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Abstract

Intuitively, we understand that physical items are distinct — we are able to pick up

and manipulate them. Yet, we often treat similar items as if they are indistinguishable

from one another. Undue reliance on the assumption that seemingly identical items

can be treated as if they are identical can lead to unintended, negative consequences.

Conversely, the ability to distinguish between seemingly identical objects often enables

new applications. This thesis examines three artifacts that carry with them false

assumptions about their indistinguishability: blank sheets of paper, ‘anonymous’

bubble forms, and loudspeakers.

Blank sheets of paper, e.g. those in a ream of copy paper, are often treated as if

they are identical to one another. We develop a new method to identify sheets of paper

by measuring their inherently unique surface texture using commodity equipment.

This permits a number of applications, e.g. counterfeit currency detection, and has

important implications for paper-based elections, which are discussed in detail.

Next, we turn to optical-scan bubble-forms which often rely on the assumption

that they do not reveal the respondent’s identity. We demonstrate that individuals

tend to mark bubbles in distinctive ways, unintentionally conveying their identity.

This has important implications for anonymous surveys and the publication of com-

pleted ballots after an election. We describe a number of mitigation techniques and

procedural changes to limit the risk of accidentally revealing identifying information.

The final artifact, loudspeakers, are increasingly ubiquitous devices designed to

accurately reproduce an audio signal. It is commonly assumed that multiple instances

of ‘identical’ loudspeakers will generate the same output given identical inputs. This

assumption is false. We demonstrate that individual loudspeakers, even those of the

same make and model, induce unique distortions on the generated sound, identifying

the individual loudspeaker. We develop methods to identify loudspeakers, enabling a

new method of device authentication.
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By examining the common underlying assumptions of each artifact, we develop

a common methodology used in identifying distinguishing features. This general

framework is successfully applied to each artifact, suggesting that other seemingly

identical objects may become distinguishable in the future.
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Chapter 1

Introduction

We all make simplifying assumptions. Such assumptions are often necessary to func-

tion e↵ectively in an increasingly complex world. However, making a simplifying

assumption can lead to an important, unintended, negative side e↵ect: the loss of

information. If we fail to periodically re-examine these assumptions, e.g. when envi-

ronmental conditions change, we risk undue reliance on abstractions and applications

that are based on ultimately false assumptions. Within the past decade, the land-

scape of what is measurable has fundamentally changed. The dramatic increase in

accuracy and plummeting cost of sensors demands that some common assumptions

be re-examined.

The goal of this thesis is to challenge one common assumption — that seemingly

identical items are identical. In many instances, this particular assumption minimizes

daily mental friction. For example, if you printed out this thesis, you likely didn’t

give a moment’s thought to the pages upon which it is printed. You probably treated

each page in the ream of paper as if it is indistinguishable from all the others. This

particular assumption of indistinguishability is common. Yet, we intuitively under-

stand that each blank page is distinct, and therefore unique. In most circumstances,
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this assumption does not have important implications. In others, relying on this

ultimately false assumption can lead to undesirable outcomes.

Most of us do not stop and ask: What is it makes each sheet of paper unique?

How hard is it to tell them apart? In what other situations might the ability to dis-

tinguish between pages be relevant? More generally, do other items carry with them

similar assumptions of indistinguishability? If so, what properties must an object

have to make it unique? How can we measurethese properties? If we can identify

each individual object, what are the implications in the ‘real’ world? Questions like

these are important to ask, especially with the rapidly increasing availability of cheap

sensors that allow highly accurate measurement of physical properties. This thesis

is an attempt to provide answers to some of these questions — and not just about

blank sheets of paper.

1.1 Historical Context

The identification of items based on inherent physical attributes has a long and storied

history. Ballistic fingerprinting is one of the first examples of a item being uniquely

identified based on inherent physical attributes. Beginning in 1835, when a suspect

confessed to a crime after markings on a bullet retrieved from the victim matched

those from his gun, the science of identifying the firearm responsible for firing a bullet

has advanced rapidly [48]. In 1925, Calvin Goddard brought the science of ballistics

fingerprinting into the mainstream through a Popular Science article describing a

method of re-identifying bullets using his newly invented comparison microscope [42].

We still use this approach today, as illustrated in Figure 1.1 which depicts markings

on two bullets, pictured side-by-side, which were fired through the same gun. That

individual bullets exhibit markings linking them to a particular firearm is common
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knowledge today. But it was not always this way. The widespread availability of the

microscope changed the landscape of what was measurable.

Figure 1.1: Comparison between two bullets fired from the same gun [75]. This
comparison technique was popularized by Calvin Goddard using his comparison mi-
croscope.

Typewriters are another example of a class of objects that at one time were pre-

sumed to be identical to one another. Typewriters were one of the first widely avail-

able mechanical devices for which a fingerprint could be derived [47]. Throughout the

early 1900s, there were fewer than a dozen domestic manufacturers of typewriters.

This allowed seasoned examiners to determine the make and model based only on

visually inspecting characteristic variations in a sample document. As the quality

and number of manufacturers grew, the di�culty in visually determining the source

typewriter paved the way for more analytical identification methods. These methods

included measuring variations in alignment, ink density due to defects in the ribbon,

or broken type faces. The ability to ‘fingerprint’ the source of a particular document

allowed for new applications, particularly the ability to link a document to the re-

sponsible typewriter in court cases. The most public example involved Alger Hiss,

who was convicted of perjury based, in part, on evidence tying him to a particular

typewriter [91].

Examples like ballistic fingerprinting and typewriter identification are numerous.

Table 1.1 contains some items with use-cases that implicitly rely on assumptions about
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– Bullets
– Typewriters
– Desktop Scanners & Cameras (Same Make and Model)
– RFID Tags
– Home Appliances (Same Make and Model)
– Toilets
– Blank Sheets of Paper
– ‘Anonymous’ Bubble-Forms
– Loudspeakers

Table 1.1: List of items once thought to be indistinguishable from one another.

their indistinguishability. Items within each category are often used interchangeably

with other seemingly identical items. For example, it was believed that images taken

with digital cameras or scanned via desktop scanners did not reveal the specific device

that generated the image. It turns out that variations in the light sensors allow

the resulting images to be traced back to their source devices [56]. RFID Tags are

often used in situations where they are meant to convey unique identifiers, e.g. to

identify a passport or credit card. While RFID communications can be encrypted,

preventing the secret identifier from being revealed to non-key holders, the physical

inconsistencies between ‘identical’ RFID tags allow each physical tag to be identified

based on easily measurable variations [107]. This results in a rather e↵ective method

of tracking people, e.g. shoppers in a shopping mall, based on the RFID tags in

their wallet, clothing or medical device. Conversely, it prevents a tag from being

truly copyable — as the features that make each RFID tag identifiable, also prevent

it from being copied perfectly. Home appliances, such as televisions, computers,

refrigerators and light bulbs all induce characteristic noise onto a home’s power lines.

This allows each device to be identified by its particular noise pattern using a cheap

sensor attached to any power outlet. Interestingly, a similar property holds true for

toilets. [37, 45].

The availability of the microscope and other measurement techniques allowed for

the development of ballistic fingerprinting and increased the sophistication with which
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typewriters could be identified. As evidenced by the examples in Table 1.1, I argue

that the increasing availability of highly accurate, cheap sensors provides new oppor-

tunities to re-evaluate widely held assumptions about whether a particular item is

indistinguishable from seemingly identical items. Even for items which were previ-

ously identifiable, the widespread availability of cheap sensors significantly reduces

the barrier, allowing everyday sensors to identify these items. This fundamental shift

facilitates new applications. This thesis provides a number of examples where the

assumption that seemingly identical objects are identical turns out to be false and

discusses the implications (both positive and negative) and describes a number of

new applications.

1.2 Organization

This thesis provides several new examples of items that were once thought to be indis-

tinguishable, but are actually identifiable with high accuracy. We begin in Chapter 2

with the introduction of a General Framework that is helpful in examining seemingly

identical objects. In the following chapters, the General Framework provides a rough

outline for examining di↵erent items whose physical attributes are measurable using

a cheap sensor.

Chapter 3 shows how blank sheets of copy paper can be re-identified with 100%

accuracy, even when treated harshly. Each sheet of paper has an inherently unique

surface texture. We develop methods to measure this surface texture using only a

commodity desktop scanner, allowing each sheet of paper to be uniquely identified.

This presents a number of applications and implications, e.g. providing a cheap and

resilient method to identify counterfeit currency and documents, or allowing any doc-

ument to be traced through time and space without modification. For elections, this

result has a significant, negative implication; the ability to re-identify an individual’s
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ballot. It also provides new opportunities to identify fraud — enabling a method to

detect ballot box stu�ng. The implications of paper fingerprinting for elections are

discussed in Chapter 4.

Even without measuring the surface texture of a sheet of paper, it may still be

possible to identify a respondent’s ballot. Bubble-forms, which are commonly used

on anonymous surveys, paper ballots, and standardized tests, often come with the

assumption that they cannot reveal the respondent’s identity, beyond what is con-

veyed by the particular answer selections. Chapter 5 re-evaluates this assumption

and shows that individuals tend to mark bubbles in distinctive ways, unintentionally

conveying their identity through the simple act of marking a bubble. This surprising

result can have important implications, undermining the privacy guarantees of certain

applications, while simultaneously allowing for new applications. The news is not all

bad, Section 5.4 provides suggestions on how to mitigate the privacy risk.

Loudspeakers are an increasingly ubiquitous device and are currently built into

a number of everyday devices, e.g. cell phones, televisions, cars, and home theatre

systems. Many of us treat loudspeakers as simple devices that generate music, ring-

tones, or soundtracks, implicitly assuming that loudspeakers of the same make and

model will generate the same output when provided with the same input signal (e.g.

all produce the same output when playing the same Lady Gaga song). In truth,

each loudspeaker distorts the input signal in a characteristic and measurable way,

even if imperceptible to the ear. This distortion can be captured by a computer’s

microphone and some signal processing. Chapter 6 studies the ability to measure

this distortion to identify a particular loudspeaker. Interestingly, this characteristic

can have positive implications for device authentication and could eventually lead to

increased fidelity of audio generated by low-quality loudspeakers.

In the Chapter 7, I discuss where I believe this area of research is heading and the

broad implications of these, and similar techniques, for society. Everything is uniquely
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identifiable — and the ever increasing availability of sensors will result in an increasing

number of uniquely identifiable items which have important policy implications going

forward.

This thesis contains some previously published results. In particular, many of

the methods described in Chapter 3 were published in 2009 at the IEEE Sympo-

sium on Security and Privacy [26]. Chapter 4, which discusses the implications of

paper fingerprinting for elections, contains certain results which were published in

the Proceedings of EVT/WOTE in 2009 [22]. Finally, the majority of Chapter 5 was

published at USENIX Security in 2011 [23].
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Chapter 2

General Framework and

Background

Distinguishing between objects based on inherent physical attributes is an increas-

ingly common research area. Previous research repeatedly follows an implicit frame-

work when distinguishing between seemingly identical artifacts. Yet, it has not been

formally codified. This commonly used framework is increasingly relevant due to

a combination of factors including the increasing accuracy, plummeting cost, and

widespread availability of a variety of sensors, along with recent advancements in

machine learning and the exponentially decreasing cost of storage and computational

power. These factors make the identification of seemingly identical items more viable

now than ever before, and increasingly so in the future. This chapter introduces the

General Framework which is helpful when evaluating seemingly identical items and

serves as the rough outline for the structures of Chapters 3, 5 and 6.

2.1 General Framework

Each chapter begins with an item that is seemingly identical to other items. In each

case, we identify a particular physical attribute and measure it using an inexpensive
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Figure 2.1: General Framework

sensor. Next, we extract a feature vector from the measured attribute which captures

the unique properties of each object. We use machine learning techniques to train

a classifier that is able to identify patterns between feature vectors and distinguish

items from other seemingly identical ones. In the final stage, we evaluate the method

of distinguishing between seemingly identical items. In hindsight, the General Frame-

work informed the process of selecting, measuring, and evaluating each of the artifacts

discussed in the subsequent chapters. See Figure 2.1.

2.1.1 Begin with ‘Identical‘ Items

When similar objects are treated as if they are identical, there is likely a use-case

that implicitly relies on this property, i.e. similar =) identical. In each chapter,

we begin with an artifact that carries with it some assumptions about its indistin-

guishability. We challenge these assumptions and measure a physical property, ideally

without modifying the item in any way. The major challenge is finding a feature that

is easily and consistently measurable using a cheap sensor.

2.1.2 Measure with Sensor

At the molecular level, every item is composed of a unique arrangement of molecules.

These arrangements have implications at larger scales of measurement which are easier

to measure with cheap sensors. The trade o↵ is at what scale are we able to reliably

and cheaply measure an e↵ect of these distinct molecular arrangements. A good

starting point is the macroscopic properties that distinguish similar kinds of physical
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objects. These properties are often the same ones used determine the quality of an

item. For example, what di↵erentiates card stock and copy paper — the thickness

and texture. What di↵erentiates an expensive loudspeaker and the speaker in your

phone — the range and intensity of frequencies that can be accurately reproduced.

It is often the case that di↵erences in these physical features are likely be present,

but attenuated, in seemingly identical objects, e.g. multiple sheets of copy paper or

multiple instances of a particular model of loudspeaker. Once a feature is identified, it

becomes an iterative process to find a sensor and method to generate feature vectors

that extracts the physical attribute and identifies an item consistently.

2.1.3 Extract Feature Vector

Once a physical attribute can be measured, it is often helpful to distill the raw

measurements down to a more concise representation. The distilled version of these

attributes is called a feature vector. Feature vectors are designed to robustly capture

the most unique and distinguishing characteristics of an object. Taking multiple

measurements of the same object and generating feature vectors which are labeled

with the object they came from can be advantageous at abstracting the most salient

components of the feature vector. Once the feature vectors are generated and labeled,

it is common to use machine learning algorithms to determine which features are most

distinguishing for a particular item.

2.1.4 Apply Machine Learning

Machine learning is a branch of Artificial Intelligence (AI). In practice, machine learn-

ing focuses not on artificial thought, but on di↵erent ways to classify objects based

on patterns extracted from a set of input examples. In traditional machine learning

research, a set of examples, called a training set, is used by a machine learning algo-

rithm to infer indicative patterns. Once indicative patterns are learned, a second set
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of examples, called the test set, is used to measure the ability with which the ma-

chine learning algorithm captured the most distinguishing features. See Section 2.2

for high-level background on the machine learning algorithms used in this thesis.

2.1.5 Evaluate Classifier Accuracy

After a classifier is trained, we evaluate the ability of the classifier to distinguish

between items in a variety of circumstances. The goal is to be able to distinguish

items with perfect accuracy, at least under ideal conditions, and reasonably well when

items are treated with less care. Once an item is distinguishable from seemingly

identical items, the most interesting part begins; evaluating the implications. The

ability to identify a particular physical item may also lead to applications previously

thought of as unachievable.

2.2 Common Background

This thesis utilizes a variety of methods from Computer Graphics, Machine Learning,

Signal Analysis and Physics. Combining techniques from such diverse fields means

that many readers will not be familiar with the all of the di↵erent methods used.

I describe at a high level, some common concepts that will be useful in subsequent

chapters. This overview is meant only to give the intuition into how and why these

techniques are useful, not to serve as a definitive reference.

Machine learning algorithms come in two main flavors, supervised and unsuper-

vised. Supervised learning algorithms use a set of examples, each of which are labeled

with a particular class. The machine learning algorithm determines which features

of each example, and related variations and correlations of features, are most indica-

tive of a particular class. The intuition is that the set of examples in the training

set will allow the algorithm to derive a rule that can make successful predictions
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when provided with similar inputs in the future. These future inputs are likely to be

slightly di↵erent, and the ability of the algorithm to recognize complex patterns is an

important factor in determining the ultimate success of a machine learning algorithm.

In contrast to supervised learning algorithms, unsupervised learning algorithms

are given a set of examples which are not labeled with any particular class. Depending

on the application, unsupervised machine learning algorithms may be explicitly told

the number of classes to identify, or may algorithmically determine how to segregate

the examples into sets of similar items. The algorithm systematically sifts through the

examples, placing each example into a set with other similar examples. The number

and characteristics of each set are often determined by maximal separation between

the feature vectors of each example. When complete, each set contains examples

which are similar to one another, and maximally dissimilar from all other examples.

The intuition is that once classified, future examples which are most similar to items

in a particular set likely came from the same underlying class. Unsupervised learning

algorithms are often used in situations where it is impractical to generate a set of

examples for which the true labels are known.

In the next three chapters, both kinds of learning algorithms are utilized. We

make heavy use of a machine learning workbench, Weka, which provides a large num-

ber of pre-built implementations of common supervised and unsupervised machine

learning algorithms [46]. We use Support Vector Machines and in particular Sequen-

tial Minimal Optimization (SMO), which is an e�cient method of training SVMs. We

also make use of Principal Component Analysis which is a way to reduce the size of

feature vectors. SVM and PCA are examples of supervised and unsupervised learning

algorithms, respectively, which we provide an overview of in the next section.
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Figure 2.2: Support Vector Machines construct a hyperplane in a two-dimensional
space. The hyperplane w ⇤ x� b = 0 maximizes the separation between classes.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) are a type of supervised machine learning algorithm

commonly used for classification tasks. SVMs take a set of examples with associated

labels as input (the training set). Each example consists of an input vector x and

a label y. Traditionally the set of training data consists of pairs (x
i

, y
i

) where x
i

is

a vector in a p-dimensional subspace, e.g. it consists of p numbers, and y
i

is either

1 or -1. SVMs are binary classifiers, only able to distinguish between two classes.

Multi-class classifiers are built by combining a number of binary classifiers.

At a high level, SVMs divide the input feature vector space by creating one or more

hyperplanes. These (p-1)-dimensional hyperplanes separate training examples based

on which side of the hyperplane each example falls on. The goal is to calculate a set of

hyperplanes such that all points of a particular class fall on one side of the hyperplane.

The exact parameters of each hyperplane are chosen such that there is maximum

distance between each of the examples in the training set and the hyperplane surface.

Figure 2.2 provides a conceptual visualization of a 2-dimensional example.
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SVMs can be trained using a number of di↵erent training algorithms. The task

of training an SVM can always be accomplished by solving a large linear quadratic

programming optimization problem — in practice this can be challenging to solve.

Sequential Minimal Optimization (SMO) allows SVMs to be trained in a much more

e�cient manner [82].

2.2.2 Weka

Weka, the Waikato Environment for Knowledge Analysis, is a software workbench

designed to aid in data mining and machine learning experiments [46]. Weka contains

a wide variety of pre-built machine learning and data mining algorithms including

implementations of SVM and SMO. We made heavy use of these, and other features

of Weka in our analysis.

2.2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique in a number of fields

including computer graphics and machine learning. From a practical perspective,

PCA takes high-dimensionality data and distills it down to a lower dimensionality —

often while maintaining much of the original information. PCA works by taking a

set of (possibly) correlated inputs, and generating a set of statistically independent

outputs. These outputs are called the principal components. The intuition is that

each high-dimensional input can be approximated as a linear combination of a smaller

number of principal components.

Calculating the principal components from a set of inputs is straightforward. We

begin with a set of K input examples, which are selected so as to be representative of

the type and variety of inputs the algorithm is likely to see. Each of the K examples is

treated as a column in an M x K matrix. We assume each example is M-dimensional.

To calculate the principal components, each of the M dimensions is normalized ap-
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propriately, and the mean is subtracted. Next, the covariance matrix and the set of

eigenvectors V are calculated that diagonalize the covariance matrix [52].

The eigenvectors of this matrix are the principal components, and the eigenvalues

are the weights of each eigenvector. The weights are interpreted as the contribution of

each eigenvector to the overall information content. By taking the top-N eigenvectors,

as determined by the sorted order of their corresponding eigenvalues, the information

content of the source can be distilled down to an arbitrarily long N-dimensional vector.

In practice, the dimensionality reduction from M to N is substantial. One common

rule-of-thumb is to choose N such that the 75% of the information is captured in

the top-N eigenvectors. See Figures 2.3 and 2.4 for visual representations of what

eigenvectors and approximations of a set of input images look like.

Figure 2.3: The top 25 principal components taken from a representative set of face
images. For clarity, we treat each principal component, which is just an eigenvector,
as an image, which we call an eigenface. An image of a face can be approximated
by a linear combination of these 25 eigenfaces. See Figure 2.4 for examples. Source:
Chris DeCoro, cs.princeton.edu/˜cdecoro/
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Figure 2.4: Moving from left to right, 8 additional principal components, are used to
approximate the input image. The face begins to resemble the original after approxi-
mately 64 principal components. This number is significantly less than the number of
original pixels in the input image. Source: Chris DeCoro, cs.princeton.edu/˜cdecoro/

Figure 2.3 depicts the top 25 eigenvectors (treated as images) from a representative

set of face images. By taking linear combinations of these eigenvectors, an input image

that contains a face can be approximated using a 25-dimensional feature vector. This

25-dimensional vector is significantly smaller than the original image, and contains

a significant percentage of the information in the original image. See Figure 2.4

for examples of approximations of the input image with an increasing number of

eigenvectors.

For a formal treatment of Principal Component Analysis, see [52].
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Chapter 3

Fingerprinting Blank Paper Using

Commodity Scanners

Blank sheets of paper are often treated as if they are indistinguishable from one

another. For example, each sheet of paper in a ream of copy paper is typically

treated no di↵erently than any other. This is often a result of the mistaken belief

that a blank sheet of paper is a flat, empty canvas upon which content is placed,

and that once content is added, it is the content that makes a document unique. In

fact, when viewed up close, the surface of a sheet of paper is not perfectly flat, but

is a tangled mat of wood fibers with a rich three-dimensional texture that is highly

random and di�cult to reproduce. See Figure 3.1. This rich texture provides an

excellent feature that can distinguish one sheet of paper from another.

In this chapter, we show that the surface texture of paper can be estimated using

only a flatbed scanner coupled with appropriate software, and that this feature is

robust against rough treatment—such as printing or scribbling on the document or

soaking it in water—and adversarial counterfeiting. Under normal conditions, this

technique can identify documents with near-perfect accuracy and a negligible false

positive rate.
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Figure 3.1: The surface texture of paper viewed under a microscope at 254x magnifi-
cation. Each sheet of paper is made up of a complex pattern of paper fibers that are
created during the manufacturing process.

It has long been known how to authenticate the content printed on a page by

using cryptographic methods such as digital signatures. We address a di↵erent prob-

lem: how to authenticate the paper itself. For some kinds of documents, such as

currency and tickets, it matters not only that the content is unaltered but also that

the document is a genuine original rather than a copy or forgery. Physical document

authentication has many applications, which we discuss in Sections 3.6 and 3.7. Some

of these applications may be harmful; for example, our method allows re-identification

of supposedly anonymous surveys and paper ballots.

In contrast with previous e↵orts, our technique measures paper’s 3-D texture,

requires no exotic equipment, produces a concise document fingerprint, does not

require modifying the document, and may be applied to blank paper before content

is printed. Previous systems lack one or more of these properties. For example, Laser

Surface Authentication [17] requires a costly laser microscope to image paper texture,

while the technique proposed by Zhu et al. [109] focuses on ink splatter caused by
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Figure 3.2: Since the surface of a sheet of paper is not perfectly flat, a scanner will
produce a di↵erent image depending on the orientation of the page. The light reaching
the sensor depends on the relative angles of the light source and surface normal, (a).
A 10 mm tall region of a document scanned from top to bottom, (b), appears di↵erent
from the same region scanned from left to right, (c). By combining (b) and (c) we
can estimate the 3-D texture.

randomness in the printing process and requires the paper to be printed with known

content prior to fingerprinting. We discuss these and other related work in Section 3.1.

3.0.4 Organization

The physical document authentication technique described in this chapter roughly

follows the outline of the General Framework, see Figure 3.3. We begin in Section 3.2

(Stage 2 of the General Framework), by describing how we can use a scanner to

estimate a document’s surface texture. Scanners normally measure only the color of

a document, but by scanning the paper several times, at specific orientations, we can

estimate the shape of the surface (see Figure 3.2). In Section 3.2.2 (Stage 3 of the

General Framework), we condense the surface texture into a concise feature vector,

which robustly identifies the page. In this instance, instead of applying machine
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learning techniques, we use a technique called a secure sketch to generate a fingerprint

that reveals little meaningful information about the feature vector. The resulting

fingerprint can be printed on the document (e.g., as a 2-D bar code) or stored in a

database. The verification procedure is similar to the fingerprinting process, with a

di↵erent final stage that verifies that the generated feature vector is correct.
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Extract 
Feature
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Apply
Machine 
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Evaluate 
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Accuracy

Blank Sheets 
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Figure 3.3: Application of the General Framework introduced in Chapter 2 to iden-
tifying blank sheets of paper based on their unique surface texture.

We designed our technique to satisfy several security and usability goals:

• Uniqueness Every document should be identifiable and distinguishable from

all others.

• Consistency A fingerprint should be verifiable by multiple parties over the

lifetime of the document.

