
Greedy algorithms for online allocation

problems with stochastic input

Aman Dhesi

Master’s Thesis

In Partial Fullfillment of the Requirements

for the Master of Science in Engineering

Department of Computer Science

Princeton University

Adviser: Moses Charikar

June 2012

Abstract

We consider the general problem of allocating items to agents when items arrive online. Each

agent specifies a positive real valuation for each item. When an item arrives, it must immediately

be assigned to an agent and the decisions cannot be reversed. The goal of the algorithm is to

maximize the sum of the values of the items received by the agents.

This problem has a long and rich history dating back to the seminal work of Karp, Vazirani

and Vazirani who gave a randomized algorithm for the online bipartite matching problem with

competitive ratio 1-1/e, and showed that it is optimal. More recently, Mehta, Saberi, Vazirani and

Vazirani studied the problem of ad-allocation for search queries, for which they give an optimal

(1-1/e)-competitive algorithm under some mild assumptions. Interest from web-search companies

sparked off a line of research on these problems trying to beat the factor of 1-1/e in stochastic

input models. Here, instead of the arrival order of the items being chosen by an adversary, it

is assumed that there is some underlying probability distribution according to which the arrival

order is generated.

Recently, Devanur, Jain and Kleinberg gave an exceedingly simple analysis of the original

algorithm for online bipartite matching using the so-called Randomized Primal-Dual framework.

We observe that their proof can be interpreted as a proof of the competitiveness of a greedy

algorithm for the same problem, when the input is stochastic. We use this framework to show

that natural greedy algorithms achieve a competitive ratio of 1-1/e for different variants of the

online allocation problem with stochastic input. These variants include vertex-weighted bipartite

matching and the ad-allocation problem. Then, we use this framework to give a simpler proof

that the original algorithm for online bipartite matching achieves a competitive ratio strictly better

than 1-1/e when the input is stochastic.

Finally, we discuss several open problems and state some conjectures. We believe that the

Randomized Primal-Dual framework is a powerful tool for analyzing greedy algorithms for online

allocation problems with stochastic input, and can be used to develop new insights and solve some

of the open problems in this area.

ii

Acknowledgments

I would like to thank my advisor Moses Charikar for his endless support and encouragement, both

academic and otherwise. This work would not have been possible without his input and ideas.

I would like to thank my officemates Arman Suleimenov and Dominic Kao for their support. I

would also like to thank Omri Weinstein and Rajesh Ranganath for their advice and critique.

iii

Contents

Abstract ii

1 Introduction 1

1.1 Definitions and Preliminaries . 2

1.2 Related Work . 3

1.3 Results and Organization . 4

2 Online Bipartite Matching 4

2.1 Online bipartite matching in the adversarial model 5

2.2 Online bipartite matching in the random order model 7

2.3 Discussion . 9

3 Online Budgeted Allocation 9

3.1 Online budgeted allocation in the adversarial model 9

3.2 Online budgeted allocation in the random permutation model 10

3.3 Discussion . 13

4 Online Vertex-Weighted Matching 13

4.1 Online vertex-weighted bipartite matching in the adversarial model 14

4.2 Online vertex-weighted bipartite matching in the random order model 16

4.3 Discussion . 19

5 Online bipartite matching: beating 1− 1/e 19

5.1 Discussion . 26

6 Conclusions 27

iv

1 Introduction

In this work, we study a general class of online allocation problems in which indivisible items

arriving one-by-one must be assigned to agents. The algorithm must make a decision when the

item arrives and this decision cannot be reversed. The goal is to maximize “profit”, which is

defined differently in different instantiations of the general problem. Intuitively, “profit” measures

the overall welfare or happiness of the involved agents, which depends on the set of items they

are allocated. Each agent is constrained in some way, depending again on the particular problem.

The constraints can be cardinality constraints, budget constraints and so on.

The motivating reason to study this class of problems is the allocation of advertisements to web

search queries. When a user of a web search-engine types in a search keyword, she is shown a list

of search results along with a list of advertisements that are pertinent to that keyword. Typically,

advertisers provide bids for different keywords, and these bids are known offline. Advertisers also

provide a fixed daily budget which is the maximum amount of money they are willing to spend on

advertising in one day. The algorithm must allocate advertisments to arriving search keywords,

and try to maximize the search engine’s profit from the allocation process. We study this particular

problem, called online budgeted allocation in Section 3. In practice, ofcourse, a search engine must

take several other things into account, including the relevance of the ads to the user, click-through

rates and so on.

The allocation problem can be modelled as a bipartite graph G = (L,R,E) where the vertices

in L (the agents) are known beforehand and the vertices in R (the items) arrive online or one-by-

one. An edge (i, j) with weight bij denotes that agent i is willing to pay bij for item j. When a

vertex j arrives, all the agents reveal their bids for it, and the algorithm must irreversibly allocate

it to one of the agents.

Clasically, these online allocation problems have been studied in an adversarial model. In this

setting, it is assumed that the arrival order of the items is selected by an adversary, and any

algorithm must work for any arrival order. Clearly, this model is not realistic in the ad-allocation

setting - search queries are not generated by an adversary. Recently, there has been a sequence

of results developing and analyzing algorithms in a stochastic input model. Here, the input is

assumed to be drawn from some underlying distribution. This is motivated by the fact that search

1

engines have a veriety of statistical data about daily search queries. The most general such model

that has been considered in literature is the random order model, in which the arrival order is a

uniformly random permutation of the set of items chosen by an adversary.

We study several special cases of the general online allocation problem. We show that in the

random order model, a simple greedy algorithm works well. Our results are based on a clever

randomized primal-dual analysis technique of [5]. We propose the use of this technique for

developing and analysing algorithms for online allocation problems in the random order model.

1.1 Definitions and Preliminaries

In the online bipartite maching problem, the graph G = (L,R,E) is unweighted and the constraint

on the agents (vertices in L) is that they can only be assigned a single item. Thus, the algorithm

must construct a matching of the vertices of G. The goal is to maximize the size of the matching

produced.

In the online budgeted allocation (or AdWords) problem, the agents in L have budgets Bi and

specify bids bij . Each agent can be allocated any number of items, but the profit obtained is

capped at Bi. The goal is to maximize the total profit obtained from all the agents.

In the online vertex-weighted bipartite matching problem, the graph G = (L,R,E) has weights

wi on the agents in L. Equivalently, it has weights on edges such that all the edges incident to

agent i have the same weight wi. Every agent can be assigned a single item, so the algorithm must

construct a matching. The goal is to maximize the weight of the matching produced.

Online algorithms and competitive analysis We use the notion of competitive ratio to

measure the performance of online algorithms. Let A be an algorithm for a problem and let I be

the set of all input instances. Let ALG[I] denote the performance of A on input I and let OPT[I]

denote the best solution if the entire input was known in advance. Then, the competitive ratio of

A is defined as infI∈I
E[ALG[I]]
OPT[I] .

Models of input In the adversarial input model, the graph is selected by a non-adaptive

adversary, and then the items in R arrive online in an order also selected by the adversary. In

the stochastic i.i.d. input model, it is assumed that there is a distribution on types of items, and

items are drawn repeatedly i.i.d. from this distribution. This distribution can be either known or

unknown to the algorithm. In the random order model, the input is chosen by an adversary, but

2

the algorithm receives the items in a uniformly random order. Note that it can be shown that any

algorithm that has a competitive ratio c in the random order model also has a competitive ratio

at least c in the stochastic i.i.d models. This is one reason to focus our attention on the random

order model.

1.2 Related Work

Karp et al studied the online bipartite matching problem and showed a randomized 1− 1/e com-

petitive algorithm and that no randomized algorithm can do better. In [12] Kalyanasunduram et

al consider the problem of online b-matching, when the agents could be assigned upto b items. For

this they gave a deterministic algorithm whose competitive ratio approaches 1 − 1/e as b grows

large. Motivated by search advertising Mehta et al considered the online budgeted allocation or

AdWords problem in [18], a generalization of the b-matching problem. For this, they gave a

deterministic 1 − 1/e competitive algorithm under the small bids assumption, and showed that

no randomized algorithm can do better. Goel et al in [10] considered the online budgeted allo-

cation problem in the random order model and showed that a simple greedy algorithm is 1− 1/e

competitive under the small bids assumption. In the process, they also showed the first correct

analysis for the result of [15] on online bipartite matching - the original proof had been observed

to have a bug. Karande et al considered the online vertex-weighted bipartite matching problem

in [1] and showed an optimal 1− 1/e competitive algorithm in the adversarial model.

