscience.

6.4 Conclusions and future work

We proposed an algorithm for recommending scientific articles to users based on both

content and other users’ ratings. Our study showed that this approach works well relative to

traditional matrix factorization methods and makes good predictions on completely unrated

articles.

Further, our algorithm provides interpretable user profiles. Such profiles could be

useful in real-world recommender systems. For example, if a particular user recognizes her

profile as representing different topics, she can choose to “hide” some topics when seeking

recommendations about a subject.
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Figure 6.8: Phase-of-firing coding of natural visual stimuli in primary visual cortex. This
figure was created in the same way as Figure 6.7. It shows that a less popular article might
also have a high offset value εj . In this case, it changes the actual magnitudes in θj , but does
not bring in other topics.
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Chapter 7

Conclusions

In this thesis, we have developed a suite of efficient inference algorithms and novel models

under the hierarchical Bayesian modeling framework. These algorithms and models were

applied to real-world data, including texts, images and user profiles.

The first algorithm we considered was an online variational inference algorithm for one

type of Bayesian nonparametric models, hierarchical Dirichlet process. We showed our

algorithm can handle millions of documents efficiently.

Second, we developed a novel algorithm to allow easier doing variational inference

for nonconjugate models. This proposed algorithm would likely be integrated to a general

toolbox for variational inference.

Finally, we described two novel models for real-world applications. The first was an

approach for joint modeling image classification and annotation using topic modeling. The

resulting model and software have become a standard baseline for many new research

papers. The second application we considered was scientific article recommendation. We

have developed a model that was able to present interpretable user and article profiles.

For future work, I would like to work on the following directions:

• Online inference for changing data distributions. We have considered the online

inference problem by assuming data comes from a stationary distribution. However,

many real-world data, such as online news articles and blog posts, is consistently
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changing. New events are happening all the time. Extending the current online

inference for Bayesian nonparametric models for data with changing distributions

is an important next step for real-world applications. For example, we can design

some hybrid algorithm of Gibbs sampling and variational inference; we can use Gibbs

sampling to better explore the uncertain of the model space to detect new events and

use the fastness of variational inference to refine the old events.

• Novel ways of fitting hierarchical models. Our motivation for this direction is as

follows. In Bayesian inference, the usual claim is the uncertain around the posterior

distribution is helpful for predictions. This is effective for not-so-large scale data.

However when we apply Bayesian inference to very large-scale data, the posterior

distribution obtained is usually very peaky, which effectively reduces Bayesian in-

ference to point estimation. There is no problem if the model we build is the true

generative model of the data, which unfortunately is usually not true. Our proposal is

to a per-data predictive distribution as the criterion, which allows the posterior-like

distribution not collapsed into a point estimation. Our preliminary results have shown

this method is very competitive compared with traditional Bayesian inference.

• Recommendation and exploration. In Chapter 6, we have shown it would be very

helpful to help users to engage into the exploration of results if the recommendation

algorithm can provide better representations of the recommended results. By continu-

ing this line of research, I would like to explore new recommendation algorithms that

can lead to better representations. Specifically I want to focus on the following two

directions, 1) a hierarchical representation of recommended items. I will work on an

algorithm that can provide a personalized coarse-to-fine hierarchy. This will greatly

help the users to navigate the recommendation results. 2) a sequential representation

of recommended items. I will work on an algorithm that is able to predict the best

sequence of recommendations. For example, what would be a good sequence of

articles to read to understand one subject? In addition, these approaches also aim
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to change the current evaluation of recommender systems mostly using quantitative

metrics like RMSE by introducing some novel qualitative metrics, which could be

equally important in designing recommender systems.
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Appendix: Derivations for Variational Inference

for Nonconjugate Models

A. Derivations for correlated topic models

Suppose there are K topic parameters β1:K (fixed for now), each of which is a distribution

over V terms. Let π be the topic proportions for a document and n be the index of an

observed word xn. The CTM assumes the following generative process of a document,

θ ∼ N (µ0,Σ0), π ∝ exp(θ)

zn | π ∼ Mult(π), xn | zn, β ∼ Mult(βzn).

In this model, the topic proportions π are drawn from a logistic normal distribution. Their

correlation structure is captured in Σ0. The variable zn indicates which topic the nth word

is drawn from. We can now identify the quantities from Eq. 4.5 to Eq. 4.7 that we need to

compute f(θ) in Eq. 4.12,

h(z) = 1, a(z) = 0, t(z) =
∑

n zn, η(θ) = θ − log {∑k exp{θk}} , a(η(θ)) = 0.

With this notation, function f(θ) defined in Eq. 4.12 is,

f(θ) = η(θ)>t̄z − 1
2
(θ − µ0)

>Σ−10 (θ − µ0),

where t̄z is the expected word counts of each topic under the variational distribution q(z).
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Using ∂πi/∂θj = πi(1[i=j] − πj), we obtain the gradient and Hessian for function f(θ)

in CTM,

Of(θ) = t̄z − π
∑K

k=1 [t̄z]k − Σ−10 (θ − µ0),

O2f(θ)ij = (−πi1[i=j] + πiπj)
∑K

k=1 [t̄z]k − (Σ−10 )ij.

where 1[i=j] = 1 if i = j and 0 otherwise. Note the first Of(θ) is enough for Laplace

variational inference.

In Delta method variational inference, we also need to compute the derivative of

Trace
{
O2f(θ)Σ

}
=
(
−∑K

k=1 πkΣkk + πTΣπ
)∑K

k=1 [t̄z]k − Trace(Σ−10 Σ).

We also assume Σ is diagonal for the delta method for simplicity [30]. (Note for Laplace

method, we don’t need this assumption.) This gives us

∂Trace {O2f(θ)Σ}
∂θi

= πi(1− 2πi)(
∑

k πkΣkk − 1)

The algorithm in Figure 4.1 for CTM only applies to a single document.

B. Derivations for Bayesian logistic regression

In Bayesian logistic regression, let tn is be a p-dimensional observed feature vector for the

nth sample and zn be its class (represented as an indicator vector of length two). Let θ be

the real-valued parameter vector in Rp; there is a component for each feature. The usual

Bayesian logistic regression model is the following:

p(θ) = N (µ0,Σ0),

p(zn | θ, tn) = σ(θ>tn)zn,1σ(−θ>tn)zn,2 , ∀n

where σ(y) , 1/ (1 + exp(−y)) is the logistic function.
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In Bayesian logistic regression, we can fit the distribution of the observations z1:N into

the exponential family with

h(z) = 1, a(z) = 0, t̄z = t(z) = [z1, . . . , zN ],

η(θ)> = [log σ(θ>tn), log σ(−θ>tn)]Nn=1, a(η(θ)) = 0,

In this set up, t̄z represents the whole set of labels. With this notation, the f(θ) defined in

Eq. 4.12

f(θ) = η(θ)>t̄z − 1
2
(θ − µ0)

>Σ−10 (θ − µ0).

The gradient and Hessian for function f(θ) in Bayesian logistic regression are

Of(θ) =
∑N

n=1 tn
(
zn,1 − σ(θT tn)

)
− Σ−10 (θ − µ0),

O2f(θ) = −∑N
n=1 σ(θT tn)σ(−θT tn)tnt

T
n − Σ−10 .

Note the first Of(θ) is enough for Laplace variational inference.

For delta variational inference, we also need the gradient for Trace {O2f(θ)Σ} is

∂Trace {O2f(θ)Σ}
∂θi

= −
N∑
n=1

σ(θT tn)σ(−θT tn)(1− 2σ(θT tn))tnt
T
nΣtn.

Note that the “diagonal” assumption for Σ is not needed.
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