• Conciseness Document fingerprints should be short and easily computable.

• Robustness It should be possible to verify a fingerprinted document even if

it has been subjected to harsh treatment.

• Resistance to Forgery It should be very di�cult or costly for an adver-

sary to forge a document by coercing a second document to express the same

fingerprint as an original.

Sections 3.3–3.5 evaluate our system in terms of these same goals (Stage 5 of the

General Framework).
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3.1 Related Work

The Fiberfingerprint system of Metois et al. first introduced the notion of using

surface texture to uniquely identify a document [68]. Employing a custom device,

Fiberfingerprint measures “inhomogeneities in the substrate” of a document, from

which a unique identifier is derived. The system employs alignment marks that are

added to the document in order to orient the verification system, and requires a

specialized hardware device rather than a commodity scanner.

Laser Surface Authentication is a technique that measures the texture of a page

using a high-powered laser microscope [17]. Creating and verifying fingerprints in

their system requires access to this specialized device, which may be prohibitively

expensive for many users. Their system also requires that the verifier be online,

which may rule out applications such as third-party ticket verification.

A recent patent application by Cowburn and Buchanan describes using a com-

modity scanner to identify documents [29]. This method does not measure the normal

vector field of a document, but rather uses scans from multiple orientations in order

to extract other additional information. The feature vector used by Cowburn and

Buchanan is not concise, and their fingerprint is not secure. An adversary with ac-

cess to the fingerprint is able to easily discover the surface texture of the document,

possibly making forgery less di�cult.

Zhu et al. focus on identifying “non-repeatable randomness existing in the print-

ing process” [109]. They generate a fingerprint from the random ink splatter that

occurs around the edges of any features printed on a page. Unlike our scheme, their

method can only be applied after a document has been printed. Furthermore, their

implementation requires modifying the original document by printing a known target

pattern.

Our method is an improvement over previous work because we measure the surface

texture of a document without the requirement of expensive equipment. We utilize
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Figure 3.4: Registration and validation pipelines. Registration: Our method creates
a fingerprint that consists of a hash value, error correction information, and a random
seed. Validation: A document is authenticated if a newly computed hash value is
identical to the one stored in the fingerprint. The stored error correction information
is used to correct potentially faulty bits in the feature vector.

the unique fiber structure as identified and relied upon by Metois et al., Cowburn

and Buchanan, and Zhu et al. but do so without modifying the document in any

way. Our method allows documents to be fingerprinted before or after content is

printed. In fact, fingerprinting and tracking using our system can begin during the

paper manufacturing process. We have also developed methods for hiding the target

feature vector through the use of a secure sketch. This means a potential counterfeiter

cannot learn what features he needs to reproduce from the fingerprint alone but would

need access to the original document to even attempt a forgery.

3.2 Fingerprinting Process

Our fingerprinting process allows for registration and validation of a sheet of paper

without the participation of a central registration authority. Depending on the appli-

cation, a document’s fingerprint can be stored in a database for future verification,

or it can be printed on the document along with a digital signature, creating a self-

verifying original. The fingerprint can be used to ascertain whether two documents

share the same feature vector without revealing the registered feature vector itself.
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The registration and validation processes are quite similar, as shown in Figure 3.4.

In the registration process, we scan a document, estimate its three-dimensional sur-

face texture, and generate a feature vector V that represents the document’s unique

texture. We consider two documents to be the same if they have similar feature vec-

tors. To protect the feature vector and inhibit forgeries that might seek to reproduce

an exact feature vector, the fingerprint contains only a one-way hash H(V) of the

extracted feature vector. To achieve robustness against measurement errors in the

feature vector, the registration process derives error-correction information from V

and stores it in the fingerprint in the form of a secure sketch. The fingerprint also

contains a random seed to initialize the pseudorandom number generator used to

compute the feature vector, as described in Section 3.2.2.

The validation process has no access to the original feature vector. Validating

a document requires determining a document’s feature vector anew, using the seed

stored in the fingerprint. Validation assumes a potentially flawed raw feature vector

eV
0
and uses the secure sketch to obtain an error corrected eV, as described in Sec-

tion 3.2.3. The candidate document is considered valid if this feature vector maps

to the same hash value stored in the fingerprint—that is, if H(eV) = H(V). The

remainder of this section discusses the registration and validation pipeline in detail.

3.2.1 Estimating document surface texture

To measure the surface texture of paper, we take inspiration from a technique com-

monly used in computer graphics, called photometric stereo. Photometric stereo is a

technique for estimating the surface texture of an object by measuring slight varia-

tions in the intensity of light reflected by an object when illuminated from multiple

orientations. [105]. To give some intuition into why this technique works, imagine a

series of pictures of a mountain range taken in the morning, midday, and late after-

noon from the same location. By comparing these images, and measuring variations
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in the shadows cast by the mountains, we might be able to determine the height of the

mountains in the picture, or at a minimum where the peak is and what the general

slope of the mountain is. Photometric stereo works in an analogous manner, except

photometric stereo doesn’t rely on identifying variations in shadows, but measures

variations in the observed intensity of light reflected by an object across multiple

observations to extract an estimate of the object’s surface texture.

Figure 3.5 depicts a figurine, illuminated by a light source at four di↵erent lo-

cations, whose color appears slightly di↵erent depending on the orientation of the

light source relative to the ball. These slight variations contain information about

the figurine’s surface texture. The question is, how can we apply photometric stereo

to measure the surface texture of a sheet of paper using only an ordinary scanner?

To capture the surface texture of a document, we scan each document at four

orientations: 0�, 90�, 180�, and 270�. This allows recovery of the surface orientation

for every sampled surface point. Our procedure assumes that the reflection of light

from the surface of paper is perfectly di↵use, which is an assumption that largely

holds for near-orthogonal observation. Di↵use materials reflect a portion of the in-

cident light that is proportional to the cosine of the angle between the direction of

incidence and the surface normal—that is, proportional to the dot product of these

normalized directions. This property is commonly exploited in photometric stereo

to reconstruct surface normals from multiple images under varying illumination by a

point light source [105]. Similarly, we apply photometric stereo to the four captured

scans. Flatbed scanners, however, contain a linear light source, rather than a point

source, which disallows the application of traditional photometric stereo. Brown et al.

recently demonstrated how normals can be derived from flatbed scans under multiple

orientations [16]. Their method, however, relies on an extensive calibration proce-

dure, which would make it impractical for authentication purposes. Instead, we will
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Figure 3.5: A hippo figurine is illuminated by the same light source from four di↵erent
locations. Depending on the orientation of the light source relative to the figurine, the
figurine reflects light with slightly di↵erent intensities. Photometric stereo exploits
this phenomenon in order to estimate the surface texture of the figurine. Image
source [12]

derive a novel photometric stereo solution for flatbed scanners, which provides us

with information on surface orientation without the need for dedicated calibration.

Let us define a coordinate system for the paper and the scanner so that the paper

lies in the xy-plane, the z-axis points away from the flatbed of the scanner, and the

scanner’s linear light source is parallel to the x-axis. See Figure 3.7. We approximate

this light source by a line segment extending from x1 to x2. We further assume that

the light source is o↵set with respect to the line on the paper imaged by the CCD

sensor (see Figure 3.2(a)) by o
y

in the y-direction and by o
z

in the z-direction.
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Figure 3.6: Di↵erence image between two 1200 DPI scans showing the surface texture
measured by the scanner in the y direction. Actual size: “sum”.

;

<

=

Figure 3.7: The coordinate system for the paper and scanner. The x-axis is parallel
to the linear light source of the scanner, which moves along the y-axis. The z-axis
points away from the surface of the scanner.

Each point on the paper has a normal n(x, y) and a di↵use color, or albedo,

⇢(x, y). Without loss of generality, we concentrate on a surface point at the origin of

our coordinate system. The observed intensity of such a surface point is then:

I = ⇢
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which is the integral over all light di↵usely reflected o↵ that surface point and origi-

nating from points (x, o
y

, o
z

)> along the linear light source. As every flatbed scanner

is designed for even illumination, any limiting e↵ects near ends of the light source are

negligible and we shall ignore the integral limits in the remainder of this discussion.

Scanning the same surface point a second time with the paper rotated by 180�

displaces the light source from o
y

to �o
y

. Subtracting the resulting two scans I0� and

I180� from each other leads to:

d
y

= I0� � I180�

= ⇢
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That is, the di↵erence d
y

yields an estimate of the y component n
y

of the surface

normal n. The resulting value is multiplied by the albedo, ⇢, and a fixed constant

s that is dependent on the scanner geometry only. Analogously, d
x

= I270� � I90� =

n
x

⇢s. With four scans we can determine, at each sample point, an e↵ect of the surface

normal’s projection into to xy-plane, n2 = (n
x

, n
y

), up to a scale. The factor s is

assumed to be fairly constant across the page, and the remaining scale is given by the

local surface reflectance ⇢ of the paper at any given location. The practical impact

of ⇢ on the estimated surface normal is discussed in Section 3.5.

Application of equation (3.2) requires precise alignment of each surface point

across all scans. To reduce the e↵ect of alignment imprecision and to isolate frequen-

cies of the document that are stable across scans and di↵erent scanners, we apply a

low-pass filter to the document and down-sample it. In our experiments we scanned

27



each document at 1200 SPI (samples per inch) and down-sampled it by a factor of

eight, resulting in an e↵ective resolution of 150 SPI. To align multiple scans, we

calculated the homography between scans that minimized the least squares distance

between them [54].1

After processing the four scans of a document, we recover the surface texture as

a two-dimensional vector field with d = (d
x

, d
y

)> = ⇢sn2 defined at each location of

the document.

3.2.2 Computing the feature vector

From this vector field d we determine the feature vector of the document. A good

feature vector captures unique characteristics of a document, while at the same time

being concise. We model the feature vector V as an N -bit vector of independent bits

f
i

whose values are derived from the surface normals of the document.

In contrast to previous approaches, we do not extract a feature vector from a

single region of the document, but we compute the feature vector from a collection of

representative subsections, patches, of the document. For documents down-sampled

to 150 SPI, we choose square patches of 8⇥8 samples, centered at a series of ran-

dom locations p
i

. For relatively even spacing we draw these locations from a Voronoi

distribution [76]: we use the random seed stored in the fingerprint to initialize P pseu-

dorandom start locations on the page and use Lloyd’s Voronoi relaxation to obtain a

set of locations distributed evenly across the document, as shown in Figure 3.8 [19].

In principle one could now directly compare the patches of a document A to cor-

responding patches in a document B in order to verify two documents as being the

same. The disadvantages are that this requires access to the patches of B when veri-

fying A, which would require an amount of storage prohibitive for o✏ine applications,

1We printed a black box on each test page used in our experiments to identify the region to be
fingerprinted. This box was used, out of convenience, to simplify the image alignment process. In
practice, the black box is not necessary, and registration can occur by recording a few high-quality
portions of the page, and aligning based on their locations [89]
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and, more importantly, that it would reveal the original document’s structure to a

forger. Hence, we derive a compressed feature vector and store its hash along with a

secure sketch to hide the feature vector from an adversary.

Each patch contains 64 2-D samples d
i

, i = 1, . . . , 64, which we stack to create

a patch vector p 2 IR128. Each patch contributes T bits to the feature vector. We

compute these feature bits f
i

, i = 1, . . . , T , by subsequently comparing the patch

vector to T template vectors t
i

. The template vectors are a set of pseudorandomly

chosen orthonormal vectors in IR128 generated using the same seed that is used to

determine patch locations: the t
i

are initialized with vector components drawn from

a N(0, 1) distribution, followed by Gram-Schmidt orthonormalization. Each template

vector can be interpreted as a template patch of 8⇥ 8 2-vectors denoting surface

orientation.
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Figure 3.8: Sample Voronoi distribution of 100 points in the unit square. Voronoi dis-
tributions give relatively uniform coverage of a region, while simultaneously ensuring
no overlap of patches.
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The comparison is performed by correlating the patch vector p and each template

vector t
i

; i.e., by computing the dot product hp, t
i

i. Positive correlation means that

surface orientations in the patch and the template patch agree; negative correlation

denotes mostly opposing surface orientations. The respective feature bit is determined

by the sign of the correlation:

f
i

=
1 + sign(hp, t

i

i)
2

. (3.3)

See Algorithm 1 for further illustration.

V = bool[PT ]
Retrieve surface orientation vectors of document
Extract P patches based on Voronoi distribution
for p = 1 to P do
template = generate new set of T pseudo-

random orthonormal template vectors
for i = 1 to T do
c = h patch[p], template[i] i
f(p�1)P+i

= TRUE if c > 0
end for

end for

Algorithm 1: Feature vector generation.

The number of independent bits that can be extracted from a patch in this way

is limited and depends on the amount of information contained in a patch. A stan-

dard tool to characterize this amount of information is principal component analysis

(PCA) [49]. We performed PCA on a large set of randomly chosen patches from

di↵erent documents. The results show that for 8⇥8-patches at least 75% of the

information can be expressed with only 32 principal components; that is, within a

32-dimensional subspace. We hence decided to restrict ourselves to T = 32 of 128

possible orthonormal template vectors . This restriction is intended to maintain inde-

pendent bits in the feature vector, as additional template vectors are likely to result

in increasingly correlated bits. The feature vector consists of 32, mostly independent,
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bits extracted from each patch. We use 100 patches, P = 100, leading to a feature

vector of 3,200 bits for each document.

3.2.3 Creating the document fingerprint

From the feature vector we can create a document fingerprint that can be used to

authenticate the document without revealing information about the document. The

fingerprinting method should be both concise and robust to errors. This situation

is similar to that of biometrics, where a user provides a value eV which is close to,

but not identical to the registered value V (e.g., the Hamming distance is relatively

small). Additionally, providing an adversary with the full feature vector may not be

desirable, as it provides a blueprint for potential forgery.
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Figure 3.9: Principal component analysis of a large number of 8⇥8-patches shows
that 75% of the information has been extracted after 32 components.
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A document fingerprint consists of a hash of the feature vector H(V), where H

is a collision-resistant cryptographic hash function, along with a secure sketch ss(V)

following the ideas of Dodis et al. [32] and Juels and Wattenberg [53]. The secure

sketch allows the system to correct any errors that may occur in the candidate eV,

assuming eV is close enough to V, without revealing V to an adversary who does not

know any eV close to V.

F

6

AF

a9

9

6

Figure 3.10: The secure sketch of vector V is mapped to a random codeword c by
choosing a random o↵set S. The secure sketch of V consists only of this o↵set, S,
and its cryptographic hash, H(V). Verifying the identify of a document based on its
purported feature vector eV, which is close to V, consists of three steps. First, shift
eV by S to ĉ. If eV and V are close, then so are c and ĉ. Second, correct the corrupted
codeword ĉ to the nearest valid codeword, c. Finally, shift c by S, and compare its
hash with H(V).

Suppose the registered value for a document is an N -bit value V, and we wish

to accept any eV within Hamming distance �N of V. The secure sketch proposed by

Juels and Wattenberg chooses a random codeword c from an error-correcting code of

length N that can correct �N errors, and stores ss(V) = V� c. This can be viewed

of as a shift, S, from V to c. To recover V from a candidate eV, the system calculates

ĉ = ss(V)� eV. This can be thought of as a shift from eV to ĉ. If the distance between
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V and eV is greater than �N , then the codeword ĉ will not be close enough to the

original codeword c, i.e. within �N of c. The next step corrects ĉ to the nearest

valid codeword c, and verifies that H(V) = H(c � ss(V)). Only if V and eV have

Hamming distance less than �N will the system correctly output V. See Figure 3.10

for a two-dimensional representation of the recovery of V from a candidate feature

vector eV.

Dodis et al. [32] show that the number of bits of information about the feature

vector revealed by the secure sketch is N � k, where k = logK is the dimension of

the error-correcting code used in the secure sketch when it has K codewords. Thus,

in order to maximize the security of the system for a fixed N , the error-correcting

code should have as high a dimension k as possible.

Low-Density Parity Check (LDPC) codes, along with turbo codes, are among

the strongest error-correcting codes in use, thanks to e�cient decoding algorithms

developed in the last two decades. In our implementation, we used the LDPC library

written by Neal [72]. LDPC codes are well-suited to this application because they

work well on large block sizes [62].2 In addition, the LDPC decoding algorithm can

take into account a confidence level specified for each individual bit to further improve

the performance of the code. In our case, this confidence level can be calculated from

the magnitude of the dot product of the template vector with the patch vector. The

correspondence between the two is graphed in Figure 3.12.

The length of our feature vector is N = 3200 bits. We experimented with codes

of suitable dimension to correct bit error rates between � = 10%, allowing correct

identification of all types of paper we experimented with under ideal conditions (see

Figure 3.13), and � = 30%, suitable to identify documents under less-ideal conditions

such as soaking and scribbling (see Figure 3.14). For the case of decoding under ideal

2In practice, LDPC codes can often decode beyond the minimum distance of the code. This could
allow an adversary to gain an advantage. If an application allows for probabilistic decoding, block
sizes can be chosen such that the practical impact is minimized.
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Figure 3.11: Fraction of fingerprints successfully decoded for varying fingerprint error
rates using LDPC codes of di↵erent dimensions k.

conditions, a code of dimension k = 1000 and N = 3200 is su�cient to correctly verify

all test documents, with no false positives. For the case of decoding under less ideal

conditions, a code of dimension k = 300 and N = 3200 su�ced to correctly verify

95% of all test documents, with no false positives. See Figure 3.11 for a summary of

these results.

The feature vector length can be adjusted to suit the needs of the application (and

the expected document treatment conditions) by increasing or reducing the number of

patches. Longer feature vectors provide a higher level of accuracy when distinguishing

two documents, especially under harsh treatment, but require increased storage. We

chose N = 3200 bits as our feature vector length to ensure that it would fit in a 2-D

barcode.
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Figure 3.12: Correspondence between dot product magnitude and error probability
during validation. (Fit to normal distribution with µ=0 and �=0.1314.)

3.3 Robustness

Section 3.2 describes a process for registration and validation of a document finger-

print. In this section we evaluate document fingerprints across di↵erent types of

paper, including normal copy paper (Boise Aspen 50), university letterhead with a

visible watermark, and index cards. We also evaluate the fragility of a document

fingerprint under various treatment conditions. Our goal is to test whether our tech-

nique typically validates di↵erent observations of the same document (true positives)

and rejects pairs of observations of di↵erent documents (true negatives), while rarely

validating pairs of observations of di↵erent documents (false positives) or rejecting

di↵erent observations of the same document (false negatives).

Our experiments show that a fingerprint can be found for a variety of di↵erent

types of paper. Unless otherwise noted, each experiment began with a document
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scanned at 1200 DPI on an Epson Perfection v700 scanner. Each test focused on a

3⇥3 inch square in the center of the page.3

For each test, we captured five observations of a set of five documents, for a total of

25 observations. Each observation consisted of four scans taken at 0�, 90�, 180�, and

270� that we used to estimate surface normals. We expect no two scans of the same

document to be exactly alike due to slight variations in placement on the scanner,

random noise, and other uncontrolled variables in the process.

The amount of error tolerated in a matching fingerprint can be adjusted by choos-

ing an appropriate error-correcting code during the fingerprinting process described

in Section 3.2. The number of bits that can be corrected by the code should be

determined by the needs of the application, as it establishes a tradeo↵ between the

security of the system and the relative likelihood (or harm) of a false positive or false

negative.

3.3.1 Ideal handling conditions

As a baseline test, we measured the frequency of correct and incorrect validation and

rejection under ideal handling conditions, when we expect no document degradation.

We began with 25 observations (5 from each of 5 documents). We chose 40 random

seeds and sampled a fingerprint from each observation for each seed, following the

process described in Section 3.2. We compared each of the
�
25
2

�
= 300 pairs of

observations for each seed, yielding a total of 12, 000 comparisons.

For each comparison, we computed the Hamming distance between the two finger-

prints. These distances are summarized for the 12,000 comparisons by the histogram

shown in the top graph in Figure 3.13. Under non-adversarial conditions, document

3In our robustness experiments, we used a printed box on the test pages to identify the region
to be fingerprinted and to align the di↵erent scans. However, alignment could be accomplished by
other means, such as by relying on the boundaries of the page or other printed material, or by
simply recording a few patches at high resolution [89]. Di↵erent sets of patches should be used for
alignment and verification, because using the same patches could increase the false positive rate.
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fingerprints of the same piece of normal copy paper di↵er, on average, in only 99

(3.1%) of the 3200 bits. In contrast, as one would expect, the average Hamming

distance for fingerprints made from observations of di↵erent documents is 50% of

the bits. These distributions are well-separated; the maximum Hamming distance

between feature vectors from the same document is 177, while the minimum distance

between feature vectors of di↵erent documents is 1490. An error tolerance anywhere

in this range would give no false positives and no false negatives for these tests. In

practice, the preferred error tolerance will be closer to the midpoint, allowing for

maximum flexibility to accept or reject a candidate document. We repeated this

experiment on index cards and university letterhead, producing similar results. see

Figure 3.13.

The distributions for the “same” fingerprint comparison tests and “di↵erent” fin-

gerprint comparison tests seem to be reasonably approximated by a normal distribu-

tion. Fitting Gaussian curves to this data, we can find a summary statistic, Egan’s

sensitivity index for Gaussian distributions of signal and noise with unequal variances,

given by:

d
s

= 2(µ2 � µ1)/(�1 + �2) (3.4)

where µ1, µ2, �1 and �2 are the means and standard deviations of the distribu-

tions [66]. For this experiment, d
s

= 52.0. To give some intuition about the signifi-

cance of this statistic, the two Gaussians intersect at a Hamming distance of 731 bits;

the heights of the curves are such that the chance of a single comparison resulting in

either a false positive or false negative is 1 in 10148. If we reduce the feature vector

length from N = 3200 bits to 1600, 800, or 400 bits, the probability of such errors is

1 in 1096, 1 in 1057, or 1 in 1035, respectively.

We repeated these experiments on di↵erent scanner models and found similar

results. When comparing a document fingerprinted on one model and verified on
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another, results are slightly worse.4 This experiment demonstrates that individual

sheets of paper can be re-identified under ideal conditions with high accuracy. In

many applications, it is necessary to be able to identify a sheet of paper even when

it is subjected to harsh treatment. The next section evaluates the ability to identify

each sheet of paper after it is treated harshly.

3.3.2 Non-ideal handling conditions

The previous experiments were performed under ideal handling conditions. We per-

formed additional tests to ascertain the robustness of fingerprints when the document

is subjected to less-than-ideal conditions. These tests included scribbling on the pa-

per, printing on it with ink, and soaking the page in water.

Scribbling

We first scanned a set of five blank documents, then scanned them again after scrib-

bling over them with a pen. In each document the scribble was unique, covering an

average of 8% of the test region. In this test, 25 pre-scribble observations were com-

pared against their 25 post-scribble counterparts, for a total of 625 pairs. We used

40 di↵erent fingerprint samples per document to yield a total of 25,000 comparisons.

The Hamming distances resulting from these comparisons are plotted in the graph

in Figure 3.14. The sensitivity index in this case is lower (d
s

= 28.8), although the

curves remain quite well-separated. With a decision threshold of 1130 bit errors in

the fingerprint, the chance of a false positive or false negative is 1 in 1047.

4We chose several of the parameters of our algorithm (e.g., the downsample factor and size of the
patches) based on preliminary experiments using the Epson v700 scanner. The optimal settings for
verification of documents using other scanner models may vary.
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Figure 3.13: Distributions of
Hamming distances between fin-
gerprints for three paper types:
copy paper (top), index cards
(middle), and letterhead (bot-
tom). In all graphs, the curve
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tion for scans of the same doc-
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Printing

In this experiment we printed single-spaced text in 12 pt. Times New Roman lettering

over the test region, covering approximately 13% of the area with ink. The distribu-

tions shown in the middle graph of Figure 3.14 were obtained as in the scribble test.

Even in this experiment, in which most patches used for the fingerprint were partially

covered by ink, the sensitivity index is 26.1 and the chance of a false positive or false

negative at the crossover is 1 in 1038.

Wetting and drying

The bottom graph in Figure 3.14 shows the resiliency of document fingerprints after

the document was submerged in water for five minutes. We dried each test document

and ironed it until it was as flat as possible. Using the same evaluation protocol as for

the scribble and printing tests, we found that documents could still be validated with

100% reliability, even with this fairly extreme mistreatment of the page (d
s

= 33.3).

These experiments demonstrate that our fingerprinting method is robust when

a document is handled under certain rough conditions. The ability to identify a

document before and after it is printed on, scribbled on, or soaked in water has many

potential applications.

3.4 Security

The security of our method relies on the inability of an attacker to reproduce the

document’s surface, either because he does not know what features to produce or

because he cannot recreate the normal vectors at the required scale. The threat model

of each application is determined by several factors: the availability of an original to

the attacker, whether verification is performed online or o✏ine, and whether the
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verification device is trusted. Under the most common threat models, our method

should prevent an attacker from forging a copy of an original.

