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Abstract

The central goal of compressed sensing is to capture attributes of a signal using very
few measurements. The initial publications by Donoho and by Candes and Tao have
been followed by applications to image compression, data streaming, medical signal
processing, digital communication and many others. The emphasis has been on ran-
dom sensing but the limitations of this framework include performance guarantees,
storage requirements, and computational cost. This thesis will describe two deter-
ministic alternatives.

The first alternative is based on expander graphs. We first show how expander graphs
are appropriate for compressed sensing in terms of providing explicit and efficient
sensing matrices as well as simple and efficient recovery algorithms. We show that
by reformulating signal reconstruction as a zero-sum game we can efficiently recover
any sparse vector. We provide a saddle-point reformulation of the expander-based
sparse approximation problem, and propose an efficient expander-based sparse ap-
proximation algorithm, called the GAME algorithm. We show that the restricted
isometry property of expander matrices in the `1-norm ensures that the GAME algo-
rithm always recovers a sparse approximation to the optimal solution with an `1/`1

data-domain approximation guarantee.

We also demonstrate resilience to Poisson noise. The Poisson noise model is appro-
priate for a variety of applications, including low-light imaging and digital streaming,
where the signal-independent and/or bounded noise models used in the compressed
sensing literature are no longer applicable. We develop a novel sensing paradigm
based on expander graphs and propose a MAP algorithm for recovering sparse or
compressible signals from Poisson observations. We support our results with exper-
imental demonstrations of reconstructing average packet arrival rates and instanta-
neous packet counts at a router in a communication network, where the arrivals of
packets in each flow follow a Poisson process.

The second alternative is based on error correcting codes. We show that determin-
istic sensing matrices based on second order Reed Muller codes optimize average
case performance. We also describe a very simple algorithm, one-step thresholding,
that succeeds in average case model selection and sparse approximation, where more
sophisticated algorithms, developed in the context of random sensing, fail completely.

Finally, we provide an algorithmic framework for structured sparse recovery, where
some extra prior knowledge about the sparse vector is also available. Our algorithm,
called Nesterov Iterative Hard-Thresholding (NIHT) uses the gradient information
in the convex data error objective to navigate over the non-convex set of structured
sparse signals. Experiments show however that NIHT can empirically outperform
`1-minimization and other state-of-the-art convex optimization-based algorithms in
sparse recovery.
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Chapter 1

Introduction

An emerging challenge for information and inference systems is to acquire and analyze
the ever-increasing high-dimensional data produced by the vast natural and manmade
phenomena. Sampling, streaming, and recoding of even the most primitive data, e.g.,
in medical imaging and network monitoring, now produce a data deluge that severely
stresses the available analog-to-digital converter, digital communication bandwidth
and storage resources; hence, the traditional paradigm of capturing an entire data set
only to compress it for the subsequent transmission or storage is becoming no longer
feasible.

Surprisingly, while the ambient data dimension is large in many problems, the rel-
evant information therein typically resides in a much lower dimensional space. This
observation has led to several new theoretical and algorithmic developments under
different communities, including theoretical computer science, machine learning, ap-
plied mathematics, and digital signal processing. One such development is called
compressed sensing (CS),1 which exploits sparse representations [95, 54, 20].

The central goal of compressed sensing is to capture attributes of a signal using
very few measurements. In most work to date, this broader objective is exemplified
by the important special case in which the measurement data constitute a vector
f = Φα∗ + eM , where Φ is an M × N matrix called the sensing matrix, α∗ is
a vector in RN , which can be well-approximated by a k-sparse vector, where a k-
sparse vector is a vector which has at most k non-zero entries, and eM is additive
measurement noise.

When Φ satisfies the so-called restricted isometry property (RIP), it preserves the ge-
ometric information of the set of sparse signals [95, 56]. Based on this observation, we
can tractably, stably and provably approximate sparse signals from M & 2k log

(
N
k

)

measurements using convex optimization [54, 55] or greedy algorithms [237, 199].

The role of random measurement in compressive sensing (see [54] and [95]) can be

1Not to be confused with the canonical acronym of Computer Science.
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viewed as analogous to the role of random coding in Shannon theory. Both provide
worst-case performance guarantees in the context of an adversarial signal/error model.
Although it is known that certain probabilistic processes generateM×N measurement
matrices that satisfy the RIP with high probability, there is no practical algorithm for
verifying whether a given measurement matrix has this property. Storing the entries
of a random sensing matrix, and performing matrix-vector multiplications may also
require significant resources.

These drawbacks lead us to consider constructions with deterministic alternatives,
which do not suffer from the same drawbacks. This thesis will describe two deter-
ministic alternatives. The frameworks presented here provide

• easily checkable conditions on special types of deterministic sensing matrices
guaranteeing successful sparse approximation and model-selection guarantees;

• storage efficiency, as the entries of these matrices can be computed on the fly,
and

• recovery algorithms with lower complexities exploiting the structure of the sens-
ing matrices.

The first framework is based on expander graphs. We show that by reformulating
signal reconstruction as a zero-sum game we can efficiently recover any sparse vector.
We also demonstrate resilience to Poisson noise.

The second alternative is based on algebraic error correcting codes. We show that
deterministic sensing matrices based on second order Reed Muller codes optimize
average case performance.
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Chapter 2

Notation

2.1 Vector Properties

Throughout this thesis, nonnegative reals (respectively, integers) will be denoted by
R+ (respectively, Z+). By [−1, 1], we mean the interval between −1 and 1, whereas
{−1, 1} is the discrete set with the elements −1 and 1. For every integer N , we denote
[N ]

.
= {1, · · · , N}.

We denote vectors by bold small letters v, and we denote matrices by bold capital
letters Φ. Given a vector u ∈ RN and a set S ⊆ [N ], we will denote by uS the vector
obtained by setting to zero all coordinates of u that are in Sc, the complement of S.
Similarly if Φ is an M × N matrix, then ΦS denotes the M × |S| submatrix of Φ
which is obtained by restricting the columns of Φ to the subset S. Also vi→j denotes
the vector v restricted to entries i, i+ 1, · · · , j, that is vi→j

.
= (vi, vi+1, · · · , vj).

A vector v ∈ RN is k-sparse if it has at most k non-zero entries. The support of
the k-sparse vector v, denoted as Supp(v), indicates the positions of the non-zero
elements. The `0 pseudo-norm of v, also called the Hamming weight of v is denoted
by ‖v‖0, and indicates the number of non-zero entries of v. In other words, v is
k-sparse, if and only if ‖v‖0 ≤ k.

For each positive integer p, the `p norm of a vector v is defined as

‖v‖p .
=

(
N∑

i=1

|vi|p
) 1

p

.

Also, throughout this thesis we, for every vector v define

‖v‖min
.
= min

i:vi 6=0
|vi|,

as the magnitude of the smallest nonzero entry of v. Holder inequality is an important
inequality widely used for bounding the inner-products between arbitrary vectors.
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Theorem 2.1 (Holder inequality). Let u and v be arbitrary vectors in RN , and let
p and q be positive integers such that 1

p
+ 1

q
= 1. Then

〈u,v〉 ≤ ‖u‖p‖v‖q,

and the equality holds if and only if there exist real non-negative numbers c1 and c2,
not both of them zero, such that for every index i ∈ {1, · · · , N} c1|ui|p = c2|vi|q.

Two key operators which are widely used in this thesis are the Hard Thresholding
and Soft Thresholding operators:

Definition 2.2 (Hard Thresholding). Let Hk() : RN → RN be a function that sets
to zero all but the k largest coordinates in absolute value. More precisely, for each
v ∈ RN , let π be a permutation of {1, · · · , N} such that |vπ(1)| ≥ |vπ(2)| ≥ · · · ≥
|vπ(N)|. Then the vector Hk(v) is a k-sparse vector α where απ(i) = vπ(i) for i ≤ k
and απ(i) = 0 for i ≥ k + 1.

The hard thresholding operator Hk() gives the best k-sparse approximation of any
vector β ∈ RN , that is for every norm p

Hk(v) = arg min
v′:k−sparse

‖v − v′‖p. (2.1.1)

This best k-sparse approximation can be computed efficiently in time O(N logN) by
first sorting the elements of v, and then selecting the k largest elements. Also for
every norm p, we define

σk(v)
.
= ‖v − Hk(v)‖1. (2.1.2)

In other words, σk(v) is the the best k-term approximation error to v in the `1 norm.

Definition 2.3 (Soft Thresholding). For θ ∈ R+, we define the soft thresholding
function S(α, θ) as

S(α, θ) =





θ if α > θ
−θ if α < −θ
α otherwise.

(2.1.3)

For a subset S ⊆ [N ] we will denote by IS the vector with components 1{i∈S},
1 ≤ i ≤ N . Given a vector u, we will denote by u+ the vector obtained by setting
to zero all negative components of u: for all 1 ≤ i ≤ N , u+

i = max{0, ui}. Given two
vectors u,v ∈ RN , we will write u � v if ui ≥ vi for all 1 ≤ i ≤ N . If u � εI [N ]

for some ε ∈ R, we will simply write u � α. We will write � instead of � if the
inequalities are strict for all i.
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2.2 Matrix Properties

Let Φ be an M × N matrix. We denote the ith column of Φ by ϕi, and denote the
entry at the jth row of the ith column of Φ by ϕi,j. The null-space of Φ, denoted by
NΦ, is the set of all N dimensional vectors v with Φv = 0. We also use Φ> to denote
the conjugate transpose of Φ, and use Φ† to denote the MoorePenrose pseudoinverse
of Φ, that is Φ†

.
= (Φ>Φ)−1Φ>.

An N ×N matrix U is unitary if and only if U> = U−1. It is well known that any
M ×N matrix Φ can be decomposed as Φ = UΣV , where U is an M ×M unitary
matrix, V is an N × N unitary matrix, and Σ is an M × N diagonal matrix [149].
The elements of the diagonal of Σ are the singular values of Φ.

For each positive integer p, the `p norm of a matrix Φ is defined as

‖Φ‖p .
= max
v∈RN

‖Φv‖p
‖v‖p

. (2.2.1)

In particular ‖Φ‖2 = σmax(Φ), where σmax(Φ) is the maximum singular value of Φ,
and

‖Φ‖∞ .
= max

i:{1,··· ,M}
max

j:{1,··· ,N}
|ϕi,j|.

Similarly, for every integer k, the restricted `p norm of a matrix Φ is defined as

‖Φ‖k,p .
= max
v:k−sparse

‖Φv‖p
‖v‖p

. (2.2.2)

Theorem 2.4. Let Φ be an M × N matrix, and let v be a vector in RN . Then
‖Φv‖∞ ≤ ‖Φ‖∞‖v‖1.

Proof. For every index j ∈M , from the triangle inequality we get

∣∣∣(Φv)j

∣∣∣ =

∣∣∣∣∣
N∑

i=1

viϕi,j

∣∣∣∣∣ ≤ ‖Φ‖∞
N∑

i=1

|vi| = ‖Φ‖∞‖v‖1.

Therefore ‖Φv‖∞ = maxj∈M |(Φv)j| ≤ ‖Φ‖∞‖v‖1.

An M ×N matrix Φ with normalized columns is called a dictionary.

Definition 2.5 (Tight Frame). A dictionary is a tight-frame with redundancy N
M

if for

every vector v ∈ RN , ‖Φv‖2 = N
M
‖v‖2. If ΦΦ† = N

M
IM×M , then Φ is a tight-frame

with redundancy N
M

.

The following Proposition states that tight-frames have the lowest spectral norms
among all dictionaries of the same size.

Proposition 2.6. Let Φ be an M × N dictionary. Then ‖Φ‖2 ≥ N
M

, and equality
holds if and only if Φ is a tight frame with redundancy N

M
.
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2.3 Function Properties

Definition 2.7 (Convex set). A set S is convex if for every pair of points P and Q
in S, and every α ∈ [0, 1], the point R = αP + (1− α)Q is also in S.

Definition 2.8 (Convex function). A function R : S → R is convex if S is a convex
set and moreover, for every pair of points P and Q in S, and every α ∈ [0, 1], we
have

R(αP + (1− α)Q) ≤ αR(P) + (1− α)R(Q).

Theorem 2.9 (Convex function). A differentiable function R : S → R is convex if
S is a convex set and moreover, for every pair of points P and Q in S

R(P) ≥ R(Q)− 〈(P−Q),∇R(Q)〉.

Definition 2.10. A differentiable function R : S → R is strongly convex with pa-
rameter σ, if for every pair of points P and Q in S,

R(P)−R(Q)− 〈(P−Q),∇R(Q)〉 ≥ σ

2
‖P−Q‖2

2.

Definition 2.11 (Big–O’ notation). f(n) = O(g(n)) (alternatively, f(n) - g(n)) if
∃ co > 0, no : ∀ n ≥ no, f(n) ≤ cog(n), f(n) = Ω(g(n)) (alternatively, f(n) % g(n)) if
g(n) = O(f(n)), and f(n) = Θ(g(n)) (alternatively, f(n) � g(n)) if g(n) - f(n) -
g(n).

2.4 Concentration Inequalities

In this section, we provide the main concentration inequalities which are used through-
out the thesis.

Theorem 2.12 (Gaussian tail bound). Let X ∼ N (0, σ2) be a zero-mean Gaussian
random variable with variance σ2. Then for all 0 ≤ ε, we have

Pr [|X| ≥ εσ] ≤ 2 exp

{
−ε

2

2

}
.

Theorem 2.13 (`∞-Norm of the Projection of a Complex Gaussian Vector). Let Φ
be a real- or complex-valued M ×N matrix having unit `2-norm columns and let v be
an N × 1 vector having entries independently distributed as N (0, σ2). Then for any
ε > 0, we have

Pr
(
‖Φ>v‖∞ ≥ σε

)
<

4N√
2π
· exp(−ε2/2)

ε
. (2.4.1)
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Proof. Assume without loss of generality that σ = 1, since the general case follows
from a simple rescaling argument. Let ϕ1, . . . ,ϕN ∈ CM be the N columns of Φ and
define

zi
.
= 〈ϕi,v〉, i = 1, . . . , N. (2.4.2)

Note that the zi’s are identically (but not independently) distributed as zi ∼ N (0, 1),

which follows from the fact that vi
i.i.d.∼ N (0, 1) and the columns of Φ have unit

`2-norms. The rest of the proof follows from the facts that

Pr
(
‖Φ>v‖∞ ≥ ε

) (a)

≤ N · Pr
(
|Re(z1)|2 + |Im(z1)|2 ≥ ε2

)

(b)

≤ 2N · Pr

(
|Re(z1)| ≥ ε√

2

)
(c)
<

4N√
2π
· exp(−ε2/2)

ε
.

Here, (a) follows by taking a union bound over the event
⋃
i{|zi| ≥ ε}, (b) follows

from taking a union bound over the event {|Re(z1)| ≥ ε/
√

2}∪{|Im(z1)| ≥ ε/
√

2} and
noting that the real and imaginary parts of zi’s are identically distributed as N (0, 1

2
),

and (c) mainly follows by upper bounding the complementary cumulative distribution
function [167].

Theorem 2.14 (χ2-concentration [161]). Let X ∼ χ2
m be a chi-squared random vari-

able with m degrees of freedom, with mean mσ2, and with standard deviation
√

2mσ2.
Then for all 0 ≤ ε ≤ 1

2
, we have

Pr
[
X −mσ2 ≥ εmσ2

]
≤ exp

{
− 3

16
mε2

}
.

Theorem 2.15 (Azuma’s Inequality [12]). Suppose 〈Z0, Z1, · · · , Zk〉 is a bounded-
difference martingale sequence, that is for each i, E [Zi] = Zi−1, and |Zi − Zi−1| ≤ ci.
Then for all ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 2 exp

{
−ε2

2
∑k

i=1 c
2
i

}
.

In this thesis, we use the Azuma’s Inequality for complex martingale random variables.

Theorem 2.16 (Complex Azuma’s Inequality). Let 〈Z0, Z1, · · · , Zk〉 be a set of
complex random variables such that, for each i, E [Zi] = Zi−1, and |Zi − Zi−1| ≤ ci.
Then for all ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 4 exp

{
−ε2

8
∑k

i=1 c
2
i

}
.
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Proof. For each random variable Zi let Xi
.
= Re (Zi) and Yi

.
= Im (Zi), so that

Zi = Xi + iYi. Then E [Xi] = Xi−1 and E [Yi] = Yi−1. Moreover, by triangle in-
equality |Xi −Xi−1| ≤ |Zi − Zi−1| ≤ ci, and |Yi − Yi−1| ≤ |Zi − Zi−1| ≤ ci. Hence,
〈X0, · · · , Xm〉, and 〈Y0, · · · , Ym〉 form martingale sequences. Now from the triangle
inequality we have

Pr [|Zk − Z0| ≥ ε] ≤ Pr
[
|Xm −X0| ≥

ε

2

]

+ Pr
[
|Ym − Y0| ≥

ε

2

]
≤ 4 exp

{
−ε2

8
∑k

i=1 c
2
i

}
.

2.5 Group Theory

In this thesis, we will analyze deterministic sensing matrices for which the columns
form a group G under pointwise multiplication. The multiplicative identity is the
column 1 with every entry equal to 1. The following property is fundamental.

Lemma 2.17. If a group G has at least one identity f different from the identity
element, then the group G satisfies

∑
g∈G g = 0

Proof.

f

(∑

g∈G

g

)
=
∑

g∈G

(fg) =
∑

g∈G

g.

Therefore we have

(1− f)

(∑

g∈G

g

)
= 0,

and since f 6= 1 we must have
∑
g∈G g = 0.
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Chapter 3

An Overview of Compressed
Sensing

3.1 What is Compressed Sensing?

The central goal of compressed sensing is to capture attributes of a signal using
very few measurements [95, 48, 22]. In most work to date, this broader objective is
exemplified by the important special case in which the measurement data constitute
a vector f = Φα∗, where Φ is an M ×N matrix called the sensing matrix , and α∗

is a k-sparse vector in RN (with k � N) [60, 86].

There are three main objectives in compressive sensing:

• (O1): Efficient reconstruction of any k-sparse vector α∗ from the measurement
vector f = Φα∗ efficiently.

• (O2): Minimizing the number of required measurements for reconstruction
(M ≈ k � N).

• (O3): Robustness against data-domain and measurement-domain noise.

Based on the above objectives, compressed sensing can be viewed as a process con-
sisting of two complementary tasks:

1. (T1): Designing an appropriate M ×N sensing matrix Φ,

2. (T2): Designing an efficient reconstruction algorithm.

Objective (O1) requires that the reconstruction algorithm recovers α∗ from f without
knowing its support a priori. A necessary condition for this requirement is that no
two k-sparse vectors are mapped to the same low-dimensional vector. Otherwise,
there is no way to distinguish the two vectors from the low-dimensional measurement
vector. This condition imposes a constraint on the number of required measurements.
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Proposition 3.1. Let Φ be an M ×N matrix that does not map any pair of k-sparse
vectors into the same low-dimensional measurement vector. Then the rank of any
M × 2k submatrix of Φ is 2k, and therefore M ≥ 2k.

Proof. Suppose that there exists an M × 2k submatrix of Φ with rank less than 2k.
Let B denote the indices of the columns of this submatrix. Then ΦB has non-empty
null-space, and therefore there the exists a vector v in the null-space of Φ which is
2k-sparse with Supp(v) = B. Write v = α− β, where α, and β are k-sparse vectors
with disjoint supports. Now we have

Φ(α)−Φ(β) = Φ(α− β) = Φv = 0.

In other words, there are two distinct k-sparse vectors α, and β with Φα = Φβ.
This means that no reconstruction algorithm can distinguish them by just looking
at the measurement vector. Now suppose M < 2k. Then the rank of any M × 2k
submatrix of Φ is at most M which will be strictly smaller than 2k.

Remark 3.2. If every M × 2k submatrix of Φ has rank 2k, then compressed sensing
is information theoretically possible using the sensing matrix Φ. This means that for
every k-sparse vector α∗, given Φα∗, one can recover α∗ successfully by performing
an exhaustive search over all

(
N
k

)
, k-dimensional subspaces of RN .

Thus far, we have seen that there is a trade-off between the first two objectives of the
compressed sensing, and in order to get Objective (O1) we need to have at least 2k
measurements. The last objective in compressed sensing is about robustness against
noise. Sparse approximation is a measure of stability of different compressed sensing
methods, and was originally established by Kashin [166] with later improvements by
Gluskin [128, 129].

Definition 3.3 (Sparse Approximation). Let p and q be positive integers. Let Φ
be an M × N sensing matrix , and let AΦ be a reconstruction algorithm associated
with Φ. Then AΦ provides `p/`q sparse approximation guarantee if and only if there
exists absolute constants C1, C2, such that for every α∗ ∈ RN , and eM ∈ RM , given
f = Φα∗ + eM , AΦ can successfully recover a k-sparse vector α̂ with

‖α∗ − α̂‖p ≤
C1

k1− 1
p

‖α∗ − Hk(α
∗)‖q + C2‖eM‖p.

In the rest of this section we first focus on the noiseless compressed sensing problem.
We will see that noiseless compressed sensing can be efficiently done by designing
appropriate matrices based on Reed-Solomon codes [5], and then using specific algo-
rithms for recovering sparse vectors [253]. However, robustness against the noise is a
lacking in that approach.

An alternative approach is to start with a generic sparse recovery algorithm, and find
sufficient conditions a sensing matrix should satisfy in order to guarantee the fidelity of
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the recovery algorithm. Linear programming with matrices satisfying the Restricted
Isometry Property is an example of this approach [54, 55]. In Section 3.3 we will
see that this approach provides robustness against noise. However, the limitations of
this approach are large storage and computational requirements. Robustness against
the noise also imposes extra lower-bounds on the number of required measurements
which are discussed in detail in Section 3.5.

To overcome these difficulties, in this thesis we introduce alternative deterministic ma-
trices which are carefully designed to tackle the robust compressed sensing problem.
Our sensing matrices are equipped with custom reconstruction algorithms. These
algorithms exploit the structure of the sensing matrix, and provide efficient storage,
compression, and recovery, as well as robustness against noise.

3.2 Noiseless Compressed Sensing

In Section 3.1 we introduced three major objectives of compressed sensing. If we
ignore the Objective (O3), then we are left with the noiseless compressed sensing
problem. The main tasks in the noiseless compressive sensing are

1. (NT1): Designing an M ×N sensing matrix Φ (with M ≈ k � N), such that
the rank of any M × 2k submatrix of Φ is 2k,

2. (NT2): Designing an efficient algorithm for solving the combinatorial `0 mini-
mization problem

minimize‖α′‖0 (3.2.1)

subject to f = Φα′.

Solving the combinatorial optimization problem of Equation (3.2.1) is in general NP-
hard [197]. However, here we will see an example of a sensing matrix and a recon-
struction algorithm that can efficiently recover any k-sparse vector using only M = 2k
measurements. We first show why the two tasks about are sufficient to guarantee the
achievement of the Tasks (T1), and (T2) in compressed sensing.

Proposition 3.4. Suppose that Φ is a sensing matrix satisfying the Task (NT1), and
let AΦ be an algorithm which efficiently solves the optimization problem of Task (NT2).
Let α∗ be an arbitrary k-sparse vector. Then given f = Φα∗, the reconstruction al-
gorithm A efficiently recovers α∗ uniquely.

Proof. (NT2) guarantees that the Algorithm (AΦ) always finds a k-sparse vector, α̂,
such that f = Φα̂. On the other hand, (NT1) guarantees that if α and β are two
k-sparse vectors with Φα = Φβ, then α = β. Therefore, since both α∗ and α̂ are
k-sparse and Φα∗ = f = Φα̂, we must have α̂ = α∗.
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The `0-minimization problem of Equation 3.2.1 can be viewed as a channel coding
problem using linear codes defined over the field of real numbers. To see this, let Φ
be an M ×N sensing matrix , with null-space NΦ. Let α+ be a solution of f = Φα′.
Then any other solution of f = Φα′, is given by α+ − NΦ = {α+ − v|v ∈ NΦ}.
Thus the `0-minimization problem of Equation (3.2.1) is equivalent to the problem of
finding vNNΦ which minimizes ‖α1 − v‖0.

If one thinks of NΦ as a linear code defined over the field of real numbers, and of f
as the received word, the `0-minimization problem is equivalent to finding the error
vector of minimum (Hamming) weight over all the codewords v ∈ NΦ. Problems of
this nature have been widely studied in the language of coding theory [183]; however,
these codes are typically defined over finite fields, whereas here all arithmetic is done
over the field of real numbers.

Inspired by this simple but fundamental connection between the noiseless compressed
sensing and the theory of error-correcting codes several coding theory based construc-
tions are proposed for solving the noiseless compressed sensing problem [5, 217, 152,
56]. In particular, based on the theory of algebraic coding/decoding, Akcakaya and
Tarokh [5] construct Vandermonde sensing matrices that generalize Reed-Solomon
codes using Vandermonde matrices. Let M = 2k, and consider the M × N sensing
matrix

Φ =




1 1 1 1
z1 z2 · · · zN
z2

1 z2
2 · · · z2

N
...

...
. . .

...
zM−1

1 zM−1
2 · · · zM−1

N



,

where z1, · · · , zN are N distinct, non-zero real numbers.

Observe that since M = 2k, any M × 2k sub-matrix of Φ is a 2k × 2k Vandermonde
matrix, and therefore has rank 2k. In the language of algebraic coding theory, the
null-space of Φ is a maximum distance separable linear code of length N , dimension
N −M and minimum distance M + 1, and can be viewed as a generalization of the
Reed-Solomon code over the field of the real numbers.

The Vandermonde reconstruction algorithm (the roots of which go back to 1795! – see
[87, 253]) , uses the same idea as the algebraic algorithm for decoding Reed-Solomon
codes [183, 231]. It uses the input data to construct an error-locator polynomial; the
roots of this polynomial identify the signals appearing in the sparse superposition.
The whole reconstruction process can be done efficiently using only O(k2) operations.

The Vandermonde construction provides optimality in the number of required mea-
surements (M = 2k), and efficiency in sparse reconstruction (O(k2) operations). Nev-
ertheless, because the correspondence between the coefficients of a polynomial and its
roots is not well conditioned, it is very difficult to make the algorithm robust against
the noise. This difficulty becomes more clear in Section 3.5 in which we will see that
in the robust compressed sensing framework at least Ω

(
k log N

k

)
measurements are
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necessary.

3.3 Robust Compressed Sensing

3.3.1 `1-minimization and Restricted Isometry Property

The coding theory approach to compressed sensing exploits the similarities between
the `0-minimization of Equation (3.2.1) and the decoding step in channel coding.
The first step in this approach is to design a proper sensing matrix and a recovery
algorithm specific to the designed sensing matrix. However, as we saw earlier, there
are fundamental challenges against making this approach robust.

The sparse approximation problem has also been extensively investigated in the statis-
tics and machine learning communities [142]. In statistics and machine learning, we
are provided with M training examples. Each training example consists of N dis-
tinct features, and the goal is to find a sparse combination of the features that best
represents the labels of all training examples.

More precisely, let Φ be the M × N matrix whose rows indicate the M training
examples, and at each row, the columns represent the values of N different features for
that training example. Also let f be an M -dimensional vector in RN that corresponds
to the (real-valued) labels for the M training examples. The goal is to find a sparse
vector α∗ ∈ RN such that Φα∗ closely approximates f .

For simplicity, first consider the noiseless case in which there exists a k-sparse vector
α∗ with f = Φα∗. In this case, the sparse feature selection problem reduces to the
`0 minimization problem of Equation (3.2.1):

minimize ‖α′‖0

subject to f = Φα′.

As the `0 pseudo-norm is non-convex, solving this optimization problem in general is
NP-Hard [197]. The `1 minimization is an alternative and tractable approach, which
suggests that instead of solving the non-convex `0 minimization problem, we alter-
natively solve the convex `1-minimization problem (also known as the Basis Pursuit
(BP) problem [73]):

minimize ‖α′‖1 (3.3.1)

subject to f = Φα′.

The `1 norm is a convex norm that has the most similarity to the non-convex pseudo-
norm `0 [118]. The following 2-dimensional example provides insight into why `1-
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f = Φα�

s.t. f = Φα�
α̂ = arg min �α��2

α̂ is not sparse

(a) Visualization of the `2 minimization (3.3.2).

f = Φα�

s.t. f = Φα�

α̂ is sparse

α̂ = arg min �α��1

(b) Visualization of the `1 minimization (3.3.1).

Figure 3.1: An illustrative example indicating the advantage of `1 minimization
over `2 minimization in finding a sparse point in the line f = Φα′. The `2-
minimization (3.3.2) finds a non-sparse point which is the intersection of the `2 ball,
and the line f = Φα′, whereas the `1-minimization (3.3.1) finds a sparse point which
is the intersection of the `1 diamond, and the line f = Φα′.

minimization is better able to select a sparse solution of f = Φα′, than is `2-
minimization. Here our feasible set S = {α′ : f = Φα′} is a line in the plane,
and the analytical solution to the `2-minimization problem

minimize ‖α′‖2 (3.3.2)

subject to f = Φα′,

(which is α̂ = Φ†f) is a point in this line that has the closest Euclidean distance
to the origin. This point can be found by blowing up a circle (the `2 ball) until it
contacts the line f = Φα′. However, as indicated in Figure 3.1(a) this closest point
will live away from the coordinate axes, and hence will not be sparse. In contrast,
the `1 ball in Figure 3.1(b) has points aligned with the coordinate axes. Therefore,
when the `1 ball is blown up, it will first contact the line f = Φα′ at a point near
the coordinate axes, that is it finds a sparse solution.

Thus far we have assumed that the vector f can be exactly represented by a sparse
linear combination of the columns of Φ. However, in reality and in many statistics
and machine learning applications f can only be well approximated by a sparse linear
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combination of the columns of Φ. Over time, the `1-minimization approach has been
generalized to address this more general problem.

Examples of these generalizations are, Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [233, 106], which solves the `1-regularized regression problem

minimize α′‖f −Φα′‖2
2 + λ‖α′‖1, (3.3.3)

for a proper regularization parameter λ, the Basis Pursuit Denoising program [244,
243], which solves the second order cone program

minimize ‖α′‖1 (3.3.4)

subject to ‖f −Φα′‖2 ≤ ε1,

for some appropriately chosen ε1, and the Dantzig Selector program [58], which solves
the linear optimization

minimize ‖α′‖1 (3.3.5)

subject to ‖Φ>(f −Φα′)‖∞ ≤ ε2,

for another suitably chosen parameter ε2.

After the formalization of `1-minimization, several algorithms were proposed to effi-
ciently solve the above optimization programs. Examples of such algorithms are the
interior point methods [51, 52], Lasso modification to LARS [106, 171], homotopy
methods [99], weighted least squares [163], and gradient-based methods [111, 257, 27,
242].

Experience with many applications has confirmed that `1-minimization algorithms
and their extensions [59, 168] can robustly find sparse features that closely approxi-
mate the target vector f . Therefore, `1 minimization appears to be a suitable algo-
rithm for Task (T2) of compressed sensing. A natural question that now comes to
mind is “what are proper sensing matrices for which the `1 minimization is guaranteed
to recover a sparse vector, and among these sensing matrices, for what matrices is
uniqueness in sparse recovery guaranteed?”

