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Abstract

In this thesis we consider the challenges arising in the design of algorithms
that interact with sensitive personal data—such as medical records, online
tracking data, or financial records.

One important goal is to protect the privacy of those individuals whose
personal information contributed to the data set. We consider algorithms
that satisfy the strong privacy guarantee known as differential privacy. A wide
range of computational tasks reduces to the setting in which a trusted database
curator responds to a number of statistical queries posed by an untrusted data
analyst. The basic question is how accurately and efficiently the curator can
release approximate answers to the given queries while satisfying differential
privacy. We make the following main contributions to differentially private
data analysis:

— We expose a connection between differential privacy and certain prob-
lems in convex geometry revolving around a deep conjecture known as
the Hyperplane conjecture. Assuming the truth of this conjecture we
give differentially private mechanisms with nearly optimal accuracy in
the case where the queries are given all at once (non-interactively) and
the number of queries does not exceed the database size.

— Multiplicative weights mechanisms are a powerful tool in algorithms,
machine learning and optimization. We introduce a privacy-preserving
multiplicative weights framework suitable for answering a huge number
of queries even in the interactive setting. The accuracy of our algorithm
in terms of database size and number of queries matches the statistical
sampling error that already arises in the absence of any privacy concerns.
Our algorithm can also be used to produce a differentially private syn-
thetic data set encoding the curator’s answers. For this task the runtime
of our algorithm—which is linear in the universe size—is essentially
optimal due to a prior cryptographic hardness result.

— We then consider avenues for obtaining differentially private algorithms
with a runtime polynomial in the size of the data set or at least subex-
ponential in the universe size. Based on a new learning algorithm for
submodular functions, we present the first polynomial-time algorithm
for answering a large number of Boolean conjunction queries (or contin-
gency tables) with non-trivial accuracy guarantees. Conjunction queries
are a widely used and important class of statistical queries.

— Furthermore, we exhibit an explicit and efficient reduction from the
problem of privately releasing a class of queries to the problem of non-
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privately learning a related class of concepts. Instantiating this general
reduction with new and existing learning algorithms yields several new
results for privately releasing conjunctions and other queries.

Not all problems arising in the presence of sensitive data are a matter of
privacy. In the final part of this thesis, we isolate fairness in classification as
a formidable concern and thus initiate its formal study. The goal of fairness
is to prevent discrimination against protected subgroups of the population
in a classification system. We argue that fairness cannot be achieved by
blindness to the attribute we would like to protect. Our main conceptual
contribution is in asserting that fairness is achieved when similar individuals
are treated similarly. Based on the goal of treating similar individuals similarly,
we formalize and show how to achieve fairness in classification, given a
similarity metric. We also observe that our notion of fairness can be seen as a
generalization of differential privacy.
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Chapter 1

Introduction

Technological advances do not always work in the favor of the individual. In
the context of privacy, this insight was first articulated in the seminal article
“The Right to Privacy” from 1890 by Warren and Brandeis [WB]. At the time,
an increasing number of personal photographs of public figures appeared in
newspapers due to cheaper photography and printing devices. Alarmed by
this trend, Warren and Brandeis argued that every individual shall have the
right to privacy which they loosely defined as the “right to be let alone.”

More than one-hundred twenty years later our understanding of privacy
and our methods of ensuring privacy are still quite limited. The ubiquity
of computers, personal electronics, and the internet have given rise to an
abundance of ways to collect and publish personal data. A rapidly increasing
stream of commercial and scientific applications incentivizes the analysis of
sensitive data sets. Failure to protect privacy may result in significant harm to
the individual and to society.

The field of privacy-preserving data analysis today includes many scientific
disciplines such as statistics and machine learning, theoretical computer
science, cryptography, security and databases. A variety of computational
tasks that a data analyst might wish to carry out reduce to the problem
of obtaining accurate statistics about the data set. The central question in
privacy-preserving data analysis can be summarized as:

Question 1: How can we release accurate statistics about a data set
while protecting the privacy of those individuals who contributed
their data?

Motivating examples are medical studies, such as the Genome Wide Asso-
ciation Studies (GWAS) conducted by the National Institute of Health (NIH),
an agency of the U.S. Department of Health & Human Services. Genome Wide
Association Studies aim at discovering the association between human genes
and common diseases such as cancer in order to aid the development of better
treatments. In a typical study the NIH produces aggregate allele counts of a
case group (patients with the disease) and a control group (individuals with-
out the disease). Unfortunately, the NIH had to shut down public access to its
data sets after research pointed at a significant privacy risk for the participants
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of GWAS. Specifically, Homer et al. [HSR+, GCN+] showed that participation
of a specific individual in the case group of a study can be determined from
the individual’s DNA and the published allele counts—thus revealing the
fact that the individual has the disease common to all participants in the case
group.

The case of GWAS illustrates several important points that are recurrent
throughout a long history of privacy pitfalls. In particular, a privacy breach
occurred even though:

— No computer system was compromised or malfunctioned.

— The motives of the data curator (in this case the National Institute of
Health) were pure and the data curator was trustworthy.

— The data released, here, a collection of aggregated allele counts, ap-
peared innocuous and harmless. In particular, the data did not contain
any information obviously identifying an individual, such as names.

GWAS is only one example in a growing line of privacy failures with similar
characteristics, such as the re-identification of users from “anonymized” Mas-
sachusetts medical records [Swe], AOL search logs [BZ], or, the Netflix prize
data (see [NS]).

Another important common characteristic of many privacy breaches is
that the privacy measures taken in each case fail to account for the existence
of auxiliary information available to the attacker. Indeed, the attack described
in [HSR+] on the GWAS data uses rich background information about the
human genome available in the public domain. Auxiliary information also
played a key role when Netflix, an online movie rental service, released
the anonymous movie ratings of 500,000 subscribers of Netflix. Netflix an-
nounced a $1,000,000 prize to whomever could improve their recommenda-
tion system by 10% based on the released data set. Narayanan and Shmatikov
showed how to re-identify anonymous users in the data set by matching their
movie ratings with reviews given by users on IMDB, a large online movie data
base [NS]. A second Netflix challenge was cancelled after the Federal Trade
Commission raised privacy concerns [Hun2].

These examples demonstrate the difficulty of balancing the privacy needs
of individual participants in a data set and the utility of publishing statistics
about the data set. What makes Question 1 so challenging to begin with is
the problem of how one should define the notion of privacy. What is meant
by utility (or usefulness) is often less subtle and arises naturally in application
settings.
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1.1 Differential Privacy

In this thesis we consider the privacy guarantee known as differential privacy.
Differential privacy is a formal notion due to Dwork et al. [Dwo1, DMNS]
that attaches a rigorous meaning to the word privacy. Intuitively speaking,
differential privacy gives the strong guarantee that:

The presence or absence of any single individual in a data set will
only insignificantly affect the outcome of an analysis.

More precisely, differentially private algorithms are randomized algorithms
whose output distribution remains nearly unchanged even if we perturb
the information of a single participant arbitrarily. It is easy to see that ran-
domization is necessary. Indeed, the algorithm must be able to produce the
same output on different data sets. Unless the algorithm gives always the
same output (thereby defeating any notion of utility), randomization becomes
essential.

Differential privacy helps to incentivize the participation of an individual
in a data set. That is because the risk resulting from participation of an indi-
vidual in a database is not significantly greater than that of opting out. This
type of guarantee is not to be confused with the stronger statement that “noth-
ing about an individual should be learnable from the database that cannot be
learned without access to the database”. Such a desideratum was articulated
by Dalenius [Dal], but Dwork [Dwo1] showed a general impossibility result
proving that this goal cannot be achieved.

In light of our discussion above, differential privacy has the appealing fea-
ture that it provides a privacy guarantee while making very mild assumptions
on the background knowledge of the adversary. Differential privacy is thus
highly resilient to attacks utilizing unanticipated auxiliary information. But
see [KM2] for settings in which care must be taken when applying differential
privacy.

There are several other useful properties that make differential privacy a
robust definition. For instance, differential privacy composes gracefully in the
sense that the interaction of two differentially private mechanisms remains
differentially private up to a small quantitative loss in the privacy guarantee
(not expressed in the informal description above). We refer the reader to
surveys [Dwo2, Dwo3] for additional motivation of the definition.

As differential privacy poses a strong requirement, it becomes a challeng-
ing task to design useful algorithms that satisfy differential privacy. The most
basic and well-studied setting of differential privacy is the case where a trusted
database curator responds to a number of queries given by an (untrusted) data
analyst. The queries that the analyst may ask are so-called statistical queries.
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This includes several important classes of queries such as counting queries
and contingency tables; many learning algorithms can be implemented using
statistical queries [BDMN].

The requirement is that the answers of the database curator satisfy differ-
ential privacy. It is easy to satisfy this requirement by answering each query
with random noise independent of the data set. The fundamental trade-off
we study is therefore between accuracy and differential privacy:

Question I’: How accurately can we answer a set of statistical
queries while maintaining differential privacy?

Accuracy is not the only important concern in the design of differentially
private algorithms. Often the “price” of ensuring differential privacy is paid
in terms of computational inefficiency. A case in point is the fundamental work
of Blum, Ligett and Roth [BLR] showing that in absence of computational
constraints one can obtain a differentially private data structure encoding
answers to a huge number of statistical queries with non-trivial accuracy.
However, the running time of the algorithm was super-polynomial in the
universe from which the data is drawn. The size of the universe could itself
be exponential in the database size (the natural input size). Without a privacy
constraint, the same task requires no effort as outputting data set itself is
sufficient. This motivates the following important question:

Question II: Can we reduce the computational gap between differ-
entially private and non-private data analysis?

In this thesis we provide several new positive answers—and some negative
answers—to both questions. Our contributions are outlined next.

1.2 Contributions to Differential Privacy

1.2.1 The geometry of Differential Privacy

In Chapter 3 of this thesis we will translate Question I’ into a purely geometric
question. In particular, we appeal to a deep conjecture from convex geometry
known as the Hyperplane conjecture [Bou, MP, Kla] as well as recent results on
the volume and isotropic constant of high-dimensional convex bodies [LPRTJ,
KK].

Assuming the truth of the Hyperplane conjecture, we provide an optimal
answer to the question in the case where the queries are given all at once
(non-interactively) and the number of queries does not exceed the database
size. The previously best known mechanism in this setting was the Laplace
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mechanism [DMNS]—the most basic and widely used differentially private
mechanism.

To give an optimal trade-off, we first show a new unconditional lower
bound on the error of any differentially private mechanism. Our lower bound
is the first result that separates differential privacy from a well-studied weak-
ening of differential privacy. We then give a new algorithm matching the
lower bound. Roughly speaking our algorithm achieves error O(

√
k) per query

when given k queries, while the Laplace mechanism achieves O(k). Perhaps
even more importantly, our work exhibits the geometric nature of the problem
leading to a range of new techniques.

This result is joint work with Kunal Talwar and first appeared in the
Symposium on the Theory of Computing (STOC 2010) [HT].

1.2.2 Privacy-preserving multiplicative weights framework

In several applications, the number of queries may grow significantly beyond
the size of the data set. In this case the methods described above no longer
give meaningful accuracy. The beautiful work of Blum, Ligett and Roth [BLR]
showed that even when the number of queries is huge compared to the size of
the data set non-trivial accuracy is possible. Two shortcomings of this work
were that the runtime of the algorithm had a super-polynomial dependence
on the size of the universe (from which the data is drawn) and the queries had
to be asked non-interactively.

In Chapter 4 we address both of these shortcomings. In particular, we
develop a differentially private multiplicative weights mechanism that can
handle a huge number of statistical queries interactively with a runtime that
grows only linearly with the universe size. The accuracy of our mechanism
is O(

√
n logk) on a data set of size n and k queries. This bound matches the

so-called statistical sampling error that arises already in the absence of any
privacy constraints. In terms of both accuracy and runtime we improve upon
a long line of work [BLR, DNR+, DRV, RR].

Our algorithm can also be used to produce differentially private synthetic
data and for this task our runtime is essentially best possible under crypto-
graphic assumptions [DNR+, UV].

On an intuitive level our algorithm uses the multiplicative weights frame-
work to learn a differentially private approximation to the true data set. Mul-
tiplicative weights mechanisms are powerful tools in algorithms design, ma-
chine learning, and even complexity theory (see, e.g., [AHK]). Our work
enables the use of some of this technology in the context of differential pri-
vacy.

In Chapter 5, we demonstrate that the multiplicative weights framework
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leads to a simple and practical release mechanism in the non-interactive
setting. We demonstrate the practicality of our approach by evaluating the
algorithm on several data sets where differential privacy previously failed
(see, e.g., [FRY]).

The results in Chapter 4 are joint work with Guy Rothblum and appeared
in the Foundations of Computer Science (FOCS 2010) [HR]. Chapter 5 is joint
work with Frank McSherry and Katrina Ligett [HLM].

1.2.3 Connections to learning theory

In an ideal world, an algorithm for ensuring differential privacy should be
as efficient as the computations that the analyst intended to perform on the
data in the first place. Machine learning captures a broad and useful class of
data analysis tools. Unfortunately, there is presently a huge gap in complex-
ity between machine learning and private data analysis. Efficient learning
algorithms usually depend only logarithmically on the size of the universe
from which the data is drawn. In contrast, the state of the art algorithms in
differential privacy described earlier have a linear dependency on the size of
the universe. This leads to the following refinement of Question II:

Question II’: Can we reduce the complexity gap between machine
learning and differentially private data analysis?

To approach this question, we consider the problem of answering Boolean
conjunctive queries over a data set D ⊆ {0,1}d (the universe here is {0,1}d).
Conjunctions (and the closely related notion of contingency tables or data cubes)
are an example of statistical queries that are particularly well-studied and
relevant in practice. For example, the U.S. Census Bureau uses contingency
tables to release statistical information. See, e.g., [BCD+, KRSU] and the
references therein for further motivation.

In Chapter 6 we give the first algorithm with runtime polynomial in d that
outputs a data structure which encodes differentially private answers to 99%
of all width-w Boolean conjunctions for any width w ∈ {1, . . . ,d} up to an error
of |D |/100. Our result turns out to be more general and applies to any set of
queries that can be described by a submodular function. This includes many
natural classes of queries, such as the cut function of a graph (e.g., a social
network). Implicit in our result is a reduction from the problem of privately
releasing conjunctions to learning submodular functions. The main technical
ingredient is new learning algorithm for submodular functions inspired by
the recent work of [BH].

More generally, we ask: How many statistical queries to a data set are needed
to learn approximate answers to all queries from a certain concept class? Using the
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multiplicative weights approach from Chapter 4, we show that the answer is
essentially equal to the agnostic learning query complexity of the same concept
class in Kearns’ statistical query model [Kea]. Using existing lower bounds
on the agnostic query complexity [BFJ+, Fel], this result gives unconditional
lower bounds on the complexity of any differentially private mechanism that
can be implemented in the statistical query model. This includes almost all
known algorithms in differential privacy.

Chapter 6 is joint work with Anupam Gupta, Aaron Roth and Jonathan
Ullman and appeared in the Symposium on the Theory of Computing (STOC
2011) [GHRU].

An explicit reduction from private data analysis to learning theory

An appealing approach toward Question II’ is to exhibit efficient reductions
from private data analysis to problems in learning theory. In Chapter 7 we
demonstrate the viability of this approach by giving an explicit and efficient
reduction from the problem of privately releasing a query class Q to the
problem of non-privately learning sums of thresholds over Q. We instantiate
this general reduction with a variety of algorithms for learning thresholds
(mainly based on [Jac, JKS, KS]). These instantiations yield several new results
for differentially private data release. As an example, taking {0,1}d to be the
data domain (of dimension d), we obtain differentially private algorithms for
releasing all width-w conjunction queries (or w-way contingency tables). For
any given w, the resulting data release algorithm has bounded error as long

as the database is of size at least d
O
(√

w log(w logd)
)

(ignoring the dependence
on other parameters). The running time is polynomial in the database size.
The best sub-exponential time algorithms known prior to our work required
a database of size Õ(dw/2) due to [DMNS].

Chapter 7 is joint work with Guy Rothblum and Rocco Servedio and is to
appear in the Symposium on Discrete Algorithms (SODA 2012).

1.3 Fairness in classification

Not all problems arising in the presence of sensitive data sets are a matter of
privacy. In the final chapter of this thesis we turn to the problem of fairness
in classification. Nearly all classification tasks face the challenge of achieving
utility in classification for some purpose, while at the same time preventing
discrimination against protected population subgroups.

Consider the example of an advertising network, such as Google’s Adsense
network. An advertising network collects and maintains information about
a set of individual users and serves certain advertisements to individuals
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based on characteristics of the individual. The promise of online targeted
advertising is to accurately decide which ad to deliver to a user based on
tracking information about the user such as their browsing history. The
classifier in this example is the algorithm that decides whether a particular
advertisement is shown to a given user. An emerging concern in online
targeted advertising is the danger that an advertiser could knowingly or
unknowingly target individuals based on protected attributes such as race,
religion or medical conditions. This could result in steering minorities into
less advantageous offers as discussed in a recent article in The Wall Street
Journal [SA1].

The underlying problem here is restricted neither to advertising not the
online world, but arises in such diverse areas as high school admissions, health
care [SM], banking etc. Broadly speaking, the question we ask is:

Question III: How can we prevent discrimination against pro-
tected population subgroups in classification systems?

One benefit of preventing such discrimination is that individuals are treated
fairly. But there can also be important benefits to the party doing the classifi-
cation (the advertiser, lender, admissions officer, etc.) such as freedom from
regulatory concern.

In Chapter 8, we initiate the formal study of fairness in classification. We
argue that fairness cannot be obtained by blindness to the attribute we would
like to protect, but rather requires some understanding of the correlations
implied by this attribute. We further argue that “fairness on average" towards
the entire protected group is insufficient and could be seriously abused. The
main conceptual contribution of this chapter is in asserting that fairness is
achieved when similar individuals are treated similarly. We argue that under-
standing the degree to which individuals from different groups are similar
with respect to a certain classification task requires an understanding of the
cultures of the two groups. It is our contention that similarity metrics are
applied in many contexts, but these are often hidden. Our work explicitly
exposes the metric, opening it to public discussion and debate.

Based on the goal of treating similar individuals similarly, we formalize
and show how to achieve fairness and utility in classification, given a similarity
metric. Specifically, our local notion of fairness requires that the classifica-
tion algorithm is randomized and that the classification of any two similar
individuals (with respect to the given metric) results in two statistically close
distributions over outcomes. At this high-level there is a close connection
between fairness and differential privacy. Recall, differential privacy requires
an algorithm to produce statistically close distributions on any two databases
that are “similar” in the sense that they differ only in one individual. We
exploit this conceptual analogy by transferring some of the techniques from
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differential privacy to the fairness setting. This leads to a quantitative trade-
off between utility and fairness under a natural assumption on the metric
space known as bounded doubling dimension.

We also give conditions on the metric under which our local notion of
fairness implies statistical parity, which says that the demographics of the
accepted group is the same as the demographics of the underlying population.
In a complementary setting, we propose tools for what can be viewed as
“fair affirmative action." Namely, we give methods for guaranteeing statistical
parity for a group while treating similar individuals as similarly as possible.

Chapter 8 is joint work with Cynthia Dwork, Toniann Pitassi, Omer Rein-
gold and Richard Zemel.
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Chapter 2

Background

In this chapter we present the background material that we rely on throughout
this thesis. We start with the formal definition of differential privacy in the
next section. We then continue with a survey of prior work and relevant
techniques.

In what follows we let log(x) denote the natural logarithm and exp(x) = ex

denotes the exponential function. When v ∈ Rk is a real-valued vector we
denote by ‖v‖p its `p-norm.

2.1 Databases and differential privacy

We consider a finite data universe U . An element u ∈ U will be sometimes
be called a data item. A data set or database is formally a multiset D : U →N,
where N = {0,1,2, . . . } is the set of natural numbers including 0. The size of
the data set is defined as |D | =

∑
u∈U D(u). The set of all finite databases is

denoted byD def= U →N and we putDn = {D ∈D : |D | = n}.
For example, in the context of a medical study, the data universe U most

naturally corresponds to the set of all possible responses to the study. The
database stores for each participant the corresponding response.

Definition 2.1.1. Two data sets D,D ′ ∈D are called adjacent or neighboring if

‖D −D ′‖1
def=

∑
u∈U

∣∣∣D(u)−D ′(u)
∣∣∣ 6 1 .

That is, D and D ′ differ in the value of at most 1 individual.

Intuitively, D and D ′ are neighboring databases if D ′ was obtained from D
through the “opting out” or “misreporting” of a single individual.

We will be interested in mappings from D into the set of probability
measures over some abstract rangeR . We typically think ofR as the set of
possible outcome of some operation on the database. We let µ(R ) denote the
set of all probability measures overR .

A mechanism is a mapping M : D → µ(R ). Alternatively, we sometimes
think of a mechanism as a collection of probability measures M = {µD : D ∈
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D }. Intuitively speaking, a mechanism is a randomized algorithm accessing
the database and implementing some functionality. We will be interested in
mechanisms that satisfy differential privacy.

Definition 2.1.2 (Differential Privacy [DMNS]). A mechanism M : D → µ(R )
satisfies (ε,δ)-differential privacy if for all S ⊆R and every pair of two adjacent
databases D,D ′, we have

P {M(D) ∈ S} 6 eεP
{
M(D ′) ∈ S

}
+ δ . (2.1)

If δ = 0, we say the algorithm satisfies ε-differential privacy.

Note that for small ε, we have eε ≈ 1 + ε. The choice of eε makes the
definition mathematically more well-behaved. Definition 2.1.2 formalizes
the intuition explained in the introduction. Indeed, the participation of a
single individual in the data set changes the probability distribution of any
differentially private mechanism only very slightly in the sense expressed in
Equation 2.1. Sometimes it is helpful to work with a condition expressed in
the next lemma in place of (ε,δ)-differential privacy.

Lemma 2.1.3. Suppose a mechanism M : D → µ(R ) satisfies for all adjacent
D,D ′ with P =M(D),Q =M(D ′) that

P

v∼P

{∣∣∣∣∣∣log
(
P (v)
Q(v)

)∣∣∣∣∣∣ > ε
}
6 δ . (2.2)

Then, M satisfies (ε,δ)-differential privacy.

Proof. Indeed, suppose (2.2) is satisfied and consider B = {v : | log(P (v)/Q(v))| >
ε}. Let S ⊆R and consider S1 = S ∩B and S2 = S ∩Bc. We then know that

P (S) = P (S1) + P (S2) 6 δ+ eεQ(S2) 6 eεQ(S) + δ . �

In the lemma above and throughout this thesis we use the notation v ∼ P
to indicate that v is a random variable drawn according to the distribution P .
We will sometimes put random variables in boldface font to avoid confusion.

2.1.1 Histogram representation

Often it will be convenient to view data sets in terms of their histogram
representation. A histogram is just the natural vector representation of a data
set. Formally, a histogram over a universe U is a vector x ∈NU . Typically we

will identify U with the set [N ] def= {1, . . . ,N } for some natural number N. In
this case, x ∈NN . A histogram x represents a data set D if for all data items
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u ∈ U we have xu = D(u). Note that two data sets D,D ′ are adjacent if and
only if their corresponding histograms x,x′ satisfy ‖x − x′‖1 6 1.

We can extend the notion of a histogram to that of a fractional histogram
which is simply a vector x ∈ RN+ where R+ is the set of non-negative real
numbers. The definition of (ε,δ)-differential privacy extends naturally to
mechanisms M : RN → µ(R ) by requiring that Condition 2.1 be satisfied for
all x,x′ ∈RN such that ‖x − x′‖1 6 1.

Normalized histograms. Sometimes we will consider normalized histograms.
In this case we assume that x ∈RN+ satisfies

∑
u∈U xu = 1. This is often conve-

nient as we may then think of x as specifying a distribution over the universe.
In this case, differential privacy must be satisfied with respect to all x,x ∈RN+
that satisfy ‖x − x′‖1 6 1/n.

2.2 Queries and sensitivity

A query is a mapping q : D →R . In a typical settingR =Rk for some k > 0.
In this case we think of q as making k numerical queries about the data set. A
class of queries is a set Q ⊆D →R .

An important parameter of a query is its sensitivity defined next.

Definition 2.2.1 (Sensitivity). The `1-sensitivity of a query q : D → Rk is
defined as

∆(q) def= max
D,D ′
‖q(D)− q(D ′)‖1 ,

where the supremum is taken over all neighboring data sets D,D ′.

Later we will be concerned with differentially private mechanisms answer-
ing queries. The sensitivity of the query will have an important effect on how
much perturbation is required in answering the query. Throughout this work
we will mainly consider statistical queries, counting queries and linear queries
as defined next. These three classes are all very closely related.

2.2.1 Counting queries, statistical queries, linear queries

A basic class of queries are counting queries. Counting queries allow the data
analyst to count how many individuals in the database satisfy a specific predi-
cate (e.g., “how many individuals smoke and have lung cancer?”). Formally, a
counting query q : D →R is specified by a predicate P : U → {0,1} on the data
universe. Its value on a database D is defined as q(D) =

∑
u∈U P (u)D(u). We

have q(D) ∈ {0,1, . . . ,n}. With some abuse of notation we will sometimes iden-
tify q with the predicate that defines it. For every counting query q : D →R
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we have ∆(q) = 1. We can represent multiple counting queries q1, . . . , qk by
a single query F : D → Rk by putting F(D) = (q1(D), . . . , qk(D)). In this case
∆(F) 6

∑k
i=1∆(qi) = k.

Statistical Queries. Throughout this thesis we use the term statistical query
to describe a normalized counting query. That is a statistical query q : D →
[0,1] counts the fraction of database items satisfying a predicate P : U → [0,1].
Note that here we allow the predicate to assume any real number between 0
and 1. Formally,

q(D) def=
1
|D |

∑
u∈U

P (u)D(u) . (2.3)

The motivation for this terminology stems from learning theory as we will see
in Section 2.9.

Note that due to the difference in normalization statistical queries have
sensitivity 1/n whereas counting queries have sensitivity 1.

Linear queries Linear queries are a generalization of counting and statistical
queries. We use the term linear query to refer to a query that is a linear function
of the histogram space. It would therefore be more accurate to say linear
histogram query, but we prefer the shorter form. Specifically, a linear query
is a linear mapping f : RN → R defined on the N -dimensional histogram
space. Since f is linear we can also think of it as a vector f ∈ RN in which

case we put f (x) def= 〈f ,x〉 where 〈f ,x〉 denotes the usual inner product on RN .
To control the sensitivity of the query we will assume that its coefficients are
in [0,1], i.e., f : RN → [0,1]. In this case we have ∆(f ) 6 1. The choice of [0,1]
is somewhat arbitrary. Any bounded interval would work for our purpose and
the sensitivity would be the length of the interval. A multi-dimensional linear
query is a linear mapping f : RN →Rk and its sensitivity scales accordingly.

It should be clear at this point that counting queries and statistical queries
are a special case of linear queries. Indeed, given a predicate P : U → [0,1] we
can define a corresponding linear query f ∈ [0,1]N by putting fu = P (u) for all
u ∈ [N ]. Furthermore, a linear query f ∈ [0,1]N on a normalized histogram x
is nothing more than a statistical query on the database represented by the
histogram.

2.3 Differentially private query release

Differentially private query release is the following problem: A trusted party
called database curator is given a database D ∈ D of sensitive information
and privacy parameters ε > 0,δ > 0. An untrusted party called data analyst
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specifies a sequence of queries q1, . . . , qk : D →R . The curator outputs answers
a1, . . . , ak ∈R where at ∈R is the curator’s answer to query qt. In general, the
curator need not specify a list of answers but could rather provide a data
structure encoding her answers. We will sometimes call such a data structure
a synopsis.

The requirement is that the output of the curator satisfy (ε,δ)-differential
privacy. Subject to this constraint the curator’s goal is to maximize the use-
fulness of her answers. We will use varying notions of utility throughout this
work.

We distinguish between non-interactive and interactive query release.

2.3.1 Non-interactive query release

In the non-interactive query release problem, all queries q1, . . . , qk : D →R
are given to curator up front. The curator chooses her answers with full
knowledge of the entire query sequence. Note that we can always think of a
sequence of queries in the non-interactive setting as a single query q : D →
Rk .

The right notion of accuracy often depends on the application and the
setting of R . When it comes to real-valued queries q : D → Rk , a standard
choice is the following.

Definition 2.3.1. (Accuracy) A mechanism M : D → µ(Rk) is α-accurate in
`p-norm on a query q : D →Rk if for every data set D ∈D we have

E

v∼M(D)
‖q(D)− v‖p 6 α . (2.4)

We will sometimes refer to (2.4) as the `p-accuracy or `p-error of the mecha-
nism M. If no norm is specified we take p =∞.

When M outputs a synopsis rather than numerical answers we will mea-
sure accuracy with respect to the answers encoded by the synopsis.

We will encounter some simple variants of this definition throughout the
thesis. For example, sometimes we will introduce another parameter β which
quantifies the probability with which the algorithm fails to be α-accurate.

2.3.1.1 Synthetic data

An appealing variant of the non-interactive setting arises when we require
that the output of the curator is itself a database D∗ ∈ D encoding useful
answers to the given queries. In this case we will call D∗ synthetic data.
Note that this is a strong but useful requirement on the output format of
the algorithm. Indeed, synthetic data guarantees the compatibility of the
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output with existing (non-private) tools for analyzing databases. Synthetic
data also guarantees consistency which means that answers to related queries
are not contradictory. For example, asking two counting queries defined
by complementary predicates will result in two answers adding up to the
number of participants. Such consistency cannot be expected in general from
differentially private mechanisms that simply output noisy answers.

2.3.2 Interactive query release

In the interactive setting the curator and the analyst interact in k rounds. In
round t ∈ {1, . . . , k}, the curator chooses a query qt : D →R from some class of
queries Q and the curator provides an answer at. The query qt may be chosen
adaptively based on the previous interaction q1, a1, . . . , qt−1, at−1.

Note that all other things being equal, an interactive mechanism is prefer-
able to a non-interactive one: if we have an interactive mechanism, even if the
queries are all specified in advance, we can still run the interactive mechanism
on the queries, one by one, and obtain privacy-preserving answers to all of
them.

The interaction of the curator with a fixed data analyst specifies a non-
interactive mechanism M : D →R ∗ whereR ∗ is the set of all possible tran-
scripts. A transcript is a sequence (q1, a1, . . . , qk , ak) where qi ∈ Q and ai ∈R .
When we say that an interactive mechanism satisfies (ε,δ)-differential privacy
we mean that for every data analyst the induced mechanism over transcripts
satisfies (ε,δ)-differential privacy.

Similarly, the accuracy of an interactive mechanism is the worst-case taken
over all adversaries of the accuracy of the resulting mechanism M : D →R ∗.
A transcript specifies answers to the k given queries in the obvious way. Hence,
any notion of accuracy in the non-interactive setting (such as Definition 2.3.1)
gives rise to a corresponding notion in the interactive setting.

We will extend the formal discussion of the interactive setting in Chapter 4.

2.4 Laplace and composition

In this section we introduce two of the most basic and useful tools in differen-
tial privacy: the Laplacian mechanism and the composition theorem.

To introduce the Laplacian mechanism we need to define the Laplace
distribution. We let Lap(σ ) denote the one-dimensional Laplacian distribution
centered at 0 with scaling σ and corresponding density

f (x) =
1

2σ
exp

(
−|x|
σ

)
.
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Note that ELap(σ ) = 0.

Theorem 2.4.1. Let q : D → R be a real-valued query of sensitivity 1. Then
the mechanism M : D → µ(R) defined as M(D) = q(D) + Lap(∆(q)/ε) satisfies
(ε,0)-differential privacy (where ∆(q) was defined in Definition 2.2.1).

Proof. It suffices to compare the density f ofM(D) with the density g ofM(D ′)
for any two neighboringD,D ′ at any point x ∈R.Without loss of generality we
may assume that q(D) = 0. Put c = q(D ′) and note that |c| 6 ∆ = ∆(q). Hence,

f (x)
g(x)

=
exp(−ε|x|/∆)

exp(−ε|x − c|/∆)
6

exp(−ε|x|/∆)
exp(−ε|x|/∆)exp(−ε|c|/∆)

6 exp(ε) .

�

To analyze the error of the Laplacian mechanism we need the following
simple lemma which is easy to verify.

Lemma 2.4.2. The Laplace distribution satisfies:

1. E |Lap(σ )| = σ

2. P {|Lap(σ )| > τ} = exp(−τ/σ ) .

Proof. Indeed,

E |Lap(σ )| = 2
∫ ∞

0
x · f (x)dx = σ

∫ ∞
0
xexp(−x)dx = σ ,

P {|Lap(σ )| > τ} = 2
∫ ∞
τ
f (x)dx =

1
σ

∫ ∞
τ

exp(−x/σ )dx = exp(−τ/σ ) .

�

Corollary 2.4.3. There is an (ε,0)-differentially private mechanism that isO(∆/ε)-
accurate on every real-valued query q : D →R of sensitivity ∆.

Theorem 2.4.1 extends straightforwardly to the multi-dimensional query
case. Here we take an alternative route that goes through so-called composition
theorems. Informally speaking, these theorems show that if we compose
multiple differentially private mechanisms, the privacy parameters simply
add up in the following sense.

Theorem 2.4.4. Let M1 : D → µ(R ) denote an (ε1,δ1)-differentially private
mechanism and letM2 : D → µ(R ) denote an (ε2,δ2)-differentially private mecha-
nism. Then, the mechanismM : D → µ(R×R ) defined asM(D) = (M1(D),M2(D))
satisfies (ε1 + ε2,δ1 + δ2)-differential privacy.
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A stronger composition theorem was shown for (ε,δ)-differential privacy
by [DRV].

Theorem 2.4.5 ([DRV]). Let ε0 > 0,δ > 0 and k ∈N. Suppose that for each i ∈ [k],
we have that Mi : D → µ(R ) is an (ε,δ)-differentially private mechanism. Then,
for every δ′ > 0 the mechanism M = (M1, . . . ,Mk) is (ε′, kδ + δ′)-differentially
private where

ε′ =
√

2k ln(1/δ)ε+ kε · (eε − 1) .

These composition theorems hold in a much more general and powerful
composition framework that was formalized by Dwork et al. [DRV]. Intuitively
speaking, the general framework allows the mechanism Mi to be selected
adaptively and adversarially based on the outcomes of M1, . . . ,Mi−1. We stated
the theorem in the special case where composition simply means non-adaptive
concatenation of k mechanisms. This special case already gives the following
useful corollary.

Corollary 2.4.6. Let ε,δ > 0. For every sequence of k real-valued queries q1, . . . , qk : D →
R each of sensitivity ∆ there is an

1. (ε,0)-differentially private mechanism with O(∆k logk/ε)- accuracy,

2. (ε,δ)-differentially private with O
(
∆
√
k log(1/δ) logk/ε

)
-accuracy.

Proof. To show the first part note that we can add noise Lap(k∆/ε) to each
of the queries. By Corollary 2.4.3 each instantiation is (ε/k,0)-differentially
private and O(∆k/ε)-accurate. Using Lemma 2.4.2, it is not hard to argue that
the expected maximum error among all k queries is bounded by O(∆k logk/ε).
Theorem 2.4.4 then concludes the first part of the proof.

For the second part we add noise Lap(
√
k∆/cε) for sufficiently small con-

stant c > 0. Now each instantiation of is (cε/
√
k,0)-differentially private. Ap-

plying Theorem 2.4.5 with sufficiently small c it follows that the composition
is (ε,δ)-differentially private. Accuracy is argued as before. �

Remark 2.4.7. When we refer to the Laplacian mechanism from here on we will
usually mean the algorithm as described in the first part of Corollary 2.4.6.
The second part of Corollary 2.4.6 can be shown more directly using the
Gaussian mechanism [DMNS, DKM+]. The Gaussian mechanism adds suitably
scaled noise chosen from a Gaussian (rather than Laplacian) random variable
to the answers. We omit a formal statement and analysis here.
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2.5 The exponential mechanism

Another basic tool is the exponential mechanism of McSherry and Talwar [MT].
The exponential mechanism gives a differentially private general purpose
method to select an object from a domainR according to some score func-
tion s : D ×R →R and a base measure ν onR .

Definition 2.5.1. Formally, we define the exponential mechanism Eεs : D →
µ(R ) by putting Eεs (D) to be the measure given by the density function

f (r) = Z−1 exp(εs(D,r))ν(r) , (2.5)

where Z =
∫

exp(εs(D,r))ν(r). Here, we require that the integral defining the
normalization constant Z exists. We let ∆(s) = supr,D,D ′ |s(D,r)− s(D ′, r)|where
the supremum runs over all neighboring databases D,D ′ ∈D and all r ∈R .

When R is a finite domain we will usually take ν to be the uniform
counting measure, i.e., ν(S) = |S |/ |R | for all S ⊆R .

The next lemma quantifies the privacy and utility guarantee achieved by
the exponential mechanism.

Lemma 2.5.2 ([MT]). The exponential mechanism Eεs satisfies (ε∆(s),0)-differential
privacy. Furthermore, for every D with OPT = supr∈R s(D,r) and P = Eεs (D) we
have

P

r∼P
{s(D,r) 6OPT− 2t} 6

exp(−εt)
ν(St)

, (2.6)

where St = {r : s(D,r) >OPT− t} .

A useful implication of the previous lemma is that when ν is the uniform
counting measure over a finite domainR , then ν(St) > 1/ |R | and

E

r∼P
s(D,r) 6OPT−O

(
log |R |
ε

)
.

We will use the exponential mechanism and the previous lemma in particular
in Chapter 5.

2.6 Mechanisms for massive query sets

The Laplacian mechanism as described in Corollary 2.4.6 ceases to give a
meaningful accuracy guarantee as the number of queries grows well above
the database size. Can we give answers to k � n queries with non-trivial
accuracy? This question was answered in the affirmative by Blum, Ligett and
Roth [BLR].
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Theorem 2.6.1 ([BLR]). There is an (ε,0)-differentially private mechanism that
answers any given set of k counting queries on a database of size n over a universe
of size N with accuracy

O

(
n2/3 log1/3 k log1/3N

ε1/3

)
. (2.7)

The key observation behind this theorem is thatDn, i.e., the set of databases
of size n, is well approximated by a much smaller set D ∗ ⊆ Dn. Specifi-
cally, for every set of k counting queries there is a set D ∗ of size |D ∗| 6
exp(O(α−2 logk logN )) such that for every D ∈Dn there is D ′ ∈D ∗ such that
D and D ′ agree on the k queries up to a maximum error of αn. The algorithm
of [BLR] then outputs a synthetic data set D∗ ∈ D ∗ chosen from the expo-
nential mechanism with a score function proportional to the negative of the
maximum error of D∗ on the k queries. By Lemma 2.5.2, the database D∗

has expected maximum error O(αn+α−2 logk logN ). Optimizing α gives the
bound in (2.7).

Unfortunately, the algorithm described above is highly inefficient. The
exponential mechanism requires time Nω(1) as soon as α = o(1). Moreover the
mechanism is non-interactive. It is natural to ask if a similar result can be
achieved in the interactive query release setting. Each of these aspects has
since been the subject of subsequent works. Dwork et al. [DNR+] improved
the running time to polynomial in N and k with an accuracy of O(

√
nko(1))

in the non-interactive setting. Dwork, Rothblum and Vadhan [DRV] then
improved the dependence on the error in terms of n and k toO(

√
n ·polylogk).

Moreover, the result holds for arbitrary low-sensitivity queries. Both results
relax the privacy guarantee to (ε,δ)-differential privacy.

Roth and Roughgarden [RR] demonstrated that surprisingly also in the
interactive setting there is an (ε,δ)-differentially private mechanism with
error O(n2/3polylogk). However, their mechanism does not improve over the
algorithm of Blum, Ligett and Roth in terms of running time.

In Chapter 4, we will see that one can simultaneously remedy both short-
comings and obtain an interactive mechanism with running time linear in N
on each query and error O(

√
n logk). We also give an interactive mechanism

achieving (ε,0)-differential privacy with the error bound stated in Theo-
rem 2.6.1.

The error O(
√
n logk) matches what is known as the statistical sampling er-

ror. The statistical sampling error arises free of any privacy concerns when we
sample a data set D of n data items from a distribution X over the universe U .
Indeed, the expected deviation of a single insensitive query q : D →R from
its expected value is O(

√
n). The expected maximum deviation of k insensi-

tive queries is similarly O(
√
n logk). We will see in Section 2.8 that in fact
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O(
√
n logk) is also a lower bound that any differentially private mechanism

must obey.
A priori one might hope to further improve the runtime from poly(N )

to poly(n). In Section 2.8 we will discuss known obstacles to making such
progress.

2.7 Results for other classes of queries

Some specific classes of queries can be answered with smaller error. Nissim,
Raskhodnikova and Smith [NRS] show that one can add noise proportional
to a smoothed version of the local sensitivity of the query, which can be much
smaller than the `1-sensitivity (Definition 2.2.1) for some non-linear queries.

There has been a considerable amount of work on other classes of queries
and release problems. We mention some of them here. For example, Feldman
et al. [FFKN] consider the problem of constructing differentially private geo-
metric data structures known as core sets. Specifically, they construct private
core sets for the k-median problem, enabling approximate computation of the
k-median cost of any set of k facilities in Rd . Gupta et al. [GLM+] initiated
a study of differentially private combinatorial optimization. Differentially
private search logs were studied in [KKMN, GMW+] motivated by the AOL
search log debacle [BZ]. Mironov and McSherry considered differentially pri-
vate recommender systems [MM] motivated by the Netflix problem described
in the introduction.

A particularly well-studied class of queries are contingency tables which
we will discuss next.

2.7.1 Contingency tables and conjunctions

Contingency tables (aka marginal tables or data cubes) are a notable special
case of counting queries. Consider the universe U = {0,1}d . That is, each data
item is a bit string consisting of d binary attributes. A contingency table of
width w corresponding to a subset W ⊆ [d] of size |W | = w is a collection of
2w counting queries. Each of these 2w counting query is conjunction query
corresponding to a subset S ⊆W and counts how many items in the data base
have the bits in S set to 1 and the bits in W \S set to 0.

Conjunctions themselves are an interesting class of counting queries. Even
monotone conjunctions allow us to learn covariances between attributes in the
data set. This is an important statistical tool.

Barak et al. [BCD+] gave an algorithm for producing differentially private
synthetic data for width-w contingency tables (thus ensuring consistency
of all answers). However, the error scaled with dO(w) and the runtime was

20



polynomial in 2d . Fienberg et al. [FRY] evaluated the techniques of Barak
et al. on real-world data sets and concluded that differential privacy was
not (yet) suitable for releasing contingency tables in a practical way. In
Chapter 5 we will revisit this claim and see that indeed the multiplicative
weights framework from Chapter 4 does yield a practical release mechanism
for contingency tables on the data sets studied by Fienberg et al. Other
practical mechanisms were studied in [DWHL].

In Chapter 6 we will see a release mechanism with runtime poly(d) that
achieves a non-trivial accuracy guarantee (yet no consistency). The set of
all w-way conjunctions can also be released privately using the Laplacian
mechanism which results in an error of O(dw/2) when shooting for (ε,δ)-
differential privacy. This shows that for subconstant accuracy the database
size n has to be ω(dw/2). In Chapter 7 we show that subconstant accuracy can
be achieved already when n� dÕ(

√
w).

2.8 Lower bounds and hardness results

The works of Dinur and Nissim [DN1] and Dwork and Nissim [DN2] initiated
the study of lower bounds on the amount of noise mechanisms must add in
order to protect against blatant non-privacy. Informally, blatant non-privacy
describes a privacy breach in which an adversary is able to reconstruct a signif-
icant part of the database from the query answers released by the mechanism.
Dinur and Nissim consider the setting where the database is a vector y ∈ {0,1}n
containing a single private bit for each individual. The queries asked by the
analyst are subset sum queries counting how many 1’s there are in a subset of
the individuals. Dinur and Nissim show that any mechanism adding noise
o(
√
n) to Õ(n) queries fails to protect against blatant non-privacy. This implies

that as the data curator answers more and more questions, the amount of
error needed per answer must grow to provide any kind of privacy guarantee.

To give a flavor for how one would prove such a result, think of n random
subset sum queries as specifying a random binary n × n matrix A. Indeed
a subset sum query is just a vector f ∈ {0,1}n. The answer of a subset sum
query on a database y ∈ {0,1}n is just the inner product 〈f ,y〉. Now, suppose
a database curator unaware of [DN1] perturbs the answers Ay with a noise
vector e ∈Rn such that every coordinate of e is bounded by o(

√
n) in magnitude.

An adversary can now observe the resulting vector z = Ay + e, and efficiently
compute the vector y′ = A−1z. Note that A is invertible with overwhelming
probability and moreover, by a standard fact from random matrix theory,
its smallest eigenvalue is Ω(

√
n). Hence, the spectral norm of A−1 satisfies

21



‖A−1‖2 6O(1/
√
n) and thus

‖y′ − y‖2 = ‖A−1e‖2 6 ‖A−1‖2 · ‖e‖2 =O
(
‖e‖2√
n

)
= o

(√
n
)
.

In the last step we used that ‖e‖2 = o(n) by our assumption. Since almost
all vectors y ∈ {0,1}n have norm ‖y‖2 = Ω(

√
n), this can be thought of as a

non-trivial reconstruction attack on the database y.
The kind of trade-off shown by Dinur and Nissim was strengthened and

simplified in subsequent work [DN2, DMT, DY]. In our setting where the
data set is an element of D and the curator is allowed to ask k (random)
counting queries, it can be shown that noise Ω(min{

√
k,

√
n logk}) is necessary

to prevent blatant non-privacy. Recall that O(
√
n logk) is also the statistical

sampling error. Viewed in this light these results do not show that ensuring
privacy requires paying a prize beyond the sampling error.

Kasiviswanathan, Rudelson, Smith and Ullman [KRSU] show lower bounds
of similar nature for contingency tables. Specifically, they show that noise
Ω̃(min

{√
n,dw/2

}
) is necessary for privately releasing all width w contingency

tables over U = {0,1}d . Their lower bound also holds for (ε,δ)-differential
privacy and is tight when ε and δ are constants. However, there is no de-
pendence on 1/ε or 1/δ in the bound. We remark that their proof follows
the approach outlined above. Specifically, they analyze the smallest singular
value of certain matrices arising from contingency tables.

For the case of a single insensitive query q : D →R, Ghosh, Roughgarden
and Sundararajan [GRS] show that adding Laplace noise is in fact optimal
in a general decision-theoretic framework. However, such a result (even for
mechanisms other than Laplace) is impossible for multiple queries [BN].

An important question left open by all these works is whether there exist
stronger lower bounds specifically for differential privacy. In Chapter 3
we will answer this question in the affirmative. We remark that using the
techniques presented in Chapter 3, De [De] was able to further improve upon
the lower bounds discussed here in several aspects.

A lower bound specific to (ε,0)-differential privacy was shown indepen-
dently of our work by Beimel, Kasiviswanathan and Nissim [BKN]. They
show a lower bound of Ω(logk/ε) on the accuracy of any (ε,0)-differentially
private mechanism for a specific set of k counting queries over a universe
of size N = k. Their proof uses an idea similar to our proof in Chapter 3. In
Chapter 4 we will give a lower bound of the form Ω(

√
n logk logN/ε). This

strengthens the result of Beimel et al. by a
√
n-factor.
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2.8.1 Hardness of synthetic data

All of the algorithms mentioned in Section 2.6 have the appealing feature that
they (can be used to) produce synthetic data. Recall, this means the algorithm
actually produces a differentially private data set D∗ ∈ D which encodes
accurate answers to the queries.

Unfortunately, Dwork et al. [DNR+] showed that in general we cannot
hope for differentially private synthetic data release in time polynomial in the
size of the data set or even sublinear in the data universe. Their hardness
results are based on a connection between creating synthetic data and so-
called traitor tracing schemes from cryptography. In particular, the result
mentioned is based on plausible cryptographic hardness assumptions unlike
the error lower bounds mentioned above. The result of Dwork et al. employs
a rather contrived set of queries. It is then natural to try to side-step this
hardness result by considering restricted query classes. But a recent work of
Ullman and Vadhan [UV] shows hardness even for very simple and natural
query classes such as two-way conjunctions.

