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Abstract

Traffic filters block clients from communicating with certain Internet destinations. To prevent

clients from evading the filtering policies, traffic filters may also block access to well-known

anonymizing proxies. In response, researchers have designed more sophisticated circumvention

techniques that rely on implicit proxies lying along the path to unfiltered destinations. An im-

plicit proxy transparently deflects traffic directed to an unfiltered destination toward the filtered

destination. However, the effectiveness of implicit proxies highly depends on their presence in paths

between clients and unfiltered destinations. In this paper we formulate and solve the problem of

proxy placement, and evaluate our algorithms on snapshots of the Internet topology for a variety

of client and destination sets. We also consider smart filtering techniques that select alternate

routes to avoid implicit proxies, as well as the effects of asymmetric Internet routing. Our results

show that a relatively small number of proxies can satisfy a large group of clients across a range

of geographic locations.
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1 Introduction

Network service providers increasingly block, filter, redirect, intercept, or even modify traffic be-

tween their users and popular or controversial websites or other Internet-based services [2, 7, 24].

Most circumvention techniques [1, 8, 10] rely on explicit proxies, where the clients send their pack-

ets to a publis VPN server or an anonymizing proxy like TOR (The Onion Router) [10], which in

turn directs traffic to the filtered destination. However, service providers can block access to these

proxies simply by adding them to the list of filtered IP addresses. This forces the proxy services

to change IP addresses (or even IP prefixes) frequently, in an ongoing cat-and-mouse game with

the traffic filters.

Recent circumvention techniques based on implicit proxies avoid these problems by having the

proxy lie passively on the path from the clients to seemingly innocuous destinations. However, the

success of these techniques depends on placing the implicit proxies at strategic locations that lie

on many paths between clients and unfiltered destinations.

1.1 Decoy Routing to Evade Traffic Filters

Implicit proxies are an effective way to offer services to clients without explicit configuration.

Historically, service providers deployed implicit Web proxies at client access points, to serve cached

content without requiring users to configure their browsers to use a proxy. Using implicit proxies

to circumvent traffic filtering raises additional challenges. First, the proxies must be placed outside

of the region controlled by the traffic filter, making it harder to ensure that client traffic traverses

the proxy. Second, clients must simultaneously obscure the IP addresses of covert destinations (to

evade the traffic filters), and signal the real addresses to the implicit proxy (to ensure the traffic

reaches the intended destination).

During the past few years, three works have proposed effective ways to use implicit proxies to

circumvent traffic filters: Cirripede [17], Decoy Routing [20] and Telex[25]. Even though there are

subtle differences between them, Cirripede, Decoy Routing and Telex share a common use case,

shown in Figure 1. A client accesses Internet services through a traffic filter that blocks access

to the address of the covert destination. If the client tries to connect to the covert destination

explicitly, the connection is blocked by the filter (1). To circumvent the filter, the client initiates

a connection to a non-filtered destination address (2). In reality, this connection camouflages a
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covert signal with the intent of the client to connect to the implicit proxy. A router on the path

of the flow detects the covert signal and redirects the flow to the implicit proxy (perhaps running

directly on the router), which in turn directs the traffic to the covert destination (3). Cirripede,

Decoy Routing and Telex have given different names to the non-filtered destination as well as the

router-proxy combination. Without loss of generality, we use the nomenclature used in Decoy

Routing: we refer to decoy destinations for non-filtered destinations and decoy routers (DR) for

the traffic-deflecting components. We refer to the overall scheme as decoy routing.

1	  

2	  

3	  

Client	  
Decoy	  Des0na0on	  

Decoy	  Router	  

Covert	  	  
Des0na0on	  

Figure 1: Decoy Routing Scheme

The success of decoy routing rests on two conditions: 1) the traffic filter cannot distinguish

the covert signal from legitimate traffic and 2) the DR lies on the path between client and decoy

destination. The former condition is solved by injecting pseudo random values in traffic headers.1

The latter generates the more complex problem of Decoy Router Placement.

1In Cirripede the signal is hidden within the initial sequence number of TCP SYN packets. In Decoy Routing
and Telex the covert signal is the manipulation of the random nonce in the Hello packet in the TLS protocol.
Specifically, in Decoy Routing the nonce is a shared secret between client and DR while in Telex it is the DR’s
public key.
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1.2 Optimizing Decoy Router Placement

Since clients do not send packets directly to the decoy router, traffic filters cannot easily block

access. To block access, the service provider has to block all traffic that traverses the DR en route

to decoy destinations. On the other hand, the DR must lie on the path between the client and the

decoy destination. That is, effective DR placement is not just important for good performance—it

is crucial for the solution to work in the first place. Placing DRs at many locations throughout

the Internet could be prohibitively expensive: the goal is to place them strategically to cover many

filtered clients at minimal cost.

The decoy router placement (DRP) problem is the problem of placing decoy routers in the

network to maximize the number of filtered clients that traverse DRs en route to decoy destina-

tions. A ‘näıve’ solution would deploy a decoy router on each path between a client and a decoy

destination. A more sophisticated solution would strategically place decoy routers at locations

that appear on many paths, to maximize coverage with as few decoy routers as possible.

Previous research in the area has stopped short of exploring the optimal number and distri-

bution of DRs. The work in Cirripede [17] touches on the subject suggesting that two Tier-1

Autonomous Systems (ASes) would need to be instrumented, but many questions remain about

how to place decoy routers, and how to handle smart traffic filters that attempt to circumvent the

decoy routers.

In this paper we make the following contributions:

� We formulate the DRP problem as a monitor placement problem, and show that the problem

is NP hard.

� We present effective heuristics to find efficient DRP solutions and propose two metrics to

evaluate them.

� We introduce a more challenging variant of the DRP problem, DRP against smart filtering

(DRPSF), and show its complexity and inapproximability bounds.

