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Abstract

Visual recognition remains one of the grand goals of artificial intelligence research. One

major challenge is endowing machines with human ability to recognize tens of thousands of

categories. Moving beyond previous work that is mostly focused on hundreds of categories,

we make progress toward human scale visual recognition. Specifically, our contributions

are as follows:

First, we have constructed “ImageNet,” a large scale image ontology. The Fall 2011

version consists of 22 thousand categories and 14 million images; it depicts each category

by an average of 650 images collected from the Internet and verified by multiple humans.

To the best of our knowledge this is currently the largest human-verified dataset in terms of

both the number of categories and the number of images. Given the large amount of human

effort required, the traditional approach to dataset collection, involving in-house annotation

by a small number of human subjects, becomes infeasible. In this dissertation we describe

how ImageNet has been built through quality controlled, cost effective, large scale online

crowdsourcing.

Next, we use ImageNet to conduct the first benchmarking study of state of the art recog-

nition algorithms at the human scale. By experimenting on 10 thousand categories, we dis-

cover that the previous state of the art performance is still low (6.4%). We further observe

that the confusion among categories is hierarchically structured at large scale, a key insight

that leads to our subsequent contributions.

Third, we study how to efficiently classify tens of thousands of categories by exploiting

the structure of visual confusion among categories. We propose a novel learning technique

that scales logarithmically with the number of classes in both training and testing, improv-

ing both accuracy and efficiency of the previous state of the art while reducing training time

by 31 fold on 10 thousand classes.

Fourth, we consider the problem of retrieving semantically similar images from a large

database, a problem closely related to classification. We propose an indexing approach that

iii



exploits the hierarchical structure between categories. Experiments demonstrate that our

approach is more efficient, scalable, and accurate than previous work. In particular, our

indexing technique achieves close to 90% of the accuracy of brute force with a 1,000 times

speedup.

Finally, further exploiting the hierarchy, we show how to select the appropriate level of

specificity to guarantee an arbitrary classification accuracy. We propose an algorithm that is

provably optimal under mild conditions and demonstrate its effectiveness on classifying 10

thousand classes. Experiments show that our algorithm guarantees a 90% accuracy while

giving informative answers 83% of the time. This holds promise toward a practical large

scale recognition system.
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Chapter 1

Introduction

1.1 Large Scale Visual Recognition

Visual recognition is one of the cornerstone functionalities for humans — it is so important,

in fact, that nature has devoted more than 50% of neurons in the human brain to this task [1].

Recognition takes a variety of forms, such as categorization (“name the object”), localiza-

tion (“find the object”), segmentation (“outline the contour of the object”), and retrieval

of similar objects (“find similar objects”). The essence of all these tasks is translating 2D

pixels into high level semantics. One of the grand goals of artificial intelligence is endow-

ing machines with the same ability. This will lead to numerous applications ranging from

personal robotics, image search, security, and visual assistance to digital field guides.

Despite decades of research, visual recognition remains difficult for computers. There

are two main reasons. First, visual signals are notoriously complex. Each pixel in an

image is the result of highly complicated physical processes. Somehow humans can ef-

fectively deal with this complexity—humans can recognize the same object or the same

category of objects robust to changes in scale, location, lighting, occlusion, background

clutter, and view points. Much of the traditional vision research has been concerned with

discovering the physical, biological, computational principles underlying this recognition
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process. The second difficulty of visual recognition arises from a basic fact of high level

human intelligence—the semantic space humans use to describe the visual world is ex-

tremely large. Psychologists have postulated that there are around 30 thousand visual cat-

egories [2]. Photos on flickrs have more than 3.5 million unique tags [3]. Indeed, even the

most conservative estimates would point to at least tens of thousands of categories.

Large scale visual recognition, the focus of this dissertation, aims to address the very

challenge of the large semantic space, an unchartered territory in previous vision research.

It poses the question of how to emulate humans’ ability of recognizing tens of thousands

of categories. This stands in contrast with previous vision research that has been focused

on at most a couple hundreds of categories [4, 5]. Figure. 1.1 and Figure. 1.2 illustrate

the differences of the scale of recognition between previous research and the work this

dissertation presents by comparing the categories used in Caltech101 [4], a widely used

dataset in previous work, and ImageNet, a new large scale labeled dataset introduced in

this dissertation that has 22K categories.

Another significant difference from small scale recognition is that the structures be-

tween the visual categories become important. The categories are related to each other in

various ways. One of the most significant relations is the “is-a” relation. A “German Shep-

herd” is type of “dog,” and also a type of “animal.” This gives rise to a semantic hierarchy

consisting of tens of thousands of categories, where some classes are more related to each

other than others. In other words, large scale recognition deals with the semantic space in a

much higher “resolution,” that is, containing a large number of inter-related, “subordinate”

categories. As a result, large scale recognition distinguishes itself from traditional recogni-

tion that studies a much “coarser” sampling of the semantic space and focuses on a small

set of “flat,” basic categories. Consider, for example, the PASCAL VOC [6, 7] challenge.

As one of the most widely used benchmark for smaller scale recognition, it tests perfor-

mance on 20 classes such as “bird,” “dog,” ”cat,” “car,” etc., whereas large scale visual

recognition deals with hundreds of sub-categories for “bird” alone.
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Figure 1.1: Visualization of the categories in Caltech101 [4], a widely used dataset by

previous work in recognition.
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Figure 1.2: Visualization of the 22K categories in ImageNet, a large scale labeled dataset introduced in this dissertation.
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The enormous potential for useful applications and its unique characteristics in scale

and structure makes large scale visual recognition an important and interesting problem.

1.2 Challenges

The key to solving the visual recognition problem is seeking a computational model that is

capable of mapping pixels into semantics, in particular, large scale, fine-grained semantics.

The prevailing paradigm in obtaining such a model has been through machine learning.

Visual recognition turns out to be an extremely complex process, one that has evaded most

attempts to describe it as a simple set of rules. The promise of machine learning lies in its

ability to handle such complexity by learning from labeled data, by generalizing using spe-

cific examples of mappings from pixels to semantics. Computer vision researchers’ effort

is still critical in designing models and feature representations by studying the underlying

principles of vision, but a substantial amount of heavy-lifting is done by the data and the

learning algorithms.

In this section, we discuss the challenges of large scale recognition in the machine

learning paradigm. In particular, we focus on the key ingredients: data, learning algorithms,

and feature representations.

1.2.1 Data

Data, in particular annotated data, is a critical component for machine learning. At the

extreme, if we store every possible image in the universe as well as its annotations, then

we can simply “look up” the answer to perform recognition. Of course this is unrealistic,

but the hope is that by having sufficiently large labeled datasets, highly complex problems

such as visual recognition would become much easier since, intuitively, we would be able

to find very similar examples to the image we wish to recognize. The effectiveness of

large, annotated datasets has been well demonstrated, especially in speech recognition and
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machine translation [8]. In the vision domain, the first breakthrough in recognition on the

task of face detection came about only when a large amount of well labeled data became

available [9, 10].

The information revolution has brought about an exponential growth of raw image data.

There are more than 6 billion photos uploaded on Flickr [11] and 2 billion every month on

Faceoook [12]. In addition, these photos often come with tags provided by users. This

opens up great opportunities for us to attack large scale visual recognition using a massive

amount of web data. The challenge is then how to harvest the data from the web and

annotate it with high quality labels.

1.2.2 Learning algorithms

The goal of a learning algorithm is to produce a model from existing data in a way that

generalizes to unseen data. For large scale recognition, the challenges in learning arise

from the scale as well as the structure.

With regard to scale, the question is how to effectively process a large number of ex-

amples and classes. With millions of examples, traditional machine learning algorithms

break down in two ways: first, the dataset cannot fit into memory any more, especially with

high dimensional image feature representations; second, there can be so many examples

that it can be prohibitively expensive to even go through the data once. In this setting,

the learning algorithm is no longer bound by the number of examples, but by the com-

putational resources. A fundamental question is how to make the most out of the almost

unlimited supply of data under limited, distributed computational resources. With a large

number of classes, traditional classification models can also be prohibitively expensive as

most of them scale at least linearly with the number of classes. This calls for more efficient

algorithms that scale sublinearly with respect to the number of classes.

With regard to structure in large scale recognition, the challenge is how to explore the

hierarchical relations between categories. Large scale recognition involves tens of thou-
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sands of fine-grained classes that have much richer relationships than hundreds of weakly

related classes traditionally dealt with. Traditional classification models treat the classes as

a flat, mutually exclusive set. In contrast, for a large number of classes that form a hier-

archy, this flat view of classes is no longer appropriate. First of all, the hierarchy consists

of many levels of abstractions. A German Shepherd is also a dog, an animal, and a liv-

ing thing. These categories overlap with each other and are no longer mutually exclusive.

Moreover, some misclassification errors can be less desirable than others–it would be much

worse to classify a German Shepherd as a microwave than as a husky. In order to take into

account the semantic hierarchy, we need new learning algorithms.

1.2.3 Feature representations

Recognizing tens of thousands of categories demands powerful, efficient image represen-

tations. The standard image representation has converged to the bag-of-words model with

spatial pooling [13, 14, 15, 16]. However, it is unlikely that this generic representation

will ultimately work for tens of thousands of categories. Discriminative signals for fine-

grained categories could well be lost in this generic representation developed on small-

scale, “sparse” sets of classes. For example, the most effective features for classifying

flowers may be very different from those for classifying cars. On the other hand, cate-

gories are related and some features can be shared among many categories. This poses the

question of how to go about creating the representations. Is there a unified representation

and learning mechanism that can handle all fine-grained classes? Or should we handcraft

highly specialized, domain-specific features for many different categories? These questions

continue to be explored in large scale recognition.
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1.3 Background and Related Work

1.3.1 Visual recognition

Recognition has been an active research area of computer vision. The ultimate goal is to be

able to fully understand every pixel of an image in terms of high level semantics, e.g., the

scene, the objects, and the spatial, functional relations between them. This task, however,

can be too difficult to tackle as a whole. Instead, it is decomposed into more manageable

problems, such as classification (identify the class of the object), detection (localize the

object), segmentation (assign every pixel an object label), etc. In this section, we will focus

on the classification task, because it is a basic task that can serve as a building block for

other tasks — for example, the detection task is typically solved as repeated classification

of sliding windows in an image.

Given an input image with a dominant foreground object, the image classification task

seeks to predict the class of the object. This is the standard multiclass classification prob-

lem in machine learning. Often the task is also called “image categorization” or “object

categorization” and we will use these terms interchangeably.

The pipeline for image classification has converged to bag-of-words models (BoW) [17]

with quantized local descriptors [13, 14, 15] and support vector machines [14, 18] as basic

techniques. Figure 1.3 illustrates a typical pipeline. First, densely sampled local patches

are extracted on the images. Each patch is described by a feature vector (descriptor).

Typically the descriptor encodes histograms of gradient orientations, e.g., HOG [19] or

SIFT [13]. Second, each descriptor is assigned to a visual word based on a codebook, a

predetermined set of descriptors typically obtained by clustering many descriptors through

KMeans. Third, given the visual words, any region of the image, including the full image

itself, can be described by a histogram of the visual words. The image is typically repre-

sented by a concatenation of the histograms from a predetermined, fixed set of regions. A

common choice of the regions is the spatial pyramid [15], which recursively partitions the
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Figure 1.3: Illustration of the standard classification pipeline.

image into 2 × 2 grids. Finally, a multiclass classifier is learned using this representation.

In the example of Figure 1.3, the classifier predicts the correct class label “red fox.” Note

that the quantization and histogram forming steps are also referred to as “coding” or “pool-

ing” in the literature. Recent developments have mostly centered on introducing variants

of these two steps, but the basic elements remain the same [16, 20, 21].

A popular choice of the multiclass classifier is a combination of binary Support Vec-

tor Machine (SVM) classifiers. For each class, a “one-versus-all” classifier is learned to

discriminate the class from all other classes. To classify a new image, we evaluate all

one-versus-all classifiers and then predict the class with the highest classification score. To

evaluate the performance, we measure the classification error by the percentage of misclas-

sification. This standard evaluation considers the “flat” case: the classes are assumed to

be mutually exclusive and the multiclass performance is evaluated by the uniform 0-1 loss,

i.e., confusion between any two classes incurs a penalty of 1 and zero otherwise.

Although the majority of work in image classification only considers the “flat” case, a

considerable amount of work utilizes hierarchies as well [22, 23, 24, 25]. Such works can

be divided into two groups. The first group uses hierarchy to improve the performance of

flat multiclass classifiers at the leaf nodes [26, 27, 28, 25, 29, 30]. Typically constructed in
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an automatic fashion, the hierarchy does not necessarily align with the semantic hierarchy.

The idea is that a hierarchy can be employed to efficiently narrow down the possible classes

as well as to transfer knowledge (e.g., by sharing examples between closely related classes)

so as to improve accuracy. The second group of work considers classification for both

internal nodes and leaf nodes [24, 31, 23]. Hierarchy is used either to combine models [24],

or to organize the classifiers [23, 31, 25]. Typically multiclass or binary classifiers are

learned for each node. A test example can then be classified at all semantic levels, e.g., by

sending it down the hierarchy to a leaf node. The research question is thus how to do that

in the most accurate and efficient way.

1.3.2 Large Scale Labeled Datasets

Dataset collection has been an critical part of computer vision research. A number of well

labeled small datasets (Caltech101/256 [4, 5], PASCAL [32, 6, 7, 33], etc.) have served

as training and evaluation benchmarks for most of today’s computer vision algorithms.

Caltech101 was essentially the first widely adopted dataset for object categorization. It

has 101 categories and 9146 images in total. The PASCAL VOC datasets are a series of

datasets used for the PASCAL Visual Object Class Challenges. There are 20 classes. The

number of total images gradually increased from 10K in 2007 to 30K images in 2011.

Other notable datasets include the LabelMe dataset [34] and the LotusHill dataset [35],

which provide 30K and 637K labeled and segmented images, respectively [34, 35]. Both

datasets have around 200 categories. 1

The TinyImage [36] dataset was the first effort to build a dataset with many images cov-

ering significantly more than 200 categories. It consists of 32x32 pixel versions of images

collected by performing web queries for the nouns in the WordNet [37] hierarchy, without

further verification of content. Each class in the dataset contains an average of 1,000 im-

1LabelMe has 4K unique object descriptions but only 183 categories with more than 30

images each.

10



ages, among which likely only 10-25% are accurately labeled images [36]. Although the

TinyImage dataset has had success with certain applications such as non-parametric recog-

nition based on nearest neighbor search [36], the high level of noise and the low resolution

of the images nevertheless make it less suitable for general purpose algorithm development,

training, and evaluation.

1.3.3 Large Scale Learning

As digital data continues to exponentially grow and as massive parallelism gradually be-

comes the norm in computing, dealing with large datasets in machine learning emerges as

an increasingly relevant and active research front.

One challenge of large scale machine learning is handling a large number of examples

that may not fit into memory and, even if they do, may be too expensive to process with

traditional algorithms. Two somewhat orthogonal approaches have been proposed. One is

to use online learning algorithms, which sequentially examine the data, one small chunk a

time. An effective method is the stochastic gradient descent (SGD) algorithm that randomly

picks one example a time, computes the gradient based on this one example, and updates

the parameters to be learned. It has been shown to be especially suitable in the large scale

setting [38]. The other approach is to partition the data into smaller chunks such that each

chunk can fit into the memory of one computing node and then apply a distributed learn-

ing algorithm. One programming model for this scenario is the well known MapReduce

framework [39]. It turns out that many existing learning algorithms can be expressed in a

certain summation form and can thus be adopted in this framework [40]. In addition, the

alternating direction method of multipliers (ADMM) is found to be well suited as a generic

meta algorithm to parallelize a large family of convex optimization problems [41].

Another challenge of large scale learning is dealing with a large output space, in par-

ticular, a large number of classes for the classification problem. The core issue is reducing

the computational cost of learning algorithms with a large number of classes. There has
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been relatively little work on this front. The majority of existing models are tree based,

including Filter Tree [42], Conditional Probability Tree(CPT) [43], and Label Trees [26].

These models use tree structures to reduce the multiclass problems to a small number of

binary problems so that the evaluation cost can be sublinear in the total number of classes.

1.4 Contributions

This dissertation contributes to large scale visual recognition by tackling some of the chal-

lenges elaborated in Section 1.2. On the data front, through crowdsourcing, we have con-

structed ImageNet, a large scale, richly structured image dataset with over 20,000 cate-

gories and over 14 million images, orders of magnitude larger than any previous human

verified image dataset, both in terms of the number of images and the number of cate-

gories. It has over 800 registered users worldwide. Next, on the learning front, we investi-

gate machine learning techniques on this large scale visual data. After conducting the first

benchmark of state of the art approaches, we have proposed new methods that are highly

scalable, computationally efficient, and category-structure-aware.

1.4.1 Constructing ImageNet

Previous datasets for visual recognition have at most a couple of hundreds of categories,

far from the tens of thousands of categories one would encounter in the real world. We

have constructed ImageNet, a large scale, labeled image database with 22 thousand visual

categories and 14 million images, covering visual categories that range from living things,

artifacts, people, and scenes to activities and events (Chapter 2). 2 We use WordNet [37]

to organize the categories and link the concepts into a semantic hierarchy based on the

“is a” relation provided by WordNet [37]. We have developed an automated system that

constructs ImageNet in two steps: (1) collecting candidate images for each category from

2An earlier version of ImageNet has been presented in [44].
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the Internet by querying search engines in multiple languages and (2) verifying each image

through workers on Amazon Mechanical Turk [45]. To make the system cost effective and

to ensure the annotation quality, we have proposed an algorithm that dynamically estimates

the confidence of the current annotation and determines the number of workers necessary

to guarantee quality.

ImageNet has since its initial release three years ago enjoyed over 800 registered users

worldwide and served as the benchmark dataset for two large scale recognition competi-

tions held in conjunction with PASCAL [46, 47]. In addition to large scale recognition,

it has been used for transfer learning [48], image retrieval [49], computational linguis-

tics [50], and human computer interaction [51].

1.4.2 Benchmarking with ImageNet

Benchmarking is critical for both developing and evaluating recognition algorithms. Tra-

ditionally object recognition algorithms were evaluated on datasets of at most hundreds of

categories. We benchmarked state of the art algorithms on 10,184 categories in ImageNet,

the first time recognition was studied at such a scale (Chapter 3). 3 The major findings

include: (1) the previous state of the art performance is still very low on 10,184 classes

(6.4%); (2) evaluation at a small scale cannot predict large scale performance; (3) visual

similarity roughly aligns with semantic similarity; (4) a visualization of the confusion ma-

trix exhibits hierarchical block patterns, revealing that the difficulty comes from distin-

guishing semantically similar, fine-grained subordinate classes; (5) online, low memory

footprint, parallel machine learning algorithms are needed. These findings are significant

in that they point to new research directions and are in fact the basis for my subsequent

research on efficient, category-structure-aware large scale learning algorithms.

3This study was first presented in [52].
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1.4.3 Efficient Large Scale Classification

One major challenge of classifying a large number of categories is computational efficiency.

As the number of classes increases, conventional frameworks for training and testing be-

come inefficient as the cost scales linearly with the number of categories. In Chapter 4, we

propose a novel learning technique for label trees [26], a state of the art large scale classifi-

cation model that has sublinear test time with respect to the number of classes. 4 Our new

learning technique significantly improves the quality of the label trees learned in terms of

both test efficiency and accuracy, as shown by experiments on more than 10,000 categories.

Moreover, training costs are also substantially reduced, fromO(mK) toO(m logK) where

m is the number of examples and K is the number of categories. A systems challenge is

efficiently optimizing a tightly coupled learning objective on a large amount of data that

cannot fit in memory. We overcome this difficulty by applying a recently developed dis-

tributed learning framework called parallelized stochastic gradient descent using Hadoop

MapReduce.

1.4.4 Hierarchy-Aware Large Scale Retrieval

A closely related problem to classification is retrieval, or finding similar images given a

query image. It is highly challenging on its own due to the difficulty of measuring high level

semantic similarities and indexing a large number of images. In Chapter 5 we propose to

represent images as probabilities over the semantic hierarchy through multi-class learning

and measure image similarity using this representation. 5 We also develop a novel locality

sensitive hashing technique [55] to enable efficient retrieval. The approach is highly scal-

able, in fact “embarrassingly parallel” by design such that it is perfectly suited for a cloud

environment. Moreover, it is much faster than previous state of art methods in both learning

and retrieval. Another highlight is that the system is able to retrieve images not only from

4This work was first presented in [53].
5An early version appeared in [54].
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the same category as the query image, but also from semantically similar categories.

1.4.5 Multi-level Classification With Accuracy Guarantees

Equally important is exploiting the semantic structure. The image categories form a seman-

tic hierarchy where internal nodes are unions of their leaf nodes. For example, a kangaroo

is also a mammal, an animal, and a living thing. Motivated by this observation, we pro-

pose in Chapter 6 an “infallible” classifier that tries to be as specific as possible yet almost

never makes mistakes. 6 The classifier can maintain an arbitrarily high level of accuracy

by outputting internal nodes in the case of uncertainty at leaf nodes. We formulated this

problem as maximizing information gain of classification while maintaining a fixed, arbi-

trarily small error rate. This is the first time that the problem of optimizing the accuracy-

specificity trade-off on a semantic hierarchy has been introduced in large scale recognition.

We proposed an algorithm that provably converges to an optimal solution under practical

conditions. Experiments on more than 10,000 categories demonstrated that recognition can

be highly accurate yet very informative, significantly outperforming baseline approaches.

This paves the way to a practical large scale recognition system.

6This work is also presented in [56].
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Chapter 2

Constructing ImageNet

2.1 Introduction

The digital era has brought with it an enormous explosion of data. According to the

IDC [57] digital universe study, the world was projected to add 1.8 zettabytes (1.8 tril-

lion gigabytes) in 2011 alone. For visual data, the latest estimations put a number of more

than 6 billion photos on Flickr [11], a similar number of video clips on YouTube and an

even larger number of images in the Google Image Search database. More sophisticated

and robust models and algorithms can be proposed by exploiting these images, resulting

in better applications for users to index, retrieve, organize and interact with this data. But

exactly how such data can be utilized and organized is a problem yet to be solved. In this

chapter, we introduce a new image database called “ImageNet,” a large scale ontology of

images. 1 We believe that it is a critical resource for developing algorithms for large scale

recognition and large scale image retrieval, as well as for providing critical training and

benchmarking data for such algorithms.

ImageNet uses the hierarchical structure of WordNet [37], a lexical database of En-

glish. Each meaningful concept in WordNet, possibly described by multiple words or word

1An earlier version was first presented in [44].
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phrases, is called a “synonym set” or “synset.” There are around 80,000 noun synsets

in WordNet. In ImageNet, the goal is to provide on average 500–1,000 images to illus-

trate each synset that can be visualized. Images of each concept are quality-controlled and

human-annotated as described in Section 2.4.2. ImageNet, therefore, aims to offer tens of

millions of accurately labeled images. The current version of ImageNet consists of 21,841

synsets and 14,197,122 images. It covers a wide range of visual concepts including animal,

plant, artifact, geological formations, activities, and materials. Figure 2.1 shows a snapshot

of two branches of the mammal and vehicle hierarchies. The database is publicly available

at http://www.image-net.org.