Nevertheless these hardness results only apply for synthetic data and, in
fact, in Chapter 6 and Chapter 7 we will see avenues for side-stepping the
synthetic data barrier.

2.9 Learning theory and differential privacy

Machine learning and privacy-preserving data analysis go hand in hand.
Indeed, machine learning captures many of the computations that an analyst
would like to perform on a data set. Informally, a learning algorithm has
(limited) access to examples drawn from a distribution X over a universe U .
The examples are labeled according to some concept c : U → {0,1} from a
concept class C ⊆ U → {0,1}. The goal of the learner is to find a hypothesis
h : U → {0,1} which agrees with c on almost the entire universe.

Blum et al. [BDMN] show that many learning algorithms reduce to the
task of asking a number of counting queries on the data set. Hence, these
algorithms fall directly into the model studied in this thesis. Most notably,
they show that any learning algorithm operating in Kearns’ statistical query
(SQ) model [Kea] can be implemented from noisy counting queries. We
will formally introduce the SQ model in the next section and reprove this
result. There are few examples of algorithms that work in the general PAC
model [Val], but do not have an SQ analog.

A principled study of what can be learned privately was initiated by
Kasiviswanathan et al. [KLN+]. In particular, they show that ignoring com-
putational constraints “anything” learnable is also privately learnable from
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few samples. There has been much work on privacy-preserving learning
algorithms, e.g., SVM [RBHT], logistic regression [CM], sample complexity
for infinite concept classes [CH]

2.9.1 The statistical query model

In Kearns’ the statistical query (SQ) model [Kea] an algorithmA O can access a
distribution X over a universe U only through statistical queries to an oracle O.
That is, the algorithm may ask any query q : U → [0,1] and the oracle may
respond with any answer a satisfying |a−Eu∼X q(u)| 6 τ .Here, τ is a parameter
called the tolerance of the query.

In the context of differential privacy, the distribution X will typically be
the uniform distribution over a data set D of size n. A statistical query in the
SQ model is then just the same as a statistical query on a database as defined
in Section 2.2.1.

The original motivation behind SQ model is that algorithms designed in
this model are more noise tolerant than traditional PAC learning algorithms.
This is also the reason why it is not difficult to turn SQ algorithms into differen-
tially private algorithms using a suitable oracle. This observation is has been
used previously, for example by Blum et al. [BDMN] and Kasiviswanathan et
al. [KLN+].

Proposition 2.9.1. LetA denote an algorithm that requires k statistical queries of
tolerance τ. Let O denote the oracle that outputs q(D)+Lap(k/nε) for some D ∈D .
Then, the algorithm A O satisfies (ε,0)-differential privacy and with probability at
least 1− β, the oracle answers all k queries with error at most τ provided that

|D | >
k(logk + log(1/β))

ετ
. (2.8)

Proof. The first claim follows directly from Corollary 2.4.6. The second claim
follows from concentration properties of the Laplace distribution. Indeed, by
Lemma 2.4.2 and Equation 2.8, a single oracle answer violates the tolerance
requirement with probability at most β/k The claim now follows by taking a
union bound over all k queries. �

In other words, provided that the database is large enough, the learning al-
gorithm A will continue to work as intended while also satisfying differential
privacy.

Remark 2.9.2 (Sample complexity versus accuracy). We saw in Proposition 2.9.1
that it is sometimes more convenient to quantify the guarantee of an algorithm
in terms of a lower bound on the database size. This corresponds to a bound
on the sample complexity of an algorithm as is typical in learning theory.
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When it comes to privacy-preserving release mechanisms for statistical
queries we generally have the choice between the two statements:

1. The algorithm is α(n)-accurate where α(n) is a function tending to zero
as n→∞.

2. The algorithm is α-accurate provided that n > n0(α) where n0 is a func-
tion tending to infinity as α→ 0.

In Chapter 4 and Chapter 5 it will be more convenient to make statements
of the first kind, while in Chapter 6 and Chapter 7 the latter will be more
convenient.

2.10 Tools from probability theory

Let x,y ∈RN+ be two vectors with non-negative entries. We define the relative
entropy or Kullback-Leibler divergence between x and y as:

RE(x||y) =
∑
i∈[N ]

xi log
(
xi
yi

)
+ yi − xi . (2.9)

This reduces to the more familiar expression
∑
i xi log(xiyi ) when

∑
i xi =

∑
i yi =

1 (in particular this happens when x,y correspond to distributions over [N ]).
The following fact about relative entropy is well-known and easy to verify.

Fact 2.10.1. For every x,y ∈RN+ , we have RE(x||y) > 0. Equality holds if and only
if x = y.

We utilize the following lemma about the convexity of the KL-divergence.

Lemma 2.10.2. Let P ,Q be arbitrary distributions over a common probability
space. Suppose there are distributions P1, P2,Q1,Q2 and λ ∈ [0,1], so that P =
λP1 + (1−λ)P2 and Q = λQ1 + (1−λ)Q2. Then,

E

v∼P
log

(
P (v)
Q(v)

)
6 λ E

v∼P1
log

(
P1(v)
Q1(v)

)
+ (1−λ) E

v∼P2
log

(
P2(v)
Q2(v)

)
. (2.10)

In other words, RE(P ||Q) 6 λRE(P1,Q1) + (1−λ)RE(P2,Q2) .

The next lemma shows that (ε,0)-differential privacy translates into rela-
tive entropy 2ε2. This lemma was shown in [DRV].
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Lemma 2.10.3 ([DRV]). Let P ,Q be any two distributions on a common support
R with density functions dP and dQ, respectively. Suppose that

sup
v∈R

log
(
P (v)
Q(v)

)
6 ε .

Then,

E

v∼P
log

(
P (v)
Q(v)

)
6 2ε0 .

We also use the following general large deviation bound.

Lemma 2.10.4 (Method of Bounded Differences). Let X1, . . . ,Xm be an arbitrary
set of random variables and let f be a function satisfying the property that for every
j ∈ [m] there is a number cj > 0 such that∣∣∣E[f | X1,X2 . . . ,Xj]−E[f | X1,X2, . . . ,Xj−1]

∣∣∣ 6 cj .
Then,

P {f > Ef +λ} 6 exp

− λ2

2
∑
j∈[m] c

2
j

 . (2.11)

2.10.1 Gamma Distribution

The Gamma distribution with shape parameter k > 0 and scale θ > 0, denoted
Gamma(k,θ), is given by the probability density function

f (r;k,θ) = rk−1 e−r/θ

Γ (k)θk
.

Here, Γ (k) =
∫
e−rrk−1 dr denotes the Gamma function. We will need an ex-

pression for the moments of the Gamma distribution.

Fact 2.10.5. Let r ∼Gamma(k,θ). Then,

E [rm] =
θmΓ (k +m)

Γ (k)
. (2.12)

Proof.

E [rm] =
∫
R

rk+m−1 e−r/θ

Γ (k)θk
dr =

1
Γ (k)θk

∫
R

(θr)k+m−1e−r dθr

=
Γ (k +m)θk+m

Γ (k)θk
=
Γ (k +m)θm

Γ (k)

�
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Chapter 3

On the Geometry of Differential
Privacy

In this chapter we exhibit a connection between differential privacy and
convex geometry. This connection leads to a nearly optimal trade-off between
accuracy and privacy in the following general setting. Specifically, we will
work with databases represented as fractional histograms in RN . We saw in
Section 2.1.1 how every database has a natural representation as a histogram.
We consider answering d linear queries (see Section 2.2). Throughout this
chapter we denote the number of queries by d rather than k used in other
chapters.

We can represent d linear queries as a linear mapping F : RN →Rd .We will
restrict ourselves to linear maps F with coefficients in the interval [−1,1]. Thus
we can represent F as a d ×N matrix with entries in [−1,1]. In this work, we
assume throughout that d 6N/2. This is without loss of generality as we may
always add zero coordinates to x. A mechanism is a mappingM : RN → µ(Rd).
Recall that differential privacy places a constraint on the output distribution
of M on any two databases x,x′ ∈ RN such that ‖x − x′‖1 6 1 and it asks that
P {M(x) ∈ S} /P {M(x′) ∈ S} 6 exp(ε) for every S ⊆ Rd . We will analyze the
`2-error of differentially private mechanisms as defined in Definition 2.3.1.

Note that here we require the mechanism to ignore the integrality of its
input. That is, the mechanism must be defined on all points in RN even those
that do not correspond to databases. This is a stronger requirement on the
mechanism as is standard. Hence, it only makes our upper bounds stronger.
Our upper bound holds for any linear query on the histogram. As explained
in Section 2.2, this includes some of the most well-studied and natural classes
of queries in statistical data analysis.

For the lower bounds, this strengthening allows us to ignore the discretiza-
tion issues that would arise in the usual definition. Building on the techniques
presented in this chapter, De [De] recently showed that our lower bounds can
be extended to hold for the usual definition.
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3.1 Main results

We relate the accuracy of differentially private mechanisms to some geometric
properties of the image of the unit `1-ball, denoted BN1 , when applying the
linear mapping F. We will denote the resulting convex polytope by K = FBN1 .
Our first result lower bounds the noise any ε-differentially private mechanism
must add in terms of the volume radius of K, denoted vr(K). Here,

vr(K) def=

 Vol(K)

Vol(Bd2)

1/d

,

where Bd2 denotes the d-dimensional Euclidean ball.1

Theorem 3.1.1. Let ε > 0 and suppose F : RN →Rd is a linear map. Then, every
ε-private mechanism M has error at least

Ω

(
d · vr(K)

ε

)
, (3.1)

where K = FBN1 .

Recall, the term error refers to the expected Euclidean distance between
the output of the mechanism and the correct answer to the query F.

We then describe a differentially private mechanism whose error depends
on the expected `2-norm of a randomly chosen point in K . Our mechanism is
an instantiation of the exponential mechanism [MT] with the score function
defined by the (negative of the) norm ‖ · ‖K , that is the norm which has K as its
unit ball. Hence, we will refer to this mechanism as the K-norm mechanism.
Note that as the definition of this norm depends on the query F, so does the
output of our mechanism. The error of this mechanism can be described in
terms of the mean radius of K defined as

mr(K) def= E

z∈K
‖z‖2

where z is drawn uniformly at random from K.

Theorem 3.1.2. Let ε > 0 and suppose F : RN → Rd is a linear map with K =
FBN1 . Then, the K-norm mechanism is ε-differentially private and has error at
most

O

(
d ·mr(K)

ε

)
. (3.2)

1Volume radius is typically defined as Vol(K)1/d . The different normalization we chose
will be convenient for us.
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As it turns out, when F is a random Bernoulli ±1 matrix our upper bound
matches the lower bound up to constant factors. In this case, K is a random
polytope and its volume and mean radius have been determined rather re-
cently. Specifically, we apply a volume lower bound of Litvak et al. [LPRTJ],
and an upper bound on the mean radius due to Klartag and Kozma [KK].
Quantitatively, we obtain the following theorem which gives tight upper and
lower bounds.

Theorem 3.1.3. Let ε > 0 and d 6 N/2. Then, for almost all matrices F ∈
{−1,1}d×N ,

1. any ε-differentially private mechanismM has error Ω
(
d
ε ·min

{√
d,

√
log(N/d)

})
.

2. theK-norm mechanism is ε-differentially private with errorO
(
d
ε ·min

{√
d,

√
log(N/d)

})
.

We remark that Litvak et al. [LPRTJ] also give an explicit construction of a
mapping F realizing the lower bound.

More generally, we can relate our upper and lower bounds whenever the
body K is in approximately isotropic position. Informally, this condition implies
that mr(K) ∼ vr(K)LK where LK denotes the so-called isotropic constant which
is defined in Section 3.5.

Theorem 3.1.4. Let ε > 0 and suppose F : RN → Rd is a linear map such that
K = FBN1 is in approximately isotropic position. Then, the K-norm mechanism is
ε-differentially private with error at most O(ε−1vr(dK)) .

Notice that the bound in the previous theorem differs from the lower
bound by a factor of LK . A central conjecture in convex geometry, sometimes
referred to as the “Hyperplane Conjecture” or “Slicing Conjecture” states that
LK =O(1). See, e.g., [MP, Gia, KK] for further information on the subject.

Unfortunately, in general the polytope K could be very far from isotropic.
In this case, both our volume-based lower bound and the K-norm mechanism
can be quite far from optimal. We give a recursive variant of our mechanism
and a natural generalization of our volume-based lower bound which are
nearly optimal even if K is non-isotropic.

Theorem 3.1.5. Let ε > 0. Suppose F : RN → Rd is a linear map. Further,
assume the Hyperplane Conjecture. Then, the mechanism introduced in Section 3.6
is ε-differentially private and has error at most O(log3/2d) ·VolLB(K,ε). where
VolLB(K,ε) is a lower bound on the error of the optimal ε-differentially private
mechanism.

While we restricted our theorems to F ∈ [−1,1]d×N , they apply more gener-
ally to any linear mapping F.
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Mechanism `2-error privacy reference

Laplacian noise ε−1d
√
d ε [DMNS]

K-norm ε−1d
√

log(N/d) ε here
lower bound Ω(ε−1d) (ε,δ) [DN1]
lower bound Ω(ε−1d)min

{√
log(N/d),

√
d
}

ε here

Figure 3.1: Summary of results in comparison to best previous work for d random
linear queries each of sensitivity 1 where 1 6 d 6 n. Note that informally the average
per-coordinate error is smaller than the stated bounds by a factor of

√
d. Here, (ε,δ)-

differential privacy refers to a weaker approximate notion of pricacy introduced later.
Our lower bound does not apply to this notion.

Efficient Mechanisms. Our mechanism is an instantiation of the exponen-
tial mechanism and involves sampling random points from rather general
high dimensional convex bodies. This is why our mechanism is not efficient
as it is. However, we can use rapidly mixing geometric random walks for
the sampling step. These random walks turn out to approach the uniform
distribution in a metric that is strong enough for our purposes. It will follow
that both of our mechanisms can be implemented in polynomial time.

Theorem 3.1.6. The mechanisms given in Theorem 3.1.2 and Theorem 3.1.5 can
be implemented in time polynomial in n,1/ε such that the stated error bound
remains the same up to constant factors, and the mechanism achieves ε-differential
privacy.

We note that our lower bound VolLB can also be approximated up to
a constant factor. Together these results give polynomial time computable
upper and lower bounds on the error of any differentially private mechanism,
that are always within an O(log3/2d) of each other.

Figure 3.1 summarizes our results. Note that we state our bounds in terms
of the total `2-error, which informally is a

√
d factor larger than the average

per-coordinate error.

Related work. For an extensive discussion of previous lower bounds see
Section 2.8.

We add that our lower bounds (explained in Section 3.2) are in short based
on a packing argument. This kind of argument has since found several further
applications in proving lower bounds in differential privacy. Subsequent to
our work, De [De] showed that our lower bounds also hold under the weaker
requirement that the mechanism is only defined on non-negative integer
points ZN+ rather than RN .
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We remark that an idea similar to the packing argument was also used
independently of our work in a lower bound by Beimel, Kasiviswanathan and
Nissim [BKN].

3.1.1 Overview and organization of this chapter

We prove our lower bound in Section 3.2. Given a query F : RN → Rd , our
lower bound depends on the d-dimensional volume of K = FBN1 . If the volume
of K is large, then a packing argument shows that we can pack exponentially
many points inside K so that each pair of points is far from each other. We
then scale up K by a suitable factor λ. By linearity, all points within λK have
preimages under F that are still λ-close in `1-distance. Hence, the definition
of ε-differential privacy (by transitivity) enforces some constraint between
these preimages. We can combine these observations so as to show that any
differentially private mechanism M will have to put significant probability
mass in exponentially many disjoint balls. This forces the mechanism to have
large expected error.

We then introduce the K-norm mechanism in Section 3.3. Our mechanism
computes Fx and then adds a noise vector to Fx. The key point here is that the
noise vector is not independent of F as in previous works. Instead, informally
speaking, the noise is tailored to the exact shape of K = FBN1 . This is accom-
plished by picking a particular noise vector v with probability proportional
to exp(−ε‖Fx − v‖K ). Here, ‖ · ‖K denotes the (Minkowski) norm defined by
K . While our mechanism depends upon the query F, it does not depend on
the particular database x. We can analyze our mechanism in terms of the
expected Euclidean distance from the origin of a random point in K , i.e.,
Ez∈K ‖z‖2 = mr(K). Arguing optimality of our mechanism hence boils down to
relating mr(K) to the volume of K.

Indeed, using several results from convex geometry, we observe that our
lower and upper bounds match up to constant factors when F is drawn at
random from {−1,1}d×N . As it turns out the polytope K can be interpreted
as the symmetric convex hull of the row vectors of F. When F is a random
matrix, K is a well-studied random polytope. Some recent results on random
polytopes give us suitable lower bounds on the volume and upper bounds on
the average Euclidean norm. More generally, our bounds are tight whenever
K is in isotropic position (as pointed out in Section 3.5). This condition
intuitively gives a relation between volume and average distance from the
origin. Our bounds are actually only tight up to a factor of LK , the isotropic
constant of K. A well-known conjecture from convex geometry, known as the
Hyperplane Conjecture or Slicing Conjecture, implies that LK =O(1).

The problem is that when F is not drawn at random, K could be very far
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from isotropic. In this case, the K-norm mechanism by itself might actually
perform poorly. We thus give a recursive variant of the K-norm mechanism
in Section 3.6 which can handle non-isotropic bodies. Our approach is based
on analyzing the covariance matrix of K in order to partition K into parts
on which our earlier mechanism performs well. Assuming the Hyperplane
conjecture, we derive bounds on the error of our mechanism that are optimal
to within polylogarithmic factors.

The costly step in both of our mechanisms is sampling uniformly from
high dimensional convex bodies such as K = FBN1 . To implement the sampling
step efficiently, we will use geometric random walks. It can be shown that
these random walks approach the uniform distribution over K in polynomial
time. We will actually need convergence bounds in a metric strong enough to
entail guarantees about differential privacy (i.e., a multiplicative rather than
additive guarantee on the probability density).

Some complications arise, since we need to repeat the privacy and opti-
mality analysis of our mechanisms in the presence of approximation errors
(such as an approximate covariance matrix and an approximate separation
oracle for K). The details can be found in Section 3.7.

3.1.2 Preliminaries

Notation. We will write Bdp to denote the unit ball of the p-norm inRd . When
K ⊆Rd is a centrally symmetric convex set, we write ‖ · ‖K for the (Minkowski)
norm defined by K (i.e. ‖x‖K = inf{r : x ∈ rK}). The `p-norms are denoted by
‖ · ‖p, but we use ‖ · ‖ as a shorthand for the Euclidean norm ‖ · ‖2. Given a
function F :Rd1 →Rd2 and a set K ∈Rd1 , FK denotes the set {F(x) : x ∈ K}.

Differential Privacy. The definition of differential privacy is transitive in
the following sense.

Fact 3.1.7. If M = {µx}x∈RN is an ε-differentially private mechanism then for
measurable S ⊆Rd we have µx(S)

µy(S) 6 exp(ε‖x − y‖1) .

Definition 3.1.8 (Error). Let F : RN → Rd and ` : Rd ×Rd → R+. We denote
the `2-error of a mechanism M as

err(M,F) = sup
x∈RN

E
v∼µx
‖v −Fx‖ .

Our goal is to show trade-offs between privacy and error. We will consider
linear mappings F : RN →Rd which have `1-sensitivityO(d), i.e., supx∈BN1 ‖Fx‖1 6
d. Corollary 2.4.6 implies that for every query F ∈ [−1,1]d×N and every ε,δ > 0,
there is an

32



— (ε,0)-differentially private mechanism M with err(M,F) =O(d
√
d/ε).

— (ε,δ)-differentially private mechanismM with err(M,F) =O(d
√

log(1/δ)/ε).

Isotropic Position. We will use the following standard notion of isotropic
position throughout this chapter.

Definition 3.1.9 (Isotropic Position). We say a convex body K ⊆ Rd is in
isotropic position with isotropic constant LK if for every unit vector v ∈Rd ,

1
Vol(K)

∫
K
|〈z,v〉|2dz = L2

KVol(K)2/d . (3.3)

Fact 3.1.10. For every convex body K ⊆ Rd , there is a volume-preserving linear
transformation T such that TK is in isotropic position.

For an arbitrary convex body K , its isotropic constant LK can then be
defined to be LTK where T brings L to isotropic position. It is known (e.g. [MP])
that T is unique up to an orthogonal transformation and thus this is well-
defined. We refer the reader to the paper of Milman and Pajor [MP], as well as
the extensive survey of Giannopoulos [Gia] for a proof of this fact and other
facts regarding the isotropic constant.

3.2 Lower bounds via volume estimates

In this section we show that lower bounds on the volume of the convex body
FBN1 ⊆Rd give rise to lower bounds on the error that any private mechanism
must have with respect to F.

Definition 3.2.1. A set of points Y ⊆ Rd is called a r-packing if ‖y − y′‖2 > r
for any y,y′ ∈ Y ,y , y′.

Lemma 3.2.2. Let K ⊆ Rd be a measurable set. Then, K contains an 1
4vr(K)-

packing of size exp(d).

Proof. By the definition of vr(K), the set K has the same volume as a ball of
radius vr(K). Hence, any maximal vr(K)

4 -packing then has the desired property.
�

Theorem 3.2.3. Let ε > 0 and suppose F : RN → Rd is a linear map and let
K = FBN1 . Then, every ε-differentially private mechanism M must have

err(M,F) >Ω
(
d

ε
· vr(K)

)
. (3.4)
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Proof. Put λ = d/2ε. By Lemma 3.2.2, λK contains an 1
4λvr(K)-packing Y

of size exp(d). Let X ⊆ RN be a set of arbitrarily chosen preimages of y ∈ Y
so that |X | = |Y | and FX = Y . By linearity, λK = F(λBN1 ) and hence we may
assume that every x ∈ X satisfies ‖x‖1 6 λ.

We will now assume that M = {µx : x ∈ RN } is an ε-differentially private
mechanism with error d

16εvr(K) and lead this to a contradiction. By the
assumption on the error, Markov’s inequality implies that for all x ∈ X, we
have µx(Bx) > 1/2,where Bx is a ball of radius d

8εvr(K) = λ
4 vr(K) centered at Fx.

Since Y = FX is an λ
4 vr(K)-packing, the balls {Bx : x ∈ X} are disjoint. Since

‖x‖1 6 λ, it follows from ε-differential privacy with Fact 3.1.7 that

µ0(Bx) > exp(−ελ)µx(Bx) >
exp(−d/2)

2
.

Since the balls Bx are pairwise disjoint,

1 > µ0

⋃
x∈X

Bx

 =
∑
x∈X

µ0(Bx) >
exp(d)exp(−d/2)

2
> 1 (3.5)

for d > 2. We have thus obtained a contradiction. �

We will later need the following generalization of the previous argument
which gives a lower bound in the case where K is close to a lower dimensional
subspace and hence the volume inside this subspace may give a stronger lower
bound.

Corollary 3.2.4. Let ε > 0 and suppose F : RN → Rd is a linear map and let
K = FBN1 . Furthermore, let P denote the orthogonal projection operator of a k-
dimensional subspace of Rd for some 1 6 k 6 d. Then, every ε-differentially private
mechanism M must have

err(M,F) >Ω
(
k · vrk(P K)

ε

)
(3.6)

where

vrk
def=

Volk(P K)1/k

Vol(Bk2)
.

Proof. Note that a differentially private answer v to Fx can be projected down
to a (differentially private) answer P v to P Fx. Since P has operator norm ‖P ‖ 6
1 this does not increase the error, i.e.,

‖P v − P Fx‖ 6 ‖P (v −Fx)‖ 6 ‖P ‖ · ‖v −Fx‖ 6 ‖v −Fx‖ .

�
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We will denote by VolLB(F,ε) the best lower bound obtainable in this
manner, i.e.,

VolLB(F,ε) = sup
k,P

k · vrk(P FB
N
1 )

ε

where the supremum is taken over all k ∈ {1, . . . ,d} and all k-dimensional
orthogonal projections P .

3.2.1 Lower bounds for small number of queries

As shown previously, the task of proving lower bounds on the error of private
mechanisms reduces to analyzing the volume of FBN1 . When d 6 logN this is
a straightforward task.

Fact 3.2.5. Let d 6 logN . Then, for all matrices F ∈ [−1,1]d×N , Vol(FBN1 )1/d 6

O(1). Furthermore, there is an explicit matrix F such that FBN1 has maximum
volume.

Proof. Clearly, FBN1 is always contained in Bd∞ and Vol(Bd∞)1/d = 2. On the
other hand, since n > 2d , we may take F to contain all points of the hypercube
H = {−1,1}d as its columns. In this case, FBN1 ⊇ Bd∞. �

This lower bound shows that the Laplacian mechanism (Corollary 2.4.6)
is, in fact, optimal when d 6 logN.

3.3 The K-norm mechanism

In this section we describe a new differentially private mechanism, which we
call the K-norm mechanism.

Definition 3.3.1 (K-norm mechanism). Given a linear map F : RN →Rd and
ε > 0, we let K = FBN1 and define the mechanism KM(F,d,ε) = {µx : x ∈RN } so
that each measure µx is given by the probability density function

f (v) = Z−1 exp(−ε‖Fx − v‖K ) (3.7)

defined over Rd . Here Z denotes the normalization constant

Z =
∫
R
d

exp(−ε‖Fx − v‖K )dv = Γ (d + 1)Vol(ε−1K).

A more concrete view of the mechanism is provided by Figure 3.2 and
justified in the next remark.

Remark 3.3.2. We can sample from the distribution µx as follows:
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Input: Query F ∈Rd×N , histogram x ∈RN , privacy parameter ε > 0

1. Sample z ∈Rd uniformly at random from K = FBN1

2. Sample r ∈R from Gamma(d + 1, ε−1)

Output: Fx+ rz

Figure 3.2: Description of the d-dimensional K-norm mechanism.

1. Sample r from the Gamma distribution with parameter d + 1 and scale
ε−1, denoted Gamma(d + 1, ε−1). That is, r is distributed as

P {r > R} =
1

ε−(d+1)Γ (d + 1)

∫ ∞
R
e−εttd dt.

2. Sample v uniformly from Fx+ rK .

Indeed, if ‖v − Fx‖K = R, then the distribution of v as above follows the
probability density function

g(v) =
1

ε−(d+1)Γ (d + 1)

∫ ∞
R

e−εttd

Vol(tK)
dt =

∫ ∞
R
e−εt dt

ε−1Γ (d + 1)Vol(ε−1K)
=

e−εR

Γ (d + 1)Vol(ε−1K)
,

(3.8)
where we used the fact that

∫ ∞
0
e−εt dt = ε−1. We thus see that this calculation

is in agreement with (3.7). That is, g(v) = f (v).

The next theorem shows that the K-norm mechanism is indeed differen-
tially private. Moreover, we can express its error in terms of the expected
distance from the origin of a random point in K.

Theorem 3.3.3. Let ε > 0. Suppose F : RN → Rd is a linear map and put K =
FBN1 . Then, the mechanism KM(F,d,ε) is ε-differentially private, and for every
p > 0 achieves the error bound

E
v∼µx
‖Fx − v‖p2 6

Γ (d + 1 + p)
εpΓ (d)

E

z∈K
‖z‖p2. (3.9)

In particular, the `2-error is at most

d + 1
ε
E

z∈K
‖z‖2 =

d + 1
ε
·mr(K) .
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Proof. To argue the error bound, we will follow Remark 3.3.2. Let D =
Gamma(d + 1,1/ε). For all x ∈RN ,

E
v∼µx
‖Fx − v‖p = E

v∼µ0
‖v‖p = E

r∼D
E

v∈rK
‖v‖p =

[
E

r∼D
rp

]
E

z∈K
‖z‖p

=
Γ (d + 1 + p)
εpΓ (d + 1)

E

z∈K
‖z‖p.

(by Fact 2.10.5)

When p = 1, Γ (d+1+p)
Γ (d+1) = d + 1.

Privacy follows from the fact that the mechanism is a special case of the
exponential mechanism [MT]. For completeness, we repeat the argument.
Indeed, suppose that ‖x‖1 6 1. It suffices to show that for all v ∈ Rd , the
densities of µ0 and µx are within multiplicative exp(ε), i.e.,

Z−1e−ε‖v‖K

Z−1e−ε‖Fx−v‖K
= eε(‖Fx−v‖K−‖v‖K ) 6 eε‖Fx‖K 6 eε.

where in the first inequality we used the triangle inequality for ‖ · ‖K . In
the second step we used that x ∈ BN1 and hence Fx ∈ FBN1 = K which means
‖Fx‖K 6 1. Hence, the mechanism satisfies ε-differential privacy. �

3.4 Optimality for random queries and isotropic bod-
ies

In this section, we will show that our upper bound matches our lower bound
when F is a random query. A key observation is that FBN1 is the symmet-
ric convex hull of N (random) points {v1, . . . , vn} ⊆ Rd , i.e., the convex hull
of {±v1, . . . ,±vn}, where vi ∈ Rd is the ith column of F. The symmetric con-
vex hull of random points has been studied extensively in the theory of
random polytopes. A recent result of Litvak, Pajor, Rudelson and Tomczak-
Jaegermann [LPRTJ] gives the following lower bound on the volume of the
convex hull. For convenience, we state their result in terms of volume radius.

Theorem 3.4.1 ([LPRTJ]). Let 2d 6 n 6 2d and let F denote a random d ×N
Bernoulli matrix. Then,

vr
(
FBN1

)
>Ω(1)

√
log

(N
d

)
, (3.10)

with probability 1− exp(−Ω(dβn1−β)) for any β ∈ (0, 1
2 ). Furthermore, there is an

explicit construction of n points in {−1,1}d whose convex hull achieves the same
volume.
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We are mostly interested in the range where N � d logd in which case the
theorem was already proved by Giannopoulos and Hartzoulaki [GH] (up to a
weaker bound in the probability and without the explicit construction).

The bound in (3.10) is tight up to constant factors. A well known result [BF]
shows that if K is the convex hull of anyN points on the sphere inRd of radius√
d, then

vr(K) 6O(1)

√
log

(N
d

)
. (3.11)

Notice, that in our case K = FBN1 ⊆ Bd∞ ⊆
√
dBd2 and in fact the vertices of K

are points on the (d − 1)-dimensional sphere of radius
√
d. However, equa-

tion (3.10) states that the normalized volume of the random polytope K will
be proportional to the volume of the Euclidean ball of radius

√
log(N/d) rather

than
√
d. When d� logn, this means that the volume of K will be tiny com-

pared to the volume of the infinity ball Bd∞. By combining the volume lower
bound with Theorem 3.2.3, we get the following lower bound on the error of
private mechanisms.

Theorem 3.4.2. Let ε > 0 and 0 < d 6 N/2. Then, for almost all matrices F ∈
{−1,1}d×N , every ε-differentially private mechanism M must have

err(M,F) >Ω(d/ε) ·min

√d,
√

log
(N
d

) . (3.12)

3.4.1 A separation result

We use this paragraph to point out that our lower bound immediately implies
a separation between (ε,δ)-differential privacy and (ε,0)-differential privacy.
On the other hand, Corollary 2.4.6 gives (ε,δ)-differential privacy with error
o
(
ε−1

√
log(N/d)

)
as long as δ > 1/no(1). Our lower bound in Theorem 3.4.2 on

the other hand states that the error of any ε-differentially private mechanism
must be Ω

(
ε−1

√
log(N/d)

)
(assuming d � log(n)). We get the strongest sep-

aration when d 6 log(n) and δ is constant. In this case, our lower bound is a
factor

√
d larger than the upper bound for approximate differential privacy.

3.4.2 Upper bound on average Euclidean norm

Klartag and Kozma [KK] recently gave a bound on the quantity Ez∈K ‖z‖ when
K = FBN1 for random F.

Theorem 3.4.3 ([KK]). Let F be a random d ×N Bernoulli matrix and put K =
FBN1 . Then, there is a constant C > 0 so that with probability greater than 1 −
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Ce−O(n),
1

Vol(K)

∫
z∈K
‖z‖2 dz 6 C log

(N
d

)
. (3.13)

An application of Jensen’s inequality thus gives us the following corollary.

Corollary 3.4.4. Let ε > 0 and 0 < d 6 N/2. Then, for almost all matrices
F ∈ {−1,1}d×N , the mechanism KM(F,d,ε) is ε-differentially private with error at
most

O

(
d

ε

)
·min

√d,
√

log
(N
d

) . (3.14)

3.5 Approximately isotropic bodies

The following definition is a relaxation of isotropic position used in literature
(e.g., [KLS])

Definition 3.5.1 (Approximately Isotropic Position). We say a convex body
K ⊆Rd is in c-approximately isotropic position if for every unit vector v ∈Rd ,

1
Vol(K)

∫
K
|〈z,v〉|2 dz 6 c2L2

KVol(K)
2
d . (3.15)

The results of Klartag and Kozma [KK] referred to in the previous sec-
tion show that the symmetric convex hull of n random points from the d-
dimensional hypercube are in O(1)-approximately isotropic position and have
LK = O(1). More generally, the K-norm mechanism can be shown to be ap-
proximately optimal whenever K is nearly isotropic.

Theorem 3.5.2 (Theorem 3.1.2 restated). Let ε > 0. Suppose F : RN → Rd is a
linear map such that K = FBN1 is in c-approximately isotropic position. Then, the
K-norm mechanism is ε-differentially private and has error at most O(cLK ) · dvr(K)

ε

Proof. By Theorem 3.3.3, the K-norm mechanism is ε-differentially private
and has error d+1

ε Ez∈K ‖z‖. By the definition of the approximately isotropic
position, we have: Ez∈K ‖z‖2 6 d · c2L2

KVol(K)2/d . By Jensen’s inequality,

d + 1
ε
E

z∈K
‖z‖ 6 d + 1

ε

√
E

z∈K
‖z‖2 6O

(
cLKd

√
dVol(K)1/d

ε

)
=O

(
cLKdvr(K)

ε

)
.

�
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We can see that the previous upper bound is tight up to a factor of cLK .
Estimating LK for general convex bodies is a well-known open problem in
convex geometry. The best known upper bound for a general convex body
K ⊆ Rd is LK 6 O(d1/4) due to Klartag [Kla], improving over the estimate
LK 6O(d1/4 logd) of Bourgain from ’91. The conjecture is that LK =O(1).

Conjecture 3.5.1 (Hyperplane Conjecture). There exists C > 0 such that for
every d and every convex set K ⊆Rd , LK < C.

Assuming this conjecture we get matching bounds for approximately
isotropic convex bodies.

Theorem 3.5.3. Let ε > 0. Assuming the hyperplane conjecture, for every F ∈
[−1,1]d×N such thatK = FBN1 is c-approximately isotropic, theK-norm mechanism
KM(F,d,ε) is ε-differentially private with error at most

O

(
cd

ε

)
·min

√d,
√

log
(N
d

) . (3.16)

3.6 Non-isotropic bodies

While the mechanism of the previous sections is near-optimal for near-isotropic
queries, it can be far from optimal if K is far from isotropic. For example,
suppose the matrix F has random entries from {+1,−1} in the first row, and
(say) from { 1

d2 ,− 1
d2 } in the remaining rows. While the Laplacian mechanism

will add O(1
ε ) noise to the first co-ordinate of Fx, the K-norm mechanism will

add noise O(d/ε) to the first co-ordinate. Moreover, the volume lower bound
VolLB is at most O(ε−1

√
d). Rotating F by a random rotation gives, w.h.p., a

query for which the Laplacian mechanism adds `2 error O(d/ε). For such a
body, the Laplacian and the K-norm mechanisms, as well as the VolLB are far
from optimal.

In this section, we will design a recursive mechanism that can handle such
non-isotropic convex bodies. To this end, we will need to introduce a few
more notions from convex geometry.

Suppose K ⊆ Rd is a centered convex body, i.e.
∫
K
xdx = 0. The covari-

ance matrix of K , denoted MK is the d × d matrix with entry ij equal to
Mij = 1

Vol(K)

∫
K
xixj dx. That is, MK is the covariance matrix of the uniform

distribution over K.

3.6.1 A recursive mechanism

Having defined the covariance matrix, we can describe a recursive mechanism
for the case when K is not in isotropic position. The idea of the mechanism is
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NiKM(F,d,ε) :

1. Let K = FBN1 . Let σ1 > σ2 > . . . > σd denote the eigenvalues of the
covariance matrix MK . Pick a corresponding orthonormal eigenbasis
u1, . . . ,ud .

2. Let d′ = bd/2c and let U = span{u1, . . . ,ud′ } and V = span{ud′+1, . . . , vd}.

3. Sample v ∼ KM(F,d,ε) .

4. If d = 1, output PV v. Otherwise, output NiKM(PUF,d′, ε) + PV v .

Figure 3.3: Mechanism for non-isotropic bodies

to act differently on different eigenspaces of the covariance matrix. Specifi-
cally, the mechanism will use a lower-dimensional version of KM(F,d′, ε) on
subspaces corresponding to few large eigenvalues.

Our mechanism, called NiKM(F,d,ε), is given a linear mapping F : RN →
R
d , and parameters d ∈ N, ε > 0. The mechanism proceeds recursively by

partitioning the convex body K into two parts defined by the middle eigen-
value of MK . On one part it will act according to the K-norm mechanism. On
the other part, it will descend recursively. The mechanism is described in
Figure 3.3

Remark 3.6.1. The image of PUF above is a d′-dimensional subspace of Rd .
We assume that in the recursive call NiKM(PUF,d′, ε), the K-norm mechanism
is applied to a basis of this subspace. However, formally the output is a
d-dimensional vector.

To analyze our mechanism, first observe that the recursive calls terminate
after at most logd steps. For each recursive stepm ∈ {0, . . . , logd}, let vm denote
the distribution over the output of the Km-norm mechanism in step 3. Here,
Km denotes the dm-dimensional body given in step m.

Lemma 3.6.2. The mechanism NiKM(F,d,ε) satisfies (ε logd)-differential privacy.

Proof. We claim that for every step m ∈ {0, . . . , logd}, the distribution over vm
is ε-differentially private. Notice that this claim implies the lemma, since the
joint distribution of v0,v1, . . . , vm is ε log(d)-differentially private. In particular,
this is true for the final output of the mechanism as it is a function of v0, . . . , vm.

To see why the claim is true, observe that each Km is the dm-dimensional
image of the `1-ball under a linear mapping. Hence, the Km-norm mechanism
guarantees ε-differential privacy by Theorem 3.3.3. �
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The error analysis of our mechanism requires more work. In particular,
we need to understand how the volume of PUK compares to the norm of PV v.
As a first step we will analyze the volume of PUK.

3.6.2 Volume in eigenspaces of the covariance matrix

Our goal in this section is to express the volume of K in eigenspaces of the
covariance matrix in terms of the eigenvalues of the covariance matrix. This
will be needed in the analysis of our mechanism for non-isotropic bodies.

We start with a formula for the volume of central sections of isotropic
bodies. This result can be found in [MP].

Proposition 3.6.3. Let K ⊆Rd be an isotropic body of unit volume. Let E denote
a k-dimensional subspace for 1 6 k 6 d. Then,

Volk(E ∩K)1/(d−k) = Θ

(
LBK
LK

)
.

Here, BK is an explicitly defined isotropic convex body.

From here on, for an isotropic body K , let αK = Ω(LBK /LK ) be a lower
bound on Volk(E ∩ K)1/(d−k) implied by the above proposition. For a non-
isotropic K , let αK be αTK when T is the map that brings K into isotropic
position. Notice that if the Hyperplane Conjecture is true, then αK = Ω(1).
Moreover, αK is Ω(d

1
4 ) due to the results of [Kla].

Corollary 3.6.4. Let K ⊆Rd be an isotropic body with Vol(K) = 1. Let E denote a
k-dimensional subspace for 1 6 k 6 d and let P denote an orthogonal projection
operator onto the subspace E. Then,

Volk(P K)1/(d−k) > αK .

Proof. Observe that P K contains E ∩K since P is the identity on E. �

We cannot immediately use these results since they only apply to isotropic
bodies and we are specifically dealing with non-isotropic bodies. The trick
is to apply the previous results after transforming K into an isotropic body
while keeping track how much this transformation changed the volume.

As a first step, the following lemma relates the volume of projections of an
arbitrary convex body K to the volume of projections of TK for some linear
mapping T .
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Lemma 3.6.5. Let K ⊆ Rd be a symmetric convex body. Let T be a linear map
which has eigenvectors u1, . . . ,ud with eigenvalues λ1, . . . ,λd . Let 1 6 k 6 d and
suppose E = span{u1,u2, . . . ,uk}, Denote by P be the projection operator onto the
subspace E. Then,

Volk(P K) > Volk(P TK)
k∏
i=1

λ−1
i .

Proof. For simplicity, we assume that the eigenvectors of T are the standard ba-
sis vectors e1, . . . , ed ; this is easily achieved by applying a rotation to K . Now, it
is easy to verify that P = P T −1T = SP T where S = diag(λ−1

1 ,λ−1
2 , . . . ,λ−1

k ,0, . . . ,0).
Thus we can write

Volk(P K) = det(S|E)Volk(P TK) =
1∏k
i=1λi

Volk(P TK) . �

Before we can finish our discussion, we will need the fact that the isotropic
constant of K can be expressed in terms of the determinant of MK .

Fact 3.6.6 ([Gia, MP]). Let K ⊆Rd be a convex body of unit volume. Then,

L2
KVol(K)

2
d = det(MK )1/d . (3.17)

Moreover, K is in isotropic position if and only if MK = L2
KVol(K)2/dI .

We conclude with the following Proposition 3.6.7.

Proposition 3.6.7. Let K ⊆Rd be a symmetric convex body. Let MK have eigen-
vectors u1, . . . ,ud with eigenvalues σ1, . . . ,σd . Let 1 6 k 6 dd2e with and suppose
E = span{u1,u2, . . . ,uk}. Denote by P be the projection operator onto the subspace
E. Then,

Volk(P K)1/(d−k) >Ω(1) ·αK

 k∏
i=1

σ1/2
i


1/(d−k)

, (3.18)

where αK is Ω(1/d
1
4 ). Moreover, assuming the Hyperplane conjecture, αK >Ω(1).

Proof. Consider the linear mapping T =M−1/2
K . this is well defined since MK

is a positive symmetric matrix. It is easy to see that after applying T , we have
MTK = I. Hence, by Fact 3.6.6, TK is in isotropic position and has volume
Vol(TK)1/d = 1/LTK = 1/LK , since det(MTK ) = 1. Scaling TK by λ = L1/d

K hence

results in Vol(λTK) = 1. Noting that λT has eigenvalues λσ
− 1

2
1 ,λσ

− 1
2

2 , . . . ,λσ
− 1

2
d ,

we can apply Lemma 3.6.5 and get

Volk(P K) > Volk(P λTK)
k∏
i=1

√
σi
λ
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Since λTK is in isotropic position and has unit volume, Corollary 3.6.4
implies that

Volk(P λTK)1/(d−k) > αK . (3.19)

Thus the required inequality holds with an additional λ−
k
d−k term. By as-

sumption on k, k
d−k is at most 2. Moreover, λ = L1/d

K 6 d
1/d 6 2, so that this

additional term is a constant. As discussed above, αK is Ω(d−
1
4 ) by [Kla], and

Ω(1) assuming the Hyperplane Conjecture 3.5.1. Hence the claim. �

3.6.3 Arguing near optimality of our mechanism

Our next lemma shows that the expected squared Euclidean error added by
our algorithm in each step is bounded by the square of the optimum. We will
first need the following fact.

Fact 3.6.8. Let K ⊆ Rd be a centered convex body. Let σ1 > σ2 > . . . > σd denote
the eigenvalues of MK with a corresponding orthonormal eigenbasis u1, . . . ,ud .
Then, for all 1 6 i 6 d,

σi = max
θ
E

x∈K
〈θ,x〉2 (3.20)

where the maximum runs over all θ ∈ Sd−1 such that θ is orthogonal to u1,u2, . . . ,ui−1.

Lemma 3.6.9. Let v denote the random variable returned by the K-norm mecha-
nism in step (3) in the above description of NiKM(F,d,ε). Then,

VolLB(F,ε)2 >Ω(α2
K )E‖PV v‖22 .

Proof. For simplicity, we will assume that d is even and hence d − d′ = d′. The
analysis of the K-norm mechanism (Theorem 3.3.3 with p = 2) shows that the
random variable v returned by the K-norm mechanism in step (3) satisfies

E‖PV v‖22 =
Γ (d + 3)
ε2Γ (d + 1)

=
(d + 2)(d + 1)

ε2 E

z∈K
‖PV z‖22

=O
(
d2

ε2

) d∑
i=d′+1

E

z∈K
〈z,ui〉2

=O
(
d2

ε2

) d∑
i=d′+1

σi (by Fact 3.6.8)

6O

(
d3

ε2

)
· σd′+1. (3.21)
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On the other hand, by the definition of VolLB,

VolLB(F,ε)2 >Ω

(
d3

ε2

)
·Vold′ (PUK)2/d′

>Ω

(
d3

ε2

)
α2
K

 d′∏
i=1

σi


1/d′

(by Proposition 3.6.7)

>Ω

(
d3

ε2

)
α2
Kσd′ .

Since σd′ > σd′+1, it follows that

VolLB(F,ε)2 >Ω(α2
K )E‖PV a‖2 . (3.22)

The case of odd d is similar except that we define K ′ to be the projection onto
the first d′ + 1 eigenvectors. �

Lemma 3.6.10. Assume the Hyperplane Conjecture. Then, the `2-error of the
mechanism NiKM(F,d,ε) satisfies

err(NiKM,F) 6O
(√

log(d) ·VolLB(F,ε)
)
.

Proof. We have to sum up the error over all recursive calls of the mechanism.
To this end, let PVmvm denote the output of the K-norm mechanism vm in step
m projected to the corresponding subspace Vm. Also, let v ∈ Rd denote the
final output of our mechanism. We then have,

E‖v‖2 6
√
E‖v‖22 (Jensen’s inequality)

=

√√√logd∑
m=1

E‖PVmvm‖
2
2

6

√√√logd∑
m=1

O(α−2
Km

) ·VolLB(F,ε)2 (by Lemma 3.6.9)

6O(
√

logd)
(
max
m
α−1
Km

)
VolLB(F,ε).

Here we have used the fact that VolLB(F,ε) > VolLB(PUF,ε). Finally, the
hyperplane conjecture implies maxmα

−1
Km

=O(1). �

Corollary 3.6.11. Let ε > 0. Suppose F : RN → Rd is a linear map. Further,
assume the hyperplane conjecture. Then, there is an ε-differentially private mecha-
nism M with error

err(M,F) 6O(log(d)3/2 ·VolLB(F,ε)).
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Proof. The mechanism NiKM(F,d,ε/ log(d)) satisfies ε-differential privacy, by
Lemma 3.6.2. The error is at most log(d)

√
logd ·VolLB(F,ε) as a direct conse-

quence of Lemma 3.6.10. �

Thus our lower bound VolLB and the mechanism NiKM are both within
O(log3/2d) of the optimum.

3.7 More efficient implementation using geometric ran-
dom walks

We will first describe how to implement our basic mechanism KM(F,d,ε). As
we saw, this mechanism is optimal when FBN1 is in roughly isotropic position.
In Section 3.7.1, we extend our discussion to NiKM(F,d,ε) thus getting an
efficient nearly optimal mechanism even when FBN1 is not in isotropic position.

Recall that we first sample r ∼Gamma(d + 1, ε−1) and then sample a point
v uniformly at random from rK. The first step poses no difficulty. Indeed,
when U1, . . . ,Ud are independently distributed uniformly over the interval
(0,1], then a standard fact tells us that

1
ε

d+1∑
i=1

− ln(Ui) ∼Gamma(d + 1, ε−1) .