To answer this question, recall that Proposition 3.1 implies that if Φ is a sensing
matrix for which `1-minimization is able to recover any k-sparse vector α∗ from
f = Φα∗, then no 2k-sparse vector can be in the null-space of Φ. The following
property is a stricter requirement for sensing matrices, and is introduced by Candès
and Tao [56]:

Definition 3.5 (Restricted Isometry Property). Let Φ be an M ×N sensing matrix.
Then for every integer k,and 0 < ε < 1, Φ satisfies the (k, ε) Restricted Isometry
Property (abb. Φ is (k, ε)-RIP), if for every k-sparse vector α we have

(1− ε)‖α‖2 ≤ ‖Φα‖2 ≤ (1 + ε)‖Φα‖2.
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Note that any sensing matrix which is (2k, ε)-RIP for some positive ε, also satisfies
the requirement of Proposition 3.1. To see this, suppose α is a 2k-sparse vector in
the null-space of Φ. Then from the RIP with have

(1− ε)‖α‖2 ≤ ‖Φα‖2 = 0,

and therefore we must have ‖α‖2 = 0. In other words, the (2k, ε)-RIP guarantees that
no two k-sparse vectors can be mapped to the same low-dimension vector. That is,
compressed sensing is information theoretically possible using any (2k, ε)-RIP sensing
matrix .

The following celebrated results of Candès, Romberg and Tao [54, 55], and Donoho
et al. [95, 97] also guarantee that if a sensing matrix Φ is (2k, ε)-RIP for suffi-
ciently small ε, then `1-minimization can exactly recover any k-sparse vector, in the
noiseless compressed sensing framework, and moreover, the Basis Pursuit Denoising
algorithm can stably approximate any k-sparse vector in the presence of data-domain
and measurement-domain noise. This means that compressed sensing is also com-
putationally possible using RIP sensing matrices and the generic `1-minimization
algorithm.

Theorem 3.6 (Noiseless Compressed Sensing [57, 95]). Let Φ be a sensing matrix
satisfying (2k, 0.41)-RIP. For every k-sparse vector α∗, let f = Φα∗, and let α̂ be
the solution of the `1-minimization problem

minimize ‖α′‖1

subject to f = Φα′.

Then α̂ = α∗.

Theorem 3.7 (Stable Compressed Sensing [55, 97]). Let ε be a positive number
smaller than 0.3, and let Φ be a sensing matrix satisfying (2k, ε)-RIP. Let α∗ be any
arbitrary vector in RN , and let Hk(α

∗) denote the best k-term approximation of α∗

defined by Equation (2.1.1). Finally let eM be an arbitrary noise vector in RM , and
let f = Φα∗ + eM . Then the solution α̂ of the Basis Pursuit Denoising problem

minimize ‖α′‖1

subject to ‖f −Φα′‖2 ≤ ‖eM‖2,

satisfies the following `2/`1 sparse approximation guarantee:

‖α̂−α∗‖2 ≤ c1
‖α∗ − Hk(α

∗)‖1√
k

+ c2‖eM‖2, (3.3.6)

with c1
.
= 21+(

√
2−1)ε

1−(
√

2+1)ε
, and c2

.
= 2√

1+ε
c1.
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Table 3.1: Summary of the `1-minimization problems used in RIP-based compressed
sensing. In the deterministic noise model no assumption is made regarding the noise,
whereas in the stochastic noise model the noise vector is assumed to be white Gaus-
sian.

Optimization Objective Noise Model

Basis Pursuit (BP) [73]
minimize ‖α′‖1 No noise
s.t. Φα′ = f

Basis Pursuit Denoising minimize ‖α′‖1 Deterministic
(BPDN) [244] s.t. ‖f −Φα′‖2 ≤ ε Noise

LASSO [106] minimize ‖Φα′ − f‖2
2 + λ‖α′‖1

Stochastic
Noise

Dantzig Selector (DS) [58]
minimize ‖α′‖1 Stochastic

s.t. ‖Φ>(f −Φα′)‖∞ ≤ ε Noise

Theorems 3.6 and 3.7 are fundamental as they provide sufficient conditions a sens-
ing matrix should satisfy to provably guarantee that tractable `1-minimization can
uniquely recover any sparse vector in the noiseless sensing regime [57, 49, 95] and can
robustly find a sparse approximation to any vector in the presence of noise [54, 55, 97].
Table 3.1 summarizes the main `1-minimization problems that are widely used in com-
pressed sensing applications.

Remark 3.8. There is a fundamental difference between the coding theory approach
and the statistics approach. In the coding theory approach, we first design a sensing
matrix (e.g., the Reed-Solomon matrix) and then come up with a recovery algorithm
specific to that particular sensing matrix (e.g., the algebraic decoding). In contrast,
in the statistics approach we start with the generic `1-minimization algorithm, and
then find specific properties (e.g. RIP) a sensing matrix should satisfy, so that the
fidelity of the `1-minimization is guaranteed. Examples of RIP sensing matrices are
introduced in Section 3.4.

3.3.2 Greedy and Iterative Algorithms

So far we have seen that if a sensing matrix satisfies the (2k, ε)-RIP with sufficiently
small ε, then `1-minimization methods can stably recover any sparse vector. However,
the best known running time for `1-minimization algorithms is O(N1.5M2) [205] which
is infeasible for many practical applications. These include important examples such
as medical imaging or data streaming, where the number of pixels in the images or
the traffic table sizes (N) are in the range 107 to 109. In these applications, more
efficient and scalable algorithms are needed.
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Greedy algorithms [237] provide an alternative to the `1-minimization approach. They
aim to directly solve the original `0-minimization problem. Like the `1-minimization
techniques, greedy algorithms were also developed before the formulation of RIP [85].
The greedy algorithms were initially developed as heuristic algorithms for approxi-
mately solving the non-convex optimization problem

minimize ‖f −Φα′‖2
2 (3.3.7)

subject to α′ ∈ Σk,

where f is an arbitrary vector in RM , Φ is an M ×N sensing matrix, and

Σk
.
= {α′ : ‖α′‖0 ≤ k},

is the union of all
(
N
k

)
k-dimensional subspaces in RN . Since Σk is non-convex, the

optimization problem of Equation (3.3.7) is not convex. Moreover, it is possible to
show that (3.3.7) is in general NP-hard , that is, if there is no restriction on the
sensing matrix Φ [197].

Here we start with the Iterative Hard Thresholding (IHT) Algorithm [35, 114] which
is the simplest algorithm for solving the optimization problem of Equation (3.3.7).
IHT can be viewed as a special-case of the more generic Gradient Projection algorithm
[105, 130] which is widely used in machine learning [37] and optimization [179].

Let L : RN → R be a differentiable loss function, and let Ω be a subset of RN such
that for every v ∈ RN it is possible to efficiently find the solution of the optimization
problem

min
u∈Ω
‖v − u‖2

2.

The Gradient projection algorithm is a simple and generic but powerful algorithm for
solving the optimization problem

minimize L(α′) (3.3.8)

subject to α′ ∈ Ω.

It starts from an arbitrary point α0 ∈ Ω, and iteratively takes a step of length η along
the gradient. Therefore, at each iteration we have one gradient update

βt
.
= αt−1 − η∇L(αt−1)

to reduce the value of the loss function, and then we need one projection step, i.e.
projecting back the result to the set Ω by efficiently calculating the vector αt

.
=

minα′∈Ω ‖αt − βt‖2, in order to ensure that αt is also in the feasible set Ω.

Here our loss function is the square loss L(α′) = ‖f − Φα′‖2
2, with ∇L(α′) =

Φ>(Φα′ − f). Also the feasible set Ω is the set of all k-sparse vectors (Σk). As
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Algorithm 1 Iterative Hard Thresholding Algorithm

Inputs: M -dimensional vector f , M × N matrix Φ, number of iterations T , the
sparsity level k, and update rate η.
Output: N -dimensional vector α̂

Initialize α0 .
= 0N .

for t = 1, . . . , T do
Let rt

.
= Φ>(Φαt−1 − f). (Gradient step calculation)

Let βt
.
= αt−1 − ηrt. (Gradient update)

Set αt
.
= Hk(β

t). (Projection back to Σk)
end for
Output α̂

.
= αT .

a result, it follows from Equation (2.1.1) that the projection step is just a hard
thresholding operation

αt
.
= min
α′∈Ω
‖αt − βt‖2 = min

α′∈Σk
‖α′ − βt‖2 = Hk(β

t),

and can be computed efficiently in time O(N logN) by sorting the elements of βt.

Algorithm 1 summarizes the Iterative Hard Thresholding (IHT) algorithm for solving
the optimization problem of Equation (3.3.7). As mentioned earlier, this algorithm
has been invented independently by several researchers in different communities as a
heuristic algorithm for solving Equation (3.3.7) [85, 36, 147]. It turns out that the
Restricted Isometry Property, which is a sufficient condition for the fidelity of the
`1-minimization algorithms was also sufficient for proving the quick convergence of
the IHT algorithm to the optimal solution of Equation (3.3.7) [36, 119].

The analysis that we discuss here is due to Garg and Khandekar [119], and provides
a near linear-time algorithm that is guaranteed to find the solution of the program of
Equation (3.3.7) as long as the sensing matrix is (2k, 1/3)-RIP.

In their analysis, they first show that the loss function L(αt) always decreases by a
constant factor at the end of every iteration. To prove this they show that the gradient
descent step reduces the error significantly enough, while the RIP of Φ implies that
the sparsification step does not increase the error by too much. The following theorem
summarizes the `2/`1 sparse approximation guarantee of the IHT Algorithm.

Theorem 3.9. Let α∗ be an arbitrary vector in RN , and let eM be the arbitrary
noise vector in RM . Define

SNR
.
=

‖Hk(α
∗)‖2

‖eM‖2 + ‖α∗ − Hk(α
∗)‖2

.

Let Φ be an M × N matrix satisfying (2k, ε)-RIP with ε ≤ 1
3
. Finally let f =

Φα∗ + eM . Then there exists a constant cIHT > 0 that only depends on ε, such that
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Algorithm 1 with η = 1
1+ε

, computes a k-sparse vector α̂ satisfying

‖α̂− Hk(α
∗)‖2 ≤ cIHT

(√
1 + ε

(
‖α∗ − Hk(α

∗)‖2 +
‖α∗ − Hk(α

∗)‖1√
k

)
+ ‖eM‖2

)

in at most O (log SNR) iterations. Moreover, each iteration requires only O(V) oper-
ations, where V bounds the cost of a matrix-vector multiplication by Φ or Φ†.

The Iterative Hard Thresholding Algorithm is a first order algorithm that solves
the `0-minimization problem of Equation (3.3.7). By first order we mean at each
iteration the algorithm only requires two matrix vector multiplications Φαt−1 and
Φ>(f −Φαt−1). Therefore, the algorithm can be implemented easily and efficiently.
Nevertheless, the IHT algorithm usually performs significantly worse than `1 mini-
mization (see Figure 3.2 or [185] for more discussions).

In order to overcome the sub-optimality of the IHT algorithm compared to convex,
more complicated greedy algorithms were proposed over the years. The Compres-
sive Sampling Matching Pursuit (CoSaMP) algorithm combines the idea of greedy
gradient-projection with the idea of using convex optimization methods for sparse
approximation, with the aim of achieving a high-performance, computationally ef-
ficient algorithm [199]. CoSaMP is an iterative algorithm that relies on two stages
of sparse approximation: a first stage selects an enlarged candidate support set in a
similar fashion to the IHT algorithm, while a second stage projects down this initial
approximation to the desired sparsity level.

Similar to the IHT algorithm, at the begining of every iteration the gradient vector
rt = Φ>(Φαt−1 − f) is calculated. In IHT then this gradient is directly added to
the previous candidate αt−1 in order to obtain the new candidate αt. However, in
contrast to IHT algorithm, CoSaMP is not first order. Here first the support of
the significant entries of the gradient vector rt is first added to the support of the
previous candidate αt−1, with the goal of obtaining a richer set Ωt of the columns
of the sensing matrix that best represents the vector f . The new candidate is then
a |Ωt|-sparse vector, supported on Ωt whose non-zero entries that are obtained by
solving the optimization problem

minimize β′
Ωt
‖ΦΩtβ

′
Ωt − f‖2

2,

(i.e., by projecting f into the span of ΦΩt .) Similar to IHT, the new candidate is
finally further sparsified to ensure that it belongs to the feasible set Σk. The algorithm
is formally detailed as Algorithm 2.

The following theorem is proved by Needell and Tropp [199], and provides an `2/`1

sparse approximation guarantee for CoSaMP.

Theorem 3.10. Suppose that Φ is an M ×N sensing matrix which is (4k, 0.1)-RIP.
Let f = Φα∗ + eM be a vector of samples of an arbitrary signal, contaminated with
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Algorithm 2 CoSaMP Algorithm

Inputs: M -dimensional vector f , M ×N matrix Φ, number of iterations T , and the
sparsity level k.
Output: N -dimensional vector α̂

Initialize α0 .
= 0M .

for t = 1, · · · , T do
Let rt

.
= Φ>(Φαt−1 − f). (Gradient step calculation)

Let Ω̂
.
= Supp(H2k(r

t)). (Identify large components)
Let Ωt .= Ω̂ ∪ Ωt−1. (Enlarging the candidate set)
Let βtΩt = Φ†Ωtf , and βtΩt = 0. (Signal estimation by least squares)
Let αt

.
= Hk(β

t). (Projection back to Σk.)
end for
Output α̂

.
= αT .

arbitrary noise. Define

SNR
.
=
‖Hk(α

∗)‖2

‖eM‖2

. (3.3.9)

Then the algorithm CoSaMP produces a k-sparse approximation α̂ that satisfies

‖α∗ − α̂‖2 ≤ 20

(
‖α∗ − Hk(α

∗)‖2 +
‖α∗ − Hk(α

∗)‖1√
k

+ ‖eM‖2

)
,

in at most O (log SNR) iterations. Moreover, each iteration requires only O(V) oper-
ations, where V bounds the cost of a matrix-vector multiplication by Φ or Φ†.

Examples of other greedy algorithms include the classical Matching Pursuit (MP)
[186], Orthogonal Matching Pursuit (OMP) [241, 126], stagewise OMP (StOMP) [96],
regularized OMP (ROMP) [200], subspace pursuit [82], Iterative Soft Thresholding
(IST) [107], and SAMP [89]. A comparison of a few key greedy algorithms for RIP-
based Compressed sensing is provided in Table 3.2.

Greedy algorithms are favorable for compressed sensing due to their computational
efficiency and also their simplicity of implementation. However, a major problem
with most greedy algorithms is that the sparsity level k must be known to the user a
priori. To solve this difficulty Donoho and Maleki have suggested using tuned greedy
algorithms [185]. A tuned greedy recovery algorithm is a recovery algorithm that uses
a hard-coded sparsity level k, which is determined as a function of the data dimension
N , and the number of measurements M . The user does not need to know this hard-
coded number. If the actual sparsity in α∗ is better than the assumed value, the
algorithm still works, but if the sparsity is actually worse, the algorithm wont work
even if tuned to assume that worse sparsity level.

The Tuned Two-Stage Thresholding (Tuned TST) [185] is then a generalization of
the CoSaMP algorithm that does not require the sparsity level to be specified by the
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Table 3.2: A comparison of a few selected greedy algorithms for RIP-based Com-
pressed sensing and the Basis Pursuit Denoising algorithm. The algorithms are ro-
bust against noise. Here M and N denote the number of rows and columns of matrix
Φ, V denotes the time taken in performing two matrix operations Φv and Φ>u. Also
SNR is defined By Equation (3.3.9), and all bounds ignore the O() constants.

Algorithm Approach
Recovery Recovery Recovery

Time Condition Guarantee

BPDN [55]
Convex

N1.5M2 Φ : (2k, ε)-RIP
`2/`1

Optimization with ε ≤
√

2− 1

IHT [119] Greedy V log SNR
Φ : (2k, ε)-RIP

`2/`1with ε ≤ 1
3

IHT [36] Greedy V log SNR
Φ : (3k, ε)-RIP

`2/`1with ε ≤ 1√
32

Subspace Pursuit [82] Greedy V log SNR
Φ : (3k, ε)-RIP

`2/`1with ε ≤ 0.06

SAMP [89] Greedy V log SNR
Φ : (3k, ε)-RIP

`2/`1with ε ≤ 0.06

CoSaMP [199] Greedy V log SNR
Φ : (4k, ε)-RIP

`2/`1with ε ≤ 0.1

user. It has been reported that the Tuned TST algorithm empirically outperforms the
original CoSaMP algorithm [185]. Therefore, in the rest of this thesis, unless specified
explicitly, we use the tuned TST algorithm as the baseline greedy algorithm.

Theorems 3.9 and 3.10 provided theoretical `2/`1 sparse approximation bounds on
the performances of IHT and CoSaMP algorithms, which are similar to the `2/`1

guarantee of `1-minimization methods (Theorem 3.7). However, a good asymptotic
theoretical bound is not very useful if the runtime constants are very big. From
a practical perspective, it is very important to quantify the exact reconstruction
accuracy of the proposed greedy algorithms, and in particular to determine how well
each greedy algorithm performs compared to the `1-minimization approach.

To see how each greedy algorithm compares to the `1-minimization empirically, the
following Monte Carlo simulations is suggested by Donoho and Tanner [98] (see also
[185]). Fix the signal dimension N = 800, and sweep across k and M values. For each
(k,M)-pair, repeat the following 100-times: (i) generate a k-sparse vector α∗ with
random support, random sign, and unit norm, (ii) generate compressive measurements
(no noise) using a RIP sampling matrix, and (iii) recover a k-sparse approximation
α̂ for α∗ using each greedy algorithm. Finally report the number of recoveries that
obtain reconstruction error, ‖α∗ − α̂‖2 less than 10−2.
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δ =
M

N

ρ =
k

M

Figure 3.2: Phase Transitions of several baseline sparse approximation algorithms as
provided in [185]. The upper curve indicates the theoretical phase transition of the
`1-minimization (which is characterized by Donoho and Tanner [98]), and the lower
curves show the empirical phase transitions of different algorithms.

Figure 3.2 compares the empirical performance of different sparse reconstruction al-
gorithms. The curve corresponding to each algorithm shows the Phase Transition
of that algorithm. Bellow the phase transition curve, the algorithm works well and
above that curve it fails; the transition zone is narrow, and gets better defined at
large problem sizes N (see [185] for further discussion).

As shown in Figure 3.2 the `1-minimization methods (e.g. LARS) always outperform
the greedy algorithms in terms of the maximum sparsity level k that can be recovered
using the algorithm. On the other hand, the greedy algorithms are typically signif-
icantly faster. In other words, there is always a trade-off between the performance
and efficiency of the two approaches. If the sparsity value (k) is not too large, it
is more beneficial to use fast greedy algorithms. On the other hand, if the sparsity
value is higher than a threshold, then it is more performant to use the `1-minimization
methods to increase the chance of successful recovery.
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3.3.3 Bayesian Compressive Sensing

Bayesian compressed sensing provides a third approach for solving the robust com-
pressed sensing problem [160, 4, 194]. In Bayesian compressed sensing it is often
assumed a priori that the unknown sparse vector α∗ is sampled from a distribution
that favors sparse vectors, and the noise vector eM is sampled from some stochastic
distribution (e.g. the multivariate Gaussian distribution). The main goal is then to
estimate the hidden parameters of the underlying distributions through a maximum
a posteriori (MAP) optimization in order to completely identify the posterior density
function of α∗ [34].

More precisely, given the measurement vector f ∈ RM , the goal is find an estimate α̂
that maximizes the posterior probability log Pr[α̂|f ]. It follows from Bayes rule that

α̂ = arg max
α′

Pr[α′|f ] = arg max
α′

(
Pr[f |α′] Pr[α′]

Pr[f ]

)
(3.3.10)

= arg max
α′

(Pr[f |α′] Pr[α′]) ,

where the last equality follows from the fact that f is already observed, and therefore
Pr[f ] is a constant independent of α′.

The conditional distribution Pr[f |α′] models the noise process. The simplest noise
model assumes that the measurement noise is white Gaussian of mean 0M and vari-
ance σ2

M IM×M , therefore we have

Pr[f |α′] =

(
1√

2πσM

)N
exp

{
−‖Φα

′ − f‖2
2

2σ2
M

}
. (3.3.11)

The prior distribution Pr[α′] models the prior knowledge about the vector α′. In
Bayesian compressed sensing, prior distributions that give more weight to sparse
vectors are of more interest. A widely used sparseness prior is the Laplace density
function with zero mean and variance σ2

dIN×N [32]:

Pr[α′|] =

(
1√
2σd

)N
exp

{
−
√

2
‖α′‖1

σd

}
,

By choosing the Laplace distribution as the prior, and the white Gaussian distribution
for modeling the noise we have

α̂ = arg max
α′

(Pr[f |α′] Pr[α′]) (3.3.12)

arg max
α′

log (Pr[f |α′] Pr[α′])

= arg min
α′

‖Φα′ − f‖2
2

2σ2
M

+

√
2

σd
‖α′‖1.
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The optimization problem of Equation (3.3.12) is a LASSO optimization problem

(Equation 3.3.3) with parameter λ =
2
√

2σ2
M

σd
. This provides another angle on why

`1-minimization methods are attuned to sparse approximation. As Equation (3.3.12)
indicates, the solution of the LASSO optimization with a suitable regularizing pa-
rameter λ is indeed the solution of a MAP optimization problem with Laplace prior
and white Gaussian noise.

Since solving the map optimization problem maximizeα′ log Pr[α′|f ] with a Laplace
prior is equivalent to solving a LASSO optimization, it also inherits the O(M2N1.5)
computational complexity of solving the LASSO optimization [205]. To overcome this
computational difficulty, Donoho, Maleki, and Montanari proposed the Approximate
Message-Passing (AMP) algorithm for approximately solving the LASSO problem [91,
94]. Empirical observations suggest that the solution of the AMP Algorithm quickly
converges to the optimal solution of LASSO [92, 93]. However, the convergence of the
AMP has only been proved for sensing matrices obtained from Gaussian distributions
[91, 25] which suffer from computation and storage limitations. (see Section 3.4.1 for
further discussions). Proving the convergence of the AMP algorithm for efficient
sensing matrices is an interesting and important open problem.

Another approach to overcome this computational difficulty is to use other sparsity-
promoting prior distributions, so that the map optimization problem can be solved
efficiently using the standard Bayesian optimization methods including the Markov
Chain Monte Carlo method [127], and the Variational Inference method [248].

Ji, Xue, and Carin [160] have addressed this issue by introducing the Bayesian Com-
pressive Sensing (BCS) algorithm, which uses the relevance vector machine (RVM) for
sparse approximation [234]. Rather than imposing a Laplace prior on α′, in the RVM
a hierarchical prior has been invoked [121]. The hierarchical prior has similar sparsity-
promoting properties to the Laplace prior but allows convenient conjugate-prior prop-
erties which are useful for conveniently implementing a Markov Chain Monte Carlo
(MCMC) or a variational Bayesian optimization algorithm [198].

Similarly Carmi et. al. [62] proposed the Approximate Bayesian Compressive Sensing
(ABCS) algorithm which uses the semi-Gaussian prior distribution. A distinguishing
feature of the semi-Gaussian distribution is greater concentration in the vicinity of
the origin, which promotes sparsity more aggressively than `1-minimization.

Even though simulation results indicate that the BCS and ABCS algorithms have
good performance and in some cases even outperform the `1-minimization method,
they both have computational complexity O(NM2) which is still inefficient for many
compressed sensing applications with N ≈ 109, and M ≈ 106.

One approach which can further reduce the computational complexity of the sparse
recovery phase in Bayesian compressed sensing is to use the efficient Belief Propaga-
tion Algorithms [182]. Belief Propagation is a fast message-passing algorithm that has
been extensively used for efficiently decoding the Low-Density Parity Check (LDPC)
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Table 3.3: Summary of the main algorithms in the Bayesian compressed sensing
framework.

Algorithm
Signal Sensing Recovery Convergence
Prior Matrix Time Guarantee

LASSO [233] Laplace RIP O(N1.5M2) Yes

BCS [160]
Hierarchical

RIP O(NM2) Yes
prior

ABCS [62] semi-Gaussian RIP O(NM2) Yes

CS-BP [23]
Mixture of

LDPC O(N log2N) No
two Gaussians

SuPrEM [4]
Gaussian-scale

LDPC O(N) No
mixtures

codes [227]. The fundamental connection between compressed sensing and the theory
of error-correcting codes suggests the idea of adopting BP to solve the compressed
sensing problem.

Recently, there have been several papers on using Belief Propagation algorithms for
sparse recovery. In [222, 23], the authors introduced the belief propagation approach
to compressive sensing, and applied it to the recovery of random signals, modeled
by a two-state mixture of Gaussians (with more weight on the narrower Gaussian to
promote the sparsity). Their proposed Compressive Sensing Belief Propagation (CS-
BP) algorithm has O(N log2N) computational complexity and is significantly faster
than BCS and ABSC. In a more recent paper, Akcakaya, Park, and Tarokh [4] used
belief propagation on signals modeled as Gaussian-scale mixtures. Their proposed
Sum Product with Expectation Maximization (SuPrEM) algorithm has O(N) running
time, and is shown to have an excellent empirical performance.

Nevertheless, the major problem with the belief propagation approach is that nei-
ther CS-BP nor SuPrEM is guaranteed to converge. In contrast to the other sparse
reconstruction algorithms, much less is known about the theoretical performance of
the CS-BP and SuPrEM algorithms. Analyzing the convergence rates of the Belief
Propagation algorithms is an interesting and important open problem in Bayesian
compressed sensing. Table 3.3 summarizes a comparison of different Bayesian com-
pressive sensing algorithms.
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3.4 Construction of RIP Sensing Matrices

3.4.1 Random RIP Constructions

Thus far we have seen that if a matrix is (2k, ε)-RIP for sufficiently small ε, then
the `1-minimization, greedy, and Bayesian algorithms can stably approximate any
sparse vector α∗ from the low-dimensional vector f . Therefore, the problem of stable
compressed sensing is now reduced to the problem of finding RIP sensing matrices.
Here we provide examples of sensing matrices satisfying the RIP.

Definition 3.11 (Gaussian sensing matrix ). A Gaussian sensing matrix , is an M×
N matrix whose entries are sampled independently and identically from a N

(
0, 1

M

)

distribution.

Definition 3.12 (Rademacher sensing matrix ). A Rademacher sensing matrix is an
M ×N matrix such that each entry of it is assigned to be ± 1√

M
, each with probability

1
2
.

The following theorem by Baraniuk et al. [21] shows that Gaussian and Rademacher
processes generate M ×N matrices that satisfy the RIP with high probability:

Theorem 3.13. Suppose that M,N , and 0 < ε < 1 are given. Let Φ be an M ×
N Rademacher (or Gaussian) sensing matrix . Then there exist absolute constants

c1, c2 > 0, such that Φ is (k, ε)-RIP for any k ≤ c1ε2M
log(N/M)

with probability at least

1− 2 exp {−c2ε
2M}.

Theorem 3.13 is of particular interest as it concludes that stable compressed sensing
is possible using random Gaussian or Rademacher sensing matrices combined with
`1-minimization. Moreover, only O (k log N/k) measurements are required in order to
be able to successfully recover any k-sparse vector. As we will see in Section 3.5
at least Ω (k log N/k) measurements are always required to have stable compressed
sensing, and therefore Gaussian and Rademacher matrices are optimal with respect
to the number of required measurements.

However, there is no efficient algorithm to verify whether a given random Gaus-
sian or Rademacher matrix satisfies the RIP or not. Moreover, since Gaussian and
Rademacher matrices do not have any structure, memory is an issue since Ω(MN)
bits are required to store the whole matrix. Moreover, due to the lack of structure of
these matrices, any matrix-vector multiplication requires Ω(MN) operations which
makes the encoding less efficient.

To overcome the difficulties of using Gaussian or Rademacher sensing matrices, al-
ternative RIP matrices have been introduced.

Definition 3.14 (Subsampled unitary matrices). Let U be any N ×N unitary ma-
trix. Choose a subset Ω of cardinality |Ω| = M uniformly at random from the set
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{1, · · · , N}. Let Φ be the M × N matrix obtained by sampling M rows of U cor-
responding to the indices in Ω and renormalizing the resulting columns so that they
have unit `2-norms. Then Φ is an M ×N subsampled unitary matrix.

The following theorem indicates that as long asM is sufficiently large, any subsampled
unitary matrix is RIP with overwhelming probability.

Theorem 3.15 ([218]). For each integer N, k, and for any t > 1 and any ε ∈ (0, 1),
let

M ≥ c3N‖Φ‖2
∞kt log4N,

then the subsampled matrix Φ is (k, ε)-RIP with probability exceeding 1−10 exp {−c4ε
2t} ,

where c3 and c4 are absolute constants that do not depend on M,N, ork.

The following corollary follows from Theorem 3.15 by taking t = O
(

logN
ε2

)
:

Corollary 3.16. Let U be any N ×N unitary matrix whose entries have magnitude
1√
N

. For each integer k and any ε ∈ (0, 1), let

M ≥ c′3k log5N

ε2
,

where c′3 is an absolute constant. Then the subsampled matrix Φ is (k, ε)-RIP with
probability exceeding 1− 1

N
.

Partial Hadamard matrices are one example of subsampled unitary matrices satisfying
the conditions of Corollary 3.16.

Definition 3.17 (Hadamard Matrix). The Hadamard transform Hn is a 2n × 2n

matrix that can be defined recursively in the following way: We define the 1 × 1
Hadamard matrix H0 by the identity H0 = 1, and then define Hn for n > 0 by:

Hn
.
=

1√
2

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
. (3.4.1)

Without loss of generality suppose N = 2n. The Hadamard matrix Hn can be viewed
as a symmetric unitary matrix with ‖Hn‖∞ = 1√

N
. Therefore, it follows from Corol-

lary 3.16 that as long as M ≥ c′3k log5N

ε2
, an M ×N subsampled Hadamard matrix is

(k, ε)-RIP.

Note that in contrast to random Gaussian and Rademacher matrices, onlyO(M logN)
random bits are required to store a partial Hadamard matrix. Moreover, the matrix-
vector multiplication Hnv can be performed efficiently in time O(N logN) using the
fast Walsh-Hadamard transform [112].

Therefore, partial Hadamard matrices are superior to random Gaussian or Rademacher
matrices in terms of the required storage and computational time of calculating
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matrix-vector multiplications. The main drawback of partial Hadamard matrices is
sub-optimality in the number of required measurements for satisfying the RIP. With

Gaussian and Rademacher matrices only O
(
k logN/k

ε2

)
measurements are required to

guarantee the RIP with overwhelming probability, whereas O
(
k log5 N

ε2

)
measurements

are required for partial Hadamard matrices to have the same RIP with the same prob-
ability.

3.4.2 Deterministic RIP Constructions

Thus far, we have seen Gaussian, Rademacher, and the partial Hadamard matrices
as examples of random sensing matrices satisfying the RIP. As mentioned earlier,
Gaussian and Rademacher matrices suffer from storage and computational issues, and
partial Hadamard matrices suffer from sub-optimality in the number of measurements.
In addition, there is no efficient algorithm to verify whether a random matrix is RIP
or not. Therefore, it is desirable to construct deterministic matrices satisfying the
RIP.

