
Live Migration of an Entire Network (and its Hosts)

Eric Keller
University of Pennsylvania

Dushyant Arora, Diego Perez Botero, Jennifer Rexford
Princeton University

ABSTRACT
By decoupling applications from the underlying infrastruc-
ture, virtualization enables more flexible sharing of comput-
ing and network resources. Live virtual machine (VM) mi-
gration can move applications from one location to another
without a disruption in service. However, applications often
consist of multiple VMs and rely on the state of the underly-
ing network for basic reachability, access control, and QoS
functionality. Rather than migrating an individual VM, we
show how to migrate anensemble—the VMs, the network,
and the management system—to a different physical infras-
tructure. Our LIME (LIve Migration of Ensembles) design
leverages recent advances in Software Defined Networking
(SDN) for a clear separation between the controller and the
data-plane state in the switches. Transparent to the applica-
tion running on the controller, LIME clones the data-plane
state to a new set of switches. LIME then migrates the VMs,
with both networks delivering traffic and maintaining syn-
chronized state during the transition. Experiments with our
prototype, built on the NOX OpenFlow controller, demon-
strate the effectiveness of live migration of entire networks.

1. INTRODUCTION
Virtual machines (VMs) have emerged as a key tech-

nology for sharing resources, and seamlessly migrating
running software from one location to another. How-
ever, a VM rarely acts alone. A VM often has dependen-
cies with other VMs (e.g., as part of a multi-tier web ap-
plication) and the network (e.g., to reach the addresses
of other VMs, perform access control, and enforce QoS
policies). Rather than migrating individual VMs, we
show how to migrate an entire ensemble—the VMs, the
network elements, and the management system—while
the hosts continue communicating seamlessly across the
transition.

1.1 Case for Migrating an Entire Network
Live VM migration gives network and service admin-

istrators the flexibility they need to consolidate servers,
balance load, perform planned maintenance, and opti-
mize user performance, without disrupting the applica-
tions. In addition, wide-area migration between differ-

ent locations is gaining traction as a way to enable disas-
ter avoidance, data-center consolidation and expansion,
and load balancing across sites [10, 3]. Yet, today’s
multi-tier applications often consist of multiple VMs,
with significant interaction between VMs in neighbor-
ing tiers. Placing these VMs near each other improves
performance and reduces network overhead. For these
applications, migrating a single VM in isolation could
lead to significant performance degradation and high
bandwidth costs to “backhaul” traffic to the other VMs.
As such, migrating a single application may require joint
migration of a group of related VMs [4, 11].
These applications are often tightly coupled with the

underlying network. The network provides reachability
between the application VMs, directs traffic through
virtual appliances like load balancers and firewalls, and
applies resource-allocation policies like routing and packet
scheduling. Though early cloud offerings give tenants
a relatively simplified view of the network, customers
increasingly demand more sophisticated network func-
tionality. In fact, cloud providers can offer each“tenant”
a virtual network with the topology and configuration
customized to the needs of the application [28, 6]. With
the growing dependence on the network configuration,
we believe the network (and network-management ser-
vices) should migrate along with the collection of vir-
tual machines. The ability to migrate an entire network
ensemble would enable important new capabilities:

Migration within private infrastructures: Within
a private infrastructure, migration would simplify the
reallocation of resources within a data center, as well
as the merging of server and network resources after
an acquisition. One organization’s VMs and network
elements could migrate to run on top of the physical in-
frastructure of the other organization, without requiring
any configuration changes or service disruptions. Mi-
gration is also useful for disaster preparation, such as
evacuating a running data center in advance of a hurri-
cane. Similarly, a cloud provider could migrate a nano
data center from one container to another to improve
reliability and performance, or reduce cost.

Migration to/from/between public clouds: Live



migration can simplify the transition to and from a pub-
lic cloud. An enterprise could move its applications
“to the cloud”without a transient disruption in service.
Alternatively, a company could launch a new service
in the cloud, and then move service to its (cheaper)
private infrastructure once the workload becomes pre-
dictable [31]. Migration can also enable seamless changes
between data centers, or even cloud providers. A cus-
tomer may move to a new cloud provider for better
performance or lower cost, or a cloud provider may
(temporarily) move some tenants to another location
another provider, during a period of high demand.

Moving target defense: In a public cloud, a ten-
ant is vulnerable to attacks where adversaries (includ-
ing other tenants) learn what servers and switches pro-
vide a service [24]. This enables both side-channel at-
tacks (where the adversary infers sensitive information
through resource usage patterns) and denial-of-service
attacks (where the adversary sends targeted traffic that
exhausts system resources). To thwart potential ad-
versaries, the cloud provider could periodically change
the placement of the tenant’s VMs and virtual network
components, all while presenting the abstraction of a
stable topology and configuration to the tenant.
In each case, live migration of an ensemble minimizes

performance disruptions and completely avoids the un-
wieldy, error-prone task of reconfiguring a complex sys-
tem of servers and network elements in the new location.

1.2 Migrating a Software Defined Network
While major server virtualization platforms already

support live VM migration, the migration of network
state has received relatively little attention. A notable
exception is the VROOM system [27] that migrates
the control and data planes of a single virtual router,
transparent to the end hosts and neighboring routers.
However, VROOM does not naturally support other
network functionality (such as switches, firewalls, and
load balancers) and cannot simultaneously migrate a
collection of hosts and network elements. In addition,
VROOM understandably requires changes to the router
implementation, impeding adoption. In contrast, our
goal is to migrate an entire ensemble without any mod-
ifications to the server and network equipment.
To support network migration in a generic way, we

separate the control-plane state and logic from the in-
dividual network elements by capitalizing on the recent
trend of Software Defined Networking (SDN) [2, 19,
1]. In SDN, a logically-centralized controller runs man-
agement applications that directly control the packet-
handling functionality in the underlying switches. For
example, the OpenFlow API allows the controller to in-
stall rules, query traffic counters, learn about topology
changes, and process data packets [20, 2]. Each rule
matches bits in the packet header and performs simple

actions (e.g., drop, forward, flood, rewrite, or send to
the controller) on the matching packets. Priorities dis-
ambiguate between overlapping rules, and hard and soft
timeouts allow switches to discard rules automatically
after a fixed time interval or a period of inactivity.
Over the last few years, researchers have used Open-

Flow to support a wide variety of network functionality,
from conventional IP routers and learning switches to
dynamic access control, server load balancing, seamless
VM migration, and energy-efficient networking [9, 22,
14, 26, 12, 15, 21]. Numerous switch vendors support
the OpenFlow API, and several commercial and open-
source controller platforms are available. Several com-
panies, university campuses, and research backbones
have deployed OpenFlow switches.