Sampling uniformly from K on the other hand may be hard. However, there
are ways of sampling nearly uniform points from K using various types of
rapidly mixing random walks. In this section, we will use the Grid Walk for
simplicity even though there are more efficient walks that will work for us.
We refer the reader to the survey of Vempala [Vem] or the original paper
of Dyer, Frieze and Kannan [DFK] for a description of the Grid walk and
background information. Informally, the Grid walk samples nearly uniformly
from a grid inside K , i.e., L∩K where we take L = 1

d2Z
d . The Grid Walk poses

two requirements on K :

1. Membership in K can be decided efficiently.

2. K is bounded, in the sense that Bd2 ⊆ K ⊆ dB
d
2.

Both conditions are naturally satisfied in our case where K = FBN1 for some
F ∈ [−1,1]d×N . Indeed, K ⊆ Bd∞ ⊆

√
dBd2 and we assume throughout this

section that Bd2 ⊆ K. This is without loss of generality, since we may replace
K by K ′ = K + Bd2 . This will only increase the noise level by 1 in Euclidean
distance. Notice that K ′ is convex.
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The exact notion of membership oracle that we need is given in the next
definition.

Definition 3.7.1. A β-weak separation oracle forK is a blackbox that says ‘YES’
when given u ∈Rd with (u + βBd2) ⊆ K and outputs ‘NO’ when u < K + βBd2 .

In order to implement a weak membership oracle for K , we need to be able
to decide for a given v ∈Rd , whether there exists an x ∈ BN1 such that Fx = v.
These constraints can be encoded using a linear program. In the case of K ′

this can be done using standard convex programming techniques [GLS].

Lemma 3.7.2. Let β > 0. We can implement a β-weak separation oracle for K and
also K +Bd2 in time polynomial in N,d,1/β.

The mixing time of the Grid walk is usually quantified in terms of the
total variation (or L1) distance between the random walk and its stationary
distribution. The stationary distribution of the grid Walk is the uniform
distribution over L∩K . Standard arguments show that an L1-bound gives
us (ε,δ)-differential privacy where δ can be made exponentially small in
polynomial time. In order to get (ε,0)-differential privacy we instead need a
multiplicative guarantee on the density of the random walk at each point in
K.

It is not difficult to show that the Grid Walk actually satisfies mixing
bounds in a pointwise multiplicative sense. We also need to take care of the
fact that the stationary distribution is a priori not uniform over K.

Theorem 3.7.3. There is a mechanism M ′ with expected runtime polynomial
in N,d and ε−1 such that

1. M ′ is ε-differentially private,

2. err(M ′,F) =O(err(KM(F,d,ε),F)).

To prove the theorem we need the next lemma that essentially directly
follows from [DFK].

Lemma 3.7.4. There is a randomized algorithm Sample(K,β) running in time
poly(N,d,β−1) whose output distribution is pointwise within a (1±β) factor from
the uniform distribution over a body K̂ such that K ⊆ K̂ ⊆ (1 + β)K .

Proof sketch. In order to implement Sample(K,β) we consider the t-step grid
walk over K using a β/2-weak separation oracle and a fine enough grid L =
β
2Z

d ∩ dBd2 where β = poly(1/d). By Lemma 3.7.2, we can implement the
separation oracle in time poly(N,d,β−1).
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It is known [DFK] that the t-step Grid Walk for t = poly(d,1/β, log(1/∆))
gets within statistical distance at most ∆ of the uniform distribution over
L∩K ′ where K ′ is a body satisfying (1− β/2)K ⊆ K ′ ⊆ (1 + β/2)K,

Setting ∆ to be much smaller than the number of atoms in the Grid Walk,
i.e., ∆ = poly(εβ/ |L|) we end up with a distribution that is point-wise within
at (1± β)-factor of the uniform distribution over L∩K ′. Note that log(1/∆) =
poly(d,1/ε,1/β).

Let Z be a sample from the grid walk described above, and let Ẑ be a
random point from an `∞-ball of radius β/4 centered at Z. Then Ẑ is a nearly
uniform sample from a body K̂ which has the property that (1− β)K ⊆ K̂ ⊆
(1 + β)K . �

Proof of Theorem 3.7.3. Our algorithm first samples r ∼Gamma(d + 1,10ε−1),
and then outputs Fx + rz where z is the output of Sample(K,β) for β =
min {ε/10d,1/10r}. Let g denote the resulting density function of our mecha-
nism. Let v ∈Rd . We will compare g(v) to the density f (v) of KM(F,d,ε/10).

We can repeat the calculation for the density at a point v in equation (3.8).
Indeed for a point v with ‖v − Fx‖K = R, the density at v conditioned on a
sample r from the Gamma distribution, is (1 ± β)/Vol(rK̂) whenever v ∈ rK̂ ,
and zero otherwise. By our choice of β, Vol(K̂) = (1 ± ε/5)Vol(K). Moreover,
since K ⊆ K̂ ⊆ (1 + β)K we have v ∈ rK̂ for r > R. Thus the density at v is

g(v) >
1− ε/5

ε−dΓ (d + 1)

∫ ∞
R

e−εttd

Vol(tK)
dt >

exp(−ε/2)e−εR

Γ (d + 1)Vol(ε−1K)
= exp(−ε/2)f (v) .

Similarly, using the fact that v < rK̂ for r < R/(1 + β). we have

g(v) 6
exp(ε/5)
ε−dΓ (d + 1)

∫ ∞
R/(1+β)

e−εttd

Vol(tK)
dt 6

exp(ε/5)e−εR/(1+β)

Γ (d + 1)Vol(ε−1K)

Since we chose β 6 1/10r it follows that e−εR/(1+β) 6 e−εR+ε/5.
We conclude that g(v) is pointwise within a exp(±ε/2) factor of the ideal

density that gives ε/10-differential privacy by our choice of parameters. Hence,
our mechanism satisfies ε-differential privacy. Further since K ⊆ K̂ ⊆ 2K, it
follows that our mechanism satisfies the stated error bound. Finally, the
bound on the moments of the Gamma distribution from Fact 2.10.5 implies
that the expected running time of this algorithm is polynomial inN,d,ε−1. �

3.7.1 An efficient implementation of NiKM

Theorem 3.7.3 extends to our mechanism for the non-isotropic case.
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Theorem 3.7.5. There is a mechanism M ′ with runtime polynomial in N,d and
ε−1 such that

1. M ′ is ε-differentially private,

2. err(M ′,F) =O(err(NiKM(F,d,ε),F)).

Proof. To implement NiKM(F,d,ε) efficiently, we additionally need to com-
pute the subspaces U and V to project onto (Step 2 of the algorithm). Note
that these subspaces themselves depend only on the query F and not on the
database x. Thus these can be published and the mechanism maintains its
privacy for an arbitrary choice of subspaces U and V . The choice of U,V in
Section 3.6 depended on the covariance matrix M, which we do not know
how to compute exactly. We next describe a method to choose U and V that
is efficient such that the resulting mechanism has essentially the same error.
The sampling from K can then be replaced by approximate sampling as in
the previous subsection, resulting in a polynomial-time differentially private
mechanism with small error.

Without loss of generality, K has the property that Bd2 ⊆ K ⊆ dB
d
2. In this

case, xixj 6 d2 so that with O(d2 logd) (approximately uniform) samples from
K , Chernoff bounds imply that the sample covariance matrix approximates
the covariance matrix well in every entry. In other words, we can construct
a matrix M̃ such that with high probability each entry of M̃ is within neg(d)
of the corresponding entry in M. Here and in the rest of the section, neg(d)
denotes a function bounded from above by d−C for a large enough constant
C > 0. The constant varies depending on the context. We also note that with
high probability M̃ is positive semidefinite. This uses the fact that K ⊇ Bd2 .

Let the eigenvalues of M̃ be σ̃1, . . . , σ̃d with corresponding eigenvectors
ũ1, . . . , ũd . Let T̃ = M̃−

1
2 , and let P̃ be the projection operator onto the span of

the first d′ eigenvectors of M̃. This defines our subspaces Ũ and Ṽ , and hence
the mechanism. We next argue that Lemma 3.6.9 continues to hold.

First note that for any i > d′ + 1

E

a∈K
〈a, ũi〉2 =

∣∣∣ũTi Mũi ∣∣∣ = |ũTi M̃ũi |+ |ũ
T
i (M − M̃)ũi | = σ̃i + neg(d).

Thus, Equation 3.21 continues to hold with σ̃d′+1 replacing σd′+1.
To prove that Proposition 3.6.7 continues to hold (with M̃, T̃ , P̃ replacing

M,T ,P ), we note that the only place in the proof that we used that M is in fact
the covariance matrix of K is (3.19), when we require TK to be isotropic. We
next argue that (3.19) holds for T̃ K if M̃ is a good enough approximation to
M. This would imply Proposition 3.6.7 and hence the result.
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First recall that Wedin’s theorem [Wed] states that for non-singular matri-
ces R, R̃,

‖R−1 − R̃−1‖2 6
1 +
√

5
2
‖R− R̃‖2 ·max

{
‖R−1‖22,‖R̃

−1‖22
}
.

Using this for the matrices M
1
2 , M̃

1
2 and using standard perturbation bounds

gives (see e.g. [KM1]):

‖T̃ − T ‖2 6O(1) · ‖T ‖22 · ‖M̃
1
2 −M

1
2 ‖2 . (3.23)

Since ‖T ‖2 is at most poly(d) and the second term is neg(d), we conclude that
‖T̃ − T ‖2 is neg(d). It follows that

TK ⊆ T̃ K +neg(d)Bd2 . (3.24)

Moreover, since TK is in isotropic position, it contains a ball 1
dB

d
2. It follows

from the next lemma (applied to A = dT̃ K) that

1
2d
Bd2 ⊆ T̃ K . (3.25)

Lemma 3.7.6. Let A be a convex body in Rd such that Bd2 ⊆ A+rBd2 for some r < 1.
Then a dilation (1− r)Bd2 is contained in A.

Proof. Let z ∈ Rd be a unit vector. Suppose that z′ = (1 − r)z < A. Then by
the Separating Hyperplane theorem (see, e.g., [BV]), there is a hyperplane
H separating z′ from A. Thus there is a unit vector w and a scalar b such
that 〈z′,w〉 = b and 〈u,w〉 < b for all u ∈ A. Let v = z′ + rw. Then by triangle
inequality, ‖v‖ 6 1. Moreover,

d(v,A) = inf
u∈A
‖u − v‖ > inf

u∈A
〈v −u,w〉 > b+ r − sup

u∈A
〈u,w〉 > r.

This however contradicts the assumption that that v ∈ Bd2 ⊆ A+ rBd2. Since z
was arbitrary, the lemma is proved. �

We can thus conclude(
1− 1

d

)
TK ⊆

(
1− 1

d

)
T̃ K +neg(d)Bd2 (using (3.24))

⊆
(
1− 1

d

)
T̃ K +neg(d)T̃ K (using (3.25))

⊆ T̃ K ,
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where the last containment follows from the fact that T̃ K is convex and
contains the origin. Thus

(1− 1
d

)P̃ T K ⊆ P̃ T̃ K . (3.26)

Since Corollary 3.2.4 still lower bounds the volume of P̃ T K , we conclude
from (3.26) that

Volk(P̃ T̃ K)1/k >
1
e

Volk(P̃ T K)1/k >
α
d−k
k
K

e
,

where we have used the fact that k 6 d so that (1 − 1
d )k > 1

e . For k = d′, d−kk
is Θ(1) so that Volk(P̃ T̃ K)1/(d−k) > Ω(αK ). Thus we have shown that up to
constants, (3.19) holds for Volk(P̃ T̃ K)1/(d−k) which completes the proof. �
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Chapter 4

A Multiplicative Weights Framework
for Interactive Query Release

In this chapter we consider the problem of answering a large number of
statistical queries (cf. Section 2.2.1) in a differentially private manner. Our
discussion of prior work in Section 2.6 left open the following important
questions:

1. Is there a an interactive mechanism that runs in time poly(N ) on each
of the k queries with non-trivial error on all databases?

2. Could its accuracy (in terms of k,n) match the sampling errorO(
√

logk/n)?

3. Is there an interactive mechanism for handling many statistical queries
that achieves (ε,0)-differential privacy (rather than (ε,δ))?

4. Given the cryptographic hardness results for releasing differentially
private synthetic data from Section 2.8.1, we cannot hope for sub-linear
running time in N (if our algorithm is able to produce synthetic data).
Do there exist mechanisms that match or nearly-match this hardness
result?

5. What are open avenues for side-stepping the hardness results for syn-
thetic data? Namely, are there meaningful relaxations that permit mech-
anisms whose running time is sub-linear or even poly-logarithmic in
N ?

4.1 Main results

Our main contribution is a new privacy-preserving interactive mechanism
for answering statistical queries, which we will refer to as the private mul-
tiplicative weights (PMW) mechanism. It allows us to give positive answers
to the first four questions above, and to make partial progress on the last
question. We proceed with a summary of our contributions, see Figure 4.1
for a comparison with the related work. We note that throughout this section,
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when we refer to a mechanism’s running time as being polynomial or linear,
we are measuring the running time as a function of the data universe size N
(which may be quite large for high-dimensional data).

A new interactive mechanism. The PMW mechanism runs in time linear
in N and provides a worst-case accuracy guarantees for all input databases.
The mechanism is presented in Figure 4.2, its performance stated in the
theorem below. The proof is in Section 5.2. See Section 6.2 for the formal
definitions of accuracy and differential privacy for interactive mechanisms.

Theorem 4.1.1. Let U be a data universe of size N . For any k,ε,δ,β > 0, the
Private Multiplicative Weights Mechanism of Figure 4.2, is an (ε,δ)-differentially
private interactive mechanism.

For any database of size n, the mechanism is (α,β,k)-accurate for (adaptive)
statistical queries over U , where

α =O

√log(k/β) log(1/δ) log1/4N
√
εn


The running time in answering each query is N ·poly(n) ·polylog(1/β,1/ε,1/δ) .

The error as a function of n and k grows roughly as
√

logk
n . Even for blatant

non-privacy in the non-interactive setting this dependence on k and n is
necessary. See our discussion of lower bounds in Section 2.8. Thus in terms
of k and N our upper bound matches a lower bound that holds for a much
weaker notion of privacy. In fact, as argued in Section 2.6

√
logk/n is the

statistical sampling error observed when computing the maximum error of k
insensitive statistics on a sample of size n.

Moreover, the running time is only linear in N (for each of the k queries),
nearly tight with the cryptographic hardness results of [DNR+]. Previous
work even in the non-interactive setting had higher polynomial running time.
Finally, we remark that this mechanism can also be used to generate a synthetic
database with similar error and running time bounds (in the non-interactive
setting), see below for this extensions.

Achieving (ε,0)-differential privacy. Prior to our work it was conceivable
that there was no (ε,0)-differentially private interactive release mechanism
handling, say, n2 statistical queries with non-trivial error. However, using
our multiplicative weights framework, we can achieve the guarantees of
Theorem 4.4.1 also with (ε,0)-differential privacy except for a somewhat
worse dependence on n and logN.
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Theorem 4.1.2. Let U be a data universe of size N . For any k,ε,β > 0, there is an
(ε,0)-differentially private interactive mechanism such that: For any database of
size n, the mechanism is (α,β,k)-accurate for (adaptive) statistical queries over U ,
where

α =O
(

log(k/β)1/3 log1/3N

(εn)1/3

)
.

The running time in answering each query is N ·poly(n) ·polylog(1/β,1/ε,1/δ) .

We also show a new lower bound on the error that any (ε,0)-differentially
private mechanism must have even in the non-interactive setting when an-
swering k � n statistical queries. A novelty of our lower bound is that it
simultaneously depends on n, logk, logN.

Theorem 4.1.3. Let n be sufficiently large and let ε > 0 be a constant independent
of n. Then, for every k > n1.1 there is a set of k statistical queries over a universe
of size N such that every (ε,0)-differentially private mechanism for databases of
size n must have error

α >Ω(1) ·

 logk · log
(
N
n

)
εn


1/2

with probability 1/2.

Relaxed Notions of Utility. To answer Question 5 that was raised in the
introduction, we begin with a discussion of the negative results of [DNR+] and
possible avenues for side-stepping them. The negative results for producing
synthetic data can be side-stepped by a mechanism whose output has a differ-
ent format. This is a promising avenue, but synthetic data is a useful output
format. It is natural to try to side-step hardness while continuing to output
synthetic data. One possibility is working for restricted query classes, but
recent work of Ullman and Vadhan [UV] shows hardness even for very simple
and natural query classes such as conjunctions. In the known hardness re-
sults, however, the databases (or rather database distributions) that are hard to
sanitize are (arguably) “unnatural”, containing cryptographic data in [DNR+]
and PCP proofs for the validity of digital signatures in [UV]. Thus, a natural
approach to side-stepping hardness is relaxing the utility requirement, and
not requiring accuracy for every input database.

A mechanism that works only for some input databases is only as interest-
ing as the class of databases for which accuracy is guaranteed. For example,
getting accuracy w.h.p. for most databases is simple, since (speaking loosely
and informally) most databases behave like a uniformly random database.
Thus, we can get privacy and accuracy by ignoring the input database (which
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gives perfect privacy) and answering according a new database drawn uni-
formly at random (which, for most input databases, will give fairly accurate
answers).

Smooth databases and sublinear time. We consider accuracy guarantees
for the class of (pseudo)-smooth databases. Intuitively, we think of these as
databases sampled i.i.d. from smooth underlying distributions over the data
universe U of size N. I.e., underlying distributions that do not put too much
weight on any particular data item (alternatively, they have high min-entropy).
We say that a histogram or distribution y over U is ξ-smooth, if for every
u ∈U , the probability of u by y is at most ξ. We say that a histogram x ∈RN+
is (ξ,φ)-pseudo-smooth w.r.t a set Q of queries if there exists some ξ-smooth
y that approximates it well w.r.t every query in Q. I.e., for every f ∈ Q,
|f (y)− f (x)| 6 φ (where by f (y) we mean the expectation of f over data items
drawn from y). See Section 4.6 for formal definitions.

The PMW mechanism yields a mechanism with improved running time—
sub-linear, or even polylogarithmic in N—for pseudo-smooth databases. The
new mechanism (with smoothness parameter ξ) runs in time that depends
linearly on ξN rather than N . It guarantees differential privacy for any input
database. Its error is similar to that of the mechanism of Theorem 4.4.1 (up to
an additional φ error), but this accuracy guarantee is only: (i) for a set Q of
interactive statistical queries that are fixed in advance (i.e. non-adaptively).
We note that the mechanism is interactive in the sense that it need not know
the queries in advance, but accuracy is not guaranteed for adversarially chosen
queries (see the discussion in Section 4.2 for motivation for this relaxation),
and (ii) for input databases that are (ξ,φ)-smooth with respect to the query
class Q. The performance guarantees are in Theorem 4.1.4 below. The proof
is in Section 4.6

Theorem 4.1.4. Let U be a data universe of size N . For any ε,δ,β,ξ,φ > 0, the
Private Multiplicative Weights Mechanism of Figure 4.2 is an (ε,δ)-differentially
private interactive mechanism. Moreover, for any sequence Q of k interactive
statistical queries over U that are fixed in advance (non-adaptively), for any
database of size n that is (ξ,φ)-pseudo-smooth w.r.t Q, the mechanism is (α,β,k)-
non adaptively accurate w.r.t. Q, where

α = Õ
(
φ+

log(1/δ) log1/4(ξN ) · (logk + log(1/β))
√
n · ε

)
.

The running time in answering each query is (ξN )·poly(n)·polylog(1/β,1/ε,1/δ,1/ξ,1/φ).

In particular, for very good smoothness ξ = polylogN/N , the running
time will depend only poly-logarithmically on N . The main observation for
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achieving this improved running time is that for (pseudo)-smooth databases
we can effectively reduce the data universe size by sub-sampling, and then
apply our algorithm to the smaller data universe. The mechanism does
not require knowledge of the histogram which certifies that the given input
database is pseudo-smooth.

The privacy guarantee is the standard notion of differential privacy. I.e.,
privacy holds always and for every database. The accuracy guarantee is only
for pseudo-smooth databases, and we interpret it as follows. The data set is
drawn i.i.d from an unknown underlying distribution D (the standard view
in statistics). The mechanism guarantees accuracy and sub-linear efficiency as
long as the underlying data distribution is smooth. If the underlying distri-
bution is ξ-smooth, then w.h.p. the database x (which we think of as being
drawn i.i.d from D and of large enough size) is “close” to D on every query,
and so w.h.p. x is (ξ,φ)-smooth and the mechanism is accurate. An important
aspect of this guarantee is that there is no need to know what the underlying
distribution is, only that it is smooth. A promising approach in practice may
be to run this mechanism as a very efficient heuristic. The heuristic guarantees
privacy, and also has a rigorous accuracy guarantee under assumptions about
the underlying distribution. We note that Dwork and Lei [DL] also proposed
mechanisms that always guarantee privacy, but guarantee accuracy only for a
subset of databases (or underlying distributions).

We also note that [RR] considered databases drawn from a distribution that
was itself picked randomly from the set of all distributions. Such “random
distributions” are indeed very smooth (w.h.p. ξ 6O(logN/N )) and therefore
a special case of our model.

Figure 4.1 summarizes and compares relevant past work on answering
statistical queries. We proceed with an overview of techniques.

4.2 Overview of proof and techniques

Multiplicative Weights. We use a (privacy-preserving) multiplicative weights
mechanism (see [LW, AHK]). The mechanism views databases as histograms
or distributions (also known as “fractional” databases) over the data universe
U (as was done in [DNR+]). At a high level, the mechanism works as follows.
The real database being analyzed is x. Here, we view x as distribution or
normalized histogram over U , with positive weight on the data items in x.
See Section 2.1.1 for more information on histograms. We will use the words
histogram and database interchangeably throughout this chapter. Since we
work with normalized histograms we can think of a statistical query simple
as a vector f ∈ [0,1]N with f (x) = 〈f ,x〉.
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Mechanism interactive? error in terms of n,N,k runtime privacy remark

[DMNS]
√ √

k — (ε,δ)
[BLR] — n2/3 log1/3N · log1/3 k NO(n) (ε,0)
[DNR+] —

√
n logN · ko(1) poly(N ) (ε,δ)

[DRV] —
√
n logN · log2 k poly(N ) (ε,δ)

[RR]
√

n2/3 log1/3N · logk NO(n) (ε,δ)
[RR]

√
n2/3 log1/3N · logk poly(N ) (ε,δ) random DBs

This work
√ √

n logk log1/4N Õ(N ) (ε,δ)
This work

√
n2/3 log1/3N log1/3 k Õ(N ) (ε,0)

This work
√ √

n logk loglogN · logk polylogN (ε,δ) smooth DBs

Figure 4.1: Comparison to previous work for k linear queries each of sensitivity 1. For
simplicity the dependence on δ is omitted from the comparison. Runtime stated in
terms of N omitting other factors. Error bounds are a factor n larger than throughout
the chapter and accurate up to polylogarithmic factors. Note that random databases
are a special case of smooth databases (see Section 4.6).

The mechanism also maintains an updated histogram, denoted as xt at the
end of round t. In each round t, after the t-th statistical query ft has been
specified, xt−1 is updated to obtain xt. The initial database x0 is simply the
uniform distribution over the data universe. I.e., each coordinate u ∈U has
weight 1/N .

In the t-th round, after the t-th query ft has been specified, we compute a
noisy answer ât by adding (properly scaled) Laplace noise to ft(x)—the “true”
answer on the real database. We then compare this noisy answer with the
answer given by the previous round’s database ft(xt−1). If the answers are
“close”, then this is a “lazy” round, and we simply output ft(xt−1) and set
xt ← xt−1. If the answers are “far”, then this is an “update” round and we
need to update or “improve” xt using a multiplicative weights re-weighting.
The intuition is that the re-weighting brings xt “closer” to an accurate answer
on ft. In a nutshell, this is all the algorithm does. The only additional step
required is bounding the number of “update” rounds: if the total number
of update rounds grows to be larger than (roughly) n, then the mechanism
fails and terminates. This will be a low probability event. See Figure 4.2 for
the details. Given this overview of the algorithm, it remains to specify how
to: (i) compute ft(xt−1), and (ii) re-weight or improve the database on update
rounds. We proceed with an overview of the arguments for accuracy and
privacy.

For this exposition, we think of the mechanism as explicitly maintaining
the xt databases, resulting in complexity that is roughly linear in N = |U |.
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Using standard techniques we can make the memory used by the mechanism
logarithmic in N (computing each coordinate of xt as it is needed). Either way,
it is possible to compute ft(xt−1) in linear time.

The re-weighting (done only in update rounds), proceeds as follows. If
in the comparison we made, the answer according to xt−1 was “too small”,
then we increase by a small multiplicative factor the weight of items u ∈ U
that satisfy the query ft’s predicate, and decrease the weight of those that do
not satisfy it by the same factor. If the answer was “too large” then do the
reverse in terms of increasing and decreasing the weights. We then normalize
the resulting weights to obtain a new database whose entries sum to 1. The
intuition, again, is that we are bringing xt “closer” to an accurate answer on ft.
The computational work scales linearly with N .

To argue accuracy, observe that as long as the number of update rounds
stays below the (roughly n) threshold, our algorithm ensures bounded error
(assuming the Laplace noise we add is not too large). The question is whether
the number of update rounds remains small enough. This is in fact the case,
and the proof is via a multiplicative weights potential argument. Viewing
databases as distributions over U , we take the potential of database y to be
the relative entropy RE(x||y) between y and the real database x. We show that
if the error of xt−1 on query ft is large (roughly larger than 1/

√
n), then the

potential of the re-weighted xt is smaller by at least (roughly) 1/n than the
potential of xt−1. Thus, in every “update” round, the potential drops, and the
drop is significant. By bounding the potential of x0, we get that the number
of update rounds is at most (roughly) n.

“Pay as you go” privacy analysis. At first glance, privacy might seem prob-
lematic: we access the database and compute a noisy answer in every round.
Since the number of queries we want to answer (number of rounds) might be
huge, unless we add a huge amount of noise this collection of noisy answers is
not privacy preserving. The point, however, is that in most rounds we don’t re-
lease the noisy answer. All we do is check whether or not our current database
xt−1 is accurate, and if so we use it to generate the mechanism’s output. In all
but the few update rounds, the perturbed true answer is not released, and we
want to argue that privacy in all those lazy rounds comes (essentially) “for
free”. The argument builds on ideas from privacy analyses in previous works
[DNR+, DNPR, RR]).

A central concern is arguing that the “locations” of the update rounds
be privacy-preserving (there is an additional, more standard, concern that
the noisy answers in the few update rounds also preserve privacy). Speaking
intuitively (and somewhat inaccurately), for any two adjacent databases, there
are w.h.p. only roughly n “borderline” rounds, where the noise is such that
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on one database this round is update and on another this round is lazy. This
is because, conditioning on a round being “borderline”, with constant proba-
bility it is actually an “update” round. Since the number of update rounds is
at most roughly n, with overwhelming probability the number of borderline
rounds also is roughly n. For non-borderline rounds, those rounds’ being an
update or a lazy round is determined similarly for the two databases, and so
privacy for these rounds come “for free”. The borderline rounds are few, and
so the total privacy hit incurred for them is small.

Given this intuition, we want to argue that the “privacy loss”, or “con-
fidence gain” of an adversary, is small. At a high level, if we bound the
worst-case confidence gain in each update round by roughly O(ε/

√
n), then

by an “evolution of confidence” argument due to [DN1, DN2, DRV], the total
confidence gain of an adversary over the roughly n update rounds will be only
ε w.h.p. To bound the confidence gain, we define “borderline” rounds as an
event over the noise values on a database x, and show that: (1) Conditioned
on a round being borderline on x, it will be an update round on x w.h.p.
This means borderline rounds are few. (2) Conditioned on a round being
borderline on x, the worst-case confidence gain of an adversary viewing the
mechanism’s behavior in this round on x vs. an adjacent x′ is bounded by
roughly ε/

√
n. This means the privacy hit in borderline rounds isn’t too large,

and we can “afford” roughly n of them. (3) Conditioned on a round not being
borderline, there is no privacy loss in this round on x vs. any adjacent x′. I.e.,
non-borderline rounds come for free (in terms of privacy).

This analysis allows us to add less noise than previous works, while still
maintaining (ε,δ) differential privacy. It may find other applications in inter-
active or adaptive privacy settings. Details are in Section 4.3.2.

Sublinear Time Mechanism for Smooth Databases. We observe that we
can modify the PMW mechanism to work over a smaller data universe V ⊆U ,
as long as there exists a database x∗ whose support is only over V , and gives
close answers to those of x on every query we will be asked. We modify
the algorithm to maintain multiplicative weights only over the smaller set
V , and increase slightly the inaccuracy threshold for declaring a round as
“update”. For the analysis, we modify the potential function: it measures
relative entropy to x∗ rather than x. In update rounds, the distance between
xt−1 and this new x∗ on the current query is large (since x∗ is close to x, and
xt−1 is far from x). This means that re-weighting will reduce RE(x∗||xt−1), and
even though we maintain multiplicative weights only over a smaller set V , the
number of update rounds will be small. Maintaining multiplicative weights
over V rather than U reduces the complexity from linear in |U | to linear in
|V |.
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To use the above observation, we argue that for any large set of statistical
queries Q and any (ξ,φ)-pseudo-smooth database x, if we choose a uniformly
random small (but not too small) sub-universe V ⊆U , then w.h.p there exists
x∗ whose support is in V that is close to x on all queries in Q. In fact, sampling
a sub-universe of size roughly ξN ·n · log |Q| suffices. This means that indeed
PMW can be run on the reduced data universe V with reduced computational
complexity. See Section 4.6.1 for this argument.

Utility here is for a fixed non-adaptive set Q of queries (that need not be
known in advance). We find this utility guarantee to still be well motivated—
note that, privacy aside, the input database itself, which is sampled i.i.d
from an underlying distribution, isn’t guaranteed to yield good answers for
adaptively chosen queries). Finally, we remark that this technique for reducing
the data universe size (the data dimensionality) may be more general than the
application to PMW. In particular, previous mechanisms such as [DNR+, DRV]
can also be modified to take advantage of this sampling and obtain improved
running time for smooth databases (the running time will be polynomial,
rather than linear as it is for the PMW mechanism).

Synthetic databases. We conclude by noting that the PMW mechanism can
be used to generate synthetic data (in the non-interactive setting). To do this,
iterate the mechanism over a set of queries Q, repeatedly processing all the
queries in Q and halting when either (i) we made roughly n+ 1 iterations, i.e.
have processed every query in Q n times, or (ii) we have made a complete pass
over all the queries in Q without any update rounds (whichever of these two
conditions occurs first). If we make a complete pass overQwithout any update
rounds, then we know that the xt we have is accurate for all the queries in Q
and we can release it (or a subsample from it) as a privacy-preserving synthetic
database. By the potential argument, there can be at most roughly n update
rounds. Thus, after n+ 1 iterations we are guaranteed to have a pass without
any update rounds. Previous mechanisms for generating synthetic databases
involved linear programming and were more expensive computationally.

4.2.1 Preliminaries

In this section we review some preliminaries specific to the interactive setting.

Accuracy and privacy in the interactive setting. Formally, an interactive
mechanism M(x) is a stateful randomized algorithm which holds a histogram
x ∈ RN . It receives successive statistical queries f1, f2, . . . ∈ F one by one,
and in each round t, on query ft, it outputs a (randomized) answer at (a
function of the input histogram, the internal state, and the mechanism’s coins).
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For privacy guarantees, we always assume that the queries are given to the
mechanism in an adversarial and adaptive fashion by a randomized algorithm
A called the adversary. For accuracy guarantees, while we usually consider
adaptive adversarial, we will also consider non-adaptive adversarial queries
chosen in advance—we still consider such a mechanism to be interactive,
because it does not know in advance what these queries will be. The main
query class we consider throughout this work is the class F of all statistical
queries, as well as sub-classes of it.

Definition 4.2.1 ((α,β,k)-Accuracy in the Interactive Setting). We say that a
mechanism M is (α,β,k)-(adaptively) accurate for a database x, if when it is
run for k rounds, for any (adaptively chosen) statistical queries, with all but β
probability over the mechanism’s coins ∀t ∈ [k], |at − ft(x)| 6 α.

We say that a mechanism M is (α,β,k)-non adaptively accurate for a query
sequence Q of size k and a database x, if when it is run for k rounds on
the queries in Q, with all but β probability over the mechanism’s coins ∀t ∈
[k], |at − ft(x)| 6 α.

For privacy, the interaction of a mechanism M(x) and an adversary A
specifies a probability distribution [M(x),A] over transcripts, i.e., sequences
of queries and answers (f1, a1, f2, a2, . . . , fk , ak). Let Trans(F , k) denote the set
of all transcripts of any length k with queries from F . We will assume that
the parameter k is known to the mechanism ahead of time. Our privacy
requirement asks that the entire transcript satisfies differential privacy.

Definition 4.2.2 ((ε,δ)-Differential Privacy in the Interactive Setting). We
say a mechanism M provides (ε,δ)-differential privacy for a class of queries
F , if for every adversary A and every two histograms x,x′ ∈ RN satisfying
‖x − x‖1 6 1/n, the following is true: Let P = [M(x),A] denote the transcript
between M(x) and A. Let Q = [M(x′),A] denote the transcript between M(x′)
and A. Then, for every S ⊆ Trans(F , k), we have

P (S) 6 eεQ(S) + δ .

4.3 Private multiplicative weights mechanism

In the PMW mechanism of Figure 4.2, in each round t, we are given a linear
query ft over U and xt denotes a fractional histogram (distribution over
V ⊆U ) computed in round t. The domain of this histogram is V rather thanU .
Here, V could be much smaller than U and this allows for some flexibility
later, in proving Theorem 4.1.4, where we aim for improved efficiency. For
this section, unless otherwise specified, we assume that V =U . In particular
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Parameters: A subset of the coordinates V ⊆ U with |V | = M (by default
V =U ), intended number of rounds k ∈N, privacy parameters ε,δ > 0 and
failure probability β > 0. See (4.2) for the setting of η,σ ,T .
Input: Database D ∈Dn corresponding to a histogram x ∈RN
Algorithm: Set y0[u] = x0[u] = 1/M for all u ∈ V
In each round t← 1,2 . . . , k when receiving a linear query ft do the follow-
ing:

1. Sample At ∼ Lap(σ ). Compute the noisy answer ât← ft(x) +At.

2. Compute the difference d̂t← ft(xt−1)− ât:

If |d̂t | 6 T , then set wt← 0, xt← xt−1, output ft(xt−1), and proceed to
the next iteration.

If |d̂t | > T , then set wt← 1 and:

— for all u ∈ V , update

yt[u]← xt−1[u] · exp(−η · rt[u]) , (4.1)

where rt[u] = ft[u] if d̂t > 0 and rt[u] = 1− ft[u] otherwise.

— Normalize, xt[u]← yt[u]∑
u∈V yt[u] .

— If
∑t
j=1wj > η

−2 logM, then abort and output “failure”. Other-
wise, output the noisy answer ât and proceed to the next iteration.

Figure 4.2: Private Multiplicative Weights (PMW) Mechanism

this is the case in the statement of Theorem 4.4.1, the main theorem that we
prove in this section.

We use at to denote the true answer on the database on query t, and ât
denotes this same answer with noise added to it. We use dt to denote the
difference between the true answer at and the answer given by xt−1, i.e.,

dt = ft(xt−1)− ft(x) .

We denote by d̂t the difference between the noisy answer and the answer given
by xt−1. The boolean variable wt denotes whether the noisy difference was
large or small. If d̂t is smaller (in absolute value) than ≈ 1/

√
n, then this round

is lazy and we set wt = 0. If d̂t is larger than threshold then this is an update
round and we set wt = 1.
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Choice of parameters. We set the parameters η,σ ,T as follows:

η =

√
log1/2M log(k/β) log(1/δ)

εn
σ =

10η
log(k/β)

T = 40η . (4.2)

To understand the choice of parameters, let m = η−2 logM denote the bound
on the number of update rounds ensured by our algorithm. We chose our
parameters in (4.2) such that the following two relations hold

σn >
10
√
m log(1/δ)
ε

and T > 4σ log(k/β) . (4.3)

Intuitively speaking, the first condition ensures that the scaling σ of the
Laplacian variables used in our algorithm is large enough to handle m up-
date rounds while providing (ε,δ)-differential privacy. The second condition
ensures that the Laplacian variables are small compared to the threshold T .
Subject to these two constraints expressed in (4.3), our goal is to minimize η
and σ. This is because η controls how large the noise magnitude σ has to be
which in turns determines the threshold T . The error of our algorithm must
scale with T .

We are now ready to prove Theorem 4.4.1, i.e. the utility and privacy of
the PMW mechanism. This follows directly from our utility analysis provided
in Section 5.2.1 and our privacy argument presented in Section 4.3.2.

4.3.1 Utility analysis

To argue utility, we need to show that even for very large total number of
rounds k, the number of update rounds is at most roughly n with high proba-
bility. This is done using a potential argument. Intuitively, the potential of
a database xt is the relative entropy between the true histogram x and our
estimate xt.

Since in general V ,U , we will actually define the potential with respect
to a target histogram x∗ ∈RN with support only over V . This x∗ need not be
equal to x, nor does it have to be known by the algorithm. This added bit
of generality will be useful for us later in Section 4.6 when we modify the
mechanism to run in sublinear time. For this section, however, unless we
explicitly note otherwise the reader may think of x∗ as being equal to x. The
potential function is then defined as

Ψt = RE(x∗||xt) =
∑
u∈V

x∗[u] log
(
x∗[u]
xt[u]

)
. (4.4)

Note that x∗ and xt are both normalized so that we can think of them both as
distributions or histograms over U . We start with two simple observations:
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Lemma 4.3.1. Ψ0 6 logM .

Proof. Indeed, by the nonnegativity of entropy H(x∗) we get that Ψ0 = logM −
H(x∗) 6 logM. �

Lemma 4.3.2. For every t, we have Ψt > 0 .

Proof. By the nonnegativity of relative entropy (Fact 2.10.1). �

Our goal is to show that if a round is an update round (and wt = 1), then
the potential drop in that round is at least η2. In Lemma 4.3.5 we show that
this is indeed the case in every round, except with β/k probability over the
algorithm’s coins. Taking a union bound, we conclude that with all but β
probability over the algorithm’s coins, there are at most η−2 logM update
rounds. The next lemma quantifies the potential drop in terms of the penalty
vector rt and the parameter η using a multiplicative weights argument.

Lemma 4.3.3. In each update round t, we have Ψt−1 −Ψt > η〈rt,xt−1 − x∗〉 − η2 .

Proof. We can rewrite the potential drop as follows:

Ψt−1 −Ψt =
∑
u∈V

x∗[u]
(
log

(
x∗[u]
xt−1[u]

)
− log

(
x∗[u]
xt[u]

))
=

∑
u∈V

x∗[u] log
(
xt[u]
xt−1[u]

)
=

∑
u∈V

x∗[u] log
(
exp(−ηrt[u])

xt−1[u]
xt−1[u]

∑
u∈V yt[u]

)

= −η〈rt,x∗〉 −
∑
u∈V

x∗[u] log

∑
u∈V

yt[u]


= −η〈rt,x∗〉 − log

∑
u∈V

exp(−ηrt[u])xt−1[u]

 (since
∑
x∗[u] = 1)

Note that

exp(−ηrt[u]) 6 1− ηrt[u] + η2rt[u]2 6 1− ηrt[u] + η2 .

Using this and
∑
xt−1[u] = 1 we get

log

∑
u∈V

exp(−ηrt[u])xt−1[u]

 6 log
(
1− η〈rtxt−1〉+ η2

)
6 −η〈rt,xt−1〉+ η2 ,

where we used log(1 + y) 6 y for y > −1. We conclude that

Ψt−1 −Ψt > −η〈rt,x∗〉+ η〈rt,xt−1〉 − η2 = η〈rt,xt−1 − x∗〉 − η2 . �
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In the following lemmata, we condition on the event that |At | 6 T /2. Since
At is a centered Laplacian with standard deviation σ and T > 4σ (logk +
log(1/β)), this event occurs with all but β/k probability in every round t.

The next lemma connects the inner product 〈rt,x∗ − xt−1〉 with the “error”
of xt−1 on the query ft. Here, error is measured with respect to the true
histogram x. To relate x with x∗, we further denote

err(x∗, ft) = |ft(x∗)− ft(x)| . (4.5)

When x∗ = x we get that err(x∗, ft) = 0 always, and in general we will be
interested in x∗ databases where err(x∗, ft) is small for all t ∈ [k].

Lemma 4.3.4. In each round t where |d̂t | > T and |At | 6 T /2 we have

〈rt,xt−1 − x∗〉 > |ft(x)− ft(xt−1)| − err(x∗, ft) .

Proof. By assumption |d̂t | > T and |dt − d̂t | 6 |At | 6 T /2. Hence, sign(dt) =
sign(d̂t). We distinguish the two cases where sign(dt) < 0 and sign(dt) > 0. First,
suppose

0 > sign(dt) = sign(ft(xt−1)− ft(x)) .

It follows that rt[u] = 1− ft[u]. Hence,∑
u∈V

rt[u](xt−1[u]− x∗[u]) = −
(
ft(xt−1)− ft(x∗)

)
+
∑
u∈V

x∗[u]−
∑
u∈V

xt−1[u]

= −
(
ft(xt−1)− ft(x∗)

)
(using

∑
i xt−1[u] =

∑
i x[u] = 1)

> −
(
ft(xt−1)− ft(x)

)
− err(x∗, ft)

= |ft(xt−1)− ft(x)| − err(x∗, ft) .

The case where sign(dt) = sign(d̂t) > 0 is analogous. The claim follows. �

Lemma 4.3.5. In each round t where |d̂t | > T and At 6 T /2 we have

Ψt−1 −Ψt > η
(T

2
− err(x∗, ft)

)
− η2 . (4.6)

Proof. By assumption and Lemma 4.3.4, we have 〈rt,x∗ − xt−1〉 > |ft(xt−1) −
ft(x)| − err(x∗, ft). We then get from Lemma 4.3.3,

Ψt−1 −Ψt > η〈rt,x∗ − xt−1〉 − η2

> η|ft(xt−1)− ft(x)| − η2 − η · err(x∗, ft)

= η|dt | − η2 − η · err(x∗, ft) .

On the other hand, since |d̂t | > T and At 6 T /2, we have that |dt | > T /2. This
proves the claim. �
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We are now ready to prove our main lemma about utility.

Lemma 4.3.6 (Utility for V =U ). When the PMW mechanism is run with V =U ,
it is an (α,β,k)-accurate interactive mechanism, where

α =O

√log(k/β) log(1/δ) log1/4N
√
εn


Proof. For V = U , we may choose x∗ = x so that err(ft) = 0 for all t ∈ [k].
Furthermore, with all but β probability over the algorithm’s coins, the event
At 6 T /2 occurs for every round t ∈ [k]. Hence, by Lemma 4.3.5 and T > 4η,
the potential drop in every update round is at least

Ψt−1 −Ψt > η
T

2
− η2 > η2 .

Since Ψ0 6 logN, the number of update rounds is bounded by η−2 logN.
Hence, by our termination criterion, the algorithm terminates after having
answered all k queries. Furthermore, the error of the algorithm is never larger
than

T + |At | 6 2T =O

√log(k/β) log(1/δ) log1/4N
√
εn

 . �

We now give a utility analysis in the general case where we are working
with a smaller universe V ⊆U . This will be used (in Section 4.6) to prove the
utility guarantee of Theorem 4.1.4. The proof is analogous to the previous
one except for minor modifications.

Lemma 4.3.7 (Utility when V (U ). Let f1, f2, . . . , fk denote a sequence of k linear
queries. Take

γ = inf
x∗

sup
t∈[k]

err(x∗, ft)

where x∗ ranges over all histograms supported on V . When the PMW mechanism is
run with V on the query sequence above, and with threshold parameter T ′ = T +γ ,
it is an (α,β,k)-non adaptively accurate interactive mechanism, where

α =O

γ +

√
log(k/β) log(1/δ) log1/4N

√
εn

 .
Proof. To prove the lemma, we choose x∗ as a minimizer in the definition of γ.
With this choice, Lemma 4.3.5 implies that

Ψt−1 −Ψt > η
(
T ′

2
−γ

)
− η2 > η2 ,

since we chose T ′ > 4η + γ. The argument is now the same as before. In
particular, the error is bounded byO(T ′) =O(γ+T ) which is what we claimed.

�
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4.3.2 Privacy analysis

Our goal in this section is to demonstrate that the interactive mechanism
satisfies (ε,δ)-differential privacy (see Definition 4.2.2). We assume that all
parameters such as V , σ , η, and T are publicly known. They pose no privacy
threat as they do not depend on the input database. For ease of notation we
will assume that V = U throughout this section. The proof is the same for
V ⊆U (the sub-universe V is always public information).

Simplifying the transcript. Without loss of generality, we can simplify
the output of our mechanism (and hence the transcript between adversary
and mechanism). We claim that the output transcript of the mechanism is
determined by the following (random) vector v. In particular, it is sufficient
to argue that v is differentially private. For every round t, the t-th entry in v
is defined as

vt =

⊥ if wt = 0
ât if wt = 1

.

In other words, vt is equal to ⊥ if that round was a lazy round, or the noisy
answer ât = ft(x) + At if round t was an update round. This is sufficient
information for reconstructing the algorithm’s output: given the prefix v<t =
(v1, . . . ,vt−1), we can compute the current histogram xt−1 for the beginning of
round t. For the lazy rounds, this is sufficient information for generating the
algorithm’s output. For the update rounds, vt = ât, which is the output for
round t. It is also sufficient information for re-weighting and computing the
new xt.

Note that to argue differential privacy, we need to prove that the entire
transcript, including the queries of the adversary, is differentially private.
Without loss of generality, we may assume that the adversary is deterministic.1

In this case ft is determined by v<t. Hence, there is no need to include ft
explicitly in our transcript. It suffices to show that the vector v is (ε,δ)-
differentially private.

Lemma 4.3.8 (Privacy). The PMW mechanism satisfies (ε,δ)-differential privacy.

Proof. Fix an adversary and histograms x,x′ ∈ RN so that ‖x − x′‖1 6 1/n.
Let ε0 = 1/σn (where σ is the scaling of the Laplacian variables used in our
algorithm).

Let P denote the output distribution of our mechanism when run on the
input database x and similarly let Q denote the output of our mechanism

1We can think of a randomized adversary as a collection of deterministic adversaries one
for each fixing of the adversary’s randomness (which is independent of our algorithm’s coin
tosses).
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when run on x′. Both distributions are supported on S = ({⊥}∪R)k . For v ∈ S ,
we define the loss function L : S →R as

L(v) := log
(
P (v)
Q(v)

)
. (4.7)

Here and in the following we identify P with its probability density function
dP (which exists by the Radon-Nikodym theorem). Henceforth P (v) denotes
the density of P at v.

We will then show that

P

v∼P
{L(v) 6 ε} > 1− δ . (4.8)

By Lemma 2.1.3, inequality (4.8) implies (ε,δ)-differential privacy and hence
our claim.

Fix a transcript v ∈ S we will now proceed to analyze L(v). Using the chain
rule for conditional probabilities, let us rewrite L(v) as

L(v) = log
(
P (v)
Q(v)

)
=

∑
t∈[k]

log
(
Pt(vt | v<t)
Qt(vt | v<t)

)
, (4.9)

where Pt(vt | v<t) denotes the conditional probability (or rather conditional
density) of outputting vt in step t on input histogram x, conditioned on v<t =
(v1, . . . , vt−1). The definition ofQt(vt | v<t) is analogous with x′ replacing x.Note
that conditioning on v<t is necessary, since the coordinates of the transcript
are not independent. Further, it is important to note that conditioned on v<t,
the estimate xt−1 in the algorithm at step t is the same regardless of whether
we started from x or x′.

Borderline event. We define an event St = S(v<t) ⊆R on the noise values as
follows. Let dt = ft(xt−1)− ft(x). Note that xt−1 depends on v<t and therefore
St will depend on it as well. We want St to satisfy the following properties
(formally stated in Claims 4.3.9–4.3.11):

1. P
{
|d̂t | > T | At ∈ St,v<t

}
> 1/6. In other words, conditioned on St, with

probability at least 1/6 round t is a update round.

2. Conditioned on St not occurring, the distribution of vt under x is identical
to the distribution of vt under x′, and the privacy loss is 0.

