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ABSTRACT
Cloud computing is transforming the way applications are
created and run. The simple abstraction of leasing a vir-
tual machine (VM) on a hosted infrastructure makes ap-
plications simple to create, rapid to expand, and economi-
cal to run. However, to gain these advantages, companies
must relinquish control they have with their own private
infrastructure—e.g., they cannot run their own virtualiza-
tion technology or control the network elements. As a re-
sult, many companies continue to run their applications on
their own private infrastructure. Rather than leasing in-
dividual VMs, we propose that customers lease an entire
cloud resident data center—combining the control of pri-
vate infrastructure with the flexibility of public infrastruc-
ture. With the cloud resident data center, a customer can
design and manage the servers, network, storage, and mid-
dleboxes, as in a private infrastructure, while running in a
public cloud. Our architecture presents each customer with
a virtualized infrastructure, including a virtualized network
topology that the customer can configure and servers that
support nested virtualization. Rather than run virtualized
network equipment that supports many kinds of configu-
ration interfaces and control-plane software, our architec-
ture uses a logically-centralized controller to emulate the
control-plane functionality. We also introduce live data
center migration, where we go beyond migrating individ-
ual VMs to migrate an entire data center as a single unit.

1. INTRODUCTION
The benefits of utilizing a public cloud infrastruc-

ture are well documented. In the Infrastructure as a
Service (IaaS) model, the cloud provider leases virtual
machines to customers, charging based on the time
the VM is running. This simple abstraction is trans-
forming the way services are run, by allowing resources
to expand and contract with the needs of the service
rather than provisioning for the worst case. This flex-
ibility allows customers to establish and rapidly ex-
pand a global presence in minutes rather than days or
months. Finally, the IaaS model offers a separation of
expertise where the cloud provider handles all of the
physical infrastructure needs (e.g., physical security).
While hosting infrastructures like Amazon EC2 pro-

vide tremendous benefits, many companies remain re-
luctant to move to the public cloud. Security and pri-
vacy are often touted as the main concerns, but gener-
ally speaking the issue comes down to control. To uti-
lize the public cloud, a company must relinquish con-
trol over the software stack (e.g., running its own vir-
tualization layer), the network (e.g., specifying quality
of service parameters, placing VMs to minimize net-
work latency, etc.), and security (e.g., controlling what
applications can run on the same physical server, etc.).
To retain this control, companies choose to run their
applications on their own infrastructure, such as an
enterprise IT infrastructure or a private data center.
To bridge the gap between public and private infras-

tructures, hybrid clouds have been proposed. They al-
low a company to simultaneously use the public cloud
and private infrastructure, perhaps with a virtual pri-
vate network (VPN) connecting the two [25, 2]. How-
ever, this requires companies to manage their private
infrastructure and a second public infrastructure (per-
haps using a proprietary application programming in-
terface, API). In addition, ensuring private data stays
safely in the private infrastructure requires companies
to explicitly partition their data and prevent any leak-
age of information to the public infrastructure.
Instead, we propose the cloud resident data center,

where, rather than leasing VMs, a company leases an
entire virtual data center. The company can specify
the topology of components (e.g., routers, switches,
storage elements, middleboxes, and servers), config-
ure the components, and run any software (including
its own virtualization technology). The cloud resident
data center runs on a shared, hosted infrastructure,
enabling the customer to expand and contract the re-
sources as needed. Additionally, this opens new pos-
sibilities for “clouds within clouds,” such as creating
industry and function-specific clouds without the huge
cost of building a data center.
The cloud resident data center shares much with the

vision of network virtualization [16] and cloud comput-
ing of today. While existing technologies (e.g., virtual
network embedding [7, 26], virtualized network ele-
ments [1, 4, 17], and server virtualization) can serve as
building blocks, we need to adapt, extend, and com-



bine them to support cloud resident data centers.
In particular, customers may have many types of

components (with different capabilities and configu-
ration interfaces), including some that do not map
naturally to the cloud provider’s equipment—issues
not addressed by prior work. To cope with this, in
our architecture we (i) utilize a two layer infrastruc-
ture embedding where we first transform the ‘customer
virtual’ topology (which may not match the available
physical devices) into an ‘embeddable virtual’ topol-
ogy (which does) and (ii) utilize a logically-central
controller that emulates the collective behavior of the
devices based on the customer’s device-level configura-
tion rather than virtualize each of the many different
components in the network. In addition, while recent
work on nested server virtualization [5] is clearly rele-
vant, we want to reduce the amount of software com-
mon to all customers (to reduce the security threat),
rather than add functionality to an already complex
hypervisor. Our design incorporates nested virtualiza-
tion into a “hypervisor-free” virtualization solution [19].
Additionally, we introduce live data center migra-

