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1 Abstract

With more than 140 million active users and 340 million tweets a day (as of March 2012), Twitter

presents a great source of recommendation knowledge for articles shared on the platform. In this

work, we analyze 836 Twitter users from the technology and entrepreneurship domain with 78,508 links

shared by them. We explore and evaluate different (existing and novel) techniques for a recommender

system for articles including the following ones: vector-to-vector similarity where the user vector is

constructed from the text of the tweets produced, topic-modeling based approach where we learn the

topic distribution for each article, as well as the novel hybrid technique which is based on piecewise

article vector representation, content-boosted collaborative filtering with pseudo user-ratings as well as

the relatedness function which depends on relevance, novelty, connection size and transition smoothness

between articles.

2 Introduction

According to the study conducted at UCSD [1], an average American consumes about 11 hours of

information per day and 13.99% of this is spent on web browsing and email. With an abundance of

information, computers should help us in minimizing the time to find the useful content. Search engines

are great when there is a clear user intent - you know exactly what you are looking for and formulate

that in a search query. However, often we don’t know specifically what we are looking for and just want

to read ’something interesting’. As a result, users rely on the social links from communities like reddit

and Hacker News, the feeds on Twitter and Facebook, RSS readers like Google Reader. However, with

noisy and intensive stream of new content on these sites, users face a ’needle in a haystack’ challenge

when they want to find the most interesting articles in least amount of time. This thesis addresses

this challenge by analyzing algorithms for recommending URLs based on URLs shared by users on

Twitter.

Filtering and discovery are essential for the content recommendation system. Users want to narrow

down the full list of items they are exposed to in order to get the most of the time invested in the

attention scarcity age. On the other hand, it is useful to see interesting content outside of your network

to expand your horizons and stay on top of the most relevant articles. To help users filter and discover

the web’s best content, our approach is to make the list of articles to read personalized. With about

140 million active users and more than 2 billion tweets posted every week, Twitter is a wonderful
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platform to choose as the source of links. Twitter users are not just passive consumers of content, they

also produce (tweet) and the user-generated content can be used in our personalization algorithms.

The content on Twitter is recent and that is essential to being considered interesting. Unlike other

research projects which use Twitter, we ignore the social interaction between users in order to limit our

analysis to a computationally feasible set. From personal experience as well as the previous research

[2] which showed that sharing URLs is one of the common uses of Twitter, we know that by choosing

this platform it is certain that we get a significant set of links ready for personalization. Another

important reason to choose Twitter is the fact that the company provides a set of public APIs letting

us download the users’ public timelines1.

3 Problem formulation

Formally, the article recommendation problem can be formulated as follows. Given a set of all users

U = {u1, u2, . . . , uN} and a set of all articles C = {c1, c2, . . . , cD} shared by those N users, recommend

to a user M articles that she might be interested in reading. Let f(u, c) be a utility function that

measures the desirability of item c to user u, f : U×C → R (where R is totally ordered set of user-item

scores). Then for each user u, the goal of our system is to choose M articles from C which maximize

the user utility. Let rijε{0, 1} denote whether user ui shared article cj on Twitter. The fact that it

was shared means that user ui is interested in article cj . It is worth noting the distinction with other

recommender systems like Netflix or Amazon where users explicitly rate items, in the Twitter case

rij = 0 can be interpreted in two ways: either user ui is not aware of the existence of article cj or she

is not interested in it.

The goal of our recommender system is to recommend articles which are not in a user’s library

(i.e. have not been shared by her). There are two types of articles to recommend: out-of-matrix and

in-matrix. In out-of-matrix prediction also known as "cold start recommendation" we are dealing with

articles which have never been rated (i.e. shared by none of the users). Since these articles are not

associated with any ratings, collaborative filtering techniques, which use other users’ ratings, can not

make predictions on these items. Despite the importance of out-of-matrix prediction in recommending

newly published articles, the focus of this work is to investigate the articles of the second type. In

in-matrix prediction, as the name suggests, the recommendation system operates on the articles rated
1The main challenge of using Twitter API as of May 2012 is the strict rate limits: 350 requests per hour, and up to

3,200 of a user timeline’s most recent statuses an hour.
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(i.e. shared) by at least one user in the system. We will only consider the in-matrix prediction.

4 Related Work

There is a great amount of research in news recommender systems as it constitutes a problem-rich

research area with numerous applications which help users to efficiently sift through noise aiming

to find interesting content. Recommendation engines are usually classified into the following three

categories:

• collaborative filtering: the user is recommended items (links to articles in our case) that users

with similar tastes and preferences liked in the past;

• content-based filtering: the user is recommended items similar to the ones she liked in the past

(based on the content of the articles in our case);

• hybrid systems: the user is recommended items based on methods which combine collaborative

filtering and content-based filtering.