Performing verification online or o✏ine results in di↵erent considerations. Here

“online” means that the verification device can communicate with a remote trusted

server which can store data and perform computations; “o✏ine” means that the verifi-

cation device cannot communicate, although it can be preprogrammed with a limited

amount of information such as a constant number of cryptographic keys. Online

verification of a document has a straightforward solution, while o✏ine verification

requires security tradeo↵s.

3.4.1 Online verification

Online verification need not reveal in advance the patch locations that will be ana-

lyzed. This forces an attacker to reproduce the entire surface of a document before

presenting it for verification. In one approach, the verification server requests com-

plete raw scans of the document at each of four orientations, which the server uses

to perform the verification algorithm. Under this construction, the verification server

does not reveal the chosen patches.

In an alternative approach, the verification server provides a fresh pseudorandom

challenge to the client, and the client uses the challenge to seed a pseudorandom

generator which is used to pick the patches and templates used in the verification

algorithm. The client then computes the feature vector and sends it to the server.

The server, having computed the same feature vector on its stored scans of the original

document, verifies that the two feature vectors are similar enough.

In this threat model an attacker does not know a priori which patch locations on

a document will be sampled. This forces an attacker to reproduce the surface texture

of the document at each sample point in order to pass a counterfeit as an original.
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3.4.2 O✏ine verification

The security of o✏ine verification depends on whether the verification client is trusted

and on the availability of an original to the attacker. In the o✏ine case, we assume

that the fingerprint of the legitimate original document is either pre-stored on the

client or is printed onto the document (perhaps as a 2-D barcode) along with the

authority’s digital signature of the fingerprint. In either case, the client device checks

the document against a known fingerprint.

O✏ine: trusted device

Currency and ticket counterfeit detection at banks and concerts are two important

examples of o✏ine verification with a trusted device. By “trusted” we mean that

the device outputs a Boolean match/no-match result but does not leak any other

information.

The secret information stored in the device could be the public key of the regis-

tration entity. The seed stored in the document fingerprint could be encrypted under

the private key of the registration entity.5 Therefore, knowledge of the fingerprint for

a document does not reveal the patch locations. The hash of the feature vector could

also be signed by the registration entity, preferably using a separate key. This allows

only trusted devices to determine patch locations and verify the authenticity of a

document. No access to the registration entity is required, provided that the device

has knowledge of the decryption and verification keys of the registration entity.

In this threat model the adversary does not know which patches will be analyzed.

This forces the attacker to recreate the surface normals across the entire document

to ensure verification of the document.
5In this scenario we treat the public key and private key as secret. Storing the public key on the

device prevents a successful attacker from generating valid fingerprints and can only reveal which
patch locations will be sampled.
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O✏ine: untrusted device, no access to original

In the next case, the verification device is o✏ine and untrusted (i.e., it might leak

everything it knows to the attacker) and the attacker has not seen the original docu-

ment that he is trying to forge. In this case, the attacker cannot forge the document

because he does not know anything useful about the normal field that he must create.

At most, he knows the fingerprint (if it is stored in the device) but this does not help

him because the fingerprint is a secure sketch.

O✏ine: untrusted device, access to original

The final case is the most challenging one, where the verification device is o✏ine

and untrusted, and the attacker has access to an original document that he wants to

copy. Because there are no secrets from the attacker—he sees the original document

including anything printed on it, and he knows the full state of the device—the

attacker knows exactly which patches will be used for verification and how the feature

vector will be computed from those patches. The attacker’s only task is to make a

document that will generate a feature vector close enough to the original. Whether

the attacker can do this is the subject of the next section.

3.5 Forging a Document

Suppose an attacker has seen an original document and wants to create a second

document that will pass verification as the original. The attacker will start with

an arbitrary piece of paper which, by assumption, will have a very di↵erent feature

vector from the original. He will then try to modify the target paper so that its

feature vector is close to that of the original document. To do this, the attacker needs

to make fine-grained modifications to the document’s surface normals. This might be

done via lithography or photographic techniques, but these will be expensive and will
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probably require special equipment. The most e↵ective, economical way to control

the surface, we believe, is to print on the document.

Equation (3.2) shows that the fingerprinted vector (d
x

, d
y

) contains additional

factors s and ⇢. The scanner-dependent factor s can be assumed to be fairly constant

across the page and hence has no influence on the sign of the correlation results

in the feature vector generation. The remaining scale is given by the local surface

reflectance ⇢ of the paper at a given location, which should be stable across multiple

scans. On empty paper it is nearly constant; in the presence of print, ⇢ is greatly

attenuated, which lessens the influence of the printed portion onto the correlation

result. The adversary can try to control bits of the feature vector by printing dark

ink at selected points in order to reduce their influence in the correlation calculations.

Besides reducing ⇢, printing at a point tends to flatten the document surface, as shown

in Figure 3.6.

An adversary who aims at forging a document might try to leverage these e↵ects

by printing a set of carefully placed dots, either to cause the surface texture of a

candidate document to express the same fingerprint as an original, or to down-weight

unfavorable contributions to the patch correlation. To do this the forger must over-

come two hurdles: printing dots on the page at desirable locations and/or printing

dots with favorable surface normal vectors. Dark ink on a document would directly

a↵ect reflectivity, while light ink might solely change the normal vectors at a specific

location. We assume that the adversary uses commercially available equipment and

is able to print dots in any color from black to white. He has less control over the

exact shape of the dots, which varies by printing technology and type of paper.

We conducted experiments to characterize the ability of a forger to precisely con-

trol the e↵ect of a printed pattern. We measured the e↵ective resolution—the number

of distinct printable dots—for a high-end o�ce printer, a Xerox Phaser 8550, with a

nominal resolution of 2400x2400 DPI. The e↵ective resolution is limited by dot gain,
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Figure 3.15: The smallest dots that can be produced by our test printer are 1/240
inch—20 samples wide in this 4800 SPI scan—despite the printer’s nominal 2400 DPI
positional accuracy.

which causes printed dots to become larger than intended (see Figure 3.15) due to

factors such as the viscosity of the ink and the absorbency of the paper. The smallest

dots that the test printer could produce on a normal piece of copy paper are 1/240

inch, or 20x20 samples when scanned at 4800 SPI. This limits the e↵ective resolution

to 240 DPI. On the other hand, the positional accuracy of the printer seems closer to

the rated 2400 DPI. We conclude that a forger could use commodity printers to print

dots with positional accuracy similar to what commodity scanners can measure but

size much greater than the scanner’s pixels.

Because printed dots typically span more than one sample in a patch, printing

a dot at a specific location a↵ects the neighboring surface normal vectors in unpre-

dictable and uncontrollable ways. Due to paper variations as well as limited precision

in the placement and viscosity of ink, the forger does not have precise control over

the normal vectors caused by a dot. We performed an experiment where we printed

a series of black dots in a region of the document. We identified the black dots and

measured the normal vectors in the surrounding region. For each printed dot, the

desired normal vector of a location occurred on only one point of the surface.
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The bottom-line question is how many degrees of freedom the adversary has in

controllably modifying the normal vector field in a patch. Given the linear transfor-

mation used to determine each feature vector bit, the adversary will likely be able to

achieve a desired set of feature vector values if he has enough degrees of freedom.

If there are N feature vector bits, and each bit is computed as the sign of the

correlation of the normal field with a random vector field, then a truly random normal

field value would match all N feature vector bits with probability 2�N . However, it is

likely that the feature vector bits are not fully independent. Although we have some

evidence about the degree of independence (see, e.g., Figure 3.9), we do not have a

precise estimate of how much entropy is encoded in the feature vector.

We are thus left with an open question: does the amount of information in a patch,

as encoded in a feature vector, exceed the adversary’s ability to inject information into

the patch? If we knew the answer to this question, we could state with some confidence

whether an adversary could forge a document in the most favorable case (for the

adversary), where the adversary sees the original document and the verification device

is o✏ine and untrusted. Unfortunately, we have to leave this question for future work.

3.6 Applications

Many applications could benefit from the ability to uniquely identify a document.

Many situations where physical possession of an item must be verified or authenti-

cation of an item is required could fruitfully employ our technique. Currency, ticket,

and art counterfeit detection, as well as verification of product packaging are some of

the applications where physical document authentication is desirable.

Counterfeit currency detection is one obvious application. The financial impact

of counterfeit currency is large. Estimates of annual global revenue loss range from

$250- to $500 billion [6, 98]. The ability to authenticate bills could change the way
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currency is produced and fraud is detected. Such a system would begin during cur-

rency production. The government would generate a fingerprint for each bill. This

fingerprint could be stored in a database, along with the bill’s serial number, or the

government could digitally sign the fingerprint and print the fingerprint and signature

on the bill. Any party wishing to verify a particular bill would scan the bill and verify

that the fingerprint matched the one signed by the government. The authentication

of a bill could be performed o✏ine or online. Businesses and banks accepting large

cash deposits could verify the currency was legitimate before completing the transac-

tion. O✏ine authentication could be performed provided that the verification device

had the public key of the currency issuer.

Ticket forgery at major concerts and sporting events is another large black-market

business. Counterfeit event passes were widespread at the 2008 Beijing Olympics [11],

and a British website recently sold more than $2.5 million in fake tickets [96]. The

ability for purchasers to verify the authenticity of tickets prior to purchase could

greatly reduce the prevalence of online ticket fraud. Trust in ticket purchases on

websites such as Stub Hub and eBay could be dramatically increased if the seller

had to prove access to the item being auctioned or sold. Ticket clearing houses such

as Ticketmaster could maintain an online database of fingerprints for all purchased

tickets. Any party selling a ticket could scan and upload the ticket to Ticketmaster

and receive verification of authenticity.

Forgery of artwork is a black-market business where the application of our tech-

nique may not be initially obvious. European police estimate that over half of the

works in international markets are forgeries [86]. One family of art forgers was able

to make $2 million before they were caught. The ability of art forgers to reproduce

the individual brush strokes of a work makes authenticating paintings increasingly

di�cult. In the best forgeries, art verifiers must sometimes rely on the chain of cus-

tody of the work in order to authenticate it [90]. However, we believe that it would
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be di�cult to duplicate features of the canvas (down to the detailed arrangement of

the weave) upon which the work is painted. Thus art authenticity or forgery might

be detectable by applying a technique like ours to the canvas, most probably on the

back side of the painting.

Lottery tickets are similar to currency except that players need not be aware of

a fingerprinting technique at all. In order for a lottery winner to collect on their

winnings, the ticket must be verified by the lottery authority. The fingerprint of

a winning ticket need not be printed on the document at all. Fingerprints of all

possible winning lottery tickets can be privately maintained, and any claimants can

be required to produce the actual winning ticket, with correctly verified fingerprint,

in order to collect their winnings.

The accurate identification of paper based product packaging could benefit from

this technique as well. When inspecting cargo, customs o�cials often inspect the

contents of packages to weed out counterfeit goods. We can increase confidence in

package contents by authenticating a product’s packaging. If the packaging of a

product is legitimate, then the contents of the package have a much higher likelihood

of being authentic.

3.7 Privacy Implications

The feasibility of paper-based authentication can have positive or negative implica-

tions depending on the application under study. Because our results do not modify

the paper in any way, there is no way to detect, by inspecting a piece of paper, whether

its fingerprint might have been recorded in advance by an adversary. This fact vio-

lates the traditional assumption that pieces of paper cannot easily be traced without

the addition of distinguishing marks. Even unopened sheaves of blank printer paper

might in principle have been fingerprinted at the factory. This result has important

49



implications for a number of applications, particularly paper-based voting. Chapter 5

discusses the implications of paper fingerprinting for paper-based elections, develop-

ing an e�cient election auditing technique as well as a new method to detect ballot

box stu�ng. Each of these techniques take advantage of the ability to re-identify

individual sheets of paper.

More generally, the ability to re-identify ordinary sheets of paper casts doubt on

any purportedly private information gathering process that relies on paper forms.

“Anonymous” surveys or reporting systems may not in fact be anonymous. Though

it has long been possible to track sheets of paper using subtle chemical markers or

“invisible ink,” these methods require some level of special expertise, and the presence

of markers leaves evidence of the attack. Our research shows that an attacker armed

with only ordinary equipment—a commodity scanner—is able to re-identify paper

reliably without leaving any telltale marks.

3.8 Discussion and Potential Future Work

This chapter described how ordinary pieces of paper can be fingerprinted and later

identified using commodity desktop scanners. The technique we developed functions

like a “biometric” for paper and allows original documents to be securely and reliably

distinguished from copies or forgeries.

At least two questions remain to be answered in future work. First, in the threat

model where the adversary has access to the original document and the fingerprint, we

do not know for certain that a clever adversary cannot forge a copy of the document

with a high-resolution printer. Our initial work could not determine conclusively

whether an adversary who can use a good printer will have enough degrees of freedom

in modifying a document to make the document match a known fingerprint. Second,

while we conjecture that our method can be applied to other materials such as fabric,
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more testing is needed to verify this, and special methods might be needed for some

materials. We leave both of these questions for future work.

Our results are a tribute to the resolution of today’s scanners. Future scanners will

capture ever more detailed images of paper documents, eventually allowing individual

wood fibers to be imaged clearly. The security of our methods against forgery, in cases

where the adversary has full access to information, will depend ultimately on a race

between the resolution of the printers that can create patterns on a page, and the

resolution of the scanners that can observe patterns.

3.9 Alternate Approaches

Section 3.2 introduces a process for fingerprinting and verifying the fingerprint of a

document. In this appendix we briefly outline some alternative strategies that might

be desirable under di↵erent criteria for robustness or di↵erent levels of concern about

forgery.

Using albedo versus normals

Because the high-resolution paper scans shown in figures throughout this chapter

reveal obvious color variation in addition to surface texture, perhaps a more straight-

forward approach would be to use the albedo (color) of the page as the basis for a

fingerprint, rather than, or in addition to, the shape. Indeed, our initial implementa-

tions explored this approach, using a single scan (which combines albedo and normal

information) to construct the fingerprint of a document. This approach is simpler

and o↵ers the substantial benefit that the document can be fingerprinted or verified

more quickly, through a single scan.

The intensities of most of the pixels in a scanned page are modeled well by a

truncated normal distribution, centered around the “white” color. To use this data
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as the basis for a fingerprint, we simply construct the vector p as the concatenation

of these intensities from a given patch. For example, an 8 ⇥ 8 patch would yield a

vector p 2 IR64. The fingerprint is then extracted from a collection of patches as

described in Algorithm 1.

We did not pursue this approach because we believe this form of fingerprint may

not resist forgers who use very light ink to print a desired pattern on the page.

Another drawback is that any black ink on the page, which lies well outside the

roughly-normal distribution of intensities found in blank paper, contributes to a very

strong negative value in p, introducing a bias in the dot products for the patch. Thus,

any value outside the range of the truncated normal distribution must be zeroed out

before constructing the fingerprint. This provides another opportunity for a forger

to deliberately zero out regions of the patch with the goal of flipping bits towards a

desired fingerprint. These attacks might be di�cult to carry out in practice, since

they require excellent registration in the printing process. Therefore, albedo-based

fingerprints may be suitable for applications where some added risk of forgery is an

acceptable tradeo↵ for increased speed and simplicity.

Patch-pair comparisons

Recall from Algorithm 1 that the vector p contributesK bits to the overall fingerprint

by taking the signs of the dot product of p and a series of ortho-normal template

vectors. We have also considered (and implemented) an alternate version of the

algorithm where the bits of the fingerprint are taken to be the signs of the dot products

of pairs of patches p and q. The näıve version divides the pool of patch positions

into pairs and computes one bit of the feature vector from each pair. Unfortunately

that approach allows an attacker to tweak each pair in turn independently. A more

robust version considers bits from all patch pairs (p, q) where p 6= q. For example, for
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64 patches each patch would participate in 63 bits, and this scheme could generate
�
64
2

�
= 2016 total bits.

In the case where a forger has a copy of an original document and therefore knows

the fingerprint he is trying to reproduce (Section 3.4.2), this formulation has the

advantage that the bits of the fingerprint are more tightly bound than those of the

template vectors. Any attack on a single bit—for example, printing on a patch—is

likely to impinge on the other (62) bits a↵ected by that patch. Thus, a forger would

have to solve an optimization problem to figure out how best to perform the attack.

However, the bits of the fingerprint generated from all patch pairs seem to be

less independent than the bits generated by the template vectors. Preliminary ex-

periments similar to those described in Section 3.3 indicate that “all-pairs” bits are

mostly independent, but not as independent as the “template” bits. Since the argu-

ments in Section 3.4.2 for security against “blind” attackers rely on bit independence,

we generally prefer the “template” scheme.

Short fingerprints with no error-correcting information

Section 3.2.2 describes a process for generating fingerprints composed of a hash of

3200 or more bits concatenated with some error correction bits. For some applications

requiring less security, fewer feature vector bits may be used. Suppose only 100 bits

are used, and further suppose that the application tends to produce fewer bit errors

(say 15% or less). In such scenarios an alternate approach would be to simply record

the hash of those bits. An attacker, without the benefit of the original, is forced to

guess among 2100 bit sequences, checking guesses against the hash. Unfortunately,

this leaves the näıve authentication process with no way to do error correction other

than to guess among the roughly 1017 strings within Hamming distance of 15 of the

sequence extracted from a page—easier, but also daunting.
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Fortunately, there is a better approach for the authentication process. Recall

that the bits of the fingerprint are taken as the signs of a series of dot products

(patches and templates). We have observed that these dot products are well-modeled

by samples from a truncated normal distribution. Moreover, we have also observed

that the flipped bits mostly come from dot products near zero, and that the bit-

flipping process seems to be well-modeled by the addition of “noise” also selected

from a truncated normal distribution (with smaller standard deviation than that of

the “signal”). erf(). With this model in hand, the verification process can search for

bit strings similar to the extracted fingerprint while determines taking into account

which bits are more likely to have flipped. Specifically, the process repeatedly chooses

a bit at random, and flips its value with a probability relative to the likelihood that

the chosen bit flipped, each time checking the resulting fingerprint against the secure

hash. We simulated this approach and found that about 90% of the time it will find

the correct string within 106 guesses for the example distribution described above.

The benefits of this approach are that it is simple to implement and provides no

information to an attacker in the form of error-correction bits. The main disadvan-

tages are that it does not scale well to longer bit sequences and that the stochastic

nature of the algorithm provides only probabilistic guarantees of running time. There-

fore, it would likely be used only in conjunction with other approaches. For example,

an application might attempt this method for o✏ine verification and fall back to an

online method in cases when it fails.
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Chapter 4

Some Consequences of Paper

Fingerprinting for Elections

Elections are critical to the proper functioning of democratic society. As such, there

are a number of attributes that must be satisfied for citizenry to trust election re-

sults. Elections must be fair, transparent and their results verifiable. At times these

attributes seem to conflict with one another. Yet, voting systems exist which attempt

to satisfy each attribute. In most cases, a voter’s identity is verified prior to their

casting a ballot, and they are only allowed to cast a single ballot. Additionally, a

voter’s particular ballot selections must not be revealed. This property is called the

secret ballot. After an election, all cast ballots must be counted accurately and trans-

parently, with the results reported in a timely manner. Accomplishing these tasks

seems, at first, to be straightforward, but there are myriad examples where subtle

flaws can exist.

The attribute that most complicates accurate and fair elections is maintaining the

secret ballot. The secret ballot is intended to prevent voters from intentionally, or

unintentionally, revealing their selections. If an individual voter could prove the way
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they voted, this would lead to an obvious method of voter intimidation or coercion,

undermining voter confidence in the fairness of elections.

Historically, voting systems utilized paper as the medium for recording voter’s se-

lections. While the past decade has seen the development of a number of, alternative,

electronic-based voting systems, most jurisdictions still rely on paper ballots as the

medium of record for recording a voter’s selections. These voting systems also consist

of procedures designed to prevent, or at least detect, election fraud, often through

complex auditing schemes. The majority of these voting systems did not consider the

ability to fingerprint blank sheets of paper in their designs. In this chapter, we focus

on the implications of the ability to fingerprint blank sheets of paper, both in order

to preserve the secret ballot, and to detect various types of election fraud across a

number of voting systems.

Paper records play a pivotal role in many voting systems. Paper is cheap, familiar,

and reliable; and paper records can be read and written by people and machines. As

a result of paper’s positive properties, the voting systems most widely recommended

by election security experts rely on keeping paper records of each ballot. Chapter 3

introduces one method to fingerprint individual sheets of paper based on their unique

surface texture. This chapter focuses on the consequences of this technique, evaluating

both the positive and negative implications for elections.

Even when using paper, however, care must be taken to ensure election integrity

and ballot secrecy. During an election, paper ballots may be treated harshly. These

ballots may be creased or folded, and they are modified by markings indicating voter

choices. Any paper identification system must be robust to harsh treatment and

moderate levels of marking. Chapter 3 shows that it is possible to re-identify a

document even when a sheet of paper is handled harshly or modified by being printed

or scribbled on.
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In certain scenarios, tracking of individual paper ballots could undermine ballot

secrecy, while in others it can enable more e�cient auditing techniques. Through

vigilance and careful procedures, election o�cials may mitigate many threats posed

by paper fingerprinting while harnessing its benefits.

Traditional paper-based voting systems, optical scan voting systems, and DRE-

VVPAT systems1 result in paper ballots containing the voters’ choices for various

contests. Suppose that someone has access to the paper ballots (or scans of the

ballots) before and after an election. If this person can identify the paper ballot you

will use to vote, then when election day concludes, that person can reidentify and

recover the paper ballot containing your votes.2

Fingerprinting of paper ballots presents additional privacy challenges that must

be addressed by election o�cials to ensure ballot secrecy. Fortunately, many attacks

based on fingerprinting are nontrivial; they require access to the paper ballots and

certain equipment at particular times. In this chapter, I survey the risks that finger-

printing poses based on details of common voting systems and the malicious party’s

level of access. Based on common themes, I provide suggestions for election o�cials

to minimize these risks.

The ability to uniquely re-identify paper ballots also has implications for election

auditing. When performing an audit, we may select individual ballots for review based

on fingerprints, enabling e�cient ballot-based auditing. These fingerprints e↵ectively

serve as serial numbers on the ballots without posing the same privacy risks as serial

numbers. Paper fingerprints may also help uncover attacks that are problematic for

some auditing schemes, including attacks that rely on ballot box stu�ng. These

additional checks can potentially result in greater election integrity.

1Direct recording electronic voting machines with a voter-verified (or voter-verifiable) paper
trail—a computerized voting system producing redundant paper ballot records that each voter may
verify and approve.

2Some fingerprinting techniques, including the method described in Chapter 3, can reidentify
paper even if the voting process results in markings or creases.
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Section 4.1 describes the new threats posed by paper fingerprinting as well as

mechanisms that may mitigate these threats. Section 4.2 proposes new auditing

techniques that make use of paper fingerprinting. Section 4.3 briefly discusses the

impact of paper fingerprinting on an end-to-end voting scheme. Finally, Section 4.4

concludes the discussion.

4.1 New Threats

Although the ability to fingerprint and reidentify paper ballots poses a serious threat

to voter privacy, o�cials may take steps to mitigate these threats. In this section,

I detail several threats to voting systems utilizing paper ballots and discuss possible

countermeasures.

Even without fingerprinting techniques, a number of methods exist for making

paper ballots unique and potentially identifiable. Voters may choose an unusual

write-in candidate or a unique combination of candidates to create a distinctive ballot.

Given enough races, a pseudorandom selection of choices would with high probability

create a distinctive ballot that could be later identified. Alternatively, poll workers

may mark ballots with invisible ink or lightly crease the corner of a ballot.

This chapter only considers threats created or made easier by fingerprinting pa-

per. For example, suppose that an optical scan system stores a fingerprint or high

resolution scan of every ballot in the order they are cast. Given this information, an

observer that watches when voters submit their ballots and can later examine the bal-

lots for fingerprints could reidentify a voter’s paper ballot, thus revealing the voters’

choices. An easier, equally devastating attack exists without fingerprinting, however:

the optical scan machine could simply store all votes cast in order. Therefore, this

threat is not considered.
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We consider those threats in which someone other than a voter can learn the

voter’s choices for various contests. This may be with the consent of the voter. To

sell her vote, a voter may provide the fingerprint of her paper ballot to a purchaser.

If paper ballots are revealed on or after election day, the purchaser can reidentify the

appropriate ballot and verify the choices. Alternatively, someone may want the ability

to uncover non-consenting voters’ choices—whether due to curiosity or a desire to

coerce voters—by fingerprinting blank paper ballots in advance and later associating

voters with completed ballots. Anyone from voters and election o�cials to paper mill

workers may be a participant in these threat scenarios. The term adversary refers to

any party that seeks to undermine ballot secrecy.

In evaluating each of these voting systems, it is important to describe the limits

of the adversary. In each example, we are dealing with an adversary who is able to

successfully apply the techniques described in Chapter 3 to a large number of blank

ballots. This adversary attempts to coerce a voter to make a particular selection.

The adversary has the ability to control which ballot his target voter receives, or has

the ability to learn, after the election, information about the order in which voters

voted, which can reveal information about which ballot the voter used.