tion, where instead of migrating individual VMs, we
migrate an entire data center. This simplifies the cus-
tomer’s move to the cloud, and also allows a company
to leverage the public cloud during the early days of
a new service and migrate back to a cheaper private
infrastructure once the service becomes more stable.
The key to supporting live data center migration is
how we prepare the environment (e.g., set up the net-
work and server containers) and migrate multiple VMs
at the same time. By having a single “cut-over” point,
our solution does not require temporary tunnels be-
tween the two physical infrastructures.
The remainder of the paper is organized as follows.

In Section 2 we introduce the cloud resident data cen-
ter. In Section 3 we describe the architecture of the
cloud provider’s infrastructure to enable hosting mul-
tiple cloud resident data centers. Then, in Section 4,
we describe the necessary support for performing live
data center migration. We conclude in Section 5.

2. CLOUD RESIDENT DATA CENTER
Rather than leasing VMs with some tacked on con-

trols to stitch them together, we propose that the cus-
tomer leases an entire cloud resident data center. The
cloud provider offers customers the abstraction of run-
ning their own private infrastructures, while leverag-
ing a shared, hosted infrastructure. The cloud res-
ident data center provides control over the software
stack (Section 2.1), network (Section 2.2), and secu-
rity (Section 2.3) as in private infrastructures. Impor-
tantly, the infrastructure that makes this possible re-
mains dynamic—affording customers the same ability
to expand and contract as today’s public cloud.

2.1 Control the Entire Software Stack

Today’s public cloud (IaaS) offerings lease individ-
ual virtual machines to customers. Within these vir-
tual machines, the customer can run any operating sys-
tem and any applications. However, the customer can-
not run its own native virtualization layer—the only
option is for the customer to run host-based virtual-
ization inside the leased VMs, at a tremendous hit in
performance. Ironically, cloud providers make virtual-
ization the centerpiece of their dynamic infrastructure,
but do not allow their customers to take full advantage
of its benefits.
Moreover, virtualization has shown great use in se-

curity, for example through the use of VM introspec-
tion [23]. Yet, customers understandably would not
want the cloud provider to look into their VMs. Vir-
tualization is also commonly used for server consolida-
tion. In a public cloud, where there is no support for
customer-initiated VM migration, the only option dur-
ing slow periods is to shut down individual VM entirely
(and perhaps restarting them as smaller instances).
With the cloud resident data center, customers can

run any software they want—even their own virtual-
ization technology. This enables the customer to uti-
lize introspection, consolidation, and migration as they
would in their own infrastructure.

2.2 Control the Network
Today’s public clouds allow a customer to exercise

limited control over how multiple virtual machines can
communicate. Through provider-specific APIs the cus-
tomer can establish a VPN connection to its own pri-
vate infrastructure, specify access control lists, and
specify which subnets are routed to the Internet gate-
way vs. the VPN gateway [2]. These APIs, while
useful, limit the customers’ control while locking them
into a proprietary interface.
With intimate knowledge of its applications, the cus-

tomer is in the best position to provision, place, and
control network resources. The customer can man-
age for latency between VMs, customize the topology
to match the expected communication patterns [24],
control interdomain routing across multiple upstream
service providers, configure access control rules to re-
strict access to some servers, define VLANs, and so on.
For example, a cloud resident data center for a stock
exchange could select paths that equalize the latency
between the hosts for fair financial transactions.
With the cloud resident data center, the customer

selects and configures the components in the network
(routers, switches, servers, storage, middleboxes), as
well as the topology between them. The configurations
can be simply the configuration files used in their ex-
isting network components, rather than using a new
API. Important to note is that the components the
customer is using do not necessarily match what ex-
ists in the cloud provider’s physical infrastructure. A
customer can, for example, specify the network as a
single large router [12] or switch [6].
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2.3 Control the Security
In some ways, a public cloud is more secure than a

customer’s private infrastructure. Given the scale, the
cloud provider typically has more security experts and
better physical security (e.g., cameras). Additionally,
cloud providers do give customers some control over
the placement of the virtual machines such that differ-
ent VMs can belong to different failure domains (e.g.,
different racks, pods, or data centers).
However, where security falls short in the public