1.3 LIME: LIve Migration of Ensembles
SDN, and the OpenFlow API, gives us a way to per-

form network migration without tying our solution to
specific control-plane protocols or network functionality.
While SDN makes a generic network-migration solution
possible, many difficult challenges remain:

• The controller may run arbitrary applications that
must continue to operate correctly during and af-
ter the migration. As such, our solution cannot
exploit knowledge of the controller application to
simplify or expedite the migration process.

• The network may have a large amount of state
spread across the controller, the application VMs,
and a distributed collection of switches. As such,
our solution cannot afford to stop all communica-
tion between VMs while migrating this state.

• To minimize disruption, live VM migration relies
on iterative copying of state while the VM contin-
ues executing on the old host, followed by a brief
“freeze” of the VM during the final state transfer
before restarting on the new host. However, even a
temporary freeze of the entire network (or a single
switch) would be too disruptive. Instead, our so-
lutions must allow both the old and new networks
to carry data traffic during the transition.

• The network state changes over time, through events
sent to the controller and commands sent to the
switches. As such, our solution must maintain the
consistency of this state (e.g., the switch rules and
traffic counters) while migrating to a new network.

• The application VMs may exchange a large amount
of traffic and suffer performance degradation due
to congestion or high round-trip times. As such,
our solution must coordinate the migration of VMs
and the switches to minimize“backhaul”traffic be-
tween the old and new networks.

2



Our LIME (LIve Migration of Ensembles) architecture
addresses these five challenges.
LIME performs live migration of an entire network

of VMs and OpenFlow switches. LIME runs on the
SDN controller, underneath the management applica-
tion, to provide the application with the illusion of a
single topology while gradually moving all of the com-
ponents to a new location. LIME allows both the old
and new network to operate during the transition, by
synchronizing the switch state and creating tunnels to
relay traffic between the two networks. Our migration
algorithms are carefully designed to avoid correctness
problems that could arise from differences in the order-
ings of data packets or control messages in the two net-
works. LIME can also schedule the migration of VMs
based on how much network traffic they exchange, to
minimize the backhaul traffic during the transition. Ex-
periments with our prototype system, built on top of
the NOX OpenFlow controller, demonstrate that our
migration algorithms perform well in practice.
The remainder of this paper is organized as follows.

Section 2 discusses the many kinds of state in the net-
work, and the consistency requirements they impose
on the migration process. In Section 3, we present an
overview of the LIME architecture, and motivate oper-
ating both the old and new networks during the transi-
tion. Section 4 introduces our algorithms for migrating
VMs, switch state, and data traffic to the new network
elements. We present our prototype implementation in
Section 5, followed by the performance evaluation in
Section 6. Section 7 compares LIME to related work,
and Section 8 concludes the paper.

2. NETWORK STATE CONSISTENCY
To perform live migration in a software defined net-

work, we must identify the many sources of network
state. In this section, we first discuss the state in the ap-
plication VMs, the controller application, and the net-
work elements. Since we can apply existing migration
techniques to the application and controller software,
the remainder of the section focuses primarily on the
consistency requirements for the various kinds of state
in OpenFlow 1.1 switches.

2.1 Ensemble State
Migrating an ensemble involves transferring the state

for three different kinds of components:

Virtual machines: Virtual machine migration tech-
nology is fairly mature. To migrate the state of the
application and operating system, the hypervisor first
copies any static state (such as files) and then iteratively
copies the memory. In the meantime, the VM contin-
ues to run. Then, the hypervisor temporarily “freezes”
the VM for the final state transfer, typically lasting just
a few tens of milliseconds, and restarts the VM in the

Figure 1: Switch state.

new location. In LIME, we leverage existing techniques
for migrating individual VMs. In practice, a group of
related VMs may have significant overlap in their state,
including common operating-system images. In the fu-
ture, we plan to exploit redundancy in the state of mul-
tiple VMs to minimize the migration overhead.

Controller application: In a software defined net-
work, the logically-centralized controller runs a con-
troller application that interacts with the underlying
switches using a standard API like OpenFlow. This ap-
plication may perform arbitrary computation and main-
tain arbitrary state. Fortunately, we can leverage stan-
dard VM migration techniques to move the controller
application from one physical server to another.

OpenFlow switches: The switches forward data
packets by applying rules installed by the controller.
An OpenFlow switch does not encapsulate its state in
a virtual machine that can be easily copied from one
location to another. The switch state includes the flow
tables, which contain the packet-handling rules, byte
and packet counters, and timers for expiring the rules,
as shown in Figure 1. In addition, the switch may have
a queue of packets buffered awaiting further instruc-
tions from the controller, as well as control messages
exchanged with the controller in both directions. The
switch also has buffers for regular data packets queued
for transmission. Next, we consider the consistency re-
quirements for this state.

2.2 Switch Consistency Requirements
Controller applications must continue to operate cor-

rectly during and after the migration of an entire en-
semble. Even in the absence of migration, these appli-
cations cannot assume they run on a perfectly reliable
network. The network may drop or reorder data pack-
ets, and control messages sent to/from different switches
may arrive out of order. Our migration algorithms can
exploit these characteristics. In addition, we can lever-
age some useful features in the OpenFlow protocol to

3



simplify the migration process. Still, our algorithms
need to respect whatever consistency properties are en-
sured by OpenFlow 1.1 switches in the absence of mi-
gration.

2.2.1 Flow Table

The first set of requirements come from the flow table,
which consists of rules, traffic counters, and timers.

Rules: The controller installs rules in the flow table,
where each rule consists of a pattern, a set of actions,
timeout parameters, and a priority. When migrating
an ensemble, the new switch should contain the same
set of rules as the old switch before starting to handle
data packets. After receiving the entire snapshot, the
new switch may add and delete rules at the behest of
the controller. OpenFlow messages are delivered over
a TCP connection that ensures reliable, in-order deliv-
ery. However, the controller application cannot make
assumptions about the delay for a switch to receive or
apply these commands.

Traffic counters: The flow table maintains byte
and packet counters for the traffic matching each rule.
While these counter values do not directly affect the
behavior of the switches, the controller application can
query these counters and, based on the values, adapt
the rules installed in the network. As such, we must
preserve the counter values seen by the controller ap-
plication across the migration. However, the OpenFlow
API does not offer a way to set the initial counter values
in the flow table. Fortunately, counters are cumulative,
making it relatively easy to combine values collected
from the old and new switches to present a consistent
view to the application.

Timers: The flow table also maintains timers for ex-
piring rules. A rule may have a hard timeout (to delete
the rule after a fixed time has elapsed) and a soft time-
out (to delete the rule if no packets arrive for some pe-
riod of time) The OpenFlow API does not expose the
current values of the timers, making it difficult to mi-
grate this state. Yet, the specification also does not offer
hard guarantees on timer accuracy, or exactly when the
switch installs a rule (and, hence, starts the timer). As
such, we argue that network migration can use a relaxed
notion of time accuracy, as discussed later in Section 4.