4.1 Collaborative filtering

Collaborative filtering works by collecting ratings for items within the dataset and matching users

based on the similarity of information needs or preferences.

Broadly, collaborative filtering can be categorized into two categories: memory-based, and model-

based. In memory-based approach, the predicted rating is calculated as the weighted average of ratings

from other users. The weight is proportional to the similarity between users (Pearson correlation

coefficient and cosine similarity are among the most common ways to define this user-to-user similarity).

The user-to-user similarities are computed offline and assuming the ratings are binary the predicted

rating for article c by user ui is given by:

rui,c =
∑

j 6=i I(uj , c) ∗ sim(ui, uj)

where I(uj , c) is the indicator variable which is 1 if user uj shared an article c on Twitter and 0

otherwise, sim(ui, uj) is similarity between users ui and uj . We also can introduce a set of binary

variables pij to indicate a preference of user ui to an article cj :

pij =


1, if rui,cj > threshold

0, otherwise
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Neighborhood model approach to collaborative filtering is memory-based and usually comes in two

variations: user-oriented, and item-oriented. In user-oriented method unknown ratings are predicted

based on the actual ratings from similar users. In item-oriented approach a rating is calculated on the

basis of ratings given by the current user to similar items. Since the number of items in recommendation

systems (books on Amazon, movies on Netflix) is usually less than the number of users, the item-

oriented approach offers more scalability and more accuracy. Taking the item-oriented approach the

equation above becomes

rui,c =
∑

j∈Sci
sim(c,cj)I(ui,cj)∑

j∈Sci
sim(c,cj)

where Sci is the set of k items shared by user ui that are most similar to article c. The formula

above when dealing with explicit feedback (liking, upvoting, star ratings) is usually modified to correct

for biases caused by different mean ratings from different users. These enhancements are not applicable

in implicit feedback model with binary ratings.

In model-based approach to collaborative filtering, the unknown ratings are predicted by models

learnt from user’s past ratings. The modern model-based methods categorize a user into multiple classes

as users might have interests in multiple topics. Such models include latent semantic indexing (LSI) and

its probabilistic modification (PLSI), Bayesian clustering, Latent Dirichlet Allocation, Markov decision

process and multiplicative factor models. Latent factor models provide more accurate recommendation

results than neighborhood methods, and Netflix challenge showcased that very clearly [27]. Let’s

describe the model induced by matrix factorization. In matrix factorization every ith user is associated

with a latent user-factors vector ui ∈ RK and each jth article is associated with an item-factors vector

cj ∈ RK where K is the dimension of the latent low-dimensional space both users and items are

represented in. The prediction is made by taking an inner product of user and item vectors: rij = uTi cj .

How should we estimate the parameters? We model the observed ratings directly and avoid overfitting

by minimizing the regularized square error loss with respect to matrices U = (ui)
N
i=1 and C = (cj)

D
j=1:

minU,C

∑
i,j(rij − uTi cj)2 + λu‖ui‖2 + λc‖cj‖2

where λuand λc are used to regularize the model and are usually learnt through stochastic gradient

descent.

Collaborative filtering has several advantages over content-based approaches. First, it can support

for recommendation of items that are not easily analyzable by computers (movies, images, people)

since the relevance is solely determined by the users of the system. Second, collaborative filtering

is capable of analyzing items beyond the dimensions discovered by pure content-based methods: the
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interestingness of an article can be based on its quality or user’s taste. Third, collaborative filtering

methods are able to make serendipitous recommendations - items whose content do not match with

the information the system has gathered about users, but which in fact is of great interest to them.

Hu et al. studied latent-factor based collaborative filtering on datasets with implicit feedback and

found that implicit user-item observations should be decoupled into two parts: an estimate whether

the user would like/dislike the item (preference) and a confidence level. Das et al. propose a content-

agnostic approach to personalize news articles on Google News based on click history which linearly

combines recommendations from the following three approaches: collaborative filtering using MinHash

clustering, Probabilistic Latent Semantic Indexing (PLSI) and covisitation counts [4].

4.2 Content-based filtering

The content-based filtering is strongly connected to and has its roots in information retrieval research.

