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Abstract

Large-scale protein-protein interaction networks have been determined for organisms

across the evolutionary spectrum. The resulting interactomes are a great resource for

furthering our understanding of cellular functioning, pathways and organization. In

this thesis, we focus on uncovering the relationship between the topological charac-

teristics of these networks and their underlying functioning.

In the first part of this thesis, we study the problem of network modularity. Cellu-

lar networks are known to have modular organization, with groups of proteins working

together to perform some larger biological process. Numerous clustering approaches

have been applied in order to uncover, from large-scale protein physical interaction

data, protein complexes and functional modules. We develop a comprehensive frame-

work to assess how well network clustering approaches perform in uncovering protein

complexes and biological processes, and in predicting protein functions. By applying

this framework, we find that topological characteristics of networks are a significant

factor in the accuracy trade-offs between local and global (i.e. clustering) approaches

for uncovering cellular functioning.

In the second half of this thesis, we focus on relating one important aspect of

protein functioning, its essentiality, to network topology. A protein is essential if it

is vital for a cell’s survival and its removal kills the cell. Previously, researchers had

observed that essential proteins tend to have many physical interactions. We find that

the relationship between essentiality and interaction degree is true at different scales

of organization. In particular, we find that the number of intra-complex or intra-

process interactions that a protein has is a better indicator of its essentiality than its

overall number of interactions. Moreover, we find that within an essential complex,

its essential proteins tend to have more interactions, especially intra-complex inter-

actions, than its non-essential proteins. Finally, we build a module-level interaction

network, and find that essential complexes and processes tend to have higher interac-
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tion degrees in this network than non-essential complexes and processes; that is, they

tend to exhibit a larger amount of functional cross-talk than non-essential complexes

and processes.
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Chapter 1

Introduction

Virtually all biological processes are accomplished via numerous specific interac-

tions amongst various types of molecules (e.g., proteins, DNAs, RNAs, and small

molecules). In the past decade, high-throughput experimental techniques have de-

termined large scale interaction data between molecules in the cell. This data holds

great promise in helping to unravel cellular organization and functioning, and in gain-

ing a better understanding of protein function. In this thesis, we develop and apply

algorithms for analyzing cellular networks.

Broadly speaking, a cellular network can be modeled as a graph where nodes are

proteins and edges are either undirected or directed interactions between proteins [3,

2, 95, 84]. There are several types of interactions which have been determined in a

high-throughput manner. Here, we briefly review different types of networks. First,

a protein-protein physical interaction corresponds to direct physical binding between

proteins. Second, a transcription factor binding interaction between two proteins

corresponds to the case where one of the proteins, a transcription factor, binds to

DNA to regulate gene expression. In this case, there is a directed interaction from

the transcription factor protein to the protein product of the corresponding gene.

Third, a phosphorylation interaction is a directed protein-protein interaction where
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a kinase protein adds phosphate chemical groups to a substrate protein, thereby

leading a change in its functional state. Fourth, a genetic interaction occurs between

two genes if they are functionally related; that is, the growth rate of the organism

with a deletion or mutation of these two genes is much different from what we expect,

based on the growth rates of two single mutants. In the extreme case where the

double mutation kills the cell while each single mutation does not, the interaction

is a “synthetic lethal.” While there are many other types of molecular interactions

in the cell, these four interaction types represent the bulk of known network data to

date for most organisms [81], and much existing network analysis work has focused

on them.

1.1 Experimental techniques for determining protein-

protein physical interactions

In this thesis, we primarily focus on protein-protein physical interaction networks

among various types of cellular networks. We now briefly describe some of the ex-

perimental techniques utilized to determine these networks, as the interactions deter-

mined by specific techniques have different interpretations.

There are mainly two types of physical interactions that have been determined

at the large scale: direct, binary interactions between two proteins or indirect in-

teractions indicating co-membership of proteins in complexes [92]. The yeast two-

hybrid (Y2H) was invented in the late 1980s [28] and since then a series of large

scale protein-protein interaction data have been determined across several organisms,

including yeast, fly and human [83, 43, 42, 92, 35, 80, 29, 82, 70]. Y2H utilizes a

transcription factor (TF) protein GAL4 that consists of a binding domain and an

activating domain. The binding domain localizes the TF protein to an upstream ac-

tivating sequence of a reporter gene. The activating domain helps the TF protein to
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activate transcription of a reporter gene. To exploit this modular structure, the tran-

scription factor is first divided into two parts, where one includes the binding domain

and the other includes the activating domain. Expression of the reporter gene cannot

proceed without both the binding and activating domain. In order to detect physical

binding between two proteins, one protein is fused to the binding domain and the

other protein is fused to the activating domain. If the two proteins interact with each

other, the two binding and activating domains are brought together, and the function

of the TF protein is restored. Thus, when the two proteins bind, a reporter gene is

successfully transcribed to mRNA, and this can be detected.

Tandem affinity purification-mass spectrometry (TAP-MS) is used to detect pro-

tein complexes by identifying a target protein and its interacting proteins [68]. First,

a TAP (Tandem affinity purification) tag is fused to a target protein. Since the TAP

tag includes an IgG binding unit and calmodulin-binding peptide, two consecutive

affinity steps can detect the target protein and its interacting proteins by their bind-

ing to IgG matrix and calmodulin. The target protein and its interacting proteins

are then identified by mass spectrometry. Using the TAP-MS technique, a series of

high-throughput interaction data were released [41, 32, 31, 49, 21, 27], primarily for

human and yeast.

It has been argued that Y2H has a higher rate of false positive interactions than

TAP-MS [85, 9], however, Yu et al [92] produced better quality interaction data than

before and suggested that the quality of Y2H data is not necessarily worse than that

of TAP-MS, rather that Y2H uncovers interactions complementary to TAP-MS data.

That is, the Y2H approach uncovers transient, binary interactions, whereas the TAP-

MS approach uncovers both indirect and direct interactions. In this thesis, due to

different weaknesses of each experimental technique, we do not rely on just one type

of data. Rather, interactions can have more confidence when detected by more than

one experiment [91]. Thus, we utilize several types of protein interaction networks
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and all of our analysis is repeated for each network. In this way, we show that our

findings are independent of the specific experimental techniques utilized.

1.2 Analysis of cellular networks

Here, we review briefly previous computational approaches to analyze cellular net-

works. Some of this analysis has been done in one particular type of network (e.g.,

protein physical network or transcription factor regulatory network), while others

have been done in integrated networks consisting of more than one interaction type.

The methodologies are easily applicable across a range of networks.

Network topology

Early research characterized the overall topological features of networks, and at-

tempted to relate network topology to cellular functioning. Cellular networks have

been shown to be scale-free [45, 87, 11]. That is, there are a few high-degree proteins

that interact with lots of other proteins, and a large number of proteins that inter-

act with only a few proteins. Much additional work focused on finding interesting

properties of high-degree or hub proteins. For example, it has been observed that in

the yeast S. Cerevisiae, hub proteins tend to be essential for the survival of the cell.

In other words, in optimal conditions, yeast cannot grow and multiply without any

one of these essential proteins [44, 11]. In Chapter 3, we will discuss essentiality fur-

ther and show that essential proteins are more likely to have many interactions with

functionally related proteins than with any proteins, and that there is a relationship

between essentiality and network topology at several scales of organizations.
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Modularity of networks and network clustering

It has been proposed that cellular networks are organized into functional modules;

this has been confirmed numerous times in several computational analyses [39, 79].

More specifically, modularity means that proteins tend to interact with other proteins

in modular units in order to accomplish specific tasks in the cell. These modules can

be treated as more or less as discrete entities–the proteins within them are densely

interconnected but are more sparsely connected with the rest of the network. Compu-

tationally, this has led to much work on identifying modules from static protein inter-

action networks, and to relating these modules to function and complexes [79, 8, 18].

With the observation that cellular networks tend to be modular, one of the natural

follow-up works is to cluster networks. A myriad of network clustering approaches

have been developed for many different applications [14, 26, 18, 71, 8, 72, 86, 7, 48,

65, 67, 5, 25, 63, 75, 4, 19, 61, 53, 88, 51, 33, 60, 20, 46]. Broadly speaking, there

are mainly two types of approaches–global and local. Global or top-down approaches

divide a network into subnetworks in an iterative way. For biological networks, such

approaches include all proteins for clustering and almost all proteins belong to one

cluster. Typically most methods result in clusters that are not overlapping. This is

a disadvantage in uncovering biological functional modules as these highly overlap

each other in reality. On the other hand, local or bottom-up approaches typically

find dense regions from the networks. For biological networks, they tend to leave

many proteins unclustered and these unclustered proteins are usually not considered

further. This is a disadvantage in clustering sparse networks since it is possible that

only a small portion of these networks are considered. In Chapter 2, we will discuss

how well computational clustering of cellular networks reveals cellular modules and

organization.
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Protein function prediction

Cellular networks have been used to predict unknown function for proteins. As a

direct consequence of modularity, a protein’s biological process can be effectively

predicted from protein interaction data. This is an important problem, as even for

a well-studied genome, we do not know what about 30% of the proteins do. In

its simplest form, biological process prediction is based on local guilt-by-association

approaches, where a protein’s function is predicted by looking at the annotations of

its neighbor proteins [73, 55]. Another common way of predicting protein function

is to first cluster networks and then ask what functions are enriched among proteins

within each cluster [76]. In Chapter 2, we will discuss when local vs. clustering

approaches should be used for functional annotation.

1.3 Our contributions

In Chapter 2, we develop a framework to evaluate how well network clustering al-

gorithms uncover functional modules and predict protein function. Clustering of

protein-protein physical interaction networks is one of the most common approaches

for predicting functional modules and protein functions but until our work there

was not a rigorous and comprehensive framework for evaluating clusters utilizing

known functional data as a gold standard. To evaluate clustering algorithms, previ-

ous works focused on internal measures (i.e., the quality of the clusters are judged

without desired groups in mind), or focused on how well they recapitulate protein

complexes [17]. By applying our framework, we re-examine when and how clustering

approaches should be applied to physical interactomes, and parameterize performance

based on how well annotated genomes are. We also establish specific guidelines by

which novel clustering approaches for cellular networks should be justified and eval-

uated with respect to functional analysis.
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In Chapter 3, we show that protein essentiality is correlated to network topology

at different scales of organization. Numerous studies have confirmed the “centrality-

lethality” rule that hub proteins in the S. cerevisiae physical interaction network

are enriched in essential proteins, and the prevailing view has been that hubs tend

to be essential due to their participation in essential complexes and processes. By

considering proteins within the functional organization of the yeast interactome, our

main finding is that the centrality-lethality rule is true not just at the protein level

but also at the module level, with complexes and processes that are essential tending

to interact with many functional groups.

7



Chapter 2

How and when should

interactome-derived clusters be

used to predict functional modules

and protein function?

2.1 Introduction

Proteome-scale physical interaction data have become available for a large number of

organisms, including human and most model organisms. Global analyses of the re-

sulting protein interaction networks provide new opportunities for uncovering cellular

organization and revealing protein functions and pathways. Beyond the basic char-

acterization of these interaction networks with respect to their topological features

(e.g., [11]), arguably the most widespread approach for analyzing biological networks

is to cluster or partition them into subcomponents. Clustering of biological networks

has revealed a modular organization [39], with highly connected groups of proteins

taking part in the same biological process or protein complex [69, 79, 8, 64]. Indeed,
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dozens of papers for analyzing protein interaction networks have focused on finding

clusters within them and novel network clustering methods continue to be developed

(e.g., [26, 18, 71, 72, 86, 7, 48, 65, 67, 5, 25, 1, 4, 19, 61, 53, 88, 60]).

Most frequently, computationally-derived clusters within physical interaction net-

works are used to uncover protein complexes and functional modules, as well as to

predict protein function. Typically, a cluster is associated with a known complex or

function by determining whether the number of proteins known to be part of the

complex or annotated with the function is enriched, as judged by the hypergeometric

distribution. Within a cluster, enriched functions, perhaps also required to annotate

a suitable fraction of member proteins, can then be transferred to other member pro-

teins. While these types of analysis are commonplace in interactomics, how effective

are they for the tasks at hand?

In this Chapter, we focus on the task of utilizing network-derived clusters to un-

cover functional modules and predict protein functions. Evaluating how well clusters

correspond to functional modules is a challenging task. Central to this is that while

functional modules are commonly defined as groups of proteins that work together

to accomplish a biological process, there is no widely accepted formal definition of

a module; many have been proposed, though typically based on topological features

of the network (e.g., [67]). We utilize an external measure—the Gene Ontology

(GO) [6]—to derive functional modules. That is, for a GO biological process or cel-

lular component functional term, the corresponding module contains all the proteins

that are annotated with that term. Since GO relates functions in a hierarchical fash-

ion, the next challenge for evaluating clusters is to deal with this hierarchy. At first

glance it may appear that functions can be chosen at a particular resolution in the

hierarchy. For example, it is possible to utilize the high-level GO “slim” functional

terms, and then clusters can be evaluated in how well they recapitulate these terms,

using sensitivity and positive predictive value measures, as introduced in an influ-
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ential quantitative assessment of how well clustering approaches can uncover known

protein complexes [17]. However, for evaluating functional modules, this approach

has the weakness that a clustering that finds many small tightly connected clusters

corresponding to very specific biological processes would be unfairly penalized.