2.2.2 Control Traffic

The second set of requirements concern the control
messages sent between the switch and the controller.

Control channel: An OpenFlow switch communi-
cates with the controller over a TCP connection. The
controller sends commands to (un)install rules, query
traffic counters, and send packets, and the switch sends
events such as links failing/recovering, the values of
traffic counters, and packets requiring further handling.
While the TCP connection ensures these messages ar-

rive in order, the messages may experience arbitrary de-
lays. A switch may not apply a command immediately.
Fortunately, the controller can issue a “barrier” com-
mand to verify that the switch has applied all previous
commands1. While the TCP connection ensures that
control messages arrive in order, the controller applica-
tion cannot assume that control messages sent to/from
different switches arrive in order.

Switch and port status: A switch maintains infor-
mation about its incident links (or “ports”). If a port
goes up or down, the switch sends a control message to
the controller. As such, the controller application learns
about topology changes, albeit with a delay. When a
port fails, the switch drops packets directed to that port.
When a switch fails, the controller loses the control
channel to the switch, and regains the connection on re-
covery. As such, the controller relays switch join/leave
events to the application. The application may respond
to topology changes by changing the rules on one or
more switches. While the network must present an ac-
curate view of the topology to the application, delays
in learning about topology changes are inevitable, even
in the absence of migration.

2.2.3 Data Packets

The final set of requirements concerns data packets
traveling through the two networks during the migra-
tion process.

Packets buffered awaiting controller instructions:
When traffic matches a rule with a “send to the con-
troller” action, the switch sends a message (containing
the packet header) to the controller and buffers the en-
tire packet awaiting further instruction. This queue of
“packets in waiting” is part of the state of the switch.
Upon receiving and processing a “packet in” event, the
controller application may instruct the switch to han-
dle this packet. However, packet loss is acceptable in
a best-effort network, even in the absence of migration.
A packet could be dropped without triggering a control
message, or dropped after the switch follows the con-
troller’s instructions on how to handle the packet. This
offers some flexibility to decline to handle some packets
sent to the controller in the midst of a migration, as long
as “packets in waiting” are not buffered indefinitely.

Packets queued for transmission: The switch also
has a buffer that stores packets ready for transmis-
sion. Under normal circumstances, these packets may
be dropped on the outgoing link due to congestion, cor-

1A recent study shows that many of today’s OpenFlow
switches do not implement the barrier command cor-
rectly [25]. For the purposes of this paper, we assume the
switches correctly obey the OpenFlow 1.1 specification. En-
suring the controller application operates correctly in the
face of buggy switches is extremely difficult, even in the ab-
sence of migration.

4



Figure 2: Overall architecture.

ruption, or other reasons. The controller application
cannot assume that data packets are delivered success-
fully, and does not receive information about the spe-
cific causes of packet loss. While packet loss does affect
performance, it does not affect correctness. As such,
dropping buffered data packets during the migration
process would not compromise the correct operation of
the controller application. If these dropped data pack-
ets are themselves part of a control message sent to or
from the controller, the TCP connection between the
two components would retransmit the data, ensuring
reliable delivery of the control messages.

3. LIME ARCHITECTURE
Live migration means that the applications running

on the end hosts continue to operate without disruption.
Today’s VM migration solutions can limit the down-
time to tens of milliseconds, or at most a few seconds,
depending on the workload [8]. Live migration of the
entire network means that the VMs not only continue
processing, but also communicating with each other un-
der the same network configuration.
Figure 2 show our overall architecture. The hosts

and switches migrate from an old physical network to a
new physical network. To perform migration and han-
dle temporary data traffic between the old and new
networks, the two networks must have some network
connectivity, such as a a dedicated physical link or a
tunnel over the Internet. The controller could run in
either physical network, or be migrated from one to the
other separately from the migration of the hosts and
switches. On the controller, the LIME software acts as
a transparent proxy between the controller operating
system (e.g., NOX [13]) and unmodified controller ap-
plications. The LIME software has a view of both the
old and new networks, but presents a view of a single
network to the controller application.

In this section, we first describe a strawman migra-
tion solution where only one of the two networks (or
switches) handles data traffic and interacts with the
controller at a time. However, this solution is slow and
inefficient. We then discuss how LIME allows both net-
works to handle traffic simultaneously during the tran-
sition, leading to an efficient, live migration solution.

3.1 Stop-and-Copy Migration is Not Efficient
Given the success of live VM migration, it may seem

natural to use a similar mechanism for network migra-
tion. Live VM migration uses an iterative copying pro-
cess to minimize downtime. First, an initial snapshot of
the VM state is copied to the new physical server. Since
transferring the state may take several seconds or even
minutes, the VM continues running on the old server,
while the virtualization software tracks which pages in
memory have been dirtied. A snapshot of these dirty
pages is copied during the next iteration. Eventually,
this snapshot is small enough, and the VM is stopped,
the last bit of state is copied over, and the VM resumed
at the new location. Migration is considered live be-
cause the period when the VM is frozen is imperceptible
to applications.
Applying the same approach to network migration is

not efficient enough, even with the clear separation be-
tween the controller and the switches. In fact, even ap-
plying stop-and-copy migration to individual switches
(rather than the entire network) is not efficient, as it
results in excessive “backhaul” traffic between the old
and new networks.

3.1.1 Migrating the Network is Not Live or Efficient

Inspired by live VM migration, we could perform
network migration in three main stages: (i) iteratively
copying the host and switch state from the old network,
(ii) freezing the old network for the final state transfer,
and (iii) starting the new network. In this solution, only
one physical network would handle data traffic and in-
teract with the controller at a time. However, freezing
all of the VMs for a final copy of all of the host and
network state would lead to long delays. Instead, the
solution should allow individual VMs to start running
in the new location, while the rest of the state trans-
fer continues. To allow the old network to handle all
of the traffic, the new network could simply direct the
VM-to-VM traffic through the old network using tun-
nels. For example, a VM running in the network could
send and receive traffic via a tunnel that terminates at
its old location in the other network, to allow the old
switch to handle all of the traffic. These tunnels can be
implemented using existing OpenFlow mechanisms for
pushing and popping headers (e.g., VLAN) on packets.
Unfortunately, this strawman approach has several

limitations. First, the solution leads to excessive back-

5



haul traffic. For example, all traffic between VMs in the
new network would travel back and forth through the
old network—traversing the inter-network pipe twice!
both run in the new location must In fact, right before
the final state transfer to the new network, all traffic be-
tween VMs would travel through the old network. Sec-
ond, unlike individual VMs, we cannot restart the net-
work in the new location in a single step. To start using
the new network, the controller must simultaneously re-
move all of the tunnels directing traffic through the old
network. This is not possible in a large, distributed col-
lection of switches. Alternatively, the controller could
cut all communication via the inter-network link before
starting to remove the tunnels. However, this would
lead to a large burst of packet loss, significantly de-
grading performance, and cannot be considered “live”
migration.

