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Abstract

The volume of images and other non-text data is growing exponentially in today’s

digital universe. A popular way of extracting useful information from such data is

to conduct content-based similarity search, e.g., to search for images with content

similar to a query image. How to build data structures to support efficient similarity

search on a large scale is an issue of increasing importance. The challenge is that

feature-rich data are usually represented as high-dimensional feature vectors, and the

curse of dimensionality dictates that as dimensionality grows, any search strategy

examines an increasingly large portion of the dataset and eventually degenerates to

brute-force scan. In this dissertation, we study several key issues to improve the

accuracy and efficiency of high-dimensional similarity search. Specifically, we make

the following contributions:

First, we enhance Multi-Probe LSH, the state-of-the-art high-dimensional simi-

larity search technique, by developing an accurate performance model that predicts

search accuracy with an error rate of less than 5% using only a 1/10 sample of the

whole dataset. We use this model to realize automatic performance tuning, which

would otherwise be tedious, and to develop an adaptive query processing strategy to

ensure the high search quality of each individual query.

Second, we develop an efficient offline method for simultaneously finding the K

nearest neighbors of every point in the dataset. Our method is 2 to 16 times faster

than the state-of-the-art technique when evaluated with different datasets. Further-

more, we show how to use the offline computed nearest-neighbor information to double

the speed of online similarity search.

Third, we develop compact representations of high-dimensional feature vectors

optimized for similarity search tasks. We present an asymmetric distance estimation

framework to exploit the information in the uncompressed query data. We use that to

further compress the indexed dataset, by 10% to 40%, without compromising search
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quality.

Fourth, we develop a scheme to compactly represent sets of feature vectors, an

increasingly popular data representation that is more accurate than single vectors,

but also more expensive. Our method dramatically reduces the matching cost in

both space and time. In an image classification task, our method achieves 25 times

speedup over one of the best existing techniques.

Finally, we demonstrate some of the proposed techniques by building a large-scale

near-duplicate image search engine. Our system serves more than 50 million web

images on a single commodity server and responds to queries within a few seconds.
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Chapter 1

Introduction

In this chapter, we introduce the problem of high-dimensional similarity search in the context

of its main application: building a system to efficiently search data objects according to

content similarity. We formally define the problem and demonstrate the dimensionality

challenge. After that, we briefly review the history and state of the art and summarize the

contributions we make in this dissertation.

1.1 Application: Content-Based Similarity Search

The world is producing data at an exponentially increasing speed (Figure 1.1). It

was estimated in 2008 [27], and later confirmed in 2011 [28], that in the past five

years (2006—2011), yearly worldwide data production grew from 180 exabytes 1 to

1,800 exabytes. How to effectively manage and make use of these data is one of the

fundamental problems people need to solve in the information age. Searching is a

common way people extract useful information from data. Various techniques for

searching particular data types have been developed over the past decades. Most

successful among these techniques are the relational database management system

11 exabyte = 1,000,000,000,000,000,000 bytes.
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Figure 1.1: Yearly amount of data produced worldwide from 2006 to 2011. Data
source: IDC [27].

for structured data (tables) 2 and the web search engine for unstructured web text

data. However, tables and text cover only a small fraction of all the data the world

is producing, while predominant in today’s digital universe are non-text, feature-rich

data like images, audio and video [27]. Unfortunately, a generally applicable system

to search such data on a large scale is yet to be developed.

It is generally agreed that the search paradigm for such feature-rich data is to

search by example, i.e., the user submits a query object, and the system returns

objects that are similar to the query. This paradigm is entirely different from either

Structured Query Language (SQL) for relational databases or keyword-based search

for web search engines, both with known scalable solutions. Even though over the

years researchers and companies have built many systems to search feature-rich data

on small to medium scales, due to reasons we will shortly explain, constructing such

systems for web-scale datasets remains a formidable task.

We start by explaining how a general content-based search system works, so as to

define the application context of the core similarity search problem we try to address

in this dissertation. Figure 1.2 shows the data flow in a general content-based search

system. Depending on the design choices, one or more components may be absent

2A database management system has many functions, search being an important one of them.
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from a real search system. The full system is made up of two subsystems: an offline

indexing subsystem for preprocessing and indexing the dataset, and an online query

processing subsystem for answering user queries with the offline-built index. Next we

explain in more detail what happens in these subsystems.

The dataset to be searched against needs to be preprocessed and indexed by the

offline indexing subsystem. This includes the following stages:

1. Feature extraction. Domain expertise is used to extract feature data from

data objects. Feature data are usually in the form of single high-dimensional

vectors or sets of vectors. They can be used to evaluate the similarity between

data objects. For example, a popular feature for finding visually similar images

is the color histogram.

2. Feature transformation. The raw feature data, despite containing the most

information, could be too large for efficient processing. In some systems, raw

feature data are converted to spatially efficient approximate internal represen-

tations, e.g., sketches discussed in Chapter 4 and random histograms discussed

in Chapter 5.

3. Indexing. The transformed and/or raw feature data are organized into the

index, a data structure to speedup online search.

After the index is built, it can be loaded onto the query processing subsystem to

answer user queries. Typically a query is answered in the following steps:

1. Feature extraction and transformation. These two steps are the same as

in offline processing.

2. Index lookup. The search scope is quickly narrowed down to a candidate set

which is a small fraction of the whole dataset that is likely to contain the search

targets.

4



3. Filtering. The candidates are scanned through with the space-efficient internal

representation, and items that can be assessed as irrelevant are discarded.

4. Ranking. The remaining high-quality candidates are ranked with raw feature

data, and the highest-ranked ones are presented to the user.

There are two key problems involved in building a content-based search system.

The first problem is how to design feature extraction methods and similarity measures

that faithfully capture the similarity between objects. In most cases, features are in

the form of high-dimensional vectors and the similarity measure is a standard distance

metric like l1 and l2. There also exist other feature types and non-standard distance

metrics, and even similarity measures that are not proper distance metrics. For

example, in Chapter 5, we present a technique to approximate a complex distance

metric called the Earth Mover’s Distance, which measures similarity between images

represented as weighted sets of features.

The second problem is similarity search: given a query, how to quickly find the

objects most similar to the query. A technique to improve similarity search for a

standard or abstract distance metric or even generic similarity measures may benefit

search systems of many data types. Therefore, the problem of similarity search is of

general interest.

1.2 Similarity Search and the Curse of Dimension-

ality

We devote this dissertation to techniques that make similarity search faster in various

circumstances. There are two variants of the similarity search problem: to search for

the K-nearest neighbor (K-NN) or the ǫ-nearest neighbor (ǫ-NN), which are formally

defined as follows.

5



Given a set V of N points with a similarity measure (distance metric) and an

arbitrary query point v, the K-NN of v, denoted by BK(v), is the set of K points in

V that are closest to v and the ǫ-NN of v, denoted by Bǫ(v), is the set of points in V

whose similarity (distance) to v is not less (greater) than ǫ.

The most common case is that V is a subset of the D-dimensional Euclidean space

and the similarity measure is defined by the standard Euclidean distance l2. Among

the two variants, it is usually easier for a user to pick K rather than a non-intuitive

threshold ǫ, so K-NN search is more popular. In this dissertation, we put our emphasis

on the K-NN search problem.

Without specifying the data representation and similarity measure, we can not talk

about complexity in primary arithmetic operations. For example, evaluating the l2

distance between two D-dimensional vectors costs O(D) arithmetic operations, while

evaluating the Earth Mover’s Distance between two sets ofD-dimensional vectors with

n items each could cost O(n3 + Dn2) arithmetic operations. For K-NN search, we

also need to maintain a top-K heap to efficiently track the K-NN, and after scanning

each data point in the candidate set, we need to apply an O(logK) heap updating

operation. However, heap updating is usually cheaper than distance evaluation, which

is typically of Ω(D) complexity for D-dimensional vectors, and D is typically tens or

even hundreds, and almost always larger than logK. Moreover, heap updates rarely

happen as most data points have a relatively large distance to the query and are

immediately discarded after one comparison. Therefore in the rest of this dissertation,

unless otherwise stated, we always ignore the cost of heap updates and solely measure

time complexity in number of similarity or distance evaluation.

Searching for K-NN by brute force costs O(N) comparisons, and is only applicable

to relatively small datasets. The standard approach to speeding up search for large

datasets is to build an index. A large number of indexing techniques are based on

the idea of dataset partitioning. The following toy example illustrates the idea of

6
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(a) Low Dimensional Space (b) High Dimensional Space

Figure 1.3: A toy index that bi-partitions the dataset with a hyper-plane, such that
the two partitions contain roughly the same number of points. The figures show
2-dimensional projections of points in imaginary low- and high-dimensional spaces,
respectively (therefore the distances shown in the figures are not necessarily equal
to the distances in the original spaces). For each case, the radius of the green circle
is the distance from the query (red) to the unknown nearest neighbor (blue). A
partition could potentially contain the nearest neighbor if it overlaps with the green
circle, and all such partitions must be examined. In the low-dimensional case (a), the
hyper-plane successfully limits the search scope into half the dataset. In the high-
dimensional case (b), when the distance to the nearest neighbor grows larger, both
partitions have to be examined to guarantee the finding of the nearest neighbor.

indexing (Figure 1.3).

Assume that we are to support 1-NN queries on a set of points sampled from the

D-dimensional Euclidean space. We can use a hyper-plane to partition the dataset

into two subsets, such that the numbers of points belonging to the two subsets are

roughly the same. Given a query, if it is sufficiently far away from the partition

boundary (Figure 1.3a), then we know its K-NN will only be found in one subset and

can narrow down the search scope by half. There are also cases where the distance

from the query to the partition boundary is not as large as the expected distance to

the nearest neighbor, and we cannot rule out the possibility that its nearest neighbors

may be found in both partitions. If this happens, we either have to give up speedup

by examining both subsets, or we have to tolerate the possibility of accuracy loss.

In practice, more sophisticated data partitioning schemes have been proposed.

For example, various trees are constructed by recursively partitioning the dataset;

7



Locality-Sensitive Hashing involves partitioning the dataset into many hash buckets

via random projection; and partitioning by K-means clustering has also been shown

to be efficient. We will discuss these techniques in more detail in the following sections

and provide citations there.

The challenge is that the K-NN problem suffers from the curse of dimensionality,

which dictates that as the dimension of data grows, all indexing techniques based on

data partitioning scan an increasingly large fraction of the dataset, and will eventually

degrade to brute-force search.

Formal treatment of the dimensionality curse can be found in Weber et al. [78].

Here, we use the above toy example to illustrate the problem, assuming that now the

dimensionality D is an increasing number and that the data points have independent

similar distributions along each dimension. We already see that the index fails when

the query point lies sufficiently close to the partition boundary. It is no longer safe to

look into only one partition if the distance δ between the query point and the partition

boundary becomes smaller than the distance ǫ(D) between the query point and its

nearest neighbor. We parameterize ǫ with the dimensionality D to emphasize its

dependence on D. The fact is that δ is upper-bounded by the range of points along

the normal direction to the hyper-plane, and the upper bound is roughly fixed no

matter how the hyper-plane is posed. Meanwhile, δ generally grows with D, because

according to the definition of the l2 distance

l2(x, y) =

√√√√
D∑

i=1

|xi − yi|2, ∀x, y ∈ R
D,

the added components |xi−yi|2 are always larger than or equal to zero (zero is unlikely

at the presence of randomization or noise). When D grows, ǫ(D) will eventually

become larger than any δ for most points, and the index becomes useless.

In practical datasets, there are cases when interdependence exists between differ-

8



ent dimensions. In such cases, the number of dimensions used to represent the data is

different from the intrinsic dimension, i.e. the minimal number of components needed

to describe the data. The hardness of the K-NN indexing problem is determined by

the intrinsic dimensionality of the dataset. For example, if one replicates a scalar 100

times to make a 100-dimensional vector, the intrinsic dimension is still 1, and the

efficiency of a well-designed indexing algorithm should remain the same as indexing

individual numbers.

1.3 The History and State of the Art

The similarity search problem has a long history: the 2-dimensional version of nearest-

neighbor search appeared in the 1973 book by Knuth [46] as the post office problem; an

O(2D logN) solution was proposed by Dobkin and Lipton [23] in 1976. Early solutions

to the problem are mostly various kinds of tree data structures, e.g., R-tree [35], KD-

tree [6], SR-tree [40]. Such methods are all designed to solve the nearest-neighbor

search problem exactly. Böhm et al. [8] presented a comprehensive survey that treats

these methods under a unified framework.

The dimensionality challenge began to receive more attention in the late 90s when

applications required indexing datasets of higher and higher dimensions while tree-

based indices failed to deliver the fast search speed as promised by their theoretical

O(logN) complexity (with a hidden coefficient that is exponential in D, which is

typically treated as a constant). Weber et al. [78] proved that when dimensionality

is sufficiently high, all data partitioning techniques, including all tree-based methods

ever designed and those to be designed in the future, will degrade to brute-force search.

They also demonstrated that sequential scan outperforms such methods whenever the

dimensionality is above 10, which is much smaller than the dimensionality that would

cause the indices to fail in theory. The reason is that in out-of-core implementations,
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trees usually require random disk access, and the throughput is typically only 1/10

that of sequential access. For a tree-based method to outperform sequential scan,

it should be able to find the nearest neighbors by scanning less than 1/10 of the

whole dataset, which is hard when dimensionality is high. Clarkson [18] presented

a survey of approaches to the nearest-neighbor search problem with an emphasis on

the relationship between the problem and data dimensionality.

Recently the trend has shifted to conducting approximate nearest-neighbor search

in the hope that speedup can be achieved by sacrificing a limited amount of accuracy.

After all, errors are already introduced, in most cases, during data acquisition and

feature extraction, and an additional loss of accuracy during K-NN search is usually

tolerable. Most recent works fall within the following three categories.

Locality Sensitive Hashing LSH [36, 31] is the state-of-the-art technique of ap-

proximate K-NN search. The idea is that it is possible to construct randomized hash

functions such that nearby points are more likely to be hashed into the same bucket

than points far away from each other. The search scope is limited to the buckets to

which the query point is hashed. The accuracy-cost trade-off is realized by varying

the average bucket size, the number of hash tables, and the number of buckets probed

during the search process. Many studies have been conducted to design hash func-

tions for different similarity measures [20, 14, 47], to reduce storage overhead [55, 39]

and to improve search strategy [38]. A recent study [66] showed that the pre-LSH

K-means clustering method [51, 72] can also be viewed as a kind of hashing, and

can achieve competitive performance when combined with the recently developed

LSH-based techniques like multi-probing [55] and query-adaptive querying [38].

Compact Data Representation This line of research follows the seminal work of

Weber et al. [78]. The idea is that when dimensionality is high, indexing techniques

cannot avoid scanning a significant portion of the whole dataset, and linear scan could

be more efficient as sequential read entails a 10 times speedup over random access.
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Further speedup can be achieved by using compact data representation. Sketch con-

struction is such a technique for embedding high-dimensional vectors into compact

bit-vectors and to approximate the original distance metric with hamming distance.

The idea of sketch is closely related to LSH. After all, as we will discuss in Chapter 4,

a bit in the sketch is simply a one-bit locality-sensitive hash value. Bi-partitioning the

space with a random hyper-plane is an effective way of generating sketches without

any training data [14, 53, 77]. Methods with an offline training stage for better online

performance have also been recently proposed [79, 85].

Approximate Search with Trees Although trees are well-known to be slow for ex-

act high-dimensional similarity search, significant speedup can actually be achieved

when the accuracy requirement is relaxed. ANN [59] is a library for approximate

K-NN search with various tree data structures. LSH Forest [4] is a tree-based gener-

alization of LSH, where heavily loaded hash buckets are recursively partitioned with

embedded hash tables. The goal is to eliminate the data-dependent parameters that

must be hand-tuned and to improve the performance for skewed data distribution.

The randomized KD-tree [60] is a similar independently developed technique that

aims at improving the performance of the KD-tree for approximate similarity search

by simultaneously maintaining multiple independent KD-trees that are constructed

with randomization.

Despite the fact that the K-NN problem has been intensively studied for more than

two decades, there has not been a satisfactory general solution when the dimensional-

ity of data is high. Rather than a cure to the curse of dimensionality, the approximate

techniques are more of a compromise when exact search is simply unable to finish in

time. Experiments show that even the state-of-the-art LSH index often has to scan

above 10% of the whole dataset in order to achieve acceptable accuracy (e.g., > 90%

recall). Further speeding up of similarity search, even with approximation, remains

a challenge.
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1.4 Contribution Summary

In this dissertation, we study several key issues to improve the accuracy and efficiency

of high-dimensional similarity search. Specifically, we make the following contribu-

tions.

Modeling and Improving Multi-Probe LSH

Although Locality-Sensitive Hashing (LSH) has achieved promising results, one prac-

tical problem remains that its search quality is sensitive to several parameters that

are data-dependent. Previous works on LSH have obtained interesting asymptotic

results, but they provide little guidance on how these parameters should be chosen,

and tuning parameters for a given dataset remains a tedious process. To address

this problem, we present a statistical performance model of Multi-Probe LSH [55], a

state-of-the-art variant of LSH. Our model can accurately predict the average search

quality and latency by gathering statistical data from a small sample of the dataset.

Apart from automatic parameter tuning with the performance model, we also use the

model to devise an adaptive search algorithm that determines the probing parameter

dynamically for each individual query. The adaptive probing method addresses the

problem that even though the average performance is tuned for optimal, the variance

of the performance is extremely high. Evaluation results show that the relative error

of the recall predictions are less than 5% for most cases; the adaptive search method

reduces the standard deviation of recall by about 50% over the existing method with

lower average cost.

Efficient K-NN Graph Construction

K-NN graph construction is a variant of the K-NN search problem, in which we want

to find the K-NN of every point in the dataset. Unlike the online search task for
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which the single query speed is optimized, K-NN graph construction is an offline

task, and the goal is to achieve maximal throughput. Existing methods for K-NN

graph construction either do not scale, or are specific to certain similarity measures.

We present NN-Descent, a simple yet efficient algorithm for approximate K-NN graph

construction with arbitrary similarity measures. Our method is based on local search,

has minimal space overhead and does not rely on any shared global index. Hence,

it is especially suitable for large-scale applications where data structures need to be

distributed over the network. We show with a variety of datasets and similarity

measures that the proposed method typically converges to above 90% recall with

each point comparing only to a few percent of the whole dataset on average. Our

method is from 2 to 16 times faster than the state-of-the-art technique [15]. The

offline computed nearest-neighbor information could be used to double the speed of

online similarity search.

Compact Feature Representation with Sketches

Recent studies [53, 54, 77] have shown that sketches can effectively approximate the

l1 distance in high-dimensional spaces and that filtering with sketches can speed up

similarity search by an order of magnitude. However, there is not yet an equivalent

technique for the popular l2 distance. It also remains a challenge to further reduce

the size of sketches, which are already compact, without compromising accuracy of

distance estimation. We present an efficient sketch algorithm for similarity search

with l2 distances and a novel asymmetric distance estimation technique. Our new

asymmetric estimator takes advantage of the original feature vector of the query

to boost the distance estimation accuracy. We also apply this asymmetric method

to existing sketches for cosine similarity and l1 distance. Evaluations with datasets

extracted from images and telephone records show that our l2 sketch outperforms

existing dimension reduction methods like PCA and random projection, and the
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asymmetric estimators consistently improve the accuracy of different sketch methods.

To achieve the same search quality, asymmetric estimators can reduce the sketch size

by 10% to 40%.

Compact Feature Set Representation with Random Histograms

The commonly used representation of a feature-rich data object has evolved from a

single feature vector to a set of feature vectors. How to compactly represent sets of

feature vectors becomes a significant problem. To address the problem, we present

a randomized algorithm to embed a set of features into a single high-dimensional

vector. The main idea is to project feature vectors into an auxiliary space using LSH

and to represent a set of features as a histogram in the auxiliary space, which is

simply a high-dimensional vector. The experimental results show that the proposed

approach is indeed effective and flexible. It can achieve accuracy comparable to the

feature set-matching methods, while requiring significantly less space and time. For

object recognition with the Caltech 101 dataset [24], our method runs 25 times faster

to achieve the same precision as Pyramid Matching Kernel [33], one state-of-the-art

feature set-matching method.

A Large-Scale Image Search Engine

Finally, we demonstrate some of the proposed techniques by building a large-scale

near-duplicate image search system that is capable of serving more than 50 million

web images on a single commodity server (a cluster is needed for offline indexing). We

also developed domain-specific techniques that make such a system possible. First, we

show that entropy-based filtering eliminates ambiguous SIFT features [52] that cause

most of the false positives and enables claiming near-duplicity with a single match of

the retained high-quality features. Second, we show that graph cut [3] can be used

for query expansion with a duplicity graph computed offline to substantially improve
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search quality. Evaluation with web images shows that when combined with sketch

embedding, our methods achieve a false positive rate orders of magnitude lower than

the standard visual word approach [81].
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Chapter 2

LSH Performance Modeling

LSH is the state-of-the-art technique of high-dimensional similarity search. A major prac-

tical problem is that the search quality of LSH is sensitive to several data-dependent pa-

rameters, which are hard to tune by hand. To address this problem, we present a statistical

performance model of LSH that can accurately predict the average search quality and latency

given a small sample dataset. Apart from automatic parameter tuning with the performance

model, we also use the model to devise an adaptive LSH search algorithm to determine the

probing parameter dynamically for each query. Experiments with three different datasets

show that the recall errors predicted are within 5% from the real values for most cases and

that the adaptive search method reduces the standard deviation of recall by about 50% over

the existing method.

2.1 Introduction

Locality-Sensitive Hashing (LSH) [36, 31, 20, 55] is the state of the art for approximate

K-NN search. One drawback of LSH, and its space-efficient variant Multi-Probe

LSH [55] in particular, is that its performance is very sensitive to several parameters

which must be chosen by the implementation. The tedious process of parameter
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tuning is a serious impediment for practical applications of LSH. Current research on

LSH and its variants provides little guidance on how these parameter values should

be chosen.

This chapter presents a performance model of Multi-Probe LSH. Given a partic-

ular data type, a small sample dataset and the set of LSH parameters, the model

can accurately predict the query accuracy and latency, making the parameter tuning

problem easy. The optimal setting of parameters depends on the dataset of interest,

which, in practice, might not be available at implementation time. Our method does

not require the full dataset. We identify relevant statistical properties of the data,

infer them from a sample dataset and extrapolate them to larger data size.

In addition, we use our performance model to devise an adaptive version of Multi-

Probe LSH with superior properties. Both our analysis and experiments show that the

performance of LSH on a query point depends not only on the overall distribution of

the dataset, but also on the local geometry in the vicinity of the particular query point.

The fixed number of probes used in the original Multi-Probe LSH may be insufficient

for some queries and larger than necessary for others. Our adaptive probing method

only probes enough buckets to achieve the required search accuracy.

Evaluation with three different datasets, i.e., images, audio, and 3D shapes, shows

that our analytical model is accurate for predicting performance and thus reliable for

parameter tuning. Furthermore, our adaptive probing method not only reduces the

variance in search performance between different queries, but also potentially reduces

the query latency.

Although this chapter focuses on LSH performance modeling, it is worth empha-

sizing that, at least for the datasets, our data model is capable of capturing the

distribution of l2 distances between a query point and its kth nearest neighbor for

any k, as well as the distribution of l2 distance between two arbitrary points in the

dataset with as few as six parameters. This data model is of independent interest and
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we expect it to be valuable in modeling the performance of other search and indexing

algorithms as well.

2.2 Background

2.2.1 Locality-Sensitive Hashing

LSH was introduced as a randomized technique suitable for solving the approximate

K-NN problem [36, 31]. The key insight behind LSH is that it is possible to construct

hash functions such that points close to each other under some similarity measure

have the same hash value with higher probability than do points that are far from

one another. Specifically, given a metric space (V, d), a family H of hash functions

is called (r, cr, p1, p2)-sensitive if for any p, q ∈ V both the following two conditions

hold:

• If d(p, q) ≤ r, then PrH∈H[H(p) = H(q)] ≥ p1,

• If d(p, q) ≥ cr, then PrH∈H[H(p) = H(q)] ≤ p2.

Here PrH∈H[e(H)] means the probability of event e(H) over all H ∈ H. Note that the

hash value is not necessarily a single integral value, but could be any data type that

supports equality comparison. In practice, vector-valued hash functions with integral

components are most commonly used.

More generally, similarity between points can be measured by a similarity measure

s, with larger s meaning higher similarity. For example, the similarity measure of the

metric space (V,D) is simply s = −d. A family H of hash functions induces the

following similarity measure:

sH(p, q) , Pr
H∈H

[H(p) = H(q)].
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H is considered locality sensitive if sH can be expressed as a increasing function of

the similarity measure s of interest, or a decreasing function of the distance metric d

if the similarity is measured by the distance:

sH(p, q) = f [s(p, q)], f is monotonically increasing.

or

sH(p, q) = g[d(p, q)], g is monotonically decreasing.

Given a particular similarity measure and the corresponding hash family H, LSH

maintains L hash tables containing the points in the dataset, each constructed with

an independent hash function randomly sampled fromH. An approximate solution to

the K-NN query may be found by hashing the query point and scanning the buckets

to which the query point is hashed. As a data point might collide with the query

point in more than one hash tables, a bitmap is maintained for each query to record

the points scanned, so each data point is scanned at most once.

LSH families have been devised for various similarity measures. Some of the most

popular examples are bit sampling for hamming distance [36], min-wise independent

permutation for set similarity (Jaccard index) [11], random hyper-plane for cosine

similarity [14] and random projection for lp distance with p ∈ (0, 2] [20].