Our main technical contribution is a series of measures that can be used to compare

and evaluate network clustering algorithms with respect to how well they perform

in uncovering known, potentially overlapping functional modules. We demonstrate

the quality of our measures by using them on random networks, and on clusters

derived from the annotations themselves (i.e., these two extremes represent the noisy

vs. ideal scenarios). With this evaluation framework in hand, in order to make

general conclusions about the efficacy of network clustering-based approaches, we

experiment with six available clustering algorithms on four different high-throughput

derived S. cerevisiae physical interaction networks. We find that clustering algorithms

exhibit a wide range of performances in recapitulating functional modules, derived

from either biological process or cellular component GO terms, even when run on

the same network, and that the relative performance of clustering algorithms varies

depending on the network at hand. In particular, we find that topological features

of the network should guide algorithm choice. Given the vast differences we find in

how well clustering algorithms recapitulate functional modules, this is an important

practical consideration. As a by-product of our analysis, we can also make conclusions

about individual clustering algorithms: overall, though there are some clustering

approaches which clearly outperform others, there is no single network clustering

approach that dominates the rest in all cases.

Since module finding in biological networks is often motivated by the task of func-

tion prediction, we also perform a comprehensive evaluation in this scenario. Sur-

prisingly, we find that for S. cerevisiae, the common practice of annotating a protein

with the over-represented biological process or cellular component terms in its cluster
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is less accurate than simple guilt-by-association approaches based on considering just

the annotations of direct interaction partners. This is true regardless of which under-

lying clustering approach is used. Additionally, as annotations are removed from the

network, the relative performance of clustering-based function prediction improves in

comparison to the simple scheme that just considers the annotations of interacting

proteins. This suggests that clustering-based methods are most useful in networks

obtained for genomes with fewer protein annotations.

In addition to characterizing the utility of network-derived clusters in uncover-

ing functional modules and predicting protein functions, a major contribution of our

work is a framework that can be used in the future for evaluating how well a new

clustering approach performs for these tasks. Importantly, our testing suggests that

while clustering of networks is often motivated by the goal of predicting protein func-

tion, if new clustering approaches are evaluated with respect to function prediction,

it is important to demonstrate how much, or in which circumstances, improvement

is obtained over guilt-by-association approaches. Overall, we hope that our testing

framework as well as our findings about the utility of interactome-based clustering

will inform future methodological advances in clustering biological networks.

2.2 Materials and methods

2.2.1 Interaction and functional module datasets

We use S. cerevisiae protein interaction data from BioGRID [81], release 2.0.20, and

generate four different networks in order to analyze how the underlying characteris-

tics of the networks affect the performance of clustering algorithms. The first net-

work contains all S. cerevisiae genetic and physical interactions in BioGRID. The

second network contains all physical interactions. The third network consists of high-

throughput physical (HTP) interactions from large datasets [83, 43, 42, 41, 32, 31, 49],
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in case the small-scale experiments in BioGRID overlap the protein complexes used

for evaluation, and the last network consists of physical interactions derived via three

large-scale experiments utilizing the yeast two-hybrid (Y2H) technique [83, 43, 42].

For each network, we filter the data to remove proteins which interact with more

than 50 other proteins. Furthermore, self-interactions are ignored. The resulting four

networks have different topological properties (Table 2.1), as judged by the average

number of interactions per protein, and the average node clustering coefficient. While

we utilize all of these networks in our analyses, in the main body of this Chapter, we

focus on the third and fourth networks, which we will refer to as the HTP network

and the Y2H network. The HTP network has 4,160 proteins with 11,928 interactions,

and the Y2H network has 2,828 proteins with 3,170 interactions.

Network #proteins #interactions Avg. #neighbors Avg. NCC

All genetic and physical interactions 4516 17843 7.902 0.15
All physical interactions 4319 13692 6.34 0.152
High-throughput physical interactions 4160 11928 5.735 0.136
Y2H physical interactions 2828 3170 2.242 0.05

Table 2.1: Topological features of the four different yeast protein interaction
networks considered. For each network we give: the number of proteins, the total
number of interactions, the average number of interactions per protein in the network
and the average node clustering coefficient (NCC). The NCC for a protein is defined
as the number of interactions amongst its interacting proteins, normalized by the
total number of possible interactions amongst them.

We derive our gold standard groups from MIPS complexes [56] and GO [6]. We

utilize 220 S. cerevisiae protein complexes from MIPS; this is the same set as used in

the study of [17]. For each network described above, we remove from consideration any

complex that has two or fewer proteins in the network. This leaves between 107 and

133 protein complexes for each network. In GO, there are 1963 Biological Processes

(BP) and 551 Cellular Components (CC) terms. We remove GO annotations with

evidence codes IEA, RCA and IPI. For each network, we remove BP and CC terms

that annotate more than 100 proteins or fewer than 3 proteins. This leaves from 954
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to 1090 BP terms and from 324 to 357 CC terms for each S. cerevisiae network. For

the HTP network, 66% of the proteins are annotated with one of these BP terms, and

41% are annotated with one of these CC terms. For the Y2H network, these numbers

are 70% and 45% respectively. For each BP and CC term under consideration, we

define a functional module consisting of the proteins in the organism annotated with

it. This gives us sets of potentially nested functional modules that range in specificity

and size.

We also use Homo sapiens protein interaction data from BioGRID, release 2.0.55

for further analysis. The human network consists of all physical interactions and we

filter the data to remove proteins which interact with more than 50 other proteins.

The network has 7148 proteins with 18236 interactions. In GO, there are 5186 BP

and 793 CC terms. We remove BP and CC terms that annotate more than 200

proteins or fewer than 3 proteins. This leaves 2777 BP terms and 451 CC terms for

this network. Among the 7149 proteins in the network, 3653 proteins are annotated

with one of these BP terms and 2181 proteins with one of these CC terms.

2.2.2 Clustering algorithms

We consider six diverse network clustering algorithms: NetworkBlast [75], CFinder [1],

MCL [26], DPClus [4], Mcode [8] and a spectral approach based on modularity [61],

which we refer to as SpectralMod. Brief descriptions of the clustering algorithms along

with parameter settings are given here.

Network Blast [75] is originally designed for comparison of multiple protein net-

works but can also be applied to cluster a single protein network. This approach

scores a cluster based on a log likelihood ratio, where the likelihood of observed inter-

actions given that the cluster is modeled as a clique is compared to the likelihood of

observed interactions given that the cluster is modeled as a part of a degree-preserving

randomized subgraph on the same set of nodes. Clusters are grown greedily, and are
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limited to contain at most 15 proteins. The final output set of clusters are filtered by

the program to remove those that are highly overlapping. We run NetworkBlast with

parameters beta set to 0.9 and true factor set to 0.5.

Clique Finder (CFinder) [1] finds a set of k-clique percolation clusters, each of

which consists of a maximal connected component of adjacent cliques of size k where

two cliques are adjacent if they share k − 1 nodes. We use CFinder to find k-clique

percolation clusters for all k ≥ 3 and filter clusters whose size is greater than 500.

Markov clustering (MCL) [26] is a global clustering approach based on modified

random walks on networks. It converts the adjacency matrix of a network into a

stochastic matrix, and then clusters by repeating two steps: expansion and inflation.

Expansion squares the matrix, and corresponds to taking another step in a random

walk. Inflation is a boosting step, where each entry in the matrix is raised to the

r-th power (r > 1) and then renormalized; this point-wise exponentiation amplifies

higher probability transitions. These two steps are repeated until there is no change

on the matrix. Finally, blocks of non-zero elements in the resulting matrix are taken

as clusters. We use the inflation factor 1.8, which was found to be the best parameter

in a recent study [17].

Density-periphery based clustering (DPClus) [4] is a greedy approach that grows

clusters based on adding nodes that are well connected to other nodes in the cluster

and that maintain cluster density. Here, a cluster is grown so as to maintain the

density of the cluster above a particular threshold, and to ensure that each vertex

that is added to the cluster is connected to a large enough number of vertices already

in the cluster (its “cluster property”). Once a cluster can no longer be expanded, it

is removed from the network and the process is repeated to find other clusters. We

use density threshold 0.5 and cluster property threshold 0.5.

Molecular Complex Detection (MCODE) [8] is one of the first approaches for clus-

tering interactomes. It also greedily grows clusters from a seed node. Mcode weights
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each node according to the density of its “k-core” neighbors (i.e., the density is com-

puted using only proteins of degree ≥ k). A highest weight node is selected as seed

and its neighbor nodes are added based on their weights. Mcode has many param-

eters, and we set them as: “include loops” false; “degree cutoff” 2; “haircut” true;

“fluff” false; “node score cutoff” 0.1; “k-core” 2; “max. depth” 3.

Modularity-based spectral clustering (SpectralMod) is a global procedure that iter-

atively cuts the network so that there are more than the expected number of edges

within clusters [61]. It approaches typically aim to divide a graph into a set of clusters

in such a way that the number of edges between clusters is minimized, while subject

to additional constraints (e.g., a balanced cut). We use a recently introduced spectral

clustering approach that assumes that the probability of having an edge between two

nodes is proportional to the degrees of the nodes, and tries to find a cut so that

there are more than the expected number of edges within clusters [61]. There are no

parameters for SpectralMod.

For each of these algorithms except SpectralMod, we download the software made

available by the authors. For SpectralMod, we use software obtained from the author.

For a baseline comparison, we also include a trivial algorithm, OneCluster, which

always outputs a single cluster that includes all proteins in the network.

2.2.3 Evaluation measures for clustering

We evaluate clustering algorithms by judging how well the clusters correspond to

groups of proteins as specified by MIPS complexes or functional modules as derived

from either GO BP or GO CC annotations. Throughout, we refer to the output

of the clustering algorithms as “clusters” and the proteins comprising complexes

or functional modules as “groups.” Though cluster validation approaches are well-

developed (e.g., see [37]), much of this work has focused on either internal measures

(i.e., the quality of the clusters are judged without desired groups in mind) or exter-
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nal measures where groups partition the data (i.e., the groups are non-overlapping).

Since our groups are overlapping, these external measures are not directly applicable.

For each of the three tasks we are considering (uncovering complexes, BP functional

modules, and CC functional modules), we utilize several measures to ascertain 1)

how well each cluster maps to a known group and 2) how well each group maps to a

cluster. Depending on what we want to test, we utilize either one direction of these

mappings (e.g., clusters to groups) or both directions. (See Figure 2.2.3.)

When we consider clustering in order to uncover protein complexes, there should

be a one-to-one mapping of clusters and protein complexes. Thus, both directions of

mappings are utilized. On the other hand, GO annotations are organized in a hierar-

chical fashion with respect to each other. So, even for a high-quality clustering where

each cluster corresponds to a functional module, there may be functional modules to

which no clusters correspond. Also, while proteins interacting with each other tend

to have the same GO term and thus highly connected regions or clusters are likely to

be enriched with GO terms, it may be less likely that all proteins with the same GO

term are together in the same cluster. Therefore, in the case of functional modules,

we evaluate a clustering only by mapping clusters to groups. It is important to note

that when mapping a cluster to a GO term, each of the overlap measures we intro-

duce below considers the total number of proteins annotated with that term (i.e., if

that term annotates many proteins that are not part of the cluster, then the score for

mapping that cluster to the term will be lower).

Overlap measures

We utilize three measures for evaluating clusters that are based on overlaps between

clusters and known groups of proteins. Each measure gives a value in the range

of 0 and 1, where higher numbers correspond to better overlaps. Before describing

these measures, we give some preliminaries. Let M be the number of clusters given
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Figure 2.1: Mapping between computationally-derived clusters and com-
plexes and functional modules. (A) A schematic network is shown with
computationally-derived clusters on the left, and constituent protein complexes in
the network on the right. Roman numerals refer to clusters and lowercase letters
refer to protein complexes. The mapping from clusters to protein complexes (1) and
from protein complexes to clusters (2) are given in the middle. (B) A schematic is
shown with proteins annotated by GO terms of interest (in lowercase letters), and
clusters outlined (and referred to by Roman numerals). A mapping of clusters to GO
terms is also given. Note that both clusters II and V have proteins that are annotated
with d, but map better to the more specific modules corresponding to annotations e
and f respectively.
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by a particular clustering, and N be the number of groups against which we are

evaluating. Let Cj be the set of proteins within cluster j and let Gi be the set of

proteins associated with the i-th group (e.g., in the i-th complex or annotated with

i-th function). Our measures are as follows:

Jaccard measure. Given two sets, the Jaccard similarity coefficient is defined as the

size of the intersection over the size of the union. For sets of proteins corresponding

to cluster j and group i, let Jacij =
|Gi∩Cj |
|Gi∪Cj | denote their Jaccard coefficient.

PR measure. For sets of proteins corresponding to cluster j and group i, let PRij =

|Gi∩Cj |
|Cj | ·

|Gi∩Cj |
|Gi| denote their precision-recall based score. The first part

|Gi∩Cj |
|Cj | measures

what fraction of the proteins in the cluster correspond to the grouping at hand (i.e.,

precision with respect to group i). The second part
|Gi∩Cj |
|Gi| measures how much of

group i is recovered by cluster j (recall). We note that our PR-based measures are

similar to the F -measure (see, for example, [37]).