Most explicit constructions of RIP matrices are based on bounding the mutual co-
herence between the columns of the sensing matrix .

Definition 3.18 (Mutual coherence). Let Φ be an M ×N sensing matrix with nor-
malized columns. The mutual coherence between the columns of Φ is then defined
as

µ
.
= max

i 6=j
|〈ϕi,ϕj〉|.

The following lemma connects the RIP property of any sensing matrix Φ with nor-
malized columns to the mutual coherence of Φ.

Lemma 3.19. Let Φ be an M ×N sensing matrix with normalized columns and with
mutual coherence µ. Then Φ is (k, ε)-RIP with ε = (k − 1)µ.

Proof. Let α be any k-sparse vector. We have

|‖Φα‖2
2 − ‖α‖2

2| = |
∑

j 6=i

αiαj〈ϕi,ϕj〉| ≤
∑

j 6=i

|αi||αj||〈ϕi,ϕj〉| (3.4.2)

≤ µ
∑

j 6=i

|αi||αj| = µ



(

N∑

i=1

|αi|
)2

− ‖α‖2
2


 ≤ µ(k − 1)‖α‖2

2,

The last inequality follows from the Cauchy-Schwarz inequality and the fact that α
is k-sparse: (

N∑

i=1

|αi|
)2

= ‖α‖2
1 ≤ k‖α‖2

2.
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Examples of sensing matrices with small mutual coherence have been constructed
by Calderbank et. al. [140], Applebaum et. al. [11], Bajwa et. al. [15], Kashin
[166], Alon et. al. [7], DeVore [88], Iwen [154], and Nelson and Temlyakov [201]. All
these constructions have mutual coherence µ ≤ logN√

M logM
, and therefore satisfy RIP

for k = O
(
ε
√
M logM
logN

)
.

On the other hand, the Welch bound [251], demonstrates that the mutual coherence
of a matrix with normalized columns cannot be too small. More precisely, there is a
universal lower bound

µ ≥
√

logN

M logM/logN
≥ 1√

M
,

as long as M ≤ N
2

. Therefore, by estimating RIP parameters in terms of the coherence

parameter we cannot construct M ×N (k, ε)-RIP matrices with k ≥
√
M , and ε < 1.

Most explicit constructions of RIP matrices are based on the mutual coherence and
suffer from the k = O(

√
N) barrier, but a recent result by Bourgain et. al [39] uses

the methods of additive combinatorics to do slightly better.

Theorem 3.20 ([39]). There is an effective constant ε0 > 0 and an explicit number
M0 such that for any positive integers M ≥ M0, and M ≤ N ≤ M1+ε0, there is an
explicit M ×N matrix with is (k, ε)-RIP, with k = M0.5+ε0, and ε = M−ε0.

Table 3.4 compares various properties of different RIP matrices. The result of Bour-
gain et. al. breaks the bottleneck M = Ω(k2) of the low-coherence matrices. However,
it is still significantly sub-optimal compared to the M = O(k log N/k) measurements
of random sensing matrices. The problem of finding deterministic RIP matrices with
close to optimal (M ≈ k log N

k
) number of measurement is an important open problem

in the theory of compressed sensing.

A negative result by Chandar, proves that if a sensing matrix has only 0, 1 entries, or
if it is too sparse, then that matrix cannot satisfy the RIP [70]. This negative result
and several unsuccessful attempts in designing optimal deterministic or structured
RIP matrices suggests that maybe the RIP condition is too restrictive for compressed
sensing. This is indeed the main subject of this thesis, in which we show that it is
possible to design deterministic matrices that do not satisfy the RIP, but still provide
almost every feature obtainable from random RIP matrices, as well as extra advan-
tages which are not obtainable (or are in some cases even impossible) via the random
RIP matrices. Before discussing these matrices, we first investigate the information
theoretic limitations of the compressed sensing.
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Table 3.4: Properties of different sensing matrices satisfying the (k, ε) Restricted
Isometry Property. All bounds ignore the O(.) constants.

Matrix
Number of Memory Matrix-vector Random vs.

measurements (random bits) multiplication Deterministic

Gaussian
k log

(
N
k

)
MN MN Random

(Rademacher) [21]
Partial Hadamard

k log5N M logN N logN Random
(Fourier)[218]

Incoherent
k2 - N logN Deterministic

Tight-Frames [11, 15]
Randomness

k
2

2+ε0 - NM Deterministic
Extractors [39]

3.5 Compressed Sensing Lower Bounds

In Section 3.3, we saw that if a sensing matrix is RIP, then it is possible to obtain
`2/`1 sparse approximation guarantees using `1-minimization and greedy algorithms.
We have also seen examples of RIP matrices with M = O

(
k log

(
N
k

))
measurements.

Now, a natural question that comes to mind is “What kinds of improvements are
possible over this existing RIP-based approach?” To answer this question, we focus
on the following specific questions.

• (Q1): Are M = Ω
(
k log

(
N
k

))
measurements necessary for stable compressed

sensing?

• (Q2): Is `2/`1 the tightest sparse approximation guarantee in stable compressed
sensing? Is it possible to derive other `p/`q bounds? How do they compare to
the `2/`1 bound?

• (Q3): Is RIP necessary for stable compressed sensing? Is it possible to find
RIP-less sensing matrices with similar (or even better) performances?

Here we answer the first two questions. Answering the third question is the subject
of the rest of this thesis. To answer the first two questions, we first define the best
k-term approximation which is a fundamental problem in approximation theory [75],
and is highly related to the sparse approximation problem (Definition 3.3) for stable
compressed sensing.

Definition 3.21 (Best k-term Approximation). Let p and q be positive integers. Let
Φ be an M ×N sensing matrix , and let AΦ be a reconstruction algorithm associated
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with Φ. Then AΦ provides `p/`q best k-term approximation guarantee if and only
if there exists an absolute constant C, such that for every vector α∗ ∈ RN , given
f = Φα∗, AΦ can successfully recover a k-sparse vector α̂ with

‖α∗ − α̂‖p ≤
C

k1− 1
p

‖α∗ − Hk(α
∗)‖q.

The `p/`q best k-term approximation problem is a special case of the `p/`q sparse
approximation problem defined in Definition 3.3. However, in contrast to the general
sparse approximation problem, there is no measurement noise in the best k-term
approximation setting. The best k-term approximation analyses provide powerful
tools for proving lower-bounds on the number of required measurements for stable
compressed sensing. These analyses originated from work in functional analysis and
approximation theory by Kashin [166], and were later improved and generalized by
Gluskin [128, 129], Cohen et. al. [75], and Ba et. al [13].

The following theorem is due to Cohen et. al [75] and implies that `1/`1 best k-term
approximation is achievable from any algorithm that provides `2/`1 guarantees.

Theorem 3.22 ([75]). Let Φ be an M×N sensing matrix and let AΦ be a reconstruc-
tion algorithm such that (Φ,AΦ)-provides an `2/`1 sparse approximation guarantee.
Then (Φ,AΦ) also provides an `1/`1 guarantee.

Proof. Let α∗ be an arbitrary vector in RN , let f = Φα∗. Also let α̂ = AΦ(f), and
∆ = α∗ − α̂. The `2/`1 guarantee of (Φ,AΦ) implies that α̂ is k-sparse, and that

‖∆‖2 ≤
C√
k
‖α∗ − Hk(α

∗)‖1. (3.5.1)

Let S = Supp(Hk(α
∗)) ∩ Supp(α̂). Since both α̂ and Hk(α

∗) are k-sparse, we have
|S| ≤ 2k.

Therefore, it follows from Holder’s inequality that

‖∆S‖1 ≤
√

2k‖∆S‖2 ≤
√

2k‖∆‖2. (3.5.2)

Combining (3.5.1) and (3.5.2), yields

‖∆S‖1 ≤
√

2kC1√
k
‖α∗ − Hk(α

∗)‖1 =
√

2C‖α∗ − Hk(α
∗)‖1. (3.5.3)

On the other hand, since S includes the top k coordinates of α∗

‖∆S‖1 = ‖α∗S‖1 ≤ ‖α∗ − Hk(α
∗)‖1.

Therefore

‖α∗ − α̂‖1 = ‖∆‖1 = ‖∆S‖1 + ‖∆S‖1 ≤
(

1 +
√

2C1

)
‖α∗ − Hk(α

∗)‖1.
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The following theorem of Ba et. al. [13] provides lower bounds on the number of
required measurements for obtaining `1/`1 and `2/`1 guarantees.

Theorem 3.23 ([13]). Let Φ be an M×N sensing matrix and let AΦ be a reconstruc-
tion algorithm such that (Φ,AΦ)-provides an `1/`1 sparse approximation guarantee,
then M = Ω

(
k log

(
N
k

))
.

By combining Theorem 3.22 and Theorem 3.23, we obtain similar lower bounds on
the number of required measurements for `2/`1 guarantees.

Corollary 3.24. Let Φ be an M ×N sensing matrix and let AΦ be a reconstruction
algorithm such that (Φ,AΦ)-provides an `2/`1 guarantee, then M = Ω

(
k log

(
N
k

))
.

Proof. Theorem 3.22 proves that if (Φ,AΦ) provides an `2/`1 guarantee, then it also
provides an `1/`1 guarantee. Therefore, it follows immediately from Theorem 3.23
that M = Ω

(
k log

(
N
k

))
measurements are necessary.

Remark 3.25. In Section 3.2 we saw that the 2k × N Vandermonde construction
of Akcakaya and Tarokh [5] can efficiently recover any vector which is exactly k-
sparse. However, since 2k = o

(
k log

(
N
k

))
, there is no hope of finding a robust sparse

reconstruction algorithm with `1/`1 or `2/`1 guarantee for this construction. This
gives another explanation why the proposed algebraic decoding is not robust against
noise.

Remark 3.26. Theorem 3.7 with eM = OM, implies that if Φ is a (2k,
√

2 − 1)-
RIP, then (Φ,Basis Pursuit) provides `2/`1 best k-term approximation guarantee.
Therefore by invoking Corollary 3.24, any (2k,

√
2 − 1)-RIP matrix requires M =

Ω
(
k log

(
N
k

))
measurements. In other words, one cannot expect to find RIP matrices

with smaller number of measurements M = o
(
k log

(
N
k

))
. On the other hand, The-

orem 3.13 proves that as long as M = O
(
k log

(
N
k

))
, a Gaussian (or Rademacher)

sensing matrix is (2k,
√

2−1)-RIP, and by which the `2/`1 guarantees are obtainable.
This shows that the lower bound of Corollary 3.24 is tight.

Remark 3.27. In Chapter 8 we will introduce examples of RIP-less sensing matrices
with optimal M = O

(
k log

(
N
k

))
measurements that provide `1/`1 sparse approxi-

mation guarantees. Our proposed matrices are sparse and have deterministic con-
structions, and do not suffer from the storage and computational limitations of RIP
Gaussian or Rademacher matrices.

Thus far we have explored the connections between the `2/`1 and `1/`1 guarantees,
and seen that Ω

(
k log

(
N
k

))
measurements are necessary and sufficient to achieve

these guarantees. Next, we will see whether it is possible to extend these results to
achievability of `2/`2 approximation guarantees or not.

An argument similar to the one used in Theorem 3.22 is used by Cohen et. al [75], to
prove that the `2/`2 guarantee also implies `1/`1 guarantees (with the same constant
C); however `2/`2 does not necessarily imply the `2/`1 guarantee.
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Nevertheless, Cohen et. al [75] also showed that the `2/`2 approximation is impossible
in general in the compressed sensing framework unless M = Ω(N).

Theorem 3.28 ([75]). Let Φ be an M×N sensing matrix and let AΦ be a reconstruc-
tion algorithm such that (Φ,AΦ)-provides an `2/`2 sparse approximation guarantee,
then M = Ω (N).

Theorem 3.28 directly implies that `1/`1 and `2/`1 guarantees cannot imply `2/`2.
Otherwise, one could use a RIP matrix with M = O(k log

(
N
k

)
) = o(N) measurements

and the `1-minimization algorithm and get the `2/`2 guarantee from the provided `2/`1

guarantee of Theorem 3.7, or from the `1/`1 guarantee of Theorem 3.22.

Finally we emphasize that the result of Theorem 3.28 is only existential. It only shows
that if Φ is anM×N sensing matrix withM = o(N), then for each decoding algorithm
AΦ, there exists one particular vector α∗ ∈ RN (that may depend on the choice of
AΦ) such that ‖α∗−AΦ(Φα∗)‖2 is significantly large. In contrast, in Chapter 12 we
will provide examples of deterministic sensing matrices Φ with M = O(k logN) and
efficient reconstruction algorithms AΦ, such that (Φ,AΦ) provides `2/`2 guarantees
for most (in contrast to all) vectors.
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Chapter 4

Applications

4.1 Compressive Imaging

4.1.1 Image Compression

A fundamental assumption in digital image processing is that natural images are
piecewise smooth in the pixel basis. That is, there are very few edges in the image,
and therefore, the differences between the values of adjacent pixels are usually zero
or almost zero. The wavelet transform can be used to map images from the pixel
domain to the wavelet domain in which they have sparse (or approximately sparse)
representations [84].

For example, Figure 4.1(b) shows the representation of a natural image in the pixel
domain, and Figure 4.1(b) shows the representation of the same image in the wavelet
domain. As you can see from the figure, there are very few significant (light) coeffi-
cients in the wavelet representation of this image, whereas most wavelet coefficients
are almost zero (black).

The wavelet sparsity of images is used in the image compression application [131]. In
order to compress a

√
N ×

√
N image, the camera first treats the image as a high

N -dimensional vector and calculates its wavelet representation. Finally it stores the
positions and values of the k � N significant wavelet coefficients and throws away
the remaining information. The decoding can therefore be done efficiently by forming
the (sparsified) wavelet vector, and applying the inverse wavelet transform to restore
the image.

Since images are approximately sparse in the wavelet basis, the sparsified image still
provides a good approximation of the original image. For instance, Figure 4.2 shows
the resulting images when only the largest 1%, 3% or 10% of the wavelet coefficients
of an 256× 256 image are used.

Even though this image compression protocol provides precise sparse approximation
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(a) A 256 image in the pixel domain (b) The representation of the same image in the
wavelet domain. Here the intensities correspond
to wavelet coefficient magnitudes.

Figure 4.1: Example of sparse approximations in a wavelet basis.

to most natural images, it is inefficient and costly. It is inefficient because we ul-
timately throw away most of the calculated wavelet coefficients. We calculate N
wavelet coefficients but then we just keep the k largest coefficients and discard the
rest of them. It is also costly as the camera requires N sensors, whereas only k � N
coefficients are ultimately stored.

Here, compressed sensing can be used as a new data acquisition framework, to over-
come the inefficiencies of the classical image compression approach [216]. In contrast
to the classical approach, which involves sensing a high-resolution signal and then
compressing it by throwing away part of the sensed data, compressed sensing at-
tempts to develop methods to sense signals directly into compressed form [53].

To see how compressed sensing works for image compression, let Ψ denote the N×N
wavelet transform matrix. Also let l denote an N dimensional image. Then the vector
α∗ = Ψl is the wavelet representation of image and is approximately k-sparse (with
k � N).

Let Φ be an M ×N sensing matrix (with M ≈ k � N), and let A = ΦΨ. The mea-
surement matrix A is obtained by combining the sensing matrix Φ and the wavelet
transform matrix Ψ. In standard compressed sensing, the compressed vector f is
obtained by finding the k largest wavelet coefficients of the image (i.e. f = Hk(Ψl)).
This approach requires O(N2) operations. In contrast, in compressed sensing we use
the M ×N matrix A to compress the image. That is

f = Al = ΦΨl = ΦΨΨ−1α∗ = Φα∗. (4.1.1)
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(a) Image obtained by using the
1% largest coefficients.

(b) mage obtained by using the
3% largest coefficients.

(c) mage obtained by using the
10% largest coefficients.n

Figure 4.2: Resulting images when only the largest 1%, 3%, or 10% largest db2 coef-
ficients are used.

Therefore, if the measurement matrix A is precomputed, the encoding f = Al can
be performed efficiently using O(MN) operations.

A digital camera usually has limited computational resources. However, the image
recovery is usually done once the camera is connected to a computer that has more
powerful computation resources. Therefore, given the measurement vector f , and
the prior information that α∗ is (approximately) k-sparse, sparse approximation al-
gorithms can be used to find a sparse approximation α̂ for α∗. Subsequently, the
inverse wavelet transform can find an approximation l̂ for the image l in the pixel
domain. Since the wavelet transform is unitary

‖l− l̂‖2 = ‖Ψ−1(α∗ − α̂)‖2 = ‖α∗ − α̂‖2.

The sparse approximation error in the pixel domain is the same as the error in the
wavelet domain.

4.1.2 Single-Pixel Camera

Compressed sensing addresses the computational issue central to classic image com-
pression. However, it still first measures the whole image in the pixel domain using
N sensors and then performs the compression. To overcome this final challenge, new
hardware, called the single-pixel camera was developed at Rice University [232, 102].

The camera uses a small array of chip mirrors, each mirror corresponding to a pixel
of the image. These mirrors can be independently rotated to either reflect the light
towards a lens (on state) or away from it (off state). The mirrors can turn on and
off very quickly, and thus one pixel can be partially reflected as determined by the
ratio between the on and off time. A photodiode is then put in the cannon of the
lens to convert the accumulated light intensity into a quantitative measurement. By
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repeating this process M times, we can sense a number M of linear measurements
f = Φα∗.

In summary, in the single pixel camera, the linear measurements are performed effi-
ciently by nature, and only one sensor (photodiode) is required for the whole proce-
dure. This is in particular advantageous if the arrays of N high-resolution sensors (as
used in classics digital cameras) are too expensive or even not available, for instance
in infrared imaging.

4.1.3 Biomedical Imaging

Another important application for compressed sensing is in reducing the sampling rate
in magnetic resonance imaging (MRI) [132]. Traditional MRI scanners sequentially
sample Fourier coefficients of the human brain’s image. Unfortunately, this traditional
MRI approach is very time costly, as the speed of data collection is limited by physical
and physiological constraints However, most MRI images are sparse in the Fourier
domain. As a result compressed sensing can be used to significantly decrease the
number measurements without reducing the accuracy of the MRI image [181].

4.2 Data Streaming

In data streaming applications, devices with limited memory process massive streams
of data [196, 8]. For instance, in a network with 232 addressees, a monitoring table
counts the number of packets going from each source address to each destination
address. The monitoring table is therefore a 232 × 232 table, and the entry at row i
and column j of the table shows the number of packets going from the source address
i to the destination address j.

Storing the whole table requires 264 memory and is not practically feasible. However,
this monitoring table is often approximately sparse. There are a few source/destination
pairs with a significant number of packets, whereas most pairs communicate no or
very few packets. If we are interested in the most traffic-heavy pairs, our aim is to
obtain (approximately) the heaviest elements of the table.

This problem can be viewed as a compressed sensing application if we represent the
monitoring table as a high-dimensional vector α∗ ∈ RN (e.g. N = 264.). The goal is
then to design an efficient M × N matrix (with k ≈ M � N), such that for every
table α∗, the M -dimensional sketch f = Φα∗ captures most information regarding
the significant entries of α∗. That is, we aim is to obtain a k-sparse approximation
to α∗ from the sketch vector f = Φα∗.

It is easy to see that the encoding can be done efficiently in real-time thanks to the
linearity of the update operation. Let α∗t denote the monitoring table at time t, for
which we only have access to the sketch f t = Φα∗t. Also, ∆t ∈ RN be the vector
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that contains the number of packets that have arrived in the interval [t, t + 1). The
sketch of the new table α∗t+1 = α∗t + ∆t is Φα∗t+1 = Φ(α∗t + ∆t) = Φα∗t + Φ∆t.
Thus we can directly update the sketch by calculating Φ∆t. At the end of the day,
given the final sketch Φα∗, one can use efficient sparse approximation algorithms
to find a k-sparse monitoring table α̂ that closely approximates the true monitoring
table α∗.

4.3 Digital Communications

The problem of configuring wireless networks to enable network communication in
the presence of inference is one of the major challenges facing communication research
[245]. One important case is managing inference in peer to peer networks and in an
uplink where multiple sensors look to communicate with an access point.

the interference-mitigation for downlink communications in which a single transmitter
(e.g. a cellular base station) communicates simultaneously with multiple (N) receivers
[2, 10].

The key idea connecting compressed sensing to wireless communication is that at
each time only a small (k � N)) number of receivers are active. The sender then
maintains an M ×N sensing matrix Φ, such that the ith columns of Φ is associated
with the ith user.

At each transmission time, the transmitted signal is constructed as the sum of indi-
vidual signals, each intended to a different receiver. That is, the transmitted signal is
a superposition of at most k columns of the matrix. With this strategy, each receiver
can also invoke sparse reconstruction algorithms and decode its own information.

4.4 Group Testing

Group testing is the problem of devising tests to efficiently identify members of a
group with a certain property [101, 74]. The group testing applications range from
the blood testing problem which was used in World War II for identifying men who
carry a certain disease [100], to the problem of testing the impacts of new drugs on
human genes [83, 164].

In group testing the aim is to avoid individual testing of all candidates by repeatedly
pooling up a subgroup of multiple individuals and testing this subgroup instead [74].
It is often assumed that there are only a few people sharing some specified property,
and the goal is to design an M ×N test matrix describing the M subgroup tests, so
that it is possible to efficiently recover the sparse special members of the group from
the tests [124] (see also [122, 175]).
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4.5 Machine Learning

Compressed sensing has been recently used for solving the face classification problem,
in which the goal is to predict whose face a new (test) face is given a large collection
of labeled training faces [256].

A key assumption in face classification is that all faces of most human-beings lie in a
low dimensional subspace, and much fewer degrees of freedom (compared to the total
number of pixels), govern the structure of all possible faces [246, 254]. As a result,
given a sufficiently rich training set of faces for a particular person, any new (test) face
can be represented by a linear combination of her training faces, and therefore by a
sparse linear combination of all training faces of all people in the training repository.

Therefore, sparse approximation can be used to identify the person whose training
faces form the largest contribution in approximating the test face [255]. Using com-
pressed sensing and sparse approximation has provided significant improvements over
the existing state-of-the-art methods that use support vector machines [250], or prin-
cipal component analysis [170].

A similar approach has been used in speaker identification and speech recognition
applications [260, 165, 225]. Here using compressed sensing and sparse approximation
has given classification accuracy improvements on the standard datasets after more
than 20 years [220].

Compressed sensing has also been used for efficiently solving the multi-label classifica-
tion problems with large label space size N [151]. It has been shown both theoretically
and experimentally that under the reasonable assumption that each example has at
most k � N associated labels, the compressed sensing approach is more efficient and
robust compared to other multi-label classification approaches.

Dictionary learning is another machine learning application in which using compressed
sensing is advantageous. Dictionary learning is a powerful tool in machine learning
with applications in source separation in music [236], object recognition in computer
vision [235], and image denoising in digital image processing [184]. In dictionary
learning, the M ×N matrix (also called the overcomplete dictionary) is learned from
the available training examples. It has been shown that one approach for solving the
dictionary learning problem is to solve a series of non-convex optimization problems
iteratively, where each non-convex optimization consists of solving a sparse coding
problem followed by a convex optimization problem [103, 104]. Devising efficient
sparse approximation algorithms for sparse coding can facilitate the task of learning
overcomplete dictionaries.
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4.6 Quantum Computing

A major obstacle to engineer quantum devices such as quantum computers had been
lack of an effective scheme for noise characterization in many component systems.
The number of parameters required to represent the state of a quantum system grows
exponentially with the number of its components in contrast to a classical system.
As a result the number of measurements needed for full characterization of the noisy
dynamics of a quantum system becomes astronomically large.

In [226], Shabani et. al. have developed a CS theory to estimate the effect of noise
on a quantum system dynamics. They show a linear relation, f = Φα∗, between the
parameters of a noisy quantum dynamics, α∗, and measurement outcomes, f . The
sparsity property is assumed for the signal α∗ holds under some common physical
conditions.

42



Chapter 5

Thesis Outline

5.1 Thesis Statement

In this thesis, we shall see that our proposed deterministic sensing framework is
significantly more powerful from many practical applications, compared to the con-
ventional “random projections followed by `1-minimization” framework used in com-
pressed sensing.

5.2 Main Contributions

In this section we outline the main contributions of the thesis. We also provide ref-
erences to the papers that cover the main materials of each chapter. The central
objective of this thesis is to provide efficient deterministic sensing frameworks that
avoid the performance, storage and computational limitations of the random sensing
framework. Towards this end, we will first introduce efficient and generic recovery al-
gorithms that do not rely on non-verifiable properties, such as the restricted isometry
property. We focus on two important complementary tasks of sparse approximation
and model selection. In sparse approximation the goal is to find a sparse vector suffi-
ciently close to the sparse target vector in some metric, whereas in the model selection
the objective is to recover the support of the sparse target vector in the presence of
noise.

The first half of this thesis focuses on the sparse approximation problem. In Chap-
ter 6.1, we will show that the sparse approximation problem can always be refor-
mulated as a zero-sum game. Then, in Chapter 7, we will introduce the Bregman
divergence as a generalization of the Euclidean distance. We will also propose and
analyze an efficient algorithm, called the GAME algorithm, that approximately solves
the sparse approximation problem by simulating a repeated game between the two
players of the zero-sum game. The algorithm is generic and does not assume any
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non-verifiable assumption regarding the sensing matrix Φ [158].

In Chapter 8, we will introduce the expander-based compressed sensing as our first
deterministic sensing framework. We will also propose an efficient recovery algorithm
capable of recovering any k sparse vector in at most 2k simple iterations in the
noiseless settings [159]. In Chapter 9 we focus on bounded `1-norm noise model,
and show that in that model, if the an expander-based sensing matrix is used, then
it is possible to significantly tighten the generic bounds of the GAME algorithm.
Empirical results support the fidelity of the GAME algorithm [156].

In Chapter 10, we consider the problem of expander-based compressed sensing in
the presence of Poisson noise. Poisson noise is an important noise model in appli-
cations such as low-light imaging and data streaming. We will show that in the
expander-based compressed sensing framework, a Bayesian reconstruction algorithm
can provably recover a close approximation to any sparse target vector. This means
that in the Poisson noise model, expander-based compressed sensing not only pro-
vides storage and computational advantages over the dense random sensing, but it
also gains sparse approximation guarantees that are not directly obtainable in the
dense sensing framework [211, 212, 157].

The second half of the thesis investigates the model-selection problem. In Chapter 11,
we will introduce two fundamental measures of coherence between the columns of a
sensing matrix. We will further show that as long as the sensing matrix satisfies a
verifiable coherence property, a simple and efficient One-Step Thresholding algorithm
is capable of finding the support of most sparse vectors [17, 14, 16].

Reed-Muller sensing is the second proposed deterministic sensing framework. Chap-
ter 12 introduces the Delsarte-Goethals frames, as a family of deterministic sensing
with optimal measures of coherence. The Delsarte-Goethals frames are generated
from the Delsarte-Goethals codes, which are a properly chosen subset of the sec-
ond order Reed-Muller codes. We will show how the coherence-optimality of the
DG frames relates to model-selection optimality of the OST algorithm in the Reed-
Muller Sensing framework. To demonstrate the efficiency of the OST algorithm, we
also show that in our C++ implementation, it only takes about one minute for the
OST algorithm to recover sparse 232 dimensional vectors from 212 DG frame-based
measurements [44, 45, 46, 47, 174].

Finally in Chapter 13 we describe the model-based compressed sensing problem. In
model-based compressed sensing, some extra prior knowledge (e.g., positivity, block
sparsity, etc) is also available about the target sparse vector. In this setting, we will
introduce an iterative algorithm, called the NIHT algorithm, which can incorporate
the available extra prior knowledge and approximately solve the model-based sparse
approximation problem. The NIHT algorithm can be considered as a generalization
of the OST algorithm, as the OST algorithm is equivalent to the NIHT algorithm
run for only one iteration. We will provide several different experiments to show that
NIHT can empirically outperform `1-minimization methods in different compressed
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sensing settings [69]. Figure 5.1 summarizes the main contributions of this thesis.

45



D
et
er
m
in
is
)c
	  

Co
m
pr
es
se
d	  
Se
ns
in
g	  

Co
di
ng
	  

Th
eo

ry
	  

Th
eo

re
)c
al
	  	  

Co
m
pu

te
r	  

Sc
ie
nc
e	  

M
ac
hi
ne

	  
Le
ar
ni
ng
	  

St
a)

s)
cs
	  

[J
XH

C
’0
9]
	  

[J
CS
’1
1]
	  

[J
SC

’1
1]
	  

G
A
M
E	  

[R
JH
M
W
C
’1
1]
	  

Po
is
so
n	  

[C
H
J’
10
]	  

[B
CJ
’1
0]
	  

Sparse	  Approxima)on	  

Model	  Selec)on	  

O
ST
	  

[C
J’
10
]	  

Ex
pa
nd

er
	  C
od

es
	  

[C
J’
10
]	  

N
IH
T	  D
el
sa
rt
e-‐
G
oe

th
al
s	  

Co
de

s	  

Co
m
pr
es
se
d	  

Le
ar
ni
ng
	  

[C
J’
K1

0]
	  

Effi
ci
en

t	  S
to
ra
ge
	  a
nd

	  C
om

pu
ta
)o

n	  

G
en

er
al
ity

:	  v
er
ifi
ab
le
	  c
on

di
)o

ns
	  	  

Figure 5.1: The deterministic sensing map: summary of the main contributions of
this thesis.
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Part II

Sparse Approximation for
Compressed Sensing
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Chapter 6

Game Theory Meets Compressed
Sensing

6.1 Game Theoretic Reformulation of Sparse Ap-

proximation

Sparse approximation is a fundamental problem in compressed sensing (see Sec-
tion 3.1), as well as in many other signal processing and machine learning applications
including variable selection in regression [233, 247, 193], graphical model selection
[213, 191], and sparse principal components analysis [209, 162]. In sparse approxima-
tion, one is provided with a dimensionality reducing measurement matrix Φ ∈ RM×N

(M < N), and a low dimensional vector f ∈ RM . The goal is to find a sparse vector
α̂ such that Φα̂ is sufficiently close to f .

In this chapter, we consider the sparse approximation problem in the `q norm, where
q is a positive integer. Let k be a positive integer, and let τ be an arbitrary positive
number. Define

∆(τ)
.
= {α ∈ RN : ‖α‖1 ≤ τ}, (6.1.1)

as the set of all vectors inside the hyper-diamond of radius τ , and define

∆(k, τ)
.
= {α ∈ RN : ‖α‖0 ≤ k and ‖α‖1 ≤ τ}, (6.1.2)

as the set of all k-sparse vectors in ∆(τ).

We shall prove that for every dimension reducing matrix Φ, and every measurement
vector f , one can a find vector α̂ ∈ ∆(k, τ) with

‖Φα̂− f‖q ≤ min
α∈∆(k,τ)

‖Φα− f‖q + Õ

(
1√
k

)
. (6.1.3)

This sparse approximation framework works for any matrix Φ, and not just for matri-
ces satisfying the RIP. Later on, In Chapter 9 we will see that if Φ is a deterministic
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matrix constructed from expander graphs, then the provided bounds of this chapter
can be further tightened to an `1/`1 data-domain sparse approximation guarantee.