� We evaluate the DRP and DRPSF problems on a wide range of real-world scenarios and

show that efficient DR placement is indeed feasible no matter the clients, decoy destinations,

filtering level or path properties.
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� Lastly, we relate the results of the DRP problem to the structure of the network and conclude

that the latter makes efficient placement possible.

2 Decoy Router Placement

In this section we formulate the DRP problem (§2.1). Then, in § 2.2 and § 2.3, we propose two met-

rics to evaluate candidate solutions, and their respective algorithms for finding such solutions. We

also report the theoretical results in support of the relationship between the algorithms’ solutions

and the optimal solution.

2.1 Decoy Router Placement Problem

We abstract the AS-level Internet as a graph G = {V,E} of nodes V and edges E. Nodes v ∈ V

represent Autonomous Systems (ASes), and edges e ∈ E represent logical connections between

them. An AS, or domain, is a collection of devices under the control of a single entity. We model

the components of the decoy routing scheme with respect to the AS-level graph G.

Clients and Decoy Destinations Clients and Decoy Destinations are nodes in the graph. In

particular, we define a set C ⊂ V of clients and a set D ⊂ V of decoy destinations. It is worth

noting that in our model no node can act as both a client and decoy destination.2

Paths Traffic flows from a node i toward node j on path pij . Since traffic at the AS level is

often asymmetric, path pji might not be the same as path pij . Initially, we make the assumption

that there is a single path from client i to decoy destination j. We later consider the case where

a client can choose to reach the decoy destination through a set of routes (thus enabling a smart

filter to avoid the route with a DR). As, for now, every client-destination pair is connected by a

single path, we shall use the terms pair and path interchangeably. We define P as the set of all

paths between clients in C and decoy destinations in D.

The Cirripede, Decoy Routing and Telex schemes differ in whether or not their decoy routers

need to observe return traffic. If a decoy router is on path pij (client i to destination j) and

pji then the router has more information and control over the flow. The decoy routers in the

2C ∩D = ∅
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Notation Definition

C set of Clients

D set of Decoy Destinations

pij Path from ci ∈ C to dj ∈ D

P i set of Paths between ci ∈ C and D

P set of Paths between C and D

R DR Candidate Solution set

Nx AS neighbor set of AS X

P i
j set of all valid paths between ci and dj

Table 1: Decoy Router Placement Notation

Telex [25] architecture must observe traffic in both directions. We call this the bidirectional re-

quirement. Cirripede and Decoy Routing [17, 20] only need to observe traffic on path pij (termed

unidirectional). Clearly, the bidirectional requirement will reduce the number of available decoy

destinations provided by each DR, as discussed in § 5.4.

Decoy Routers We associate a DR with either a node or edge in the graph. Thus, our analysis

will identify either entire ASes or individual inter-AS links to instrument with DRs. Identifying

ASes to cover gives a bound on the number of individual organizations that would be needed to

deploy decoy routers. Identifying inter-AS links to instrument is more fine grained and helpful in

the event that the decoy router is simply a bump-in-the-wire device instead of an actual router.

We define R as the set of candidate DR locations. We assume that a client node will not host

DRs.3

The DRP problem is therefore equivalent to finding a set of nodes or edges R to cover paths

in P . The goal is to find a solution R which covers P “efficiently”.

We give a specific formulation of the problem: given a fixed number of DRs k, what is the best

placement solution R for these DRs? To evaluate a solution we propose two metrics: fraction of

pairs covered and fraction of α-covered clients. We discuss these metrics in the following

sections.

For clarity, the notation introduced so far is summarized in Table 1.

2.2 Fraction of Pairs Covered

The first metric we propose, fraction of pairs covered, evaluates the goodness of a solution R of

size k by the fraction of client-decoy destination pairs in P covered. The fraction of pairs covered

3R ∩ C = ∅
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is equivalent to the average success rate of any client c to leverage successfully the decoy routing

scheme when picking a decoy destination d at random from set D.

Given this metric, the goal of the the DRP problem is to maximize the fraction of pairs covered

in P with a fixed number k of routers R:

maxR:|R|=k|{p ∈ P |∃r ∈ R s.t. r ∈ p}|

We refer to this problem as FPC-k.

2.2.1 Complexity

We prove the following inapproximability result for FPC-k.

Theorem 1. FPC-k is NP-hard to approximate within a ratio better than 1− 1
e .

Proof. To prove the theorem, we show an approximation-preserving reduction from the MAX-K-

COVER problem to FPC-k. In MAX-K-COVER the input is a universe of elements U = {1, . . . , n}

a collection of subsets of the universe S1, . . . , Sm ⊆ U , and a parameter 1 ≤ k ≤ m. The objective

is to find the k subsets that cover the maximum number of elements in U . Feige [11] shows that

MAX-K-COVER cannot be approximated within a ratio better than 1− 1
e . We now show a simple

approximation-preserving reduction from MAX-K-COVER to FPC-k. Given an instance of MAX-

K-COVER, construct a network graph as follows. For every element in e ∈ U create a client vertex

ce and a decoy destination vertex de, and for every set Si create a candidate DR vertex CDRi.

Now, create an edge between every client ce and destination de and every vertex CDRi such that

e ∈ Si. Observe that every solution to MAX-K-COVER translates to a solution to FPC-k with the

same value (simply choose the DRs corresponding to the chosen subsets in MAX-K-COVER), and

vice versa. Thus, an approximation ratio better than 1 − 1
e for FPC-k would imply an improved

approximation ratio for MAX-K-COVER.

We now present a greedy algorithm with a (tight) 1 − 1
e approximation ratio, which we will

refer to as GreedyPairs.
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2.2.2 GreedyPairs Algorithm

A greedy algorithm’s trademark is to make the locally optimal choice in each of its iterations. For

FPC-k, the local optimal choice is picking the location covering the largest number of (previously

uncovered) < c, d > pairs.