Semantic density measure. The density of a set of vertices in a network is typically

defined as the number of edges among them divided by the maximum number of

possible edges. We generalize this notion for protein interaction networks as follows

to better recapitulate characteristics of the groups being compared to. For a set

of proteins S, each protein p ∈ S may be associated with labels A(p) ⊆ A. For

example, S can be a MIPS complex, A can be the set of clusters obtained after

computational analysis of the entire interactome, and A(p) gives which clusters p

belongs to. Alternatively, S can be a cluster of proteins, and A can be the set of

groups of proteins with a shared functional annotation; in this case A(p) gives the

groups p is part of. Then,

density(S,A) =

∑
∀(p1,p2)∈S WA(p1, p2)∑

∀(p1,p2)∈S

(
1
)

where WA(p1, p2), defined next, is the weight given to a pair of proteins p1, p2 and is
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in the range of 0 and 1. When considering clusters as A, WA(p1, p2) = 1 if A(p1) ∩

A(p2) 6= ∅, and 0 otherwise. This weight function is also used when considering MIPS

complexes as A. When GO derived functional groups are used as A, the weight

function is defined using a standard semantic similarity measure [52]. In particular,

let f(a) for functional group a be defined as the fraction of the total number of

proteins in the considered network that have annotation a, and let s(a) = −log(f(a))

be a measure of how specific the annotation is. Then,

WA(p1, p2) =
2 ·maxa∈A(p1)∩A(p2) s(a)

maxa∈A(p1) s(a) + maxa∈A(p2) s(a)

Mapping scores

Before describing our mapping scores, we briefly highlight some of our choices in

computing these. First, some clustering approaches attempt to cluster all proteins

(e.g., MCL and spectral clustering) whereas others leave many proteins unclustered.

We chose to consider the unclustered proteins as singleton clusters, instead of ignoring

them in the evaluation. Second, we remove from consideration all proteins in the

complex and functional module groups that are not included in the network at hand.

Third, when mapping a cluster to a group, we did not consider proteins that do not

have any annotations from the grouping at hand. This means that clusters are filtered

so as to remove any unannotated proteins, thereby potentially changing the size of

the cluster. In practice, of course, clusters consisting of mostly unannotated proteins

could be considered as putative protein complexes or functional modules in further

analysis. Fourth, when mapping a group to a cluster (performed only in the MIPS

analysis), all proteins in the clusters, including unannotated ones, are considered.

For each overlap measure described above, we utilize three “scores.” First, we

define scores for a clustering that measure how well clusters map to known groupings

of proteins. For each cluster Cj, we find the group Gi that maximizes the over-
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lap between it and cluster Cj. That is, we define JaccardCj = maxi Jacij for the

Jaccard measure, PRCj = maxi PRij for the PR measure, and sDensityCj =

density(Cj,G) for the sDensity measure where G is the set of groupings we are con-

sidering. If cluster Cj is a singleton cluster, then we define JaccardCj = PRCj =

sDensityCj = 0. For each measure, we take an average over the clusters, weighted

by cluster size, to obtain JaccardC, PRC, and sDensityC. That is, JaccardC =PM
j=1 |Cj |·JacCjPM

j=1 |Cj |
, and the other two measures are defined analogously. Note that sDen-

sityC is similar to the biological homogeneity measure utilized previously to evaluate

gene expression clusters [22].

Next, we define scores for a grouping that measure how well the known groups

of proteins correspond to clusterings. Here, for each group Gi, we try to find cluster

Cj such that maximizes the overlap between it and the group Gi. That is, we define

JaccardGi = maxj Jacij for the Jaccard measure, PRGi = maxj PRij for the

PR measure, and sDensityGi = density(Gi, C) for the sDensity measure where C

is the set of clusters we are considering. For each measure, we take an average over the

groups, weighted by group size, to obtain JaccardG, PRG, and sDensityG. That

is, JaccardG =
PN

i=1 |Gi|·JacGiPN
i=1 |Gi|

, and the other two measures are defined analogously.

Finally, we define Jaccard as the harmonic mean of JaccardC and JaccardG,

PR as the harmonic mean of PRC and PRG, and sDensity as the harmonic mean

of sDensityC and sDensityG.

2.2.4 Quality of performance metrics

We demonstrate the utility of our performance metrics by using them to evaluate

clusters found in random networks vs. real networks. We generated 10 random

networks for each of the four networks under consideration using a degree-preserving

stub-rewiring algorithm [62]. We ran the six clustering algorithms on the four original

networks as well as their randomized versions using the parameters given above. We
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find that the performance, as judged by our introduced measures, of each clustering

approach is better in real networks than the corresponding randomized networks (see

Table 2.2). For example, when considering CFinder on the HTP network and using

either MIPS, BP or CC as the desired set of groupings, each of the three measures

is > 8.2 times larger on the real network than its average over 10 random networks;

these ratios are > 2.3 for SpectralMod, > 1.6 for DPClus, > 19.2 for Mcode, > 1.5 for

MCL, and > 1.5 for NetworkBlast (We note that this analysis also provides some

information about the quality of the underlying clustering algorithms; for example,

the measures always stay the same for the trivial OneCluster algorithm).

When MIPS complexes are gold standard groups:

Measures \ Clustering algorithms SpectralMod DPClus Mcode MCL CFinder NetworkBlast OneCluster

Jaccard 6.5468 4.3031 28.1018 4.4964 9.3768 4.0750 1
PR 20.5910 6.3058 57.6330 6.0946 14.2724 6.1971 1
Density 8.0006 156.0403 595.2888 251.2888 315.2934 63.0358 1

When functional modules relating to BP terms are gold standard groups:

Measures \ Clustering algorithms SpectralMod DPClus Mcode MCL CFinder NetworkBlast OneCluster

Jaccard 2.5416 1.6094 19.2842 1.5173 8.2832 1.5668 1
PR 6.5237 2.3261 38.0035 2.0537 13.5513 2.8768 1
Density 2.3686 10.7267 111.4625 8.4925 47.2376 11.7357 1

When functional modules relating to CC terms are gold standard groups:

Measures \ Clustering algorithms SpectralMod DPClus Mcode MCL CFinder NetworkBlast OneCluster

Jaccard 4.5041 3.6700 44.7057 3.9566 16.1021 4.0501 1
PR 14.8470 6.3049 97.4034 6.8857 28.1849 7.9848 1
Density 4.4346 20.6418 223.9784 20.3107 67.1806 17.8027 1

Table 2.2: The ratios of performances of the clustering algorithms on
the actual network vs. their average performances over the randomized
networks. The ratios of performances of the clustering algorithms on the high-
throughput physical interaction network as compared to averages over the random-
ized networks. For OneCluster, the clustering is the same regardless of the network
structure, so this ratio is always 1.

The sDensity measure seems to be the best with respect to its ratio in real vs.

random networks. For example, when considering CFinder on the HTP network,

and using either MIPS, BP or CC as the desired set of groupings, sDensity is > 47

times larger on the real network than its average over the randomized networks (Ta-
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ble 2.2). Overall, our performance evaluations metrics are typically much higher when

evaluating clusters derived from real networks as compared to those derived from ran-

dom networks, demonstrating the strength of our measures. Of the 72 evaluations

we performed (4 networks, 6 algorithms, 3 groupings), the only exception to this is

NetworkBlast ’s performance in recapitulating BP and CC modules from the Y2H net-

work; in this case, Jaccard is on average better in the randomized networks than the

actual network (data not shown). We note that the previously introduced separation,

positive predictive value and accuracy measures for evaluating interactome-derived

clusters [17] were often similar in value on clusters derived from networks correspond-

ing to single high-throughput data sets as they were on the corresponding randomized

networks.

As a sanity check, we also constructed three ideal clusterings, each of which cor-

responds exactly to the groupings we are trying to recover (i.e., protein complexes or

functional modules), and evaluated each of those clusterings with respect to all three

groupings to compute the maximum performance based on the evaluation framework.

We see that performances of ideal clusterings are excellent when compared to the ap-

propriate grouping, as expected. (See Figure 2.2.4.) While ideal clusterings obtain

Jaccard and PR values of 1.0, we note that the performances of ideal clusterings for

GO terms evaluated by sDensity are lower; this is because of the characteristics of

the weight function used.

2.2.5 Subsampling approaches

We subsampled networks from the HTP network in order to obtain networks whose

topological features are similar to those of the Y2H network. We tried three subsam-

pling schemes (in succession). Brief descriptions of each are given below.

Scheme 1 samples each interaction from the HTP network with probability pro-

portional to the ratio of the number of edges in the HTP vs. Y2H networks. This
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Figure 2.2: Performances of ideal clusterings. Three ideal clusterings,
”IdealMIPS”, ”IdealBP”, and ”IdealCC ”, are evaluated with respect to how well
they recapitulate MIPS complexes, BP modules and CC modules. In IdealMIPS all
complexes are exactly recapitulated, and in IdealBP (respectively IdealCC ), all BP
(respectively CC) modules considered are exactly recapitulated.
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results in networks with a noticeably smaller fraction of proteins with degree 1 than in

the Y2H network, and noticeably larger fraction of proteins with degree 4 or higher.

Scheme 2 samples proteins and interactions from the HTP network, with the

goal of obtaining the same degree distribution in the subsampled network as in the

Y2H network. We maintain a degree distribution table which keeps track of how

many proteins should be added to the sampled network of each degree in order to

match the Y2H network’s degree distribution. Initially, the degree distribution table

is identical to the degree distribution of the Y2H network. We repeat the following

and stop when all elements in the table become 0. For the highest degree d which

is not zero in the table, we pick a random protein p from the HTP network whose

degree is ≥ d, where p is not yet in the sampled network. We add p and randomly pick

d of its neighbors and add these proteins as well as the interactions between p and

them. The desired degree distribution table is updated accordingly (i.e., based on the

changes to the node degrees of the sampled network). If adding p makes any element

in the table negative, we cancel the addition and pick another protein p at random.

This scheme results in sampled graphs that match the desired degree distribution,

but the node correlation coefficients are all 0.0.

Scheme 3 is based on our second scheme for subsampling, but attempts to better

maintain the node correlation coefficient of the Y2H network. Let Count(p) for

protein p be the number of edges amongst the neighbors of p. Let CountSet(d) for

degree d be a set of Count(p) for all proteins p whose degree is d. We sample as in

Scheme 2 except that at each time we add p and d of its neighbors and the interactions

from p to these neighbors, we remove one element from CountSet(d), say count. We

then pick at random count interactions amongst the neighbors of p; if there are fewer

than count interactions available amongst the neighbors of p, we use all of them. If

CountSet(d) is empty, we skip this process. This approach gives excellent agreement

with the Y2H network with respect to the number of nodes in the network, the degree
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distribution, and the node correlation coefficient.

2.2.6 Protein function prediction

Protein function prediction based on clustering

Given a set of clusters, each protein i is scored with respect to each function f in

the following way. For protein i in a cluster, we compute the p-value of all other

member proteins in the same cluster having function f based on the hypergeometric

distribution (i.e., with parameters as the number of proteins in the entire network,

the number of proteins in the cluster, the number of proteins annotated with f in

the network, and the number of proteins annotated with f in the cluster). If protein

i belongs to multiple clusters, the score for function f is taken to be the minimum

p-value computed for this function over all clusters to which it belongs.

Protein function prediction via the neighborhood algorithm

The Neighborhood algorithm scores each protein i with respect to function f using the

hypergeometric distribution to compute the p-value of protein i’s direct interactions

having function f .

Evaluation of algorithms for protein function prediction

Since there are parent-child relationships between terms in the BP and CC GO on-

tologies, for each protein, we update the predictions to deal with such a hierarchy. In

particular, for each protein, we update p-values for the functions so that the p-value

of a parent functional term is set to be less than or equal to the p-value of any of its

children. Thus, given a threshold, if a term is predicted for protein i, then its parent

terms are always predicted for protein i (the rationale being that a protein cannot

have the more specific functional annotation without having the more general terms

as well). We utilize a precision-recall (PR) curve, as suggested by [23], where we vary
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the p-value threshold from 0 and 1. For protein i, let mi be its functional annotations,

ni be a set of predicted functions for i based on the p-value threshold, and ki be the

overlap between mi and ni. Then, recall and precision are defined as:

recall =

∑
i |ki|∑
i |mi|

, precision =

∑
i |ki|∑
i |ni|

.

We note that, as outlined earlier, we do not consider overly general or specific func-

tional terms within the ontology. Moreover, proteins within the network that are not

annotated by any of these terms are ignored in computing the precision and recall.

2.3 Results

2.3.1 Recapitulating protein complexes and functional mod-

ules

We give our performance metrics measuring how well the uncovered clusters cor-

respond to protein complexes, BP functional modules and CC functional modules

(Figure 2.3) using the six studied algorithms applied to the HTP and Y2H networks.

The analogous results on all four networks are given in Figures 2.4,2.5,2.6. The run-

times of the clustering algorithms on the HTP network are given in Table 2.3. The

clustering algorithms vary in the number of clusters they find in each network, as

well as the number of singleton proteins left after clustering (see Table 2.4). On HTP

network, the algorithms find between 40 and 913 clusters of size > 1 covering between

631 and 4160 proteins, and on the Y2H network, the algorithms find between 34 and

815 clusters of size > 1 covering between 133 and 2828 proteins.
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Figure 2.4: The performance of the clustering algorithms in recapitulating
MIPS protein complexes. Six clustering algorithms and OneCluster are evaluated
using three measures (Jaccard, PR, and sDensity) on four different networks in
how well they recapitulate MIPS protein complexes.

28



Figure 2.5: The performance of the clustering algorithms in recapitulating
biological process (BP) modules. Six clustering algorithms and OneCluster are
evaluated using three measures (Jaccard, PR, and sDensity) on four different net-
works in how well they recapitulate BP modules.
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Figure 2.6: The performance of the clustering algorithms in recapitulating
cellular component (CC) modules. Six clustering algorithms and OneCluster are
evaluated using three measures (Jaccard, PR, and sDensity) on four different net-
works in how well they recapitulate CC modules.
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Clustering algorithms SpectralMod DPClus Mcode MCL Cfinder NetworkBlast

Run-time (s) 282 713 5 21 4 36

Table 2.3: Run-times of six clustering algorithms on the S. cerevisiae HTP
network.