A particularly interesting case is the high-dimensional Euclidean space R
D with

l2 distance, for which the LSH family is defined as follows [20]:

H(v) = 〈h1(v), h2(v), . . . , hM(v)〉 (2.1)

hi(v) = ⌊ai · v + bi
W

⌋, i = 1, 2, . . . ,M (2.2)

where ai ∈ R
D is a vector with entries chosen independently from the Gaussian

distribution N(0, 1) and bi is drawn from the uniform distribution U [0,W ). For
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different i, ai and bi are sampled independently. The hash function H is a vector-

valued function made by concatenating M scalar hash functions. We call each hi an

atomic LSH function. The parameters M and W control the locality sensitivity of

the hash function.

2.2.2 Multi-Probe LSH

One drawback of the basic LSH scheme is that in practice it requires a large number of

hash tables (L) to achieve good search accuracy. Panigrahy [64] proposed an entropy-

based LSH scheme which reduced the required number of hash tables by using both

the original query point and randomly perturbed nearby points as additional queries.

Lv, et al. [55] used a similar perturbation-based approach to develop Multi-probe

LSH, which represents the state of the art of K-NN search. To make better use of a

smaller number of hash tables, Multi-Probe LSH not only considers the main bucket,

where the query point falls, but also examines other buckets that are “close” to the

main bucket. Although the idea of multi-probing applies to all vector-valued hash

functions with integral components generated by quantizing some real-valued atomic

hash functions, so far the random projection-based LSH for l2 (2.1–2.2) is the only

one reported to have been implemented and evaluated in the literature.

For a single hash table, let v be the query point and H(v) its hash. Recall that

H(v) consists of the concatenation of M integral values, each produced by an atomic

hash function on v. Buckets corresponding to hash values that differ from H(v) by

±1 in one or several components are also likely to contain points near the original

query point v. Buckets corresponding to hash values that differ from H(v) by more

than 1 in certain component are much less likely to contain points of interest, and

are not considered.

Multi-probe LSH is to systematically probe those buckets that are closest to the

main bucket. For concreteness, consider the scenario shown in Figure 2.1 where M =
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3. In this example, the query point is hashed to 〈5, 3, 9〉. In addition to examining this

main bucket, the algorithm also examines other buckets such as 〈6, 3, 9〉, 〈5, 2, 9〉 and

〈5, 3, 8〉, which are close to the main bucket. Note that the closer the query point’s

hash value is to the boundary of the bin, the more likely it is that the bin bordering

that boundary contains nearest neighbors of the query. In the above example, 〈5, 2, 9〉

is the most promising of the additional buckets and the first of them to be examined.

Specifically, given a query point v and the main bucket π0 = 〈h1, . . . , hM〉, let the

probing sequence be {π0, π1, . . . , πt, . . .}, where πt = 〈h1 + δt,1, . . . , hM + δt,M〉 and

〈δt,1, . . . , δt,M〉 is called the perturbation vector for step t. Because the chance of Kth

nearest neighbor falling into buckets with |δt,i| ≥ 2 is very small [55], we restrict δt,i

to the set {−1, 0,+1} in order to simplify the algorithm. The buckets in the probing

sequence are arranged in increasing order of the following query dependent score:

score(πt) =
M∑

i=1

∆2
i (δt,i)

where ∆i(δ) = δ · [hi +
1

2
(1 + δ)− ai · v + bi

W
].

∆i(±1) is the distance from ith projection to the right/left window boundary for each

i perturbed, and 0 for others, as illustrated in Figure 2.1.

Generating the probing sequence for each query is itself time consuming and so

Multi-probe LSH uses a pre-calculated template probing sequence generated with the

expected values of ∆i(±1) to approximate the query dependent probing sequence. For

a specific query, its hash function components are ranked according to the ∆i(±1)

values, and then adjusted according to the template probing sequence to produce the

actual probing sequence used for the query.

The length of the probing sequence T used by the algorithm is a further parameter

to be tuned. A larger value of T allows us to achieve the same accuracy of results

with fewer hash tables. However, the likelihood of finding more relevant results falls
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Figure 2.1: Illustration of LSH. The hash function consists of three components,
each calculated by random projection and quantization. The point v is hashed to
H(v) = 〈5, 3, 9〉.

rapidly as T increases. A very large value of T will only increase the candidate set

size without significantly improving accuracy.

In summary, to achieve good performance from Multi-probe LSH, one needs to

carefully tune four parameters: the window size W , the number of hash function

components M , the number of hash tables L and the length of probing sequence T .

2.3 Performance Measures

First of all we need to formalize the performance measures. There are two aspects

of performance — accuracy and cost. For the results to be generally applicable to

all applications, we avoid using an application specific gold standard, e.g., image

similarity rated by human, except in Chapter 5 and Chapter 6, which are more

application specific. Instead, we use the true K-NN obtained with brute-force scan

as gold standard, and use the percentage of true K-NN successfully found, or recall,

to capture the accuracy of the query result. Formally, let v be a query point, BK(v)

be the set of true K-NN and A(v) be the candidate set, which is the union of all the
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buckets probed. The approximate query result is the K elements of A(v) closest to v

(or the entire A(v) if |A(v)| ≤ K). The recall ρ is the percentage of BK(v) included

in A(v):

ρ(v) =
|A(v) ∩BK(v)|
|BK(v)| .

We rank A(v) and only return the best K points, thus precision is exactly the same

as recall.

For cost, we are only interested in the online query time, as the space overhead

and offline construction time are both linear to the dataset size N times the number of

hash tables L. The main part of query processing is scanning through the candidate

set and maintaining a top-K heap, which can be updated in O(logK) time. Because

most candidate points are far away from the query and are discarded immediately

after distance evaluation, heap updates rarely happen. Therefore, the query time

is mostly spent on computing distances, and is thus proportional to the size of the

candidate set. As a result, the percentage of the whole dataset scanned by LSH is a

good indicator of query time. This is further justified by experiments in Section 2.8.

We thus define selectivity τ(v) = |A(v)|/N , the size ratio between the candidate set

and the whole dataset, as the measure of query time. We use the average recall and

selectivity as overall performance measure. Our performance model is to estimate

these two values by their mathematical expectation: ρ = E[ρ(v)] and τ = E[τ(v)]. If

not otherwise stated, expectations in this chapter are taken over the randomness of

the data as well as the random parameters of the LSH functions, i.e., ai and bi.

2.4 Modeling Multi-Probe LSH

The probability that an arbitrary point u in the dataset is found in the candidate set

A(v) is determined by its distance to the query point v. We represent this distance

with random variable X, and define the probability as a function of X, which we also
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call recall and use the same symbol ρ:

ρ(X) = Pr[u ∈ A(v) | ‖u− v‖ = X ].

With the above definition of ρ(.) as a function of distance, the expected selectivity

can be written as

τ = E[τ(v)] = E




1

|S|
∑

x=||u−v||
u∈S

ρ(x)


 = E[ρ(X)]. (2.3)

The same reasoning applies to the nearest neighbors. Let Xk = ||Ik(v) − v|| be the

distance between v and its kth nearest neighbor Ik(v), then ρ(Xk) is the recall of v

on its kth nearest neighbor, and the overall expected recall can be obtained by taking

the average

ρ = E[ρ(v)] =
1

K

K∑

k=1

E[ρ(Xk)]. (2.4)

So far the modeling problem is reduced to finding the distributions of X and Xk,

which we will address in the next section, and finding the detailed expression of ρ(·),

as explained below.

To obtain the expression of ρ(·), we need to decompose the candidate set A(v)

into the individual buckets probed. Let Bl,t(v), 1 ≤ l ≤ L, 1 ≤ t ≤ T be buckets in

the probing sequences of the L hash tables. Because the hash tables are maintained

by the same algorithm in parallel, with hash functions sampled from the same family

independently, the subscript l is not significant when only probabilities are considered,

therefore we use Bt(v) to denote the tth bucket for arbitrary l. It is obvious that

A(v) =
⋃

l,tBl,t(v). Let u be an arbitrary point such that d = ‖u− v‖, then

ρ(d) = 1− Pr[u /∈
⋃

l,t

Bl,t(v)|] = 1−
{

T∏

t=1

Pr[u /∈ Bt(v)]

}L

. (2.5)
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Recall that the corresponding hash function of the Bt in the probing sequence is

〈h1(v) + δt,1(v), . . . , hM(v) + δt,M(v)〉. Thus

u /∈ Bt(v)⇔ ¬
∧

1≤i≤M

hi(u) = hi(v) + δt,i(v)

and

Pr[u /∈ Bt(v)] = 1−
∏

1≤i≤M

Pr[hi(u) = hi(v) + δt,i(v)]. (2.6)

The probability Pr[hi(u) = hi(v) + δt,i(v)] depends on the perturbation value δt,i(v)

as well as v’s distance to the corresponding window boundary on the ith projection.

The detailed expression depends on the specific atomic hash function. Following we

deduct the formulas for our l2 atomic hash function (2.2).

We use h′i(v) to denote (2.2) without the floor operation:

h′i(v) =
ai · v + bi

W
, i = 1, 2, . . . ,M

According to the 2-stability of Gaussian distribution [20], we have that

h′i(v)− h′i(u) =
ai · (u− v)

W
∼ N

(
0,
‖u− v‖2
W 2

)
= N(0,

d2

W 2
). (2.7)

Let φ(·) be the probability density function of the standard Gaussian distribution,

and let φσ2(·) be that of the Guassian distribution N(0, σ2). We have

φ d2

W2

(x) =
W

d
φ(
W

d
x) and φ(−x) = φ(x), ∀x ∈ R.

Following we separately consider the three possible cases of the event hi(u) =

hi(v) + δt,i(v), i.e., when δt,i(v) = 0,+1 and −1.

Case 1, δt,i(v) = 0 and hi(u) = hi(v). This is equivalent to the event h′i(u) ∈

[h′i(v) − ∆i(−1), h′i(v) + ∆i(+1)), or h′i(u) − h′i(v) ∈ [−∆i(−1),∆i(+1)). According
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to (2.7), we have

Pr[hi(u) = hi(v)] = Pr{h′i(u)− hi(v) ∈ [−∆i(−1),∆i(+1))}

=

∫ ∆i(+1)

−∆i(−1)

φ d2

W2

(x) dx =

∫ 1

0

φ d2

W2

[x−∆i(−1)] dx

=

∫ 1

0

W

d
φ{W

d
[x−∆i(−1)]} dx

=
1

d

∫ W

0

φ[
x−W∆i(−1)

d
] dx.

We also have

1

d

∫ W

0

φ[
x−W∆i(−1)

d
] dx

=
1

d

∫ W

0

φ[
W − x−W∆i(−1)

d
] dx

=
1

d

∫ W

0

φ[
W∆i(+1)− x

d
] dx

=
1

d

∫ W

0

φ[
x−W∆i(+1)

d
] dx

That is, either ∆i(−1) or ∆i(+1) can be used in the formula.

Case 2, δt,i(v) = +1 and hi(u) = hi(v) + 1. This is equivalent to the event

h′i(u) ∈ [h′i(v) + ∆i(+1), h′i(v) + ∆i(+1) + 1), or h′i(u)−h′i(v) ∈ [∆i(+1),∆i(+1) + 1).

According to (2.7), we have
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Pr[hi(u) = hi(v) + 1] = Pr{h′i(u)− hi(v) ∈ [∆i(+1),∆i(+1) + 1)}

=

∫ ∆i(+1)+1

∆i(+1)

φ d2

W2

(x) dx =

∫ 1

0

φ d2

W2

[x+ ∆i(+1)] dx

=

∫ 1

0

W

d
φ{W

d
[x+ ∆i(+1)]} dx

=
1

d

∫ W

0

φ[
x+W∆i(+1)

d
] dx.

Case 3, δt,i(v) = −1 and hi(u) = hi(v)− 1. Similar to the above, we have

Pr[hi(u) = hi(v)− 1] = Pr{h′i(u)− hi(v) ∈ [−∆i(−1)− 1,−∆i(−1))}

=

∫ −∆i(−1)

−∆i(−1)−1

φ d2

W2

(x) dx =

∫ 1

0

φ d2

W2

[x−∆i(−1)− 1] dx

=

∫ 1

0

φ d2

W2

[−x−∆i(−1)] dx

=

∫ 1

0

W

d
φ{W

d
[−x−∆i(−1)]} dx

=
1

d

∫ W

0

φ[
−x−W∆i(−1)

d
] dx

=
1

d

∫ W

0

φ[
x+W∆i(−1)

d
] dx.

Combining three cases, we have

Pr[hi(u) = hi(v) + δ] =





1
d

∫W

0
φ[x−W∆(±1)

d
] dx if δ = 0

1
d

∫W

0
φ[x+W∆(δ)

d
] dx if δ = ±1

. (2.8)

Because Case 1 occurs frequently, we use the following approximation to simplify
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computation:

Pr[hi(u) = hi(v)] =
1

d

∫ W

0

φ[
x−W∆(±1)

d
] dx ∼ E∆∈[0,1]{

1

d

∫ W

0

φ[
x−W∆

d
]dx}.

(2.9)

The values ∆i(δ) are functions of the query v and the hash function parameters.

We make some approximations to simplify calculations by taking advantage of the

template probing sequence. First, note that the actual order of the M components of

the hash function does not affect the evaluation of (2.6). Without loss of generality,

we can assume that the components are ordered by their minimal distance to window

boundary, as in the template probing sequence. Second, the value of hi(u) and hi(v)

do not appear in (2.8) and only ∆i(δ) is interesting. Finally, we use the expected

values of ∆i(δ) instead of their actual values:

∆i(+1) = E[U(i)] =
i

2(M + 1)

∆i(−1) = 1− E[U(i)].

(2.10)

where U(i) denotes the ith order statistic of M independent samples from the uniform

distribution U [0, 1). These assumptions would allow us to calculate the probabilities

directly from the template probing sequence.

The performance model of both recall and selectivity is given by (2.3–2.10).

2.5 Modeling Data Distribution

To apply the performance model to real datasets, we still need to determine a series

of distributions: the distribution of the distance X between two arbitrary points, and

the distributions of the distance Xk between an arbitrary query point and its kth

nearest neighbor. These distributions are dataset specific and there is not a universal

distribution that fits every possible dataset. However, we show that many existing
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multimedia datasets do fit a common distribution — the gamma distribution. In this

section, we show how to extract statistical parameters from a small sample dataset

and do parameter estimation specific to the gamma distribution.

A previous study [77] has shown with multiple datasets that the distribution of

l1 distance between two arbitrary points follows the log-normal distribution without

giving any intuitive explanation. Actually a log-normal variable is conceptually the

multiplicative product of many small independent factors, which cannot be easily

related to distance distributions. In this dissertation, we propose to fit the squared

l2 distances, both X2 and X2
k , by the gamma distribution, whose probability density

function is

fκ,θ(x) = α(
x

θ
)κe−x/θ (2.11)

where κ is the shape parameter, θ is the scale parameter, as it always appears as

the denominator under x, and α is the normalizing coefficient such that the integral

of the probability density function (2.11) over R
+ is 1. The gamma distribution

and log-normal distribution have similar skewed shapes and are usually considered

as alternatives. However, for our purpose, the gamma distribution has the following

advantages:

First, it fits many multimedia datasets. Figure 2.2 and 2.3 show that both X2 and

X2
k can be accurately fitted (see Section 2.8.1 for detailed description of the datasets).

Second, the gamma distribution has an intuitive explanation which is related to

the dataset’s intrinsic dimensionality. Assume that the feature vector space can be

embedded into R
D, D being the intrinsic dimensionality. For two points u and v,

assume the difference of each dimension, ui − vi, follows an identical but mutually

independent Gaussian distribution, then ||u− v||2 =
∑D

i=1(ui − vi)2 is the sum of D

squared Gaussian variables, which can be proved to follow χ2 distribution, a special

case of gamma distribution. The parameter κ in the distribution is determined by the

dimensionality of the space. When D is integer, we have the relationship D = 2(κ+1).
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Because gamma distribution does not require κ to be integer, we extend this to the

non-integer case, and call 2(κ+ 1) the degree of freedom of the distribution, which we

expect to capture the intrinsic dimensionality of the datasets. A dataset with a higher

degree of freedom will be harder to index. The relative order of the three datasets

with regard to degree of freedom matches the experimental results in Section 2.8.

Finally, there exists an effective method to estimate the distribution parameters.

The parameters of gamma distribution can be estimated by Maximum Likelihood

Estimation (MLE), and depends only on the arithmetic mean E and geometric mean

G of the sample, which can be easily extracted from the dataset. Given E and G, κ

and t can be solved from the following set of equations.





κθ = E

ln(κ)− ψ(κ) = ln(E)− ln(G)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function.

To obtain the estimation of the distributions of X2 and X2
k , we need to calcu-

late from the sample set the corresponding arithmetic and geometric means of these

random variables. For X2, the means E and G can be obtained simply by sampling

random pairs of points. For X2
k , we need Ek and Gk for each k under consideration.

As the total number K of nearest neighbors can be big, maintaining K pairs of means

is not practical. Furthermore, the distribution of X2
k depends on the size N of the

dataset. At the performance modeling stage, there is usually only a small subset of

the whole dataset available. In such case, we need to extrapolate the parameters

according to the available data.
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Figure 2.2: The squared distance between two arbitrary points (X2) follows the gamma distribution.
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Pagel et al. [63] studied the expected value of Xk as a function of k and N , and

proved the following relationship:

E[Xk] =
[Γ(1 + D1

2
)]

1

D1

√
π

(
k

N − 1

) 1

D2

.

where D1 and D2 are the embedding dimensionality and intrinsic dimensionality, re-

spectively, and N is the size of dataset. Based on this result, we propose to empirically

model both Ek and Gk of X2
k as power functions of both k and N :

Ek = αkβNγ Gk = α′kβ
′

Nγ′

(2.12)

To extract the parameters, a subset of the dataset is sampled as anchor points, and

subsets of various sizes are sampled from the rest of points to be queried against. The

K-NN of all anchor points are found by sequential scan, resulting in a sample set of

Xk for different values of k and N . We then obtain the six parameters of (2.12) via

least squares fitting.

As shown by Figure 2.4 and 2.5, (for now, disregard the curve “arith. mean +

std”) this power law modeling is very precise.

The fact that for fixed k, Xk is a power function of N is very important for

practical system design. It indicates that Xk changes very slowly as dataset grows,

the optimal LSH parameters should also shift very slowly as data accumulate This

allows us to keep high performance of LSH by only reconstructing the hash tables

when dataset doubles, and this kind of reconstruction could be achieved with low

amortized cost.

Finally, we list in Table 2.5 the clues of intrinsic dimensionality of the data sets

as suggested by the three different formulas, i.e., Dk = 1/β, DN = −1/γ by fitting

Ek, and degree of freedom (DoF) of gamma distribution. We see that the three

measurements all suggest that the audio dataset has highest intrinsic dimensionality,
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Dataset DoF Dk DN

image 5.58 15.78 6.76
audio 11.52 25.41 10.85
shape 7.74 14.43 6.64

Table 2.1: Different clues of intrinsic dimensionality

and that the rest two datasets have similar intrinsic dimensionality.

With the above method, 8 parameters are collected in total, i.e., α, β, γ, α′, β′, γ′

in (2.12) and the arithmetic and geometric means of background distance distribution

X2. Given the full dataset size to be indexed, we can obtain via MLE the distribution

function f(.) of X2, and distribution functions fk(.) of X2
k . The performance of LSH

is then calculated by

ρ =
1

K

K∑

k=1

∫ ∞

0

ρ(
√
x)fk(x)dx

τ =

∫ ∞

0

ρ(
√
x)f(x)dx
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Figure 2.4: Arithmetic and geometric means of squared k-NN distance (X2
k) follow the power law with regard to k.
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2.6 Automatic Parameter Tuning

There are four parameters related to LSH. Among them, W , M and L need to

be chosen when creating the hash tables, and T is related to the query processing

algorithm and can either be chosen offline, or change from query to query. According

to our model, larger L results in higher recall with the same selectivity, thus L should

be tuned to the maximal affordable value, as limited by the storage available. Note

that in practice if L is really high (L ≫ 10, which is not likely to happen for large

datasets), query time will again start increasing as the cost to generate the probing

sequences becomes dominant.

We would like to tune W and M for optimal when creating the hash tables, while

having T adaptively determined at query time. However, our model requires a fixed

T value to predict the performance, and thus to tune W and M . As a workaround, we

choose a fixed T value of medium size (adding an equation T = M is a good choice,

as the first few buckets are the most fruitful [55]) to tune for near-optimal W and M ,

and again determine the T value for each query online (to be explained in the next

section). The optimization problem is as follows:

min. τ(W,M)

s.t. ρ(W,M) ≥ required value.

In our implementation, we use the following simple method to solve this problem.

Assume M is fixed, the relationships between W and both recall and selectivity are

monotonic (see Figure 2.8A-C), and the optimal W can be found using binary search.

We then enumerate the value of M from 1 to some reasonably large value max (30

for our datasets) to obtain the optimal. On a machine with Pentium 4 3.0GHz CPU,

our code runs for no more than one minute for each of the datasets we have.
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2.7 Adaptive Query Processing

In the previous section, we tuned M and W for optimal average performance. How-

ever, for the following reason, we do not want to determine the T value offline, because

even if we tune for optimal average performance, the actual performance can be dif-

ferent from query to query. That is because recall and selectivity are both determined

by the local geometry of the query point. The “arith. mean + std” curves in Fig-

ure 2.4 show a large standard deviation, which means that the local geometry of

different query points can be very different. To directly illustrate the different local

geometry of different query points, we sample five query points at random from the

audio dataset, and plot their K-NN distance curves in Figure 2.7. For each specific

query, probing the default T buckets can be either too few or too many to achieve

the required recall. In this section, we address this problem by the adaptive probing

method.

The basic idea of adaptive probing is simple: maintain an online prediction of

the expected recall of the current query, and keep probing until the required value is
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reached. If we knew the true K-NN distances precisely, we can predict the expected

recall with our performance model. The problem is then turned to predicting the

true K-NN distances by the partial result when processing the query, and refining the

prediction iteratively as new buckets are probed. A natural approach is to use the

partial results themselves as approximations of the true K-NN. This approximation

actually has an advantage that the estimated values are always larger than the real

values, and the estimated expected recall is thus always lower than the real one. Also,

as the probing sequence goes on, the partial K-NN will quickly converge to the real

ones. In practice, if one is to tune for 90% recall, the estimated value should be

roughly the same as the real value.

Adaptive probing requires calculating the current expected recall after each step

of probing and this computation is time consuming. To prevent this from slowing

down the query process, a small lookup table is precomputed to map K-NN distances

to expected recalls, for each different T value. Our experiments show that the run

time overhead of using this lookup table is minimal.

2.8 Evaluation

In this section, we are interested in answering the following two questions by experi-

mental studies:

1. How accurate is our model in predicting LSH performance, when the model

parameters are obtained from a small portion of the whole dataset?

2. How does our adaptive probing method improve over the fixed method?

The evaluation of our methods with three real-life datasets gives satisfactory answer

to these questions.
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Dataset # Feature Vectors Dimension
image 662,317 14
audio 54,387 192

3D shape 28,775 544

Table 2.2: Dataset summary

2.8.1 Datasets

We employ three datasets to evaluate our methods: images, audio clips and 3D shapes.

Table 2.2 provides a summary of them. These datasets are chosen to reflect a variety

of real-life use cases, and they are of different number of dimensions, from tens to

hundreds.

Image Data: The image dataset is drawn from the Corel Stock Photo Library, a

dataset for evaluating content-based image retrieval algorithms. For feature extrac-

tion, we use JSEG [22] to segment the images into regions and use the method by

Lv et al. [53] to extract a feature vector from each region. The feature vector is of

14 dimensions, among which, 9 are for color moments and 5 are for shape and size

information. There are 66,000 images in the dataset, and each image is segmented

into roughly 10 regions, resulting in 662,317 feature vectors in total.

Audio Data: The audio dataset is drawn from the DARPA TIMIT collection [29].

The TIMIT collection is an audio speech database that contains 6,300 English sen-

tences spoken by 630 different speakers with a variety of regional accents. We break

each sentence into smaller segments and extract features from each segment with the

Marsyas library [74]. There are 54,387 192-dimensional feature vectors in total.

Shape Data: The third dataset we use in our study contains about 29,000 3D

shape models, which is a mixture of 3D polygonal models gathered from commercial

viewpoint models, De Espona Models, Cacheforce models and from the Web. Each

model is represented by a single Spherical Harmonic Descriptor (SHD) [41], yielding

28,775 544-dimensional feature vectors in total.
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Figure 2.7: Latency vs. selectivity. The different selectivities in the two figures are
obtained by varying T and W respectively. The matching of the two figures confirms
the reliability of selectivity as a proxy of latency.

2.8.2 Multi-Probe LSH Model

First of all, we need to justify modeling query latency with selectivity τ under the

assumption that the most of the query time is spent scanning the candidate data

points. Since τ is not a tunable input parameter, we conduct two different experi-

ments by varying different input parameters for the image dataset. With all other

parameters fixed, one experiment changes τ by using different window sizes (W ), and

the other by using different probing sequence lengths (T ). For each configuration of

parameters, we run 1,000 queries for 50-NN and record the latency and selectivity.

These numbers are then binned by τ , and the average and the standard deviation of

the latencies in each bin are calculated and plotted. Our results are shown in Fig-

ure 2.7, the height of the error bar representing two standard deviations. The linear

relationship between query time and τ is obvious.

Strictly speaking, apart from the time spent on scanning the candidate set, there
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is a tiny cost to initialize the query data structure, and a tiny cost to locate the bucket

to scan at each probing step. If these costs are not small enough, they should be seen

in the plots. The former should create a non-zero y-intercept, and the latter will make

the slopes of the two curves different. Figure 2.7 shows a minimal initial cost and a

very small divergence between the slopes of the two curves which can be safely ignored

in practice. As a result, it is safe to use selectivity as the machine-independent time

cost instead of latency which is machine-dependent.