3. Conditioned on St, the t-th entry vt is ε0 differentially private.
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We will define St so it contains all of the noise valuesAt where |d̂t | = |dt+At |
is “close to” (within distance σ ) or larger than T . This will achieve all three of
the above properties. Formally, we construct St = S+ ∪ S− to be made up of
two intervals of noise values

S− = (−∞,−T − dt + σ ] and S+ = [T − dt − σ,∞) .

Note that, since T > 2σ , these two intervals never intersect. The following
claims show that all three properties hold:

Claim 4.3.9 (Property 1). P
{
|d̂t | > T | At ∈ St,v<t

}
> 1/6 .

Proof. Recall that S+ = [T − dt − σ,∞]. Since At is a Laplace random variable
with magnitude σ , we get that

P

{
At > T − dt | At ∈ S+,v<t

}
= P {Lap(σ ) > σ } = 1/2e > 1/6 .

And similarly, P {At 6 −T − dt | At ∈ S−,v<t} > 1/6 . Since |d̂t | > T iff At > T − dt
or AT 6 −T − dt, we conclude that P

{
|d̂t | > T | At ∈ St,v<t

}
> 1/6. �

Claim 4.3.10 (Property 2). For every a ∈R∪ {⊥}:

log
(
Pt(a | At < St,v<t)
Qt(a | At < St,v<t)

)
= 0 .

Proof. When At < St, we know that −T − dt + σ 6 At 6 T − dt − σ . In particular,
this means that (conditioned on St not occurring), vt is always ⊥, both on x
and on x′. �

Claim 4.3.11 (Property 3). For every a ∈R∪ {⊥}:

log
(
Pt(a | At ∈ St,v<t)
Qt(a | At ∈ St,v<t)

)
6 2ε0.

Proof. Since At is a Laplace variable of scale σ , for any a ∈R either its proba-
bility by both Pt and Qt is 0, or otherwise its probabilities by x and x′ differ by
an e1/σn = eε0 ratio. Similarly, we can bound the ratio between the probability
of ⊥ by P and by Q. Note that

Pt(⊥ | At,v<t) = P {At + dt ∈ (−T ,−T + σ ]∪ [T − σ,T )} ,

while
Qt(⊥ | At,v<t) = P

{
At + d′t ∈ (−T ,−T + σ ]∪ [T − σ,T )

}
,

where |dt − d′t | 6 1/n. Since At is a Laplacian variable of scale σ, it follows that
the ratio of the two probabilities on the RHS is bounded by e1/σn = eε0 . �

69



Bounding the Expectation. We will now bound the expected loss E [L(v)]
for a random choice of v sampled according to P . Applying Lemma 2.10.3 to
Claim 4.3.11, we get that

E

[
log

(
Pt(vt | At ∈ St,v<t)
Qt(vt | At ∈ St,v<t)

)]
6 8ε2

0 . (4.10)

On the other hand, we have by Claim 4.3.10,

E

[
log

(
Pt(vt | At < St,v<t)
Qt(vt | At < St,v<t)

)]
= 0 . (4.11)

We can express Pt(vt | v<t) as a convex combination in the form

Pt(vt | v<t) = P {At ∈ St | v<t)Pt(vt | At ∈ St,v<t}+P {At < St | v<t}Pt(vt | At < St,v<t) ,
and we can express Qt(vt | v<t) similarly. We can then apply Lemma 2.10.2
(convexity of relative entropy) to conclude that

E

[
log

(
Pt(vt | v<t)
Qt(vt | v<t)

)]
6 8ε2

0E [P {At ∈ St | v<t}] . (4.12)

We conclude that

EL(v) =
k∑
t=1

E

[
log

(
Pt(vt | v<t)
Qt(vt | v<t)

)]

6 8ε2
0E

 k∑
t=1

P {At ∈ St | v<t}


6 48ε2

0m 6 ε/2 . (4.13)

Here we used that E [
∑
tP {At ∈ St | v<t}] is just the expected number of border-

line rounds which has to be bounded by 6m since every borderline round is
an update round with probability at least 1/6 and there are at most m update
rounds.

Number of Borderline Rounds. With overwhelming probability, the num-
ber m′ of borderline rounds (rounds t where St occurs) is not much larger
than m (the bound on the number of update rounds). This is because every
borderline round is with probability at least 1/6 a update round (Claim 4.3.9).
This is made formal in the claim below.

Claim 4.3.12. P
{
m′ > 32m log1/2(1/δ)

}
6 δ/2

Proof. We have already argued that E [m′] 6 6m. Moreover, the noise in each
round is independent from previous rounds. Hence, by tail bounds for
Bernoulli variables, the event m′ > 32

√
log(1/δ)m has probability less than

exp(− log(2/δ)). �
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Putting it together. Condition on there being at most m′ = 32m log1/2(1/δ)
borderline rounds (this is the case with all but δ/2 probability). We proceed
by an “evolution of confidence argument” similar to [DN1, DN2].

Specifically, we will apply Azuma’s inequality to the set of m′ borderline
rounds. Formally, let B ⊆ [k] denote the set of borderline rounds. For each
t ∈ B, we view

Xt = log
(
Pt(vt | v<t)
Qt(vt | v<t)

)
as a random variable. Note that L(v) =

∑
t∈BXt. Further |Xt | 6 2ε0 by Claim 4.3.11.

Hence, by Azuma’s inequality (Lemma 2.10.4),

P {|L(v)| > ε} 6 2P
{
L(v) > EL(v) +

ε

2

}
6 2exp

(
− ε2

8m′ · ε2
0

)
.

On the other hand, by (4.3),

ε2

8m′ · ε2
0

>
ε2σ2n2

m′
> 100log(1/δ)

m

m′
.

So, conditioning on having at most m′ borderline rounds (occurs with all
but δ/2 probability), with all but δ/2 probability the loss L(v) deviates by at
most ε/2 from its expectation. The expectation itself is at most ε/2 by (4.13).
We conclude that with all but δ probability, the total loss L(v) is bounded by ε
in magnitude. �

4.4 Achieving (ε,0)-differential privacy

Our previous mechanism satisfies (ε,δ)-differential privacy. We can achieve
(ε,0)-differential privacy (or ε-differential privacy in short) by going from
error n−1/2 to error n−1/3 (in terms of n).

Modifications to PMW. We will need to modify our algorithm in two regards.
Specifically, instead of the parameter setting in (4.2) we use the setting

η =
log1/3M · log1/3(k/2β)

ε1/3n1/3
σ =

10η
log(k/2β)

T = 40η . (4.14)

Furthermore, in step (2) of PMW we replace the threshold T by a random-
ized threshold T̂ = T + Lap(σT ) where σT = 10/nε. Our algorithm remains
unchanged otherwise.

With these two modifications we can prove the next theorem.
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Theorem 4.4.1. Let U be a data universe of size N . For any k,ε,β > 0, there is an
(ε,0)-differentially private interactive mechanism which is (α,β,k)-accurate for
(adaptive) statistical queries over U and data bases of size n, where

α =O
(

log(k/β)1/3 log1/3N

(εn)1/3

)
.

The running time in answering each query is N ·poly(n) ·polylog(1/β,1/ε,1/δ) .

Proof. The algorithm stated in the theorem is given by PMW with the modi-
fications described above. Letting m = η−2 logN, we note that this setting of
parameters in (4.14) satisfies the two properties

σn >
10m
ε

and T > 4σ log(k/β) .

Using the second property, we can repeat the utility analysis verbatim to to
argue that there at most η−2 logM update rounds. Hence, with probability
1− β/2, the algorithm answers all k queries with error α =O(T̂ ). Moreover it
is easy to see that with probability 1− β/2, T̂ =O(T ). Hence, with probability
1− β, we have

α =O
(

log(k/β)1/3 log1/3N

(εn)1/3

)
.

It remains to argue that the mechanism satisfies (ε,0)-differential pri-
vacy. Fix two histograms x,x′ such that ‖x − x′‖1 6 1/n. As in the proof of
Lemma 7.3.4, we let v ∈ (R∪ {⊥})k denote a transcript and we let P (v) and
Q(v) denote the probability of this transcript when our mechanism is run on
x and x′, respectively. It suffices to argue that for all transcripts v,

− ε 6 log
(
P (v)
Q(v)

)
6 ε . (4.15)

Let us again write

log
(
P (v)
Q(v)

)
=

∑
t∈[k]

log
(
Pt(vt | v<t)
Qt(vt | v<t)

)
.

Further let H = {t ∈ [k] : vt ,⊥} and Hc = {t ∈ [k] : vt =⊥} = [k]\H.

Claim 4.4.2.

− ε

10
6

∑
t∈H

log
(
Pt(vt | v<t)
Qt(vt | v<t)

)
6
ε

10
. (4.16)
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Proof. Note that |H | 6 m by the termination criterion of our algorithm. It
therefore follows from standard properties of the Laplacian distribution and
our choice of parameters that∑

t∈H
log

(
Pt(vt | v<t)
Qt(vt | v<t)

)
6
m

σn
6
ε

10
. (4.17)

The same argument shows a lower bound of −ε/10. This concludes the proof.
�

The next lemma handles the coordinates t ∈Hc.

Claim 4.4.3.

− ε

10
6

∑
t∈Hc

log
(
Pt(vt | v<t)
Qt(vt | v<t)

)
6
ε

10
. (4.18)

Proof. Let A(x) be the set of values for the noise variables (A1, . . . ,Ak) which
lead to the event that the transcript is ⊥ in all rounds t ∈ Hc when we run
our algorithm on input x and condition the transcript on being equal to vt in
all rounds t ∈ H. Define AZ(x) in the same way except that we additionally
condition the algorithm on the even that T̂ = Z. Observe that

AZ−1/n(x′) ⊆ AZ(x) ⊆ AZ+1/n(x′) . (4.19)

Here we used the assumption ‖x − x′‖1 6 1/n and thus |f (x)− f (x′)| 6 1/n for
any possible query f .

Further observe that, by the product rule for conditional probabilities,∏
t∈Hc

Pt(vt | v<t) =
∏
t∈Hc

Pt(⊥ | v<t) = P {(A1, . . . ,Ak) ∈ A(x)}

=
∫ ∞
−∞
P

{
T̂ = Z

}
P {(A1, . . . ,Ak) ∈ AZ(x)} dZ .

The first step follows from the definition of AZ(x) and the second step uses
independence between the random variables T̂ and (A1, . . . ,Ak). On the other
hand,

P

{
T̂ = Z

}
6 eε/10

P

{
T̂ = Z + 1/n

}
,

and
P

{
T̂ = Z − 1/n

}
> e−ε/10

P

{
T̂ = Z − 1/n

}
.
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Therefore,∏
t∈Hc

Pt(vt | v<t) =
∫ ∞
−∞
P

{
T̂ = Z

}
P {(A1, . . . ,Ak) ∈ AZ(x)} dZ

6 eε/10
∫ ∞
−∞
P

{
T̂ = Z + 1/n

}
P

{
(A1, . . . ,Ak) ∈ AZ+1/n(x′)

}
dZ

(using (4.19))

= eε/10
∫ ∞
−∞
P

{
T̂ = Z

}
P

{
(A1, . . . ,Ak) ∈ AZ(x′)

}
dZ

= eε/10
∏
t∈Hc

Qt(vt | v<t) . (4.20)

Using the same reasoning we get∏
t∈Hc

Pt(vt | v<t) > e−ε/10
∏
t∈Hc

Qt(vt | v<t) . (4.21)

Taking logarithms on both sides of (4.20) and (4.21) shows that (4.18) holds
which is what we wanted to show. �

Putting together (4.16) and (4.18), it follows that the sum over all t ∈ [k]
is in the interval [−ε/5, ε/5]. This establishes the bound stated in (4.15). We
conclude that the algorithm satisfies (ε,0)-differential privacy. The theorem
follows. �

4.5 Lower bound for (ε,0)-differential privacy

As discussed before, there is a lower bound of roughly
√

log(k)/n that holds
for blatant non-privacy [DN1]. A shortcoming is that this lower bound does
not depend on the universe size. In this section we will show a lower bound
on the accuracy of any mechanism that satisfies (ε,0)-differential privacy even
if it works in the non-interactive setting.

Theorem 4.5.1. Let n be sufficiently large and let ε > 0 be a constant independent
of n. Then, for every k > n1.1 there is a set of k linear queries over a universe of
sizeN such that every (ε,0)-differentially private mechanism for databases of size n
must have error

α >Ω(1) ·

 logk · log
(
N
n

)
εn


1/2

with probability 1/2.
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Remark 4.5.2. We remark that the requirement k > n1.1 can be replaced by
k > n1+c for every constant c > 0.

Proof. Let U be a universe of size N. Our lower bound uses a discrete variant
of the packing argument from [HT].

Consider the family X ⊆ (1
nZ+)N of all histograms with exactly s nonzeros.

Note that such histograms correspond to databases of size n with s distinct
elements. Here, s is some parameter that we will fix shortly. Since we nor-
malize histograms to have norm 1, this means that each nonzero coordinate
is 1/s. Further let F be the uniform distribution over linear queries of the
form f ∈ {0,1}N .

We say that two histograms x,y ∈ X are half disjoint if ‖x − y‖1 > 1/2. The
next claim shows that two randomly chosen elements from X are very likely
half disjoint.

Claim 4.5.3. The probability that x,y ∼ X are not half disjoint is at most exp(−Ω(s·
log(N/n))).

Proof. Note that for x,y ∼ X not to be half disjoint it must be the case that
half the nonzero coordinates of y must fall into the s nonzero coordinates of
x. The probability of this event is less than(

s

s/2

)
·
( s
N

)s/2
6 2−Ω(s log(N/s)) .

Here we used that s 6 n. �

We also need to show that any two half disjoint histograms x,y are “well
separated” by k random linear queries.

Claim 4.5.4. Let x,y be half disjoint. Then, for k queries f1, . . . , fk chosen uniformly
at random from F , we have

P

{
max
t∈[k]

∣∣∣ft(x)− ft(y)
∣∣∣ 6 c
√
s

}
6 exp

(
−2−Ω(c2)k

)
. (4.22)

Proof. If we choose a single query f at random, then |f (x)−f (y)| is expected to
be Θ(1/

√
s). Further, |f (x)− f (y)| > c/

√
s with probability at least 2−Ω(c2). This

follows from standard lower bounds on the tail of the binomial distribution.
The probability that none out of k random queries has difference c/

√
s is

therefore bounded by (1− 2−Ω(c2))k which implies the claim. �

We will now put the previous two claims together. To this end, fix s =
Cεn/ log(N ) for sufficiently large C > 0 and put

α0 =

√
logk
s

=

√
logk · logN

εn
. (4.23)
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It then follows from Claim 4.5.4 that

P

{
max
t∈[k]

∣∣∣ft(x)− ft(y)
∣∣∣ 6 α0

}
6 exp

(
−k0.99

)
. (4.24)

On the other hand, using Claim 4.5.3, it follows that there exists a set
P ⊆ X such that every pair x,y ∈ P with x , y is half disjoint and

|P | > exp(Ω (s log(N/n))) > 3exp(εn) . (4.25)

In the second inequality we used the fact that we can choose C sufficiently
large in the setting of s above.

Further, by our assumption k > n1.1, we have exp(−k0.99)� |P |−2. Hence,
we can take the union bound over all distinct pairs in P and conclude that
there must exist a set of k linear queries f1, . . . , fk such that for every two
histograms x,y ∈ P with x , y we have

max
t∈[k]

∣∣∣ft(x)− ft(y)
∣∣∣ > α0 .

Now, for the sake of contradiction suppose there is an (ε,0)-differentially
private mechanism M for answering the k linear queries f1, . . . , fk which has
maximum error α = α0/2 with probability 1/2.

For a histogram x let Fx denote the vector (f1(x), . . . , fk(x)) ∈ Rk and let
B(Fx,α) denote the `∞-ball around Fx of radius α. Note that by the accuracy
gurantee of M, we have for every histogram x,

P {M(x) ∈ B(Fx,α)} >
1
2
.

By (ε,0)-differential privacy, we further have for every two histograms x,y,

P {M(y) ∈ B(Fx,α)} >
exp(−εn)

2
.

Fix any histogram x ∈ P , then

1 > P

M(x) ∈
⋃
y∈P

B(Fy,α)

 =
∑
y∈P
P {M(x) ∈ B(Fy,α)}

> |P |exp(−εn)
2

.

Here we used that for y,y′ ∈ P with y , y′ we have B(Fy,α)∩B(Fy′,α) = ∅. But
|P | > 3exp(εn). Hence we have arrived at a contradiction showing that such a
mechanism M cannot exist. �
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Remark 4.5.5. In our proof we used databases in which individual data items
occur with high multiplicity. This is not necessary as we can always move to a
universe of size nN in which every data item occurs n times. Hence, we can
repeat the same construction without multiplicities by losing only a factor
of n in the universe size.

We leave it as an open problem to close the gap between our upper and
lower bound. Indeed, it would be interesting to know if the optimal de-
pendence on n is n−1/3 or rather n−1/2. We also point out the open prob-
lem of coming up with a lower bound for (ε,δ)-differential privacy, such as
Ω(logc1 k · logc2N ·n−1/2), that simultaneously has a (poly-logarithmic) depen-
dence on the universe size N and the number of queries k.

4.6 Average-case complexity and smooth instances

In this section, we define a notion of average case complexity for interactive
(and non-interactive) mechanisms that allows us to improve the running time
of the PMW mechanism as a function of the data universe size. This is done
using an argument for reducing the data universe size.

We start by defining the notion of a smooth histogram. We think of these
histograms as distributions over the data universe that do not place too much
weight on any given data item. In other words, we require the histogram to
have high min-entropy.

Definition 4.6.1 (Smooth). A histogram x ∈RU s.t.
∑
u∈U xu = 1 and ∀u ∈U :

xu > 0 is ξ-smooth if ∀u ∈U : xu 6 ξ.

In particular, a ξ-smooth histogram has min-entropy at least log(1/ξ). We
typically think of ξ as a function of N , such as polylogN/N or 1/

√
N. Note

that small databases (viewed as histograms) cannot be very smooth, since a
ξ-smooth histogram has at least 1/ξ nonzero coordinates.

We therefore extend the notion of smoothness to the notion of pseudo-
smoothness with respect to a set of queries Q. A histogram is pseudo-smooth
w.r.t a query class Q roughly speaking when there exists a smooth histogram
x∗ that is close on every query in Q. This notion allows even very sparse
histograms (corresponding to small databases) to be very pseudo-smooth. The
formal definition is as follows.

Definition 4.6.2 (Pseudo-smooth). A histogram x ∈RU s.t.
∑
u∈U xu = 1 and

∀u ∈U : xu > 0 is (ξ,φ)-smooth w.r.t a class of linear queries Q if there exists a
ξ-smooth histogram x∗ s.t.

∀f ∈ Q : |f (x)− f (x∗)| 6 φ.
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A straightforward way of obtaining pseudo-smooth databases is by sam-
pling from a smooth histogram.

Claim 4.6.3. Let U be a data universe, Q a class of linear queries over U , and
x∗ a ξ-smooth histogram over U . For any α,β > 0, sample a database x of m =
(log(2/β) + log |Q|)/α2 items i.i.d from the distribution of x∗ (i.e. in each sample
we independently pick each u ∈ U with probability x∗u). Then with all but β
probability over the samples taken, ∀f ∈ Q : |f (x)− f (x∗)| 6 α, and so the database
x is (ξ,α)-pseudo-smooth w.r.t Q.

Proof. The proof is by a Chernoff bound (as in [DNR+]). �

4.6.1 Domain reduction for pseudo-smooth histograms

For a given smoothness parameter ξ, data universe U , and query class Q,
let V ⊆ U be a sub-universe sampled uniformly and at random from U . In
this section we show that (as long as V is large enough) if x was a pseudo-
smooth histogram over U w.r.t a query class Q, then w.h.p. there will be a
histogram x∗ with support only over (the smaller) V that is “close” to x on Q.
We emphasize that sampling the sub-universe V does not require knowing
x nor knowing any x∗ that certifies x being pseudo-smooth, we only need to
know ξ. In particular, this approach is privacy-preserving. This technique for
reducing the universe size can be used to improve the efficiency of the PMW
mechanism for pseudo-smooth input databases.

Lemma 4.6.4. Let U be a data universe and Q a collection of linear queries over
U . Let x be (ξ,φ)-pseudo-smooth w.r.t Q. Take α,β > 0, and sample uniformly at
random (with replacement) V ⊆U so that

M = |V | = 4max{ξN · (log(1/β) + log |Q|)/α2, log(1/β)} (4.26)

Then, with all but β probability over the choice of V , there exists a histogram x∗

with support only over V such that

∀f ∈ Q : |f (x)− f (x∗)| 6 φ+α . (4.27)

Proof. Let y be the ξ-smooth histogram which shows that x is (ξ,φ)-pseudo-
smooth. If we sampled uniformly at random from x or from y then by Claim
4.6.3, we could get a database over a very small sub-universe that is (as
required) close to x on all the queries in Q. This is insufficient because we
want the sub-universe that we find to be independent of the database x (and so
also independent of y).

Still, let us re-examine the idea of sampling from y. One way of doing this
is by rejection sampling. Namely, repeatedly sample u ∈U uniformly at random

78



and then “keep” u with probability yu/ξ. Otherwise reject. When we use this
rejection sampling, since y is a ξ-smooth distribution, each sample that we
keep is distributed by y (i.e. it is u ∈ U w.p. yu). Repeat this process until
m1 = (log(2/β) + log |Q|)/α2 samples have been accepted. There is now a set
of coordinates V1 ⊆U , those that were kept (of size at most m1), and a set of
coordinates V2 ⊆U , those that were rejected. By Claim 4.6.3 the sub-universe
V1 of samples that we keep (which are i.i.d samples from y) supports (except
with probability β/2) a database x∗ that is “close” to y (w.r.t Q), and so it will
also be “close” to x. In particular, by triangle inequality,

max
f ∈Q
|f (x)− f (x∗)| 6max

f ∈Q
|f (x)− f (y)|+ max

f ∈Q
|f (y)− f (x∗)| 6 φ+α .

But now we may take V = V1 ∪ V2. Note that V is simply a uniformly
random subset of the coordinates of U . And by the previous argument, V sup-
ports a histogram that satisfies (4.27), namely x∗. To conclude the proof it re-
mains to argue that V has the required size. Note that the probability of accept-
ing sample i in the rejection procedure is given by

∑N
i=1

1
N ·

yi
ξ = 1/ξN. Hence,

the expected number of queries in total is µ = 2ξN · (log(2/β) + log |Q|)/α2.
Moreover, since every sample is independent, we have concentration around
the expectation. A multiplicative Chernoff bound shows that the probability
that V is larger than twice its expectation is bounded by exp(−µ) 6 β/2.

�

Finally, we use Lemma 4.6.4 together with Lemma 4.3.7 (utility of PMW
for general V ), to derive the accuracy guarantee of Theorem 4.1.4 for the
performance of the PMW mechanism on pseudo-smooth databases.

Proof of Utility for Theorem 4.1.4. We run PMW on a uniformly chosen sub-
universe V of the appropriate sizeM as stated in Equation (4.26) above, taking
α = 1/

√
n. We conclude that with all but β/2 probability over the sampling,

there exists a database x∗ supported on V that is φ+ 1/
√
n-close to x w.r.t. the

given sequence of k statistical queries. Plugging this into Lemma 4.3.7, we
obtain the accuracy bound claimed in Theorem 4.1.4. �
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Chapter 5

A Simple and Practical
Non-Interactive Release Mechanism

Applications of the theory of differentially private data analysis to real-world
data have received less attention in the past, and have so far met with mixed
success. Eager data analysts have on some applications found that the pre-
vious state of the art in algorithms for achieving differential privacy add
unacceptable levels of noise; such situations are not evidence that differential
privacy is an inappropriate definition, but rather that we need to develop
and implement better algorithms, perhaps tailored to the application at hand.
In many cases, existing theoretical results have been focused on demonstrat-
ing good asymptotic worst-case behavior, but with little regard for constant
factors or performance on realistic database sizes.

In this chapter we consider the multiplicative weights approach in the
non-interactive query release setting. While our algorithm from the previous
chapter could be used directly in the non-interactive setting, we will take a
different route. Specifically, we will give a simplified algorithm with a much
simpler privacy analysis that achieves the same bounds in the non-interactive
setting as we did earlier in the interactive setting. Moreover, we successfully
evaluate our algorithm on a variety of real world data sets.

Our approach uses the exponential mechanism [MT] as a subroutine to
multiplicative weights framework from the previous chapter. On a high-
level, the multiplicative weights approach maintains a candidate output at
all times, represented as a distribution over the space of possible data points.
The quality of the distribution when compared with the true database is
repeatedly improved by a procedure that selects a query from the target class,
and reweights the distribution to improve its fidelity on the selected query. In
our algorithm, presented in Section 5.2, we use the exponential mechanism as
a means to bias our selection of the next query towards one that will provide
the most improvement to our distribution.

Experimentally, we test our algorithm on four standard data sets, the first
three of which are also studied by Fienberg et al. [FRY] (see their paper for
further discussion of the data sets and references to additional work on this
data):
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1. an epidemiological study of Czechoslovakian car factory workers in-
tended to investigate risk factors for coronary thrombosis;

2. a 1990 genetic study of barley powdery mildew isolates using DNA
markers;

3. data relating household characteristics, women’s economic activity, and
husband’s unemployment, in households in the city of Rochdale; and

4. the National Long Term Care Survey, a longitudinal study of the health
of older Americans, based a sample of tens of thousands of Medicare
enrollees.1

On each of these data sets, we present experimental results that demonstrate
the tradeoff between the differential privacy parameter and the accuracy (as
measured by relative entropy) of the resulting data, comparing the results
when privacy is achieved by each of three different differentially private al-
gorithms: (1) the original approach of Barak et al. [BCD+] for producing
synthetic contingency table data (this approach is analogous to the exper-
iments undertaken in Fienberg et al. [FRY]), (2) our algorithm combining
multiplicative weights with the exponential mechanism as described above,
with no specialized optimization, and (3) our algorithm, with a number of
additional optimizations described in Section 5.3.

5.1 Main results

We will state our main theorems informally here. A formal statement is
given in Section 5.2.4. As in the previous chapter we consider databases
of size n over a universe U of size N represented by a histogram x ∈ RN
normalized such that

∑
u∈U xu = 1. With this normalization we will think of x

as a distribution over the universe. The queries asked by the analyst are linear
queries f ∈ [0,1]N so that f (x) = 〈f ,x〉. A feature of our algorithms is that
they produce synthetic data. That is the output is a histogram x∗ ∈ RN . The
accuracy requirement is that of Definition 2.3.1, namely, we require that the
expectation of maxf ∈Q |f (x)− f (x∗)| is bounded by α where Q is a given set of
linear queries.

Theorem 5.1.1 (informal). Given a data set x of size n over a universe U of
size N and given a set of statistical queries Q of size k, we can compute an (ε,0)-

1See http://www.nltcs.aas.duke.edu/ for more details on the survey and associated
data.
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differentially private data distribution x∗ that is α-accurate with

α 6O

(
logN logk

εn

)1/3

.

We can obtain a stronger bound on the error by allowing (ε,δ)-differential
privacy.

Theorem 5.1.2 (informal). Given a data set x of size n over a universe U of
size N and given a set of statistical queries Q of size k, we can compute an (ε,δ)-
differentially private data distribution x∗ that is α-accurate with

α 6O

√logN log(1/δ) logk
εn

1/2

.

The probability that the mechanism fails to achieve the stated error bound
can be bounded by 1/poly(k) without changing the stated bounds as shown in
Section 5.2.1. It can be reduced even further at a small loss in accuracy. The
exact dependence is omitted from the theorems for simplicity. We also remark
that the runtime of our algorithm nearly matches the cryptographic hardness
results of [DNR+] as our algorithm produce synthetic data.

Experimental evaluation. Our experimental observations bear out the sig-
nificance of choosing to take only the most significant measurements, at
improved accuracy. On several real data sets, our algorithms yield marked
improvement over the prior naive approaches of taking all measurements
one seeks to preserve. The improvement is most significant when privacy
constraints are strong and the query class is rich; in applications where one
can afford to simply take all measurements at sufficient accuracy, careful
selection is not helpful. Fortunately, the former setting is the most important
and challenging for resolving the practical tension between privacy and utility.
A detailed discussion is presented in Section 5.3.

5.1.1 Comparison to previous work

The work of Barak et al. [BCD+] was the first to address the problem of gener-
ating synthetic databases that preserve differential privacy. Their algorithm,
which maintains utility with respect to a set of marginals (as opposed to
general statistical queries), essentially computes the desired noisy marginals
and then solves the linear program constrained by these noisy marginals in
order to obtain consistent data. This approach identifies all measurements
required to reproduce the marginals, and takes each with a uniform level of
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accuracy. This may make a large number of redundant or uninformative mea-
surements at the expense of accuracy in the more interesting queries. Fienberg
et al. [FRY] observe that, on realistic data sets, the Barak et al. algorithm must
add so much noise to preserve differential privacy that the resulting data is
no longer useful.

The study of differentially private synthetic data release mechanisms
for arbitrary statistical queries began with the work of Blum, Ligett, and
Roth [BLR], who gave a computationally inefficient (superpolynomial in N =
|U |) algorithm that achieves error that scales only logarithmically with the
number of queries. The dependence on the size of the data set n achieved by
their algorithm is n−1/3.

Li et al. [LHR+] investigated an approach to answering sets of statistical
queries, which selects an appropriate basis to cover the target set of statis-
tical queries and reconstructs answers from this basis. They are primarily
concerned with settings of k� n. Our algorithm, when applied to the specific
query sets for which they state results, reduces the maximum error rates
substantially. For example, for the case of k = 2N (corresponding to the set
of all (0,1)-statistical queries), the dependence on N goes from N log2n to
N 1/3 log1/3N .

Since [BLR], subsequent work has focused on computationally more ef-
ficient algorithms (here meaning polynomial in N ). This line of work has
yielded error rates of of (ko(1)/

√
n) [DNR+] and poly(logk)/

√
n [DRV] for a

relaxed privacy guarantee known as (ε,δ)-differential privacy. Here, k repre-
sents the number of queries |Q|. The private multiplicative weights framework
of Chapter 4 shows error rates of logk/

√
n for (ε,δ)-differential privacy. Still,

the algorithm can also be used non-interactively to produce synthetic data.
Indeed, by asking the entire set of queries roughly n times repeatedly, one can
ensure that on at least one of the iterations there are no large errors. In this
case the multiplicative weights distribution represents synthetic data that is
correct (up to the desired error) on all k queries.

We build on Chapter 4 for the task of creating synthetic data. (Our results
can be interpreted as providing synthetic data, by means of sampling the
private distribution we generate.) In addition, our algorithm and its analysis
are both significantly simpler. Further, unlike all the previous work men-
tioned above, our new results are tuned for practical applications, and we
arguably provide the first empirical results demonstrating that it is possible
to produce useful differentially private synthetic data for real-world statistical
applications.

Our algorithm can also be seen as an instance of a more general framework
due to [GHRU] which we will present in Chapter 6. Specifically, we will
see that any agnostic learning algorithms can be used as a subroutine in the
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multiplicative weights framework to select queries with near maximal error.
Without defining what an agnostic learning algorithm is at this point, we
mention that the exponential mechanism can be considered one as discussed
in [KLN+].

5.2 Multiplicative weights with exponential mechanism

Our algorithm is presented in Figure 5.1. Its utility guarantees are stated and
analyzed in Section 5.2.1. The privacy analysis follows in Section 5.2.3. Finally,
we state and prove our privacy-utility trade-off theorems in Section 5.2.4.

Input: Parameters T ∈N, ε0 > 0, distribution x over a universe U
Let x0 denote the uniform distribution over U , i.e., x0[u] = 1/N for all u ∈U .
For t = 1, ...,T iterations:

1. Exponential Mechanism: Sample a query ft ∈ Q from the exponential
mechanism defined on Q using the score function n|dt(f )|/2 where
dt(f ) = f (x) − f (xt−1). That is, each f has probability proportional to
exp(ε0n|dt(f )|/2).

2. Compute d̂t(ft) = dt(ft) + Lap(2/ε0n).

3. Multiplicative Weights Update: Let xt be the distribution obtained
from xt−1 using a multiplicative weights update step as x′t[u] =
exp(d̂t(ft))xt−1[u] , and renormalize xt[u] = x′t[u])∑

u∈U x
′
t[u] .

Output: x∗ = 1
T

∑T
t=1xt.

Figure 5.1: Multiplicative weights update with exponential mechanism (Algorithm
5.1)

Comparing Algorithm 5.1 with Algorithm 4.2, we can see that here we
do not use a fixed update parameter. Rather the update parameter is a
random variable d̂t(ft). This change turned out to yield the best experimental
results though it does not lead to an asymptotic improvement compared to
an optimally calibrated fixed parameter. This change manifests itself in the
utility analysis in that we will have to bound the expected potential drop.
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5.2.1 Utility Analysis

We denote the worst-case (or maximum) error of our output over all queries
by

err(x∗,Q) def= max
f ∈Q
|f (x∗)− f (x)| . (5.1)

The utility guarantee of our algorithm is captured by the following lemma
that gives a bound on the expected value of err(x∗,Q).

Lemma 5.2.1 (Expected Maximum Error).

Eerr(x∗,Q) 6O


√

logN
T

+
logk
ε0n

 (5.2)

Here the expectation is taken over the randomness of Algorithm 5.1.

We can show a large deviation bound on err(x∗,Q) as stated in the following
lemma.

Lemma 5.2.2 (Concentration). Let α denote the right hand side in Equation 5.2.
Then, there is a constant C > 0 such that for every ` > 0,

P

{
err(x∗,Q) > α +

`

ε0n

}
6 T exp(−C`) . (5.3)

In typical settings logT = O(logk). In this case by setting ` = O(logk),
the lemma allows us to bound the failure probability by 1/poly(k) without
increasing the error by more than a constant factor. The proof of this lemma is
given in Section 5.2.2. For simplicity we will not include the failure probability
as an explicit parameter in our theorems later.

Proof of Lemma 5.2.1. Let us use the shorthand errt
def= err(xt,Q) = maxf ∈Q |dt(f )|

to denote the worst-case error at step t of our algorithm. As we saw in
Lemma 2.5.2, the exponential mechanism at step t selects a query whose error
nearly matches errt. For convenience, we restate this lemma here specialized
to our setting.

Lemma 5.2.3 ([MT]). For every t ∈ {1, . . . ,T },

P {|dt(ft)| 6 errt − r} 6
k exp(−ε0rn/2)

|{f ∈ Q : dt(ft) > errt − r}|
.

Lemma 5.2.4.

E |dt(ft)| > errt −
2logk + 1
ε0n

.
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Proof. Note that the denominator in the RHS of Lemma 5.2.3 is always at
least 1. Hence, by Lemma 5.2.3,

P

{
|dt(ft)| 6 errt −

2logk + `
ε0n

}
6 exp(−`) . (5.4)

On the other hand
∫ ∞

0
` exp(−`)d` = 1 . �

We will next analyze the convergence of our algorithm to a good distribu-
tion using a similar potential argument as we saw in Chapter 4. The difference
here is that the update parameter in our algorithm is randomized and hence
we will compute the expected potential drop. Specifically, we show that while
our error bounds are not met, each update results in a significant decrease in
the relative entropy of xt and x, which is initially at most logN and always at
least 0. This bounds the number of rounds before the error bounds become
satisfied.

We consider the potential function Ψt = RE(x||xt) . The following two prop-
erties follow from non-negativity of entropy, and Jensen’s Inequality:

Fact 5.2.5. Ψt > 0

Fact 5.2.6. Ψ0 6 logN

The next lemma gives a lower bound on the expected potential drop.

Lemma 5.2.7. In expectation over the Laplacian random variable at step t, we
have

E [Ψt−1 −Ψt] >
1
2
|dt(ft)|2 −

1
4
E

∣∣∣∣d̂t(ft)∣∣∣∣2
Proof. Lemma 4.3.3 from Chapter 4 shows that

Ψt−1 −Ψt > ηdt(ft)− η2

where η is a scaling parameter that appears in the multiplicative weights
update. We chose η = 1/2d̂t(ft) so that

Ψt−1 −Ψt >
1
2
d̂t(ft) · dt(ft)−

1
4

∣∣∣∣d̂t(ft)∣∣∣∣2 .
Taking expectations over the Laplacian random variable in step t, we get

E

[
d̂t(ft) · dt(ft)

]
= dt(ft)E d̂t(ft) = dt(ft) · dt(ft) . �

Lemma 5.2.8. E
∣∣∣∣d̂t(ft)∣∣∣∣2 6 |dt(ft)|2 + 8

ε2
0n

2
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Proof. Recall that d̂t(ft) = dt(ft) + Lap(2/ε0n). The claim now follows from the
fact that ELap(σ )2 = 2σ2 �

We will now compute the expected potential drop where this time the ex-
pectation is taken over the entire randomness of our algorithm. This will allow
us to sum the total expected potential drop over all steps of our algorithm.

Combining the previous two lemmas, we get

E [Ψt−1 −Ψt] >
1
4
E |dt(ft)|2 −

2

ε2
0n

2
. (5.5)

On the other hand, by Jensen’s inequality and Lemma 5.2.4,

E |dt(ft)|2 >
(
E |dt(ft)|

)2
>

(
Eerrt −

2logk + 1
ε0n

)2

(5.6)

Combining (5.5) with (5.6), we get

E [Ψt−1 −Ψt] >
1
4

(
Eerrt −

2logk + 1
ε0n

)2

− 2

ε2
0n

2
. (5.7)

By linearity of expectation, Fact 6.5.4, and Fact 6.5.5, we have

T∑
t=1

E [Ψt−1 −Ψt] = E

 T∑
t=1

Ψt−1 −Ψt

 = E [Ψ0 −ΨT ] 6 logN .

Therefore,
T∑
t=1

(
Eerrt −

2logk + 1
ε0n

)2

6 4logN +
8

ε2
0n

2
. (5.8)

On the other hand, by Cauchy-Schwarz (
∑
a2
t >

1
T (

∑
at)2),

T∑
t=1

(
Eerrt −

2logk + 1
ε0n

)2

>
1
T

 T∑
t=1

[
Eerrt −

2logk + 1
ε0n

]
2

. (5.9)

Combining (5.8) with (5.9) and rearranging, we get

T∑
t=1

Eerrt 6

√
4T logN +

8T

ε2
0n

2
+
T (2logk + 1)

ε0n
.

Lemma 5.2.1 now follows by observing that

Eerr(x∗,Q) 6
T∑
t=1

Eerrt
T
6

√
4logN
T

+
8

T ε2
0n

2
+

2logk + 1
ε0n

. (5.10)
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We can further simplify this bound by noting that T > 1 and
√
a+ b 6

√
a +√

b for non-negative a,b. Hence, the additional term of 8/T ε2
0n

2 under the
square root is bounded by O(1/ε0n) 6O(logk/ε0n). This concludes the proof
of Lemma 5.2.1.

5.2.2 A large deviation bound

It is not difficult to show that err(x∗,Q) is unlikely to be significantly larger
than its expectation.

Proof of Lemma 5.2.2. Let Xt denote the deviation of the exponential mech-
anism from errt in round t of our algorithm. That is Xt = errt−dt(ft).Note that
Xt > 0. As was argued in Equation 5.4, we have that P {Xt > (2logk + `)/ε0n} 6
exp(−`). Likewise, let Yt > 0 denote the deviation of the Laplace mecha-
nism from its mean at step t. That is Yt = |dt(ft)− d̂t(ft)|. By basic properties
of the Laplace distribution, we have P {Yt > `/ε0n} 6 exp(−`/10). Finally, let
Zt = Xt +Yt.

With this notation we can follow the proof of Lemma 5.2.1 step by step,
but without taking expectations. We can replace Equation 5.8 by

T∑
t=1

(errt −Xt)2 6 4logN + 4
T∑
t=1

Y 2
t . (5.11)

From this we conclude,

T∑
t=1

errt 6

√√√
4logN + 4

T∑
t=1

Y 2
t +

T∑
t=1

Xt 6
√

4logN + 2
T∑
t=1

Yt +
T∑
t=1

Xt , (5.12)

using the fact that
√∑

t Y
2
t 6

∑
t Yt. Therefore,

err(x∗,Q) 6O


√

logN
T

+
1
T

T∑
t=1

Zt

 . (5.13)

Combining this with our previous observations and taking the union bound
over all variables Zt, there is a constant C′ =O(1) such that

P

err(x∗,Q) > C′

√

logN
T

+
logk + `
ε0n


 6 T exp(−`) .

Comparing this with our bound on Eerr(x∗,Q) (as given in Lemma 5.2.1), the
claim follows.
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5.2.3 Privacy Analysis

Our privacy analysis can be derived easily from the composition theorems
stated in Theorem 2.4.4 and Theorem 2.4.5. We only need to analyze a single
step of our algorithm.

Lemma 5.2.9. A single time step iteration of Algorithm 5.1 satisfies ε0-differential
privacy.

Proof. The exponential mechanism as defined satisfies ε0/2-differential pri-
vacy [MT]. On the other hand, dt(ft) has sensitivity at most 1/n (the statis-
tical query f (x) minus a public quantity f (xt)). Hence, d̂t(ft) satisfies ε0/2-
differential privacy as well. The claim now follows from Theorem 2.4.4. �

Corollary 5.2.10 (Privacy). Algorithm 5.1 satisfies

1. (ε0T )-differential privacy,

2. (ε0
√

2T log(1/δ) + T ε0(eε0 − 1),δ)-differential privacy.

5.2.4 Minimizing error while maintaining privacy

In this section we give two theorems that are each obtained directly from our
previous analysis by minimizing the error of Algorithm 5.1, while maintaining
either ε-differential privacy or (ε,δ)-differential privacy. In each case, the
required setting of the parameter T and the privacy parameter is omitted
from the theorem and instead stated explicitly only in the proof of each
theorem.

Theorem 5.2.11 (implies Theorem 5.1.1). Let ε > 0. Given a data set of size n
over a universe U of size N and a set of statistical queries Q, Algorithm 5.1 can be
used to produce synthetic data x∗ satisfying (ε,0)-differential privacy and

Eerr(x∗,Q) 6O
(

logN logk
εn

)1/3

.

Proof. To achieve ε-differential privacy over all we will run our algorithm
with ε0 = ε/T and invoke Corollary 5.2.10. Now, let

α(T ) =

√
logN
T

+
T logk
εn

.

By Lemma 5.2.1, Eerr(x∗,Q) 6O(α(T )) . We would therefore like to minimize
α(T ) as a function of T . Writing α(T ) = aT −1/2 + bT and taking the deriva-
tive, we see that the minimum obtains at T ∗ = (a/2b)2/3, giving α∗ = α(T ∗) =

89



2a2/3b1/3, which corresponds to

T ∗ =

εn√logN
2logk

2/3

, α∗ = 2
(

logN logk
εn

)1/3

.

Running Algorithm 5.1 with this setting of T and ε, hence gives the desired
result. �

We can obtain a stronger error bound by passing from ε-differential privacy
to (ε,δ)-differential privacy.

Theorem 5.2.12 (implies Theorem 5.1.2). Let ε > 0,δ > 0. Given a data set of
size n over a universe U of size N and a set of statistical queries Q, Algorithm 5.1
produces synthetic data x∗ satisfying (ε,δ)-differential privacy and

Eerr(x∗,Q) 6O

√logN log(1/δ) · logk
εn

1/2

.

Proof. To achieve (ε,δ)-differential privacy overall, by Corollary 5.2.10, we
will run Algorithm 5.1 with privacy parameter ε0 satisfying ε = ε0

√
2T log1/δ+

T ε0(eε0 − 1).
Choosing ε0 = ε/C

√
T log(1/δ) for some constant C > 0 is sufficient. Let

α(T ) =

√
logN
T

+

√
T log(1/δ) logk

εn
.

By Lemma 5.2.1, Eerr(x∗,Q) 6 O(α(T )) . Again, we would like to minimize
α(T ) as a function of T . This is achieved for

T ∗ = Θ

 √
logNεn√

log(1/δ) logk

 ,
giving α(T ∗) that matches the bound stated in the theorem. �

5.3 Implementation and experimentation

In this section we consider an application of our general framework to the
problem of contingency table release. We choose this particular problem
because it exhibits interesting correlations between queries, as well as having
a significant role in the practice of official statistics.

A contingency table reflects a set of k discrete attributes, where each record
in the table has a setting of each attribute. A contingency table is commonly
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represented by enumerating the list of all possible settings of the attributes
and reporting the counts of the number of records with the associated setting.
We can also do the same for a subset of the attributes, reporting the counts for
each possible setting of the attributes in the subset, which is referred to as a
marginal.

When statistical inference is performed over contingency tables, statis-
ticians seek sets of low-order marginals, those containing relatively few at-
tributes at a time, that explain the data well. Our goal, in releasing contin-
gency tables, is to release data so that these low-order marginals are accurately
preserved.

In previous work, Barak et al. [BCD+] describe an approach to differen-
tially private contingency table release through the Fourier transformation.
If we view a contingency table as vector, coordinates ordered lexicographi-
cally by [binary] attribute settings, the Fourier transformation corresponds to
multiplication by the Hadamard matrix, defined recursively as

Hn+1 =
[
Hn Hn
Hn −Hn

]
, H1 = [1] .

Each result in the multiplication corresponds to the measurement of a Fourier
coefficient. Intuitively, there is one such measurement for each subset of
attributes, reflecting the counts of records with even and odd parities of
attribute values among the subset of attributes.

These coefficients are interesting in that all low order marginals can be
exactly recovered by examination of relatively few entries in the transformed
vector, the measurements corresponding to subsets of size at most k. Rather
than explain the production of marginals from these Fourier measurements
(details can be found in Barak et al. [BCD+]) we simply exploit the connection
by considering the corresponding count queries, and insisting on producing a
distribution that respects them. The marginals can then be derived directly
from the distribution.2

5.3.1 Experimental Set-up

For our experiments, we consider several data sets used in the statistical
literature. The data sets range from relatively small (70 records) to substantial
(21k records). We have avoided enormous data sets as they seem to occur
less frequently in practice (truly large data sets are invariably segmented

2There is nothing wrong with explicitly using the Fourier transform to return to the
marginals, but it is exciting to note that we do not need to specify the relationship between
the measurements we take and the quantities of interest; we only need the relationships to
exist. This is helpful when the dependence is complicated and/or inexact.
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into subpopulations before analysis), and are not especially good indicators
of algorithm performance (even the simplest algorithm works well). The
challenge with differential privacy is getting it to work on smaller data sets,
rather than larger. The data sets we consider are detailed in Table 5.1. There

records attributes non-zero / total cells
mildew 70 6 22 / 64
czech 1841 6 63 / 64
rochdale 665 8 91 / 256
nltcs 21574 16 3152 / 65536

Table 5.1: Structural details of the four data sets we consider.

are several ways to measure the quality of our approaches. One that we
will focus on is relative entropy, or KL divergence. This measurement has
appealing properties for statistical inference, and is used in previous statistical
work on the problem. Other measurements, for example directly measuring
the error in marginal tables, certainly exist, but our goal is ultimately learning
models that fit the data well, and it is not immediately clear how accuracy in
these measurements result in statistical quality of fit.

Our experiments are intended both to compare our approach to the prior
work of Barak et al. [BCD+] as well as to evaluate it in absolute terms. For
the purposes of our experiments, Barak et al. will simply be represented by
the approach that takes all low order Fourier measurements with a uniform
level of accuracy; their approach involved an additional linear programming
step, which we found hurts its performance with respect to relative entropy.
For the absolute comparison, we invoke the work of Fienberg et al. [FRY] on
several of these data sets where they report absolute numbers for quality of fit
(in terms of relative entropy) without privacy constraints.

All of our experiments are done with ε-differential privacy, that is, δ = 0.
The absolute numbers improve in the privacy-utility trade-off if we permit a
non-zero δ. However, the relationships between the curves can change; the
improvement in ε one would see with a non-zero δ depends on the technique
and the data set in a way we have not measured.

5.3.2 Improvements

We now consider several variations on the simple approach presented in
Section 5.2 that can lead to noticeably improved performance. Although the
worst case bounds do not improve, there is theoretical motivation for each of
the improvements, which we also detail.
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Iterating the Update On each iteration we select a query to measure based
on the amount of error exhibited between our approximating distribution and
the true data. The selected query is measured, and corrected. However, over
the course of the algorithm, measurements may drift again. There is no privacy
cost to re-processing a previous measurement, so we can take advantage of
this to further decrease our potential function without re-interrogating the
data.