The 1−1/e barrier for online bipartite matching was first broken in the i.i.d. known dsitribution

model in the work of Feldman et al [8]. They showed an algorithm based on exploiting the power

of two choices to construct to matchings in the expected input instance is 0.67 competitive. This

competitive ratio was improved to 0.699 in [4] and further improved to 0.702 as well as generalized

to the unknown distribution model in [17]. In the random permutation model, the algorithm of

[15] was shown to be 0.653 and 0.696 competitive in [14] and [16] respectively. For the online

budgeted allocation problem in the random order model, Devanur et al in [6] show a 1 − ε

competitive algorithm for any ε > 0 under some assumptions. Their approach which is based

on learning dual variables was generalized to packing problems in [9]. Mirrokni et al showed in

[19] that it is possible to simultaneously achieve good competitive ratios for both adversarial and

random order models by analyzing the algorithm of [18] in the random order model.

3

The edge-weighted version of the online bipartite matching was considered in [7] and [11].

The former showed that in the “free disposal” model with large degrees, there is an optimal 1−1/e

competitive algorithm. The latter showed that in the i.i.d. model there is a 0.667 competitive

algorithm for the online bipartite matching problem with edge-weights.

1.3 Results and Organization

In Section 2 we introduce the randomized primal-dual framework of [5], by using it to analyze the

RANKING algorithm of [15] for online bipartite matching and show that it’s competitive ratio is

1− 1/e in the adversarial model. By symmetry, this means that a simple GREEDY algorithm has

a competitive ratio 1− 1/e in the random order model. This forms the basis of our results.

In Section 3, we study the online budgeted allocation problem. We briefly mention the

WEIGHTED-BALANCE algorithm of [18] in the adversarial model. In 3.2, we provide a sim-

ple proof via randomized primal-dual of a result of [10], showing that in the random order model,

a simple GREEDY algorithm is 1− 1/e competitive.

In Section 4, we turn our attention to the online vertex-weighted bipartite matching problem. In

4.1, we analyze the PERTURBED-GREEDY algorithm of [1] via randomized primal-dual, showing

that it generalizes from the for RANKING in a straightforward way. In 4.2 we show via randomized

primal-dual that in the random order model, a simply GREEDY algorithm is 1− 1/e-competitive.

In Section 5, we give a new proof using randomized primal-dual of the fact that RANKING

beats 1− 1/e for online bipartite matching in the random order model. The competitive ratio we

are able to prove via this approach is inferior to those proved in [16] and [14]. However, we hope

that our ideas can be extended to obtain a tighter analysis.

Finally, we conclude in Section 6 by mentioning some open problems and possible approaches

to solving them.

2 Online Bipartite Matching

In the online bipartite matching problem, there is an unweighted bipartite graph G = (L,R,E).

The vertices in L are known beforehand and the vertices in R arrive online. When a vertex in R

arrives, it must be matched to an unmatched neighbouring vertex in L, or not matched at all. A

4

decision once made, cannot be reversed later. The goal is to maximize the expected size of the

matching produced.

2.1 Online bipartite matching in the adversarial model

Recall that in the adversarial model, an (oblivious) adversary picks the graph G = (L,R,E), and

then we receive the vertices of R online, in the order specified by the adversary. In this section,

we will show that the RANKING algorithm of [15] has a competitive ratio of 1 − 1/e for online

bipartite matching. The RANKING algorithm is described below.

Algorithm 2.1 RANKING

1. Pick a random permutation σ of the vertices in L
2. When a vertex j ∈ R arrives, match it to the first unmatched neighbour according to σ.

To facilitate the analysis, instead of picking a uniformly random permutation σ, we do the

following. For every vertex i ∈ L, we pick yi ∈R [0, 1] randomly and independently. Now, the

permutation given by the increasing order of y. Clearly, this process generates a uniformly random

permutation, since each permutation is equally likely.

Notation We use RANKING(G, y) to denote the performance of RANKING on graph G when

the randomness in the algorithm is fixed to be the vector y. We say that a vertex j ∈ R is matched

at position T if it is matched to a vertex i such that yi = T .

First, we prove two properties of RANKING - dominance and monotonicity. These properties

were implicitly used in all the previous proofs of Theorem 2.1 ([15], [2], [10]).

Lemma 2.1. (Dominance, Lemma 3 in [2]) In RANKING(G, y), suppose vertex j ∈ R gets

matched at position T . Define G′ by introducing a new vertex i ∈ L. In RANKING(G′, y), if

yi ≤ T and (i, j) ∈ E, then i is matched.

Proof. Suppose i was unmatched when j arrived. Then, if yi ≤ T and (i, j) ∈ E, j will prefer to

get matched to i than to the vertex at position T . So i will be matched.

Lemma 2.2. (Monotonicity, Lemma 4 in [2]) In RANKING(G, y), suppose vertex j ∈ R gets

matched at position T . Define G′ by introducing a new vertex i ∈ L. In RANKING(G′, y), j is

matched at position ≤ T irrespective of yi and the edges incident to i.

5

Proof. First, note that for all vertices at position < yi, RANKING(G, y) and RANKING(G′, y)

produce the same matching. To see this, let i′ be any vertex with yi′ < yi. If RANKING(G, y)

matches some vertex j′ to i′, then in RANKING(G′, y), j′ will still prefer to get matched to i′ than

to i, and i′ will still be available. Thus RANKING(G′y) will also match j′ to i′.

If i is unmatched in RANKING(G′, y), then clearly RANKING(G′, y) is the same as RANKING(G, y).

If i is matched in RANKING(G′, y) to some vertex j′, then in RANKING(G, y), either j′ is un-

matched or is matched to some vertex i′ with yi′ ≥ yi. Then, by applying the same argument to

i′ it can be observed that the symmetric difference between RANKING(G, y) and RANKING(G′, y)

is a monotone alternating path starting at i. Thus, for every vertex j ∈ R, if it was matched at

position T in RANKING(G, y) then it is matched at position ≤ T in RANKING(G′, y).

Theorem 2.1. RANKING has a competitive ratio of 1− 1/e for online bipartite matching.

Proof. Consider the following Primal and Dual LPs.

Primal

max
∑

ij xij subject to:

∀i :
∑

j xij ≤ 1

∀j :
∑

i xij ≤ 1

∀i, j : xij ≥ 0

Dual

min
∑

i αi +
∑

j βj subject to:

∀(i, j) ∈ E : αi + βj ≥ 1

∀i, j : αi, βj ≥ 0

The primal LP is a relaxation to the offline version of the problem. xij denotes whether i is

matched to j, the first constraint ensures that every vertex i ∈ L is matched to only vertex and

the second constraint ensures the same for every vertex j ∈ R. Our strategy is to maintain a solu-

tion to the primal LP according to the decisions made by RANKING. That is, whenever RANKING

6

matches (i, j), we set xij = 1. At the same time, we maintain a solution to the dual LP, and try

to show that it is feasible and not too much larger than the primal LP. This will allow us to prove

that the solution produced by the algorithm is competitive with respect to the dual optimum,

and so is competitive with the optimum offline solution. When RANKING matches (i, j), we set

xij = 1 and make the following dual updates:

αi ←
eyi

e− 1
, βj ←

e− eyi

e− 1

The primal solution is feasible, since it is a matching. When the algorithm matches (i, j), the

increase in the primal objective function is 1 and the increase in the dual objective function is

αi + βj = e/(e− 1). Let P be the final primal objective value, and D be the final dual objective

value, then P ≥ (1− 1/e)D. Thus, if we can show that the dual solution is feasible, then we are

done.

Note however, that the the dual solution may not be feasible, but we will show that it is fea-

sible in expectation over the choices of y. Fix any (i, j) ∈ E. Fix arbitrarily the values of yi′ for all

i′ 6= i. Consider an imaginary execution of the algorithm with these values of y with i removed.

Say j gets matched position L in this execution. By monotonicity j gets matched at position ≤ L

in the actual run of the algorithm, irrespective of yi, so βj ≥ (e−eL)/(e−1), conditioned on these

values of y. By dominance, in the actual run of the algorithm, if yi ≤ L then i is matched, so

whenever yi ≤ L,αi = eyi/(e− 1). Thus, E[αi] ≥
∫ l

0
ey/(e− 1)dy = (eL − 1)/(e− 1), conditioned

on these values of y. So we have shown that E[αi + βj] ≥ (e− eL)/(e− 1) + (eL − 1)/(e− 1) = 1.