We then go on to evaluate the accuracy of the model itself. As the model involves

four input parameters, i.e., W , M , L and T , and two output parameters, i.e., recall ρ

and selectivity τ , it is hard to evaluate an overall accuracy. Also, not every point in the

input parameter space is equally interesting because only the parameter configurations

that result in high recall and low selectivity are of practical importance. We thus

design our experiments in the following way. First, a set of baseline parameters are

chosen for each dataset (shown in Figure 2.8), which achieves about 90% recall with

a reasonably low selectivity. The baseline represents a configuration that would be

used in real systems. Then each time we fix all but one of the four parameters and

change it around the baseline value. For each configuration of the parameters, we

build LSH data structure with the whole dataset, and run 50-NN queries for 1,000

randomly sampled query points. The averages of the recall and selectivity are recorded

and plotted. We also predict the average recall and selectivity with our performance

model. The data parameters are extracted from one 10th the whole dataset according

to the method discussed in Section 2.5.

The effects of the four parameters on the three datasets are shown in Figure 2.8A-

L, with error bars representing two standard deviations. According to the figures, the

predicted values are close to the real experimental values, and most of the errors are

within one standard deviation. Our prediction of recall values is especially accurate.

The error is within 5% the actual recall value for most cases. When M > 15, the error
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Figure 2.8: Recall and selectivity vs. W , M , L and T respectively. The predicted
values are close to the average experimental results.
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ratio is a little high, but these cases have very low recall, and are not interesting in

practice. Furthermore, our predictions correctly follow the trends of the actual curves.

This implies that our model is reliable for real system design and the automatically

tuned parameters are close to optimal.

By experimenting with the parameters one by one while leaving the others fixed,

we also see the performance impact of each parameter. We see that enlarging any of

the parameters either increase or decrease both performance measures as expected.

Most such changes are smooth, except in Figure 2.8(D-F), the the grow rate of recall

have a sudden drop at M = 16. This suggests that practically M ≤ 16 should be

considered.

2.8.3 Adaptive Query Processing

In this subsection, we first conduct an experiment to show the impact of local ge-

ometry around query points on the performance, and demonstrate the advantage of

the adaptive method over the original method with fixed T , which we call the fixed

method. We then show by another experiment that the adaptive method is capable

of working with different K values at query time. Note that so far our discussion has

been assuming a fixed K value.

The local geometry is best described by local K-NN distances (Xk as in the model),

and we want to see how LSH performs for query points with different K-NN distances.

For each dataset, we sample 1,000 queries at random, and group them into about 30

bins according to the distances to the 50th nearest neigbhor (X50). We then run both

fixed and adaptive versions of the query algorithm, and plot the average recall and

selectivity for each bin. The parameters M and W are tuned for 90% recall of 50-NN

queries, assuming T = M . For adaptive method, T is again dynamically determined

at query time. The results are shown in Figure 2.9, and there is an obvious difference

between the behaviors of the two methods. These results are better understood when

42



compared with Figure 2.3, which shows the probability distribution of K-NN distance.

The average and standard deviations of the recall and selectivity values can also be

found in the K = 50 rows of Table 2.3.

Both recall and selectivity of the fixed method drop dramatically as K-NN distance

grows beyond certain point. This is because LSH is tuned to perform well for average

K-NN distance, which is relatively small. For queries with larger K-NN distance,

both the nearest neighbors and the background points have smaller chances of falling

into the probed buckets, and thus the fixed method gets excessively low recall, which

could drop below 0.5. Queries with low recall could have much larger impact on

average recall than the easier queries whose recall are close to 1. For example, to

keep the average recall at 0.9, a query with recall 0.5 has to be compensated by eight

queries with recall 0.95. The result is that even though the average recall is achieved,

performance variation is high.

The adaptive method, on the contrary, probes more buckets for those difficult

points and achieves a high recall to meet the requirement. As a result, the adaptive

method significantly reduces the variance of recall and better meets the accuracy

requirements for individual queries. For the difficult queries on the right end of the

curves, it costs more than average for the adaptive method to achieve the required

recall.

Our second experiment is to show that the adaptive method works with different

K values better compared to the fixed method, which is tuned for a single K value.

To compare the two methods, we use the same hash tables constructed with the

parameters tuned for 50-NN queries, the same as those used in Figure 2.9. And we

use these tables to answer queries for 10, 50, 100-NNs to see how the two methods

behave. For the fixed method, we use our model to pre-calculate the T needed for

each of the three cases so as to achieve 90% recall on average (as shown in the third

column of Table 2.3) , and for the adaptive method, T of each query is dynamically
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Data K T

recall/stdev (%) selectivity (%)

fixed adaptive reduction fixed adaptive

Image

10 8 94/12 95/08 39% 0.3 0.3

50 14 91/12 95/06 51% 0.5 0.5

100 22 90/12 95/05 57% 0.6 0.6

Audio

10 10 95/13 98/05 58% 22 17

50 14 94/12 98/04 70% 25 21

100 20 95/11 98/03 68% 28 23

Shape

10 7 97/09 97/07 23% 11 08

50 14 97/09 96/05 45% 16 11

100 22 97/09 96/04 49% 19 12

Parameters W , M and L are the same as in Figure 2.9. The T values shown are only for
fixed method.

Table 2.3: Adaptive vs. fixed method on dealing with different K requirement. To
achieve the same recall, the fixed method needs to have T tuned for different Ks,
while the adaptive method does not. We can also see a significant reduction of recall
standard deviation by the adaptive method.

determined. For each configuration of parameters, we run 1,000 queries and take the

average recall and selectivity as well as the standard deviation. The results are shown

in Table 2.3.

As we can see from the results, the adaptive method significantly reduces the

performance variation between different queries. The standard deviation reductions

for recall are 50%, 65% and 40% for three datasets respectively, around 50% on

average. Also in most cases, the adaptive method produces a higher recall than the

fixed method, with a lower selectivity.

The above two experiments demonstrate the effectiveness of the adaptive query

process method on reducing performance variation as well as the average cost to

achieve the same recall.

We have derived an adaptive search method based on the performance model to

reduce performance variance between different query points. Our experimental results

show that the adaptive method can reduce the standard deviation of recalls by about
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50%, while achieving the same recall with lower latency.

2.9 Related Works

Existing works related to LSH have been discussed in Section 1.3. A work closely

related to the goal of this chapter is the LSH Forest [4], which represents each hash

table by a prefix tree such that the number of hash functions per table can be ad-

justed. As new data arrive, the hash tables can grow on the fly. For a leaf node in

the LSH forest, the depth of the node corresponds to parameter M in the basic LSH

scheme. The method was designed for hamming distance. Although the idea may ap-

ply to l2 distance with p-stable distribution-based hash functions, it must tune other

parameters. Our data distribution modeling approach could be useful for this pur-

pose. Casey et al. [12] analyzed the minimal distance distribution of high-dimensional

musical features for tuning the parameter ǫ for ǫ-NN search so as to achieve optimal

precision-recall performance w.r.t. a domain specific gold standard (cover song re-

trieval). If the ǫ-NN search task is to be implemented with LSH, then relevant LSH

parameters still have to be determined, for which our study could be helpful.

Automatic parameter tuning with black-box methods has long been studied in

operating research community, see [1] for an example. Although these methods are

general, they need to run the algorithm many times. Thus, it is not suitable to tune

the offline table construction phase of LSH, especially for large datasets.

The idea of intrinsic dimension has been used to analyze the performance of spatial

index structures such as R-tree [63]. The concepts in the paper have inspired our data

modeling work, especially in the parameters of the gamma distribution and power

law for modeling the distribution of distances. Clarkson [18] has surveyed methods

for nearest neighbor search with an emphasis on the relationship with metric space

dimensions.
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2.10 Summary

Our study shows that it is possible to model Multi-Probe LSH and data distribution

accurately with small sample datasets and use the models for automatic parameter

tuning in real implementations.

We have developed a performance model for multi-probe LSH and a data model

to predict the distributions of K-NN distances in a dataset. Our experiments with

three datasets show that the models fitted with small sample datasets are accurate;

the recalls are within 5% of the real average values for most cases.

We also proposed an adaptive query processing method based on the performance

model to reduce performance variance between different query points. This method

not only makes on average a 50% reduction on the standard deviation of recall, but

is also able to achieve the same average recall with lower latency.
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Figure 2.9: Adaptive vs. fixed method in terms of recall and selectivity. The recall of the fixed method degrades as distance
increases, while the adaptive method performs much more consistently. For the queries with large distance, the adaptive method
does more probes to achieve high recall.
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Chapter 3

Offline K-Nearest Neighbor Graph

Construction

An important variant of K-NN search is to find the K-NN of every object in the dataset

or to construct a K-NN graph. Existing methods for K-NN graph construction either do

not scale or are specific to certain similarity measures. We present NN-Descentc, a simple

yet efficient algorithm for approximate K-NN graph construction with arbitrary similarity

measures. Our method has minimal space overhead and does not rely on any shared global

index. We show with a variety of datasets and similarity measures that the proposed method

typically converges to above 90% recall with each point comparing only to a few percent of

the whole dataset on average, and is from 2 to 16 times faster, depending on data size, than

the state-of-the-art technique. We also show that a K-NN graph can be used to double the

speed of LSH-based online K-NN search.

3.1 Introduction

The K-NN graph for a set of objects V is a directed graph with vertex set V and an

edge from each v ∈ V to its K most similar objects in V under a given similarity
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measure, e.g., cosine similarity for text, l2 distance of color histograms for images,

etc.

For search applications whose queries are limited to known objects, offline compute

the K-NN for every point would make online search as simple as table lookup. It also

makes it unnecessary to keep the feature data if the only purpose of such data is to

conduct K-NN search. This could mean substantial space saving for datasets of high

dimensionality, e.g. for a 1000-D dataset, saving a 100-NN graph costs only 1/10 the

space. Actually, as we will show, even for queries that have not been seen before,

such information computed offline could be used to improve online search.

The K-NN graph is also a key data structure for many established methods in

data mining [10] and machine learning [70], especially manifold learning [84]. Further

more, an efficient K-NN graph construction method will enable the application of a

large pool of existing graph and network analysis methods to datasets without an

explicit graph structure.

K-NN graph construction by brute-force has cost O(N2) and is only practical

for small datasets. A straightforward approach would be to construct the graph by

simply conduct a K-NN search for every point, and any existing K-NN index can

be used to speedup the process. However, an algorithm designed to jointly find the

K-NN for every point might be able to share or avoid certain computation which

would be necessary when solving the K-NN problem individually. In this chapter we

will presents such an algorithm. We will also show that a K-NN graph can be used

to double the speed of LSH-based online K-NN search with unknown queries.

Paredes et al. [65] proposed two methods for K-NN graph construction in general

metric spaces with low empirical complexity, but both require a global data structure

and are hard to parallelize across machines. Efficient methods for l2 distance have

been developed based on recursive data partitioning [15] and space filling curves [19],

but they do not generalize to other distance metrics or general similarity measures.
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In the text retrieval community, methods based on prefix-filtering have been de-

veloped for ǫ-NN construction, a.k.a. all pairs similarity search or similarity join [5,

82, 75]. An ǫ-NN graph is different from a K-NN graph in that undirected edges

are established between all pairs of points with a similarity above ǫ. These methods

are efficient with a tight similarity threshold, when the ǫ-NN graphs constructed are

usually very sparse and disconnected.

In summary, efficient K-NN graph construction is still an open problem, and none

of the known solutions for this problem is general, efficient and scalable. In this

chapter, we present NN-Descent, a simple yet effective K-NN graph construction

algorithm meeting these requirements with the following properties:

• General. Our method works with an arbitrary similarity oracle — a function

that produces a similarity score for two objects.

• Space efficient. In principle, the only data structure we need is an approximate

K-NN graph which is also the final output: our method can iteratively im-

prove the graph in place. For optimization, or in a distributed implementation,

minimal extra data are maintained.

• Fast and accurate. We demonstrate with real-life datasets that our method

typically converges to above 90% recall with each point comparing only to a

few percent of the whole dataset on average.

• Easy to implement. Our single-node implementation with all optimizations

described in this chapter takes less than 200 lines of C++ code (excluding I/O

and evaluation code).

We compare NN-Descent against two existing methods, i.e., Recursive Lanczos

Partitioning (RLB) [15] and LSH [20] for the special case of the l2 metric. We show

that our method is from 2 to 16 times faster than RLB, depending on the size of the
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dataset, and that more speedup can be achieved for larger datasets1. We also show

how to use the K-NN graph to double the speed of LSH-based online K-NN search.

3.2 Preliminaries

Let V be a dataset of size N = |V |, and let σ : V × V → R be a similarity measure.

For each v ∈ V , let BK(v) be v’s K-NN, i.e., the K objects in V (other than v) most

similar to v. Let RK(v) = {u ∈ V | v ∈ BK(u)} be v’s reverse K-NN. In the algorithm,

we use B[v] and R[v] to store the approximation of BK(v) and RK(v), together with

the similarity values, and let B[v] = B[v] ∪ R[v], referred to as the general neighbors

of v. B[v] is organized as a heap, so updates cost O(logK).

We are particularly interested in the case when V is a metric space with a distance

metric d : V × V → [0,+∞) for which more specific analysis can be done. Since

smaller distance means higher similarity, we simply let σ = −d. For any r ∈ [0,+∞),

the r-ball around v ∈ V is defined as Br(v) = {u ∈ V | d(u, v) ≤ r}.

A metric space V is said to be growth restricted if there exists a constant c, s.t.

|B2r(v)| ≤ c|Br(v)|, ∀v ∈ V.

The smallest such c is called the growing constant of V , which is a generalization of

the concept of dimensionality and captures the complexity of the dataset.

3.3 The Basic Algorithm

Our method is based on the following simple principle: a neighbor of a neighbor is

also likely to be a neighbor. In other words, if we have an approximation of the K-NN

1LSH typically works better when accuracy requirement is not high, and its speed would become
close to linear scan in order to achieve the accuracy of our method.
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for each point, then we can improve that approximation by exploring each point’s

neighbors’ neighbors as defined by the current approximation.

This observation can be quantified by the following heuristic argument when V is

a growth restricted metric space. Let c be the growing constant of V and let K = c3.

Assume we already have an approximate K-NN graph B, and for every v ∈ V , let

B′[v] =
⋃

v′∈B[v]B[v′] be the set of points we explore trying to improve B. If the

accuracy of B is reasonably good, such that for certain fixed radius r, for all v ∈ V ,

B[v] contains K neighbors that are uniformly distributed in Br(v), then assuming

independence of certain events and that K ≪ |Br/2(v)| (needed for approximation),

we can conclude that B′[v] is likely to contain K neighbors in Br/2(v). In other

words, we expect to halve the maximal distance to the set of approximate K nearest

neighbors by exploring B′[v] for every v ∈ V . This can be seen from the following.

For any u ∈ Br/2(v) to be found in B′[v], we need to have at least one v′ such

that v′ ∈ B[v] ∧ u ∈ B[v′]. Any v′ ∈ Br/2(v) is likely to satisfy this requirement, as

we have:

1. v′ is also in Br(v), so Pr {v′ ∈ B[v]} ≥ K/|Br(v)|.

2. d(u, v′) ≤ d(u, v) + d(v, v′) ≤ r, so Pr {u ∈ B[v′]} ≥ K/|Br(v
′)|.

3. |Br(v)| ≤ c|Br/2(v)|, and |Br(v
′)| ≤ c|Br/2(v

′)| ≤ c|Br(v)| ≤ c2|Br/2(v)|.

Combining 1—3 and assuming independence, we get

Pr {v′ ∈ B[v] ∧ u ∈ B[v′]} ≥ K/|Br/2(v)|2

In total, we have |Br/2(v)| candidates for such v′, so that

Pr {u ∈ B′[v]} ≥ 1−
(
1−K/|Br/2(v)|2

)|Br/2(v)| ≈ K/|Br/2(v)|.

The first order approximation holds only when the assumption K ≪ |Br/2(v)| remains
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true.

Let the diameter of the whole dataset be ∆. The above heuristic argument sug-

gests that so long as we pick a large enough K (depending on the growing constant),

even if we start from a random K-NN graph approximation, we are likely to find for

each object K items within a radius ∆/2 by exploring its neighbors’ neighbors. The

process can be repeated to further shrink the radius until the nearest neighbors are

found.

Algorithm 1: NNDescent

Data: dataset V , similarity oracle σ, K
Result: K-NN list B
begin

B[v]←− Sample(V,K)× {∞}, ∀v ∈ V
loop

R←− Reverse(B)

B[v]←− B[v] ∪R[v], ∀v ∈ V ;
c←− 0 //update counter
for v ∈ V do

for u1 ∈ B[v], u2 ∈ B[u1] do
l ←− σ(v, u2)
c←− c+ UpdateNN(B[v], 〈u2, l〉)

returnB if c = 0

function Sample(S, n)
return Sample n items from set S

function Reverse(B)
begin

R[v]←− {u | 〈v, · · ·〉 ∈ B[u]} ∀v ∈ V
returnR

function UpdateNN(H, 〈u, l, . . .〉)
Update K-NN heap H; return 1 if changed, or 0 if not.

Our basic NN-Descent algorithm, as shown in Algorithm 1, is just a repeated

application of this observation. We start by picking a random approximation of K-

NN for each object, iteratively improve that approximation by comparing each object

against its current neighbors’ neighbors, including both K-NN and reverse K-NN, and
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stop when no improvement can be made.

The approximate K-NN graph can be viewed as K ×N functions, each being the

distance between one of the N objects and its k-th NN. The algorithm is simply to

simultaneously minimize these K × N functions with the gradient descent method,

hence the name “NN-descent”. But unlike regular gradient descent, which is applied

to a function on R
D and always explores a small neighborhood of fixed radius, our

functions are defined on the discrete set V , and the radius we explore around an

object is determined by the previous iteration’s approximation of the K-NN graph.

In fact, the radius starts from a large value as the initial approximation is randomly

formed, and shrinks when the approximation is improved through iterations (the

number of objects we examine within the radius remains roughly the same). The

idea of gradually shrinking search radius through iterations is similar to decentralized

search of small-world networks [45] (global optimization). The effect is that most

points can reach their true K-NN in a few iterations.

3.4 Optimizations

The basic algorithm already performs remarkably well on many datasets. In practice,

it can be improved in multiple ways as discussed in this section.

3.4.1 Local Join

Given point v and its neighbors B[v], a local join on B[v] is to compute the similarity

between each pair of different p, q ∈ B[v], and to update B[p] and B[q] with the

similarity. The operation of having each point explore its neighbors’ neighbors can

be equally realized by a local join on each point’s neighborhood, i.e., each point

introducing its neighbors to know each other. To see that, consider the following

relationship: a→ b→ c, meaning that b ∈ BK(a) and c ∈ BK(b) (the directions does
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not matter as we also consider reverse K-NN). In the basic algorithm, we compare

a and c twice, once when exploring around either a or c (the redundancy can be

avoided by comparing only when a > c). Equally, the comparison between a and c is

guaranteed by the local join on B[b].

Even though the amount of computation remains the same, local join dramatically

improves data locality of the algorithm and makes its execution much more efficient.

Assume that the average size of B[·] is K, in the basic algorithm, exploring each

point’s neighborhood touches K
2

points; the local join on each point, on the contrary,

touches only K points.

For a single machine implementation, the local join optimization may speed up

the algorithm by several percent to several times by improving cache hit rate. For

a MapReduce implementation, local join largely reduce data replication among ma-

chines.

3.4.2 Incremental Search

As the algorithm runs, fewer and fewer new items make their way into the K-NN

graph in each iteration. Hence it is wasteful to conduct a full local join in every

iteration as many pairs are already compared in previous iterations. We use the

following incremental search strategy to avoid redundant computation:

• We attach a Boolean flag to each object in the K-NN lists. The flag is initially

marked true when an object is inserted into the list.

• In local join, two objects are compared only if at least one of them is new. After

an object participates in a local join, its flag is marked as false.
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3.4.3 Sampling

So far there are still two problems with our method. One is that the cost of local join

could be high when K is large. Even if only objects in K-NN are used for a local join,

cost of each iteration is K2N similarity comparisons. The situation is worse when

reverse K-NN is considered, as there is no limit on the size of reverse K-NN. Another

problem is that it is possible that two points are both connected to more than one

point, and are compared multiple times when local join is conducted on their common

neighbors. We use the sampling strategy to alleviate both problems:

• Before local join, we sample γK out of the K-NN items marked true for each

object to use in local join, γ ∈ (0, 1] being the sample rate. Only those sampled

objects are marked as false after each iteration.

• Reverse K-NN lists are constructed separately with the sampled objects and

the objects marked as false. Those lists are sampled again, so each has at most

γK items.

• Local join is conducted on the sampled objects, and between sampled objects

and old items.

Note that the objects marked true but not sampled in the current iteration still

have a chance to be sampled in future iterations, if they are not replaced by better

approximations.

We found that the algorithm usually converges to acceptable recall even when

only a few items are sampled. Both accuracy and cost decline with sample rate γ,

though cost declines much faster (evaluated in Section 3.6.6). The parameter γ is

used to control the trade-off between accuracy and speed.
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3.4.4 Early Termination

The natural termination criterion is when the K-NN graph can no longer be improved.

In practice, the number of K-NN graph updates in each iteration shrinks rapidly.

Little real work is done in the final few iterations, when the bookkeeping overhead

dominates the computational cost. We use the following early termination criteria to

stop the algorithm when further iteration can no longer bring meaningful improvement

to accuracy: we count the number of K-NN list updates in each iteration, and stop

when it becomes less than δKN , where δ is a precision parameter, which is roughly

the fraction of true K-NN that are allowed to be missed due to early termination. We

use a default δ of 0.001.

3.5 The Full Algorithm

The full NN-Descent algorithm incorporating the four optimizations discussed above

is listed in Algorithm 2. In this chapter we are mainly interested in a method that is

independent of similarity measures. Optimizations specialized to particular similarity

measures are possible. For example, if the similarity measure is a distance metric,

triangle inequality could be potentially used to avoid unnecessary computation.

Our optimizations are not sufficient to ensure that the similarity between two

objects is only evaluated once. Full elimination of redundant computation would re-

quire a table of O(N2) space, which is too expensive for large datasets. Space efficient

approximations, like Bloom filter, are possible, but come with extra computational

cost, and would only be helpful if similarity measure is very expensive to compute.

Our method involves three parameters: K, sample rate γ, and termination thresh-

old δ (note that K would have to be enlarged if the value required by the application

is not big enough to produce high recall). Unless otherwise mentioned, we use a

default K = 20 for all datasets, except that for DBLP we use K = 50. The DBLP
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Algorithm 2: NNDescentFull

Data: dataset V , similarity oracle σ, K, γ, δ
Result: K-NN list B
begin

B[v]←− Sample(V,K)× {〈∞, true〉} ∀v ∈ V
loop

parallel for v ∈ V do
old[v]←− all items in B[v] with a false flag
new[v]←− γK items in B[v] with a true flag
Mark sampled items in B[v] as false;

1 old′ ← Reverse(old), new′ ← Reverse(new)
c←− 0 //update counter
parallel for v ∈ V do

old[v]←− old[v] ∪ Sample(old′[v], γK)
new[v]←− new[v] ∪ Sample(new′[v], γK)
for u1, u2 ∈ new[v], u1 < u2
or u1 ∈ new[v], u2 ∈ old[v] do

l ←− σ(u1, u2)
// c and B[.] are synchronized.

2 c←− c+ UpdateNN(B[u1], 〈u2, l, true〉)
3 c←− c+ UpdateNN(B[u2], 〈u1, l, true〉)

returnB if c < δNK

58



dataset is intrinsically more difficult than the others and need a larger K to reach

about 90% recall. We use a default sample rate of γ = 1.0, i.e., we do not conduct

sampling except for trimming reverse K-NN to no more than K elements. For some

experiments, we also report the performance numbers for γ = 0.5, as a faster but less

accurate setting. We use a default termination threshold of 0.001.

3.6 Evaluation

We are interested in answering the following questions by experimental studies:

• How does our method perform under typical settings?

• How does our method compare against existing approaches?

• How do accuracy and cost change as dataset scales?

• How to pick a suitable set of parameters?

• How K-NN graph improves online search?

• How does intrinsic dimensionality affect performance?

The last question is answered by an empirical study with synthetic data.

3.6.1 Datasets and Similarity Measures

We use 5 datasets and 5 similarity measures, divided into three categories as described

below. These datasets are chosen to reflect a variety of real-life use cases, and to cover

similarity measures of different natures. Table 3.1 summarizes the salient information

of these datasets.

Four of the datasets are each experimented with two similarity measures (l1 and

l2, or Jaccard and cosine). Our results show that the two similarity measures for the
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same dataset usually produce similar performance numbers and overlapping curves,

so in some plots and tables we only report results with one similarity measure per

dataset. However, this is not to suggest that different similarity measures for the same

dataset are interchangeable. For example, if we test our method with l1 distance on

a benchmark generated with l2 distance (or vise-versa), only around 70% recall can

be reached as opposed to above 95% when the right measure is used.

Dataset # Objects Dimension Similarity Measures
Corel 662,317 14 l1, l2
Audio 54,387 192 l1, l2
Shape 28,775 544 l1, l2
DBLP 857,820 N/A Cosine, Jaccard
Flickr 100,000 N/A EMD

Table 3.1: Dataset summary

Dense Vectors

We use the same three datasets, i.e., image, audio and shape, as used in Chapter 2.

These datasets consist of dense feature vectors, and are equipped with l1 and l2

metrics. We will refer the image dataset as Corel, so as to distinguish it from the

other image dataset with EMD distance.

Text Data

We tokenize and stem text data and view them as, depending on the context, multisets

of words, or sparse vectors. We apply two popular similarity measures on text data:

• Cosine similarity (vector view) : C(x, y) = x·y
‖x‖·‖y‖

;

• Jaccard similarity (multiset view): J(x, y) = |x∩y|
|x∪y|

.

