VICCI: A Programmable Cloud-Computing Research Testbed

Larry Peterson, Andy Bavier, Sapan Bhatia
Princeton University

September 7, 2011

1 Overview

VICCI is a programmable cloud-computing research testhatigrovides an experimental platform for de-
veloping next-generation Internet services. VICCI encassgs a distributed set of virtualized compute
clusters and networkingardware as well as theoftwarethat enables multiple researchers to innovate both
at and above the infrastructure layer. VICCI is designedugapsrt research into the design, provisioning,
and management of a global, multi-datacenter infrastraetithe cloud—and also into the design and de-
ployment of large-scale distributed services that use anamvironment. VICCI is a distributed instrument,
with a point-of-presence at Princeton, Georgia Tech, $tanfind the University of Washington, along with
international clusters in Europe and Japan.

VICCI enables a broad research agenda in the design of rletsystems that require both multiple
points-of-presence and significant compute/storage ditpadi each site. It enables research in:

Building block services designed to be used by other cloud applications. As cloud computing be-
comes increasingly prevalent, the demands for new sernwidkisicrease. VICCI supports the development
of much-needed services that address issues of replicat@rsistency, fault-tolerance, scalable perfor-
mance, object location and migration. Researchers canmexpiultiple—sometimes conflicting, sometimes
complementary—approaches to these problems.

New cloud programming models designed for targeted application domains. These models—
focused, for example, on constructing virtual worlds anchatang personal data—are designed to give
application writers a way to think about programming theudo

Cross-cutting issues at the foundation of the cloud’s design. The VICCI testbed allows research
teams to investigate fundamental issues related to cloogbating, including how the network is managed
within data centers, between data centers, and betweentiasitellcloud and end-users, and how to build a
trusted cloud platform that ensures the confidentiality iabeyrity of hosted computations.

VICCI has been bootstrapped with working software from Btaab, a next-generation Internet testbed
developed at Princeton that is used by thousands of resrarahd has carried live traffic for millions of
users worldwide. Our ultimate goal is to fold the results dCZI research back into the testbed itself,
allowing us to improve the system over time and making it anawore effective platform for research into
scalable network systems.

VICCI is designed to provide a realistic environment to ae# and deploy scalable network services.
Our philosophy for VICCI is strongly influenced by our exmarce with PlanetLab, which has demonstrated
the importance of deploying experimental network servmeglatforms that are realistic enough to attract a
real-user community. It is only by observing how experina¢sistems are used in practice that researchers

learn the right set of problems to solve, and these expergeatso provide crucial training for future gen-
erations of computer scientists. Toward these ends, VIE@ésigned to suppodeployment studiesf the
prototype systems put forward by the research communitgiolng so, our goal is to accelerate the research
and teaching process by supporting the seamless migrdtsratable services and applications from early
prototype, through multiple design iterations, to a cambinsly running experiment that generates meaning-
ful results by carrying real traffic on behalf of a large erigqtt community.

2 Research Activities Enabled

VICCI is a programmable cloud-computing research testeadpmpassing both a distributed set of vir-
tualized compute clusters and networkingrdware and thesoftwarethat enables multiple researchers to
innovate both at and above the infrastructure layer. VICGCdesigned to support research both into the
design, provisioning, and management of a global, mulikcenter infrastructurethe cloud—as well as
the design and deployment of large-scale distributed sesvihat use such an environment.

VICCI enables a broad research agenda in the design of Hetsystems that require both multiple
points-of-presence and significant processing/storagalskties at each of those sites. This section gives
several example projects that illustrate the types of mrebesupported by VICCI. The examples are drawn
from the initial set of faculty and senior researchers tlaatehbeen instrumental in creating—and are already
using—VICCI:

e Princeton University: Larry Peterson, Jennifer Rexford, Vivek Pai, Michael Fread.

e University of Washington: Tom Anderson, Ed Lazowska, Hank Levy, Steve Gribble, Ankaish-
namurthy.

e Stanford University: Nick McKeown, Philip Levis, Mendel Rosenblum, John Ousteith Guru
Parulkar.

e Georgia Tech: Nick Feamster, Cristian Lumezanu, Wenke Lee.
e ETH Zurich: Timothy Roscoe.

e Max Planck Institute for Software Systems. Peter Druschel, Rodrigo Rodrigues, Paul Francis, and
Krishna Gummadi.

e University of Tokyo: Aki Nakao.

As a point of reference, the research described in this@etiorganized into three subsections, loosely
corresponding to three common models of cloud services R@ftware as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (laaS)Vdid a rigid interpretation of theXaaS model,
however, as our goal is to permit full exploration of cloudsh@ut unnecessarily constraining research with
a particular architecture.

2.1 Building Block Services

These are cloud services designed to be used either ditgctpd-users or as building blocks of other cloud
applications. They address issues of data consistendjcatpn, scalable performance, object location,
and migration—but sliced-and-diced in different ways. flisathe services described below reflect both

2

the variety of building blocks required and the diversitydafsign principles. This diversity is important,
especially since it seems unlikely that one can design ‘sinefits all” services for cloud computing.

2.1.1 A Consistent DHT for Cloud Applications

Large-scale distributed systems increasingly rely onedalstorage and lookup services such as Distributed
Hash Tables (DHTs). Researchers have leveraged scalaiepldo design distributed filesystems, con-
tent distribution networks, location sensing systems, randezvous-based communication infrastructures.
DHTs are also used in various deployment settings rangioigp flata center applications to peer-to-peer
systems. Most existing DHTs, however, support only weaksist@ncy semantics, often with negative
consequences for the client application programmer [2223014, 4, 24, 3, 5]. For example, with Kadem-
lia [14], the DHT used to coordinate swarm membership witBitTorrent, a read of a key’s value after
a write to the key is not guaranteed to return the new valuail&ily, Amazon’s Dynamo[5]—used as a
distributed store for various e-commerce applicationinithe data center—sacrifices consistency under
certain failure scenarios. In such cases, it is the respiitgiof the application to manage its state replica-
tion. Furthermore, even if data is not lost, different nodeght maintain different values for the same key
and the application would have to reconcile conflicting iepl/alues. These issues undermine the utility of
DHTs by increasing the complexity of developing applicasi@n top of them.