Network
Spectral-

Mod DPClus Mcode MCL CFinder
Network-

Blast
All genetic and 
physical interactions 23 (4516) 813 (3459) 148 (821) 930 (4287) 728 (2068) 909 (2659)
All physical
interactions 33 (4319) 828 (3250) 122 (697) 922 (4129) 576 (1701) 561 (1833)
High-throughput 
physical interactions 40 (4160) 822 (3117) 122 (631) 913 (3994) 469 (1335) 396 (1371)
Y2H physical 
interactions 118 (2828) 755 (2229) 34 (133) 815 (2789) 59 (197) 75 (222)

Table 2.4: Cluster statistics of algorithms on the four S. cerevisiae networks.
For each network and each clustering algorithm, we give the number of clusters of size
more than 1, as well as the total number of proteins in these clusters (in parentheses).

Stark performance differences in clustering algorithms. We find that there are

significant differences in how well the clustering algorithms perform in recapitulating

functional modules and protein complexes. For instance, on the HTP network, the

best performing approaches for recapitulating complexes as well as biological process

and cellular component functional modules are CFinder and NetworkBlast. Their

performance measures for these three tasks on this network are 1.6 to 5.0 times larger

than that of SpectralMod (Figures 2.3,2.4,2.5,2.6). These two approaches also signif-

icantly outperform Mcode. Part of the performance difference is due to the number

of unclustered proteins: Mcode only clusters 631 of the proteins in this interaction

network, whereas NetworkBlast and CFinder cluster 1371 and 1335 respectively. The

significant differences in the performances of these algorithms on the various networks

confirm that algorithm choice plays an important role in interactome analysis.

No one clustering approach performs best on all networks. Different al-

gorithms perform better on the Y2H network in recovering protein complexes and

functional modules than those that perform best on the other networks studied.

In particular, on the Y2H network, MCL outperforms the other approaches, with
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DPClus and SpectralMod also demonstrating good performance, whereas Network-

Blast and CFinder outperform the other algorithms on the other networks. The Y2H

network is significantly different from the other three; for example, its average node

degree and average node clustering coefficient are significantly lower (see Table 2.1).

Relative changes in the performances of the clustering methods are also evident in

networks obtained from subsampling from the original HTP network (see section 2.2

Materials ans methods), and these changes vary depending on the network at

hand. In Figure 2.7), we show the performance of the approaches on these three

types of networks subsampled from the HTP network as well as on the Y2H net-

work. Changes in performances of the approaches are evident from the HTP network

(Figure 2.3, top). In the subsampled networks whose degree distribution and node

clustering coefficients most closely match the Y2H network (Table 2.5), the cluster-

ing methods’ relative performances are similar to those seen in the Y2H network

(Figure 2.7).

The relatively good performance of MCL on the Y2H network, which is primarily

comprised of a subset of the other networks, is consistent with earlier findings that

MCL is robust to edge deletions in the network [17]. Overall, the relative change in

performance of the clustering algorithms on different networks suggests that there is

no clearly superior algorithm in all cases, but that instead algorithm choice should

depend on network characteristics. In particular, for the well-studied S. cerevisiae in-

teractome, NetworkBlast and CFinder give superior performance in uncovering com-

plexes and modules from the full network as compared to the other methods, but for

less studied organisms with sparser experimentally determined interaction networks,

MCL may be a better choice.

Specific algorithmic properties of the approaches give hints to the situations to

which they are well suited, and can be used to guide algorithm choice. For instance,

SpectralMod tends to output large clusters as compared to other clustering algorithms
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Figure 2.7: The performance of the clustering algorithms on four types of
networks. A, B and C correspond to networks subsampled from the HTP network
using schemes 1, 2 and 3, respectively. For each, 10 networks are subsampled, and
average performance measures are shown with error bars indicating one standard
deviation above and below this. D shows, for reference, the performance of the
clustering algorithms on the Y2H network.
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when the network is dense. Thus, it appears to be more suitable for finding large

functional modules which correspond to general GO terms as opposed to uncovering

more specific functional modules. If a network is very sparse, SpectralMod will divide

it into many more clusters and will have relatively better performance in our frame-

work. Indeed, SpectralMod works comparatively better in the Y2H network than in

the other networks. On the other hand, CFinder is based on finding “dense” regions

in the network; it detects a fewer number of clusters in the sparse Y2H network as

compared to the other networks and leaves about 90% of the proteins as singletons.

This is a major contributing factor as to why its performances deteriorates in this

network.

Advantages of using more complete networks in uncovering complexes and

modules. In general, clusters obtained using the full network consisting of all phys-

ical and genetic interactions (Figures 2.4,2.5,2.6 (A)) better recapitulate functional

modules and protein complexes than those obtained using the other networks. An

interesting exception is that cellular component functional modules are somewhat

better recapitulated (Figure 2.6 (A), (B)) when using physical interactions only. Ge-

netic interactions are found between (related) pathways [47], though are also found

within essential complexes [15]. Depending on the task at hand, it may be advantages

to treat these physical and genetic interactions separately [16]. Importantly, clusters

obtained using just the Y2H network are significantly worse using all measures in

recapitulating functional modules and protein complexes. Additionally, clusters ob-

tained from the HTP network better recapitulate modules and complexes than those

obtained from networks subsampled from the HTP network (Figure 2.7).
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2.3.2 Predicting protein function

Protein physical interaction data is often utilized to predict protein function. The

simplest approach is based on guilt-by-association [73], where a protein is assigned a

function based on those that are found frequently amongst its interacting proteins.

Alternatively, to better utilize global information, a physical interactome can be clus-

tered first, and then a protein is assigned the functions that are found to be over-

represented in its clusters. This more sophisticated cluster-based approach is widely

used to obtain hints about protein function. We utilize leave-one-out cross-validation

to compare clustering-based methods to a variant of a neighbor majority algorithm,

Neighborhood, which makes a prediction for a protein based on the over-represented

functions found amongst its interacting proteins.

Local approaches outperform clustering in predicting protein function. Ta-

ble 2.6 (A) shows the area under the PR curve (AUC) for each algorithm in the HTP

interaction network. Surprisingly, the simple Neighborhood approach has a higher

AUC than all clustering algorithms in predicting either BP or CC terms. These results

are consistent with earlier work showing that a “neighborhood majority” approach

based on total counts performs as well or better than several sophisticated global net-

work approaches [59], as well as earlier work suggesting that Neighborhood performs

better than Mcode for the task of function prediction [76].

In order to assess whether the lower accuracies of clustering algorithms come from

their inability to predict function for proteins in singleton clusters, we also considered

function prediction when factoring out singleton clusters. We note that is necessary

to have the same test set when comparing different clustering approaches with PR

AUCs, as baseline performance varies with different test sets. Since each of the

clustering approaches leaves a different number of proteins in singleton clusters, for

all approaches, we use Neighborhood to predict the functions of these proteins, so that

we are only considering the performance of transferring function within larger clusters
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(Table 2.6 (B)). The Neighborhood approach still outperforms the clustering based

approaches, though clustering algorithms such as Mcode which leave many proteins

unclustered see a clear boost in performance.

In order to assess whether the lower accuracies of the clustering algorithms come

from transferring functions within large clusters, we next additionally exclude large-

sized clusters. For clusters with size greater than 50, as well as those with size 1,

we again use Neighborhood for proteins within those clusters. For the remaining

clusters, we transfer functions according to hypergeometric distribution (Table 2.6

(C)). We still observe that Neighborhood has a higher AUC than the clustering-based

approaches.

In order to assess whether the lower accuracies of the clustering algorithms come

from transferring functions that are infrequent, we next exclude poorly annotated

clusters. That is, we filter out clusters where there are no functions annotating more

than 50% of the member proteins, and use Neighborhood for proteins within those

clusters as well as within singleton clusters. For the remaining non-singleton and well-

annotated clusters, we transfer functions according to hypergeometric distribution

but require that they annotate at least half the proteins in the cluster (Table 2.6

(D)). We still observe that Neighborhood has a higher AUC than the clustering-based

approaches.

Combining local and clustering approaches for function prediction. One

hypothesis for why cluster-based approaches do not work as well as local approaches

for function prediction is that a cluster may be composed of several functional mod-

ules, and while functions may be statistically enriched within them, they should not

be transferred to all the members of the cluster. Accordingly, we next combine clus-

tering information with neighbor annotation information. That is, for each protein

within a cluster, we use the Neighborhood approach but only consider its interacting

proteins within the same cluster while ignoring other proteins within its cluster as
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(A) Function prediction.
Spectral Network

Mod DPClus Mcode MCL CFinder Blast Neighborhood

BP 0.0411 0.1557 0.0975 0.1213 0.1276 0.1082 0.1784
CC 0.1337 0.3309 0.1890 0.3003 0.2789 0.2506 0.3743

(B) Function prediction when factoring out singleton clusters.
Spectral Network

Mod DPClus Mcode MCL CFinder Blast Neighborhood

BP 0.0411 0.1593 0.1625 0.1251 0.1498 0.1432 0.1784
CC 0.1337 0.3467 0.3512 0.3084 0.3140 0.2985 0.3743

(C) Function prediction when factoring out singleton clusters and large
clusters.

Spectral Network
Mod DPClus Mcode MCL CFinder Blast Neighborhood

BP 0.1320 0.1593 0.1625 0.1251 0.1491 0.1432 0.1784
CC 0.3189 0.3467 0.3512 0.3084 0.3253 0.2985 0.3743

(D) Function prediction when factoring out singleton clusters and poorly
annotated clusters.

Spectral Network
Mod DPClus Mcode MCL CFinder Blast Neighborhood

BP 0.1715 0.1755 0.1677 0.1654 0.1787 0.1444 0.1784
CC 0.3331 0.3604 0.3577 0.3420 0.3577 0.3054 0.3743

(E) Function prediction when local topology is considered for clustering
algorithms.

Spectral Network
Mod DPClus Mcode MCL CFinder Blast Neighborhood

BP 0.1716 0.1679 0.1710 0.1546 0.1827 0.1815 0.1784
CC 0.3535 0.3521 0.3646 0.3496 0.3772 0.3676 0.3743

Table 2.6: PR AUC for BP and CC predictions of the clustering algorithms
and Neighborhood in the HTP S. cerevisiae network.
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well as interacting proteins that are in different clusters. For proteins that are not

clustered, the Neighborhood approach is used while considering all its interactions. In

this case, clustering approaches such as NetworkBlast or CFinder have slightly higher

AUCs than Neighborhood (Table 2.6 (E)). The drastic improvement of SpectralMod ’s

PR-AUC also supports the idea that SpectralMod ’s large clusters consist of several

smaller functional modules.

Characterizing cluster-based function prediction based on number of an-

notations. While the Neighborhood approach has better performance than cluster-

based methods in predicting protein functions for S. cerevisiae, clustering approaches

have other advantages. In particular, they can uncover structure in networks with no

additional information and can make predictions for proteins that interact only with

proteins of unknown function. Thus, we expect that for proteomes with larger num-

bers of unannotated proteins, the performance of the Neighborhood approach should

decrease faster than that of clustering-based approaches. In order to systematically

test this, we analyzed how the algorithms perform as we remove annotations from

the proteins in the network. That is, we selected 10%, 30%, 50%, 70%, and 90% of

the proteins in the HTP network at random and removed all of their annotations to

make an artificial network with fewer annotations. Figure 2.8 shows the PR AUC as

a function of the fraction of proteins whose annotations are removed (the values at

0% annotations removed correspond to those in Table 2.6 (A)).

As a large fraction of the yeast proteins’ annotations are removed, the clustering-

based approaches begin to outperform Neighborhood. For example, when nearly 70%

of the annotations are removed, CFinder outperforms Neighborhood for BP prediction

and DPClus outperforms Neighborhood for CC prediction. Most clustering algorithms

predict better than Neighborhood once 90% of the annotations are deleted. We find

the same trends when running this procedure on the other yeast networks. See Fig-

ure 2.9 for our results on the Y2H network, where Neighborhood still outperforms
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Figure 2.8: Function prediction performance as protein annotations are re-
moved from the S. cerevisiae HTP network. As BP or CC annotations are
removed for 10%, 30%, 50%, 70%, and 90% of the proteins in the high-throughput
physical interaction network, the PR-AUC of Neighborhood deteriorates more rapidly
than that of the six clustering algorithms. The average PR-AUC over 10 networks is
plotted, with each error bar showing plus and minus one standard deviation from the
average.
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the clustering approaches in function prediction on the original network and on net-

works with a considerable fraction of annotations removed. On the human physical

interaction network from BioGRID, where a somewhat smaller fraction of proteins

are annotated (51% with BP terms and 31% with CC terms), Neighborhood still

outperforms the clustering approaches, though MCL is competitive with it (see Fig-

ure 2.10) and performs better than it when approximately 10% of the annotations are

removed. If predictions on unannotated proteins are pessimistically counted as false

positives (instead of ignored), then the Neighborhood method outperforms the other

approaches until 50% of the annotations in the human network are removed (Fig-

ure 2.11). In all networks studied, the relative performances of clustering methods in

function prediction as compared to the Neighborhood method improve as annotations

are removed.