Initialization Our potential function starts at the logarithm of the universe
size, because our best guess at the outset is of a uniform distribution. This
can sometimes be improved by taking a histogram of the values; by simply
counting (with noise) the number of occurrences of each type of record, we
can identify values that occur with substantial frequency and update the prior
accordingly. This works well if there are several values with high frequency (as
they contribute most to the potential function) but it does consume from the
privacy budget, and reduces the accuracy allowed in the query measurement
stage.

Adapting the Number of Rounds The number of rounds to conduct is an
important parameter. Setting it too low results in not enough information
extracted about the data, but setting it too high causes each round to give
very noisy measurements, of little value. Instead, we can set the number
adaptively, by starting with a very small epsilon value and asking queries
until the observed signal drops below noise levels. At this point, if privacy
budget still remains, we double epsilon and restart. As epsilon increases we
will only drill deeper, each round asking at least as many questions as the
last at twice the privacy cost, causing the cumulative cost to telescope and be
within a factor of two of the final cost.

5.3.3 Small Datasets

We first evaluated our approach on several small data sets in common use
by statisticians. Our findings here were fairly uniform across the data sets:
the ability to measure only those queries that are informative about the data
set results in substantial savings over taking all possible measurements. We
evaluated both our theoretically pure algorithm and its heuristic improve-
ment as discussed in the previous section, against a modified version of the
algorithm of Barak et al. [BCD+] (integrating the multiplicative weights of
Hardt-Rothblum [HR]), and the accepted "good" non-private relative entropy
values from Fienberg et al. [FRY]. The trade-off between relative entropy
and ε for three data sets appears in Figure 5.2. In each case, we see that we
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noticeably improve on the algorithm of Barak et al., and in many cases our
heuristic approach matches the good non-private values.
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Figure 5.2: Curves describing the behavior of algorithms on the mildew, rochdale,
and czech data sets, respectively. The x-axis is the value of epsilon guaranteed, and
the y-axis is the relative entropy between the produced distribution and actual data
set. The lines represent averages across 100 runs, and the corresponding shaded
areas one standard deviation in each direction. Red (dashed) represents the modified
Barak et al. algorithm, green (dot-dashed) represents the unoptimized use of the
exponential mechanism to select queries for the multiplicative weights algorithm,
and blue (solid) represents the optimized version thereof. The solid black horizontal
line is the stated relative entropy values from Fienberg et al.

5.3.4 Large Dataset

We also consider a larger data set, the National Long-Term Care Study (NLTCS)
in Figure 5.3. This data set contains orders of magnitudes more records, and
has 16 binary attributes. For our initial settings, maintaining all three-way
Fourier measurements, we see similar behavior as above: the ability to choose
the measurements that are important allows substantially higher accuracy on
those that matter.

94



However, we see that the algorithm of Barak et al. [BCD+] is substantially
more competitive in the regime where we are interested in querying all two-
way marginals, rather than the default three we have been using. In this
case, for values of epsilon at least 0.1, it seems that there is enough signal
present to simply measure all such Fourier coefficients; each is sufficiently
informative that measuring substantially fewer at higher accuracy imparts
less information, rather than more.

For every data set and query set, there is some sufficiently high epsilon level
where the judicious selection of queries is no longer required. In such regimes,
the approach we present in this chapter does not provide an improvement over
more naive approaches. The impact of our approach returns if we increase
the order of marginal that must be preserved (dramatically increasing the
number of measurements Barak et al. would take) or if we decrease epsilon to
a level such that the majority of two-way Fourier coefficients are not above
the noise level. However, the analyst’s goal should be to get the right output
for the analysis task at hand, under the supplied privacy constraints. In some
cases this may not require the use of our advanced query selection.

5.4 Conclusions

We have studied a simple algorithm for releasing data maintaining a high fi-
delity to the protected source data, as well as differential privacy with respect
to the records. The approach builds upon the multiplicative weights approach
of [HR], by introducing the exponential mechanism [MT] as a more judicious
approach to determining which measurements to take. The theoretical anal-
ysis matches the state of the art, and experimentally we have evidence that
for many interesting parameters it represents a substantial improvement over
existing techniques.

As well as matching the best known theoretical bounds and improving
experimental performance, the algorithm is both simple to implement and
simple to use. An analyst does not require a complicated mathematical
understanding of the nature of the queries (as the community has for Fourier
coefficients and marginal tables), but rather only needs to enumerate those
measurements that should be preserved. We hope that this generality leads to
a broader class of high fidelity differentially-private data releases for a variety
of data domains.
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Figure 5.3: Curves comparing our approach with that of Barak et al on the National
Long Term Care Survey. The red (dashed) curve represents Barak et al, and the
multiple blue (solid) curves represent multiplicative weights combined with the
exponential mechanism, with 20, 30, and 40 queries (top to bottom, respectively).
From left to right, the first two figures correspond to degree 2 Fourier coefficients,
and the third to degree 3 Fourier coefficients. We see that the exponential mechanism
improves accuracy when the privacy requirements are strong relative to the number of
measurements (the first and third graphs). The middle graph demonstrates that with
few measurements and sufficient privacy budget, one does best by simply measuring
everything. As before, the x-axis is the value of epsilon guaranteed, and the y-axis is
the relative entropy between the produced distribution and actual data set. The lines
represent averages across only 10 runs, owing to the high complexity of Barak et al
on this many-attributed data set, and the corresponding shaded areas one standard
deviation in each direction.
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Chapter 6

Releasing Conjunctions and the
Statistical Query Barrier

One of the most important classes of statistical queries on the data set are
Boolean conjunctions which we introduced in Section 2.7.1. Recall that a
boolean conjunction corresponding to a subset S ⊆ [d] counts what fraction
of the individuals have each attribute in S set to 1. A major open problem in
privacy-preserving data analysis is to efficiently create a differentially private
synopsis of the data set that accurately encodes answers to all Boolean con-
junctions. In this chapter we see an algorithm with running time polynomial
in d, which outputs a differentially private data structure that represents 99%
of all Boolean conjunctions up to an additive error of 1%.

Our result is more general and applies to any collection of queries that
can be described by a low sensitivity submodular function. Submodularity is
a property that often arises in data analysis and machine learning problems,
including in problems for which privacy is a first-order design constraint1.
Imagine, for example, a social network on d vertices. A data analyst may
wish to analyze the size of the cuts induced by various subsets of the vertices.
Here, our result provides a data structure that represents all cuts up to a
small average error. Another important example of submodularity is the
set-coverage function, which given a set system over elements in some universe
U , represents the number of elements that are covered by the union of any
collection of the sets.

The size of our data structure grows exponentially in the inverse error
desired, and hence we can represent submodular functions only up to con-
stant error if we want polynomial complexity. Can any efficient algorithm do
even better? We give evidence that in order to do better, fundamentally new
techniques are needed. Specifically, we show that no polynomial-time algo-
rithm can do substantially better if the algorithm permits an implementation
that only accesses the database through statistical queries (cf. Section 2.9.1),

1For example, Kempe, Kleinberg, and Tardos show that for two common models of
influence propagation on social networks, the function capturing the “influence” of a set of
users (perhaps the targets of a viral marketing campaign) is a monotone submodular function
[KKT].
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regardless of whether such an implementation is privacy-preserving.
How do we show this? First, putting aside privacy concerns, we pose the

following question: How many statistical queries to a data set are necessary and
sufficient in order to approximately answer all queries in a class C? We show
that the number of statistical queries necessary and sufficient for this task is,
up to a factor of O(d), equal to the agnostic learning complexity of C (over
arbitrary distributions) in Kearns’ statistical query (SQ) model [Kea]. Now,
using an SQ lower bound for agnostically learning monotone conjunctions
shown by Feldman [Fel], this connection implies that no polynomial-time
algorithm operating in the SQ-model can release even monotone conjunctions
to subconstant error. (Since releasing submodular functions is even more
general, the lower bound carries over to that setting as well.)

While the characterization above is independent of privacy concerns, it
has two immediate implications for private data release:

— Firstly, it also characterizes what can be released in the local privacy
model of Kasiviswanathan et al. [KLN+]; this follows from the fact
that [KLN+] showed that SQ algorithms are precisely what can be com-
puted in the local privacy model.

— Secondly, and perhaps even more importantly, it gives us the claimed
unconditional lower bounds on the running time of any query-release
algorithm that permits an implementation using only statistical queries—
regardless of whether its privacy analysis can be carried out in the local
privacy model. To our knowledge, this class includes almost all pri-
vacy preserving algorithms developed to date, including the Median
Mechanism of [RR] and the multiplicative weights method we saw in
Chapter 4.2 Note that these mechanisms cannot be implemented in the
local privacy model while preserving their privacy guarantees, because
they will have to make too many queries. Indeed, they are capable of re-
leasing conjunctions to subconstant error! Yet, they can be implemented
using only statistical queries, and so our lower bounds apply to their
running time.

To summarize, our results imply that if we want to develop efficient algo-
rithms to solve the query release problem for classes as expressive as monotone
conjunctions, we need to develop techniques that are able to sidestep this sta-
tistical query barrier. On a conceptual note, our results present new reductions
from problems in differential privacy to problems in learning theory.

2A notable exception is the private parity-learning algorithm of [KLN+], which explicitly
escapes the statistical query model.
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6.1 Main results

In this section we give an informal statement of our theorems with pointers to
the relevant sections. Our theorem on approximating submodular functions
is proved in Section 6.3. The definition of submodularity is found in the
Preliminaries (Section 6.2).

Informal Theorem 6.1.1 (Approximating submodular functions). Let α >
0,β > 0. Let f : {0,1}d → [0,1] be a submodular function. Then, there is an algo-
rithm with runtime dO(log(1/β)/α2) which produces an approximation h : {0,1}d →
[0,1] such that Px∈{0,1}d {|f (x) − h(x)| 6 α} > 1 − β. The algorithm is allowed to
make oracle queries to f at arbitrary points in {0,1}d .

In Section 6.4 we then show how this algorithm gives the following differ-
entially private release mechanism for Boolean conjunctions. The definition
of differential privacy is given in Section 6.2.

Informal Theorem 6.1.2 (Differentially private query release for conjunc-
tions). Let α > 0,β > 0. There is an ε-differentially private algorithm with runtime
dO(log(1/β)/α2) which releases the set of Boolean conjunctions with error at most α
on a 1− β fraction of the queries provided that |D | > dO(log(1/β)/α2)/ε .

The guarantee in our theorem can be refined to give an α-approximation
to a 1− β fraction of the set of w-way conjunctions (conjunctions of width w)
for all w ∈ {1, ...,d}. Nevertheless, our algorithm has the property that the error
may be larger than α on a small fraction of the queries. We note, however,
that for β 6 αp/2 our guarantee is stronger than error α in the `p-norm which
is also a natural objective. Recall that we worked with `2-error in Chapter 3.
From a practical point of view, it also turns out that some privacy-preserving
algorithms in the literature indeed only require the ability to answer random
conjunction queries privately, e.g., [JPW].

Finally, in Section 6.5, we study the general query release problem and
relate it to the agnostic learning complexity in the Statistical Query model.

Informal Theorem 6.1.3 (Equivalence between query release and agnostic
learning). Suppose there exists an algorithm that learns a class C up to error α
under arbitrary distributions using at most q statistical queries. Then, there is a
release mechanism for C that makes at most O(qd/α2) statistical queries.

Moreover, any release mechanism for C that makes at most 2q statistical queries
implies an agnostic learner that makes at most q queries.

While both reductions preserve the query complexity of the problem
neither reduction preserves runtime. We also note that our equivalence char-
acterization is more general than what we stated: the same proof shows that
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agnostic learning of a class C is (up to small factors) information theoretically
equivalent to releasing the answers to all queries in a class C for any class of
algorithms that may access the database only in some restricted manner. The
ability to make only SQ queries is one restriction, and the requirement to be
differentially private is another. Thus, we also show that on a class by class
basis, the privacy cost of releasing the answers to a class of queries using any
technique is not much larger than the privacy cost of simply optimizing over
the same class to find the query with the highest value, and vice versa.

Our techniques. Our algorithm is based on a structural theorem about
general submodular functions f : 2U → [0,1] that may be of independent
interest. Informally, we show that any submodular function has a “small”
“approximate” representation. Specifically, we show that for any α > 0, there
exist at most |U |2/α submodular functions gi such that each gi satisfies a
strong Lipschitz condition, and for each S ⊂ U , there exists an i such that
f (S) = gi(S). We then take advantage of Vondrak’s observation that Lipschitz-
continuous submodular functions are self-bounding, which allows us to apply
recent dimension-free concentration bounds for self-bounding functions [Von].
These concentration results imply that if we associate each function gi with
its expectation, and respond to queries f (S) with E[gi(S)] for the appropriate
gi , then most queries are answered to within only α additive error. This yields
an algorithm for learning submodular functions over product distributions,
which can easily be made privacy preserving.

Our characterization of the query complexity of the release problem in the
SQ model uses the multiplicative weights method [LW, AHK] similar to how
it is used in Chapter 5. That is we maintain a distribution over the universe
on which the queries are defined. What is new is the observation that an
agnostic learning algorithm for a class C can be used to find a query from C
that distinguishes between the true data set and our distribution as much as
possible. Such a query can then be used in the multiplicative weights update
to reduce the relative entropy between the true data set and our distribution
significantly. Since the relative entropy is nonnegative there can only be a few
such steps before we find a distribution which provides a good approximation
to the true data set on all queries in the class C.

6.1.1 Related work on learning submodular functions

In this section we discuss previous work on learning submodular functions
since it was not part of Chapter 2.

The problem of learning submodular functions was recently introduced
by Balcan and Harvey [BH]; their PAC-style definition was different from
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previously studied point-wise learning approaches [GHIM, SF]. For product
distributions, Balcan and Harvey give an algorithm for learning monotone,
Lipschitz continuous submodular functions up to constant multiplicative error
using only random examples. [BH] also give strong lower bounds and match-
ing algorithmic results for non-product distributions. Our main algorithmic
result is similar in spirit, and is inspired by their concentration-of-measure
approach. Our model is different from theirs, which makes our results in-
comparable. We introduce a decomposition that allows us to learn arbitrary
(i.e. potentially non-Lipschitz, non-monotone) submodular functions to con-
stant additive error. Moreover, our decomposition makes value queries to the
submodular function, which are prohibited in the model studied by [BH].

6.2 Preliminaries

In this chapter, a counting query is specified by a predicate q : X → [0,1].
We will denote the answer to a count query (with some abuse of notation)
by q(D) = 1

n

∑
x∈D q(X) .Note that a count query can differ by at most 1/n on any

two adjacent databases. In particular, adding Laplacian noise of magnitude
1/εn, denoted Lap(1/εn), guarantees ε-differential privacy on a single count
query (see Chapter 2 for details).

We will state our algorithms in Kearns’ statistical query (SQ) model as
introduced in Section 2.9.1.

Query release. A concept class (or query class) is a distribution over concepts
(or predicates) from X→ [0,1], e.g., the uniform distribution over a finite set
of predicates.

Definition 6.2.1 (Query Release). Let C be a concept class. We say that an
algorithm A (α,β)-releases C over a data setD if Pq∼C{|q(D)−A(q)| 6 α} > 1−β .

Specifically, we are interested in algorithms which release C using few
statistical queries to the underlying data set. We will study the query release
problem by considering the function f (q) = q(D). In this setting, releasing a
concept class C is equivalent to approximating the function q is the following
sense

Definition 6.2.2. We say that an algorithm A (α,β)-approximates a function
f : 2U → [0,1] over a distribution P if PS∼P {|f (S)−A(S)| 6 α} > 1− β .

For many concept classes of interest, the function f (q) will be submodular,
defined next.
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Submodularity. Given a universeU , a function f : 2U →R is called submod-
ular if for all S,T ⊂U it holds that f (S∪T )+f (S∩T ) 6 f (S)+f (T ) . We define
the marginal value of x (or discrete derivative) at S as ∂xf (S) = f (S ∪ {x})− f (S).

Fact 6.2.3. A function f is submodular if and only if ∂xf (S) > ∂xf (T ) for all
S ⊆ T ⊆U and all x ∈U.

Definition 6.2.4. A function f : 2U →R is ρ-Lipschitz if for every S ⊆U and
x ∈U , |∂xf (S)| 6 ρ.

Concentration bounds for submodular functions. The next lemma was
shown by Vondrak [Von] building on concentration bounds for so-called
self-bounding functions due to [BLM1, BLM2].

Lemma 6.2.5 (Concentration for submodular functions). Let f : 2U →R be a
1-Lipschitz submodular function. Then for any product distribution P over 2U ,
we have

P

S∼P
{|f (S)−Ef (S)| > t} 6 2exp

(
− t2

2(Ef (S) + 5t/6)

)
, (6.1)

where the expectations are taken over S ∼ P .

We obtain as a simple corollary

Corollary 6.2.6. Let f : 2U → [0,1] be a ρ-Lipschitz submodular function. Then
for any product distribution P over 2U , we have

P

S∼P

{
|f (S)−Ef (S)| > ρt

}
6 2exp

(
− t2

2(1/ρ+ 5t/6)

)
, (6.2)

where the expectations are taken over S ∼ P .

6.3 Approximating submodular functions

Our algorithm for approximating submodular functions is based on a struc-
tural theorem, together with some strong concentration inequalities for sub-
modular functions (see Lemma 6.2.5). In this section, we prove our structure
theorem, present our algorithm, and prove its correctness.

6.3.1 Monotone submodular functions

We begin with a simpler version of the structure theorem. This version will be
sufficient for approximating bounded monotone submodular functions from
value queries, and will be the main building block in our stronger results,
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which will allow us to approximate arbitrary bounded submodular functions,
even from “tolerant” value queries.

Our structure theorem follows from an algorithm that decomposes a given
submodular function into Lipschitz submodular functions. The algorithm is
presented next and analyzed in Lemma 6.3.1.

Decompose(f ,ρ):
Input: Query access to a monotone submodular function f : 2U → [0,1] and
parameter ρ > 0.

1. Let ≺ denote an arbitrary ordering of U .

2. Let I ← {∅}

3. For each x ∈U (in ascending order under ≺):

(a) Let I ′←∅
(b) For each B ∈ I , if ∂xf (B) > ρ, then update I ′←I ′ ∪ {B∪ {x}}
(c) Let I ← I ∪I ′

4. Let V (S) = {x ∈ U | ∂xf (S) 6 ρ} denote the set of elements that have
small marginal value with respect to S ⊆U.

Output: the collection of functions G = {gB | B ∈ I}, where for B ∈ I we
define the function gB : 2V (B)→ [0,1] as gB(S) = f (S ∪B).

Figure 6.1: Decomposition for submodular functions (Algorithm 6.1)

Lemma 6.3.1. Given any submodular function f : 2U → [0,1] and ρ > 0, Algo-
rithm 6.1 makes the following guarantee. There are maps F,T : 2U → 2U such
that:

1. (Lipschitz) For every gB ∈ G, gB is submodular and satisfies
supx∈V (B),S⊆V (B)∂xg

B(S) 6 ρ.

2. (Completeness) For every S ⊆U , F(S) ⊆ S ⊆ V (F(S)) and gF(S)(S) = f (S).

3. (Uniqueness) For every S ⊆ U and every B ∈ I , we have F(S) = B if and
only if B ⊆ S ⊆ V (B) and S ∩ T (B) = ∅.

4. (Size) The size of G is at most |G| = |U |O(1/ρ). Moreover, given oracle access
to f , we compute F,V ,T in time |U |O(1/ρ).
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Note that the lemma applies to non-monotone submodular functions
f as well; however, since our release algorithm will require the stronger
condition supx∈V (B),S⊆V (B) |∂xg(S)| 6 ρ, the lemma will only be sufficient for
releasing monotone submodular functions (where it holds that |∂xg(S)| 6
ρ ⇐⇒ ∂xg(S) 6 ρ). We will return to the non-monotone case later.

Proof. Algorithm 6.1 always terminates and we have the following bound on
the size of I .

Claim 6.3.2. |I | 6 |U |1/ρ

Proof. Let B ∈ I be a set, B = {x1, . . . ,x|B|}. Let B0 = ∅ and Bi = {x1, . . . ,xi} for
i = 1, . . . , |B| − 1. Then

1 > f (B) =
|B|−1∑
i=0

∂xi+1
f (Bi) > |B| · ρ . (6.3)

Therefore, it must be that |B| 6 1/ρ, and there are at most |U |1/ρ such sets over
|U | elements. �

Item 1 is shown next.

Claim 6.3.3 (Lipschitz). For every gB ∈ G, gB is submodular and
supx∈V (B),S⊆V (B)∂xg

B(S) 6 ρ.

Proof. Submodularity follows from the fact that gB is a “shifted” version of f .
Specifically, if T ⊆ S, then ∂xgB(S) = ∂xf (B∪S) 6 ∂xf (B∪T ) = ∂xgB(T ), where
the inequality is by submodularity of f .

To establish the Lipschitz property, we note that by the definition of V ,
∂xf (B) 6 ρ for every x ∈ V (B). Also, by the submodularity of f , we have
∂xg

B(S) = ∂xf (B∪ S) 6 ∂xf (B) 6 ρ. �

Definition of F and proof of Item 2. Now we turn to constructing the
promised mappings F and T in order to Properties 2 and 3. Roughly, we
want F(S) to choose a maximal set in I such that F(S) ⊆ S, in order to assure
that S ⊆ V (F(S)). This task is complicated by the fact that there could be many
such sets. We want to be able to choose a unique such set, and moreover, given
any such set B, determine efficiently if F(S) = B. To achieve the former task,
we define a specific, deterministic mapping F(S) and to achieve the latter we
will carefully define the mapping T .

We define F(S) as follows:
let j← 0, Bj ←∅
for x ∈U (in ascending order under ≺) do
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if x < V (Bj) and x ∈ S then Bj+1← Bj ∪ {x}, j← j + 1
end for
return F(S) = Bj .

Note that this procedure is similar to the procedure we use to construct I . To
construct I , we gradually constructed a tree of sets, where each set B ∈ I had
a child for every set B∪{x} such that x has high influence on B (x < V (B)). The
procedure F(S) differs in that it only constructs a single root-leaf path in this
tree, where for each Bj in the path, the next set in the path is Bj ∪ {x} where x
is the minimal x ∈ S that has high influence on Bj (and has not already been
considered by F(S). We will use P (S) = (B0 ⊂ B1 ⊂ · · · ⊂ F(S)) to denote this
path, which is the sequence of intermediate sets Bj in the execution of F(S).
Given these observations, we can state the following useful facts about F.

Fact 6.3.4. If F(S) = B, then P (S) = P (B). Moreover, for every S ∈U , P (S) ⊆ I .

We can now establish Property 2 by the following claim.

Claim 6.3.5 (Completeness). For every S ⊆ U , F(S) ⊆ S ⊆ V (F(S)), and
gF(S)(S) = f (S).

Proof. Let P (S) = B0 ⊂ B1 ⊂ · · · ⊂ F(S). F(S) always checks that x ∈ S before
including an element x, so F(S) ⊆ S. To see that S ⊆ V (F(S)), assume there
exists x ∈ S \V (F(S)). By submodularity we have ∂xf (Bj) > ∂xf (F(S)) > ρ for
every set Bj . But if ∂xf (Bj) > ρ for every Bj and x ∈ S, it must be that x ∈ F(S).
But then ∂xf (F(S)) = 0, contradicting the fact that x < V (F(S)).

Finally, we note that since S ⊆ V (F(S)), gF(S)(S) is defined (S is in the
domain of gF(S)) and since F(S) ⊆ S, gF(S)(S) = f (F(S)∪ S) = f (S). �

Definition of T and proof of Item 3. We will now define the mapping T .
The idea is to consider a set B ∈ I and P (B) and consider all the elements we
had to “reject” on the way from the root to B. We say that an element x ∈U is
“rejected” if, when x is considered by F(S), it has high influence on the current
set, but is not in B. Since any set S such that B = F(S) satisfies P (S) = P (B)
(Fact 6.3.4), and any set S that contains a rejected element would have taken a
different path, we will get that the elements x ∈ T (B) “witness” the fact that B ,
F(S). We define the map T (B) as follows:

let j← 0, Bj ←∅, R←∅
for x ∈U (in ascending order under ≺) do

if x < V (Bj) and x < B then R← R∪ {x}
else if x < VBj and x ∈ B then Bj+1← Bj ∪ {x}, j← j + 1

end for
return T (B) = R.
We’ll establish Property 3 via the following two claims.
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Claim 6.3.6. If B = F(S), then B ⊆ S ⊆ V (B) and S ∩ T (B) = ∅.

Proof. We have already demonstrated the first part of the claim in Claim 6.3.5,
so we focus on the claim that S ∩ T (B) = ∅. By Fact 6.3.4, every set S s.t.
B = F(S) satisfies P (S) = P (B). Let (B0 ⊂ B1 ⊂ · · · ⊂ B) = P (B). Suppose there is
an element x ∈ S ∩ T (B). Then there is a set Bj such that x < V (Bj) and x < B.
But since x < V (Bj) and x ∈ S, it must be that x ∈ Bj+1, contradicting the fact
that Bj+1 ⊆ B. �

Now we establish the converse.

Claim 6.3.7. If B ⊆ S ⊆ V (B), S ∩ T (B) = ∅, then B = F(S).

Proof. Suppose for the sake of contradiction that there a set B′ , B such that
B′ = F(S). There exists an element x ∈ B4B′, and we consider the minimal such
x under ≺. Let P (B) = (B0 ⊂ B1 ⊂ · · · ⊂ B) and P (S) = P (B′) = (B′0 ⊂ B

′
1 ⊂ · · · ⊂ B′).

Since x is minimal in B4B′, there must be j be such that Bi = B′i for all i 6 j,
but x ∈ Bj+14B′j+1. Consider two cases:

1. B ⊃ B′. Thus x ∈ B \B′ Moreover, since x ∈ B ⊆ S, it must be that when x
was considered in the execution of F(S), and B′j was the current set, it
was the case that x ∈ V (B′j). But Bj = B′j , so x ∈ V (Bj), contradicting the
fact that x ∈ Bj+1.

2. B 2 B′. Thus x ∈ B′ \ B. Since x ∈ B′ = F(S) ⊆ S (Claim 6.3.5), we have
x ∈ S. Moreover, since x ∈ B′j+1 we must have x < V (B′j) = V (Bj). Thus we
have x < V (Bj) and x < B, which implies x ∈ T (B), by construction. Thus
S ∩ T (B) , ∅, a contradiction.

�

The previous two claims establish Item 3.
Finally we observe that the enumeration of I requires time at most |U |·|I | =

|U |O(1/ρ), since we iterate over each element of U and then iterate over each
set currently in I . We also note that we can compute the mappings F and T in
time linear in |I | = |U |O(1/ρ) and can compute V (B) in time linear in |U |. These
observations establish Property 4 and complete the proof of Lemma 6.3.1. �

Lemma 6.3.8 (Lemma 6.3.1 with tolerance). Given any submodular function
f : 2U → [0,1] and ρ > 0, Algorithm 6.2 makes the following guarantee. There are
maps F,T : 2U → 2U satisfying Item 1—Item 4 of Lemma 6.3.1 and moreover, can
be computed using tolerant queries to f with tolerance ρ/12.
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Input: Tolerant oracle access to a submodular function f : 2U → [0,1] with
tolerance at most ρ/12 and parameter ρ > 0.

Let f̃ denote the function specified by tolerant oracle queries to f such
that for every S ⊆U, |f (S)− f̃ (S)| 6 ρ/12.
Let ≺ denote an arbitrary ordering of U .
Let I ← {∅}
for x ∈U (in ascending order under ≺) do
I ′←∅
for B ∈ I do

if ∂xf̃ (B) > ρ/3 then I ′←I ′ ∪ {B∪ {x}}
end for
I ← I ∪I ′

end for
Let V (S) = {x ∈ U | ∂xf̃ (S) 6 2ρ/3} denote the set of elements that have
small marginal value with respect to S ⊆U.

Output: the collection of functions G = {gB | B ∈ I}, where for B ∈ I we
define the function gB : 2V (B)→ [0,1] as gB(S) = f (S ∪B).

Figure 6.2: Decomposition for monotone submodular functions from tolerant queries

Proof. Throughout the proof, we will assume that the oracle always gives the
same answer to each query. Thus the function f̃ defined in Algorithm 6.2 is
well defined. Note that f̃ (S) need not be submodular even if f is, however, we
can assume that we have exact oracle access to f̃ (S). Also note that, since we
can compute ∂xf (S) using two queries to f , we are guaranteed that for every
S ⊆U , and x ∈U ,

|∂xf̃ (S)−∂xf (S)| 6 ρ/6. (6.4)

Observe that Algorithm 6.2 differs from Algorithm 6.1 only in the choice
of parameters. The analysis required to establish the Lemma is also a natural
modification of the analysis of Lemma 6.3.1, so we will refer the reader to the
proof of that Lemma for several details and only call attention to the steps of
the proof that require modification.

We will proceed by running through the construction of Lemma 6.3.1
on f̃ (S) using ρ/3 as the error parameter. Since the argument is a fairly
straightforward modification to Lemma 6.3.1, we will refer the reader to the
proof of that Lemma for several details, and only call attention to the steps of
the proof that require modification.

First, we establish a bound on the size of I

Claim 6.3.9. |I | 6 |U |6/ρ
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Proof. Let B ∈ I be a set, B = {x1, . . . ,x|B|}. Let B0 = ∅ and Bi = {x1, . . . ,xi} for
i = 1, . . . , |B| − 1. Then

1 > f (B) =
|B|−1∑
i=0

∂xi+1
f (Bi) >

|B|−1∑
i=0

(
∂xi+1

f̃ (Bi)− ρ/6
)
> |B| · (ρ/3− ρ/6) = |B| · ρ/6 .

(6.5)
Therefore, it must be that |B| 6 6/ρ, and there are at most |U |6/ρ such sets over
|U | elements. �

Item 1 is shown next.

Claim 6.3.10 (Lipschitz). For every gB ∈ G, gB is submodular and

sup
x∈V (B),S⊆V (B)

∂xg
B(S) 6 ρ .

Proof. The proof of submodularity is identical to Claim 6.3.3. To establish
the Lipschitz property, observe that for every B ⊆ U , and every x ∈ V (B),
∂xf (B) 6 ∂xf̃ (B) + ρ/6 6 ρ. �

Definition of F and proof of Item 2. In addition to the sets V (B) = {x ∈U |
∂xf̃ (B) 6 2ρ/3}, we will define the sets V ′(B) = {x ∈ U | ∂xf̃ (B) 6 ρ/3}, note
that for every B ⊆U , V ′(B) ⊆ V (B). We define the promised mapping F(S) in
the the same manner as in the proof of Lemma 6.3.1, but we use V ′ in place
of V to decide whether or not we select an element x for inclusion in the set
F(S).

Now we establish Item 2 via the following claim, analogous to Claim 6.3.5
in the proof of Lemma 6.3.1

Claim 6.3.11 (Completeness). For every S ⊆U , F(S) ⊆ S ⊆ V (F(S)). Moreover,
gF(S)(S) = f (S).

Proof. Let P (S) = B0 ⊂ B1 ⊂ · · · ⊂ F(S). The fact that F(S) ⊆ S follows as in
Claim 6.3.5. To see that S ⊆ V (F(S)), assume there exists x ∈ S \V (F(S)). By
submodularity of f , and (6.4), we have

∂xf̃ (Bj) > ∂xf (Bj)− ρ/6 > ∂xf (F(S))− ρ/6 > ∂xf̃ (F(S))− ρ/3 > ρ/3.

Thus, ∂xf̃ (Bj) > ρ/3 for every set Bj . But if ∂xf (Bj) > ρ/3 for every Bj and
x ∈ S, then x < V ′(Bj) for every Bj , and it must be that x ∈ F(S). But then
∂xf (F(S)) = 0, contradicting the fact that x < V (F(S)).

The fact that gF(S)(S) = f (S) follows as in the proof of Claim 6.3.5. �
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Definition of T and proof of Item 3. We also define the promised mapping
T (S) in the same manner as in the proof of Lemma 6.3.1, but using V ′ in place
of V to decide whether or not we select an element x for inclusion in the set
F(S).

To establish Property 3, we note that the proofs of Claims 6.3.6 and 6.3.7
do not rely on the submodularity of f , therefore they apply as-is to the case
where we compute on f̃ , even though f̃ is not necessarily submodular.

Property 4 also follows as in the proof of Lemma 6.3.1. This completes the
proof of the Lemma. �

We now present our algorithm for learning monotone submodular func-
tions over product distributions. For a subset of the universe V ⊆ U , let PV
denote the distribution P restricted to the variables in V . Note that if P is a
product distribution, then PV remains a product distribution and is easy to
sample from.

Learn(f ,α,β,P ):

1. Let ρ = α2

6log(2/β) .

2. Construct the collection of functions G as well as the mappings F,V ,T
given by Lemma 6.3.8 with parameter ρ.

3. Estimate the value µgB = ES∼PV (B)\T (B)
[gB(S)] for each gB ∈ G.

Output the data structure h that consists of the values µgB for every gB ∈ G
as well as the mapping F.

Figure 6.3: Learning a monotone submodular function

Theorem 6.3.12. For any α,β ∈ (0,1], Algorithm 6.5 (α,β)-approximates any
submodular function f : 2U → [0,1] under any product distribution P in time
|U |O(α−2 log(1/β)) using oracle queries to f of tolerance α2/72log(2/β).

Proof. For a set S ⊆U , we let B = F(S) and gB be the corresponding submod-
ular function as in Lemma 6.3.8. Note that since the queries have tolerance
α2/72log(1/β) 6 ρ/12, the lemma applies. We will analyze the error proba-
bility as if the estimates µgB were computed using exact oracle queries to f ,
and will note that using tolerant queries to f can only introduce an additional
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error of α2/72log(1/β) 6 α/6. We claim that, under this condition

P

S∼P
{|f (S)− h(S)| > 5α/6} = P

S∼P

{∣∣∣gF(S)(S)−µgF(S)

∣∣∣ > 5α/6
}

=
∑
gB∈G

P

S∼P
{B = F(S)} · P

S∼P

{∣∣∣gB(S)−µgB
∣∣∣ > 5α/6 | B = F(S)

}
.

(6.6)

To see this, recall that for every S ⊆ U , gF(S)(S) = f (S). By Property 3 of
Lemma 6.3.1, the condition that B = F(S) is equivalent to the conditions that
B ⊆ S ⊆ V (B) and S ∩ T (B) = ∅. Hence,

P

S∼P

{∣∣∣gB(S)−µgB
∣∣∣ > 5α/6 | B = F(S)

}
= P

S∼PV (B)\T (B)

{∣∣∣gB(S)−µgB
∣∣∣ > 5α/6

}
.

Now, applying the concentration inequality for submodular functions stated
as Corollary 6.2.6, we get

P

S∼PVB\TB

{∣∣∣gB(S)−µgB
∣∣∣ > ρt} 6 2exp

(
− t2

2(1/ρ+ 5/6t)

)
. (6.7)

Plugging in t = 5α/6ρ = 5log(2/β)
α and simplifying we get

PS∼PV (B)\T (B)

{∣∣∣gB(S)−µgB
∣∣∣ > α} 6 β . Combining this with (6.6), the claim

follows. �

6.3.2 Non-monotone submodular functions

For non-monotone functions, we need a more refined argument. Our main
structure theorem replaces Property 1 in Lemma 6.3.1 by the stronger guar-
antee that |∂xg(S)| 6 α for all g ∈ G, even for non-monotone submodular
functions. Observe that for a submodular function f : 2V →R, the function
f : 2V →R defined as f (S) = f (V \S) is also submodular; moreover

inf
x∈V ,S⊆V

∂xf (S) = − sup
x∈V ,S⊆V

∂xf (S) . (6.8)

Given these two facts, we can now prove our main structure theorem.

Theorem 6.3.13. Given any submodular function f : 2U → [0,1] and ρ > 0,
Algorithm 6.4 makes the following guarantee. There are maps F : 2U → 2U × 2U

and T : 2U × 2U → 2U such that:

1. (Lipschitz) For every gB,C ∈ G, gB,C is submodular and satisfies
supx∈V (B,C),S⊆V (B,C) |∂xgB,C(S)| 6 ρ.
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Input: Tolerant oracle access to a submodular function f : 2U → [0,1] with
tolerance at most ρ/12 and parameter ρ > 0.

Let f̃ denote the function specified by tolerant oracle queries to f such
that for every S ⊆U, |f (S)− f̃ (S)| 6 ρ/12.
Let ≺ denote an arbitrary ordering of U .
Let G(f ) denote the collection of functions returned by Algorithm 6.2 with
oracle f and parameter ρ, and let Ff ,Vf ,Tf be the associated mappings
promised by Lemma 6.3.8.
for gB ∈ G(f ) do

Let G(B) be the collection of functions returned by Algorithm 6.2 with
oracle gB and parameter ρ, and let FB,VB,TB be the associated mappings
given by Lemma 6.3.8.

end for
Let V (S,T ) = Vf (S) ∩ VS(T ) denote the set of elements that have small
marginal absolute value with respect to S,T ⊆U .

Output: the collection of functions G =
⋃
gB∈G(f ){gB,C = gC | gC ∈ G(B)} where

gB,C : 2V (B,C)→ [0,1].

Figure 6.4: Decomposition for submodular functions from tolerant queries (Algo-
rithm 6.4)

2. (Completeness) For every S ⊆U , F(S) ⊆ S ⊆ V (F(S)) and gF(S)(S) = f (S).

3. (Uniqueness) For every gB,C ∈ G, F(S) = (B,C) if and only if B,C ⊆ S ⊆
V (B,C) and S ∩ T (B,C) = ∅.

4. (Size) The size of G is at most |G| = |U |O(1/ρ). Moreover, given tolerant oracle
access to f with tolerance ρ/12, we compute F,V ,T in time |U |O(1/ρ).

Proof. First we show Item 1.

Claim 6.3.14 (Lipschitz). For every gB,C ∈ G, gB,C is submodular and

sup
x∈V (B,C),S⊆V (B,C)

|∂xgB,C(S)| 6 ρ .

Proof. Submodularity follows directly from Property 1 of Lemma 6.3.8. The
same property of the lemma guarantees that for every gB ∈ G(f ) and gC ∈ G(B),
supx∈VB(C),S⊆VB(C)∂xg

C(S) 6 ρ. Moreover, by (6.8), infx∈Vf (B),S⊆Vf (B)∂xg
B(S) >

−ρ. Taken together, we obtain supx∈V (B,C),S⊆V (B,C) |∂xgB,C(S)| 6 ρ. �

111



Definition of F and proof of Item 2. Item 2 will follow from the analogous
property in Lemma 6.3.8 almost directly. To construct the mapping F(S), we
want to first compute the appropriate function gB ∈ G(f ), using Ff (S) and
then find the appropriate function gC ∈ G(B) using FB(S). Thus we can take
F(S) = (Ff (S),FFf (S)(S)). By Lemma 6.3.8, Item 2 we have B ⊆ S ⊆ Vf (B) and
C ⊆ S ⊆ VB(C), so we conclude B,C ⊆ S ⊆ V (B,C).

Definition of T and proof of Item 3. Item 3 will also follow from the analo-
gous property in Lemma 6.3.8. By Lemma 6.3.8, Item 3, we have that Ff (S) = B
if and only if B ⊆ S ⊆ Vf (B) and S ∩ Tf (B) = ∅. By the same Lemma, we also
have that FB(S) = C if and only if C ⊆ S ⊆ VB(C) and S ∩ TB(C) = ∅. So if we
define T (B,C) = Tf (B)∪ TB(C), we can conclude that F(S) = (B,C) if and only
if B,C ⊆ S ⊆ V (B,C) and S ∩ T (B,C) = ∅.

Now it is clear that F(S) = (B,C) if Ff (S) = B and FB(S) = C, which by
Item 3 of Lemma 6.3.8 necessitates that B ⊆ S ⊆ Vf (B), S ∩ Tf (B) = ∅, C ⊆
S ⊆ VB(S), and S ∩ TB(C) = ∅. We have already defined V (B,C) and now we
define T (B,C) = Tf (B)∪ TB(C). It is clear now that F(S) = (B,C) if and only if
B,C ⊆ S ⊆ V (B,C) and S ∩ T (B,C) = ∅.

The size of G and running time bounds in Item 4 also follow directly from
the analogous property of Lemma 6.3.1. The fact that we can compute the
family G and the associated mappings F,V ,T using oracle access to f with
tolerance ρ/12 follows from the fact that each invocation of Lemma 6.3.1
can be computed using queries with tolerance ρ/12 and from the fact that
Algorithm 6.4 only queries f in order to invoke Lemma 6.3.8. This completes
the proof of the theorem. �

We now present our algorithm for learning arbitrary submodular functions
over product distributions. For a subset of the universe V ⊆ C, let DV denote
the distribution D restricted to the variables in V . Note that if D is a product
distribution, then DV remains a product distribution and is easy to sample
from.

Learn(f ,α,β,D):

Let ρ = α2

6log(2/β) .

Construct the collection of functions G and the associated mappings
F,V ,T given by Lemma 6.3.1 with parameter ρ.
Estimate the value µgB,C = ES∼DV (B,C)\T (B,C)

[gB,C(S)] for each gB,C ∈ G.
Output the data structure h that consists of the values µgB,C for every
gB,C ∈ G as well as the mapping F.

Figure 6.5: Learning a non-monotone submodular function
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To avoid notational clutter, throughout this section we will not consider the
details of how we construct our estimate µg . However, it is an easy observation
that this quantity can be estimated to a sufficiently high degree of accuracy
using a small number of random samples.

Theorem 6.3.15. For any α,β ∈ (0,1], Algorithm 6.5 (α,β)-approximates any
submodular function f : 2U → [0,1] under any product distribution in time
|U |O(α−2 log(1/β)) using oracle queries to f of tolerance α2/72log(1/β)

Proof. For a set S ⊆ U , we let (B,C) = F(S) and gB,C be the corresponding
submodular function as in Theorem 6.3.13. Note that since the queries have
tolerance α2/72log(1/β) 6 ρ/12, the lemma applies. We will analyze the error
probability as if the estimates µgB were computed using exact oracle queries
to f , and will note that using tolerant queries to f can only introduce an
additional error of α2/72log(1/β) 6 α/6. We claim that,

P

S∼D
{|f (S)− h(S)| > 5α/6}

= P
S∼D

{∣∣∣gF(S)(S)−µgF(S)

∣∣∣ > 5α/6
}

=
∑
gB,C∈G

P

S∼D
{(B,C) = F(S)} · P

S∼D

{∣∣∣gB,C(S)−µgB,C
∣∣∣ > 5α/6 | (B,C) = F(S)

}
. (6.9)

To see this, recall that for every S ⊆ U , gF(S)(S) = f (S). By Property 3 of
Lemma 6.3.1, the condition that B = F(S) is equivalent to the conditions that
B,C ⊆ S ⊆ V (B,C) and S ∩ T (B,C) = ∅. Hence,

P

S∼D

{∣∣∣gB,C(S)−µgB,C
∣∣∣ > 5α/6 | (B,C) = F(S)

}
= P

S∼DV (B,C)\T (B,C)

{∣∣∣gB(S)−µgB
∣∣∣ > 5α/6

}
.

Now, applying the concentration inequality for submodular functions stated
as Corollary 6.2.6, we get

P

S∼DV (B,C)\T (B,C)

{∣∣∣gB,C(S)−µgB,C
∣∣∣ > ρt} 6 2exp

(
− t2

2(1/ρ+ 5t/6)

)
. (6.10)

Plugging in t = 5α/6ρ = 5log(2/β)
α and simplifying we get

PS∼DV (B,C)\T (B,C)

{∣∣∣gB,C(S)−µgB,C
∣∣∣ > α} 6 β . Combining this with Equation (6.9),

the claim follows. �

6.4 Applications to privacy-preserving query release

In this section, we show how to apply our algorithm from Section 6.3 to the
problem of releasing monotone conjunctions over a boolean database. In
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Section 6.4.1, we also show how our mechanism can be applied to release the
cut function of an arbitrary graph.

Let us now begin with the monotone disjunctions. We will then extend the
result to monotone conjunctions. Given our previous results, we only need to
argue that monotone disjunctions can be described by a submodular function.
Indeed, every element S ∈ {0,1}d naturally corresponds to a monotone Boolean
disjunction dS : {0,1}d → {0,1} by putting

dS(x) def=
∨

i : S(i)=1

xi .

Note that in contrast to Section 6.3 here we use x to denote an element
of {0,1}d . Let FDisj : {0,1}d → [0,1] be the function such that FDisj(S) = dS(D).
It is easy to show that FDisj(S) is a monotone submodular function.

Lemma 6.4.1. FDisj is a monotone submodular function.

Proof. Let X+
i denote the set of elements x ∈ D such that xi = 1, and let X−i

denote the set of elements x ∈ D such that xi = 0. Consider the set system
U = {X+

i ,X
−
i }
d
i=1 over the universe of elements x ∈ D. Then there is a natural

bijection between FDisj(D) and the set coverage function Cov : 2U → [0, |D |]
defined to be Cov(S) = |

⋃
X∈U X |, which is a monotone submodular function.

�

We therefore obtain the following corollary directly by combining Theo-
rem 6.3.15 with Proposition 2.9.1.

Corollary 6.4.2. Let α,β,ε > 0. There is an ε-differentially private algorithm
that (α,β)-releases the set of monotone Boolean disjunctions over any product
distribution in time dt(α,β) for any data set of size |D | > dt(α,β)/ε where t(α,β) =
O(α−2 log(1/β)).

For completeness, we will present the algorithm for privately releasing
monotone disjunctions over a product distribution P for a data set D, though
we will rely on Corollary 6.4.2 for the formal analysis.

We will next see that this corollary directly transfers to monotone con-
junctions. A monotone Boolean conjunction cS : {0,1}d → {0,1} is defined
as

cS(x) def=
∧
i∈S
xi = 1−

∨
i∈S

(1− xi) .

Given the last equation, it is clear that in order to release conjunctions over
some distribution, it is sufficient to release disjunctions over the same distri-
bution after replacing every data item x ∈D by its negation x̄, i.e., x̄i = 1− xi .
Hence, Corollary 6.4.2 extends directly to monotone conjunctions.
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Release(D,α,β,ε,P ):

1. Simulate the oracle queries FDisj(S) by answering with dS(D) +
Lap(1/ε|D |).

2. Let ρ = α2

6log(2/β) .

3. Construct the collection of functions G and the associated mappings
F,V ,T given by Lemma 6.3.1 on the function FDisj with parameter ρ.

4. Estimate the value µgB = ES∼PV (B)\T (B)
[gB(S)] for each gB ∈ G.

Output the data structure h that consists of the estimated values µgB for
every gB ∈ G as well as the mapping F. To evaluate any monotone disjunction
query dS(D), compute µgF(S) .

Figure 6.6: Privately releasing monotone disjunctions

Extension to width w. Note that the uniform distribution on disjunctions
of width w is not a product distribution, which is what we require to apply
Theorem 6.3.15 directly. However, in Lemma 6.4.3 we show that for monotone
submodular functions (such as FDDisj) the concentration of measure property
required in the proof Theorem 6.3.15 is still satisfied. Of course, we can instan-
tiate the theorem for every w ∈ {1, . . . , k} to obtain a statement for conjunctions
of any width.

Indeed, given a monotone submodular function f : 2U → R, let S ∈ 2U

be the random variable where for every x ∈ U, independently x ∈ S with
probability w/d and x < S with probability 1 −w/d. On the other hand, let
T ∈ 2U denote the uniform distribution over strings in 2U of weight w. The
following lemma is due to Balcan and Harvey [BH].

Lemma 6.4.3. Assume f : 2U →R is monotone function, and S and T are chosen
at random as above. Then,

P[f (T ) > τ] 6 2P[f (S) > τ] (6.11)

P[f (T ) 6 τ] 6 2P[f (S) 6 τ] (6.12)

Remark 6.4.4. Throughout this section we focus on the case of monotone dis-
junctions and conjunctions. Our algorithm can be extended to non-monotone
conjunctions/disjunctions as well. However, this turns out to be less interest-
ing than the monotone case. Indeed, a random non-monotone conjunction
of width w is false on any fixed data item with probability 2−w, thus when
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w > log(1/α), the constant function 0 is a good approximation to FDisj on
a random non-monotone conjunction of width w. We therefore omit the
non-monotone case from our presentation.