The rest of this chapter is organized as follows. We first describe the properties of Ima-

geNet in Section 2.2 and then compare ImageNet with related datasets in Section 2.3. Sec-

tion 2.4 describes how ImageNet is constructed by leveraging Amazon Mechanical Turk.

This is followed by a discussion of future work in Section 2.5.
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mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 2.1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the

vehicle subtree. For each synset, 6 randomly sampled images are presented.
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Figure 2.2: Histogram of number of images per synset in the Fall 2011 release of ImageNet.

About 15% of the synsets have very few images. Over 50% synsets have more than 500
images.

2.2 Properties of ImageNet

In this section we discuss some of the most important properties of ImageNet, which is a

large scale, hierarchically organized, accurate, and diverse image dataset.

2.2.1 Scale

ImageNet aims to provide a comprehensive and diverse coverage of the image world. The

Fall 2011 version consists of a total of 14 million human verified images spread over 21, 841

categories. The scale of ImageNet is evidenced by its extensive coverage of the visual

world that ranges from living things, artifacts, people, and scenes to activities and events.

Table 2.2.1 lists the statistics of major subtrees. On average 650 images are collected for

each synset. Figure 2.2 shows the distributions of the number of images per synset for the

current ImageNet. Admittedly, about 20% of the synsets have very few images because

either there are very few web images available, e.g., “vespertilian bat,” or the synset by

definition is difficult to illustrate with images, e.g., “two-year-old horse.” To our knowledge
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this is currently the largest human verified image dataset available to the vision research

community, in terms of the total number of images, number of images per category as well

as the number of categories. It is claimed that the ESP game [58] has labeled a very large

number of images, but only a subset of 60K images are publicly available.

2.2.2 Hierarchy

ImageNet organizes the different classes of images in a densely populated semantic hier-

archy. The main asset of WordNet [37] lies in its semantic structure, i.e., its ontology of

concepts. Similarly to WordNet, synsets of images in ImageNet are interlinked by several

types of relations, the “is-a” relation being the most comprehensive and useful. The “is-a”

relation forms a hierarchy of synsets, or more specifically a directed acyclic graph (DAG).

Note that the DAG of WordNet is mostly a tree and we will use the term “tree,” “DAG,” and

“hierarchy” interchangeably unless the difference between a tree and a DAG is significant

in the context. Although one can map any dataset with category labels into a semantic hier-

archy by using WordNet, the density of ImageNet is unmatched by others. For example, to

our knowledge no existing vision dataset offers images of 147 dog categories. Figure 2.3

compares the “cat” and “cattle” subtrees of ImageNet and the ESP dataset [58]. We observe

that ImageNet offers much denser and larger trees.

2.2.3 Accuracy

We would like to offer a accurately labeled dataset at all levels of the WordNet hierarchy.

Figure 2.4 demonstrates the labeling precision on a total of 80 synsets with 500 or more

images each, randomly sampled at different tree depths from the mammal and vehicle

subtrees. A 99.7% precision is achieved on average. Achieving a high precision for all

depths of the ImageNet tree is challenging because the lower in the hierarchy a synset is,

the harder it is to classify, e.g., Siamese cat versus Burmese cat.
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ESP Cattle Subtree Imagenet Cattle Subtree
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Imagenet Cat SubtreeESP Cat Subtree
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376

1830

Figure 2.3: Comparison of the “cat” and “cattle” subtrees between ESP [58] and ImageNet.

Within each tree, the size of a node is proportional to the number of images it contains. The

number of images for the largest node is shown for each tree. Shared nodes between an

ESP tree and an ImageNet tree are colored in red.
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Figure 2.4: Percent of accurately labeled images at different tree depth levels in ImageNet.

A total of 80 synsets are randomly sampled at every tree depth of the mammal and vehicle

subtrees. An independent group of subjects verified the correctness of each of the images.

An average of 99.7% precision is achieved for each synset.

subtree # synsets avg # of images per synset total # of images

amphibian 94 590 55,510

animal 3,822 732 2,798,930

appliance 51 1,163 59,343

artifact 7,450 749 5,582,339

bird 856 948 812,069

covering 946 818 774,362

device 2,385 674 1,609,552

fabric 262 689 180,777

fish 566 494 279,775

flower 462 734 339,383

food 1,495 669 1,001,193

fruit 309 607 187,583

fungus 303 452 137,187

furniture 187 1,042 194,948

geological formation 151 838 126,567

invertebrate 728 572 416,832

mammal 1,138 821 934,450

musical instrument 157 891 139,899

person 21 1,152 24,208

plant 1,666 599 999,163

reptile 268 707 189,521

sport 166 1,207 200,402

structure 1,239 763 945,590

tool 316 551 174,271

tree 993 568 564,040

utensil 86 912 78,442

vegetable 176 764 134,518

vehicle 481 777 374,135

Table 2.1: Statistics of common subtrees in the Fall 2011 release of ImageNet. The subtrees

listed are not mutually exclusive to each other.
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Figure 2.5: Visualization of the mammal hierarchy.
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Figure 2.6: ImageNet provides diversified images. (a): Comparison of the lossless JPG file sizes of average images for four different

synsets in ImageNet (the mammal subtree) and Caltech101. Average images are downsampled to 32×32 and sizes are measured in byte.

A more diverse set of images results in a smaller lossless JPG file size. (b): Example images from ImageNet and average images for

each synset indicated by (a). (c): Examples images from Caltech101 and average images. For each category shown, the average image

is computed using all images from Caltech101 and an equal number of randomly sampled images from ImageNet.
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2.2.4 Diversity

ImageNet is constructed with the goal that objects in images should have variable appear-

ances, positions, view points, and poses as well as background clutter and occlusions. In

an attempt to tackle the difficult problem of quantifying image diversity, we compute the

average image of each synset and measure lossless JPG file size which reflects the amount

of information in an image. Our idea is that a synset containing diverse images will result

in a blurrier average image, the extreme being a gray image, whereas a synset with little

diversity will result in a more structured, sharper average image. We therefore expect to see

a smaller JPG file size of the average image of a more diverse synset. Figure 2.6 compares

the image diversity in four randomly sampled synsets in Caltech101 [4] and the mammal

subtree of ImageNet.

2.3 Related Work

In this section we compare ImageNet with other datasets. We focus our comparisons on

datasets of generic objects. Special purpose datasets, such as FERET faces [59], Labeled

faces in the Wild [60] and the Mammal Benchmark by Fink and Ullman [61] are not in-

cluded. We summarize the main differences between ImageNet and related datasets in

Table 2.2.

2.3.1 Small Datasets

A number of well labeled small datasets (Caltech101/256 [4, 5], MSRC [62], PASCAL [7]

etc.) have served as training and evaluation benchmarks for most of today’s computer

vision algorithms. As computer vision research advances, larger and more challenging

datasets are needed for the next generation of algorithms. The current ImageNet offers

20× the number of categories, and 100× the number of total images than these datasets.
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ImageNet TinyImage LabelMe ESP LotusHill

# Images (million) 14 80 0.03 1 0.07 2 0.6

# Classes (thousand) 22 80 4 3 23 4 0.2

Label Disambiguated Y Y N N Y

Human Verified Y N Y Y Y

Full Resolution Y N Y Y Y

Segmented N N Y N Y

1 as of December 21, 2006.
2 publicly available ones.
3 unique descriptions as of December 21, 2006. There are 183 categories with

at least 30 images.
4 publicly available unique labels (without merging synonyms).

Table 2.2: Comparison of some of the properties of ImageNet versus TinyImage [36],

LabelMe [34], ESP [58], and LotusHill [35]. ImageNet offers disambiguated labels, human

verified annotations, full resolution images; it is also publicly available. ImageNet currently

does not provide segmentation annotations.

2.3.2 TinyImage Dataset

TinyImage [36] is a dataset of 80 million 32×32 low resolution images, collected from the

Internet by sending all words in WordNet as queries to image search engines. Each synset

in the TinyImage dataset contains an average of 1056 images, among which 10-25% are

estimated to be accurately labeled images [36]. Although the TinyImage dataset has had

success with certain applications, the high level of noise and low resolution images make

it less suitable for general purpose algorithm development, training, and evaluation. Com-

pared to the TinyImage dataset, ImageNet contains high quality synsets (∼ 99% precision)

and full resolution images with an average size of around 400× 350.

2.3.3 ESP Dataset

The ESP dataset is acquired through an online game [58]. Two players independently

propose labels to one image with the goal of matching as many words as possible in a

certain time limit. Millions of images are labeled through this game, but its speeded nature

also poses a major drawback. Rosch and Lloyd [63] have demonstrated that humans tend
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to label visual objects at an easily accessible semantic level termed as “basic level” (e.g.,

bird), as opposed to more specific level (“subordinate level,” e.g., sparrow), or more general

level (“super-ordinate level,” e.g., vertebrate). Labels collected from the ESP game largely

concentrate at the “basic level” of the semantic hierarchy as illustrated by the color bars in

Figure 2.7. ImageNet, however, demonstrates a much more balanced distribution of images

across the semantic hierarchy. Another critical difference between ESP and ImageNet is

sense disambiguation. When human players input the word “bank,” it is unclear whether

it means “a river bank” or a “financial institution.” At this large scale, disambiguation

becomes a non-trivial task. Without it, the accuracy and usefulness of the ESP data could

be affected. ImageNet, on the other hand, does not have this problem by construction, as

detailed in Section 2.4.2. Lastly, most of the ESP dataset is not publicly available. Only

68K images and their labels can be accessed [64].

2.3.4 LabelMe and LotusHill Datasets

LabelMe [34] and the LotusHill dataset [35] provide 30K 2 and 637K labeled and seg-

mented images, respectively. These two datasets provide complementary resources for the

vision community compared to ImageNet. LabelMe has 4,210 unique object descriptions

(among which 183 categories have at least 30 annotated examples each) and LotusHill has

200 object categories. In both datasets, the outlines and locations of objects are provided.

ImageNet in its current form does not provide detailed object outlines (see potential exten-

sions in Section 2.5.1), but the number of categories and the number of images per category

already far exceeds these two datasets. In addition, images in these two datasets are largely

uploaded or provided by users or researchers of the dataset, whereas ImageNet contains

images crawled from the entire Internet. The LotusHill dataset is available for purchase

whereas ImageNet is freely available.

2as of December 21, 2006.
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Figure 2.7: Comparison of the distribution of “mammal” labels over tree depth levels be-

tween ImageNet and ESP game. The x-axis is the depth in the WordNet hierarchy. The

y-axis indicates the percentage of the labels at a certain depth. ImageNet demonstrates a

much more balanced distribution, offering substantially more labels at deeper tree depth

levels. The actual number of images corresponding to the highest bar is also given for each

dataset.
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2.4 Construction Approach

The intended scope of ImageNet made it infeasible for us to construct it using the traditional

data collection method: annotating images by ourselves or by recruiting a small number of

human subjects. Suppose we need 1,000 images per category for 30,000 categories. Further

assume that to collect 1 verified image we need to screen 10 candidate images and that a

human subject can work at a speed of 0.5 second per image without making mistakes. This

would give a total of 1, 000 × 10 × 30, 000 × 0.5 seconds, i.e., 19 years of human time.

This suggests that a more scalable solution is necessary.

In this section we describe how we construct ImageNet through large scale online

crowdsourcing, shedding light on how the properties described in Section 2.2 can be en-

sured in this process.

2.4.1 Collecting Candidate Images

The first stage of the construction of ImageNet involves collecting candidate images for

each synset. The average accuracy of image search results from the Internet is around

10% [36]. ImageNet aims to offer 500–1,000 accurately labeled images per synset. We

therefore collect a large set of candidate images. After intra-synset duplicate removal, each

synset has 16K images on average. This gives a total of 353 million candidate images for

the Fall 211 release of ImageNet.

We collect candidate images from the Internet by querying several image search en-

gines. For each synset, the queries are the set of WordNet synonyms. Search engines

typically limit the number of images retrievable (in the order of a few hundred to a thou-

sand). To obtain as many images as possible, we expand the query set by appending the

queries with the word from parent synsets, if the same word appears in the gloss of the

target synset. For example, when querying “whippet,” according to WordNet’s gloss a

“small slender dog of greyhound type developed in England,” we also use “whippet dog”
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and “whippet greyhound.”

To further enlarge and diversify the candidate pool, we translate the queries into other

languages [65], including Chinese, Spanish, Dutch and Italian. We obtain accurate transla-

tions by WordNets in those languages [66, 67, 68, 69].

2.4.2 Verifying Candidate Images through Crowdsourcing

To collect a highly accurate dataset, we rely on humans to verify each candidate image

collected in the previous step for a given synset. Traditionally researchers either verify the

images themselves or recruit a small number of human subjects to help. At the scale of

ImageNet this approach is no longer feasible, as our rough calculation earlier shows that it

would take 19 human years.

Crowdsourcing is the process of completing tasks or solving problems through a dis-

tributed group of people. There are many types of crowdsourcing. One type is volunteer-

based, such as the construction of Wikipedia where a large number of people volunteer

to contribute content. Another type is paid microtasking, where people finish small tasks

online for a small amount of money. A popular platform is Amazon Mechanical Turk

(AMT) [45], an online market through which one can put up tasks for users to complete

and to get paid. A third type of crowdsourcing is through ‘games with a purpose” [58],

where players implicitly finish certain tasks through enjoyable game play.

For constructing ImageNet, we crowdsource through AMT because it has a large pool

of global users on demand, whereas it can be difficult to accumulate unpaid volunteers or

game players at a similar scale in a short time. Moreover, AMT has been used for labeling

vision data [70] and has been shown to give good results with low cost.

In each of our labeling tasks, we present the users with a set of candidate images and

the definition of the target synset (including a link to Wikipedia). We then ask the users

to verify whether each image contains objects of the synset. We encourage users to select

images regardless of occlusions, number of objects and clutter in the scene to ensure diver-
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#Y # N Conf
Cat 

Conf
BCat

0 1 0.07 0.23
1 0 0.85 0.69
1 1 0.46 0.49
2 0 0.97 0.83
0 2 0.02 0.12
3 0 0.99 0.90
2 1 0.85 0.68

User 1 Y Y Y
User 2 N Y Y
User 3 N Y Y
User 4 Y N Y
User 5 Y Y Y
User 6 N N Y

Figure 2.8: Left: Is there a Burmese cat in the images? Six randomly sampled users have

different answers. Right: The confidence score table for “Cat” and “Burmese cat.” More

votes are needed to reach the same degree of confidence for “Burmese cat” images.

sity. Figure 2.9 shows our labeling interface. A user is to click on the images that contain a

“bluebird.” Figure 2.10 shows a finished submission, where the selected images have been

moved to the right panel.

While users are instructed to make accurate judgment, we need to set up a quality

control system to ensure this accuracy. There are two issues to consider. First, human users

make mistakes and not all users follow the instructions. Second, users do not always agree

with each other, especially for more subtle or confusing synsets, typically at the deeper

levels of the tree. Figure 2.8 (left) shows an example of how users’ judgments differ for

“Burmese cat.”

The solution to these issues is to have multiple users independently label the same im-

age. An image is considered positive only if it gets a convincing majority of the votes.

We observe, however, that different categories require different levels of consensus among

users. For example, while five users might be necessary for obtaining a good consensus

on “Burmese cat” images, a much smaller number is needed for “cat” images. We develop

a simple algorithm to dynamically determine the number of agreements needed for differ-

ent categories of images. For each synset, we first randomly sample an initial subset of

images. At least 10 users are asked to vote on each of these images. We then obtain a
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Figure 2.9: The user interface for verifying the candidate images.
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Figure 2.10: A finished labeling task.
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confidence score table, indicating the probability of an image being a good image given the

user votes (Figure 2.8 (right) shows examples for “Burmese cat” and “cat”). For each of

remaining candidate images in this synset, we proceed with the AMT user labeling until

a pre-determined confidence score threshold is reached. Naturally, when a synset is more

familiar to most of the average users, a smaller number of voters is needed to judge the

images.

To obtain the table of confidence scores, we model the voting process as follows. As-

sume that the synset s is being considered. Each candidate image has an intrinsic param-

eter p ∈ [0, 1] that indicates the difficulty of the image. The process of getting a new

worker to vote v ∈ {1, 0} on an image is a Bernoulli trial parametrized by the difficulty

p of the image. That is, Pr(v = 1) = p. The image is considered positive for synset s

if the majority would vote yes, i.e., p > 0.5. Further we assume that p takes only dis-

crete values {pk}, k = 1, . . . , l and is generated a multinomial distribution parametrized by

q(s) = {q(s)k }, k = 1, . . . , l such that Pr(p = pk|s) = q
(s)
k . The parameter q(s) models the

difficulty of the synset s. Given the current votes v and the synset s, the confidence of the

image is then i.e., the probability that p > 0.5, that is,

Pr(p > 0.5|v, s) = Pr(v|p > 0.5) Pr(p > 0.5|s)
Pr(v|s)

=

∑
k:pk>0.5 Pr(v|p = pk)q

(s)
k∑

k Pr(v|p = pk)q
(s)
k

,

where

Pr(v|p = pk) =
∏
i

pvik (1− pk)
(1−vi).

We use the votes in the initial subset to estimate q(s). Since there is a large number of votes

per image, we can estimate the the difficulty p of each image by the percentage of positive

votes. Then q(s) is estimated by binning the estimates of p.

It is worth noting that the confidence table gives a natural measure of the “semantic

difficulty” of the synset. For some synsets, users fail to reach a majority vote for any
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image, indicating that the synset cannot be easily illustrated by images. 3

A final measure of quality control is to identify completely unacceptable submissions

which can be rejected without a payment. We achieve this by embedding gold standard

(known good/bad images obtained from the initial subset with high confidence) and com-

paring a worker’s submission on these images with the ground truth.

With all the quality control mechanism in place, our algorithm successfully filters the

candidate images, resulting in a high percentage of accurately labeled images per synset,

as shown in Figure 2.4.

Since the start of the ImageNet project in 2007, we have processed 160 millions through

Amazon Mechanical Turk. Our experience is that AMT is extremely scalable in terms

of speed. For example, at our peak, we have up to 5,000 submissions each day; each

submission verifies 250 images. This gives a speed of over 1 million images per day.

Second, quality control is very important. We reject around 10% of the submissions due to

spammers.

2.5 Discussion

In this section we discuss how we will further expand ImageNet and how ImageNet can be

used to advance vision related research.

2.5.1 Expanding ImageNet

The current ImageNet constitutes around 25% of the WordNet synsets but has covered

many common objects. Not all of the WordNet synsets can be visually illustrated—our

preliminary estimate suggests that, for the remaining synsets of WordNet, a large portion is

not visual. We will nevertheless keep expanding ImageNet to achieve full coverage of all

visual synsets. Moreover, many parts of the WordNet hierarchy can be expanded to even

3An alternative explanation is that we did not obtain enough suitable candidate images.

Given the extensiveness of our crawling scheme, this is a rare scenario.
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more fine-grained sub-categories. For examples, the car categories in WordNet do not yet

include different brands of cars.

Another direction of expanding ImageNet is to include more information such as local-

ization, segmentation, cross-synset referencing of images, as well as expert annotation for

difficult synsets.

2.5.2 Exploiting ImageNet

ImageNet can serve as a useful resource for a broad of range of vision related research.

First, ImageNet can be used as a training resource. Most of today’s object recognition

algorithms have focused on a small number of common objects, such as pedestrians, cars

and faces. This is mainly due to the high availability of images for these categories. Fig-

ure 2.7 has shown that even the largest datasets today have a strong bias in their coverage of

different types of objects. ImageNet, on the other hand, contains a large number of images

for nearly all object classes including rare ones. One interesting research direction could

be to transfer knowledge of common objects to learn rare object models.

Second, ImageNet is well suited as a benchmark dataset. The current benchmark

datasets in computer vision such as Caltech101/256 and PASCAL have played a critical

role in advancing object recognition and scene classification research. ImageNet is at least

two orders of magnitude larger than these datasets and it can serve as a new and challenging

benchmark dataset for future research.

Thrid, ImageNet can allow us to introduce new semantic relations for visual modeling.

Because ImageNet is uniquely linked to all concrete nouns of WordNet, and those synsets

are all richly interconnected, one could also exploit different semantic relations, e.g., to

learn part models. To move towards total scene understanding, it is also helpful to consider

different depths of the semantic hierarchy.

Finally, ImageNet can facilitate human vision research. ImageNet’s rich structure and

dense coverage of the image world may help advance the understanding of the human
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visual system. For example, the question of whether a concept can be illustrated by images

is much more complex than one would expect at first. Also, how to empirically determine

whether any given category is basic, super-ordinate, or subordinate remains an unexplored

area.

2.6 Summary

We have presented ImageNet, a large scale ontology of images built upon the backbone

of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets

of WordNet with an average of 500–1,000 human-verified and full resolution images. The

Fall 2011 release of ImageNet has 22 thousands synsets and 14 million images. We have

shown that ImageNet is much larger in scale and diversity and much more accurate than

the previous image datasets. Constructing such a large scale database is a challenging

task. We have also presented our data collection scheme with Amazon Mechanical Turk

and discussed new research opportunities opened up by the scale, accuracy, diversity, and

hierarchical structure of ImageNet.
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Chapter 3

Benchmarking with ImageNet

3.1 Introduction

The construction of ImageNet paves the road toward large scale recognition. Its broad

coverage of categories allows us to ask an important question that was impossible to ask

before—how does the current state of the art algorithms work at the human scale? 1 An-

swers to this question can help us understand the limitations of current methods and shed

light on future research directions.

Recent progress on image categorization has been impressive and has introduced a

range of features, models, classifiers, and frameworks [18, 14, 15, 71, 36, 72, 73, 74, 75].

In this chapter we explore scaling up the number of categories considered in recognition

experiments from hundreds to over 10 thousand, in order to map out the opportunities

and challenges of large scale recognition and eventually move toward reducing the gap

between machine performance and human abilities (Figure 3.1). Note that this is not simply

a matter of training more and more classifiers (although that is a challenging task on its

own). With such large numbers of categories there is a concomitant shift in the difficulty

of discriminating between them as the categories sample the semantic space more densely.

1An early version of this chapter has been presented in [52].
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The previously unexplored scale of the experiments in this work allow this effect to be

measured.

Recognition encompasses a wide range of specific tasks, including classification, de-

tection, viewpoint understanding, segmentation, verification and more. In this study we

focus on category recognition, in particular the task of assigning a single category label to

an image that contains one or more instances of a category of object following the work

of [76, 77, 4, 5].

We conduct the first empirical study of image categorization at near human scale. Some

results are intuitive – discriminating between thousands of categories is in fact more diffi-

cult that discriminating between hundreds – but other results reveal structure in the diffi-

culty of recognition that was previously unknown. Our key contributions are as follows.

First, we provide the first in-depth study of image classification at such a large scale.

Such experiments are technically challenging, and we present a series of techniques to

overcome this difficulty (Section 3.4.1).

Second, we show that conventional wisdom obtained from current datasets does not

necessarily hold in some cases at a larger scale. For example, the ordering by performance

of techniques on hundreds of categories is not preserved on thousands of categories. Thus,

we cannot solely rely on experiments on the Caltech [4, 5] and PASCAL [77] datasets to

predict performance on large classification problems (Section 3.4.2).