To address this, researchers at UW have designed Harmohya|[DHT aimed at very large scale dis-
tributed applications, but one in which “you get what you”puthe distinguishing feature of Harmony is
that it organizes nodes into self-managing groups, mergimysplitting with neighboring groups as neces-
sary to deal with churn. The DHT itself manages its heteregaa resources to provide high availability,
high performance, and serializable consistency. Strinsigtency is conceptually easier for the application
programmer and often necessary for complex distributediGgimns. The hypothesis is that consistency
can be provided without a prohibitive performance penalty.

An initial implementation of Harmony has been built in Pythdr'he prototype implements the mech-
anisms required for consistent and robust management apgrof nodes. The researchers plan to use
VICCI to identify and solve issues relating to performanadaptability, and large-scale deployment. For
instance, performance bottlenecks arising out of high gemgcal dispersal of nodes could be overcome
by intelligently selecting group members and the leadeinduoperations that change the group’s composi-
tion. As the expected lifetime of nodes might vary based emidiure of the deployment (with data centers
having stable nodesets while P2P settings having more @pich), Harmony could adapt to workload
characteristics to improve robustness and load balance.

A primary goal of the project is to build and deploy a prodantiversion of Harmony, and consequently
spur the development of a new generation of distributedesystthat can assume robust, consistent lookup
and storage as a fundamental building block. Today’s Oistieid testbeds such as PlanetLab are valuable
in evaluating and optimizing for wide-area peer-to-pesdtirsgs, but they are insufficient in providing a
realistic environment for emulating data center settingd jaroviding workloads that would be typical of
the cloud. VICCI provides a testbed where Harmony can beuated and customized for applications
that are deployed across multiple data centers—a pantigudhallenging setting given the combination of
geographical dispersion across sites and large scalenvéthingle site.

2.1.2 A Global, Content-Oriented Filesystem

Cloud computing provides an opportunity for convergingethpreviously-disparate systems: content distri-
bution networks, network accelerators, and filesystemscdybining these systems, the cloud can provide

a location-independent, high-performance, bandwidticienht system to many classes of users in a rela-
tively transparent manner.

Content distribution networks are typically used to helplsd/Meb sites by moving copies of files to
geographically-distributed replication servers, whielm @address many of the scale, congestion, and latency
issues that arise in centralized infrastructure [35, 19%ydhd being Web-centric, these systems typically
tend to be read-only, and require advance preparation. eTterglirements are well-suited to Web sites
needing scalability, but are not compatible with tradiabfilesystem behavior.

Network accelerators, also known as wide area network (Wadtelerators, are systems that provide
point-to-point compression to overcome bandwidth linntas when sending redundant content. These
systems operate transparently and can operate at a giggnstaaller than files, such as network packets
or pieces of packets. Unlike content distribution netwprkbich assume an open-ended user population,
WAN accelerators typically serve closed populations withmultiple locations of a single organization.

Extending traditional filesystems to wide-area environtadras historically proven challenging. The
earliest example of this approach is AFS [12], which allovggrdbuted groups to share a single namespace
through the use of aggressive local caching. However, dgapaavided only by authoritative servers and
only to local users in each location, limiting location-emendence. Research systems, such as lvy [15],
have used DHTs to provide greater wide-area coverage, aiags of performance due to the use of a
non-overwriting log to record all file modifications.

To address these issues, Princeton researchers are pusgimdicate [31], a cloud-based wide-area
filesystem that provides scalability, performance, andieffit bandwidth usage. In order to achieve these
goals, the filesystem is content-oriented—the data exawamgthin the system are decoupled from the
control transfers, allowing the data to be served efficienthile the control plane provides the traditional
filesystem behavior and semantics. The data transfers ifildsgstem are chunked using content-based
fingerprinting, as is done for WAN accelerators. All datansfers of chunks are performed over a content
distribution network, further decoupling the location @intent access from the location of the provider and
consumer.

A prototype of Syndicate is currently running on VICCI. Sycate’s “filesystem in the cloud” requires
an infrastructure that, like VICCI, decouples the locatafrthe producer and the consumer, and provides
considerable storage and transformation capabilitiehénwide area. The researchers also plan to use
VICCI to explore hybrid approaches that combine a cloucctd#desystem with dedicated local servers or
peer-to-peer networks.

2.1.3 Scalable Services with Strong Robustness Guarantees

With modern datacenters reaching tens of thousands ofrsefaege-scale services initially embraced weak-
ened consistency models to achieve scalability and pedonomgoals. This direction proved highly success-
ful for a variety of applications, including web crawlinggach, and content distribution. Still, the recent
trend to move ever-more dynamic applications to the “clopdftends a shift in service requirements—in
which losing data or applying operations out-of-order maylye acceptable—as does far-flung demand for
concurrent access to data and services, spread acrossrtataonorld-wide.

To meet these changing needs, researchers at Princetorcamsidering the challenge of building
storage and replicated systems with strong robustnessumieas and at scale. Their work leverages certain
trends common to many of these datacenter services, imgwgiinple data models, effective object-based
interfaces, and read-heavy object workloads. Since lacgdée, complex systems are typically built-up from
smaller groups—which either act as different subsysterpsaeide varying functionality, or are simply used
to partition some larger state-space into smaller, moreageable parts—their research is guided lgycaup

compositional approacto the problem. First, they are designing novel protocalsifoaller groups of nodes
that offer strong properties at minimal overhead, considgnoth fail-stop and Byzantine models of failures.
Respectively, these have been realized in the CRAQ objecige system [32] and the Prophecy system for
Byzantine-fault-tolerant (BFT) replicated state machif28]. Second, they are designing a coordination
service and a suite of management algorithms that adapibrghnizes these groups and composes them
together, with the goal of building larger-scale systenas fiieserve their base guarantees. These algorithms
particularly explore problems of dynamic load balancirgpdiogical control, and security that arise both
within and between datacenters.