6.4.1 Releasing the cut function of a graph

Consider a graph G = (V ,E) in which the edge-set represents the private
database (We assume here that each individual is associated with a single edge
in G. The following discussion generalizes to the case in which individuals
may be associated with multiple edges, with a corresponding increase in
sensitivity). The cut function associated with G is fG : 2V → [0,1], defined as:

fG(S) =
1
|V |2
· |{(u,v) ∈ E : u ∈ S,v < S}|

We observe that the graph cut function encodes a collection of counting
queries over the database E and so has sensitivity 1/ |V |2.

Fact 6.4.5. For any graph G, fG is submodular.

Lemma 6.4.6. The decomposition from Theorem 6.3.13 constructs a collection of
functions G of size |G| 6 22/α.

Proof. Let u ∈ V , and S ⊂ V such that |∂ufG(S)| > α. It must be that the degree
of u in G is at least α · |E|. But there can be at most 2/α such high-influence
vertices, and therefore at most 22/α subsets of high influence vertices. �

Corollary 6.4.7. Algorithm 6.5 can be used to privately (α,β)-release the cut
function on any graph over any product distribution in time t(α,β,ε) for any
database of size |D | > t(α,β,ε), while preserving ε-differential privacy, where:

t(α,β,ε) =
2O(α−2 log(1/β))

ε

Proof. This follows directly from a simple modification of Theorem 6.3.15,
by applying Lemma 6.4.6 and plugging in the size of the decomposition G.
The algorithm can then be made privacy preserving by applying proposition
2.9.1. �

6.5 Equivalence between agnostic learning and query
release

In this section we show an information-theoretic equivalence between agnostic
learning and query release in the statistical queries model. In particular, given
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an agnostic learning algorithm for a specific concept class we construct a
query release algorithm for the same concept class.

Consider a distribution A over X × {0,1} and a concept class C. An ag-
nostic learning algorithm (in the strong sense) finds the concept q ∈ C that
approximately maximizes P(x,b)∼A {q(x) = b} to within an additive error of α.
Our reduction from query release to agnostic learning actually holds even for
weak agnostic learning. A weak agnostic learner is not required to maximize
P(x,b)∼A {q(x) = b}, but only to find a sufficiently good predicate q provided
that one exists.

Definition 6.5.1 (Weak Agnostic SQ-Learning). Let C be a concept class and
γ,τ > 0 and 0 < β < α 6 1/2. An algorithm A with oracle access to STATτ(A)
is an (α,β,γ,τ)-weak agnostic learner for C if for every distribution A such
that there exists q∗ ∈ C satisfying P(x,b)∼A {q∗(x) = b} > 1/2 +α , A(A) outputs a
predicate q : X→ {0,1} such that P(x,b)∼A {q(x) = b} > 1/2 + β , with probability
at least 1−γ.

Note that if we can agnostically learn C in the strong sense from queries
of tolerance τ to within additive error α − β with probability 1−γ, then there
is also an (α,β,γ,τ)-weak agnostic learner.

We are now ready to state the main result of this section, which shows that
a weak agnostic SQ-learner for any concept class is sufficient to release the
same concept class in the SQ model.

Theorem 6.5.2. Let C be a concept class. Let A be an algorithm that (α/2,β,γ,τ)
weak agnostic-SQ learns C with τ 6 β/8. Then there exists an algorithm B that
invokes A at most T = 8log |X |/β2 times and (α,0)-releases C with probability at
least 1− T γ .

The proof strategy is as follows. We will start from D0 being the uniform
distribution over X. We will then construct a short sequence of distributions
D1,D2, . . . ,DT such that no concept in C can distinguish between D and DT
up to bias α. Each distribution Dt is obtained from the previous one using
a multiplicative weights approach as in Chapter 4 and with the help of the
learning algorithm that’s given in the assumption of the theorem. Intuitively,
at every step we use the agnostic learner to give us the predicate qt ∈ C which
distinguishes the most between Dt and D. In order to accomplish this we feed
the agnostic learner with the distribution At that labels elements sampled
fromD by 1 and elements sampled fromDt by 0. For a technical reason we also
need to consider the distribution with 0 and 1 flipped. Once we obtained qt
we can use it as a penalty function in the update rule of the multiplicative
weights method. This has the effect of bringing D and Dt closer in relative
entropy. A typical potential argument then bounds the number of update
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Let D0 denote the uniform distribution over X.
For t = 1, ...,T = d8log |X |/β2e+ 1:

1. Consider the distributions

A+
t = 1/2(D,1) + 1/2(Dt−1,0) A−t = 1/2(D,0) + 1/2(Dt−1,1) .

Let q+
t = A(A+

t ) and q−t = A(A−t ). Let v+
t be the value returned by

STATτ(A+
t ) on the query q+

t and v−t be the value returned by STATτ(A−t )
on the query q−t . Let vt = max{v+

t ,v
−
t } −1/2 and qt be the corresponding

query.

2. If
vt 6

β

2
− τ , (6.13)

then proceed to “output” step.

3. Update: Let Dt be the distribution obtained from Dt−1 using a multi-
plicative weights update step with penalty function induced by qt and
penalty parameter η = β/2 as follows:

D ′t(x) = exp(ηqt(x)) ·Dt−1(x)

Dt(x) =
D ′t∑

x∈XD
′
t(x)

Output: ac = Ex∼DT c(x) for each c ∈ C.

Figure 6.7: Data release via agnostic learning

steps that can occur before we reach a distribution Dt for which no good
distinguisher in C exists.

6.5.1 Proof of Theorem 6.5.2

Proof. We start by relating the probability that qt predicts b from x on the
distribution A+

t to the difference in expectation of qt on D and Dt−1.

Lemma 6.5.3. For any q : X→ {0,1},

P

(x,b)∼A+
t

{q(x) = b} − 1
2

=
1
2

(
E

x∼D
q(x)− E

x∼Dt−1
q(x)

)
(6.14)
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Proof. If qt = q+
t then

P

(x,b)∼A+
t

{q(x) = b} = 1
2
P

x∼D
{q(x) = 1}+ 1

2
P

x∼Dt−1
{q(x) = 0}

=
1
2
E

x∼D
[q(x)] +

1
2
E

x∼Dt−1
[1− q(x)]

=
1
2

+
1
2

(
E

x∼D
q(x)− E

x∼Dt−1
q(x)

)
Note thatP(x,b)∼A−t {q(x) = b} = 1−P(x,b)∼A−t {q(x) = (1−b)} = 1−P(x,b)∼A+

t
{q(x) = b},

so if qt = q−t then

P

(x,b)∼A+
t

{q(x) = b} = 1− P

(x,b)∼A−t
{q(x) = b} = 1−

(
1
2
− 1

2

(
E

x∼D
q(x)− E

x∼Dt−1
q(x)

))
=

1
2

+
1
2

(
E

x∼D
q(x)− E

x∼Dt−1
q(x)

)
�

The proof closely follows the utility analysis in Chapter 4. For two
distributions P ,Q on a universe X we define the relative entropy to be
RE(P ||Q) =

∑
x∈X P (x) log(P (x)/Q(x)). We consider the potential

Ψt = RE(D ||Dt) .

Fact 6.5.4. Ψt > 0

Fact 6.5.5. Ψ0 6 log |X |

We will argue that in every step the potential drops by at least β2/4.
Hence, we know that there can be at most 4log |X |/α2 steps before we reach a
distribution that satisfies (6.13).

The next lemma gives a lower bound on the potential drop in terms of the
concept, qt, returned by the learning algorithm at time t. Recall, that η (used
below) is the penalty parameter used in the multiplicative weights update
rule.

Lemma 6.5.6 (cf. Lemma 4.3.5).

Ψt−1 −Ψt > η
∣∣∣∣∣ Ex∼D qt(x)− E

x∼Dt−1
qt(x)

∣∣∣∣∣− η2 (6.15)

Let

optt = sup
q∈C

∣∣∣∣∣∣ P(x,b)∼A+
t

{q(x) = b} −
1
2

∣∣∣∣∣∣ .
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Note that P(x,b)∼A−t {q(x) = b} = 1 −P(x,b)∼A+
t
{¬q(x) = b}. For the remainder of

the proof we treat the two cases symmetrically and only look at how far from
1/2 these probabilities are. The next lemma shows that either optt is large
or else we are done in the sense that Dt is indistinguishable from D for any
concept from C.

Lemma 6.5.7. Let α > 0. Suppose

optt 6
α

2
.

Then, for all q ∈ C, ∣∣∣∣∣ Ex∼D q(x)− E
x∼Dt

qt(x)
∣∣∣∣∣ 6 α (6.16)

Proof. From Lemma 6.5.3 we have that for every q ∈ C

α

2
> optt > P

(x,b)∼A+
t

{q(x) = b} − 1
2

=
1
2

(
E

x∼D
q(x)− E

x∼Dt
qt(x)

)
Thus α >

(
Ex∼D q(x)−Ex∼Dt qt(x)

)
. Similarly,

α

2
> optt > P

(x,b)∼A−t
{q(x) = b} − 1

2
=

1
2

(
E

x∼Dt
q(x)− E

x∼D
qt(x)

)
Thus −α 6

(
Ex∼D q(x)−Ex∼Dt qt(x)

)
. So we conclude α >∣∣∣Ex∼D q(x)−Ex∼Dt qt(x)

∣∣∣ . �

We can now finish the proof of Theorem 6.5.2. By our assumption, we
have that so long as optt > α/2 the algorithm A produces a concept qt such
that with probability 1−γ∣∣∣∣∣∣ P(x,b)∼A+

t

{qt(x) = b} − 1
2

∣∣∣∣∣∣ > β . (6.17)

For the remainder of the proof we assume that our algorithm returns a concept
satisfying Equation 6.17 in every stage for which optt > α/2. By a union bound
over the stages of the algorithm, this event occurs with probability at least
1− T γ .

Assuming Equation 6.13 is not satisfied we have that

β

4
6
β

2
− 2τ 6 vt − τ 6

∣∣∣∣∣∣PA+
t

{qt(x) = b}
∣∣∣∣∣∣ .
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The leftmost inequality follows because τ 6 β/8. We then get

Ψt−1 −Ψt > η
∣∣∣∣∣ED qt(x)− E

Dt−1
qt(x)

∣∣∣∣∣− η2 (Lemma 6.5.6)

> η

∣∣∣∣∣4PAt{qt(x) = b} − 2
∣∣∣∣∣− η2 (Lemma 6.5.3)

> η · β − η2 (Equation 6.13 not satisfied)

>
β2

2
−
β2

4
(η = β/2)

=
β2

4

Hence, if we put T > 4log |X |/β2, we must reach a distribution that satis-
fies (6.13). But at that point, call it t, the subroutine A outputs a concept qt
such that ∣∣∣∣∣∣ P(x,b)∼A+

t

(qt(x) = b)− 1
2

∣∣∣∣∣∣ 6 vt + τ <
β

2
+ τ < β

In this case, by our assumption that Equation 6.17 is satisfied whenever
optt > 1/2 +α/2, we conclude that optt < 1/2 +α/2. By Lemma 8.2.4, we get

sup
q∈C

∣∣∣∣∣ Ex∼D q(x)− E
x∼Dt

qt(x)
∣∣∣∣∣ 6 α .

But this is what we wanted to show, since it means that our output on all
concepts in C will be accurate up to error α. �

We remark that for clarity, we let the failure probability of the release
algorithm grow linearly in the number of calls we made to the learning
algorithm (by the union bound). However, this is not necessary: we could
have driven down the probability of error in each stage by independent
repetition of the agnostic learner.

This equivalence between release and agnostic learning also can easily be
seen to hold in the reverse direction as well.

Theorem 6.5.8. Let C be a concept class. If there exists an algorithm B that
(α,0)-releases C with probability 1 − γ and accesses the database using at most
k oracle accesses to STATτ(A), then there is an algorithm that makes 2k queries
to STATτ(A) and agnostically learns C in the strong sense with accuracy 2α with
probability at least 1− 2γ .

Proof. Let Y denote the set of examples with label 1, and let N denote the set
of examples with label 0. We use STATτ(A) to simulate oracles STATτ(Y ) and

121



STATτ(N ) that condition the queried concept on the label. That is, STATτ(Y ),
when invoked on concept q, returns an approximation to Px∼A{q(x) = 1∧ (x ∈
Y )} and STATτ(N ) returns an approximation to Px∼A{q(x) = 1∧ (x ∈ Y )]. We
can simulate a query to either oracle using only one query to STATτ(A).

Run B(Y ) to obtain answers aY1 , . . . , a
Y
|C|, and run B(N ) to obtain answers

aN1 , . . . , a
N
|C|. Note that this takes at most 2k oracle queries, using the simulation

described above, by our assumption on B. By the union bound, except with
probability 2γ , we have for all qi ∈ C: |qi(Y )− aYi | 6 α and |qi(B)− aNi | 6 α. Let
q∗ = argmaxqi∈C(aYi − a

N
i ). Observe that q∗(D) >maxq∈C q(D)− 2α, and so we

have agnostically learned C up to error 2α. �

Feldman proves that even monotone conjunctions cannot be agnostically
learned to subconstant error with polynomially many SQ queries:

Theorem 6.5.9 ([Fel]). Let C be the class of monotone conjunctions. Let k(d) be
any polynomial in d, the dimension of the data space. There is no algorithm A
which agnostically learns C to error o(1) using k(d) queries to STAT1/k(d).

Corollary 6.5.10. For any polynomial in d k(d), no algorithm that makes k(d)
statistical queries to a database of size k(d) can release the class of monotone
conjunctions to error o(1).

Note that formally, Corollary 6.5.10 only precludes algorithms which
release the approximately correct answers to every monotone conjunction,
whereas our algorithm is allowed to make arbitrary errors on a small fraction
of conjunctions.

Remark 6.5.11. It can be shown that the lower bound from Corollary 6.5.10
in fact does not hold when the accuracy requirement is relaxed so that the
algorithm may err arbitrarily on 1% of all the conjunctions. Indeed, there
is an inefficient algorithm (runtime poly(2d)) that makes poly(d) statistical
queries and releases random conjunctions up to a small additive error. The
algorithm roughly proceeds by running multiplicative weights privately while
sampling, say, 1000 random conjunctions at every step and checking if any of
them have large error. If so, an update occurs. We omit the formal description
and analysis of the algorithm.

We also remark that the proofs of Theorems 6.5.2 and 6.5.8 are not partic-
ular to the statistical queries model: we showed generically that it is possible
to solve the query release problem using a small number of black-box calls to
a learning algorithm, without accessing the database except through the learn-
ing algorithm. This has interesting implications for any class of algorithms
that may make only restricted access to the database. For example, this also
proves that if it is possible to agnostically learn some concept class C while
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preserving ε-differential privacy (even using algorithms that do not fit into
the SQ model), then it is possible to release the same class while preserving
T ε ≈ log |X |ε-differential privacy.
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Chapter 7

Private Data Release via Learning
Thresholds

7.1 Introduction

In Chapters 3–5, we saw algorithms and techniques for differentially private
data analysis that allow accurate statistics for a rich class of queries. The
most important shortcoming of these algorithms is that the running time
depends linearly on the size of the data universe. This is tolerable for some
practical applications as we demonstrated in Chapter 5. However, when the
data dimensionality is large, the universe size becomes prohibitive.

Thus, a central question in differentially private data analysis is to de-
velop general techniques and algorithms that are efficient in the sense that
the running time is polynomial (or at least sub-exponential) in the data
dimensionality. While some computational hardness results are known
[DNR+, UV, GHRU], they apply only to restricted classes of data release
algorithms.

In Chapter 6 we made a first step towards this goal by presenting an
algorithm for releasing Boolean conjunctions with small error on most con-
junctions. Our algorithm was based on a reduction to learning submodular
functions in a certain sense. In this chapter we will strengthen the connection
between private data release and learning theory significantly. As a result
we will obtain several new release mechanism that all share the characteris-
tic that the running time is subexponential or even polynomial in the data
dimensionality.

This Work. Our primary contribution is a computationally efficient new
tool for privacy-preserving data release: a general reduction to the task of
learning thresholds of sums of predicates. The class of predicates (for learning)
in our reduction is derived directly from the class of queries (for data release).

At a high level, we draw a connection between data release and learning as
follows. In the data release setting, one can view the database as a function: it
maps queries in Q to answers in [0,1]. The data release goal is approximating
this function on queries/examples in Q. The challenge is doing so with only
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bounded access to the database/function; in particular, we only allow access
that preserves differential privacy. For example, this often means that we only
get a bounded number of oracle queries to the database function with noisy
answers.

At this high level there is a striking similarity to learning theory, where
a standard goal is to efficiently learn/approximate a function given limited
access to it, e.g. a bounded number of labeled examples or oracle queries.
Thus a natural approach to data release is learning the database function using
a computational learning algorithm.

While the approach is intuitively appealing at this high level, it faces
immediate obstacles because of apparent incompatibilities between the re-
quirements of learning algorithms and the type of “limited” access to data that
are imposed by private data release. For example, in the data release setting a
standard technique for ensuring differential privacy is adding noise, but many
efficient learning algorithms fail badly when run on noisy data. As another
example, for private data release, the number of (noisy) database accesses
is often very restricted: e.g sub-linear, or at most quadratic in the database
size. In the learning setting, on the other hand, it is almost always the case
that the number of examples or oracle queries required to learn a function is
lower bounded by its description length (and is often a large polynomial in the
description length).

Our work explores the connection between learning and private data
release. We

(i) give an efficient reduction that shows that, in fact, a general class of
data release tasks can be reduced to related and natural computational
learning tasks; and

(ii) instantiate this general reduction using new and known learning algo-
rithms to obtain new computationally efficient differentially private data
release algorithms.

Before giving more details on our reduction in Section 7.1.1, we briefly
discuss its context and some of the ways that we apply/instantiate it. While
the search for efficient differentially private data release algorithms is rela-
tively new, there are decades of work in learning theory aimed at developing
techniques and algorithms for computationally efficient learning, going back
to the early work of Valiant [Val]. Given the high-level similarity between the
two fields, leveraging the existing body of work and insights from learning
theory for data release is a promising direction for future research; we view
our reduction as a step in this direction. We note that our work is by no means
the first to draw a connection between privacy-preserving data release and
learning theory; as discussed in the “Related Work” section below, several
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prior works used learning techniques in the data release setting. A novelty in
our work is that it gives an explicit and modular reduction from data release
to natural learning problems. Conceptually, our reduction overcomes two
main hurdles:

— bridging the gap between the noisy oracle access arising in private data
release and the noise-free oracle access required by many learning algo-
rithms (including the ones we use).

— avoiding any dependence on the database size in the complexity of the
learning algorithm being used.

We use this reduction to construct new data release algorithms. In this
work we explore two main applications of our reduction. The first aims to
answer boolean conjunction queries (also known as contingency tables or
marginal queries), one of the most well-motivated and widely-studied classes
of statistical queries in the differential privacy literature. Taking the data
universe U to be {0,1}d , the w-way boolean conjunction corresponding to a
subset S of k attributes in [d] counts what fraction of items in the database
have all the attributes in S set to 1. Approximating the answers for w-way
conjunctions (or all conjunctions) has been the focus of several past works
(see, e.g. [BCD+, KRSU, UV, GHRU]). Applying our reduction with a new
learning algorithm tailored for this class, we obtain a data release algorithm

that, for databases of size d
O
(√

w log(w logd)
)
, releases accurate answers to all

w-way conjunctions simultaneously (we ignore for now the dependence of
the database size on other parameters such as the error). The running time
is poly(dw). Previous algorithms either had running time 2Ω(d) (e.g. [DNR+])
or required a database of size dw/2 (adding independent noise [DMNS]). We
also obtain better bounds for the task of approximating the answers to a
large fraction of all (i.e. d-way) conjunctions under arbitrary distributions.
These results follow from algorithms for learning thresholds of sums of the
relevant predicates; we base these algorithms on learning theory techniques
for representing such functions as low-degree polynomial threshold functions,
following works such as [KS, KOS]. We give an overview of these results in
Section 7.1.2 below.

Our second application uses Fourier analysis of the database (viewed,
again, as a real-valued function on the queries in Q). We obtain new polyno-
mial and quasi-polynomial data release algorithms for parity counting queries
and low-depth (AC0) counting queries respectively. The learning algorithms
we use for this are (respectively) Jackson’s Harmonic Sieve algorithm [Jac],
and an algorithm for learning Majority-of-AC0 circuits due to Jackson et al.
[JKS]. We elaborate on these results in Section 7.1.3 below.
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7.1.1 Private data release reduces to learning thresholds

In this section we give more details on the reduction from privacy-preserving
data release to learning thresholds. The full details are in Sections 7.2 and 7.3.
We begin with loose definitions of the data release and learning tasks we
consider, and then proceed with (a simple case of) our reduction.

Counting Queries, Data Release and Learning Thresholds. We refer to an
element u in data domain U as an item. A database is a collection of n items
from U . A counting query is specified by a predicate p : U → {0,1}, and
the query qp on database D outputs the fraction of items in D that satisfy
p, i.e. 1

n

∑n
i=1p(Di). A class of counting queries is specified by a set Q of

query descriptions and a predicate P : Q×U → {0,1}. For a query q ∈ Q, its
corresponding predicate is P (q, ·) : U → {0,1}. We will sometimes fix a data
item u ∈U and consider the predicate pu(·) , P (·,u) :Q→ {0,1}.

Fix a data domain U and query class Q (specified by a predicate P ). A
data release algorithm A gets as input a database D, and outputs a synopsis
S : Q → [0,1] that provides approximate answers to queries in Q. We say
that A is an (α,β,γ) distribution-free data release algorithm for (U ,Q, P ) if,
for any distribution G over the query set Q, with probability 1 − β over the
algorithm’s coins, the synopsis S satisfies that with probability 1−γ over q ∼ G,
the (additive) error of S on q is bounded by α. Later we will also consider
data release algorithms that only work for a specific distribution or class of
distributions (in this case we will not call the algorithm distribution-free).
Finally, we assume for now that the data release algorithm only accesses the
distribution G by sampling queries from it, but later we will also consider
more general types of access (see below). A differentially private data release
algorithm is one whose output distribution (on synopses) is differentially
private as per Definition 2.1.2. See Definition 7.2.3 for full and formal details.

Fix a class Q of examples and a set F of predicates on Q. Let Fn,t be
the set of thresholded sums from F , i.e., the set of functions of the form
f = I

{
1
n

∑n
i=1 fi > t

}
, where fi ∈ F for all 1 6 i 6 n. We refer to functions in Fn,t

as n-thresholds. An algorithm for learning thresholds gets access to a function
in Fn,t and outputs a hypothesis h :Q→ {0,1} that labels examples in Q. We say
that it is a (γ,β) distribution-free learning algorithm for learning thresholds
over (Q,F ) if, for any distribution G over the set Q, with probability 1−β over
the algorithm’s coins the output hypothesis h satisfies that with probability
1 − γ over q ∼ G, h labels q correctly. As above, later we will also consider
learning algorithms that are not distribution free, and only work for a specific
distribution or class or distributions. For now, we assume that the learning
algorithm only accesses the distributionG by drawing examples from it. These
examples are labeled using the target function that the algorithm is trying to
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learn. See Definition 7.2.4 for full and formal details.

The Reduction. We can now describe (a simple case of) our reduction from
differentially private data release to learning thresholds. For any data domain
U , set Q of query descriptions, and predicate P :Q×U → {0,1}, the reduction
shows how to construct a (distribution free) data release algorithm given a
(distribution free) algorithm for learning thresholds over (Q, {pu : u ∈U }), i.e.,
any algorithm for learning thresholds where Q is the example set and the set
F of predicates (over Q) is obtained by the possible ways of fixing the u-input
to P . The resulting data release algorithm is (α,β,γ)-accurate as long as the
database is not too small; the size bound depends on the desired accuracy
parameters and on the learning algorithm’s sample complexity. The efficiency
of the learning algorithm is preserved (up to mild polynomial factors).

Theorem 7.1.1 (Reduction from Data Release to Learning Thresholds, Simpli-
fied). LetU be a data universe,Q a set of query descriptions, and P : Q×U → {0,1}
a predicate. There is an ε-differentially private (α,β,γ)-accurate distribution free
data-release algorithm for (U ,Q, P ), provided that:

1. there is a distribution-free learning algorithmL that (γ ,β)-learns thresholds
over (Q, {pu : u ∈ U }) using b(n,γ,β) labeled examples and running time
t(n,γ,β) for learning n-thresholds.

2. n > C·b(n′ ,γ ′ ,β′)·log(1/β)
ε·α·γ , where n′ = Θ(log |Q|/α2), β′ = Θ(β ·α), γ ′ = Θ(γ ·α),

C = Θ(1).

Moreover, the data release algorithm only accesses the query distribution by
sampling. The number of samples taken is O(b(n′,γ ′,β′) · log(1/β)/γ) and the
running time is

poly(t(n′,γ ′,β′),n,1/α, log(1/β),1/γ) .

Section 7.2.2 gives a formal (and more general) statement in Theorem 7.2.8.
Section 7.2.3 gives a proof overview, and Section 7.3 gives the full proof.
Note that, since the data release algorithm we obtain from this reduction is
distribution free (i.e. works for any distribution on the query set) and only
accesses the query distribution by sampling, it can be boosted to yield accurate
answers on all the queries [DRV].

A More General Reduction. For clarity of exposition, we gave above a sim-
plified form of the reduction. This assumed that the learning algorithm is
distribution-free (i.e. works for any distribution over examples) and only re-
quires sampling access to labeled examples. These strong assumptions enable
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us to get a distribution-free data release algorithm that only accesses the query
distribution by sampling.

We also give a reduction that applies even to distribution-specific learning
algorithms that require (a certain kind of) oracle access to the function being
learned. In addition to sampling labeled examples, the learning algorithm can:
(i) estimate the distribution G on any example q by querying q and receiving a
(multiplicative) approximation to the probabilityG[q]; and (ii) query an oracle
for the function f being learned on any q such that G[q] , 0. We refer to this
as approximate distribution restricted oracle access, see Definition 7.2.5. Note
that several natural learning algorithms in the literature use oracle queries in
this way; in particular, we show that this is true for Jackson’s Harmonic Sieve
Algorithm [Jac], see Section 7.5.

Our general reduction gives a data release algorithm for a class GQ of
distributions on the query set, provided we have a learning algorithm which
can also use approximate distribution restricted oracle access, and which
works for a slightly richer class of distributions GQ′ (a smooth extension, see
Definition 7.2.7). Again, several such algorithms (based on Fourier analysis)
are known in the literature; our general reduction allows us to use them and
obtain the new data release results outlined in Section 7.1.3.

Related Work: Privacy and Learning. Our new reduction adds to the fruit-
ful and growing interaction between the fields of differentially private data
release and learning theory. Prior works also explored this connection. In
our work, we “import” learning theory techniques by drawing a correspon-
dence between the database (in the data release setting), for which we want to
approximate query answers, and the target function (in the learning setting)
which labels examples. Several other works have used this correspondence
(implicitly or explicitly), e.g. [DNR+, DRV, GHRU]. A different view, in which
queries in the data release setting correspond to concepts in learning theory,
was used in [BLR] and also in [GHRU].

There is also work on differentially private learning algorithms in which
the goal is to give differentially private variants of various learning algo-
rithms [BDMN, KLN+].

7.1.2 Applications (Part I): Releasing Conjunctions

We use the reduction of Theorem 7.1.1 to obtain new data release algorithms
“automatically” from learning algorithms that satisfy the theorem’s require-
ments. Here we describe the distribution-free data release algorithms we
obtain for approximating conjunction counting queries. These use learning
algorithms (which are themselves distribution-free and require only random
examples) based on polynomial threshold functions.
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Throughout this section we fix the query class under consideration to
be conjunctions. We take U = {0,1}d , and a (monotone) conjunction q ∈
Q = {0,1}d is satisfied by u iff ∀i s.t. qi = 1 it is also the case that ui = 1.
(Our monotone conjunction results extend easily to general non-monotone
conjunctions with parameters unchanged.1) Our first result is an algorithm
for releasing w-way conjunctions:

Theorem 7.1.2 (Distribution-Free Data Release forw-way conjunctions). There
is an ε-differentially private (α,β,γ)-accurate distribution-free data release algo-
rithm, which accesses the query distribution only by sampling, for the class of
w-way monotone Boolean conjunction queries. The algorithm has runtime poly(n)
on databases of size n provided that

n > d
O
(√
w log

(
w logd
α

))
· Õ

(
log(1/β)3

εαγ2

)
.

Since this is a distribution-free data release algorithm that only accesses
the query distribution by sampling, we can use the boosting results of [DRV]
and obtain a data release algorithm that generates (w.h.p.) a synopsis that is
accurate for all queries. This increases the running time to dw ·poly(n) (because
the boosting algorithm needs to enumerate over all the w-way conjunctions).
The required bound on the database size increases slightly but our big-Oh
notation hides this small increase. The corollary is stated formally below:

Corollary 7.1.3 (Boosted Data Release for w-way Conjunctions). There is an ε-
differentially private (α,β,γ = 0)-accurate distribution-free data release algorithm
for the class of w-way monotone Boolean conjunction queries with runtime dw ·
poly(n) on databases of size n, provided that

n > d
O
(√
w log

(
w logd
α

))
· Õ

(
log(1/β)3

εα

)
.

We also obtain a new data release algorithm for releasing the answers to
all conjunctions:

Theorem 7.1.4 (Distribution-Free Data Release for All Conjunctions). There
is an ε-differentially private (α,β,γ)-accurate distribution-free data release algo-
rithm, which accesses the query distribution only by sampling, for the class of all

1To see this, extend the data domain to be {0,1}2d , and for each item in the original
domain include also its negation. General conjunctions in the original data domain can now
be treated as monotone conjunctions in the new data domain. Note that the locality of a
conjunction is unchanged. Our results in this section are for arbitrary distributions over the
set of monotone conjunctions (over the new domain), and so they will continue to apply to
arbitrary distributions on general conjunctions over the original data domain.
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monotone Boolean conjunction queries. The algorithm has runtime poly(n) on
databases of size n, provided that

n > dO(d1/3·log2/3( dα )) · Õ
(

log(1/β)3

εαγ2

)
.

Again, we can apply boosting to this result; this gives improvements over
previous work for a certain range of parameters (roughly w ∈ [d1/3,d2/3]). We
omit the details.

Related Work on Releasing Conjunctions. Several past works have consid-
ered differentially private data release for conjunctions and w-way conjunc-
tions (also known as marginals and contingency tables). As a corollary of their
more general Laplace and Gaussian mechanisms, the work of Dwork et al.
[DMNS] showed how to release all w-way conjunctions in running time dO(w)

provided that the database size is at least dO(w). Barak et al. [BCD+] showed
how to release consistent contingency tables with similar database size bounds.
The running time, however, was increased to exp(d). We note that our data-
release algorithms do not guarantee consistency. Gupta et al. [GHRU] gave
distribution-specific data release algorithm for w-way and for all conjunctions.
These algorithms work for the uniform distribution over (k-way or general)
conjunctions. The database size bound and running time were (roughly)
dÕ(1/α2). For distribution-specific data release on the uniform distribution,
the dependence on d in their work is better than our algorithms but the depen-
dence on α is worse. Finally, we note that the general information-theoretic
algorithms for differentially private data release also yield algorithms for the
specific case of conjunctions. These algorithms are (significantly) more compu-
tationally expensive, but they have better database size bounds. For example,
the algorithm of [HR] has running time exp(d) but database size bound is
(roughly) Õ(d/α2) (for the relaxed notion of (ε,δ)-differential privacy).

In terms of negative results, Ullman and Vadhan [UV] showed that, under
mild cryptographic assumptions, no data release algorithm for conjunctions
(even 2-way) can output a synthetic database in running time less than exp(d)
(this holds even for distribution-specific data release on the uniform distribu-
tion). Our results side-step this negative result because the algorithms do not
release a synthetic database.

Kasiviswanathan et al. [KRSU] showed a lower bound of
Ω̃

(
min

{
dw/2/α,1/α2

})
on the database size needed for releasing w-way

conjunctions. To see that this is consistent with our bounds, note that our

bound on n is always larger than f (α) = 2
√
w log(1/α)/α. We have f (α) < 1/α2

only if w < log(1/α). But in the range where w < log(1/α) our theorem needs n
to be larger than dw/α which is consistent with the lower bound.

131



7.1.3 Applications (Part II): Fourier-Based Approach

We also use Theorem 7.1.1 (in its more general formulation given in Sec-
tion 7.2.2) to obtain new data release algorithms for answering parity count-
ing queries (in polynomial time) and general AC0 counting queries (in quasi-
polynomial time). For both of these we fix the data universe to be U = {0,1}d ,
and take the set of query descriptions to also be Q = {0,1}d (with different
semantics for queries in the two cases). Both algorithms are distribution-
specific, working for the uniform distribution over query descriptions,2 and
both instantiate the reduction with learning algorithms that use Fourier anal-
ysis of the target function. Thus the full data release algorithms use Fourier
analysis of the database (viewed as a function on queries).

Parity Counting Queries. Here we consider counting queries that, for a
fixed q ∈ {0,1}d , output how many items in the database have inner product 1
with q (inner products are taken over GF[2]). I.e., we use the parity predicate
P (q,u) =

∑
i qi ·ui (mod 2). We obtain a polynomial-time data release algorithm

for this class (w.r.t. the uniform distribution over queries). This uses our
reduction, instantiated with Jackson’s Harmonic Sieve learning algorithm
[Jac]. In Section 7.5 we prove:

Theorem 7.1.5 (Uniform Distribution Data Release for Parity Counting
Queries.). There is an ε-differentially private algorithm for releasing the class of
parity queries over the uniform distribution on Q. For databases of size n, the
algorithm has runtime poly(n) and is (α,β,γ)-accurate, provided that

n >
poly(d,1/α,1/γ, log(1/β))

ε
.

AC0 Counting Queries. We also consider a quite general class of counting
queries, namely, any query family whose predicate is computed by a constant
depth (AC0) circuit. For any family of this type, in Section 7.5 we obtain a data
release algorithm over the uniform distribution that requires a database of
quasi-polynomial (in d) size (and has running time polynomial in the database
size, or quasi-polynomial in d).

Theorem 7.1.6 (Uniform Distribution Data Release for AC0 Counting Queries).
Take U = Q = {0,1}d , and P (q,u) : Q ×U → {0,1} a predicate computed by a
Boolean circuit of depth ` = O(1) and size poly(d). There is an ε-differentially
private data release algorithm for this query class over the uniform distribution

2More generally, we can get results for smooth distributions, we defer these to the full
version.
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on Q. For databases of size n, the algorithm has runtime poly(n) and is (α,β,γ)-
accurate, provided that:

n > dO
(
log`

(
d
αγ

))
· Õ

(
log3 (1/β)
εα2γ

)
.

This result uses our reduction instantiated with an algorithm of Jackson et
al. [JKS] for learning Majority-of-AC0 circuits. To the best of our knowledge,
this is the first positive result for private data release that uses the (circuit)
structure of the query class in a “non black-box” way to approximate the
query answer. We note that the class of AC0 predicates is quite rich. For
example, it includes conjunctions, approximate counting [Ajt], and GF[2]
polynomials with polylog(d) many terms. While our result is specific to
the uniform distribution over Q, we note that some query sets (and query
descriptions) may be amenable to random self-reducibility, where an algorithm
providing accurate answers to uniformly random q ∈ Q can be used to get
(w.h.p.) accurate answers to any q ∈ Q. We also note that Theorem 7.1.6
leaves a large degree of freedom in how a class of counting queries is to
be represented. Many different sets of query descriptions Q and predicates
P (q,u) can correspond to the same set of counting queries over the same U ,
and it may well be the case that some representations are more amenable to
computations in AC0 and/or random self-reducibility. Finally, we note that
the hardness results of Dwork et al. [DNR+] actually considered (and ruled
out) efficient data-release algorithms for AC0 counting queries (even for the
uniform distribution case), but only when the algorithm’s output is a synthetic
database. Theorem 7.1.6 side-steps these negative results because the output
is not a synthetic database.

7.1.4 Preliminaries

A class of counting queries is specified by a predicate P : Q×U → {0,1} where
Q is a set of query descriptions. Each q ∈ Q specifies a query and the answer
for a query q ∈ Q on a single data item u ∈ U is given by P (q,u). The answer
of a counting query q ∈ Q on a data set D is defined as 1

n

∑
u∈D P (q,u) .

We will often fix a data item u and database D ∈Dn and use the following
notation:

— pu : Q→ {0,1}, pu(q) def= P (q,u). The predicate on a fixed data item u.

— f D : Q→ [0,1], f D(q) def= 1
n

∑
u∈D P (q,u). For an input query description

and fixed database, counts the fraction of database items that satisfy
that query.
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— f Dt : Q → {0,1}, f Dt (q) def= I
{
f D(q) > t

}
. For an input query description

and fixed database and threshold t ∈ [0,1], indicates whether the fraction
of database items that satisfy that query is at least t. Here and in the
following I denotes the 0/1-indicator function.

Special classes of counting queries. We close this section with some con-
crete examples of query classes that we will consider. Fix U = {0,1}d and
Q = {0,1}d . The query class of monotone boolean conjunctions is defined
by the predicate P (q,u) =

∧
i : qi=1ui . Note that we may equivalently write

P (q,u) = 1−
∨
i : ui=0 qi . The query class of parities over {0,1}d is defined by the

predicate P (q,u) =
∑
i:ui=1 qi (mod 2) .

7.2 Private data release via learning thresholds

In this section we describe our reduction from private data release to a related
computational learning task of learning thresholded sums. Section 7.2.1 sets
the stage, first introducing definitions for handling distributions and access
to an oracle, and then proceeds with notation and formal definitions of (non-
interactive) data release and of learning threshold functions. Section 7.2.2
formally states our main theorem giving the reduction, and Section 7.2.3
gives an intuitive overview of the proof. The formal proof is then given in
Section 7.3.

7.2.1 Distribution access, data release, learning thresholds

Definition 7.2.1 (Sampling or Evaluation Access to a Distribution). Let G be
a distribution over a set Q. When we give an algorithm A sampling access to
G, we mean that A is allowed to sample items distributed by G. When we
give an algorithm A evaluation access to G, we mean that A is both allowed
to sample items distributed by G and also to make oracle queries: in such a
query A specifies any q ∈Q and receives back the probability G[q] ∈ [0,1] of q
under G. For both types of access we will often measureA ’s sample complexity
or number of queries (for the case of evaluation access).3

Definition 7.2.2 (Sampling Access to Labeled Examples). Let G be a distribu-
tion over a set Q of potential examples, and let f be a function whose domain
is Q. When we give an algorithm A sampling access to labeled examples by
(G,f ), we mean that A has sampling access to the distribution (q,f (q))q∼G.

3Note that, generally speaking, sampling and evaluation access are incomparably powerful
(see [KMR+, Nao]). In this work, however, whenever we give an algorithm evaluation access
we will also give it sampling access.
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Definition 7.2.3 (Data Release Algorithm). Fix U to be a data universe, Q
to be a set of query descriptions, GQ to be a set of distributions on Q, and
P (q,u) :Q×U → {0,1} to be a predicate. A (U ,Q,GQ, P ) data release algorithm
A is a (probabilistic) algorithm that gets sampling access to a distribution
G ∈ GQ and takes as input accuracy parameters α,β,γ > 0, a database size n,
and a database D ∈Dn. A outputs a synopsis S :Q→ [0,1].

We say that A is (α,β,γ)-accurate for databases of size n, if for every
database D ∈Dn and query distribution G ∈ GQ:

P

S←A (n,D,α,β,γ)

{
P

q∼G

{
|S(q)− f D(q)| > α

}
> γ

}
< β (7.1)

We also consider data release algorithms that get evaluation access to G.
In this case, we say that A is a data release algorithm using evaluation access.
The definition is unchanged, except that A gets this additional form of access
to G.

When P and U are understood from the context, we sometimes refer to
a (U ,Q,GQ, P ) data release algorithm as an algorithm for releasing the class of
queries Q over GQ.

We note two cases of particular interest. The first is when GQ is the set of
all distributions over Q. In this case, we say that A is a distribution-free data
release algorithm. For such algorithms it is possible to apply the “boosting for
queries” results of [DRV] and obtain a data release algorithm whose synopsis
is (w.h.p.) accurate on all queries (i.e. with γ = 0). We note that those boosting
results apply only to data release algorithms that access their distribution
by sampling (i.e. they need not hold for data release algorithms that use
evaluation access). A second case of interest is when GQ contains only a single
distribution, the uniform distribution over all queries Q. In this case both
sampling and evaluation access are easy to simulate.

Throughout this work, we fix the accuracy parameter α, and lower bound
the required database size n needed to ensure the (additive) approximation
error is at most α. See also Remark 2.9.2. Our database size bounds can be
converted to error bounds in the natural way.

Definition 7.2.4 (Learning Thresholds). Let Q be a set (which we now view
as a domain of potential unlabeled examples) and let GQ be a set of distribu-
tions on Q. Let F be a set of predicates on Q, i.e. functions Q → {0,1}.
Given t ∈ [0,1], let Fn,t be the set of all threshold functions of the form
f = I

{
1
n

∑n
i=1 fi > t

}
where fi ∈ F for all 1 6 i 6 n. We refer to functions in

Fn,t as n-thresholds over F . Let L be a (probabilistic) algorithm that gets
sampling access to labeled examples by a distribution G ∈ GQ and a target
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function f ∈ Fn,t. L takes as input accuracy parameters γ,β > 0, an integer
n > 0, and a threshold t ∈ [0,1]. L outputs a boolean hypothesis h :Q→ {0,1}.

We say thatL is an (γ,β)-learning algorithm for thresholds over (Q,GQ,F )
if for every γ,β > 0, every n, every t ∈ [0,1], every f ∈ Fn,t and every G ∈ GQ,
we have

P

h←L (n,t,γ,β)

{
P

q∼G
{h(q) , f (q)} > γ

}
< β . (7.2)

The definition is analogous for all other notions of oracle access (see e.g.
Definition 7.2.5 below).

7.2.2 Statement of the main theorem

In this section we formally state our main theorem, which establishes a general
reduction from private data release to learning certain threshold functions.
The next definition captures a notion of oracle access for learning algorithms
which arises in the reduction. The definition combines sampling access to
labeled examples with a limited kind of evaluation access to the underlying
distribution and black-box oracle access to the target function f .

Definition 7.2.5 (approximate distribution-restricted oracle access). Let G
be a distribution over a domain Q, and let f be a function whose domain is
Q. When we say that an algorithm A has approximate G-restricted evaluation
access to f , we mean that

1. A has sampling access to labeled examples by (G,f ); and

2. A can make oracle queries on any q ∈Q, which are answered as follows:
there is a fixed constant c ∈ [1/3,3] such that (i) if G[q] = 0 the answer is
(0,⊥); and (ii) if G[q] > 0 the answer is a pair (c ·G[q], f (q)).

Remark 7.2.6. We remark that this is the type of of oracle access provided
to the learning algorithm in our reduction. This is different from the oracle
access that the data release algorithm has. We could extend Definition 7.2.3
to refer to approximate evaluation access to G; all our results on data release
using evaluation access would extend to this weaker access (under appropriate
approximation guarantees). For simplicity, we focus on the case where the
data release algorithm has perfectly accurate evaluation access, since this is
sufficient throughout for our purpose.

One might initially hope that privately releasing a class of queries Q over
some set of distributions GQ reduces to learning corresponding threshold
functions over the same set of distributions. However, our reduction will need
a learning algorithm that works for a potentially larger set of distributions
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GQ′ ⊇ GQ. (We will see in Theorem 7.2.8 that this poses a stronger requirement
on the learning algorithm.) Specifically, GQ′ will be a smooth extension of GQ
as defined next.

Definition 7.2.7 (smooth extensions). Given a distribution G over a set Q and
a value µ > 1, the µ-smooth extension of G is the set of all distributions G′

which are such that G′[q] 6 µ ·G[q] for all q ∈ Q. Given a set of distributions
GQ and µ > 1, the µ-smooth extension of GQ, denoted GQ′, is defined as the set
of all distributions that are a µ-smooth extension of some G ∈ GQ.

With these two definitions at hand, we can state our reduction in its most
general form. We will combine this general reduction with specific learning
results to obtain concrete new data release algorithms in Sections 7.4 and 7.5.

Theorem 7.2.8 (Main Result: Private Data Release via Learning Thresholds).
Let U be a data universe, Q a set of query descriptions, GQ a set of distributions
over Q, and P : Q×U → {0,1} a predicate.

Then, there is an ε-differentially private (α,β,γ)-accurate data-release algo-
rithm for databases of size n provided that

— there is an algorithmL that (γ ,β)-learns thresholds over (Q,GQ′, {pu : u ∈
U }), running in time t(n,γ,β) and using b(n,γ,β) queries to an approximate
distribution-restricted evaluation oracle for the target n-threshold function,
where GQ′ is the (2/γ)-smooth extension of GQ; and

— we have

n >
C · b(n′,γ ′,β′) · log

(
b(n′ ,γ ′ ,β′)
αγβ

)
· log(1/β′)

εα2γ
, (7.3)

where n′ = Θ(log |Q|/α2), β′ = Θ(βα), γ ′ = Θ(γα) andC > 0 is a sufficiently
large constant.

The running time of the data release algorithm is
poly(t(n′,γ ′,β′),n,1/α, log(1/β),1/γ).

The next remark points out two simple modifications of this theorem.

Remark 7.2.9. 1. We can improve the dependence on n in (7.3) by a factor
of Θ(1/α) in the case where the learning algorithmL only uses sampling
access to labeled examples. In this case the data release algorithm also
uses only sampling access to the query distribution G. The precise
statement is given in Theorem 7.3.10 which we present after the proof
of Theorem 7.2.8.

2. A similar theorem holds for (ε,δ)-differential privacy, where the require-
ment on n in (7.3) is improved to a requirement on

√
n up to a log(1/δ)

factor. The proof is the same, except for a different (but standard) privacy
argument, e.g., using the composition theorem we saw in Section 2.4.
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7.2.3 Informal proof overview

Our goal in the data release setting is approximating the query answers
{f D(q)}q∈Q. This is exactly the task of approximating or learning a sum of n
predicates from the set F = {pu : u ∈U }. Indeed, each item u in the database
specifies a predicate pu, and for a fixed query q ∈ Q we are trying to ap-
proximate the sum of the predicates f D(q) = 1

|D | ·
∑
u∈D pu(q). We want to

approximate such a sum in a privacy-preserving manner, and so we will only
permit limited access to the function f D that we try to approximate. In par-
ticular, we will only allow a bounded number of noisy oracle queries to this
function. Using standard techniques (i.e. adding appropriately scaled Laplace
noise [DMNS]), an approximation obtained from a bounded number of noisy
oracle queries will be differentially private. It remains, then, to tackle the task
of (i) learning a sum of n predicates from F using an oracle to the sum, and
(ii) doing so using only a bounded (smaller than n) number of oracle queries
when we are provided noisy answers.

From Sums to Thresholds. Ignoring privacy concerns, it is straightforward
to reduce the task of learning a sum f D of predicates (given an oracle for f D)
to the task of learning thresholded sums of predicates (again given an oracle
for f D). Indeed, set k = d3/αe and consider the thresholds t1, . . . , tk given by
ti = i/(k + 1). Now, given an oracle for f D , it is easy to simulate an oracle
for f Dti for any ti . Thus, we can learn each of the threshold functions f Dti to
accuracy 1 − γ/k with respect to G. Call the resulting hypotheses h1, . . . ,hk.
Each hi labels a (1−γ/k)-fraction of the queries/examples in Q correctly w.r.t
the threshold function f Dti . We can produce an aggregated hypothesis h for
approximating f D as follows: given a query/example q, let h(q) equal ti where
ti is the smallest i such that hi(q) = 0 and hi+1(q) = 1. For random q ∼ G, we
will then have |h(q)− f D(q)| 6 α/3 with probability 1−γ (over the choice of q).