Third, we propose a measure of similarity between categories based on WordNet [37] –

a hierarchy of concepts developed for studying language. Experiments show a surprisingly

strong correlation between this purely linguistic metric and the performance of visual clas-

sification algorithms. We also show that the categories used in previous object recognition

experiments are relatively sparse – distinguishing them from each other is significantly

less difficult than distinguishing many other denser subsets of the 10K categories (Sec-

tion 3.4.3).

Finally, observing that object categories are naturally hierarchical, we propose and eval-
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Figure 3.1: Given a query image, the task of “image classification” is to assign it to one of

the classes (represented by a stack of images) that the algorithm has learned. Left: Most

traditional vision algorithms have been tested on a small number of somewhat distinct

categories. Right: Real world image classification problems may involve a much larger

number of categories – so large that the categories can no longer be easily separated.

uate a technique to perform hierarchy aware classification, and show that more informative

classification results can be obtained (Section 3.4.4).

3.2 Related Work

Much recent work on image classification has converged on bag of visual word models

(BoW) [17] based on quantized local descriptors [13, 14, 15] and support vector ma-

chines [14, 18] as basic techniques. These are enhanced by multi-scale spatial pyramids

(SPM) [15] on BoW or histogram of oriented gradient (HOG) [19, 15] features. In the

current state of the art, multiple descriptors and kernels are combined using either ad hoc

or multiple kernel learning approaches [78, 71, 79, 80]. Work in machine learning supports

using winner-takes-all between 1-vs-all classifiers for the final multi-class classification

decision [81]. We choose SPM using BoW because it is a key component of many of the
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best recognition results [78, 71, 79, 80] and is relatively efficient. Recent work allows fast

approximation of the histogram intersection kernel SVM, used for SPM, by a linear SVM

on specially encoded SPM features [82]. See Section 3.4.5 for the modifications necessary

to allow even that very efficient solution to scale to very large problems.

Prior to this work there have been no recognition results on more than a few hundreds of

categories. Previous work on Tiny Images [36] shows only proof of concept classification

on fewer than 50 categories. Fergus et al. explore semi-supervised learning on 126 hand

labeled Tiny Images categories [83] and Wang et al. show classification on a maximum of

315 categories (< 5%) [84].

Recent work considering hierarchies for image recognition or categorization [22, 23,

24, 25] has shown impressive improvements in accuracy and efficiency, but has not studied

classification minimizing hierarchical cost. Related to classification is the problem of de-

tection, often treated as repeated 1-vs-all classification in sliding windows. In many cases

such localization of objects might be useful for improving classification, but even the most

efficient of the state of the art techniques [72, 79, 33] take orders of magnitude more time

per image than the ones we consider in this study, and thus cannot be utilized given the

scale of our experiments.

3.3 Approach

3.3.1 Datasets

The goals of this chapter are to study categorization performance on a significantly larger

number of categories than the current state of the art, and furthermore to delve deeper

toward understanding the factors that affect performance. The size and breadth of ImageNet

allow us to perform multiple longitudinal probes of the classification problem. Specifically

we consider the following subsets:
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• ImageNet10K. 10,184 categories from the Fall 2009 release of ImageNet, including

both internal and leaf nodes with more than 200 images each (a total of 9 million

images).

• ImageNet7K. 7,404 leaf categories from ImageNet10K. Internal nodes may overlap

with their descendants, so we also consider this leaf only subset.

• ImageNet1K. 1,000 leaf categories randomly sampled from ImageNet7K.

• Rand200{a,b,c}. Three datasets, each containing 200 randomly selected leaf cate-

gories. The categories in Rand200a are sampled from ImageNet1K while Rand200b

and Rand200c are sampled directly from ImageNet7K.

• Ungulate183, Fungus134, Vehicle262. Three datasets containing all the leaf nodes

that are descendants of particular parent nodes in ImageNet10K (named by the parent

node and number of leaves).

• CalNet200. This dataset serves as a surrogate for the Caltech256 dataset – containing

the 200 image categories from Caltech256 that exist in ImageNet.

Note that all datasets have non-overlapping categories except ImageNet10K. Following

the convention of the PASCAL VOC Challenge, each category is randomly split 50%-50%

into a set of training and test images, with a total of 4.5 million images for training and

4.5 million images for testing. All results are averaged over two runs by swapping training

and test, except for ImageNet7K and ImageNet10K due to extremely heavy computational

cost. In all cases we provide statistical estimates of the expected variation. The number of

training images per category ranges from 200 to 1,500, with an average of 450.

3.3.2 Methodology

The main thrust of this study is image classification: given an image and K classes, the

task is to select one class label. We employ two evaluation measures:
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Mean accuracy. The accuracy of each class is the percentage of correct predictions,

i.e., predictions identical to the ground truth class labels. The mean accuracy is the average

accuracy across all classes.

Mean misclassification cost. To exploit the hierarchical organization of object classes,

we also consider the scenario where it is desirable to have non-uniform misclassification

cost. For example, misclassifying “dog” as “cat” might not be penalized as much as mis-

classifying “dog” as “microwave.” Specifically, for each image x
(k)
i ∈ X, i = 1, . . . ,m

from class k, we consider predictions f(x
(k)
i ) : X → {1, . . . , K}, where K is the num-

ber of classes (e.g., K = 1000 for ImageNet1K) and evaluate the cost for class k as

Lk = 1
m

∑m
i=1Cf(x

(k)
i ),k

, where C is a K × K cost matrix and Ci,j is the cost of clas-

sifying the true class j as class i. The mean cost is the average cost across all classes.

Evaluation using a cost based on the ImageNet hierarchy is discussed in Section 3.4.4.

We use the following four algorithms in our evaluation experiments as samples of some

major techniques used in object recognition:

• GIST+NN Represent each image by a single GIST [85] descriptor (a commonly

accepted baseline descriptor for scene classification) and classify using k-nearest-

neighbors (kNN) on L2 distance.

• BOW+NN Represent each image by a histogram of SIFT [13] codewords and classify

using kNN on L1 distance, as a baseline for BoW NN-based methods.

• BOW+SVM Represent each image by a histogram of SIFT codewords, and train and

classify using linear SVMs. Each SVM is trained to distinguish one class from the

rest. Images are classified by the class with largest score (a 1-vs-all framework). This

serves as a baseline for classifier-based algorithms.

• SPM+SVM Represent each image by a spatial pyramid of histograms of SIFT code-

words [15]. Again a 1-vs-all framework is used, but with approximate histogram
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intersection kernel SVMs [82, 14, 15]. This represents a significant component of

many state of the art classifiers [78, 71, 79, 80].

3.4 Results

3.4.1 Computation Matters

Working at the scale of 10,000 categories and 9 million images moves computational con-

siderations to the forefront. Many common approaches become computationally infeasible

at such large scale.

As a reference, for this data it takes 1 hour on a 2.66GHz Intel Xeon CPU to train one

binary linear SVM on bag of visual words histograms (including a minimum amount of

parameter search using cross validation), using the extremely efficient LIBLINEAR [86].

In order to perform multi-class classification, one common approach is 1-vs-all, which

entails training 10,000 such classifiers – requiring more than 1 CPU year for training and

16 hours for testing. Another approach is 1-vs-1, requiring 50 million pairwise classifiers.

Training takes a similar amount of time, but testing takes about 8 years due to the huge

number of classifiers. A third alternative is the “single machine” approach, e.g., Crammer

& Singer [87], which is comparable in training time but is not readily parallelizable. We

choose 1-vs-all as it is the only affordable option.

Training SPM+SVM is even more challenging. Directly running intersection kernel

SVM is impractical because it is at least 100× slower (100+ years) than linear SVM [82].

We use the approximate encoding proposed by Maji & Berg [82] that allows fast train-

ing with LIBLINEAR. This reduces the total training time to 6 years. However, even this

very efficient approach must be modified because memory becomes a bottleneck 2 – a di-

rect application of the efficient encoding of [82] requires 75GB memory, far exceeding our

2While it is possible to use online methods, e.g., stochastic subgradient descent, they

can be slower to converge [86].
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memory limit (16GB). We reduce it to 12G through a combination of techniques detailed

in Section 3.4.5.

For NN based methods, we use brute force linear scan. It takes 1 year to run through all

testing examples for GIST or BOW features. It is possible to use approximation techniques

such as locality sensitive hashing [55], but due to the high feature dimensionality (e.g., 960

for GIST), we have found relatively small speedup. Thus we choose linear scan to avoid

unnecessary approximation.

In practice, all algorithms are parallelized on a computer cluster of 66 multicore ma-

chines, but it still takes weeks for a single run of all our experiments. Our experience

demonstrates that computational issues need to be confronted at the outset of algorithm

design when we move toward large scale image classification, otherwise even a baseline

evaluation would be infeasible. Our experiments suggest that to tackle massive amount of

data, distributed computing and efficient learning will need to be integrated into any vision

algorithm or system geared toward real-world large scale image classification.

3.4.2 Size Matters

We first investigate the broad effects on performance and computation of scaling to ten-

thousand categories. As the number of categories in a dataset increases, the accuracy of

classification algorithms decreases, from a maximum of 34% for Rand200{a,b,c} to 6.4%

for ImageNet10K (Figure 3.2). While the performance drop comes at no surprise, the speed

of decrease is slower than might be expected – roughly a 2× decrease in accuracy with 10×
increase in the number of classes, significantly better than the 10× decrease of a random

baseline.

There is a surprise from k-nearest-neighbor (kNN) classifiers, either using GIST fea-

tures or BoW features. For Rand200{a,b,c}, these techniques are significantly worse than

linear classifiers using BoW features, around 10% lower in accuracy. This is consistent

with the experience of the field – methods that do use kNN must be augmented in order to
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Figure 3.2: Mean classification accuracy of various methods on Rand200{a, b, c}, Ima-

geNet1K, ImageNet7K and ImageNet10K.

provide competitive performance [18, 88]. But the picture is different for ImageNet7K or

ImageNet10K categories, where simple kNN actually outperforms linear SVMs on BoW

features (BOW+SVM), with 11-16% higher accuracy. The small absolute gain in mean ac-

curacy, around 0.5%, is made significant by the very small expected standard deviation of

the means 0.1%. 3 A technique that significantly outperforms others on small datasets may

actually underperform them on large numbers of categories.

This apparent breakdown for 1-vs-all with linear classifiers comes despite a consistent

line of work promoting this general strategy for multi-class classification [81]. It seems

to reveal issues with calibration between classifiers, as the majority of categories have

comparable discriminative power on ImageNet7K and Rand200a (Fig 3.3 left), but multi-

way classification is quite poor for ImageNet7K (Fig 3.3 right). One explanation is that

3Stdev for ImageNet7K and ImageNet10K are estimated using the individual category

variances, but are very small cf standard error and the central limit theorem.

46



0.7 0.75 0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1

AUC on Rand200a

A
U

C
 o

n 
Im

ag
eN

et
7K

Mine detector
Trivet

Water jug

Spirit stove

Segway

Angus

Ursinia

Fall webworm

Lobster pot

Minivan

Shaver

Bee orchid

0 20 40 60
0

5

10

15

Pe
rc

en
ta

ge

0 20 40 60
0

20

40

Pe
rc

en
ta

ge
0 20 40 60

0

50

Pe
rc

en
ta

ge
Accuracy (%)

ImageNet1K

ImageNet7K

Rand200a

Figure 3.3: Left: Scatter plot comparing the area under ROC curve (AUC) of BOW+SVM for the 200 categories in Rand200a when trained

and evaluated against themselves(x-axis) and when trained and evaluated against ImageNet7K(y-axis). Right: Histograms of accuracies

for the same 200 categories in Rand200a, ImageNet1K, and ImageNet7K, example categories indicated with colored markers.

4
7



for the one-against-all approach, a correct prediction would require that the true classifier

be more confident than any other classifiers, which becomes more difficult with a larger

number of classes as the chance of false alarms from others greatly increases. Then the

behavior starts to resemble kNN methods, which are only confident about close neighbors.

Looking in more detail at the confusion between the categories in ImageNet7K re-

veals additional structure (Figure 3.4). Most notable is the generally block diagonal struc-

ture, indicating a correlation between the structure of the semantic hierarchy (by WordNet)

and visual confusion between the categories. The two most apparent blocks roughly align

with “artifacts” and “animals,” two very high level nodes in WordNet, suggesting the least

amount of confusion between these two classes with more confusion within. This is consis-

tent with both computational studies on smaller numbers of classes [25] and some human

abilities [89]. Sections of the confusion matrix are further expanded in Figure 3.4. These

also show roughly block diagonal structures at increasingly finer levels not available in

other datasets. The pattern is roughly block diagonal, but by no means exact. There is

a great deal of noise and a fainter “plaid,” oscillating pattern of stripes, indicating that the

ordering of categories in WordNet is not completely in agreement with the visual confusion

between them.

The block patterns indicate that it is possible to speed up the classification by using a

sublinear number of classifiers in a hierarchy, as Griffin & Perona have demonstrated on

Caltech256 [25]. They built a hierarchy of classifiers directly from the confusion matrix.

Here we confirm their findings by observing a much stronger pattern on a large number of

classes. Moreover we note that such a grouping may actually be directly obtained from

WordNet, in which case, the output of an internal classifier in the hierarchy would be

semantically meaningful.

Also of note is that in scaling to many classes, only a small subset of the distractor

classes are truly distracting, possibly explaining the smaller than expected performance

drop. For example, to classify “German shepherd,” most of the distractor classes are “easy”
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ones like “dishrag,” while only a few semantically related classes like “husky” add to the

difficulty. It suggests that one key to improving large scale classification is to focus on those

classes, whose difficulty correlates with semantic relatedness. We quantify this correlation

in Section 3.4.3.

3.4.3 Density Matters

Our discussion so far has focused on the challenges arising from the sheer number of cate-

gories. Figure 3.4 reveals that the difficulty of recognition varies significantly over different

parts of the semantic space. Some classifiers must tackle more semantically related, and

possibly visually similar, categories. Accurate classification of such categories leads to use-

ful applications, e.g., classifying groceries for assisting the visually impaired, classifying

home appliances for housekeeping robots, or classifying insect species for environmental

monitoring [90]. We refer to sets of such categories as dense and study the effect of density

on classification.

We begin by comparing mean classification accuracy for classifiers trained and tested on

each of the small datasets – Fungus134, Ungulate183, Vehicle262, CalNet200, Rand200 –
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across descriptors and classifiers in Figure 3.5. Note that while SPM+SVM produces consis-

tently higher accuracies than the other approaches, the ordering of datasets by performance

is exactly the same for each approach. 4 This indicates that there is a significant difference

in difficulty between different datasets, independent of feature and classifier choice.

Next we try to predict the difficulty of a particular dataset by measuring the density

of the categories, based on the hierarchical graph structure of WordNet. We define the

distance, h(i, j), between categories i and j, as the height of their lowest common ancestor.

The height of a node is the length of the longest path down to a leaf node (leaf nodes have

height 0). We measure the density of a dataset as the mean h(i, j) between all pairs of

4Ordering of datasets is consistent, but ordering of methods may change between

datasets as noted in Section 3.4.2 where BOW+SVM and the kNN approaches switch or-

der.
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categories – smaller implies denser. See Figure 3.6 for an illustration and Figure 3.7 for

examples of pairs of categories from each dataset that have distance closest to the mean

for that dataset. There is a very clear correlation between the density in WordNet and

accuracy of visual classification; denser datasets predict lower accuracy (Figure 3.5). This

is despite the fact that WordNet was not created as a visual hierarchy!

Classification accuracy on 200 randomly chosen categories (Rand200{a,b,c}) is more

than 3 times higher than on the 134 categories from Fungus134. The large gap suggests

that the methods studied here are not well equipped for classifying dense sets of categories.

In fact, there have been relatively few efforts on “dense classification” with some notable

exceptions, e.g., [91, 92, 90]. The results seem to call for perhaps more specialized fea-

tures and models, since it is one key to improving large scale classification performance as

discussed in Section 3.4.2

Also of note is that the Caltech256 categories that occur in ImageNet (CalNet200)

have very low density and relatively high accuracy – in almost exactly the same range as

random sets of categories. The Caltech categories are very sparse and do not exhibit
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the difficulty of dense sets of categories, making Caltech-like datasets incomplete as an

evaluation resource towards some of the real-world image classification problems.

Finally we note that our WordNet based measure is not without limitations, e.g., “food

tuna” and “fish tuna” are semantically related but belong to “food” and “fish” subtrees

respectively, so are far away from each other. Nonetheless as a starting point for quantifying

semantic density, the results are encouraging.

3.4.4 Hierarchy Matters

For recognition at the scale of human ability, categories will necessarily overlap and display

a hierarchical structure [76]. For example, a human may label “redshank” as “shorebird,”

“bird,” or “animal,” all of which are correct but with a decreasing amount of information.

Humans make mistakes too, but to different degrees at different levels – a “redshank” might

be mistaken as a “red-backed sandpiper,” but almost never as anything under “home appli-

ance.”

The implications for real world object classification algorithms are two fold. First a

learning algorithm needs to exploit real world data that inevitably has labels at different

semantic levels. Second, it is desirable to output labels as informative as possible while

minimizing mistakes at higher semantic levels.

Consider an automatic photo annotator. If it cannot classify “redshank” reliably, an

answer of “bird” still carries much more information than “microwave.” However, our

classifiers so far, trained to minimize the 0-1 loss, 5 have no incentive to do so – predicting

“microwave” costs the same as predicting “bird.”

Here we explore ways to make classifiers more informative. We define a hierarchical

cost Ci,j for classifying an image of class j as class i as Ci,j = 0 when i = j or when

i is a descendant of j, and Ci,j = h(i, j), the height of their lowest common ancestor in

5The standard loss function for classification, where a correct classification costs zero

and any incorrect classification costs 1.
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Figure 3.8: Left: Hierarchical cost of flat classification and hierarchical classification on

ImageNet10K across different methods. Right: Mean number of descendants for nodes at

each height, indicating the effective log-scale for hierarchical cost.

WordNet, otherwise. This cost definition directly measures the semantic level at which

a misclassification occurs – a more informative classifier, one able to discriminate finer

details, would have lower cost. It also takes care of the overlapping categories – there

is penalty for classifying an image in an internal node as its (more general) ancestor but

no cost for classifying it as any of its (more specific) descendants. As an example, in

Figure 3.6, for an image labeled as “sailboat,” classifying it as “catamaran” or any other

descendant incurs no cost 6 while classifying as any descendant of “aircraft” incurs cost 6.

We can make various classification approaches cost sensitive by obtaining probabil-

ity estimates (Section 3.4.5). For a query image x, given posterior probability estimates

p̂j(x) for class j, j ∈ {1, . . . K}, according to Bayesian decision theory, the optimal

prediction is obtained by predicting the label that minimizes the expected cost f(x) =

argmini=1,...,K

∑K
j=1Ci,j p̂j(x).

Comparing the mean hierarchical cost for the original (flat) classifier with the mean

cost for the cost sensitive (hierarchical) classifier, we find a consistent reduction in cost on

ImageNet10K (Figure 3.8). It shows that the hierarchical classifier can discriminate at more

informative semantic levels. While these reductions may seem small, the cost is effectively

on a log scale. It is measured by the height in the hierarchy of the lowest common ancestor,

6The image can in fact be a “trimaran,” in which case it is not entirely correct to predict

“catamaran.” This is a limitation of intermediate level ground truth labels.
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Figure 3.9: Example errors using a flat vs. hierarchical classifier with SPM+SVM on Ima-

geNet10K, shown in horizontal groups of three: a query, prediction by a flat classifier (min-

imizing 0-1 loss), and by a hierarchical classifier (minimizing hierarchical cost). Numbers

indicate the hierarchical cost of that misclassification.

and moving up a level can more than double the number of descendants (Figure 3.8 right).

The reduction of mean cost on its own would not be interesting without a clear benefit

to the results of classification. The examples in Figure 3.9 show query images and their

assigned class for flat classification and for classification using hierarchical cost. While

a whipsnake is misclassified as ribbon snake, it is still correct at the “snake” level, thus

giving a more useful answer than “sundial.” It demonstrates that classification based on

hierarchical cost can be significantly more informative.

3.4.5 Experimental Details

We obtain BoW histograms (L1-normalized) using dense SIFT [93] on 20x20 overlapping

patches with a spacing of 10 pixels at 3 scales on images resized to a max side length of

300, and a 1K codebook from KMeans on 10 million SIFT vectors. We use the same code-

words to obtain spatial pyramid histograms (3 levels), φ2 encoded [82] to approximate the

intersection kernel with linear SVMs. Due to high dimensionality (21K), we only encode

nonzeros (but add a bias term). This preserves the approximation for our, non-negative,
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data, but with slightly different regularization. We found no empirical performance differ-

ence testing up to 1K categories. To save memory, we use only two bytes for each entry of

encoded vectors (sparse) by delta-coding its index (1 byte) and quantizing its value to 256

levels (1 byte). We further reduce memory by only storing every other entry, exploiting re-

dundancy in consecutive entries. We use LIBLINEAR [86] to train linear SVMs, parameter

C determined by searching over 3 values (0.01, 0.1, 1 for ImageNet10K) with 2-fold cross

validation. We use smaller weight for negative examples (100× smaller for ImageNet10K)

than positives. We obtain posterior probability estimates by fitting a sigmoid function to

the outputs of SVMs [94], or by taking the percent of neighbors from a class for NN.

3.5 Summary

We have presented the first large scale recognition experiments on 10,184 categories and 9

million images. We show that challenges arise from the size and density of the semantic

space. The performance of the current state of the art algorithm is still low, 6.4% on 10K

categories. Surprisingly the ordering of NN and Linear classification approaches swap from

previous datasets to our very large scale experiments – we cannot always rely on experi-

ments on small datasets to predict performance at large scale. We produce a measure of

category distance based on the WordNet hierarchy and show that it is well correlated with

the difficulty of various datasets. We present a hierarchy-aware cost function for classifica-

tion and show that it produces more informative classification results. These experiments

point to future research directions in large scale image classification, as well as critical

dataset and highlight potential benchmarking issues for evaluating different algorithms.
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Chapter 4

Efficient Large Scale Classification

4.1 Introduction

This chapter addresses the computational challenges of learning to recognize tens of thou-

sands of visual object categories. 1 The large number of classes renders the standard one-

versus-all multiclass approach too costly, as the complexity grows linearly with the number

of classes, for both training and testing. This issue is especially relevant for practical ap-

plications that require low latency or high throughput, such as those in robotics or in image

retrieval.

Classification with many classes has received increasing attention recently, and most

approaches appear to have converged to tree based models [42, 43, 25, 26]. In particular,

Bengio et al. [26] proposes a label tree model, which has been shown to achieve state of

the art performance in testing. In a label tree, each node is associated with a subset of class

labels and a linear classifier that determines which branch to follow. In performing the

classification task, a test example travels from the root of the tree to a leaf node associated

with a single class label. Therefore for a well balanced tree, the time required for evaluation

is reduced from O(DK) to O(D logK), where K is the number of classes and D is the

1An early version of this chapter has been presented in [53].
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feature dimensionality. The technique can be combined with an embedding technique, so

that the evaluation cost can be further reduced to O(D̃ logK +DD̃) where D̃ � D is an

embedded label space.