GreedyPairs starts by considering P as the set of outstanding paths OP = P . Then, it itera-

tively picks the most popular location, updating set OP accordingly. We summarize GreedyPairs’s

steps in Alg. 1.

Algorithm 1 GreedyPairs

� Ranking: rank each location based on the number of paths in OP traversing it

� Greedy Choice: pick element x with highest rank (breaking ties arbitrarily). Add x to R

� Input Update : update outstanding paths by removing from OP all paths Px containing
element x.

� Termination: if |R| = k, stop. Otherwise, repeat from Step 1

We prove the following.

Theorem 2. GreedyPairs provides a (1− 1
e ) approximation to the optimal solution in FPC-k.

Proof. Let DR ⊂ V be the set of all decoy routers and CDR ⊂ DR be the candidate solution

set for decoy routers. We define the function f : 2CDR → N+ that maps every subset S ⊆ DR,

f(S) to the number of paths in P that traverse at least one element in S. Observe that FPC-k is

equivalent to finding a set O ⊆ CDR of cardinality k for which the value of f(O) is maximized.

We make the following observations about f . Clearly, f is nondecreasing (as the number of

paths covered cannot decrease as more DRs are selected). Also, the following “decreasing marginal

contribution” property holds for f :

∀S, T s.t. S ⊂ T ⊂ CDR, ∀j ∈ DR \ T,

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T )

In other words, the marginal utility of adding an element to a set S decreases as the number

of elements in S increases. To see this, simply observe that, for every specific j ∈ CDR, the more

DRs are chosen the smaller is the set of additional paths that can be covered by adding j to the
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set of selected DRs (that is, j’s marginal contribution decreases as the set of previously chosen

DRs increases).

[21] shows that for functions that are (1) nondecreasing, and (2) have the above decreasing

marginal contribution property, a simple greedy algorithm, which translates to GreedyPairs in our

context, approximates the optimal solution (i.e., the value f(S) across all sets S ⊆ CDR of size

k) within a factor of 1− 1
e .

2.3 Fraction of α-covered clients

The second metric we propose focuses on client coverage. Each client ci connects to several, if

not all, decoy destinations d ∈ D through a set of paths P i. P i ⊂ P is the set of all paths

with source ci. The key observation is that P i does not need to be fully covered for a client to

leverage decoy routing. Rather, an acceptable fraction α of P i covered guarantees the client a good

chance of leveraging decoy routing. For example, for α = 0.5, the client has a fifty percent chance

of successfully leveraging the decoy routing scheme when randomly picking a decoy destination.

Thus, we consider a client to be covered if α of its pairs are covered.

Through the notion of α-covered clients, we evaluate the goodness of a solution R as the

fraction of α-covered clients (FαCC). Similarly to §2.2, we can formulate the DRP problem as

the problem to maximize the number of α-covered clients given a fixed solution size k:

maxR:|R|=k|{c ∈ C|C is α− covered by R}|

We refer to this problem as FαCC-k.

2.3.1 Complexity

We note that an approximation-preserving reduction from the DENSEST-SUBGRAPH prob-

lem [12, 15] to FαCC-k (when α = 1) gives strong evidence that, unlike with FPC-k, no con-

stant approximation for this problem exists (as, to date, no constant-approximation algorithm for

DENSEST-SUBGRAPH was found). We present a variation of the greedy algorithm presented in

§2.2 for this problem which fares well in practice.

8



2.3.2 GreedyPairsPercetage Algorithm

We slightly change GreedyPairs as follows. GreedyPairsPercentage, adds a fifth step to each

iteration of GreedyPairs to account for clients that have already been α-covered. GreedyPairsPer-

centage’s steps are summarized in Alg. 2:

Algorithm 2 GreedyPairsPercentage

� Ranking: rank each location based on the number of paths in OP traversing it

� Greedy Choice: pick element x with highest rank (breaking ties arbitrarily).

� Input Update : update outstanding paths by removing from P all paths Px containing
element x.

� Client Update: remove all paths p ∈ P i from OP if α paths in P ihave been covered

� Termination: if |R| = k, stop. Otherwise , repeat from Step 1

As stated in the previous section, the solution R produced by GreedyPairsPercentage does not

have provable approximation guarantees. In other words, we do not know what kind of relation it

has to the ideal optimal solution. Yet, it is of empirical value and a vehicle for comparison against

GreedyPairs.

3 DRP Against Smart Filtering

The Internet is a dynamic space and BGP [22], the inter-domain routing protocol, allows an AS

to change paths for an IP prefix over time. Without digging deep into the mechanisms of inter-

domain routing, let us note that an AS X can obtain multiple paths to the same prefix. These

valid paths are distributed to X by its neighbors.

In terms of the decoy routing scheme, a client could have more than one path to a decoy

destination. Having more than one path to the same decoy destination gives a filtering entity, e.g.

the ISP, a chance to circumvent decoy routing.

Let’s assume that the filtering entity can discover the presence of a DR on one of its paths.4

Once the DR-covered path is discovered, the filterer can choose a DR-free path to the same decoy

destination to circumvent the DR deployment. An example scenario is shown in Figure 2.

We refer to this new problem as decoy router placement against smart filtering (DRPSF). In

4For example, by obtaining a copy of the decoy routing software and acting as a client.
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Decoy	  Router	  

Decoy	  Des,na,on	  

1	  

2	  

Client	  

Figure 2: A DR deployment covers the path between a client and a decoy destination (1). A smart
filtering entity discovers the DR and chooses a neighboring path to reach the decoy destination,
thereby circumventing the DR (2).

DRPSF, an effective candidate solution R covers every valid path between a < c, d > pair. In the

following sections we formally define DRPSF, analyze its complexity and propose an algorithm to

calculate candidate solutions sets.