DBLP: This dataset contains 0.9 million bibliography records from the DBLP web

site. Each record includes the authors’ full names and the title of a publication. The

same dataset was used in a previous study [82] on similarity join of text data.
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Earth Mover’s Distance

The Earth Mover’s Distance (EMD) 2 [69] is a measure of distance between two

weighted sets of feature vectors and has been shown effective for content-based image

retrieval [53]. Let P = {〈wi, vi〉} and Q = {〈wj, vj〉} be two sets of features with

normalized weights
∑

iwi =
∑

j wj = 1, and let d be the feature distance, we use the

following definition of EMD:

EMD(P,Q) = min
∑

i

∑

j

fijd(vi, vj)

s.t.
∑

j

fij = wi,
∑

i

fij = wj.

Evaluating EMD is costly as it involves solving a linear programming. We use EMD

to show the generality of our method.

Flickr: We apply the same feature extraction method [53] as used for the Corel

dataset to 100,000 randomly crawled Flickr images. We set the weights of the fea-

ture vectors to be proportional to the number of pixels in their corresponding image

regions. Following the original paper [53], we use l1 as feature distance.

3.6.2 Performance Measures

We use recall as an accuracy measure. The ground truth is true K-NN obtained by

scanning the datasets in brute force. The recall of one object is the number of its

true K-NN members found divided by K. The recall of an approximate K-NN graph

is the average recall of all objects.

We use the number of similarity evaluations conducted as an architecture inde-

pendent measure of computational cost. The absolute number depends on the size of

the dataset and is not directly comparable across datasets. So we use a normalized

2Code obtained from http://www.cs.duke.edu/~tomasi/software/emd.htm, minor changes
made to support parallelization.
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Dataset Measure
Default Fast (γ = 0.5)

Recall Cost Recall Cost
Corel l1 0.989 0.00817 0.983 0.00467
Corel l2 0.997 0.00782 0.995 0.00436
Audio l1 0.972 0.0764 0.945 0.0450
Audio l2 0.985 0.0758 0.969 0.0445
Shape l1 0.995 0.137 0.989 0.0761
Shape l2 0.997 0.136 0.994 0.0754
DBLP Cosine 0.894 0.0271 0.839 0.0146
DBLP Jaccard 0.886 0.0309 0.848 0.0173
Flickr EMD 0.925 0.047 0.877 0.0278

Table 3.2: Overall performance under default setting (γ = 1.0) and a “fast” setting
(γ = 0.5), with cost measured in scan rate. The default setting ensures high recall
(near or above 90%). When minor loss in recall is acceptable, the fast setting reduces
scan rate by nearly half. Shape has a particularly high scan rate due to its small size.

version of the measure:

scan rate =
# similarity evaluations

N(N − 1)/2
.

The denominator is the total number of possible similarity evaluations of a dataset,

and should not be exceeded by any reasonable algorithm.

When scan rate is not an appropriate cost measure for an existing method, we

simply compare costs by measuring CPU time. We used commodity servers with dual

quad core Intel E5430 2.66GHz CPU and 16GB main memory.

3.6.3 Overall Performance

Table 3.2 summarizes the performance of our method on all the datasets and similarity

measures under two typical settings: the default setting (γ = 1.0) achieving highest

possible accuracy and a “fast” setting (γ = 0.5) with slightly lower accuracy. We see

that even with the fast setting, our method is able to achieve ≥ 95% recall, except

for DBLP and Flickr. for which recall is below 90%. By putting in more computation
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Figure 3.1: Recall and scan rate vs. iterations. Recall increases fast in the beginning
and then quickly converges.

with the default setting, we are able to boost recall for the more difficult datasets to

close or above 90%.

We see that scan rate has a larger variation across datasets, ranging from below

0.01 for Corel to 0.15 for Shape. Multiple factors could affect scan rate, but we will

show (Section 3.6.5) that the size of the dataset is the dominant factor, and with all

other parameters fixed, scan rate shrinks as dataset grows. The scan rate of Shape is

relatively high mainly because its size is small. In general, at million-object level, we

expect to cover a few percent of the total N(N − 1)/2 comparisons.

For a closer observation of the algorithm’s behavior, Figure 3.1 shows the accumu-
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Figure 3.2: Number of total K-NN improvements made in each iteration without early
termination. After three to four initial iteration, the numbers drop exponentially.

lative recall and scan rate through iterations. The curves of different data have highly

similar trends. We see a fast convergence speed across all datasets — the curves are

already close to their final recall after five iterations, and all curves converge within

12 iterations.

As another way to show the fast convergence of our method, Figure 3.2 plots

the overall number of K-NN list updates of each iteration. We see that after three to

four initial iterations, the number of K-NN list updates starts to reduce exponentially.

This is important for us to safely control the loss of recall caused by early termination.

Figure 3.3 shows the approximate K-NN distance (N × K distance values) dis-

tributions of the Corel datasets during the first five iterations. The peaks of the

first three iterations spread equally on a log-scaled horizontal axis, i.e., the search ra-

dius around each object shrink exponentially in the initial iterations. This remotely

confirms our observation made in Section 3.3.
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Figure 3.3: Approximate K-NN distance distributions of Corel dataset after each
iteration. The peaks of the bottom three curves spread equally on the log-scaled
horizontal axis, suggesting the exponential reduction of the radius covered by ap-
proximate K-NN during the execution of our method.

3.6.4 Comparison Against Existing Methods

We compare our method with two recent techniques, both specific to l2 distance, so

only the three dense-vector datasets are used. The brute-force approach, even though

achieving 100% accuracy, is too expensive for large datasets and is not considered here.

Recursive Lanczos Bisection

Recursive Lanczos Bisection (RLB)[15] 3 is a divide-and-conquer method for approx-

imate K-NN graph construction in Euclidean space. According to the two configura-

tions supported by RLB, we conduct comparison under two settings, one for speed

(R = 0.15 for RLB and γ = 0.5 for ours) and one for quality (R = 0.3 for RLB and

γ = 1.0 for ours). Table 3.3 summarizes the recall and CPU time of both methods

under those settings. Our method consistently achieves both higher recall and faster

speed (2× to 16× speedup) in all cases. Actually, even the recall of our low-accuracy

setting beats RLB’s high-accuracy setting in all cases except for the Corel dataset,

where there is only a difference of 0.001.

3Code obtained from http://www.mcs.anl.gov/~jiechen/research/software.html.

65

http://www.mcs.anl.gov/~jiechen/research/software.html


Dataset Method
For Speed For Accuracy

recall time recall time

Corel
RLB 0.988 1844s 0.996 5415s
Ours 0.995 252s 0.997 335s

Audio
RLB 0.906 84.6s 0.965 188.6s
Ours 0.969 21.1s 0.986 31.5s

Shape
RLB 0.961 29.7s 0.989 56.0s
Ours 0.994 14.0s 0.997 24.4s

Table 3.3: Comparison against Recursive Lanczos Bisection (RLB) under two settings.
Our method runs 2 to 16 times faster with consistently higher recall.

Locality-Sensitive Hashing

LSH is a promising method for approximate K-NN search in high dimensional spaces.

We use LSH for offline K-NN graph construction by building an LSH index (with

multiple hash tables) and then running a K-NN query for each object. We use plain

LSH [20] rather than the more recent Multi-Probing LSH [55] in this evaluation as

the latter is mainly to reduce space cost, but could slightly raise scan rate to achieve

the same recall. We make the following optimizations to the original LSH method to

better suit the K-NN graph construction task:

• For each query, we use a bit vector to record the objects that have been com-

pared, so if the same points are seen in another hash table, they are not evalu-

ated again.

• We simultaneously keep the approximate K-NN lists for all objects, so whenever

two objects are compared, the K-NN lists of both are updated;

• A query is only compared against objects with a smaller ID.

These optimizations eliminate all redundant computations without affecting recall.

We translate the cost of LSH into our scan rate measure, so the two methods are

directly comparable (we ignore the cost of LSH index construction though).
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Dataset
LSH Ours

recall scan rate recall scan rate
Corel 0.906 0.004 0.995 0.004
Audio 0.615 0.047 0.969 0.045
Shape 0.925 0.076 0.994 0.075

Table 3.4: Comparison against LSH. We achieve much higher recall at similar scan
rate. It is impractical to tune LSH to reach our recall as it would become slower than
brute-force search.

It is hard for LSH to achieve even the recall of our low-accuracy settings, as the

cost would be higher than brute-force search. Hence we tune the scan rate of both

methods to an equal level and compare recall. For LSH, we use the same default

parameters as used in Chapter 2, except that we tune the number of hash tables to

adjust scan rate. For our method, the low-accuracy setting is used (γ = 0.5).

Table 3.4 summarizes recall and scan rate for both method. We see that our

method strictly out-performs LSH: we achieve significantly higher recall at similar

scan rate. Also note that the space cost of LSH is much higher than ours as tens of

hash tables are needed, and the computational cost to construct those hash tables

are not considered in the comparison.

3.6.5 Scalability

It is important that an algorithm has a consistent accuracy and a predictable cost as

data scales, so that parameters tuned with a small sample are applicable to the full

dataset. To study the scalability of our algorithm, we run experiments on subsamples

of the full datasets with fixed parameter settings and observe the changes in recall

and scan rate as sample size grows.

Table 3.5 shows recall vs. sample size. We see that as dataset grows, there is only

a minor decline in recall. This confirms the feasibility of parameter tuning with a

sampled dataset.
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Size Corel Audio Shape DBLP Flickr
l2 l2 l2 cos EMD

1K 1.000 0.999 1.000 0.959 0.999
5K 1.000 0.996 0.992 0.970 0.991

10K 1.000 0.993 0.998 0.970 0.983
50K 0.999 0.988 - 0.951 0.953

100K 0.999 - - 0.940 0.925
500K 0.997 - - 0.907 -

Table 3.5: Recall vs. dataset size. The impact of data size growth is small.

Figure 3.4 plots scan rate vs. dataset size, in log-log scale, and we see a very

interesting phenomenon: all curves form parallel straight lines, and the curves of

all datasets except DBLP almost coincide. This suggests that our method has a

polynomial time complexity regardless of the complexity of the dataset (which affects

the accuracy rather than speed when parameters are fixed). Table 3.6 shows the

empirical complexity, measured by number of distance evaluations, of our method on

various datasets obtained by fitting the scan rate curves, which is roughly O(N1.14) for

all datasets. It is possible for datasets to exist on which our algorithm would perform

worse than this. How to obtain a provable upper bound remains an open problem.

The main reason that the DBLP curve is higher is that we use K = 50 for DBLP

and K = 20 for other datasets. As a local join costs O(K2), we expect the scan rate

of DBLP to be about (50/20)2 = 6.25 times the scan rate of other datasets if they all

converge at the same speed. The real value we estimate from the curves (by dividing

the intercept of the DBLP curve and the average intercept of the rest) is 5.2, which

is close to the expected value.

3.6.6 Parameter Tuning

We need to fix three parameters for the algorithm: K, sample rate γ and termina-

tion threshold δ. The meaning of δ is clear: the loss in recall tolerable with early

termination. Here we study the impact of K and γ on performance.
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Figure 3.4: Scan rate vs. dataset size. The conincidence of various datasets (except
DBLP) suggests that when parameters are fixed, the time complexity of our method
depends polynomially on the dataset size, but is independent on the complexity of
the dataset (DBLP is different due to a larger K value used).

Dataset & Measure Empirical Complexity
Corel/l2 O(N1.11)
Audio/l2 O(N1.14)
Shape/l2 O(N1.11)

DBLP/cos O(N1.11)
Flickr/EMD O(N1.14)

Table 3.6: Empirical complexity of different datasets and similarity measures under
the default parameter setting. The values are obtained by fitting the scan rate curves
in Figure 3.4.
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Figure 3.5: Performance with local join of K-NN and/or reverse K-NN (K-RNN).

K-NN and/or Reverse K-NN

Figure 3.5 compares the performance of using K-NN only, reverse K-NN only and

both K-NN and reverse K-NN in our algorithm. We see that using K-NN only is not

sufficient to achieve good recall (above 90%). Using both K-NN and reverse K-NN

always achieves the best recall. Even though cost is also higher when using both, and

in some cases good recall can also be achieved with reverse K-NN only, we choose to

use both K-NN and reverse K-NN by default for robustness in accuracy.

Tuning K as a Parameter

The application determines the minimal K required. Meanwhile, a sufficiently large

K is necessary to achieve high recall. The minimal value required by the application

might need to be enlarged.

Figure 3.6 plots the relationship between K and performance. We see that K ≥ 10

is needed for the dense vector datasets to achieve good recall, and for text, recall
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Figure 3.6: Recall and scan rate vs. K. For a particular dataset, a sufficiently large
K is needed for recall above 90%. Beyond that, recall only improves marginally.
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Figure 3.7: Recall and scan rate vs. sample rate γ. Recall grows marginally after
γ > 0.5 while cost grows in a near-linear fashion across the whole range of γ.

reaches 90% only with K ≥ 50. This suggests that text has a high intrinsic dimen-

sionality than the other datasets. We also see that beyond a critical point, recall only

improves marginally as K further grows.

Sample Rate for Accuracy-Cost Trade-Off

The sample rate γ can be used to control accuracy-cost trade-off. Figure 3.7 plots

sample rate vs. performance. We see that even with a sample rate of 0.1, reasonably

high recall can be achieved for most datasets, and recall grows very slowly beyond

γ = 0.5. Scan rate, on the other hand, has a near-linear relationship with γ across
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Figure 3.8: Recall and scan rate vs. dimensionality with K = 20. There is a limit of
dimensionality up to which the algorithm is able to achieve high recall.

the whole range. We suggest γ = 0.5 for applications without a critical dependent on

high recall.

3.6.7 Impact of Intrinsic Dimensionality

We use synthetic data to study the impact of dimensionality on the performance

of our algorithm, as the intrinsic dimensionality of real-life datasets is not obvious

and can not be controlled. We generate a D dimensional vector by concatenating

D independent random values sampled from the uniform distribution U [0, 1]. Data

generated in this way have the same intrinsic dimensionality and full dimensionality.

We then test the performance of our method with different dimensionality, each with

a dataset size of 100, 000.

Figure 3.8 plots the performance of our algorithm, with the default setting, un-

der different dimensionality with a fixed K = 20. We see that recall decreases as

dimensionality increases, and our method performs well (recall above 95%) with di-

mensionality ≤ 20 (which happens to be the value of K). Beyond that, recall rapidly
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drops to about 50% as dimensionality grows to 50, and eventually approaches 0 as

dimensionality further grows.

The impact of dimensionality on cost, although not as large, is also interesting.

When dimension is low and most points are able to reach their true K-NN (global

optima), cost is low. Convergence speed slows as dimensionality increases and scan

rate also increases. Scan rate peaks at around 30 dimensions. After that, most points

are not able to reach their true K-NN and get more and more easily trapped at local

optima, so scan rate begins to shrink as dimensionality further grows. Overall, the

fluctuation of cost is low, within a range of 2×.

We then study how recall can be improved by enlarging K. Table 3.7 summarizes

the recall and scan rate of representative K values at various dimensionality. The

results can be categorized into three zones of dimensionality:

• Small dimensionality (D = 2, 5): extremely high recall (close to 1) and very low

scan rate (< 0.01) can be achieved.

• Medium dimensionality (D = 10, 20): recall reaches 95% with K = D; scan

rate is relatively higher, around 5% (due to a larger K). Recall still increases as

K grows, but a recall close to 1 is no longer practical as scan rate would grow

too high.

• Large dimensionality (D = 50, 100): recall peaks at K = 50 and declines beyond

that, and the peak recall shrinks as D grows (94% for D = 50 and 78% for

D = 100). Scan rate is around 1/4, already too high for the algorithm to be

practically useful.

This suggests that our method is best applied to dataset with intrinsic dimension-

ality around 20. It still works, but with relatively high cost, for dimensionality around

50, and start to fail as dimensionality further grows. Fortunately, all datasets we ex-

perimented with, and actually most real-life datasets where K-NN is meaningful [7],
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are of relatively low dimensionality.

3.7 Online Search with K-NN Graph Expansion

An offline constructed K-NN graph can be used to improve online search with LSH

and other approximate search algorithms, as the true K-NN members missing from

the initial search results are likely to be neighbors of the items found, and can be

recovered by exploring the K-NN graph neighborhood of the initial search results.

Like in NN-Descent, such expansion can be carried out recursively. We will show

with experiments that K-NN graph expansion can double the speed of Multi-Probe

LSH without compromising search quality. K-NN graph expansion comes with the

offline computational cost of K-NN graph construction and online storage cost to keep

the K-NN graph. These extra costs must be considered by implementation.

In this section, we evaluate how online search with Multi-Probe LSH can be im-

proved by K-NN graph expansion. We use the three dense-vector datasets, i.e., Corel,

Audio and Shape, with l2 distance. The evaluation protocol is the same as used in

Chapter 2. We find the true 50-NN of 1000 randomly sampled queries by brute-force

scan and use that as benchmark. We measure the search quality by average recall with

regard to the benchmark, and measure cost by selectivity, which includes the points

scanned during K-NN expansion. As exact K-NN graph construction is not practical

for large dataset, we use NN-Descent with default parameters to construct K-NN

graphs. By default, we explore the 10-NN in the K-NN graph during expansion. For

Multi-Probe LSH, we use the same default parameters as used in Chapter 2, except

that we also evaluate a setting with 1/4 the number of hash tables. Therefore, the

experimental results can be directly compared against those obtained in Chapter 2.
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D = 2 D = 5 D = 10 D = 20 D = 50 D = 100
K recall cost K recall cost K recall cost K recall cost K recall cost K recall cost
4 0.875 0.004 5 0.862 0.006 9 0.925 0.014 19 0.942 0.0487 49 0.934 0.238 49 0.774 0.240
5 0.990 0.005 6 0.957 0.007 10 0.950 0.016 20 0.952 0.0527 50 0.939 0.245 50 0.781 0.248
6 0.996 0.006 7 0.980 0.009 11 0.967 0.019 21 0.957 0.0569 51 0.925 0.253 51 0.778 0.257

Table 3.7: Tuning K for various dimensionality. For a dataset of fixed size and when dimensionality is high (D ≥ 50), recall
cannot always be improved by enlarging K, and the highest achievable recall shrinks as dimensionality grows. Even though
only three K values are shown for each case, the peak is found by testing a larger range of values.
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There are three different Ks as in K-NN involved in the evaluation and we distin-

guish them as K, K ′ and K ′′.

• K = 50: This is the K-NN used in the benchmark, and is picked to reflect the

real usage.

• K ′: This is the size of neighborhood we explore in the K-NN graph during query

expansion and the default value is 10. Larger K ′ means higher recall but also

higher selectivity.

• K ′′ = 20: This is the value used for K-NN graph construction. It is the upper-

bound of valid K ′. We choose it to be larger than K ′ to ensure the quality of

K-NN graph. In practice, if a K ′′ > K ′ is used, the neighbors with ranks from

K ′ + 1 to K ′′ can be discarded after the K-NN graph is constructed as they are

not used in query expansion.

We compare the following five strategies:

Original Original Multi-Probe LSH. This is the baseline. The default parameter

setting of Chapter 2 is used. The parameter L is the number of hash tables,

and is set to 4 for Corel, and 8 for both Audio and Shape.

One Level One level K-NN graph expansion. This strategy achieves less improve-

ment in recall, but is particularly interesting for out-of-core implementation, as

we can store the K-NN together with each point on disk, so that no extra disk

seeks are needed.

Recursive Recursive expansion until no improvement can be made. This strategy

achieves the maximal recall improvement, and is suitable for main memory

implementation.

77



0.2

0.4

0.6

0.8

1.0

re
c
a

ll

Original
One Level
Recursive

Recursive,L/4
No LSH

0.2

0.4

0.6

0.8

1.0

corel audio shape

n
o

rm
a

liz
e

d
 s

e
le

c
ti
v
it
y

Figure 3.9: Online search performance with various K-NN graph expansion strategies.
Selectivity is normalized against that of the original Multi-Probe LSH.

Recursive, L/4 Recursive expansion, but with 1/4 the original number of hash ta-

bles. This is to show how K-NN graph expansion can be used to reduce the

search cost, and is the recommended setting for real implementation.

No LSH Recursive expansion starting from random initial results without using

Multi-Probe LSH. We are interested to see if Multi-Probe LSH is necessary for

online search.

Figure 3.9 shows the recall and selectivity of these five strategies. To make se-

lectivity changes comparable across datasets, we normalize selectivity against that of

the original Multi-Probe LSH. First, we see that by adding K-NN graph expansion to

Multi-Probe LSH, we can improve recall by about 5% without significantly increas-

ing selectivity. This demonstrates the power of K-NN expansion. Second, recursive
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expansion achieves higher recall than one level expansion, while the cost overhead

is minimal, so it should be preferred in main memory implementation. Third, by

applying recursive expansion, we only need 1/4 the original number of hash tables to

achieve similar recall, and at the same time cost can be reduced by more than half.

Finally, K-NN graph expansion with random initialization achieves a competitive re-

call at less than half the cost of other methods for the Corel dataset. However, recall

drops below 80% for the other two datasets. Even though its cost is consistently low,

we believe its not robust enough for general application. The reason might be that

most queries get trapped into local optimal. Overall, we think recursive expansion

with 1/4 hash tables is a good choice for real implementation.

Next we study the impact of K-NN graph size used in expansion, or the parameter

K ′, on search performance. Figure 3.10 plots recall and selectivity vs. K ′, with

selectivity normalized against the case without K-NN graph expansion. We see that

both recall and selectivity increase as K ′ grows, but the improvement of recall slows

down around K ′ = 10, while selectivity continues to grow in a near-linear fashion.

This confirms that K ′ = 10 is a proper choice.

3.8 Related Works

Paredes et al. [65] are the first to study K-NN graph construction for general metric

space as a primary problem (rather than an application of K-NN search methods).

Some general observations they made also apply to our work: the K-NN graph under

construction can be used to improve the remaining construction work and cost can

be reduced by solving the N K-NN queries jointly. They solved the K-NN graph

construction problem in two stages: first an index is built, either a tree structure

or a pivot table, and then the index is used to solve a K-NN query for each object.

Despite the high level similarity to using a general K-NN search index for K-NN graph
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Figure 3.10: Online search performance at different K-NN graph sizes. Selectivity is
normalized against the case without K-NN graph expansion.
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construction, strategies to exploit the approximate K-NN graph already constructed

are incorporated into the search process. They also studied the empirical complexity

of their methods. For example, the pivot based method achieves a better empirical

complexity, which is O(N1.10) at 4 dimensions and O(N1.96) at 24 dimensions.

Efficient K-NN graph construction methods have been developed specifically for

l2 metric. Recursive Lanczos Bisection [15] uses inexpensive Lanczos procedure to

recursively divide the dataset, so objects in different partitions do not have to be

compared. Connor et al. [19] used space filling curve to limit the search range around

each object, and an extra verification and correction stage is used to ensure accuracy.

These methods do not easily generalize to other distance metrics or general similarity

measures.

In the text retrieval community, efficient methods based on prefix-filtering are

developed for the ǫ-NN graph construction [5, 82, 75], a different kind of nearest

neighbor graph which establishes an edge between all pairs of points whose similarity

is above ǫ. The problem is that such methods are only efficient for a very tight

similarity threshold, corresponding to a very sparse and disconnected graph.

3.9 Summary

We presented NN-Descent, a simple and efficient method for approximate K-NN graph

construction with arbitrary similarity measures, and demonstrated its excellent accu-

racy and speed with extensive experimental study. Our method has a low empirical

complexity of O(N1.14) (on various tested datasets) and can be easily parallelized, po-

tentially enabling the application of existing graph and network analysis methods to

large-scaled dataset without an explicit graph structure. Experimental study showed

that our method is from 2 times to 16 times faster than the state-of-the-art K-NN

graph construction technique Recursive Lanczos Bisection on the datasets evaluated.
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We also showed that our method can easily achieve above 95% recall, which is hard

for approximate online K-NN techniques like LSH to achieve. Finally, we showed

that the K-NN graph can be used improve the speed of LSH-based online search by a

factor of two. Rigorous theoretical analysis of our method is an interesting problem

to be solved.
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Chapter 4

Compact Feature Representation

with Sketches

The compactness of data representation, besides the number of items in the candidate set,

is another key factor that determines search speed. This chapter presents a compact bit-

vector, or sketch, embedding of high-dimensional vectors that is able to approximate the l2

distance, and a novel asymmetric distance estimation technique. Our asymmetric estimator

takes advantage of the original feature vector of the query to boost the distance estimation

accuracy. We also apply this asymmetric method to existing sketches for cosine similarity

and l1 distance. Evaluations with datasets extracted from images and telephone records show

that our l2 sketch outperforms existing methods like PCA and random projection, and the

asymmetric estimators consistently improve the accuracy of different sketch methods. To

achieve the same search quality, asymmetric estimators can reduce the sketch size by 10%

to 40%.
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4.1 Introduction

Search speed is mainly determined by two factors: how many items are in the candi-

date set, and how efficient each item can be matched. In the previous two chapters,

we presented methods to model and reduce the number of items in the candidate set.

From this point on, we will focus on efficient representation and matching of large

objects: this chapter on individual high dimensional feature vectors and the next

chapter on sets of feature vectors.

Sketch construction is an effective way to approximate feature vectors for similarity

search. Sketches are compact bit vectors that can be used instead of the original

feature vectors to estimate distances. In a search system, sketches are scanned upon

a query to quickly generate a small set of candidates which can be ranked later with

original feature vectors to obtain the search result. Such a process is often called

filtering. As reported by previous work [53, 54, 77], sketches are typically an order of

magnitude smaller than their feature vectors, and can significantly improve the space

requirement and search speed. For systems dealing with large datasets, reducing

space cost usually means improving speed, as load time can be reduced (both from

disk to main memory and from main memory to CPU), and it might be possible to

use faster but smaller storage (from disk to main memory). A key challenge for sketch

construction is to achieve a high ratio of distance estimation accuracy to sketch size.