This reveals two general threat models relating to paper identification. The first

occurs when an adversary is able to fingerprint a significant portion of the ballot

stock prior to an election and later associate voters with particular ballots. The

second occurs when an individual voter scans her own ballot, either voluntarily or

under coercion. I will now discuss threats for various voting systems under each

attack model.

4.1.1 Ballot Stock Fingerprinting

In this attack model, an adversary with access to the ballot stock is able to fingerprint

or make high-quality scans of a significant portion of the ballots. By combining the
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ballot fingerprints with information about the order of voters an adversary may be

able to undermine ballot secrecy. It is important discuss this attack for various voting

systems to gauge the relative impact of this attack on each system.

DRE-VVPAT with Paper Spool. Paper fingerprinting poses a serious threat to

DRE-VVPAT systems using printers with paper spools. We do not consider contin-

uous spool-to-spool DRE-VVPAT systems, as they fundamentally fail to protect the

secret ballot [55]. In cut-and-drop VVPAT systems, the record tape is used in a fixed

order. As each voter casts his ballot, the tape is cut, dropping the segments into a

box. Suppose that an adversary has unmonitored access to this paper spool prior

to election day. The adversary can unroll the spool and repeatedly fingerprint short

segments of the paper tape in order, storing the fingerprints in that order. He can

then re-roll the spool and return it. Because the DRE will use the paper tape in

order, the order of the segment fingerprints will correspond to the order that ballots

are cast on the DRE. Although some segments may be destroyed when the ballots are

separated, use of short enough segments can ensure that at least one segment remains

intact per paper ballot, allowing complete re-ordering. For this attack to succeed, an

adversary would need the ability to scan paper tape segments prior to the election,

to observe the order that some or all voters enter the voting booth, and to fingerprint

some or all of the resulting paper ballots later.

It is important to note that an adversary need not observe all voters or fingerprint

all ballots before and after the election. Suppose that an adversary can reidentify

her own ballot without scanning it, perhaps by casting a distinctive ballot, creating

a point reference with respect to future ballots. If you enter the voting booth im-

mediately after the adversary, she knows that your ballot will contain the segments

immediately following her ballot’s segments. Therefore, if the adversary can deter-
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mine the fingerprint of her ballot after the election, she can guess the fingerprint on

your ballot. Numerous similar correlation attacks are possible.

DRE-VVPAT with Paper Sheets. Using a DRE-VVPAT with standard, dis-

connected paper sheets does not mitigate all threats of a paper spool. Anyone that

can fingerprint these sheets and has some knowledge of the order in which they will

be loaded can mount attacks similar to those involving paper spools. In this case,

an adversary would need the ability to scan some or all paper ballots prior to the

election, to gain some knowledge of the order that these paper sheets will be loaded

into the DRE, to observe the order that some or all voters enter the voting booth,

and to fingerprint some or all of the resulting paper ballots later.

Paper-Based Voting. The issues with paper-based voting are similar to DRE-

VVPAT with paper sheets. In this case, a voter may (potentially) have the ability to

choose his own blank paper ballot, but the voter may be paid, coerced, or confused

into making a nonrandom choice, such as taking the top ballot on the pile. Instead

we recommend giving each voter an opportunity to rerandomize the pile of ballots,

for example, by cutting the deck. Following this shu✏ing, an adversary would have

greater di�culty inferring a relationship between future voters and their ballot fin-

gerprints. To undermine a paper-based voting system, an adversary would need the

ability to scan some or all paper ballots prior to the election, to gain some knowledge

of the order of these paper sheets at the poll workers’ table, to observe the order

that some or all voters receive paper ballots (and, if voters can randomly choose or

shu✏e the ballots, to draw meaningful inferences in spite of this uncertainty), and to

fingerprint some or all of the resulting paper ballots later.

Optical Scan Voting. In many ways, optical scan voting machines present a sim-

ilar scenario to paper-based voting, but these machines also contain a scanner that
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may be capable of fingerprinting the ballots that they scan.3 The optical scan machine

may store the fingerprint and votes on each ballot as part of its normal operations

and publicly reveal this data later (Section 4.2 describes how this may be helpful for

auditing). In this case, a malicious party would need the ability to scan some or all

paper ballots prior to the election, to gain some knowledge of the order of these paper

sheets, to observe the order that some or all voters receive paper ballots (and, if voters

can randomly choose or shu✏e the ballots, to draw meaningful inferences in spite of

this uncertainty), and to fingerprint some or all of the resulting paper ballots later

(or if the voting machine records the fingerprint-vote combinations electronically, to

observe these values).

Some optical scan systems use paper ballots which contain a stub that includes

a serial number. These stubs are removed for privacy reasons before a voter submits

her ballot. Suppose that an adversary can scan ballots and associate fingerprints

with each serial number prior to the election. If the adversary can observe the serial

number of a ballot given to a voter, that adversary immediately knows the fingerprint

of that voter’s ballot. This attack emphasizes that, even if removed, serial numbers

or other identifiable attributes on a ballot can threaten voter privacy4.

Pre-Completed Ballots. Fingerprints can also enable dangerous coercion attacks

utilizing pre-completed ballots. Imagine that an adversary wishes to coerce voters

into choosing a particular candidate. The adversary can distribute precompleted

ballots to targeted individuals, recording the fingerprint of the ballot provided to

each voter. Alternatively, an adversary could distribute blank (fingerprinted) ballots

to each targeted voter, along with instructions on how to vote. If the adversary has

access to the ballots after the election, she can use the fingerprints to reidentify the

3Even if infeasible with present machines, it may become feasible as low-cost scanners increase
in resolution and gain additional capabilities.

4Thank you to the anonymous reviewer for developing this interesting attack.
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distributed ballots. This would allow the adversary to confirm that the provided

ballots are in the ballot box and contain the “correct” votes.

Mitigation.

The various attack scenarios place certain requirements on an attacker. By making

these requirements more di�cult to achieve, the feasibility of these threats may be

reduced.5

In all cases discussed in Section 4.1.1, an adversary must scan some or all paper

ballots before voters cast those ballots. To prevent an adversary from producing

scans, the paper sheets or rolls should be kept in a locked box whenever possible,

and access to the paper should be monitored prior to election day. Election o�cials

should make every e↵ort to prevent the introduction of outside, rather than o�cial,

ballots into the ballot box. Scanners and computing devices should be kept away

from the paper ballots.

Except in the case of DRE-VVPAT with paper spools, an adversary needs the

ability to completely or partially learn the order of these paper sheets. This can be

mitigated by shu✏ing the sheets immediately prior to election day. Depending on

how well-shu✏ed the ballots are, the order information necessary to mount an attack

may be destroyed. Shu✏ing is far from ideal, but it can make attacks harder.

These scenarios also rely on an adversary’s ability to observe the order that voters

obtain their paper ballots or the order that these voters enter the voting booth. Given

the need for poll workers and observers to view the process, we unfortunately cannot

eliminate these possibilities. To mitigate the threats, however, voters should have the

ability (if reasonably possible) to shu✏e or otherwise re-randomize the pile of blank

5I do not consider mitigation techniques that seek to make paper ballots more di�cult to fin-
gerprint by modifying the ballots or using a di↵erent material. Even if possible, such solutions are
likely both to be costly and to be vulnerable to future specialized attacks.
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paper ballots. This protects other voters too, as randomization of ballots increases

an adversary’s uncertainly in the relationship between voters and fingerprints.

Alternatively, cryptographic techniques may assist in ensuring properly shu✏ed

ballots. For example, see Xia et al. [106], who consider a similar problem. At this

time, we have reservations regarding the practicality and security of applying such

techniques to this problem, but existing or future techniques may prove themselves

to be e�cient and secure if carefully applied to this unique scenario.

In many cases, an adversary requires the ability to scan certain ballots following

the election. Except as necessary for auditing and other processes, scanners should

not be allowed near the ballots following the election. In general, used ballots should

be stored securely in a monitored location.

As described earlier, some optical scan machines may record fingerprint-vote com-

binations electronically, and the adversary may use this information to reidentify

voters’ ballots. These values should be stored and revealed only to the degree nec-

essary to conduct the election and audit processes. If the goal of recording ballot

fingerprints is to facilitate e�cient audits, it may be su�cient to record only the

fingerprint, limiting the potential for revealing voter selections.

No countermeasure discussed in this section is perfect on its own. In addition,

some countermeasures may inhibit other necessary goals, such as the ability to con-

duct a secure, e�cient audit. Election o�cials may choose to focus their e↵orts on

a limited number of feasible countermeasures to eliminate this threat. A cautious

ballot shu✏ing process probably has the greatest potential to eliminate the threat of

fingerprinting to ballot secrecy with minimal impact on the remainder of the election

process.
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4.1.2 Individual Ballot Fingerprinting

In this scenario, a voter reveals his votes to a third party, perhaps under coercion or

to permit vote selling. Suppose that a coercer tells a voter to scan his paper ballot

between receiving and submitting it and to return a fingerprint of the scan to the

coercer. After the election, the coercer can verify fingerprints to identify the voter’s

ballot among the set of legitimate ballots. If the coercer does not find the ballot or if

the ballot contains “incorrect” votes, the voter may face repercussions.

Similarly, a voter may sell her vote by providing a purchaser with a scan or

fingerprint of her ballot. If a legitimate ballot exists with that fingerprint and contains

the correct votes, the purchaser will pay the voter.

Mitigation

Attacks based on the ability of individual voters to fingerprint their ballots are di�cult

to prevent. If voters have the covert ability to measure inherent, unique physical

properties of their own ballots, election o�cials are left with few methods of recourse.

Our best option to mitigate this threat is disallowing scanners or similar devices near

the ballots throughout the election process. While the prospect of a voter sneaking a

scanner into the voting booth may seem far-fetched, handheld scanners, increasing-

quality cell phone cameras, and other technological innovations are increasing the

practicality of these attacks.

Arguably, voters have long had the ability to make their ballots stand out through

unique write-in choices or combinations of votes. The threat of fingerprinting di↵ers,

however, because a fingerprinted ballot is reidentifiable even if no a�rmative steps

are taken to make the ballot unique.

In each of the voting systems described in this section, each su↵ers from the ability

to identify blank ballots. This is not surprising, as this threat was not considered in

the design of these systems. In practice, there does not appear to be a simple solution
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to prevent individuals from intentionally revealing their selections, e.g. by taking a

picture of their completed ballot. The best practical solution is to limit access to cast

ballots after the election, limiting the ability of adversaries to verify that their target

voted “correctly”. On the other hand, severely limiting access to completed ballots

may conflict with other goals, such as conducting a truly transparent election.

The correct balance between maintaining the secret ballot and election trans-

parency is an important policy question. In determining the correct tradeo↵, the

impact of the auditing scheme used to verify election results must be considered. The

next section describes the implications of paper fingerprinting on the ability to e�-

ciently audit elections, and describes how existing systems can benefit from this new

capability.

4.2 Auditing Techniques

The popularity of paper ballots is partially a consequence of concerns regarding flaws

and vulnerabilities in computerized voting systems. Software cannot change a paper

ballot already in a ballot box, making voter-verified paper ballots a popular mitiga-

tion strategy. These paper ballots are only useful if someone verifies that they are

consistent with the electronically tabulated outcome.

Rather than recount all paper ballots to verify the election results, we can examine

some subset of these ballots to draw statistical inferences about the election’s outcome.

The most popular, widely used auditing approach is precinct-based auditing (e.g., [8–

10,85, 92]). With precinct-based auditing, o�cials and other parties randomly select

some subset of election precincts. For the selected precincts, o�cials manually count

the votes on all paper ballots and ensure that they match the electronic results.

Sampling at a finer level of granularity than precincts can allow for equally strong

statistical inferences with fewer paper ballots manually reviewed. The finest level

66



of granularity possible is ballot-based auditing, in which auditors select some subset

of electronic ballots and ensure that they match their corresponding paper ballots

(e.g., [21, 51, 73]). Ballot-based auditing presents a number of subtle challenges. For

example, it can be di�cult to ensure that ballots are selected at random without

compromising ballot secrecy.

Calandrino et al. describe a machine-assisted auditing method that allows ballot-

based auditing yet strives to preserve ballot secrecy [21]. Following the election, an

auditing machine prints serial numbers on paper ballots and rescans the ballots, stor-

ing the serial numbers and votes electronically. If these votes sum to the initially

reported electronic tally, auditors randomly select electronic ballots based on serial

number and manually verify that they match the corresponding paper ballots. The

scheme in [21] is able to detect discrepancies even if the auditing machine misbehaves.

We propose a method that allows ballot-based auditing without printing serial num-

bers on ballots, instead relying on paper ballot fingerprints.

For our auditing method, we make several assumptions. First, we assume that

precincts maintain a sign-in list that observers may monitor as voters enter and leave

a polling place. As is standard practice, the sign-in list is made public after the

election. This list allows anyone to determine an accurate count of the number of

voters. We assume that every voter signing in casts a ballot. In practice, voters

rarely sign in without casting a ballot, and we leave methods for ascertaining the

number of ballots cast to future work (any issues with obtaining an accurate count

a↵ects all known auditing schemes, not just the ones in this chapter). Our auditing

scheme checks for discrepancies not only between the paper and electronic records

but between those records and the totals from the sign-in list.

Many ballot-based auditing schemes assume that the set of paper ballots contains

no added ballots. Section 4.2.2 describes serious additional threats that are possible if

an adversary is able to add paper ballots to the ballot box—even if the set of correct
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paper ballots remains. These attacks can be di�cult to detect, traditionally requiring

an accurate count of the paper ballots. We discuss this threat and describe how to

use fingerprints to detect added paper ballots more e�ciently.

Auditors might also want the ability to verify that the set of paper ballots in the

ballot box matches the ones delivered to the polling place before the election. This

capability enables a number of possibilities. For example, o�cials could find the set

of legitimate paper ballots in the event of ballot-box stu�ng. Section 4.2.3 describes

how to perform this check by fingerprinting ballots immediately prior to the election.

4.2.1 Fingerprint-Based Auditing

We first discuss a scheme for using fingerprints to detect mismatches from the elec-

tronic ballots to the corresponding paper ballots in the ballot box. Our process is

designed such that, if at least B incorrect electronic ballots exist, we will find one

or more discrepancies with probability greater than or equal to a desired confidence

level c. This scheme is primarily for demonstrative purposes, as it requires revelation

of the fingerprint and full combination of votes for each ballot cast, potentially posing

serious privacy concerns. 6 This requirement undermines ballot secrecy if a voter can

distinguish her ballot through her votes.

Throughout this section, we assume the use of an optical scan voting machine.

The scheme works as follows. When a voter submits her paper ballot, the voting

machine records both the ballot’s fingerprint and a vector of the votes contained

on that ballot. At the end of the election, o�cials immediately publish both these

fingerprint-vote pairs and the voter sign-in sheet (as discussed earlier, the sign-in sheet

should be public throughout election day). The published list of fingerprint-vote pairs

must be in history-independent order, e.g. sorted lexicographically by fingerprint

6In practice, we want the audit process to determine whether we can be confident in the election’s
outcome even if we observe a small number of discrepancies. Although we use the more conventional
goal of election auditing in this chapter, these methods can extend to meet the more ambitious
practical goal.
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value, in order to minimize information revealed to an adversary about voter order.

Ideally, the list should be maintained in a history-hiding data structure [13]. While

the published list of fingerprints may be independent of voter order, our biometric

may still allow some bits to be revealed, e.g. through steganographic means [33].

Revealing fingerprint-vote pairs allows any citizen to confirm that the number of

electronic ballots matches the number of signed-in voters and that the votes posted

add up to the reported tallies. Our final step is to sample from the electronic ballots

and ensure that matching paper ballots exist. Otherwise, a discrepancy exists. Note

that switching a vote on a single ballot from Candidate A to Candidate B a↵ects the

margin between the candidates by two: Candidate A loses one vote and Candidate

B gains one vote. Therefore, we seek to reject the hypothesis that B = dmargin/2e

incorrect electronic ballots exist.

To sample from the electronic ballots, we make a list of the (precinct, fingerprint,

vote vector) triples, one for each ballot, ordered lexicographically. We will sample

items from this list and ensure that a ballot containing the proper fingerprint and

vote vector exists in the given precinct for each item selected. Two possible sampling

methods exist, which we adapt from [9, 10, 21]. The first option is to sample a fixed

number of items from this list. We call this the fixed sample size method. Given N

total reported ballots, a minimum of B = dmargin/2e incorrect electronic ballots,

and a desired confidence level of c, we require a minimum sample size, n, of:

n = min

(
u | 1�

u�1Y

k=0

N � B � k

N � k
� c

)

Alternatively, we may select each electronic ballot independently with probability

p, where p � 1 � (1 � c)1/B. This latter approach yields a variable sample size and

results in marginally more ballots selected on average, but it is more amenable to

optimizations, as discussed below. We call this the variable sample size method.
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General Election

Issue
Totals Fixed SS* Varying SS* Pct-Based

# Votes Margin # Bal (Man) # Bal (Man) # Bal (Man)
U.S. Senate 2,370,445 0.39% 2,337 2,339 1,141,900

Const. Amnd. 2,328,224 14.12% 63 65 8,062
U.S. House 173,159 2.82% 325 327 62,469
U.S. House 212,079 19.19% 46 48 1,958
U.S. House 241,134 16.36% 54 56 6,120
U.S. House 235,280 11.88% 76 77 12,991
Delegate 14,963 5.75% 157 159 11,442
Average 796,469 8.11% 437 439 177,849

Table 4.1: Ballot-Based Auditing with Fingerprints (For Both Fixed and Varying
Sample Size Methods) vs. Precinct-Based Auditing on 2006 Virginia General Election
Data. (Note: these numbers are originally from [21], which describes post-election
auditing methods that yield equivalent sample sizes to the methods in this chapter.)
SS* = Sample Size

Given n or p, a number of existing papers describe how to securely and e�ciently

sample from a list of items, and we refer the reader to those papers for greater detail

(see [20, 21, 28]).

When a ballot is sampled for audit, auditors feed the ballots from that precinct into

a scanner. The scanner stops when it observes a match for that ballot’s electronically

reported fingerprint. All auditors and observers may verify that the vote vectors

match, and observers may use their own scanners to verify the fingerprint. Because

this check only verifies that a paper ballot exists matching each sampled electronic

ballot, observers in this process only need the ability to personally scan the paper

ballots that reportedly match the selected electronic ones—not all paper ballots—

making the process far more e�cient.

Table 4.1 compares the number of ballots manually reviewed with these methods

to the number manually reviewed with precinct-based auditing (using the methods

in [92]) for races with margin under 20% in the 2006 Virginia general election. For

example, in Virginia’s 2006 Webb-Allen U.S. Senate race with a margin of 0.39%, the
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fixed sample size fingerprinting method requires manual review of 2,337 of 2,370,445

ballots, and the varying sample size method requires review of 2,339 ballots (on

average). Precinct-based auditing requires manual review of 1,141,900 ballots (on

average).

Additional techniques are possible to reduce the number of ballots to be sam-

pled, potentially resulting in dramatic e�ciency gains. For example, we may take the

reported contents of ballots into account when determining the probability that we

review each of those ballots. Given that all vote vectors must be public for this au-

diting method, techniques that consider ballot contents are straightforward to apply.

See [21] for details.

This auditing process requires that fingerprint-vote vector combinations be re-

leased and that scanners be allowed near the ballots following the election. As dis-

cussed earlier in this section and in Section 4.1, these choices may enable certain

attack scenarios, so o�cials must carefully utilize other countermeasures to ensure

ballot secrecy. It is important to note that only audited ballots need to have their

fingerprints published. In addition, the practical e�ciency and simplicity of this pro-

cess are unclear and require additional testing. As an alternative, one could check

the electronic ballot to paper ballot correspondence using machine-assisted audit-

ing [21], reducing the number of ballots for which the vote combination is revealed

publicly (with that technique, only precincts containing sampled ballots must reveal

vote vectors). The techniques in the following sections would remain applicable.

4.2.2 A Paper-to-Electronic Check

Suppose that, in addition to an ability to change electronic records, an adversary has

the ability to add paper ballots to the ballot box. This may be true for a number of

reasons. For example, a compromised DRE may print additional paper ballots or an

o�cial may push extra ballots through the slot of a locked ballot box. The previous
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check verifies that each electronic ballot has a corresponding paper ballot. If an

adversary can add paper ballots, however, the “corresponding paper ballots” might

be fraudulently added ballots while the legitimate ballots may be excluded from the

electronic results. This would allow an adversary to steal all electronic ballots in a

precinct, yet every electronic ballot would have a matching paper ballot (the ballot

box would just have many extra unmatching ballots). In this case, we must check not

only that each electronic ballot has a corresponding paper ballot but also that each

paper ballot has a corresponding electronic ballot. Traditionally, this would require

a count of the number of paper ballots in all precincts, but fingerprinting can allow

more e�cient approaches.

The most practical approach to detect fraud is to force an adversary to only

perform electronic fraud by making paper-based fraud too risky. An adversary who

only commits electronic fraud provides a number of benefits. First, it forces the

adversary to cheat in more places. It is straight forward to ensure the number of

electronic votes does not exceed the number of registered voters who signed-in at a

particular precinct. Auditing can also ensure that each ballot in the ballot box has a

corresponding electronic record. This provides a mechanism for detecting ballot box

stu�ng. Finally, it forces the adversary to commit to the fraud prior to an audit

beginning.

Note that we ignore an adversary who also has the ability to remove paper ballots

from the ballot box. Election procedures often dictate that the ballot box should

only be unlocked under the watchful eyes of observers. Further, an adversary that

can also remove ballots could commit fraud that would be undetectable from the

paper and electronic records alone. Such an adversary could arbitrarily modify the

paper ballots to match any fraudulent electronic results. While this section focuses

on adversaries who can commit electronic fraud, the next section focuses on how to
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detect an adversary who can only attack paper ballots, and how this attack can be

detected.

As in the previous section, we assume use of an optical scan voting machine. When

a voter submits her paper ballot, the voting machine records the ballot’s fingerprint

(but not the vote-vector, so voter privacy is protected). At the end of election day,

o�cials publish both the fingerprints and the voter sign-in sheet. Any interested party

can confirm that the reported number of ballots matches the number of voters. As

the final step, election o�cials and other interested parties will have the opportunity

to select paper ballots from certain precincts’ ballot boxes and ensure that they

match the published fingerprints from those precincts. The key property is that we

can achieve the desired level of confidence in the election’s outcome as long as any

participant selects randomly from the ballot box.

When participants perform this sampling, if they see a ballot not on the reported

list of fingerprints for the precinct, this indicates that additional ballots are in the

ballot box. The security of this scheme rests on an adversary’s inability to produce

another ballot with the same fingerprint as a legitimate ballot. These methods rely

on di�cult-to-duplicate properties of paper and are not possible with printed serial

numbers. If we sample a ballot with serial number 10 from a ballot box, no guarantee

exists that another ballot with the same serial number is not in the same box. If we

sample a ballot with a given fingerprint from a ballot box, we may reasonably believe

that no additional ballots with the same fingerprint are in the same box, even if an

adversary has attempted to undermine this property.

4.2.3 Pre-Scanning Ballots

An additional property that elections o�cials may wish to check is whether the set

of paper ballots in the ballot box is the same as, or a subset of, the set of ballots

delivered to the precinct on election day. To do so, o�cials may pre-scan and publish
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fingerprints for the paper ballots prior to election day. Immediately prior to the

election, election o�cials, candidates, etc. may verify that these published fingerprints

are correct by checking that paper ballots exist matching the published fingerprints

and that no extra paper ballots exist (using methods described in the previous two

sections). In this way, participants may draw statistically strong conclusions that the

set of paper ballots matches the published fingerprints.

When voters submit their paper ballots, the optical scan machine may store fin-

gerprints for the ballots.7 Following the election, o�cials may sample fingerprints

and paper ballots to verify that legitimate ballots ended up in the ballot box and

that the set of reportedly unused ballots were actually unused. Among other things,

this check would allow auditors to isolate the set of legitimate ballots in a ballot box,

helping to deter attacks that rely on slipping in fake ballots.

4.3 Analysis of an End-to-End Scheme

While the primary focus is on widely deployed voting systems, it is important to

briefly discuss the impact of paper fingerprinting on an existing end-to-end voting

scheme. A full analysis of these consequences (particularly positive consequences) is

somewhat system-specific. The analysis suggests, however, that end-to-end systems

must demonstrate caution if relying on paper.

Scantegrity II. Chaum et al. present a system providing end-to-end verifiability:

Scantegrity II [25]. It is an interesting proposal, and it provides for a useful case

study.

The basic Scantegrity II system relies on a process similar to traditional optical

scan voting, but selection of a candidate causes certain codes written in invisible ink

7The machine could even reject ballots with invalid fingerprints, though o�cials should not trust
that the machine performs this check.
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to appear on the paper ballot. Voters may copy the codes for chosen candidates to a

paper tab that is to be removed from the ballot and serves as a receipt. These paper

tabs contain serial numbers that match serial numbers printed on the paper ballots

themselves. When voters cast their ballots, the relationships from voters to codes to

candidates is partially destroyed, and the ballots are kept in a locked box (see [25]

for additional details and explanation). The system relies on these security measures

to prevent an adversary from recovering a voter’s ballot or otherwise learning the

choices on that ballot.