Note that since ∆(k, τ) is not convex, the optimization problem

minimizeα∈∆(k,τ)‖Φα− f‖q (6.1.4)

is not a convex optimization. This optimization problem is actually NP-hard in
general [197], and cannot be solved precisely. However, in this chapter we will show
that there exist efficient algorithms that can provide an approximate solution.

We reformulate this sparse-approximation problem as a zero-sum game, and then
propose a computationally efficient algorithm to obtain a sparse approximation for
the optimal game solution. The proposed algorithms employ a primal-dual scheme,
and require Õ(k) iterations in order to find a k-sparse vector with O (k−0.5) additive
approximation error.

We start by defining a zero-sum game and then proving that the sparse approximation
problem of Equation (6.1.4) can be reformulated as a zero-sum game.

Definition 6.1 (Zero-sum games [207]). Let A and B be two closed sets. Let L :
A × B → R be a function. The value of a zero sum game, with domains A and B
with respect to a function L is defined as

min
a∈A

max
b∈B
L(a, b). (6.1.5)

The function L is usually called the loss function. A zero-sum game can be viewed as
a game between two players Mindy and Max in the following way. First, Mindy finds
a vector a, and then Max finds a vector b. The loss that Mindy suffers1 is L(a, b).
The game-value of a zero-sum game is then the loss that Mindy suffers if both Mindy
and Max play with their optimal strategies.

Von Neumann’s well-known Minimax Theorem [206, 116] states that if both A and
B are convex compact sets, and if the loss function L(a, b) is convex with respect to
a, and concave with respect to b, then the game-value is independent of the ordering
of the game players.

Theorem 6.2 (Von Neumann’s Minimax Theorem [206]). Let A and B be closed
convex sets, and let L : A× B → R be a function which is convex with respect to its
first argument, and concave with respect to its second argument. Then

inf
a∈A

sup
b∈B
L(a, b) = sup

b∈B
inf
a∈A
L(a, b).

For the history of the Minimax Theorem see [173]. The Minimax Theorem tells us
that for a large class of functions L, the values of the min-max game in which Mindy

1which is equal to the gain that Max obtains as the game is zero-sum.
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goes first is identical to the value of the max-min game in which Max starts the game.
The proof of the Minimax Theorem is provided in [117].

Having defined a zero-sum game, and the Von Neumann Minimax Yheorem, we next
show how the sparse approximation problem of Equation (6.1.4) can be reformulated
as a zero-sum game. Let p

.
= q

q−1
, and define

Ξp
.
= {P ∈ RM : ‖P‖p ≤ 1}. (6.1.6)

Define the loss function L : Ξp ×∆(τ)→ R as

L(P,α)
.
= 〈P, (Φα− f)〉. (6.1.7)

Observe that the loss-function is bilinear. Now it follows from Holder inequality
(Theorem 2.1) that for every α in ∆(k, τ), and for every P in Ξp

L(P,α) = 〈P, (Φα− f)〉 ≤ ‖P‖p‖Φα− f‖q ≤ ‖Φα− f‖q. (6.1.8)

The inequality of Equation (6.1.8) becomes equality for

P ∗i =
(Φα− f)

q/p
i(∑M

i=1(Φα− f)qi

)1/p
.

Therefore

max
P∈Ξp

L(P,α) = max
P∈Ξp
〈P, (Φα− f)〉 = 〈P∗, (Φα− f)〉 = ‖Φα− f‖q. (6.1.9)

Equation (6.1.9) is true for every α ∈ ∆(τ). As a result, by taking the minimum over
∆(k, τ) we get

min
α∈∆(k,τ)

‖Φα− f‖q = min
α∈∆(k,τ)

max
P∈Ξp

L(P,α).

Similarly by taking the minimum over ∆(τ) we get

min
α∈∆(τ)

‖Φα− f‖q = min
α∈∆(τ)

max
P∈Ξp

L(P,α). (6.1.10)

Solving the sparse approximation problem of Equation (6.1.4) is therefore equivalent
to finding the optimal strategies of the game

min
α∈∆(k,τ)

max
P∈Ξp

L(P,α). (6.1.11)

In the next section we provide a primal-dual algorithm that approximately solves this
min-max game. Observe that since ∆(k, τ) is a subset of ∆(τ), we always have

min
α∈∆(τ)

max
P∈Ξp

L(P,α) ≤ min
α∈∆(k,τ)

max
P∈Ξp

L(P,α),

and therefore, in order to approximately solve the game of Equation (6.1.11), it is
sufficient to find α̂ ∈ ∆(k, τ) with

max
P∈Ξp

L(P, α̂) ≈ min
α∈∆(τ)

max
P∈Ξp

L(P,α). (6.1.12)
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Chapter 7

A Primal-Dual Approach for
Sparse Approximation

In this chapter we provide an efficient algorithm for approximately solving the sparse
approximation problem of Equation (6.1.4). Our approximation algorithm highly re-
lies on Bregman projections [65]. Therefore, before introducing the GAME algorithm,
we first provide a few important properties of Bregman projections.

7.1 Bregman Distances and Projections

Bregman divergences or Bregman distances are an important family of distances that
all share similar properties [65, 40].

Definition 7.1 (Bregman Distance). Let R : S → R be a continuously-differentiable
real-valued and strictly convex function defined on a closed convex set S. The Bregman
distance associated with R for points P and Q is:

BR(P,Q) = R(P)−R(Q)− 〈(P−Q),∇R(Q)〉.

Intuitively, the Bregman distance measures the strictness of convexity of the function
R. and its geometric significance is illustrated in Figure 7.1. The Bregman divergence
is the vertical distance at P between the graph of R and the line tangent to the graph
ofR in Q. Table 7.1 summarizes examples of the most widely used Bregman functions
and the corresponding Bregman distances.

Note that the Bregman distance is not a metric. It is not symmetric, and it does not
satisfy the triangle inequality. However, it has several important properties that we
will use later in analyzing our sparse approximation algorithm.

Theorem 7.2. Bregman distance satisfies the following properties:
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Figure 7.1: The Bregman divergence associated with a continuously-differentiable
real-valued and strictly convex function R is the vertical distance at P between the
graph of R and the line tangent to the graph of R in Q.

• (P1). BR(P,Q) ≥ 0, and the equality holds if and only if P = Q.

• (P2). For every fixed Q if we define G(P) = BR(P,Q), then

∇G(P) = ∇R(P)−∇R(Q).

• (P3). Three point property: For every P,Q and T in S

BR(P,Q) = BR(P,T) + BR(T,Q) + 〈(P−T),∇R(Q)−∇R(T)〉.

• (P4). For every P,Q ∈ S,

BR(P,Q) + BR(Q,P) = 〈(P−Q), (∇R(P)−∇R(Q))〉.

Proof. All four properties follow directly from Definition 7.1.

Now that we have introduced important properties of Bregman distances, we are
ready to define Bregman projections of points into convex sets.
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Table 7.1: Summary of the most popular Bregman functions and their corresponding
Bregman distances. Here Φ is a positive semidefinite matrix.

Name
Bregman Bregman

Function (R(P)) Distance (BR(P,Q))

Squared ‖P‖2
2 ‖P−Q‖2

2Euclidean
Squared 〈P,ΦP〉 〈(P−Q),Φ(P−Q)〉

Mahalanobis

Kullback-Leibler
∑

i Pi log Pi −
∑

i Pi

∑
i Pi log Pi

Qi
−∑i Pi +

∑
i Qi

Itakura-Saito
∑

i− log Pi

∑
i

(
Pi
Qi
− log Pi

Qi
+ 1
)

Definition 7.3 (Bregman Projection). LetR : S → R be a continuously-differentiable
real-valued and strictly convex function defined on a closed convex set S. Let Ω be a
closed subset of S. Then, for every point Q in S, the Bregman projection of Q into
Ω, denoted as PΩ(Q) is

PΩ(Q)
.
= arg min

P∈Ω
BR(P,Q).

Bregman projections satisfy a generalized Pythagorean Theorem.

Theorem 7.4 (Generalized Pythagorean Theorem [65]). Let R : S → R be a
continuously-differentiable real-valued and strictly convex function defined on a closed
convex set S. Let Ω be a closed subset of S. Then for every P ∈ Ω and Q ∈ S

BR(P,Q) ≥ BR(P,PΩ(Q)) + BR(PΩ(Q),Q), (7.1.1)

and in particular
BR(P,Q) ≥ BR(P,PΩ(Q)). (7.1.2)

The generalized Pythagorean Theorem is illustrated in Figure 7.2. We refer the reader
to [65], or [66] for a proof of this theorem and further discussions.

7.2 GAME Algorithm for Sparse Approximation

In this section we provide an efficient algorithm for approximately solving the problem
of sparse approximation in `q norm, defined by Equation (6.1.3). Let L(P,α) be the
loss function defined by Equation (6.1.7), and recall that in order to approximately
solve Equation (6.1.3), it is sufficient to find a sparse vector α̂ ∈ ∆(k, τ) such that

max
P∈Ξp

L(P, α̂) ≈ min
α′∈∆(τ)

max
P∈Ξp

L(P,α). (7.2.1)

53



Ω

Q

P

PΩ(Q)

Figure 7.2: Generalized Pythagorean Theorem states that if PΩ(Q) is the Bregman
projection of Q into Ω, then every other point P in Ω has larger Bregman distance
to Q than to PΩ(Q). That is BR(P,Q) ≥ BR(P,PΩ(Q)).

The original sparse approximation problem of Equation (6.1.3) is NP-complete, but
it is computationally feasible to compute the value of the min-max game

min
α′∈∆(τ)

max
P∈Ξp

L(P,α). (7.2.2)

The reason is that the loss function L(P,α) of Equation (6.1.7) is a bilinear function,
and the sets ∆(τ), and Ξp are both convex and closed.

Therefore, finding the game values and optimal strategies of the game of Equa-
tion (7.2.2) is equivalent to solving a convex optimization problem and can be done
using off-the-shelf non-smooth convex optimization methods [204, 203]. However,
if an off-the-shelf convex optimization method is used, then there is no guarantee
that the recovered strategy α̂ is also sparse. We need an approximation algorithm
that finds near-optimal strategies α̂ and P̂ for Mindy and Max with the additional
guarantee that Mindy’s near optimal strategy α̂ is sparse.

Here we introduce the Game-theoretic Approximate Matching Estimator (GAME)
algorithm which finds a sparse approximation to the min-max optimal solution of
the game defined in Equation (7.2.2). The GAME algorithm relies on the general
primal-dual approach which was originally applied to developing strategies for re-
peated games [117] (see also [144] and [135]). The pseudocode of the GAME Algo-
rithm is provided in Algorithm 3.
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Algorithm 3 GAME Algorithm for Sparse Approximation in `q-norm.

Inputs: M -dimensional vector f , M ×N matrix Φ, number of iterations T , sparse
approximation norm q, Bregman function R and regularization parameter η.
Output: N -dimensional vector α̂

0. Find a point Q1 ∈ Ξp such that ∇R(P1) = 0M , and set P1 = PΞp(Q
1).

for t = 1, . . . , T do
1. Let rt

.
= Φ>Pt (Requires one matrix-vector multiplication)

2. Find the index i of one largest (in magnitude) element of rt.
3. Let αt be a 1-sparse vector with

Supp(αt) = {i}, and αti = −τ Sign
(
rti
)
.

(Lemma 7.5: αt = arg minα∈∆(τ) L(Pt,α).)
4. Choose a Qt+1 such that

∇R
(
Qt+1

)
= ∇R(Pt) + η

(
Φαt − f

)
.

5. Project Qt+1 into Ξp:

Pt+1 .
= PΞp(Q

t+1) = arg min
P∈Ξp

BR(P,Qt+1).

end for
6. Output α̂

.
= 1

T

∑t
t=1α

t.

The GAME Algorithm can be viewed as a repeated game between two players Mindy
and Max who iteratively update their current strategies Pt and αt, with the aim of
ultimately finding near-optimal strategies based on a T -round interaction with each
other. Here we briefly explain how each player updates his/her current strategy based
on the new update from the other player.

Recall that the ultimate goal is to find the solution of the game

min
α′∈∆(τ)

max
P∈Ξp

L(P,α).

At the begining of each iteration t, Mindy receives the updated value Pt from Max.
A greedy Mindy only focuses on Max’s current strategy, and updates her current
strategy to αt = arg minα∈∆(τ) L(Pt,α). In the following lemma we show that this is
indeed what our Mindy does in the first three steps of the main loop.

Lemma 7.5. Let Pt denote Max’s strategy at the begining of iteration t. Let rt =
Φ>Pt, and let i denote the index of a largest (in magnitude) element of rt. Let
αt be a 1-sparse vector with Supp(αt) = {i} and with αti = −τ Sign (rti). Then
αt = arg minα∈∆(τ) L(Pt,α).
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Proof. Let α̃ be any solution α̃ = arg minα∈∆(τ) L(Pt,α). It follows from the bilin-
earity of the loss function (Equation (6.1.7)) that

α̃ = arg min
α∈∆(τ)

L(Pt,α) = arg min
α∈∆(τ)

〈Pt,Φα− f〉 = arg min
α∈∆(τ)

〈Φ>Pt,α〉.

Hence, Holder inequality yields that for every α# ∈ ∆(τ),

〈Φ>Pt,α#〉 ≥ −‖α#‖1‖Φ>Pt‖∞ ≥ −τ‖Φ>Pt‖∞. (7.2.3)

Now let αt be a 1-sparse vector with Supp(αt) = {i} and αti = −τ Sign (rti). Then
αt ∈ ∆(τ), and

〈Φ>Pt,αt〉 = −τ‖Φ>Pt‖∞.
In other words, for αt the Holder inequality of Equation (7.2.3) is an equality. Hence
αt is a minimizer of 〈Φ>Pt,α〉.

Thus far we have seen that at each iteration Mindy always finds a 1-sparse solution
αt = arg minα∈∆(τ) L(Pt,α). Mindy then sends her updated strategy αt to Max, and
now it is Max’s turn to update his strategy. A greedy Max would prefer to update his
strategy as Pt+1 = arg maxP∈Ξp L(P,αt). However, our Max is more conservative and
prefers to stay close to his previous value Pt. In other words, Max has two competing
objectives

1. Maximizing L(P,αt), or equivalently minimizing −L(P,αt).

2. Remaining close to the previous strategy Pt, by minimizing BR(P,Pt−1).

Let
LR(P)

.
= −ηL(P,αt) + BR(P,Pt),

be a regularized loss function which is a linear combination of the two objectives
above.

A conservative Max then tries to minimize a combination of the two objectives above
by minimizing the regularized loss function

Pt+1 = arg min
P∈Ξp

LR(P) = arg min
P∈Ξp

−ηL(P,αt) + BR(P,Pt). (7.2.4)

Unfortunately, it is not so easy to efficiently solve the optimization problem of Equa-
tion (7.2.4) at every iteration. To overcome this difficulty, our Max first ignores
the constraint Pt+1 ∈ Ξp, and instead finds a global optimizer of LR(P) by setting
∇LR(P) = 0M , and then projects back the result to Ξp via a Bregman projection.

More precisely, it follows from the Property (P2) of Bregman distance (Theorem 7.2)
that for every P

∇LR(P) = −η(Φαt − f) +∇R(P)−∇R(Pt),
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and therefore if Qt is a point with

∇R(Qt) = ∇R(Pt−1) + η(Φαt − f),

then ∇LR(Qt) = 0M .

The vector Qt is finally projected back to Ξp via a Bregman projection to ensure that
Max’s new strategy is in the feasible set Ξp.

7.3 Analysis of the GAME Algorithm

In this section we prove that the GAME algorithm finds a near-optimal solution for
the sparse approximation problem of Equation (6.1.3). The analysis of the GAME
algorithm relies heavily on the analysis of the generic primal-dual approach. This
approach originates from the link-function methodology in computational optimiza-
tion [135, 172], and is related to the mirror descent approach in the optimization
community [202, 26] . The primal-dual Bregman optimization approach is widely
used in online optimization applications including portfolio selection [80, 145], online
learning [1], and boosting [176, 76].

Let A and B be two convex sets, and let L : A× B → R be a loss function which is
convex with respect to A, and concave with respect to B. In online convex optimiza-
tion, an online player chooses a point a ∈ A. After the point is chosen, an adversary
chooses a point b ∈ B, and the online player receives payoff L(a, b). This scenario is
repeated for T iterations, and the goal of the online player is to minimize the regret
loss [143, 262]

max
b1,...,bT

[
T∑

t=1

L(at, bt)−min
α∈A

T∑

t=1

L(a, bt)

]
.

However, there is a major difference between the sparse approximation problem and
the problem of online convex optimization. In the sparse approximation problem,
the set A = ∆(k, τ) is not convex anymore; therefore, there is no guarantee that an
online convex optimization algorithm outputs a sparse strategy α̂. Hence, it is not
possible to directly translate the bounds from the online convex optimization scheme
to the sparse approximation scheme.

Moreover, as discussed in Lemma 7.5 there is also a major difference between the
Mindy players of the GAME algorithm and the general Mindy of general online convex
optimization games. In the GAME algorithm Mindy is not a blackbox adversary that
responds with an update to her strategy based on Max’s update. Here Mindy always
performs a greedy update and finds the best strategy as a response to Max’s update.
Moreover, our Mindy always finds a 1-sparse new strategy. That is, she looks among
all best responses to Max’s update, and finds a 1-sparse strategy among them.
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As we will see next, the combination of cooperativeness by Mindy, and standard ideas
for bounding the regret in online convex optimization schemes, enables us to analyze
the GAME algorithm for sparse approximation. The following lemma bounds the
regret loss of the primal-dual strategy in online convex optimization problems and is
proved in [144].

Theorem 7.6. Let q and T be positive integers, and let p = q
q−1

. Suppose that R is

such that for every P,Q ∈ Ξp, BR(P,Q) ≥ ‖P−Q‖2
p, and let

G = max
α∈∆(1,τ)

‖Φα− f‖q. (7.3.1)

Also assume that for every P ∈ Ξp, we have BR(P,P1) ≤ D2. Suppose 〈(P1,α1), · · · , (PT ,αT )〉
is the sequence of pairs generated by the GAME Algorithm after T iterations with
η = 2D

G
√
T

. Then

max
P∈Ξp

1

T

T∑

t=1

L(P,αt) ≤ 1

T

T∑

t=1

L(Pt,αt) +
DG

2
√
T
.

Proof. Let P be an arbitrary point in Ξp. We have

L(P,αt)− L(Pt,αt) = 〈(P−Pt),Φαt − f〉

=a 1

η
〈(P−Pt),∇R(Qt+1)−∇R(Pt)〉 (7.3.2)

=b 1

η

(
BR(P,Pt)− BR(P,Qt+1) + BR(Pt,Qt+1)

)

≤c 1

η

(
BR(P,Pt)− BR(P,Pt+1) + BR(Pt,Qt+1)

)
.

Equality (a) follows from the definition of Qt+1 (Step 4 of Algorithm 3). Equality
(b) is the three point property of Bregman distances (Property (P3) of Theorem 7.2),
and inequality (c) follows from the generalized Pythagorean theorem for Bregman
projections (Theorem 7.4) as Pt+1 is the Bregman projection of Qt+1 into Ξp (Step 5
of Algorithm 3).

Therefore, from the telescoping trick we have

T∑

t=1

L(P,αt)−
T∑

t=1

L(Pt,αt) =
1

η

(
BR(P,P1)− BR(P,PT+1) +

T∑

t=1

BR(Pt,Qt+1)

)

(7.3.3)

≤d D2

η
+

1

η

T∑

t=1

BR
(
Pt,Qt+1)

)
.
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The inequality (d) follows from the facts that BR(P,PT+1) is non-negative and
BR(P,P1) ≤ D2. Our next step is to bound BR(Pt,Qt+1). From Property (P4)
of Theorem 7.2 we have

BR
(
Pt,Qt+1)

)
+ BR

(
Qt+1,Pt)

)
= 〈(Qt+1 −Pt), (∇R(Qt+1)−∇R(Pt))〉 (7.3.4)

= η〈(Qt+1 −Pt), (Φαt − f)〉. (7.3.5)

Now from Holder inequality we get

η〈(Qt+1 −Pt), (Φαt − f)〉 ≤ 2
η

2
‖Φαt−f‖q‖Qt+1−Pt‖p ≤

(
η2

4
G2 + ‖Qt+1 −Pt‖2

p

)
.

(7.3.6)
Thus, by plugging back Equation (7.3.6) into Equation (7.3.4), and recalling the
assumption BR(Qt+1,Pt) ≥ ‖Qt+1 −Pt‖2

p, we get

BR
(
Pt,Qt+1)

)
≤ η2

4
G2. (7.3.7)

Finally plugging Equation (7.3.7) into (7.3.3) and summing over all T yields

T∑

t=1

L(P,αt)−
T∑

t=1

L(Pt,αt) ≤ D2

η
+
ηTG2

4
. (7.3.8)

Equation 7.3.8 is valid for any η and every P ∈ Ξp. In particular by setting η = 2D
G
√
T

,
taking the maximum over P we get

max
P∈Ξp

1

T

T∑

t=1

L(P,αt) ≤ 1

T

T∑

t=1

L(Pt,αt) +
DG

2
√
T
. (7.3.9)

Finally we use Theorem 7.6 to show that the GAME algorithm after T iterations
finds a T -sparse vector α̂ with near-optimal value ‖Φα̂− f‖q.
Theorem 7.7. Let q and T be positive integers, and let p = q

q−1
. Suppose that for

every P,Q ∈ Ξp, the function R satisfies BR(P,Q) ≥ ‖P−Q‖2
p, and let

G = max
α∈∆(1,τ)

‖Φα− f‖q. (7.3.10)

Also assume that for every P ∈ Ξp, we have BR(P,P1) ≤ D2. Suppose 〈(P1,α1), · · · , (PT ,αT )〉
is the sequence of pairs generated by the GAME Algorithm after T iterations with
η = 2D

G
√
T

. Let α̂ = 1
T

∑T
t=1α

t be the output of the GAME algorithm. Then α̂ is a

T -sparse vector with ‖α̂‖1 ≤ τ and

‖Φα̂− f‖q ≤ min
α∈∆(T,τ)

‖Φα− f‖q +
DG

2
√
T
. (7.3.11)
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Proof. It follows from Step 2. of Algorithm 3 that every αt is 1-sparse and ‖αt‖1 = τ.
Therefore, α̂ = 1

T

∑T
t=1α

t can have at most T non-zero entries and moreover ‖α̂‖1 ≤
1
T

∑T
t=1 ‖αt‖1 ≤ τ . Therefore α̂ is in ∆(T, τ).

Next we show that the Equation 7.3.11 holds for α̂. Let P̂ = 1
T

∑T
t=1 Pt. Observe

that

min
α∈∆(τ)

max
P∈Ξp

L (P,α) =e max
P∈Ξp

min
α∈∆(τ)

L (P,α) ≥f min
α∈∆(τ)

L
(
P̂,α

)
≥g 1

T
min
α∈∆(τ)

T∑

t=1

L(Pt,α)

≥h 1

T

T∑

t=1

min
α∈∆(τ)

L(Pt,α) =i 1

T

T∑

t=1

L(Pt,αt) ≥j max
P∈Ξp

L
(

P,
1

T

T∑

t=1

αt

)
− DG

2
√
T
.

Equality (e) is the minimax Theorem (Theorem 6.2). Inequality (f) follows from
the definition of the max function. Inequalities (g) and (h) are consequences of
the bilinearity of L and concavity of the min function. Equality (i) is valid by the
definition of αt, and Inequality (j) follows from Theorem 7.6. As a result

‖Φα̂− f‖q = max
P∈Ξp

L (P, α̂) (7.3.12)

≤ min
α∈∆(τ)

max
P∈Ξp

L(P,α) +
DG

2
√
T

= min
α∈∆(τ)

‖Φα− f‖q +
DG

2
√
T
.

Remark 7.8. In general, different choices for the Bregman function may lead to
different convergence bounds with different running times to perform the new projec-
tions and updates. For instance, a multiplicative update version of the algorithm can
be derived by using the Bregman divergence based on the Kullback-Leibler function,
and an additive update version of the algorithm can be derived by using the Bregman
divergence based on the squared Euclidean function.

60



Part III

Expander-Based Compressed
Sensing
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Chapter 8

Efficient Compressed Sensing using
Optimized Expander Graphs

In Chapter 3 we introduced compressed sensing with the goal of replacing conventional
sampling with a more general combination of linear measurement and non-linear
reconstruction in order to acquire certain kinds of signals at a rate significantly below
Nyquist.

Recall that the original approach employed Gaussian and Rademacher random ma-
trices satisfying the RIP. However, as we discussed in Section 3.4, in order to store
the whole matrix in memory we still need O(MN) units of storage which is ineffi-
cient. Also with these matrices each matrix-vector multiplication requires O(MN)
operations. We then introduced the partial Fourier/Hadamard matrices as another
family of random matrices satisfying the RIP. The partial Fourier/Hadamard ma-
trices are obtained by randomly sampling rows of the Fourier/Hadamard matrix.
These matrices require O (M logN) units of storage, but now the number of required
measurements is suboptimal, M = Ω

(
k log5N

)
compared to M = O

(
k log

(
N
k

))
for

Gaussian and Rademacher matrices. Moreover, there is no efficient algorithm to verify
whether a given random matrix satisfies the RIP or not.

In this chapter, we will introduce efficient and sparse sensing matrices that are con-
structed from the adjacency matrices of expander graphs. We will see that expander
graphs do not have the storage and computational issues of dense random matrices,
and moreover explicit constructions for such matrices exist.

The idea of using expander graphs in compressed sensing is based on the connections
between coding theory and compressed sensing (See Section 3.2.) In 1996, Sipser and
Spielman [228] used expander graphs to build a family of linear error-correcting codes
with linear decoding time complexity. These codes belong to class of error correcting
codes called Low Density Parity Check (LDPC) Codes. Later, Xu and Hassibi [258,
259] generalized the decoding of expander codes to the field of real numbers and
proposed the first reconstruction algorithm for expander-based compressed sensing.

62



Following [258, 259], we will show how random dense matrices can be replaced by
the adjacency matrices of an optimized family of expander graphs, thereby reducing
the space complexity of matrix storage and the time complexity of recovery to a few
simple iterations. The main idea is that we study expander graphs with expansion
coefficient beyond the 3

4
that was considered in [258, 259]. Our results have interesting

connection with the sequential decoding of expander codes, and generalize the results
of Sipser and Spielman[228], and Xu and Hassibi [258, 259].

In the remainder of this chapter, we first formally define expander graphs, and describe
a few key properties that we later use in expander-based compressed sensing. In
Section 8.3 we propose an efficient combinatorial algorithm that efficiently recovers
any k-sparse vector α∗ from f = Φα∗ after at most 2k simple iterations.

Our proposed algorithm generalizes the algorithm of [258, 259] to expander graphs
with expansion coefficient beyond 3

4
. The key difference is that now the progress in

each iteration is proportional to logN , as opposed to a constant in [258, 259] We
then describe how the algorithm can be implemented efficiently using simple data
structures.

In Section 8.4 we describe the connections between our proposed algorithm and the
SMP algorithm, which was proposed subsequently by Berinde, Indyk and Ruzic [31],
and can recover a sparse approximation to any vector α∗ ∈ RN in the `1/`1 approxi-
mation settings of Section 3.5.

8.1 What is an Expander Graph?

We start by defining an unbalanced bipartite vertex-expander graph [148].

Definition 8.1. Let G be a bipartite graph with variable (left-side) nodes V , check
(right-side) nodes C, and edges E. We say that G is a (k, ε, d)-expander if

1. G is left regular with left degree d. That is, every variable node is connected to
exactly d check nodes,

2. for any subset S of the variable nodes V with |S| ≤ k, the set of neighbors
N (S) of S has size |N (S)| > (1− ε)d |S|.

Figure 8.1 illustrates such a graph. Intuitively a bipartite graph is an expander if any
sufficiently small subset of its variable nodes has a sufficiently large neighborhood. In
the compressed sensing setting, V (respectively C) will correspond to the components
of the original signal (respectively its compressed representation). Hence, for a given
N = |V | and sparsity level k, an “optimized” expander should have M = |C|,
d, and ε as small as possible, while k should be as close as possible to M . The
following proposition, proved using the probabilistic method [9, 24], is well-known in
the literature on expanders:
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V
|V | = N

|C| = M

C

S

|S| ≤ k N (S)

d

|N (S)| > (1− �)d |S|

Figure 8.1: A (k, ε, d)-expander. In this example, the green nodes correspond to V ,
the blue nodes correspond to C, the yellow oval corresponds to the set S ⊂ V , and
the orange oval corresponds to the set N (S) ⊂ C.

Proposition 8.2 (Existence of optimized expanders). For any 1 ≤ k ≤ N
2

and any

ε ∈ (0, 1), there exists a (k, ε, d)-expander with left degree d = O
(

log(N/k)
ε

)
and right

set size M = O
(
k log(N/k)

ε2

)
.

As a result, by using such expander graph we can get optimality M = O
(
k log(N/k)

ε2

)
in

the number of measurements. Unfortunately, the problem of deterministic construc-
tion of expanders from Definition 8.1 is only solved in the special case that k = Θ(N)
[61]. However, it can be shown that, with high probability, any d-regular random
graph with

d = O

(
log(N/k)

ε

)
and M = O

(
k log(N/k)

ε2

)

satisfies the required expansion property [28]. Thus, on the one hand, it may suffice
to use random bipartite regular graphs in many practical applications. On the other
hand, there exists an explicit construction for a class of expander graphs that comes
very close to the guarantees of Proposition 8.2. This construction, due to Guruswami,
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Umans, and Vadhan. [139], uses Parvaresh-Vardy codes [208] and has the following
guarantees:

Proposition 8.3 (Explicit construction of high-quality expanders). For any positive
constant β, and any N, k, ε, there exists a deterministic construction of a (k, ε, d)-

expander graph with d = O

((
logn
ε

) 1+β
β

)
and M = O(d2k1+β).

Next we define a few combinatorial properties of the expander graphs that we will
use later in our analysis.

Theorem 8.4 (Unique neighbor nodes). Let G be a (k, ε, d)-expander graph. Let S be
a subset of the variable nodes with |S| ≤ k, and let N (S) denote the set of neighbors
N (S) of S. Let N=1(S) denote the set of those nodes in N (S) that are connected to
a single node in S. Then

|N=1(S)| > (1− 2ε)d |S|.

Proof. Let N>1(S), consist of those nodes in N (S) that are connected to more than
a single node in S. First observe that any node in N (S) is either in N=1(S) or in
N>1(S). Therefore, it follows from the expansion property of the graph that

|N=1(S)|+ |N>1(S)| = |N (S)| > (1− ε)d |S|.

Furthermore, since every node in N=1(S) is connected to exactly one node in S, and
every node in N>1(S) is connected to more than one node in S, by counting the edges
connecting S and N(S), we have

|N=1(S)|+ 2|N>1(S)| ≤ d|S|.

The result then follows by combining the latter two inequalities.

The set N=1(S) is called the set of unique neighbor nodes of S

Corollary 8.5. Let G be a (k, ε, d)-expander graph. Let S be a subset of the variable
nodes with |S| ≤ k. Let N=1(S) denote the set of those nodes in N (S) that are
connected to a single node in S. Then, there exists a node in S that is connected to
more than (1− 2ε)d nodes in N=1(S).