Both users and articles are represented as sets of attributes characterizing them. The candidate articles

are compared with the articles shared by the user and the most relevant are recommended. Kompan

and Bielikova propose a short vector representation of an article for similarity search and content-based

recommendation which consists of the following parts: title, term-frequency of title words in the article

content, names and places, keywords, category and CLI index, which measures the understandability of

the text [6]. Chen et al. show their study of link recommendation on Twitter with 12 recommendation

algorithms in the design space with the following dimensions: candidates for content sources, topic

interest models for users, and ranking using social voting [5]. In [16] in order to recommend unrated

items to users with unique interests, authors describe a content-based book recommendation engine

which utilizes information extraction and a simple Bayesian learning algorithm for text categorization.

4.3 Hybrid systems

The third (and the most successful) type of link recommendation engines are hybrid systems which

combine the collaborative filtering and content-based components in order to avoid the limitations

associated with each of them. One way to combine these methods is to implement each of them

separately and then combine the predictions. Another approach is to incorporate the characteristics

of the content-based filtering into collaborative filtering and vice versa. Finally, some recommendation

systems [3] present the unified model of two techniques. Wang and Blei combine collaborative filtering

based on latent factor models and content analysis based on probabilistic topic modeling to recommend
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scientific papers from CiteULike [3]. Using click data on Google News, Liu et al. [9] developed a

Bayesian framework for predicting users’ current news interests from their past activities and news

trends overall. They combine the content-based recommendation score based on the predicted user’s

interest and topic category with the collaborative filtering score from [4] to rank the candidate articles.

Melville et al. propose an elegant framework which combines neighborhood-based collaborative filtering

with content-based method (bag-of-words Naive Bayes text classifier) for movie recommendation [23].

4.4 Miscellaneous

Lv et al. study the problem of post-click news recommendation on Yahoo! News and propose to identify

related news articles based on four aspects: relevance, novelty, connection clarity, and transition

smoothness (the latter two concepts are described in detail in the Algorithms section) [7]. Li et al.

model personalized news article recommendation as a contextual-bandit problem where an algorithm

sequentially selects articles based on contextual information about users and articles while adapting

its selection strategy to maximize the total number of clicks [20]. Wei et al. propose different scalable

stochastic algorithms to optimize social network topology in order to build a recommendation model

that deals with no explicit news ratings by users [8]. Mannern et al. [14] build a global user profile

across many existing services, and enrich news meta-data via smart indexing and linking available

datasets in order to provide an open news recommendation platform. Abel et al. introduce a user

modeling framework based on hashtags, entities (events, persons, products, etc.), or topics and compare

these user models in the context of a news recommendation system [15]. Hannon et al. [17] propose a

recommender of Twitter users to follow by modeling the users by tweets and relationships of their social

graphs. Phelan et al. explored four different strategies for filtering news articles from personal and

community RSS indexes by using the personal Twitter feed as well as the tweets from a user’s Twitter

social graph [24]. Guy et al. study the personalization on the enterprise activity stream of Lotus

Connections (social media application suite for organizations), which consists of status updates and

other social media activity, by building the user profile on three dimensions (people, terms, and places)

and analyzing their effect on accuracy and throughput [10]. In LOGO authors study the evolution of

user interests and propose a news recommender which integrates the long-term and short-term reading

preferences.
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Figure 1: The Twitter profile information for Ed Felten

5 Data

We created a list of 2,385 hand-picked Twitter users in technology and entrepreneurship domains.

This was done by scraping 21 lists curated by various influential bloggers as well as the people in

the space I follow personally. The lists include web innovators, influential hackers, top technology

bloggers, entrepreneurs, companies and software engineers. To make the data collection feasible2,

only 836 of these 2,385 were considered for analysis. For each of these users, I collected the profile

information which included the username, number of tweets, number of followees/followers, language,

etc. In figure 1, you can see the profile associated with Ed Felten, Professor of Computer Science and

Public Affairs at the Princeton University.

For each user, we collected the tweets from his or her timeline in batches of 50 tweets per API

request. To limit the number of tweets from one microblogger, we put a cap of 10,000 tweets per

user. In the database we stored only three pieces of information per each status update: the text of

the tweet, Twitter handle and the date. All other data such as the number of retweets, and the score

according to Topsy (for which we used the API of the real-time search engine for the social web, Topsy)

relevant to each tweet was ignored. This data might be used in the future to incorporate the social

signals in the recommendation algorithms. Then we found all the tweets which contain URLs ignoring

the tweets which start with ’@’ (mentions) as they usually contain the links relevant only to the user

to whom they’re directed. We saved in the database the following triple: (Twitter handle, URL, date

of posting). This resulted in 514,739 unique URLs from 836 users. To construct the pool of URLs
2To fight the strict Twitter rate limits for REST API, I wrote different daemons in Python which were periodically

making API calls and collecting data using 6 Twitter developer accounts across 6 machines: all four cycles servers
from the Princeton Computer Science Department (soak.cs.princeton.edu, wash.cs.princeton.edu, rinse.cs.princeton.edu,
spin.cs.princeton.edu), my 2Gb RAM node on Linode as well as my laptop.
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Figure 2: The format of the links corpus used for analysis