Despite the success of label trees in addressing testing efficiency, the learning tech-

nique, critical to ensuring good testing accuracy and efficiency, has several limitations.

Learning the tree structure (determining how to split the classes into subsets) involves first

training one-vs-all classifiers for all K classes to obtain a confusion matrix, and then us-

ing spectral clustering to split the classes into disjoint subsets. First, learning one-vs-all

classifiers is costly for large number of classes. Second, the partitioning of classes does

not allow overlap, which can be unnecessarily difficult for classification. Third, the tree

structure may be unbalanced, which can result in sub-optimal test efficiency.

In this chapter, we address these issues by observing that (1) determining the partition

of classes and learning a classifier for each child node in the tree can be performed jointly,

and (2) allowing overlapping of class labels among children leads to an efficient optimiza-

tion that also enables precise control of the accuracy vs efficiency trade-off, which can in

turn guarantee balanced trees. This leads to a novel label tree learning technique that is

more efficient and effective. Specifically, we eliminate the one-vs-all training step while

improving both efficiency and accuracy in testing.

4.2 Related Work

Our approach is directly motivated by the label tree embedding technique proposed by Ben-

gio et al. in [26], which is among the few approaches that address sublinear testing cost for

multi-class classification problems with a large number of classes and has been shown to

outperform alternative approaches including Filter Tree [42] and Conditional Probability

Tree (CPT) [43]. Our contribution is a new technique to achieve more efficient and effec-

tive learning for label trees. For a comprehensive discussion on multi-class classification
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techniques, we refer the reader to [26].

Classifying a large number of object classes has received increasing attention in com-

puter vision as datasets with many classes such as ImageNet become available. One line

of work is concerned with developing effective feature representations [95, 96, 97, 98]

and achieving state of the art performances. Another direction of work, explores meth-

ods for exploiting the structure between object classes. In particular, it has been observed

that object classes can be organized in a tree-like structure both semantically and visually

[25, 36, 52], making tree based approaches especially attractive. Our work follows this

direction, focusing on effective learning methods for building tree models.

Our framework of explicitly controlling accuracy or efficiency is connected to Weiss

et al.’s work [99] on building a cascade of graphical models with increasing complexity

for structured prediction. Our work differs in that we reduce the label space instead of the

model space.

4.3 Label Tree and Label Tree Learning by Bengio et al.

Here we briefly review the label tree learning technique proposed by Bengio et al. and then

discuss the limitations we attempt to address.

A label tree is a tree T = (V,E) with nodes V and edges E. Each node r ∈ V is

associated with a set of class labels κ(r) ⊆ {1, . . . , K} . Let σ(r) ⊂ V be the its set of

children. For each child c, there is a linear classifier wc ∈ R
D and we require that its label

set is a subset of its parent’s, that is, κ(c) ⊆ κ(r), ∀c ∈ σ(r).
To make a prediction given an input x ∈ R

D, we use Algorithm 1. We travel from

the root until we reach a leaf node, at each node following the child that has the largest

classifier score. There is a slight difference than the algorithm in [26] in that the leaf node

is not required to have only one class label. If there is more than one label, an arbitrary

label from the set is predicted.
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Algorithm 1 Predict the class of x given the root node r
s← r.
while σ(s) �= ∅ do
s← argmaxc∈σ(s)wT

c x
end while
return an arbitrary k ∈ κ(s) or NULL if κ(s) = ∅.

Learning the tree structure is a fundamentally hard problem because brute force search

for the optimal combination of tree structure and classifier weights is intractable. Bengio et

al. [26] instead propose to solve two subproblems: learning the tree structure and learning

the classifier weights. To learn the tree structure, K one versus all classifiers are trained

first to obtain a confusion matrix C ∈ R
K×K on a validation set. The class labels are then

clustered into disjoint sets by spectral clustering with the confusion between classes as

affinity measure. This procedure is applied recursively to build a complete tree. Given the

tree structure, all classifier weights are then learned jointly to optimize the misclassification

loss of the tree.

We first analyze the cost of learning by showing that training, with m examples, K

classes and D dimensional feature, costs O(mDK). Assume optimistically that the opti-

mization algorithm converges after only one pass of the data and that we use first order

methods that cost O(D) at each iteration, with feature dimensionality D. Therefore learn-

ing one versus all classifiers costs O(mDK). Spectral clustering only depends on K and

does not depend on D or m, and therefore its cost is negligible. In learning the classifier

weights on the tree, each training example is affected by only the classifiers on its path,

i.e., O(Q logK) classifiers, where Q� K is the number of children for each node. Hence

the training cost is O(mDQ logK). This analysis indicates that learning K one versus

all classifiers dominates the cost. This is undesirable in large scale learning because with

bounded time, accommodating a large number of classes entails using less expressive and

lower dimensional features.

Moreover, spectral clustering only produces disjoint subsets. It can be difficult to learn a

classifier for disjoint subsets when examples of certain classes cannot be reliably classified
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to one subset. If such mistakes are made at higher level of the tree, then it is impossible to

recover later. Allowing overlap potentially yields more flexibility and avoids such errors.

In addition, spectral clustering does not guarantee balanced clusters and thus cannot ensure

a desired speedup. We seek a novel learning technique that overcomes these limitations.

4.4 New Label Tree Learning

To address the limitations, we start by considering simple and less expensive alternatives

of generating the splits. For example, we can sub-sample the examples for one-vs-all train-

ing, or generate the splits randomly, or use a human constructed semantic hierarchy (e.g.,

WordNet [37]). However, as shown in [26], improperly partitioning the classes can greatly

reduce testing accuracy and efficiency. To preserve accuracy, it is important to split the

classes such that they can be easily separated. To gain efficiency, it is important to have

balanced splits.

We therefore propose a new technique that jointly learns the splits and classifier weights.

By tightly coupling the two, this approach eliminates the need of one-vs-all training and

brings the total learning cost down to O(mDQ logK). By allowing overlapping splits

and explicitly modeling the accuracy and efficiency trade-off, this approach also improves

testing accuracy and efficiency.

Our approach processes one node of the tree a time, starting with the root node. It

partitions the classes into a fixed number of child nodes and learns the classifier weights

for each of the children. It then recursively repeats for each child.

In learning a tree model, accuracy and efficiency are inherently conflicting goals and

some trade-off must be made. Therefore we pose the optimization problem as maximizing

efficiency given a constraint on accuracy, i.e., requiring that the error rate cannot exceed a

certain threshold. Alternatively one can also optimize accuracy given efficiency constraints.

We will first describe the accuracy constrained optimization and then briefly discuss the
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efficiency constrained variant. In practice, one can choose between the two formulations

depending on convenience.

For the rest of this section, we first express all the desiderata in one single optimization

problem (Section 4.4.1), including defining the optimization variables (classifier weights

and partitions), objectives (efficiency) and constraints (accuracy). Then in Section 4.4.2& 4.4.3

we show how to solve the main optimization by alternating between learning the classi-

fier weights and determining the partitions. We then summarize the complete algorithm

(Section 4.4.4) and conclude with an alternative formulation using efficiency constraints

(Section 4.4.5).

4.4.1 Main Optimization

Formally, let the current node r represent classes labels κ(r) = {1, . . . , K} and let Q

be the specified number of children we wish to follow. The goal is to determine: (1) a

partition matrix P ∈ {0, 1}Q×K that represents the assignment of classes to the children,

i.e., Pqk = 1 if class label k appear in child q and Pqk = 0 otherwise; (2) the classifier

weights w ∈ R
D×Q, where a column wq is the classifier weights for child q ∈ σ(r),

We measure accuracy by examining whether an example is classified to the correct

child, i.e., a child that includes its true class label. Let x ∈ R
D be a training example and

y ∈ {1, . . . , K} be its true label. Let q̂ = argmaxq∈σ(r)wT
q x be the child that x follows.

Given w, P, x, y, the classification loss at the current node r is then

L(w, x, y, P ) = 1− P (q̂, y). (4.1)

Note that the final prediction of the example is made at a leaf node further down the tree,

if the child to follow is not already a leaf node. Therefore L is a lower bound of the actual

loss. It is thus important to achieve a smaller L because it could be a bottleneck of the final

accuracy.
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We measure efficiency by how fast the set of possible class labels shrinks. Efficiency is

maximized when each child has a minimal number of class labels so that an unambiguous

prediction can be made, otherwise we incur further cost for traveling down the tree. Given

a test example, we define ambiguity as our efficiency measure, i.e., the size of label set of

the child that the example follows, relative to its parent’s size. Specifically, given w and P ,

the ambiguity for an example x is

A(w, x, P ) =
1

K

K∑
k=1

P (q̂, k). (4.2)

Note that A ∈ [0, 1]. A perfectly balanced K-nary tree would result in an ambiguity of

1/K for all examples at each node.

One important note is that the classification loss (accuracy) and ambiguity (efficiency)

measures as defined in Eqn. 4.1 and Eqn. 4.2 are local to the current node being considered

in greedily building the tree. They serve as proxies to the global accuracy and efficiency of

the entire tree. For the rest of this chapter, we will omit the “local” and “global” qualifica-

tions if it is clear according to the context.

Let ε > 0 be the maximum classification loss we are willing to tolerate. Given a training

set (xi, yi), i = 1, . . . ,m, we seek to minimize the average ambiguity of all examples while

keeping the classification loss below ε, which leads to the following optimization problem:

OP1. Optimizing efficiency with accuracy constraints.

minimize
w,P

1

m

m∑
i=1

A(w, xi, P )

subject to
1

m

m∑
i=1

L(w, xi, yi, P ) ≤ ε

P ∈ {0, 1}Q×K .
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There are no further constraints on P other than that its entries are integers 0 and 1. We do

not require that the children cover all the classes in the parent. It is legal that one class in

the parent can be assigned to none of the children, in which case we give up on the training

examples from the class. In doing so, we pay a price on accuracy, i.e., those examples will

have a misclassification loss of 1. Therefore a partition P with all zeros is unlikely to be a

good solution. We also allow overlap of label sets between children. If we cannot classify

the examples from a class perfectly into one of the children, we allow them to go to more

than one child. We pay a price on efficiency since we make less progress in eliminating

possible class labels. This is different from the disjoint label sets in [26]. Overlapping label

sets gives more flexibility and in fact leads to simpler optimization, as will become clear in

Section 4.4.3.

Directly solving OP1 is intractable. However, with proper relaxation, we can alternate

between optimizing over w and over P where each is a convex program.

4.4.2 Learning Classifier Weights w Given Partitions P

Observe that fixing P and optimizing over w is similar to learning a multi-class classifier

except for the overlapping classes. We relax the loss L by a convex loss L̃ similar to the

hinge loss.

L̃(w, xi, yi, P ) = max{0, 1 + max
q∈Ai,r∈Bi

{wT
r xi − wT

q xi)}}

where Ai = {q|Pq,yi = 1} and Bi = {r|Pr,yi = 0}. Here Ai is the set of children

that contain class yi and Bi is the rest of the children. The responses of the classifiers

in Ai are encouraged to be bigger than those in Bi, otherwise the loss L̃ increases. It is

easily verifiable that L̃ upperbounds L. We then obtain the following convex optimization

problem.

64



OP2. Optimizing over w given P .

minimize
w

λ

Q∑
q=1

‖wq‖22 +
1

m

m∑
i=1

L̃(w, xi, yi, P )

Note that here the objective is no longer the ambiguity A. This is because the influence of

w on A is typically very small. When the partition P is fixed, w can lower A by classifying

examples into the child with the smallest label set. However, the way w classifies examples

is mostly constrained by the accuracy cap ε, especially for small ε. Empirically we also

found that in optimizing L̃ over w, A remains almost constant. Therefore for simplicity we

assume that A is constant w.r.t w and the optimization becomes minimizing classification

loss to move w to the feasible region. We also added a regularization term
∑Q

q=1 ‖wq‖22.

4.4.3 Determining Partitions P Given Classifier Weights w

If we fix w and optimize over P , rearranging terms gives the following integer program.

OP3. Optimizing over P .

minimize
P

A(P ) =
∑
q,k

Pqk
1

mK

m∑
i=1

1(q̂i = q)

subject to 1−
∑
q,k

Pqk
1

m

m∑
i=1

1(q̂i = q ∧ yi = k) ≤ ε

Pqk ∈ {0, 1}, ∀q, k.

Integer programming in general is NP-hard. However, for this integer program, we can

solve it by relaxing it to a linear program and then taking the ceiling of the solution. We

show that this solution is in fact near optimal by showing that the number of non-integers

can be very few, due to the fact that the LP has few constraints other than that the variables

lie in [0, 1] and most of the [0, 1] constraints will be active. Specifically we use Lemma 4.4.1

to bound the rounded LP solution in Theorem 4.4.2.
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Lemma 4.4.1. For LP problem

minimize
x

cTx

subject to Ax ≤ b

0 ≤ x ≤ 1,

where A ∈ R
m×n,m < n, if it is feasible, then there exists an optimal solution with at most

m non-integer entries and such a solution can be found in polynomial time.

Proof. Let x∗ be an optimal solution that an LP solver returns. Let B be the set of indices

of entries in x∗ that are non-integers, B = {i : x∗i ∈ (0, 1)} and let E be the rest of the

indices.

If |B| ≤ m, then we are done. We now consider the case when |B| > m.

Let H be the polyhedron H = {xB : cTBxB = cTx∗B, ABxB = ABx
∗
B, 0 ≤ xB ≤ 1},

whereAB is the columns indexed byB. Observe that any x such that xB ∈ H and xE = x∗E ,

is an also an optimal solution of the LP. That is, replacing the non-integer entries of x∗ with

those in H still gives an optimal solution.

Since x∗B ∈ H , therefore H is non-empty. Also H is bounded. Hence there exists at

least one basic feasible solution x′B ofH [100], for which there are |B| linearly independent

constraints that are active. Such a basic feasible solution can be found in polynomial time

by solving an auxiliary LP by introducing additional artificial variables, the same as the

Phase 1 of the simplex method. Details can be found in [100].

We now show that x′B has at most m non-integer entries.

We first show that ∀xB ∈ null(AB), c
T
BxB = 0. Assume to the contrary that there exists

x̂B ∈ null(AB) such that cTBx̂B < 0. Let y∗ ∈ R
n be such that y∗B = x∗B+θx̂B and y∗E = x∗E ,

where θ > 0. It follows that for sufficiently small θ, y∗ satisfies all contraints of the LP,

since Ay∗ = Ax∗ + θABx̂B = Ax∗ ≤ b and 0 ≤ y∗B = x∗B + θx̂B ≤ 1, 0 ≤ y∗E = x∗E ≤ 1.

Also the LP has a smaller value, since cTy∗ = cTx∗+θcTBx̂B < cTx∗, which is contradition.
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If follows that cB ∈ null(AB)
⊥ = row(AB). Therefore the number of linearly inde-

pendent vectors among cB and rows of AB is at most m. Since x′B has |B| > m linearly

independt constraints that are active, at least |B| −m constraints from 0 ≤ x′B ≤ 1 must

be active and therefore at least |B| −m entries of x′B are integers. Hence x′B has at most m

non-integer entries.

We then replace the entries x∗B in x∗ with x′B and obtain an optimal solution with at

most m non-integer entries.

Theorem 4.4.2. Let A∗ be an optimal value of OP3. A solution P ′ can be computed within

polynomial time such that A(P ′) ≤ A∗ + 1
K

.

Proof. We relax OP3 to an LP by replacing the constraint Pqk ∈ {0, 1}, ∀q, k with Pqk ∈
[0, 1], ∀q, k. Apply Lemma 4.4.1 and we obtain an optimal solution P ′′ of the LP with

at most 1 non-integer. We take the ceiling of the fraction and obtain an integer solution

P ′ to OP3. The value of the LP, a lower bound of A∗, increases by at most 1
K

, since

1
mK

∑m
i=1 1(q̂i = q) ≤ 1

K
, ∀q.

Note that the ambiguity is a quantity in [0, 1] and K is the number of classes. Therefore

for large numbers of classes the rounded solution is almost optimal.

4.4.4 Summary of Algorithm

Now all ingredients are in place for an iterative algorithm to build the tree, except that we

need to initialize the partition P or the weights w. We find that a random initialization of

P works well in practice. Specifically, for each child, we randomly pick one class, without

replacement, from the label set of the parent. That is, for each row of P , randomly pick

a column and set the column to 1. This is analogous to picking the cluster seeds in the

K-means algorithm.

We summarize the algorithm for building one level of tree nodes in Algorithm 2. The

procedure is applied recursively from the root. Note that each training example only affects
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classifiers on one path of the tree, hence the training cost is O(mD logK) for a balanced

tree.

Algorithm 2 Grow a single node r

Input: Q,ε and training examples classified into node r by its ancestors.

Initialize P . For each child, randomly pick one class label from the parent, without

replacement.

for t = 1→ T do
Fix P , solve OP2 and update w.

Fix w, solve OP3 and update P .

end for

4.4.5 Efficiency Constrained Formulations

As mentioned earlier, we can also optimize accuracy given explicit efficiency constraints.

Let δ be the maximum ambiguity we can tolerate. Let OP1’, OP2’, OP3’ be the counterparts

of OP1, OP2 and OP3. We obtain OP1’ by replacing ε with δ and switching L(w, xi, yi, P )

and A(w, xi, p) in OP1. OP2’ is the same as OP2 because we also treat A as constant

and minimize the classification loss L unconstrained. OP3’ can also be formulated in a

straightforward manner, and solved nearly optimally by rounding from LP (Theorem 4.4.3).

Theorem 4.4.3. Let L∗ be the optimal value of OP3’. A solution P ′ can be computed within

polynomial time such that L(P ′) ≤ L∗ + maxk ψk, where ψk = 1
m

∑m
i=1 1(yi = k), is the

percentage of training examples from class k.

Proof. We relax OP3’ to an LP. Apply Lemma 4.4.1 and obtain an optimal solution P ′′

with at most 1 non-integer. We take the floor of P ′′ and obtain a feasible solution P ′ to

OP3′. The value of the LP, a lower bound of L∗, increases by at most maxk ψk, since

1
m

∑
i 1(q̂i = q ∧ yi = k) ≤ 1

m

∑m
i=1 1(yi = k) ≤ maxk ψk, ∀k, q.

For uniform distribution of examples among classes, maxk ψk = 1/K and the rounded

solution is near optimal for large K. If the distribution is highly skewed, for example, a

heavy tail, then the rounding can give poor approximation. One simple workaround is to
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split the big classes into artificial subclasses or treat the classes in the tail as one big class,

to “equalize” the distribution. Then the same learning techniques can be applied. In this

work we focus on the near uniform case and leave further discussion on the skewed case as

future work.

4.5 Experiments

We use two datasets for evaluation: ILSVRC2010 (see Section 5.4.1) and ImageNet10K

(see Section 3.3.1). ILSVRC2010 is created for a large scale recognition challenge held

in conjunction of PASCAL [101]. There are 1.2M images from 1K classes for training,

50K images for validation and 150K images for test. For each image in ILSVRC2010 we

compute the LLC [95] feature with SIFT on a 10K codebook and use a two level spatial

pyramid (1x1 and 2x2 grids) to obtain a 50K dimensional feature vector. In ImageNet10K,

there are 9M images from 10184 classes. We use 50% for training, 25% for validation, and

the rest 25% for testing. For ImageNet10K, We compute LLC similarly except that we use

no spatial pyramid, obtaining a 10K dimensional feature vector.

We use parallel stochastic gradient descent (SGD) [102] for training. SGD is espe-

cially suited for large scale learning [38] where the learning is bounded by the time and

the features can no longer fit into memory (the LLC features take 80G in sparse format).

Parallelization makes it possible to use multiple CPUs to improves wall time.

We compare our algorithm with the original label tree learning method by Bengio et

al. [26]. For both algorithms, we fix two parameters, the number of children Q for each

node, and the maximum depth H of the tree. The depth of each node is defined as the

maximum distance to the root (the root has depth 0). We require every internal node to

split into Q children, with two exceptions: nodes at depth H − 1 (parent of leaves) and

nodes with fewer than Q classes. In both cases, we split the node fully, i.e., grow one child

node per class. We use TQ,H to denote a tree built with parameters Q and H . We set Q and
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H such that for a well balanced tree, the number of leaf nodes QH approximate the number

of classes K.

We evaluate the global classification accuracy and computational cost in both training

and test. The main costs of learning consist of two operations, evaluating the gradient and

updating the weights, i.e., vector dot products and vector additions (possibly with scaling).

We treat both operations as costing the same. 2 To measure the cost, we count the number of

vector operations performed per training example. For instance, running SGD one-versus-

all (either independent or single machine SVMs [103]) forK classes costs 2K per example

for going through data once, as in each iteration all K classifiers are evaluated against the

feature vector (dot product) and updated (addition).

For both algorithms, we build three trees T32,2, T10,3, T6,4 for the ILSVRC2010 1K

classes and build one tree T101,2 for ImageNet10K classes. For the Bengio et al. method,

we first train one-versus-all classifiers with one pass of parallel SGD. This results in a cost

of 2,000 per example for ISVRC2010 and 20,368 for ImageNet10K. After forming the tree

skeleton by spectral clustering using confusion matrix from the validation set, we learn

the weights by solving a joint optimization (see [26]) with two passes of parallel SGD.

For our method, we do three iterations in Algorithm 2. In each iteration, we do one pass of

parallel SGD to solve OP3’, such that the computation is comparable to that of Bengio et al.

(excluding the one-versus-all training). We then solve OP3’ on the validation set to update

the partition. To set the efficiency constraint, we measure the average (local) ambiguity of

the root node of the tree generated by the Bengio et al. approach, on the validation set. We

use it as our ambiguity cap throughout our learning, in an attempt to produce a similarly

structured tree.

We report the test results in Table 4.1. The results show that for all types of trees,

our method achieves comparable or significantly better accuracy while achieving better

speedup with much less training cost, even after excluding the 1-versus-all training in Ben-

2This is inconsequential as a vector addition always pairs with a dot product for all

training in this work.
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T32,2 T10,3 T6,4 T101,2
Acc% Ctr Ste Acc% Ctr Ste Acc% Ctr Ste Acc% Ctr Ste

Ours 11.9 259 10.3 8.92 104 18.2 5.62 50.2 31.3 3.4 685 32.4
[26] 8.33 321 10.3 5.99 193 15.2 5.88 250 9.32 2.7 1191 32.4

Table 4.1: Global accuracy (Acc), training cost (Ctr), and test speedup (Ste) on ILSVRC2010 1K classes (T32,2, T10,3, T6,4) and on

ImageNet10K(T101,2) classes. Training and test costs are measured as the average number of vector operations performed per example.

Test speedup is the one-vs-all test cost divided by the label tree test cost. Ours outperforms the Bengio et al. [26] approach by achieving

comparable or better accuracy and efficiency, with less training cost, compared with the training cost for Bengio et al. [26] with the

one-vs-all training cost excluded.