3.1 DRPSF Problem Formulation

To analyze DRPSF, we need to introduce the notation for AS neighbors. In a graph G = {V,E},

vx ∈ V neighbors vy ∈ V ⇐⇒ ∃e ∈ E|vx ∈ e, vy ∈ e. We denote the set of ASx’s neighbors as

Nx. As stated previously, neighbors are important because they provide filtering entities leeway

to circumven the decoy routing scheme.

The introduction of multiple valid paths between a client and a decoy destination identifies a

client-destination pair < c, d > with a set of paths P i
j rather than a single path pij (§2.1). Formally,

P i
j is composed of the path pij plus all feasible paths from Ni to dj :

P i
j : pij ∪ pxj |x ∈ Ni and ∃pix

The newly introduced notation is summarized in Table 1.

Overall DRPSF has introduced two changes: the number of paths to cover in P has increased

due to neighboring paths and each < c, d > pair now has more than one path. Nevertheless, the

metrics to evaluate DRP, (§ 2.1) are still valid for DRPSF.
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3.2 Complexity

From a complexity standpoint, losing the single path-per-pair assumption means the approxima-

tion guarantees of Theorem 2 no longer hold. Thus, GreedyPairs no longer provides a constant

approximation to the optimal solution with respect to FPC-k (§ 2.2).

Posed from a different perspective, though, both the DRP and DRPSF problems relate to an

interesting theoretical bound. We refer to min-k as the problem of finding the minimum number

of DRs to cover every path between clients and decoy destinations. Unlike FPC − k, min-k does

not measure partial coverage of pairs, but rather the number of resources used to achieve total

coverage. With respect to the min-k objective, DRP and DRPSF are similar from a theoretical

perspective.

We prove the following inapproximability result for min-k.

Theorem 3. min-k is NP-hard to approximate within a ratio better than ln(|P |).

Proof. To prove the theorem, we show an approximation-preserving reduction from the SET-

COVER problem to min-k. In SET-COVER the input is a universe of elements U = {1, . . . , n}

a collection of subsets of the universe S1, . . . , Sm ⊆ U . The objective is to find the minimum

number of subsets needed to cover all elements in U . Feige [11] shows that SET-COVER cannot

be approximated within a ratio better than ln(n). We now show a simple approximation-preserving

reduction from SET-COVER to min-k. Given an instance of SET-COVER, construct a network

graph as follows. For every element in e ∈ U create a client vertex ce and a decoy destination vertex

de, and for every set Si create a candidate DR vertex CDRi. Now, create an edge between every

client ce and destination de and every vertex CDRi such that e ∈ Si. Observe that every solution

to SET-COVER translates to a solution to min-k with the same value (simply choose the DRs

corresponding to the chosen subsets in SET-COVER), and vice versa. Thus, an approximation ratio

better than ln(|P |) for min-k would imply an improved approximation ratio for SET-COVER.

We now show that by slightly changing GreedyPairs it is possible to achieve a (tight) ln(|P |)

approximation ratio.
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3.3 GreedyPairs for Min-k Algorithm

To solve for min-k the only alteration we have to apply to GreedyPairs is in its termination

condition. Specifically, GreedyPairs does not terminate after k iterations, but only after OP is

empty. Below we report the changes to the algorithm GreedyPairs to match the min-k formulation:

Algorithm 3 GreedyPairs for Min-K

� Ranking: rank each location based on the number of paths in OP traversing it

� Greedy Choice: pick element x with highest rank (breaking ties arbitrarily). Add x to R

� Input Update : update outstanding paths by removing from OP all paths Px containing
element x.

� Termination: if OP is empty, stop. Otherwise , repeat from Step 1

This modified GreedyPairs algorithm has the following approximability guarantee:

Theorem 4. GreedyPairs provides a ln(|P |) approximation to the optimal solution in min-k.

Proof. To prove the theorem, we show an approximation-preserving reduction from min-k to SET-

COVER (using similar arguments to those used in the proof of our inapproximability result above)

and observe that the greedy ln(n)-approximation algorithm for SET-COVER translates to Greedy-

Pairs in our context.

Thus, when solving for min-k GreedyPairs returns a solution which is logarithmic in the input

to the optimal solution, no matter if we are in a regular DRP setting or a more complex DRPSF

one.

4 Evaluation Framework

In this section we describe the framework used to support the analysis of the DRP problem. We

start by presenting the data used for the analysis in §4.1. All the datasets are publicly available

at CAIDA [4]. Then, in §4.2 we discuss the step that precedes the analysis: how we generate the

paths P that are the input to a DRP problem. Lastly, in §4.3 we discuss the core of the analysis:

the execution of the algorithms on the paths generated in the previous step.
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4.1 AS-Level Topology and Routing Policies

We use CAIDA’s dataset on AS relationships [6] to construct the AS network graph. The dataset

is a weekly updated archive of business relationships between ASes in the network. Relationships

are important because they dictate the flow of traffic on the Internet: an AS establishes its routing

policies based on relationships with its neighbors. Thus, a path between any pair of ASes in the

network derives from a valid composition of these relationships.

Unfortunately these relationships are not publicly available. To generate such a dataset, CAIDA

first collects data5 from geographically and topogically diverse locations, applies a relationship-

inference algorithm and lastly validates them through cross-comparison.[9] The algorithm used for

inference maintains a conservative approach to avoid incorrect results. Thus, not every relationship

is present in the dataset. The datasets used for the analysis contain over 150000 relationships to

model approximately 50000 distinct ASes.

We also use CAIDA’s dataset on AS information to match each AS to its country [5] so we can

evaluate DR placement for clients and decoy routers in various countries.

4.2 AS-Path Generation

To evaluate a DRP algorithm, we first need to generate the paths P between clients and decoy

destinations. We use the routing tree algorithm specified in Goldberg’s et al. ([14]) to generate

such paths.