The traditional method of using sketches to estimate distances, like l1 distance [53]

and cosine similarity [14], is to construct a bit vector for each feature vector where each

bit is determined by the position of the feature vector with respect to a random hyper-

plane. The Hamming distance of such sketches will then be used to approximate the

original distance measure. Since computing Hamming distance (counting the number

of bits that are different) is simple, the filtering process can be an order of magnitude

faster than scanning the original feature vectors. However, the distance estimation

with such sketches is a crude approximation; accuracy can be low when sketches are
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very compact. A challenging question is whether the accuracy of distance estimation

can be substantially improved using the same sketches.

Distance estimation using sketches is typically symmetric in that two sketches are

compared to produce an estimate of the distance. In this chapter, we propose a novel

asymmetric approach to estimate the distance between the feature vector of a query

and the sketch of a data object. As the distance estimation is done in two different

spaces, we call such algorithms asymmetric estimators. Asymmetric estimators do not

impose additional space requirements because they use the same sketches for all data

points and there is only one query point. These methods can achieve higher accuracy

because they take advantage of the position information of the query point in the

feature vector space. Another way to look at the effect of the proposed approach is

that it allows the sketches to be more compact to achieve the same accuracy.

As a specific example, we first present a new l2 sketch construction and its asym-

metric estimator. Our new method has an interesting property particularly desirable

for similarity search: it is only sensitive to a small distance range covering most

k-nearest neighbors. We then provide general guidelines on designing asymmetric

estimators and show how to design asymmetric estimators for two existing sketch

constructions for l1 distance [53] and cosine similarity [32, 14].

We evaluate all three sketch constructions with symmetric and asymmetric es-

timators using real-life datasets extracted from images and telephone records, and

demonstrate the significant space saving (10% to 40%) of the asymmetric estimators,

as well as the superiority of our new l2 sketch over the existing methods.
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Figure 4.1: Illustration of l2 Sketch. (a) The space is partitioned randomly into gray
and white stripes, inducing a 0/1 sketch function. (b) The left half of the curve shows
a near-linear relationship, meeting the requirement of similarity search.

4.2 Sketch and Asymmetric Estimator for l2 Dis-

tance

In this section we present our new sketch algorithm for l2 distance, which we call

l2 Sketch, and show how to exploit the raw feature vectors for asymmetric distance

estimation.

4.2.1 l2 Sketch Construction

The goal of sketches for similarity search is different from that for general distance

estimation. First, we only need to know the distance relationships (smaller or larger),

rather than exact values. Second, we only need high accuracy for small distances

instead of uniform accuracy/inaccuracy across the whole range of distances. These

two relaxations potentially allow data reduction more aggressive than traditional

dimension reduction methods.

We are able to exploit both opportunities by a striping technique. Figure 4.1(a) il-

lustrates the scheme in R
2 space, and the idea is exactly the same for high-dimensional

spaces. We randomly partition the space into interleaving white and gray stripes of
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equal width, and use stripe colors to determine the sketch values of the points: gray

for 0 and white for 1. Points closer to each other are more likely to fall into the same

stripe, and subsequently, the XOR of their sketch values has a smaller expectation.

We do the random striping multiple times to produce a sequence of bits for each

point, and use the Hamming distance of the bit vectors as a proximity estimator.

Specifically,

l2 Sketch. For a point p ∈ R
D, its l2 sketch is a bit vector σ(p) ∈ {0, 1}B, with each

bit σi(p) produced by

σi(p) = ⌊hi(p)⌋ mod 2,

hi(p) =
ai · p+ bi

W
, ∀i = 1, 2, ...,m

where ai ∈ R
D is a random vector with each dimension sampled independently from

the standard Gaussian distribution N(0, 1), and bi ∈ R is sampled from the uniform

distribution U [0,W ). W is called the window size. Note that hi is exactly the same

atomic hash function introduced in (2.2). For two points p, q ∈ R
D, their sketch

distance is defined as

dσ(p, q) =
1

B

B∑

i=1

σi(p)⊕ σi(q) =
1

B
dH [σ(p), σ(q)].

where dH is Hamming distance.

The above algorithm specifies how to produce a random partitioning: ai deter-

mines the direction of the stripes, ‖ai‖ and W together determine the width of the

stripes, and the random shift bi determines the ‘phase’. Figure 4.1(b) shows the

relationship between the expectation of symmetric sketch distance and l2 distance

(see Section 4.2.3 for formulas). The monotonicity of the curve satisfies our ranking

purpose. For small l2 distances, we can see a near-linear relationship, and when l2
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distance grows large, sketch distance quickly converges to the limit 0.5. The window

size W determines the sensitive distance range.

4.2.2 Asymmetric Estimator for l2 Sketch

Figure 4.1(a) explains how the original query point is useful for asymmetric distance

estimation. Assume p1, p2 and p3 are data points, with only sketches available, and

q is the query point, with both sketch and feature vector available. We know the

precise location of q, but only know that p1 and p3 are in white stripes and p2 is in a

gray stripe. Since p2 and q are in stripes of different colors, the distance between p2

and q is lower-bounded by the minimum distance from q to a stripe boundary. This

lower bound (marked δ in the figure) replaces the Hamming distance 1 in asymmetric

distance estimation. On the other hand, p1 and p3 are in stripes of the same color as

q, and the value 0 is used. The asymmetric distance estimator is defined below.

l2 Sketch. Under the setting of l2 Sketch 1, for data point p and query point q, both

in R
D, the asymmetric sketch distance is defined as

d∗σ(p, q) =
1

B

B∑

i=0

δi(q)[σi(p)⊕ σi(q)]

where δi(q) = min{⌈hi(q)⌉ − hi(q), hi(q)− ⌊hi(q)⌋}.

The asymmetric sketch distance is a weighted Hamming distance of the sketches.

The weight δi(q) is the distance from q to the closest stripe boundary.

4.2.3 Statistical Analysis

The following lemma gives the relationship between symmetric and asymmetric sketch

distances and original l2 distance.
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Lemma 1. Under the setting of l2 Sketch, for any p, q ∈ R
D, let d = ‖p− q‖ be the

l2 distance, dσ = dσ(p, q) be the symmetric sketch distance and d∗σ = d∗σ(p, q) be the

asymmetric sketch distance, then for any k ∈ R,

E[dσ] = f0(d/W ) E[d∗σ] = f1(d/W )

where

fk(t) =

∫ 1

0

∫ 1

0

min{x, 1− x}k
t

∑

j∈Z

φ

[
2j + x+ y

t

]
dxdy

and φ(·) is the probability density function of the standard Gaussian distribution

N(0, 1).

Proof. The B bits in the sketch are identically distributed, so we only consider the

case when B = 1 and omit subscript i as in ai, bi and hi. For B 6= 1, the expectation

remains the same, and variance is scaled by 1/B.

We shift the real line by ⌊h(p)⌋, so that h(p) = y ∈ [0,W ), following uniform

distribution. Let j ∈ Z be an arbitrary integer. When h(q) ∈ [2jW, (2j + 1)W ),

dσ = d∗σ = 0. Thus only the case when h(q) ∈ [(2j + 1)W, (2j + 2)W ) is interesting.

In this case, we have have dσ = 1 and d∗σ = min{x,W − x}, where x ∈ [0,W ) is the

distance from h(q) to the left window boundary (2j + 1)W . The probability for this

to happen is

∑

j∈Z

Pr[h(p) = y ∧ h(q) = (2j + 1)W + x]

=
∑

j∈Z

1

W
Pr[h(q)− h(p) = (2j + 1)W + x− y]

=
∑

j∈Z

1

W
Pr[a · (q − p) = (2j + 1)W + x− y]

=
∑

j∈Z

1

Wd
φ

[
(2j + 1)W + x− y

d

]

The last step is due to the 2-stability of Gaussian distribution [20], which states that
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for any p ∈ R
D, a · p ∼ ‖p‖ ×N(0, 1).

The expectations of dσ and d∗σ are obtained by averaging the corresponding values

weighted by the above probability across all x, y ∈ [0,W ).

Choosing a proper window size W is a practical issue. For K-NN search, twice

the typical distance of the kth nearest neighbor is a good starting point for tuning.

4.3 Asymmetric Estimators for Other Sketch Al-

gorithms

In this section we describe a general framework for designing asymmetric estimators

and use this to devise asymmetric estimators for two existing sketch methods for

cosine similarity and l1 distance.

4.3.1 Asymmetric Estimator in General

The asymmetric estimator proposed in the previous section can be generalized into

the following framework

First, a sketch algorithm σ for a metric space 〈V, d〉 specifies a family σ = {σi | i ∈

I = {1, 2, 3, . . .}} of bipartitions of the space, mapping an arbitrary point p ∈ V into

a bit sequence σ(p) = 〈σi(p)〉i∈I . The sketch distance between two points p, q ∈ V is

the expectation of XOR of the corresponding bits in sketches: dσ(p, q) = Ei∈I [σi(p)⊕

σi(q)]. A well-designed sketch algorithm should establish a predictable relationship

between the sketch distance dσ and original distance d. A closely related concept is

LSH: a bipartition σi is a 0/1 valued LSH function.

Second, an asymmetric distance estimator specifies a distance function d∗ (not

necessarily the original d) between a point and a partition. In the case of l2 Sketch,

d∗ is the l2 distance measure under a random projection. If we denote by [0]σi
and
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[1]σi
the two parts of σi, then the asymmetric sketch distance is simply the average

distance from the query point q to the part that the data point p is in: d∗σ(p, q) =

Ei∈I{d∗([σi(p)]σi
, q)}. Because d∗ gives a refined lower bound of the crude XOR, the

asymmetric estimator potentially provides higher accuracy.

Given a sketch algorithm, the challenge then lies in finding a meaningful asym-

metric distance function d∗. Though the sketch algorithm and the original distance

measure usually give useful clues, such an estimator is not always obvious and does not

always exist. This is one limitation of the asymmetric distance estimation method. It

is possible that an asymmetric estimator results in a distance measure different from

the original one, but is still helpful in improving the search quality. We later discuss

such an estimator for the l1 case. It is also possible that more than one asymmetric

estimator might exist for a single sketch algorithm, each having its own advantage.

Another limitation of the asymmetric method is the accuracy improvement. The

error in distance estimation comes from uncertainty in the positions of the data

point and the query point. Even if the asymmetric method fully eliminates the error

introduced by the query point, it eliminates only half the source of error. In practice

(mainly due to the randomization in sketch algorithms), this 50% upper bound is

usually far from tight, even though the asymmetric estimators do make a significant

difference in many cases.

In the following two subsections, we restate two existing sketch algorithms in our

framework, and devise asymmetric estimators for them. We call these algorithms

Cosine Sketch and l1 Sketch based on the distance measure they approximate.

4.3.2 Cosine Sketch

Cosine similarity is not a strict distance measure, but is still important to many

applications like text document retrieval. For any p, q ∈ R
D, the cosine similarity is

91



ρ

q

p

l

δ = ρ · q

(a) Cosine Sketch

p
δ

t1

t2

t3

(b) l1 Sketch

Figure 4.2: The space partitioning schemes of Cosine Sketch and l1 Sketch, both
based on random hyper-plane method.

defined by dcos(p, q) = p·q
‖p‖·‖q‖

, and is related to l2 distance by

[dl2(p, q)]
2 = ‖p‖2 + ‖q‖2 − 2 dcos(p, q) ‖p‖ ‖q‖.

Thus, l2 distance and cosine similarity have the same ranking effect for normalized

datasets, and for unnormalized datasets, given the 2-norms of the points, a sketch

algorithm for cosine similarity automatically induces one for l2 distance.

The following sketch algorithm for cosine distance is implicitly given in [32, 14].

For simplicity of presentation, we assume all the points are normalized to unit vectors.

Cosine Sketch. For a point p ∈ SD−1 = {r ∈ R
D | ‖r‖ = 1}, its cosine sketch is a

bit vector σ(p) ∈ {0, 1}B, with each bit σi(p) produced by

σi(p) =





0 if ρi · p < 0

1 if ρi · p ≥ 0

∀i = 1, 2, . . . ,m

where ρi for each i is sampled uniformly at random from the unit hypersphere SD−1.

The symmetric sketch distance between p, q ∈ SD−1 is defined as dσ(p, q) = 1
B
dH [σ(p), σ(q)].

92



The idea of the random hyper-plane method is illustrated in Figure 4.2(a). The

random vector ρ ∈ SD−1 determines a hyper-plane l (the orthogonal complement of

ρ) which bipartitions the sphere. A bit in the sketch records whether or not the point

falls on the same side of the hyper-plane as ρ. To design an asymmetric distance

estimator, we need to assess the distance from the query point q to its neighboring

half space (the gray one). We find the distance from q to the hyper-plane l, indicated

by δ in the figure, a natural choice. Simple enough, δ is exactly |ρ · q|. Thus, we have

the following asymmetric estimator.

Cosine Sketch. Under the setting of Cosine Sketch 1, for data point p and query

point q, both in SD−1, the asymmetric sketch distance is defined as

d∗σ(p, q) =
1

B

B∑

i=0

|ρi · q| × [σi(p)⊕ σi(q)]

=
1

B

B∑

i=0

−sgn(ρi · p)× (ρi · q)× [σi(p)⊕ σi(q)]

The following lemma gives the relationship between symmetric and asymmetric

sketch distances and the original cosine similarity.

Lemma 2. Under the setting of Cosine Sketch, for any p, q ∈ SD−1, let θ = p̂q be

the angle between p and q, d = cos(θ) be the cosine similarity, dσ = dσ(p, q) be the

symmetric sketch distance and d∗σ = d∗σ(p, q) be the asymmetric sketch distance, then
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the following relations hold:

E[dσ] =
θ

π
(a)

E[cos(πdσ)] =
B∑

k=0

(
B

k

)
θk(π − θ)B−k

πB
cos

( π
B
k
)

(b)

E[d∗σ] =
B(D

2
, 1
2
)

2π
(1− d) (c)

var[d∗σ] =
1

B
{θ −

1
2

sin 2θ

Dπ
− E[d∗σ]2} (d)

where B(·, ·) is the Beta function.

Proof. (a) See [32, 14].

(b) Given the angle θ between p and q, the probability that the sketches have

different values of the ith bit is θ/π. Thus, the probability that the sketches have

Hamming distance k is given by the binomial distribution binom(B, θ/π). The ex-

pectation of cos πdσ can be obtained by taking the average for k from 0 to B.

(c) By linearity of expectation, we only need to consider the case B = 1, and we

drop the subscript i. We use hyperspherical coordinate system, where each point is

represented with one radial coordinate r and D−1 angular coordinates φ1, . . . , φD−1.

Because the radius is always 1 in SD−1, we simply omit this coordinate. Moreover,

for particular p and q, we rotate the coordinate system so that

φi(p) = φi(q) =
π

2
∀i = 1, . . . , D − 2

φD−1(p) = 0, φD−1(q) = θ.

The corresponding Cartesian coordinates are p = 〈0, . . . , 1, 0〉 and q = 〈0, . . . , cos(θ), sin(θ)〉.

Let the hyper-spherical coordinates of the random vector ρ ∈ SD−1 be 〈φ1, . . . , φD−1〉.

94



 0

 0.005

 0.01

-1 -0.5  0  0.5  1

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

cosine similarity

symmetric
asymmetric

Figure 4.3: Mean squared error of Cosine Sketch estimators vs. cosine similarity
(D = 128, B = 256). The asymmetric curve has its left half higher than the symmetric
one. We use a trick (described in Section 4.3.2) to lower it down to the dotted curve,
which mirrors the right half of the asymmetric curve.

We thus have

ρ · q = sin(φ1) · · · sin(φD−2) cos(φD−1 − θ)

Only the hyper-planes that separate p and q make a non-zero contribution to the

asymmetric distance. These hyper-planes correspond to ρ ∈ Ω1 ∪ Ω2, where

Ω1 = {ρ | ρ · p < 0, ρ · q > 0} = {ρ | 1
2
π < φD−1(ρ) <

1

2
π + θ},

Ω2 = {ρ | ρ · p > 0, ρ · q < 0} = {ρ | 3
2
π < φD−1(ρ) <

3

2
π + θ)}.

Thus

E[d∗σ(p, q)] =

∫
Ω1

ρ · q dρ+
∫
Ω2

−ρ · q dρ∫
SD−1 dρ

=
B(D

2
, 1
2
)

2π
(1− cos θ)

(d) Similar to (c).

The symmetric estimator estimates the angle θ instead of the cosine similarity. In

practice we use cos(πdσ) as a biased estimator of cosine similarity.

Figure 4.3 shows the mean squared error of both symmetric and asymmetric es-

timators when D = 128 and B = 256 based on Lemma 2. We can see that the
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asymmetric estimator works well when cosine similarity is close to 1, but degrades

badly when smaller than 0. For similarity search under cosine similarity, this works

well, for only similarity close to 1 is interesting. For estimating l2 distance, however,

we actually want low error across the whole range. We use the following trick to

circumvent this flaw.

For arbitrary p, q ∈ SD−1, we have dcos(−p, q) = −dcos(p, q); and at any time,

either dcos(p, q) or dcos(−p, q) is non-negative, and is estimated more accurately. Fur-

thermore, the sketch σ(−p) of −p is exactly the binary complement of that of p, and

is thus available at query time. As a result, we always compute an estimation for

both p and −p, and use the better one to produce the final estimation.

4.3.3 l1 Sketch

Lv et al. [53] introduced a sketch algorithm for weighted l1 distance. To simplify the

presentation, we only consider the unweighted case here. Our asymmetric estimator

can be easily adapted to work with the weighted case. Following is the unweighted

version of the l1 sketch algorithm proposed in Lv et al. [53]. Note that the algorithm

works only for limited space, and requires the range of each dimension as input.

l1 Sketch. Given a closed space V = [l1, u1]× · · ·× [lD, uD] ⊂ R
D, for a point p ∈ V ,

its l1 sketch is a bit vector σ(p) ∈ {0, 1}B, each bit σi(p) produced by

σi(p) = σi,1(p)⊕ σi,2(p)⊕ · · · ⊕ σi,b(p)

σi,j(p) =





0 if psi,j < ti,j

1 else

∀i = 1, 2, ..., B, j = 1, 2, ..., b.

Each bit in the sketch is the XOR of b independently generated bits, and b is a pa-

96



rameter specified by the user. For each 〈i, j〉pair, the index si,j and threshold ti,j are

generated in the following two steps:

1. Pick si,j such that Pr[si,j = k] ∝ (uk − lk), k = 1, 2, ...D;

2. Pick ti,j uniformly at random from [lsi,j , usi,j ].

The symmetric sketch distance between p, q ∈ SD−1 is defined as dσ(p, q) = 1
B
dH [σ(p), σ(q)].

It can be proved that if b = 1, the expectation of sketch distance is proportional to

l1 distance. XORing b bits has the effect of increasing the sensitivity to small distance

range, similar to what is shown in Figure 4.1(b). Though the theoretical properties of

this XOR idea are interesting, no intuitive explanation is given in [53, 54, 77]. Here

we give a geometrical view of the XOR method, which is rather straightforward.

Figure 4.2(b) illustrates a bipartition of a 2D space according to the sketch algo-

rithm, with b = 3. The three random dimension-threshold pairs partition the space

into six rectangular regions, and the XOR scheme induces a gray-white coloring of the

regions such that touching regions are always colored differently. Note that regions

of the same color, as in l2 Sketch, are considered as one partition.

Given the geometrical view of the bipartition scheme, one asymmetric estimator is

straightforward. We take the distance from the query point q to the closest boundary

of the region, which is t3 in the figure, as the asymmetric distance function d∗. This

distance is indicated in the figure by δ. Following is the algorithm of the asymmetric

estimator.

l1 Sketch. Under the setting of l1 Sketch 1, for data point p and query point q, both

in V , the asymmetric sketch distance is defined as

d∗σ(p, q) =
1

B

B∑

i=0

δi(q)[σi(p)⊕ σi(q)]

where δi(q) = min{|qsi,j − ti,j| | j = 1, 2, . . . , b}.
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Dataset # Feature Vectors Dimension
image 4,459,549 128
audio 2,663,040 192

Table 4.1: Summary of datasets.

The drawback of the above asymmetric estimator is that it is not a proper esti-

mator of l1 distance. It can be shown that when b = 1, the asymmetric distance is

in fact proportional to the l2 distance. Nevertheless, as the experimental results in

Section 4.4 show, it does improve search quality in practice.

4.4 Evaluation

In this section, we conduct experiments with two real-life datasets to study the per-

formance of the methods described in the previous two sections. We first measure the

accuracy of different methods to demonstrate the advantage of sketch methods over

traditional dimension reduction methods and the improvement of asymmetric esti-

mators over the basic symmetric ones. We then plug our methods into a similarity

search algorithm and evaluate the space reduction achievable by the new asymmetric

estimators.

We have shown in Section 4.3.2 that l2 distance and cosine similarity are essentially

equivalent, so we evaluate both l2 Sketch and cosine sketch under l2 measure by using

the Cosine Sketch to estimate l2 distance.

4.4.1 Datasets

We use two high-dimensional datasets, i.e., images and audio, in our evaluation.

These datasets are reasonably large and reflect real-life usage. Table 1 is a summary

of these datasets.

Image: The image dataset is extracted from the Caltech 101 [24] object recognition
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benchmark. This dataset contains 101 object categories and a background clutter

category, with 9144 images in total. We convert the images into grayscale PGM

format and use the SIFT [52] 1 algorithm with default parameters to extract feature

vectors, obtaining nearly 4.5 million 128-dimensional feature vectors. We treat feature

vectors extracted from the same image as independent objects, as we only consider

similarity search on the feature vector level.

Audio: The audio dataset is the LDC-SWITCHBOARD-1 2 collection, which is a

collection of about 2,400 two-side telephone conversations among 543 speakers from

all areas of the United States. The conversations are segmented into individual words

based on human transcription. We use the Marsyas library [74] to extract feature

vectors from the word segments. For each word segment, we take a 512-sample sliding

window with variable stride to obtain 32 windows, and from each window extract the

first six MFCC parameters, resulting in a 192-dimensional feature vector. About 2.5

million feature vectors are extracted.

4.4.2 More on the Methods

For l2 distance, we compare the following six methods.

• l2 Sketch with symmetric and asymmetric estimators. We use window size

W = 900 for the image dataset, and W = 23 for the audio dataset. These

parameters are tuned to be optimal for 100-NN search. We build lookup tables

based on Lemma 1 to map the sketch distances to l2 distance for explicit l2

distance estimation. For similarity search, the sketch distances are directly

used.

• Cosine Sketch with symmetric and asymmetric estimators. We use Lemma 2

to directly convert the sketch distances to cosine similarity, and further convert

1Code obtained from http://www.cs.ubc.ca/~lowe/keypoints/.
2http://www.ldc.upenn.edu/Catalog/docs/switchboard/
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cosine similarity to l2 distance with saved 2-norms.

• PCA (Principal Component Analysis) and RP (Random Projection), also con-

sidered as sketches to serve as performance baselines.

For l1 distance, we simply compare the symmetric and asymmetric estimators of

l1 Sketch.

We always allocate sketches in full bytes to simplify implementation. Actually,

varying sketch size by less than one byte does not make a practically significant

difference in performance. For Cosine Sketch, we need the 2-norms of the vectors to

estimate l2 distance, and count 4 extra bytes into sketch size. For PCA and RP, we

use 32-bit floating-point representation, and thus count each dimension as four bytes.

We implement asymmetric sketch distances in the following way. Assume an B-

bit sketch length, we pre-calculate for each query point an B × 2 matrix M , M [i][j]

being the value to be added if bit-i of the data sketch is j. Therefore, evaluating the

asymmetric sketch distance for each data point involves B floating-point additions.

4.4.3 Evaluation of Distance Estimation

Because our asymmetric estimator of l1 Sketch does not produce a proper estima-

tion of l1 distance, we do not consider l1 distance here. We only evaluate the l2

distance related methods. Also, we only use the image dataset, which is sufficient to

demonstrate the behavior of different methods.

First, we measure the mean squared error of various methods at different distance

values. We randomly sample 100,000 pairs of points from the image dataset, create

sketches for them, estimate the distance for each pair with sketches, and then compare

the estimations with real distances. We then bin the squared error values according

to the corresponding real distances and take the average of each bin. For asymmetric

estimators, we use the raw feature vector of one arbitrary point from each pair.
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The results are plotted in Figure 4.4. We also attach the distribution of real l2

distance in the bottom of the figure to show the relative importance of different

distance values. The mean square error values in Figure 4.4 appear to be large. For

example, a means square error of 1000 at l2 distance 100 translates to a relative error

of
√

1000/100 ≈ 32%. However, with sketch construction, we are not interested in

estimating the actual distance values, but rather want to filter away those distances

that are obviously large, and this error level is acceptable in practice.

Figure 4.4 gives a clear view of how different methods behave for different distance

values. The l2 Sketch curves are most interesting, for the errors are low when distance

is small, but beyond 400, the errors increase dramatically as distance grows. Note

that the turning point is tunable in practice via the window size W . The curves of the

other methods are relatively flat. Especially, the Cosine Sketch estimators are pretty

consistent across the whole distance range, and are the first choice if one is interested

in estimating distances for arbitrary points rather than for the nearest neighbors only.

We then consider the overall accuracy vs. sketch size. For the purpose of K-NN

search, it does not make sense to cover the whole distance range from zero to infinite.

Instead, we only consider the distance range from 0 to 300, which is around one

standard deviation (∼ 60) beyond the average distance of the 100th nearest neighbor

(∼ 250). We sample from the image dataset 1000 pairs of points that are within

this distance range, and take the mean squared error of different methods at different

sketch sizes. The results are shown in Figure 4.5.

The curves in Figure 4.5 can be grouped into three categories, from low to high

in accuracy: dimension reduction methods, sketches with symmetric estimators and

sketches with asymmetric estimators. The relative performances of these methods

are mostly consistent across the whole figure. The more than 50% error reduction of

the sketch methods over PCA and RP clearly shows their superiority. The figure also

shows that the improvement of an asymmetric estimator (from “sym cos” to “asym
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cos”) is larger than using a better sketch scheme (from “sym cos” to “sym l2 ”).