To test the usefulness and efficacy of these strongly robfraistructure services, the researchers plan to
deploy prototypes on VICCI. They already have significamtezience with VICCI since they used it to eval-
uate the COPS key-value store [13]. VICCI provides a raalggployment environment since it resembles
commercial datacenter environments in terms of hieraathmpology, fate sharing, and realistic network
latencies and throughputs. Once the prototypes are shéig glan to operate them as publicly-available ser-
vices on VICCI. Several other distributed systems they aileling—including a scalable virtual world [11],

a peer-assisted content distribution network [33] and amcasted name resolution service [27]—will rely
on these core services.

2.1.4 Object Location and Distribution

Many services are replicated across multiple data centergyigrate from one server or data center to
another in response to failures, changes in demands, oudliimhs in energy prices. In this context, we
explore how to handle the inherent churn in the mapping ofises to particular server machines and loca-
tions. Princeton researchers are creating a new archigecalled Serval [6] that redefines the relationship
between naming and routing to meet the needs of these wederaplicated services. Serval routes traffic
to data centers (or “Service Systems”) based on object naanessupports both successive refinement (to
hide churn within the data center) and reactive packeteetion (to support seamless migration of a service
from one data center to another). We believe our architeciill be scalable in the face of considerable
churn, while also simplifying the design and operation afl@area services.

The researchers intend to use VICCI to evaluate severaldggarch issues with Serval. First, commu-
nication in Serval takes place between two “objects” witiqua identifiers. The routing system directs the
packets to an appropriate host, which may change over tirmeédiailures, load balancing, planned mainte-
nance, or migration. For scalable routing, packets areticeto a particular Service System (SS), based on
a name-resolution process that is closely tied with paakatimg. When an object moves, packets in flight
are redirected from one SS to another. Designing, impleimgnand deploying the protocol for mapping
objects to the appropriate SS and host is a major part of theaSaroject. Experimental evaluation in the
wide area is critical to determine how the protocol scalghéface of churn in the association of objects to
hosts.

Second, compared to today’s Internet, Serval places magifunality on the edge nodes that connect a
Service System to the rest of the Internet. These nodes spensible for directing packets toward internal
hosts, and deflecting packets to other SSes when necessayeJearchers plan to prototype and deploy
an edge node that leverages the OpenFlow switches in eadBl\élte. The control plane for the edge node
will run on a NOX server that installs packet-forwardingeasiiin the OpenFlow switch. They intend to build
and compare two variants of the Serval protocol, one thatgslanore state in the edge node, and another
that piggybacks state on data traffic. This will allow thenmet@luate trade-offs in scalability of the edge
node and the end hosts, and how quickly the system can respamgxpected churn.

Third, the real test of Serval is whether it simplifies theiges deployment, and operation of wide-

area services. To evaluate the effectiveness of Servglplaa to build several example services on top of a
Serval deployment on VICCI. The example services includdialsle DNS hosting service to provide name-
to-address mapping for geo-replicated services, a pohnso€oral CDN [7] content distribution network, and
a next-generation virtual-world application called Mefii]. These applications can greatly benefit from
direct support for naming and routing in terms of objectfheathan hosts.

2.2 Cloud Programming Models

These projects represent new programming models desigmddr§eted application domains. They give
application writers a way to think about programming theudo

2.2.1 A Cloud for Federated Virtual Worlds

The possibilities and capabilities of virtual worlds hawsng been a facet of fiction. A visual, three-
dimensional metaphor could provide an intuitive and simiplerface for navigating information and com-
municating. Virtual worlds today, however, are far fromghbevisions. Worlds today exhibit properties that
prevent success similar to applications such as the wepsttade poorly, have centralized control, or cannot
be easily extended.

Researchers at Stanford and Princeton are attempting toame these limitations by focusing on five
important properties to scalably support large numberstefracting virtual worlds [8].

e Federation: Many service providers may contribute computational woeking, and storage re-
sources to run the virtual worlds. These physical admiaiiste domains must be able to cooperate
and interoperate, yet they must also have freedom in magaggninternal workings of their networks.

e Expansibility: The design must be able to support virtual worlds with veffetent uses and logical
administrative properties.

e Scalability: The ecosystem should be able to support large numbers ddsyaworlds with great
expanses of virtual regions, and large numbers of objeasaativity within small regions of virtual
space.

e Migration: Providers need to physically migrate objects and enviremis across hosts for load bal-
ancing, fail-overs, and optimization; users and objectgdrte logically migrate objects across worlds
for seamless integration.

e Security: All parties (users, application developers, world adsti@itors, service providers) need to
be able to protect themselves from malicious entities.

Their approach is based on three key design principlest, Father than being centralized or peer-to-
peer, the system is based on federation: cooperative butauassarily collaborative interaction between
multiple parties. Second, application communication sugided in three-dimensional coordinate spaces:
objects can only communicate after being introduced thinqugximity. This geometric addressing decou-
ples applications from their physical locations on hostird, by using this communication model, the
system can directly interface with the physical world. Bualso governs how we can leverage physical
constraints, such as constant flux per unit space, in ordeodod communication and thus scale to large,
complex environments [11].

The researchers are closely collaborating with the buslaéran open, large, distributed virtual world
system, called Meru. Their goal is to provide a frameworkNtaru to leverage, while it in turn provides
an application driver for their design. They plan to builddaskeploy a prototype of their virtual world
environment on VICCI, since it satisfies their requiremefotsa hosting infrastructure: low latency and
high throughput between commonly-interacting objectstdeb®n nearby nodes; fault tolerance between
different worlds or regions by limiting fate sharing; anchtent and computation hosted at administratively-
specified locations for security and privacy.