Figure 3: Example tweet which contains a link to an article

we used for analysis, we sorted all the URLs by the date of creation (the most recent first) and only

take the maximum of 100 URLs per user. The reason we only looked at the most recent URLs was to

increase the overlap of articles shared by users (most people usually post links to new articles) and,

hence, reduce the sparsity of our users-articles matrix. The resulting pool which was ultimately used

for content-based recommendations contains 78,508 links. To provide context, in figure 2 we displayed

the format of the links corpus.

The next step was to extract the title and the clean text of an article (with ad blocks, comments,

html tags removed) for every URL. This is a challenging part in itself as we haven’t limited ourselves

to articles from a small number of well-formatted sites like The New York Times or the Atlantic. It

requires to learn the structure and layout of every page to find the location of the headline, name of

an author, keywords/tags and the actual content of an article. To classify the components of every

webpage and get the relevant semantic metadata I used tools like Diffbot 3 and Readability 4.

An example of tweet and the JSON object associated with a link shared within that tweet are

displayed in figure 3 and figure 4 respectively.
3http://www.diffbot.com
4http://pypi.python.org/pypi/readability-api/
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Figure 4: The JSON object associated with a single article

Number of users 836
Number of users with no fewer than 10 links 821

Number of user-url pairs 519,754
Number of unique URLs 514,739

Sparsity of the user-item matrix 99.879%
Minimum number of links shared by the user 14
Maximum number of links shared by the user 3,139

Average number of links in user’s library 633

Table 1: Dataset stats

5.1 Statistics for the dataset

Let’s present some statistics on the analyzed dataset in the table 1.

6 Algorithms

6.1 TF-IDF

In this approach we take all the tweets from the timeline of user u, remove all the stop words, apply

stemming5 and then create the following profile vector Profile(u) = (vu1, . . . , vum) where m is the

total number of unique words in u’s tweets. The value of vui is calculated using the classic TF or

TF-IDF (term frequency / inverse document frequency) measures. In the first approach (referred to
5I used Porter stemmer from the Natural Language Toolkit: http://www.nltk.org/
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as the TF approach throughout the paper), TF weight for vui term in u’s tweets is defined as

vui = TFu(wi) = 1 + log10(freqwi
)

where freqwi - number of occurrences of word wi in u’s tweets. In the second approach (referred

to as TF-IDF approach), TF-IDF weight vui for term wi in u’s tweets is then defined as vui =

TFu(wi) ∗ IDFu(wi). Here,

TFu(wi) = freqwi/max(freqwz )

where maximum is computed over all frequencies of keywords wz which appeared in user u’s tweets.

IDFu(wi) = log((N +D)/ni)

where N , D are the total number of users and articles in the dataset respectively, ni is number of

users who used the term wi at least once. The intuition behind these measures is trivial. High values

of TF indicate that the user frequently uses these keywords, thus indicating higher interest. Higher

values of IDF mean that few other users use this term in their tweets which signify the uniqueness

of the user and can better distinguish between different users. Similarly, we define TF and TF-IDF

vectors for articles. Then the utility f(u, c) can be computed using the cosine similarity measure:

f(u, c) = cos(Profile(u), Content(c)) = vu·vc
|vu||vc| =

∑K
i=1 vuivci√∑K

i=1 v2
ui

√∑K
i=1 v2

ci

where K is the total number of words in the dictionary.

6.2 Topic Modeling

In this approach we use the topic modeling algorithm known as latent Dirichlet allocation (LDA) [28]

to discover a set of topics from a collection of all articles. In LDA every document (in our case - news

article or the document which consists of all the tweets from a single user) is represented as a mixture

of topics where a topic is a distribution over terms which is biased around those associated with a

single theme. LDA assumes that a document is produced in the following fashion:

1. Decide on the number of words the document cj will have.

2. Choose a topic mixture for the document (according to a Dirichlet distribution over a fixed set

of K topics): θj ∼ Dirichlet(α). For example, θj = (0.25, 0.4, 0.35) would mean that document

cj is 0.25 about topic 1, 0.4 about topic 2, and 0.35 about topic 3.