3.1.2 Migrating Individual Switches is Not Efficient

Rather than migrating the entire network in a sin-
gle step, we could apply an iterative migration process
to each individual switch. That is, the controller could
copy the switch state from one physical switch to an-
other, temporarily freeze for the final state transfer,
and then start the switch in the new location. Com-
pared to migrating the entire network, migrating an in-
dividual switch involves less state and simplifies the “in-
stantaneous” cut-over to the new physical location. In
this approach, some switches may run in the new net-
work, while others continue running in the old, but each
switch runs in one place at a time. The controller can
ensure that data traffic flows during the transition by
installing tunnels between “neighboring” switches that
temporarily reside in different networks, These tunnels
ensure that packets traverse a sequence of active switches
with the appropriate rules installed.
To migrate an individual switch, the controller first

installs tunnels to and from the new physical switch, to
prepare for the transfer. Then, once the state transfer
is complete, the controller can (i) install tunnels in the
old switch (to direct traffic to the new switch) and (ii)
remove the tunnels in the new switch (to start handling
packets directly). Migrating the individual VMs is sim-
ilar to switch migration. As in the the network-wide
migration solution, tunnels can direct traffic to/from a
VM in the new network via an incident switch still run-
ning in the old network. Once both the VM and the
incident switch have migrated, the VM can communi-
cate directly through the physical switch.
Since the stop-and-copy phase is nearly instantaneous,

migration is “live.” Unfortunately, this approach can be
very inefficient. In the worst case, a packet may tra-
verse a tunnel between the two networks at every hop
in its journey. Even if both the sending and receiving
VMs reside in the new network, the path between them

Figure 3: Example to illustrate migrating
switches leads results in VM communication re-
quiring at least one round-trip between networks
even when two VMs are located in the same net-
work.

may traverse switches still running in the old network,
requiring multiple traversals across the tunnels. Con-
sider the simple tree topology in Figure 3. If we mi-
grate Switch1 first, then any communication between
the VMs would travel back and forth through the new
network. If instead we migrate VM1 first and then
VM2, the traffic between them would travel back and
forth through the old network to traverse Switch1. If
instead we migrate VM1 and Switch 1 first, traffic be-
tween VM2 and VM3 (both running in the old network)
would travel through the new network. Even with this
simple topology, the packet latency and network over-
head is significant during the transition.

3.2 Cloning the Network is Live and Efficient
Rather than migrate the network with a stop-and-

copy phase, we instead clone the network state and al-
low both the old and new networks to handle traffic and
interact with the controller simultaneously. During this
time, two physical switches simultaneously act as the
single logical switch they represent.

3.2.1 LIME Components

To clone the network, we need to (i) maintain con-
sistency between the two networks, (ii) preserve the
transparency to the controller application, and (iii) co-
ordinate the actual migration process. In the LIME
software architecture, shown in Figure 4, three main
components are responsible for these three important
aspects of the live migration.

Synchronize flow table: When the controller ap-
plication issues commands, the controller must update
both networks. The synchronize flow table component
installs flow-table entries in both networks and keeps
the state consistent. Similarly, this module is respon-
sible for any transformations of the rules necessary to
allow the two physical switches to operate concurrently,
as discussed in further detail in Section 4.

Preserve network view: In the reverse direction, the
controller must present the controller application with a

6



Figure 4: Architecture of LIME Software.

consistent view of a single underlying network, despite
streams of events coming from the two sets of switches.
The preserve network view component is responsible for
handling packet-in events, unplanned topology changes,
and traffic statistics arriving from the two networks dur-
ing the transition.

Orchestrate VM migration: The performance of
live network migration depends on the communication
patterns between the VMs. Rather than migrating all
VMs at the same time, the controller can compute an
efficient schedule for migrating the individual VMs to
minimize the amount of inter-network traffic. In ad-
dition, the orchestrate VM migration component issues
the commands necessary to migrate the individual VMs.
In our current design and prototype, we focus mainly

on the first two modules, and use a relatively simple
algorithm to orchestrate the VM migration.

3.2.2 Ensemble Migration Process

In order to perform live migration, we first clone the
switch state to the switches in the new topology. We
then migrate VMs individually with both the new and
old network actively handling traffic, while the LIME
software maintains the consistency of the state in the
two networks. Once all VMs are migrated, we finalize
the process by synchronizing any remaining state dif-
ferences and begin using the new network exclusively.
The controller itself can migrate at any time (e.g., as a
final step in the process).

Clone switch state: As the first step migrating to a
new network, we must first synchronize all of the switch
state so the new network operates the same way as the
old network. Since the switch state changes constantly,
we cannot instantaneously install all flow table entries
in all switches. Similar to live VM migration, we apply
an iterative copying process. To get the state, we could
poll each of the switches to obtain the current flow table.
However, doing so will take time and potentially result
in an inconsistent snapshot due to not being able to
query all of the switches at the same time. Even more,

it is not necessary. We can capitalize on the position
of LIME in between the controller application and the
switches and maintain a shadow flow table in the LIME
software. We obtain the first set of state to install in the
new network by taking a snapshot of the shadow flow
table. While that state is being installed in switches
in the new network, we allow the controller application
to continue issuing commands, which are immediately
sent to the switches in the old network. We keep track of
those commands (insert and delete rules) and, when the
installation of the flow table for the previous iteration
completes, we then create another snapshot with only
the commands since the last snapshot. Since snapshot
is typically smaller, allowing installation to complete
more quickly, making the next snapshot even smaller.
This process continues until the snapshot is small

enough to effectively be installed instantaneously. Then,
we block the controller application from installing any
new rules (by buffering up the commands from the con-
troller application but not acting on them). In the
meantime, data packets continue flowing through the
old network. At this point, the cloning has completed
and we simply need to keep the network state consistent
as we start migrating the VMs and their traffic.

Migrate VMs with both networks active: At the
end of the iterative switch state cloning, both networks
can handle traffic and therefore we can start migrat-
ing the VMs. We assume that we cannot migrate all
VMs concurrently due to bandwidth limitations—while
disk images are likely shared among several VMs and
therefore can make use of redundancy elimination, the
in-memory working set is unique and likely represents
several gigabytes per VM. To cope with this, we make
use of tunnels between the two networks to maintain
communication between all VMs. Also, we capitalize
on the fact that both networks will have the same state
to efficiently perform a live network migration. We dis-
cuss how we deal with the simultaneous use of two net-
works, while preserving the view of one network to the
controller application in Section 4.