Proof. Assume that every node in S has at most (1 − 2ε)d unique neighbors. Then
|N=1(S)| ≤ (1− ε)d |S|, which contradicts Theorem 8.4.

Remark 8.6. Corollary 8.5 guarantees that every subset S of variable nodes of an
expander graph of size at most k has at least one node with more than (1−2ε)d unique
neighbors with respect to S. We will use this corollary in Section 8.3 in the analysis
of our reconstruction algorithm.
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The following theorem is a generalization of the unique neighborhood property, and
proves that in every set S of size at most k there are many nodes with a significantly
large number of unique neighbors with respect to S.

Theorem 8.7. Let G be a (k, ε, d)-expander graph. Let S be a subset of the variable
nodes with |S| ≤ k, and let N (S) ⊂ C denote the set of neighbors N (S) of S. Let
N=1(S) denote the set of unique neighbor nodes of S. For every κ ≥ 2ε define

S′ = {v ∈ S : |N (v) ∩N=1(S)| ≥ (1− κ)d. (8.1.1)

Then |S′| >
(
1− 2ε

κ

)
|S|.

Proof. We prove Theorem 8.7 by double-counting the size of N=1(S). Observe that
every node in S − S′ has at most (1 − κ)d unique neighbors. Moreover, since the
graph is d-regular, every node in S′ has at most d unique neighbors. Therefore,

(|S| − |S′|) (1− κ)d+ |S′|d ≥ |N=1(S)|.

Now by using Theorem 8.4 we get

(|S| − |S′|) (1− κ)d+ |S′|d > (1− 2ε)d |S|. (8.1.2)

By simplifying Equation (8.1.2) we get κd|S′| < (2ε− κ)d|S|.

8.2 Compressed Sensing and RIP-1 Property

Let Φ be the M ×N adjacency matrix of a (k, ε, d) expander graph. Expander-based
compressed sensing uses the matrix Φ as the sensing matrix. As the expander graph
is d-regular, every column of Φ has at most d non-zero entries which all have value
1. Therefore, storing the whole matrix requires only O(dN) = O

(
N log N

k

)
random

bits. Moreover, each forward matrix-vector multiplication u = Φv requires only
O(dN) operations, as every entry of v updates at most d entries of u. Similarly,
the adjoint multiplication v = Φ>u also requires only O(dN) operations. Therefore,
sparse sensing matrices constructed from expander graphs have significant storage
and computational advantages over dense Gaussian and Rademacher matrices.

Sensing matrices based on random expander graphs of Proposition 8.2 have the ex-
tra advantage that their number of measurements is optimal M = O

(
k log N

k

)
. In

contrast, sensing matrices based on explicit expander graphs of Proposition 8.3 have
deterministic constructions.

Since every entry of Φ is either zero or one, a result of Chandar [70] states that
Φ cannot satisfy the RIP property of Definition 3.5. However, a similar Restricted
Isometry Property in the `1 norm (known as the RIP-1 property) can be derived from
the expansion property and will guarantee the uniqueness of sparse representation.
The RIP-1 property is proved by Berinde et. al. in [29].
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Lemma 8.8 (RIP-1 property of the expander graphs [29]). Let Φ be the M × N
adjacency matrix of a (k, ε, d)expander graph G. Then for any k-sparse vector α ∈ RN

we have:
(1− 2ε)d‖α‖1 ≤ ‖Φα‖1 ≤ d‖α‖1 (8.2.1)

The full recovery property now follows immediately from Lemma 8.8 and guarantees
that expander-based compressed sensing is at least information-theoretically possible.

Theorem 8.9 (Full recovery). Let m be a positive integer. Suppose ΦM×N is the
adjacency matrix of an ((m+ 1)k, ε, d) expander graph. Suppose α is a k-sparse and
α′ is an mk-sparse vector, such that Φα = Φα′. Then α = α′.

Proof. Let z = α−α′. We have

‖z|0 ≤ ‖α‖0 + ‖α′‖0 ≤ (m+ 1)k.

Now from Lemma 8.8 we have:

‖α−α′‖1 ≤
1

(1− 2ε)
‖Φα−Φα′‖1 = 0,

hence α = α′.

Note that the proof of the above theorem essentially says that the adjacency matrix
of a ((m+1)k, ε, d) expander graph does not have a null vector that is (m+1)k sparse.
If m = 2 then Theorem 8.9 guarantees that no two k-sparse vectors can be mapped
to the same measurement vector, and compressed sensing is information theoretically
possible. We will also give a direct proof of this result (which does not appeal to
RIP-1) since it gives a flavor of the main arguments of the next section.

Lemma 8.10 (Null space of Φ). Let m be a positive integer, Suppose ΦM×N is the
adjacency matrix of an ((m+ 1)k, ε, d) expander graph with ε ≤ 1

2
. Then any nonzero

vector in the null space of Φ, i.e., any z 6= 0 such that Φz = 0, has more than
(m+ 1)k nonzero entries.

Proof. Define S to be the support set of z. Suppose that z has at most (m + 1)k
nonzero entries, i.e., that |S| ≤ (m+ 1)k. Let N=1(S) denotes the set of those nodes
in N (S) that are connected to a single node in S. Then from Theorem 8.4 we have
|N=1(S)| > (1 − 2ε)d|S| ≥ 0. This implies that there is at least one entry of Φz
which is only connected to one entry of the support of z, and therefore has non-zero
value. However, this contradicts the fact that Φz = 0 and so z must have more than
(m+ 1)k nonzero entries.

Table 8.1 compares expander-based sensing matrices satisfying the RIP-1 property,
with dense sensing matrices satisfying the RIP-2 property. Expander-based matrices
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Table 8.1: Comparison between different properties of sensing matrices satisfying the
RIP-2 property with the same properties of expander-based matrices satisfying the
RIP-1 property. All bounds ignore the O(.) constants.

Matrix
Number of Memory Matrix-vector Random vs.

RIP
measurements (random bits) multiplication Deterministic

Gaussian
k log

(
N
k

)
kN log

(
N
k

)
kN log

(
N
k

)
Random RIP-2

[21]
Partial

k log5N k log6N N logN Random RIP-2
(Fourier)[218]

Incoherent
k2 - N logN Deterministic RIP-2

Frames [11, 15]

Expander
k log

(
N
k

)
N log

(
N
k

)
N log

(
N
k

)
Random RIP-1

Graphs [159, 29]
Expander

k1+β (logN)
2(1+β)
β - N (logN)

(1+β)
β Deterministic RIP-1

Graphs [139]

are superior in terms of the number of measurements, storage, computation, and
having explicit constructions. In the next sections we show that expander-based
compressed sensing is also computationally possible by providing efficient and robust
sparse recovery algorithms.

8.3 Efficient Sparse Recovery in the Noiseless Regime

In this section we propose a simple recovery algorithm which recovers any k-sparse
vector α∗ from the low-dimensional vector Φα∗ in only 2k simple iterations and a
total running time of O

(
N log N

k

)
. The proposed algorithm is a simple iterative algo-

rithm that starts by setting the all-zero vector as its initial guess. At every iteration
the algorithm updates only one coordinate of the guess vector by selecting a coordi-
nate whose neighbors mostly have the same gap value (defined bellow). The algorithm
keeps on updating the guess vector for at most 2k iterations. The pseudocode of our
proposed algorithm is provided in Algorithm 4.

Before proving the result, we introduce some notations used in the recovery algorithm
and in the proof.

In Algorithm 4 the gap is defined as follows.

Definition 8.11 (gap). Let α∗ be the original signal and f = Φα∗. Furthermore,
let αt be our estimate for α∗ after t iterations of Algorithm 4 . For each variable
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Algorithm 4 Expander Recovery Algorithm for Sparse Signals

Inputs: An M dimensional vector f , and the M×N matrix Φ which is the adjacency
of an expander graph.
Output: An N dimensional vector α̂.

1: Initialize α̂1 .
= 0N and f 1 .

= f .
2: for t = 1, · · · , 2k do
3: if f t = 0M then
4: output α̂t and exit.
5: else
6: For each variable node j, set

gtj
.
= Median

(
{f ti : i ∈ N (j)}

)
.

7: Find a variable node j such that at least (1 − 2ε) d of the measurements it
participates in, have identical non-zero gap value gtj.

8: Set

α̂j′
t+1 .

=

{
α̂j′

t + gtj if j′ = j
α̂j′

t Otherwise

}
.

9: Set
f t+1 .

= f t − gtjΦj.

10: end if
11: end for

node j, we define the gap value gtj as:

gtj = Median
(
{f ti : i ∈ N (j)}

)
.

That is, each vertex j selects the entries f ti where i is a neighbor of j in G, and then
computes the median gtj of those d entries.

Definition 8.12. At each iteration t, Gt is the support of the residual vector f t:

Gt = Supp(f t) = Supp(f −Φα̂t),

similarly St is the support of the difference between the true (unknown) vector α∗,
and our candidate α̂t:

St = Supp(α̂t −α∗) = {j : α̂t
j 6= α∗j }.

Now we are ready to state the main result:

Theorem 8.13 ( Expander Recovery Algorithm ). Let Φm×n be the adjacency matrix
of a (3k, ε, d) expander graph, where ε ≤ 1/4. Then, for any k-sparse signal α∗, given
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f = Φα∗, the expander recovery algorithm (Algorithm 4) recovers α∗ successfully in
at most 2k iterations.

The proof consists of the following lemmas.

• The algorithm never gets stuck, and one can always find a coordinate j that is
connected to at least (1− 2ε)d parity nodes with identical non-zero gaps.

• With certainty the algorithm will stop after at most 2k rounds. Furthermore,
by choosing ε small enough the number of iterations can be made arbitrarily
close to k.

We need the following lemmas to prove Theorem 8.13.

Lemma 8.14 (progress). Suppose at each iteration t, |St| < 2k. Then always there
exists a variable node j such that at least (1 − 2ε)d of its neighbor check nodes have
the same non-zero gap value gtj.

Proof. Since Φ is the normalized matrix of a (2k, ε, d) expander graph, and |St| < 2k,
it follows from Corollary 8.5 that there exists a coordinate j in St that is uniquely
connected to at least (1−2ε)d check nodes, in other words no other non-zero variable
node in St is connected to these nodes. This immediately implies the lemma.

Lemma 8.15 (gap elimination). At each step t if |St| < 2k then |Gt+1| < |Gt| −
(1− 4ε)d

Proof. By the previous lemma, if |St| < 2k, there always exists a node j that is
connected to at least (1 − 2ε)d nodes with identical nonzero gap, and hence to at
most 2εd nodes possibly with zero gaps. Adding the gap value gtj to the current value
of this variable node sets the gaps on these uniquely connected neighbors of j to zero,
but it may make some zero gaps on the remaining 2εd neighbors non-zero. So at least
(1 − 2ε)d coordinates of Gt will become zero, and at most 2εd its zero coordinates
may become non-zero. Hence

|Gt+1| < |Gt| − (1− 2ε)d+ 2εd = |Gt| − (1− 4ε)d. (8.3.1)

The following lemma provides a direct connection between the size of Gt and the size
of St.

Lemma 8.16 (connection). If at iteration t, |St| < 2k, then (1− 2ε)d|St| < |Gt|.

Proof. Since |St| < 2k, by Theorem 8.4

|N=1(St)| > (1− 2ε)d|St|.
Also, each node in N=1(St) has non-zero gap and so is a member of Gt.
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Lemma 8.17 (preservation). At each step t if |St| < 2k, after running the algorithm
we have |St+1| < 2k.

Proof. Since at each step we are only changing one coordinate of α̂t, we have |St+1| =
|St|+ 1, so we only need to prove that St+1 6= 2k.

Suppose for a contradiction that |St+1| = 2k, and partitionN (St+1) into two disjoint
sets:

1. N=1(St+1): The vertices in N (St+1) that are connected only to one vertex in
St+1.

2. N>1(St+1): The other vertices (that are connected to more than one vertex in
St+1).

The argument is similar to that given in Theorem 8.4; by double counting the number
of vertices in N=1(St+1) and N>1(St+1) one can show that

|N=1(St+1)| > (1− 2ε) d |St+1| = (1− 2ε) d 2k (8.3.2)

Now we have the following facts:

• |N=1(St+1)| ≤ |Gt+1| : Coordinates in N=1(St+1) are connected uniquely to
coordinates in St+1, hence each coordinate in N=1(St+1) has non-zero gap.

• |Gt+1| > |G1|: gap elimination from Lemma 8.15.

• |G1| ≤ kd: since α∗ is k-sparse and α̂1 is the all-zero vector, α̂1 and α∗ differ
in at most k coordinates. Therefore, since the graph is d-regular, Φα̂1 and Φα∗

can differ in at most kd coordinates.

As a result we have:

(1− 2ε)2 dk < |N=1(St+1)| ≤ |Gt+1| < |G1| ≤ kd (8.3.3)

This implies ε > 1
4

which contradicts the assumption ε < 1
4
.

Proof of the Theorem 8.13. Preservation (Lemma 8.17) and Progress (Lemma 8.14)
together immediately imply that the algorithm will never get stuck. Also by Lemma
8.15 we had shown that |G1| ≤ kd and |Gt+1| < |Gt| − (1 − 4ε)d. Hence after at
most T = k

(1−4ε)
steps we will have |GT | = 0 and this together with the Connection

Lemma implies that |ST | = 0, which is the exact recovery of the original signal.

Note that we have to choose ε < 1
4
, and as an example, by setting ε = 1

8
the recovery

needs at most 2k iterations.
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Algorithm 4 is an iterative algorithm that consists of at most 2k simple iterations.
Each iteration can be implemented efficiently (see [258] ) since the adjacency matrix
of the expander graph is sparse with all entries 0 or 1.

The efficiency of the algorithm can also be improved by using a priority queue data-
structure. The idea is to use preprocessing as follows: For each variable node j
compute the median of its neighbors g1

j
.
= Median ({fi : i ∈ N (j)}) and also compute

the number of neighbors with the same value g1
j . Note that if a node has (1 − 2ε)d

unique neighbors, their median should also be among them. Then construct the
priority queue based on the values g1

j , and at each iteration extract the root node
from the queue, perform the gap elimination on it, and then, if required, make the
correction on corresponding dD variable nodes, where d is the left-degree and D is
the maximum right degree of the expander. The main computational cost of this
variation of the algorithm will be the cost of building the priority queue which is
O(N log N

k
); finding the median of d elements can be done in O (d) and building a

priority queue requires linear computational time.

8.4 Sparse Matching Pursuit

Thus far we have introduced efficient iterative algorithms for recovery of (almost)
k-sparse vectors. An important next step is to generalize these algorithms to provide
sparse approximations for arbitrary vectors in RN in the settings of Section 3.5. More
precisely, let Φ be the adjacency matrix of an expander graph. The goal is to design
an efficient recovery algorithm such that for every data vector α∗ ∈ RN , and noise
vector eM ∈ RM , given f = Φα∗ + eM , the algorithm can find a sparse vector α̂
close to the best k-term approximation Hk(α

∗) of α∗.

Expander Matching Pursuit (EMP) [153] was the first expander-based recovery algo-
rithm capable of solving the general sparse approximation problem. The key feature
of the EMP algorithm is that sparse recovery requires near linear O

(
N log N

k

)
oper-

ations, while still using O
(
k log N

k

)
measurements. Moreover, the algorithm provides

`1/`1 sparse approximation guarantees. That is, for every α∗ ∈ RN and eM ∈ RM ,
given f = Φα∗ + eM , the algorithm finds a k-sparse vector α̂ with

‖α∗ − α̂‖1 = O

(
‖α∗ − Hk(α

∗)‖1 +
‖eM‖1

d

)
.

However, the empirical performance of EMP is less impressive. The algorithm re-
quires M = 5000 measurements to recover random signed 50-sparse signals of length
N = 20000, whereas the convex optimization method with random Gaussian matrices
requires only about M = 450 measurements [31, 98].

Sparse Matching Pursuit (SMP) [31] is an iterative message-passing algorithm de-
signed to overcome the empirical suboptimality of the EMP algorithm. The SMP
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algorithm shares significant similarities with Algorithm 4 provided in Section 8.3 for
recovering sparse vectors, and can be viewed as a generalization of Algorithm 4.

In each iteration, the algorithm estimates the difference between the current ap-
proximation α̂t and the true vector α∗ from the measurement error Φα̂t − f . The
estimation is obtained by using the median estimator gt as in Algorithm 4. The data-
domain approximation α̂t is updated by gt, and the process is repeated. However,
the key difference between the SMP algorithm and Algorithm 4 is that in contrast to
Algorithm 4 which only updates one coordinate of α̂t at each iteration, SMP updates
2k coordinates of α̂t simultaneously in a greedy manner. The pseudocode of the SMP
algorithm is provided in Algorithm 5.

Algorithm 5 Sparse Matching Pursuit (SMP)

Inputs: An M dimensional vector f , the M×N expander matrix Φ, and the number
of iterations T .
Output: An N dimensional vector α̂.

1: Initialize α̂1 .
= 0N and f 1 .

= f .
2: for t = 1, · · · , T do
3: For each variable node j, set gtj

.
= Median ({f ti : i ∈ N (j)}) .

4: Set ht
.
= H2k(g

t).
5: Set α̂t+1 .

= Hk(α̂
t + ht).

6: Set f t+1 .
= f −Φα̂t+1.

7: end for
8: Output α̂

.
= α̂T+1.

The following theorem summarizes the performance guarantees of the SMP algorithm.

Theorem 8.18 ([31]). Let Φ be the adjacency of an (O(k), ε, d) expander graph with
sufficiently small ε. Then, there exists a constant κSMP depending only on ε, such
that for any data vector α∗ ∈ RN and noise vector eM ∈ RM , given f = Φα∗+ eM ,
the SMP algorithm after T iterations finds a k-sparse vector α̂ with

‖α̂−α∗‖1 =
‖α∗‖1

2T
+ 4κSMP

(
‖α∗ − Hk(α

∗)‖1 +
‖eM‖1

d

)
.

Corollary 8.19. Let Φ be the adjacency of an (O(k), ε, d) expander graph with suf-
ficiently small ε. Then, there exists a constant κSMP depending only on ε, such that
for any data vector α∗ ∈ RN and noise vector eM ∈ RM , given f = Φα∗ + eM , the
SMP algorithm after

T = log2


 ‖α∗‖1(
‖α∗ − Hk(α

∗)‖1 + ‖eM‖1
d

)
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iterations finds a k-sparse vector α̂ with

‖α̂−α∗‖1 = (1 + 4κSMP)

(
‖α∗ − Hk(α

∗)‖1 +
‖eM‖1

d

)
.

Therefore, the SMP algorithm provides an `1/`1 best k-term approximation guar-
antee. The running time of the SMP algorithm is by a logarithmic factor higher
than EMP; however, it has better empirical performance and requires significantly
fewer measurements. For instance, M = 2000 measurements are enough successfully
recover 50-sparse signals of dimension 20000.

Empirical performance can be further improved via the Sequential Sparse Matching
Pursuit (SSMP) [30] which is a recent greedy variant of SMP. In contrast to the
original SMP algorithm, SSMP performs sequential updates by always selecting the
best update first. In the above setting M = 1400 measurements, rather than M =
2000, are sufficient for successful recovery. Nevertheless, the running time of the
SSMP algorithm is by a logarithmic factor slower than SMP.

Remark 8.20. Note that more efficient sparse approximation algorithms exist for
the special case where the non-zero entries of the sparse signal have all positive values
[169, 71].

Expander-based compressed sensing with the reconstruction algorithms mentioned
in this chapter provide for all sparse approximation guarantees. This means that
the deterministic (random) expander sensing matrix combined with any of the recon-
struction algorithms mentioned above guarantees `1/`1 best k-term approximation
for every vector α∗ ∈ RN surely (or with high probability). In contrast, another
sparse recovery setting which was evolved in the context of data-streaming, provides
a weaker for-each guarantee [123].

In this setting, the sensing matrix Φ is a sparse matrix chosen at random from some
distribution and for each vector α∗ ∈ RN , the recovery algorithm successfully finds
a sparse approximation to α∗ with probability at least 1 − 1

N
. Examples of such

algorithms which only require O(k logN) measurements are [79, 72] which provide
instance optimal `2/`2 guarantees in O(N logN) running time, and [125] which pro-
vides instance optimal `1/`1 guarantees in O (Poly(k, logN)) running time.

We note that even though these for-each algorithms provided tighter instance optimal
guarantees or are faster, they are not typically resilient to measurement noise. This
imposes an important difficulty on using them in compressed sensing applications
other than the data-streaming application.
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Chapter 9

A Game Theoretic Approach to
Expander-based Compressive
Sensing

9.1 RIP-1 and `1-Minimization

In Chapter 8 we introduced expander graphs and proposed efficient algorithms for
recovery of (almost) sparse signals. We also described combinatorial sparse recovery
algorithms with `1/`1 best k-term approximation guarantees. However, there is a
major drawback with these algorithms if the signal is not almost sparse. While
they are efficient and rather easy to implement, their approximation guarantees are
meaningful only in extremely large dimensions. The big O notation in their `1/`1

guarantees hides large constants, making these algorithms only suitable for extremely
high-dimensions or when the SNR is significantly high.

On the other hand, in Section 3.3 we mentioned the `1-minimization method as a
robust sparse recovery scheme that depends on the geometry of sensing matrices
satisfying the RIP in the `2 norm. It is natural to ask is whether it is possible to
design stable sparse recovery algorithms, such as `1-minimization, that rely on the
geometry of expander graphs.

In this section we will see that the answer to the above question is yes, and like the
RIP-2 case, the RIP-1 property of the expander graphs is sufficient to guarantee that
the `1-minimization methods stably recover every sparse vector.

In Lemma 8.8 we saw that the adjacency matrix of any (k, ε, d) expander graph almost
preserves the `1 norm of any k-sparse vector. This property is known as the Restricted
Isometry Property for `1 norms or the RIP-1 property.

The following proposition is a direct consequence of the above RIP-1 property. It
states that for any vector u, if there exists a vector v whose `1 norm is close to that
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of u, then if Φv approximates Φu in the `1 norm, then v also approximates u in the
`1 norm.

Theorem 9.1. Let Φ be the adjacency matrix of a (2k, ε, d)-expander and u,v be
two vectors in Rn, such that

‖u‖1 ≥ ‖v‖1 −∆

for some ∆ > 0. Then

‖u− v‖1 ≤
(1− 2ε)

(1− 6ε)
(2‖u− Hk(u)‖1 + ∆) +

2

d(1− 6ε)
‖Φu−Φv‖1.

Proof. Let S = Supp(Hk(u)), and let 〈S1, · · · , St〉 be a decreasing partitioning of S
(with respect to coefficient magnitudes), such that all sets but (possibly) St have size
k. Note that S0 = S. Let ΦN (S) be a submatrix of Φ containing rows from N (S).
Finally let y = u−v. Then, following the argument of Berinde et al. [29], which also
appears in Sipser and Spielman [228], we have the following chain of inequalities:

‖Φy‖1 ≥ ‖ΦN (S)y‖1 ≥ ‖ΦN (S)yS‖1 −
t∑

i=1

∑

j∈Si, l∈N (S)
(j,l): edge

|yj| (9.1.1)

≥ d(1− 2ε)‖yS‖1 −
t∑

i=1

∑

j∈Si, l∈N (S)
(j,l): edge

‖ySi−1‖1

k

≥ d(1− 2ε)‖yS‖1 − 2kdε
t∑

i=1

‖ySi−1‖1

k
≥ d(1− 2ε)‖yS‖1 − 2dε‖y‖1.

Hence
‖Φy‖1 + 2dε‖y‖1 ≥ (1− 2ε)d‖yS‖1. (9.1.2)

Now, from the triangle inequality we have

‖u‖1 ≥ ‖v‖1 −∆ ≥ ‖u‖1 −∆− ‖u− v‖1 (9.1.3)

= ‖u‖1 −∆ + ‖u− v‖1 − 2 (‖(u− v)S‖1 + ‖(u− v)S‖1)

≥ ‖u‖1 −∆ + ‖u− v‖1 − 2 (‖(u− v)S‖1 + ‖u− Hk(u)‖1) .

Therefore, from Equation (9.1.2), we obtain

‖u‖1 ≥ ‖u‖1 − 2‖u− Hk(u)‖1 −∆ + ‖u− v‖1 −
2‖Φu−Φv‖1 + 4dε‖u− v‖1

(1− 2ε)d
.

Rearranging the inequality completes the proof.

Using Theorem 9.1, Berinde et al. have shown that the RIP-1 property is sufficient
for sparse recovery using `1 minimization [29].
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Theorem 9.2. Let ε be a positive number smaller than 1/6, and let Φ be a sensing ma-
trix satisfying (2k, ε, d)-RIP1. Let α∗ be any arbitrary vector in RN , and let Hk(α

∗)
denote the best k-term approximation of α∗ defined by Equation (2.1.1). Finally let
eM be an arbitrary noise vector in RM , and let f = Φα∗ + eM . Then the solution
α̂ of the Basis Pursuit problem

minimize ‖α′‖1

subject to ‖f −Φα′‖1 ≤ ‖eM‖1,

satisfies the following `1/`1 sparse approximation guarantee:

‖α̂−α∗‖1 ≤ c1‖α∗ − Hk(α
∗)‖1 + c2‖eM‖2, (9.1.4)

with c1 = 2(1−2ε)
(1−6ε)

, and c2 = 2
(1−6ε)d

.

The Optimization-based method of Theorem 9.2 exploits the geometry of the ex-
pander graphs, and performs significantly better than the combinatorial approach
in practical applications. Figure 9.1 compares the performance of the geometric BP
algorithm and the combinatorial SSMP algorithm. This comparison is borrowed
from experiments performed by Berinde and Indyk [30], and shows that the `1 mini-
mization method can recover signals with significantly higher sparsity level than the
SSMP algorithm. For instance, about 1000 measurements are sufficient to recover a
100-sparse signals of dimensions 20, 000 using the BP algorithm, whereas at least 2200
measurements are required for the successful recovery using the SSMP algorithm.

Even though the `1-minimization approach has the best practical performance, the
computational cost of solving sparse recovery using the interior point method is typi-
cally O(N1.5M2). Moreover, since the feasible set ‖Φα−f‖1 is not even differentiable,
most gradient-based optimization methods are not directly applicable. In the next
section we propose an alternative efficient algorithm that approximately solves the
objective of the geometric approach.

9.2 Sparse Approximation in `1 Norm

In this section, we propose the `1-GAME algorithm for solving the problem of sparse
approximation in the `1-norm. The `1-GAME algorithm is a special instance of the
GAME algorithm introduced in Section 7.2. Later on, in Section 9.3 we will use
the `1-GAME algorithm to approximately solve the non-smooth `1-minimization of
Theorem 9.2.

Let Φ be any M × N matrix with M � N , let α∗ be a sparse vector in ∆(k, τ),
defined by Equation (6.1.2),and let eM be any vector in RM . Let f

.
= Φα∗ + eM

denote the measurement vector. Sparse approximation in the `1-norm refers to the
following problem

minimizeα∈∆(k,τ)‖Φα− f‖1. (9.2.1)
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(a) M = 1000 measurements are sufficient for successful recovery of 100-sparse signals using
the Basis Pursuit algorithm.
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(b) M = 2200 measurements are necessary for successful recovery of 100-sparse signals using
the SSMP algorithm.

Figure 9.1: Comparisons of exact recovery experiments for SSMP and BP algorithms
as provided in [30]. All plots are for the same signal length N = 20000, and left
degree d = 8. Each experiment is repeated independently 100 times.
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Algorithm 6 The `1-GAME algorithm

Inputs: f , Φ, and parameters T , τ and η > 0.
Output: A T -sparse vector α̂.

1: Set P1 = [0]M .
2: for t = 1, · · · , T do
3: Let rt

.
= Φ>Pt

4: Find the index i of one largest (in magnitude) element of rt.
5: Let αt be a 1-sparse vector with

Supp(αt) = {i}, and αti = −τ Sign
(
rti
)
.

6: Update Qt+1 = Pt + η
2
(Φαt − f).

7: For each j ∈ [M ], let Pt+1
j = S

(
Qt+1
j , 1

)
.

(S
(
Qt+1
j , 1

)
uses the soft-thresholding operator of Definition 2.3 with θ = 1).

8: end for
9: Output α̂

.
= 1

T

∑T
t=1α

t.

Unfortunately, since ∆(τ, k) is not sparse, solving the problem of Equation (9.2.1) is
intractable. However, this optimization problem is equivalent to sparse approximation
in the `q norm with q = 1. Therefore the results of Chapter 6.1 can be applied to
approximately solve Equation (9.2.1) efficiently.

Remark 9.3. Note that throughout this section we assume that an upper-bound τ
on the `1-norm of α∗ is known a priori. While this assumption is directly valid in
many applications, we will still provide a way to efficiently compute an estimate in
the expander-based compressed sensing problem in Section 9.3.

Following Equation (6.1.6), let

Ξ∞
.
= [1, 1]M = {P ∈ RM : ‖P‖∞ ≤ 1},

and let ∆(τ) be as in Equation (6.1.1). Define the loss function L : Ξ∞ ×∆(τ)→ R
as

L(P,α)
.
= 〈P, (Φα− f)〉.

It follows from Equation (6.1.10) with q = 1 and p = ∞ that the problem of sparse
approximation in the `1 norm can be viewed as a min-max game:

min
α∈∆(k,τ)

‖Φα− f‖1 = min
α∈∆(k,τ)

max
P∈Ξ∞

L(P,α). (9.2.2)

Since sparse approximation in the `1 norm is a special case of sparse approximation
in the `q norm, the GAME Algorithm (Algorithm 3) can be used to approximate the
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optimal solution of Equation (9.2.1). In order to obtain guarantees on the performance
of the GAME algorithm, Theorem 9.4 requires that the Bregman function is properly
chosen so that

∀P,Q ∈ Ξ∞, BR(P,Q) ≥ ‖P−Q‖2
∞.

It is easy to verify that this requirement is satisfied if the squared Euclidean norm
R(P) = ‖P‖2

2, with BR(P,Q) = ‖P − Q‖2
2 is used in the GAME algorithm. The

pseudocode of the `1-GAME algorithm is provided in Algorithm 6, and describes
a special GAME Algorithm which exploits the choice of Euclidean distance as the
Bregman function.

Other choices for the Bregman function may lead to different convergence bounds and
different running times for the new projections and updates. For instance, a multi-
plicative update version of the algorithm (MU-GAME) can be derived by using the
Bregman divergence based on the relative entropy function. Surprisingly, the derived
guarantees for GAME can be shown to also hold for MU-GAME in a straightforward
manner.

The general `1-GAME algorithm starts by finding a P1 such that ∇R(P1) = 2P1 =
0M . Then at every iteration, in step 6, the algorithm finds a Qt+1 with

∇
(
BR(Qt+1,Pt)− η〈Qt+1, (Φαt − f)〉

)
= 2(Qt+1 −Pt)− η(Φαt − f) = 0M ,

and then updates Pt+1 via the Bregman projection

Pt+1 .
= arg min

P∈[−1,1]M
BR(P,Qt+1) = S

(
Qt+1, 1

)
.