2.4 Conclusions

While clustering has become a standard first-line tool in the analysis of physical in-

teractomes, no previous study has systematically assessed how well such an approach

performs in predicting protein function and functional modules. In this Chapter,

our research establishes guidelines on how and when clustering should be utilized for

analyzing physical interaction networks.

Perhaps most importantly, we find that the common practice of looking for en-

riched functions within clusters is not the best approach for predicting protein func-

tion, at least for the yeast proteome. Instead we find that, overall, it is better to use

a simple local method such as Neighborhood or to use clustering algorithms combined

with Neighborhood in networks with sufficient annotations. From a computational

perspective, this also suggests that clustering algorithms should not be judged solely

based on the number of functionally enriched clusters they find, as this may not be
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Figure 2.9: Function prediction performance as protein annotations are re-
moved from the S. cerevisiae Y2H network. As biological process (A) or cellu-
lar component (B) annotations are removed for 10%, 30%, 50%, 70%, and 90% of the
proteins in the Y2H network, the PR-AUC of Neighborhood deteriorates more rapidly
than that of the six clustering algorithms. For annotation removal, we repeated the
process ten times and plotted average AUC values, with error bars indicating plus
and minus one standard deviation.

42



Figure 2.10: Function prediction performance as protein annotations are
removed from the human network. Biological process or cellular component an-
notations are removed for 10%, 30%, 50%, 70%, and 90% of the proteins in the human
physical interaction network. The removals are repeated ten times. Average PR-AUC
values are plotted, with error bars indicating plus and minus one standard deviation.
(SpectralMod and DPClus did not successfully cluster these large networks.)
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Figure 2.11: Function prediction performance as protein annotations are re-
moved from the human network, while keeping in the evaluation proteins
not annotated with any function. Biological process or cellular component anno-
tations are removed for 10%, 30%, 50%, 70%, and 90% of the proteins in the human
physical interaction network. The removals are repeated ten times. Average PR-AUC
values are plotted, with error bars indicating plus and minus one standard deviation.
(SpectralMod and DPClus did not successfully cluster these large networks.)
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the best way to do interactome-derived function prediction for the proteome at hand.

The strength of clustering is that it uncovers structure within biological networks,

even when nothing is known about individual proteins. Thus, for less annotated pro-

teomes, or even biological processes that have not been well-studied, the advantages

of clustering over local methods are more likely to be apparent. Indeed, our simula-

tions show that the relative performance of clustering approaches as compared to a

simple neighborhood functional annotation scheme improves with fewer annotations.

In the future, it would be desirable to characterize which method should be used for

function prediction at the per-protein level; this could depend on, for example, the

number of annotated interacting proteins, local measures of network topology, the

density and size of the clusters it is found within, and the particular functions being

predicted.

We also find that the topological features of networks can vastly affect the per-

formance of clustering algorithms in recapitulating functional modules; in particular,

some of the best performing algorithms on the more dense HTP network are among

the poorest performing in the Y2H network as well as in networks subsampled from

the HTP network to resemble the Y2H network with respect to network topolog-

ical features (Figure 2.7). This suggests that network characteristics should guide

algorithm choice, and there is no one algorithm that always outperforms others in

predicting functional modules. It is possible that for some clustering approaches, more

fine-tuned parameter choices may lead to better results; however, for approaches such

as CFinder and SpectralMod, which have one and zero parameters respectively and

whose relative performances swap between the HTP and Y2H networks, this is not

the case. Moreover, we note that while MCL has become the algorithm of choice,

and the one to which new approaches are most commonly compared to, as a result of

its excellent performance in recovering complexes [17], we find that other approaches

have better performance depending on the application and network at hand.
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Looking forward, we hope that our evaluation framework will be helpful in gauging

how well future methodological improvements in clustering translate to improved

detection of functional modules and protein complexes from interactomes.
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Chapter 3

From hub proteins to hub modules:

the relationship between

essentiality and centrality in the

yeast interaction network at

different scales of organization

3.1 Introduction

High-throughput experimental approaches for determining protein interactions have

resulted in large-scale cellular networks for numerous organisms. Graph-theoretic

analyses of these networks have been a great aid in advancing our understanding

of cellular functioning and organization (review, [2]). One of the most fundamental

discoveries is that there is a strong relationship between the topological characteristics

of cellular networks and their underlying functioning. For example, cellular networks

consist of tightly clustered groups of interacting proteins, and these proteins work
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together as protein complexes or biological processes to achieve specific biological

functions [39, 69, 79, 8, 64, 77]. An orthogonal decomposition reveals that there

are recurring and over-represented topological and functional patterns within larger

cellular networks, and these network motifs [57, 54] and network schemas [10] can be

associated with dynamic regulatory properties and shared mechanisms of functioning.

Here, we revisit perhaps the most basic structure-to-function relationship in cellular

networks—that between the number of interactions which a protein has and its overall

functional importance.

The importance of a gene to a cell or an organism can be quantitatively measured

by considering the phenotypic effects of gene deletion or disruption. Experimental

studies in the baker’s yeast S. cerevisiae have demonstrated that approximately 19%

of its proteins are essential; that is, the deletion of these proteins results in cell

death, even in optimal growth conditions [90, 34]. Early computational analysis of

the yeast S. cerevisiae protein-protein physical interaction network revealed a scale-

free topology where a few “hub” proteins have many interactions, and also showed

that hub proteins are more likely to be essential than other proteins [44]. Numerous

subsequent studies have also confirmed this centrality-lethality relationship, not only

in yeast [93, 30, 13, 94, 96] but also in other organisms [36]. While the positive

correlation between protein interaction degree and essentiality is widely accepted,

the proposed reasons underlying this relationship have been more controversial and

intensely studied.

Initial work suggested that high-degree proteins may be essential due to their role

in global network connectivity [44]; however, this is unlikely to be the case as it was

subsequently shown that non-essential hubs are just as important as essential hubs for

maintaining connectivity, and that essentiality is better correlated with local, rather

than global, measures of connectivity in protein-protein interaction networks [94, 96].

It was alternatively proposed that essentiality is a property of interactions; that is,
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there are essential protein interactions, without which an organism cannot survive,

and these are randomly distributed across the network and hubs tend to be essential

as they are more likely to participate in essential interactions [40]. However, this

model implies that the probabilities that two non-interacting proteins are essential

are independent of each other, and this is not the case [96]. Instead, Zotenko et

al. [96] argued that the correlation between degree and essentiality is due to the

participation of essential proteins in essential functional modules consisting of groups

of densely clustered and functionally related proteins. They further showed that

the essentiality of hubs that are not in these computationally extracted modules are

only weakly correlated with degree [96]. Indeed, it had previously been found that

essential proteins tended to be densely connected to each other [93] and concentrated

in complexes [24, 38], suggesting that essentiality is a modular property rather than a

property of individual proteins. Building upon this, it has been argued that essential

complexes tend to be large, and thus proteins within them have a larger number of

interactions, and that this explains why hubs tend to be essential [89].

While essentiality appears to be a modular property in protein-protein interac-

tion networks, it is clear that complexes and processes do not consist entirely of

essential or non-essential proteins. Do essential proteins within a complex essential

differ from the non-essential ones? Further, not all complexes and processes con-

tain essential proteins. Do such essential complexes have distinctive roles in cellular

networks? In this Chapter, we aimed to discover whether, within complexes, their es-

sential and non-essential proteins differ in their interaction properties, and at a more

global scale, whether essential and non-essential complexes differ in their network-

level properties. To accomplish this, we developed a computational framework that

incorporates known functional information about proteins into network analysis tech-

niques. Because of quality concerns about protein interaction networks and protein

functional annotations, we performed our analysis on three different yeast interac-
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tion networks and utilized functional information arising from GO biological process

annotations [6] at different levels of resolution as well as information about protein

complex membership.

We began by re-examining the relationship between protein essentiality and net-

work modularity. We hypothesized that if essentiality is a modular property, then a

protein’s intramodular physical interaction degree should be better predictor of a pro-

tein’s essentiality than its intermodular physical interaction degree. To test this, we

utilized biological process functional annotations of proteins and classified physical in-

teractions into intraprocess interactions within processes and interprocess interactions

between processes. We found that essential proteins tend to have many interactions

with proteins within the same functional modules and that the intraprocess interac-

tion degree is more correlated with essentiality than overall degree. Further, we found

that the relationship between overall degree and essentiality is significantly weakened

when controlling for intramodular degree, but is not affected when controlling for in-

termodular degree. These findings confirm in a more direct manner previous work [96]

arguing that proteins are essential due to their interactions within essential modules

consisting of functionally similar proteins.

To further ascertain whether the modularity of essential proteins is due to their

participation in essential protein complexes or more generally within essential biolog-

ical processes, we repeated this analysis while first exclusively focusing on proteins

within protein complexes and next focusing only on proteins that are not within

known protein complexes. We found that most essential proteins with many in-

traprocess interactions in fact participate in essential protein complexes or in essential

biological processes that include one or more protein complexes; that is, essentiality

appears to be a property of protein complexes and not a more general property of

biological processes.

Next, we examined complexes and processes that contain essential proteins, and
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found that their essential proteins tend have to more interactions, particularly intra-

complex interactions, than their non-essential proteins. That is, while essentiality is a

modular property, the degree of a protein is associated with essentiality within essen-

tial complexes; this suggests that these essential proteins may play a more important

role in maintaining the functioning of complexes.

Finally, we analyzed modules containing essential proteins within the context

of other functional modules. We inferred significant “cross-talks” between protein

complexes and biological processes and used them to build module-level networks, in

which two processes are linked if they have a statistically enriched number of physical

interactions between them. Using these module-level networks, we uncovered that

functional modules with essential proteins tend to have high degree; that is, degree

in the module-level network is positively correlated with module essentiality.

Overall, by considering proteins within the functional context of the yeast interac-

tome, we show that there is a relationship between essentiality and network topology

at different levels of cellular organization; that is, the centrality-lethality rule is true

not just at the protein level but also at the module level, with complexes and processes

that are essential tending to interact with many functional groups.

3.2 Materials and methods

3.2.1 Physical interaction datasets

We utilized three physical interaction datasets. First, physical interactions were gath-

ered from BioGRID [81], release 3.1.78, using all evidence codes indicative of physical

interactions except “Affinity Capture-RNA” and “Protein-RNA,” and including only

core data for [42]. If a protein has more than 30 interactions from a single experi-

mental data source, we removed these interactions. Second, we extracted a network

from BioGRID that is focused on direct physical interactions by utilizing interactions
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determined from one of the following experimental systems: Biochemical activity,

Co-crystal structure, Far western, FRET, Protein-peptide, Reconstituted complex,

and Two-hybrid. Third, we used a network consisting of interactions determined via

Affinity capture-Western and Affinity capture-MS. We refer to the three networks as

Full, Direct and Pull-down, respectively, and their sizes are given in Table 3.1.

Network # Proteins # Interactions Fraction of essential proteins

Direct 4031 15073 0.22
Pull-down 4449 36455 0.22

Full 5167 50170 0.20

Table 3.1: The number of proteins, the number of interactions and the
fraction of essential proteins for each of the three physical interaction
networks considered.

3.2.2 Protein complexes and biological processes

We used the set of 430 protein complexes compiled in [12], which includes the SGD

Macromolecular Complex GO standard [74], the CYC2008 protein complex cata-

log [66] and a set of manually curated complexes. From this initial set, we removed

highly overlapping complexes as follows. First, if the proteins comprising one com-

plex are a subset of the proteins comprising another complex, the smaller complex is

removed. Next, for any two complexes, if the Jaccard index of the proteins making

them up (i.e., the number of overlapping proteins divided by the size of the union

of the protein sets) is ≥ 0.5, we removed the smaller complex. This resulted in 394

complexes. There are four complexes consisting of subunits of the ribosome. These

complexes were removed from consideration, leaving 390 complexes comprised of 1593

proteins.

For our functional analysis, we worked with a subset of specific Gene Ontology

(GO) Biological Process (BP) terms [6] that were derived from the entire GO (version

1.1.2130) as follows. First, we extracted 1418 BP terms, each of which annotates at
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least 5 yeast proteins and at most 50. Next, to hone in on the contribution of a

specific biological process (as opposed to the effects arising from proteins that are

annotated with that process but are also within protein complexes), we pruned the

set of proteins that are associated with these functional terms. More specifically, if the

size of the intersection between a biological process and one of our original set of 430

protein complexes is ≥ 2, the proteins in the intersection were no longer associated

with the process. If this left fewer than 2 proteins associated with the process, or with

less than half the number of proteins that it is known to annotate, then this term was

removed from consideration. Finally, highly overlapping processes were removed in

the same manner as described above for complexes. This procedure resulted in 391

processes, with 2567 proteins associated with at least one of these processes.

3.2.3 Detecting cross-talk between complexes and processes

We determined within a given network whether certain pairs of functional modules

are enriched in the number of interactions found between them in the following way.