Thus, we have reduced learning a sum to learning thresholded sums (where
in both cases the learning is done with an oracle for the sum). But because
of privacy considerations, we must address the challenges mentioned above:
(i) learning a thresholded sum of n predicates using few (less than n) oracle
queries to the sum, and (ii) learning when the oracle for the sum can return
noisy answers. In particular, the noisy sum answers can induce errors on
threshold oracle queries (when the sum is close to the threshold).

Restricting to Large Margins. Let us say that a query/example q ∈ Q has
low margin with respect to f D and ti if |f D(q)− ti | 6 α/7. A useful observation
is that in the argument sketched above, we do not need to approximate each
threshold function f Dti well on low margin elements q. Indeed, suppose that
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each hypothesis hi errs arbitrarily on a set Ei ⊆ Q that contains only inputs
that have low margin w.r.t. f D and ti , but achieves high accuracy 1 − γ/k
with respect to G conditioned on the event Q\Ei . Then the above aggregated
hypothesis h would still have high accuracy with high probability over q ∼ G;
more precisely, h would satisfy |h(q)− f D(q)| 6 2α/3 with probability 1−γ for
q ∼ G.

The reason is that for every q ∈ Q, there can only be one threshold i∗ ∈
{1, . . . , k} such that |f D(q)− ti∗ | 6 α/7 (since any two thresholds are α/3- apart
from each other). While the threshold hypothesis hi∗ might err on q (because
q has low margin w.r.t. ti∗), the hypotheses hi∗−1 and hi∗+1 should still be
accurate (w.h.p. over q ∼ G), and thus the aggregated hypothesis h will still
output a value between ti∗−1 and ti∗+1.

Threshold Access to The Data Set. We will use the above observation to
our advantage. Specifically, we restrict all access to the function f D to what
we call a threshold oracle. Roughly speaking, the threshold oracle (which we
denote T O and define formally in Section 7.3.1) works as follows: when given
a query q and a threshold t, it draws a suitably scaled Laplacian variable N
(used to ensure differential privacy) and returns 1 if f D(q) +N > t + α/20;
returns 0 if f D(q) +N 6 t − α/20; and returns “⊥” if t − α/20 < f D(q) +N <
t +α/20. If D is large enough then we can ensure that |N | 6 α/40 with high
probability, and thus whenever the oracle outputs ⊥ on a query q we know
that q has low margin with respect to f D and t (since α/20 + |N | < α/7).

We will run the learning algorithm L on examples generated using the
oracle T O after removing all examples for which the oracle returned ⊥. Since
we are conditioning on the T O oracle not returning ⊥, this transforms the
distribution G into a conditional distribution which we denote G′. Since we
have only conditioned on removing low-margin q’s, the argument sketched
above applies. That is, the hypothesis that has high accuracy with respect to
this conditional distribution G′ is still useful for us.

So the threshold oracle lets us use noisy sum answers (allowing the addi-
tion of noise and differential privacy), but in fact it also addresses the second
challenge of reducing the query complexity of the learning algorithm. This is
described next.

Savings in Query Complexity via Subsampling. The remaining challenge
is that the threshold oracle can be invoked only (at most) n times before
we exceed our “privacy budget”. This is problematic, because the query
complexity of the underlying learning algorithm may well depend on n, since
f D is a sum of n predicates. To reduce the number of oracle queries that need
to be made, we observe that the sum of n predicates that we are trying to learn
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can actually be approximated by a sum of fewer predicates. In fact, there
exists a sum f D

′
of n′ =O(log |Q|/α2) predicates from F that is α/100-close to

f D on all inputs in Q, i.e. |f D(q)− f D ′ (q)| 6 α/100 for all q ∈ Q. (The proof is
by a subsampling argument, as in [BLR]; see Section 7.3.1.) We will aim to
learn this “smaller” sum. The hope is that the query complexity for learning
f D

′
may be considerably smaller, namely scaling with n′ rather than n. Notice,

however, that learning a threshold of f D
′

requires a threshold oracle to f D
′
,

rather than the threshold oracle we have, which is to f D . Our goal, then, is to
use the threshold oracle to f D to simulate a threshold oracle to f D

′
. This will

give us “the best of both worlds”: we can make (roughly) O(n) oracle queries
thus preserving differential privacy, while using a learning algorithm that is
allowed to have query complexity superlinear in n′.

The key observation showing that this is indeed possible is that the thresh-
old oracle T O already “avoids” low-margin queries where f Dt and f D

′
t might

disagree! Whenever the threshold oracle T O (w.r.t. D) answers l , ⊥ on a
query q,, we must have |f D(q)−t| > α/20−N > α/100, and thus f Dt (q) = f D

′
t (q).

Moreover, it is still the case that T O only answers ⊥ on queries q that have low
margins w.r.t f D

′
t . This means that, as above, we can runL using T O (w.r.t.

D) in order to learn f D
′
. The query complexity depends on n′ and is therefore

independent of n. At the same time, we continue to answer all queries using
the threshold oracle with respect to f D so that our privacy budget remains on
the order |D | = n. Denoting the query complexity of the learning algorithm by
b(n′) we only need that n� b(n′). This allows us to use learning algorithms
that have b(n′)� n′ as is usually the case.

Sampling from the conditional distribution. In the exposition above we
glossed over one technical detail, which is that the learning algorithm requires
sampling (or distribution restricted) access to the distribution G′ over queries
q on which T O does not return ⊥, whereas the data release algorithm we are
trying to build only has access to the original distribution G. We reconcile
this disparity as follows.

For a threshold t, let ζt denote the probability that the oracle T O does not
return ⊥ when given a random q ∼ G and the threshold t. There are two cases
depending on ζt:

ζt < γ : This means that the threshold t is such that with probability 1−γ a
random sample q ∼ G has low margin with respect to f D and t. In this
case, by simply outputting the constant-t function as our approximation
for f D , we get a hypothesis that has accuracy α/3 with probability 1−γ
over random q ∼ G.

ζt > γ : In this case, the conditional distribution G′ induced by the threshold
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oracle is 1/γ-smooth w.r.t. G. In particular,G′ is contained in the smooth
extension GQ′ for which the learning algorithm is guaranteed to work
(by the conditions of Theorem 7.2.8). This means that it we can sample
from G′ using rejection sampling to G. It suffices to oversample by a
factor of O(1/γ) to make sure that we receive enough examples that are
not rejected by the threshold oracle.

Finally using a reasonably accurate estimate of ζ, we can also implement the
distribution restricted approximate oracle access that may be required by the
learning algorithm. We omit the details from this informal overview.

7.3 Proof of the main theorem

In this section, we give a formal proof of Theorem 7.2.8. We formalize and
analyze the threshold oracle first. Then we proceed to our main reduction.

7.3.1 Threshold access and subsampling

We begin by describing the threshold oracle that we use to access the function
f D throughout our reduction; it is presented in Figure 7.1. The oracle has two
purposes. One is to ensure differential privacy by adding noise every time we
access f D . The other purpose is to “filter out” queries that are too close to the
given threshold. This will enable us to argue that the threshold oracle for f Dt
agrees with the function f D

′
t where D ′ is a small subsample of D.

Throughout the remainder of this section we fix all input parameters to
our oracle, i.e. the data set D and the values b,α > 0. We let β > 0 denote the
desired error probability of our algorithm.

Lemma 7.3.1. Call two queries (q, t), (q′, t′) distinct if q , q′. Then, the threshold
oracle T O(D,α,b) answers any sequence of b distinct adaptive queries to f D with
ε-differential privacy.

Proof. This follows directly from the guarantees of the Laplacian mechanism
as shown in [DMNS]. �

Our goal is to use the threshold oracle for f Dt to correctly answer queries
to the function f D

′
t where D ′ is a smaller (sub-sampled) database that gives

“close” answers to D on all queries q ∈ Q. The next lemma shows that there
always exists such a smaller database.

Lemma 7.3.2. For any α > 0, there is a database D ′ of size

|D ′ | 6
10log |Q|
α2 (7.4)
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Input: data set D of size n, tolerance α > 0, query bound b ∈N.
Threshold Oracle T O(D,α,b):

— When invoked on the j-th query (q, t) ∈ Q× [0,1), do the following:

– If j > b, output ⊥ and terminate.

– If (q, t′) has not been asked before for any threshold t′, sample a
fresh Laplacian variable Nq ∼ Lap(b/εn) and put Aq = f D(q) +Nq.
Otherwise reuse the previously created value Aq.

–

Output


0 if Aq 6 t − 2α/3,
1 if Aq > t + 2α/3,
⊥ otherwise.

Figure 7.1: Threshold oracle for f D . This threshold oracle is the only way in which
the data release algorithm ever interacts with the data set D. Its purpose is to ensure
privacy and to reject queries that are too close to a given threshold.

such that
max
q∈Q

∣∣∣f D(q)− f D
′
(q)

∣∣∣ < α .
Proof. The existence of D ′ follows from a subsampling argument as shown
in [BLR]. �

The next lemma states the two main properties of the threshold oracle that
we need. To state them more succinctly, let us denote by

Q(t,α) = {q ∈ Q : |f D(q)− t| > α}

the set of elements in Q that are α-far from the threshold t.

Lemma 7.3.3 (Agreement). Suppose D satisfies

|D | >
30b · log(b/β)

εα
, (7.5)

Then, there is a data set D ′ of size |D ′ | 6 90 · α−2 log |Q| and an event Γ (only
depending on the choice of the Laplacian variables) such that Γ has probability
1 − β and if Γ occurs, then T O(D,α,b) has the following guarantee: whenever
T O(D,α,b) outputs l on one of the queries (q, t) in the sequence, then

1. if l ,⊥ then l = f D
′

t (q) = f Dt (q) , and

2. if l =⊥ then q <Q(t,α) .
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Proof. Let D ′ be the data set given by Lemma 7.3.2 with its “α” value set to
α/3 so that ∣∣∣f D(q)− f D

′
(q)

∣∣∣ < α/3
for every input q ∈ Q.

The event Γ is defined as the event that every Laplacian variable Nq sam-
pled by the oracle has magnitude |Nq| < α/3. Under the given assumption
on |D | in 7.5 and using basic tail bounds for the Laplacian distribution, this
happens with probability 1− β.

Assuming Γ occurs, the following two statements hold:

1. Whenever the oracle outputs l ,⊥ on a query (q, t), then we must have
either f D(q)+Nq−t > 2α/3 (and thus both f D(q) > t+α/3 and f D

′
(q) > t)

or else f D(q)+Nq−t 6 −2α/3 (and thus both f D(q) < t−α/3 and f D
′
(q) <

t). This proves the first claim of the lemma.

2. Whenever q ∈ Q(t,α), then |f D(q) +Nq − t| > 2α/3, and therefore the
oracle does not output ⊥. This proves the second claim of the lemma.

�

7.3.2 Privacy-preserving reduction

In this section we describe how to convert a non-private learning algorithm for
threshold functions of the form f Dt to a privacy-preserving learning algorithm
for functions of the form f D . The reduction is presented in Figure 7.2. We call
the algorithm PrivLearn.

Setting of parameters. In the description of PrivLearn we use the follow-
ing setting of parameters:

n′ =
4410 · log |Q|

α2 k =
⌈3
α

⌉
γ ′ =

γ

k
β′ =

β

6k
(7.6)

bbase = b(n′,γ ′,β′) biter =
100bbase · log(1/β′)

γ
btotal = 2k · biter (7.7)

Analysis of the reduction. Throughout the analysis of the algorithm we
keep all input parameters fixed so as to satisfy the assumptions of Theo-
rem 7.2.8. Specifically we will need

|D | >
210 · btotal · log(10btotal/β)

εα
. (7.8)

We have made no attempt to optimize various constants throughout.
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Input: Distribution G ∈ GQ, data set D of size n, accuracy parameters
α,β,γ > 0; learning algorithmL for thresholds over (Q,GQ,F ) as in Theo-
rem 7.2.8 requiring b(n′,γ ′,β′) labeled examples and approximate restricted
evaluation access to the target function.
Parameters: See (7.6) and (7.7).
Algorithm PrivLearn for privately learning f D :

1. Let T O denote an instantiation of T O(D,α/7,btotal).

2. Sample biter points {qj}16j6biter
from G.

3. For each iteration i ∈ {1, . . . , k} :

(a) Let ti = i/k + 1.

(b) For each qj , j ∈ [biter] send the query (qj , ti) to T O and let lj denote
the answer. Let Bi = {j : lj ,⊥}.

(c) If |Bi |biter
< γ

2 , output the constant ti function as hypothesis h and
terminate the algorithm.

(d) Run the learning algorithmL (n′, ti ,γ ′,β′) on the labeled exam-
ples {(qj , lj)}j∈Bi , answering evaluation queries fromL as follows:

— Given a query q posed by L , let l be the answer of T O on
(q, ti).

— If l =⊥, then output (0,⊥). Otherwise, output (G[q] · biter
|Bi |
, l) .

(e) Let hi denote the resulting hypothesis.

4. Having obtained hypotheses h1, . . . ,hk , the final hypothesis h is defined
as follows: h(q) equals the smallest i ∈ [k] such that hi(q) = 1 and
hi−1(q) = 0 (we take h0(q) = 0 and hk+1(q) = 1).

Figure 7.2: Reduction from private data release to learning thresholds (non-privately).

Lemma 7.3.4 (Privacy). Algorithm PrivLearn satisfies ε-differential privacy.

Proof. In each iteration of the loop in Step 3 the algorithm makes at most 2biter
queries to T O (there are biter calls made on the samples and at most bbase 6 biter
evaluation queries). But note that T O is instantiated with a query bound
of btotal = 2kbiter. Hence, it follows from Lemma 7.3.1 that T O satisfies ε-
differential privacy. Since T O is the only way in which PrivLearn ever
interacts with the data set, PrivLearn satisfies ε-differential privacy. �

We now prove that the hypothesis produced by the algorithm is indeed
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accurate, as formalized by the following lemma.

Lemma 7.3.5 (Accuracy). With overall probability 1−β, the hypothesis h returned
by PrivLearn satisfies

P

q∼G

{∣∣∣h(q)− f D(q)
∣∣∣ 6 α} > 1−γ . (7.9)

Proof. We consider three possible cases:

1. The first case is that there exists a t ∈ {t1, . . . , tk} such that distribution G
has at least 1− γ/10 of its mass on points that are α-close to t. In this
case a Chernoff bound and the choice of biter � bbase imply that with
probability 1−β the algorithm terminates prematurely and the resulting
hypothesis satisfies (7.9).

2. In the second case, there exists a t ∈ {t1, . . . , tk} such that the probability
mass G puts on points that are α-close to t is between 1 − γ and 1 −
γ/10. In this case if the algorithm terminates prematurely then (7.9) is
satisfied; below we analyze what happens assuming the algorithm does
not terminate prematurely.

3. In the third case every t ∈ {t1, . . . , tk} is such that G puts less than 1−γ of
its mass on points α-close to t. In this third case if the algorithm termi-
nates prematurely then (7.9) will not hold; however, our choice of biter
implies that in this third case the algorithm terminates prematurely with
probability at most 1− β. As in the second case, below we will analyze
what happens assuming the algorithm does not terminate prematurely.

Thus in the remainder of the argument we may assume without loss of gen-
erality that the algorithm does not terminate prematurely, i.e. it produces a
full sequence of hypotheses h1, . . . ,hk . Furthermore, we can assume that the
distribution G places at most 1−γ/10 fraction of its weight near any particular
threshold ti . This leads to the following claim, showing that in all iterations,
the number of labeled examples in Bi is large enough to run the learning
algorithm.

Claim 7.3.6. P {∀i : |Bi | > bbase} > 1− β3 .

Proof. By our assumption, the probability that a sample q ∼ G is rejected at
step t of PrivLearn is at most γ/10. By the choice of biter it follows that
|Bi | > bbase with probability 1−β/k. Taking a union bound over all thresholds t
completes the proof. �
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The proof strategy from here on is to first analyze the algorithm on the
conditional distribution that is induced by the threshold oracle. We will then
pass from this conditional distribution to the actual distribution that we are
interested in, namely, G.

We chose |D | large enough so that we can apply Lemma 7.3.3 to T O with
the “α”-setting of Lemma 7.3.3 set to α/7. Let D ′ be the data set and Γ be
the event given in the conclusion of Lemma 7.3.3 applied to T O. (Note that
n′ = |D ′ | 6 72 · 90α−2 log |Q| as stated above.)

By the choice of our parameters, we have

P {Γ } > 1−
β

3
. (7.10)

Here the probability is computed only over the internal randomness of the
threshold oracle T O which we denote by R. Fix the randomness R of T O such
that R ∈ Γ . For the sake of analysis, we can think of the randomness of the
oracle as a collection of independent random variables (Nq)q∈Q (where Nq is
used to answer all queries of the form (q, t′)). In particular, the behavior of the
oracle would not change if we were to sample all variables (Nq)q∈Q up front.
When we fix R we thus mean that we fix Nq for all q ∈ Q.

We may therefore assume for the remainder of the analysis that T O satis-
fies properties (1) and (2) of Lemma 7.3.3.

Let us denote by Qi ⊆ Q the set of examples for which T O would not
answer ⊥ in Step 3 at the i-th iteration of the algorithm. Note that this is a
well-defined set since we fixed the randomness of the oracle. Denote by Gi
the distribution G conditioned on Qi . Further, let Zi = Pq∼G {q ∈Qi} . Observe
that

Gi[q] =

G[q]/Zi q ∈Qi
0 o.w.

. (7.11)

The next lemma shows that PrivLearn answers evaluation queries with the
desired multiplicative precision.

Lemma 7.3.7. With probability 1− β/6k (over the randomness of PrivLearn),
we have

Zi
3
6
|Bi |
biter
6 3Zi . (7.12)

Proof. The lemma follows from a Chernoff bound with the fact that we chose
biter� bbase. �

Assuming that (7.12) holds, we can argue that the learning algorithm in
step t produces a “good” hypothesis as expressed in the next lemma.
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Lemma 7.3.8. Let t ∈ {t1, . . . , tk}. Conditioned on (7.12), we have that with proba-
bility 1− β/6k (over the internal randomness of the learning algorithm invoked at
step i) the hypothesis hi satisfies

P

q∼Gi

{
hi(q) = f Dti (q)

}
> 1−

γ

k
.

Proof. This follows directly from the guarantee of the learning algorithmL
once we argue that (with the claimed probability):

1. Each example q is sampled from Gi and labeled correctly by f D
′

ti
(q) and

f D
′

ti
(q) = f Dti (q).

2. All evaluation queries asked by the learning algorithm are answered
with the multiplicative error allowed in Definition 7.2.5.

3. The algorithm received sufficiently many, i.e., bbase, labeled examples.

The first claim follows from the definition of Gi , since we can sample from
Gi by sampling from G and rejecting if the oracle T O returns ⊥. Since Γ is
assumed to hold, we can invoke property (1) of Lemma 7.3.3 to conclude that
whenever the oracle does not return ⊥, then its answer agrees with f D

′
ti

(q) and
moreover f D

′
ti

(q) = f Dti (q).
To see the second claim, consider an evaluation query q. We consider two

cases. The first case is where the threshold oracle returns ⊥ and PrivLearn
outputs (0,⊥). Note that in this case indeed Gi puts 0 weight on the query q.
In the second case PrivLearn outputs (G[q] · biter/ |Bi |, l). By (7.11) and since
we assumed Γ holds, the output satisfies the desired multiplicative bound.

The third claim is a direct consequence of Claim 7.3.6. �

We conclude from the above that with probability 1− β/3 (over the com-
bined randomness of PrivLearn and of the learning algorithm), simultane-
ously for all i ∈ [k] we have

P

q∼G

{
hi(q) , f Dti (q)

∣∣∣∣ Qi} = P

q∼Gi

{
hi(q) , f Dti (q)

}
6
γ

k
. (7.13)

This follows from a union bound over all k applications of Lemma 7.3.7 and
Lemma 7.3.8.

We can now complete the proof of Lemma 7.3.5. That is, we will show that
assuming (7.13) the hypothesis h satisfies

P

q∼G

{∣∣∣h(q)− f D(q)
∣∣∣ 6 α} > 1−γ .

Note that
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1. (7.13) occurs with probability 1− β/3,

2. our assumption on the threshold oracle, i.e., R ∈ Γ also occurs with
probability 1− β/3 (over the randomness of the oracle)

3. the event in Claim 7.3.6 holds with probability 1− β/3.
Hence all three events occur simultaneously with probability 1− β which is
what we claimed. We proceed by assuming that all three events occurred. In
the following, let

Erri = {q ∈ Q : hi(q) , f Dti (q)}
denote the set of points on which hi errs. We will need the following claim.

Claim 7.3.9. Let q ∈ Q. Then,∣∣∣h(q)− f D(q)
∣∣∣ > α =⇒ q ∈

⋃
i∈[k]

Erri ∩Qi .

Proof. Arguing in the contrapositive, suppose q <
⋃
i∈[k] Erri ∩Qi . This means

that for all i ∈ [k] we have that either q < Erri or q <Qi .
However, we claim that there can be at most one i ∈ [k] such that q <

Qi meaning that q is rejected at step i. This follows from property (2) of
Lemma 7.3.3 which asserts that if q <Qi , then we must have |f D(q)− ti | < α/7,
and the fact that any two thresholds differ by at least α/3.

Hence, under the assumption above it must be the case that q < Erri for
all but at most one i ∈ [k]. This means that all but one hypothesis hi correctly
classify q. Since the thresholds are spaced α/3 apart, this means the hypothesis
h has error at most 2α/3 6 α on q. �

With the previous claim, we can finish the proof. Indeed,

P

q∼G

{∣∣∣h(q)− f D(q)
∣∣∣ > α} 6 P

q∼G


⋃
i∈[k]

Erri ∩Qi

 (using Claim 7.3.9)

6
k∑
i=1

P

q∼G
{Erri ∩Qi} (union bound)

=
k∑
i=1

P

q∼G
{q ∈ Erri |Qi} P

q∼G
{Qi}

6
k∑
i=1

P

q∼G
{q ∈ Erri |Qi}

6 k ·
γ

k
(using (7.13))

= γ .
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This concludes the proof of Lemma 7.3.5 �

Lemma 7.3.4 (Privacy) together with Lemma 7.3.5 (Accuracy) conclude
the proof of out main theorem, Theorem 7.2.8.

7.3.3 Quantitative improvements without membership queries

Here we show how to shave off a factor of 1/α in the requirement on the data
set size n in Theorem 7.2.8. This is possible if the learning algorithm uses
only sampling access to labeled examples.

Theorem 7.3.10. Let U be a data universe, Q a set of query descriptions, GQ a set
of distributions over Q, and P : Q×U → {0,1} a predicate.

Then, there is an ε-differentially private (α,β,γ)-accurate data-release algo-
rithm provided that there is an algorithm L that (γ ,β)-learns thresholds over
(Q,GQ′, {pu : u ∈U }) using b(n,γ,β) random examples; and we have

n >
C · b(n′,γ ′,β′) · log

(
b(n′ ,γ ′ ,β′)
αγβ

)
· log(1/β′)

εαγ
,

where n′ = Θ(log |Q|/α2), β′ = Θ(βα), γ ′ = Θ(γα) and C > 0 is a sufficiently large
constant. If L runs in time t(n,γ,β) then the data release algorithm runs in time
poly(t(n′,γ ′,β′),n,1/α, log(1/β),1/γ).

Proof. The proof of this theorem is identical to that of Theorem 7.2.8 except
that we put btotal = 2biter rather than 2kbiter. It is easy to check that the algo-
rithm indeed makes only btotal distinct queries (in the sense of Lemma 7.3.1)
to the threshold oracle so that privacy remains ensured. The correctness
argument is identical. �

7.4 First application: data release for conjunctions

With Theorems 7.2.8 and 7.3.10 in hand, we can obtain new data release
algorithms “automatically” from learning algorithms that satisfy the prop-
erties required by the theorem. In this section we present such data release
algorithms for conjunction counting queries using learning algorithms (which
require only random examples and work under any distribution) based on
polynomial threshold functions.

Throughout this section we fix the query class under consideration to be
monotone conjunctions, i.e. we takeU =Q = {0,1}d and P (q,u) = 1−

∨
i : ui=0 qi .

The learning results given later in this section, together with Theo-
rem 7.3.10, immediately yield:
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Theorem 7.4.1 (Releasing conjunction counting queries). 1. There is an ε-
differentially private algorithm for releasing the class of monotone Boolean
conjunction queries over GQ = {all probability distributions over Q} which is
(α,β,γ)-accurate and has runtime poly(n) for databases of size n provided
that

n > d
O
(
d1/3 log( dα )2/3

)
· Õ

(
log(1/β)3

εαγ2

)
.

2. There is an ε-differentially private algorithm for releasing the class of mono-
tone Boolean conjunction queries over GQw = {all probability distributions
over Q supported on Bw = {q ∈ Q : q1 + · · · + qd 6 w}} which is (α,β,γ)-
accurate and has runtime poly(n) for databases of size n provided that

n > d
O
(√
w log

(
w logd
α

))
· Õ

(
log(1/β)3

εαγ2

)
.

These algorithms are distribution-free, and so we can apply the boosting
machinery of [DRV] to get accurate answers to all of the w-way conjunctions
with similar database size bounds. See the discussion and Corollary 7.1.3 in
the introduction.

In Section 7.4.1 we establish structural results showing that certain types
of thresholded real-valued functions can be expressed as low-degree poly-
nomial threshold functions. In Section 7.4.2 we state some learning results
(for learning under arbitrary distributions) that follow from these representa-
tional results. Theorem 7.4.1 above follows immediately from combining the
learning results of Section 7.4.2 with Theorem 7.3.10.

7.4.1 Polynomial threshold function representations

Definition 7.4.2. Let X ⊆ Q = {0,1}d and let f be a Boolean function f : X→
{0,1}. We say that f has a polynomial threshold function (PTF) of degree a over
X if there is a real polynomial A(q1, . . . , qd) of degree a such that

f (q) = sign(A(q)) for all q ∈ X

where the sign function is sign(z) = 1 if z > 0, sign(z) = 0 if z < 0.

Note that the polynomial A may be assumed without loss of generality to
be multilinear since X is a subset of {0,1}d .

7.4.1.1 Low-degree PTFs over sparse inputs

Let Bw ⊂ {0,1}d denote the collection of all points with Hamming weight
at most w, i.e. Bw = {q ∈ {0,1}d : q1 + · · · + qd 6 w}. The main result of this
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subsection is a proof that for any t ∈ [0,1] the function f Dt has a low-degree
polynomial threshold function over Bw.

Lemma 7.4.3. Fix t ∈ [0,1]. For any database D of size n, the function f Dt has a
polynomial threshold function of degree O

(√
w logn

)
over the domain Bw.

To prove Lemma 7.4.3 we will use the following claim:

Claim 7.4.4. Fix w > 0 to be a positive integer and ε > 0. There is a univariate
polynomial s of degree O

(√
w log(1/ε)

)
which is such that

1. s(w) = 1; and

2. |s(j)| 6 ε for all integers 0 6 j 6 w − 1.

Proof. This claim was proved by Buhrman et al. [BCdWZ], who gave a quan-
tum algorithm which implies the existence of the claimed polynomial (see
also Section 1.2 of [She]). Here we give a self-contained construction of a
polynomial s with the claimed properties that satisfies the slightly weaker
degree bound deg(s) =O(

√
w log(1/ε)). We will use the univariate Chebyshev

polynomial Cr of degree r = d
√
we. Consider the polynomial

s(j) =

Cr
(
j
w

(
1 + 1

w

))
Cr

(
1 + 1

w

) 
dlog(1/ε)e

. (7.14)

It is clear that if j = w then s(j) = 1 as desired, so suppose that j is an integer
0 6 j 6 w−1. This implies that (j/w)(1+1/w) < 1. Now well-known properties
of the Chebyshev polynomial (see e.g. [Che]) imply that |Cr((j/w)(1+1/w))| 6 1
and Cr(1 + 1/w) > 2. This gives the O(

√
w log(1/ε)) degree bound. �

Recall that the predicate function for a data item u ∈ {0,1}d is denoted by

pu(q) = 1−
∨

i : ui=0

qi .

As an easy corollary of Claim 7.4.4 we get:

Corollary 7.4.5. Fix ε > 0. For every u ∈ {0,1}d , there is a d-variable polynomial
Au of degree O

(√
w log(1/ε)

)
which is such that for every q ∈ Bw,

1. If pu(q) = 1 then Au(q) = 1;

2. If pu(q) = 0 then |Au(q)| 6 ε.
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Proof. Consider the linear function L(q) = w −
∑
i : ui=0 qi . For q ∈ Bw we have

that L(q) is an integer in {0, . . . ,w}, and we have L(q) = w if and only if pu(q) = 1.
The desired polynomial is Au(q) = s(L(q)). �

Proof of Lemma 7.4.3. Consider the polynomial

A(q) =
∑
u∈D

Au(q)

where for each data item u, ru is the polynomial from Corollary 7.4.5 with
its “ε” parameter set to ε = 1/(3n). We will show that A(q)− (dtne − 1/2) is the
desired polynomial which gives a PTF for f Dt over Bw.

First, consider any fixed q ∈ Bw for which f Dt (q) = 1. Such a q must satisfy
f D(q) = j/n > t for some integer j, and hence j > dtne. Corollary 7.4.5 now
gives that A(q) > dtne − 1/3.

Next, consider any fixed q ∈ Bw for which f Dt (q) = 0. Such a q must satisfy
f D(q) = j/n < t for some integer j, and hence j 6 dtne − 1. Corollary 7.4.5 now
gives that A(q) 6 dtne − 2/3. This proves the lemma. �

7.4.1.2 Low-degree PTFs over the entire hypercube

Taking w = d in the previous subsection, the results there imply that f Dt can
be represented by a polynomial threshold function of degree O

(√
d logn

)
over

the entire Boolean hypercube {0,1}d . In this section we improve the degree
to O

(
d1/3(logn)2/3

)
. This result is very similar to Theorem 8 of [KOS] (which

is closely based on the main construction and result of [KS]) but with a few
differences: first, we use Claim 7.4.4 to obtain slightly improved bounds.
Second, we need to use the following notion in place of the notion of the “size
of a conjunction” that was used in the earlier results.

Definition 7.4.6. The width of a data item u ∈ D is defined as the number
of coordinates i such that ui = 0. The width of D is defined as the maximum
width of any data item u ∈D.

We use the following lemma:

Lemma 7.4.7. Fix any t ∈ [0,1] and suppose that n-element database D has
width w. Then f Dt has a polynomial threshold function of degree O

(√
w logn

)
over

the domain {0,1}d .

Proof. With the above notion of with the proof is the same as the constructions
and arguments of the previous subsection. �
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Lemma 7.4.8. Fix any value r ∈ {1, . . . ,d}. The function f Dt (q1, . . . , qd) can be
expressed as a decision tree T in which

1. each internal node of the tree contains a variable qi ;

2. each leaf of T contains a function of the form f D
′

t where D ′ ⊆D has width at
most r;

3. the tree T has rank at most (2d/r) lnn+ 1.

Proof sketch. The result follows directly from the proof of Lemma 10 in [KS],
except that we use the notion of width from Definition 7.4.6 in place of the
notion of the size of a conjunction that is used in [KS]. To see that this works,
observe that since pu(q) = 1−∨i : ui=0qi , fixing qi = 1 will fix all predicates pu
with ui = 0 to be zero. Thus the analysis of [KS] goes through unchanged,
replacing “terms of f that have size at least r” with “data items in D that have
width at least r” throughout. �

Lemma 7.4.9. The function f Dt can be represented as a polynomial threshold
function of degree O(d1/3(logn)2/3).

Proof. The proof is nearly identical to the proof of Theorem 2 in [KS] but
with a few small changes. We take r in Lemma 7.4.8 to be d2/3(logn)1/3 and
now apply Lemma 7.4.7 to each width-r database D ′ at a leaf of the resulting
decision tree. Arguing precisely as in Theorem 2 of [KS] we get that f Dt has a
polynomial threshold function of degree

max
{

2d
r lnn+ 1,O

(√
r logn

)}
=O

(√
r logn

)
=O

(
d1/3(logn)2/3

)
.

�

7.4.2 Learning thresholds of conjunction queries under arbitrary
distributions

It is well known that using learning algorithms based on polynomial-time
linear programming, having low-degree PTFs for a class of functions implies
efficient PAC learning algorithms for that class under any distribution using
random examples only (see e.g. [KS, HS]). Thus the representational results
of Section 7.4.1 immediately give learning results for the class of threshold
functions over sums of data items. We state these learning results using the
terminology of our reduction below.

Theorem 7.4.10. Let

— U denote the data universe {0,1}d ;
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— Q denote the set of query descriptions {0,1}d ;

— P (q,u) = 1−
∨
i : ui=0 qi denote the monotone conjunction predicate;

— GQ denote the set of all probability distributions over Q; and

— GQw denote the set of all probability distributions over Q that are supported
on Bw = {q ∈ {0,1}d : q1 + · · ·+ qd 6 w}.

Then

1. (Learning thresholds of conjunction queries over all inputs) There is an
algorithm L that (γ,β) learns thresholds over (Q,GQ, {pu : u ∈ U }) us-
ing b(n,γ,β) = dO(d1/3(logn)2/3) · Õ(1/γ) · log(1/β) queries to an approximate
distribution-restricted evaluation oracle for the target n-threshold function
(in fact L only uses sampling access to labeled examples). The running time
of L is poly(b(n,γ,β)).

2. (Learning thresholds of conjunction queries over sparse inputs) There is
an algorithm L that (γ,β) learns thresholds over (Q,GQw, {pu : u ∈ U })
using b(n,γ,β) = dO((w logn)1/2) · Õ(1/γ) · log(1/β) queries to an approximate
distribution-restricted evaluation oracle for the target n-threshold function
(in fact L only uses sampling access to labeled examples). The running time
of L is poly(b(n,γ,β)).

Recall from the discussion at the beginning of Section 7.4 that these learn-
ing results, together with our reduction, give the private data release results
stated at the beginning of the section.

7.5 Second application: data release via Fourier-based
learning

In this section we present data release algorithms for parity counting queries
and AC0 counting queries that instantiate our reduction Theorem 7.2.8 with
Fourier-based algorithms from the computational learning theory literature.
We stress that these algorithms require the more general reduction Theo-
rem 7.2.8 rather than the simpler version of Theorem 7.1.1 because the under-
lying learning algorithms are not distribution free. We first give our results for
parity counting queries in Section 7.5.1 and then our results for AC0 counting
queries in Section 7.5.2.
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7.5.1 Parity counting queries using the Harmonic Sieve [Jac]

In this subsection we fix the query class under consideration to be the class
of parity queries, i.e. we take U = {0,1}d and Q = {0,1}d and we take P (q,u) =∑
i:ui=1 qi (mod 2) to be the parity predicate. Our main result for releasing

parity counting queries is:

Theorem 7.5.1 (Releasing parity counting queries). There is an ε-differentially
private algorithm for releasing the class of parity queries over the uniform distribu-
tion on Q which is (α,β,γ)-accurate and has runtime poly(n) for databases of size
n, provided that

n >
poly(d,1/α,1/γ, log(1/β))

ε
.

This theorem is an immediate consequence of our main reduction, Theo-
rem 7.2.8, and the following learning result:

Theorem 7.5.2. Let

— U denote the data universe {0,1}d ;

— Q denote the set of query descriptions {0,1}d ;

— P (q,u) =
∑
i:ui=1 qi (mod 2) denote the parity predicate; and

— GQ contains only the uniform distribution over Q.

Then there is an algorithmL that (γ,β) learns thresholds over (Q,GQ′, {pu : u ∈U })
where GQ′ is the (2/γ)-smooth extension of GQ. Algorithm L uses b(n,γ,β) =
poly(d,n,1/γ) · log(1/β) queries to an approximate G-restricted evaluation oracle
for the target n-threshold function when it is learning with respect to a distribution
G ∈ GQ′. The running time of L is poly(b(n,γ,β)).

Proof. The claimed algorithm L is essentially Jackson’s Harmonic Sieve al-
gorithm [Jac] for learning Majority of Parities; however, a bit of additional
analysis of the algorithm is needed as we now explain.

When Jackson’s results on the Harmonic Sieve are expressed in our ter-
minology, they give Theorem 7.5.2 exactly as stated above except for one
issue which we now describe. Let G′ be any distribution in the (2/γ)-smooth
extension GQ′ of the uniform distribution. In Jackson’s analysis, when it is
learning a target function f under distribution G′, the Harmonic Sieve is
given black-box oracle access to f , sampling access to the distribution G′, and
access to a c-approximation to an evaluation oracle for G′, in the following
sense: there is some fixed constant c ∈ [1/3,3] such that when the oracle is
queried on q ∈ Q, it outputs c ·G′[q]. This is a formally more powerful type of
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access to the underlying distribution G′ than is allowed in Theorem 7.5.2 since
Theorem 7.5.2 only gives L access to an approximate G′-restricted evaluation
oracle for the target function (recall Definition 7.2.5). To be more precise, the
only difference is that with the Sieve’s black-box oracle access to the target
function f it is a priori possible for a learning algorithm to query f even on
points where the distribution G′ puts zero probability mass, whereas such
queries are not allowed for L. Thus to prove Theorem 7.5.2 it suffices to argue
that the Harmonic Sieve algorithm, when it is run under distribution G′, never
needs to make queries on points q ∈ Q that have G′[q] = 0.

Fortunately, this is an easy consequence of the way the Harmonic Sieve
algorithm works. Instead of actually using black-box oracle queries for f ,
the algorithm actually only ever makes oracle queries to the function g(q) =
2d · f (q) ·D ′[q], where D ′ is a c-approximation to an evaluation oracle for a
distribution G′′ which is a smooth extension of G′. (See the discussion in
Sections 4.1 and 4.2 of [Jac], in particular Steps 16-18 of the HS algorithm
of Figure 4 and Steps 3 and 5 of the WDNF algorithm of Figure 3.) By the
definition of a smooth extension, if q is such that G′[q] = 0 then G′′[q] also
equals 0, and consequently g(q) = 0 as well. Thus it is straightforward to run
the Harmonic Sieve using access to an approximate G′-restricted evaluation
oracle: if G′[q] returns 0 then “0” is the correct value of g(q), and otherwise
the oracle provides precisely the information that would be available for the
Sieve in Jackson’s original formulation. �

7.5.2 AC0 queries using [JKS]

Fix U = {0,1}d and Q = {0,1}d . In this subsection we show that our reduction
enables us to do efficient private data release for quite a broad class of queries,
namely any query computed by a constant-depth circuit.

In more detail, let P (q,u) : {0,1}d × {0,1}d → {0,1} be any predicate that is
computed by a circuit of depth ` = O(1) and size poly(d). Our data release
result for such queries is the following:

Theorem 7.5.3 (Releasing AC0 queries). Let GQ be the set containing the uniform
distribution and let U ,Q, P be as described above. There is an ε-differentially
(U ,Q,GQ, P ) data release algorithm that is (α,β,γ)-accurate and has runtime
poly(n) for databases of size n, provided that

n > dO
(
log`

(
d
αγ

))
· Õ

(
log(1/β)3

εα2γ

)
.

See the introduction for a discussion of this result. We observe that given
any fixed P as described above, for any given u ∈ U = {0,1}d the function
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pu(q) is computed by a circuit of depth ` and size poly(d) over the input bits
q1, . . . , qd .Hence Theorem 7.5.3 is an immediate consequence of Theorem 7.2.8
and the following learning result, which describes the performance guarantee
of the quasi-polynomial time algorithm of Jackson et al. [JKS] for learning
Majority-of-Parity in our language:

Theorem 7.5.4 (Theorem 9 of [JKS]). Let

— U denote the data universe {0,1}d ;

— Q denote the set of query descriptions {0,1}d ;

— P (q,u) be any fixed predicate computed by an AND/OR/NOT circuit of depth
` =O(1) and size poly(d);

— GQ contains only the uniform distribution over Q; and

— F be the set of all AND/OR/NOT circuits of depth ` and size poly(d).

Then there is an algorithm L that (γ,β) learns n-thresholds over (Q,GQ′,F )
where GQ′ is the (2/γ)-smooth extension of GQ. Algorithm L uses approx-
imate distribution restricted oracle access to the function, uses b(n,γ,β) =
dO(log`(nd/γ)) · log(1/β) samples and calls to the evaluation oracle, and runs in
time t(n,γ,β) = dO(log`(nd/γ)) · log(1/β).

We note that Theorem 9 of [JKS], as stated in that paper, only deals with
learning majority-of-AC0 circuits under the uniform distribution: it says
that an n-way Majority of depth-`, size-poly(d) circuits over {0,1}d can be
learned to accuracy γ and confidence β under the uniform distribution, using
random examples only, in time dO(log`(nd/γ)) · log(1/β). However, the boosting-
based algorithm of [JKS] is identical in its high-level structure to Jackson’s
Harmonic Sieve; the only difference is that the [JKS] weak learner simply
performs an exhaustive search over all low-weight parity functions to find a
weak hypothesis that has non-negligible correlation with the target, whereas
the Harmonic Sieve uses a more sophisticated membership-query algorithm
(that is an extension of the algorithm of Kushilevitz and Mansour [KM3]).
Arguments identical to the ones Jackson gives for the Harmonic Sieve (in
Section 7.1 of [Jac]) can be applied unchanged to the [JKS] algorithm, to
show that it extends, just like the Harmonic Sieve, to learning under smooth
distributions if it is provided with an approximate evaluation oracle for the
smooth distribution. In more detail, these arguments show that for any C-
smooth distribution G′, given sampling access to labeled examples by (G′, f )
(where f is the target n-way Majority of depth-`, size-poly(d) circuits) and
approximate evaluation access to G′, the [JKS] algorithm learns f to accuracy
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γ and confidence β under G′ in time dO(log`(Cnd/γ)) · log(1/β) This is the result
that is restated in our data privacy language above (note that the smoothness
parameter there is C = 2/γ).

7.6 Conclusion and open problems

This work put forward a new reduction from privacy-preserving data analysis
to learning thresholds. Instantiating this reduction with various different
learning algorithms, we obtained new data release algorithms for a variety of
query classes. One notable improvement was for the database size (or error) in
distribution-free release of conjunctions and k-way conjunctions. Given these
new results, we see no known obstacles for even more dramatic improvements
on this central question. In particular, we conclude with the following open
question.

Open Question 7.6.1. Is there a differentially private distribution-free data
release algorithm (with constant error, e.g., α = 1/100) for conjunctions or
k-way conjunctions that works for databases of size poly(d) and runs in time
poly(n) (or poly(n,dk) for the case of k-way conjunctions)?

Note that such an algorithm for k-way conjunctions would also imply, via
boosting [DRV], that we can privately release all k-way conjunctions in time
poly(n,dk), provided that |D | > poly(d).
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Chapter 8

Fairness Through Awareness

8.1 Introduction

In this work, we initiate the formal study of fairness in classification. Nearly
all classification tasks face the challenge of achieving utility in classification
for some purpose, while at the same time preventing discrimination against
protected population subgroups. A motivating example is membership in
a racial minority in the context of banking. An article in The Wall Street
Journal (8/4/2010) describes the practices of CapitalOne.com and its use
of the tracking network “[x+1]” to learn detailed demographic information
about each visitor to the site, such as approximate income, where she shops,
the fact that she rents children’s videos, and so on. According to the article,
this information is used to “decide which credit cards to show first-time
visitors” to the web site, raising the concern of steering, namely the (illegal)
practice of guiding members of minority groups into less advantageous credit
offerings [SA2]. We provide a definition of fairness in classification and a
framework for achieving it. Our framework permits us to formulate the
question as an optimization problem that can be solved by a linear program.
In the remainder of this section we describe our design goals, discuss certain
examples that helped to formulate our notion of fairness, and summarize our
contributions.

8.1.1 Design Goals

We espouse the following design goals for fair classification:

1. Arbitrary vendor preferences. We want to permit the entity that needs
to classify individuals, which we call the vendor, as much freedom as
possible. This allows the vendor to benefit from investment in data
mining and market research in designing its classifier, and our system
should not need to analyze or vet the vendor’s desires. The vendor’s
wishes should be satisfied subject only to the fairness constraints; and
the fairness constraints should be satisfied no matter what the vendor
proposes. This absolute guarantee of fairness frees the vendor of any
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regulatory concerns: the vendor is assured of compliance with anti-
discrimination law because the system cannot discriminate.

2. Ability to Capture Social Constraints. Our system should be sufficiently
flexible to permit the expression of social constraints such as affirmative
action and government regulation.

3. Prevention of Certain Evils. Our notion of fairness interdicts a catalogue
of discriminatory practices including the following, most of which are
described in the next section or in Appendix 8.6.5: redlining; reverse
redlining; discrimination based on redundant encodings of member-
ship in the protected set; cutting off business with a segment of the
population in which membership in the protected set is disproportion-
ately high; doing business with the “wrong” subset of the protected set
(possibly in order to prove a point); and “reverse tokenism.”

8.1.2 Potential yet insufficient solutions

We start with some simple and intuitive approaches to achieve these goals,
and discuss their limitations:

Fairness through blindness. How might one argue that a personalized web-
site or an advertising system (say, when used for a specific product) does not
discriminate based on race? When personalization and advertising decisions
are based on months or years of on-line activity, there is a very real possibility
that membership in a given demographic group is embedded holographically
in the history. Simply deleting, say, the Facebook “sex” and “Interested in
men/women” bits almost surely does not hide homosexuality. This point was
argued by the (somewhat informal) “Gaydar” study [JM] in which a threshold
was found for predicting, based on the sexual preferences of his male friends,
whether or not a given male is interested in men. Such redundant encodings
of sexual preference and other attributes need not be explicitly known or
recognized as such, and yet can still have a discriminatory effect.

Fairness at the price of utility. How can a personalization or advertising
system, seeking not to discriminate, defeat these unknown redundant encod-
ings? Some trivial solutions spring quickly to mind, e.g., classify individuals
by means of independent flips of a coin with a fixed bias. Such a solution
seems to provide perfect fairness but at a potentially heavy price in utility
(specifically, the advertiser prefers to target people who are more likely to buy
the product).
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Fairness by statistical parity. While the trivial “solutions” are problematic,
they do have the nice property of statistical parity: the demographics of those
receiving positive (or negative) classifications are identical to the demograph-
ics of the population as a whole. Although in some cases statistical parity
appears to be desirable – in particular, it neutralizes redundant encodings –
we now argue its inadequacy as a notion of fairness, presenting three examples
in which statistical parity is maintained, but from the point of view of an
individual, the outcome is blatantly unfair. In describing these examples, we
let S denote the protected set and Sc its complement.

Example 1: Reduced Utility. Consider the following scenario, which we will
call Example (1). Suppose in the culture of S the most talented stu-
dents are steered toward science and engineering and the less talented
are steered toward finance, while in the culture of Sc the situation is
reversed: the most talented are steered toward finance and those with
less talent are steered toward engineering. An organization ignorant
of the culture of S and seeking the most talented people may select
for “economics,” arguably choosing the wrong subset of S, even while
maintaining parity. Note that this poor outcome can occur in a “fairness
through blindness” approach – the errors come from ignoring member-
ship in S.

Example 2: Self-fulfilling prophecy. This is when unqualified members of S
are chosen, in order to “justify” future discrimination against S (building
a case that there is no point in “wasting” resources on S). Although
senseless, this is an example of something pernicious that is not ruled
out by statistical parity, showing the weakness of this notion. A variant
of this apparently occurs in selecting candidates for interviews: the
hiring practices of certain firms are audited to ensure sufficiently many
interviews of minority candidates, but less care is taken to ensure that
the best minorities – those that might actually compete well with the
better non-minority candidates – are invited [Zar].

Example 3: Subset Targeting. Statistical parity for S does not imply statisti-
cal parity for subsets of S. This can be maliciously exploited in many
ways. For example, consider an advertisement for a product X which
is targeted to members of S that are likely to be interested in X and to
members of Sc that are very unlikely to be interested in X. Clicking on
such an ad may be strongly correlated with membership in S (even if
exposure to the ad obeys statistical parity).
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8.1.3 Our contributions

Our main contribution lies in formulating and conceptualizing the problem.
We now summarize the key features of our framework.