The algorithm models the flow of traffic by evaluating relationships between neighboring ASes.

Starting from a root AS, the decoy destination in our case, relationships with neighbors are con-

sidered in a specific order to maintain network stability conditions [13]. Specifically, the algorithm

first takes into account customer-to-provider relationships. A customer AS conveys traffic to its

provider AS for any destination. The second stage adds to the set of valid links peer-to-peer

relationships: one hop links between ASes that convey each other’s traffic. The last stage adds

provider-to-customer links. At completion, the tree of links represents paths between every AS in

the network and the root AS. We query the tree for paths between clients (nodes in the tree) and

the decoy destination (the root of the tree) and add these to P . We generate a tree for each decoy

destination to obtain all paths between all clients and decoy destinations.

5BGP tables snapshots from Routeviews [3] servers
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Noteworthy is that this process only generates paths from clients to decoy destinations. Where

both directions are required (i.e. , to study Telex in §5.4), the path from the decoy destination to

the client is generated by running routing-tree algorithm with clients as the root of the tree.

Overall, a set P can range in size from a few hundred paths to several millions of paths. The

size depends on the sizes of sets C and D as well as on the amount of information present in the

original relationship dataset.

4.3 DRP Algorithm Execution

The core part of the analysis is the execution of the algorithms proposed in § 2.2.2 and § 2.3.2 on

the set P generated in the previous step. The algorithms start by scanning the files containing P

and storing their states: information on paths, pairs and clients. The appropriate data structures

are built to facilitate the successive iterations of the algorithm; in particular, mappings between

nodes/edges and pairs, and pairs and clients, as well as the ranking for each node/edge are kept.

Once the entire set has been parsed, the algorithms start iterating to find the candidate solution.

In each iteration a candidate node/edge location is chosen by scanning the rankings. The mappings

are then updated accordingly.

Running the algorithms on very large data sets (10-15 GB) requires large amounts of memory.

To meet those memory requirements we used the cloud. We run the analysis on the extra large

VM instances of Amazon EC2 that have up to 34 GBs of RAM memory.

5 Results

We define a DRP problem as a function of six variables DRP(C,D,P,M,F,S): clients, decoy desti-

nations, paths, metrics, filtering levels and solution types.

Clients C : We associate clients to countries. In other words, a set of clients is the set of

all ASes in a specific country. The matching is based on CAIDA’s AS information dataset [5].

Associating a set of clients with a country is appropriate because traffic filtering is often dictated

by government entities. We examine several countries of various sizes and geo-locations.

Decoy Destinations D : We choose three decoy destination sets of different sizes and prop-

erties: ROW, U.S.A. and E-commerce. ROW (rest-of-the-world) considers every AS outside the

client set C as a decoy destination. This is the ideal set for any DR scheme because everything is a
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potential decoy. U.S.A. is the decoy destination set of all ASes in the United States. It represents

a large fraction of popular destinations on the Internet. E-commerce represents a small set of

popular web commerce sites. Decoy Routing and Telex [20, 25] leverage the TLS protocol, used in

e-commerce transactions.

Paths P : We include different path properties to accomodate for different implementations of

the Decoy Routing architecture. Decoy Routing [20] and Cirripede [17] only need DRs to be placed

on the forward path between the client and decoy destination. Thus, we only need to consider

paths in one direction (unidirectional paths). Telex, instead, needs a DR to be present on both

the forward and return path. We defined this requirement as the bidirectional paths requirement

in § 2.1.

Metrics M : We have proposed two algorithms to optimize the metrics we have defined in §2.2

and 2.3. We evaluate the solution of a problem by applying a specific algorithm and measuring

the “goodness” of the solution proposed through its respective metric.

Filtering Level F : In § 3 we have labeled a filtering entity’s attempt to work around decoy

routing as smart filtering and defined the DRPSF problem. We refer to the original DRP problem,

where no attempt to work around decoy routing is made by the filtering entity, as na’́ıve filtering.

Solution Type S : We consider two strategies for picking candidate solutions: one focuses on

nodes in the AS-level graph, the other on edges.

Clients C
China Egypt Germany

Italy Iran Libya
Russia Spain Syria

Decoy Destinations D E-commerce U.S.A. ROW

Paths P Unidirectional Bidirectional

Metrics M FPC FαCC

Filtering F Näıve Smart

Solution Type S Nodes Edges

Table 2: Decoy Router Placement Problem Variables

The values for each variable are summarized in Table 2.

In the following sections we analyze the DRP problem by focusing on each variable. The

approach we follow is to define a specific scenario as a combination of the six DRP variables and

to compare results when one or two variables change. The goal is to receive a wider spectrum of

results from which to draw conclusions and to highlight the importance of each variable in the

problem. We then tune multiple parameters at once to get a better understanding of how many
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decoy routers might be required in extreme scenarios.

5.1 Decoy Routers on Nodes vs. Edges
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Figure 3: Nodes analysis across different countries

We start by comparing solution comprised of nodes as opposed to edges. Picking nodes provides

a coarser analysis: for each picked node we assume we can intercept all traffic traversing the AS.6

Picking edges provides a more fine grained analysis as we restrict the location of the DR down

to inter-AS links, but can prove to be less efficient if traffic is equally distributed amongst many

edges. We study the two solution types across every country from which we have collected data

and set the decoy destinations set to be the largest possible (ROW). We consider only paths in the

forward direction (unidirectional) and a näıve filtering level. We apply the GreedyPairs algorithm

6This is achieved by instrumeting all of its ingress-egress routers.
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Figure 4: Edges analysis across different countries

and evaluate the solution by metric FPC(§ 2.2).Results are shown in Figures 5.1 and 5.1. The two

figures plot the Complementary Cumulative Distribution Function (CCDF) of the fraction of pairs

covered. In other words, the fraction of pairs still to be covered given a number of nodes or edges.