Tree T32,2 T10,3 T6,4
Depth 0 1 0 1 2 0 1 2 3

Classification loss (%)
Ours 49.9 76.1 34.6 52.6 71.2 30.0 48.8 55.9 64.4

Bengio [26] 76.6 64.8 62.8 53.7 65.3 56.2 34.8 37.3 65.8

Ambiguity (%)
Ours 6.49 1.55 18.9 18.4 2.96 24.7 24.1 23.5 7.15

Bengio [26] 6.49 1.87 19.0 25.9 2.95 24.7 59.6 56.5 2.02

Table 4.2: Local classification loss (Eqn. 4.1) and ambiguity (Eqn. 4.2) measured at different depth levels for all trees on the

ILSVRC2010 test set (1K classes). T6,4 of Bengio et al. is less balanced (large ambiguity). Our trees are more balanced as efficiency is

explicitly enforced by capping the ambiguity throughout all levels.
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Figure 4.1: Comparison of partition matrices (32× 1,000) of the root node of T32,2 for our approach (top) and the Bengio et al. approach

(bottom). Each entry represents the membership of a class label (column) in a child (row). The columns are ordered by a depth first

search of WordNet. Columns belonging to certain WordNet subtrees are marked by red boxes.

Figure 4.2: Paths of the tree T6,4 taken by two test examples. The class labels shown are randomly subsampled to fit into the space.
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gio et al.’s. In particular, our training is 31 times faster on 10K classes than Bengio et

al.’s—our cost is 685 per examples whereas theirs is 20,386 for one-versus-all training plus

1,191 for the label tree learning . It’s worth noting that for the Bengio et al. approach,

T6,4 fails to further speedup testing compared to the other shallower trees. The reason is

that at depth 1 (one level down from root), the splits became highly imbalanced and does

not shrink the class sets faster enough until the height limit is reached. This is revealed

in Table 4.2, where we measure the average local ambiguity (Eq. 4.2) and classification

loss (Eq. 4.1) at each depth on the test set to shed more light on the structure of the trees.

Observe that our trees have almost constant average ambiguity at each level, as enforced

in learning. This shows an advantage of our algorithm since we are able to explicitly en-

force balanced tree while in Bengio et al. [26] no such control is possible, although spectral

clustering encourages balanced splits.

In Figure 4.1, we visualize the partition matrices of the root of T32,2, for both algorithms.

The columns are ordered by a depth first search of the WordNet tree so that neighboring

columns are likely to be semantic similar classes. We observe that for both methods, there

is visible alignment of the WordNet ordering. We further illustrate the semantic alignment

by showing with the paths of our T6,4 traveled by two test examples. Also observe that our

partition is notably “noisier,” despite that both partitions have the same average ambiguity.

This is a result of overlapping partitions, which in fact improves accuracy (as shown in

Table 4.2) because it avoids the mistakes made by forcing all examples of a class commit

to one child.

Also note that Bengio et al. showed in [26] that optimizing the classifiers on the tree

jointly is significantly better than independently training the classifiers for each node, as

it encodes the dependency of the classifiers along a tree path. This does not contradict

our results. Although we have no explicit joint learning of classifiers over the entire tree,

we train the classifiers of each node using examples already filtered by classifiers of the

ancestors, thus implicitly enforcing the dependency.
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Finally it’s worth noting that the accuracies achieved here are not directly comparable

to those in Chapter 3. The computational resource in these experiments is much more

restricted than those in Chapter 3. Moreover, these experiments are coded in Matlab while

those in Chapter 3 in C. Nonetheless the experiments demonstrate that the new learning

algorithm improves Bengio et al. [26], the previous state of the art approach.

4.6 Summary

We have presented a novel approach to efficiently learning a label tree for large scale clas-

sification with many object classes. The key contribution of the approach is a technique

to simultaneously determine the structure of the tree and learn the classifiers for each node

in the tree. This approach also allows fine-grained control over the efficiency vs accu-

racy trade-off in designing the label tree. Experiments are performed on large scale image

classification with 10,184 classes and 9 million images. We have demonstrated significant

improvements in test accuracy and efficiency with a 31 times reduction of training time and

more balanced trees compared to the previous state of the art by Bengio et al [26].
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Chapter 5

Hierarchy-Aware Large Scale Retrieval

5.1 Introduction

This chapter studies the problem of similarity retrieval – given a query image, the task is

to find similar images from a large image collection. 1 It is closely related to large scale

visual recognition, especially when semantic similarity is considered.

In this study we focus on exploiting the semantic relations between categories to im-

prove large scale retrieval, as depicted in Figure 5.1. As illustrated there, results show that

exploiting hierarchical relationships can significantly improve retrieval accuracy. Incorpo-

rating hierarchical relationships is becoming more important as datasets grow larger. The

potential benefit is largest when categories are sampled “densely” and fine-grained distinc-

tions must be made (e.g., [104, 52]). In order to handle such large scale data, computational

efficiency and scalability is a critical aspect of effective using hierarchy in retrieval.

Our approach demonstrates how to effectively incorporate prior human knowledge in

the form of a hierarchical structure defined on semantic attributes of images. For instance

given semantic attributes like containing a horse, dog, or windmill, a predefined hierarchy

might let us know that an image containing a horse would be more similar to one contain-

1An early version of this chapter has been presented in [54].
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Without hierarchy

With hierarchy

Query  image Top 5 retrieved images

Without hierarchy

With hierarchy

With hierarchy

Without hierarchy

Figure 5.1: Images retrieved by exploiting hierarchy versus those without considering hier-

archy. Green bars show ground truth similarity to the query, defined based on the category

hierarchy (see Section 5.4.2). Longer bars indicate more similarity.

ing a dog than to an image containing a windmill. It is feasible to specify a hierarchical

structure in terms of semantic attributes, but may be quite difficult to do so directly in terms

of low level features.

The current state of the art for similar image retrieval stems from a strong line of work

on learning the underlying similarity function used for retrieval [105, 106, 107]. In that

work, the goal is to learn a function that computes similarity directly from low level feature

vectors extracted from images, and does not allow variable measures of similarity that could
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encode hierarchical structure. It may be possible to adapt some of those strategies to take

into account variable similarities for hierarchical structure, but would require modification

of the techniques, and would not necessarily improve the scalability or parallelism of the

approaches.

Our approach takes a different track, learning to recognize semantic attributes of im-

ages, and then using a predefined comparison function – based on a known hierarchal

structure – to produce a similarity score for retrieval. Learning to recognize semantic

attributes can be easily parallelized, making this approach very scalable. That this ap-

proach requires labeled data for semantic attributes is potentially limiting, but in practice

almost every single experiment in the related work on similarity learning begins from data

with labels, such as the categories in Caltech256, or queries that produced the images in

OASIS [105]. Furthermore, for non-overlapping categories, it is possible to reconstruct

the category labels directly from the training data used for OASIS [105], LMNN [106],

MCML [107], and other techniques. We show that significant improvements over the state

of the art are possible when labels and a hierarchy are known or when labels can be inferred

but hierarchy is not available. 2 Nevertheless, when labels are truly un-available and cannot

be inferred, the proposed technique will not be appropriate or optimal.

Once a similarity function is determined the next challenge is efficient retrieval of the

most similar database images for a query, with respect to the hierarchical similarity. This

chapter presents a novel hashing strategy that provides a sublinear time solution for re-

trieval and forms a generally usable component on its own. When combined with the

training for the semantic classifiers that is linear in the input data and inherently paral-

lelizable, the overall system is very scalable. To make this concrete, our semantic index

structure can be built on 600,000 images in 14 days on a single CPU, or because of the

easy parallelizability, in 20 minutes of wall clock time using 1,000 CPUs. Using hashing,

retrieval of similar images in the resulting index can be performed in 3 milliseconds per

2This is actually the case in most work on similarity learning [106, 107, 105].
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query with accuracy close to 90% of brute force search and computational cost less than

0.001 times that of brute force.

5.2 Related Work

We review closely related work on hierarchy, similarity learning, semantic indexing, and

hashing for retrieval.

Work on recognition in computer vision has reached the scale – in terms of number of

classes – where hierarchical relationships between classes begin to 1) be non-trivial, 2) have

an impact on recognition performance, and 3) have the potential to improve recognition ac-

curacy. This has been demonstrated by work putting existing datasets into hierarchies [25],

and building large new datasets – e.g., TinyImages [36] and the ImageNet dataset pre-

sented in this dissertation– based on the hierarchical semantic structure in WordNet [37] a

major project of the linguistics and natural language processing community. This line of

work has begun to reveal both the effects of hierarchical structure on classification accu-

racy [104, 36, 52],and hints at the promise of exploiting such structure for classification

when evaluated in terms of the hierarchy [52] as well as showing improved classification

given very small amounts of training data [30].

In this work we demonstrate that it is possible to exploit hierarchical structure for a

different but related task – similar image retrieval – gaining significant improvements in

accuracy. This complements recent work advancing the learning of similarity functions,

especially for retrieval, e.g. [107, 106, 105], that does not yet address hierarchy. Some of

our experiments compare with OASIS from Chechik et al. [105], the current state of the

art in learning similarity functions for retrieval, 3 and we demonstrate significant improve-

ment by adding hierarchy. Furthermore the proposed techniques are easily parallelizable,

allowing better scaling than [105] (even without hierarchy) which already improved com-

3Closely related in technique to [108] for classification.

78



putational efficiency significantly over other techniques [107, 106].

Many of the improvements shown stem from exploiting high level knowledge in the

form of a semantic hierarchy. This is related to recent research in explicitly estimating

high level semantic attributes for recognition [109, 110, 111, 112, 113]. In particular [109]

allows retrieval queries using language to refer to the semantic attributes of faces. We con-

sider queries specified by an image, and add a hierarchical relationship between semantic

attributes. Recent work [113] considers a representation similar in spirit to the semantic

representation we use, but focuses on using the representation for classification – using

multiple training examples for a class specific query, as opposed to a single example as a

query – instead of retrieval. There is also related work from the multimedia and information

retrieval community, especially on TrecVid, e.g., [114, 115] (and references therein), that

explicitly train object or concept “detectors” and use their output as features for retrieval

based on high level (or textual) queries.

Efficient retrieval with respect to a similarity function is important for very large scale

settings. Significant work has been done on hashing for the related problem of finding

approximate nearest neighbors [55, 116]. In our setting, retrieval using bilinear similarity

on vectors of probabilities is a core subroutine, and we introduce a novel hashing scheme to

accomplish this. Note that this is a data independent hashing approach in contrast to recent

approaches based on learning hashing functions for vision [117, 118, 119].

5.3 Approach

5.3.1 Exploiting Hierarchy

In order to exploit hierarchical knowledge in retrieval, we consider the core subroutine of

evaluating the similarity Sim between two images. Retrieval consists of finding the im-

ages from a large database with greatest similarity to a query image. In previous work,

much of the effort in building a system for retrieval was in learning the similarity func-
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Figure 5.2: Compared to previous work (left) our approach to learning similarity functions

(right) separates the learned similarity function into two parts, an estimate of probabilities

for semantic labels, and a hierarchical comparison function. The hierarchical comparison

function is deterministically built from prior knowledge and only the semantic models are

learned.

tion that mapped low-level image features computed from image to a similarity value.

For images a,b,c, and d, let f(·) denote their low level features, then training can be per-

formed by considering constraints on pairs, e.g., a and b are more similar than c and d so

Sim(f(a), f(b)) > Sim(f(c), f(d))+1 as in [106]. The state of the art OASIS [105] con-

siders triples of images, where a was supposed to be more similar to b than to c, yielding

the constraint Sim(f(a), f(b)) < Sim(f(a), f(c)) + 1. These constraints were used to

learn a matrix L so that Sim(f(a), f(b)) = f(a)′Lf(b).

As illustrated in Figure 5.2, our approach computes similarity by first estimating prob-

abilities of semantic attributes for an image s(f(a)), based on low level image features.
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Then we use the prior knowledge of the semantic hierarchical relationship to deterministi-

cally compute a hierarchical similarity matrix, S, and the similarity function is Sim(a, b) =

s(f(a))TSs(f(b)) (Section 5.3.1.1 & 5.3.1.2). Not only does this allow exploiting hierar-

chical knowledge, but learning is only needed to build the models for semantic attributes –

a process that is much easier to parallelize than previous approaches to learning similarity.

5.3.1.1 Encoding hierarchy in semantic similarity

The core of our approach is to use prior knowledge of a hierarchy between semantic at-

tributes to compute similarity for retrieval. We start by discussing a non-probabilistic ver-

sion of such a similarity, and describe an image a by a set of binary semantic attributes

{1 . . . K}. The attributes can be object categories (“is dog”), part relations (“has legs”),

visual descriptions (“is black”) or in fact any predicate about the image. We will mainly fo-

cus on object class category attributes as they are the dominant type of attributes currently

used and have been extensively studied, but the approach will extend to arbitrary attributes.

Given the attributes, the similarity between two images a and b can then be measured

as how well their attributes match. Specifically, let δi(a) ∈ {0, 1} be the indicator function

of image a having attribute i. We define the similarity as Sim∗(a, b) =
∑

i,j δi(a)Sijδj(b),

where S ∈ R
K×K and Sij is a “matching score” between attribute i and j, i.e., the semantic

similarity based on prior human knowledge. We refer to S as the prior matrix.

This is a very general form and encompasses a large class of semantic similarities.

For object category attributes, a dominate relationship is the “is a” relation that naturally

organizes them into a semantic hierarchy. In this case, S can be derived by measuring

the closeness of categories relative to the hierarchy. For instance, let S(i, j) = ξ(π(i, j)),

where π(i, j) is the lowest common ancestor of category i and j and ξ(·) : {1 . . . K} → R

is some real function that is non-decreasing going down the hierarchy,i.e., the lower the

lowest shared ancestor, the more similar categories i and j are. For example, “is donkey” is

much more similar to “is horse” than “is keyboard” because “donkey” shares a lower level

81



common ancestor “equine” with “horse” than “object” with “keyboard.” More concretely

ξ(·) can be based on the height of the node [46]. Note that there are other possible ways

to obtain similarity between attributes such as automatic text mining[120] when such a

manually constructed hierarchy is not available.

A special case is when the attributes are mutually exclusive categories and S is the

identity matrix, so Sim∗(a, b) simply indicates whether a and b belong to the same category.

Refer to this as a “flat” setting as there is no hierarchical relationship between the attributes.

The attributes are treated as either identical or different and a retrieval system optimized

for this similarity would be incapable of ranking “horse” higher than “keyboard” given

a query “donkey.” This is setting where most existing techniques were developed and

evaluated [107, 106, 105].

So far our similarity employs hard assignment of binary attributes. However there is

often uncertainty in representing images with semantic attributes. On one hand, natural

language is inherently ambiguous and categories overlap. There will always be objects that

evade exact categorization. Also perfect classification of semantic attributes is unrealistic.

Thus instead of using binary indicators, we represent an image a as a vector s(f(a)) =

x ∈ R
K where xi = Pr (δi(a) = 1|a), i.e., the probability that image x has attribute i.

Given image a, b and their vector of probabilities x, y, we redefine the similarity to be the

expectation of the non-probabilistic version, i.e. Sim(a, b) = ESim∗(a, b) =
∑

i,j xiSijyj ,

or simply Sim(a, b) = xTSy. This is assuming that image a and b are drawn independently,

as is valid for most retrieval settings. We will refer to this form of similarity xTSy as

bilinear similarity.

Note that although we have mainly used mutually exclusive object categories as at-

tributes in our discussion and will also focus on this case in the experiments due to avail-

ability of datasets, our formulation is not restricted to mutually exclusive categorization of

images. An image can have multiple objects and thus any number of attributes “turned on.”
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5.3.1.2 Learning semantic attributes

Once the prior matrix S is given, to compute the bilinear similarity xTSy, a critical step

is to learn models of semantic attributes and obtain probabilities. For large scale retrieval,

important considerations are scalability and efficiency of learning, as real world retrieval

systems need to handle tens of thousands of semantic attributes and to train from very large

datasets.

To obtain the probabilistic attribute representation, we first learn binary classifiers for

each semantic attribute independently. For example, in the case of category attributes, we

train 1-vs-all linear SVM for each category. Then we calibrate the outputs of the classi-

fiers into probabilities. In our experiments, we fit a sigmoid function to each SVM clas-

sifier [121] to convert the output into a probability. For non-overlapping categories, we

further normalize the probabilities to form a vector whose entries sum to one. 4

Note that both steps are easily parallelizable as the classifiers and sigmoid functions

can be learned independently. Also learning the semantic attributes is decoupled from the

specification of the prior matrix S. In contrast to existing similarity learning algorithms

that learn similarity from low level features, our scheme can be adapted to new similarity

measures by simply replacing the prior matrix in retrieval time, without relearning of the

attribute models.

5.3.2 Efficient indexing

Efficiency is a major challenge for large scale retrieval Merely considering object categories

as attributes may result in a probability vector of tens of thousands dimensions [2]. Com-

puting the similarity between a query and each database image thus becomes prohibitively

expensive.

4Note that the probabilities can be made more accurate by joint calibration. For ex-

ample, for non-overlapping categories one can use random forest of probability estimation

trees (PET) [122] to obtain more accurate multiclass probabilities. We find that for large

training data the simplicity and efficiency outweighs the marginal accuracy gain from PETs.
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We introduce a novel technique based on locality sensitive hashing (LSH) [55] to

achieve sublinear retrieval time for bilinar similarity. The key is to construct on a fam-

ily of hash functions H such that Pr h∈H (h(x) = h(y)) = Sim(x, y) [123] or Pr(h1(x) =

h2(y)) = Sim(x, y) with h1 and h2 drawn independently [116]. For a query point y, one

retrieves the database points from the bin of h(y) and rerank them to produce the final re-

sults. In practice, one may concatenate multiple hash functions to reduce false collision

and use multiple hash tables to increase recall.

For our bilinear similarity Sim(x, y) = xTSy where x and y are vectors of prob-

abilities, we provide theoretical results on sufficient conditions of S and corresponding

construction techniques, informally:

• If S is element-wise non-negative, symmetric and diagonally dominant, then there

exists a construction (Lemma 5.3.2).

• If S is derived from a hierarchy such that classes sharing lower common ancestors

have higher similarity, then there exists a construction (Lemma 5.3.8).

We present the details of the hashing constructions in Section 5.3.2.1. It is worth noting

that the hashing construction for a special case, where the semantic attributes are non-

overlapping category labels and S is identity matrix, is especially simple: h(x) is an integer

from 1 to K sampled according to the multinomial distribution x. In implementation, h is

parametrized by a uniformly drawn real number p ∈ [0, 1) and returns the index of the

interval where p falls in x.

One closely related existing technique is the random hyperplane LSH [123] for approx-

imating cosine similarity Sim(x, y) = xT y
‖x‖‖y‖ that measures the angle between x and y,

different from ours due to the L2 normalization. We compare empirical performance with

it in Section 5.4.5.
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5.3.2.1 Hashing Constructions

In this section we first provide proofs and hashing constructions for probability vectors of

non-overlapping categories (Lemma 5.3.2– 5.3.8), i.e., x ∈ R
K ,

∑
i xi = 1, 0 ≤ xi ≤ 1 for

i = 1, . . . , K. We use ΔK−1 to denote the set of all such vectors. In Lemma 5.3.10, we

show extension to the general case where x ∈ R
K , 0 ≤ xi ≤ 1 for i = 1, . . . , K (but does

not necessarily sum to one). We use Δ̃K−1 to denote the set of all such vectors.

Definition 5.3.1. A matrix S ∈ R
K×K is hashable, if there exists a λS > 0 and, for any

ε > 0, a distribution on a family H(S, ε) of hash functions h(·;S, ε) such that for any

x, y ∈ ΔK−1,

0 ≤ Pr (h1(x;S, ε) = h2(y;S, ε)) − λS · xTSy ≤ ε

where h1 and h2 are drawn independently fromH(S, ε).

Here we relax the equality in the LSH condition Pr(h1(x) = h2(y)) = Sim(x, y) to

equality up to ε. This has virtually no practical impact because in all of our constructions ε

can be easily made negligibly small, without incurring any additional computational cost.

Also note that scaling S does not affect the ranking induced by the similarity xTSy.

Lemma 5.3.2. If S is symmetric, element-wise non-negative and diagonally dominant, that

is,

∀i = 1, . . . , K, sii ≥
∑

j �=i sij , then S is hashable.

Proof. Define a K × (K + 1) matrix Θ = (θij), where

θij =
√
ŝij, ∀i = 1, . . . , K, ∀j = 1, . . . , K, i �= j.

θii =

√
ŝii −

∑
j �=i

ŝij, ∀i = 1, . . . , K.

θi,K+1 = 1−
K∑
j=1

θij, ∀i = 1, . . . , K.
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where Ŝ = λS · S with λS chosen to ensure θi,K+1 ≥ 0. Note that each row of Θ sums to

one. Also note that θij = θji, ∀i, j ≤ K due to the symmetry of S.

Consider hash functions h(x) that map a probability vector to a set of positive integers,

that is, h : ΔK−1 → 2N where 2N is all subsets of natural numbers. Note that h(x) = h(y)

is defined as set equality, that is, the ordering of elements does not matter.

To constructH(S, ε), let N ≥ 1/ε. Then h(x;S, ε) is computed as follows:

1. Sample α ∈ {1, . . . , K} ∼ multi(x)

2. Sample β ∈ {1, . . . , K + 1} ∼ multi(θα) where θα is the αth row of Θ.

3. If β ≤ K, return {α, β}

4. Randomly pick γ from {K + 1, . . . , K +N}, return {γ}.

In implementation, h is parametrized by three uniformly drawn values p, q ∈ [0, 1] and

r ∈ {1 . . . N}, used respectively in the sampling process for α, β and γ.

Let x, y be probability vectors, x, y ∈ ΔK−1. Let αx, βx, γx be the values sampled when

computing h(x), and similarly for αy, βy, γy. To compute Pr(h(x) = h(y)), consider two

cases below.

Case 1: Suppose αx = i ∈ {1, . . . , K}, αy = j ∈ {1, . . . , K}, i �= j. Then

Pr(h(x) = h(y) | αx = i ∧ αy = j)

= Pr(βx = j ∧ βy = i | αx = i ∧ αy = j) +

Pr(γx = γy ∧ βx = K + 1 ∧ βy = K + 1 | αx = i ∧ αy = j)

= Pr(βx = j | αx = i)× Pr(βy = i | αy = j) +

Pr(γx = γy | βx = K + 1, βy = K + 1)×

Pr(βx = K + 1 | αx = i)× Pr(βy = K + 1 | αy = j)

= θijθji +
1

N
θi,K+1θj,K+1

= ŝij +
1

N
θi,K+1θj,K+1

86



Case 2: Suppose αx = αy = i ∈ {1, . . . , K}. Then

Pr(h(x) = h(y) | αx = αy = i)

= Pr(βx = βy ≤ K | αx = αy = i) +

Pr(γx = γy ∧ βx = K + 1 ∧ βy = K + 1 | αx = αy = i)

=
K∑
j=1

Pr(βx = βy = j | αx = αy = i) +

Pr(γx = γy | βx = K + 1, βy = K + 1)×

Pr(βx = K + 1 | αx = i)× Pr(βy = K + 1 | αy = j)

=
K∑
j=1

θ2ij +
1

N
θ2i,K+1

= ŝii +
1

N
θ2i,K+1

Summing up the above conditional probabilities, we get

Pr(h(x) = h(y))

=
∑
i �=j

xiyj Pr(h(x) = h(y)|αx = i ∧ αy = j) +

∑
i

xiyi Pr(h(x) = h(y)|αx = αy = i)

=
∑
i,j

xiŝijyj +
1

N

∑
i �=j

xiyjθi,K+1θj,K+1 +
1

N

∑
i

xiyiθ
2
i,K+1

= λSx
TSy +

1

N

∑
i,j

xiyjθi,K+1θj,K+1

To conclude the proof, observe that

0 ≤ 1

N

∑
i,j

xiyjθi,K+1θj,K+1 ≤ 1

N

(∑
i

xiθi,K+1

)(∑
j

xjθj,K+1

)
≤ ε
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For the special case where S is the identity matrix, h(x;S) reduces to h(x; I), which

returns an α ∈ {1, . . . , K} sampled from multi(x).