cloud is that many parties are sharing an infrastruc-
ture with a great deal of common software (e.g., the
virtualization software), which a malicious party can
attack to access—or obstruct access to—another’s data.
For example, many Amazon customers were affected
by a recent outage caused by a bug Amazon’s Elastic
Block Storage (EBS) [3]. This is a common software
layer that all customers can access, and therefore can
attack. While this particular outage was not caused
by a malicious attack, it very well could have been. In
addition, the limited APIs for EBS meant that cus-
tomers could do nothing to restore their own service.
As one affected customer said, “We relied on AWS to
fix the problem. Had we had more information, we
would have made a different choice.” [18]
With the cloud resident data center, we have a basic

principle to put the customers closer to the hardware
and give them more control. The job of the physi-
cal infrastructure is to isolate the customers, and let
the customer build up the layers of software on top
of a strong foundation. Rather than, for example, the
cloud provider performing replication and load balanc-
ing for access to storage, customers see raw storage
devices and utilizes their own replication software. In
this way, the customer need not rely on a shared soft-
ware platform.

Figure 1: Cloud resident data center architec-

ture.

3. ARCHITECTURE OVERVIEW
A cloud provider can support cloud resident data

centers using the architecture illustrated in Figure 1.
First, an embedding step maps the customer’s requested
resources to the underlying physical components. Then,
at run time, a logically-centralized controller emulates
the customer’s various network components by installing
the appropriate rules in a shared OpenFlow-based [15]
physical network, along with some special-purpose com-

ponents (e.g., storage and load balancers). For the
servers, we use virtualization technology that supports
nested virtualization (the ability to run a hypervisor
and virtual machines inside of a virtual machine). Fi-
nally, we allow customers to communicate with the
outside world—both through a VPN and the public
Internet. In the rest of this section, we discuss each
part of the architecture and how our solution uses, ex-
tends, and combines a variety of technologies.

3.1 Two-Level Infrastructure Embedder
The first step for creating a cloud resident data cen-

ter is for the customer to specify its topology of com-
ponents. Embedding software is needed to determine
the availability of resources in the physical infrastruc-
ture. If resources are available, the embedding soft-
ware decides which physical resources to assign to the
particular customer. Virtual network embedding al-
gorithms are not a new idea [7, 26]. However, previ-
ous work focuses on a single type of component (an
abstract notion of nodes), rather than the range of
devices customers run in their own networks. In addi-
tion, previous work maps each virtual node to a single
physical node, which unnecessarily constrains the em-
bedding solution. For example, a request for a 1000-
port switch is more readily satisfied by distributing the
virtual node over multiple physical switches.
As such, we propose a two-level embedding solu-

tion. The first step transforms the customer’s request
(the “customer virtual topology”) into an intermediate
“embeddable virtual topology”, which the controller
then maps on to the underlying physical network, as
shown in Figure 2. The first step requires a new algo-
rithm that considers the capabilities of the components
and the topological constraints, whereas the second
step can leverage existing algorithms for virtual net-
work embedding.

Figure 2: Two-level embedding.

The resulting mapping to the physical network is not
necessarily static. The controller may recalculate the
mapping under several conditions: (i) upon a request
from a new customer (adjusting an existing customer
may provide a better mapping for this new customer,
or even enable a mapping when one is not currently
possible [26]), (ii) upon a change request from cus-
tomer (expanding or contracting), or (iii) upon equip-
ment failure (remapping the affected virtual links to
alternative physical paths).
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3.2 Emulating Heterogeneous Components
To support multiple cloud resident data centers, we

need to utilize virtualization across the cloud provider’s
entire underlying infrastructure. Server virtualization
is well supported today through a number of commer-
cial offerings. In addition, several solutions exist for
switch and router virtualization [1, 4] where each node
has multiple forwarding tables, each controlled by a
different control-plane instance. However, partitioning
individual network components is not a practical solu-
tion for the cloud resident data center, since it would
limit customers to the specific devices (and models)
in the cloud provider’s physical infrastructure. This
would run counter to our goal of letting customers
specify and interact with network elements the same
way they would in their private infrastructure.

Figure 3: Emulator.