In the above two figures, RP consistently out-performs PCA in terms of mean

squared error. This is mainly because PCA has a systematic bias that makes it

always lower-estimate actual distance. This bias does not affect similarity search and

we will see that PCA is actually better at similarity search.

4.4.4 Evaluation of Similarity Search

With the accuracy improvements of our new methods confirmed, in this subsection we

evaluate the methods in the scenario of similarity search, and see how they improve

search quality, and equivalently, reduce the space requirement to achieve a fixed

quality.

Here is how we create the evaluation benchmark: for each dataset, we pick 100

points at random as query points, and use the rest of the points as the data points

indexed. For each query point, we sequentially scan all the data points for K-NN

under each distance measure concerned, and use these results as the ground truth.

We use k = 100 in our experiments.

We measure search quality by recall, which is the percentage of the true K-NN

found by the query algorithm. We do not consider precision here, but use the equiva-

lent filter ratios t and t′ as input parameters to the query algorithm explained below.

We use the same query algorithm as modeled in [77]. The query algorithm with

symmetric estimators proceed in two steps: first, scan the sketches for a candidate

set of t× k points with smallest sketch distances to the query point; second, scan the

raw feature vectors of the candidate set, and find the top k within them as the final

result. We use t = 20 in all our experiments.

Asymmetric estimators take more computation than the symmetric ones, and

filtering all the sketches with asymmetric estimators is not always affordable. As a

work-around, we extend the query algorithm with an extra filtering step. We first
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scan the sketches with a symmetric estimator for t′× t×k candidate points, and then

use an asymmetric estimator to rank them and choose the top t × k candidates for

final re-ranking with raw feature vectors. Our experience shows that t′ = 10, which

we use throughout the following experiments, provides nearly identical recall as using

asymmetric estimators to scan all the sketches.

The relationships between t, k and recall are thoroughly studied in [77] and are

not our focus in this thesis. Instead, we focus on the recall/size performance of

different sketch algorithms. Figure 4.6 shows the experimental results of l2 distance,

and Figure 4.7 shows those for l1 distance.

Figure 4.6 shows that for each sketch method, the asymmetric estimator always

out-performs the symmetric one. The improvement is especially significant when the

sketch is small. But even at a baseline recall of 0.90, the asymmetric methods still

achieve a 0.05 improvement in most cases. The results for l1 distance, as shown in

Figure 4.7, are not as good; however, we do see a consistent improvement.

The performance of PCA on the audio dataset is pretty interesting, as the recall

grows very quickly when the size is smaller than 32, or 8 dimensions, reaching one of

the sketch methods at 8 dimensions, and then slows down significantly. This suggests

that the intrinsic dimension of the audio dataset might be around 10.

Table 4.2 shows the minimal sketch sizes of symmetric and asymmetric methods

to reach various recall values. For l2 distance, the asymmetric estimators achieve

sketch size reduction from 20% to 43%. For l1 distance, the reduction is smaller, from

10% to 27%.

4.5 Related Works

Sketches were originally used to answer aggregate queries over data streams [2], and

were recently used as a filter to accelerate similarity search [53, 54, 77]. In existing
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Image Audio
Recall 0.85 0.9 0.95 0.85 0.90 0.95

l2
sym 32 40 56 32 42 60
asym 22 29 39 23 32 48

Reduction 31% 28% 30% 28% 24% 20%

Cos
sym 40 54 73 41 54 73
asym 26 32 42 25 32 46

Reduction 35% 41% 43% 30% 41% 37%

l1
sym 51 66 92 64 80 120
asym 43 59 83 47 64 106

Reduction 16% 11% 10% 27% 20% 12%

Table 4.2: Space requirement (in bytes) of various methods to achieve specific recalls.
Here l2 sketch and Cosine sketch are evaluated with l2 distance, and l1 sketch is
evaluated with l1 distance.
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methods for all these applications, however, the estimating operation is carried out

completely in the sketch space. Similarity search is a typical scenario where additional

information other than sketches can be exploited to improve estimation accuracy. We

believe our idea of asymmetric distance estimation will find other applications as well.

A sketch algorithm for l1 distance was proposed by Lv et al. [53], and later ap-

plied to other datasets [54]. The random hyper-plane technique, first proposed by

Goemans and Williamson [32] for solving the max-cut problem and later used for

LSH [14], implicitly gives a sketch algorithm for cosine similarity, which is essentially

equivalent to l2 distance. However, its performance in similarity search has not been

experimentally studied. In this chapter, we propose asymmetric estimators for both

methods, and experimentally evaluate all these methods as well as our newly proposed

sketch for l2 distance.

An analytical performance model of similarity search using sketches was recently

given in [77]. We use the same query-processing algorithm, so the performance model

can be easily adapted to work with our method.

Dimension reduction [25] is an active research area with many applications, and

various methods exist. Though related in concept, sketches are not merely new di-

mension reduction methods. They are task-specific (similarity search in our case),

and the emphasis is more on reducing the size rather than keeping high precision.

PCA and random projection are evaluated in this chapter as performance baselines.

4.6 Summary

In this chapter, we proposed the idea of asymmetric distance estimators to exploit

the raw query points, which are not used by traditional methods when estimating

distances with sketches. We apply the idea to three sketch algorithms, one of them

newly proposed in this chapter. Our experimental results confirm the precision im-
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provement of the asymmetric estimators, and show that to achieve the same search

quality, the asymmetric estimators can reduce the space requirement by 10% to 40%.
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Chapter 5

Compact Feature Set

Representation with Random

Histograms

In this chapter, we present a randomized algorithm to embed a set of features, an increasingly

common representation of a feature-rich data object, into a single high-dimensional vector

for efficient matching and searching. The main idea is to project feature vectors into an

auxiliary space using LSH and to represent a set of features as a histogram in the auxiliary

space. We evaluate the proposed approach under two different task settings, i.e. content-

based image search and image object recognition. The experimental results show that the

proposed approach is indeed effective and flexible. For object recognition with the Caltech

101 dataset, our method runs 25 times faster to achieve the same precision as Pyramid

Matching Kernel, the state-of-the-art feature set-matching method.
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5.1 Introduction

Using sets of local features to represent multimedia data objects for content-based

similarity search or object recognition has been gaining popularity recently because

of the superior discriminating power of local features over global features. However,

matching sets of unordered high-dimensional feature vectors imposes much higher

complexity in both space and time. The challenge is to develop a method to sub-

stantially reduce the complexity of the set-matching operation while maintaining the

search or recognition quality of using sets of features.

For example, the state-of-the-art approach to object recognition is to extract local

features such as SIFT [52] from “interesting” points in an image and form a set of

feature vectors for each image. The number of such feature vectors for each image

varies depending on its content, but it is common for an image to have a set of

hundreds of SIFT features, each with 128 dimensions. Recent search systems for

audio [54] and video [80] also use sets of unordered high-dimensional feature vectors

as their metadata representations. It is therefore important to develop a flexible and

efficient representation for sets of features.

There are two challenging aspects in solving the problem of matching sets of

features. The first is that its space requirement is high. Local feature vectors are

high dimensional. For example, A SIFT feature vector has 128 dimensions. A typical

MFCC feature vector, a commonly-used feature type for audio data, typically has

about 200 dimensions. The number of SIFT feature vectors or MFCC feature vectors

for each image or audio sentence is typically on the order of hundreds and sometimes

thousands. The space requirement for such a set of feature vectors can easily exceed

100KB which is often larger than the size of the original data object.

The second is that the complexity to compute a commonly-used set similarity

measure is high. Since the set representation disregards the spatial orders or se-

mantic relationships among the feature vectors, the similarity between two sets of
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feature vectors is typically defined as an overall measure of the similarity between the

matched points under certain condition from the two sets. A commonly-used similar-

ity measure is the sum of point distances of the one-to-one best matched points from

the two sets [69]. The complexity of computing this measure is O(n3), where n is the

average number of feature vectors in a set. If a search engine had to compare the set

of features of a query image with that of each of billions of images, the computation

cost would be formidably expensive, especially when n is on the order of hundreds

and sometimes thousands.

The state-of-the-art light-weight set matching algorithm is Pyramid Matching

Kernel (PMK) [34]. Its main idea is to uniformly quantize the feature space in

multiple resolutions, and to represent a set of features as a list of the space quanta

that cover the set members. Such lists are ordered, and can be matched in linear time,

which is a substantial improvement over the quadratic or even cubic set-matching

algorithms. However, PMK has two drawbacks. First, it works with feature space

of limited dimensionality. For high-dimensional feature vectors, it requires applying

a dimension reduction method first which may cause significant loss of information

if the intrinsic feature dimensionality is high. Second, the sparse and hierarchical

representation imposes a significant space overhead.

This chapter presents a randomized algorithm to embed a set of features into

a single high-dimensional vector to simplify the feature-set matching problem. The

main idea, as illustrated in Figure 5.1, is to project all feature vectors into an auxiliary

space using LSH [36, 31] and to represent a set of features as histograms, which are

simply high dimensional vectors. Histogram similarity measures will be employed

to approximate feature-set distance measures. By doing so, the challenging feature-

set matching problem is reduced to a simpler similarity match problem in a high-

dimensional space.

To evaluate the effectiveness of the proposed approach, we conducted experiments
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under two different task settings: content-based image similarity search and object

recognition. The experimental results show that the proposed approach is indeed ef-

fective and flexible. It can achieve search and recognition accuracy comparable to the

feature-set matching methods, while requiring significantly less space and time. For

object recognition with Caltech 101 dataset, our method achieves the same precision

as the feature-set matching method, but runs 25 times faster than Pyramid Matching

Kernel.

In addition, the proposed approach is flexible and can easily be used to construct

search systems for multiple feature-rich data types with different similarity measures.

By using different LSH families, one can approximate different point distance func-

tions. Users can define different histogram distance metrics to satisfy desired set

matching conditions. Since histograms are straightforward vectors, it is easy to pass

them to existing software modules. Since the dimensionality of the histogram vectors

does not explicitly depend on the feature vector’s dimensionality nor the set size,

users can configure it according to their needs.

5.2 Preliminaries

5.2.1 Similarity, Distance and Kernel

An LSH family H induces the following similarity measure:

sH(x, y) , Pr
H∈H

[H(x) = H(y)].

Given an arbitrary function h ∈ H, we also define the corresponding similarity mea-

sure as

sh(x, y) = δh(x),h(y) =





1 if h(x) = h(y)

0 if h(x) 6= h(y),
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Figure 5.1: Illustration of the proposed approach. (a) Features are extracted from
interesting points. (b) Objects are represented as sets of points in the feature space.
These points are mapped to discrete values via locality preserving random mappings
(LSH). A mapping is equivalent to a partitioning of the feature space. (c) Sets of
features are embedded to histograms over the mapping images. The histograms are
matched with standard vector similarity measures.

such that Eh∈H[sh(x, y)] = sH(x, y).

Set similarities are defined in terms of point similarities. Let X and Y be two

finite sets in an arbitrary feature space, and let n be the average set size. We use s

to denote an arbitrary point similarity, i.e., s(x, y) is the similarity between points x

and y, larger values indicate higher similarity. We use S for the corresponding set

similarity, i.e., S(X, Y ) is the similarity between sets X and Y of features. We study

the following two set similarities which are commonly used in practice.

The first set similarity S1 is defined in a similar way as the Earth Mover’s Dis-
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tance [69]:

S1(X, Y ) = max
∑

x∈X

∑

y∈Y

ax,ys(x, y)

s.t.
∑

x∈X

ax,y ≤ 1, ∀y ∈ Y

∑

y∈Y

ax,y ≤ 1, ∀x ∈ X

ax,y ∈ {0, 1}, ∀x ∈ X, y ∈ Y.

The above assignment problem formation (a special case of integer linear program-

ming) searches for an optimal one-to-one matching between the set members. The

coefficient ax,y = 1 means that the point x is matched to the point y, and a point

can be used at most once. The best-known method to find the optimal matching is

the Hungarian algorithm, which takes O(n3) time. A similar measure can be defined

for weighted sets which can be expressed as the optimum of a linear program (in fact

min cost flow), which can also be solved in polynomial time.

The second set similarity S2 is for one-to-many matching, which is defined as

S2(X, Y ) =
∑

x∈X

∑

y∈Y

s(x, y).

The above similarity obviously takes O(n2) time.

Distance and kernel are two related concepts in measuring similarity (for either

points or sets). Distances are more often used in data retrieval tasks, which are com-

monly formulated as the K-NN problem. Though a properly defined distance metric

should be positive, symmetric, and satisfy the triangle inequality, certain measures

violating one or more of these conditions, like the Kullback–Leibler divergence, are

also considered distance measures in practice. Kernels are most commonly used with

support vector machine (SVM) related methods. A well-defined kernel should follow
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the Mercer condition (positive definiteness), which ensures the convergence of the

SVM learning process. Taking a Mercer kernel between two objects is equivalent to

taking the inner product between vectors obtained by mappings of these objects into

certain high dimensional l2 space. This equivalence allows SVM to apply to arbitrary

feature space so long as there is a well-defined kernel. Note that higher similarity

means a larger kernel value, and a smaller distance.

For set similarity, our proposed approach explicitly maps (embeds) sets of features

to high-dimensional vectors, and is thus a complement to the kernel method, where

the mapping is implicit. The Mercer condition is automatically guaranteed by the

explicit mapping to a vector space. One can essentially try out any distances and

kernels with the embedded vectors. In this dissertation, we limit our discussion to l1

and l2 distance for set similarity. Given two arbitrary points x, y ∈ R
D, the l1 and l2

distances are defined as follows:

l1(x, y) =
D∑

i=1

|xi − yi| l2(x, y) = {
D∑

i=1

|xi − yi|2}1/2

We also define the corresponding K1 and K2 kernels as follows:

K1(x, y) =
D∑

i=1

min{xi, yi} K2(x, y) =
D∑

i=1

xi · yi

The following two relationships can be easily verified:

l1(x, y) = K1(x, x) +K1(y, y)− 2×K1(x, y)

[l2(x, y)]2 = K2(x, x) +K2(y, y)− 2×K2(x, y)

The above two equalities essentially have the same form. For normalized vectors, we

have Ki(x, x) = Ki(y, y) = 1, i = 1, 2, and the relationships are exactly linear. For
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unnormalized vectors, there is still a conceptual equivalence. Thus later when set

similarity is concerned, we will only discuss in the kernel setting, knowing that the

results apply to the corresponding distance metric.

5.3 The Proposed Approach

In this section, we formalize the random histogram construction algorithm and es-

tablish a correspondence between the histogram kernels K1, K2 and the set similarity

measures S1, S2.

5.3.1 Random Histograms Construction

Our approach is to represent a set of features as a histogram. However, creating a

histogram in the original feature space is not always possible if the feature space is not

simply a vector space, or may lead to several issues: the histogram can be extremely

large and sparse if the dimensionality is high, and multiple resolutions may be needed

to attain reasonable accuracy. To avoid such issues, we propose to first project the

feature space into an auxiliary space, and then create histograms on the auxiliary

space. The mapping used for projection should preserve the locality information, so

point similarity is preserved in the auxiliary space. LSH is a perfect tool for this

purpose.

We first formalize the concept of histogram as used in this dissertation. Given

a finite set A, let {e[i] | i ∈ A} be the standard basis of the |A|-dimensional vector

space, so that for any i, j ∈ A,

e[i] · e[j] = δi,j .

A histogram G over the set A is represented as a point in the |A|-dimensional vector

space, i.e., G =
∑

i∈A αiei, with αi being the “count” of bin i.
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We then formalize how to embed a set of features into a histogram. Let M be an

arbitrary feature space, and H be an LSH family of mappings from M to A. Note

that M can be any space that admits an LSH family, not necessarily a vector space.

We define the family of mappings

GH = {gh : 2M → R
|A| |h ∈ H}, 1

such that for any X ⊂M and h ∈ H, X is mapped to a histogram on A:

gh(X) =
∑

x∈X

e[h(x)].

Because the histogram gh(X) is determined by the hash function h chosen at random

from H, we call it a random histogram.

The above scheme can be easily extended to work with sets of weighted features.

If X ′ ⊂ R×M is a set of weighted features, then we define

gh(X ′) =
∑

〈w,x〉∈X′

w × e[h(x)].

We assume an unweighted set for the rest of this chapter because this extension is

straightforward.

In practice, we maintain N independent random histograms to improve accuracy.

Specifically, we choose N hash functions H = 〈h1, . . . , hN〉 from H independently,

and concatenate them to form a “super” histogram:

gH(X) = 〈gh1
(X), . . . , ghN

(X)〉.

We extend any similarity measure function f(·, ·) on single histograms to this “super”

1For an arbitrary set M, the power set 2M is the set of all subsets of M.
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histogram:

f [gH(X), gH(Y )] =
1

N

N∑

i=1

f [ghi
(X), ghi

(Y )].

In doing so, we keep the expectation the same, while lowering variance by a factor of

1/N .

For most applications, the scaling factor 1/N will not affect the search or learning

result, and the “super” histogram can be treated as a single vector.

5.3.2 Matching Random Histograms

Recall that we set out to describe our technique to efficiently estimate similarity

between sets of feature vectors. So far we have explained the representation of sets

of features as histograms. Now we explain how we compute the similarity for these

histograms. In principle, one can use any histogram matching distances or kernels

with the random histogram. In this dissertation, we discuss two special cases, i.e., the

K1 andK2 kernels, corresponding to two set similarity measures S1 and S2 (introduced

earlier) that have been proved practically effective. Given two sets X, Y ⊂M, and a

mapping h ∈ H, the kernels K1,h and K2,h induced by the mapping h are just the K1

and K2 kernels in the histogram space:

K1,h(X, Y ) =
∑

i∈A

min{gh(X) · e[i], gh(Y ) · e[i]}

K2,h(X, Y ) =
∑

i∈A

{gh(X) · e[i]} × {gh(Y ) · e[i]}.

We will explain how these two histogram kernels relate to the two set similarity

measures S1 and S2.
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One-to-One Matching

The kernel K1,h corresponds to one-to-one matching. The intuition is that points

hashed into the same bin by h can be matched to each other, and for each bin, the

set with fewer points in this bin is always guaranteed to have its members matched.

Formally, the point similarity measure induced by h is sh and the corresponding set

similarity measure for one-to-one matching is S1,h. It can be easily verified that

K1,h(X, Y ) = S1,h(X, Y ) ∀X, Y ∈M.

However, this equality does not strictly carry over to the similarity sH and S1,H

which are actually interesting. Though sH(X, Y ) = E[sh(X, Y )], we only have

E[K1,h(X, Y )] ≥ S1,H(X, Y ). In the worst case, E[K1,h(X, Y )] can be significantly

larger than S1,H(X, Y ).

Nevertheless, sh does contain information about sH. In practice, using K1,h as a

biased approximation of S1,H(X, Y ) yields good results when one-to-one matching is

desirable.

One-to-Many Matching

The kernel K2,h corresponds to one-to-many matching, and we show a direct con-

nection between the histogram kernel K2,h and the set similarity measure S2,H. We

have

Eh∈H[K2,h(X, Y )] = S2,H(X, Y ), ∀X, Y ⊂M.
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This can be seen by the following:

K2,h[X, Y ]

=gh(X) · gh(Y ) =

{
∑

x∈X

e[h(x)]

}
·
{
∑

y∈Y

e[h(y)]

}

=
∑

x∈X

∑

y∈Y

e[h(x)] · e[h(y)] =
∑

x∈X

∑

y∈Y

δh(x),h(y)

Because Eh∈H[δh(x),h(y)] = Prh∈H[h(x) = h(y)] = sH(x, y), the relationship can be

obtained by linearity of expectation.

5.4 Point Similarity and LSH

In order to facilitate tuning of histogram sizes to provide a size/performance trade-off,

we choose LSH families of a special form: the B-bit sketch presented in Chapter 4.

We pick an atomic 0/1-valued LSH family F according to the similarity measure

of interest, and concatenate B independent atomic hash functions to make a B-bit

hash function: H = {〈f1, . . . , fB〉 | fi ∈ F}. We use H to build random histograms.

Because H is a B-bit function with 2B possible values, the histograms are of size 2B.

Concatenating B atomic mapping has the effect of enhance locality sensitiveness.

The similarities induced by H and F have the relationship sH(x, y) = [sF(x, y)]B for

any x, y ∈M. Figure 5.2 shows such a relationship. The effect of a larger B is to have

a smaller range (at the high end) of point similarity that actually contributes to the

set similarity (i.e. only very similar pairs of points have an effect on the set similarity

value). In practice, this often means higher discriminative power, and thus higher

retrieval or recognition accuracy, but at the same time, a larger histogram size is

required. Such threshold effect has been proved effective in previous studies [53, 57].

An easier approach to tune histogram size is to use mappings that produce an

integer value, and use the modulo operation to limit the range of this value. One
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Figure 5.2: Concatenating B atomic mappings enhances the locality sensitiveness.

potential drawback of this approach is that the mapping might concentrate on a few

values, resulting in a biased histogram with some bins more often used than others.

5.5 Practical Issues

5.5.1 Compact Histogram Representation

Usually the histogram size needs to be large for high discriminative power. The result

is that 1) the histogram can be very sparse and 2) the count of each bin is small.

Next, we describe two practical techniques for compact histogram representation.

These methods are specially designed to work with random histograms for unweighted

features. Other general dimension reduction methods like PCA, and sketches can be

applied to the histograms for lossy compression.
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Folding

The folding technique applies to the K2 histogram kernel (inner product). The main

objective of folding is to produce a more accurate estimator of similarity without

increasing the space and time requirement. Basically the histograms corresponding

to several different hash functions are added together; hence the name. The K2

histogram kernel applied to this folded histogram has roughly the same expectation

as the kernel applied to each individual histogram, but has lower variance. This

technique is based on the following observations: the same LSH function causes similar

points to collide, but if two points are mapped with different LSH functions, the

values are independent. Specifically, for two points x, y, and two different B-bit LSH

functions h1, h2, if a random atomic hash function is equally likely to map a point to

0 or 1 and if the atomic hash functions are picked independently of each other, we

have

Pr[h1(x) = h2(y)] = 2−B

The probability is close to 0 when B is large. As a result, for two sets X and Y ,

gh1
(X) · gh2

(Y ) should also be small:

E[gh1
(X) · gh2

(Y )] =
∑

x∈X

∑

y∈Y

Pr[h1(x) = h2(y)] = 2−B|X| |Y |.

Our folding technique is simply to add multiple independent random histograms

together to make a single vector. GivenM independent LSH mappingsH = {h1, h2, . . . , hM} ⊂

H, we use the following conceptual random histogram

gH(X) =
1√
M

M∑

i=1

ghi
(X).
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We have

E[gH(X) · gH(Y )]

=E[

{
1√
M

∑

i

ghi
(X)

}
·
{

1√
M

∑

j

ghj
(Y )

}
]

=E[
1

M

∑

i

ghi
(X) · ghi

(Y ) +
1

M

∑

i 6=j

ghi
(X) · ghj

(Y )]

=E[gh1
(X) · gh1

(Y ) + (M − 1)E[gh1
(X) · gh2

(Y )]

=E[gh1
(X) · gh1

(Y )] + (M − 1)2−B|X| |Y |.

Thus the value of the folded estimator is essentially an unbiased main term plus

an error term. The error term only depends on the sizes of X and Y , and is not

locality sensitive. The effect of folding is that the error is reduced by lowering the

variance of the main term (roughly by a factor of M), with a small amount of extra

error introduced. When the similarity value is higher than a certain threshold, the

main term is dominant, and the overall effect of folding is positive. In practice, high

similarity values are more important, and thus folding can potentially improve the

end performance. The limitation is that folding is only helpful when the histograms

are very sparse, and the parameter M cannot be too large. We use both folding and

concatenation in our final scheme.

Bit-Coding

If bin sizes of the histogram are still small after folding, it will be wasteful to use full

integers or floating point numbers to represent such small sizes. We can fit multiple

bins into a single byte via bit-encoding. Assume we encode each bin with C = 1, 2, 4, 8

bits, then each byte can hold 8/C bins. If the count of a bin is larger than 2C , the

exceeding part is trimmed. When computing the kernel functions online, it would be
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slow if we first extract the bin counts from the bit-encoding. We thus use a lookup

table of 256 × 256 entries with pre-computed kernel values. By doing so, the 8/C

multiplications or minimum operations are substituted with a single memory lookup.

However, bit-encoding is a specialized representation which might not be supported

by existing software, and we do not use it in the experimental evaluation.

5.5.2 Overall Scheme and Parameter Tuning

Figure 5.3 illustrates the whole scheme of our proposed method, showing all the tun-

able parameters. To summarize, there are three operations involved in constructing

the final vector representation:

1. A B-bit LSH function generates a simple histogram.

2. The vector sum of M independent simple histograms forms a folded histogram.

3. N independent folded histograms are concatenated to form the final vector

representation.

There are in total M × N B-bit LSH functions involved. These LSH functions are

randomly sampled at system initialization and remain fixed throughout the lifespan

of the system. It is meaningful to match two random histograms only if they are

generated with the same set of LSH functions.

The complexity of our method has two aspects — off-line and online, and in prac-

tice, the latter is usually more important. Assume the feature space has a dimension

of d, and the average set size is n. The off-line part involves generating the hash

values and adding to the histogram bins. The histogram has 2BN entries, but it is

usually very sparse. After an empty histogram is created, the embedding process

takes time O(dnBMN). The online part depends entirely on the histogram size, and

thus takes time O(2BN). The online part does not explicitly depend on the set size

or the dimensionality, and can be potentially very fast.
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We briefly comment on how to tune each of the parameters for a given dataset.

• The parameter B determines the size of a single histogram. Larger B usually

improves the accuracy, but exponentially enlarges the histogram size. So B is

more limited by available space. A good starting point for tuning B is to make

the histogram size (2B) similar to the average set size.