So E[RANKING] ≥ (1− 1/e)(
∑

i E[αi] +
∑

j E[βj]) ≥ (1− 1/e)OPT .

2.2 Online bipartite matching in the random order model

Recall that in the random order model, the adversary picks the graph G = (L,R,E) and the

algorithm receives a random permutation of the vertices in R. In this section, we will show that

in the random permutation model, the following simple greedy algorithm achieves a competitive

ratio of 1− 1/e for online bipartite matching.

The proof of the competitiveness of GREEDY follows from the observation of [15] that bipartite

7

Algorithm 2.2 GREEDY

1. Fix arbitrarily the order of the offline vertices.
2. When an online vertex j arrives, assign it to the first unmatched neighbour according to the
(arbitrary) order selected.

matching is symmetric in the following sense. For any fixed order of the vertices in L and R, the

matching constructed by GREEDY is the same whether L is considered the online side or R is.

Thus, the expected size of the matching produced by GREEDY is the same whether the online

vertices are randomly permuted or the offline vertices are. Note that RANKING is nothing but

GREEDY applied to a random permutation of the offline side. So, the competitive ratio of GREEDY

in the random order model is the same as that of RANKING in the adversarial model, which is

1− 1/e. We formally prove the symmetry property in the following lemma.

Lemma 2.3. On any G = (L,R,E), GREEDY produces the same matching whether R is consid-

ered online or L.

Proof. Suppose GREEDY produces a matching M when L is considered online. Now, consider

running an execution of GREEDY with R considered online. Let r1, r2...rn be the vertices in R.

r1 is matched to the same vertex in our simulation as in M , since no vertex above it has an edge

to r1. We will prove by induction that this holds true for all vertices in R. Suppose the matching

produced by GREEDY on r1, r2...rt−1 is consistent with M . Suppose rt was matched to some

vertex i ∈ L in M . In our execution, when rt arrives, i must be unmatched since by the inductive

hypothesis, the matching produced on r1, ...rt−1 is consistent with M . So rt either gets matched

to i, or above i. Suppose there is some vertex i′ above i in L such that rt has an edge to i′ and i′

is unmatched when rt arrives. Then, in M , i′ is not matched to r1, ...rt−1, so it will get matched

to rt because it arrives before i (when L is considered online). This is a contradiction. Thus, the

only possibility is that rt is matched to i in our execution. This completes the proof.

Theorem 2.2. GREEDY has a competitive ratio of 1 − 1/e for online bipartite matching in the

random order model.

Proof. Follows from the above discussion and Lemma 2.3.

8

2.3 Discussion

Observe that we can use the randomized primal-dual method to prove Theorem 2.2. In the random

order model, we can think of assigning each online vertex a random zj ∈R [0, 1] uniformly and

independently. If we treat the vertices as arriving in increasing order of z, then each permutation

of the vertices is equally likely. Together with appropriately defined versions of dominance and

monotonicity, we can use the randomized primal-dual method and essentially repeat the analysis

of Theorem 2.1 to prove Theorem 2.2.

This observation leads us to question whether similar ideas can be applied to other problems

in the random order model. The answer is yes - In the next few sections, we will apply repeatedly

this idea of analyzing greedy algorithms in the random order model using randomized primal-dual

to different versions of the online allocation problem.

3 Online Budgeted Allocation

Recall that in the online budgeted allocation problem, there is a graph G = (L,R,E) with weights

bij on the edges. L, the set of bidders or agents, is known in advance. R consists of items that

arrive online. Bidder i bids bij on the item j. Moreover, each bidder specifies a budget Bi. An

algorithm for the online budgeted allocation problem must allocate, irreversibly, each arriving item

to a bidder. The profit that the algorithm gets from assigning item j to bidder i is i’s bid bij .

3.1 Online budgeted allocation in the adversarial model

In the adversarial model, the graph G = (L,R,E) is chosen by an adversary and so is the order

that the items arrive in. The problem of online budgeted allocation in the adversarial model was

first introduced and studied by Mehta et al. in [18]. They gave a deterministic 1−1/e competitive

algorithm under the assumption that all the bids are much smaller than the corresponding budgets,

that is, maxi,j
bij
Bi

approaches 0. The algorithm, WEIGHTED-BALANCE, is described below.

Algorithm 3.1 WEIGHTED-BALANCE

1. For every bidder i, let ri be the fraction of its budget already exhausted.
2. When item j arrives, assign it to the bidder i maximizing bij(1− eri−1)

Intuitively, it is good to allocate each arriving item to the bidder that has a large bid for it.

9

However, simply matching in a greedy way does only achieves a competitive ratio of 1/2. By

being greedy, we may exhaust a bidder’s budget too soon and thus not be able to allocate to it

items arriving in the future. Thus, if a bidder’s budget is close to being exhausted, the algrothim

should be less likely to allocate more items to it. So there is a trade-off between the bidder’s

bid and the fraction of its budget already exhausted. The optimal trade-off is captures by the

WEIGHTED-BALANCE algorithm.

The original proof of Mehta et al. used a “tradeoff-revealing LP” approach. In [3], Buchbinder

et al. give a simpler proof using the primal-dual method. Note that the WEIGHTED-BALANCE

algorithm is deterministic, and so is somewhat different from the algorithms we study, in which

either the algorithm has randomness or the input does.

3.2 Online budgeted allocation in the random permutation model

In the random permutation model the graph G = (L,R,E) is chosen by an adversary, but the

algorithm receives a random permutation of the items R. The online budgeted allocation problem

in the random order model was first studied by Goel et al in [10]. They first showed that

in the random order model, GREEDY is 1 − 1/e competitive for online bipartite matching and

then generalized this to online budgeted allocation, also under the “small bids” assumption. The

assumption is that the bids bij are much smaller than the budgets Bi. More precisely, let Rmax =

maxi,j
bij
Bi

. Then, the competitive ratio of GREEDY approaches 1− 1/e as Rmax approaches 0.

In this section, we re-prove their result using the randomized primal-dual framework. Our

proof is simpler than that of [10], which makes use of a clever but fairly involved factor revealing

LP. We believe it is also more amenable to being extended to other and more general problems.

The GREEDY algorithm is described below.

Algorithm 3.2 GREEDY

When an item j arrives, assign it to the bidder i which has the maximum bid bij for j among the
ones who haven’t already exhausted their budget, even if this were to exceed i’s budget.

To facilitate the analysis, we will pick for each j ∈ R, zj ∈R [0, 1] randomly and independently,

and then assume that the items in R arrive in increasing order of z. Note that every permutation

of the items is equally likely.

Notation We use GREEDY(G, z) to denote the performance of GREEDY on graph G when

10

the input arrives according to the vector z. We say that a bidder i ∈ L exhausts its budget at

position T if an item j is allocated to it with zj = T , and at that point, i has spent all its budget.

First we will prove the corresponding dominance and monotonicity properties for the online

budgeted allocation problem, which were also implicitly used in [10].

Lemma 3.1. (Dominance) In GREEDY(G, z), suppose bidder i’s budget gets exhausted at posi-

tion T . Define G′ by introducing a new item j ∈ R. In GREEDY(G′, z), if zj ≤ T and bij > 0,

then j is allocated to some bidder i′ with bi′j ≥ bij.

Proof. Before j arrives, GREEDY(G, z) produces the same allocation as GREEDY(G′, z). So when

j arrives, i’s budget is not exhausted since zj ≤ T . This means that j could be allocated to i and

by definition of GREEDY it is matched to the highest available bidder, so bi′j ≥ bij .

Lemma 3.2. (Monotonicity, Lemma 3.1 in [10]) In GREEDY(G, z), suppose bidder i’s budget

gets exhausted at position T . Define G′ by introducing a new item j ∈ R. In GREEDY(G′, z), i’s

budget is exhausted at position ≤ T , irrespective of zj and the bids for item j.

Proof. First, note that for all items at position < zj , GREEDY(G, z) and GREEDY(G′, z) produce

the same allocation, since they arrive before j.

If j is not allocated in GREEDY(G′, z), then clearly GREEDY(G′, z) is the same as GREEDY(G, z).