Fairness is individual-based rather than group-based, and fundamentally
requires an understanding of the similarities and differences among the
individuals involved. We capture fairness by the principle that people who
are similar with with respect to a particular task should be classified similarly.
This gives fairness for individuals, while statistical parity speaks to fairness
for a group. In order to accomplish individual-based fairness, we assume a
distance metric that defines the similarity between the individuals. This is
the source of “awareness" in the title of this chapter. In example (1) above, an
appropriate distance function would indicate that science students in S are
more similar to the finance students in Sc than to science students in Sc. We
believe that reliance on this sort of knowledge is unavoidable, given that the
presence of redundant encodings rules out “fairness through blindness." Our
approach is also consistent with many real-life discrimination cases in which
the complaint is individual-based, such as the recent class-action lawsuit
against Wal-Mart begun when a female employee sued based on the fact that
a male with the same job title and less experience was paid $10,000 a year
more than she.

Sunlight for the Metric. Justifying the availability of a distance metric in
various settings is one of the most challenging aspects of our framework. It
is our contention that metrics are employed implicitly or explicitly in many
classification settings, such as admissions procedures, advertising (“people
who buy X and live in zip code Y are similar to people who live in zip code Z
and buy W”), and loan applications (credit scores). One contribution of this
work is making the distance metric explicit, and open to discussion, debate,
and revision. Indeed, we envision that, typically, the distance metric would be
externally imposed, for example, by a regulatory body, or externally proposed,
by a civil rights organization. We discuss the acquisition of the distance metric
and related open problems in Section 8.6.

Formulation of the problem as an optimization problem, which can be ex-
pressed as a linear program. Our framework boils down to finding a map-
ping from individuals to distributions over outcomes that minimizes expected
loss, subject to a Lipschitz condition requiring that similar people (as defined
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by the distance metric) are mapped similarly. (If statistical parity is desired,
this condition can be added to the optimization problem.)

Close relationship to privacy. We observe that our definition of fairness is
a generalization of the notion of differential privacy [Dwo1, DMNS]. We draw
an analogy between individuals in the setting of fairness and databases in
the setting of differential privacy. We exploit this analogy to obtain a more
efficient instantiation of our general approach. We also touch on the extent to
which fairness can provide privacy, in the context of online advertising.

Having laid out the framework we present the following results:

— In Section 8.3, we give conditions on the similarity metric, via an earth-
mover distance, such that fairness for individuals (the Lipschitz con-
dition) yields group fairness (statistical parity). More precisely, we
show that the Lipschitz condition implies statistical parity between two
groups if and only if the Earthmover distance between the two groups is
small. This characterization is an important tool in understanding the
consequences of imposing the Lipschitz condition.

— In Section 8.4, we give techniques for forcing statistical parity when
it is not implied by the Lipschitz condition (the case of preferential
treatment), while preserving as much fairness for individuals as possible.

— In Section 8.5, we exploit the relationship with differential privacy to
develop a more efficient variation of our fairness mechanism. We prove
that our solution has small error when the metric space of individuals
has small doubling dimension, a natural condition arising in machine
learning applications. We also prove a lower bound showing that any
mapping satisfying the Lipschitz condition has error that scales with the
doubling dimension.

We are unaware of other work on the topic of fairness in classification.
Two related topics are learning and fair division (cake-cutting). We postpone
our discussion of these topics and other related work until after we have
developed our framework.

The remainder of the chapter is organized as follows. In Section 8.2 we
expand on our formulation of the problem, providing notation and definitions
of its key components. Section 8.2.1 presents the linear program, and an
example of how it achieves fairness. In the following three sections, we present
the three results described above. Finally, in the Discussion we consider
significant open questions and directions.
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8.2 Formulation of the problem

In this section we describe our setup in its most basic form. We shall later
see generalizations of this basic formulation. Individuals are the objects to be
classified; we denote the set of individuals by V . In this chapter we consider
classifiers that map individuals to outcomes. We denote the set of outcomes
by A. In the simplest non-trivial case A = {0,1}. To ensure fairness, we will
consider randomized classifiers mapping individuals to distributions over
outcomes. To introduce our notion of fairness we assume the existence of a
metric on individuals d : V ×V →R. We will consider randomized mappings
M : V → µ(A) from individuals to probability distributions over outcomes.
Such a mapping naturally describes a randomized classification procedure:
to classify x ∈ V choose an outcome a according to the distribution M(x). We
interpret the goal of “mapping similar people similarly” to mean that the
distributions assigned to similar people are similar. Later we will discuss two
specific measures of similarity of distributions, D∞ and Dtv, of interest in this
work.

Definition 8.2.1 (Lipschitz mapping). A mapping M : V → µ(A) satisfies the
(D,d)-Lipschitz property if for every x,y ∈ V , we have

D(Mx,My) 6 d(x,y) . (8.1)

We note that there always exists a Lipschitz classifier, for example, by
mapping all individuals to the same distribution over A. Which classifier we
shall choose thus depends on a notion of utility. We capture utility using
a loss function L : V ×A→ R. This setup naturally leads to the optimization
problem:

Find a mapping from individuals to distributions over outcomes
that minimizes expected loss subject to the Lipschitz condition.

8.2.1 Achieving Fairness

Our fairness definition leads to an optimization problem in which we mini-
mize an arbitrary loss function L : V ×A→R while achieving the d-Lipschitz
property for a given metric d : V ×V →R. We denote by I an instance of our
problem consisting of a metric d : V ×V →R, and a loss function L : V ×A→R.
We denote the optimal value of the minimization problem by opt(I ), as for-
mally defined in Figure 8.1. We will also write the mapping M : V → µ(A) as
M = {µx}x∈V where µx =M(x) ∈ µ(A).
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opt(I ) def= min
{µx}x∈V

E

x∼V
E
a∼µx

L(x,a) (8.2)

subject to ∀x,y ∈ V , : D(µx,µy) 6 d(x,y) (8.3)

∀x ∈ V : µx ∈ µ(A) (8.4)

Figure 8.1: The Fairness LP: Loss minimization subject to fairness constraint

Probability Metrics The first choice for D that may come to mind is the
statistical distance: Let P ,Q denote probability measures on a finite domain A.
The statistical distance or total variation norm between P and Q is denoted by

Dtv(P ,Q) =
1
2

∑
a∈A
|P (a)−Q(a)| . (8.5)

The following lemma is easily derived from the definitions of opt(I ) and
Dtv.

Lemma 8.2.2. Let D = Dtv. Given an instance I we can compute opt(I ) with a
linear program of size poly(|V |, |A|).

Remark 8.2.3. When dealing with the set V , we have assumed that V is the
set of real individuals (rather than the potentially huge set of all possible
encodings of individuals). More generally, we may only have access to a
subsample from the set of interest. In such a case, there is the additional
challenge of extrapolating a classifier over the entire set.

A weakness of using Dtv as the distance measure on distributions, is that
we should then assume that the distance metric (measuring distance between
individuals) is scaled such that for similar individuals d(x,y) is very close to
zero, while for very dissimilar individuals d(x,y) is close to one. A potentially
better choice for D in this respect is sometimes called relative `∞ metric:

D∞(P ,Q) = sup
a∈A

log
(
max

{
P (a)
Q(a)

,
Q(a)
P (a)

})
. (8.6)

With this choice we think of two individuals x,y as similar if d(x,y)� 1. In
this case, the Lipschitz condition in Equation 8.1 ensures that x and y map to
similar distributions over A. On the other hand, when x,y are very dissimilar,
i.e., d(x,y) � 1, the condition imposes only a weak constraint on the two
corresponding distributions over outcomes.

Lemma 8.2.4. Let D = D∞. Given an instance I we can compute opt(I ) with a
linear program of size poly(|V |, |A|).
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Proof. We note that the objective function and the first constraint are indeed
linear in the variables µx(a), as the first constraint boils down to requirements
of the form µx(a) 6 ed(x,y)µy(a). The second constraint µx ∈ µ(A) can easily be
rewritten as a set of linear constraints. �

Notation. Recall that we often write the mapping M : V → µ(A) as M =
{µx}x∈V where µx =M(x) ∈ µ(A). In this case, when S is a distribution over V
we denote by µS the distribution over A defined as µS(a) = Ex∼S µx(a) where
a ∈ A.

Useful Facts It is not hard to check that both Dtv and D∞ are metrics with
the following properties.

Lemma 8.2.5. Dtv(P ,Q) 6 1− exp(−D∞(P ,Q)) 6D∞(P ,Q)

Fact 8.2.6. For any three distributions P ,Q,R and non-negative numbers α,β > 0
such that α + β = 1, we have Dtv(αP + βQ,R) 6 αDtv(P ,R) + βDtv(Q,R).

Post-Processing. An important feature of our definition is that it behaves
well with respect to post-processing. Specifically, if M : V → µ(A) is (D,d)-
Lipschitz for D ∈ {Dtv,D∞} and f : A→ B is any possibly randomized function
from A to another set B, then the composition f ◦M : V → µ(B) is a (D,d)-
Lipschitz mapping. This would in particular be useful in the setting of the
example in Section 8.2.2.

8.2.2 Example: Ad network

Here we expand on the example of an advertising network mentioned in the
Introduction. We explain how the Fairness LP provides a fair solution pro-
tecting against the evils described in Appendix 8.6.5. The Wall Street Journal
article [SA2] describes how the [x+1] tracking network collects demographic
information about individuals, such as their browsing history, geographical
location, and shopping behavior, and utilizes this to assign a person to one
of 66 groups. For example, one of these groups is “White Picket Fences,” a
market segment with median household income of just over $50,000, aged 25
to 44 with kids, with some college education, etc. Based on this assignment to
a group, CapitalOne decides which credit card, with particular terms of credit,
to show the individual. In general we view a classification task as involving
two distinct parties: the data owner is a trusted party holding the data of
individuals, and the vendor is the party that wishes to classify individuals.
The loss function may be defined solely by either party or by both parties in
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collaboration. In this example, the data owner is the ad network [x+1], and
the vendor is CapitalOne.

The ad network ([x+1]) maintains a mapping from individuals into cate-
gories. We can think of these categories as outcomes, as they determine which
ads will be shown to an individual. In order to comply with our fairness
requirement, the mapping from individuals into categories (or outcomes)
will have to be randomized and satisfy the Lipschitz property introduced
above. Subject to the Lipschitz constraint, the ad network can still express
its own belief as to how individuals should be assigned to categories using
the loss function. However, since the Lipschitz condition is a hard constraint
there is no possibility of discriminating between individuals that are deemed
similar by the metric. In particular, this will disallow arbitrary distinctions
between protected individuals, thus preventing both reverse tokenism and
the self-fulfilling prophecy. In addition, the metric can eliminate the existence
of redundant encodings of certain attributes thus also preventing redlining
of those attributes. In Section 8.3 we will see a characterization of which
attributes are protected by the metric in this way.

8.2.3 Connection to Differential Privacy

Our notion of fairness may be viewed as a generalization of differential pri-
vacy [Dwo1, DMNS]. As it turns out our notion can be seen as a generalization
of differential privacy. To see this, consider a simple setting of differential
privacy where a database curator maintains a database x (thought of as a subset
of some universe U ) and a data analyst is allowed to ask a query F : V → A on
the database. Here we denote the set of databases by V = 2U and the range of
the query by A. A mapping M : V → µ(A) satisfies ε-differential privacy if and
only if M satisfies the (D∞, d)-Lipschitz property, where, letting x4y denote

the symmetric difference between x and y, we define d(x,y) def= ε|x4y|.
The utility loss of the analyst for getting an answer a ∈ A from the mecha-

nism is defined as L(x,a) = dA(Fx,a), that is distance of the true answer from
the given answer. Here distance refers to some distance measure in A that
we described using the notation dA. For example, when A = R, this could
simply be dA(a,b) = |a− b|. The optimization problem (8.2) in Figure 8.1 (i.e.,

opt(I ) def= minEx∼V Ea∼µx L(x,a)) now defines the optimal differentially pri-
vate mechanism in this setting. We can draw a conceptual analogy between
the utility model in differential privacy and that in fairness. If we think of
outcomes as representing information about an individual, then the vendor
wishes to receive what she believes is the most “accurate” representation of
an individual. This is quite similar to the goal of the analyst in differential
privacy.
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In the current work we deal with more general metric spaces than in
differential privacy. Nevertheless, we later see (specifically in Section 8.5) that
some of the techniques used in differential privacy carry over to the fairness
setting.

8.3 Relationship between Lipschitz property and sta-
tistical parity

In this section we discuss the relationship between the Lipschitz property
articulated in Definition 8.2.1 and statistical parity. As we discussed earlier,
statistical parity is insufficient as a general notion of fairness. Nevertheless
statistical parity can have several desirable features, e.g., as described in
Proposition 8.3.2 below. In this section we demonstrate that the Lipschitz
condition naturally implies statistical parity between certain subsets of the
population.

Formally, statistical parity is the following property.

Definition 8.3.1 (Statistical parity). We say that a mapping M : V → µ(A)
satisfies statistical parity between distributions S and T up to bias ε if

Dtv(µS ,µT ) 6 ε . (8.7)

Proposition 8.3.2. LetM : V → µ(A) be a mapping that satisfies statistical parity
between two sets S and T up to bias ε. Then, for every set of outcomes O ⊆ A, we
have the following two properties.

1. |P {M(x) ∈O | x ∈ S} −P {M(x) ∈O | x ∈ T }| 6 ε,

2. |P {x ∈ S |M(x) ∈O} −P {x ∈ T |M(x) ∈O})| 6 ε .
Intuitively, this proposition says that if M satisfies statistical parity, then

members of S are equally likely to observe a set of outcomes as are members
of T . Furthermore, the fact that an individual observed a particular outcome
provides no information as to whether the individual is a member of S or a
member of T . We can always choose T = Sc in which case we compare S to the
general population.

A fundamental question that arises in our approach is: When does the
Lipschitz condition imply statistical parity between two distributions S and T
on V ? We will see that the answer to this question is closely related to the
earthmover distance between S and T , which we will define shortly.

The next definition formally introduces the quantity that we will study,
that is, the extent to which any Lipschitz mapping can violate statistical parity.
In other words, we answer the question, “How biased with respect to S and T
might the solution of the fairness LP be, in the worst case?”
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Definition 8.3.3 (Bias). We define

biasD,d(S,T ) def= maxµS(0)−µT (0) , (8.8)

where the maximum is taken over all (D,d)-Lipschitz mappings M = {µx}x∈V
mapping V into µ({0,1}).

Note that biasD,d(S,T ) ∈ [0,1]. Even though in the definition we restricted
ourselves to mappings into distributions over {0,1}, it turns out that this is
without loss of generality, as we show next.

Lemma 8.3.4. Let D ∈ {Dtv,D∞} and let M : V → µ(A) be any (D,d)-Lipschitz
mapping. Then, M satisfies statistical parity between S and T up to biasD,d(S,T ).

Proof. Let M = {µx}x∈V be any (D,d)-Lipschitz mapping into A. We will con-
struct a (D,d)-Lipschitz mapping M ′ : V → µ({0,1}) which has the same bias
between S and T as M.

Indeed, let AS = {a ∈ A : µS(a) > µT (a)} and let AT = AcS . Put µ′x(0) = µx(AS)
and µ′x(1) = µx(AT ). We claim that M ′ = {µ′x}x∈V is a (D,d)-Lipschitz mapping.
In both cases D ∈ {Dtv,D∞} this follows directly from the definition. On the
other hand, it is easy to see that

Dtv(µS ,µT ) =Dtv(µ′S ,µ
′
T ) = µ′S(0)−µ′T (0) 6 biasD,d(S,T ) . �

Earthmover Distance. We will presently relate biasD,d(S,T ) for D ∈
{Dtv,D∞} to certain earthmover distances between S and T , which we define
next.

Definition 8.3.5 (Earthmover distance). Let σ : V ×V →R be a nonnegative
distance function. The σ -earthmover distance between two distributions S
and T , denoted σEM(S,T ), is defined as the value of the so-called Earthmover
LP:

σEM(S,T ) def= min
∑
x,y∈V

h(x,y)σ (x,y)

subject to
∑
y∈V

h(x,y) = S(x)∑
y∈V

h(y,x) = T (x)

h(x,y) > 0

We will need the following standard lemma, which simplifies the definition
of the earthmover distance in the case where σ is a metric.
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Lemma 8.3.6. Let d : V ×V →R be a metric. Then,

dEM(S,T ) = min
∑
x,y∈V

h(x,y)d(x,y)

subjectto
∑
y∈V

h(x,y) =
∑
y∈V

h(y,x) + S(x)− T (x)

h(x,y) > 0

Theorem 8.3.7. Let d be a metric. Then,

biasDtv,d(S,T ) 6 dEM(S,T ) . (8.9)

If furthermore d(x,y) 6 1 for all x,y, then we have

biasDtv,d(S,T ) > dEM(S,T ) . (8.10)

Proof. The proof is by linear programming duality. We can express
biasDtv,d(S,T ) as the following linear program:

bias(S,T ) = max
∑
x∈V

S(x)µx(0)−
∑
x∈V

T (x)µx(0)

subject to µx(0)−µy(0) 6 d(x,y)

µx(0) +µx(1) = 1
µx(a) > 0

Here, we used the fact that

Dtv(µx,µy) 6 d(x,y) ⇐⇒
∣∣∣µx(0)−µy(0)

∣∣∣ 6 d(x,y) .

The constraint on the RHS is enforced in the linear program above by the two
constraints µx(0)−µy(0) 6 d(x,y) and µy(0)−µx(0) 6 d(x,y).

We can now prove (8.9). Since d is a metric, we can apply Lemma 8.3.6.
Let {f (x,y)}x,y∈V be a solution to the LP defined in Lemma 8.3.6. By putting
εx = 0 for all x ∈ V , we can extend this to a feasible solution to the LP defining
bias(S,T ) achieving the same objective value. Hence, we have bias(S,T ) 6
dEM(S,T ).

Let us now prove (8.10), using the assumption that d(x,y) 6 1. To do so,
consider dropping the constraint that µx(0) +µx(1) = 1 and denote by β(S,T )
the resulting LP:

β(S,T ) def= max
∑
x∈V

S(x)µx(0)−
∑
x∈V

T (x)µx(0)

subject to µx(0)−µy(0) 6 d(x,y)

µx(0) > 0
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It is clear that β(S,T ) > bias(S,T ) and we claim that in fact bias(S,T ) > β(S,T ).
To see this, consider any solution {µx(0)}x∈V to β(S,T ). Without changing the
objective value we may assume that minx∈V µx(0) = 0. By our assumption that
d(x,y) 6 1 this means that maxx∈V µx(0) 6 1. Now put µx(1) = 1−µx(0) ∈ [0,1].
This gives a solution to bias(S,T ) achieving the same objective value. We
therefore have,

bias(S,T ) = β(S,T ) .

On the other hand, by strong LP duality, we have

β(S,T ) = min
∑
x,y∈V

h(x,y)d(x,y)

subject to
∑
y∈V

h(x,y) >
∑
y∈V

h(y,x) + S(x)− T (x)

h(x,y) > 0

It is clear that in the first constraint we must have equality in any optimal
solution. Otherwise we can improve the objective value by decreasing some
variable h(x,y) without violating any constraints.

Since d is a metric we can now apply Lemma 8.3.6 to conclude that
β(S,T ) = dEM(S,T ) and thus bias(S,T ) = dEM(S,T ). �

Remark 8.3.8. Here we point out a different proof of the fact that
biasDtv,d(S,T ) 6 dEM(S,T ) which does not involve LP duality. Indeed dEM(S,T )
can be interpreted as giving the cost of the best coupling between the two
distributions S and T subject to the penalty function d(x,y). Recall, a coupling
is a distribution (X,Y ) over V ×V such that the marginal distributions are S
and T , respectively. The cost of the coupling is Ed(X,Y ). It is not difficult to
argue directly that any such coupling gives an upper bound on biasDtv,d(S,T ).
We chose the linear programming proof since it leads to additional insight
into the tightness of the theorem.

The situation for biasD∞,d is somewhat more complicated and we do not
get a tight characterization in terms of an earthmover distance. We do however
have the following upper bound.

Lemma 8.3.9.
biasD∞,d(S,T ) 6 biasDtv,d(S,T ) (8.11)

Proof. By Lemma 8.2.5, we have Dtv(µx,µy) 6D∞(µx,µy) for any two distribu-
tions µx,µy . Hence, every (D∞, d)-Lipschitz mapping is also (Dtv, d)-Lipschitz.
Therefore, biasDtv,d(S,T ) is a relaxation of biasD∞,d(S,T ). �
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Corollary 8.3.10.
biasD∞,d(S,T ) 6 dEM(S,T ) (8.12)

For completeness we note the dual linear program obtained from the
definition of biasD∞,d(S,T ) :

biasD∞,d(S,T ) = min
∑
x∈V

εx

subject to
∑
y∈V

f (x,y) + εx >
∑
y∈V

f (y,x)ed(x,y) + S(x)− T (x)

(8.13)∑
y∈V

g(x,y) + εx >
∑
y∈V

g(y,x)ed(x,y) (8.14)

f (x,y), g(x,y) > 0

Similar to the proof of Theorem 8.3.7, we may interpret this program as a
flow problem. The variables f (x,y), g(x,y) represent a nonnegative flow from
x to y and εx are slack variables. Note that the variables εx are unrestricted as
they correspond to an equality constraint. The first constraint requires that x
has at least S(x)−T (x) outgoing units of flow in f . The RHS of the constraints
states that the penalty for receiving a unit of flow from y is ed(x,y). However, it
is no longer clear that we can get rid of the variables εx, g(x,y).

Open Question 8.3.1. Can we achieve a tight characterization of when (D∞,d)-
Lipschitz implies statistical parity?

8.4 Preferential Treatment

In this section, we explore how to implement what may be called fair preferen-
tial treatment. Indeed, a typical question when we discuss fairness is, “What if
we want to ensure statistical parity between two groups S and T , but members of
S are less likely to be “qualified”?

For example, in the context of bank loans, it may be the case that the
members of S are generally less well off financially than members of T , in
which case, the argument goes, statistical parity might be inappropriate. In
Section 8.3, we have seen that when S and T are “similar" then the Lipschitz
condition implies statistical parity. Here we consider the complementary case
where S and T are very different and imposing statistical parity corresponds
to preferential treatment. This is a cardinal question, which we examine with
a concrete example illustrated in Figure 8.2.
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G0

G1

S0 T0

S1 T1

Figure 8.2: S0 = G0 ∩ S, T0 = G0 ∩ T

For simplicity, let T = Sc. Assume |S |/ |T ∪ S | = 1/10, so S is only 10% of
the population. Suppose that our task-specific metric partitions S ∪ T into
two groups, call them G0 and G1, where members of Gi are very close to
one another and very far from all members of G1−i . Let Si , respectively Ti ,
denote the intersection S ∩Gi , respectively T ∩Gi , for i = 0,1. Finally, assume
|S0| = |T0| = 9|S |/10. Thus, G0 contains less than 20% of the total population,
and is equally divided between S and T .

The Lipschitz condition requires that members of each Gi be treated simi-
larly to one another, but there is no requirement that members ofG0 be treated
similarly to members of G1. The treatment of members of S, on average, may
therefore be very different from the treatment, on average, of members of T ,
since members of S are over-represented in G0 and under-represented in G1.
Thus the Lipschitz condition says nothing about statistical parity in this case.

Suppose the members of Gi are to be shown an advertisement adi for a
loan offering, where the terms in ad1 are superior to those in ad0. Suppose
further that the distance metric has partitioned the population according
to (something correlated with) credit score, with those in G1 having higher
scores than those in G0.

On the one hand, this seems fair: people with better ability to repay are
being shown a more attractive product. Now we ask two questions: “What is
the effect of imposing statistical parity?” and “What is the effect of failing to
impose statistical parity?”

Imposing Statistical Parity. Essentially all of S is in G0, so for simplicity
let us suppose that indeed S0 = S ⊂ G0. In this case, to ensure that members
of S have comparable chance of seeing ad1 as do members of T , members
of S must be treated, for the most part, like those in T1. In addition, by the
Lipschitz condition, members of T0 must be treated like members of S0 = S,
so these, also, are treated like T1, and the space essentially collapses, leaving
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only trivial solutions such as assigning a fixed probability distribution on the
advertisements (ad0,ad1) and showing ads according to this distribution to
each individual, or showing all individuals adi for some fixed i. However,
while fair (all individuals are treated identically), these solutions fail to take
the vendor’s loss function into account.

Failing to Impose Statistical Parity. The demographics of the groups Gi
differ from the demographics of the general population. Even though half
the individuals shown ad0 are members of S and half are members of T , this
in turn can cause a problem with fairness: an “anti-S” vendor can effectively
eliminate most members of S by replacing the “reasonable” advertisement ad0
offering less good terms, with a blatantly hostile message designed to drive
away customers. This eliminates essentially all business with members of S,
while keeping intact most business with members of T . Thus, if members of
S are relatively far from the members of T according to the distance metric,
then satisfying the Lipschitz condition may fail to prevent some of the unfair
practices.

8.4.1 An alternative optimization problem

With the above discussion in mind, we now suggest a different approach, in
which we insist on statistical parity, but we relax the Lipschitz condition be-
tween elements of S and elements of Sc. This is consistent with the essence of
preferential treatment, which implies that elements in S are treated differently
than elements in T . The approach is inspired by the use of the earthmover
relaxation in the context of metric labeling and 0-extension [CKNZ, Cha].
Relaxing the S × T Lipschitz constraints also makes sense if the information
about the distances between members of S and members of T is of lower
quality, or less reliable, than the internal distance information within these
two sets.

We proceed in two steps:

1. (a) First we compute a mapping from elements in S to distributions
over T which transports the uniform distribution over S to the
uniform distribution over T , while minimizing the total distance
traveled. Additionally the mapping preserves the Lipschitz condi-
tion between elements within S.

(b) This mapping gives us the following new loss function for elements
of T : For y ∈ T and a ∈ A we define a new loss, L′(y,a), as

L′(y,a) =
∑
x∈S

µx(y)L(x,a) +L(y,a) ,
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where {µx}x∈S denotes the mapping computed in step (a). L′ can be
viewed as a reweighting of the loss function L, taking into account
the loss on S (indirectly through its mapping to T ).

2. Run the Fairness LP only on T , using the new loss function L′.

Composing these two steps yields a a mapping from V = S ∪ T into A.

Formally, we can express the first step of this alternative approach as a re-
stricted Earthmover problem defined as

dEM+L(S,T ) def= min E

x∈S
E
y∼µx

d(x,y) (8.15)

subject to D(µx,µx′ ) 6 d(x,x′) for all x,x′ ∈ S
Dtv(µS ,UT ) 6 ε
µx ∈ µ(T ) for all x ∈ S

Here, UT denotes the uniform distribution over T . Given {µx}x∈S which min-
imizes (8.15) and {νx}x∈T which minimizes the original fairness LP (8.2) re-
stricted to T , we define the mapping M : V → µ(A) by putting

M(x) =

νx x ∈ T
Ey∼µx νy x ∈ S

. (8.16)

Before stating properties of the mapping M we make some remarks.

1. Fundamentally, this new approach shifts from minimizing loss, subject
to the parity and Lipschitz constraints, to minimizing loss and disrup-
tion of S × T Lipschitz requirement, subject to the parity and S × S
and T × T Lipschitz constraints. This gives us a bicriteria optimization
problem, with a wide range of options.

2. We also have some flexibility even in the current version. For exam-
ple, we can eliminate the re-weighting, prohibiting the vendor from
expressing any opinion about the fate of elements in S. This makes
sense in several settings. For example, the vendor may request this due to
ignorance (e.g., lack of market research) about S, or the vendor may have
some (hypothetical) special legal status based on past discrimination
against S.

3. It is instructive to compare the alternative approach to a modification
of the Fairness LP in which we enforce statistical parity and eliminate
the Lipschitz requirement on S × T . The alternative approach is more
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faithful to the S × T distances, providing protection against the self-
fulfilling prophecy discussed in the Introduction, in which the vendor
deliberately selects the “wrong” subset of S while still maintaining
statistical parity.

4. A related approach to addressing preferential treatment involves ad-
justing the metric in such a way that the Lipschitz condition will imply
statistical parity. This coincides with at least one philosophy behind
affirmative action: that the metric does not fully reflect potential that
may be undeveloped because of unequal access to resources. Therefore,
when we consider one of the strongest individuals in S, affirmative ac-
tion suggests it is more appropriate to consider this individual as similar
to one of the strongest individuals of T (rather than to an individual of
T which is close according to the original distance metric). In this case,
it is natural to adjust the distances between elements in S and T rather
than inside each one of the populations (other than possibly re-scaling).
This gives rise to a family of optimization problems:

Find a new distance metric d′ which “best approximates" d un-
der the condition that S and T have small earthmover distance
under d′,

where we have the flexibility of choosing the measure of quality to how
well d′ approximates d.

Let M be the mapping of Equation 8.16. The following properties of M are
easy to verify.

Proposition 8.4.1. The mapping M defined in (8.16) satisfies

1. statistical parity between S and T up to bias ε,

2. the Lipschitz condition for every pair (x,y) ∈ (S × S)∪ (T × T ).

Proof. The first property follows since

Dtv(M(S),M(T )) =Dtv

(
E

x∈S
E
y∼µx

νy , E
x∈T

νx

)
6Dtv(µS ,UT ) 6 ε.

The second claim is trivial for (x,y) ∈ T × T . So, let (x,y) ∈ S × S. Then,

D(M(x),M(y)) 6D(µx,µy) 6 d(x,y) .

�
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We have given up the Lipschitz condition between S and T , instead relying
on the terms d(x,y) in the objective function to discourage mapping x to
distant y’s. It turns out that the Lipschitz condition between elements x ∈ S
and y ∈ T is still maintained on average and that the expected violation is
given by dEM+L(S,T ) as shown next.

Proposition 8.4.2. Suppose D = Dtv in (8.15). Then, the resulting mapping M
satisfies

E

x∈S
max
y∈T

[
Dtv(M(x),M(y))− d(x,y)

]
6 dEM+L(S,T ) .

Proof. For every x ∈ S and y ∈ T we have

Dtv(M(x),M(y)) =Dtv

(
E
z∼µx

M(z),M(y)
)

6 E
z∼µx

Dtv (M(z),M(y)) (by Fact 8.2.6)

6 E
z∼µx

d(z,y) (Proposition 8.4.1 since z,y ∈ T )

6 d(x,y) + E
z∼µx

d(x,z) (by triangle inequalities)

The proof is completed by taking the expectation over x ∈ S. �

An interesting challenge for future work is handling preferential treatment
of multiple protected subsets that are not mutually disjoint. The case of
disjoint subsets seems easier and in particular amenable to our approach.

8.5 Small loss in bounded doubling dimension

The general LP shows that given an instance I , it is possible to find an
“optimally fair” mapping in polynomial time. The result however does not
give a concrete quantitative bound on the resulting loss. Further, when the
instance is very large, it is desirable to come up with more efficient methods
to define the mapping.

We now give a fairness mechanism for which we can prove a bound on
the loss that it achieves in a natural setting. Moreover, the mechanism is
significantly more efficient than the general linear program. Our mechanism
is based on the exponential mechanism [MT], first considered in the context
of differential privacy.

We will describe the method in the natural setting where the mapping
M maps elements of V to distributions over V itself. The method could be
generalized to a different set A as long as we also have a distance function
defined over A and some distance preserving embedding of V into A. A
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natural loss function to minimize in the setting where V is mapped into
distributions over V is given by the metric d itself. In this setting we will give
an explicit Lipschitz mapping and show that under natural assumptions on
the metric space (V ,d) the mapping achieves small loss.

Definition 8.5.1. Given a metric d : V ×V → R the exponential mechanism
E: V → µ(V ) is defined by putting

E(x) def= [Z−1
x e
−d(x,y)]y∈V ,

where Zx =
∑
y∈V e

−d(x,y) .

Lemma 8.5.2 ([MT]). The exponential mechanism is (D∞, d)-Lipschitz.

One cannot in general expect the exponential mechanism to achieve small
loss. However, this turns out to be true in the case where (V ,d) has small
doubling dimension. It is important to note that in differential privacy, the
space of databases does not have small doubling dimension. The situation in
fairness is quite different. Many metric spaces arising in machine learning
applications do have bounded doubling dimension. Hence the theorem that
we are about to prove applies in many natural settings.

Definition 8.5.3. The doubling dimension of a metric space (V ,d) is the small-
est number k such that for every x ∈ V and every R > 0 the ball of radius R
around x, denoted B(x,R) = {y ∈ V : d(x,y) 6 R} can be covered by 2k balls of
radius R/2.

We will also need that points in the metric space are not too close together.

Definition 8.5.4. We call a metric space (V ,d) well separated if there is a
positive constant ε > 0 such that |B(x,ε)| = 1 for all x ∈ V .

Theorem 8.5.5. Let d be a well separated metric space of bounded doubling di-
mension. Then the exponential mechanism satisfies

E

x∈V
E

y∼E(x)
d(x,y) =O(1) .

Proof. Suppose d has doubling dimension k. It was shown in [CG] that dou-
bling dimension k implies for every R > 0 that

E

x∈V
|B(x,2R)| 6 2k

′
E

x∈V
|B(x,R)| , (8.17)

where k′ =O(k). It follows from this condition and the assumption on (V ,d)
that for some positive ε > 0,

E

x∈V
|B(x,1)| 6

(1
ε

)k′
E

x∈V
|B(x,ε)| = 2O(k) . (8.18)
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Then,

E

x∈V
E

y∼E(x)
d(x,y) 6 1 + E

x∈V

∫ ∞
1

re−r

Zx
|B(x,r)|dr

6 1 + E
x∈V

∫ ∞
1
re−r |B(x,r)|dr (since Zx > e−d(x,x) = 1)

= 1 +
∫ ∞

1
re−r E

x∈V
|B(x,r)|dr

6 1 +
∫ ∞

1
re−rrk

′
E

x∈V
|B(x,1)|dr (using (8.18))

6 1 + 2O(k)
∫ ∞

0
rk
′+1e−r dr

6 1 + 2O(k)(k′ + 2)! .

As we assumed that k =O(1), we conclude

E

x∈V
E

y∼E(x)
d(x,y) 6 2O(k)(k′ + 2)! 6O(1) .

�

Remark 8.5.6. If (V ,d) is not well-separated, then for every constant ε > 0,
it must contain a well-separated subset V ′ ⊆ V such that every point x ∈ V
has a neighbor x′ ∈ V ′ such that d(x,x′) 6 ε. A Lipschitz mapping M ′ defined
on V ′ naturally extends to all of V by putting M(x) = M ′(x′) where x′ is the
nearest neighbor of x in V ′. It is easy to see that the expected loss of M is
only an additive ε worse than that of M ′. Similarly, the Lipschitz condition
deteriorates by an additive 2ε, i.e., D∞(M(x),M(y)) 6 d(x,y) + 2ε . Indeed,
denoting the nearest neighbors in V ′ of x,y by x′, y′ respectively, we have
D∞(M(x),M(y)) = D∞(M ′(x′),M ′(y′)) 6 d(x′, y′) 6 d(x,y) + d(x,x′) + d(y,y′) 6
d(x,y) + 2ε. Here, we used the triangle inequality.

The proof of Theorem 8.5.5 shows an exponential dependence on the
doubling dimension k of the underlying space in the error of the exponential
mechanism. The next theorem shows that the loss of any Lipschitz mapping
has to scale at least linearly with k. The proof follows from a packing argument
similar to that in [HT]. The argument is slightly complicated by the fact
that we need to give a lower bound on the average error (over x ∈ V ) of any
mechanism.

Definition 8.5.7. A set B ⊆ V is called anR-packing if d(x,y) > R for all x,y ∈ B.
Here we give a lower bound using a metric space that may not be well-

separated. However, following Remark 8.5.6, this also shows that any mapping
defined on a well-separated subset of the metric space must have large error
up to a small additive loss.
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Theorem 8.5.8. For every k > 2 and every large enough n > n0(k) there exists an
n-point metric space of doubling dimension O(k) such that any (D∞, d)-Lipschitz
mapping M : V → µ(V ) must satisfy

E

x∈V
E

y∼M(x)
d(x,y) >Ω(k) .

Proof. Construct V by randomly picking n points from a r-dimensional sphere
of radius 100k. We will choose n sufficiently large and r = O(k). Endow V
with the Euclidean distance d. Since V ⊆ Rr and r = O(k) it follows from a
well-known fact that the doubling dimension of (V ,d) is bounded by O(k).

Claim 8.5.9. Let X be the distribution obtained by choosing a random x ∈ V and
outputting a random y ∈ B(x,k). Then, for sufficiently large n, the distribution X
has statistical distance at most 1/100 from the uniform distribution over V .

Proof. The claim follows from standard arguments showing that for large
enough n every point y ∈ V is contained in approximately equally many balls
of radius k. �

Let M denote any (D∞, d)-Lipschitz mapping and denote its error on a
point x ∈ V by

R(x) = E

y∼M(x)
d(x,y) .

and put R = Ex∈V R(x). Let G = {x ∈ V : R(x) 6 2R}. By Markov’s inequality
|G| > n/2.

Now, pick x ∈ V uniformly at random and choose a set Px of 22k random
points (with replacement) from B(x,k). For sufficiently large dimension r =
O(k), it follows from concentration of measure on the sphere that Px forms a
k/2-packing with probability, say, 1/10.

Moreover, by Claim 8.5.9, for random x ∈ V and random y ∈ B(x,k),
the probability that y ∈ G is at least |G|/ |V | − 1/100 > 1/3. Hence, with high
probability,

|Px ∩G| > 22k/10 . (8.19)

Now, suppose M satisfies R 6 k/100. We will lead this to a contradiction
thus showing that M has average error at least k/100. Indeed, under the
assumption that R 6 k/100, we have that for every y ∈ G,

P {M(y) ∈ B(y,k/50)} >
1
2
, (8.20)
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and therefore

1 > P
{
M(x) ∈ ∪y∈Px∩GB(y,k/2)

}
=

∑
y∈Px∩G

P {M(x) ∈ B(y,k/2)}

(since Px is a k/2-packing)

>
∑

y∈Px∩G
exp(−k)P(M(y) ∈ B(y,k/2))

(by the Lipschitz condition)

=
22k

10
· exp(−k)

2
> 1 .

This is a contradiction which shows that R > k/100. �

Open Question 8.5.1. Can we improve the exponential dependence on the
doubling dimension in our upper bound?

8.6 Discussion and future Directions

In this chapter we introduced a framework for characterizing fairness in
classification. The key element in this framework is a requirement that similar
people be treated similarly in the classification. We developed an optimization
approach which balanced these similarity constraints with a vendor’s loss
function. and analyzed when this local fairness condition implies statistical
parity, a strong notion of equal treatment. We also presented an alternative
formulation enforcing statistical parity, which is especially useful to allow
preferential treatment of individuals from some group. Below we consider
some open questions and directions for future work.

8.6.1 On the Similarity Metric

As noted above, one of the most challenging aspects of our work is justifying
the availability of a distance metric. We argue here that the notion of a
metric already exists in many classification problems, and we consider some
approaches to building such a metric.

8.6.1.1 Defining a metric on individuals

The imposition of a metric already occurs in many classification processes.
Examples include credit scores1 for loan applications, and combinations of test

1We remark that the credit score is a one-dimensional metric that suggests an obvious
interpretation as a measure of quality rather than a measure of similarity. When the metric is
defined over multiple attributes such an interpretation is no longer clear.
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scores and grades for some college admissions. In some cases, for reasons of
social engineering, metrics may be adjusted based on membership in various
groups, for example, to increase geographic and ethnic diversity.

The construction of a suitable metric can be partially automated using
existing machine learning techniques. This is true in particular for distances
d(x,y) where x and y are both in the same protected set or both in the general
population. When comparing individuals from different groups, we may
need human insight and domain information. This is discussed further in
Section 8.6.1.2.

Another direction, which intrigues us but which have not yet pursued, is
particularly relevant to the context of on-line services (or advertising): allow
users to specify attributes they do or do not want to have taken into account
in classifying content of interest. The risk, as noted early on in this work, is
that attributes may have redundant encodings in other attributes, including
encodings of which the user, the ad network, and the advertisers may all be
unaware. Our notion of fairness can potentially give a refinement of the “user
empowerment" approach by allowing a user to participate in defining the
metric that is used when providing services to this user (one can imagine
for example a menu of metrics each one supposed to protect some subset of
attributes). Further research into the feasibility of this approach is needed, in
particular, our discussion throughout this chapter has assumed that a single
metric is used across the board. Can we make sense out of the idea of applying
different metrics to different users?

8.6.1.2 Building a metric via metric labeling

One approach to building the metric is to first build a metric on Sc, say,
using techniques from machine learning, and then “inject” members of S
into the metric by mapping them to members of S in a fashion consistent
with observed information. In our case, this observed information would
come from the human insight and domain information mentioned above.
Formally, this can be captured by the problem of metric labeling [KT]: we have
a collection of |Sc| labels for which a metric is defined, together with |S | objects,
each of which is to be assigned a label.

It may be expensive to access this extra information needed for metric
labeling. We may ask the question of how much information do we need
in order to approximate the result we would get were we to have all this
information. This is related to our next question.
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8.6.1.3 How much information is needed?

Suppose there is an unknown metric d∗ (the right metric) that we are trying
to find. We can ask an expert panel to tell us d∗(x,y) given (x,y) ∈ V 2. The
experts are costly and we are trying to minimize the number of calls we need
to make. The question is: How many queries q do we need to make to be able
to compute a metric d : V ×V →R such that the distortion between d and d∗

is at most C, i.e.,

sup
x,y∈V

max
{
d(x,y)
d∗(x,y)

,
d∗(x,y)
d(x,y)

}
6 C . (8.21)

The problem can be seen as a variant of the well-studied question of con-
structing spanners. A spanner is a small implicit representation of a metric
d∗. While this is not exactly what we want, it seems that certain spanner
constructions work in our setting as well, if we are willing to relax the embed-
ding problem by permitting a certain fraction of the embedded edges to have
arbitrary distortion, as any finite metric can be embedded, with constant slack
and constant distortion, into constant-dimensional Euclidean space [ABC+].

8.6.2 Case study on applications in health care

An interesting direction for a case study is suggested by another Wall Street
Journal article (11/19/2010) that describes the (currently experimental) prac-
tice of insurance risk assessment via online tracking. For example, food pur-
chases and exercise habits correlate with certain diseases. This is a stimulating,
albeit alarming, development. In the most individual-friendly interpretation
described in the article, this provides a method for assessing risk that is faster
and less expensive than the current practice of testing blood and urine sam-
ples. “Deloitte and the life insurers stress the databases wouldn’t be used to
make final decisions about applicants. Rather, the process would simply speed
up applications from people who look like good risks. Other people would
go through the traditional assessment process.” [SM] Nonetheless, there are
risks to the insurers, and preventing discrimination based on protected status
should therefore be of interest:

“The information sold by marketing-database firms is lightly regu-
lated. But using it in the life-insurance application process would
“raise questions” about whether the data would be subject to the
federal Fair Credit Reporting Act, says Rebecca Kuehn of the Fed-
eral Trade Commission’s division of privacy and identity protec-
tion. The law’s provisions kick in when “adverse action” is taken
against a person, such as a decision to deny insurance or increase
rates.”
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We might also consider defining new protected sets, based on the presence of
pre-existing conditions.

8.6.3 Does Fairness imply Privacy?

We have already discussed the need for privacy of (non-)membership in S
in ensuring fairness. We now ask a converse question: Does fairness in the
context of advertising ensure privacy?

Statistical parity has the interesting effect that it eliminates redundant
encodings of S in terms of A, in the sense that after applying M, there is no
f : A→ {0,1} that can be biased against S in any way. This prevents certain
attacks that aim to determine membership in S.

Unfortunately, this property is not hereditary. Indeed, suppose that the
advertiser wishes to target HIV-positive people. If the set of HIV-positive
people is protected, then the advertiser is stymied by the statistical parity con-
straint. However, suppose it so happens that the advertiser’s utility function
is extremely high on people who are not only HIV-positive but who also have
AIDS. Consider a mapping that satisfies statistical parity for “HIV-positive,”
but also maximizes the advertiser’s utility. We expect that the necessary error
of such a mapping will be on members of “HIV\AIDS,” that is, people who
are HIV-positive but who do not have AIDS. In particular, we don’t expect
the mapping to satisfy statistical parity for “AIDS” – the fraction of people
with AIDS seeing the advertisement may be much higher than the fraction of
people with AIDS in the population as a whole. Hence, the advertiser can in
fact target “AIDS”.

Alternatively, suppose people with AIDS are mapped to a region B ⊂ A, as
is a |AIDS|/ |HIV positive| fraction of HIV-negative individuals. Thus, being
mapped to Bmaintains statistical parity for the set of HIV-positive individuals,
meaning that the probability that a random HIV-positive individual is mapped
to B is the same as the probability that a random member of the whole
population is mapped to B. Assume further that mappings to A \ B also
maintains parity. Now the advertiser can refuse to do business with all people
with AIDS, sacrificing just a small amount of business in the HIV-negative
community.

These examples show that statistical parity is not a good notion of privacy
in targeted advertising. A natural question, not yet pursued, is whether we
can get better privacy using the Lipschitz property with a suitable metric.

8.6.4 Related work

We briefly mention two related topics; to our knowledge the work in these
fields does not solve the problems described here.
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Learning. Fair classification bears some resemblance to learning. One dif-
ference, however, is that learning does not typically involve arbitrarily differ-
ent costs for different classification errors, whereas our notion of loss does
precisely this. Also, we tend not think in terms of a unique “correct” fair
classification. Even if “correctness” makes sense when fairness is not taken
into account, there may be many different ways to temper correctness in order
to obtain fairness.

Fair Division (Cake-Cutting). As the name implies, fair classification also
bears a resemblance to fair division, or “cake-cutting,” in which the goal is
to divide a resource in such a way that each recipient believes he or she has
received a fair amount, as expressed in the individual’s utilities. Certainly our
goal of treating similar people similarly is grounded in the intuition that this
is not only the right thing to do but also will help to reduce envy. However,
traditional work in fair division has nothing corresponding to the vendor.
Moreover, it is not at all clear that the vendor’s notion of loss can be incorpo-
rated into the utilities of the individuals (the only degree of freedom available
to us for trying to express additional goals), as our design goal requires fair-
ness even in the presence of an arbitrary vendor. With an unreasonable vendor
similar people could wind up with completely dissimilar utilities, and hence
be treated differently.

8.6.5 Catalog of Evils

We briefly summarize here behaviors against which we wish to protect. We
make no attempt to be formal. Let S be a protected set.

1. Blatant explicit discrimination. This is when membership in S is explicitly
tested for and a “worse” outcome is given to members of S than to
members of Sc.

2. Discrimination Based on Redundant Encoding. Here the explicit test for
membership in S is replaced by a test that is, in practice, essentially
equivalent.

3. Redlining. A well-known form of discrimination based on redundant
encoding. The following definition appears in an article by [Hun1],
which contains the history of the term, the practice, and its consequences:
“Redlining is the practice of arbitrarily denying or limiting financial
services to specific neighborhoods, generally because its residents are
people of color or are poor.”
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4. Cutting off business with a segment of the population in which membership
in the protected set is disproportionately high. A generalization of redlining,
in which members of S need not be a majority of the redlined population;
instead, the fraction of the redlined population belonging to S may
simply exceed the fraction of S in the population as a whole.

5. Self-fulfilling prophecy. Here the vendor advertiser is willing to cut off
its nose to spite its face, deliberately choosing the “wrong” members of
S in order to build a bad “track record” for S. A less malicious vendor
may simply select random members of S rather than qualified members,
thus inadvertently building a bad track record for S.

6. Reverse tokenism. This concept arose in the context of imagining what
might be a convincing refutation to the claim “The bank denied me a
loan because I am a member of S.” One possible refutation might be the
exhibition of an “obviously more qualified” member of Sc who is also
denied a loan. This might be compelling, but by sacrificing one really
good candidate c ∈ Sc the bank could refute all charges of discrimination
against S. That is, c is a token rejectee; hence the term “reverse tokenism”
(“tokenism” usually refers to accepting a token member of S). We remark
that the general question of explaining decisions seems quite difficult, a
situation only made worse by the existence of redundant encodings of
attributes.
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