• The parameter N lowers the variance of the result. This is necessary as our

method is a randomized algorithm. Our suggested range of values for N is 10

to 50.

• The parameter M determines the number of histograms folded together. It

depends on the histogram size, and can be slightly enlarged as the histogram

expands. Our experiments show that M is mostly useful when less than 5.
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Figure 5.3: Overview of the random histogram embedding scheme
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• The LSH family used actually has the largest impact on the result. The right

LSH family depends on the dataset, and different choices of LSH need to be

tested if the feature extraction algorithm does not suggest an obvious choice.

5.6 Evaluation

In this section, we evaluate the random histogram technique with real-life datasets

under two different task settings, i.e., object recognition and content-based image

retrieval. The tasks are experimented with different configurations of parameters

to illustrate the flexibility of our method—they either use different LSH families or

different set similarity measure. We show the comparable accuracy of our method

with the state-of-the-art set matching techniques, mainly EMD [69] and PMK [34],

as well as our superiority in speed. The effect of different parameters to accuracy is

evaluated in detail with the Caltech-101 dataset to serve as a guide for parameter

tuning.

5.6.1 Object Recognition

This task is to recognize the semantic category of images. We evaluate our method

with two datasets, i.e., Caltech-101 and Graz-01. The former focuses on distinguishing

between different object categories, and the latter emphasizes on predicting whether

an object of certain single category appears in the image or not,

Following the previous studies, we use SVM for machine learning. Because the

random histograms are just high-dimensional vectors, off-the-shelf software can be

directly applied.
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Caltech-101

The Caltech-101 dataset [24] contains 101 object categories, with 40 to 800 images

per category. The names of the categories were chosen from the Webster Collegiate

Dictionary and the images were manually selected from Google image search results.

Most of the images are of medium resolution, i.e., about 300×300 pixels, and contain

little or no clutter. The objects tend to lie in the center of the images and to be

presented in similar poses. Images from some categories are artificially rotated and

have partially black background.

We evaluate our method with the same features as used in the original PMK

paper [34]. The features were extracted on a uniform grid from the images, and each

set has on average 1140 features. Each feature is the concatenation of a 10D PCA-

SIFT [42] descriptor and a 2D positional feature. The standard evaluation protocol

with the dataset is used, i.e., 15 images from each category are selected as training

example, and a model is trained with the training images of all categories. The model

is then used to predict the category of the remaining images. The recognition rate of

each category is averaged as the overall performance.

Table 5.1 compares the performance of our method and some of the previous

methods based on the set-of-feature model. Zhang [86] use an EMD based kernel,

but their feature sets are slightly different from ours. First, they use four combina-

tions of interesting point detectors (Harris + Laplacian) and descriptors (SIFT and

SPIN), each channel is matched individually and the sum of the channel similarity

is used as the kernel value for learning. Second, when matching in a single channel,

the features of an image are first clustered, and EMD is applied upon the clusters as

weighted features. This method uses more information than [34] and our method, and

is the best result so far achieved by a pure set-of-feature model. The Spatial Pyramid

Matching Kernel proposed by Lazebnik [49] represents the best result achieved on

the dataset among all existing approaches. They divide the features into different

128



Grauman Zhang Lazebnik Ours
A

Ours
B[34] [86] [49]

0.50 0.539 0.646 0.497 0.541

Table 5.1: Comparison of different methods with Caltech-101 benchmark. We test
two different configurations of our methods. Both use the LSH for l2 distance and
match histograms with K2 kernel. Other parameters are: (A, for speed) B = 6,M =
5, N = 20; (B, for accuracy) B = 10,M = 20, N = 20.

channels by clustering the features of all the images, and then do pyramid match in

each channel with the positional features. We see in Table 5.1 that our fast config-

uration achieves roughly the same performance of PMK, and the slow configuration

approaches that of Zhang [86]. We run our experiment on a Pentium 4 2.2GHz CPU.

The fast configuration takes only 4×10−6 second to match a pair of images, while the

number reported for PMK on a slightly faster machine (2.4GHz) was 1 × 10−4 [34].

Thus our method is 25 times the speed of PMK for matching images from Caltech-101

benchmark to achieve the same recognition performance.

Lazebnik [49] out-performs all other methods in this task. This is partly due to

that the images in the dataset tend to present in similar poses, and Lazebnik [49] is

specially optimized for such tasks. We can see that with the Graz-01 dataset, which

has more variations, the performance difference is not this significant.

Figure 5.4 shows the effects of different parameters on the performance. These

curves are just as expected in our discussion in the previous section. Generally,

enlarging the single histogram size (B), folding more histograms (M) and concate-

nating more histograms (N) all lead to higher performance, and all have a threshold

beyond which the performance improvement becomes very slow. For B the threshold

is around 8 ∼ 10, and for N it is 20. For M , the threshold depends on the histogram

size, and folding tends to add more to the performance when histograms are large.
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Figure 5.4: Recognition performance vs. different embedding parameters. The embedding has N × 2B dimensions, and the
figures indicate that accuracy generally increases with dimensionality. When histograms are sparse (with large B), folding
(increasing M) can also improve accuracy without extra space requirement.
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We also evaluated our method on a similar but easier dataset ETH-80 [50] with

the same protocol as used in a previous study [34]. We achieve an accuracy of 84.3%,

using the configuration B = 8,M = 20, N = 20, which is similar to the performance

of PMK, which is 84%.

Graz-01

The Graz-01 dataset [62] contains two object classes, bike (373 images), person(460

images), and a background class(270 images). This dataset is of high intra-class scale

and pose variation. We use the Difference-of-Gaussian (DoG) detector and SIFT

descriptor for feature extraction [52].

We perform two-class (object vs. background) categorization using the same ex-

perimental setup as used in the original study [62]. For each object class, we train a

model on 100 positive and 100 negative images (of which 50 are drawn from the other

object class and 50 from the background class). According to the standard evaluation

protocol of this dataset [62], we tune the parameters to make the following two rates

equal to each other and report that rate:

# true positive examples

# positive examples
=

# true negative examples

# negative exampes
,

where true positive (negative) examples are the positive (negative) examples correctly

classified. This measure is called the ROC equal error rate and captures the accuracy

of the algorithm when it is equally sensitive to positive and negative examples.

We show the recognition rates in Table 5.2. We optimize the parameters of our

method for accuracy, and our result is on a similar level as other methods. Here the

gap between our method and Zhang [86] is more obvious, showing accuracy loss of our

randomized algorithm and its potential limitation in application to tasks requiring

very high accuracy.
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Opelt [62] Zhang [86] Lazebnik [49] Ours
Bike 0.865 0.920 0.863 0.883

Person 0.808 0.880 0.823 0.805

Table 5.2: Comparison of different methods with Graz-01 benchmark. We use LSH
for l2 distance and match histograms with K2 kernel. Other parameters are: B =
12,M = 20, N = 20

5.6.2 Content-Based Image Retrieval

We use the same image collection and feature extraction algorithm as in [53], where

content-based image retrieval with a tweaked version of EMD distance is studied.

The image collection consists about 10,000 general-purpose images. We use 32 sets of

similar images as the ground truth in our evaluation. These sets are manually selected,

and each of these sets contains images that are visually similar. We use JSEG [22] to

segment the images into regions. The average number of regions per image is 7.16.

We extract from each region a feature vector of 14-dimensions, including 9 dimensions

of color moment information and 5 dimensions of bounding box information. We use

the region weight that is proportional to the square-root of the region’s size, which

was shown to be better than the raw region’s size [53].

We use average precision to measure the effectiveness of the retrieving method.

Given a query and k relevant items excluding the query, let ranki be the rank of the

ith retrieved relevant item, then average precision is defined as following:

average precision =
1

k

k∑

i=1

i

ranki

.

Table 5.3 compares four methods: SIMPLIcity [76], EMD, EMD* and random

histogram. The performance of random histogram is the same as EMD. The highest

performance is achieved by EMD*, which involves a thresholding tweak that is highly

specialized to the particular feature extraction method.

Though we cannot directly compare the image retrieval speed with Lv et al. [53]
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Method SIMPLIcity EMD EMD* Ours
Avg. Prec. 0.331 0.548 0.615 0.548

Time/match N/A 5.0e-5 5.0e-5 3.1e-7

Table 5.3: Comparison of SIMPLIcity, EMD, EMD* and out method with a 10K
image benchmark. We use LSH for l2 distance, with W = 1 and match histograms
with K2 kernel. Other parameters are: B = 4,M = 1, N = 50.

without implementing the system, we note that the retrieval process of Lv et al. [53]

involves first identifying with efficient sketch filtering a candidate set that covers

5% of the whole dataset, and then re-ranking the candidate set with EMD. Even if

we ignore the time spent on sketch filtering, our method is at least (5.0 × 10−5) ×

5%/(3.7× 10−7) ≈ 8 times faster than Lv et al.’s system, which is reported to be 3.5

times faster than SIMPLicity [53]. In practice, our method can be further accelerated

by various high-dimensional indexing data structures.

5.7 Related Works

Existing methods for measuring set similarity roughly fall into two categories. Meth-

ods in the first category depend on a given point similarity measure, and directly

work on the sets by matching the member points. The S1 similarity for one-to-one

matching [69] and S2 similarity for one-to-many matching [57] are two commonly used

approaches. Such methods usually involve high on-line computational cost. Further-

more, storing raw sets of high-dimensional features can easily outgrow the limited

main memory, leading to an out-of-core implementation and further slowing down

the computation.

Methods in the second category, on the other hand, calculate set similarity via cer-

tain intermediate representation. They assume that the points are from certain metric

space, often the Euclidean space, making the point similarity measure implicit. The

intermediate representation can be a histogram created by quantizing the space. For
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example, Pyramid Matching [34, 37] corresponds to scalar quantization, and the bag-

of-word model commonly used in computer vision often use vector quantization [86].

These methods either require large space to store the high dimensional sparse his-

tograms, or long running off-line clustering. The intermediate representation can also

be parameters of certain distributional model, e.g., Gaussian-mixture [56], though

such methods also tend to be CPU intensive, and are not as general.

Among the various methods mentioned above, the pyramid method [34, 37] and

the bag-of-word model are the two that are most related to our work. They scalar-

quantize the feature space in multiple resolutions and maintain a histogram for each

resolution. Though in practice a sparse data structure is used, the cost in space is still

significant when the feature space is of high dimensionality, and dimension reduction

methods like PCA need to be applied first.

The bag-of-word model works by clustering the feature vectors into a fixed number

of key words, turning a set of points into a bag of words. The clustering process is

essentially vector-quantization of the feature space. The mapping from feature vectors

to key words induced by the clustering result can be viewed as a deterministic LSH,

while from the other perspective, our method is just a randomized version of the

bag-of-word model.

LSH can also be used to construct bloom filters like ordinary hash function [44].

Such bloom filters have a special property that allows one to estimate the distance

between a point and the sets of point embedded in the bloom filter. The random

histogram proposed in this chapter can be viewed as an extended version of such

bloom filter. We not only record whether each bucket is empty, but also keep a count

for each bucket.

The compact data structure proposed by Lv et al. [53] to approximate EMD

distance is actually a specialized version of our method. Their final data structure

is more compact than ours via a further level of sampling and sketching, but they
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need to maintain the raw data for re-ranking due to the precision loss of compression.

With our method, the raw data is no longer needed.

5.8 Summary

In this chapter we propose an efficient method for representing and estimating sim-

ilarities between sets of features. Representing multimedia objects as sets of local

features has been quite successful recently, but suffers from high storage requirements

and high time complexity. Our main idea is to project the feature points into a com-

pact auxiliary space with LSH mappings, and then represent the sets as histograms

on the auxiliary space. The histograms are just standard high-dimensional vectors.

Our method has the flexibility that allow the user to approximate different measures

of point similarity by choosing corresponding LSH families, and implement different

measures of set similarity with appropriate choice of histogram distances/kernels. Ex-

periments with various datasets under different task settings show that our method

has accuracy comparable to the best-known set matching algorithms, and has much

higher speed. For example, to achieve the same recognition performance on the

Caltech-101 dataset, our method is 25 times the speed of Pyramid Matching Kernel

for set matching, the latter being the fastest known set matching algorithm. Because

our histogram embedding is essentially a global feature extracted from the intermedi-

ate local feature representation, our results show that global features, when properly

extracted, can also achieve high accuracy while maintaining a significant speed ad-

vantage.
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Chapter 6

A Large-Scale Image Search Engine

In this chapter, we present a large-scale near-duplicate image search engine as a demonstra-

tion of the sketch technique we proposed. We also propose novel domain-specific techniques,

namely entropy-based filtering and graph-based query expansion, to solve the challenges as-

sociated with the large data scale. Our search engine is capable of serving more than 50

million web images on a single commodity server and respond to queries within seconds.

Our system also achieves a reduction, by three orders of magnitude, in the false positive

rate (at 80% recall) over the state-of-the-art method.

6.1 Introduction

Near-duplicate image detection is the task of finding different versions of the same

image, i.e., images that are not exact duplicates in binary form, but can be visu-

ally identified as the same image having undergone various editing steps such as

color mapping, scaling, format changing, etc. In particular, we are also interested in

detecting partial-duplicates, i.e., images with padding and cropping, but still contain-

ing sub-images that are near-duplicates. Near-duplicates are common in web images.

Being able to efficiently detect them is important to applications such as copyright
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violation detection and finding alternate versions of existing images. Eliminating

near-duplicates is also an important preprocessing step for many applications.

Previous researches have achieved high quality search results in small to medium

scale (one million images or less) experiments [43, 61, 17, 81], but the challenge re-

mains in pushing the retrieval scale to the World Wide Web level. Today’s web con-

tains hundreds of billions of images and continues to grow rapidly. Both commercial

search engines and academic experiments run on a much smaller scale. For example,

Tineye (http://www.tineye.com/), the first commercial near-duplicate image search

engine available to the public, indexes 1.8 billion images as of 2010. In the literature,

a recent system [81] achieved a 1.9 second search time on one million images with a

single machine.

Our goal is to design a building block for a large-scale near-duplicate image search

engine — a single node system that substantially improves the search capacity over

existing approaches without increasing search time, and most importantly, conducts

searches with high confidence, i.e., low false positive rate. The false positive problem

is not prominent in traditional content-based image search due to the lack of an

objective and unambiguous definition of visual similarity. In our case, there is a clear

yes-or-no answer to whether two images are near-duplicates, and one can easily spot

irrelevant images in the search result, so it is important for the search result not to be

dominated by false positives. The challenge is that there are usually only a few (a few

to thousands) true positives, and when multiplied by a virtually unlimited number of

background images (e.g., 1 billion), even a very small false positive rate (e.g., 0.1%)

could potentially generate an overwhelming number of false positives.

Even though various approaches have been published, they all fail to meet our

efficiency and/or quality requirements. As a local feature is essential for detecting

partial-duplicity, and SIFT [52] has been firmly established in the literature as the

feature of choice for a variety of image retrieval tasks, including near-duplicate image

137

http://www.tineye.com/


detection, we focus on system designs using SIFT features.

The state-of-the-art approach to near-duplicate image detection is the Bag-of-

Word (BoW) model, i.e., to convert SIFT features into visual words via vector quan-

tization, and then apply well-developed text retrieval techniques like inverted index

and TF-IDF ranking [61, 67, 81]. This approach, however, is not sufficient to lower

the false positive rate to our desired level because: first, as we will show later, a small

fraction of SIFT features are intrinsically ambiguous and can cause a large amount of

false positives; second, vector quantization loses the discriminating power of raw SIFT

features [9] and further increases the false positive rate. We will show by experiments

that TF-IDF ranking and geometric verification have their limits on compensating

for the information lost during vector quantization.

Another approach is to conduct retrieval directly on raw SIFT features with

LSH [43, 17]. The problem is that the large raw feature size (typically a few hundred

128-dimension feature vectors per image) imposes a high storage and retrieval cost

and could become a capacity bottleneck. It is known that plain LSH takes too many

hash tables [55]. Although the recently developed Multi-Probe LSH [55] reduces stor-

age cost, it requires too many disk seeks when implemented out of core. Expensive

geometric verification is also needed for this approach to ensure a low false positive

rate.

In this chapter, we achieve both efficiency and quality by making the following

three contributions:

First, we eliminate the previously indispensable stage of geometric verification

by making the following important observation: false positives are mainly caused by

a small fraction of SIFT features that are intrinsically ambiguous due to the lack

of internal structure within the SIFT region. We propose an entropy-based filtering

method that can effectively filter out these non-discriminative features, and show that

with the retained high quality features, a single match is sufficient for claiming a near-
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duplicate relationship between images with high confidence. This finding dramatically

simplifies our retrieval model and system design and also reduces the number of SIFT

features to be indexed.

Second, we propose a query expansion method based on graph cut. We con-

struct offline a duplicity graph by connecting all pairs of images predicted to be near-

duplicates. Duplicate images are relatively few among all web images (Section 6.4.7),

so constructing such a duplicity graph is practically viable. At query time, all ver-

tices reachable from the initial search results are potentially positive results. We use

a graph cut method to exclude pathological cases when large clusters of negative im-

ages are connected to the initial results. Our query expansion method substantially

improves recall, or equivalently, reduces the false positive rate by orders of magnitude

at the same recall level.

Third, we implement a search system based on the proposed techniques. For

space and time efficiency, we represent SIFT features with sketches (Chapter 4),

which is a bit-vector representation more compact than raw feature vectors and more

accurate than visual words, and index the sketches with an efficient out-of-core data

structure [58]. Our system is capable of indexing more than 50 million web images

on a commodity server and returning search results in less than two seconds.

We evaluated our system, as well as some representative existing techniques, with

a benchmark consisting of ten thousand manually verified near-duplicate web images

and one million random background images. Our system achieves a false positive rate

of 2.4 × 10−6 (at recall 0.8), three orders of magnitude smaller than the state of the

art [81].
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Figure 6.1: System architecture. Section numbers are indicated for the key components.
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6.2 System Design

6.2.1 Overview

Our system is based on a very simple retrieval model. Each image is represented as

an ID with an attached set of features: Ii = 〈i, {fij}〉. A flat database DB = {〈fij, i〉}

of ID-feature pairs is maintained for the indexed image dataset. For each query image

Q = 〈·, {fk}〉, a query is issued for each feature fk to retrieve database records whose

features are within a fixed distance threshold d:

Nd(fk) = {〈fij, i〉 ∈ DB| ‖fk − fij‖2 ≤ d}.

The retrieved lists are merged: Nd(Q) = ∪kNd(fk), and all IDs in Nd(Q) are returned

as near-duplicates. An optional query expansion stage (Section 6.3.1) can be applied

to improve recall.

Local features can get matched to different degrees and there can be multiple

matched local features, with consistent or inconsistent spatial layout. It is non-trivial

to design a principal measure to cover all these aspects. We circumvent the complexity

by assuming that we can produce local features of sufficiently high quality, so that a

single match of local feature provides a strong indication of image duplicity.

The system architecture is shown in Figure 6.1, with Section numbers indicated

for the major components. The sketch embedding and indexing methods are based

on existing techniques and are briefly described in the remainder of this section. The

novel feature filtering and query expansion techniques are detailed in the following

two sections.
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6.2.2 Sketch Construction and Indexing

We use sketch embedding for l2 distance described in Chapter 4. It does not require

offline training and can be tuned to be sensitive to a particular distance range, which

fits our distance thresholding retrieval model. We find a sketch size of B = 128 bit an

appropriate choice which both retains good accuracy and provides an 8× compression

over raw SIFT features. We claim a match if the hamming distance is ≤ 3 for online

search, or ≤ 2 for offline duplicity graph construction.

Our indexing data structure for online search is a simple special case of the tech-

nique proposed by Manku et al [58]. We divide the 128-bit into 4 blocks, and build a

hash table with each block as a key. For a pair of matching sketches, there could be

at most 3 different bits, so at least one hash key is identical. By searching all the 4

hash tables, we are guaranteed not to miss any matching sketches. Offline duplicity

graph construction is carried out with the same technique. The sketch index and the

duplicity graph are constructed with Hadoop on a cluster, but after being created,

the data structures are compact enough to be served with a single server.

6.3 Feature Processing

The wide adoption of the visual word approach creates the impression that SIFT is

a point feature (hence the phrase key point), and that a strong match between two

images probably needs the agreement of multiple matches of key points. But in fact,

as we can see from Figure 6.2, a SIFT feature describes a region that usually occupies

a significant area in the image and has rich internal content. We believe that in most

cases, one matched SIFT region, like B and C in Figure 6.2, is already a strong indi-

cation of near-duplicity. Our retrieval model is based on a simple dissertation: SIFT

feature match ⇒ image match. We will show with experiments that this seemingly

loose assumption works sufficiently well with high quality SIFT features produced
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A

D
C

B

Figure 6.2: Illustration of SIFT features. A random sample of SIFT features extracted
from the Lena image is plotted. Each SIFT feature consists of 4 × 4 histograms of
edge orientation. In general, a matching of SIFT features means that the spatial
configuration of 16 small regions is consistent between two images. It is a strong
signal of near-duplicity, except for features like A and D, which contain little internal
structure. We use entropy-based filtering to remove such bad features.

with the two techniques described in this section.

We use VLFeat (http://www.vlfeat.org/) for SIFT feature extraction. To limit

the number of features generated from each image, we resize large images to 300 ×

300. After applying entropy-based filtering described below, roughly 80 features are

extracted from each image.

Entropy-Based Filtering

The SIFT features best suitable for near-duplicate detection are those with rich inter-

nal structure. SIFT features associated with near-empty regions are the main source

of false positives: they tend to occur frequently and get easily matched against one

another. We use entropy to measure the richness of internal structure of a SIFT

region. Specifically, we treat the SIFT feature F = [f1, f2, . . . , f128] as 128 samples of
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Figure 6.3: Entropy distributions of SIFT features that are sample from (1) false
matches, (2) true matches, (3) random background. Compared to the others, the
entropy distribution of wrongly matched SIFT feature is narrower, and the peak is
at a smaller value.

a discrete random variable in {0, 1, . . . , 255}:

H(F ) = −
255∑

i=0

pi(F ) log2 pi(F ), pi(F ) =
|{k | fk = i}|

128
.

Note that each SIFT dimension is an 8-bit integer, so the entropy has a range of [0, 8].

We measure the entropy distributions of (1) SIFT features generating false matches,

(2) SIFT features generating true matches and (3) randomly sampled SIFT features

as background. The results are plotted in Figure 6.3. We see that the features causing

false positives have a more concentrated distribution, with the peak at a relatively

low entropy value of 4.1, while the good and background SIFT features have very

similar distributions, both have a peak at 5.1. In our system, we discard all SIFT

features with an entropy smaller than 4.4.
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Figure 6.4: Distribution of SIFT feature values before and after log scaling. Log
scaling makes the curve much more flat. Some corresponding points on the curves
are marked with the letters. We assume that the raw SIFT values have been linearly
scaled to fit the range [0, 1].

Log Scaling

The values for individual dimensions of SIFT feature follow a near-exponential dis-

tribution, with small values dominating the whole distribution. A SIFT value has

a range of [0, 255], but find more than 97% of the values are smaller than 128 and

67% of the values are smaller than 25. This means that the range of the value is not

efficiently used. We propose to scale the dimensions of SIFT features logarithmically.

To simplify discussion, we first linearly scale the SIFT values into the range [0, 1].

We then use the following formula to re-scale each value:

v ← log(max{v, v0}/v0)
log(1/v0)

, v0 = 0.001

We take max{v, v0} to ensure that the result value is always non-negative. The value

v0 is tuned with real data for optimal retrieval performance.

Figure 6.4 shows the SIFT value distribution before and after log scaling. Overall,
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we see that the distribution is more uniform after log scaling. Two segments of the

log-scaled curve, i.e. A–B and B–C, are seemingly abnormal and need some discussion.

First, the point B corresponds to the unscaled value v0, and after log-scaling, all

points within [0, v0] are converted to 0. That is why there is a gap between A and B

in the log-scaled curve.

Second, the segment B–C is decreasing in the original curve and becomes increas-

ing after log-scaling. We examine a simplified version of this paradoxical phenomenon

and show that it is actually possible. We use B[u, l] to denote the bucket contain-

ing all points falling within [u, l] in the original scale, and use Blog[u, l] to denote

the bucket containing all points falling within [u, l] in the log scale. The simpli-

fied version of the paradoxical phenomenon is that in the original scale, B[0.1, 0.2]

is larger than B[0.2, 0.3], but in log scale, Blog[0.1, 0.2] is smaller than Blog[0.2, 0.3].

Figure 6.5 shows that 0.1, 0.2 and 0.3 in log-scale roughly correspond to 0.0020,

0.0040, 0.0079 in the original scale. So Blog[0.1, 0.2] is equivalent to B[0.0020, 0.0040]

and Blog[0.2, 0.3] is equivalent to B[0.0040, 0.0079]. Blog[0.2, 0.3] covers almost twice

the range of Blog[0.1, 0.2] in the original scale, and it is not strange that Blog[0.2, 0.3]

contains more points than Blog[0.1, 0.2].

Beyond the point C, the log scaling becomes near-linear, so it causes less distortion

to the shape of the curve except for the aspect ratio. Indeed, the right portion of a

log curve is always near-linear, no matter at which scale it is viewed. This can also

be seen from Figure 6.5.

6.3.1 Query Expansion with Graph Cut

We set a tight threshold on similarity measure to ensure a low false positive rate,

but that also cause us to fail to detect a significant portion of true positives. Query

expansion can be used to recover some of the missed positive images. In this section,

we propose an effective method of query expansion that particularly fits our retrieval
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Figure 6.5: Illustration of scale conversion: x→ log(x/v0)/log(1/v0) with v0 = 0.001.

model.

The high level idea of query expansion is to use the search results to query the

database again. The procedure can be recursively applied until no new results are

found (transitive closure expansion). As the queries used in expansion are all images

known to the system, we can accelerate the process by computing the near-duplicates

of each indexed image offline.