2.2.2 A Cloud for Personal Applications

Large, online services are the dominant model today forgmetisapplications that require more com-
pute resources than are available on the device. Such applis provide short-term “lock-in" benefits
to providers, but require large capital investment for eapplication, increasing the barrier-to-entry. Fur-
thermore, the centralization of control and personal da#a tesults from such a “mainframe model” are
beginning to raise ethical, political, and legal concerns.

Researchers at ETH Zurich argue that a new class of comgedioplications can be enabled by a
different model: each user hasparsonalcomputing platform comprising a mixture of cloud resources
and personal devices such as phones, PDAs, and PCs. A sixapigplke application scenario is as follows:
a user employs his phone’s camera to capture location-thijggages of his surroundings, which are then
processed by a rented cluster acquired on-demand, togeitierelated images stored on the user’'s home
server, to synthesize 3D content such as a scene recoimtrudtich may then be rendered on the phone a
few seconds later. They are interested in the abstractiotisreechanisms to support such applications that
do not rely on a dedicated service infrastructure (as reguivith, for example, Microsoft PhotoSynth).

Such a system faces a number of challenges. One is in agtim@right resources, in response to
application load and external conditions (such as prowdgages, user mobility, or changing pricing struc-
tures). A second challenge is heterogeneity—the systent capsure and represent knowledge about the
characteristics of diverse devices (phones, PCs, virtwahimes, etc.) and allow the application to reason
about their current (and future) device set. A third is mgt-an integrated but heterogeneous platform for
personal applications must maintain inter-device convigcover a diverse and rapidly changing network
topology.

The researchers are designing Rhizoma [36], a stable ptaftr deploying and accessing personal ap-
plications which ties together a dynamic collection of daasources with personal devices such as phones
and home computers. Rhizoma consists ofgarlay networkproviding uniform connectivity, resource
discovery, and synchronization services, together withewledge bas¢o handle the heterogeneity in
the system and eoordinatorwhich automatically acquires and releases resources (f®itiork links and
computational power) on demand. Rhizoma addresses thkerhes identified above by applying con-
straint logic programming (CLP) and using cloud machinesutoa CLP solver in realtime on behalf of
the application. CLP is appealing since it combines the esgive representative power of formats like
RDF with powerful reasoning capabilities based on cons&chioptimization. Furthermore, recent work on
declaratively-specified routing protocols translatesalg to the CLP environment, providing a powerful
tool to tackle routing both within and between applications

Current cloud computing providers are not yet a good fit foizBima. They provide low-level resources
in the form of virtual machines, but without control over thetworking resources used nor, crucially, the
locations of the virtual machines. For example, EC2 pravidechoice of VMs in Europe or the US, but
nothing more fine-grained. VICCI provides a stable comgugmvironment, representative of real cloud
providers, but with the additional control over VM placerhand networking.

2.3 Cross-Cutting I ssues

These are projects focused on broad, cross-cutting quesdibout how the underlying cloud infrastructure
should be designed, with a particular focus on faults, nekimg, and security.

2.3.1 Tolerating and Detecting Faultsin a Cloud

Cloud applications are often designed as a composition dfptauservices. For instance, the customers of
Amazon’s EC2 can use the S3 storage service, which in tursm Dgramo as a storage substrate (also used
by Amazon’s e-commerce platform). As another example, G®indices are built using the MapReduce
parallel processing framework, which in turn can use GFSforage.

Faults are inevitable in such environments, and can not bale various sources, but, more impor-
tantly, various effects on the behavior of faulty composento give a few recent examples, Amazon’s
S3 storage service suffered a multi-hour outage, causedtoyption in the internal state of a server that
spread throughout the entire system [25]; an outage in G&®@pp Engine was triggered by a bug in
datastore servers that caused some requests to retura }oand a multi-day outage at the Netflix DVD
mail-rental was caused by a faulty hardware component tiggiered a database corruption event [16].
Dealing with faults that cause these complex failure modexitical. Researchers at MPI-SWS are ex-
ploring two different vectors for handling them: maskingitheffects using replication, and detecting them
using accountability.

Services replicate data and computation to mask the eftécteachine crashes in data centers. Repli-
cas commonly span multiple sites to withstand events th&eraa entire data center unreachable, such as
network partitions, maintenance events, and physicaktises. However, it is commonly assumed in these
environments that nodes fail cleanly by becoming comptetsperable; when such failure assumptions
are not met, the results can be catastrophic as the abovisergggest. Byzantine Fault Tolerance (BFT)
can withstand complex faults, but current BFT protocols lsacome unavailable if a small fraction of their
replicas are unreachable. This is because they favor ssafey guarantees (consistency) over liveness
(availability). The researchers have proposed a new BFIicegfon protocol, called Zeno [29], that trades
consistency for higher availability. Zeno replaces strangsistency (linearizability) with a weaker guar-
antee (eventual consistency): clients can temporarilysra&ch others’ updates, but when the network is
stable the states from the individual partitions are metggetiaving the replicas agree on a total order for
all requests.

An alternative approach is fault detection: instead ofrafiéng to mask the effects of faults, they are
detected after the fact and their root causes traced. Famios, customers of a cloud computing service
expect the service to correctly execute the code providetthéyxustomer. If a malfunction occurs, it may
be difficult to establish which node is responsible for thebpem, and even more challenging to produce
evidence that proves a party’s innocence or guilt. In the cdsa customer’s bug, the provider would like
to be able to prove its innocence, and in the case of the fanltyider, the customer would like to obtain
proof of that fact.

To address these issues the researchers are designingeaviselrior running accountable web services,
where the entire system being outsourced runs insidecanuntable virtual machineBy applying the prin-
ciples and protocols of accountability at the level of theual machine monitor, they can detect deviations
from the expected behavior of an entire operating systemresypective applications. VICCI will enable
them to deploy their replication protocols and better ustéerd the trade-off between consistency and avail-
ability when replicas are located in different data centé&ier the fault detection component of the project,
they plan to use VICCI to study the overheads of adding adetulity in a virtualized environment.