Both graphs show curves with similar behavior: an exponential decrease followed by an asymp-

tote. The exponential decrease explains that a small set of elements (either nodes or edges) cover

the majority of pairs. Adding these ‘popular’ locations to the solution is of tremendous value. Af-

ter a given number of elements, the marginal value of adding more becomes negligible (asymptote).

This ‘break point’ can be considered as the optimal trade-off between pair coverage and resources

used.

Table 3 shows the fraction of pairs covered with a fixed number of elements k, as per problem

FPC-k § 2.2. The value k is picked to the right of every break point in each curve. In the case
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Country Nodes Edges
spain 0.82 0.40

germany 0.89 0.47
russia 0.92 0.74
italy 0.97 0.64
china 0.95 0.84
iran 0.99 0.99

egypt 1.0 0.97
syria 1.0 0.99
libya 1.0 1.0

Table 3: Fraction of < c, d > pairs covered with 30 elements

of edges, the fraction of paths covered with a fixed number of elements is lower with respect to

nodes.

We acknowledge the fact that placing a DR on one inter-AS link is different from placing DRs on

an entire AS, yet concentrating DRs on a small number of specific locations may prove easier than

distributing DRs across distant and disparate locations. Furthermore, even for larger countries,

i.e. , Spain Germany Italy and Russia, that present a larger number of ASes and therefore higher

number of paths, concentrating DRs on a few nodes mantains a high coverage value. Thus, we

conclude the following: 1) ‘popular’ nodes receive decoy routing traffic from several links and this

explains the gap in coverage between nodes and edges and 2) focusing on a small number of specific

locations achieves high coverage no matter the geo-location of the client set. We suspect the high

coverage achieved regardless of the client set is due to the fact that the ‘popular’ nodes are large

ASes, probably Tier-1 ASes. We investigate this matter further in the following sections.

From this point forward we will continue our analysis by focusing on choosing nodes.

5.2 Locations of Decoy Destinations

Ideally, we would like for every AS outside of the client set to be a potential decoy destination. This

would make filtering very hard if not impossible. On the other hand, choosing a small set of decoys

could scale the deployment of DRs down orders of magnitude and still prove to be detrimental

to the filtering entity’s interests. Figure 5 shows the CCDF across different decoy destination

sets. Each data point in the curves represents the median value over all countries from which we

collected data. The horizontal red line marks 90% coverage.

The scenario variables used are equal to the ones used in the previous section.
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Figure 5: Comparison between solutions proposed by GreedyPairs for different decoy destinations
sets.

Results show an almost insignificant growth in the number of nodes needed to be deployed

for very differently sized decoy destination sets. In fact, the E-commerce set is comprised of four

ASes and needs a number of nodes linear with the decoy destination set to be covered. Instead,

U.S.A. and ROW sets have more than 15000 ASes and only need around ten and thirteen decoy

routers respectively to achieve the same fraction of pairs covered. Choosing a small number

of decoy destinations makes the deployment of DRs possible and even trivial: equip the decoy

destination themselves with DRs. The filtering entity, though, may choose to completely block

access to the small set of decoy destinations without much collateral damage. On the other

hand, having everything outside the client set be a possible decoy leaves the filtering entity no

option but disconnect the client AS set entirely from the Internet. Since this option comes with

a relatively bigger yet not prohibitive DR deployment, we believe it is desirable to consider large

19



decoy destination sets for real DR deployments.

5.3 Näıve vs. Smart Filtering

In §3 we introduced the DRPSF problem as the variation of the DRP problem when facing a

proactive, smart filtering entity. In this part of the analysis we assess the differences between

solutions proposed when applying the GreedyPairs against a näıve and smart adversary. It is

worth remembering that the main difference between DRP and DRPSF is that paths P in DRP

are agumented by valid neighboring paths in DRPSF’s P ′. Furthermore, a < c, d > pair is now

described by more than one path in the DRPSF problem.

The scenario considered is the following: we set the decoy destination set to ROW, consider a

pair covered if the forward path contains a DR, and apply GreedyPairs to P and P ′. We evaluate

the solutions through metric FPC and plot the respective CCDFs.

Results are shown in Figure 6. The curves show the median values across all countries.

The smart filtering curve exhibits the same behavior as the naive one: an exponential decrease

followed by an asymptote. Thus, even with a higher level of filtering, picking a small number of

popular locations accounts for coverage of the majority of pairs.

The difference between the two curves is that the smart filtering one presents lower coverage

values with respect to the naive curve. This difference is a constant value ˜10 %. Our interpretation

is that this is because most of the paths in P ′ that are not present in P , i.e. paths from clients’

neighbors to the decoy destinations, intersect the original paths, i.e. the paths in P , somewhere

along the way. Therefore, having twice as many paths in P ′ as in P only slightly affects the overall

results.

Our interpreation is that the intersection happens at locations where traffic from different ASes

converges to, e.g. in the backbone Tier-1 ASes.

5.4 Unidirectional vs. Bidirectional Paths

In § 2.1 we described the different requirements the implementations of Decoy Routing, Cirripede

and Telex [17, 20, 25] have in terms of DR placement. In particular, Decoy Routing and Cirripede

only need the DR to lie on the forward path between a client and decoy destination. Telex requires

the DR to lie on both the forward and return path. We defined these two different requirements the
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Figure 6: Comparison between näıve (DRP) and smart filtering (DRPSF) problem solutions pro-
posed by algorithm GreedyPairs.

unidirectional and bidirectional paths requirements. In the bidirectional paths case, the forward

and return path might not coincide. In fact, BGP’s flexibility allows ASes to make asymmetric

routing decisions to favor their own economic benefits. Therefore, we calculate paths from C to D

as well as D to C. To cover < c, d > we can only choose a node or edge present in both paths.