Instead, we propose emulating virtualized network
devices at the emulation software running on a logically-
centralized controller, shown in Figure 3. The con-
troller outputs commands to the underlying network
with OpenFlow switches. OpenFlow switches are an
appealing choice since they can forward packets along
a given path, drop selected traffic, and rewrite header
fields, they can act simultaneously like routers, switches,
and firewalls, as well as load balancers [10, 21] and net-
work address translators, depending on what rules the
controller installs. In addition, OpenFlow switches of-
fer a standard API to the controller [15] and naturally
support data-plane virtualization by partitioning the
space of packet header fields (e.g., VLAN tags, IP ad-
dresses, and so on) [17].
Still, the controller needs an effective way to trans-

late the customer’s device configurations into the low-
level rules installed in the OpenFlow switches1. The
controller could conceivably run multiple instances of
control-plane software, one for each virtual node; for
example, RouteFlow [14]. However, this approach in-
1An interesting special case arises if the customer’s private
infrastructure is already based on OpenFlow switches. In
this case, the customer’s “configuration” takes the form of
software running on an OpenFlow controller. In this case,
the cloud provider’s controller can run this software and
simply translate back and forth between the customer’s
virtual topology and the physical switches.

troduces substantial overhead on the controller, and
requires access to control-plane software from many
different vendors. Instead, our controller computes the
outcome of running a distributed control plane based
on the customer’s configuration and current network
conditions. For example, rather than running mul-
tiple OSPF processes, we extract the OSPF configu-
ration (e.g., link weights, area assignments, and sub-
net summarization) into a vendor-independent format,
and perform a centralized computation (e.g., a vari-
ant of Dijkstra’s algorithm) to compute the resulting
shortest paths. Then, the virtual mapping software
combines these results with the topology embedding
information to compute the appropriate rules to in-
stall in the underlying physical switches.
Of course, OpenFlow switches are not an efficient

“stand in” for all components (e.g., storage devices
and some kinds of middleboxes). Instead, we support
these components through special dedicated devices,
virtual appliances running in a VM on the server in-
frastructure, or distributed implementations on end
hosts [9]. For these specialized components, the con-
troller merely performs any necessary translation be-
tween the configuration of the customer’s device and
the configuration of the physical devices. Storage de-
vices are a particular challenge, since the protocols
are a main differentiator between storage technologies.
Rather than translating between different protocols in
real time, we plan to support a selection of the most
popular protocols (e.g., iSCSI and FiberChannel).

3.3 Secure Nested Server Virtualization
To manage a collection of servers as in a private in-

frastructure, the customer must be able to run its own
virtualization technology (i.e., nested virtualization).
For this, the cloud provider leases provider VMs to
each of the customers. Within the provider VM, the
customer can (if it chooses) run its own hypervisor
and one or more VMs (the customer VMs). Support-
ing this model allows customers to perform live migra-
tion [8] of customer VMs between different provider
VMs in the same cloud resident data center. This al-
lows the customer, for example, to consolidate its cus-
tomer VMs into fewer provider VMs, so it can turn off
(stop paying for) some of the provider VMs.
Existing solutions for nested virtualization (e.g., Tur-

tles [5]) add code to an already complex hypervisor—
counter to our goal of to have as little software as
possible directly interacting with customer code. In-
stead, we plan to adapt a “hypervisor-free” virtual-
ization solution to support nested virtualization. No-
Hype [19] essentially supports a single level of vir-
tualization without a hypervisor by preallocating re-
sources and configuring the hardware such that a guest
VM, slightly modified to operate within the limitations
of the current implementation, can then run on bare
hardware. NoHype does this by capitalizing on the vir-
tualization support in modern hardware and the spe-
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cialized use model in cloud computing. Rather than
adding support for nested virtualization into an exist-
ing, complex hypervisor (as in Turtles), we can adapt
NoHype to include a minimal hypervisor which only
includes the functionality to make nested virtualiza-
tion possible (e.g., to compress multiple extended page
tables into one). This hypervisor is only needed until
the processor supports nested virtualization.

3.4 External Internet Connections
The final aspect of the cloud resident data center

architecture is connectivity to the rest of the Internet,
including the customer’s own enterprise users as well
as the clients of its public-facing services. As in to-
day’s public cloud infrastructures, the customer can
have a VPN connection back to its private facilities.
In addition to private communication, we also sup-
port communication with the public Internet. Rather
than simply provide a generic public Internet interface,
we put the customer in greater control and involve
them in the route selection process. In this case, we
can utilize an existing mechanism (Transit Portal [20])
which provides each customer the illusion of having its
own Border Gateway Protocol (BGP) session with the
cloud provider’s upstream Internet providers, though
in reality these customer sessions are multiplexed over
a single BGP session with each Internet provider.