By keeping paper ballots secure at all times following submission of the ballots,

the Scantegrity II system provides a certain level of defense against attacks utilizing

paper fingerprinting. If paper ballots are not revealed after voting concludes, an

adversary cannot reassociate those ballots with pre-computed fingerprints. Although

some risk exists if this assumption of physical security is violated, the serial numbers

printed on ballots pose a far greater risk than fingerprints. Overall, the assumptions of

the basic Scantegrity II system increase the di�culty of fingerprinting-based attacks,

but a violation of these assumptions would raise the possibility of attacks like those

against any other optical scan system.

Paper fingerprinting can present a significant benefit in this context, however.

One threat to this system is if an adversary can introduce false ballots with the same

code corresponding to multiple candidates (see [25]). Using the techniques in Section

4.2.3, o�cials may assemble a list of valid ballot fingerprints prior to election day.

In the event that a voter receives a fraudulent ballot, the optical scan machine could

detect and reject the unexpected ballot.

While fingerprinting can pose serious risks to the Scantegrity II system if assump-

tions are violated, it also presents an opportunity to improve on existing work. The

benefits and drawbacks of fingerprinting will vary dramatically based on details of

the end-to-end system. As a general rule, however, any end-to-end system that relies
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on the uniformity of paper to provide security is at risk. Nevertheless, careful analy-

sis may reveal mitigation strategies and even ways in which paper fingerprinting can

strengthen these systems.

4.4 Discussion

Paper fingerprinting poses both challenges and opportunities for election o�cials.

This chapter outlined several threats to ballot secrecy due to paper identification

and suggested some mitigation strategies to counter these threats. While the most

obvious consequences of paper identification are negative, it can also help improve

election integrity. Fingerprints can enable an e�cient post-election audit process and

help detect and prevent additional threats to election integrity.

As technology and algorithms improve, it may be possible for digital cameras and

other handheld devices to fingerprint ballots. These new advances will pose additional

risks to ballot privacy and should be addressed by future work. In the near future,

however, paper will likely remain a critical component of the voting process due to

its reliability, cost, familiarity to the public, and ability to stymie many threats to

electronic voting systems.
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Chapter 5

Bubble Trouble: O↵-Line

De-Anonymization of Bubble

Forms

Scantron-style fill-in-the-bubble forms are a popular means of obtaining human re-

sponses to multiple-choice questions. Whether conducting surveys, academic tests,

or elections, these forms allow straightforward user completion and fast, accurate

machine input. Although not every use of bubble forms demands anonymity, com-

mon perception suggests that bubble completion does not result in distinctive marks.

This chapter challenges this assumption, demonstrating that it is false under certain

scenarios, enabling use of these markings as a biometric. The ability to uncover identi-

fying bubble marking patterns has far-reaching potential implications, from detecting

cheating on standardized tests to threatening the anonymity of election ballots.

Bubble forms are widely used in scenarios where confirming or protecting the

identity of respondents is critical. Over 137 million registered voters in the United

States reside in precincts with optical scan voting machines [101], which traditionally

use fill-in-the-bubble paper ballots. Voter privacy (and certain forms of fraud) relies
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on an inability to connect voters with these ballots. Surveys for research and other

purposes use bubble forms to automate data collection. The anonymity of survey

subjects not only a↵ects subject honesty but also impacts requirements governing

human subjects research [99]. Over 1.6 million members of the high school class

of 2010 completed the SAT [27], one of many large-scale standardized tests using

bubble sheets. Educators, testing services, and other stakeholders have incentives

to detect cheating on these tests. The implications of these findings extend to any

use of bubble forms for which the ability to “fingerprint” respondents may have

consequences, positive or negative.

(a) Person 1 (b) Person 2 (c) Person 3

(d) Person 4 (e) Person 4 - Gray

Figure 5.1: Example marked bubbles. The background color is white in all examples
except Figure 5.1(e), which is gray.

The General Framework provides a high-level outline for examining the assump-

tion that marked bubbles do not convey information that can identify the respondent,

see Figure 5.2. To evaluate this assumption, we use a desktop scanner to capture dig-

ital images of documents containing marked bubbles and extract the portions which
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Figure 5.2: Application of the General Framework, introduced in Chapter 2, to iden-
tifying the respondent responsible for marking a bubble.

contain marked bubbles (Stage 2 of the General Framework). In Section 5.1.1 (Stage

3), we extract a set of features that capture the unique properties of a marked bub-

ble. We then apply standard machine learning techniques in Section 5.1.2 (Stage 4)

to distinguish between respondents based on the properties of their marked bubbles.

To evaluate our results on real-world data, we use a corpus of over ninety answer

sheets from a survey of high school students in Section 5.2 (Stage 5). For certain

parameters, our algorithms’ top match is correct over 50% percent of the time, and the

correct respondent falls in the top 3 matches 75% percent of the time. In addition, we

test our ability to detect when someone other than the expected respondent completes

a form, simultaneously achieving false positive and false negative rates below 10%. We

conduct limited additional tests to confirm our results and explore details available

from bubble markings.

Depending on the application, these techniques can have positive or negative

repercussions (see Section 5.3). Analysis of answer sheets for standardized tests

could provide evidence of cheating by test-takers, proctors, or other parties. Sim-

ilarly, scrutiny of optical-scan ballots could uncover evidence of ballot-box stu�ng

and other forms of election fraud. With further improvements in accuracy, the meth-

ods introduced here could even enable new forms of authentication. Unfortunately,

the techniques could also undermine the secret ballot and anonymous surveys. For

example, some jurisdictions publish scanned images of ballots following elections, and

employers could match these publicly available ballots against bubble-form employ-
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ment applications. Bubble markings serve as a biometric even on forms and surveys

otherwise containing no explicitly identifying information. We discuss methods for

minimizing the negative impact of this work while exploiting its positive uses (see

Section 5.4).

Because our test data is somewhat limited, we discuss the value of future additional

tests (see Section 5.6). For example, longitudinal data would allow us to better

understand the stability of an individual’s distinguishing features over time, and

stability is critical for most uses discussed in the previous paragraph.

5.1 Learning Distinctive Features

Filling in a bubble is a narrow, straightforward task. Consequently, the space for

inadvertent variation is relatively constrained. The major characteristics of a filled-in

bubble are consistent across the image population—most are relatively circular and

dark in similar locations with slight imperfections—resulting in a largely homogeneous

set. See Figure 5.1. This creates a challenge in capturing the unique qualities of each

bubble and extrapolating a respondent’s identity from them.

We assume that all respondents start from the same original state—an empty

bubble with a number inscribed corresponding to the answer choice (e.g., choices 1-5

in Figure 5.1). When respondents fill in a bubble, opportunities for variation include

the pressure applied to the drawing instrument, the drawing motions employed, and

the care demonstrated in uniformly darkening the entire bubble. In certain contexts,

such as signature verification, these details can be useful. In this work, we consider

applications for which it would be infeasible to monitor the exact position, pressure,

and velocity of pencil motions throughout the coloring process. These variations in

motion and pressure manifest as visible di↵erences in marked bubbles. When exam-

ining the resulting static images, our focus is to identify the characteristic features of
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markings made by each respondent. Should access to dynamic information be pos-

sible, it would only strengthen our results. We consider the implications of dynamic

information for bubble-based authentication in Section 5.3.

5.1.1 Generating a Bubble Feature Vector

Image recognition techniques often use feature vectors to concisely represent the im-

portant characteristics of an image. As applied to bubbles, a feature vector should

capture the unique ways that a mark di↵ers from a perfectly completed bubble, fo-

cusing on characteristics that tend to distinguish respondents. Because completed

bubbles tend to be relatively homogeneous in shape, many common metrics do not

work well here. To measure the unique qualities, we generate a feature vector that

blends several approaches from the image recognition literature. Specifically, we use

PCA, shape descriptors, and a custom bubble color distribution to generate a feature

vector for each image.

Principal Component Analysis (PCA) is one common technique for generating a

feature set to represent an image [52]. At a high level, PCA reduces the dimensionality

of an image, generating a concise set of features that are statistically independent from

one another. PCA begins with a sample set of representative images to generate a

set of eigenvectors. In most of our experiments, the representative set was comprised

of 368 images and contained at least one image for each (respondent, answer choice)

pair. Each representative image is normalized and treated as a column in a matrix.

PCA extracts a set of eigenvectors from this matrix, forming a basis. We retain the

100 eigenvectors with the highest weight. These eigenvectors account for at least 90%

of the information contained in the representative images.

To generate the PCA segment of our feature vector, a normalized input image

(treated as a column vector) is projected onto the basis defined by the 100 strongest

eigenvectors. The feature vector is the image’s coordinates in this vector space—i.e.,
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Figure 5.3: An example bubble marking with an approximating circle. The circle
minimizes the sum of the squared deviation from the radius. We calculate the circle’s
center and mean radius, the marking’s variance from the radius, and the marking’s
center of mass.

the weights on the eigenvectors. Because PCA is such a general technique, it may fail

to capture certain context-specific geometric characteristics when working exclusively

with marked bubbles.

Figure 5.4: Each dot is split into twenty-four 15° slices. Adjacent slices are combined
to form a sector, spanning 30°. The first few sectors are depicted here.

To compensate for the limitations of PCA, we capture shape details of each bubble

using a set of geometric descriptors and capture color variations using a custom

metric. Peura et al. [81] describe a diverse a set of geometric descriptors that measure
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PCA Sector Shape Color Distribution
100 Features 368 Features 336 Features

804 Features

Figure 5.5: Feature vector components and their contributions to the final feature
vector length.

statistics about various shapes. This set includes a shape’s center of mass, the center

and radius of a circle approximating its shape, and variance of the shape from the

approximating circle’s radius (see Figure 5.3). The approximating circle minimizes

the sum of squared radius deviations. We apply the specified descriptors to capture

properties of a marked bubble’s boundary. Instead of generating these descriptors for

the full marked bubble alone, we also generate the center of mass, mean radius, and

radial variance for “sectors” of the marked bubble. To form these sectors, we first

evenly divide each dot into twenty-four 15° “slices.” Sectors are the 24 overlapping

pairs of adjacent slices (see Figure 5.4). Together, these geometric descriptors add

368 features.

Finally, we developed and use a simple custom metric to represent color details.

We divide a dot into sectors as in the previous paragraph. For each sector, we create a

histogram of the grayscale values for the sector consisting of fifteen buckets. We throw

away the darkest bucket, as these pixels often represent the black ink of the circle

border and answer choice numbering. Color distribution therefore adds an additional

14 features for each sector, or a total of 336 additional features.

The resulting feature vector consists of 804 features that describe shape and color

details for a dot and each of its constituent sectors (see Figure 5.5). See Section 5.2.3,

where we evaluate the benefits of this combination of features. Given feature vec-
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tors, we can apply machine learning techniques to infer distinguishing details and

di↵erentiate between individuals.

5.1.2 Identifying Distinguishing Features

Once a set of feature vectors are generated for the relevant dots, we use machine

learning to identify and utilize the important features. Our analysis tools make

heavy use of Weka, a popular Java-based machine learning workbench that provides

a variety of pre-implemented learning methods [46]. In all experiments, we used Weka

version 3.6.3.

We apply Weka’s implementation of the Sequential Minimal Optimization (SMO)

supervised learning algorithm to infer distinctive features of respondents and classify

images. SMO is an e�cient method for training support vector machines [82]. Weka

can accept a training dataset as input, use the training set and learning algorithm

to create a model, and evaluate the model on a test set. In classifying individual

data points, Weka internally generates a distribution over possible classes, choosing

the class with the highest weight. For us, this distribution is useful in ranking the

respondents believed to be responsible for a dot. We built glue code to collect and

process both internal and exposed Weka data e�ciently.

5.2 Evaluation

To evaluate our methods, we obtained a corpus of 154 surveys distributed to high

school students for research unrelated to our study. Although each survey is ten

pages, the first page contained direct identifying information and was removed prior

to our access. Each of the nine available pages contains approximately ten questions,

and each question has five possible answers, selected by completing round bubbles

numbered 1-5 (as shown in Figure 5.1).
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From the corpus of surveys, we removed any completed in pen to avoid training

on writing utensil or pen color.1 Because answer choices are numbered, some risk

exists of training on answer choice rather than marking patterns—e.g., respondent X

tends to select bubbles with “4” in the background. For readability, survey questions

alternate between a white background and a gray background. To avoid training

bias, we included only surveys containing at least five choices for each answer 1-4 on

a white background (except where stated otherwise), leaving us with 92 surveys.

For the 92 surveys meeting our criteria, we scanned the documents using an Epson

v700 Scanner at 1200 DPI. We developed tools to automatically identify, extract, and

label marked bubbles by question answered and choice selected. After running these

tools on the scanned images, we manually inspected the resulting images to ensure

accurate extraction and labeling.

Due to the criteria that we imposed on the surveys, each survey considered has

at least twenty marked bubbles on a white background, with five bubbles for the “1”

answer, five for the “2” answer, five for the “3” answer, and five for the “4” answer.2

For each experiment, we selected our training and test sets randomly from this set

of twenty bubbles, ensuring that sets have equal numbers of “1,” “2,” “3,” and “4”

bubbles for each respondent and trying to balance the number of bubbles for each

answer choice when possible.

In all experiments, a random subset of the training set was selected and used

to generate eigenvectors for PCA. We required that this subset contain at least one

example from each respondent for each of the four relevant answer choices but placed

no additional constraints on selection. For each dot in the training and test sets, we

1We note that respondents failing to use pencil or to complete the survey anecdotally tended not
to be cautious about filling in the bubbles completely. Therefore, these respondents may be more
distinguishable than those whose surveys were included in our experiment.

2To keep a relatively large number of surveys, we did not consider the number of “5” answers
and do not use these answers in our analysis.
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generated a feature vector using PCA, geometric descriptors, and color distribution,

as described in Section 5.1.1.

We conducted two primary experiments and a number of complementary exper-

iments. The first major test explores our ability to re-identify a respondent from

a test set of eight marks given a training set of twelve marks per respondent. The

second evaluates our ability to detect when someone other than the o�cial respon-

dent completes a bubble form. To investigate the potential of bubble markings and

confirm our results, we conducted seven additional experiments. We repeated each

experiment ten times and report the average of these runs.

Recall from Section 5.1.2 that we can rank the respondents based on how likely

we believe they are to be responsible for marking a particular bubble. For example,

the respondent that created a dot could be the first choice or fiftieth choice of our

algorithms. A number of our graphs e↵ectively plot a cumulative distribution showing

the percent of test cases for which the true corresponding respondent falls at or above

a certain rank—e.g., for 75% of respondents in the test set, the respondent’s true

identity is in the top three guesses.

5.2.1 Respondent Re-Identification

This experiment measured the ability to re-identify individuals from their bubble

marking patterns. For this test, we trained our model using twelve sample bubbles

per respondent, including three bubbles for each answer choice 1-4. Our test set for

each respondent contained the remaining two bubbles for each answer choice, for a

total of eight test bubbles per respondent. We applied the trained model to each

of the 92 respondents’ test sets and determined whether the predicted identity was

correct.

To use multiple marks per respondent in the test set, we classify the marks indi-

vidually, yielding a distribution over the respondents for each mark in the set. After
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Figure 5.6: Respondent re-identification with 12 training bubbles and 8 test bubbles
per respondent.

obtaining the distribution for each test bubble in a group, we combine this data by

averaging the likelihoods that the bubbles correspond to each respondent.3 Our al-

gorithms then order the respondents from highest to lowest average confidence, with

highest confidence corresponding to the top choice.

On average, our algorithm’s first guess identified the correct respondent with

51.1% accuracy. The correct respondent fell in the top three guesses 75.0% of the

time and in the top ten guesses 92.4% of the time. See Figure 5.6, which shows

the percentage of test bubbles for which the correct respondent fell at or above each

possible rank. This initial result suggests that individuals complete bubbles in a highly

distinguishing manner, allowing re-identification with surprisingly high accuracy.

3Alternative methods of combining likelihood estimates, such as multiplying or adding, were
considered and evaluated. However, averaging provided the most accurate predictions. This is likely
due to the attenuated e↵ect of outliers in the set of likelihoods.
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Evaluating Single Contest Outcomes

In some circumstances it is desirable to estimate the likelihood that a respondent voted

a particular way in a single contest. For example, suppose Bob gives his employees an

‘anonymous’ survey consisting of a number of true/false questions. At the completion

of the survey Bob wishes to know the likelihood that one of his employees, Alice, voted

a particular way on a single question. Bob doesn’t know exactly which survey was

completed by Alice – after all the survey was designed to be anonymous. To calculate

the likelihood that Alice voted in a particular way on a particular question, Bob weighs

the selection made on each survey against the likelihood that the corresponding survey

belongs to Alice according to Equation 5.1.

S = {s|s
i

= True}

P (Alice V oted True) =
X

s✏S

P (s = Alice) (5.1)

The outcome of this method generates results consistent with what one expects

in the absence of information about the respondents identity. For example, if Bob

has no knowledge about which survey is Alice’s, e.g. he has a uniform distribution of

confidences across the surveys, then the the result is simply the percentage of surveys

which voted a certain way in the selected contest.

5.2.2 Detecting Unauthorized Respondents

One possible application of this technique is to detect when someone other than the

authorized respondent creates a set of bubbles. For example, another person might

take a test or survey in place of an authorized respondent. We examined our ability

to detect these cases by measuring how often our algorithm would correctly detect

a fraudulent respondent who has claimed to be another respondent. We trained our
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model using twelve training samples from each respondent and examined the output

of our model when presented with eight test bubbles. The distribution of these sets

is the same as in Section 5.2.1.

For these tests, we set a threshold for the lowest rank accepted as the respondent.

For example, suppose that the threshold is 12. To determine whether a given set of

test bubbles would be accepted for a given respondent, we apply our trained model to

the test set. If the respondent’s identity appears in any of the top 12 (of 92) positions

in the ranked list of respondents, that test set would be accepted for the respondent.

For each respondent, we apply the trained model both to the respondent’s own test

bubbles and to the 91 other respondents’ test bubbles.

We used two metrics to assess the performance of our algorithms in this scenario.

The first, false positive rate, measures the probability that a given respondent would

be rejected (labeled a cheater) for bubbles that the respondent actually completed.

The second metric, false negative rate, measures the probability that bubbles com-

pleted by any of the 91 other respondents would be accepted as the true respondent’s.

We varied the threshold from 1 to 92 for our tests. We expected the relationship be-

tween threshold and false negative rate to be roughly linear: as the threshold increases

by 1 this adds an additional candidate, which will almost always be false, increasing

the false negative rate by 1
92 .

4

Our results are presented in Figure 5.7. As we increase the threshold, the false

positive rate drops precipitously while the false negative rate increases roughly lin-

early. If we increase the threshold to 8, then a fraudulent respondent has a 7.8%

chance of avoiding detection (by being classified as the true respondent), while the

true respondent has a 9.9% chance of being mislabeled a cheater. These error rates

intersect with a threshold approximately equal to 9, where the false positive and false

negative rates are 8.8%.

4This is not exact because the order of these rankings is not entirely random. After all, we seek
to rank a respondent as highly as possible for the respondent’s own test set.
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Figure 5.7: False positive and false negative rates when detecting unauthorized re-
spondents.

5.2.3 Additional Experiments

To study the information conveyed by bubble markings and support our results, we

performed seven complementary experiments. In the first, we evaluate the e↵ect that

scanner resolution has on re-identification accuracy. Next, we considered our ability

to re-identify a respondent from a single test mark given a training set containing a

single training mark from each respondent. Because bubble forms typically contain

multiple markings, this experiment is somewhat artificial, but it hints at the infor-

mation available from a single dot. The third and fourth supplemental experiments

explored the benefits of increasing the training and test set sizes respectively while

holding the other set to a single bubble. In the fifth test, we examined the tradeo↵

between training and test set sizes. The final two experiments validated our results
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Figure 5.8: Respondent re-identification accuracy using lower-resolution images. Note
that the 1200, 600, 300, and 150 DPI lines almost entirely overlap.

using additional gray bubbles from the sample surveys and demonstrated the benefits

of our hybrid feature set compared to PCA alone. As with the primary experiments,

we repeated each experiment ten times.

E↵ect of resolution on accuracy. In practice, high-resolution scans of bubble

forms may not be available, but access to lower resolution scans may be feasible. To

determine the impact of resolution on re-identification accuracy, we down-sampled

each ballot from the original 1200 DPI to 600, 300, 150, and 48 DPI. We then repeated

the re-identification experiment of Section 5.2.1 on bubbles at each resolution.

Figure 5.8 shows that decreasing the image resolution has little impact on perfor-

mance for resolutions above 150 DPI. At 150 DPI, the accuracy of our algorithm’s

first guess decreases to 45.1% from the 51.1% accuracy observed at 1200 DPI. Ac-

curacy remains relatively strong even at 48 DPI, with the first guess correct 36.4%
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Figure 5.9: One marked bubble per respondent in each of the training and test sets.
The expected value from random guessing is provided as reference.

of the time and the correct respondent falling in the top ten guesses 86.8% of the

time. While down-sampling may not perfectly replicate scanning at a lower resolu-

tion, these results suggest that strong accuracy remains feasible even at resolutions

for which printed text is di�cult to read.

Single bubble re-identification. This experiment measured the ability to re-

identify an individual using a single marked bubble in the test set and a single exam-

ple per respondent in the training set. This is a worst-case scenario, as bubble forms

typically contain multiple markings. We extracted two bubbles from each survey and

trained a model using the first bubble.5 We then applied the trained model to each

of the 92 second bubbles and determined whether the predicted identity was cor-

5Note: In this experiment, we removed the restriction that the set of images used to generate
eigenvectors for PCA contains an example from each column.
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rect. Under these constrained circumstances, an accuracy rate above that of random

guessing ( 1
92 ⇡ 1.087%) would suggest that marked bubbles embed distinguishing

features.
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Figure 5.10: Increasing the training set size from 1 to 19 dots per respondent.

On average, our algorithm’s first guess identified the correct respondent with 5.3%

accuracy, five times better than the expected value for random guessing. See Fig-

ure 5.9, which shows the percentage of test bubbles for which the correct respondent

fell at or above each possible rank. The correct respondent was in the top ten guesses

31.4% of the time. This result suggests that individuals can inadvertently convey

information about their identities from even a single completed bubble.

Increasing training set size. In practice, respondents rarely fill out a single bub-

ble on a form, and no two marked bubbles will be exactly the same. By training on

multiple bubbles, we can isolate patterns that are consistent and distinguishing for
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a respondent from ones that are largely random. This experiment sought to verify

this intuition by confirming that an increase in the number of training samples per

respondent increases accuracy. We held our test set at a single bubble for each re-

spondent and varied the training set size from 1 to 19 bubbles per respondent (recall

that we have twenty total bubbles per respondent).

Figure 5.10 shows the impact various training set sizes had on whether the correct

respondent was the top guess or fell in the top 3, 5, or 10 guesses. Given nineteen

training dots and a single test dot, our first guess was correct 21.8% of the time. The

graph demonstrates that a greater number of training examples tends to result in

more accurate predictions, even with a single-dot test set. For the nineteen training

dots case, the correct respondent was in the top 3 guesses 40.8% of the time and the

top 10 guesses 64.5% of the time.

Increasing test set size. This experiment is similar to the previous experiment,

but we instead held the training set at a single bubble per respondent and varied the

test set size from 1 to 19 bubbles per respondent. Intuitively, increasing the number

of examples per respondent in the test set helps ensure that our algorithms guess

based on consistent features—even if the training set is a single noisy bubble.

Figure 5.11 shows the impact of various test set sizes on whether the correct

respondent was the top guess or fell in the top 3, 5, or 10 guesses. We see more gradual

improvements when increasing the test set size than observed when increasing training

set size in the previous test. From one to nineteen test bubbles per respondent, the

accuracy of our top 3 and 5 guesses increases relatively linearly with test set size,

yielding maximum improvements of 4.3% and 7.6% respectively. For the top-guess

case, accuracy increases with test set size from 5.3% at one bubble per respondent

to 8.1% at eight bubbles then roughly plateaus. Similarly, the top 10 guesses case

plateaus near ten bubbles and has a maximum improvement of 8.0%. Starting from
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Figure 5.11: Increasing the test set size from 1 to 19 dots per respondent.

equivalent sizes, the marginal returns from increasing the training set size generally

exceed those seen as test set size increases. Next, we explore the tradeo↵ between

both set sizes given a fixed total of twenty bubbles per respondent.

Training-test set size tradeo↵. Because we have a constraint of twenty bubbles

per sample respondent, the combined total size of our training and test sets per

respondent is limited to twenty. This experiment examined the tradeo↵ between the

sizes of these sets. For each value of x from 1 to 19, we set the size of the training

set per respondent to x and the test set size to 20 � x. In some scenarios, a person

analyzing bubbles would have far larger training and test sets than in this experiment.