Copy traffic counters and timers: Once all VMs
are migrated we finalize the process by copying over
the remaining state that is not maintained by LIME—
in particular, the traffic counters and timer values. The
counters are read from each of the switches and stored
in the shadow flow table. The timers are handled in a
different manner which we discuss further in Section 4.

4. DEALING WITH TWO NETWORKS
To perform live migration of an ensemble, we allow

both the old and new networks to handle traffic simul-
taneously. In this section we describe our algorithm for
using tunnels to maintain data-plane connectivity dur-
ing the migration. We then detail how we present the
abstraction of a single control plane to the controller ap-

7



Figure 5: Example of tunneling at egress only.

plication, even though each logical switch corresponds
to two physical switches during the transition.

4.1 Tunneling Between the Two Networks
By cloning the switches, and using both the old and

new switches simultaneously, we can ensure that traffic
only flows between the two networks when an already-
migrated VM communicates with another VM that has
not migrated yet. No traffic ever traverses the inter-
network link more than once, let alone multiple times.
For example, in Figure 5, host H src in the old network
on the left communicates with host H dst in the new
network on the right. By handling all traffic in the
network of the sending VM we ensure that traffic only
traverses the inter-network link when the destination
VM resides in a different network than the sender.
We call our algorithm tunnel at egress. The link con-

necting the destination VM to the network is realized
as a tunnel between the two physical switches that to-
gether represent the incident logical switch (e.g., S3 in
the figure). The tunnel serves only to deliver the packet
to a VM in a remote network and does not contribute
to any timers or traffic counters. Response traffic from
H dst would traverse S3 and S2 in the new network,
with switch S1 in the new network forwarding the pack-
ets to the corresponding switch in the old network for
delivery to H src. Once H src migrates to the new net-
work, traffic between H src to H dst flows exclusively
in the new network, without any tunneling.
To perform the tunneling, we must first calculate

and install a path between each of the corresponding
switches (e.g., for host H dst this would be from switch
S3 in the old network to switch S3 in the new network).
Each VM in the network is assigned a tunnel identifier
at the beginning of the process. We then install rules
into the flow table of each forward the packet along the
pre-installed path, based on the tunnel identifier. Once
the tunnels are established, we modify the rules in the
switches to use the tunnels by encapsulating the decap-

sulating the packets at the sending and receiving ends,
respectively. We iterate through all flow-table entries
and modify any rule whose action is to forward out of
a port that is to be connected to a VM to instead (i)
insert a tunnel header with the correct tunnel identifier,
and (ii) forward out of the port that was determined as
part of the switch to switch tunnel path calculation.
Once this process completes, we can migrate the VM.

For each VM we need to direct traffic sent by VMs re-
maining in the old network. In the old network, we in-
stall the egress-tunneling rule at the old physical switch,
and remove egress-tunneling rules at the incident switch
in the new network. Removing these rules simply con-
sists of re-installing the original rules that forward traf-
fic directly to the destination VM.

4.2 Transparency to Controller Application
While simultaneously using switches in both networks,

we must present a consistent view of a single network
to the controller application. This requires careful han-
dling of the switch state discussed earlier in Section 2.2.

4.2.1 Flow Table

The first set of requirements come from the flow table,
which consists of rules, traffic counters, and timers.

Rules: LIME intercepts all commands from the con-
troller application to add or delete rules in the flow ta-
ble. The Sync Flow Table component in Figure 2 keeps
the state in both networks synchronized by updating
the shadow flow table and installing the rule to the cor-
responding switch in each network. For rules which re-
quire translation to instead insert a tunnel header, the
Sync Flow Table module performs this translation.

Traffic counters: When querying a switch for par-
ticular counters, the controller application must receive
an accurate response. Since traffic flows through both
networks, the counters in the corresponding switches
in both networks must be combined. Even more, any
counters on switches from prior migrations must also be
included. For this, as part of the finalization step, we
read in the final statistics of the old network and store
them in the shadow page table. This does not neces-
sarily mean we have a growing amount of state, as the
statistics are deleted as rules are removed from the flow
table. Upon receiving a query from the controller appli-
cation, the Preserve Network View component queries
the corresponding switch in each network, and returns
the summation of the two values (plus the value in the
shadow flow table) to the controller application.

Timers: Timers are the most difficult class of state.
Preserving the network view accurately means that the
timers in the two switches should expire at the same
time, and trigger a single notification to the controller
application. Hard timeouts (which expire after a fixed
time interval) are relatively easy to handle. LIME can

8



either install the rule with the timeout at the same time
in both switches (for a new rule installed during migra-
tion) or install the rule with a reduced timeout (when
cloning an existing rule). Further, the rule can instruct
the switch to send a notification when the timer ex-
pires. Since the timeout occurs in both switches, the
Preserve Network View modules receives both notifica-
tions but only delivers one to the controller application.
For rules configured not to generate a expiry notifica-
tion, the Sync Flow Table component modifies the rule
to notify the controller (so the rule can be removed from
the shadow flow table), without relaying the event to the
controller application (to preserve the network view).
Soft timeouts (which expire after a period of inactiv-

ity) are more difficult to handle. Traffic flowing through
either network may match the same rule, and the spac-
ing of these packets may trigger timeouts in the two
physical switches that would not occur if all traffic went
through a single switch. In the example in Figure 6, sup-
pose the idle timeout is set to 1 second. Packets pkt0
and pkt2 arrive 1.8 seconds apart at the old switch, and
pkt1 and pk3 also arrive 1.8 seconds apart at the new
switch. Each would trigger an idle timeout on the indi-
vidual physical switch. However, when considering the
two physical switches as one logical switch, the packets
arrive 0.9 seconds apart, which should not cause a soft
timeout. To deal with this, we would need to install
an idle timeout that notifies the controller of the time-
out without removing the flow entry, so the controller
could explicitly delete the rules if necessary. Unfor-
tunately, the current OpenFlow specification does not
support this feature. However, we can mimic coarse-
grained timers by using “permanent” rules, and period-
ically polling the traffic counters to see if any traffic has
matched the rule since the previous poll.

Figure 6: Example of idle timeout.

4.2.2 Control Traffic

The second set of requirements concern the control
messages sent between the switch and the controller.