Suppose j is allocated in GREEDY(G′, z) to some bidder i′ and in GREEDY(G, z) i′ budget gets

exhausted at position T ′. Then, in GREEDY(G′, z), i′’s budget gets exhausted at position ≤ T ′.

This means that there may be some items in R that were allocated to i′ in GREEDY(G, z) but

not in GREEDY(G′, z) since i′ exhausted its budget before they arrived. Then, we can apply

the same argument to those items to conclude that for every bidder i ∈ L, if its budget gets

exhausted at position T in GREEDY(G, z), then its budget gets exhausted at position ≤ T in

GREEDY(G′, z).

Theorem 3.1. The competitive ratio of GREEDY approaches 1− 1/e as Rmax approaches 0.

Proof. We will use the Randomized primal-dual framework to prove the theorem.

Primal

max
∑

i,j bijxij subject to:

11

∀i :
∑

j bijxij ≤ Bi

∀j :
∑

i xij ≤ 1

∀i, j : xij ≥ 0

Dual

min
∑

i αiBi +
∑

j βj subject to:

∀i, j : αibij + βj ≥ bij

∀i, j : αi, βj ≥ 0

The primal LP is a relaxation to the offline version of the problem. xij denotes whether j is

allocated to i, the first constraint ensures that no bidder i exceeds its budget and the second

constraint ensures that each item j is allocated to at most one bidder. Following the pattern of

previous proofs, we will update the dual variables as the algorithm progresses, ensuring that the

increase in the dual objective function is not too much. We will allow the dual constraints to be

violated, but will show that they are satisfied on average. Consider the following update rules.

When item j arrives and is assigned to bidder i, set xij = 1, regardless of whether i’s budget is

exceeded or not, and set

βj = bij
eyj

e− 1
, αi ← αi +

bij
Bi

e− eyj

e− 1

First, notice that the primal solution thus obtained is almost feasible. Each budget constraint

is violated at most once, and once the budget is exceeded no further items are assigned to that

bidder, by definition of GREEDY. We will account for this slight violation in our analysis.

At every step, the increase in the primal objective is ∆P = bij , and the increase in dual ob-

jective is ∆D ≤ ∆αiBi + βj = bij
e−eyj
e−1 + bij

eyj

e−1 = bij
e

e−1 . So, the increase in the dual objective

function is atmost e
e−1 times the increase in the primal objective function. This means that if the

dual solution is feasible, then the primal solution is at most a factor 1− 1/e less than the optimal

offline solution.

12

Now, we show that the dual solution is feasible on average. That is, the expected values (over the

choices of y) of all the dual variables together satisfy the dual constraints. Moreover, since for any

choice of y, the primal solution is 1− 1/e-competitive with respect to the dual solution, this also

holds in expectation. So the algorithm is 1− 1/e competitive in expectation.

Fix any edge (i, j) and aribtrary values of yj for all j 6= j′. Consider an imaginary execution

of GREEDY, with j removed, and suppose that i’s budget is exhausted when it is assigned item j′

with yj′ = L. If i’s budget is never exhausted, L = 1. Now, insert j back and vary yj from 1 to

0. By dominance, when yj ≤ L, βj ≥ bij
eyj

e−1 , so E[βj] ≥ bij
eL−1
e−1 . By monotonicity, i’s budget is

exhausted when it is matched to some j′ with yj′ ≤ L. Let j1, j2...jr = j′ be the items assigned to

i, then αi =
∑r

k=1

bijk
Bi

e−eyjk
e−1 ≥ e−eyj′

e−1 ≥ e−eL
e−1 . So E[αibij + βj] ≥ bij

e−eL
e−1 + bij

eL−1
e−1 = bij , thus

showing that the dual is feasible on average. This completes the proof.

3.3 Discussion

We showed that the randomized primal-dual framework is useful for analyzing a GREEDY algorithm

for the online budgeted allocation problem in the random order model. The result we show in

Section 3.2 was first shown in [10], however, we hope that the simplicity of our analysis allows it

to be extended to more general problems, as we discuss in the final section.

Note that in the random order model, GREEDY is not optimal. Recently, in [19], Mirrokni

et al showed that the WEIGHTED-BALANCE algorithm of [18] has a competitive ratio of at least

0.76, albeit under some stronger assumptions.

4 Online Vertex-Weighted Matching

Recall that in the online vertex-weighted bipartite matching problem, there is a bipartite graph

G = (L,R,E) with weights wi on the offline vertices L. The weights w are known in advance. The

vertices in R arrive online and reveal the edges incident to them when they arrive. The algorithm

must choose to match a vertex when it arrives, or to not match it all, and the decision cannot be

reversed in the future. If an incoming vertex is matched to i ∈ L, then the weight of the match is

13

wi. The goal is to maximize the total weight of the matching produced.

4.1 Online vertex-weighted bipartite matching in the adversarial model

In the adversarial model, an (oblivious) adversary picks the graph G = (L,R,E), and then the

algorithm receive the vertices of R online, in the order specified by the adversary. The online vertex-

weighted bipartite matching problem in the adversarial model was first studied by Aggarwal et al

in [1]. They devise an algorithm, PERTURBED-GREEDY and show that it is 1− 1/e competitive.

The PERTURBED-GREEDY algorithm is described below.

Algorithm 4.1 PERTURBED-GREEDY

1. For each offline vertex i, pick a random yi ∈R [0, 1] uniformly and indepependently.
2. When an online vertex j arrives, match it to the vertex i maximizing wi(1− eyi−1).

Intuitively, matching to a high-weight vertex is good. However, it is easy to see that simply

matching greedily to the highest weight neighbour does not do better than 1/2. Moreover, any algo-

rithm for the weighted problem must also work for the unweighted case. Thus, the right algorithm

should find a tradeoff between the greedy strategy and the RANKING algorithm. As we will show

below (via Randomized primal-dual), the right tradeoff is embodied by PERTURBED-GREEDY.

Notation We use PERTURBED-GREEDY(G, y) to denote the performance of PERTURBED-GREEDY

on graph G when the randomness in the algorithm is fixed to be the vector y. We say that a vertex

j ∈ R is matched at position T if it is matched to a vertex i such that wi(1− eyi−1) = T . Notice

that because of the way we have defined it, an incoming vertex tries to maximize its “position”

rather than minimize it as in online bipartite matching.

First, we prove dominance and monotonicity properties of the PERTURBED-GREEDY algo-

rithm, originally shown in [11].

Lemma 4.1. (Dominance, Lemma 5 in [11]) In PERTURBED-GREEDY(G, y), suppose vertex

j ∈ R gets matched at position T (note: have to define T appropriately). Define G′ by introducing

a new vertex i ∈ L. In PERTURBED-GREEDY(G′, y), if wi(1− eyi−1) ≥ T and (i, j) ∈ E, then i

is matched.

Proof. Suppose when j arrives, i is unmatched. Then, if wi(1−eyi−1) ≥ T and (i, j) ∈ E, j would

prefer to get matched to i than to the vertex at position T . Hence, i will be matched.

14

Lemma 4.2. (Monotonicity, Lemma 5 in [11]) In PERTURBED-GREEDY(G, y), suppose ver-

tex j ∈ R gets matched at position T . Define G′ by introducing a new vertex i ∈ L. In

PERTURBED-GREEDY(G′, y), j is matched at position ≥ T irrespective of yi, wi and the edges

incident to i.

Proof. First, note that for all vertices at position > wi(1 − eyi−1), PERTURBED-GREEDY(G, y)

and PERTURBED-GREEDY(G′, y) produce the same matching. To see this, let i′ be any vertex at

position wi′(1 − eyi′−1) > wi(1 − e1−yi). If PERTURBED-GREEDY(G, y) matches some vertex j′

to i′, then in PERTURBED-GREEDY(G′, y), j′ will still prefer to get matched to i′ than to i, and

i′ will still be available. Thus PERTURBED-GREEDY(G′y) will also match j′ to i′.

If i is unmatched in PERTURBED-GREEDY(G′, y), then clearly PERTURBED-GREEDY(G′, y)

is the same as PERTURBED-GREEDY(G, y). If i is matched in PERTURBED-GREEDY(G′, y) to

some vertex j′, then in PERTURBED-GREEDY(G, y), j′ was either unmatched or matched to

some vertex i′ at position wi′(1− e1−yi′) < wi(1− e1−yi). Then, by applying the same argument

to i′ it can be observed that the symmetric difference between PERTURBED-GREEDY(G, y) and

PERTURBED-GREEDY(G′, y) is a monotone alternating path starting at i. Thus, for every vertex

j ∈ R, if it was matched at position T in PERTURBED-GREEDY(G, y) then it is matched at

position ≥ T in PERTURBED-GREEDY(G′, y).