The theorem below is based on Theorem 9.4 in Section 7.3, and shows that for every

positive ε, as long as T = O
(

Mτ2

(ε‖eM‖1)2

)
, the GAME algorithm after T iterations

finds a T -sparse vector α̂ with ε‖eM‖2 multiplicative approximation error in the
measurement domain.

Theorem 9.4. Let Φ be an M ×N matrix, and let ‖Φ‖1 denote the `1 norm of the
matrix, which is defined in Equation 2.2.1. Suppose α∗ is a vector in ∆(k, τ), and
let f = Φα∗+ eM , where eM is the measurement noise vector. Let ε be any number
in (0, 1], and let α̂ denote the output of the GAME algorithm after

T = max

{
k,M

(‖eM‖1 + 2‖Φ‖1τ

2ε‖eM‖1

)2
}

(9.2.3)

iterations with regularization parameter

η =
4ε‖eM‖1

(‖eM‖1 + 2‖Φ‖1τ)2 .

Then, α̂ is a vector in ∆(τ, T ) with

‖Φα̂− f‖1 ≤ (1 + ε)‖eM‖1. (9.2.4)

80



Proof. At every iteration t, αt is a 1-sparse solution of the minimization problem
minimizeL(Pt,α). Moreover, for every α in ∆(1, τ) we have

‖Φαt − f‖2 ≤ ‖Φαt − f‖1 ≤
(
‖eM‖1 + ‖Φ‖1‖αt −α∗‖1

)
≤ ‖eM‖1 + 2‖Φ‖1τ.

Moreover, for every P ∈ Ξ∞ we have

BR(P,P1) = ‖P‖2
2 =

M∑

j=1

|Pj|2 ≤M.

As a result, by setting G = ‖eM‖1 + 2‖Φ‖1τ , and D =
√
M , from Theorem 9.4 it

follows that α̂ is a vector in ∆(T, τ) with

‖Φα̂− f‖1 ≤ min
α∈∆(k,τ)

‖Φα− f‖1 +
GD

2
√
T
≤ ‖eM‖1 + ε‖eM‖1 = (1 + ε)‖eM‖1.

Remark 9.5. In this section, we assumed that the vector α∗ is exactly k-sparse.
However, this assumption is without loss of generality. To see this, observe that every
vector α∗ ∈ RN satisfies

f = Φα∗ + eM = ΦHk(α
∗) + [Φ(α∗ − Hk(α

∗)) + eM ] ,

and
‖Φ(α∗ − Hk(α

∗))‖1 ≤ ‖Φ‖1‖α∗ − Hk(α
∗)‖1.

Therefore, one can always assume that the original vector is exactly k-sparse, by
assuming that the measurement noise is Φ(α∗ − Hk(α

∗)) + eM , with

‖Φ(α∗ − Hk(α
∗)) + eM‖1 ≤ ‖Φ‖1‖α∗ − Hk(α

∗)‖1 + ‖eM‖1.

In particular, if Φ is the adjacency of an expander graph, then ‖Φ‖1 = d and

‖Φ(α∗ − Hk(α
∗)) + eM‖1 ≤ d ‖α∗ − Hk(α

∗)‖1 + ‖eM‖1. (9.2.5)

9.3 Expander-based GAME Algorithm

In Section 9.2 we showed that if Φ is the adjacency of an expander graph, then for
every vector α∗ ∈ RN , given f = Φα∗ + eM , the `1-GAME algorithm can efficiently
find a vector α̂ with bounded measurement-domain error

‖Φα̂− f‖1 = O (d ‖α∗ − Hk(α
∗)‖1 + ‖eM‖1) .
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In this section, we combine the results of Section 9.2 and Theorem 9.2, and propose an
efficient algorithm, called e-GAME , that finds an estimate α̂ with the `1/`1 guarantee

‖α̂−α∗‖1 = O(‖α∗ − Hk(α
∗)‖1 + ‖eM‖1

d
).

Similar to the previous section, throughout this section without loss of generality we
assume that the vector α∗ is exactly k-sparse by adding the residual term Φ(α∗ −
Hk(α

∗)) to the measurement noise.

The pseudocode of the e-GAME algorithm is shown in Algorithm 7. The following
lemma is key in establishing the guarantees of e-GAME .

Lemma 9.6. Let Φ be the adjacency of a (k, ε, d) expander graph with ‖Φ‖1 = d. Let
〈α̂1, · · · , α̂Θ〉 be the vectors generated by the e-GAME algorithm. Then at least one
of the following two conditions holds. That is, either

(C1). there exists an index t with ‖α̂t‖1 ≤ ‖α∗‖1 and ‖Φ(α̂t−α∗)‖1 ≤ (2+ε)‖eM‖1;
or

(C2). for every iteration t, Lot ≤ ‖α∗‖1 ≤ Upt.

Proof. We prove Lemma 9.6 by induction. First consider t = 0. Since α∗ is k-sparse,
it follows from the RIP-1 property of expander graphs (Lemma 8.8), and the triangle
inequality that

(1− 2ε)d‖α∗‖1 ≤ ‖Φα∗‖1 = ‖f − eM‖1 ≤ ‖f‖1 + ‖eM‖1.

Assume that Condition (C2) holds for t − 1, we now show that it is also valid for
index t via two different cases:
Case 1: ‖Φα̂t − f‖1 > (1 + ε)‖eM‖1. If ‖α∗‖1 ≤ τ t then

min
‖α‖1≤τ t

‖Φα− f‖1 ≤ ‖Φα∗ − f‖1 = ‖eM‖1 <
‖Φα̂t − f‖1

(1 + ε)
,

which contradicts the (1 + ε) approximation guarantee of the `1-GAME algorithm.
Therefore we must have ‖α∗‖1 ≥ τ t = Lot. It also follows from the induction hypoth-
esis that ‖α∗‖1 ≤ Upt−1 = Upt.
Case 2: ‖Φα̂t − f‖1 ≤ (1 + ε)‖eM‖1. In this case, if τ t ≤ ‖α∗‖1, then we have
‖α̂t‖1 ≤ ‖α∗‖1 and

‖Φ(α̂t −α∗)‖1 ≤ ‖Φα̂t − f‖1 + ‖Φα∗ − f‖1 ≤ (2 + ε)‖eM‖1,

which is Condition (C1). Therefore, if (C1) is not valid then we must have Upt = τ t >
‖α∗‖1. Also again from the induction hypothesis we get ‖α∗‖1 ≥ Lot−1 = Lot.

The following theorem proves that at least one estimate α̂t is sufficiently close to α∗.
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Algorithm 7 The e-GAME Algorithm

Inputs: f , Φ, and parameters ε, and δ.
Output: An approximation α̂ for the vector α∗.

1: Set Lo0 = 0, Up0 = ‖f‖1+‖eM‖1
d(1−2ε)

, and Θ = log
(

4
δ

)
.

2: for t = 1, · · · ,Θ do
3: Let α̂t be the solution of the `1-GAME algorithm

with τ t = Lot−1+Upt−1

2
and T t of Equation (9.2.3).

4: if ‖Φα̂t − f‖1 ≤ (1 + ε)‖eM‖1 then
5: Set Upt = τ t, and Lot = Lot−1.
6: else
7: Set Lot = τ t, and Upt = Upt−1.
8: end if
9: end for

10: Output α̂
.
= arg mint∈[Θ] ‖ΦHk(α̂

t)− f‖1.

Theorem 9.7. Let Φ be the adjacency of a (2k, ε, d) expander graph. Let ε and δ
be any two positive numbers, and let 〈α̂1, · · · , α̂Θ〉 be the vectors generated by the
e-GAME algorithm. Then there exists an index t with

‖α∗ − α̂t‖1 ≤
(1− 2ε)δ‖α∗‖1

(1− 6ε)
+

2(2 + ε)‖eM‖1

(1− 6ε)d
.

Proof. The proof of Theorem 9.7 relies on Lemma 9.6. If Condition (C1) is satisfied
for some index t, then Theorem 9.1 implies that

‖α∗ − α̂t‖1 ≤
2(2 + ε)‖eM‖1

(1− 6ε)d
,

whereas if Condition (C2) is satisfied, then at every iteration t we have

‖α̂t‖1 − ‖α∗‖1 ≤ Upt − ‖α∗‖1 ≤ Upt − Lot ≤ Up0 − Lo0

2t
.

In this case, if Θ = log2

(
4
δ

)
, then Lemma 8.8 implies that

‖α̂Θ‖1 − ‖α∗‖1 ≤
Up0 − Lo0

2θ
=

(‖f‖1 + ‖eM‖1)δ

4d(1− 2ε)
(9.3.1)

≤ (‖f‖1 − ‖eM‖1)δ

d
≤ ‖Φα

∗‖1δ

d
≤ ‖α∗‖1δ.

Furthermore, since both ‖α∗‖1 and ‖α̂‖1 are smaller than τΘ, Theorem 9.4 guarantees
that

‖Φα̂Θ − f‖1 ≤ (1 + ε) min
‖α‖1≤τΘ

‖Φα− f‖1 ≤ (1 + ε)‖eM‖1.
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Therefore, from Theorem 9.1 we get

‖α∗ − α̂Θ‖1 ≤
(1− 2ε)δ‖α∗‖1

(1− 6ε)
+

2(2 + ε)‖eM‖1

(1− 6ε)d
.

So far, we have shown that at least one of the estimates 〈α̂1, · · · , α̂θ〉 is sufficiently
close to α∗. However, since α∗ is not known a priori, we cannot directly estimate
which α̂t is close enough to α∗. Fortunately, the RIP-1 property of the expander
graphs allows us to use the measurement domain accuracy as a proxy to measure the
data-domain accuracy of the estimates. More precisely, we show that the estimate

α̂
.
= arg min

t∈{1,··· ,Θ}
‖ΦHk(α̂

t)− f‖1

is sufficiently close to α∗

Theorem 9.8. Let Φ be the adjacency of a (2k, ε, d) expander graph. Let ε and δ be
any two positive numbers, and let α̂ be the output of the e-GAME algorithm. Then

‖α∗ − Hk(α̂)‖1 ≤
2δ‖α∗‖1

(1− 6ε)
+

1

(1− 2ε)

(
2 +

4(2 + ε)

(1− 6ε)

) ‖eM‖1

d
.

Proof. Let b be any vector in RN . Since α∗ is k-sparse, from the triangle inequality
and the definition of the best k-term approximation we have

‖α∗ − Hk(b)‖1 ≤ ‖α∗ − b‖1 + ‖b− Hk(b)‖1 ≤ 2‖α∗ − b‖1.

Now, observe that for every t, α∗−Hk(α̂
t) is always 2k-sparse. As a result, Lemma 8.8

yields that at every iteration t

‖f −ΦHk(α̂
t)‖1 ≤ ‖eM‖1 + ‖Φ(α∗ − Hk(α̂

t))‖1 (9.3.2)

≤ ‖eM‖1 + d‖(α∗ − Hk(α̂
t))‖1 ≤ ‖eM‖1 + 2d‖α∗ − α̂t‖1.

Therefore, it follows from Theorem 9.7 that

‖f −ΦHk(α̂)‖1 ≤
2d(1− 2ε)δ‖α∗‖1

(1− 6ε)
+

(
1 +

4(2 + ε)

(1− 6ε)

)
‖eM‖1. (9.3.3)

Moreover, since α∗ − Hk(α̂) is 2k-sparse, the RIP1 property implies that

‖α∗ − Hk(α̂)‖1 ≤
‖Φ(α∗ − Hk(α̂)‖1

(1− 2ε)d
≤ ‖f −ΦHk(α̂)‖1 + ‖eM‖1

(1− 2ε)d
,

which completes the proof.
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The following corollary is a direct consequence of Theorem 9.8.

Corollary 9.9. Let Φ be the adjacency of a (2k, ε, d) expander graph, where ε is a
constant less than 1

6
. Let α∗ be any vector in RN , and let eM be any noise vector in

RM . Let

SNR1
.
=

‖Hk(α
∗)‖1

‖α∗ − Hk(α
∗)‖1 + ‖eM‖1

d

. (9.3.4)

Then the e-GAME algorithm with δ = 1
SNR1

and ε = 1 recovers a vector α̂ with

‖α∗ − α̂‖1 = O
(
‖α∗ − Hk(α

∗)‖1 +
‖eM‖1

d

)
.

Moreover, the overall recovery time is O
(
MN d SNR2

1 log SNR1

)
.

Proof. By treating Φ(α∗−Hk(α
∗)) + eM as the measurement domain noise, we can

always without loss of generality assume thatα∗ is exactly k-sparse. The data-domain
sparse approximation bound then follows from Theorem 9.8 by setting δ = 1

SNR1
. and

ε = 1.

To calculate the overall running time of the algorithm note that the e-GAME algo-
rithm requires Θ = O(log SNR1) iterations. At each such iteration, the `1-GAME
algorithm requires T = O(MSNR2

1) iterations (Equation (9.2.3)) in which the bottle-
neck is one matrix-vector multiplication (i.e., calculating Φ>Pt). This multiplication
can be calculated efficiently using O(N d) operations as the graph is d regular.

Remark 9.10. An alternative approach is to use Nesterov’s smoothing method for
approximately solving non-smooth objective functions [204, 203]. We omit the details
of this implementation. With the Nesterov method, we still need O(log SNR1) outer
iterations, while the number of inner iterations can be reduced to T = O(MSNR1).
However, each inner iteration of the Nesterov method requires solving three smooth
convex optimization problems, and is much more complicated than calculating one
matrix-vector multiplication.

Tables 9.1 and 9.2 compare different properties of various sparse recovery algorithms
which use sparse matrices constructed from the adjacencies of bipartite graphs. The
algorithms are categorized as either combinatorial, which exploit the combinatorial
properties (e.g. the unique neighborhood property) of the graph, or geometric, which
exploit the geometric properties (e.g. the RIP-1 property) of that graph. The geo-
metric algorithms are often capable of recovering signals with higher sparsity level,
whereas the combinatorial algorithms are computationally more efficient.

The for all sparse recovery model corresponds to recovery algorithms that (surely or
with high probability) provide a close sparse approximation to every vector α∗ ∈ RN ,
whereas the for each model focuses on the recovery algorithms that can recover a
sparse approximation to each vector α∗ with high probability. The almost sparse
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model assumes that the vector has k-significant entries and the remaining entries are
sufficiently close to zero. The positive model corresponds to recovery of sparse vectors
with non-negative entries.

9.4 Experimental Results

In this section, we provide experimental results to empirically investigate the fidelity
of the algorithms proposed in this chapter. Throughout these experiments we used
N = 1000, M = 200 and k = 20 for illustration to demonstrate the typical behavior
of the algorithms for other N,M and k. We first generated a 200 × 1000 random
expander matrix Φ, and then repeated the following experiment 100 times. We
generated a sparse vector with random support, random sign, and unit magnitudes,
generated compressive measurements, and then recovered a sparse estimate for the
original signal.

Figure 9.2(a) plots the measurement-domain error of the `1-GAME algorithm as a
function of the number of iterations. Here we let the algorithm continue for 100, 000
iterations. The Figure shows that with `1-GAME , the measurement-domain error
consistently decreases. Moreover, after some initial burn-in, the rates of convergence
are approximately 1

T
(as opposed to the slower rate of 1√

T
, which was expected from

theory). The 1
T

rate of convergence matches the best known first-order optimization
results [203].

Figure 9.2(b) compares the performance of the e-GAME algorithm with Basis Pur-
suit algorithm, and with SSMP [30] algorithm in terms of their stability against the
measurement noise. As above, we set N = 1000, M = 200 and k = 20, and repeated
each experiment independently 100 times. The signal is generated in the same process
as above, and we used white Gaussian measurement noise with standard deviation
ranging from 10−5 to 10−2.

In this experiment we compared the average reconstruction error ‖α
∗−α̂‖1
‖α∗‖1 of the three

algorithms above as a function of the noise level. We used the CVX package [134, 133]
which is a standard convex optimization package, for directly solving the Basis Pursuit
algorithm of Theorem 9.2. We also used the SSMP code provided by Berinde and
Indyk [30] with 40 outer iterations, 100 inner iterations, and threshold 25 to solve the
SSMP optimization 1.

It is interesting that the approximation error of the e-GAME algorithm is very close
to the approximation error of the Basis Pursuit algorithm, and significantly lower
than the error of the SSMP algorithm. This experiment, and many other similar
experiments confirm the advantages of the geometric reconstruction algorithms over

1We observed that if the SSMP algorithm is provided exactly with the sparsity level k = 20 then
the algorithm has a much better performance; however, the performance of the SSMP algorithm is
significantly decreased even if the threshold is slightly higher than the true sparsity level.
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Table 9.1: Summary of sparse recovery algorithms that use geometric properties
of matrices constructed from sparse bipartite graphs. All bounds ignore the O()
constants. β is a constant, possibly different in each row, and SNR1 is defined by
Equation (9.3.4). The rows of the table are sorted first by the signal model, then by
the number of measurements, and finally by recovery time in a decreasing order.

Approach
Number of Decoding Signal Noise

measurements time Model Tolerance

Expander-codes
k log N

k
N log N

k
Almost sparse No

Alg. 4 [159, 258, 259]
Minimal

k log N
k

N log N
k

Positive Yes
Expansion [169]

Count-Min k logN N logN
For each No

[78, 79, 72] k logβ N k logβ N
LDPC-codes

k log N
k k logβ N For each Yes

[125]
SSMP

k log N
k

N log2 N
k

log SNR1 For all Yes
[153, 31, 30]

Table 9.2: Summary of sparse recovery algorithms that use combinatorial properties
of matrices constructed from sparse bipartite graphs. All bounds ignore the O()
constants. β is a constant, possibly different in each row, and SNR1 is defined by
Equation (9.3.4). All algorithms provide guarantees in the for all signal model. The
rows of the table are sorted first by the number of measurements, and then by recovery
time in a decreasing order.

Approach
Number of Decoding Noise

measurements time Tolerance

Expander-codes
k(logN)β N1.5k2(logN)2β No

[137, 138]
Basis Pursuit

k log N
k N1.5k2

(
log N

k

)2
Yes

[29]
e-GAME

k log N
k kN log

(
N
k

)2
SNR2

1 log SNR1 Yes
Algorithm 7 [156]
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the combinatorial algorithms in terms of stable signal recovery in expander-based
compressed sensing.
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(a) The dependency between the measurement-domain error ‖Φα̂ − f‖1 and the
number of iterations of the `1-GAME Algorithm. The empirical rate of convergence
is approximately 1
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(b) Approximate recovery experiments with SSMP, Basis Pursuit, and e-GAME
algorithms for expander-based compressed sensing. The measurement noise standard
deviation ranges from 10−5 to 10−2, and the approximation error is measured as
‖α∗ − α̂‖1/‖α∗‖1.

Figure 9.2: Empirical performance of the e-GAME algorithm. Here we fixed N =
1000, M = 200 and k = 20, and repeated each experiment independently 100 times
using a random expander graph with left-degree d = 8.
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Chapter 10

Expander-based Compressed
Sensing in the Presence of Poisson
Noise

10.1 Introduction

In Chapter 4 we introduced different applications of compressed sensing, and showed
that the compressed sensing framework is particularly appealing whenever the mea-
surement is costly or constrained in some sense. For example, in the context of
photon-limited applications (such as low-light imaging), the photo-multiplier tubes
used within sensor arrays are physically large and expensive. Similarly, when mea-
suring network traffic flows, the high-speed memory used in packet counters is cost-
prohibitive [8]. These problems appear ripe for the application of CS.

However, photon-limited measurements [229] and arrivals/departures of packets at
a router [33] are commonly modeled with a Poisson probability distribution, posing
significant theoretical and practical challenges in the context of CS. One of the key
challenges is the fact that the measurement error variance scales with the true inten-
sity of each measurement, so that we cannot assume constant noise variance across
the collection of measurements. Futhermore, measurements, underlying true intensi-
ties, and system models are all subject to certain physical constraints which play a
significant role in performance.

Recent works [215, 155, 63, 177] explore methods for CS reconstruction in the pres-
ence of impulsive, sparse or exponential family noise, but do not account for the
physical constraints associated with a typical Poisson setup and do not contain the
related performance bounds emphasized in this chapter. In previous work [252, 210],
Willett and Raginsky showed that a Poisson noise model combined with conventional
dense CS sensing matrices (properly scaled) yielded performance bounds that were
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somewhat sobering relative to bounds typically found in the literature. In particular,
they found that if the number of photons (or packets) available to sense were held
constant, and if the number of measurements M , was above some critical threshold,
then larger M in general led to larger bounds on the error between the true and the
estimated signals. This can intuitively be understood as resulting from the fact that
dense CS measurements in the Poisson case cannot be zero-mean, and the DC offset
used to ensure physical feasibility adversely impacts the noise variance.

The approach considered in this chapter hinges on reconstructing a signal from com-
pressive measurements by optimizing a sparsity-regularized goodness-of-fit objective
function. In contrast to many CS approaches, however, we measure the fit of an esti-
mate to the data using the Poisson log-likelihood instead of a squared error term. This
chapter demonstrates that the bounds developed in previous work can be improved
for some sparsity models by considering alternatives to dense sensing matrices with
random entries. In particular, we show that sparse sensing matrices given by scaled
adjacency matrices of expander graphs have important theoretical characteristics that
are ideally suited to controlling the performance of Poisson CS.

Formally, suppose we have a signal α∗ ∈ RN
+ with known `1 norm ‖α∗‖1 (or a

known upper bound on ‖α∗‖1). We aim to find a matrix A ∈ RM×N
+ with M , the

number of measurements, as small as possible, so that α∗ can be recovered efficiently
from the measured vector f ∈ RM

+ , which is related to Aα∗ through a Poisson
observation model. The restriction that elements of A be nonnegative reflects the
physical limitations of many sensing systems of interest (e.g., packet routers and
counters or linear optical systems).

In Section 8.1 we introduced the adjacency matrices of expander graphs as an alter-
native to dense random matrices within the compressed sensing framework, leading
to computationally efficient recovery algorithms. Subsequently, we saw that varia-
tions of the standard recovery approaches such as basis pursuit (Theorem 9.2) and
matching pursuit (Corollary 8.19) are consistent with the expander sensing approach
and can recover the original sparse signal successfully. In the presence of Gaussian
or sparse noise, random dense sensing and expander sensing are known to provide
similar performance in terms of the number of measurements and recovery computa-
tion time. Furthermore, expander sensing requires less storage whenever the signal is
sparse in the canonical basis.

The approach described in this chapter consists of the following key elements:

• expander sensing matrices and the RIP-1 associated with them;

• a reconstruction objective function which explicitly incorporates the Poisson
likelihood;

• a countable collection of candidate estimators; and
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• a penalty function defined over the collection of candidates, which satisfies the
Kraft inequality and which can be used to promote sparse reconstructions.

In general, the penalty function is selected to be small for signals of interest, which
leads to theoretical guarantees that errors are small with high probability for such
signals. In this chapter, exploiting the RIP-1 property and the non-negativity of the
expander-based sensing matrices, we show that, in contrast to random dense sensing,
expander sensing empowered with a maximum a posteriori (MAP) algorithm can
approximately recover the original signal in the presence of Poisson noise, and we
prove bounds which quantify the MAP performance. As a result, in the presence of
Poisson noise, expander graphs not only provide general storage and computational
advantages, but they also allow devising efficient MAP recovery methods with perfor-
mance guarantees comparable to the best k-term approximation of the original signal.
Finally, the bounds are tighter than specific dense matrices proposed by Willett and
Raginsky [252, 210] whenever the signal is sparse in the canonical domain, in that a
log term in the bounds in [210] is absent from the bounds presented in this chapter.

10.1.1 Dense sensing matrices for Poisson CS

In recent work, Willett and Raginsky established performance bounds for CS in the
presence of Poisson noise using dense sensing matrices based on appropriately shifted
and scaled Rademacher ensembles [252, 210]. Several features distinguish that work
from the present chapter:

• The dense sensing matrices used in [252, 210] require more memory to store and
more computational resources to apply to a signal in a reconstruction algorithm.
As explained in Table 8.1, the expander-based approach, in contrast, is more
efficient.

• The expander-based approach described in this chapter works only when the
signal of interest is sparse in the canonical basis. In contrast, the dense sensing
matrices used in [252, 210] can be applied to arbitrary sparsity bases (though
the proof technique there needs to be altered slightly to accommodate sparsity
in the canonical basis).

• The bounds in both this chapter and [252, 210] reflect a sobering tradeoff be-
tween performance and the number of measurements collected. In particular,
more measurements (after some critical minimum number) can actually degrade
performance as a limited number of events (e.g., photons) are distributed among
a growing number of detectors, impairing the SNR of the measurements.
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10.2 Compressed sensing in the presence of Pois-

son Noise

10.2.1 Problem statement

We wish to recover an unknown vectorα∗ ∈ RN
+ of Poisson intensities from a measured

vector f ∈ ZM
+ , sensed according to the Poisson model

f ∼ Poisson(Aα∗), (10.2.1)

where A ∈ RM×N
+ is a positivity-preserving sensing matrix. That is, for each j ∈

{1, . . . ,M}, fj is sampled independently from a Poisson distribution with mean
(Aα∗)j:

PAα∗(f) =
M∏

j=1

P(Aα∗)j(fj), (10.2.2)

where, for any z ∈ Z+ and λ ∈ R+, we have

Pλ(z)
4
=





λz

z!
e−λ if λ > 0

1{z=0} otherwise
, (10.2.3)

where the λ = 0 case is a consequence of the fact that

lim
λ→0

λz

z!
e−λ = 1{z=0}.

We assume that the `1 norm of α∗ is known, ‖α∗‖1 = L (although later we will show
that this assumption can be relaxed). We are interested in designing a sensing matrix
A and an estimator α̂ = α̂(f), such that α∗ can be recovered with small expected
`1 risk

R (α̂,α∗)
4
= EAα∗‖α̂−α∗‖1,

where the expectation is taken w.r.t. the distribution PAα∗ .

10.2.2 The proposed estimator and its performance

For future convenience, we introduce the following notation. Given N and 1 ≤ k ≤
N/4, we denote by Gk,N a (2k, 1/16)-expander with left set size N whose existence is
guaranteed by Proposition 8.2. Then Gk,N = (V ,C,E) has

|V | = N, |C| = M = O(k log(N/k)), d = O(log(N/k)).

Moreover, since Gk,N is regular, there exists a minimal set Ω ⊂ V of size at most
M = |C|, such that its neighborhood covers all of C, i.e N (Ω) = C. Hence, ΦIΩ � 1.
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To recover α∗, we will use a penalized Maximum Likelihood Estimation (pMLE)
approach. Let us choose a convenient 1 ≤ k ≤ N/4 and take A to be the normalized

adjacency matrix of the expander Gk,N : A
4
= Φ/d. Moreover, let us choose a finite

or countable set ΘL of candidate estimators α ∈ RN
+ with ‖α‖1 ≤ L, and a penalty

pen : ΘL → R+, satisfying the Kraft inequality1

∑

α∈ΘL

e−pen(α) ≤ 1.

For instance, we can impose less penalty on sparser signals or construct a penalty
based on any other prior knowledge about the underlying signal.

With these definitions, we consider the following penalized maximum likelihood esti-
mator (pMLE):

α̂
4
= argmin

α∈ΘL

[− log PAα(f) + 2 pen(α)] (10.2.4)

One way to think about the procedure in (10.2.4) is as a Maximum a posteriori Proba-
bility (MAP) algorithm over the set of estimates ΘL, where the likelihood is computed
according to the Poisson model (10.2.3) and the penalty function corresponds to a
negative log prior on the candidate estimators in ΘL.

Our main bound on the performance of the pMLE is as follows:

Theorem 10.1. Let Φ be the normalized adjacency matrix of Gk,N , let α∗ ∈ RN
+ be

the original signal compressively sampled in the presence of Poisson noise, and let α̂
be obtained through (10.2.4). Then

R (α̂,α∗) ≤ 4σk(α
∗)

+ 8
√
L min
α∈ΘL

[KL(PAα∗ ‖ PAα) + 2 pen(α)], (10.2.5)

where

KL(Pg‖Ph)
4
=
∑

y∈ZM+

Pg(y) log
Pg(y)

Ph(y)

is the Kullback–Leibler divergence (relative entropy) between Pg and Ph, and σk(α
∗)

is the best k-term approximation to α∗, defined in Equation (2.1.2).

Proof. Since α̂ ∈ ΘL, we have L = ‖α∗‖1 ≥ ‖α̂‖1. Hence, using Theorem 9.1 with
∆ = 0, we can write

‖α∗ − α̂‖1 ≤ 4σk(α
∗) + 4‖A(α∗ − α̂)‖1.

1Many penalization functions can be modified slightly (e.g. scaled appropriately) to satisfy the
Kraft inequality. All that is required is a finite collection of estimators (i.e. ΘL) and an associated
prefix code for each candidate estimate in ΘL. For instance, this would certainly be possible for a
total variation penalty, though the details are beyond the scope of this paper.
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Taking expectations, we obtain

R (α̂,α∗) ≤ 4σk(α
∗) + 4EAα∗‖A(α∗ − α̂)‖1

≤ 4σk(α
∗) + 4

√
EAα∗‖A(α∗ − α̂)‖2

1 (10.2.6)

where the second step uses Jensen’s inequality. Using Lemmas 10.5 and 10.6 in
Section 10.2.4, we have

EAα∗‖A(α∗ − α̂)‖2
1 ≤ 4L min

α∈ΘL
[KL(PAα∗ ‖ PAα) + 2 pen(α)]

Substituting this into (10.2.6), we obtain (10.2.5).

The bound of Theorem 10.1 is an oracle inequality: it states that the `1 error of α̂
is (up to multiplicative constants) the sum of the k-term approximation error of α∗

plus
√
L times the minimum penalized relative entropy error over the set of candidate

estimators ΘL. The first term in (10.2.5) is smaller for sparserα∗, and the second term
is smaller when there exists α ∈ ΘL which is simultaneously a good approximation
to α∗ (in the sense that the distributions PAα∗ and PAα are close) and has a low
penalty.

Remark 10.2. So far we have assumed that the `1 norm of α∗ is known. However,
if ‖α∗‖1 is not known a priori, we can still estimate it with high accuracy using noisy
compressive measurements. Observe that, since each measurement fj is a Poisson
random variable with mean (Aα∗)j,

∑
j fj is Poisson with mean ‖Aα∗‖1. Therefore,√∑

j fj is approximately normally distributed with mean ≈
√
‖Aα∗‖1 and variance

≈ 1
4

[189, Sec. 6.2].2 Hence, Mill’s inequality [249, Thm. 4.7] guarantees that, for
every positive t,

Pr



∣∣∣∣∣∣

√∑

j

fj −
√
‖Aα∗‖1

∣∣∣∣∣∣
> t


 . e−2t2

√
2πt

,

where . is meant to indicate the fact that this is only an approximate bound, with the
approximation error controlled by the rate of convergence in the central limit theorem.
Now we can use the RIP-1 property of the expander graphs obtain the estimates



√∑

j

fj − t




2

≤ ‖Aα∗‖1 ≤ ‖α∗‖1,

and (√∑
j fj + t

)2

(1− 2ε)
≥ ‖Aα

∗‖1

(1− 2ε)
≥ ‖α∗‖1

that hold with probability (approximately) at least 1− (
√

2πt)−1e−2t2.