Functional modules consist of either proteins within the same complex, or that have

a shared process annotation from the 391 filtered processes considered. We consider

modules arising from complexes or processes in turn. Briefly, we limited the network

to include those proteins that are associated with one of the modules that we are

considering, and all intermodular interactions amongst these proteins. Next, for any

two modules c1 and c2, we counted the number of “cross-talk” interactions between

the proteins comprising each of these modules. Note that interactions where either

of the proteins is annotated with both c1 and c2. were not included in the network as

these are intramodular interactions. To determine whether the number of observed

cross-talk interactions is more than would be expected by chance, we randomized

the network 100 times using stub-rewiring (as in [57]), thereby preserving degree

distribution and module annotation. For each randomized network, the number of
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cross-talk interactions are counted for all pair of modules. Lastly, if count{c1,c2} is

the number of cross-talk interactions between c1 and c2 in the real network, and

avg{c1,c2} is the average number of corresponding cross-talk interactions in randomized

networks, the likelihood of the module pair is as follows:

log
( count{c1,c2} + 1)

( avg{c1,c2} + 1)

The addition of the pseudocount of 1 downweighs the contribution of very rare

cross-talks that could otherwise obtain high scores simply due to very small (or zero)

average counts in the randomized graphs. We required, in order for a module pair

to be considered a cross-talk, that there should be at least two independent (i.e.,

non-overlapping) cross-talk interactions, and that its likelihood should be at least 2.

3.2.4 Semantic similarity

The semantic similarity between two GO terms within the same ontology is an esti-

mate of the functional similarity between the terms. We use the semantic similarity

measure introduced by [50]. In particular, let f(a) be the fraction of proteins in yeast

annotated with term a among the total number of proteins. Then s(a) = −log(f(a))

is a measure of how specific a term a is. We compute the term semantic similarity

of a and b, tSS(a, b) as tSS(a, b) = 2·s(LCA(a,b))
s(a)+s(b)

, where LCA(a, b) is a least common

ancestor of a and b in the GO ontology.

Note that if the LCA of two terms is a root term (e.g., GO:0008150 ‘biological

process’), then tSS(a, b) = 0. Moreover, if two terms are the same, then tSS(a, b) = 1.

This measure is naturally extended to functional relationship between proteins

that have multiple annotations. For a protein p, let A(p) be the set of terms with

which p is annotated. If a term annotates p, then all its parent terms are naturally

included in A(p). Then, between proteins p and q, the protein semantic similarity
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(pSS) is defined as follows [77]:

pSS(p, q) =
2 ·maxa∈A(p)∩A(q) s(a)

maxa∈A(p) s(a) + maxa∈A(q) s(a)

3.3 Results

We analyzed 5640 proteins that were tested for essentiality [34] in the context of

three large-scale S. cerevisiae protein physical interaction datasets; each of these net-

works captures different features of biological interactions. The first network is a

Direct interaction network, where an interaction between two proteins corresponds to

a direct physical contact; this network includes interactions determined by yeast two-

hybrid. Next, we considered a Pull-down network, where an interaction between two

proteins corresponds to their being members in the same multiprotein complex. Fi-

nally, we considered the All physical network consisting of all physical interactions in

BioGRID [81]; in this case, the interactions can represent either direct or indirect in-

teractions. In this Chapter, we focus on our results on the Direct interaction network,

which contains 4031 proteins (898 of which are essential) and 15,073 interactions. We

also report the full analysis on the other two networks.

3.3.1 Categorizing interactions as intramodular or intermod-

ular

For a given interaction network, we labeled protein interactions as either “intramodu-

lar,” “intermodular” or neither using two sources of functional data in turn. In partic-

ular, we utilized yeast protein complex data compiled in [12] and Gene Ontology (GO)

Biological Process (BP) annotations [6]. Thus, intramodular interactions can arise

from either intracomplex or intraprocess interactions, and intermodular interactions

arise as either intercomplex or interprocess interactions; we will separately consider
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both types of intramodular and intermodular interactions. For protein complex data,

“intracomplex” interactions are between all pairs of proteins that participate in a

shared complex and “intercomplex” interactions are between pairs of proteins that

are found in at least one complex but are never found in the same complex (See

Figure 3.1).

Figure 3.1: Schematic showing how interactions are categorized into in-
tramodular and intermodular given a set of functional modules. Each circu-
lar node represents a non-essential protein and each star node represents an essential
protein. Blue circles represent functional modules, either derived from a protein
complex or a biological process, and proteins within a circle are associated with the
corresponding module. Green, red, and black interactions represent intramodular,
intermodular, and unannotated interactions, respectively.

It is more complicated to characterize interactions as intramodular or intermodular

using GO BP terms, as the terms are hierarchically related and annotate different

numbers of proteins, with some very general terms. To get only informative and

specific terms, we considered GO BP terms that annotate at most 50 proteins in the

yeast proteome. An interaction is unannotated unless both proteins are annotated

with one of these specific GO BP terms. An interaction is “intraprocess” if it is

between two proteins sharing one of these specific BP terms. If two proteins with an

interaction are annotated with specific GO BP terms but do not share any specific
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BP terms, the interaction is “interprocess.” We note that while physical interactions

are largely thought of as “within process,” especially as compared to other types

of interactions [73], a significant fraction of physical interactions are interprocess

(Table 3.3); this is true even as the threshold for choosing specific terms is varied

from 50.

3.3.2 Intraprocess interactions are a main factor in the re-

lationship between protein essentiality and interaction

degree.

As a first step towards relating protein essentiality to network modularity, for each

protein, we computed its number of intramodular interactions, intermodular interac-

tions, and total annotated interactions. We then considered each of the intramodular,

intermodular and total annotated interaction degrees in turn, and ordered all pro-

teins from high to low degrees with respect to it. As we varied the threshold for the

number of proteins considered, we computed the fraction of essential proteins in the

“high degree” or “hub” set. Over the range of thresholds, the high degree proteins,

as ranked by intramodular degree, have a larger fraction of essential proteins than

the high degree proteins as ranked by either total annotated degree or intermodular

degree (Figure 3.2 (a), 3.3 (a), and 3.4 (a)). Further, in general, for all three networks,

the fraction of essential proteins decreases as the threshold for intramodular, inter-

modular or total degree is lowered. In the Direct network (Figure 3.2 (a)), this trend

is only true for intramodular interaction degree and is not true for total degree; this is

consistent with previous work showing that the relationship between essentiality and

overall interaction degree is weak in networks consisting of interactions determined

by the yeast two-hybrid method [13, 96].
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(a) correlation between degree and essential-
ity for proteins in BPs

Interaction type SRCC (p-value)
Intraprocess 0.2472 (0)
All annotated 0.1253 (2e-11)
Interprocess 0.0000 (1∗)

Interaction type Partial SRCC (p-value)
Intraprocess -0.0255 (0.2∗)
Interprocess 0.2466 (0)

1

(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)
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Wilcoxon's test: p= 1e−11

(c) all annotated degree
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(d) intraprocess degree
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(e) interprocess degree

Figure 3.2: The intraprocess interaction degree is more correlated with
protein essentiality than the overall interaction degree for proteins in the
Direct network, when interactions are categorized with specific Gene On-
tology (GO) Biological Process (BP) terms, each of which annotates at
most 50 proteins. (a) The fraction of essential proteins among hub proteins de-
creases as more proteins are considered hub proteins; this is done by adding proteins
in a non-increasing order of the interaction degree. The correlation with the in-
tramodular degree (green) is highest, followed by the all annotated degree (blue) and
then the intermodular degree (red). (b) Spearman’s rho rank correlation coefficient
(SRCC) is given to measure the correlation between degree and protein essentiality.
The partial correlation is also computed between all annotated degree and essentiality
when controlling for either intramodular or intermodular degree. ∗ indicates a non-
significant p-value > 0.05. (c)-(e) The degree distribution of non-essential proteins
is compared to that of essential proteins for all annotated (c), intramodular (d), and
intermodular (e) degree, respectively. Essential proteins tend to have a higher degree
than non-essential proteins. In each box plot, the horizontal bar within a box gives
the median of the distribution; the two ends of the box give the 25% and 75% per-
centile, respectively; the two ends of the whiskers give the minimum and maximum
of the degree data, respectively; and the small circles show outliers within 2-98%.
The significance of the difference of the two degree distributions is measured by the
Wilcoxon rank sum test.
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(a) correlation between degree and essential-
ity for proteins in BPs

Interaction type SRCC (p-value)
Intraprocess 0.3505 (0)
All annotated 0.3203 (0)
Interprocess 0.2232 (0)

Interaction type Partial SRCC (p-value)
Intraprocess 0.1120 (2e-10)
Interprocess 0.2815 (0)
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(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)
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(c) all annotated degree
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(d) intraprocess degree
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(e) interprocess degree

Figure 3.3: The intraprocess interaction degree is more correlated with
protein essentiality than the overall interaction degree for proteins in the
Pull-down network, when interactions are categorized with specific Gene
Ontology (GO) Biological Process (BP) terms, each of which annotates at
most 50 proteins. All tests as in Figure 3.2 are done in the Pull-down network; see
the caption of Figure 3.2 for details.
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(a) correlation between degree and essential-
ity for proteins in BPs

Interaction type SRCC (p-value)
Intraprocess 0.3518 (0)
All annotated 0.2958 (0)
Interprocess 0.2109 (0)

Interaction type Partial SRCC (p-value)
Intraprocess 0.0797 (2e-6)
Interprocess 0.2906 (0)
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(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)
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(c) all annotated degree
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(d) intraprocess degree
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(e) interprocess degree

Figure 3.4: The intraprocess interaction degree is more correlated with pro-
tein essentiality than the overall interaction degree for proteins in the Full
network, when interactions are categorized with specific Gene Ontology
(GO) Biological Process (BP) terms, each of which annotates at most 50
proteins. All tests as in Figure 3.2 are done in the Full network; see the caption of
Figure 3.2 for details.
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To further quantify the correlation between essentiality and degree, we used the

Spearman’s rho rank correlation coefficient (SRCC) [78], and found that the in-

tramodular SRCC is highest for intramodular degree and near zero for the intermodu-

lar degree in the Direct network (Figure 3.2 (b)). We further sought to disentangle the

contributions of intramodular and intermodular degree to the observed correlations,

and computed partial correlations between essentiality and all annotated interactions,

when controlling for intramodular and intermodular degree. For all three networks,

we found that when controlling for intramodular degree, the SRCC between total de-

gree and essentiality notably diminished, whereas when controlling for intermodular

degree, the SRCC remained high (Figures 3.2, 3.3 and 3.4 (b)).

As another way of looking at the difference between intramodular and intermod-

ular interaction degree, we compared the degree distribution of essential proteins and

non-essential proteins (Figures 3.2, 3.3 and 3.4 (c)-(e)) using the Wilcoxon rank sum

test. For comparing degree distributions, we included all proteins with at least one

interaction; these proteins may have zero intramodular or intermodular interactions.

Since the same number of proteins are considered when comparing total, intramodu-

lar, or intermodular degree (Figures 3.2, 3.3 and 3.4 (c)-(e)), the p-values given are

comparable. The difference in the number of interactions between essential and non-

essential proteins is much larger when only intramodular interactions are considered

(Figures 3.2, 3.3 and 3.4 (d)), as compared with the case when all interactions are

considered (Figures 3.2, 3.3 and 3.4 (c)) or when only intermodular interactions are

considered (Figures 3.2, 3.3 and 3.4 (e)).

As an alternative to categorizing all interactions as either intermodular or in-

tramodular, we also considered the case where interactions are weighted according

to the semantic similarity [50] between the functional terms annotating the two pro-

teins. This weight is in the range of 0 and 1 with proteins sharing highly specific

functional terms getting higher scores (see section 3.2, Materials and methods,
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(a) Direct network
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all annotated: SRCC=0.3203

(b) Pull-down network
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(c) Full network
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Wilcoxon's test: p= 1e−26

(d) Direct network
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Wilcoxon's test: p= 2e−91

(e) Pull-down network
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(f) Full network

Figure 3.5: The semantic similarity degree is more correlated with protein
essentiality than the overall interaction degree in all three networks. (a)-
(c) The fraction of essential proteins among hub proteins decreases as more proteins
are considered hub proteins; this is done by adding proteins in a non-increasing order
of the semantic similarity degree. For each network, the Spearman’s rho rank correla-
tion coefficient (SRCC) is computed between protein essentiality and either semantic
similarity or all annotated degree; these values are boxed in each panel. (d)-(f) The
semantic similarity weighted degree distribution of non-essential proteins is compared
to that of essential proteins for the Direct, Pull-down and Full networks.
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for more details). Thus, the semantic similarity between two interacting proteins is a

continuous measure of the “intramodularity” of the interaction. Then, the semantic

similarity degree of a protein is defined as the sum of the semantic similarity of the

interactions. Across all three networks, we find that there is stronger correlation with

essentiality when all interactions are weighted with semantic similarity than when

they are just counted (Figure 3.5). In other words, proteins having many interactions

within a similar functional context are more likely to be essential than proteins hav-

ing many interactions. Thus, a range of computational analyses shows that much of

the relationship between essentiality and interaction degree can be explained when

considering just intraprocess interactions.

3.3.3 The correlation between intramodular degree and pro-

tein essentiality is largely due to complexes, not pro-

cesses.

Having shown the strong correlation between intraprocess interaction degree and es-

sentiality, we sought to characterize the contribution of intracomplex interactions.

In particular, previously, it had been observed that essentiality is a modular prop-

erty and that essential proteins tend to be clustered together within essential protein

complexes [38, 96]. Thus, we hypothesized that having intracomplex physical interac-

tions for a protein is more important for predicting its essentiality than having other

types of physical interactions. That is, as we have defined them, functional modules

can be comprised either of protein complexes or biological processes corresponding

to Gene Ontology (GO) Biological Process (BP) terms. Here, we focus on modules

derived from protein complexes. We begin by observing that complexes as a whole

are enriched in essential proteins. In particular, 18.60% (or 1049/5640) of proteins

are essential in the yeast genome, whereas 34.50% (or 622/1803) of proteins are es-
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sential among proteins involved in any of a set of protein complexes, and 37.54% (or

598/1593) are essential when excluding the four complexes comprising the ribosome.