4. LIVE DATA CENTER MIGRATION
The previous section assumed that the customer

starts a cloud resident data center from scratch. Here,
we explore live data center migration as a way for cus-
tomers to move an entire data center without taking
it off line. Migration could simplify the transition to
a public cloud infrastructure, enable seamless changes
between cloud providers, or allow a customer to move
back to a private infrastructure. This latter is a model
similar to one used by Zynga [27], where a hosted in-
frastructure handles the initial deployment of a game
or service. Once the service becomes predictable, the
company can begin using its private infrastructure.
To perform this migration we: setup the environ-

ment (Section 4.1), iteratively copy the state (Section
4.2), and finally perform a coordinated pause and re-
sume (Section 4.3) where the final bits of state are
transferred before resuming everything in the cloud
provider’s infrastructure.

4.1 Prepare Environment
The key to making live data center migration possi-

ble is that we are able to set up the topology within the
cloud provider’s infrastructure in advance, with none
of the customer’s software running.
The physical data center that we are migrating to

will be given the customer’s topology of components.
The cloud provider will allocate resources based on this
request. The servers that are allocated will be in the

form of provider VMs. What is running in them when
they are started is essentially a container that will re-
ceive the state during the next phase. For customers
which have a virtualized infrastructure already, this
container is simply their hypervisor with no running
VMs. For customers that do not utilize virtualization,
this will be an OS which supports self migration—
which have been proposed [13].
The emulated elements (other than OpenFlow switches

and controllers) are actually handled the same way as
when the customer is creating a new cloud resident
data center. Since we are simply configuring the ele-
ments and emulating their behavior, there is no state
involved. The emulation software will calculate the
network state based on the configuration and config-
ure the physical components.
When the customer is running an OpenFlow net-

work, the state in the controller is important, and
therefore must be retained when migrating. Since there
is a separation between the control plane (the con-
troller) and the data plane (the switches), we can uti-
lize a technique similar to virtual router migration [22].
Essentially, we will clone the controller to the new in-
frastructure and make a request for it to repopulate
the data plane (the rules in the OpenFlow switches).
Since the controller in the live network will still be
operating while the data plane in the new network is
being populated, we will need coordination between
the two clones so that any new rules are consistent.

4.2 Iterative Copy of all VMs
After the environment is prepared, we essentially

have VMs with nothing running that are connected by
a network capable of carrying traffic (but is not). At
this point, we need to begin the migration of the actual
state. This includes the VMs (or servers) themselves
as well as the storage on the dedicated storage devices.
Modern hypervisors come with VM migration capa-

bilities which iteratively copies over the state while the
VM is running. We can also take advantage of the sig-
nificant overlap in state across different VM instances
to migrate a collection of VMs with much less overhead
than migrating them individually (e.g., by leveraging
techniques for wide-area redundancy elimination [11]).
The process to migrate the storage state is simi-

lar. However, given that it can be orders of magnitude
larger, the first copy may utilize a sneakernet, where
the disks are transferred via some physical media via
the mail to the cloud provider. After that, incremen-
tal differences can be obtained by examining the file
access information.

4.3 Coordinated Pause and Resume
At some point, the difference between each iteration

becomes small enough where further iterations will not
make much progress. When this happens, we stop
all of the VMs inside of the private data center be-
ing migrated. Each of the servers will copy over the
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remaining state, and the same will be done for the stor-
age. They are then resumed in the new infrastructure,
which has been prepared already.
This process is greatly simplified by the fact that we

do not need to support a transient period where two
communicating VMs can be in different locations (in
which case we would need some intermediate network
with tunnels to support communicate over the wide
area network). Instead, we coordinate so that all mi-
grations happen at roughly the same time and assume
the applications can tolerate the small transient period
when two VMs might not be able to communicate.

5. CONCLUSION
In this paper we introduced the cloud resident data

center. To obtain both the flexibility of a public cloud
infrastructure and the control available in a private
infrastructure, we propose changing the abstraction of
cloud computing from leasing individual virtual ma-
chines to leasing entire cloud resident data centers.
Our architecture utilizes a central controller to em-
ulate behavior at the configuration level rather than
virtualize at the component level for any component
that is not already well supported with virtualization
(namely servers). We also utilize secure nested virtu-
alization in order to enable the customer to control the
entire software stack. Finally, we introduce live data
center migration, where the entire collection of virtual
machines along with the network, middleboxes, and
storage elements are all migrated together.
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