2This observation underlies the use of variance-stabilizing transforms.
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10.2.3 A bound in terms of `1 error

The bound of Theorem 10.1 is not always useful since it bounds the `1 risk of the
pMLE in terms of the relative entropy. A bound purely in terms of `1 errors would be
more desirable. However, this is not easy to obtain without imposing extra conditions
either on α∗ or on the candidate estimators in ΘL. This follows from the fact that
the divergence KL(PAα∗‖PAα) may take the value +∞ if there exists some f such
that PAα(f) = 0 but PAα∗(f) > 0.

One way to eliminate this problem is to impose an additional requirement on the
candidate estimators in ΘL: There exists some c > 0, such that

Aα � c, ∀α ∈ ΘL (10.2.7)

Under this condition, we will now develop a risk bound for the pMLE purely in terms
of the `1 error.

Theorem 10.3. Suppose that all the conditions of Theorem 10.1 are satisfied. In
addition, suppose that the set ΘL satisfies the condition (10.2.7). Then

R (α̂,α∗) ≤ 4σk(α
∗) + 8

√
L min
α∈ΘL

[
1

c
‖α∗ −α‖2

1 + pen(α)

]
. (10.2.8)

Proof. Using Lemma 10.7 in Section 10.2.4, we get the bound

KL(PAα∗‖PAα) ≤ 1

c
‖α∗ −α‖2

1, ∀α ∈ ΘL.

Substituting this into Eq. 10.2.5, we get (10.2.8).

Remark 10.4. Because every α ∈ ΘL satisfies ‖α‖1 ≤ L, the constant c cannot be
too large. In particular, if (10.2.7) holds, then for every α ∈ ΘL we must have

‖Aα‖1 ≥M min
j

(Aα∗)j ≥Mc.

On the other hand, since ‖Φ‖1 = 1, we have ‖Aα‖1 ≤ ‖α‖1 ≤ L. Thus, a necessary
condition for (10.2.7) to hold is c ≤ L/M . Since M = O(k log(N/k)), the best risk
we may hope to achieve under some condition like (10.2.7) is on the order of

R (α̂,α∗) ≤ 4σk(α
∗)

+ C
√

min
α∈ΘL

[k log(N/k)‖α−α∗‖2
1 + L pen(α)] (10.2.9)

for some constant C, e.g., by choosing c ∝ L
k log(N/k)

. Effectively, this means that,

under the positivity condition (10.2.7), the `1 error of α̂ is the sum of the k-term
approximation error of α∗ plus

√
M =

√
k log(N/k) times the best penalized `1 ap-

proximation error. The first term in (10.2.9) is smaller for sparser α∗, and the
second term is smaller when there is a α ∈ ΘL which is simultaneously a good `1

approximation to α∗ and has a low penalty.
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10.2.4 Technical lemmas

Lemma 10.5. Any α ∈ ΘL satisfies the bound

‖A(α∗ −α)‖2
1 ≤ 4L

M∑

i=1

∣∣∣(Aα∗)1/2
i − (Aα)

1/2
i

∣∣∣
2

.

Proof. Since A is the normalized adjacency of the d-regular expander graph, ‖A‖1 =
1. Therefore,

‖Aα‖1 ≤ ‖α‖1 ≤ L, ∀α ∈ ΘL. (10.2.10)

Let β∗
4
= Aα∗ and β

4
= Aα. Then

‖β∗ − β‖2
1 =

(
M∑

i=1

|β∗i − βi|
)2

=

(
M∑

i=1

∣∣∣β∗1/2i − β1/2
i

∣∣∣ .
∣∣∣β∗1/2i + β̂

1/2

i

∣∣∣
)2

≤
M∑

i,j=1

∣∣∣β∗1/2i − β1/2
i

∣∣∣
2

.
∣∣∣β∗1/2j + β

1/2
j

∣∣∣
2

≤ 2
M∑

i=1

∣∣∣β∗1/2i − β1/2
i

∣∣∣
2

.
M∑

j=1

∣∣β∗j + βj
∣∣

= 2
M∑

i=1

∣∣∣β∗1/2i − β1/2
i

∣∣∣
2

. (‖β∗‖1 + ‖β‖1) ≤ 4L
M∑

i=1

∣∣∣β∗1/2i − β1/2
i

∣∣∣
2

.

= 4L
M∑

i=1

∣∣∣(Aα∗)1/2
i − (Aα)

1/2
i

∣∣∣
2

.

The first and the second inequalities are by Cauchy–Schwarz, while the third inequal-
ity is a consequence of Eq. (10.2.10).

Lemma 10.6. Let α̂ be a minimizer in Eq. (10.2.4). Then

EAα∗
[

M∑

i=1

∣∣∣(Aα∗)1/2
i − (Aα̂)

1/2
i

∣∣∣
2
]

≤ min
α∈ΘL

[KL(PAα∗ ‖ PAα) + 2 pen(α)] . (10.2.11)

Proof. Using Lemma 10.8 below with g = Aα∗ and h = Aα̂ we have

EAα∗
[

M∑

i=1

∣∣∣(Aα∗)1/2
i − (Aα̂)

1/2
i

∣∣∣
2
]

= EAα∗
[

2 log
1∫ √

PAα∗(f)PAα̂(f)dν(f)

]
.
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Clearly

∫ √
PAα∗(f)PAα̂(f)dν(f) = EAα∗

[√
PAα̂(f)

PAα∗(f)

]
.

We now provide a bound for this expectation. Let α̃ be a minimizer of KL(PAα∗‖PAα)+
2 pen(α) over α ∈ ΘL. Then, by definition of α̂, we have

√
PAα̂(f)e−pen(α̂) ≥

√
PAα̃(f)e−pen(α̃)

for every f . Consequently,

1

EAα∗
[√

PAα̂(f)
PAα∗ (f)

] ≤
√

PAα̂(f)e−pen(α̂)

√
PAα̃(f)e−pen(α̃)EAα∗

[√
PAα̂(f)
PAα∗ (f)

] ,

We can split the quantity

2EAα∗


log




√
PAα̂(f)e−pen(α̂)

√
PAα̃(f)e−pen(α̃)EAα∗

[√
PAα̂(f)
PAα∗ (f)

]






into three terms:

EAα∗
[
log

(
PAα∗(f)

PAα̃(f)

)]
+ 2 pen(α̃)

+ 2E


log




√
PAα̂(f)e−pen(α̂)

√
PAα∗(f)EAα∗

[√
PAα̂(f)
PAα∗ (f)

]






We show that the third term is always nonpositive, which completes the proof. Using
Jensen’s inequality,

E


log




√
PAα̂(f)e−pen(α̂)

√
PAα∗(f)EAα∗

[√
PAα̂(f)
PAα∗ (f)

]






≤ log


E




√
PAα̂(f)e−pen(α̂)

√
PAα∗(f)EAα∗

[√
PAα̂(f)
PAα∗ (f)

]




 .

Now

E




√
PAα̂(f)e−pen(α̂)

√
PAα∗(f)EAα∗

[√
PAα̂(f)
PAα∗ (f)

]


 ≤

∑

α∈ΘL

e−pen(α) ≤ 1.
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Since EAα∗
[
log
(

PAα∗ (f)

PAα̃(f)

)]
= KL(PAα∗‖PAα̃), we obtain

EAα∗
[

M∑

i=1

∣∣∣(Aα∗)1/2
i − (Aα̂)

1/2
i

∣∣∣
2
]

≤ KL(PAα∗‖PAα̃) + 2 pen(α̃)

= min
α∈ΘL

[KL(PAα∗‖PAα) + 2 pen(α)] ,

which proves the lemma.

Lemma 10.7. If the estimators in ΘL satisfy the condition (10.2.7), then the follow-
ing inequality holds:

KL(PAα∗ ‖ PAα) ≤ 1

c
‖α∗ −α‖2

1, ∀α ∈ ΘL.

Proof. By definition of the KL divergence,

KL(PAα∗‖PAα) = EAα∗
[
log

(
PAα∗(f)

PAα(f)

)]

=
M∑

j=1

E(Aα∗)j

[
f j log

(
(Aα∗)j
(Aα)j

)]
−

M∑

j=1

E(Aα∗)j [(Aα∗)j − (Aα)j]

=
M∑

j=1

[
(Aα∗)j log

(
(Aα∗)j
(Aα)j

)
− (Aα∗)j + (Aα)j

]

≤
M∑

j=1

(Aα∗)j

(
(Aα∗)j
(Aα)j

− 1

)
− (Aα∗)j + (Aα)j

=
M∑

j=1

1

(Aα)j

∣∣∣(Aα∗ −Aα)j

∣∣∣
2

≤ 1

c
‖A(α∗ −α)‖2

2

≤ 1

c
‖A(α∗ −α)‖2

1 ≤
1

c
‖α∗ −α‖2

1.

The first inequality uses log t ≤ t−1, the second is by (10.2.7), the third uses the fact
that the `1 norm dominates the `2 norm, and the last one is by the RIP-1 property
(Lemma 8.8).

Lemma 10.8. Given two Poisson parameter vectors g,h ∈ RM
+ , the following equality

holds:

2 log
1∫ √

Pg(f)Ph(f)dµ(f)
=

M∑

j=1

∣∣∣g1/2
j − h1/2

j

∣∣∣
2

,

where µ denotes the counting measure on RM
+ .
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Proof.
∫ √

Pg(f)Ph(f)dµ(f)

=
M∏

j=1

∞∑

fj=0

(gjhj)
fj/2

f j!
e−(gj+hj)/2

=
M∏

j=1

e−
1
2

(gj−2(gjhj)
1/2+hj)

∞∑

fj=0

(gjhj)
fj/2

f j!
e−(gjhj)

1/2

=
M∏

j=1

e−
1
2

(gj−2(gjhj)
1/2+hj)

∫
P(gjhj)

1/2(f j)dνj(f j)
︸ ︷︷ ︸

=1

=
M∏

j=1

e
− 1

2

“
g

1/2
j −h

1/2
j

”2

Taking logs, we obtain the lemma.

10.2.5 Empirical performance

Here we present a simulation study that corroborates our proposed method. In this
experiment, compressive Poisson observations are collected of a randomly generated
sparse signal passed through the sensing matrix generated using the proposed ex-
pander graph method. We then reconstruct the signal by utilizing an algorithm that
minimizes the proposed objective function in (10.2.4), and assess the accuracy of
this estimate. We repeat this procedure over several trials to estimate the average
performance of the method.

More specifically, we generate our length N sparse signal α∗ through a two-step
procedure. First we select k elements uniformly at random, then we assign these
elements an intensity I. All other components of the signal are set to zero. For these
experiments, we chose a length N = 100,000 and varied the sparsity k among three
different choices of 100, 500, and 1,000 for two intensity levels I of 10,000 and 100,000.
We then vary the number M of Poisson observations from 100 to 20,000 using an
expander graph sensing matrix with degree d = 8. Recall that the sensing matrix is
normalized such that the total signal intensity is divided amongst the measurements,
hence the seemingly high choices of I.

To reconstruct the signal, we utilize the SPIRAL-`1 algorithm [141] which solves
(10.2.4) when pen(α) = τ‖α‖1. This algorithm utilizes a sequence of quadratic
subproblems derived by using a second-order Taylor expansion of the Poisson log-
likelihood at each iteration. These subproblems are made easier to solve by using a
separable approximation whereby the second-order Hessian matrix is approximated by
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a scaled identity matrix. For the particular case of the `1 penalty, these subproblems
can be solved quickly, exactly, and noniteratively by a soft-thresholding rule.

After reconstruction, we assess the estimate α̂ according to the normalized `1 error
‖α∗ − α̂‖1/‖α∗‖1. We select the regularization weighting τ in the SPIRAL-`1 algo-
rithm to minimize this quantity for each randomly generated experiment indexed by
(I, k,M). To assure that the results are not biased in our favor by only considering a
single random experiment for each (I, k,M), we repeat this experiment several times.
The averaged reconstruction accuracy over 10 trials is presented in Figure 10.1.

These results show that the proposed method is able to accurately estimate sparse
signals when the signal intensity is sufficiently high; however, the performance of the
method degrades for lower signal strengths. More interesting is the behavior as we
vary the number of measurements. There is a clear phase transition where accurate
signal reconstruction becomes possible, however the performance gently degrades with
the number of measurements since there is a lower signal-to-noise ratio per measure-
ment. This effect is more pronounced at lower intensity levels, as we more quickly
enter the regime where only a few photons are collected per measurement. Both of
these results support the error bounds developed in Section 10.2.2.

10.3 Application: Estimating packet arrival rates

This section describes an application of the pMLE estimator of Section 10.2: an
indirect approach for reconstructing average packet arrival rates and instantaneous
packet counts for a given number of streams (or flows) at a router in a communi-
cation network, where the arrivals of packets in each flow are assumed to follow a
Poisson process. All packet counting must be done in hardware at the router, and
any hardware implementation must strike a delicate balance between speed, accu-
racy, and cost. For instance, one could keep a dedicated counter for each flow, but,
depending on the type of memory used, one could end up with an implementation
that is either fast but expensive and unable to keep track of a large number of flows
(e.g., using SRAMs, which have low access times, but are expensive and physically
large) or cheap and high-density but slow (e.g., using DRAMs, which are cheap and
small, but have longer access times) [108, 180].

However, there is empirical evidence [109, 110] that flow sizes in IP networks follow
a power-law pattern: just a few flows (say, 10%) carry most of the traffic (say, 90%).
Based on this observation, several investigators have proposed methodologies for es-
timating flows using a small number of counters by either (a) keeping track only of
the flows whose sizes exceed a given fraction of the total bandwidth (the approach
suggestively termed “focusing on the elephants, ignoring the mice”) [108] or (b) using
sparse random graphs to aggregate the raw packet counts and recovering flow sizes
using a message passing decoder [180].
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Figure 10.1: Average performance (as measured by the normalized `1 error ‖α∗ −
α̂‖1/‖α∗‖1) for the proposed expander-based observation method for recovering
sparse signals under Poisson noise. In this experiment, we sweep over a range of
measurements and consider a few sparsity (k) and intensity (I) levels of the true
signal.

We consider an alternative to these approaches based on Poisson CS, assuming that
the underlying Poisson rate vector is sparse or approximately sparse — and, in fact,
it is the approximate sparsity of the rate vector that mathematically describes the
power-law behavior of the average packet counts. The goal is to maintain a com-
pressed summary of the process sample paths using a small number of counters, such
that it is possible to reconstruct both the total number of packets in each flow and the
underlying rate vector. Since we are dealing here with Poisson streams, we would like
to push the metaphor further and say that we are “focusing on the whales, ignoring
the minnows.”
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10.3.1 Problem Formulation

We wish to monitor a large number N of packet flows using a much smaller number M
of counters. Each flow is a homogeneous Poisson process (cf. [33] for details pertaining
to Poisson processes and networking applications). Specifically, let λ∗ ∈ RN

+ denote
the vector of rates, and let U denote the random process U = {Ut}t∈R+ with sample
paths in ZN

+ . In other words, for each i ∈ {1, . . . , N}, the ith component of U , which
we will denote by U (i), is a homogeneous Poisson process with the rate of λi arrivals
per unit time, and all the U (i)’s are mutually conditionally independent given λ.

The goal is to estimate the unknown rate vector λ based on f . We will focus on
performance bounds for power-law network traffic, i.e., for λ∗ belonging to the class

Σβ,L0

4
=
{
λ ∈ RN

+ : ‖λ‖1 = L0;σk(λ) = O(k−β)
}

(10.3.1)

for some L0 > 0 and β ≥ 1, where the constant hidden in the O(·) notation may
depend on L0. Here, β is the power-law exponent that controls the tail behavior;
in particular, the extreme regime β → +∞ describes the fully sparse setting. As in
Section 10.2, we assume the total arrival rate ‖λ∗‖1 to be known (and equal to a given
L0) in advance, but this assumption can be easily dispensed with (cf. Remark 10.2).

As before, we evaluate each candidate estimator λ̂ = λ̂(f) based on its expected `1

risk,

R
(
λ̂,λ∗

)
= Eλ∗‖λ̂− λ∗‖1.

10.3.2 Two estimation strategies

We consider two estimation strategies. In both cases, we let our measurement ma-
trix Φ be the adjacency matrix of the expander Gk,N for a fixed k ≤ N/4 (see
Section 10.2.2 for definitions). The first strategy, which we call the direct method,
uses standard expander-based CS to construct an estimate of λ∗. The second is the
pMLE strategy, which relies on the machinery presented in Section 10.2 and can be
used when only the rates are of interest.

The direct method

In this method, which will be used as a “baseline” for assessing the performance
of the pMLE, the counters are updated in discrete time, every τ time units. Let

x = {xν}ν∈Z+ denote the sampled version of U , where xν
4
= Uντ . The update takes

place as follows. We have a binary matrix Φ ∈ {0, 1}M×N , and at each time ν
let f ν = Φxν . In other words, f is obtained by passing a sampled N -dimensional
homogeneous Poisson process with rate vector λ through a linear transformation Φ.
We emphasize the fact that this observation model is not equivalent to sampling a
Poisson process with rate Φλ.
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The direct method uses expander-based CS to obtain an estimate x̂ν of xν from
f ν = Φxν , followed by letting

λ̂
dir

ν =
x̂+
ν

ντ
. (10.3.2)

This strategy is based on the observation that xν/(ντ) is the maximum-likelihood
estimator of λ∗. To obtain x̂ν , we need to solve the convex program

minimize ‖u‖1 subject to Φu = f ν

which can be cast as a linear program [29]. The resulting solution x̂ν may have
negative coordinates,3 hence the use of the (·)+ operation in (10.3.2). We then have
the following result:

Theorem 10.9.

R
(
λ̂

dir

ν ,λ
∗
)
≤ 4σk(λ

∗) +
‖(λ∗)1/2‖1√

ντ
, (10.3.3)

where (λ∗)1/2 is the vector with components
√
λ∗i ,∀i.

Remark 10.10. Note that the error term in (10.3.3) is O(1/
√
ν), assuming every-

thing else is kept constant, which coincides with the optimal rate of the `1 error decay
in parametric estimation problems.

Proof. We first observe that, by construction, x̂ν satisfies the relations Φx̂ν = Φxν
and ‖x̂ν‖1 ≤ ‖xν‖1. Hence,

E‖x̂ν − ντλ∗‖1 ≤ E‖x̂ν − xν‖1 + E‖xν − ντλ∗‖1

≤ 4Eσk(xν) + E‖xν − ντλ∗‖1 (10.3.4)

where the first step uses the triangle inequality, while the second step uses Proposi-
tion 9.1 with ∆ = 0. To bound the first term in (10.3.4), let S ⊂ {1, . . . , N} denote
the positions of the k largest entries of λ∗. Then, by definition of the best k-term
representation,

σk(xν) ≤ ‖xν − (xν)S‖1 =
∑

i∈Sc
|xν,i| =

∑

i∈Sc
xν,i.

Therefore,

Eσk(xν) ≤ E

[∑

i∈Sc
xν,i

]
= ντ

∑

i∈Sc
λ?i ≡ ντσk(λ

∗).

3Khajehnejad et al. [169] have recently proposed the use of perturbed adjacency matrices of
expanders to recover nonnegative sparse signals.
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To bound the second term, we can use concavity of the square root, as well as the
fact that each xν,i ∼ Poisson(ντλ?i ), to write

E‖xν − ντλ∗‖1 = E

[
N∑

i=1

|xn,i − ντλ?i |
]

= E

[
N∑

i=1

√
(xn,i − ντλ?i )2

]

≤
N∑

i=1

√
E(xν,i − ντλ?i )2 =

N∑

i=1

√
ντλ?i .

Now, it is not hard to show that ‖x̂+
ν − ντλ?‖1 ≤ ‖x̂ν − ντλ?‖1. Therefore,

R
(
λ̂

dir

ν ,λ
∗
)
≤ E‖x̂ν − ντλ∗‖1

ντ
≤ 4σk(λ

∗) +
‖(λ∗)1/2‖1√

ντ
,

which proves the theorem.

The penalized MLE approach

In the penalized MLE approach the counters are updated in a slightly different man-
ner. Here the counters are still updated in discrete time, every τ time units; however,
each counter i ∈ {1, · · · ,M} is updated at times

(
ντ + i

M
τ
)
ν∈Z+

, and only aggre-

gates the packets that have arrived during the time period
[
ντ + i−1

M
τ, ντ + i

M
τ
)
.

Therefore, in contrast to the direct method, here each arriving packet is registered by
at most one counter. Furthermore, since the packets arrive according to a homoge-
neous Poisson process, conditioned on the vector λ∗, the values measured by distinct
counters are independent4. Therefore, the vector of counts at time ν obeys

f ν ∼ Poisson(Aα∗) where α∗ =
ντd

M
λ∗

which is precisely the sensing model we have analyzed in Section 10.2.

Now assume that the total average arrival rate ‖λ∗‖1 = L0 is known. Let Λ be a
finite or a countable set of candidate estimators with ‖λ‖1 ≤ L0 for all λ ∈ Λ, and
let pen(·) be a penalty functional satisfying the Kraft inequality over Λ. Given ν and
τ , consider the scaled set

Λν,τ
4
=
ντd

M
Λ ≡

{
ντd

M
λ : λ ∈ Λ

}

4The independence follows from the fact that if X1, · · · , XM are conditionally indepen-
dent random variables, then for any choice of functions g1, · · · , gM , the random variables
g1(X1), · · · , gM (XM ) are also conditionally independent.
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with the same penalty function, pen
(
ντd
M
λ
)

= pen(λ) for all λ ∈ Λ. We can now
apply the results of Section 10.2. Specifically, let

λ̂
pMLE

ν
4
=
M α̂

ντd
,

where α̂ is the corresponding pMLE estimator obtained according to (10.2.4). The
following theorem is a consequence of Theorem 10.3 and the remark following it:

Theorem 10.11. If the set Λ satisfies the strict positivity condition (10.2.7), then
there exists some absolute constant C > 0, such that

R
(
λ̂

pMLE

ν ,λ∗
)
≤ 4σk(λ

∗)

+ C

√
min
λ∈Λ

[
k log(N/k)‖λ− λ∗‖2

1 +
k L0 pen(λ)

ντ

]
. (10.3.5)

We now develop risk bounds under the power-law condition. To this end, let us
suppose that λ∗ is a member of the power-law class ΣL0,β defined in (10.3.1). Fix a

small positive number δ, such that L0/
√
δ is an integer, and define the set

Λ
4
=
{
λ ∈ RN

+ : ‖λ‖1 ≤ L0;λi ∈ {s
√
δ}L0/

√
δ

s=0 ,∀i
}

These will be our candidate estimators of λ∗. We can define the penalty function
pen(λ)

.
= ‖λ‖0 log(δ−1). For any λ ∈ Σβ,L0 and any 1 ≤ r ≤ N we are able to find

some λ(r) ∈ Λ, such that ‖λ(r)‖0 � r and

‖λ− λ(r)‖2
1 � r−2β + r δ.

Here we assume that δ is sufficiently small, so that the penalty term k r log(δ−1)
ντ

dom-
inates the quantization error r δ. In order to guarantee that the penalty function
satisfies Kraft’s inequality, we need to ensure that

n∑

r=1

∑

λ(r)∈Λ
‖λ(r)‖0=r

δr ≤ 1.

For every fixed r, there are exactly
(
N
r

)
subspaces of dimension r, and each subspace

contains exactly
(
L0√
δ

)r
distinct elements of Λ. Therefore, if

δ ≤ (2N L0)−2 , (10.3.6)

then
N∑

r=1

(
N

r

)(
L0

√
δ
)r
≤

N∑

r=0

(
nL0

√
δ
)r
≤

n∑

r=1

1

2r
≤ 1,
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and Kraft’s inequality is satisfied.

Using the fact that k log(N/k) = O(kd), we can bound the minimum over λ ∈ Λ in
(10.3.5) from above by

min
1≤r≤N

[
kdr−2β +

r k log(δ−1)

ντ

]

= O
(
k d

1
2β+1

)( log(δ−1)

ντ

) 2β
2β+1

= O
(
k d

1
2β+1

)( logN

ντ

) 2β
2β+1

We can now particularize Theorem 10.11 to the power-law case:

Theorem 10.12.

sup
λ∗∈Σβ,L0

R
(
λ̂

pMLE

ν ,λ∗
)

= O(k−β) +O
(
k

1
2 d

1
4β+2

)( logN

ντ

) β
2β+1

,

where the constants implicit in the O(·) notation depend on L0 and β.

Note that the risk bound here is slightly worse than the benchmark bound of The-
orem 10.9. However, as we will see in Section 10.3.3, the pMLE approach obtains
higher empirical accuracy.

10.3.3 Experimental Results

Here we compare penalized MLE with `1-magic [52], a universal `1 minimization
method, and with SSMP [30], an alternative method that employs combinatorial
optimization. `1-magic and SSMP both compute the “direct” estimator. For the ease
of computation, the candidate set Λ is approximated by the convex set of all positive
vectors with bounded `1 norm, and the CVX package [134, 133] is used to directly
solve the pMLE objective function with pen(θ) = ‖θ‖1.

Figures 10.2(a) through 10.4(b) report the result of numerical experiments, where
the goal is to identify the k largest entries in the rate vector from the measured
data. Since a random graph is, with overwhelming probability, an expander graph,
each experiment was repeated 30 times using independent sparse random graphs with
d = 8.

We also used the following process to generate the rate vector. First, given the power-
law exponent β, the magnitude of the k whales where chosen according to a power-
law distribution with parameter β. The positions of the k whales were then chosen
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(b) β = 1.5
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Figure 10.2: Relative `1 error as a function of number of whales k, for `1-magic (LP),
SSMP and pMLE for different choices of the power-law exponent β. The number of
flows N = 5000, the number of counters M = 800, and the number of updates is 40.
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(b) β = 1.5
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(c) β = 2

Figure 10.3: Probability of successful support recovery as a function of number of
whales k, for `1-magic (LP), SSMP and pMLE for different choices of the power-law
exponent β. The number of flows N = 5000, the number of counters M = 800, and
the number of updates is 40.
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(b) Probability of successful support recovery
as a function of number of updates ν.

Figure 10.4: Performance of `1-magic, SSMP and pMLE algorithms as a function of
the number of updates ν. The number of flows is N = 5000, the number of counters is
M = 800, and the number of whales is k = 30. There are k whales whose magnitudes
are assigned according to a power-law distribution with β = 1, and the remaining
entries are minnows with magnitudes determined by a N (0, 10−6) random variable.

uniformly at random. Finally the N−k minnows were sampled independently from a
N (0, 10−6) distribution. Figure 10.2 shows the relative `1 error (‖λ− λ̂ν‖1/‖λ‖1) of
the three above algorithms as a function of k. Note that in all cases β = 1, β = 1.5,
and β = 2, the pMLE algorithm provides lower `1 errors. Similarly, Figure 10.3
reports the probabilities of exact recovery as a function of k. Again, it turns out
that in all three cases the pMLE algorithm has higher probability of exact support
recovery compared to the two direct algorithms. We also analyzed the impact
of changing the number of updates on the accuracy of the three above algorithms.
The results are demonstrated in Figure 10.4. Here we fixed the number of whales to
k = 30, and changed the number of updates from 10 to 200. It turned out that as the
number of updates ν increases, the relative `1 errors of all three algorithms decrease
and their probability of exact support recovery consistently increase. Moreover, the
pMLE algorithm always outperforms the `1-magic (LP), and SSMP algorithms.
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Part IV

Optimal Model-Selection via the
Reed-Muller Frames
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Chapter 11

Two Fundamental Measures of
Coherence and Their Role in
Model Selection

11.1 What is Model Selection?

11.1.1 Background

In compressed sensing, and in many other information processing and statistics prob-
lems involving high-dimensional data, the curse of dimensionality can often be broken
by exploiting the fact that real-world data tend to live on low-dimensional manifolds.
This phenomenon is exemplified by the important special case in which a data vector
α∗ ∈ RN satisfies ‖α∗‖0

.
=
∑N

i=1 1{|α∗i |>0} ≤ k � N and is observed according to the
linear measurement model f = Φα∗ + eM . Here, Φ is an M ×N (real- or complex-
valued) matrix called the sensing or design matrix, while eM ∈ RM represents noise
in the measurement system.

Fundamentally, given a measurement vector f = Φα∗+eM in the compressed setting,
there are three complementary—but nonetheless distinct—questions that might be
asked.

[Sparse Approximation] Under what conditions can we obtain a reliable esti-
mate of a k-sparse α̂ from f?

[Regression] Under what conditions can we reliably approximate Φα̂ correspond-
ing to a k-sparse α̂ from f?

[Model Selection] Under what conditions can we reliably recover the locations
of the nonzero entries of a k-sparse α̂ (in other words, the model S .

= {i ∈
{1, . . . , N} : |α̂i| > 0}) from f?
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Algorithm 8 The One-Step Thresholding (OST) Algorithm for Model Selection

Input: An M ×N matrix Φ, a vector f ∈ CM , and a threshold λ > 0
Output: An estimate Ŝ ⊂ {1, . . . , p} of the true model S
α̃← Φ>f {Form signal proxy}
Ŝ ← {i ∈ {1, . . . , N} : |α̃i| > λ} {Select model via OST}

In Parts II and III of this thesis, we focused on efficient algorithms for (approximately)
solving the sparse approximation and the regression problems. In many application
areas, however, the model-selection question is equally—if not more—important than
the other two questions. In particular, the problem of model selection (sometimes
also known as variable selection or sparsity pattern recovery) arises indirectly in a
number of contexts, such as subset selection in linear regression [193], estimation of
structures in graphical models [192], and signal denoising [73]. In addition, solving
the model-selection problem in some (but not all) cases also enables one to solve the
sparse approximation and/or the regression problem.

11.1.2 Main Contributions

Model Selection: One of the primary objectives of this chapter is to study the
problem of polynomial time, model-order agnostic model selection in a compressed
setting for the general case of arbitrary (random or deterministic) design matrices and
arbitrary nonzero entries of the signal. In order to accomplish this task, we introduce
two fundamental measures of coherence among the (normalized) columns {ϕi ∈ CM}
of the M ×N design matrix Φ, namely,1

• Worst-Case Coherence: µ(Φ)
.
= max

i,j:i 6=j

∣∣〈ϕi,ϕj〉
∣∣, and

• Average Coherence: ν(Φ)
.
= 1

N−1
max
i

∣∣∣∣
∑
j:j 6=i
〈ϕi,ϕj〉

∣∣∣∣.

Roughly speaking, worst-case coherence—which has been introduced in Section 3.4.2—
is a similarity measure between the columns of a design matrix: the smaller the worst-
case coherence, the less similar the columns. On the other hand, average coherence is
a measure of the spread of the columns of a design matrix within the M -dimensional
unit ball: the smaller the average coherence, the more spread out the column vectors.