3. Generate each word n by:

(a) Picking a topic (according to the multinomial distribution sampled above): zjn ∼Mult(θj)
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(b) Generating the actual word (according to the topic’s multinomial distribution): wjn ∼

Mult(βzjn)

Given this generative model, LDA attempts to backtrack from the documents to find a set of topics

that are most likely have generated the collection. Compared to a clustering model which assigns every

document to a single cluster (topic), LDA lets articles exhibit multiple topics.

In the first technique based on LDA (let’s refer to this method as LDA1), our document collection

consists of N + D documents where N,D are the total number of users and articles respectively.

The document representing every user is the union of all tweets from her timeline. We run LDA to

discover topic distributions for every document. Given K topics, every document j is represented by

a K-vector (θj1, θj2, . . . , θjK) where θji is the topic proportion of topic i in the document j. Then

the utility f(u, c) where u and c are both K-vectors outlined above representing a user and an article

respectively can be again calculated as a cosine similarity of topic vectors.

In the second technique based on LDA (we’ll refer to this algorithm as LDA2), our document

collection consists of only D articles. In other words, we are ignoring the text of the tweets posted.

Then the same way as in the first technique we run the LDA and, based on the per-document topic

distributions, every document j is represented by a K-vector θj = (θj1, θj2, . . . , θjK). How do we

represent the user as a vector? We look at all the articles user u shared on Twitter and sum the

vectors associated with those articles component-wise. More formally, Profile(u) =
∑

z θz where z

runs over all articles z from user u’s library. The scoring f(u, c) is again based on cosine similarity.

6.3 Hybrid

Let’s present a novel hybrid recommendation technique. The evaluation of this technique requires

editorial judgement and we will leave it for future work. We will combine the scores from each of

the algorithms described below as
∑

A wAr
A
c where wA is the weight given to algorithm A, rAc - score

given by algorithm A to article c [4]. For algorithms (1, 3) where we define the item-to-item similarity

measure, rAc is defined as the average of all values sim(c, t) where t runs through all articles shared

by the active user. Top M articles are chosen as recommendations. Weights wA’s should be learned

by picking the best parameter combination from a pre-selected discrete parameter space (different

combinations of weights). Once this is done, for more accurate results we should consider using SVM

with linear kernel to learn weights wA’s. Let’s describe every individual algorithm comprising this

hybrid technique.
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6.3.1 Piecewise Article Vector Representation

In this approach we will construct the recommendations in the following manner extending the idea

presented by Kompan and Bielikova [6]. For every article shared by the user we find the top 10 most

similar articles (according to the similarity measure defined below), merge the results, remove the

duplicates and present to the user M articles with the highest score overall. Here we decided to go

beyond simplistic representation of an article as a TF/TF-IDF of all the words it contains. The article

vector will consist of the following parts (we refer to each part as the partial vector):

1. Title. This part contains all the words within the title (stemmed, with stopwords ignored). The

number associated with every word is its frequency proportion within the title. For example,

if the title is "The Long Grind Before You Become an Overnight Success", the corresponding

partial vector is (”long” : 0.2, ”grind” : 0.2, ”become” : 0.2, ”overnight” : 0.2, ”success” : 0.2).

2. Term frequencies of title words in the article. This part contains of lemmatized title words

(same as in part 1 - Title), but numbers associated with them are defined differently. Here, it

is the frequency across the entire article: TF (wordi) = count(wordi)/
∑

k count(wordk) where

count(wordi) is the number of occurrences of ith word in the document and k runs over all words

of an article.

3. Term frequencies of top 20 most frequent words in the article.

4. Topic proportions of the K topics found by topic modeling algorithm on the entire

article corpus.

5. Coleman-Liau Index. This readability test index measures the understandability of a text. Its

result approximates the US grade level (US grade level 1 corresponds to ages 6 to 8) necessary to

comprehend the text. This part is obviously not crucial for the item-to-item similarity, however,

it is needed to rank the results based on the hypothesis that a Twitter user wants to read articles

of a similar difficulty level.

The article-to-article similarity is defined as an extension of a standard cosine similarity (let two articles

be represented by vectors s and t):

similarityScore(s, t) =
∑5

i=1

∑n
j=1 sijtij√∑5

i=1

∑n
j=1 si2j

√∑5
i=1

∑n
j=1 ti2j

where n is the cardinality of each of the 5 parts of the entire article vector. To make sure that cardi-

nalities of vectors whose inner product is taken match, we assume sparse representation of each of the
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partial vectors. As expected, when taking the inner product of two vectors, we multiply the values asso-

ciated with the same keys component-wise: (“peter” : 0.2, “thiel” : 0.2, “palantir” : 0.2, “ycombinator” :

0.4)T (“paul” : 0.2, “graham” : 0.2, “ycombinator” : 0.25, “essays” : 0.35) = 0.4 · 0.25 = 0.1.