Lemma 5.3.3. If S is a matrix of all ones, then S is hashable.

Proof. Note that xTSy = 1 in this case since x, y ∈ ΔK−1. Simply let H consist of one

constant function.

Definition 5.3.4. A matrix Q ∈ R
m×m is a zero padded extension of S ∈ R

n×n if there

exists an one-to-one function f that maps the indices τ = {1 . . . n} to {1 . . .m} such that

Qi,j = Sf−1(i),f−1(j) for any i, j ∈ f(τ) and Qi,j = 0 otherwise.

In other words, Q is obtained by symmetrically inserting rows and columns of zeros

into S.

Lemma 5.3.5. If Q is a zero padded extension of S and S is hashable, then Q is hashable.

Proof. Let ε > 0, and let x, y ∈ ΔK−1. Define xf(τ) ∈ R
n such that its ith element is

xf−1(i). We the define g(x;Q, ε) as follows:

1. Sample α ∈ {1, . . . ,m} ∼ multi(x)

2. If α ∈ f(τ), return
(
0, h(

xf(τ)

||xf(τ)||1 ;S,
ε
2
)
)

, where h ∈ H(S, ε
2
) as in Definition 5.3.1

Else return β ∈ {1, . . . , N} uniformly drawn, where N = �2/ε�.

We now show Q is hashable.

Pr (g(x;Q, ε) = g(y;Q, ε))

= Pr

(
αx ∈ f(τ) ∧ αy ∈ f(τ) ∧ h

(
xf(τ)
||xf(τ)||1 ;S,

ε

2

)
= h

(
yf(τ)
||yf(τ)||1 ;S,

ε

2

))
+ Pr (βx = βy)

= ||xf(τ)||1 · ||yf(τ)||1 ·
(
λS

xTf(τ)
||xf(τ)||1S

yf(τ)
||yf(τ)||1 + δ

)

+
1

N
(1− ||xf(τ)||1)(1− ||yf(τ)||1)

= λS · xTQy + ||xf(τ)||1 · ||yf(τ)||1 · δ + 1

N
(1− ||xf(τ)||1)(1− ||yf(τ)||1)
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where 0 ≤ δ ≤ ε/2 by the choice of h. Note that

||xf(τ)||1 · ||yf(τ)||1 · δ + 1

N
(1− ||xf(τ)||1)(1− ||yf(τ)||1) ≤ ε/2 + ε/2 = ε

Lemma 5.3.6. If S is hashable, then aS is hashable for any a > 0.

Proof. This follows directly from Definition 5.3.1 (by using λaS = 1
a
λS).

Lemma 5.3.7. If Q =
∑L

l=1 Sl and Sl is hashable for l = 1, . . . , L, then Q is hashable.

Proof. Suppose the hash function for Sl is hl and the scalar is λSl
, for l = 1, . . . , L.

Let z =
∑L

l=1
1√
λSl

and θ ∈ R
L where θl =

1
z
· 1√

λSl

.

We construct hash function g(x;Q, ε) as follows:

1. Sample α ∈ {1, . . . , L} ∼ multi(θ).

2. return (α, hα(x;Sl, ε/L)).

Then

Pr (g(x;Q, ε) = g(y;Q, ε))

=
L∑
l=1

Pr (αx = αy = l ∧ hl(x;Sl, ε/L) = hl(y;Sl, ε/L))

=
L∑
l=1

θ2l (λSl
xTSly + δl)

=
1

z2
xTQy +

L∑
l=1

θ2l δl

where 0 ≤ δl ≤ ε/L. Note that 0 ≤∑L
l θ

2
l δl ≤ ε and thus Q is hashable.
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Lemma 5.3.8. Let T = G(V,E) be a rooted tree and define πm,n to be the lowest common

ancestor between node m and n for any m,n ∈ V . Let Vr ⊆ V be subtree rooted at r

(i.e.,, the set of all nodes descending from node r ∈ V including r itself). Let Ωr ⊆ Vr

be all the leaf nodes of r and let Kr = |Ωr|. Let fr : Ωr → {1, . . . , Kr} be a one-to-

one correspondence of the leaf nodes of r to a set of integers. Let ξ(·) : V → R be any

function defined on V . Let S(r,ξ) ∈ R
Kr×Kr be a similarity matrix induced by r and ξ,

where S(r,ξ)
ij = ξ(πf−1

r (i),f−1
r (j)), ∀i = 1, . . . , Kr, j = 1, . . . , Kr.

For any r ∈ V , if ξ(·) is non-negative and downward non-decreasing in the subtree of

r, that is, ξ(q) ≥ 0 for any q ∈ Vr and ξ(q) ≥ ξ(p) for any p, q ∈ Vr such that q is a child

of p, then S(r,ξ) is hashable.

Proof. Let r ∈ V . Suppose ξ(·) is non-negative and downward non-decreasing in the

subtree of r. We prove the claim by induction on the tree.

If r is a leaf node, then S(r,ξ) is a scalar and thus hashable.

Now we consider the case when r is an internal node. Let σ(r) be the set of direct

children of r. Our inductive hypothesis is that given any c ∈ σ(r), the similarity matrix

S(c,ξ′) induced by c and any ξ′ : Vc → R, which is non-negative and downward non-

decreasing, is hashable.

For a given c ∈ σ(r), let fr(Ωc) be the set of indices of the leaf nodes of c in S(r,ξ). The

tree structure implies ⋃
c∈σ(r)

fr(Ωc) = {1, . . . , Kr} (5.1)

and

fr(Ωc)
⋂

fr(Ωd) = ∅, for any c, d ∈ σ(r) and c �= d . (5.2)

That is, the columns and rows of S(r,ξ) can be partitioned by the direct children of r.

Also, if c and d are different direct children of r, then the lowest common ancestor
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between the descendant nodes of c and those of d must be r. Thus

S
(r,ξ)
fr(Ωc),fr(Ωd)

= ξ(πΩc,Ωd
) = ξ(r) · 1, for any c, d ∈ σ(r) and c �= d . (5.3)

where 1 is a matrix of all ones.

For a given c ∈ σ(r), define Q(c) ∈ R
Kr×Kr such that

Q
(c)
ij =

⎧⎪⎨
⎪⎩

S
(r,ξ)
ij − ξ(r) if i, j ∈ fr(Ωc)

0 otherwise.

It follows from (5.1), (5.2) and (5.3) that

S(r,ξ) = ξ(r) · 1+
∑
c∈σ(r)

Q(c) (5.4)

Define ξ′(·) = ξ(·) − ξ(r). Since the lowest common ancestor of the leaf nodes of r

cannot be higher than r and ξ is downward non-decreasing, we conclude that ξ′(d) ≥ 0 for

any d ∈ Vr and ξ′(d) is downward non-decreasing.

By the inductive hypothesis, given any c ∈ σ(r), the similarity matrix S(c,ξ′) induced

by c and ξ′ is hashable.

Now we show that Q(c) is a zero padded extension of S(c,ξ′).

Let Kc = |Ωc| and fc be the function that maps the nodes in Ωc to indices of S(c,ξ′).

Recall that fr maps nodes in Ωr (including Ωc) to indices in S(r,ξ).

Let f : {1, . . . , Kc} → {1, . . . , Kr}, where f = fr · f−1
c . Let τ = {1, . . . , Kc}. It

follows that f(τ) = fr(Ωc).
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For any i, j ∈ f(τ), that is, ∀i, j ∈ fr(Ωc),

Q
(c)
ij = S

(r,ξ)
ij − ξ(r)

= ξ(πf−1
r (i),f−1

r (j))− ξ(r)(By definition of fr)

= ξ′(πf−1
r (i),f−1

r (j))(By definition of ξ′)

= S
(c,ξ′)
fc·f−1

r (i),fc·f−1
r (j)

(By definition of fc)

= S
(c,ξ′)
f−1(i),f−1(j)

By Definition 5.3.4, Q(c) is a zero padded extension of S(c,ξ′) and is therefore hashable

by Lemma 5.3.5. It follows from Lemma 5.3.3, Lemma 5.3.6, Lemma 5.3.7 and from (5.4)

that S(r,ξ) is hashable.

Note that a similarity matrix derived from a hierarchy, as in Lemma 5.3.8, is not neces-

sarily diagonally dominant. For example, if a leaf node has many siblings, the sum of its

similarities with its siblings can easily be more than its self similarity.

Definition 5.3.9. A matrix S ∈ R
K×K is generally hashable, if there exists a λS > 0 and,

for any ε > 0, a distribution on a family H(S, ε) of hash functions h(·;S, ε) such that for

any x, y ∈ Δ̃K−1,

0 ≤ Pr (h1(x;S, ε) = h2(y;S, ε)) − λS · xTSy ≤ ε

where h1 and h2 are drawn independently fromH(S, ε).

Lemma 5.3.10. Hashing for the general case. Any hashable matrix S ∈ R
K×K is gener-

ally hashable.

Proof. For any x, y ∈ Δ̃K−1, let x̂ = (x/K, 1 −∑
i xi/K) ∈ R

K+1 and ŷ = (y/K, 1 −
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∑
i yi/K) ∈ R

K+1. Observe that x̂ and ŷ ∈ ΔK . Let

Ŝ ∈ R
(K+1)×(K+1), Ŝ =

⎛
⎜⎝ S 0

0 0

⎞
⎟⎠

Ŝ is a zero padded extension of S and is therefore hashable by Lemma 5.3.5. That is, there

exists a λŜ and for any ε > 0, a distribution on a family of functions Ĥ such that

0 ≤ Pr ĥ1,ĥ2∈Ĥ(ĥ1(x̂) = ĥ2(ŷ))− x̂T Ŝŷ ≤ ε.

Observe that x̂T Ŝŷ = xTSy. Therefore

0 ≤ Pr ĥ1,ĥ2∈Ĥ(ĥ1(x̂) = ĥ2(ŷ))− xTSy ≤ ε.

Let h(z) = ĥ(ẑ), for any z ∈ Δ̃K−1. Observe that Pr(h1(x) = h2(y)) = Pr(ĥ1(x̂) =

ĥ2(ŷ)). Therefore,

0 ≤ Pr(h1(x) = h2(y))− xTSy ≤ ε.

By Definition 5.3.9, S is generally hashable.

5.4 Experiments

5.4.1 Datasets and Evaluation Criteria

We use Caltech256 [5] and ILSVRC2010 [46], a subset of ImageNet with 1,000 classes

and 1.2 million images (See Section 4.5). 5 We use Caltech256 to compare with existing

similarity learning algorithms and use ILSVRC2010 for large scale experiments. Both

datasets assign one class label per image.

5we do not use the newly collected validation and test sets as they are too small for

retrieval evaluation.
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For both datasets, we split the data into training and test, use the training set to learn

semantic models and use the test to evaluate retrieval performance. For retrieval we obtain

the top k neighbors by brute force scan except in Section 5.4.5. Unless otherwise noted,

all evaluation is done by using each of the test images to query against the rest of the test

images and reporting the average.

We use a ranking based criteria for evaluation. Given a similarity function, Sim(ai, aj) ∈
[0,∞), between images ai and aj , it can be used assign a rank, rqi ∈ {1, . . . , n} to n

images {ai}i={1,...,n} in a dataset with respect to a query image q so that rqi <= rqj iff

Sim(q, ai) >= Sim(q, aj). Let Simg(x, y) be “ground truth” or desired values of the sim-

ilarity function. We can evaluate a ranking of k data items with respect to a query q by a

precision,

p(Sim, q, Simg, k) =

∑k
rqi=1 Simg(q, ai)

maxo
∑k

i=1 Simg(q, aoi)
(5.5)

The numerator is the sum of ground truth similarities for the most similar k database

items based on similarity s for a query q. The denominator is the sum of ground truth sim-

ilarities for the best possible k database items. The complexity of the evaluation function

allows it to represent the standard “precision at k” for category labels when Simg(ai, aj) ∈
{0, 1} is 1 for ai and aj with the same category label and 0 otherwise, as well as more

general scores when Simg(ai, aj) ∈ [0, 1] is a more nuanced measure of similarity, for

instance based on hierarchical relationships between semantic categories.

We define the ground truth similarity in a similar way the hierarchical cost is defined

in ILSVRC2010 [46]. Let h(π(i, j)) be the height of the lowest common ancestor π(i, j)

between class i and class j on the category hierarchy. The height of a node is the length

of the longest path to one of its leaf node (leaf nodes have height 0). Similarity between

class i and class j is then defined as 1 − h(π(i, j))/h∗, where h∗ is the height of the root

node(19 for ILSVRC2010). All classes have similarity 1 to itself. We can then define the

ground truth similarity between image a with ground truth class ca and image b with cb as
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Simg(a, b) = 1−h(π(ca, cb))/h∗. Precision at top k as in Eqn. 5.5 is then the average class

similarity between the query and top k returned images divided by the maximum possible

similarity from the dataset (perfect would be 1). We refer to this criteria as hierarchical

precision.

5.4.2 Hierarchical Retrieval

We evaluate our similarity on hierarchical precision on ILSVRC2010 dataset. We split

the ILSVRC2010 images 50%-50% as training and test. To learn the semantic attributes,

we train binary linear SVMs using LIBLINEAR [86] on sparse 21K dimensional vectors

formed by a three level SPM [15] on the published SIFT visual words from a 1,000 word

code-book [46]. We use 2-fold cross validation to determine the parameter C. Probability

calibration is done using Platt’s scaling [121] during cross validation. In retrieval, we set

the prior matrix S such that Sij=1 − h(π(i, j))/h∗, matching the definition of hierarchical

precision.

We compare our bilinear similarity with hierarchy encoded prior matrix (B-Hie) with

various baselines: (1) SPM: ranking the images by intersection kernel on SPM histograms

of visual words, representing low level feature based methods that do not use learning;

(2) Hard-Assign: classifying the query image to the most likely class and ranking others

by their probabilities of belonging to this class, equivalent to retrieval by annotation. (3)

Cosine-NoCal: using cosine similarity of the raw outputs of semantic classifiers without

probability calibration; (4)Cosine-Flat: using cosine similarity of the probabilities, same

as Cosine-NoCal excpet with probability calibration; (5)Cosine-Hie: same as bilinear sim-

ilarity with hierarchy encoded S except with L2 normalized probability vectors; (6)B-Flat:

using bilinear similarity but without encoding the hierarchy in the prior matrix, i.e. with S

set to identity.

We present the results in Figure 5.3 (left). Bilinear similarity with hierarchy encoded

(B-Hie) achieves significantly better precision than all others. It also demonstrates that
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Figure 5.3: Precision vs. rank for similarity based retrieval on ILSVRC2010 images from 1,000 categories. Left: Hierarchical precision

of our bilinear similarity with hierarchy encoded prior matrix (B-Hie) against others as described in Section 5.4.2. For all curves, stdev

by swapping training and test is too small to show (≤ 0.002). Middle: Flat precision of our bilinear similarity with identity prior matrix

(B-Flat) against others as described in Section 5.4.3. Stdev by swapping training and test is too small to show (≤ 0.001). Right: Flat

precision on a subset 100 categories (Section 5.4.4). Using training data from the 100 categories (“seen in training”) performs the best,

but training on 900 categories not including any of the 100 test categories (“unseen in training”) compares favorably to directly using

SPM without any training.
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all components of our similarity are essential: (1) learning semantic attributes is impor-

tant as SPM (directly using low level features without learning) is quite effective for the

first few nearest neighbors but for the rest of the curve performs significantly worse than

those that use semantic classifiers; (2) probabilistic representation significantly improves

over hard assignment (B-Flat versus Hard-Assign); (3) probability calibration is important

as using raw classifier outputs (Cosine-NoCal) is significantly worse than the calibrated

counterparts (Cosine-Flat & B-Flat) (4) cosine similarity performs significantly worse than

bilinear similarity due to L2 normalization of probability vectors (Cosine-Flat versus B-

Flat & Cosine-Hie versus B-Hie); (5) most importantly, encoding hierarchy into the prior

matrix significantly improves precision, as quantitatively shown by B-Hie versus B-Flat

and qualitatively by Figure 5.1, where images from nearby classes also rank higher.

5.4.3 Flat Retrieval

Our method is motivated by hierarchical retrieval. However, most existing work is opti-

mized for a special case where the ground truth similarity between two images are 1 if they

are from the same categories and 0 otherwise. The retrieval precision at top k as defined in

Eqn. 5.5 is then percentage of the images from the same class of the query image. We refer

to this criteria as flat precision.

To effectively compare with existing work we adapt our bilinear similarity to this spe-

cial case by simply setting the prior matrix to identity in retrieval.

We experimented with our method on Caltech256 [5] in the same setting as in evalu-

ating OASIS [105]. We use linear SVMs as the semantic classifiers, trained on the same

features published by the authors of [105], parameter C determined by by 5-fold cross val-

idation. We report results from 5 random splits of training and testing data (40 training

images and 25 test images per class), as in [105]. Figure 5.4 shows our method is on par

with OASIS and significantly outperforms all other algorithms. Moreover, our scheme is

more efficient. For 50 classes, a single run of OASIS takes 96 seconds to converge [105],

97



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

number of neighbors

pr
ec

is
io

n

Random
OASIS
MCML
LEGO
LMNN
Euclidean

0 10 20 30 40 50
0

0.1

0.2

0.3

number of neighbors

pr
ec

is
io

n

Random

OASIS
MCML
LEGO
LMNN
Euclidean

0 10 20 30 40 50
0

0.1

0.2

number of neighbours

pr
ec

is
io

n

OASIS
MCML
LEGO
LMNN
Euclidean

Random

OURS OURS OURS
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while learning all 50 linear SVMs and sigmoid functions for probability estimation (in-

cluding 5 trials of parameter C and 5 fold cross validation for each trial) take 12 seconds in

total, on a single CPU.

Next we compare our method with OASIS on the much larger ILSVRC2010 data and

present results in Figure 5.3 (middle). We run multiple instances of OASIS with aggressive-

ness parameters C = {0.001, 0.01, . . . , 1, 000} and report the best after 14 days of training

(our method takes 14 days in total on one CPU). We also include a subset of the base-

lines from Figure 5.3(left) excluding those optimized for hierarchy. OASIS seems slower

to converge with the larger dataset and higher feature dimensionality (21K versus 1K for

Caltech256) as it is still worse than SPM. Note that OASIS is inherently sequential while

our method can be easily parallelized by training each semantic classifier independently.

5.4.4 Cross-Category Generalization

A potential advantage of using semantic attributes is the ability to generalize to new cat-

egories, as demonstrated in [112, 120] in a classification setting. We evaluate how our

method can generalize to unseen categories in a retrieval setting. Only 900 of the 1,000

ILSVRC2010 semantic attributes are used to build the semantic representation and retrieval

is only evaluated for categories for which no images are seen during training (“unseen in

training” curve in Fig 5.3 right). While performance is lower than then when example im-

ages from those categories are seen in training (“seen in training” curve in Figure 5.3 right)

it is still better than the raw feature comparison baseline for much of the retrieval list. Note

that, as in all other experiments, training and test image sets are disjoint.

5.4.5 Indexing Efficiency

We evaluate the effectiveness of our bilinear LSH by measuring retrieval precision versus

scanning cost. Scanning cost is the percentage of the data points needed to be scanned for

top k retrieval, the dominating computation for retrieval. Brute force linear scan would re-
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Figure 5.5: Precision at top 10 vs scanning cost for bilinear LSH and random hyperplane

LSH as described in Section 5.4.5

sult 1.0 scan cost and maximum precision. One can adjust the number of hash tables and the

number of hash function concatenations to trade off between precision and scanning cost.

We compare our hashing technique with the widely used random hyperplane LSH [123]

on retrieval. Random hyperplane LSH approximates the cosine similarity xT y
‖x‖2‖y‖2 by re-

peatedly selecting a random hyperplane and project vector x to one bit depending on which

side x is on. To compare fairly with random hyperplane LSH, we set our prior similarity

matrix S to identity and use flat precision to evaluate. We set the length of hash code for

both methods to be the same (20 bits). In Figure 5.5, we vary the number of hash tables

to produce the precision versus scanning cost curves. Figure 5.5 shows that bilinear LSH

achieves a precision of 0.15 for top 10 images, very close to the precision (0.17) of linear

scan, while examining only 0.1% of the database points. This is significantly better than

random hyperplane LSH.
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5.5 Summary

We have presented an approach that can exploit prior knowledge of a semantic hierarchy

for similar image retrieval, and is scalable to very large retrieval problems. Experiments

show that adding hierarchical knowledge significantly increases retrieval performance. In

addition we show that a handicapped version of our system – without prior hierarchical

information – can start with the same training information as the state of the art for sim-

ilarity function learning (OASIS) and learn a more accurate similarity function with less

total computation, and much less “wall clock time” due to significantly better inherent par-

allelism. We note that our technique should be seen as a complement to previous work on

similarity learning as it is most useful when some explicit labels are available at training

time (a common scenario). Our final contribution is a hashing scheme for bilinear similar-

ity on probability distributions that is shown to provide efficient (sublinear) retrieval in our

setting, and may be useful in a wide range of applications. Using our technique, one query

against a database of 600K images takes only 3 milliseconds with an accuracy close to 90%

of linear scan and the computational cost 0.001 times that of linear scan. This completes an

end-to-end system for very large scale hierarchical retrieval that has inherent paralleliza-

tion, linear time training, sublinear time retrieval, and better accuracy and scalability than

the state of the art.
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Chapter 6

Multi-level Classification with Accuracy

Guarantees

6.1 Introduction

This chapter further exploits the semantic relations between categories. We start by re-

visiting the ultimate goal of recognition: can computers recognize all object classes while

almost never making mistakes? This is a challenging task even to a knowledgeable hu-

man! 1

So far this has turned out to be elusive—the recent state of the art performance on

10K-way classification is only 16.7% [125], albeit significantly improved since our bench-

marking study as described in Chapter 3. Of course there is a way to always be right,

as we can just report everything as an “entity,” which is, however, not very informative.

This chapter shows how to achieve something sensible between the two extremes of inac-

curate choices forced among a large number of categories and the uninformative option of

declaring that everything is an “entity.”