Theorem 4.1. (Theorem 1.1 in [1]) PERTURBED-GREEDY has a competitive ratio of 1−1/e for

online vertex-weighted bipartite matching.

Proof. We will use the randomized primal-dual framework. Consider the following Primal and

Dual LPs.

Primal

max
∑

ij wixij subject to:

∀i :
∑

j xij ≤ 1

∀j :
∑

i xij ≤ 1

∀i, j : xij ≥ 0

Dual

15

min
∑

i αi +
∑

j βj subject to:

∀(i, j) ∈ E : αi + βj ≥ wi

∀i, j : αi, βj ≥ 0

The primal LP is just the weighted version of the LP used in Section 2, and so is a relaxation of

the offline problem. Whenever the algorithm matches (i, j), we set xij = 1 and make the following

dual updates:

αi =
wie

yi

e− 1
, βj =

wi(e− eyi)

e− 1

Clearly, the primal solution is feasible since the algorithm constructs a matching. When the

algorithm matches (i, j), the increase in the primal objective function is wi, while the increase in

the dual objective function is αi +βj = wie/(e− 1). Thus, if P and D denote the final primal and

dual objective function values, then P ≥ (1− 1/e)D. So if we can show that the dual solution is

feasible, we are done.

Now, fix any (i, j) ∈ E. Fix arbitrarily the values yi′ for all i′ 6= i. Consider an imaginary execution

of the PERTURBED-GREEDY algorithm with these values of y and vertex i removed. Suppose in

this execution, j were matched to i′, and let L be such that wi(e−eL)/(e−1) = wi′(e−eyi′)/(e−1)

if such an L exists, otherwise L = 0. If j is unmatched, then L = 1. Now, by monotonicity, in the

actual execution of the algorithm, irrespective of yi, βj ≥ wi(e− eL)/(e− 1). By dominance, i is

matched whenever yi ≤ L, so E[αi] ≥
∫ L

0
wie

y/(e− 1)dy = wi(e
L− 1)/(e− 1). So E[αi +βj] ≥ wi.

Thus, the dual solution is feasible in expectation, so E[PERTURBED-GREEDY] ≥ (1− 1/e)OPT .

4.2 Online vertex-weighted bipartite matching in the random order

model

In the random order model, the adversary picks the graph G = (L,R,E) and the algorithm receives

a random permutation of the vertices in R. In this section, we will show that a simple algorithm,

GREEDY, achieves a competitive ratio of 1− 1/e for online vertex-weighted bipartite matching in

the random order model. The algorithm is described below.

16

Algorithm 4.2 GREEDY

When an online vertex j arrives, match it to the unmatched neighbour with highest weight wi.

To facilitate the analysis, we will pick for each j ∈ R, zj ∈R [0, 1] randomly and independently,

and then assume that the vertices in R arrive in increasing order of z. Note that every permutation

of the vertices is equally likely.

Notation We use GREEDY(G, z) to denote the performance of GREEDY on graph G when

the input arrives according to the vector z. We say that a vertex i ∈ L is matched at position T

if it is matched to a vertex j such that zj = T .

First, we prove the analogous versions of Monotonicity and Dominance.

Lemma 4.3. (Dominance) In GREEDY(G, z), suppose vertex i ∈ L gets matched at position T .

Define G′ by introducing a new vertex j ∈ R. In GREEDY(G′, z), if zj ≤ T and (i, j) ∈ E, then j

is matched to some vertex i′ with wi′ ≥ wi.

Proof. Before j arrives, GREEDY(G, z) and GREEDY(G′, z) produce the same matching. So when

j arrives, i is unmatched since zj ≤ T . Since (i, j) ∈ E, and by definition of GREEDY, j gets

matched to the highest weight available vertex i′, wi′ ≥ wi.

Lemma 4.4. (Monotonicity) In GREEDY(G, z), suppose vertex i ∈ L gets matched at position

T . Define G′ by introducing a new vertex j ∈ R. In GREEDY(G′, z), i is matched at position ≤ T

irrespective of zj and the edges incident to j.

Proof. First, note that for all vertices at position < zj , GREEDY(G, z) and GREEDY(G′, z) produce

the same matching, since they arrive before j.

If j is unmatched in GREEDY(G′, z), then clearly GREEDY(G′, z) is the same as GREEDY(G, z).

If j is matched in GREEDY(G′, z) to some vertex i′, then in GREEDY(G, z), i′ was either unmatched

or matched to some vertex j′ with zj′ > zj . Then, by applying the same argument to j′ it can be

observed that the symmetric difference between GREEDY(G, z)) and GREEDY(G′, z) is a monotone

alternating path starting at j. Thus, for every vertex i ∈ L, if it was matched at position T in

GREEDY(G, z) then it is matched at position ≤ T in GREEDY(G′, z).

Theorem 4.2. GREEDY has a competitive ratio of 1 − 1/e for online vertex-weighted bipartite

matching in the random permutation model.

17

Proof. We will use the same Primal-Dual LP pair as in the previous section. We reproduce it below.

Primal

max
∑

ij wixij subject to:

∀i :
∑

j xij ≤ 1

∀j :
∑

i xij ≤ 1

∀i, j : xij ≥ 0

Dual

min
∑

i αi +
∑

j βj subject to:

∀(i, j) ∈ E : αi + βj ≥ wi

∀i, j : αi, βj ≥ 0

When the algorithm matches (i, j) we set xij = 1 and make the following dual updates:

αi ← wi(e− ezj)/(e− 1), βj ← wie
zj/(e− 1)

Note that the primal solution is feasible since it is a matching. When the algorithm matches

(i, j), the increase in the primal objective function is wi and the increase in the dual objective

function is wi[(e − ezj)/(e − 1) + ezj/(e − 1)] = wi[e/(e − 1)]. So if P and D denote the final

primal and dual objective values respectively, then P ≥ (1 − 1/e)D. So if we can show that the

dual solution is feasible, then we have shown that the algorithm is (1-1/e)-competitive.

Fix any edge (i, j) ∈ E. Fix arbitrarily the values of zj′ for all j′ 6= j. Consider an imaginary

execution of GREEDY with these values of z and with j removed. Suppose that in this execution

i got matched at position L. Then by monotonicity, in the actual execution of the algorithm with

these values of z, i is matched at position ≤ L irrespective of zj . So αi ≥ wi(e− eL)/(e− 1). By

dominance, when zj ≤ 1, j is matched to a vertex i′ with wi′ ≥ wi. So conditioned on these values

of zj′ , E[αi] ≥
∫ L

0
wie

z/(e − 1)dz = wi(e
L − 1)/(e − 1). Thus, E[αi + βj] ≥ wi. This proves that

the dual is feasible in expectation and so completes the proof.

18

4.3 Discussion

The RANKING algorithm for the unweighted online bipartite matching problem and the PERTURBED-GREEDY

algorithm for the vertex-weighted version are closely related. In particular, RANKING uses a uni-

form distribution over permutations of the offline side, whereas PERTURBED-GREEDY uses a

non-uniform distribution. The analysis of RANKING for online unweighted bipartite matching

in Section 2.1 generalizes in a straightforward fashion to PERTURBED-GREEDY for the vertex-

weighted case. In fact, the PERTURBED-GREEDY algorithm can be deduced from trying to repeat

the randomized primal-dual analysis for the vertex-weighted case. Moreover, in the random order

model the analysis of GREEDY in the unweighted case generalizes in an even simpler fashion to

the weighted case. This hints that perhaps randomized primal-dual is the right tool to use when

generalizing from the unweighted to the vertex-weighted case. It also raises the question whether

there is a “reduction” from the vertex-weighted to the unweighted case, which would allow us to

generalize all known results for the latter to the former.

5 Online bipartite matching: beating 1− 1/e

The online bipartite matching problem was studied in Section 2. In the random order model, a

simple GREEDY algorithm has a competitive ratio 1−1/e. In this section, we try to improve upon

this factor of 1− 1/e in the random order model. In particular, we will show that the RANKING

algorithm has a competitive ratio strictly better than 1 − 1/e. In contrast, it was shown in [15]

that no randomized algorithm can do better than 1− 1/e in the adversarial model.