2.3.2 Networking I'ssues

The proposed experimental platform enables a wide ranges#arch in network support for clouds—
within and between data centers, and between the cloud &nsl Uarinceton researchers plan to use VICCI
to design, prototype, and deploy new architectures thatrokduds more efficient, more flexible, and easier
to manage.

Simple data-center networkswith static multipath routing. The routers and switches in data-center
networks are a relatively large fraction of the cost and clexify in data centers. The researchers believe
data-center networks could be much simpler, and more telidithe network elements provided a simple
abstraction of “static” multipath routing. In their arcobiture, the network-management system, or fabric
controller, computes multiple paths between pairs of n@aeskinstalls the corresponding forwarding tables
in the network elements. At the edge of the network, edgecbest or even end hosts split traffic over these
paths. When links fail, simple end-to-end path-failureed@bn allows the edge nodes to avoid directing
traffic over the failed paths, without triggering any rogtinonvergence inside the network. The network
elements simply forward packets at the behest of the falomtraller, and do not need to run any control-
plane protocols. They believe this simple architecturé el effective at reducing the complexity and cost
of the network, while achieving efficient load balancing d&ast failure recovery.

Multi-path routing to improve reliability and load balance. Existing data-center topologies rely on
multi-path routing schemes for recovery from failure, buiséing failover protocols (e.g., MPLS fast re-
route) do not scale and are not sensitive to congestion. tirainter networks, variations in the offered
demand put a heavy strain on the network, and the networksstblges can be subject to switch and port
failures. Fortunately, low propagation delays enable kjieedback about network conditions, and the end-
host servers are a natural place to adapt the sending rdtese3$earchers are exploring extensions to their
previous work in scalable multipath routing in the wideafer improving reliability and traffic load balance
in data centers. The new protocols rely on having links inrtévork export simple statistics, such as link
utilization, to the fabric controller. The fabric contreil can use this information to either compute new
topologies or instruct the edge nodes to change their sgmeies and splitting percentages. The controller
can run optimization algorithms to either derive the appeip response for each edge node to optimize
network-wide metrics, or recompute the underlying topglagelf.

Peering On-Demand. Services that are hosted in a cloud may require a virtual oxdwg environment
to retain real-time, fine-grain control over how traffic estand exits the cloud. For example, given the
global nature of many Internet applications, cloud datdersrcan be in many diverse geographical loca-
tions; a cloud service could expose some of these conngctiptions and let the service provider decide
how the traffic is routed into, out of, and across the cloudtf@at service. Currently, this type of flexi-
ble connectivity is difficult to achieve. Cloud infrastruce providers try to balance performance and cost
for Internet connectivity, and customizing upstream catiniy for each service or virtual network in the
cloud may be challenging. Virtual networks, on the otherchdace multiple hurdles if they want to connect
directly with the service providers on the Internet, inchginegotiating direct contracts with ISPs and ob-
taining routable IP addresses for proper peering, and atimgethe virtual network to the external Internet.
These challenges become even more significant when thalviteiworks are short-lived (e.g., a virtual
network is provisioned for a specific event). In these casegptiating upstream connectivity from ISPs,
who prefer stable, predictable BGP sessions, may be inoggwie In the same way that cloud computing
infrastructure allows services to adapt quickly to growtld ahanges in demands, the network resources and
connectivity (e.g., BGP peering, capacity, hosting), $tha@lso beelastic The researchers are investigating
the ability of these Elastic Networks to support variousetypf applications, particularly those that require
rapid adaptation of network resources, control over intoband outbound traffic, or both.

2.3.3 Trusted Cloud Computing

Recent studies have found that, despite the potential bengfief executives and IT managers are reluctant
to deploy internal systems into the cloud due to fears abeeurity threats and loss of control of data and
systems. One of the most serious concerns is the possitildgnfidentiality violations: either maliciously
or accidentally, the employees of cloud providers can tamjith or leak a customer’s confidential data.

In order to prevent confidentiality violations, customefsloud services might resort to encryption.
While encryption is effective in securing data before ittisred at the provider site, it cannot be applied in
services where data is to be computed, since the unencrgatadmust reside in the memory of the host
running the computation. In Infrastructure as a Servica$)ecloud services such as Amazon's EC2, the
provider hosts virtual machines (VMs) on behalf of its caséns, who can do arbitrary computations. In
these systems, anyone with privileged access to the hogeeadror manipulate a customer’s data. Conse-
guently, customers cannot protect their VMs on their owrer€hs a clear need for a technical solution that
guarantees the confidentiality and integrity of cloud cotapion in a way that is verifiable by the customers
of the service.

Traditional trusted computing platforms like Terra [2] é&a&k compelling approach to this problem. Terra
is able to prevent the owner of a physical host from inspgctind interfering with a computation, and
also provides a remote attestation capability that enablesnote party to determine up-front whether the
host can securely run the computation. Such platforms dactefely secure a VM running in a single
host. However, many providers run data centers comprigrgral hundreds of machines, and a customer’s
VM can be dynamically scheduled to run on any one of them. €bimplexity and the opaqueness of the
provider backend creates vulnerabilities that traditidngsted platforms cannot address.

Researchers at MPI-SWS have proposedted cloud computing platforfTCCP) [26], a system that
ensures the confidentiality and integrity of computatidmat fare outsourced to laaS services. The TCCP
provides the abstraction of a closed box execution enviatrfor a customer’'s VM, guaranteeing that no
privileged administrator can inspect or tamper with itsteon. Moreover, before requesting the service to
launch a VM, the TCCP allows a customer to reliably and reiyatetermine whether the service backend
is running a trusted TCCP implementation. This capabilitierds the notion of attestation to the entire
service, and thus allows a customer to verify if its compatawill run securely.