Control channel: OpenFlow messages sent to/from
different switches over different TCP connections may
arrive in any order, due to arbitrary delay and packet

loss in the network. However, messages sent to/from
a single switch, over a single TCP connection, should
arrive in order. As such, LIME cannot simply combine
control messages sent by the two physical switches (rep-
resenting a single logical switch) in the order they reach
the controller. In particular, if a packet traversing one
switch triggers data traffic on the other, we cannot eas-
ily preserve the correct ordering of control messages at
the controller.
Consider, for example, a stateful-firewall application

that installs a rule that performs two actions on client
traffic: (i) forwarding the traffic to the server and (ii)
sending the packet header to the controller (e.g., to
trigger installation of a rule permitting server traffic
in the reverse direction). If the client-to-server traffic
traverses one physical switch, and the resulting server-
to-client traffic traverses the other, the response traffic
may reach the second switch before the control mes-
sage from the first switch reaches the controller! If
a rule directs server-to-client traffic to the controller,
the “packet-in” event for the server traffic may reach
the controller application before the event for the client
traffic—something that would not happen with a single
switch.
An example is shown in Figure 7 where H src sends

a packet (1), the switch in the old network forwards the
packet (2a) and sends the header to the controller (2b).
After receiving the packet, H dst sends a response (3).
At the switch in the new network, since the controller
has not installed a rule allowing this traffic, the packet is
sent to the controller (4). With a single physical switch,
with a single TCP connection, the controller application
would receive the messages in order and know not to
block the return traffic. However, if the forward and
reverse traffic are handled by different physical switches
(representing the same logical switch), the messages to
the controller can be received in either order2. If the
message due to the response packet (4) is received before
the packet due to the forward direction packet (2b), the
controller proceeds to install a rule to block all traffic
for that flow—an undesirable outcome.
Fortunately, we can prevent these kinds of situations

by modifying the rules installed in the flow tables. Dur-
ing the migration, we temporarily modify all rules that
both forward traffic and send a message to the controller
to instead only send to the controller. This inherently
enforces a message ordering that respects the depen-
dencies between events. As part of handling the control
message, the LIME software simply instructs the switch
to forward the packet, without informing the controller
application. This gives the application the illusion of

2This holds even for when we migrate each switch individ-
ually rather than allowing two physical switches to simulta-
neously represent the same logical switch – as the message
may be in flight when the migration occurs.

9



performing both packet-handling actions, while guaran-
teeing the correct message ordering during migration.

Figure 7: Example of problem of forward and
send to controller.

Switch and port status: A topology change, such
as the failure or recovery of a link or a switch, triggers
a control message to the controller. To deal with these,
we simply must ensure that the controller application
is presented a consistent view of the network. That is,
we present a topology that only includes switches and
links that are alive in both networks during the migra-
tion process. When the migration process is complete,
however, we present the status of the switches/ports in
the new network to the controller application.
To do this, LIME intercepts these switch and port

status messages. If the status message removes a switch
or a link due to failure in one of the networks, LIME
passes this event to the controller application, essen-
tially making that switch/port unavailable in both net-
works. The failure may trigger the controller applica-
tion to add, modify, or delete rules in the switches. As
previously discussed, the Sync Flow Table component
keeps both networks consistent.
Switch and port status messages can also indicate the

recovery of a switch or port. If the switch or port is now
live in both networks, LIME relays the recovery event to
the controller application. Again, the Sync Flow Table
handles any resulting modifications of the flow table.
If, however, the new switch or port is only available in
one of the two networks (e.g., the operator installed a
new switch during migration), LIME adjusts its internal
representation of the two networks, but does not pass
the event to the controller application.

4.2.3 Data Packets

The final set of requirements concerns data packets
traveling through the two networks during the migra-
tion process.

Packets buffered awaiting controller instructions:
Packets that are sent to the controller require special
attention. When an arriving packet matches a rule di-

recting traffic to the controller, the switch places the
packet in a buffer awaiting a response from the con-
troller. Later, the controller application may issue a
command to the switch referencing the buffer identi-
fier for this packet. When (un)installing rules, the Sync
Flow Table component must not instruct both physi-
cal switches to handle this packet. Instead, the module
modifies the commands to tell the original switch to
handle the packet, while simply installing rules in the
other switch for handling future packets.

Packets queued for transmission: Data packets
that match existing flow table entries and can be pro-
cessed entirely in the switch do not cause any problems,
in terms of preserving the correctness of the controller
application. They can simply be queued for transmis-
sion at either switch.

5. LIME PROTOTYPE
We built an initial prototype of LIME to demonstrate

live ensemble migration. We based our prototype on
OpenFlow as the exemplar SDN technology. We tested
with both a small testbed running Open vSwitch as the
OpenFlow switches and VirtualBox as the virtualization
technology supporting live migration, as well as with
larger networks using the MiniNet emulator [17].
As shown in Figure 8, the prototype consists of the

core migration components, along with a client console
and server to control the migration process remotely.
LIME was implemented as a modified NOX [13] library.
This library exposes the same interface as an unmodi-
fied NOX controller, but intercepts event callbacks (e.g.,
packet in, flow removed) to preserve transparency to
the controller applications. With this scheme, NOX ap-
plications communicate with LIME by importing the
modified library. In turn, the LIME software commu-
nicates with the NOX core components, which provide
the basic OpenFlow controller functions. These compo-
nents then interact with OpenFlow switches. We im-
plemented both the ideal algorithm (which uses both
networks simultaneously) and the strawman stop-and-
copy algorithm (which uses one network at a time).
In addition to providing an interface to the controller

application, network operators need to control the mi-
gration process. The LIME prototype was designed
with a client-server model to enable the processing of
migration commands at any given time. However, as
NOX follows event-based programming and does not
support multithreading, we run an additional process
to monitor migration-related commands and their exe-
cution.
The LIME client console then coordinates the net-

work migration process by sending commands such as
PREPARE which triggers LIME to start populating
the new switches, and MIGRATE HOST which trig-
gers LIME to send commands to the specified server

10



(to migrate a VM) and to the OpenFlow switches (to
establish tunnels).

Figure 8: LIME Prototype.

6. PERFORMANCE EVALUATION
In this section we evaluate live ensemble migration

with LIME using MiniNet. We first illustrate the dif-
ference between LIME, which uses both networks simul-
taneously, and the stop-and-copy strawman described in
Section 3.1.1. We then evaluate the impact the order of
VM migration can have on the overall performance. Fi-
nally, we evaluate the impact the bandwidth dedicated
to VM migration has on the application performance.