The problem of online bipartite matching in the random order model was first considered

by Karande et al ([14]) and Mahdian et al ([16]). They showed that the competitive ratio of

RANKING in this model is at least 0.653 and 0.696 respectively. It was also shown in [14] that

the competitive ratio of RANKING in the random permutation model was no more than 0.727.

In [16], the authors use a strongly factor-revealing LP approach, where they write a family of

factor-revealing LPs and then relax them to get a family of LPs with the property that the solution

to any of them is a lower bound on the competitive ratio of the algorithm. Then, any of these

LPs can be solved computationally to get a lower bound on the competitive ratio. On the other

hand, the techniques of [14] are analytical. In fact, our proof in this section heavily uses their

19

ideas. For completeness, we restate the RANKING algorithm below.

Algorithm 5.1 RANKING

1. Pick a random permutation σ of the vertices in L
2. When a vertex j ∈ R arrives, match it to the first unmatched neighbour according to σ.

As before, for every vertex i ∈ L, we pick yi ∈R [0, 1] randomly and independently. Since

now both sides of the bipartite graph are random permutations, we also pick for every j ∈ R,

zj ∈R [0, 1].

Notation We use RANKING(G, y, z) to denote the performance of RANKING on graph G

when the order of vertices in L (resp. R) is given by the vector y (resp. z) respectively. We say

that a vertex j ∈ R (resp. i ∈ L) is matched at position T if it is matched to a vertex i′ (resp. j′)

such that yi′ = T (resp. zj′ = T). For a given vector y ∈ [0, 1]n, we use y−i to denote the same

vector with the i’th vertex removed.

First, we show a property of the RANKING algorithm that holds even in the adversarial model

(although we haven’t used it so far).

Lemma 5.1. (Lemma 2 of [2]) Without loss of generality we can assume that in the worst case

example for RANKING |L| = |R| = OPT.

Proof. Consider any graph G = (L,R,E), and suppose there is a vertex j ∈ R that is unmatched

in OPT. We will show that by removing this vertex, the performance of RANKING only gets worse.

Define G′ as G with vertex j removed. Then, as shown in Lemma 2.2, the symmetric difference

between the matchings RANKING(G, y) and RANKING(G′, y) for any fixed y, is a single alternating

path starting at j. Thus, the size of the matching produced by RANKING(G′, y) is either the same

or smaller than the size of the matching produced by RANKING(G). By symmetry, this also holds

if there were a vertex i ∈ L that was unmatched in OPT. Thus, by removing vertices that are not

matched in OPT, the competitive ratio only gets worse and so we can assume that the graph has

a perfect matching in the worst case.

Next, we prove an important property that distinguishes RANKING in the random order model

from RANKING in the adversarial model.

Lemma 5.2. (Lemma 3 of [14]) Without loss of generality, we can assume that the worst case

example for RANKING in the random order model is symmetric.

20

Proof. We will show that for any graph G = (L,R,E), if RANKING(G) has a competitive ratio

c, then there is another graph G′ that is symmetric and RANKING(G′) also has a competitive

ratio c. Let G1 = (L1, R1, E1) and G2 = (L2, R2, E2) be two copies of G. Consider G′ =

(L1∪R2, L2∪R1, E1∪E2) which is symmetric. Since, G1 and G2 are disjoint, the competitive ratio

of RANKING(G′) is just the average of the competitive ratios of RANKING(G1) and RANKING(GT
2)

where GT
2 is G2 with its left and right bipartitions flipped. By symmetry the competitive ratios

of RANKING(GT
2) and RANKING(G2) are the same. So the competitive ratio of RANKING(G′) is

the average of the competitive ratios of RANKING(G1) and RANKING(G2) which is c.

We will characterize the matching produced by any algorithm in terms of different types of

matches - below matches, above matches and perfect matches. For the purpose of the following

definitions, fix an optimal matching OPT.

Definition 5.1. (Events, B, B̂, AA,P -events) An event is a tuple (i, y, z) (or (y, z, j)) where

y, z ∈ [0, 1]n and i ∈ L (j ∈ R). In other words, it specifies the order of vertices in L and R, along

with a particular vertex that we want to reason about. An event completely specifies the position

and match of its vertex.

Suppose (i, j) ∈ OPT. An event (i, y, z) is a B-event if i is matched at position > zj in

RANKING(G, y, z). That is, i is matched at a position that is below where its optimal neigh-

bour appears. In this case, by the Dominance property of RANKING, j must be matched in

RANKING(G, y, z).

Similarly, an event (y, z, j) is a B̂-event if j is matched at position > yi in RANKING(G, y, z).

That is, j is matched at a position that is below where its optimal neighbour appears. In this case,

i must be matched in RANKING(G, y, z).

An event (y, z, i) is an AA-event if i is matched at position < zj and j is matched at position

< yi in RANKING(G, y, z). In AA-events, by definition, both i and j are matched.

An event (y, z, i) is a P -event if i is matched to j in RANKING(G, y, z). An event (y, z, j) is

a P̂ -event if j is matched to i in RANKING(G, y, z). Clearly, P and P̂ -events are the same, so we

call them P -events. In P -events also, both i and j are matched.

Define b to be the expected number (over the choices of y and z) of B-events scaled down by

n and similarly define b̂, p. The next lemma shows that without loss of generality, we can assume

21

that in the worst case there is a symmetry in the B and B̂ events.

Lemma 5.3. Without loss of generality, we can assume that in the worst case, b = b̂.

Proof. From Lemma 5.2, we know that in the worst case the graph is symmetric across the

bipartition. Let i ∈ L and i′ ∈ R be a symmetric pair and suppose (i, y, z) be an B-event.

Consider the event (z, y, i′). By Lemma 2.3, the matching produced is the same regardless of the

online and offline sides. Then, if we consider L as the online side and by the symmetry of the

graph, (z, y, i′) is an B̂-event. Thus, the probability of i being involved in a B-event is the same

as that of i′ being involved in an B̂-event, so b = b̂.

Let E[RANKING] denote the expected size of the matching produced by RANKING. The next

two lemmas will show two different lower bounds on E[RANKING].

Lemma 5.4. E[RANKING] = 1
2 + b+ aa

2 + p
2

Proof. Let G = (L,R,E) be such that |L| = |R| = OPT = n. First we will show that for any y, z,

the size of the matching RANKING(G, y, z) is exactly n
2 + B

2 + B̂
2 + AA

2 + P
2 where by an abuse of

notation we let B, B̂, AA and P be the number of B, B̂, AA and P -events in RANKING(G, y, z)

respectively. Fix an optimal matching OPT. For every edge (i, j) ∈ OPT, we know that at least

one of i, j are matched since RANKING constructs a maximal matching. Thus, at least n vertices

are matched, which gives the n
2 term. For every B-event (i, y, z), both i and j are matched, so

we get an additional matched vertex, which means an additional B
2 matched edges and the same

applies to AA and P -events, so we get an additional AA
2 + P

2 matched edges. Note that it cannot

be the case (i, y, z) is a B-event and (y, z, j) is a B̂-event because of the greediness of RANKING.

Thus, we also get an additional B̂
2 edges from the B̂-events. Finally, note that these are the only

ways in which both vertices i and j can be matched in RANKING(G, y, z).

By averaging over all choices of y, z we get that the expected competitive ratio of RANKING is

1
2 + b

2 + b̂
2 + aa

2 + p
2 . By Lemma 5.3, we know that b = b̂, so E[RANKING] = 1

2 + b+ aa
2 + p

2 .

It can be observed that in the worst case example for RANKING in the adversarial model, it

is only the B̂-events that make a contribution to increase the competitive ratio beyond 1/2. The

number of B and P events decreases to 0. The key observation in [14] was that because of the

symmetry property in the random order model, if there were no P -events, then there would be

22

many B and B̂-events and so the competitive ratio would be very large. This means that there

must be some P -events. Their proof essentially shows a trade-off between the number of P and

B-events and the competitive ratio. This is also the essence of the rest of our proof.

Next, via randomized primal-dual, we show that if there are a significant number of P and

B matches, then the competitive ratio is better than 1 − 1/e. The final step involves a trade-off

between the following lemma and the previous one.