The researchers plan to implement a working prototype of PGQhce the prototype is built, through
thorough experimentation in realistic deployment envin@mts such as VICCI, they hope to demonstrate
that TCCP can significantly improve the security of outsedrcomputation, and create new incentives for
a more widespread adoption of cloud computing services.QYMill also allow them to evaluate the TCCP
attestation protocols in challenging yet realistic scEsawhere VMs might be migrated from one data
center to a different one, e.g. for the purpose of locatingises closer to the clients that access them.

3 VICCI Design and Development

VICClI is designed to provide a realistic environment to ee# and deploy scalable network services. Our
philosophy for VICCI is strongly influenced by our experiengith PlanetLab, which has demonstrated the
importance of deploying experimental network services latfgrms that are realistic enough to attract a
real user community. It is only by observing how researchqiypes are used in practice that researchers
learn the right set of problems to solve [20]. To this end, €1@ designed to suppodeployment studies
of the research prototypes described in the previous sed®well as similar systems being proposed by
the research community.

10

VICCI is currently under construction (for up-to-date sgtsee [34]). When completed, VICCI will
consist of hardware and software components, as follows:

e At the hardware level, VICCI will consist of seven geogragalfly dispersed compute clusters: four
in the US (at Princeton, Stanford, Georgia Tech, and the éfsiy of Washington), two in Europe
(at the Max Plank Institute for Software Systems and ETHZ) ame in Asia (University of Tokyo).
Each cluster will consist of0 x 12-core servers (840 cores) connected by programmableRbpen
switches [18]. Each cluster will be connected to the Intefaad hence, each other) by 100Mbps-
1Gbps of network connectivity. The US sites are also comakebly VINI [1]—a virtualized and
programmable backbone network leveraging Internet2 aad\titional Lambda Rail. Each site will
also support 10Mbps connectivity to the commodity Interaatd hence, to end users.

e At the software level, VICCI will consist of two primary corapents: (1) lightweight virtualization
software that runs on each server, giving each researchispkated virtual machine (VM) in which
they can run their experimental service; and (2) remote gpamant software that sets up, provisions,
and controls distributed VMs on behalf of research projects

3.1 Rationale

The goal is to support research into system support for ggteally distributed and widely used appli-
cations. These applications are currently not served Ingethe large central cluster model (one site, one
MapReduce), or by the PlanetLab model (many poorly promisibsites) available today. Most widely used
applications fall between these two extremes—services am v offer on a planetary scale, and so can't
be hosted at just one site, but still computation and datmgite enough to not be feasible on PlanetLab’s
limited per-site resources.

We are building seven geographically distributed sitegtiersame reason commercial services provided
by companies like Google and Yahoo run at multiple sitesyiottalocate services within 10-20ms of users.
We settle on approximately 1000 cores per site as a compes#ii§,000 or 100,000 cores per site would
be prohibitively expensive, but O(1000) cores per site tndllenough to expose the important issues such a
system must face.

For example, one general class of system architecture isilab up richer services by loosely coupling a
number of smaller functional groups. These groups may rdifjefunction (e.g., the spell-checking service
for web search) or by partitioning some larger dataset inttividual components (e.g., using consistent
hashing as in Harmony, or through a directory service as iS/MEDBFS). At O(1000) cores, service devel-
opers will have sufficient scale to deploy rich services Hratcomposed of a number of smaller functional
groups. This will naturally support research into a manageinframework for organizing and composing
such cloud services even across researchers. As a secaftinly the size of the clusters implies that
deployments will need to stretch across multiple racks iwittach collocation site. Such a deployment
requires that system developers grapple with varying kiseal bandwidth and latencies between cluster
nodes.

Viewed another way, we believe we are provisioning VICCIlhagufficient horse-power to run exper-
imental services that support 100k to 1M end users. Thieteagems well justified given our experience
with services this same research community has deployedamef®ab. In fact, we envision VICCI and
PlanetLab complementing each other in their support ofsgaihetwork services, with VICCI providing
a small number of resource-rich data centers and Planett@atdpng an modest compute and storage ca-
pacity distributed to locations near the end users. In otlwds, PlanetLab will serve as VICCI's access
network.

11

Finally, we note that there are possible alternatives to®Mi®ut they have limitations that make them
less effective platforms. One is Amazon’s EC2, which givesrs the ability to create and configure VMs.
Like VICCI, EC2 gives users the option of placing their VMsratighly half a dozen geographically dis-
persed sites. Unfortunately, EC2 gives researchers nbilifigiinto, or control over, the internal workings
of the cloud, and as a consequence, is it is not suitable foererenting with the design of the cloud it-
self. Moreover, our analysis of the types of workloads VIG&dearchers want to run—i.e., continuously
running network services that transmit terabytes of daffactm Internet hosts every day—shows that the
cost of using EC2 would be significantly higher than VICClpamaching $1M per experimental service per
year.

Open Cirrus (OC) is another a multi-site cloud initiativeinvolves HP, Yahoo, and Intel, plus a handful
of Universities across the US, Europe and Asia. At a highlJéD€ has many of the same objectives as
VICCI. The reality, however, is quite different. OC does sopport a common set of abstractions, with each
site offering a different programming model and controhfiework (e.g., the Yahoo testbed offers Hadoop
running in Java VMs, the HP testbed offers Xen domains, aadrtel testbed is based on the Tashi VM
management systerh) Moreover, OC adopts a model of research projects beingaittdclarge fractions
of each testbed for limited periods of time (i.e., to run &rglata-intensive MapReduce jobs), whereas
VICCI is being designed to support continuously running/ees and applications that support a real user
community.

Finally, Microsoft's Windows Azure offers researchers egs to cloud facilities, but it also focuses on
enabling applications (e.g., “exploring rich and diverseltidisciplinary data on a large scale”) rather than
the mechanisms, subsystems, and programming models vindetthe cloud’s design.