One key to success is to observe that object categories form a semantic hierarchy, con-

1The materials of this chapter are also presented in [56].
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Figure 6.1: Conventional classifier versus our approach.

sisting of many levels of abstraction. For example, a kangaroo is also a mammal, an animal,

and a living thing. The classifier should predict “mammal” instead if it is uncertain of the

specific species. Meanwhile, the classifier should try to be as specific as possible. Consider

the bottom image in Figure 6.1, where it would have been correct to report animal, but

choosing mammal provides more information without being wrong. A sensible classifier

thus “hedges its bets” as necessary, maintaining high accuracy while making its best effort

for specificity.

Our goal is to create a classification system that maximizes information gain while

maintaining a fixed, arbitrarily small error rate. We measure information gain in the stan-

dard information theoretical sense, i.e., the decrease in uncertainty from our prior distri-
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bution to the posterior over the classes. For example, our prior can be uniform among

the tens of thousands of leaf nodes in a hierarchy. A classification output of “mammal,”

though maintaining uncertainty about the specific species, provides information by ruling

out many other possibilities. Note that our algorithmic approach can also handle alternate,

application-specific measures instead of information gain.

Results on datasets ranging from 65 to 10K classes show that not only is our proposed

algorithm effective at training classifiers that optimize information gain while maintaining

high accuracy, but that the resulting classifications are informative. This is a step toward

making automatic object classification more widely useful by making explicit the trade-

off between accuracy and specificity. This trade-off can be relevant in many visual tasks

with high level semantic labels, e.g., detection, scene understanding, segmentation, de-

scribing images with sentences, etc. Our focus here, multiclass image classification, serves

as a building block. To our knowledge this is the first time that optimizing the accuracy-

specificity trade-off has been addressed in large scale visual recognition.

In this chapter, we make the following contributions: (1) introducing the problem

of classification in a hierarchy subject to an accuracy bound while maximizing informa-

tion gain (or other measures), (2) proposing the Dual Accuracy Reward Trade-off Search

(DARTS) algorithm and proving a non-trivial result that, under practical conditions, it con-

verges to an optimal trade-off, and (3) validating our algorithm with experiments on 65 to

10K classes, showing large improvements over baseline approaches.

6.2 Related Work

Our problem is related to cost-sensitive classification and hierarchical classification [126,

127, 52, 53, 128, 26, 27, 29, 24, 31, 23, 28, 25, 22, 129, 130, 131]. The key differences

are: (1) conventional multiclass or cost-sensitive techniques do not consider overlapping

classes in a hierarchy; (2) previous work on hierarchical classification has not addressed
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Figure 6.2: Illustration of the formulation with a simple hierarchy. The numbers correspond

to the accuracy (middle) and the reward (information gain) of a prediction (right) given the

ground truth.

the issue of automatically selecting the appropriate level of abstraction to optimize the

accuracy-specificity trade-off.

Also related is classification with reject options, which grants binary classifiers an op-

tion to abstain, for a particular cost [132, 133]. In the multiclass case [134, 135, 136], also

termed “class selective rejection,” the classifier can output an arbitrary set of classes. Our

problem fits in this framework, with the admissible sets restricted to internal nodes of the

hierarchy. To our knowledge we are the first to connect class selective rejection with hier-

archical visual classification. Our primal dual framework follows [135], but our results on

the optimality of DARTS are new (Section 6.4.2).

Our work is also inspired by an emerging trend in computer vision studying large scale

visual recognition [98, 36, 83, 30, 137, 52, 125, 20, 138], as well as fine-grained catego-

rization [104, 139, 140, 141, 142]. Our technique scales up easily and we demonstrate its

effectiveness on large scale datasets.

6.3 Formulation

We describe the visual world with a semantic hierarchy H = (V,E), a directed acyclic

graph (DAG) with a unique root v̂ ∈ V , each node v ∈ V representing a semantic class

(Figure 6.2a). The leaf nodes Y ⊂ V are mutually exclusive classes. The internal nodes

are unions of leaf nodes determined by the hierarchy, e.g., in Figure 6.2a, “animal” is
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a combination of “dog” and “bird,” while “entity” is a combination of everything under

“animal” and “vehicle.”

Given the hierarchy, it is then correct to label an image at either its ground truth leaf

node or any of its ancestors (Figure 6.2b), e.g., a dog is also an animal and an entity. Let X

be an image represented in some feature space and Y its ground truth leaf label, X and Y

drawn from a joint distribution on X × Y . A classifier f : X → V labels an image x ∈ X
as a node v ∈ V , either a leaf or an internal node. The accuracy Φ(f) of the classifier f is

then

Φ(f) = E [(f(X) ∈ π(Y )], 2 (6.1)

where π(Y ) is the set of all possible correct predictions, i.e., the ground truth leaf node and

its ancestors. Note that without the internal nodes, Φ(f) reduces to the conventional flat

multiclass accuracy. In this work, we use “accuracy” in the hierarchical sense unless stated

otherwise.

The conventional goal of classification is maximizing accuracy. In our case, however,

always predicting the root node ensures 100% accuracy, yielding an uninformative solution.

We clearly prefer an answer of “dog” over “entity,” whenever they are both correct. We

encode this preference as a reward rv ≥ 0 for each node v ∈ V . One natural reward

is information gain, the decrease in uncertainty (entropy) from the prior distribution to

the posterior over the leaf classes. Assuming a uniform prior, it is easy to verify that a

prediction at node v decreases the entropy by

rv = log2 |Y| − log2
∑
y∈Y

[v ∈ π(y)]. (6.2)

The information gain is zero at the root node and maximized at a leaf node. Note that

we use information gain in experiments but our algorithm and analysis can accommodate

an arbitrary non-negative reward. Given the reward of each node, the reward R(f) for a

2“[P ]” is the Iverson bracket, i.e., 1 if P is true and 0 otherwise.
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classifier f is

R(f) = E
(
rf(X)[f(X) ∈ π(Y )]

)
, (6.3)

i.e., rv for a correct prediction at node v, and 0 for a wrong one(Figure 6.2c). In the case of

information gain, the reward of a classifier is the average amount of correct information it

gives. Our goal then is to maximize the reward given an accuracy guarantee 0 < 1− ε ≤ 1,

i.e., the following optimization problem ( OP1).

maximize
f

R(f)

subject to Φ(f) ≥ 1− ε.

(OP1)

Note that OP1 is always feasible because there exists a trivial solution that only predicts

the root node.

6.4 The DARTS Algorithm

In this section we present the Dual Accuracy Reward Trade-off Search (DARTS) algorithm

to solve OP1 and prove its optimality under practical conditions.

DARTS is a primal dual algorithm based on “the generalized Lagrange multiplier method” [143].

In our case, the dual variable controls the trade-off between reward and accuracy. We first

write the Lagrange function

L(f, λ) = R(f) + λ(Φ(f)− 1 + ε), (6.4)

with the dual variable λ ≥ 0. Given a λ, we obtain a classifier fλ that maximizes the

Lagrange function, a weighted sum of reward and accuracy controlled by λ. It can be

shown that the accuracy of the classifier Φ(fλ) is non-decreasing and the rewardR(fλ) non-

increasing with respect to λ [143]. Moreover, if a λ† ≥ 0 exists such that Φ(fλ†) = 1 − ε,

i.e., the classifier fλ† has an accuracy of exactly 1 − ε, then fλ† is optimal for OP1 [143].
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Accuracy
Reward

Figure 6.3: Bottom: The general properties of the reward and accuracy of fλ, a classifier

that maximizes the Lagrange function, with respect to the dual variable λ. An optimal so-

lution to OP1 is fλ† , where the accuracy is exactly the minimum guaranteed, provided λ†

exists. Top: The solid squares represent image examples; their color indicates the ground

truth. The numbers next to the nodes are the transformed rewards rv + λ in the Lagrange

function. As λ increases, the classifier fλ predicts more examples to the root node. Even-

tually every example goes to the root node unless some other node already has posterior

probability 1.

These properties, illustrated in Figure 6.3 (bottom), lead to a binary search algorithm to

find such a λ†. At each step the algorithm seeks a classifier that maximizes the Lagrange

function. It converges to an optimal solution provided such a λ† exists.

To apply this framework, however, we must address two challenges:(1) finding the clas-

sifier that maximizes the Lagrange function and (2) establishing conditions under which λ†

exists and thus the binary search converges to an optimal solution. The latter is particularly

non-trivial as counterexamples exist, e.g., the red curve in Figure 6.3 can be discontinu-

ous and as a result the dashed line can fail to meet it. We will give a concrete example in

Section 6.4.2.1.

6.4.1 Maximizing the Lagrange Function

DARTS maximizes the Lagrange function by using posterior probabilities. Using Eqn. 6.3,

Eqn. 6.1, and Eqn. 6.4 yields

L(f, λ) = E (rf(X) + λ)[f(X) ∈ π(Y )] + λ(ε− 1), (6.5)
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i.e., maximizing the Lagrange function is simply maximizing a transformed reward rv +

λ, ∀v ∈ V . This can be achieved by estimating posterior probabilities and predicting the

node with the maximum expected reward, breaking ties arbitrarily. Let fλ be such a classi-

fier given a λ, then

fλ(x) = argmax
v∈V

(rv + λ)p
Y |X (v|x), (6.6)

where p
Y |X (v|x) = Pr(v ∈ π(Y )|X = x). This can be easily proven by rewriting Eqn. 6.5

using iterated expectations, conditioning on X first.

Let’s examine fλ. When λ = 0, f0 simply maximizes the original reward. As λ tends

to infinity, the transformed reward rv + ∞ becomes equal on all nodes. The root node

has maximum probability and therefore the best expected reward. Thus every example is

predicted to the root node, unless some other node already has probability 1. Either way,

all predictions are accurate with λ =∞.

To obtain the posterior probabilities, we learn conventional one-vs-all classifiers on the

leaf nodes (e.g., SVMs), obtain probability estimates (e.g., via Platt scaling [121]), and sum

them to get internal node probabilities.

We summarize DARTS in Algorithm 3. It first obtains posterior probabilities for all

nodes and exits if f0, the classifier that maximizes the original reward only, is already at

least 1 − ε accurate (step 1–4). Otherwise it does a binary search to find a λ† > 0 such

that the classifier that maximizes the transformed ward rv + λ† is exactly 1 − ε accurate.

The upper bound of the binary search interval, i.e., λ̄, is set such that λ† ≤ λ̄ is guaranteed

(proof in Section 6.4.1.1). DARTS runs for no more than T iterations or until Φ(fλ) is

within a small number ε̃ from 1− ε.

To obtain the classifier fλ given a new λ (step 6), it suffices to have the posterior prob-

abilities on the leaf nodes. Thus we only need to learn 1-vs-all classifiers on the leaf nodes

once, i.e., DARTS essentially converts a “base” flat classifier with probability estimates to

a hierarchical one with the optimal accuracy-specificity trade-off.

Finally we remark that DARTS is not sensitive to non-exact maximization of the La-
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Algorithm 3 DARTS

1. Obtain p
Y |X (y|x), y ∈ Y .

2. p
Y |X (v|x)←

∑
y∈Y [v ∈ π(y)]pY |X (y|x), ∀v ∈ V .

3. f0 ← argmaxv∈V rvpY |X (v|x).
4. If Φ(f0) ≥ 1− ε, return f0.

5. λ̄← (rmax(1− ε)− rv̂)/ε, where rmax = maxv∈V rv.

6. Do binary search for a λ ∈ (0, λ̄] until 0 ≤ Φ(fλ) − 1 + ε ≤ ε̃ for a maximum of T
iterations. Return fλ.

grange function, e.g., inaccurate probability estimates, as the error will not be ampli-

fied [143]: if a solution fλ is within δ > 0 from the maximizing the Lagrange function, then

with the accuracy guarantee set to that of fλ, fλ is within δ from maximizing the reward.

6.4.1.1 Proof about λ̄ in DARTS

In this section we show that λ̄ as defined in Line 5 of DARTS can be an upper-bound of

the binary search interval in DARTS. To that end, we first prove a lemma stating that given

a 1 − ε, if the transformed root reward rv̂ + λ is large enough, then the classifier fλ that

maximizes the Lagrange function L(f, λ) is at least 1− ε accurate.

Let rmax = maxv∈V rv and we assume that rmax > 0 because otherwise all rewards are

zero and OP1 is not meaningful.

Lemma 6.4.1. For any λ ≥ 0, if (rv̂ + λ)/(rmax + λ) ≥ 1 − ε, where v̂ is the root node,

then Φ(fλ) ≥ 1− ε.
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Proof. Assume to the contrary that Φ(fλ) < 1− ε. Then

L(fλ, λ) =E (rfλ(X) + λ)[fλ(X) ∈ π(Y )] + λ(ε− 1)

≤E (rmax + λ)[fλ(X) ∈ π(Y )] + λ(ε− 1)

=(rmax + λ)Φ(fλ) + λ(ε− 1)

<(rmax + λ)(1− ε) + λ(ε− 1)

≤rv̂ + λ+ λ(ε− 1) = L(f̂ , λ),

where f̂ is the trivial solution that maps all examples to the root node. This contradicts that

fλ maximizes L(f, λ).

Now we are ready to prove the claim about λ̄.

Lemma 6.4.2. Let λ̄ = (rmax(1 − ε) − rv̂)/ε, where v̂ is the root node and rmax =

maxv∈V rv. If Φ(f0) < 1− ε, then λ̄ > 0 and Φ(fλ̄) ≥ 1− ε.

Proof. Note that λ̄ > 0 because otherwise Lemma 6.4.1 implies that Φ(f0) ≥ 1 − ε.

It is easy to verify that (rv̂ + λ̄)/(rmax + λ̄) ≥ 1 − ε. Lemma 6.4.1 then implies that

Φ(fλ̄) ≥ 1− ε.

6.4.2 Optimality of DARTS

Now we prove that under practical conditions, roughly when the posterior probabilities are

continuously distributed, DARTS converges to an optimal solution.

The key is to investigate when the dual variable λ† exists, i.e., when the monotonic red

curve in Figure 6.3 can meet the dashed line. This is only of concern when Φ(f0) < 1− ε,

i.e., the start of the red curve is below the dashed line, because otherwise we have satisfied

the accuracy guarantee already. With Φ(f0) < 1 − ε, λ† may not exist in two cases: (1)

when the end of the curve is below the dashed line, i.e., Φ(f∞) < 1 − ε, or (2) when the
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curve is discontinuous. Our main theoretical results state that under normal conditions,

these two cases cannot happen and then λ† must exist.

Case(1) cannot happen because we can show that λ̄ > 0 and Φ(fλ̄) ≥ 1− ε, where λ̄ is

defined in line 5 of DARTS (proof in Section 6.4.1.1).

Case(2) is harder as the curve can indeed be discontinuous (see Section 6.4.2.1 for a

concrete case). However, we show that case(2) cannot occur if the posterior probabilities

are continuously distributed except possibly at 0 or 1, a condition normally satisfied in

practice. For example, consider a hierarchy of two leaf nodes a and b. The posterior

probability pY |X(a|X), as a function ofX , is also a random variable. The condition implies

that the distribution of pY |X(a|X) does not concentrate on any single real number other than

0 and 1, i.e., practically, the posterior probability estimates are sufficiently diverse.

Formally, let Δ = {q ∈ R
|Y|−1 : q � 0, ‖q‖1 ≤ 1} be the set of possible posterior

probabilities over the |Y|− 1 leaf nodes. Note that for |Y| leaf nodes there are only |Y|− 1

degrees of freedom. Let Δ‡ = {q ∈ Δ : ‖q‖∞ = 1 ∨ q = 0} be the set of posterior

probabilities at the vertices of Δ, where one of the leaf nodes takes probability 1. Let

�p
Y |X : X → Δ be a Borel measurable function that maps an example x to its posterior

probabilities on leaf nodes. Let Q = �p
Y |X (X) be the posterior probabilities on leaf nodes

for the random variable X . As a function of X , Q is also a random variable. Our main

result is the following theorem.

Theorem 6.4.3. If Pr(Q ∈ Δ‡) = 1, orQ has a probability density function with respect to

the Lebesgue measure on R
|Y|−1 conditioned onQ /∈ Δ‡, then strong duality holds for OP1

and DARTS converges to an optimal solution of OP1.

Proof. We only need to show the continuity of Φ(fλ) with respect to λ ≥ 0.

We first have

Φ(fλ) =p
‡
EX,Y |Q∈Δ‡ [fλ(X) ∈ π(Y )]

+ (1− p‡)EX,Y |Q/∈Δ‡ [fλ(X) ∈ π(Y )],

(6.7)
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where p‡ = Pr(Q ∈ Δ‡).

Consider the first expectation in Eqn. 6.7. Let y‡ be the leaf node such that Qy‡ = 1,

i.e., Y = y‡ with probability 1. Then p
Y |X (v|X) = 1 for any v ∈ π(y‡) and p

Y |X (v|X) =

0 otherwise. Therefore fλ(X) = argmaxv∈V rvpY |X (v|X) = argmaxv∈π(y‡) rv. Thus

fλ(X) ∈ π(Y ) with probability 1, i.e., the first expectation is the constant 1.

Therefore we only need to show the continuity of the second expectation with respect

to λ and we do this in the rest of the proof. For simplicity of notation, we drop Q /∈ Δ‡

hereafter and simply write the second expectation in Eqn. 6.7 as EX,Y [fλ(X) ∈ π(Y )].

Define f̃λ : Δ→ V as

f̃λ(q) = argmaxv∈V (rv + λ)qv,

breaking ties the same way as in Equation 6.6. Then it follows that ∀x ∈ X , fλ(x) =

f̃λ(�pY |X (x)). We also define

Γv(λ) = {q ∈ Δ : (rv + λ)qv > (rv′ + λ)qv′ , ∀v′ �= v}.

to be the open polyhedron in Δ such that f̃λ(q) = v, ∀q ∈ Γv(λ), i.e., the set of posterior

probabilities that lead to a prediction at node v given λ. Also let

Γ̄(λ) ={q ∈ Δ : ∃v′, v′′, v′ �= v′′, ∀u �= v′, u �= v′′,

(rv′ + λ)qv′ = (rv′′ + λ)qv′′ ≥ (ru + λ)qu},

i.e., the set of probabilities that lie on a decision boundary. It is then a simple exercise to

check that Γ̄(λ) and Γv(λ), ∀v ∈ V partition Δ.
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Let pQ(q) be the (conditional) density function of Q given Q /∈ Δ‡, then

EX,Y [fλ(X) ∈ π(Y )]

= EXEY |X [fλ(X) ∈ π(Y )]

= EQEX|QEY |X,Q[fλ(X) ∈ π(Y )]

= EQEX|Q
∑
y∈Y

[fλ(X) ∈ π(y)]p
Y |X (y|X)

= EQEX|Q
∑
y∈Y

[f̃λ(Q) ∈ π(y)]Qy

= EQ

∑
y∈Y

[f̃λ(Q) ∈ π(y)]Qy

=

∫
Δ

∑
y∈Y

[f̃λ(q) ∈ π(y)]qy pQ(q) dq

=

(∫
Γ̄(λ)

+
∑
v∈V

∫
Γv(λ)

)∑
y∈Y

[f̃λ(q) ∈ π(y)]qy pQ(q) dq

=
∑
v∈V

∫
Γv(λ)

qvpQ(q) dq

=
∑
v∈V

∫
[q ∈ Γv(λ)]qvpQ(q) dq.

Note that the first two equalities are by iterated expectations. Also we can drop
∫
Γ̄(λ)

at the

second to last step because Γ̄(λ) has dimensions less than |Y| − 1 and therefore has zero

measure.

Let φv(λ, q) = [q ∈ Γv(λ)]qvpQ(q). To prove continuity, it suffices to show that for each

v,
∫
φv(λ, q) dq is continuous with respect to λ, i.e., for sequences {λn}, if limn→∞ λn =

λ, then limn→∞
∫
φv(λn, q) dq =

∫
φv(λ, q) dq. This is directly implied by Lebesgue’s

dominated convergence theorem if we can show (1) limn→∞ φv(λn, q) = φv(λ, q) almost

everywhere and (2) for all n and every q, |φv(λn, q)| ≤ ψ(q) for some integrable ψ.

Note that condition(2) is trivial as φv(λn, q) ≤ pQ(q) and thus we only need to check

condition(1). First note that condition(1) trivially holds for any q /∈ Δ. For q ∈ Δ , there
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are three possibilities: (i) q ∈ Γv(λ), (ii) q ∈ Γu(λ) for some u �= v, or (iii) q ∈ Γ̄(λ). We

only need to check (i) and (ii) because Γ̄(λ) has zero measure.

For (i), let γv(λ, q) = (rv +λ)qv−maxv′ �=v(rv′ +λ)qv′ . For any q ∈ Γv(λ), as n→∞,

γv(λn, q) → γv(λ, q) > 0. Therefore there exists n′ such that ∀n > n′, γv(λn, q) > 0 and

thus ∀n > n′, [q ∈ Γv(λn)] = 1. Therefore [q ∈ Γv(λn)]→ 1 = [q ∈ Γv(λ)].

For (ii), since q ∈ Γu(λ) for some u �= v, as n → ∞, γv(λn, q) → γv(λ, q) < 0 and

therefore [q ∈ Γv(λn)]→ 0 = [q ∈ Γv(λ)].

Note that our condition differs from the one given in [135] for strong duality in a

general class selective rejection framework, i.e., a continuous density function p
X|Y (x|y) =

Pr(X = x|Y = y) exists for each y ∈ Y . First, neither condition implies the other.

Second, theirs guarantees strong duality but not the optimality of a dual algorithm using

only posterior probabilities to maximize the Lagrange function, as the maximizer may not

be unique. We elaborate using a concrete example in Section 6.4.2.2.

In practice, one can estimate whether the condition holds by checking the dual variable

λ and the classifier fλ DARTS returns. If λ = 0 or the accuracy of fλ is close to 1− ε, then

the solution is near optimal. Even if the condition fails to hold, i.e., λ > 0 and the accuracy

of fλ is 1− ε′ �= 1− ε, then although fλ is sub-optimal for the 1− ε accuracy guarantee, it

is nonetheless optimal for a guarantee of 1− ε′.

In the next two sections (Section 6.4.2.1 and Section 6.4.2.2), we give an example of

discontinuous Φ(fλ), further shedding light on the condition given in Theorem 6.4.3, and

discuss in full detail the difference between our condition and the condition established in

[135]. These two sections are theoretically important but can be skipped without affecting

the understanding of the rest of the chapter.
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6.4.2.1 An example of discontinuous Φ(fλ)

We assume the simplest hierarchy: two leaf nodes a and b, plus a root node c. Let the

rewards ra = rb = 1 and rc = 0. Let p(a|x) = Pr(Y = a|X = x) be the posterior

probability of node a, which completely determines the posterior distribution.

Assuming that ties are broken alphabetically, using Equation 6.6, it is easy to verify the

following.

For 0 ≤ λ ≤ 1,

fλ(x) =

⎧⎪⎨
⎪⎩

a, p(a|x) ≥ 0.5

b, p(a|x) < 0.5
. (6.8)

For λ > 1,

fλ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a, p(a|x) ≥ λ
λ+1

c, 1
λ+1

< p(a|x) < λ
λ+1

b, p(a|x) ≤ 1
λ+1

. (6.9)

Suppose p(a|x) only takes two discrete values, p1 = 0.6 and p2 = 0.4. Let μ(p) be the

percentage of examples such that p(a|x) = p. Here let μ(p1) = μ(p2) = 0.5, that is, half of

examples have a posterior probability of 0.6, the other half 0.4. Then it is simple to confirm

that for 0 ≤ λ < 1.5, Φ(fλ) = 0.6, i.e., all examples are predicted to the leaf nodes. For

λ ≥ 1.5, Φ(fλ) = 1, i.e., all examples are predicted to the root node. Therefore Φ(fλ) is

discontinuous at λ = 1.5 with a gap between 0.6 and 1. Thus for 1 − ε ∈ (0.6, 1), there

exists no λ† such that Φ(fλ†) = 1− ε.