We consider a scenario similar to the ones in the previous sections: decoy destination set is

ROW and filtering is näıve.

Figure 7 shows the CCDF of metric FPC metric for both bidirectional and unidirectional paths.

Each curve is the median values across all countries considered.

The bidirectional paths curve shows lower values of pair coverage (higher CCDF values) with

respect to the unidirectional paths curve. The asymmetry of Internet routing makes it hard for

forward and return paths to intersect anywhere but at the decoy destination. This property of the
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Figure 7: Unidirectional - Bidirectional Paths Comparison

network offers advantages to the Cirripede and Decoy Routing implementation which only need to

lie on the forward direction. It seems that a Telex deployment would prove to be less efficient and

largely restrict the number of candidate locations.

Noteworthy is that we tried to evaluate the impact of bidirectional paths on an edge deployment.

The dataset showed that the majority forward and return paths shared no common edges, and it

was impossible to produce meaningful results.

Nevertheless, the bidirectional curve is similar to those we have seen in previous analyses: a

small set of popular locations is sufficient to cover the majority of pairs. We conclude that these

popular locations are such even if the source and destination nodes are very different. We reiterate

our belief that such locations are found in the backbone of the network and associate them with

Tier-1 ASes.
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5.5 Coverage Metrics

So far in our analysis we have only applied the algorithm GreedyPairs and evaluated solutions

by metric FPC. We have also proposed a metric centered around client-coverage, FαCC, and an

algorithm, GreedyPairsPercentage, to optimize solutions for this metric. GreedyPairsPercentage

does not have the approximability bounds ofGreedyPairs, yet it might prove worthy of finding more

efficient DRP problem solutions. In this part of the analysis we will compare the two algorithms

and evaluate solutions found by GreedyPairs and GreedyPairsPercentage through metric FαCC

(§2.3). In other words, we test GreedyPairs’s value for client coverage.

We consider two very similar scenarios. In both, the set of decoy destinations considered is

ROW and the filtering level is smart. The first scenario, though, accounts for unidirectional paths

while the second assumes bidirectional paths. The results for both scenarios are shown in Figure

8.

In the figure, GreedyPairs is labeled as ‘gp’ and GreedyPairsPercentage as ‘gpp’. The solid

lines are the curves for the unidirectional paths scenario. As we can see, there is not a significant

difference between them. Thus, GreedyPairs does well at α-covering clients. The interpretation is

that paths from a client to all decoy destinations, represented by set P i, are similar among each

other. In conjunction with the results from § 5.3, we conclude that a client does not only reach

one decoy destination through similar paths, but reaches also different decoy destinations through

similar paths.

The dashed curves refer to the scenario with bidirectional paths. These two curves show,

surprinsingly, a considerable difference between GreedyPairs and GreedyPairsPercentage. In fact,

GreedyPairs outperforms GreedyPairsPercentage. The requirement of DR deployment at the in-

tersection of forward and return paths forces the algorithms to pick ‘popular’ locations. Picking

‘popular’ locations is the strategy followed by GreedyPairs. GreedyPairsPercentage, instead, pre-

emptively excludes paths if a client is α-covered. This exclusion, we believe, decreases the popu-

larity of certain locations and induces the greedy choice to be less effective in later stages of the

algorithm.

In conclusion, we believe the popularity of locations is heavily skewed in the network. This

distinguishes a set of locations that are traversed by the majority of paths, i.e. Tier-1 ASes, from

others which are traversed by a small number of paths, i.e. stub ASes. If we artificially take that
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Figure 8: Comparison between algorithms GreedyPairs - GreedyPairsPercentage over metric
FαCC.

skewedness away, we inadvertedly also exclude popular locations from our solution.

5.6 Variable Interaction

We have studied how changing a single variable affects the required deployment of decoy routers. To

fully understand how the variables interact would require an enumeration of all possible parameters.

Instead, we consider two scenarios that could be referred to as the ‘best and ‘worst’ possible case.

We believe that the results of the unstudied scenarios should be within these two sets, or at least

close to them.

In both scenarios we use the FPC metric and use the ROW destination sets. The remaining

parameters are chosen based upon their performance in the individual analysis. The best case

scenario instruments ASes instead of edges, assumes that the decoy routing scheme only needs to
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Figure 9: Best case analysis across different countries. The best case is a node deployment over
unidirectional paths and with a näıve filtering level.

observe paths in the < c, d > direction (unidirectional), and further assumes that the adversary is

unable to adjust its paths to avoid decoy routers. The worst case scenario is the opposite.

The best case scenario is depicted in Figure 5.6 and the worst case is shown in Figure 5.6. The

difference is fairly dramatic. As we have seen in previous sections a small number of nodes can

provide substantial coverage of the measured countries in the best case. However, in the worst

case it appears that a substantial deployment would be necessary to cover significant fractions of

many countries.
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Figure 10: Worst case analysis across different countries. The worst case is an edge deployment
over bidirectional paths and with a smart filtering level.

5.7 Decoy Routers Locations

We have given a wide range of perspectives on the DRP problem by analyzing each of its variables

and how these effect the solutions proposed by algorithms GreedyPairs and GreedyPairsPercentage.

In the interpretation of the results, we have shown that the DRP problem can be efficiently solved

with a small set of decoy routers placed at very popular locations. We have also associated these

popular locations with large ASes, i.e. Tier-1 ASes.

To confirm such statements, we dedicate the last part of the analysis to answer the following

question: where in the network is the best location for decoy routers? We approach this question

by verifying the locations of the ASes contained in the solution sets proposed by our algorithms.

We distinguish between two positions on each path: close to the endpoints, e.g. client and decoy
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destination, or in the ‘middle’ of the path. We associate the middle of the path with positions

‘deeper’ in the network, where we find Tier-1 and Tier-1 ASes.