3.2 Development Strategy

PlanetLab software provides a starting point for VICCl-ealing us to rapidly deploy VICCI and make
it available for early use—but it needs to be extended andialieed in several ways to support the full
VICCI research agenda. The following outlines the the fivedwdensions we plan to make to the PlanetLab
software stack.

e Node Virtualization: PlanetLab currently supports container-based virtuadna which means all
VMs share a common (Linux) kernel. We will extend the implena¢ion to also support other types
of VMs, including Xen, OpenVZ, and Linux Containers. Thidlwivolve leveraging an open-source
project (calledlibvirt) that aims to provide a unified interface for configuring maywes of virtual
machines. We will also ensure that these various types of ¥iMsproperly configured for use by
researchers, with the right subsystems installed.

e Network Virtualization: PlanetLab currently does not manage the local interconiéetwill lever-
age the OpenFlow switches that interconnect the clusteestmmanage intra-cluster traffic on a per
service/application basis. This will involve installinggket-forwarding rules that direct incoming
requests to the appropriate nodes. We will also explore sieeofi OpenFlow to balance server load,
while respecting the need for successive packets to reactatine server.

e Bandwidth Management: PlanetLab currently limits outgoing network bandwidthrfr@ach node,
so as to not overwhelm the hosting site, but we will need terektthis bandwidth throttle to work

10f the individual clusters participating in Open Cirrusg tHP effort has the most in common with VICCI. There alreadgtex
a close collaboration between HP and the Pls, working to wmapHP cluster with the VICCI programmatic interface, thsre
allowing VICCI users to include the HP cluster in their expants.

12

across all the nodes in a cluster. Our plan is to integratedisigibuted rate limitermechanism
developed at UCSD [21]. The mechanism enforces a global, It also ensures that congestion-
responsive transport-layer flows behave as if they tradeessingle, shared limiter. We will also
explore the use of DRL across VICCI as a whole.

e Resource Allocation: PlanetLab currently supports a best-effort model of resewallocation. We
will extend the implementation to support resource guaesit for example, allowing VMs to be
allocated entire processor cores. As the necessarily atdredcand allocators already exist, this will
primarily involving extending the management software ¢oaant for the resources that have been
allocated and the resources that are still available focation. We will also implement an admission
control mechanism and a complementary set of incentivesitolgage the research community to
contribute more resources to VICCI.

e Cluster Support: The current PlanetLab deployment assumes a small numbesradrs at each
site (generally two or three), each of which runslade Managethat responds to requests to create,
provision, and destroy VMs on the node. To support clusteesyill build a new software component,
called aSite Managerto configure and manage a cluster of nodes as a unit, thelabynaing the
overhead of remotely managing the individual nodes at angdie. In addition, we will extend the
Site Manager to be responsible for mapping VMs onto the albkdlphysical nodes. This will make
it possible for users to requesf VMs at a site without having to know about the availability of
individual nodes.

Making these extensions will result in an instrument capablsupporting the research outlined in the
previous section, but folding the results of that reseaatklinto VICCI will make it an even more effective
platform for research into scalable network systems. Sudpgpsuch an incremental evolution of VICCI is
a fundamental strategy of this proposal.

Sometimes called spiral design, the strategy is to builcementally, taking experience and user feed-
back into account. It is a well known result of computer sceemesearch that in software or hardware
construction efforts, errors are cheapest to fix when theycaught early. The best way to do that is to
put the system into active use at the earliest possible mprgaim experience with the live system, and
incrementally evolve the system based on what you learns iEhan approach we have used with success
building PlanetLab.

We take this strategy a step further by planning for the tesaflthe research doran VICCI eventually
being folded backnto VICCI. The key to doing this is to define interfaces that makeossible to support
multiple versions of any given feature—both competing apphes and multiple versions (old/limited and
new/improved) of various system functions. In other wordse can view the research outlined in the
previous section as the “advanced development plan” forGI)€he instrument.

4 Conclusion

We believe that VICCI will have a significant impact on theeash community. VICCI will build on the
successful model established by PlanetLab, which has eeonessential tool for network and distributed
systems research: researchers that make claims aboutrhgiwaiocols and services use PlanetLab to
demonstrate how their designs hold up in a real network. Wecanstructing VICCI to allow researchers
to evaluate the next generation of scalable distributetbrysresearch under real-world conditions.

13

We also expect VICCI, like PlanetLab, to serve as a trainimmyiigd for the next generation of graduate
students, giving them the opportunity to learn the art ofding cutting-edge distributed systems. VICCI
will expose students to the challenges of creating disieithisystems that run at a global scale, giving
them experience coping with transient failures, diffeeshin connectivity cliques, variations in latency and
bandwidth, abuses inflicted by real users (some of which akcious), and more. VICCI will expose a
new generation of students to the challenges of creatinghited services that support, comprise, and run
within “the Cloud”.

References

[1] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Bekfln vini veritas: realistic and controlled
network experimentation. I8IGCOMM ’'06: Proceedings of the 2006 conference on Apjtinat
technologies, architectures, and protocols for compu@nmunicationspages 3—14, 2006.

[2] T. G. Ben, B. Pfaff, J. Chow, M. Rosenblum, and D. Bonehtrd:eA virtual machine-based platform
for trusted computing. 119th ACM Symposium on Operating System Principles (SOyRi@8es
193-206. ACM Press, 2003.

[3] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarc8hé&nker, and J. Hellerstein. A case
study in building layered DHT applications. 8IGCOMM '05: Proceedings of the 2005 conference
on Applications, technologies, architectures, and protedor computer communicationpages 97—
108, New York, NY, USA, 2005. ACM.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. &&0i Wide-area cooperative storage with
CFS. InProceedings of the 18th ACM Symposium on Operating Systeimspkes (SOSP '01)
Chateau Lake Louise, Banff, Canada, October 2001.