Note that in this example, the distribution of p(a|x) concentrates on 0.4 and 0.6, violat-

ing our optimality condition stated in Theorem 6.4.3.

6.4.2.2 Our condition versus the one in [135]

In this section we discuss the difference between our condition in Theorem 6.4.3 and the

one in [135], and show that their condition is insufficient to establish the optimality of

DARTS by giving an example where their condition is satisfied but DARTS cannot con-

116



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

p(x | a)
p(x | b)

Figure 6.4: Probability density functions p(x|a) and p(x|b) for the example in Sec-

tion 6.4.2.2.

verge to an optimal solution for certain 1− ε.

Consider the same hierarchy as in Section 6.4.2.1, i.e., a hierarchy of two leaf nodes a

and b, plus a root node c. Let X be a one dimensional feature, specifically a real number

on [0, 1]. Let p(x|a) be the density function of X given Y = a and we set

p(x|a) =

⎧⎪⎨
⎪⎩

8x, x ∈ [0, 1
4
)

8
3
(1− x), x ∈ [1

4
, 1]

.

Let p(x|b) be the density function of X given Y = b and we set

p(x|b) =

⎧⎪⎨
⎪⎩

8
3
x, x ∈ [0, 3

4
)

8(1− x), x ∈ [3
4
, 1]

.

Then p(x|a) and p(x|b) are both continuous and thus satisfy the condition in [135]. We

plot p(x|a) and p(x|b) in Figure 6.4.
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Figure 6.5: Posterior probability p(a|x) for the example in Section 6.4.2.2.

Further assume that Pr(Y = a) = Pr(Y = b) = 1
2
. By Bayes’ law,

p(a|x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3/4, x ∈ [0, 1/4]

1− x, x ∈ (1/4, 3/4)

1/4, x ∈ [3/4, 1]

.

We plot p(a|x) in Figure 6.5.

Now consider fλ. Eqn. 6.9 implies that if λ > 3, Φ(fλ) = 1, i.e., every example is

predicted to the root node. If λ = 3, all examples x in [0, 1/4] are predicted to node a with

3/4 of them being correct and all examples x in [3/4, 1] are predicted to node b with 3/4 of

them being correct. The rest, i.e., x ∈ (1/4, 3/4) is predicted to the root node c with all of

them being correct. Therefore with λ = 3, Φ(fλ) = 3/4× 1/2 + 1× 1/2 = 7/8.

Thus Φ(fλ) is discontinuous at λ = 3 and for 1 − ε ∈ (7/8, 1) there exists no λ† such

that Φ(fλ†) = 1− ε.

Now we can show that DARTS fails to converge to an optimal solution. Let’s set 1−ε =
15/16. The binary search in DARTS returns λ′ = 3 + δ where δ > 0 is a small number.

We then have Φ(fλ′) = 1 and R(fλ′) = 0 since all examples are predicted to the root node.
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Consider a classifier g:

g(x) =

⎧⎪⎨
⎪⎩

a, x ∈ [0, 1/16]

c, x ∈ (1/16, 1]
.

Then Φ(g) ≥ 15/16 and R(g) > 0. Thus g is a better solution to OP1 than fλ′ .

The condition in [135] guarantees strong duality, i.e., an optimal solution to OP1

maximizes the Lagrange function that has a dual variable that minimizes the dual function.

Thus under strong duality, if we can find all maximizers of the Lagrange function for any

given dual variable, we then have a dual algorithm guaranteed to converge to an optimal

solution. However, the maximizer is not necessarily unique and it can be impractical to find

all of them. In fact, there can be infinitely many of them. DARTS finds a maximizer of the

Lagrange function by only using posterior probabilities. This classifier is not necessarily

optimal without certain conditions, as the example shows.

This example also shows that their condition does not imply ours, because otherwise by

Theorem 6.4.3 DARTS would converge to an optimal solution under their condition. On

the other hand, our condition does not imply theirs either, because p(x|b) and p(x|a) do not

need to be continuous to satisfy our condition.

6.5 Experiments

6.5.1 Datasets.

We use three datasets ranging from 65 classes to 10K classes, ILSVRC65, ILSVRC1K, and

ImageNet10K, all subsets of ImageNet. ILSVRC1K is the same as ILSVRC2010 [46] in

Section 4.5 but named differently to make the number of categories clear. Table 6.1 lists the

detailed statistics. We follow the train/val/test split in [46] for ILSRVC1K. ImageNet10K

is the same as the one used in Section 3.3.1 except two differences: (1) we exclude im-

ages from the internal nodes because we require that all images have ground truth at leaf

nodes; (2) we include all ancestors of the leaf nodes, which gives 263 additional internal
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Dataset Tr Val Ts # Leaf # Int H

ILSVRC65 100 50 150 57 8 3

ILSVRC1K 1,261 50 150 1,000 676 17

ImageNet10K 428 214 213 7,404 3,043 19

Table 6.1: Dataset statistics: average number of images per class for training (Tr), vali-

dation (Val) and test (Ts), number of leaf and internal nodes, and height of the hierarchy

(H).

Entity

Bird Cat Dog Boat

Vehicle

Car

Animal

Figure 6.6: The tree structure of ILSVRC65.

nodes not used in Section 3.3.1. For ImageNet10K we use a 50-25-25 train/val/test split.

ILSVRC65 is a subset of ILSVRC1K consisting of the leaf nodes of 5 “basic” categories

(“dog,” ”cat,” etc. in Figure 6.6), with a simplified hierarchy and a down-sampled training

size. The smaller scale allows thorough exploration of parameter space and comparison

with baselines.

6.5.2 Implementation.

We represent all images using the LLC [16] features from densely sampled SIFT over a 16K

codebook (10K for ILSVRC65) and a 2 level spatial pyramid (1×1 and 3×3). We train one-

vs-all linear SVMs, convert the outputs of each SVM to probabilities via Platt scaling [121],

and then L1 normalize them to get multiclass posterior probability estimates [126].

In implementing DARTS, we obtain fλ using the training set but estimate Φ(fλ), the

expected accuracy of fλ, using the validation set (step 6). This reduces overfitting. To

ensure with high confidence that the true expected accuracy satisfies the guarantee, we

compute the .95 confidence interval of the estimated Φ(fλ) and stop the binary search
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when the lower bound is close enough to 1− ε.

We also implement TREE-DARTS, a variant of DARTS that obtains posterior proba-

bilities differently. It learns one-versus-all classifiers for each internal node to estimate the

conditional posterior probabilities of the child nodes. It obtains the posterior probability of

a node by multiplying all conditional posterior probabilities on its path from the root.

We compare DARTS with five baselines, LEAF-GT, TREE-GT, MAX-REW, MAX-

EXP, MAX-CONF.

LEAF-GT is a naive extension of binary classification with a reject option. It takes

the posterior probabilities on leaf nodes and predicts the most likely leaf node, if the

largest probability is not below a fixed global threshold. Otherwise it predicts the root

node. LEAF-GT becomes a flat classifier with threshold 0 and the trivial classifier that

only predicts the root node with any threshold above 1.

TREE-GT takes the same conditional posterior probabilities in TREE-DARTS but moves

an example from the root to a leaf, at each step following the branch with the highest con-

ditional posterior probability. It stays at an internal node if the highest probability is below

a fixed global threshold. This represents the decision tree model used in [31].

MAX-REW predicts the node with the best reward among those with probabilities

greater than or equal to a threshold. Intuitively, it predicts the most specific node among

the confident ones. MAX-EXP is similar to MAX-REW, except that it predicts the node

with the best expected reward, i.e., its posterior probability times its reward.

MAX-CONF learns a binary, one-vs-all classifier for each node, including all internal

nodes except the root node. Given a test image, it predicts the node with the most confident

classifier. Despite being intuitive, this baseline is fundamentally flawed. First, assuming

accurate confidences, the confidence of a node should never be more than that of its parent,

i.e., we can never be more confident that something is a dog than that it is an animal. Thus

in theory only the immediate children of the root node get predicted. Second, it is unclear

how to satisfy an arbitrary accuracy guarantee—given the classifiers, the accuracy is fixed.
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Figure 6.7: ILSVRC65 results. Left: Reward (normalized information gain, with 1 as

the maximum possible) versus accuracy. The numbers in brackets on the Y axis indicate

the equivalent of number of uncertain classes. The error bars are the standard deviation

from 5 training sets, each with 100 images per class randomly sampled from a set of about

1,500 per class. Right: The distribution of predictions of DARTS with .9 and .99 accuracy

guarantees.

For all threshold-based baselines, a higher threshold leads to higher accuracy and typ-

ically less reward in our experiments. Thus, to satisfy a particular accuracy guarantee, we

find the best threshold by binary search.

We test all approaches on ILVRC65 but exclude TREE-DARTS, TREE-GT, MAX-

CONF on ILSVRC1K and ImageNet10K, because both TREE-DARTS and TREE-GT re-

quire significant extension with a non-tree DAG—the child nodes overlap and there can

be multiple paths from the root, possibly creating inconsistent probabilities—and because

MAX-CONF is fundamentally unusable. We use information gain as reward and normalize

it by the maximum possible (i.e., that of leaf nodes) such that the information gain of a flat

classifier equals its accuracy.

6.5.3 Results on ILSVRC65

Figure 6.7 presents the reward-vs-accuracy curves. We set the accuracy guarantee 1− ε to

{0, .1, .2, . . . , .8, .85, .9, .95, .99} and plot the reward and the actual accuracy achieved on

the test set. Note that all methods are able to satisfy an arbitrary accuracy guarantee, except
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MAX-CONF that has a fixed accuracy.

First observe that the LEAF-GT curve starts with an accuracy and information gain

both at .391, where the global threshold is too low to reject any example, making LEAF-

GT equivalent to a flat classifier. The normalized information gain here equals the flat

accuracy. In contrast, the DARTS curve starts with an accuracy of .583, achieved by max-

imizing the reward with a low, inactive accuracy guarantee. This is much higher than the

flat accuracy .391 because the rewards on internal nodes already attract some uncertain

examples that would otherwise be predicted to leaf nodes. Moreover, DARTS gives more

correct information than the flat classifier (.412 versus .391); at this point our classifier is

better than a flat classifier in terms of both accuracy and information gain. As we increase

the accuracy guarantee, specificity is traded off for better accuracy and the information gain

drops.

To interpret the information gain, we provide the equivalent number of uncertain leaf

classes in Figure 6.7 (left). For example, at .9 accuracy, on average DARTS gives the same

amount of correct information as a classifier that always correctly predicts an internal node

with 14.57 leaf nodes.

Figure 6.7 (left) shows that both versions of DARTS significantly beat the baselines,

validating our analysis on the optimality of DARTS. Interestingly both versions perform

equally well, suggesting that DARTS is not sensitive to the particular means of estimating

posterior probabilities.

Figure 6.7 (right) plots the distribution of predictions over different semantic levels for

DARTS. As the accuracy guarantee increases, the distribution shifts toward the root node.

At .9 accuracy, our classifier predicts leaf nodes 27% of the time and one of the 5 basic

classes 49% of the time. Given that the flat accuracy is only .391, this is a useful trade-off

with a high accuracy and a good amount of information.
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6.5.4 Results on ILSVRC1K and ImageNet10K

Figure 6.8a and Figure 6.8b present the reward-vs-accuracy curves for ILSVRC1K and

ImageNet10K. On both datasets, DARTS achieves large improvements over the baselines.

Also, at the start of the DARTS curve on ILSVRC1K (i.e., with an inactive accuracy guar-

antee), DARTS beats the flat classifier (the start of the LEAF-GT curve) on both informa-

tion gain (.423 versus .415) and accuracy (.705 versus .415).

Figure 6.8c and Figure 6.8d show how the distribution of predictions changes with accu-

racy for DARTS. As accuracy increases, more examples are predicted to non-root internal

nodes instead of leaf nodes. Eventually almost all examples move to the root node. On

ILSVRC1K at .9 accuracy, 28% of the examples are predicted to leaf nodes, 55% to non-

root internal nodes, and only 17% to the root node (i.e., the classifier declares “entity”). On

ImageNet10K, the corresponding numbers are 19%, 64%, and 17%. Given the difficulty of

problem, this is encouraging.

Figure 6.10 visually compares the confusion matrices of a flat classifier and our clas-

sifier, showing that our classifier significantly reduces the confusion among leaf nodes.

Figure 6.9 shows examples of “hard” images for which the flat classifier makes mistakes

whereas our classifier remains accurate.

We remark that in all of our experiments, DARTS either returns λ = 0 or is able to get

sufficiently close to the accuracy guarantee in the binary search, as shown by all trade-off

curves. This validates our analysis that, under practical conditions, DARTS converges to

an optimal solution.

6.5.5 Zero-shot Recognition.

Another advantage of our classifier over a flat one is the ability of zero-shot recognition:

classifying images from an unseen class whose name is also unknown. The flat classifier

completely fails with 0 accuracy and 0 information gain. Our classifier, however, can pre-

dict internal nodes to “hedge its bets.” Figure 6.12 shows the performance of our classifier

125



Flat 
Ours canine 

Egyp n cat 
carnivore 

swimming trunks 
mammal 

jelly fungus 
living thing 

man s 
animal 

orangutan 
mammal 

cougar 
mammal mammal 

German shepherd hyena 

red fox 

Flat 
Ours sailboat 

catamaran schooner 
sailing vessel 

lifeboat 
watercra  cra  

airship RV 
vehicle 

iron 
ar fact 

electric guitar 
ar fact 

submarine 
watercra  

trimaran 

Flat 
Ours car 

conver ble 
car 

trolleybus 
transport 

running shoe 
ar fact 

minivan 
car 

tank 
vehicle 

airliner 
vehicle motor vehicle 

pickup truck limousine 

taxi 

Flat 
Ours 

Golden Retriever 
dog 

Chihuahua 
dog 

Husky 
domes c animal canine 

English Se er hyena 
canine 

polar bear 
carnivore 

timber wolf 
mammal 

Siamese cat 
domes c animal 

corgi 

Flat 
Ours boat 

speedboat 
boat 

lifeboat 
transport 

roller coaster 
en y 

ping-pong table 
ar fact 

snowmobile  
vehicle 

aircra  carrier 
vehicle vehicle 

bobsled gondola 

canoe 

Flat 
Ours citrus fruit 

orange grapefruit 
citrus fruit 

re ex camera 
edible fruit plant part 

teapot  quince 
plant part 

blueberry 
plant part 

trombone 
en y 

g 
citrus fruit 

lemon 

Flat 
Ours feline 

snow leopard 
feline 

o er 
living thing 

conch 
en y 

wheelbarrow 
carnivore 

orangutan 
mammal 

meerkat 
mammal carnivore 

polar bear lynx 

lion 

Flat 
Ours 

tobacco shop 
shop 

bookshop 
shop 

greenhouse 
structure place of business 

candy store butcher shop 
place of business 

garage 
structure 

thermometer 
ar fact 

yurt 
structure 

bakery 

Figure 6.9: “Hard” test images in ILSVRC1K and the predictions made by a flat classifier

and our classifier with a .8 accuracy guarantee. The flat classifier makes mistakes whereas

ours stays accurate by “hedging its bets.”
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seen classes on ILSVRC65.
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on 5 randomly chosen classes of ILSVRC65, taken out of the training set and the hierarchy.

Our classifier is able to predict the correct internal nodes a significant amount of the time

and with non-trivial information gain. Our final experiment is recognizing “unusual ob-

jects,” objects that defy categorization at the subordinate levels. Figure 6.11 compares the

predictions of a flat classifier versus our classifier, both trained on ILSVRC1K. We observe

that the flat classifier is confused whereas our classifier stays sensible.

6.6 Summary

We have introduced the problem of optimizing accuracy-specificity trade-offs in large scale

recognition. We have also presented the DARTS algorithm and its theoretical analysis, and

demonstrated its effectiveness on large scale datasets with as many as 10K classes. Our

algorithm makes it possible to guarantee an arbitrary accuracy while giving informative

answers. On 10K classes, it can guarantee a 90% accuracy and at the same time give non-

trivial answers 83% of the time. This is in deep contrast with the accuracy of only 24.5%

for a flat classifier restricted to leaf nodes. 3 This result is significant because it shows that

at large scale, even a low flat accuracy can still be made useful through our algorithm. This

is an encouraging step toward a practical large scale recognition system.

3The flat accuracy in this chapter is much higher than that in Chapter 3 (around 8% for

ImageNet7K, or the leaf nodes of ImageNet10K) due to improvements in feature represen-

tations.
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Chapter 7

Conclusion and Future Work

7.1 Contributions

This dissertation has contributed to large scale visual recognition in two major aspects. One

is the collection of large scale data. In particular, we have constructed ImageNet through

crowdsourcing (Chapter 2) and used it to benchmark previous state of the art recognition

algorithms (Chapter 3). The other is large scale learning. Specifically, we have studied

three problems in large scale learning: efficient classification (Chapter 4), hierarchy-aware

retrieval (chapter 5), and multi-level classification with accuracy guarantees (Chapter 6).

7.1.1 Constructing ImageNet

Data is the foundation of machine learning. We have constructed ImageNet, the first large

scale labeled dataset with 22 thousand categories and 14 million human-verified images

(Chapter 2). The images are mapped to the semantic structure of WordNet, a standard

linguistic database. The large scale of ImageNet makes it well suited as a training and

benchmarking resource for large scale recognition. Its rich semantic structure opens up

opportunities for us to advance vision related research by understanding and exploiting the

semantic relations between the categories.
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7.1.2 Benchmarking with ImageNet

The construction of ImageNet enables us to evaluate previous state of the art algorithms at

a scale never tested before. Through a study of image classification on 10,184 categories,

we find that (1) computational issues become crucial in algorithm design; (2) the accuracy

of the previous state of the art on 10,184 classes is quite low, only 6.4% (3) conventional

wisdom from a couple of hundred image categories regarding the relative performance of

different classifiers does not necessarily hold when the number of categories increases; (4)

there is a surprisingly strong relationship between the structure of WordNet and the diffi-

culty of visual categorization. These findings point to promising future research directions.

7.1.3 Efficient Large Scale Classification

The thrust of our contribution on large scale learning is exploiting the relations between

categories. There are two ways that categories are related with each other—visually and

semantically. In Chapter 3 we have shown that these these two types of relations are highly

correlated and both of them give rise to a hierarchical structure. Exploiting the visual

relations, we have improved the state of the art learning algorithm for efficient large scale

classification (Chapter 4). Experiments on 10,184 classes and 9 million images demonstrate

that our algorithm achieves better accuracy and test-time efficiency yet is 31 times faster in

learning compared to the previous state of the art by Bengio et al [26].

7.1.4 Hierarchy-Aware Large Scale Retrieval

In addition to exploiting visual relations among categories, we also take advantage of the

semantic relations. In Chapter 5, we studied large scale image retrieval in the context

of a large number of classes, a problem closely related to classification. The core novel

contribution is an approach that can exploit prior knowledge of a semantic hierarchy. We

show significant improvements over OASIS [105], the previous state of the art for similarity
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learning. An additional contribution is a novel hashing scheme (for bilinear similarity on

vectors of probabilities, optionally taking into account hierarchy) that is able to reduce the

computational cost of retrieval by 1,000 times while achieving close to 90% of the accuracy

of brute force.

7.1.5 Multi-level Classification with Accuracy Guarantees

Further exploiting the semantic relations, we have proposed in Chapter 6 an “infallible”

classifier that tries to be as specific as possible yet almost never makes mistakes, based on

the observation that a classifier can choose the level of specificity to guarantee an arbitrary

accuracy. This leads to the novel problem of optimizing the accuracy-specificity trade-

off on a semantic hierarchy in large scale recognition. We have proposed an algorithm

that is provably optimal under practical conditions. Experiments on 10K categories have

demonstrated that our approach can produce a classifier that has 90% accuracy and still

give informative answers 83% of the time. This holds promise toward a real, practical

large scale recognition system.

7.2 Future Work

Large scale visual recognition remains a challenging and active research area. The fol-

lowing directions appear particularly promising based on the findings presented in this

dissertation.

7.2.1 Image Representation

Powerful and efficient image representations are necessary for recognizing tens of thou-

sands of categories. This issue remains to be explored, as most current representations

do not perform as well for fine-grained classes as for “sparser” classes (Chapter 3). The

key question is what the next step is. One approach would be learning oriented, that is,
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seeking better generic representations as well as learning algorithms such that the discrim-

inative features of fine-grained classes can be captured with a unified mechanism. Another

approach would be knowledge oriented. The idea is that a lot of domain-specific knowl-

edge is necessary to tell the fine-grained classes apart. Thus we should encode more prior

knowledge into the representation. Both approaches have merits and the ultimate solution

could well be a combination of the two.

7.2.2 Crowdsourcing

Deeper annotations such as bounding boxes, object contours, and part correspondences

help recognition algorithms tremendously by providing strong supervision in learning.

However, to crowd-source these tasks on sites such as Amazon Mechanical Turk, where

workers are by and large financially motivated, the cost can be prohibitively high — these

tasks are much more time-consuming than the verification tasks in constructing ImageNet.

For this reason there has been no dataset of fully parsed images at a scale comparable to Im-

ageNet. A promising direction is to explore low or zero cost approaches to crowdsourcing,

in particular, online games [144]. The research questions would include how to design the

games and how to control quality. The goal is to have complex tasks done during enjoyable

game play, with high quality, and of a large scale. In addition, a closely related question

is how to develop active learning techniques [145] to optimize the selection of images and

the granularity of annotation.

7.2.3 Systems

Visual data in general tend to be high dimensional and dense. This, coupled with a large

number of images and categories, easily generates an overwhelming amount of data. In

this case both data and computation must be distributed, which poses challenges on both

machine learning and systems. On the machine learning front, one challenge is how to

develop distributed visual learning algorithms that can scale to hundreds, even thousands
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of computing nodes in the cloud, especially for algorithms that are not already “embarrass-

ingly parallel.” On the systems front, the challenge is how to develop new programming

models that facilitate visual learning on a highly distributed infrastructure.

7.2.4 Large Scale Image Parsing

Current work in large scale visual recognition mostly focuses on classification tasks, with-

out specifying the location, pose or spatial support of the object. This brings forward the

even more challenging problem of full image parsing with a large number of categories,

that is, labeling every single pixel in an image and forming a hierarchical representation

that relates the pixels, parts, objects, and scenes with each other. This calls for approaches

that can handle tens of thousands of categories in terms of not only their semantic relations

(“is a,” “part of,” “instance of,” etc.) but also their spatial interactions (“next to,” “above,”

“behind,” etc.). Research in this direction will eventually lead to a system that can answer

any queries about any image, with an accuracy and specificity unmatched even by a very

knowledgeable human.
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