6.1 LIME vs. Stop-and-copy
To illustrate the differences between LIME and Stop-

and-Copy, we show a fine-grained view of the through-
put between two VMs as well as a coarse-grained com-
parison with aggregate statistics.
We first performed a small-scale experiment where

each physical network consists of two hosts and four
switches, as shown in Figure 9. VM1 communicates
with VM2 for the entire duration of the ensemble migra-
tion. We used a single switch connected to all switches
to represent the inter-network data pipe, and use a sim-
ple mechanism for determining tunnel paths. We use
netem to enable a configurable delay in this switch rep-
resenting the inter-network data pipe delay. For VM
migration with MiniNet we emulated a VM migration
by connecting each host to an intermediate switch with
connections to both networks. As such, mimicking mi-
gration is a simple matter of directing packets to a dif-
ferent output port connected to the new network.
The performance of the migration in terms of packet

loss, throughput, and latency depend on the creation
and deletion of tunnels, and not on the particular NOX
controller application. LIME ensures consistency inde-
pendent of the application, as discussed in Section 2. As

Figure 9: Small-scale network.

such, for performance measurements, we use a simple
NOX controller application (pyswitch) which functions
as an Ethernet learning switch. In each VM we ran
D-ITG [7] to measure performance to the other VM.
We then performed a live ensemble migration with

both LIME and the strawman stop-and-copy. Figure 10
shows the average delay between VM1 and VM2 for
each 1-second time interval. VM1 migrates at time
40s. In both LIME and stop-and-copy, the delay in-
creases since all traffic incurs the added one-way latency
to traverse the tunnel. The corresponding throughput
(not shown), drops due to the increased round-trip time
(RTT). VM2 migrates at time 80s. In LIME, since both
VM1 and VM2 are in the same network, the delay re-
turns to the original delay (and the throughput recov-
ers to the original value). In stop-and-copy, however,
the delay further increases as packets have to make a
round trip through the old network. At time 120s, we
switch over to using the new network. In stop-and-copy,
this involves cutting communication with the old net-
work and then removing the ingress tunnels at all of
the switches in the new network. For this short period,
all packets are dropped. We artificially added 200ms
of delay to make this perceptible—using a small topol-
ogy and having all switches and the controller on the
same server does not experience any delay that a real
network would. This packet loss does not affect the av-
erage RTT, but there is a small spike in packet loss seen
with our measurement.

Figure 10: An illustration of the differences in
efficiency between stop-and-copy and LIME.

To compare LIME and stop-and-copy at a larger scale,

11



we use a network consisting of 10 hosts and 10 switches.
We used a traffic pattern, k-random, where each host
sends traffic to k randomly chosen hosts. As was the
case with the small network, having tunnels with very
little delay diminishes the advantage LIME has in terms
of efficiency—stop-and-copy still experiences packet loss
due to the freeze when switching from the old network
to the new network. To evaluate this effect, we varied
the delay through the tunnels and measured the average
delay across all packets. As shown in Figure 11, LIME
is less affected by the inter-network tunnel latency.

Figure 11: Impact on intern-network latency on
the efficiency of LIME vs stop-and-copy.

6.2 Impact of VM Migration Ordering
With LIME, two communicating VMs in the same

network do not experience extra latency of traversing
a tunnel and inter-network link. As such, the order in
which VMs are migrated impacts the performance of the
applications running in the hosts, as well as the amount
of traffic traversing the inter-network link. We experi-
mented with a network of 10 hosts and 10 switches and
varied the order of VM migration—performing one mi-
gration at a time every 5 seconds.
To evaluate the benefits of VM migration scheduling,

we conduct a simple experiment that explores many dif-
ferent schedules. For our experiment, we again assume
a k-random traffic pattern, with each VM sending traf-
fic uniformly to k destinations. To determine the“good”
and “bad” orderings, we generated 200 random possible
and calculated the cost of the ordering—by counting
inter-network traffic that would occur after each migra-
tion. We then collected the average delay over all traffic
for each time interval during the entire ensemble migra-
tion. As can be seen in Figure 12, we can see that the
bad ordering rises to a higher average delay sooner than
the good ordering and the good ordering recovers to the
original delay quicker than the bad ordering.

6.3 Impact of VM Migration Bandwidth
Live migration of a single VM consumes bandwidth.

Figure 12: Impact of the ordering of VM migra-
tions in LIME.

Yet, backhaul traffic between VMs in the old and new
networks also consumes bandwidth. To understand the
tension between these sources of overhead, we vary the
number of VMs migrated at the same time. Intuitively,
migrating as many VMs as possible makes the entire mi-
gration process faster, reducing the inter-network traffic
due to inter-VM communication. However, as shown in
Figure 13, migrating too many VMs at the same time
does not strictly improve the performance in terms of
total or average traffic rates. In particular, backhaul
traffic increases if several VMs in the new network com-
municate heavily with VMs in the old network. This
points to the need for smart algorithms for scheduling
the final state transfer for VMs moving from one net-
work to another. In future work, we plan to explore VM
migration algorithms that identify the densest subgraph
of communicating hosts [5], and migrate these VMs as
a group to minimize backhaul traffic.

Figure 13: Impact on bandwidth available for
migrating multiple VMs.

7. RELATED WORK
In this paper we motivate the need to migrate an

entire network and its hosts. Different aspects share
ideas with some prior research.

Migration of Network Elements: Perhaps the
most closely related research is the work to migrate or
clone network state. Migration has shown great use in

12



network management—VROOM demonstrated migra-
tion of a virtual router [27] while router grafting demon-
strated migrating a single BGP session [16]. In con-
trast, we migrate an entire network and target software
defined networks where the network is more stateful.
However, we were inspired by the approach in VROOM
to first setup the network before migrating end points.
The VROOM approach was duplicated in [23] with a
different virtualization technology, and they extended
it to OpenFlow networks as well. However, they sim-
ply treated the switches as the forwarding tables (as in
VROOM) and did not deal with the many issues re-
lated to consistency, correctness, and transparency to
the controller application that LIME addresses.

Cloning of Network State: Cloning has shown
great use in network debugging. Analogous to gdb for
software programs, ndb enables the same type of de-
bugging inspecting and controlled execution by cloning
the network state at each of the routers and execut-
ing them in a parallel virtual network [18]. OFRewind,
works in a software defined network to record data and
control traffic to enable replay at some future time [30].
In order to not require a log of all messages since the
beginning time of the network, they enable an optional
snapshot of the flow tables, though do not address the
other state as we discuss in this paper. In both ndb
and OFRewind, however, at the point of cloning, the
relation between the original network and the cloned
network stops—in contrast to LIME where we perform
a live migration.

Migration of VMs across networks: Sharing some
motivational scenarios (such as disaster preparation and
data center load balancing), others have looked into mi-
grating between data centers over. VMWare and Cisco
even provide a commercially available solution [10]. In
general, this work has relied on the principle of extend-
ing the Layer 2 subnet across data centers. For exam-
ple, CloudNet [29] uses Multi-Protocol Label Switching
(MPLS) based VPNs to create the abstraction of a pri-
vate network and address space shared by multiple data
centers. In contrast, with LIME we are migrating both
the VMs and the network and so are not limited to
technologies that extends the local network.

Migrating multiple VMs: We noted that VMs do
not typically operate in isolation, and so should be mi-
grate as a collection. The efficiency of doing this has
been studied. In one case, all VMs are co-located on
the same server and being migrated together to a new
server [11]. In this case, optimizations implemented in
the hypervisor to capitalize on shared or similar pages
in memory can reduce traffic. In another case, migrat-
ing multiple VMs (not necessarily on the same server)
together can capitalize on the fact that they often will
a great amount—e.g., running the same OS image [4].
These works are complementary to ours as we can cap-

italize on more efficient VM migration mechanisms.