Fortunately, having more bubbles would not harm performance: an analyst could

always choose a subset of the bubbles if it did. Therefore, our results provide a lower

bound for these scenarios.

95



1 3 5 7 9 11 13 15 17 190
10
20
30
40
50
60
70
80
90

100

Training Set Size (Test Set Size = 20 − x) 

%
 A

t o
r A

bo
ve

 R
an

k

 

 

Top 10
Top 5
Top 3
Top Guess

Figure 5.12: Trade-o↵ between training and test set sizes.

Figure 5.12 shows how varying training/test set sizes a↵ected whether the correct

respondent was the top guess or fell in the top 3, 5, or 10 guesses. As the graph

demonstrates, the optimal tradeo↵ was achieved with roughly twelve bubbles per

respondent in the training set and eight bubbles per respondent in the test set.

Validation with gray bubbles. To further validate our methods, we tested the

accuracy of our algorithms with a set of bubbles that we previously excluded: bubbles

with gray backgrounds. These bubbles pose a significant challenge as the paper has

both a grayish hue and a regular pattern of darker spots. This not only makes it

harder to distinguish between gray pencil lead and the paper background but also

limits di↵erences in color distribution between users. See Figure 5.13.

As before, we selected surveys by locating ones with five completed (gray) bubbles

for each answer choice, 1-4, yielding 97 surveys. We use twelve bubbles per respondent
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Figure 5.13: This respondent tends to have a circular pattern with a flourish stroke at
the end. The gray background makes the flourish stroke harder to detect programat-
ically. There isn’t su�cient contrast – in general – to detect the flourish consistently.

in the training set and eight bubbles in the test set, and we apply the same algorithms

and parameters for this test as the test in Section 5.2.1 on a white background.
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Figure 5.14: Using the unmodified algorithm with the same configuration as in Fig-
ure 5.6 on dots with gray backgrounds, we see only a mild decrease in accuracy.
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Figure 5.15: Performance with various combinations of features.

Figure 5.14 shows the percentage of test cases for which the correct respondent fell

at or above each possible rank. Our first guess is correct 42.3% of the time, with the

correct respondent falling in the top 3, 5, and 10 guesses 62.1%, 75.8%, and 90.0% of

the time respectively. While slightly weaker than the results on a white background

for reasons specified above, this experiment suggests that our strong results are not

simply a byproduct of our initial dataset.

Feature vector options. As discussed in Section 5.1.1, our feature vectors combine

PCA data, shape descriptors, and a custom color distribution to compensate for the

limited data available from bubble markings. We tested the performance of our

algorithms for equivalent parameters with PCA alone and with all three features

combined. This test ran under the same setup as Figure 5.6 in Section 5.2.1.
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(a) Person A (b) Person B

Figure 5.16: Bubbles from respondents often mistaken for each other. Both respon-
dents use superficially similar techniques, leaving unmarked space in similar locations.

For both PCA and the full feature set, Figure 5.15 shows the percentage of test

cases for which the correct respondent fell at or above each possible rank. The

additional features improve the accuracy of our algorithm’s first guess from 39.0% to

51.1% and the accuracy of the top ten guesses from 87.2% to 92.4%.

5.2.4 Discussion

Although our accuracy exceeds 50% for respondent re-identification, the restrictive

nature of marking a bubble limits the distinguishability between users. We briefly

consider a challenging case here.

Figure 5.16 shows marked bubbles from two respondents that our algorithm of-

ten mistakes for one another. Both individuals appear to use similar techniques to

complete a bubble: a circular motion that seldom deviates from the circle bound-

ary, leaving white-space both in the center and at similar locations near the border.

Unless the minor di↵erences between these bubbles are consistently demonstrated by

the corresponding respondents, di↵erentiating between these cases could prove quite

di�cult. The task of completing a bubble is constrained enough that close cases are

nearly inevitable. In spite of these challenges, however, re-identification and detection

of unauthorized respondents are feasible in practice.
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5.3 Impact

This work has both positive and negative implications depending on the context and

application. While we limit our discussion to standardized tests, elections, surveys,

and authentication, the ability to derive distinctive bubble completion patterns for

individuals may have consequences beyond those examined here. In Section 5.6, we

discuss additional tests that would allow us to better assess the impact in several

of these scenarios. In particular, most of these cases assume that an individual’s

distinguishing features remain relatively stable over time. Tests on longitudinal data

are necessary to evaluate this assumption.

5.3.1 Standardized Tests

Scores on standardized tests may a↵ect academic progress, job prospects, educator

advancement, and school funding, among other possibilities. These high stakes pro-

vide an incentive for numerous parties to cheat and for numerous other parties to

ensure the validity of the results. In certain cheating scenarios, another party an-

swers questions on behalf of an o�cial test-taker. For example, a surrogate could

perform the entire test, or a proctor could change answer sheets after the test [41,58].

The recent cheating scandal in Long Island, NY, where over 20 students are accused

of cheating, is one of a number of recent examples where cheating was widespread [7].

The ability to detect when someone other than the authorized test-taker completes

some or all of the answers on a bubble form could help deter this form of cheating.

Depending on the specific threat and available data, several uses of our techniques

exist. Given past answer sheets, test registration forms, or other bubbles ostensibly

from the same test-takers, we could train a model as in Section 5.2.2 and use it to

infer whether a surrogate completed some or all of a test.6 Although the surrogate

6Note our assumption that the same unauthorized individual has not completed both the training
bubbles and the current answer sheet.
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may not be in the training set, we may rely on the fact that the surrogate is less

likely to have bubble patterns similar to the authorized test-taker than to another

set of test-takers. Because our techniques are automated, they could flag the most

anomalous cases—i.e., the cases that would be rejected even under the least restrictive

thresholds—in large-scale datasets for manual review.

If concern exists that someone changed certain answers after the test (for example,

a proctor corrected the first five answers for all tests), we could search for questions

that are correctly answered at an usually high rate. Given this information, two pos-

sible analysis techniques exists. First, we could train on the less suspicious questions,

e.g. incorrect answer selections, and use the techniques of Section 5.2.2 to determine

whether the suspicious ones on a form are from the same test-taker. In the case where

a proctor may modify the markings for wrong and right answers, a question can be

categorized as suspicious if it contains erasure markings [83]. Alternatively, we could

train on the non-suspicious answer choices from each form and the suspicious answer

choices from all forms other than a form of interest. Given this model, we could apply

the techniques of Section 5.2.1 to see whether suspicious bubbles on that form more

closely match less-suspicious bubbles on the same form or suspicious bubbles on other

forms.

5.3.2 Elections

Our techniques provide a powerful tool for detecting certain forms of election fraud

but also pose a threat to voter privacy.

Bubble-based analysis can help uncover fraudulent absentee ballots. Because ab-

sentee ballots do not require a voter to be physically present, concerns exist about

individuals fraudulently obtaining and submitting these ballots [64]. For example,

nursing home operators are regularly suspected of coercing the votes of their pa-

tients [64]. By identifying patterns in bubbles across absentee ballots submitted from
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the same address, election o�cials could gain confidence that the ballot was filled out

by the intended party.

Unfortunately, because bubble markings can serve as a biometric, they can also

be used in combination with seemingly innocuous auxiliary data to undermine ballot

secrecy. Some jurisdictions now release scanned images of ballots following elections

with the goal of increasing transparency (e.g., Humboldt County, California [1], which

releases ballot scans at 300 DPI). If someone has access to these images or otherwise

has the ability to obtain ballot scans, they can attempt to undermine voter privacy.

Although elections may be decided by millions of voters, an attacker could focus

exclusively on ballots cast in a target’s precinct. New Jersey readjusts larger elec-

tion districts to contain fewer than 750 registered voters [2]. Assuming 50% turnout,

ballots in these districts would fall in groups of 375 or smaller. In Wisconsin’s con-

tentious 2011 State Supreme Court race, 71% of reported votes cast fell in the 91%

of Wisconsin wards with 1,000 or fewer total votes [103].

Suppose that an interested party, such as a potential employer, wishes to determine

how you voted. Given the ability to obtain bubble markings known to be from you (for

example, on an employment application), that party can replicate our experiment in

Section 5.2.1 to isolate one or a small subset of potential corresponding ballots. What

makes this breach of privacy troubling is that it occurs without the consent of the voter

and requires no special access to the ballots (unlike paper fingerprinting techniques,

which require access to the physical ballot). The voter has not attempted to make

an identifying mark, but the act of voting results in identifying marks nonetheless.

This threat exists not only in traditional government elections but also in union and

other elections, assuming that cast ballots are published, or otherwise available to the

attacker.

Finally, one known threat against voting systems is pattern voting. For this threat,

an attacker coerces a voter to select a preferred option in a relevant race and an un-

102



usual combination of choices for the other races. The unusual voting pattern will

allow the attacker to locate the ballot later and confirm that the voter selected the

correct choice for the relevant race. One proposed solution for pattern voting is to cut

ballots apart to separate votes in individual contests [24]. Our work raises the pos-

sibility that physically divided portions of a ballot could be connected, undermining

this mitigation strategy.

5.3.3 Surveys

Human subjects research is governed by a variety of restrictions and best practices

intended to protect subjects from harm. One factor to be considered when collecting

certain forms of data is the level of anonymity a↵orded to subjects. If a dataset

contains identifying information, such as subject name, this may impact the types of

data that should be collected and procedural safeguards imposed to protect subject

privacy. If subjects provide data using bubble forms, these markings might e↵ectively

serve as a form of identifying information, tying the form to the subject even in the

absence of a name. Re-identification of subjects can proceed in the same manner

as re-identification of voters, by matching marks from a known individual against

completed surveys (as in Section 5.2.1).

Regardless of whether ethical or legal questions are raised by the ability to identify

survey respondents, this ability might a↵ect the honesty of respondents who are aware

of the issue. Dishonesty also poses a problem for commercial surveys that do not

adhere to the typical practices of human subjects research.

The impact of this work for surveys is not entirely negative, however. In certain

scenarios, the person responsible for administering a survey may complete the forms

herself or modify completed forms, whether to avoid the work of conducting the

survey or to yield a desired outcome. Should this risk exist, similar analysis to the

standardized test and election cases could help uncover the issue.
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5.3.4 Authentication

Because bubble markings are a biometric, they may be used alone or in combination

with other techniques for authentication. Using a finger or a stylus, an individual

could fill in a bubble on a pad or a touchscreen. Because a computer could monitor

user input, various details such as velocity and pressure could also be collected and

used to increase the accuracy of identification, potentially achieving far stronger re-

sults than in Section 5.2.2. On touchscreen devices, this technique may or may not be

easier for users than entry of numeric codes or passwords. Additional testing would

be necessary for this application, including tests of its performance in the presence of

persistent adversaries. While bubble markings alone are unlikely to provide very high

confidence, they could be useful as part of a multi-factor authentication strategy.

5.4 Mitigation

The impact of this chapter’s techniques can be both beneficial and detrimental, but

the drawbacks may outweigh the benefits for certain applications. In those circum-

stances where bubble-based techniques are necessary, or in cases where access to

marked bubbles is desirable for other reasons, a mitigation strategy is necessary. De-

pending on the application, the appropriate mitigation strategy varies. We discuss

three classes of mitigation strategies. First, we examine procedural safeguards that

restrict access to forms or scanned images. Second, we consider changes to the forms

themselves or how individuals mark the forms. Finally, we explore techniques that

obscure or remove identifying characteristics from scanned images. No strategy alone

is perfect, but various combinations may be acceptable under di↵erent circumstances.

Elections are one application where a mitigation strategy is necessary. The in-

creasing focus on the fairness and transparency of elections has prompted a number

of di↵erent strategies designed to achieve greater transparency. One approach spear-
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headed by Humboldt County, located in northern California, is to publish completed

ballots online after each election [43]. This enables individual citizens to perform a

manual recount, verifying the o�cial results, hopefully leading to an increase in voter

confidence. Interestingly, there are examples of significant errors being detected by

members of the public based on these manual recounts [108]. In one such example,

197 votes were not included in the o�cial tally [108]. The accidental exclusion of

these votes was not detected by the audit mechanism in place at the time. Examples

like this significantly decrease the likelihood that future access to completed ballots

will be stymied. The long-term implication is that marked bubbles will be publicly

available – potentially revealing information about how a particular citizen voted.

This rest of this section focuses on a variety of strategies to mitigate some of the risks

associated with many of the previously discussed applications, but with a primary

focus on mitigation strategies for elections.

5.4.1 Procedural Safeguards

Procedural safeguards that restrict access to both forms themselves and scanned

images can be both straightforward and e↵ective. Collection of data from bubble

forms typically relies on scanning the forms, but a scanner need not retain image

data for any longer than required to process a respondent’s choices. If the form and

its image are unavailable to an adversary, our techniques would be infeasible.

In some cases, instructive practices or alternative techniques already exist. For

example, researchers conducting surveys could treat forms with bubble markings in

the same manner as they would treat other forms containing identifying information.

In the context of elections, some jurisdictions currently release scanned ballot images

following an election to provide a measure of transparency. This release is not a

satisfactory replacement for a statistically significant manual audit of paper ballots

(e.g., [10,21]), and a public release is not necessary for such an audit. Because scanned
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images could be manipulated or replaced, statistically significant manual confirma-

tion of the reported ballots’ validity remains necessary. Furthermore, releasing the

recorded choices from a ballot (e.g., Washington selected for President, Lincoln se-

lected for Senator, etc.) without a scanned ballot image is su�cient for a manual

audit.

Whether the perceived transparency provided by the release of ballot scans justifies

the resulting privacy risk is outside the scope of this work. Nevertheless, should the

release of scanned images be desirable, the next section describes methods to change

the form or marking device to minimize variation in markings between respondents.

5.4.2 Changes to Forms or Marking Devices

As explored in Section 5.2.3, changes to the forms themselves such as a gray back-

ground can impact the accuracy of our tests. The unintentional protection provided

by this particular change was mild and unlikely to be insurmountable. Nevertheless,

more dramatic changes to either the forms themselves or the ways people mark them

could provide a greater measure of defense.

Changes to the forms themselves should strive to limit either the space for observ-

able human variation or the ability of an analyst to perceive these variations. The

addition of a random speckled or striped background in the same color as the writing

instrument could create di�culties in cleanly identifying and matching a mark. If

bubbles had wider borders, respondents would be less likely to color outside the lines,

decreasing this source of information. Bubbles of di↵erent shapes or alternate marking

techniques could encourage less variation between users. For example, some optical

scan ballots require a voter simply to draw a line to complete an arrow shape [5], and

these lines may provide less identifying information than a completed bubble.

The marking instruments that individuals use could also help leak less identifying

information. Some Los Angeles County voters use ink-marking devices, which stamp a
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circle of ink for a user [59]. Use of an ink-stamper would reduce the distinguishability

of markings, and even a wide marker could reduce the space for inadvertent variation.

5.4.3 Scrubbing Scanned Images

In some cases, the release of scanned bubble forms themselves might be desirable. In

California, Humboldt County’s release of ballot image scans following the 2008 elec-

tion uncovered evidence of a software glitch causing certain ballots to be ignored [44].

Although a full manual audit could have caught this error with high probability, bal-

lot images provide some protection against unintentional errors in the absence of such

audits.

In this case, the ability to remove identifying information from scanned forms

while retaining some evidence of a respondent’s actions is desirable. One straightfor-

ward approach is to cover the respondent’s recorded choices with solid black circles.

Barring any stray marks or misreadings, this choice would completely remove all

identifying bubble patterns. Unfortunately, this approach has several disadvantages.

First, a circle could cover choices that were not selected, hiding certain forms of er-

rors. Second, suppose that a bubble is marked but not recorded. While the resulting

image would allow reviewers to uncover the error, such marks retain a respondent’s

identifying details. The threat of a misreading and re-identification could be su�cient

to undermine respondent confidence, enabling coercion.

An alternative to the use of black circles is to replace the contents of each bubble

with its average color, whether the respondent is or is not believed to have selected the

bubble. The rest of the scan could be scrubbed of stray marks. This would reduce the

space for variation to color and pressure properties alone. Unfortunately, no evidence

exists that these properties cannot still be distinguishing. In addition, an average

might remove a respondent’s intent, even when that intent may have been clear

to the scanner interpreting the original form. Similar mitigation techniques involve
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blurring the image, reducing the image resolution, or making the image strictly black

and white, all of which have similar disadvantages to averaging colors.

One interesting approach comes from the facial image recognition community.

Newton et al. [74] describe a method for generating k-anonymous facial images. This

technique replaces each face with a “distorted” image that is k-anonymous with re-

spect to faces in the input set. The resulting k-anonymous image maintains the

expected visual appearance, that of a human face. The exact details are beyond the

scope of this thesis, but the underlying technique reduces the dimensionality using

Principal Component Analysis and an algorithm for removing the most distinctive

features of each face [74].

Application of facial anonymization to bubbles is straightforward. Taking marked

and unmarked bubbles from all ballots in a set, we can apply the techniques of

Newton et al. to each bubble, replacing it with its k-anonymous counterpart. The

result would roughly maintain the visual appearance of each bubble while removing

certain unique attributes. Unfortunately, this approach is imperfect in this scenario.

Replacement of an image might hide a respondent’s otherwise obvious intent. In

addition, distinguishing trends might occur over multiple bubbles on a form: for

example, an individual might mark bubbles di↵erently near the end of forms (this

is also a problem for averaging the bubble colors). Finally, concerns exist over the

guarantees provided by k-anonymity [15]. For example, it does not follow that given

a set of n individually k-anonymous bubbles that the set of k-anonymous bubbles

are also k-anonymous. In contrast, di↵erential privacy [35]provides guarantees on

this type of composition, i.e. a set of n ✏�di↵erentially private images would be

✏n�di↵erentially private [67]. Future work is necessary to explore the application of

di↵erential privacy to images.

We caution that the value of these images for proving the true contents of physical

bubble forms is limited: an adversary with access to the images, whether scrubbed
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or not, could intentionally modify them to match a desired result. These approaches

are most useful where the primary concern is unintentional error.

5.5 Related Work

There are a number of existing techniques which address applications related to those

presented in this chapter. It is informative to compare and contrast these with the

bubble-based techniques. In practice, bubble-based techniques are often complemen-

tary to existing approaches, permitting outcomes which were not originally achievable.

Biometrics. Biometrics can be based on physical or behavioral characteristics of

an individual. Physical biometrics are based on physical characteristics of a person,

such as fingerprints, facial features, and iris patterns. Behavioral biometrics are

based on behavioral characteristics that tend to be stable and di�cult to replicate,

such as speech or handwriting/signature [50]. Bubble completion patterns are a form

of behavioral biometric.

As a biometric, bubble completion patterns are similar to handwriting, though

handwriting tends to rely on a richer, less constrained set of available features. In

either case, analysis may occur on-line or o↵-line [71]. In an on-line process, the veri-

fying party may monitor characteristics like stroke speed and pressure. In an o↵-line

process, a verifying party only receives the resulting data, such as a completed bub-

ble. Handwriting-based recognition sometimes occurs in an on-line setting. Because

o↵-line recognition is more generally applicable, our analysis occurred purely in an

o↵-line manner. In some settings, such as authentication, on-line recognition would

be possible and could yield stronger results.

Document re-identification. Some work seeks to re-identify a precise physical

document for forgery and counterfeiting detection (e.g., [26]). While the presence of
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biometrics may assist in re-identification, the problems discussed in this work di↵er.

We seek to discover whether sets of marked bubbles were produced by the same

individual. Our work is agnostic with respect to the origin of the sets, i.e. whether

they come from the same form, di↵erent forms, or duplicates of forms. Nevertheless,

our work and document re-identification provide complementary techniques. For

example, document re-identification could help determine whether the bubble form

(ballot, answer sheet, survey, etc.) provided to an individual matches the one returned

or detect the presence of fraudulently added forms.

Cheating Detection. Existing work uses patterns in answer choices themselves

as evidence of cheating. Myagkov et al. uncover indicators of election fraud using

aggregate vote tallies, turnout, and historical data [70]. Similarly, analysis of answers

on standardized tests can be particularly useful in uncovering cheating [40, 58]. For

example, if students in a class demonstrate mediocre overall performance on a test yet

all correctly answer a series of di�cult questions, this may raise concerns of cheating.

The general strategy in this line of research is to look for answers that are anomalous

in the context of either other answers or auxiliary data.

Bubble-based analysis is also complementary to these anti-cheating measures.

Each technique e↵ectively isolates sets of suspicious forms, and the combination of the

two would likely be more accurate than each independently. Although our techniques

alone do not exploit contextual data, they have the advantage of being unbiased by

that data. If a student dramatically improves her study habits, the resulting improve-

ment in test scores alone might be flagged by other anti-cheating measures but not

our techniques.
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5.6 Future Work

Although a variety of avenues for future work exist, we focus primarily on possibilities

for additional testing and application-specific uses here.

Our sample surveys allowed a diverse set of tests, but access to di↵erent datasets

would enable additional useful tests. We are particularly interested in obtaining

and using longitudinal studies—in which a common set of respondents fill out bubble

forms multiple times over some period—to evaluate our methods. While providing an

increased number of examples, this could also identify how a respondent’s markings

vary over time, establish consistency over longer durations, and confirm that our

results are not significantly impacted by writing utensil. Because bubble forms from

longitudinal studies are not widely available, this might entail collecting the data

ourselves.

While we tested our techniques using circular bubbles with numbers inscribed,

numerous other form styles exist. In some cases, respondents instead fill in ovals or

rectangles. In other cases, selection di↵ers dramatically from the traditional fill-in-

the-shape approach—for example, the line-drawing approach discussed in Section 5.4

bears little similarity to our sample forms. Testing these cases would not only explore

the limits of our work but could also help uncover mitigation strategies.

Section 5.3 discusses a number of applications of our techniques. Adapting the

techniques to work in these scenarios is not always trivial. For example, Section 5.5

discusses existing anti-cheating techniques for standardized tests. Combining the

evidence provided by existing techniques and ours would strengthen anti-cheating

measures, but it would also require some care to process the data quickly and merge

results.

Use of bubble markings for authentication would require both additional testing

and additional refinement of our techniques. Given a dataset containing on-line in-

formation, such as writing instrument position, velocity, and pressure, we could add
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this data to our feature vectors and test the accuracy of our techniques with these

new features. This additional information could increase identifiability considerably—

signature verification is commonly done on-line due to the utility of this data—and

may yield an e↵ective authentication system. Depending on the application, a bubble-

based authentication system would potentially need to work with a finger rather than

a pen or stylus. Because the task of filling in a bubble is relatively constrained,

this application would require cautious testing to ensure that an adversary cannot

impersonate a legitimate user.

5.7 Discussion

Marking a bubble is an extremely narrow task, but as this work illustrates, the

task provides su�cient expressive power for individuals to unintentionally distinguish

themselves. Using a dataset with 92 individuals, we demonstrate how to re-identify

a respondent’s survey with over 51% accuracy. In addition, we are able to detect

an unauthorized respondent with over 92% accuracy with a false positive rate be-

low 10%. We achieve these results while performing o↵-line analysis exclusively, but

on-line analysis has the potential to achieve even higher rates of accuracy.

The implications of this study extend to any system utilizing bubble forms to

obtain user input, especially cases for which protection or confirmation of a respon-

dent’s identity is important. Additional tests can better establish the threat (or

benefit) posed in real-world scenarios. Mitigating the amount of information con-

veyed through marked bubbles is an open problem, and solutions are dependent on

the application. For privacy-critical applications, such the publication of ballots, we

suggest that groups releasing data consider means of masking respondents’ markings

prior to publication.
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Chapter 6

Identifying LoudSpeakers

Loudspeakers, more commonly known as audio speakers or just speakers, are ubiq-

uitous in our daily lives. Televisions, stereo systems, cars, phones, and computers

(to name just a few devices) all have loudspeakers, and most of us hear loudspeaker-

generated sounds every day. In their traditional role, loudspeakers are treated as

simple devices that reproduce an input audio signal, e.g. a movie soundtrack or mu-

sic. It may be surprising that loudspeakers, even those of the same make and model,

reproduce the same audio signal di↵erently. Our experiments show that each loud-

speaker generates a characteristic distortion of the input signal. These distortions are

measurable using only a cheap microphone and are consistently reproduced, allowing

individual loudspeakers to be distinguished from one another.

When playing the same sound through speakers of di↵erent make or model, we

expect to hear slightly di↵erent outputs from each speaker. One speaker may be

louder, softer or ‘richer’ for a given audio signal. These perceived di↵erences are the

result of varying designs, materials and manufacturing processes. Listeners under-

stand that audio generated by di↵erent models of loudspeakers will generate di↵erent

output. When purchasing loudspeakers, buyers select the make or model that sounds

the best, given their price range. However, when dealing with multiple instances of
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a loudspeaker, those of the same make and model, listeners (falsely) expect identical

outputs. Purchasers do not often request the particular speaker on which they based

their selection; they are satisfied with one of the same make and model.

We perform a series of experiments to measure the characteristic distortion of

loudspeakers and the ability to distinguish between them based on this distortion.