[5] G.DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, &kéhman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly avéldey-value store. '8OSP '07: Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operayistgras principlespages 205-220,
New York, NY, USA, 2007. ACM.

[6] Erik Nordstrom and David Schue and Prem Gopalan and Maf\rye and Steven Ko and Jennifer
Rexford and Michael J. Freedman. Serval: An End-Host StackService-Centric Networking.
http://www.serval-arch.org/docs/serval-tr11.pdf.

[7] M. J. Freedman, E. Freudenthal, and Mazieres. DemiaargtContent Publication with Coral. In
Proc. 1st Symposium on Network Design and Implementati®®()NSan Francisco, CA, Mar. 2004.

[8] M. J. Freedman, T. Funkhouser, P. Hanrahan, V. Koltud,RirLevis. A network architecture for feder-
ated virtual/physical worlds. INSF NeTS-ANET Grant (#0831374—Princeton, #0831163-3tinf
2008.

[9] GAE outage. http://groups.google.com/group/goagpgengine/browseéhread/thread/f7ce559b3b8b303b.
[10] Harmony wiki. http://hyperion.cs.washington.edwfects/harmony.

[11] D. Horn, E. Cheslack-Postava, T. Azim, M. J. Freedmaml, . Levis. Scaling virtual worlds with a
physical metapholEEE Pervasive Computin@(3):50-54, July 2009.

14

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

J. H. Howard, M. L. Kazar, S. G. Menees, A. Nichols, M.\@atarayanan, R. N. Sidebotham, and M. J.
West. Scale and performance in a distributed file syst&@M Transactions on Computer Systems
6:51-81, 1988.

W. Lloyd, M. J. Freedman, M. Kaminsky, , and D. G. Anders®ont Settle for Eventual: Stronger
Consistency for Wide-Area Storage with COPS. Rroceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP ;1Qascais, Portugal, October 2011.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-tefRaformation System Based on the XOR
Metric. InIPTPS '01: Revised Papers from the First International Whdgson Peer-to-Peer Systems
pages 53-65, London, UK, 2002. Springer-Verlag.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. tvi read/write peer-to-peer file system. In
Proceedings of the 5th Symposium on Operating System Desibimplementation (OSDI'02jpages
31-44, 2002.

NetFlix outage. http://blog.netflix.com/2008_01 archive.html.

NIST Definition of Cloud Computing Vv15. http://csrcshigov/groups/SNS/cloud-
computing/index.html.

OpenFlow Switch Consortium. http://www.openflowsshitorg.

K. Park and V. S. Pai. Scale and Performance in the CoBétge-File Distribution Service. IRroc.
3rd Symposium on Network Design and Implementation (NSah) Jose, California, May 2006.

L. Peterson and V. S. Pai. Experience-Driven Experiraledystems Researc@ommunications of the
ACM, 50(11):38-44, Nov. 2007.

B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocurd,A& C. Snoeren. Cloud control with
distributed rate limiting. INSIGCOMM '07: Proceedings of the 2007 conference on Apjdinat
technologies, architectures, and protocols for computanmunicationspages 337-348, New York,
NY, USA, 2007. ACM.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Seid@r. A scalable content-addressable
network. InSIGCOMM '01: Proceedings of the 2001 conference on Apptinat technologies, ar-
chitectures, and protocols for computer communicatigragyes 161-172, New York, NY, USA, 2001.
ACM.

A. Rowstron and P. Druschel. Pastry: Scalable, digtét object location and routing for large-scale
peer-to-peer systems. Rroceedings of the 18th IFIP/ACM International ConferewnceDistributed
Systems Platforms (Middleware 200Hgidelberg, Germany, November 2001.

A. Rowstron and P. Druschel. Storage management andrgain PAST, a large-scale, persistent
peer-to-peer storage utility. IBROSP '01: Proceedings of the eighteenth ACM symposium oratDye
systems principlepages 188—-201, New York, NY, USA, 2001. ACM.

S3 outage. http://status.aws.amazon.com/s3-2&IBAIMNI.

N. Santos, K. P. Gummadi, and R. Rodrigues. Towardsedusloud computing. IWorkshop on Hot
Topics in Cloud Computing (HotCloud’'09June 2009.

15

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]
[35]

[36]

A. Schran, J. Rexford, and M. J. Freedman. Namecast:liAbte, flexible, scalable DNS hosting
system. Technical Report TR-850-09, Computer Science ffrapat, Princeton University, Apr. 2009.

S. Sen, W. Lloyd, and M. J. Freedman. Prophecy: Usintphidor high-throughput fault tolerance.
In Submission, 2009.

A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, ardaniatis. Zeno: Eventually Consistent
Byzantine-Fault Tolerance. IRroceedings of the 6th Symposium on Networked Systemsegig
Implementation (NSDI 2009Apr. 2009.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hldkaishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. SlGCOMM '01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and proted¢or computer communicationgages 149—
160, New York, NY, USA, 2001. ACM.

Syndicate wiki. https://trac.princeton.edu/Syrada.

J. Terrace and M. J. Freedman. Object storage on CRAGh-thiroughput chain replication for read-
mostly workloads. IrProc. USENIX Annual Technical Conferendene 2009.

J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Eiean. Bringing P2P to the Web: Security
and privacy in the Firecoral network. FProc. International Workshop on Peer-to-Peer Systefms.
20009.

VICCI web site. http://www.vicci.org.

L. Wang, K. Park, R. Pang, V. S. Pali, and L. Peterson.aRéity and security in the CoDeeN content
distribution network. IrProceedings of the USENIX 2004 Annual Technical ConferdBmston, MA,
June 2004.

Q. Yin, J. Cappos, A. Baumann, and T. Roscoe. Dependatenosting distributed systems using
constraints. IrProceedings of the 4th Usenix Workshop on Hot Topics in ByBtependability (Hot-
Dep) Dec. 2008.

16