8. CONCLUSIONS AND FUTURE WORK
Live VM migration and, more recently, live wide-area

VM migration have become staples in the management
of many data centers and enterprises. Yet, today’s tech-
nology simply considers each VM independently. How-
ever, a VM rarely acts alone. A VM interacts with
other VMs as part of a larger application and relies on
the underlying network for communication. As such,
rather than rather than migrating individual VMs, we
show how to migrate an entire ensemble—the VMs, the
network elements, and the management system.
Our LIME (LIve Migration of Ensembles) design lever-

ages recent advances in Software Defined Networking
(SDN) and (transparently to the application running on
the controller) clones the data-plane state to a new set of
switches. LIME then migrates the VMs, with both net-
works delivering traffic and maintaining synchronized
state during the transition for an efficient and live en-
semble migration. This migration is live since the hosts
continue communicating seamlessly across the transi-
tion, and it is efficient since our “tunnel at egress” al-
gorithm keeps traffic in one physical network whenever
possible. Experiments with our prototype, built on the
NOX OpenFlow controller, demonstrate the effective-
ness of live migration of entire networks.
As future work, we plan to explore algorithms for

scheduling VM migration. This includes determining
the measurement needs and the timing of VM migra-
tion. This research includes leveraging technologies like
redundancy elimination) to reduce the overhead of copy-
ing the state for multiple related VMs.

9. REFERENCES
[1] Open Networking Foundation.

https://www.opennetworking.org/.
[2] OpenFlow. http://www.openflow.org.
[3] NTT, in collaboration with Nicira Networks,

succeeds in remote datacenter live migration,
August 2011. http://www.ntt.co.jp/news2011/
1108e/110802a.html.

[4] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and
M. Ripeanu. VMFlock: Virtual machine
co-migration for the cloud. In Proc. International
Symposium on High Performance Distributed
Computing (HPDC), 2011.

[5] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige,
and A. Vijayaraghavan. Detecting high
log-densities: An o(n1/4) approximation for
densest k-subgraph. In ACM Symposium on
Theory of Computing (STOC), 2010.

[6] BigSwitch Networks. Perspectives: Networking
needs a VMware.
http://www.bigswitch.com/wp/about-us/.

13



[7] A. Botta, A. Dainotti, and A. Pescapè.
Multi-protocol and multi-platform traffic
generation and measurement. In INFOCOM 2007
DEMO Session, May 2007.

[8] R. Buyya and S. Venugopal. Cost of virtual
machine live migration in clouds: A performance
evaluation. In Proc. International Conference on
Cloud Computing (CloudCom 2009), December
2009.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. Gude, N. McKeown, and S. Shenker.
Rethinking enterprise network control.
IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[10] Cisco and VMWare. Virtual machine mobility
with VMware VMotion and Cisco data center
interconnect technologies, 2009.

[11] U. Deshpande, X. Wang, and K. Gopalan. Live
gang migration of virtual machines. In Proc.
International Symposium on High Performance
Distributed Computing (HPDC), 2011.

[12] D. Erickson et al. A demonstration of virtual
machine mobility in an OpenFlow network,
August 2008. Demo at ACM SIGCOMM.

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff,
M. Casado, N. McKeown, and S. Shenker. NOX:
Towards an operating system for networks. ACM
SIGCOMM Computer Communications Review,
38(3), 2008.

[14] N. Handigol, S. Seetharaman, M. Flajslik,
N. McKeown, and R. Johari. Plug-n-Serve:
Load-balancing web traffic using OpenFlow,
August 2009. Demo at ACM SIGCOMM.

[15] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. ElasticTree: Saving energy in data
center networks. In Networked Systems Design
and Implementation, April 2010.

[16] E. Keller, J. Rexford, and J. van der Merwe.
Seamless BGP Migration with Router Grafting.
In Proc. Networked Systems Design and
Implementation (NSDI), 2010.

[17] B. Lantz, B. Heller, and N. McKeown. A network
in a laptop: Rapid prototyping for
software-defined networks. In ACM SIGCOMM
HotNets Workshop, pages 1–6, 2010.

[18] C.-C. Lin, M. Caesar, and J. van der Merwe.
Towards interactive debugging for ISP networks.
In HotNets-VIII, October 2009.

[19] J. Markoff. Open networking foundation pursues
new standards. The New York Times, March
2011. See http://nyti.ms/eK3CCK.

[20] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in

campus networks. ACM SIGCOMM Computer
Communications Review, 38(2):69–74, 2008.

[21] M. R. Nascimento, C. E. Rothenberg, M. R.
Salvador, C. N. A. Corrêa, S. C. de Lucena, and
M. F. Magalhães. Virtual routers as a service: The
RouteFlow approach leveraging software-defined
networks. In International Conference on Future
Internet Technologies, June 2011.

[22] A. Nayak, A. Reimers, N. Feamster, and R. Clark.
Resonance: Dynamic access control in enterprise
networks. In Workshop on Research on Enterprise
Networking, August 2009.

[23] P. S. Pisa, N. C. Fernandes, H. E. T. Carvalho,
M. D. D. Moreira, M. E. M. Campista, L. H.
M. K. Costa, and O. C. M. B. Duarte. OpenFlow
and Xen-based virtual network migration. In The
World Computer Congress – Network of the
Future Conference, 2010.

[24] T. Ristenpart, E. Tromer, H. Shacham, and
S. Savage. Hey, you, get off of my cloud:
Exploring information leakage in third-party
compute clouds. In ACM Conference on Computer
and Communications Security, November 2009.

[25] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. OFLOPS: An open framework for
OpenFlow switch evaluation. In Passive and
Active Measurement Conference, March 2012.

[26] R. Wang, D. Butnariu, and J. Rexford.
OpenFlow-based server load balancing gone wild.
In Hot-ICE Workshop, March 2011.

[27] Y. Wang, E. Keller, B. Biskeborn, J. van der
Merwe, and J. Rexford. Virtual routers on the
move: Live router migration as a
network-management primitive. In ACM
SIGCOMM, 2008.

[28] K. C. Webb, A. C. Snoeren, and K. Yocum.
Topology switching for data center networks. In
Hot-ICE Workshop, March 2011.

[29] T. Wood, K. K. Ramakrishnan, P. Shenoy, and
J. van der Merwe. CloudNet: Dynamic pooling of
cloud resources by live WAN migration of virtual
machines. In Proc. ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE), 2011.

[30] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling record and
replay troubleshooting for networks. In
Proceedings of Usenix Annual Technical
Conference, June 2011.

[31] Zynga. United States Security and Exchange
Commission form S-1, 2011.

14