By combining signal processing techniques and machine learning, we are able to

distinguish among a set of 19 seemingly identical loudspeakers of the same make

and model with over 98% accuracy. Using Amazon’s Mechanical Turk, we obtained

measurements from 107 loudspeakers of di↵erent makes and models. From this set,

we are able to re-identify individual loudspeakers with over 81% accuracy. For some

applications, distinguishing between a known set is not enough. We also explore the

ability to fingerprint loudspeakers, producing an equal-error-rate of approximately

15% based on measurements from 107 di↵erent loudspeakers. We also experimented

with di↵erent types of input signals and the resiliency of loudspeaker identification

to noise.
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Figure 6.1: Application of the General Framework, introduced in Chapter 2, to dis-
tinguishing between seemingly identical loudspeakers.

To put this work in context, we briefly discuss some related techniques, e.g. the

ability to identify speakers (as opposed to loudspeakers), and relevant signal pro-

cessing techniques in Section 6.1. The remainder of this chapter closely follows the

General Framework, see Figure 6.1. Section 6.2 (Stage 1), provides an overview of how

loudspeakers work and the components that contribute to the measured distortions.

Next, we describe how to measure the distortions generated by a loudspeaker and

114



how to generate a feature vector that captures this characteristic distortion in Sec-

tion 6.3 (Stages 2-3). In Section 6.3.3 (Stage 4), we apply machine learning to train a

classifier to distinguish between feature vectors originating from di↵erent loudspeak-

ers. In a series of experiments we evaluate the ability of our classifier to distinguish

between loudspeakers under a variety of conditions in Section 6.4 (Stage 5). A num-

ber of factors can contribute to the measured distortions and we perform a series of

experiments, described in Section 6.5, that investigate their impact on the ability of

loudspeakers to be identified. In Section 6.6 we explore the ability to authenticate

a particular loudspeaker and in Section 6.7 we evaluate the potential for forging a

loudspeaker’s distortion. We then describe a number of applications and implications

for this technique in Sections 6.8 and 6.9. Finally, we summarize our conclusions

in 6.10.

6.1 Background and Related Work

Distinguishing other devices. Identifying physical devices based on deviations

from expected properties is not a new concept. In recent years the research commu-

nity has developed a variety of methods to identify scanners, digital cameras, RFID

tags and distinguish between various appliances [37, 57, 61, 107]. In each of these

cases, manufacturing defects and inherent physical attributes of embedded compo-

nents make devices in each of these categories identifiable.

Desktop scanners are identifiable based on the noise pattern of their particular

light sensors [57]. Due to variations in the sensitivity of the light sensor on scanners,

scanned images exhibit a characteristic scanner sensor noise. By measuring the noise

signature of a scanned image, the scanner on which an image was scanned can be

identified with high accuracy. Digital cameras exhibit similar noise signatures. With
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digital cameras, the sensor noise is the result of non-uniformity in the photoresponse

of their light sensors [61].

More recently, Gupta et. al. explore the implications of Electro-Magnetic Inter-

ference (EMI) caused by switched mode power supplies. The power supplies in many

consumer devices induce a characteristic noise pattern on the power lines. Gupta et.al.

show that this noise pattern can be measured via the home’s power lines allowing de-

vices, such as fluorescent bulbs, washing machines, laptop chargers, and televisions to

be distinguished. Enev et al. explore the implications of this technique to distinguish

between brands and models of televisions, and even detect the content displayed on

the television [37].

Audio Fingerprinting. A technique related to the one we describe here is audio

fingerprinting. The most well-known example is Shazam. Shazam is a commercial

service that attempts to identify the song, or movie based on qualities of a recorded

audio signal [34,102]. In general, audio fingerprinting services treat noise as a problem

to overcome. In practice, audio fingerprinting services must di↵erentiate between the

audio signal and background noise as well has handle variations in an audio signal

based on the channel encoding to identify the source audio signal. Our application

is distinct from that of audio fingerprinting services. In the applications we are

concerned with, we know the source audio signal and treat the ‘noise’—deviations

from the expected value—as the feature under study.

Speaker Identification. Speaker Identification, while similar in terminology, is

a conceptually separate topic [84]. Speaker identification focuses on identifying which

person is speaking in an audio recording. In this work, we are not focused on the

individual who is speaking, but on identifying the loudspeaker that is generating a

particular sound, and measuring its characteristic distortion.

Signal Processing Overview. Audio signals can be modeled as an infinite

sum of sinusoidal waves. The Fourier Transform is a common technique in signal

116



processing to determine the constituent sinusoidal components of an audio signal [78]

The Fast Fourier Transform (FFT) simply measures the amplitude of each sine wave.

In digital signals, the FFT is a finite sum that approximates the contribution of groups

of frequencies. In our analysis, we made use of the FFTW library for calculating the

Fast Fourier Transform of an audio signal [39]. The Fourier Transform measures

both phase and amplitude of constituent frequencies. In this work, we focus on the

amplitude.

6.2 Speaker Overview

Loudspeakers from di↵erent manufacturers or di↵erent models from the same man-

ufacturer have di↵erent designs and are often crafted out of di↵erent materials. To

generate sound from an input signal, loudspeakers rely on the same basic physical

mechanism. In this section, we describe at a high level how loudspeakers work and

how the physical components of loudspeakers contribute to measurable distortions in

the generated audio signal.

6.2.1 How a Speaker Works

Figure 6.2: Cross section of a typical
loudspeaker. The main component
is the circular magnet, which creates
a constant magnetic field. Attached
to the diaphragm is the voice coil
also known as the driver. The driver
is connected to amplifier. Changes
in current induce a change in the
magnetic field, causing the driver to
move in response, moving the di-
aphragm, pushing the air. Image
source [3].
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Loudspeakers generate sound by creating pressure variations in a compressible

medium, like air. These pressure variations are transferred through the air and in-

terpreted by the ear, which measures changes in air pressure, as sound. The basic

design of a loudspeaker is shown in Figure 6.2. A loudspeaker consists of a semi-rigid

mesh membrane called the diaphragm that is attached to the loudspeaker driver. The

driver moves the membrane forward and backward in proportion to the connected au-

dio signal. The driver typically consists of an iron metal bar wrapped with a coil.

The driver, also called the voice coil, is placed inside of a circular magnet, which cre-

ates a fixed magnetic field. To move the speaker, electrical current is passed through

the metal coil causing the driver to act as an electromagnet. Changes in electrical

current induce a change in the magnetic field causing the driver to physically move

in response. This in turn moves the diaphragm, creating variations in air pressure,

generating sound.

Each loudspeaker component can introduce variations into the generated sound.

For example, variations in the electromagnetic properties of the driver can cause

di↵erences in the velocity and smoothness of motion when electrical current is applied.

The diaphragm is a semi-rigid membrane whose material can di↵er based on the

desired auditory properties. Defects in manufacturing of the membrane can contribute

to deviations in the accurate reproduction of certain frequencies. Audiophiles speak

about the burn-in e↵ect as a method of breaking in a new loudspeaker. We do not

measure the burn-in e↵ect, but focus on the distinct variations produced by ‘burned-

in’ loudspeakers. Resonant frequencies and manufacturing defects in any component

may also play a role in the accurate reproduction of the audio signal [65].

6.2.2 The Frequency Response of a Speaker

A loudspeaker’s frequency response is one common way to characterize a loudspeaker’s

ability to reproduce audio signals composed of a range of frequencies. An ideal loud-

118



Figure 6.3: An Ideal speaker has a flat frequency response. A speaker with a flat
response produces all frequencies with the same magnitude. In this context, the 0
dB line denotes the perfect reproduction of an input signal. Responses above 0 dB
indicate amplification of a frequency, while responses below 0 dB indicate attenuation.

speaker reproduces all frequencies between 20 Hz to 20 kHz, roughly the range of

human hearing, without amplifying or attenuating particular frequencies. For exam-

ple, an ideal speaker could generate a 440 Hz tone with the same magnitude as a 4400

Hz tone. If a loudspeaker reproduces certain frequencies more strongly than others,

the output will not be an accurate reproduction of the input audio signal.

The Ideal Speaker

A speaker that can reproduce frequencies between 20 Hz and 20 kHz with the same

magnitude has a flat frequency response. See Figure 6.3. This range of frequencies

is a common rule of thumb for the range of speakers that humans can hear [77]. A

flat response means that the input signal is reproduced accurately, i.e. no distortion.

If such a speaker were to exist, it would perfectly reproduce any input audio signal

with frequencies within the flat region.
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In practice, no loudspeaker has a perfectly flat frequency response across the range

of desired frequencies. It is inherently di�cult to manufacture a loudspeaker capable

of generating a low-rumble with the same magnitude as a high-frequency tone. There

is a physical limit regarding the range of frequencies that can be accurately reproduced

by a speaker of a given size [69].

Real-World Speakers

Figure 6.4: Frequency responses for 4 real speakers of di↵erent make and model.
Source [104]

Each make and model of speaker has a di↵erent frequency response. The frequency

responses of some real-world speakers are shown in Figure 6.4. Each loudspeaker

generates the same input audio signal slightly di↵erently, analogous to a built-in

equalizer. For example, each of the measured loudspeakers generate bass frequencies

(between 40-150 Hz) more strongly than higher frequencies. When compared to the
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other loudspeakers, the Corsair SP2500 generates a 3 kHz frequency with significantly

less amplitude than a 5 kHz tone.

There is an implicit assumption that multiple instances of the same speaker will

have identical frequency responses. This is often reinforced by the notion that any

measured variations between audio generated by a speaker are random and non-

reproducible across multiple recordings. If consistently measurable di↵erences were

present within a particular speaker model, tighter manufacturing tolerances would

reduce these di↵erences, resulting in a more consistent product.

We show that individual loudspeakers, even those of the same make and model,

are identifiable based on measurable distortions. We measure these distortions using

a simple sensor, a computer’s built-in microphone. While microphones can introduce

their own distortions into the recorded signal, we did not find this to be a signifi-

cant contributing factor. We address this and other potential contributing factors in

Section 6.5.

6.3 Measuring Speaker Distortion

To measure the distortion of each loudspeaker, we generate a series of tones spanning

the range of frequencies that a loudspeaker is expected to reproduce. We generate

a series of constant tones at frequencies between 300 Hz and 10 kHz at 150 Hz

intervals. In total, 65 tones are generated. The output audio signal generated by

each loudspeaker is recorded using a microphone as 16-bit Linear PCM at a sample

rate of 44.1 kHz. This is equivalent to CD-ROM quality audio [88].

In principle, one could use the raw time-domain audio recording to distinguish

between speakers. However, using the raw audio has several drawbacks. First, it

makes identification di�cult in the presence of noise. It is also ine�cient to process

such large files. Instead, we capture the unique properties of a loudspeaker by mea-
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suring the magnitudes of certain frequencies. We are particularly interested in the 65

frequencies in the input audio signal and their neighboring frequencies.

6.3.1 Distortion Characteristics

Loudspeakers vary dramatically in their ability to reproduce a wide range of frequen-

cies. Figure 6.5 shows the FFT magnitude response for two of the laptop speakers

in our experiments at two points in time. The input audio signal consisted of 65

frequencies with the same amplitude. Notice the wide variations in the peaks of the

measured frequencies across the 300 Hz to 10 kHz range. In particular, notice the

three dips in frequency magnitudes between 4000 Hz and 5000 Hz in measurements

from Machine 1.

When reproducing an audio signal containing a set of constant tones, a loudspeaker

varies not only in the magnitude of each target frequency, but also in the magnitude

of frequencies near the target frequency. To measure the magnitude of frequencies in

each recording, we took a single FFT of the recorded output. We generated a single

FFT with a window size of 524288. The window is so large due to the fixed duration

of our recordings, and zero-padding of the input signal to the nearest power of 2. We

used a Blackman window half the size of the FFT window. Generating an FFT of

this size results in a fine grained bin size of 0.084114 Hz. We experimentally found

that performing a single FFT provided better results than a series of smaller FFTs.

This may be due to distinguishing information being present during the transition

between subsequently produced frequencies.

Figure 6.8 shows the distribution of frequencies around a target frequency of 1500

Hz for one of the speakers in our experiments. There is a wide spread of generated

frequencies from the intended 1500 Hz tone. Generating a single FFT with such a

large window can increase the resulting frequency spread, see Figure 6.8 [93]. Through

experimentation on our set of homogeneous machines (Section 6.4.1), we found most
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Figure 6.5: Frequency response measurements from two machines of the same make
and model each playing the same series of 65 tones, recorded at two di↵erent times.
There are noticeably distinct features in the responses of each machine, for example
the dips in the response peaks highlighted in (A). The plot in (E) is absolute value of
the di↵erence between measurements from the same machine, (E) = |(C)� (A)|, for
the 10Hz band surrounding each input tone (averaging 2.4 dB). In contrast, plot (F)
shows this di↵erence between the two machines (average 5.0 dB): (F ) = |(B)� (A)|.
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of the distinguishing information about a loudspeaker is captured in the 10 Hz band

surrounding the target frequency. The remaining components are likely artifacts of

the FFT.

Figure 6.5 (A-D) shows the FFT of measurements from two speakers at two points

in time. Measurements from the same speaker look more similar to one another than

measurements from di↵erent speakers. Figure 6.5A depicts the FFT of a measure-

ment taken from a single loudspeaker that exhibits some visually distinctive features.

These features also appear in Figure 6.5C, suggesting they are reproducible across

measurements, providing a characteristic that can distinguish this loudspeaker. The

feature vector for this loudspeaker should capture these and similarly distinctive char-

acteristics.

6.3.2 Generating a Feature Vector

In principle, one could use the intensities of all of the frequency measurements as a

feature vector. The resulting feature vector would be smaller than using the raw-audio

signal, but is larger than necessary to distinguish between speakers. It is tempting

to reduce the length of the feature vector by selecting the frequencies that seem to

convey the most information. Many applications dealing with audio signal feature

selection are interested in characterizing a song or movie based on di↵erences in

frequency composition. In our case, we are interested in the deviations of a particular

loudspeaker, not a generic audio signal, and characterizing these variations in a concise

manner.

In light of this, we generate a feature vector using a very simple method. We

limit the frequencies in the feature vector to those nearest to the frequencies present

in the input signal. We discard frequencies not su�ciently close to these expected

frequencies. This has two main benefits. It reduces feature vector length and limits
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the impact of background noise, which, if present, is likely to be most prominent in

the discarded frequencies.

To generate a feature vector for a loudspeaker, we play the same audio signal on

each loudspeaker. The input audio signal consists of a series of 65 known frequen-

cies. Figure 6.6 is the spectrogram of the raw input signal. We anticipate that each

loudspeaker will generate sounds with frequencies near those intended. As previously

mentioned, loudspeakers are not able to perfectly reproduce an input signal. This

can be seen in the spectrogram of one of the recordings used the experiments in

Figure 6.7. The frequency magnitudes generated by this loudspeaker vary, and it is

unable to generate frequencies with significant magnitude above 8 kHz.

Figure 6.6: Spectrogram of the raw input signal consisting of 65 tones at 150 Hz in-
tervals between 300 Hz and 10 kHz. Compare with Figure 6.7 which shows the spec-
trogram after the input signal is generated by a particular loudspeaker and recorded.
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Figure 6.7: Spectrogram of recorded audio from one of the laptops used in experiment.
Compare with Figure 6.6. There are a number of aliased frequencies that likely
correspond to strong resonances in the speaker body or room. This particular speaker
seemed incapable of generating frequencies above 8 kHz with significant magnitude.

To measure the strength with which each frequency is generated, we use the Fast

Fourier Transform (FFT). In our analysis, we used the FFTW implementation of

the Fast Fourier Transform [39]. FFTs take as input a zero-padded audio signal

and return a measurement of the contribution of each frequency to the audio signal.

For e�ciency, FFTs measure the collective contributions of groups of neighboring

frequencies. In our measurements, we had an FFT bin-size of 0.084114 Hz.

Our feature vector consists of frequency magnitudes around the 65 frequencies

in the input signal. We performed a series of experiments to determine the optimal

band of frequencies to include in the feature vector. Through experimentation, we

determined that the band of +/- 5 Hz around each input frequency captures the
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Figure 6.8: The frequency distribution of a loudspeaker’s input and output signals.
The loudspeaker distorted the input signal by generating stronger frequencies near
the intended output frequency. Even though the input signal consists of a single 1500
Hz tone, generating a single FFT with such a large window increases the resulting
frequency spread [93]. In this instance, the strength of the 1500 Hz frequency in
output signal is close to that of the input. This is not always the case. Figure 6.5 shows
measurements from two di↵erent machines where the magnitudes across di↵erent
frequencies vary greatly. We found the majority of the distinguishing information is
captured in the +/- 5 Hz band surrounding the expected frequency. For each signal,
we used a Blackman window half the size of the FFT window.

majority of the distinguishing information about a loudspeaker and resulted in a

reasonable length feature vector. For example, if our audio signal contained a 1500

Hz tone, our feature vector includes the measured intensities of frequency bins that

fall between 1495 and 1505 Hz. See Figure 6.8, which visually denotes the band

of frequencies included in the feature vector. With an FFT of size of 524288, our

FFT has a bin size of 0.084114 Hz. There are up to 119 FFT bins within the 10 Hz

frequency range we are interested in. The result is a feature vector made up of 65

frequencies x 119 measurements

frequency

= 7735 frequency amplitudes. Due to the particular bin

size, the actual number of frequency amplitudes used was 7728. In all experiments,

unless otherwise noted, our feature vector consists of 7728 frequency measurements.
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6.3.3 Distinguishing Between Loudspeakers

In each of the following experiments, we generate a set of audio recordings played by

a particular loudspeaker. For each audio recording, we generate a feature vector as

described in the previous section. Each feature vector is labeled with the loudspeaker

it came from.

We use Weka (version 3.6.3), a popular machine learning workbench with a wide

selection of pre-built machine learning algorithms, to train a set of classifiers (a model)

to distinguish each loudspeaker [46]. We experimented with a variety of a algorithms,

including nearest neighbor, naive Bayes and multilayer perceptrons, and found the

best results with Weka’s implementation of the Sequential Minimal Optimization

(SMO) supervised learning algorithm. SMO is an e�cient method for training support

vector machines. Weka accepts a training set as input and trains a set of SVMs (which

we call a model) to distinguish between the input classes. Weka evaluates the trained

model against a provided test set. Internally, when evaluating a model against an

input example, Weka generates a list of confidences corresponding to each loudspeaker

label. We developed glue-code to extract this list of confidences.

6.4 Experiments

We performed a series of experiments to measure how accurately a loudspeaker can

be identified based on the distortion of a known input signal. Our experimental

setup consisted of loudspeaker and microphone connected to a laptop computer. See

Figure 6.9. A known signal is played through the loudspeaker and simultaneously

recorded by the microphone. Audio is recorded at 44.1 kHz with a 16-bit resolution.

In most experiments, out of convenience, we utilize the laptop’s built-in speakers and

microphone.
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Figure 6.9: Typical Experimental Setup. A laptop computer is connected to a loud-
speaker and microphone. A known audio signal is played and the generated audio is
recorded by the microphone. In most cases, the loudspeaker and microphone were
built-in to the laptop. Audio was recorded at 44.1 kHz with a 16-bit sample resolution.

Our first experiment focuses on distinguishing between a set of 19 homogeneous

loudspeakers. A second experiment consists of measurements from a set of 107 het-

erogeneous machines, e.g. loudspeakers of di↵erent makes or model. We also perform

experiments to determine resiliency in the presence of noise, and the ability to distin-

guish between loudspeakers using pink noise as the input audio signal. The results

demonstrate that loudspeakers are distinguishable based on particular distortions of

the same input signal, and are relatively robust to noise.

There are a number of factors that could contribute to the measured distortions.

In Section 6.5 we describe a set of experiments designed to measure the impact of

various factors on the observed di↵erences. The main result from those experiments

is that the loudspeaker is the largest contributor to the measured distortion (for the

feature vector we used, at least), supporting accurate re-identification.

6.4.1 Identifying Homogeneous Loudspeakers

In this experiment, we are interested in measuring the ability to distinguish between

otherwise identical loudspeakers. We obtained access to a set of 19 Lenovo R61

laptops that were purchased in the same lot and have remained in the same location
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with similar usage since their purchase. Each laptop has a pair of built-in loudspeakers

of the same make and model.

To measure the characteristics of the loudspeakers built-in to each machine we

placed each laptop in the center of a large classroom. Each laptop has a microphone

built into the top of the screen. We took care to position the screen consistently, en-

suring the microphone was in the same location relative to the loudspeaker. For each

laptop, we generated a series of tones, each lasting 0.3 seconds, recording the output

using the built-in microphone. On the day when the experiments were performed,

we performed a set of 10 measurements on each of the machines in the morning, for

a total of 190 measurements. Four hours later, we returned to the same room and

re-measured the same machines in an identical fashion, resulting in an additional 190

measurements. The environmental conditions in the morning and afternoon were sim-

ilar, except in the afternoon the air conditioning was running and there was noticeably

more activity in the nearby hallway.

For each of the audio recordings, we generated a feature vector as described in

Section 6.3.2. Each feature vector was labeled with a class equal to the ID of the

machine that it came from. The feature vectors derived from the morning measure-

ments were used as the training set. The second set of 190 measurements from the

afternoon, became the test set.

We used Weka to train a classifier to distinguish between the set of loudspeakers

based on their feature vectors. We were able to distinguish between the set of 19

loudspeakers with 98.42% accuracy. Only 3 out of the 190 measurements were mis-

classified, and all came from the same machine. This experiment validated the ability

to distinguish between seemingly identical loudspeakers based solely on the distortions

they introduced. If we take a majority vote from the set of 10 measurements from

each machine in the test set, we achieve a 100% re-identification rate.
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6.4.2 Identifying Heterogeneous Loudspeakers

To generate measurements from a large and diverse set of machines we turned to

Amazon’s Mechanical Turk [18]. Amazon’s Mechanical Turk is an online service that

matches employers and workers for micro-jobs. Employers, called “requestors,” post

jobs for which they are willing to pay a worker a small fee to complete. Most jobs

are relatively simple, and workers are typically paid less than $0.50 for each job they

successfully complete.

We implemented a small client program in Java that workers downloaded. This

program generated the same series of tones as described in Section 6.3. The duration

of each tone was shortened to 0.15 seconds to encourage workers to perform multiple

measurements. Each worker recorded 10 measurements of their computer’s speakers

using their own microphones, and uploaded the recordings to our system. For each set

of 10 measurements, we paid each worker $0.25. If a worker was willing to perform an

additional 10 measurements, they were paid $0.25 for each set of 10 measurements, up

to a total of 100 measurements. The only caveat was that each set of 10 measurements

must be separated by at least 10 minutes. These restrictions were enforced by the

application. We also recorded demographic information about each client including

their OS Version, IP, and MAC Address in order to detect if any worker attempted to

circumvent the enforcement mechanism. This information was also used to improve

methods of detecting measurements from the same machine.

In total, we obtained measurements from 107 distinct machines across 19 di↵erent

countries. Of these 107 machines, 69 performed multiple measurements that occurred

more than 10 minutes apart. For each machine, we randomly selected 10 measure-

ments that were recorded at the same time, and included those in our training set. If

measurements remained for a particular machine, we selected 10 of them at random,

and included those in our test set. Using Weka, we trained our model to distinguish

between each of the 107 machines.
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For each of the 10 measurements from each machine in the test data, we evaluated

the model. To determine a match, we chose the most likely candidate consistent with

all 10 measurements. To determine the most consistent match, we averaged the list of

confidences generated by the model when evaluating each measurement. The result is

a best-guess accuracy of 81%. This result is the average across 10 runs, with di↵erent

measurements in the training and test sets. The standard deviation was 3.8%.

Knowing the most likely candidate is not su�cient for some applications. Instead,

some applications need to know the probability that the true speaker is found in

the top-N most likely candidates. We re-evaluated our models using the test data,

recording the frequency that the true loudspeaker was found at or above each rank.

See Figure 6.10. As expected, the top choice is correct 81% of the time. The correct

loudspeaker is found in the top-3 most likely candidates 86% of the time, and in the

top-10 89% of the time.

6.4.3 Pink Noise

In the previous experiment, we measured the distortion of each loudspeaker when

generating a single frequency. However, under normal operation loudspeakers gener-

ate a large number of frequencies simultaneously, e.g. when playing music or movie

soundtrack. To measure the distortion of loudspeakers across a large number of fre-

quencies simultaneously, we recorded 3 seconds of pink noise from each of the 107

loudspeakers in the previous experiment. Pink noise is similar to white noise, but

di↵ers in an important way. The power density function of pink noise decreases at a

rate of -3 dB for each octave. Pink noise is often used to test the frequency response

of loudspeakers because this power density drop-o↵ is similar to how the human ear

perceives sound [110].

For each measurement, we calculated the frequency response of each loudspeaker

using the 3 seconds of randomly generated pink noise. The same pink noise waveform
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Figure 6.10: Measurements from 107 machines are used to train a classifier. 69
machines are evaluated in the test set, and the probability that the correct speaker
is found at or above a particular rank is shown above. The top choice is correct 81%
of the time. The true speaker is found in the top-3 most likely candidates 86% of the
time, and in the top-10 89% of the time.

was played by each loudspeaker. In this case, our feature vector included every mea-

sured frequency. We trained our classifier to distinguish between each loudspeaker,

and evaluated the accuracy of our classifier on measurements from 69 of these ma-

chines. Our model achieved a re-identification accuracy of 88.57%.