6.3.2 Content-Boosted Collaborative Filtering

Since the user-article matrix is highly sparse (with sparsity of 99.879%), we will replace 0’s in the

matrix (corresponding to articles not shared by users) with pseudo-ratings obtained from content-

based predictor. For content-based predictions we will use a bag-of-words Naive Bayes text classifier.

Every article is turned into features: title, text of an article, author of an article, domain of the URL

to indicate the publication name, the presence of media (video). To build the model that classifies

articles, Twitter users used in the dataset should judge some articles as either interesting and worth

clicking or not. The articles, users shared on Twitter, are labeled as interesting by default. Then we

will user 5-fold cross validation to find the best split of all the labeled articles into a training set and

a test set (80/20 split). From the set of judged links to articles, the classifier learns a user profile and

predicts ratings for unlabeled links. The pseudo rating rik of article ck by user ui is defined as 1 if

the rating is available (ui shared the link to ck in her Twitter feed) and as item rating from the Naive

Bayes classifier othwerise:

rik =


1, if user ui has article ck in his library

nbcik, otherwise
where nbcik is the the rating predicted by Naive Bayes classifier.

Now when pseudo-ratings are created, let’s describe the collaborative filtering component of the

algorithm which is based on neighborhood model. First, we weight all users in the dataset on the basis

of their similarity with the active user. If we use the Pearson correlation coefficient for this measure,

then the similarity between user ui and uj will be defined by the following formula:

Pij =
∑D

k=1(rik−ri)(rjk−rj)√∑D
k=1(rik−ri)2

∑D
k=1(rjk−rj)2

where D is the total number of articles, rik is the pseudo-rating of article ck from user ui, ri is the

mean rating by the user ui. Finally, we compute the content-boosted collaborative filtering prediction

predik for the user ui and article ck as the weighted combination of n users most similar to user ui

according to Pearson correlation coefficient:

predik = ri +
∑n

j=1(rjk−rj)Pij∑n
j=1 Pij

If a user rates very few items in the training stage of the Naive Bayes classifier, the accuracy of
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pure content-based ratings and, hence, pseudo-ratings will not be as good. The inaccuracies in pseudo-

ratings lead to misleadingly high correlations between users. Therefore, as the potential improvement,

we can incorporate confidence in correlations by multiplying the Pearson correlation coefficient in the

formula for predik by Harmonic Mean weighting factor [23].

6.3.3 Technique based on relatedness of articles

Borrowing an idea from Lv et al. [7], let’s show how we can define the relatedness between a pair of

articles. The relatedness is based on the four aspects: relevance and novelty, connection clarity and

transition smoothness. Given the relevance and novelty, connection size and transition smoothness

scores as well as the editorial judgement, we can learn the relatedness function f(s, t) from the general

boosting method GBRank [31]. Let’s describe each aspect of the relatedness in detail.

Relevance and novelty On the one hand, if two articles are too dissimilar, they are not really

related. On the other hand, if two articles are too similar, it is likely that a user has no interest

in the other as it does not contain any new information when compared to a story she has already

read. There are standard information retrieval functions which capture both relevance and novelty in

one score. Apart from well-known cosine similarity, they are Okapi BM25 [29], language models with

Dirichlet prior smoothing [30], and language models with Jelinek-Mercer smoothing [30].

Connection size All the functions which measure relevance and novelty are essentially estimating

the size of the pure word overlap between two documents. This, of course, overlooks the fact that

there might be otherwise unrelated articles that share the same words. Connection size is an attempt

to deal with this by modeling the cohesiveness of topics in two articles (topic overlap as opposed to

simple word overlap). By taking probabilistic topic modeling approach (e.g. LDA), let’s first identify

topics associated with each document in the pair. Then the connection size between article s and t

can be calculated as the negative Kullback-Leibler divergence (also known as information gain):

connection(s, t) = −
∑K

i=1 P (i|s)log
P (i|s)
P (i|t)

where K is the total number of topics, P (i|s) is the probability associated with topic i in the article

s. The more topics two articles share, the higher the score. This measure can be further improved

to decrease the effects of topics associated with many articles and to deal with the case when two

articles share many loosely correlated topics, but do not share the same discriminative topic with high

probability [7].
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Figure 5: Venn diagram of content intersection of two articles

Transition smoothness Transition smoothness measures the continuity between articles s and t.