We use the following approach: we take the solutions proposed by the scenarios addressed in

earlier sections and analyze where on each path the candidate locations are situated. Specifically,

we consider all the countries from which we have collected data and the decoy destination set

ROW together with different combinations of the variables for path properties and filtering level.

Figure 11 shows the results of our analysis. We have four combinations between the variable for
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Figure 11: Analysis of the location of candidate DRs in the client-decoy destination paths. On the
X-axis we identify three significant locations in each path: the client, the decoy destination and
the middle of the path. Each curve in the graph represents the probability distribution function
of the solutions with respect to different scenarios.

path properties (unidirectional, bidirectional) and the variable for filtering level (näıve,smart). For
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each combination, we show the probability distribution function of the locations designed in the

solution. The distribution is the median distribution across all countries.

We analyze in detail each distribution, starting from the bottom of the figure. In the näıve-

unidirectional (näıve-uni) case the distribution leans more towards the client: we believe it is

because the clients set presents a number of ’smaller’ countries. For these smaller countries the

best locations are closer to their borders. In the näıve-bidirectional (näıve-bi) case the majority of

DRs are located in the middle of the path or near the decoy destinations. As we have discussed in

§ 5.4 forward and return paths may not present any intersections apart from the decoy destination.

These results show indeed that many intersections only happen at the decoy destination but there is

also a significant number of intersections deeper in the network. The smart-unidirectional (smart-

uni) case presents a similar shape to the näıve-unidirectional one. The difference is a distribution

more skewed towards the middle of the paths. The last distribution combines smart filtering

and bidirectional paths. If we intersect the distribution from these previous two cases, the great

majority of locations for DRs is deeper in the network.

In conclusion, it is evident that across different scenarios the locations predominantly chosen

are in the middle of paths, deeper in the network. We associate such locations with large ASes,

Tier-1 backbone ASes or Tier-2 regional ASes.

6 Related Work

The problem of DR placement in the network is similar to the well known and deeply studied

problem of monitor placement.

Monitor placement is categorized into active and passive monitor placement.

Active monitor placement focuses on the deployment of devices capable of probing the network

to infer its topological properties. In this space, Jamin et al. [19] propose the IDMaps project

to calculate relative distances between hosts in the network. Even though their scope is different

from ours, they discuss diminishing returns as the number of monitors increases. We have found a

very similar result with DRs, and highlighted a ‘break point’ after which there is very small value

in adding more decoy routers.

Horton et al. [16] focus on the problem of deploying active beacons to monitor the connectivity

in the network. Their goal is to deploy the minimum number of beacons possible to infer the
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status of every edge in the network. This problem is equivalent to the min-k problem we define

in § 3.2. To solve it, they use a greedy heuristic based on the max connectivity of a node to

other nodes in the network which they call arity. We draw similarities to Horton’s work for their

intent to correlate the beacons problem to the structure of the real network. In fact, Horton et al.

claim that aiming for nodes with higher connectivity is an effective strategy to optimizing beacon

placement. Similarly, we claim that DR deployment is most valuable in bigger ASes deeper in the

network.

The focus of passive monitor placement is to maximize traffic monitoring and sampling while

minimizing deployment of monitors. This problem is closer to the DRP problem. In fact, Suh et

al. [23] focus on two monitor placement problems similar to FPC − k §2.1 and min − k §3.2:

Budget Constrained Maximum Coverage and Minimum Deployment Cost. In the former, the goal

is to maximize the number of flows sampled with a fixed amount of monitors. The latter is the

dual problem: minimizing the number of monitors deployed to sample a given number of flows.

Flows can be compared to paths in the decoy routing model. We differ from Suh’s model as we

focus on pairs and clients rather than flows. Furthermore, Suh et al. evaluate their model on

smaller, synthetically generated networks while we rely on inferred data that spans across the

entire network.

Jackson et al. [18] assess the problem of complete network monitorage. The goal of their

analysis it to monitor every valid path between elements of a given universe. Similarly to our

work, Jackson et al. approach the monitor placement problem by studying the AS-level network

graph. They rank AS popularity by topological information of the network (out-degree of ASes

involved). Then they propose to follow two strategies: depth first - instrumenting the N most

popular links in the network - and breadth first - instrumenting the most popular inter-AS link of

the top N ASes. Their results show that a breadth first deployment is more successful. We focus

on instrumenting ASes rather than inter-AS links because we have found that for specific client

sets, covering an AS completely yields higher coverage values.

7 Conclusion

Our analysis has shown many facets of the DRP problem. We have taken into consideration several

client and decoy destination sets, unidirectional and bidirectional paths as well as a variation of
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the original problem where filtering entities react to decoy routing.

The results highlight great similarities across solutions to different DRP problem scenarios. In

particular, there always exists a small set of ‘popular’ locations where it is extremely valuable to

have decoy routers. Equipping these locations accounts for the vast majority of paths between sets

of clients and decoy destinations, no matter their size or geo-location. A look at the position of

these location has shown that with great probability a DR deployment has to happen ’deep’ in the

network, in large Tier-1 and Tier-2 ASes. Outside of this set, adding more decoy routers yields

diminishing returns. In other words, full coverage between clients and decoy destinations is very

inefficient, if not infeasible.

The goal of decoy routing, though, is not to achieve total coverage of network, in large regional

or national ASespaths between clients and network, in large regional or national ASesdecoy desti-

nations, but to be pervasive enough to make it impossible for a filtering entity to effectively block

its users. We have shown that this is achievable even in the case that every possible destination

is considered a decoy, even if the DR has to lie on both the forward path and return path from

the client to the decoy destination, and even if the filtering entity proactively tries to avoid decoy

routing.

Overall, we believe that decoy routing is a valid response to network filtering and that its

biggest challenge, the necessity to lie on the path between a client and a destination, can be solved

efficiently.
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