Lemma 5.5. E[RANKING] ≥ (1− 1/e)(1 + p2

2(e−1) + aa
e−1 + b

e−1)

Proof. We will use the same Primal-Dual LP pair as in Section 2. We reproduce them here:

Primal

max
∑

ij xij subject to:

∀i :
∑

j xij ≤ 1

∀j :
∑

i xij ≤ 1

∀i, j : xij ≥ 0

Dual

min
∑

i αi +
∑

j βj subject to:

∀(i, j) ∈ E : αi + βj ≥ 1

∀i, j : αi, βj ≥ 0

When the algorithm matches (i, j), we set xij = 1. For now, consider using the same dual

update rules as before:

αi ←
eyi

e− 1
, βj ←

e− eyi

e− 1

Now, fix any (i, j) ∈ E. Fix arbitrarily the values zj′ for all j′ and yi′ for all i′ 6= i. Consider

an imaginary execution of RANKING with these values of y, z with i removed. Suppose that j was

matched at position L in this imaginary execution.

By monotonicity, j is matched at position ≤ L in the actual execution of RANKING with these

values of y, z, irrespective of the value of yi. So βj ≥ (e − eL)/(e − 1), irrespective of yi. Note

however, that when yi ≤ L, it is possible that j is matched to i. Clearly, if such a perfect match

23

(i, j) occurs when yi = y, then it also occurs in the range [y, L], since in this range j prefers to get

matched to i than at position L. So there is a (possibly empty) range of values for yi above L in

which a perfect match occurs. Call the length of the range pi(y−i, z). This is the probability of

vertex i being involved in a perfect match conditioned on the values of y−i and z chosen. Then,

we see that there is some gain in E[βj |y−i, z], given by

E[βj |y−i, z] ≥
∫ L−pi(y−i,z)

0

e− eL

e− 1
dy +

∫ L

L−pi(y−i,z)

e− ey

e− 1
dy +

∫ 1

L

e− eL

e− 1
dy

=

∫ L−pi(y−i,z)

0

e− eL

e− 1
dy +

∫ L

L−pi(y−i,z)

(e− eL) + (eL − ey)

e− 1
dy +

∫ 1

L

e− eL

e− 1
dy

≥ e− eL

e− 1
+

∫ L

L−pi(y−i,z)

L− y
e− 1

dy =
e− eL + 1

2pi(y−i, z)
2

e− 1

Now, by dominance, in the actual execution of RANKING with these values of y−i, z, i is

matched whenever yi ≤ L. According to dominance i is matched when yi ≤ L, so as before

E[αi|y−i, z] ≥ (eL − 1)/(e − 1). However, when yi ≥ L it is still possible that i is matched . In

particular, there is a (possibly empty) range of values of yi where i gets matched above j and

another range of values where i gets matched below j. Call the length of this range of above

matches aai(y−i, z) and below matches bi(y−i, z). Then, there is some gain in E[αi|y−i, z], given

by

E[αi|y−i, z] ≥
∫ L+aai(y−i,z)+bi(y−i,z)

0

ez

e− 1
dy

=
eL+aai(y−i,z)+bi(y−i,z) − 1

e− 1
≥ (eL − 1) + aai(y−i, z) + bi(y−i, z)

e− 1

So, we get

E[αi + βj |y−i, z] ≥
e− eL + eL − 1

e− 1
+

1
2pi(y−i, z)

2 + aai(y−i, z) + bi(y−i, z)

e− 1

= 1 +
1
2pi(y−i, z)

2 + aai(y−i, z) + bi(y−i, z)

e− 1

Now, let pi, bi and aai denote the probability that vertex i is involved in a perfect match,

below match or above match respectively, over all choices of y and z. Then, pi =
∫
y−i,z

pi(y−i, z),

bi =
∫
y−i,z

bi(y−i, z) and aai =
∫
y−i,z

aai(y−i, z)

24

E[αi + βj] =

∫
y−i,z

E[αi + βj |y−i, z]

≥
∫
y−i,z

1 +
1
2pi(y−i, z)

2 + aai(y−i, z) + bi(y−i, z)

e− 1

≥ 1 +
p2i

2(e− 1)
+

aai
e− 1

+
bi

e− 1

In the last step, we have used the fact that for a fixed mean the variance of a random variable

is minimized by the peak distribution. This allowed us to get a lower bound by assuming that

pi(y−i, z) = pi for all choices of y−i, z.

It should be clear to the reader where we are headed. If we can show that E[αi + βj] ≥ 1 + c

for all (i, j) ∈ E, then we can divide the dual update rules by 1 + c and get new dual update

rules α′i, β
′
j such that E[α′i + β′j] ≥ 1. Moreover, when the algorithm matches (i, j), the increase

in the dual objective value is e
(e−1)(1+c) , allowing us to conclude that the competitive ratio is

(1− 1/e)(1 + c). However so far we have shown that E[αi + βj] ≥ 1 + c where c depends on i. To

get rid of this dependence of c on i, we essentially need to average over all choices of i. As before,

let p =
∑

i pi/n, aa =
∑

i aai/n and b =
∑

i bi/n be the expected number of P - and B-matches

respectively, scaled down by n.

Define ∀i, α′i =
∑

i E[αi]/n and ∀j, β′j =
∑

i E[βj]/n. Note that the dual objective value is∑
i α
′
i +

∑
j β
′
j = n

∑
i E[αi]/n + n

∑
j E[βj]/n =

∑
i E[αi] +

∑
j E[βj] = e

e−1E[RANKING]. For

any (i, j) ∈ E, α′i + β′j =
∑

i E[αi]/n+
∑

j E[βj]/n =
∑

(i,j)∈OPT E[αi + βj]/n ≥
∑

i(1 +
p2
i

2(e−1) +

aai

e−1 + bi
e−1)/n ≥ 1 + p2

2(e−1) + aa
e−1 + b

e−1 . Now define

α′′i =
α′i

1 + p2

2(e−1) + aa
e−1 + b

e−1

∀i, β′′j =
β′j

1 + p2

2(e−1) + aa
e−1 + b

e−1

∀j

so that α′′i + β′′j ≥ 1. Thus, this is a dual feasible solution. Morever, the dual objective value is:

∑
i

α′′i +
∑
j

β′′j =

∑
i α
′
i +

∑
j β
′
j

1 + p2

2(e−1) + aa
e−1 + b

e−1

=
e

(e− 1)(1 + p2

2(e−1) + aa
e−1 + b

e−1)
E[RANKING]

25

Since the dual solution is feasible, this means that

E[RANKING] ≥ (1− 1/e)(1 +
p2

2(e− 1)
+

aa

e− 1
+

b

e− 1
)

Theorem 5.1. RANKING has a competitive ratio of at least 0.643 for online bipartite matching

in the random order model

Proof. Let c be the competitive ratio of RANKING in the random order model. By Lemma 5.4,

c = 1
2 + b+ p

2 + aa
2 ≥ 1− 1/e, so b+ aa ≥ b+ aa

2 ≥
1
2 −

1
e −

p
2 . Plugging this into the statement of

Lemma 5.5, we get

c ≥ 1− 1/e+
p2

2e
+

1

2e
− 1

e2
− p

2e
≥ 0.68 +

p2

2e
− p

2e

c ≥ max{0.68 +
p2

2e
− p

2e
, 0.5 +

p

2
}

In the final inequality, the second argument of the max comes from Lemma 5.4 by setting

b = 0. Now, minimizing this quantity over the choice of p, we get c ≈ 0.643 when p ≈ 0.286.

5.1 Discussion

The main idea in our proof that RANKING beats 1 − 1/e in the random order model, was the

following. We showed (in Lemma 5.5) that depending on certain properties of the graph, the

competitive ratio would be larger than 1 − 1/e. On the other hand, we showed (in Lemma 5.4)

that the graph must have these properties, otherwise again the competitive ratio would be larger

than 1 − 1/e. For the former, we used the randomized primal framework. In particular, the

property we showed (and so did [14]) was that the graph must have a significant number of

P -events.

Our result should be seen as a proof of concept. It is possible that by finding the right

“property” that the graph must have (and showing that it does indeed have that property), we

can obtain a tighter analysis. We believe that this is a promising approach.

26

6 Conclusions

In this thesis, we studied variants of the general online allocation problem, including bipartite

maching, budgeted allocation and vertex-weighted bipartite matching. In particular, we studied

these problems in the random order model, when the input arrives in a random permutation. We

use the randomized primal-dual framework of [5] to show that for these problems, simple greedy

algorithms achieve a competitive ratio of 1 − 1/e. This framework was originally used to give

an elegant analysis of the RANKING algorithm of [15] for the classical online bipartite matching

problem in the adversarial model. We show that this framework is also useful in understanding

these problems when the input comes as a random permutation, rather than adversarially. To

achieve this, we exploited appropriately defined monotonicity and dominance properties of the

greedy algorithms. Further, we use this framework to show that RANKING has a competitive ratio

strictly better than 1− 1/e for online bipartite matching in the random order model.