Two articles can be called transition-smooth if the article formed by combining them is coherent. As

shown in Venn diagram in figure 5, s ∩ t is shared among articles s and t and should be ignored when

considering transition smoothness. Rather, we want to know the transition between s − t and t − s.

How can we represent s − t and t − s? Let’s represent each by the document-based context vector

~context(s− t) whose cardinality is D - the number of articles in the entire pool. The weight of the

ith component ~context(s− t)i corresponding to article ci is the relevance score f(s − t, ci) defined

according to Okapi BM25 ranking function [29]. The more relevant the article ci to s − t, the more

significant role it will play in the vector ~context(s− t). To put everything together, the transition

smoothness score between articles s and t is computed as the cosine similarity of vectors ~context(s− t)

and ~context(t− s):

transition(s, t) =
~context(s−t) ~context(t−s)

‖ ~context(s−t)‖‖ ~context(t−s)‖

Alternatively, transition smoothness can be defined by modeling the word-based context [7].

7 Evaluation

We evaluate different algorithms on the set of all articles from the dataset (constructed as the union

of the users’ libraries) and individual user libraries. The goal of our recommender system is to find

M specific articles which are supposed to be the most interesting to the user. This task is known in

the literature as the top-M recommendation task [50]. Common error metrics such as RMSE (root

mean squared error) or MAE (mean absolute error) which measure the average error between actual

and predicted ratings are not applicable for evaluation as they are not designed to measure the top-M

performance. Plus, the ratings we are dealing with have only two values (0 or 1) and the zero ratings
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Recommended Not recommended
Shared tp (true positive) fn (false negative)

Not shared fp (false positive) tn (true negative)

Table 2: Classification of four scenarios when an item is recommended to the user

are uncertain (the user is either not interested in the article or is unaware of it).

7.1 Recall

Let’s focus on the accuracy metrics such as precision and recall. There are four possibilities (table 2)

when a user is presented with an article the system considers appealing to her.

Then precision is defined to be tp
tp+fp - the fraction of recommended articles which were shared. The

recall = tp
tp+fn - the fraction of shared articles which were recommended. However, in the calculation of

precision we assume that articles not shared by the user are uninteresting. This is erroneous assumption

as users might be interested in it, but just don’t know about its existence. Thus, the number of false

positives is overestimated. Therefore, we decided to focus on recall (where one-ratings are known to be

true positives). Note the trivial assumption we are making here is that if a user shares an article, it is

interesting for her. It is possible that the text of the tweet (ignored by our system) which accompanies a

link contains a negative comment, but knowing that the opposite of love is not hatred, but indifference,

we are safe to assume that articles a user didn’t like, but cared enough to share are interesting to her.

We measured recall@M = sharedInTop
totalShared where sharedInTop is the number of links shared by the user

which appear in top M, totalShared is the total number of links shared by the user. The recall@M

of the whole system is defined as the average of recalls of individual users. In figure 6 we present the

performance of different algorithms for varying values of M (the number of recommended articles in

the list): 25, 50, 75, ..., 275 on the subset of system with 20 users and 1,692 articles total. TF approach

performs the poorest, and LDA2 performs slightly better than LDA. The baseline is the random model

in which a user sees a random recommended set of M articles. The expected recall for the baseline

method for a pool of D articles is just M/D. We could not find recall measures on the pool of URLs

in other research papers for comparison. The values of recall for the model that only uses LDA-like

features on the pool of scientific articles [3] are higher, but their LDA model for in-matrix prediction

is also different than ours (different number of topics, different vocabulary, different maximum number

of iterations to train the model, etc.).
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Figure 6: Comparison of recall@M values for various algorithms for different values of M

7.2 Percentile rank

Let’s now measure the expected percentile rank. The percentile rank of an article is the percentage of

articles that are the same or lower than it in its frequency distribution. Let peRankij be the percentile

rank of the article cj in the personalized list of M articles presented to user ui. To give some intuition,

peRankij = 0% would mean that the story cj is the most interesting article for user ui and it is above

all other articles in the top chart. Respectively, peRankij = 100% would mean that the article cj is

the least interesting one from user ui’s perspective and is placed at the end of the recommendation

list. Then the expected percentile rank for all the articles shared by Twitter users analyzed is given

by the following formula:

peRank =
∑

i,j rijpeRankij∑
i,j rij

The lower the peRank, the better the recommender system, as low values of this quality measure

would mean that the articles actually shared by users on Twitter were ranked high in the personalized

recommendation lists. For the baseline algorithm which just makes random rating predictions and on

average puts the article cj half-way the recommendation list, expected value of the rating E[rij ] = 50%.