In fact, 59.29% (or 622/1049) of all essential proteins are involved in protein com-

plexes, even though only 31.97% (or 1803/5640) of proteins take part in our set of

complexes. Thus, any conclusions arising from the analysis of protein complexes is

based on the interaction properties of approximately 60% of essential proteins.

In a manner similar to how we obtained a subnetwork for GO BP terms in the

previous section, we derive a subnetwork from each of the three networks where nodes

represent proteins involved in any protein complex and edges represent interactions

between these proteins. Repeating the analysis we performed for intraprocess vs.

interprocess interactions, we found that intracomplex physical interactions are more

correlated with protein essentiality than all physical interactions (Figures 3.6, 3.7

and 3.8 (a)).

It has been previously observed that there is a strong correlation between complex

size and essentiality [89]. In our dataset, there is a positive correlation between

complex size and the fraction of essential proteins within the complex at a complex

level (SRCC (Spearman’s rho rank correlation coefficient): 0.2394, p-value: 2e-6).

At a protein level as well as a complex level, there is a strong correlation between

essentiality and the size of a complex to which a protein belongs (black curve in

Figures 3.6, 3.7 and 3.8 (a)). We found, however, this correlation is not stronger than

the correlation between essentiality and intracomplex degree (black vs. green curve

in Figures 3.6, 3.7 and 3.8 (a)). In our dataset, there is, however, also a positive

correlation between complex size and the fraction of essential proteins within the

complex at a complex level (SRCC (Spearman’s rho rank correlation coefficient):

0.2394, p-value: 2e-6).
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(a) correlation between degree and essential-
ity for proteins in complexes

Interaction type SRCC (p-value)
Intracomplex 0.3055 (0)
All annotated 0.1664 (7e-10)
Intercomplex 0.0028 (0.9∗)
Complex size 0.2541 (0)

Interaction type Partial SRCC (p-value)
Intracomplex -0.0149 (0.6∗)
Intercomplex 0.2891 (0)
Complex size 0.1220 (7e-6)
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(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●

●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

non−essential essential

0
5

10
15

20
25

de
gr

ee

Wilcoxon's test: p= 5e−10

(c) all annotated degree
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Wilcoxon's test: p= 1e−29

(d) intracomplex degree
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(e) intercomplex degree
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(f) complex size

Figure 3.6: The intracomplex interaction degree is more correlated with
protein essentiality than the overall interaction degree for proteins in the
Direct network, when interactions are categorized with protein complexes.
(a) The fraction of essential proteins among hub proteins decreases as more proteins
are considered hub proteins; this is done by adding proteins in a non-increasing or-
der of the interaction degree or the complex size. The correlation between protein
essentiality and interaction degree is shown in green (intracomplex), blue (all) and
red (intercomplex). The correlation between protein essentiality and the complex
size where a protein belongs is also shown (black). If a protein belongs to multiple
complexes, the largest complex is considered. (b) Spearman’s rho rank correlation
coefficient (SRCC) is given to measure the correlation between degree and protein
essentiality. The partial correlation is also computed between all annotated degree
and essentiality when controlling for either intracomplex degree, intercomplex degree,
or the size of the largest complex to which the protein belongs. ∗ indicates a non-
significant p-value > 0.05. (c)-(f) The degree distribution of non-essential proteins
is compared to that of essential proteins within complexes for– (c) all annotated de-
gree, (d) intracomplex degree, (e) intercomplex degree, and (f) complex size. Outliers
within 2-98% are shown. The significance of the difference of the two degree distri-
butions is measured by the Wilcoxon rank sum test. The four ribosomal complexes
were not included in this analysis.
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(a) correlation between degree and essential-
ity for proteins in complexes

Interaction type SRCC (p-value)
Intracomplex 0.3351 (0)
All annotated 0.3191 (0)
Intercomplex 0.1935 (2e-14)
Complex size 0.2414 (0)

Interaction type Partial SRCC (p-value)
Intracomplex 0.1343 (1e-7)
Intercomplex 0.2858 (0)
Complex size 0.2401 (0)

1

(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)
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(c) all annotated degree
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(d) intracomplex degree
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(e) intercomplex degree
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(f) complex size

Figure 3.7: The intracomplex interaction degree is more correlated with
protein essentiality than the overall interaction degree for proteins in the
Pull-down network, when interactions are categorized with protein com-
plexes. All tests as in Figure 3.6 are done in the Pull-down network; see the caption
of Figure 3.6 for details.
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(a) correlation between degree and essential-
ity for proteins in complexes

Interaction type SRCC (p-value)
Intracomplex 0.3452 (0)
All annotated 0.3162 (0)
Intercomplex 0.2060 (1e-16)
Complex size 0.2400 (0)

Interaction type Partial SRCC (p-value)
Intracomplex 0.1393 (3e-8)
Intercomplex 0.2783 (0)
Complex size 0.2402 (0)

1

(b) Spearman’s rho rank correlation coeffi-
cient (SRCC)
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(c) all annotated degree
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(d) intracomplex degree
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(e) intercomplex degree
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(f) complex size

Figure 3.8: The intracomplex interaction degree is more correlated with
protein essentiality than the overall interaction degree for proteins in the
Full network, when interactions are categorized with protein complexes
All tests as in Figure 3.6 are done in the Full network; see the caption of Figure 3.6
for details.
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The four complexes pertaining to the ribosome tend to be removed from analysis in

the literature [38, 89] because they have a relatively large number of member proteins

(ranging from 32 to 79) yet have a low fraction of essential proteins ranging from 4.55%

to 15.19%. Due to the total number of proteins, computational analysis can be largely

affected by these four complexes. We still observe a large difference in the correlation

between essentiality and intracomplex interaction degree, as well as essentiality and

all interaction degree when the four ribosomal complexes are included (Figure 3.9

(a)). Including these four complexes does not affect our finding much in the Direct

network, but it has a larger effect in the two other networks (Figures 3.9 (b),(c)

vs. Figures 3.7 and 3.8 (a)). This may be due to the fact that the other networks

contain indirect interactions, and non-essential proteins within large complexes can

have a larger number of intracomplex interactions than essential proteins within small

complexes. In particular, if there are many indirect interactions, the large complexes

may have a higher chance to have many indirect intracomplex interactions than small

complexes. Throughout this Chapter, we removed these ribosomal complexes for the

reported complexes, unless otherwise noted.

We also computed partial correlations between essentiality and all annotated in-

teractions, when controlling for intracomplex degree, intercomplex degree, or complex

size. For all three networks, we found that when controlling for intracomplex degree,

the SRCC between total degree and essentiality notably diminished, whereas when

controlling for intercomplex degree or complex size, the SRCC remained high (Fig-

ures 3.6, 3.7 and 3.8 (b)).

We looked at the difference in degree distribution between essential and non-

essential proteins (Figures 3.6, 3.7 and 3.8 (c)-(e)). For intracomplex degree, we see

the most significant difference between the mean degrees of essential and non-essential

proteins (p-value: 1e-29 for the Direct network), and the least significant difference

for intercomplex degree.
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intracomplex: SRCC=0.3121
all annotated: SRCC=0.1735
intercomplex: SRCC=0.0050
complex size: SRCC=0.2095

(a) Direct network
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intracomplex: SRCC=0.2582
all annotated: SRCC=0.2563
intercomplex: SRCC=0.1714
complex size: SRCC=0.0943

(b) Pull-down network
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intracomplex: SRCC=0.3101
all annotated: SRCC=0.2977
intercomplex: SRCC=0.2163
complex size: SRCC=0.0964

(c) Full network

Figure 3.9: We show the correlations between interaction degree and essen-
tiality for proteins in all complexes including ribosomal complexes for all
three networks. The fraction of essential proteins among hub proteins decreases
as more proteins are considered hub proteins; this is done by adding proteins in a
non-increasing order of the interaction degree or the complex size in all three net-
works. We did the same analysis as in Figures 3.6, 3.7 and 3.8 (a), respectively, but
interactions are categorized with all protein complexes including the four ribosomal
complexes.
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intraprocessf: SRCC=0.0618
all annotated: SRCC=0.0688
interprocessf: SRCC=0.0432

(a) Direct network
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intraprocessf: SRCC=0.2116
all annotated: SRCC=0.2686
interprocessf: SRCC=0.2369

(b) Pull-down network
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intraprocessf: SRCC=0.1988
all annotated: SRCC=0.2267
interprocessf: SRCC=0.2025

(c) Full network

Figure 3.10: For a set of filtered biological processes, the intraprocess in-
teraction degree is not more correlated with protein essentiality than the
overall interaction degree for proteins in all three networks. The fraction of
essential proteins among hub proteins as a function of an increasing number of pro-
teins considered as hub proteins; this is done by adding proteins in a non-increasing
order of the interaction degree. The correlation between protein essentiality and in-
teraction degree is shown in green (intraprocess), blue (all) and red (interprocess).
Spearman’s rho rank correlation coefficient (SRCC) is given. For filtered biological
processes, see section 3.2 Materials and methods.
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Thus far, we have found that a stronger correlation between essentiality and in-

tramodular degree than between essentiality and all annotated degree for all func-

tional modules holds when we focus on either biological process or protein complex

derived modules. What happens if we consider intraprocess interactions when ex-

cluding those that are intracomplex? That is, some biological processes consist of a

single protein complex or several protein complexes; in these cases the intraprocess

interactions are more specifically intracomplex interactions within complexes that are

also annotated with the process. To focus on interactions that are not intracomplex,

we filtered biological processes to remove these interactions. See section 3.2, Mate-

rials and methods, for more detail. Among the proteins that are annotated with

any filtered biological process, 16.52% (or 424/2567) proteins are essential, which is

slightly less than that when considering all proteins in the genome. In a subnetwork

for the set of filtered biological processes from each of three interaction networks,

there is a weaker correlation between interaction degree and essentiality as compared

to the correlation for complexes, and the intraprocess degree is not a better predictor

of essentiality than all annotated degree (Figure 3.10). The correlations are espe-

cially weak in the Direct network. One possible reason may be that these biological

processes are mostly metabolic processes where proteins do not physically bind to

each other, but rather through small molecules, and there are metabolic interactions

within processes.

3.3.4 Essential proteins are more central within essential pro-

tein complexes.

From the observation that essential proteins tend to have more intracomplex inter-

actions than non-essential proteins in protein complexes, we hypothesized that, for

each essential protein complex, its essential proteins are more central or have a higher

intracomplex degree than its non-essential proteins. We tested this hypothesis for a
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subset of protein complexes with enough member proteins and intracomplex interac-

tions. In particular, we included a complex in our test if it had at least two essential

proteins and at least two non-essential proteins, each of which has intracomplex in-

teractions. Table 3.2 shows that complexes tend to have a higher intracomplex degree

on average for essential proteins than for non-essential proteins in all three physical

interaction networks. In particular, in the Direct network, more than 70% of com-

plexes have essential proteins with a higher intracomplex degree on average. In the

Pull-down or the Full network, the fraction of complexes with a higher degree on

average for essential proteins is lower than in the Direct network since these networks

include indirect intracomplex interactions. In fact, there are seven “clique” complexes

in which every protein has intracomplex interactions with all other member proteins

in both the Pull-down and the Full networks, whereas there are no such complexes

in the Direct network. Without these clique complexes, the complex percentage goes

up to 68.18% and 71.11% for the Pull-down and the Full networks, respectively.

Network
# Tested # Complexes with Complex
complexes higher degree percentage

Direct 38 29 76.32%
Pull-down 51 30 58.82%

Full 52 32 61.54%

Table 3.2: Within each essential protein complex, essential proteins tend
to have a high intracomplex degree on average. Network gives the three
physical interaction networks considered. # Tested complexes gives the number of
complexes considered; each has at least two essential proteins and at least two non-
essential proteins with intracomplex interactions. # Complexes with a higher
degree gives the number of complexes among the tested complexes where essential
proteins have a higher intracomplex degree on average than non-essential proteins.
Complex percentage gives the percentage of complexes with a higher average de-
gree for essential proteins.

By considering each complex individually, this analysis better handles proteins

involved in multiple complexes. Although we removed highly overlapping complexes

(See section 3.2, Materials and methods), 14% (or 223/1593) of proteins in some
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complex still belong to at least one other complex. Moreoever, these proteins tend to

be essential; that is, the fraction of essential proteins is 53.81% (or 120/223) among

proteins in more than one complex, whereas for all proteins in complexes this is 37.54%

(or 598/1593). Thus, it was possible that a main cause of our earlier finding that

essential proteins tend to have a high intracomplex degree is that essential proteins

tend to belong to multiple complexes and intracomplex degree of an essential protein

is summed over the complexes which it belongs to; however, looking at a complex one

at a time alleviates this problem.
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(b) Degree/complex size

Figure 3.11: Essential proteins tend to have a higher intracomplex degree
than non-essential proteins within protein complexes in the Direct net-
work. (a) The intracomplex degree or (b) the normalized intracomplex degree of
essential proteins is significantly greater than that of non-essential proteins. Only pro-
tein complexes that have at least two essential proteins and at least two non-essential
proteins with intracomplex interactions are tested. Outliers within 2-98% are shown.
The significance of the difference of the two degree distributions is determined by the
Wilcoxon rank sum test.