The three main problems that we consider have received much attention recently, and are

well-understood in the adversarial model. In the random order model, our understanding of these

problems is incomplete. Moreover, there are some interesting special cases of the general allocation

problem that remain to be understood. We believe that the randomized primal-dual approach or

some variant of it may be useful in attacking these problems. In the rest of this section, we discuss

some of these open problems and directions for future work.

Online budgeted allocation (AdWords) The special case of online budgeted allocation

when the bids are much smaller than the budgets is well understood. In the adversarial model, the

WEIGHTED-BALANCE algorithm has a competitive ratio 1− 1/e. In the random order model, we

give a simple proof of the result of [10] that GREEDY has a competitive ratio 1− 1/e. However,

when the bids are unrestricted nothing better than a factor 1/2 is known in either the adversarial

or the random order model. It is not hard to see that GREEDY has a competitive ratio 1/2, which

is tight in the adversarial model. We conjecture that GREEDY has a competitive ratio 1 − 1/e

in the random order model. We are not aware of a candidate algorithm that beats 1/2 in the

adversarial model.

Online vertex-weighted bipartite matching in random order model

The PERTURBED-GREEDY algorithm is known to have a competitive ratio 1− 1/e in the adver-

27

sarial model. We show that GREEDY has a competitive ratio 1− 1/e in the random order model.

Is it possible to beat 1 − 1/e in the random order model? In particular, what is the competitive

ratio of PERTURBED-GREEDY in the random order model? In the adversarial model, the ran-

domized primal-dual analysis of RANKING for the unweighted case easily generalizes to an analysis

of PERTURBED-GREEDY in the weighted case. Is there a similar generalization of our analysis in

Section 5 beating 1− 1/e to the weighted case?

Online bipartite matching in random order model There is a gap in the best known

lower bound (0.696) and upper bound (0.727) on the competitive ratio of RANKING for online

bipartite matching in the random order model. Moreover, the best known lower bound has a

compuational proof. We showed that the randomized primal-dual framework lends itself to show

that RANKING has a competitive ratio better than 1−1/e. Can this framework be used to provide

a tight(er) analysis without resorting to computational approaches?

Generalized online matching with concave utilities in random order model Re-

cently, Devanur et al considered a generalization of the online budgeted allocation problem where

budgets are not hard constraints. Instead, the bidders have arbitrary concave functions that spec-

ify how much they are willing to pay. They show a 1 − 1/e competitive algorithm using convex

programming duality, when fractional assignments are allowed. We believe that a suitable vari-

ant of our techniques can be used to show that in the random order model, a suitable variant of

GREEDY has a competitive ratio 1− 1/e.

Online submodular welfare in random order model In the online submodular welfare

problem, each bidder specifies a monotone submodular set function over the ground set of items.

The goal is to produce an allocation that maximizes welfare among the bidders. A recent result

of Kapralov et al ([13]) shows that in the adversarial model, 1/2 is the best possible competitive

ratio. This raises the question if 1/2 can be beaten in the random order model.

References

[1] G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite match-

ing and single-bid budgeted allocations. In Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1253–1264. SIAM, 2011. URL

http://dl.acm.org/citation.cfm?id=2133036.2133131.

28

[2] B. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT

News, 39(1):80–87, Mar. 2008. ISSN 0163-5700. doi: 10.1145/1360443.1360462. URL

http://doi.acm.org/10.1145/1360443.1360462.

[3] N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-auctions

revenue. In L. Arge, M. Hoffmann, and E. Welzl, editors, Algorithms ESA 2007, volume 4698

of Lecture Notes in Computer Science, pages 253–264. Springer Berlin / Heidelberg, 2007. ISBN

978-3-540-75519-7. URL http://dx.doi.org/10.1007/978-3-540-75520-3 24. 10.1007/978-3-540-

75520-3 24.

[4] M. de Berg and U. Meyer, editors. Algorithms - ESA 2010, 18th Annual European Symposium,

Liverpool, UK, September 6-8, 2010. Proceedings, Part I, volume 6346 of Lecture Notes in Computer

Science, 2010. Springer. ISBN 978-3-642-15774-5.

[5] N. Devanur, K. Jain, and R. Kleinberg. Understanding karp-vazirani-vaziranis online matching via

randomized primal-dual. 2000.

[6] N. R. Devanur and T. P. Hayes. The adwords problem: online keyword matching with budgeted

bidders under random permutations. In Proceedings of the 10th ACM conference on Electronic com-

merce, EC ’09, pages 71–78, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-458-4. doi:

10.1145/1566374.1566384. URL http://doi.acm.org/10.1145/1566374.1566384.

[7] J. Feldman, N. Korula, V. S. Mirrokni, S. Muthukrishnan, and M. Pál. Online ad assignment with

free disposal. In WINE, pages 374–385, 2009.

[8] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan. Online stochastic matching: Beating

1-1/e. Foundations of Computer Science, IEEE Annual Symposium on, 0:117–126, 2009. ISSN 0272-

5428. doi: http://doi.ieeecomputersociety.org/10.1109/FOCS.2009.72.

[9] J. Feldman, M. Henzinger, N. Korula, V. Mirrokni, and C. Stein. Online stochastic packing applied

to display ad allocation. In M. de Berg and U. Meyer, editors, Algorithms ESA 2010, volume 6346

of Lecture Notes in Computer Science, pages 182–194. Springer Berlin / Heidelberg, 2010. ISBN

978-3-642-15774-5. URL http://dx.doi.org/10.1007/978-3-642-15775-2 16. 10.1007/978-3-642-

15775-2 16.

[10] G. Goel and A. Mehta. Online budgeted matching in random input models with applications to ad-

words. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, SODA

29

’08, pages 982–991, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

URL http://dl.acm.org/citation.cfm?id=1347082.1347189.

[11] B. Haeupler, V. Mirrokni, and M. Zadimoghaddam. Online stochastic weighted matching: Improved

approximation algorithms. In N. Chen, E. Elkind, and E. Koutsoupias, editors, Internet and Network

Economics, volume 7090 of Lecture Notes in Computer Science, pages 170–181. Springer Berlin / Hei-

delberg, 2011. ISBN 978-3-642-25509-0. URL http://dx.doi.org/10.1007/978-3-642-25510-6 15.

10.1007/978-3-642-25510-6 15.

[12] B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithm for online b-matching. Theor.

Comput. Sci., 233(1-2):319–325, 2000.

[13] M. Kapralov, I. Post, and J. Vondrák. Online and stochastic variants of welfare maximization. CoRR,

abs/1204.1025, 2012.

[14] C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions. In

Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC ’11, pages 587–596,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0691-1. doi: 10.1145/1993636.1993715. URL

http://doi.acm.org/10.1145/1993636.1993715.

[15] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching.

In Proceedings of the twenty-second annual ACM symposium on Theory of computing, STOC ’90,

pages 352–358, New York, NY, USA, 1990. ACM. ISBN 0-89791-361-2. doi: 10.1145/100216.100262.

URL http://doi.acm.org/10.1145/100216.100262.

[16] M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based

on strongly factor-revealing lps. In Proceedings of the 43rd annual ACM symposium on Theory of

computing, STOC ’11, pages 597–606, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0691-1.

doi: 10.1145/1993636.1993716. URL http://doi.acm.org/10.1145/1993636.1993716.

[17] V. H. Manshadi, S. O. Gharan, and A. Saberi. Online stochastic matching: online

actions based on offline statistics. In Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1285–1294. SIAM, 2011. URL

http://dl.acm.org/citation.cfm?id=2133036.2133134.

[18] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online match-

ing. J. ACM, 54(5), Oct. 2007. ISSN 0004-5411. doi: 10.1145/1284320.1284321. URL

http://doi.acm.org/10.1145/1284320.1284321.

30

[19] V. S. Mirrokni, S. O. Gharan, and M. Zadimoghaddam. Simultaneous approximations for ad-

versarial and stochastic online budgeted allocation. In Proceedings of the Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 1690–1701. SIAM, 2012. URL

http://dl.acm.org/citation.cfm?id=2095116.2095250.

31