Hence, any algorithm with peRank > 50% performs worse than random guessing. In figure 7 we can

see the measured values of peRank for algorithms TF, LDA, LDA2 (as defined in 6.1 and 6.2) for

varying values of M (the number of recommended articles in the list): 25, 50, 75, ..., 275 on the subset

of system with 20 users and 1,692 articles total. We can see that all 3 algorithms compared achieve far
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Figure 7: Comparison of expected percentile rank values for various algorithms on different values of
M

better results than the random predictor. LDA and LDA2 (peRank = 16.7% and 16.0% for M = 275

respectively) personalize the lists, but TF approach (peRank = 9.4% forM = 275) obtains even better

personalization.

8 Future work

There are many possibilities for the work to be conducted in the future. First, we plan to launch a

full-fledged website where users sign in with their Twitter usernames and the system presents them a

personalized rank list of links from their friends and from the pool of popular links in the system to

allow serendipitous discovery. This website will be used to get user judgements via up-voting/down-

voting functionality to improve the algorithms and evaluate the system based on explicit feedback.

Second, we plan to incorporate social signals in the recommendation engine: the number of retweets,

the proximity to the author of the link in the Twitter social graph, average time between consecutive

tweets to give a smaller weight to links posted by users who share too much. Third, in this work

we only analyzed the in-matrix prediction task leaving out-of-matrix prediction unexplored. Out-of-

matrix prediction, however, deals with the very common scenario when a new article is published and

no one in the system has seen (has rated) it. Evaluating different algorithms on the out-of-matrix

prediction setup will show how different methods solve the first rater problem on the set of news
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articles. Fourth, we plan to thoroughly evaluate the performance of the proposed boosting-inspired

hybrid method and, if necessary, replace the worst performing algorithm components with the better

ones. Fifth, it will be interesting to see how well the collaborative topic regression (the method which

combines matrix factorization based collaborative filtering with probabilistic topic modeling) by Wang

and Blei [3] does on the pool of highly sparse user-article data from Twitter. Sixth, to deal with

sparsity of the user-article matrix, we plan to explore the possibility of treating the near-duplicate

articles as a single document. It is worth noting that we do not mean the near-duplicate in the simple

word overlap sense. Rather, we mean the articles which share a large portion of the same topics, but

might be using a quite different vocabulary. Seventh, to improve the trust in the article recommender

system, we plan to explain recommendations by accompanying every article recommended with a short

description why it is in the recommendation list. Latent factor models which can identify the features

with the highest contribution to the recommendation can be helpful to accomplish this. Eighth, we

ignore the time of the submission when ranking the links. However, to surface hot and new articles

we should let old ones expire by decreasing the relevance score as time goes by, regardless of their

relevance based on content-based and collaborative filtering methods. Ninth, we ignored the text of

the tweets which accompanied the links in the recommendation process due to inherent noisiness of

the data (abbreviations, misspellings, etc.). As the future direction we are planning to explore the

possibility of incorporating this piece of information via sentiment analysis and applying topic modeling

on Twitter-style short text documents [32, 33, 34, 35]. Also, richer user models can help in improving

recommendations. One idea we have is to do topic modeling on the titles of ’Twitter lists’ (ad-hoc lists

curated by users, e.g. ’technology pundits’, ’web innovators’, ’hackers’) a user belongs to in order to

find her affiliation, interest and thematical category. Finally, we should not eliminate the opportunity

to use links shared outside of Twitter: on Facebook, LinkedIn, Google Plus, Hacker News, reddit, etc..

9 Conclusions

In this work, we explored how link sharing activity on Twitter can be leveraged in order to make

personalized content-aware URL recommendations. The main contribution of this work is three-fold.

First, we demonstrated the potential of the real-time web, and micro-blogging services like Twitter

more specifically, to serve as a useful source of links to articles for recommendation. Second, using recall

and expected percentile rank measures we evaluated several algorithms on in-matrix prediction task on

the unique dataset of 78,508 links shared on Twitter by 836 users. Unlike most other Twitter-related
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reseach papers, we take a content-aware approach by considering in the analysis the title and actual

text of articles. Finally, we showed how existing ideas in recommendation algorithms can be extended

and propose a novel hybrid method for personalized article recommendation using the intelligence of

the social web.
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