To ease further discussion, we restate the above in the language of graph theory.

We use a duplicity graph G to represent the offline computed duplicity relationship.

Each indexed image is represented as a vertex in G, and an edge is established between

each pair of images with at least one matched local feature. We use G to represent

G augmented with the query image q and edges between the query and the initial

search results. We use Bk(q) to denote the set of vertices that can be reached from q

within k steps, so B1(q) is exactly the initial search results without query expansion.

We use B∞(q) to denote the connected component of G including q, or equally, the

results one will get with transitive closure expansion. Bk(q) and B∞(q) consists of

our baseline query expansion strategies.
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To inspire our improved strategy, we categorize potential sources of false positives

involved in query expansion into the following three types:

Sporadic False Positives: This is also how false positives get into the initial

search results, and is governed by the false positive rate.

Clusters: Dense clusters exist in G. They could either be meaningful clusters of

popular images like Mona Lisa, or clusters of unrelated noisy images. One common

cause of the latter is that images with dense patterns and rich in local feature, e.g.,

windows of a skyscraper, tend to get matched to a lot of false positives. Such “hub”

images can even interconnect to create huge noise clusters. No matter how a cluster

is generated, it could dramatically increase false positive rate when hit via a sporadic

false positive.

Bridging Images: Even if we achieve 0 false positive rate in building G, false

positives could still occur in query expansion via bridging images. For example, an

image composed of both Mona Lisa and The Last Supper should be connected to both

clusters by definition. When the query contains only Mona Lisa, transitive closure

expansion will reach the cluster of The Last Supper via the bridging image.

Because our graph has extremely low false positive rate, we are relatively confident

when query expansion leads to individual images only. What we want to avoid is

hitting an irrelevant cluster through either sporadic false positives or bridging images.

On the other hand, if a cluster has many different connections to the query, then we

have reasons to believe that they are actually positive results. In all, we want the

query expansion result B(q) to be connected, have many internal connections but few

connections to the rest of G, and be large. We find that these requirements can be

jointly captured by the conductance of a subgraph, defined as

Φ(S) =
|E[S,G \ S]| //connections to the rest of graph

µ(S) //all connections
,
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where S is the subgraph of interest, E[S,G \ S] is the set of edges between S and

G \ S, and µ(S), called the volume of S, is the sum of degrees of vertices in S (the

number of edges between S and the rest of the graph plus twice the number of edges

within S)1. The sparse cut problem is to optimize for minimal conductance:

B(q) = arg min
S⊂G,q∈S

S connected

Φ(S).

The problem is hard, but efficient approximate solutions exist [71, 3]. In our sys-

tem, we use an adapted version of PageRank-Nibble [3], which we list in Figure 3.

It simplifies the original algorithm by (1) removing many parameters that are nec-

essary when the algorithm is used as a subroutine of a provable graph partitioning

algorithm, and (2) choosing the sweep set with the smallest conductance rather than

returning one only when it satisfies a number of requirements. The subroutine to

compute approximate PageRank is exactly the same as in the original paper. The

algorithm requires two parameters α, ǫ ∈ (0, 1). We find the final results relatively

independent of those parameters, and use α = 0.5 and ǫ = 0.00001 in our experiment.

The computational cost of the method, assuming G fits in main memory, is negli-

gible when compared to sketch index lookup, and the improvement in recall is huge:

from 45% to nearly 80%.

6.4 Evaluation

We are interested in evaluating how the proposed techniques improve search quality.

We first describe the configuration of our experiments, including the dataset, perfor-

mance measures and evaluated methods. We then report the evaluation results of

the individual techniques proposed, and compare our full system to existing retrieval

1This definition is equivalent to the standard definition [71] under the assumption that S is a
always smaller than G \ S. This assumption is reasonable in our setting as we are never to return
more than half of the indexed images.
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Algorithm 3: PageRank-Nibble

Data: graph G (adjacent list), query q, α, ǫ
begin

P ←− ApproximatePageRank(q, α, ǫ)
// P consists of vertices with non-zero PageRank,
// sorted in descending order of PageRank

e←− 0 // Count |E[S,G \ S]|
v ←− 0 // Count volume of S
min←− +∞, B ←− ∅ // Lowest conductance
for i←− 1 to |P | do

v ←− v + |G[Pi]|
e←− e+ |G[Pi] \ P1..i−1| − |G[Pi] ∩ P1..i−1|
c←− e/v
if c < min then

min←− c
B ←− P1..i

return B

methods. Finally, we provide some space/time performance numbers of our system.

6.4.1 Dataset

We gathered ground truth images by issuing text queries to the popular image search

engines and then manually identifying near-duplicate images from the search results:

1. 81 titles of famous paintings, movies and CDs were picked;

2. Four popular image search engines, i.e., Google, Bing, Yahoo and Flickr, were

queried with these titles, and original images were downloaded using the URLs

returned by the image search engines;

3. Exact duplicates were removed from the crawled images using MD5 checksums.

The remaining images were manually inspected, and between 40 and 120 near-

duplicate images were identified from each group. The total dataset consists of

10839 images.
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We did not use text information in our system so images gathered with text queries

should allow us to obtain a good estimation of performance on real web images.

We use one million random Flickr images as background.

6.4.2 Performance Measures

We are mainly interested in evaluating the receiver operating characteristic (ROC).

ROC is a standard method to evaluate the performance of a detecting algorithm, or

in general, a binary classifier. It which includes the following two measures:

True Positive Rate (Recall) : number of retrieved near-duplicates divided by the

total number of near-duplicates in the ground truth dataset;

False Positive Rate : number of falsely retrieved background images divided by the

total number of background images. Because these numbers are so small, the

figures show the actual numbers times 106, the absolute number of background

images returned on average.

If we use true positive rate as horizontal axis and the false positive rate as vertical axis,

then each parameter configuration determines a point in the two-dimensional space

called the ROC space. An ROC curve can be produced by varying the parameters.

When evaluating a retrieval system, a common practice is to use a single measure

of quality, e.g., precision@k, or average precision. Such measures are meaningful only

when the ratio between positive and negative is fixed, and are not appropriate in

our setting because we gather positive and negative examples separately, and the

combination does not necessarily approximate the real-life ratio, which is subject to

change depending on the application.

When evaluating false positive rate, we assumed that there are no near-duplicates

of the ground truth images in the one million background images. This might not be

true as we did not label the background data, which would require a huge amount
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of human labor. However, we believe that this approximation is not a problem for

our particular evaluation setup. First, the expected number of true positives in the

background set is extremely small according to our experiments. We achieve a false

positive rate of 4.9× 10−7 at recall 0.43 (without query expansion). That means that

the expected number of near-duplicates mixed in the one million background dataset

is 4.9×10−7/0.43×106 = 0.1, less than one. Second, even if there are near-duplicates

in the background images, that only means that the real false positive rate of our

method is lower (better) than what we report. Note that we do not use ground-

truth near-duplicate images, but only the background Flickr images to measure false

positive rate because we want to avoid having to fix an artificial mixing ratio between

the two datasets, and also because we believe the background images better represent

“random” images on the web.

6.4.3 Simulation

We built a simulator to evaluate various retrieval methods. Our simulator is different

from a full search engine in that it does not build an out-of-core index data structures

but rather sequentially scans all the data images. All performance numbers reported

are exactly the same as if full search engines were built, except that we cannot use

the simulator to evaluate search speed.

The following retrieval methods are implemented in the simulator:

Raw The raw SIFT feature retrieval method as described in Section 6.2.1. This

method provides the best search quality, but is too time-consuming for online

search. It represents the highest search quality achievable with our retrieval

model (without query expansion) when an ideal feature index is used.

TF-IDF The bag-of-word method with TF-IDF ranking. We use a dictionary of

one million visual words and soft assign each feature to four visual words.
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Figure 6.6: The effects of entropy-based filtering and log scaling. Entropy-based
filtering eliminates most of the false positives caused by ambiguous SIFT features.
Log scaling helps further reducing false positives in most cases.

Bundle The TF-IDF method augmented with bundle information [81].

Sketch The proposed sketch based retrieval method.

Sketch+Exp The sketch based retrieval method with result set expansion.

6.4.4 Entropy-Based Filtering and Log Scaling

Because entropy-based filtering and log scaling are independent of the retrieval mod-

els, we first show their improvement by applying them on the raw SIFT feature

retrieval method. We then apply them to all the retrieval methods for fair compari-

son.

Figure 6.6 shows the huge impact these two feature processing steps can make.

Entropy-based filtering helps to reduce false positive rate by orders of magnitude,

which is especially prominent when true positive rate is low. Without entropy-based
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Figure 6.7: Comparison of various query expansion methods.

filtering, there are always 354 background hits no matter how we tighten the re-

trieval threshold. These potential false positives are caused by SIFT features that

are intrinsically ambiguous, and would otherwise require geometric verification to get

eliminated. With entropy-based filtering, false positive rate can be tuned very close

to zero, which is the normal behavior desired by a retrieval method.

The effect of log scaling is not as gigantic. Unlike entropy-based filtering, it mainly

works at the range of high true positive rate. Even when stacked with entropy-based

filtering, it still helps to further lower the false positive rate.

6.4.5 Query Expansion

Figure 6.7 compares various strategies of query expansion. We observe that for the

Bk(q), k ≥ 2 family of strategies to achieve the same recall, false positive rate increases

as k becomes larger, with B2(q) being the most practical strategy. This is because

larger k means more aggressive query expansion, and is more susceptible to false

154



1e-3

0.01

0.1

1

10

100

1e3

1e4

1e5

1e6

 0  0.2  0.4  0.6  0.8  1

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

 *
 1

0
6

true positive rate

TF-IDF
bundle
sketch

sketch+graph cut
raw

system config

Figure 6.8: Comparison of various retrieval methods.

positives. Our graph-cut-based expansion strategy is way better in avoiding false

positives, achieving false positive rate two orders of magnitude lower than B2(q) at

recall around 0.8.

6.4.6 Comparison of Retrieval Methods

Figure 6.8 shows the performance or various retrieval methods. We see that the raw

SIFT feature retrieval method has the best performance, except that it is too time-

consuming to be practically applicable. Plain TF-IDF ranking with visual words has

the worst performance. Furthermore, the items of around 20,000 background images

(indicated by the rightmost point on the curve) have to be first retrieved from disk

before ranking can be carried out, i.e., the retrieval cost is the same for all points

on the curve. By attaching geometric information on the visual words, the bundling

method helps to reduce background hit rate by a factor of 3 for most points on the

curve. The curve of our sketch method lies in the middle between the BoW methods
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and the raw SIFT method, and by applying query expansion, true positive rate can

be significantly improved to make the performance very close to the raw SIFT curve.

In the real system, we use a hamming distance threshold of 3, which corresponds to

true positive rate = 0.43 and false positive rate = 4.9×10−7 without query expansion,

and true positive rate = 0.79 and false positive rate = 2.5×10−6 with query expansion.

For the sketch curve, false positive rate increases exponentially with recall, and the

point we choose represents a good trade-off between precision and recall.

6.4.7 Whole System Performance Numbers

We use our search engine to index 50 million web images. Our sketch index runs one

sketch query for 0.069 second sequentially, and for our benchmark, each image requires

77.7 sketch queries on average (recall that, as defined in Section 6.2.1, the result is

generated by searching with each interesting region of an image as an independent

query and then merging the results). To reduce the search time, we scatter the index

hash tables to four disks for parallel reading, and batch process the sketch queries so

disk accesses can be properly scheduled [43]. The result is that feature extraction and

sketch searching can be finished in 1.29 seconds on average. That is faster than the

1.9 second reported by the bundled feature paper [81] to search one million images.

Our sketch index for 50 million images takes 1.3TB disk storage and 2.8GB main

memory. The duplicity graph for query expansion takes about 5GB main memory,

which means that only a small fraction of the indexed images are offline detected

as near-duplicate images. The thumbnails (128x128), densely stored in a single file,

takes about 400GB disk space. Overall, less than a quarter of the server’s memory and

disk storage is used (it is common for a commodity server to be equipped with 32GB

main memory and 4× 2TB disk storage), so we expect our single-server capacity to

be above 200 million images. We use a cluster of 66 nodes for offline indexing, and

processing 50 million images takes about one day.
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Our system can be easily scaled up to index more images, e.g. 10 billion images,

by taking the following measures:

1. Randomly partition the images into subsets of roughly the same size, e.g. 200

million images each.

2. Use a larger cluster (or longer processing time) to build the index data structure

for each subset.

3. Use one machine to server each subset. A query is searched against all subsets

and the results are merged.

6.5 Related Works

Near-duplicate image detection, especially detecting duplicates subject to cropping

and padding, has only been practically viable after the invention of the groundbreak-

ing SIFT local feature [52]. Ke et al. [43] were the first to study a SIFT based method

for near-duplicate image detection. They used LSH to index PCA-SIFT (a variant

of SIFT) and RANSAC for verification, and demonstrated superior retrieving perfor-

mance at the scale of 20K images. They showed that running queries in a batch and

linearizing disk accesses can bring a 20× speed-up. We also implemented similar disk

scheduling algorithm in our system.

Most recent methods are based on the Bag-of-Word model [61, 67, 81]. Although

the BoW approach has been successful on million image level, it has intrinsic limi-

tations preventing it from scaling up to the level of a billion images. On one hand,

a large visual dictionary is needed for better discriminating power and to limit the

amount of data needed to be read from disk. On the other hand, the larger dictionary

usually means lower recall when visually identical local features are over-quantized

into different visual words. Soft assignment [68] can be used to recover some of the
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lost recall due to over-quantization, but it also enlarges the retrieval cost by several

times. One million is a widely accepted size for a visual dictionary [67, 81]. Such a

large dictionary can be efficiently created by hierarchical clustering [61]. Assume we

extract 100 features from each image on average, and these features are uniformly

distributed across all the visual words. The chance for any two images to share at

least one visual word is about 0.01. That means nearly 1% of all indexed images will

be ranked for each query. When we need to index tens of millions of images on a

single server, the retrieval and ranking cost would be too high to make a online search

system possible.

Several approaches have been explored to improve the discriminating power of vi-

sual words. The visual phrase [87] method links near-by visual words to form phrases

and conduct retrieval at phrase level. Visual phrases do have much higher discrim-

inating power than visual words. However the number of visual phrases extracted

from each image can easily grow out of control. Bundled Feature [81] is another

method to improve the discriminating power of visual words. It attaches information

on its relative position within its surrounding MSER region to each visual word. Thus

explicit geometric verification can be avoided. However, the disk I/O problem is not

solved because retrieval is still carried out at individual visual word level.

Foo and Sinha [26] first showed that SIFT features can be dramatically pruned

for near-duplicate image detection. Two methods were studied: to keep the top N

most significant key points, and to raise the inclusion threshold value to discard key

points. Turcot and Lowe [73] proposed a SIFT feature pruning method based on

the observation that a SIFT feature is only useful when it contributes to a matching

within the database, assuming that each image in the database has at least one

near-duplicate. This strategy is effective in reducing the number of features by more

than an order of magnitude without compromising search quality, and its application

is not limited to near-duplicate detection. The drawback is that, effectively only

158



images with duplicates in the database are indexed, which is not usually tolerable.

Both SIFT feature pruning method aim at reducing the space overhead, rather than

filtering out low-quality features. Our entropy-based filtering method is orthogonal

to those methods and can be used as a complement.

Chum et al. [16] studied various query expansion methods, including transitive

closure expansion, for local-feature based object retrieval with vector quantization

and geometric verification. The other methods proposed, like average query expansion

and multiple image resolution expansion, are potentially applicable to near-duplicate

image detection, but involves reconstructing queries unknown to the system, and

running those new queries could substantially increase search time.

Xu et al. [83] proposed to divide images into overlapping and non-overlapping

blocks over multiple levels, and to compare and align the blocks with SIFT features

and Earth Mover’s Distance(EMD). Even though the method is reported to achieve

high detection quality, it is only applicable to small datasets as it involves a very

expensive similarity measure and requires scanning the full dataset in brute force.

6.6 Summary

We proposed two techniques for large-scale near-duplicate image detection:

• We found that entropy-based filtering can eliminate > 99% of false positives,

and allows one to claim near-duplication relationship with a single match of the

retained high quality features.

• We developed a query expansion method with graph cut to substantially im-

prove search quality.

The combination of the two methods lowers false positive rate by three orders of mag-

nitude (at 80% recall). With the proposed techniques, we built a search engine that
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is capable of serving more than 50 million web images, and achieves a false positive

rate three orders of magnitude smaller than the standard visual word approach.
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Chapter 7

Conclusion

In this dissertation, we approached the high-dimensional similarity search problem by devel-

oping methods to reduce candidate set size — the limiting factor of search speed — along

two directions: to reduce the number of items in the candidate set and to reduce the repre-

sentation size of each individual object. In this chapter we summarize the contribution we

have made and discuss potential directions for future research.

7.1 Summary of Contribution

In this dissertation, we studied several key issues to improve the accuracy and effi-

ciency of high-dimensional similarity search. We made the following contributions:

• We presented a statistical performance model of Multi-Probe LSH, a state-of-

the-art technique for high-dimensional similarity search. Our model can accu-

rately predict the average search quality and latency by gathering statistical

data from a small sample of the dataset. We used this model to realize auto-

matic parameter tuning for optimal performance. We also used the model to

devise an adaptive LSH search algorithm to determine the probing parameter

dynamically for each query. The adaptive probing method addresses the prob-
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lem that even though the average performance is tuned for optimal results, the

variance of the performance is extremely high. We experimented with three

different datasets including audio, images and 3D shapes to evaluate our meth-

ods. The results show the accuracy of the proposed model: the recall errors

predicted are within 5% from the real values for most cases; the adaptive search

method reduces the standard deviation of recall by about 50% over the existing

method.

• We presented NN-Descent, a simple yet efficient algorithm for approximate K-

NN graph construction, i.e., to search for K-NN for every point in the dataset.

Our method supports arbitrary similarity measures, has minimal space overhead

and does not rely on any shared global index. Hence, it is especially suitable

for large-scale applications where data structures need to be distributed over

the network. We have shown with a variety of datasets and similarity measures

that the proposed method typically converges to above 90% recall with each

point comparing only to several percent of the whole dataset on average. Our

method is from 2 to 16 times faster than the state-of-the-art technique. We

used the offline computed nearest-neighbor information to double the speed of

online similarity search.

• We presented an efficient sketch algorithm for similarity search with l2 distances

and a novel asymmetric distance estimation technique. Our new asymmetric es-

timator takes advantage of the original feature vector of the query to boost the

distance estimation accuracy. We also applied this asymmetric method to exist-

ing sketches for cosine similarity and l1 distance. Evaluations with datasets ex-

tracted from images and telephone records show that our l2 sketch outperforms

existing dimension reduction methods such as PCA and random projection, and

the asymmetric estimators consistently improve the accuracy of different sketch
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methods. To achieve the same search quality, asymmetric estimators can reduce

the sketch size by 10% to 40%.

• We presented a randomized algorithm to embed a set of features into a sin-

gle high-dimensional vector to simplify the feature set-matching problem. The

main idea is to project feature vectors into an auxiliary space using locality-

sensitive hashing and to represent a set of features as a histogram in the aux-

iliary space, which is simply a high-dimensional vector. We have shown with

experiments that the proposed approach is indeed effective and flexible. It can

achieve accuracy comparable to the feature set-matching methods, while requir-

ing significantly less space and time. For object recognition with the Caltech

101 dataset, our method runs 25 times faster to achieve the same precision as

Pyramid Matching Kernel, one state-of-the-art feature set-matching method.

• Finally, we demonstrated some of the proposed techniques by building a large-

scale near-duplicate image search system that is capable of serving more than 50

million web images on a single commodity server. We also developed domain-

specific techniques that make such a system possible. First, we showed that

entropy-based filtering eliminates ambiguous SIFT features that cause most of

the false positives, and enables claiming near-duplicity with a single match of

the retained high-quality features. Second, we showed that graph cut could

be used for query expansion with a duplicity graph computed offline to sub-

stantially improve search quality. We have shown with experiments that when

combined with sketch embedding, our methods achieve false positive rate orders

of magnitude lower than the standard visual word approach.
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7.2 Future Work

Even though we have made substantial improvements in this dissertation, the high-

dimensional similarity search problem is far from being solved. In fact, it is unrealistic

to hope to defeat the curse of dimensionality for datasets of an arbitrarily large

number of dimensions. After all, dimensionality is the characterization of the intrinsic

hardness of the dataset, which cannot be changed by an algorithm. However, the

improvements we have made in various aspects of the problem, e.g., an order of

magnitude speedup in offline K-NN graph construction, indicate that the complexity

lower bound determined by the intrinsic hardness of the dataset is far from being

reached. Below, we discuss some of the most promising directions for future research

based on the findings of this dissertation.

7.2.1 Online Similarity Search with K-NN Graph

Our preliminary study on online search with K-NN graph showed promising results

(Section 3.7) and opens an interesting direction for future exploration. The graph

expansion, or essentially local search, approach is fundamentally different from most of

the existing indexing techniques based on clustering or partitioning and has attracted

little attention in previous research. This is natural as the very goal of indexing is to

be able to make a big jump from the current search state to the search target. For

example, if we can somehow measure the distance l between the current search state

and the target, then a reduction in the distance by at least δl, for some fixed δ > 0,

should always be achieved in one search step so as for the index to be “efficient” in

the traditional sense, i.e., to guarantee O(logN) search time. This is not possible

with local search, in which the search range of each step is limited to a small amount

that is prefixed and not related to l. However, for datasets of high dimensions, the

curse of dimensionality calls for a different understanding of “efficiency”: the logN
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part of the time complexity is dominated by the coefficient that is exponential to the

number of dimension D, and is no longer as important as in low-dimensional cases.

In fact, a previous study [7] has shown that as dimensionality grows, the smallest

distance δ between any pair of points approaches the largest distance ∆ between

any pair of points. Note that ∆ is also an upper bound of the distance between an

arbitrary starting point and the search target. So long as improvement in the level of

δ can be made in each step, convergence shall be reached in a few iterations. What

is important to be optimized now is the size of the neighborhood that one needs to

explore in each step. An O(logN) index, aiming at covering a larger search range in

each step, usually also has to maintain a larger neighborhood to be examined, and

has an intrinsic disadvantage over local search.

7.2.2 Combining Indexing and Filtering

Even though we have made improvements in both indexing and sketch filtering, how

to integrate these two seemingly orthogonal techniques in a real system remains a

practical issue. The problem is that both indexing and filtering are approximate.

For example, assuming that each can achieve a recall of 90% independently, then the

combined recall would be as low as 81%. That is why currently in the image search

system we only use the filtering technique and rely on an exact but more expensive

technique for indexing.

In order to answer the questions as to whether it is meaningful to integrate index-

ing and filtering and, if so, how to tune both components to minimize search cost,

we need to further elaborate the unified framework shown in Figure 1.2 and build a

performance model that covers both indexing and filtering. We have presented an

accuracy performance model for the Multi-Probe LSH index, and Wang et al. [77]

presented a similar model for sketch filtering. Future research could build on these

existing works.
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7.2.3 Similarity Search with Cloud Storage

In this dissertation, we have been evaluating our techniques within the main memory

of a single machine. Meanwhile, many real-world datasets have out grown the capacity

of a single machine, or even that of a medium-sized cluster of tens of machines. In

order to solve real-world problems, cluster-based large-scale similarity search systems

have to be built.

Recent advancements in cloud computing have shown that it is a scalable and

cost-effective way to provide massive and high-throughput storage by federating the

local file systems of a cluster of machines. Systems have been built that provide file

system interface [30], key-value store interface [21, 48] and table interface [13]. It is,

therefore, interesting to develop a similarity search system following the same model.

We need to solve the following problems in order to build such a system.

First, we need to determine how to design a data layout algorithm that meets

the requirements of replication, efficient search and load balancing. Data in a cloud

storage have to be replicated for reliability. Copies of the same data item have to

reside on different nodes, or even at different geologic sites. Meanwhile, data in a

similarity search system, e.g., one based on Locality-Sensitive Hashing, also have

to be replicated for better locality. Further more, it is desired that data be evenly

distributed among the cluster nodes so as to maximize resource utilization.

Second, we need to determine how to handle incremental updates. We have al-

ready shown in Chapter 2 that the optimal parameter of Multi-Probe LSH depends

on the size of the dataset. As data accumulate, the optimal parameter for the index

will shift. To keep the system at a healthy state with growing data, we have to either

design an index that is adaptive to data size, or to design a mechanism to periodi-

cally reconstruct the index in background without significantly degrading the quality

of online service.

Third, we need to determine how to schedule queries to meet latency and/or
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throughput requirements. For each query, a sufficiently large candidate set has to

be scanned in order to reach the accuracy requirement, and it is probable that the

candidates will reside on different nodes. When data are replicated, there could be

multiple combinations of target nodes for a query to cover its candidate set. When

multiple queries are present simultaneously, we have to devise mechanisms to optimize

query plans so as to minimize the conflicts on node access, and for each node, we have

to devise a scheduling strategy to maximize throughput while trying to satisfy any

latency constraints.

7.3 Closing Remarks

High-dimensional similarity search is a significant and difficult problem. Despite more

than two decades of intensive research, there is still no satisfactory general solution.

Indeed, according to studies that revealed the difficult nature of the problem [78], an

algorithm that is efficient (polynomial) with regard to the intrinsic dimensionality is

unlikely to exist. However, this is not to say that the problem is insolvable in all

practical cases. In this dissertation, we showed that for many real-world datasets,

orders of magnitude speedup over brute-force scan can be achieved by exploiting the

following two opportunities that are usually present in practice:

• Approximation in search results is usually acceptable,

• The intrinsic dimensionality is usually much lower than the appearing dimen-

sionality.

Our results also indicate that there is still room for future improvement. Considering

that a breakthrough in asymptotic complexity is less likely to happen, we envision

that the most fruitful future direction is to engineer practical systems for searching

large datasets.
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