6.4.4 Robustness to Noise

In many applications, loudspeakers may need to be identified in the presence of back-

ground noise. We evaluated the ability to distinguish between loudspeakers even in

the presence of noise using the set of 19 homogeneous loudspeakers. We simulated
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Figure 6.11: Depicts accuracy in the presence of noise. As more noise is present in
the signal (decreasing SNR), re-identification accuracy decreases from 98.4 % (with
clean audio), to 58.42% with SNR = 1.37, and decreases to about 40% as noise level
increases.

Potential Factor Description

Microphone The microphone is responsible for measured distortion

Location Dependent on the room acoustics, and echo.

Relative Location The location of the speaker within a room, or position of the

microphone relative to the speaker.

Time Stability of distortion over time.

Speaker Combinations of Components are cause of distortion

Amplifier The amplifier to which the speaker is connected generates a

distortion based on the input signal.

Table 6.1: Contributing factors to measured audio distortion
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background noise by adding an increasing level of randomly generated pink noise

to each measurement, measuring the signal-to-noise ratio (SNR). In this experiment

both the training and test set had equivalent levels of noise added. The results, shown

in Figure 6.11, demonstrate that we are still able to identify the same machine with

significant accuracy, even as the SNR decreases. While these results are simulated,

they provide insight into the practicality of distinguishing between loudspeakers in

noisy environments.

6.5 Contributing Factors

There are a number of factors that can contribute to measurable distortion of an

audio signal. See Table 6.1. The microphone, location of the speaker, location of mi-

crophone relative to speaker, time of measurement, the amplifier or the speaker itself

can all contribute to measurable di↵erences. We performed a series of experiments to

determine what e↵ect each of these factors has on the measured di↵erences between

speakers.

Loudspeaker Location: This experiment explored the impact of location on our

ability to distinguish between speakers. We used a set of 22 heterogeneous machines.

We placed each machine in the same location in room A (a small o�ce), and recorded

the same series of tones as described in Section 6.3. We repeated this 10 times on

each machine. We then moved the laptops to room B (a conference room), generating

an additional 10 measurements. We randomly selected 11 machines to be the training

set, with the remaining 11 machines being in the test set. Each measurement was

labeled with the room in which it was taken.

We trained our model to distinguish between rooms A and B. Our model was

unable to distinguish between rooms with significant success, achieving only 55%

accuracy, only 5% better than random guessing. The model’s inability to distinguish
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between rooms is likely a result of the way we generate our feature vector. The

feature vector consists of the intensities of frequencies in the recorded audio which

are unlikely to capture room specific characteristics, such as echo. We concluded that

the room in which a speaker is located plays only a negligible role in the ability to

distinguish between loudspeakers based on our method of selecting features.

There are a number of existing methods that can distinguish between locations

based on other audio-based methods, e.g. using delay based techniques or background

audio noise to generate feature vectors [60,95]. We chose our feature vector in a way

that minimizes the impact of delay and background noise by focusing on frequencies

nearest to those we expect to be present. While the location in which a recording is

made can have an impact on the recorded audio signal we saw no measurable impact

in our experiments.1

Relative Location: Our inability to accurately distinguish between locations

with dramatically di↵erent acoustic responses suggests that our ability to distinguish

between measurements taken at relatively similar locations will be quite low. We did

not investigate this further.

Stability Across Locations: In light of the previous experiment demonstrating

our inability to distinguish between locations, we wanted to measure the stability of

loudspeaker distortion across locations. In this experiment, we took 10 measurements

in Location A, but evaluated our model based on 10 measurements taken in Location

B. We used a set of 8 heterogeneous devices.

We trained our model on the measurements taken at Location A, and evaluated

our model based on the measurements taken at Location B. The model was able to

distinguish the correct device 94.4% of the time. This demonstrates that a speaker

1One of the strongest location based e↵ects is resonance. The resonant frequencies (also called
room modes) of a room depend on its size, shape and material properties. A room’s mode can be
approximated via f = v

2d , where v = 1130 feet

second

, the velocity of sound in air, and d is the width,
height or depth of the room [77]. For reasonable values of d, the primary room mode is well below
300 Hz [30,97]. In our experiments, we do not measure the distortion of frequencies below 300 Hz and
while multiples of the primary room mode may have an e↵ect, their impact will be attenuated [97].
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is distinguishable even if training and testing occur at di↵erent locations. This result

reinforces the notion that our method of feature vector generation captures properties

of the speaker, not the room in which the measurements are taken.

Microphone: In this experiment, we selected two otherwise identical, 2008 Apple

MacBook laptops. We placed each machine in the same location in the same room.

To generate training data, we connected a pair of Altec Lansing BXR 1220 speakers

to each machine. We collected a set of 10 measurements from each machine. Each

machine’s built-in microphone recorded the audio. Each measurement was labeled

‘Mic1’ or ‘Mic2’ corresponding to the each machine’s microphone. To generate test

data, we collected an additional set of 10 measurements from each machine using

each device’s built-in speakers with each measurement labeled with the machine that

it came from. We trained our classifier using the training data and evaluated the

ability to distinguish between microphones using the test data. We were unable to

distinguish between each machine’s built-in microphone above 50% accuracy.

Amplifier: In virtually all settings we are concerned with, the amplifier is built

into the machine to which loudspeakers are connected. This provides a 1-1 mapping

between the generated audio of the loudspeaker and amplifier built-in to the machine

it is connected to. We did not attempt to identify whether the amplifier contributed

to the perceived distortion.

Speaker Components: We did not explore the impact that each sub-component

of a speaker has on the measured distortion. We treat the speaker as a single unit.

While some audio enthusiasts customize their speakers, perhaps using di↵erent di-

aphragms or drivers, most loudspeaker owners do not.
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6.6 Authenticating Loudspeakers

Some applications rely on the ability to ‘fingerprint’ a particular loudspeaker. This is

di↵erent than distinguishing a loudspeaker from among a known set. In this case, a

‘fingerprint’ of a loudspeaker is generated at time t1. When a loudspeaker is presented

for identification, at time t2, its distortion is re-measured and compared against a

claimed identity, or a database of loudspeaker ‘fingerprints’ to determine the true

identity. Device authentication is one application where the ability to ‘fingerprint’

loudspeakers is necessary.

Device authentication typically begins with a a registration stage, where a partic-

ular property of the device is measured. At some point in the future, the device must

be identified, passing or failing the verification stage. We describe our loudspeaker

registration and verification processes and evaluate the ability to identify particular

loudspeakers.

6.6.1 Registration

To generate a ‘fingerprint’ for a loudspeaker, we measure the characteristics of the

frequency response. A loudspeaker’s frequency response is measured 10 times, just

as in Section 6.3.2. We take the average of these frequency responses. This becomes

the fingerprint for a loudspeaker. Depending on the application, this fingerprint can

be either stored in a database or digitally signed by the registration entity.

6.6.2 Verification

When a loudspeaker is presented for verification, its frequency response is compared

to that of the claimed identity. If no particular identity claim is made, then it is com-

pared against a database of ‘fingerprints’, identifying the one with the closest match,

above a certain threshold. We compare fingerprints based on the Pearson Correla-
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tion coe�cient, Corr(X, Y ) =
P

(Xi�X)⇤(Yi�Y )pP
(Yi�Y )2⇤

P
(Xi�X)2

, between the loudspeaker’s true

fingerprint and the claimed fingerprint [38] . Prior to correlation, each of fingerprints

is normalized to the interval [0, 1.0] . The loudspeaker matches the claimed identity

if the correlation is above a certain threshold, otherwise the claim is rejected.

6.6.3 Evaluation

Using the same set of 107 loudspeaker measurements used in Section 6.4.2, we evaluate

loudspeaker fingerprints as a method to verify a loudspeaker’s identity claim. In this

experiment, we take the Pearson Correlation between the loudspeaker’s fingerprint,

at t2, and its previously measured fingerprint at t1. We accept the loudspeaker’s

identity claim if the correlation falls above a certain threshold. The results, shown

in Figure 6.12, show that with a correlation threshold of 0.844, we will accept a

machine’s correctly asserted identity with 84.5% accuracy.

Many applications are concerned not only with the True Positive Rate (accepting

the correct loudspeaker), but with minimizing the intersection of False Positive and

False Negative Rates. The False Positive Rate is the probability that a impostor loud-

speaker will be accepted as the claimed loudspeaker. Conversely, the False Negative

Rate is the probability that the claimed loudspeaker will fail to be accepted. Fig-

ure 6.12 shows the True Positive Rate as a function of correlation. With a correlation

threshold of 0.75, we achieve an acceptance rate of 89.9%. Figure 6.13 describes the

False Positive and False Negative Rates as a function of correlation threshold. We

achieve an equal-error-rate of 15.5% at a correlation threshold of 0.78.

6.7 Authentication

Consider the situation where Bob wants to authenticate himself to Alice. As part

of a multi-factor authentication strategy, Alice can authenticate Bob’s loudspeakers.
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Figure 6.12: For each of the machines in the 107 machines gathered via Mechanical
Turk we calculated the fingerprint for each device based on the average response from
10 measurements. We compared this average response with any subsequent mea-
surements from the same by calculating the Pearson Correlation. As the correlation
threshold decrease from 1.0 to 0, the percent of accepted machines increases. The
dashed line is what we would expect to see for correlations between random signals.

We’ll assume that Alice and Bob met in the past, and Alice measured the distortion

properties of Bob’s loudspeakers.

When Alice receives an authentication request from someone claiming to be Bob,

she will try to verify that it originated from Bob’s computer. To do this, Alice gener-

ates a challenge—a unique audio signal—for each login attempt. For example, Alice

might choose an audio signal that is drawn randomly from a pink noise distribution.

Bob’s computer will play and simultaneously record the audio signal and submit the

recording to Alice. Using the techniques described in Section 6.3.3, Alice will accept

or reject the login attempt.
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Figure 6.13: Depicts variations in the False Positive and False Negative rates as the
threshold varies. The False Positive rate measures the probability that an impostor
loudspeaker is mistakenly accepted for the true loudspeaker. The False Negative rate
measures the probability that the true loudspeaker will be incorrectly identified as an
impostor. They intersect at 15.5% where the correlation is 0.78.

Given the level of success in the previous sections, this technique can authenticate

Bob to a certain degree of confidence. Depending on the application, this may not be

enough. Some applications may want to prevent an eavesdropper, Eve, from learning

anything meaningful about Bob’s loudspeakers. Under this threat model, Eve is able

to hear the sounds that Bob’s loudspeakers make. This the auditory equivalent of

shoulder surfing.

If Eve is able to listen to Bob authenticate to Alice multiple times, Eve may

(or may not) be able to learn the distortions of Bob’s loudspeakers and impersonate

Bob. In this threat scenario, Eve is unable to simultaneously know the generated

141



output and the specific input that generated it. We further assume that Bob and

Alice share a cryptographic key and utilize a protocol, like SSL, that can detect a

man-in-the-middle attack where Eve might attempt to relay responses between Alice

and Bob [31].

We define D(S) as the distortion on an input signal S induced by Bob’s loud-

speaker. D�1(S) is the inverse of the distortion function.

The security properties of a loudspeaker fingerprint depend on the ability of Eve

to mimic the characteristic distortions of Bob’s loudspeakers. We are still evaluating

the ability of Eve to mimic a specific loudspeaker. In light of that, even if Eve is able

to mimic Bob’s speakers, we believe the authentication scenario may remain viable.

If Alice knows D�1 exactly, then she can authenticate Bob in zero-knowledge. Eve

chooses a nonsecret distribution C over sounds. To authenticate Bob, Alice uniformly

samples a sound c from C, and sends D�1(c) as the challenge to Bob. Bob’s speakers

distort the sound to D(D�1(c)) = c. He sends the result back to Alice, and she

authenticates the result as consistent with Bob’s distortion function. Eve gains zero

knowledge, because she learns only the audible sound c which is drawn uniformly

from the non-secret distribution C. For example, if C is the pink noise distribution,

then Eve will hear pink noise which does not convey anything about Bob’s speakers.

In practice, Alice will not know D�1 exactly but will only know an approximation

D⇤�1(S) = D�1(S) + ✏(S) where ✏ is ideally close to zero. In this case Eve will see

a distribution that di↵ers from C. However, if the statistical di↵erence between C

and the distribution Eve sees is small, then Eve will not have a substantial advantage

over random guessing. For example, if Eve has advantage ↵ (compared to random

guessing) in distinguishing the observed distribution from C, then Eve will have at

most advantage ↵ in impersonating Bob.
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6.8 Applications

The ability to identify a particular speaker based on measurable distortions makes

a number of applications possible. This technique also has implications for user

privacy. Two interesting applications are user tracking and authentication. The

major distinction between tracking and authentication is whether the user consented

to being identified.

6.8.1 Authentication

This technique works on on any existing device that has a built-in speaker or micro-

phone. As described in the previous section, this technique can be used as a means of

authenticating a device. This can be an alternative form of two-factor authentication.

In traditional two-factor authentication, the user must present something they have,

usually a physical token, e.g. ATM Card, RFID, Smart Card, One-Time-Pad, and

something they know, e.g. their password or pin number. If we can authenticate the

device from which they are logging in, then the device could substitute for, or be used

in addition to, the ‘thing they have’.

This may be important in applications, such as online banking and access control.

Content providers may wish to limit the number of devices that a user can use to

access content. For example, video-game manufacturers could use this technique to

restrict access to games, except from pre-registered devices. This would prevent users

from sharing their games, as the loudspeakers used at a second location will, with

high likelihood, be identifiably di↵erent than those of the owner. Alternatively, a user

may elect to restrict the particular set of devices that are allowed to access his or her

account. Anytime a user logs in, e.g. to their bank, this may require the device to

identify itself using a simple challenge response protocol.
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6.8.2 User Tracking

Most users do not change their speakers very often. Users with laptops or smartphones

are highly unlikely to change their speakers as doing so may void their warranty. In

most instances, identifying a particular set of speakers also identifies the machine

they are connected to, and in turn the identity of the user. This, combined with

the ability of Java and Flash applications to access to a computer’s microphone,

even when running inside the browser, allows loudspeakers to act as a sticky physical

cookie. A user could be re-identified even if they clear their cookies. While the user’s

permission is required the first time the microphone is accessed clever integration of

the microphone into the particular use case mitigates this hurdle [4].

For example, many online games play music during the course of play, e.g. Angry

Birds. In some of these games, the game can attempt to access the built in microphone

on the device – perhaps by building an aspect that relies on microphone input. A

malevolent developer could try to link otherwise distinct sessions based on similarities

between a user’s physical device features.

6.9 Future Work

There are a number of potential avenues for future work. The most pressing is

duplicating this work on a variety of devices, e.g. headphones and cell phones. We

are also working to collect measurements from a larger set of speakers, especially those

of the same make and model, to strengthen the experimental results shown here.

An additional application that should be explored is caller device identification.

It may be possible to use this technique to identify whether a caller is using the

same device as the last time they called. By measuring the ‘echo’ in the call, the

device on the other end may be fingerprinted. This method may be complicated by
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the increasing use of noise cancellation and the compression of audio transmitted via

networks.

6.10 Discussion

This work challenges the assumption that seemingly identical loudspeakers are in-

distinguishable from one another. We identified and characterized the distortion

introduced by ordinary, unmodified, loudspeakers. We then developed techniques to

distinguish between loudspeakers by measuring the unique way that each loudspeaker

distorts a known audio signal.

To measure the ability to distinguish between loudspeaker, we performed a se-

ries of experiments on a set of 19 otherwise identical loudspeakers. We were able

to distinguish between them with over 98% accuracy. We also explored the ability

to distinguish between measurements from much larger heterogeneous set of loud-

speakers gathered sing Amazon’s Mechanical Turk. We measured 107 loudspeakers,

distinguishing between them with 81% accuracy.

The ability to distinguish between loudspeakers enables a number of applications,

such as a new way to authenticate devices, and has potential implications for user

privacy.
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Chapter 7

Conclusion

The landscape of what is measurable has fundamentally changed. In the past decade,

the number of sensors people carry with them on a daily basis has dramatically

increased. The Google Nexus S cell phone, released in 2011, contains over 11 dif-

ferent kinds of sensors, not including the Wi-Fi and CDMA/GSM receivers. These

additional sensors include an accelerometer, barometer, BluetoothTM , camera (both

still and video), compass, GPS, gyroscope, loudspeaker, Near-Field Communications

(NFC), two microphones and capacitive touch screen. The evolution of the cell phone

from a device originally designed to make voice calls into a multi-purpose, multi-input,

multi-sensor device is one tangible impact of the increasing availability of highly ac-

curate, cheap sensors. In fact, many other sensor devices, e.g. tra�c cameras, cars,

and smart buildings are experiencing similar growth in the number and variety of

cheap sensors. This explosion of accurate sensors in the hands of millions of people

creates an increasing potential to easily measure and eventually trace commonplace

items.

To identify and distinguish between items, new methods are needed that can uti-

lize cheap sensors to measure an item’s unique properties. This thesis examined three

di↵erent commonplace artifacts: blank sheets of paper, bubble-forms, and loudspeak-
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ers. In each case, we utilized cheap sensors, signal processing and machine learning

to identify unique properties in these otherwise seemingly identical objects. We re-

peatedly challenged the false assumptions regarding the indistinguishability of each

artifact. We showed how violating this common, false assumption can have an imme-

diate, negative impact on applications that explicitly or implicitly rely on an item’s

indistinguishability. On the other hand, the ability to uniquely identify items enables

many exciting new applications.

Through the process of developing methods to distinguish between these three

kinds artifacts, a common methodology emerged. We call this methodology the Gen-

eral Framework. Introduced in Chapter 2 and repeatedly applied throughout this

thesis, the success of the General Framework suggests that there are other items,

which we currently think of as identical, that are distinguishable using cheap sensors.

We began in Chapter 3 with blank sheets of paper. In many applications, blank

sheets of paper are treated as if they are identical to one another. This false treatment

can lead to unintended consequences. We introduced a new method to uniquely

identify blank sheets of paper by measuring their inherently unique surface texture

using commodity desktop scanners. Our method improves on previous approaches in

a number of significant aspects. First, it relies on physical property which is di�cult

to forge, a document’s surface texture. Second, it does not require modification of the

target document in any way. This permits the imperceptible tracking of documents.

Finally, our technique utilizes inexpensive, commodity equipment, and is robust to

harsh treatment. Even after soaking, crumpling, scribbling and printing, documents

were re-identifiable with 100% accuracy. The ability to identify documents, even

under harsh treatment, enables a number of applications, e.g. counterfeit currency

detection, and has important implications for paper-based elections.

The implications of paper fingerprinting for paper-based elections are both posi-

tive and negative. The negative implications center on violating the secret ballot —
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permitting voter coercion. To mitigate this risk, we suggest multiple procedural safe-

guards, e.g. limiting access to ballot stock. Paper fingerprinting also leads to positive

applications to voting, providing a new method of detecting ballot box stu�ng and

significant economic savings when conducting post-election audits.

In Chapter 5, we re-evaluated a common assumption about bubble-forms: that

they do not reveal the respondent’s identity. We showed that this assumption is false

and demonstrated that individuals tend to mark bubbles in distinctive ways, unin-

tentionally conveying their identity by simply marking a bubble. Using a corpus of

surveys taken from 92 individuals, we were able to identify the correct respondent

over 51% of the time, and we locate the correct respondent in the top 10 most likely

candidates 92% of the time. This result has important implications for anonymous

surveys and the publication of completed ballots after an election. We described a

number of mitigation techniques and procedural changes to allay the risk of acciden-

tally revealing identifying information through bubble-forms.

Our final artifact, loudspeakers, are increasingly ubiquitous devices. While it

is commonly believed that multiple instances of ‘identical’ loudspeakers generate the

same output when given identical input, we exposed this false assumption. We demon-

strated that individual loudspeakers, even those of the same make and model, induce

a unique distortion on the generated sound. This distortion is easily measurable us-

ing cheap microphones an some signal processing. We developed methods to identify

loudspeakers based on this distortion with high accuracy. This technique also enables

a new method of device authentication.

The features of the artifacts that ultimately led to a method of identifying indi-

vidual items have a common thread – they are all inherent to the item under study.

The concept of measuring an inherent feature, or defect, combined with cheap sensors

will inevitably lead to more items becoming traceable. The unavoidable result is that

every physical item can be tracked – the question is only when, and at what cost. As

148



sensors improve, the properties used to identify each item will become increasingly

imperceptible to casual inspection, eventually leaving no indication that an item is

being traced.

The long term implications of ubiquitous, imperceptible traceability will not be a

net positive e↵ect for society at large. The number and availability of accurate sensors

will increasingly allow for the continuous tracking of individuals. A number of systems

currently provide the ability to track individuals based on the radio transmitters in

their cell phones [100]. The most common system, known in the law enforcement

community by its generic name, “Stingray”, tracks cellular phones by mimicking a

cell phone tower, coercing any phones in the area (hopefully including the intended

target’s), to mistakenly connect to it. These fake ‘towers’ are able to measure signal

strength and phone identifier information. By combining relative signal strength

measurements from a number of di↵erent ‘towers’, the Stingray system can pinpoint

the physical location of phones in its target area, even those devices located within

private residences. While this powerful law enforcement tool may ostensibly be used

to track the bad guys, the potential for misapplication is one potentially serious

negative implication. The Supreme Court recently ruled that tracking individuals by

attaching GPS transmitters to their cars requires a warrant, i.e. it is trespassing to

attach the transmitter to the vehicle [94]. However, the Court has not determined

whether a warrant is needed to track individuals via GPS transmitters already in

place, e.g. like the kind commonly found in cell phones or built in to newer cars [63].

The implications for personal privacy by government actors may be secondary to

invasions by the commercial sector. With an ever larger number of commercially avail-

able devices that include cheap, accurate sensors, we will see an increasing attempt

by companies to collect and maintain information about the usage of these devices.

The recent attempt by OnStar, a safety and connectivity service for automobiles,

provides a perfect example of the potential privacy risks. In 2011, OnStar attempted
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to rewrite its terms and conditions to allow the sale of customer’s ‘anonymized’ GPS

data to a third-party [87]. Interestingly, even if a customer cancelled their service,

their vehicle’s location data would continue to be collected and sold if the customer

did not explicitly opt-out of the tracking. After receiving letters from several senators,

OnStar cancelled the proposed changes.

Even popular technology companies, like Apple Inc., are not immune from the

potential privacy risks presented by ubiquitous sensors. In early 2011, the public

learned that each iPhone maintained a record of the device’s estimated GPS locations.

These location records were transferred to the user’s computer during each sync [14].

Once aware, the public responded negatively and senators wrote letters asking Apple

for more information about the scope and nature of the location tracking. The bad

press caused Apple to release a software update correcting the issue shortly thereafter.

Access to location tracking technology is no longer limited to well-funded institu-

tions like the U.S. government and Fortune 500 companies. For under 300 dollars, any

member of the public can purchase a cigarette-size GPS transmitter that can be sur-

reptitiously attached to any vehicle [36]. This enables parents to invisibly track their

children, husbands to track their wives, and private investigators to track whomever

they are hired to follow. In the past it took constant visual contact to track someone,

e↵ectively limiting the scale and duration of surveillance. Today, all it takes is 10

minutes to attach a transmitter to any car and the results in up to the second loca-

tion information. This should give people pause. The societal trend permitting the

unfettered ability to constantly monitor every individual is likely to have deleterious

e↵ects.

The development of new capabilities to track items, and by proxy people, requires

a re-evaluation of the limits of government and consumer privacy protections in or-

der to stymie the potentially negative implications. As a society, we must have an

honest debate about the sacrifices we are willing to make in the name of national
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security and personal safety. Increasingly, these sacrifices seem to come at the cost

of personal privacy. Unfortunately, the national conversation implicitly relies on the

false belief that safety and privacy are a zero-sum game; one can not have more of

one without sacrificing the other. This is a dangerous assumption to make, and one

I hope can be swiftly discarded. With respect to consumer privacy, consumers must

demand transparency in the type of data being collected and what companies can

do with it. Ideally, U.S. citizens would demand a consumer protection law similar to

the European Union’s Data Protection Directive [80]. While not perfect, the Data

Protection Directive defines a strong right to personal data privacy and strict penal-

ties for companies that violate it. Unfortunately, given the current domestic political

landscape, neither of these are likely to happen.

The increasing prevalence and accuracy of sensors, combined with the ability to

invisibly track a wide variety of items and, by proxy, people will have important

societal implications going forward. The ability of private companies or government

agencies to track people high accuracy or know the results of the secret ballot will

have important chilling e↵ects on the expression of personal freedoms. The future

depicted in Orwell’s 1984 [79], with the ubiquitous tele-screens monitoring one’s every

movement, may not be fantastical fiction.
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