As another way of addressing possible bias due to proteins in multiple complexes,

for each protein in multiple complexes, we put it only in the complex with which

it has a maximum intracomplex degree in the Direct network. Next, we compared

proteins within complexes altogether. We see that there is a significant difference in

degree distribution between essential and non-essential proteins (Figure 3.11 (a)). In
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(b) Degree/complex size

Figure 3.12: Essential proteins tend to have a higher intracomplex degree
than non-essential proteins within protein complexes in the Pull-down
network. (a) The intracomplex degree or (b) the normalized intracomplex degree
of essential proteins is significantly greater than that of non-essential proteins. Only
protein complexes that have at least two essential proteins and at least two non-
essential proteins with intracomplex interactions are tested. Outliers within 2-98% are
shown. The significance of the difference of the two degree distributions is determined
by the Wilcoxon rank sum test.

the two other networks, we see the same results (Figures 3.12 and 3.13 (a)).

Since there is a strong correlation between the complex size and the fraction of

essential proteins within the complex [89], and complex size is also correlated with

the intracomplex degree of its member proteins, it is possible that the correlation

between intracomplex degree and essentiality comes from the correlation between

the complex size and essentiality. To address this, we normalize the degree by the

complex size; that is, the normalized intracomplex degree of a protein is the number of

intracomplex interactions divided by the complex size. We found that the normalized

degree of essential proteins tends to be significantly greater than that of non-essential

proteins (Figures 3.11, 3.12 and 3.13 (b)).
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(b) Degree/complex size

Figure 3.13: Essential proteins tend to have a higher intracomplex degree
than non-essential proteins within protein complexes in the Full network.
(a) The intracomplex degree or (b) the normalized intracomplex degree of essential
proteins is significantly greater than that of non-essential proteins. Only protein
complexes that have at least two essential proteins and at least two non-essential
proteins with intracomplex interactions are tested. Outliers within 2-98% are shown.
The significance of the difference of the two degree distributions is determined by the
Wilcoxon rank sum test.

3.3.5 A large number of interactions are across different func-

tional modules.

As we have just shown, essential proteins tend to have many intramodular interac-

tions and these interactions connect essential proteins with other proteins within a

functional module; presumably these interactions are important for the module to ac-

complish a task, particularly so in the case of protein complexes. Then, what role do

intermodular interactions play in the yeast network? There are a significant number

of intermodular physical interactions (i.e, interactions between different functional

modules); see Table 3.3. In the subnetwork consisting of protein complexes in the

Direct network, the fraction of intercomplex interactions is over 60% and in a subnet-

work for a subset of specific GO BP terms, the fraction is almost 80%. Even when we

consider GO BP terms that are quite general, the fraction of intermodular interac-

tions is over 50%. For example, when we consider interactions within a GO BP term
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which annotates up to 500 proteins in the yeast as intraprocess interaction, 50.49%

of physical interactions are still interprocess interactions where the two interacting

proteins participate in different biological processes. Thus, it is important to under-

stand how physical intermodular interactions connect different functional modules in

the network.

We hypothesized that proteins that are associated with a same functional module

might have similar patterns of physical interactions in the sense of connecting func-

tional modules. To test this, we can find systematic patterns of physical intermodular

interactions between functional modules; this gives us an idea of how functional infor-

mation “flows” through physical interactions at a modular level. From this, we can

build a “module network” where nodes are modules and edges are cross-talks between

modules having a significant number of intermodular interactions. We wish to relate

essential functional modules to cross-talk degree in the module network. To do this,

at a modular level, we need to define degree and essentiality at the module level. The

interaction degree of a module is defined as the number of inferred cross-talk inter-

actions that this module has, and the normalized interaction degree of a module is

defined as the interaction degree of the module divided by the number of proteins in

the module (i.e., module size). The essentiality of a module is the fraction of essential

proteins within the module. If there is at least one protein in the module is essential,

we say the module is essential.

In this way, a module network from each physical interaction network is gener-

ated for either protein complexes or filtered biological processes. (Table 3.4). The

number of cross-talks for processes is 2.6 − 5.9 fold higher than that for complexes

because a relatively high number of interactions for processes are intermodular rather

than intramodular. The intermodular percentage for processes is 86.98% whereas for

complexes it is 64.34% (Table 3.3).
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(a) Protein complexes
Network # cross-talks # modules Fraction of essential modules

Direct 194 143 0.68
Pull-down 535 242 0.60

Full 727 279 0.56

(b) Filtered biological processes
Network # cross-talks # modules Fraction of essential modules

Direct 1149 307 0.79
Pull-down 1409 321 0.77

Full 2306 371 0.74

Table 3.4: The number of cross-talks and the number of modules and the
fraction of essential modules in the three module networks. Network gives
the network for which the cross-talks are inferred. # cross-talks gives the number
of cross-talks with the likelihood ≥ 2 and at least two independent interactions. #
modules gives the number of modules, either protein complexes or filtered biological
processes, with at least one cross-talk. Fraction of essential modules gives the
fraction of essential modules (i.e. modules having at least one essential protein)
among modules with at least one cross-talk. A module network is built for (a) protein
complexes or (b) filtered biological processes.

3.3.6 Essential functional modules tend to have a high cross-

talk degree in the module network.

For each module network, we find that there is a correlation between cross-talk degree

and the fraction of essential proteins in the module, for both protein complexes and

filtered biological processes (Figure 3.14). Complexes or processes which have at least

one cross-talk tend to associate with essential proteins.

Figures 3.15 and 3.16 show the module networks of protein complexes and filtered

biological processes, respectively, from the Direct network. A functional module is

essential if it has at least one essential protein. For complexes, 48% (or 189/390)

of complexes have at least one essential protein but, in the complex network from

the Direct network, 68% (or 97/143) of complexes with cross-talks have at least one

essential protein (Table 3.4 (a)). Also, while 72% (or 281/391) of processes have
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(b) Filtered biological processes

Figure 3.14: The correlation between cross-talk degree and the fraction of
essential proteins in a module is computed using SRCC (Spearman’s rho
rank correlation coefficient) for the module network inferred in the Direct,
Pull-down, and Full networks for (a) protein complexes and (b) filtered
biological processes. The value above each bar gives the SRCC p-value.

at least one essential protein, for processes in the process network from the Direct

network, 79% (or 241/307) of processes with cross-talks have at least one essential

protein (Table 3.4 (b)).

When we categorize modules as having essential proteins vs. not having any es-

sential proteins, the correlation between cross-talk degree and this binary essentiality

measure is stronger than that between cross-talk degree and the fraction of essential

proteins in a module.

We observed that many cross-talks occur between functional modules that are

functionally related and both belong to more general biological processes. These

types of cross-talk can be interpreted as intraprocess interactions at a broader level

of functional similarity. To see if essential functional modules have many cross-talks

with functional modules in representing truly different biological processes, we ignored

cross-talks between functional modules if they are annotated with the same Gene

Ontology (GO) Biological Process (BP) term among biological expert selected terms

that annotate at most 500 proteins [58]. Given the selected terms, a functional
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Figure 3.15: The module network for protein complexes from the Direct
interaction network. Each node represents a complex and an edge represents an
uncovered cross-talk between complexes. Node size is proportional to the number
of proteins that belong to the corresponding complex and node color represents the
essentiality of the complex; that is, the color is dark grey if a complex has at least
one essential protein, and light grey otherwise. Also, the edge width is proportional
to the number of interactions between two complexes. There are 97 essential and
46 non-essential complexes with cross-talks, and 92 essential and 155 non-essential
complexes without cross-talks (the latter are not shown).
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Figure 3.16: The module network for filtered biological processes from the
Direct interaction network. Each node represents a filtered biological process and
an edge represents an uncovered cross-talk between processes. Node size is propor-
tional to the number of proteins that belong to the corresponding process and node
color represents the essentiality of the process; that is, the color is dark grey if a
process has at least one essential protein, and light grey otherwise. Also, the edge
width is proportional to the number of interactions between two processes. There are
241 essential and 66 non-essential processes with cross-talks, and 40 essential and 44
non-essential processes without cross-talks (the latter are not shown).

80



1e-11 

1e-15 
0 

4e-8 
4e-9 

1e-8 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

Direct Pull-down Full 

Degree 

Normalized 
degree 

SR
C

C
 

(a) Protein complexes

5e-12 

2e-15 

2e-13 

6e-6 

1e-7 

1e-2 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

Direct Pull-down Full 

Degree 

Normalized 
degree 

SR
C

C
 

(b) Filtered biological processes

Figure 3.17: The correlation between cross-talk degree and binary essential-
ity for modules is computed using SRCC (Spearman’s rho rank correlation
coefficient) for the module network inferred in the Direct, Pull-down, and
Full networks for (a) protein complexes and (b) Filtered biological pro-
cesses. The value above each bar gives the SRCC p-value. The binary essentiality
for a module is defined as 1 if the module has at least one essential protein, and 0
otherwise.

module is annotated with one of these terms if ≥ 70% of proteins in the module are

annotated with it. Without such cross-talks, essential functional modules are still

correlated with cross-talk degree (Figure 3.18).

3.4 Discussion and conclusions

We incorporated functional information into network topology analysis in order to

better understand protein essentiality. Using this functional information, physical

interactions were categorized into intramodular interactions within functional mod-

ules and intermodular interactions across functional modules. Previously, it had been

shown in several analyses that hub proteins in physical interaction networks tend to be

essential. Our analysis revealed that essential proteins tend to have many intramod-

ular interactions, and these are more predictive of essentiality just any interactions.

In addition, essential proteins tend to be organized in a modular manner and interact

with each other within essential functional modules, and especially within protein
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(b) Filtered biological processes

Figure 3.18: The correlation between cross-talk degree and the fraction of
essential proteins in a module after removing functionally similar cross-
talks is computed using SRCC (Spearman’s rho rank correlation coeffi-
cient) for the module network inferred in the Direct, Pull-down, and Full
networks for (a) protein complexes and (b) Filtered biological processes.
We removed cross-talks between modules that are annotated with a shared general
biological process. The value above each bar gives the SRCC p-value.

complexes. We found that if biological processes annotate essential proteins that

are densely interacting with each other, these essential proteins tend to overlap com-

plexes. Moreover, if we remove the association of proteins that belong to complexes

from a process, then intraprocess interactions do not correlate with essentiality any

better than all interactions for the rest of proteins associated with the process. Fur-

ther, within essential protein complexes, we showed it is more likely that essential

proteins have a higher intracomplex degree than non-essential proteins.

Therefore, protein complexes, which include many essential proteins and thereby

many intracomplex interactions within complexes, to a large extend, explain the cor-

relation between physical interactions and protein essentiality. However, there are

still a significant number of intermodular interactions. We looked at interactions at

a modular level and found systematic relationships between functional modules. We

found that essential functional modules tend to have many cross-talks with other

functional modules. From this, we showed that there is correlation with essentiality
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both at a protein level and at a modular level. Further, we observed that function-

ally related modules are likely to interconnect to each other, thereby revealing the

hierarchical structure of physical interaction networks.

There are mainly two types of physical interactions– direct or binary interactions

and indirect interactions indicating co-membership of proteins in complexes. To en-

sure that our findings were not biased towards any of the experimental techniques for

detecting physical interactions, we tested our hypotheses on three different networks–

Direct, Pull-down, and Full. We saw consistency in our results regardless of what

networks are used for testing.

Overall this work has advanced our understanding of the relationship between

essentiality and network topology. We have shown the importance of intramodular

interactions, especially intracomplex interactions, and demonstrated that essential

modules tend to have a higher cross-talk degree than non-essential modules. In the

future, it would be interesting to characterize the network properties of essential

proteins that are not central in protein physical interaction networks. Based on our

current findings, we can speculate that some of these proteins are important for the

functioning of specific essential modules, but perhaps their interactions with other

proteins in the module may be better represented with other types of interactions

(e.g., metabolic, or regulatory). Further research is necessary to uncover whether

this is indeed the case.
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Chapter 4

Conclusions

In this thesis, we developed computational methods for analyzing protein-protein

physical interaction networks in order to better understand protein function and cel-

lular organization. In Chapter 2, we attempted to characterize how to best utilize

clustering approaches for protein functional analysis. We demonstrated that the

performances of clustering algorithms in recapitulating functional modules depend

strongly upon topological features of networks, and that these features should guide

algorithm choice in real-world applications. We evaluated six diverse network cluster-

ing algorithms on S. cerevisiae. We found significant differences in the performances

of these algorithms when run on the same network, and a dependence of these perfor-

mances based upon the topological features of the underlying networks. Moreover, for

the specific task of function prediction, surprisingly, our analysis uncovered that for

well-annotated genomes such as S. cerevisiae, a commonly-used network clustering

approach is less accurate than a very simple, local, non-clustering guilt-by-association

approach. Finally, since computational biologists continue to develop novel network

clustering algorithms, our work established guidelines for justifying and evaluating

these approaches for interaction networks.

In Chapter 3, we looked at protein topology and its effect on functioning in a
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slightly different setting. We focused on the centrality-lethality rule at different scales

of organization. It was previously known that protein essentiality is correlated with

physical interaction degree but we found more specifically that it is correlated with

physical intra-complex or intra-process interaction degree. From this, it is more likely

that essential proteins play an important role in connecting proteins within a complex

or process rather than in mediating different functional modules. Within an essential

complex, we found that essential proteins tend to have a larger number of intra-

complex interactions than non-essential proteins. Not only do essential proteins tend

to have many interactions within complexes or processes, but also essential complexes

and processes tend to have higher cross-talk degrees in a module-level network. In

other words, we see strong evidence that centrality-lethality rule is true both at a

protein level and in a large scale module level.

To conclude, this thesis has investigated the relationship between the topological

features of cellular networks and the overall functioning of the cell.
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