Our main contribution in the area of model selection is that we make use of these
two measures of coherence to propose and analyze a model-order agnostic threshold

1Here, and throughout the rest of this chapter, we assume without loss of generality that Φ has
unit `2-norm columns. This is because deviations to this assumption can always be accounted for
by appropriately scaling the entries of the data vector α∗ instead.
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for the one-step thresholding (OST) algorithm (see Algorithm 8) for model selection.
Specifically, we characterize in Section 11.2 both the exact and the partial model-
selection performance of OST in a non-asymptotic setting in terms of µ and ν. In
particular, we establish in Section 11.2 that if µ(Φ) � M−1/2 and ν(Φ) - M−1 then
OST—despite being computationally primitive—can perform near-optimally for the
case when either (i) the energy of any nonzero entry of α∗ is not too far away from
the average signal energy per nonzero entry ‖α∗‖2

2/k or (ii) the signal-to-noise ratio
(snr) in the measurement system is not too high. Equally importantly, in contrast
to some of the existing literature on model selection, this analysis holds for arbitrary
values of the nonzero entries of α∗ and it does not require the M × k submatrices of
the design matrix Φ to have full column rank.

11.1.3 Relationship to Previous Work

The problems of model selection and sparse-signal recovery in general and the use of
OST (also known as simple thresholding [90] and marginal regression [120]) to solve
these problems in particular have a rich history in the literature. In the context
of model selection in the compressed setting, Mallow’s CN selection procedure [187]
and the Akaike information criterion (AIC) [3]—both of which essentially attempt to
solve a complexity-regularized version of the least-squares criterion—are considered to
be seminal works, and are known to perform well empirically as well as theoretically;
see, e.g., [188] and the references therein. These two procedures have been modified
by numerous researchers over the years in order to improve their performance—the
most notable variants being the Bayesian information criterion (BIC) [224] and the
risk inflation criterion (RIC) [115]. Solving model-selection procedures such as CN ,
AIC, BIC, and RIC, however, is known to be an NP-hard problem [197] even if the
true model order k is made available to these procedures.

In order to overcome the computational intractability of these model-selection proce-
dures, several methods based on convex optimization have been proposed by various
researchers in recent years. Among these proposed methods, the LASSO [233] has ar-
guably become the standard tool for model selection, which can be partly attributed
to the theoretical guarantees provided for the LASSO in [192, 261, 247, 50]. In par-
ticular, the results reported in [192, 261] establish that the LASSO asymptotically
identifies the correct model under certain conditions on the design matrix Φ and the
sparse vector α∗. Later, Wainwright in [247] strengthens the results of [192, 261] and
makes explicit the dependence of exact model selection using the LASSO on the small-
est (in magnitude) nonzero entry of α∗. However, apart from the fact that the results
reported in [192, 261, 247, 221] are for exact model selection and are only asymptotic
in nature, the main limitation of these works is that explicit verification of the condi-
tions (such as the irrepresentable condition of [261] and the incoherence condition of
[247]) that a generic design matrix Φ needs to satisfy is computationally intractable
for k % µ−1. The most general (and non-asymptotic) model-selection results using the
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LASSO for arbitrary design matrices have been reported in [50]. Specifically, Candès
and Plan have established in [50] that the LASSO correctly identifies most models
with probability 1− O(N−1) under certain conditions on the smallest nonzero entry
of α∗ provided: (i) the spectral norm (the largest singular value) and the worst-case
coherence of Φ are not too large, and (ii) the values of the nonzero entries of α∗ are
independent and statistically symmetric around zero. Despite these recent theoreti-
cal triumphs of the LASSO, it is still desirable to study alternative solutions to the
problem of polynomial time, model-order agnostic model selection in a compressed
setting. This is because

1. LASSO solves a detection problem by solving a (more complicated) estimation
problem.

2. LASSO requires the minimum singular values of the submatrices of Φ corre-
sponding to the true models to be bounded away from zero [192, 261, 247, 50].
While this is a plausible condition for the case when one is interested in es-
timating α∗, it is arguable whether this condition is necessary for the case of
model selection.

3. The current literature on model selection using the LASSO lacks guarantees
beyond k % µ−1 for the case of generic design matrices and arbitrary nonzero
entries. In particular, given an arbitrary design matrix Φ, [192, 261, 247, 50]
do not provide any guarantees beyond k %

√
M for even the simple case of

α∗ ∈ RN
+ .

4. The computational complexity of the LASSO for generic design matrices tends
to be O(N3) [120]. This makes the LASSO computationally demanding for
large-scale model-selection problems.

Recently, a few researchers have raised somewhat similar concerns about the LASSO
and revisited the much older (and oft-forgotten) method of thresholding for model
selection [223, 113, 214, 120], which has computational complexity of only one matrix-
vector multiplication. Algorithmically, this makes our approach to model selection
similar to that of [223, 113, 214, 120]. Nevertheless, the OST algorithm presented in
this chapter differs from [223, 113, 214, 120] in five key aspects:

1. Model-Order Agnostic Model Selection: Unlike [223, 113, 214, 120], the OST
algorithm presented in this chapter is completely agnostic to both the true
model order k and any estimate of k.

2. Generic Design Matrices and Arbitrary Nonzero Entries: The results reported
in this chapter hold for arbitrary (random or deterministic) design matrices
and do not assume any statistical prior on the values of the nonzero entries
of α∗ even when k scales linearly with M . In contrast, [113] only studies
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the problem of Gaussian design matrices whereas the most influential results
reported in [223, 214, 120] assume that the values of the nonzero entries of α∗

are independent and statistically symmetric around zero.

3. Verifiable Sufficient Conditions: In contrast to [223, 113, 214, 120], we relate the
model-selection performance of OST to two global parameters of Φ, namely, µ
and ν, which are trivially computable in polynomial time: µ(Φ) = ‖Φ>Φ−I‖∞
and ν(Φ) = 1

N−1
‖(Φ>Φ− I)1‖∞.

4. Non-Asymptotic Theory: Similar to [113, 214, 120], the analysis in this chapter
can be used to establish that OST achieves (asymptotically) consistent model
selection under certain conditions. However, the results reported in this chapter
are completely non-asymptotic in nature (with explicit constants) and thereby
shed light on the rate at which OST achieves consistent model selection.

5. Partial Model Selection: In addition to the exact model-selection performance of
OST, we also characterize in the chapter its partial model-selection performance.
In this regard, we establish that the universal threshold proposed in Section 11.2
for OST guarantees Ŝ ⊂ S with high probability and we quantify the cardinality
of the estimate Ŝ. On the other hand, both [223] and [113] study only exact
model selection, whereas [120, 214] study approximate (though not partial)
model selection only for Gaussian design matrices [120] and assuming Gaussian
(resp. statistical) priors on the nonzero entries of α∗ [214] (resp. [120]).

11.2 Model Selection Using One-Step Threshold-

ing

11.2.1 Assumptions

Before presenting our results on model selection using OST, we need to be mathemat-
ically precise about our problem formulation. To this end, we begin by reconsidering
the measurement model f = Φα∗ + eM and assume that Φ is an M × N real- or
complex-valued design matrix having unit `2-norm columns, α∗ ∈ CN is a k-sparse
signal (‖α∗‖0 ≤ k), and k < M ≤ N . Here, we allow Φ to be either a random or a
deterministic design matrix, while we take eM to be a complex additive white Gaus-
sian noise vector. It is worth mentioning that Gaussianity of eM is just a simplified
assumption for the sake of this exposition; in particular, the results presented in this
section are readily generalizable to other noise distributions as well as perturbations
having bounded `2-norms. Finally, the main assumption that we make here is that
the true model S .

= {i ∈ {1, . . . , N} : |α∗i | > 0} is a uniformly random k-subset of
{1, . . . , N}. In other words, we have a uniform prior on the support of the data vector
α∗.
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for which k �
√

M

Σ2
.= Set of all k-sparse signals in Σ1

ΓB
.= Set of signals in

Σ1 − Σ2, supported on
“bad” subsets

Σ1
.= Space of all k-sparse unimodal signals in RN such that k � M

log N

Figure 11.1: A Venn digram used to illustrate the major difference between the
BP-based recovery guarantees and the OST-based recovery guarantees for k-sparse
unimodal signals in RN measured using Alltop Gabor frames. The OST algorithm
is guaranteed to recover α∗ ∈ Σ1 − ΓB. But BP, unlike OST, is only guaranteed to
recover α∗ ∈ Σ2 in this case.

11.2.2 Main Results

Intuitively speaking, successful model selection requires the columns of the design
matrix to be incoherent. In the case of the LASSO, this notion of incoherence has
been quantified in [261] and [247] in terms of the irrepresentable condition and the
incoherence condition, respectively (see also [50]). In contrast to earlier work on model
selection, however, we formulate this idea of incoherence in terms of the coherence
property.

Definition 11.1 (The Coherence Property). An M×N design matrix Φ having unit
`2-norm columns is said to obey the coherence property if the following two conditions
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hold:

µ(Φ) ≤ 0.1√
2 logN

, and (CP-1)

ν(Φ) ≤ µ√
M

. (CP-2)

In words, (CP-1) roughly states that the columns of Φ are not too similar, while
(CP-2) roughly states that the columns of Φ are somewhat distributed within the M -
dimensional unit ball. Note that the coherence property is superior to other measures
of incoherence such as the irrepresentable condition in two key aspects. First, it does
not require the singular values of the submatrices of Φ to be bounded away from zero.
Second, it can be easily verified in polynomial time since it simply requires checking
that

‖Φ>Φ− I‖∞ ≤ (200 logN)−1/2 and ‖(Φ>Φ− I)1‖∞ ≤ (N − 1)M−1/2‖Φ>Φ− I‖∞.

Below, we describe the implications of the coherence property for both the exact and
the partial model-selection performance of OST. Before proceeding further, however,
it is instructive to first define some fundamental quantities pertaining to the problem
of model selection as follows:

‖α‖min
.
= min

i∈S
|α∗i | , mar

.
=
‖α‖min

2

‖α∗‖2
2/k

,

snrmin
.
=

‖α‖min
2

E[‖eM‖2
2]/k

, snr
.
=
‖α∗‖2

2

E[‖eM‖2
2]
.

In words, ‖α‖min is the magnitude of the smallest nonzero entry of α∗, while mar—
which is termed the minimum-to-average ratio [113]—is the ratio of the energy in
the smallest nonzero entry of α∗ and the average signal energy per nonzero entry of
α∗. Likewise, snrmin is the ratio of the energy in the smallest nonzero entry of α∗

and the average noise energy per nonzero entry, while snr simply denotes the usual
signal-to-noise ratio in the system. It is easy to see that snrmin = snr ·mar. We are
now ready to state the first main result of this chapter that concerns the performance
of OST in terms of exact model selection.

Theorem 11.2 (Exact Model Selection Using OST). Suppose that the design matrix
Φ satisfies the coherence property and let eM be distributed as N (0, σ2I). Next,

choose the threshold λ = max
{

1
t
10µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN for any t ∈ (0, 1).

Then, if we write µ(Φ) as µ = c1M
−1/γ for some c1 > 0 (which may depend on N)

and γ ∈ {0} ∪ [2,∞), the OST algorithm (Algorithm 8) satisfies Pr(Ŝ 6= S) ≤ 6N−1
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provided N ≥ 128 and the number of measurements satisfies

M > max

{
2k logN,

c2k logN

snrmin

,

(
c3k logN

mar

)γ/2}

≡ max

{
2k logN,

c2k logN

snr ·mar
,

(
c3k logN

mar

)γ/2}
. (11.2.1)

Here, the quantities c2, c3 > 0 are defined as c2
.
= 16(1− t)−2 and c3

.
= 800c2

1t
−2, while

the probability of failure is with respect to the true model S and the noise vector eM .

The proof of this theorem is provided in Section 11.3. Note that the parameter t in
Theorem 11.2 can always be fixed a priori (say t = 1/2) without affecting the scaling
relation in (11.2.1). In practice, however, t should be chosen so as to reduce the total
number of measurements needed to ensure successful model selection; the optimal

choice of t in this regard is topt = arg mint

(
max

{
c2k logN
snr·mar

,
(
c3k logN

mar

)γ/2})
. Notice

also that Theorem 11.2 is best suited for applications where one is interested in
quantifying the minimum number of measurements needed to guarantee exact model
selection for a given class of signals. Alternatively, it might be the case in some other
applications that the problem dimensions are fixed and one is instead interested in
specifying the class of signals that leads to successful model selection. The following
variant of Theorem 11.2 is best suited in such situations.

Theorem 11.3. Suppose that the design matrix Φ satisfies the coherence property
and let the noise vector eM be distributed as N (0, σ2I). Next, let N ≥ 128 and choose

the threshold λ = max
{

1
t
10µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN for any t ∈ (0, 1). Then

the OST algorithm (Algorithm 8) satisfies Pr(Ŝ 6= S) ≤ 6N−1 as long as we have that
k ≤M/(2 logN) and

mar > max

{
c2k logN

M · snr
,
c′3k logN

µ−2

}
. (11.2.2)

Here, c2 > 0 is as defined in Theorem 11.2, c′3 > 0 is defined as c′3
.
= 800t−2, and the

probability of failure is with respect to the true model S and the noise vector eM .

Note that the proof of Theorem 11.3 follows directly from the proof of Theorem 11.2.
There are a few important remarks that need to be made at this point concerning the
threshold proposed in Theorem 11.2 and Theorem 11.3 for the OST algorithm. First,
it is easy to see that the proposed threshold is completely agnostic to the model
order k and only requires knowledge of the snr and the noise variance. Second,
extensive simulations suggest that the absolute constant 10 in the proposed threshold
is somewhat conservative and can be reduced through the use of more sophisticated
analytical tools. Finally, while estimating the true model order k tends to be harder
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Algorithm 9 The Sorted One-Step Thresholding (SOST) Algorithm for Model Se-
lection
Input: An M ×N matrix Φ, a vector f ∈ CM , and model order k
Output: An estimate Ŝ ⊂ {1, . . . , N} of the true model S
α̃← Hk(Φ

>f) {Form signal proxy}
Ŝ ← Supp(α̃)

than estimating the snr and the noise variance σ2 in majority of the situations, it
might be the case that estimating k is easier in some applications. It is better in
such situations to work with a slight variant of the OST algorithm (see Algorithm 9)

that relies on knowledge of the model order k instead and returns an estimate Ŝ
corresponding to the k largest (in magnitude) entries of Φ>f . We characterize the
performance of this algorithm—which we call sorted one-step thresholding (SOST)
algorithm—in terms of the following theorem.

Theorem 11.4 (Exact Model Selection Using SOST). Suppose that the design ma-
trix Φ satisfies the coherence property and let the noise vector eM be distributed as
N (0, σ2I). Next, write µ(Φ) as µ = c1M

−1/γ for some c1 > 0 (which may depend
on N) and γ ∈ {0} ∪ [2,∞). Then the SOST algorithm (Algorithm 9) satisfies

Pr(Ŝ 6= S) ≤ 6N−1 as long as N ≥ 128 and the number of measurements satisfies

M > min
t∈(0,1)

max

{
2k logN,

c2k logN

snrmin

,

(
c3k logN

mar

)γ/2}

≡ min
t∈(0,1)

max

{
2k logN,

c2k logN

snr ·mar
,

(
c3k logN

mar

)γ/2}
. (11.2.3)

Here, the quantities c2, c3 > 0 are as defined in Theorem 11.2, while the probability of
failure is with respect to the true model S and the noise vector eM .

The final result that we present in this section concerns the partial model-selection
performance of OST. Specifically, note that our focus in this section has so far been on
specifying conditions for either the number of measurements or the mar of the signal
that ensure exact model selection. In many real-world applications, however, the
parameters of the problem are fixed and it is not always possible to ensure that either
the number of measurements or the mar of the signal satisfy the aforementioned
conditions. A natural question to ask then is whether the OST algorithm completely
fails in such circumstances or whether any guarantees can still be provided for its
performance. We address this aspect of the OST algorithm in the following and
show that, even if the mar of α∗ is very small, OST has the ability to identify the
locations of the nonzero entries of α∗ whose energies are greater than both the noise
power and the average signal energy per nonzero entry. In order to make this notion
mathematically precise, we first define the l-th largest-to-average ratio (larl) of α∗
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as the ratio of the energy in the l-th largest (in magnitude) nonzero entry of α∗ and
the average signal energy per nonzero entry of α∗; that is,

larl
.
=
|α∗(l)|2
‖α∗‖2

2/k

where α∗(l) denotes the l-th largest nonzero entry of α∗ (note that mar ≡ lark).
We are now ready to specify the partial model-selection performance of the OST
algorithm.

Theorem 11.5 (Partial Model Selection Using OST). Suppose that the design ma-
trix Φ satisfies the coherence property. Next, let N ≥ 128 and eM be distributed
as N (0, σ2I). Finally, fix a parameter t ∈ (0, 1) and choose the threshold λ =

max
{

1
t
10µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN . Then, under the assumption that k ≤
M/(2 logN), the OST algorithm (Algorithm 8) guarantees with probability exceed-

ing 1 − 6N−1 that Ŝ ⊂ S and
∣∣S − Ŝ

∣∣ ≤ (k − L), where L is the largest integer for
which the following inequality holds:

larL > max

{
c2k logN

M · snr
,
c′3k logN

µ−2

}
. (11.2.4)

Here, the quantities c2, c
′
3 > 0 are as defined in Theorem 11.3, while the probability of

failure is with respect to the true model S and the noise vector eM .

11.2.3 LASSO versus OST

Historically, OST (and its variants) was preferred over the LASSO because of its
low computational complexity. The results reported in this chapter, however, bring
forth another important aspect of OST (also see [120]): OST can lead to successful
model selection even when the LASSO fails. Specifically, model selection using the
LASSO is in fact a byproduct of signal reconstruction, whereas the OST results do
not guarantee signal reconstruction without imposing additional constraints on Φ.

In Chapter 12 we will introduce the Reed-Muller frames as examples of design ma-
trices with optimal coherence parameters. We will then show cases in which LASSO
completely fails in recovering the support of a sparse vector, whereas the OST algo-
rithm can successfully recover the support of the same sparse vector. In other words,
model selection is inherently an easier problem than signal reconstruction.

11.3 Proofs of Main Results

In this section, we provide detailed proofs of the main results reported in Section 11.2.
Before proceeding further, however, it is advantageous to develop some notation that
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will facilitate our forthcoming analysis. In this regard, recall that the true model S is
taken to be a uniformly random k-subset of [N ]

.
= {1, . . . , N}. We can therefore write

the data vector α∗ under this assumption as concatenation of a random permutation
matrix and a deterministic k-sparse vector. Specifically, let z̄ ∈ CN be a deterministic
k-sparse vector that we write (without loss of generality) as

z̄
.
=
(
z1, . . . , zk︸ ︷︷ ︸
.
=z∈Ck

, 0, . . . , 0︸ ︷︷ ︸
(N−k) times

)T

(11.3.1)

and let P π be an N ×N random permutation matrix; in other words,

P π
.
=
[
eπ1 eπ2 . . . eπN

]>
(11.3.2)

where ej denotes the j-th column of the canonical basis I and Π̄
.
= (π1, . . . , πN) is

a random permutation of [N ]. Then the assumption that the model S is a random
subset of [N ] is equivalent to stating that the data vector α∗ can be written as
α∗ = Pπz̄. In other words, the measurement vector f can be expressed as

f = Φα∗ + eM = ΦPπz̄ + eM = ΦΠz + eM (11.3.3)

where Π
.
= (π1, . . . , πk) denotes the first k elements of the random permutation Π̄, ΦΠ

denotes the M × k submatrix obtained by collecting the columns of Φ corresponding
to the indices in Π, and the vector z ∈ Ck represents the k nonzero entries of α∗.

Proof of Theorem 11.2

The general road map for the proof of Theorem 11.2 is as follows. Below, we first
introduce the notion of (k, ε, δ)-statistical orthogonality condition (StOC). We next
establish the relationship between the StOC parameters and the worst-case and av-
erage coherence of Φ in Lemma 11.8 and Lemma 11.9. We then provide a proof of
Theorem 11.2 by first showing that if Φ satisfies the StOC then OST recovers S with
high probability and then relating the results of Lemma 11.8 and Lemma 11.9 to the
coherence property.

Definition 11.6 ((k, ε, δ)-Statistical Orthogonality Condition). Let Π̄ = (π1, . . . , πN)
be a random permutation of [N ], and define Π

.
= (π1, . . . , πk) and Πc .= (πk+1, . . . , πN)

for any k ∈ [N ]. Then the M × N (normalized) design matrix Φ is said to satisfy
the (k, ε, δ)-statistical orthogonality condition if there exist ε, δ ∈ [0, 1) such that the
inequalities

‖(Φ>ΠΦΠ − I)z‖∞ ≤ ε‖z‖2 (StOC-1)

‖Φ>ΠcΦΠz‖∞ ≤ ε‖z‖2 (StOC-2)

hold for every fixed z ∈ Ck with probability exceeding 1−δ (with respect to the random
permutation Π̄).
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Remark 11.7. Note that the StOC derives its name from the fact that if Φ is a
N ×N orthonormal matrix then it trivially satisfies the StOC for every k ∈ [N ] with
ε = δ = 0. In addition, although we will not use this fact explicitly in the chapter,
it can be checked that if Φ satisfies (k, ε, δ)-StoC then it approximately preserves the
`2-norms of k-sparse signals with probability exceeding 1− δ as long as k < ε−2.

Having defined StOC, our goal in the next two lemmas is to relate the StOC pa-
rameters k, ε, and δ to the worst-case and average coherence of the design matrix
Φ.

Lemma 11.8. Let Π = (π1, . . . , πk) denote the first k elements of a random per-
mutation of [N ] and choose a parameter a ≥ 1. Then, for any ε ∈ [0, 1), k ≤
min

{
ε2ν−2, (1 + a)−1N

}
, and fixed z ∈ Ck, we have

Pr
({

Φ does not satisfy (StOC-1)
})
≤ 4k exp

(
− (ε−

√
k ν)2

16(2 + a−1)2µ2

)
.

Proof. The proof of this lemma relies heavily on the so-called method of bounded
differences (MOBD) [190]. Specifically, we begin by noting that

∥∥(Φ>ΠΦΠ− I)z
∥∥
∞ =

maxi
∣∣∑

j 6=i zj〈ϕπi ,ϕπj〉
∣∣. Therefore for a fixed index i, and conditioned on the event

Ai′ .=
{
πi = i′

}
, we have the following equality from basic probability theory

Pr

(∣∣
k∑

j=1
j 6=i

zj〈ϕπi ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)

= Pr

(∣∣
k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)
.

(11.3.4)

Next, in order to apply the MOBD to obtain an upper bound for (11.3.4), we first
define a random (k − 1)-tuple Π−i

.
= (π1, . . . , πi−1, πi+1, . . . , πk) and then construct a

Doob martingale (Z0, Z1, . . . , Zk−1) as follows:

Z0 = E
[ k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣∣Ai′

]
, and (11.3.5)

Z` = E
[ k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣∣π−i1→`,Ai′

]
, ` = 1, . . . , k − 1

where π−i1→` denotes the first ` elements of Π−i. The first thing to note here is that
we have from the linearity of (conditional) expectation

∣∣Z0

∣∣ =
∣∣∣
∑

j 6=i

zjE
[
〈ϕi′ ,ϕπj〉|Ai′

]∣∣∣ ≤
∑

j 6=i

∣∣zj
∣∣
∣∣∣E
[
〈ϕi′ ,ϕπj〉|Ai′

]∣∣∣
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(a)

≤
∑

j 6=i

∣∣zj
∣∣
∣∣∣∣∣
N∑

q=1
q 6=i′

1

N − 1
〈ϕi′ ,ϕq〉

∣∣∣∣∣
(b)

≤ ν ‖z‖1 ≤
√
k ν ‖z‖2

where (a) follows from the fact that, conditioned on Ai′ , πj has a uniform distribution
over [N ]−{i′}, while (b) is mainly a consequence of the definition of average coherence.
In addition, if we use π−i` to denote the `-th element of Π−i and define

Z`(r)
.
= E

[ k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣∣π−i1→`−1, π

−i
` = r,Ai′

]
(11.3.6)

for ` = 1, . . . , k − 1 then, since (Z0, Z1, . . . , Zk−1) is a Doob martingale, it can be
easily verified that |Z` − Z`−1| is upper bounded by supr,s

[
Z`(r) − Z`(s)

]
(see, e.g.,

[195]).

Now in order to upper bound supr,s
[
Z`(r)−Z`(s)

]
, notice that we can bound |Z`(r)−

Z`(s)|:

∣∣∣Z`(r)− Z`(s)
∣∣∣

=

∣∣∣∣∣
∑

j 6=i

zj

(
E
[
〈ϕi′ ,ϕπj〉

∣∣∣π−i1→`−1, π
−i
` = r,Ai′

]
− E

[
〈ϕi′ ,ϕπj〉

∣∣∣π−i1→`−1, π
−i
` = s,Ai′

])∣∣∣∣∣

≤
∑

j 6=i

∣∣zj
∣∣
∣∣∣∣E
[
〈ϕi′ ,ϕπj〉

∣∣∣π−i1→`−1, π
−i
` = r,Ai′

]
− E

[
〈ϕi′ ,ϕπj〉

∣∣∣π−i1→`−1, π
−i
` = s,Ai′

]

︸ ︷︷ ︸
.
= d`,j

∣∣∣∣

=
∑

j≤ `+1
j 6=i

∣∣zj
∣∣∣∣d`,j

∣∣+
∑

j> `+1
j 6=i

∣∣zj
∣∣∣∣d`,j

∣∣. (11.3.7)

In addition, we have that for every j > ` + 1, j 6= i, the random variable πj has
a uniform distribution over [N ]− {π−i1→`−1, r, i

′} when conditioned on {π−i1→`−1, π
−i
` =

r, i′}, whereas πj has a uniform distribution over [N ]−{π−i1→`−1, s, i
′} when conditioned

on {π−i1→`−1, π
−i
` = s, i′}. Therefore, we get ∀ j > `+ 1, j 6= i,

|d`,j| =
1

N − `− 1

∣∣∣〈ϕi′ ,ϕr〉 − 〈ϕi′ ,ϕs〉
∣∣∣ ≤ 2µ

N − `− 1
. (11.3.8)

Similarly, it can be shown that

∑

j≤ `+1
j 6=i

∣∣zj
∣∣∣∣d`,j

∣∣ ≤
∣∣z`+1

∣∣2µwhen i ≤ `,
∑

j≤ `+1
j 6=i

∣∣zj
∣∣∣∣d`,j

∣∣ ≤
∣∣z`
∣∣2µwhen i = `+ 1,
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and
∑

j≤ `+1
j 6=i

∣∣zj
∣∣∣∣d`,j

∣∣ ≤ (|z`|+ |z`+1|
N−`−1

)2µ when i > `+ 1. Consequently, regardless of

the initial choice of i, we obtain

sup
r,s

[
Z`(r)− Z`(s)

]
≤ 2µ

(
|z`|+ |z`+1|+

1

N − `− 1

∑

j> `+1

|zj|
︸ ︷︷ ︸

.
= d`

)
. (11.3.9)

We have now established that (Z0, Z1, . . . , Zk−1) is a (real- or complex-valued) bounded-
difference martingale sequence with |Z`−Z`−1| ≤ 2µd` for ` = 1, . . . , k−1. Therefore,
under the assumption that k ≤ ε2ν−2 and since it has been established in (11.3.5)
that |Z0| ≤

√
k ν ‖z‖2, it is easy to see that

Pr

(∣∣
k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)
≤ Pr

(∣∣Zk−1 − Z0| > ε‖z‖2 −
√
k ν ‖z‖2

∣∣∣∣Ai′
)

(c)

≤ 4 exp

(
− (ε−

√
k ν)2‖z‖2

2

16µ2
k−1∑
`=1

d2
`

)
(11.3.10)

where (c) follows from the complex Azuma inequality for bounded-difference mar-
tingale sequences (see Theorem 2.16 in Chapter 2). Further, it can be established
through routine calculations from (11.3.9) that

∑k−1
`=1 d

2
` ≤ (2 + a−1)2‖z‖2

2 since
k ≤ N/(1 + a). Combining all these facts together, we finally obtain that

Pr

(∥∥(Φ>ΠΦΠ − I)z
∥∥
∞ > ε‖z‖2

)
(d)

≤ k Pr

(∣∣
k∑

j=1
j 6=i

zj〈ϕπi ,ϕπj〉
∣∣ > ε‖z‖2

)

= k

p∑

i′=1

Pr

(∣∣
k∑

j=1
j 6=i

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)

Pr (Ai′)
(e)

≤ 4k exp

(
− (ε−

√
k ν)2

16(2 + a−1)2µ2

)

where (d) follows from the union bound and the fact that the πi’s are identically
(though not independently) distributed, while (e) follows from (11.3.10) and the fact
that πi has a uniform distribution over [N ].

Lemma 11.9. Let Π = (π1, . . . , πk) and Πc = (πk+1, . . . , πp) denote the first k and
the last (N − k) elements of a random permutation of [N ], respectively, and choose
a parameter a ≥ 1. Then, for any ε ∈ [0, 1), k ≤ min

{
ε2ν−2, (1 + a)−1N

}
, and fixed

z ∈ Ck, we have

Pr
({

Φ does not satisfy (StOC-2)
})
≤ 4(N − k) exp

(
− (ε−

√
k ν)2

8(1 + a−1)2µ2

)
.
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Proof. The proof of this lemma is very similar to that of Lemma 11.8 and also relies on

the MOBD. To begin with, we note that
∥∥Φ>ΠcΦΠz

∥∥
∞ = maxi∈[N−k]

∣∣∣∣
∑
j

zj〈ϕπci ,ϕπj〉
∣∣∣∣,

where [N − k]
.
= {1, . . . , N − k} and πci denotes the i-th element of Πc. Then for a

fixed index i ∈ [N − k], and conditioned on the event Ai′ .= {πci = i′}, we again have
the following simple equality

Pr

(∣∣
k∑

j=1

zj〈ϕπci ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)

= Pr

(∣∣
k∑

j=1

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)
.

(11.3.11)

Next, as in the case of Lemma 11.8, we construct a Doob martingale sequence
(Z0, Z1, . . . , Zk) as follows:

Z0 = E
[ k∑

j=1

zj〈ϕi′′,ϕπj〉
∣∣∣Ai′

]
and

Z` = E
[ k∑

j=1

zj〈ϕi′ ,ϕπj〉
∣∣∣π1→`,Ai′

]
, ` = 1, . . . , k

where π1→` now denotes the first ` elements of Π. Then, since πj has a uniform
distribution over [N ]− {i′} when conditioned on Ai′ , we once again have the bound∣∣Z0

∣∣ ≤
√
k ν ‖z‖2. Therefore, the only remaining thing that we need to show in order

to be able to apply the complex Azuma inequality to the constructed martingale
(Z0, Z1, . . . , Zk) is that |Z` − Z`−1| is suitably bounded.

In this regard, we make use of the notation

Z`(r)
.
= E

[ k∑

j=1

zj〈ϕi′ ,ϕπj〉
∣∣∣π1→`−1, π` = r,Ai′

]

and note that |Z`(r)− Z`(s)| can be bounded as

∣∣∣Z`(r)− Z`(s)
∣∣∣

=

∣∣∣∣∣
∑

j

zj

(
E
[
〈ϕi′ ,ϕπj〉

∣∣∣π1→`−1, π` = r,Ai′
]
− E

[
〈ϕi′ ,ϕπj〉

∣∣∣π1→`−1, π` = s,Ai′
])∣∣∣∣∣

≤
∣∣z`
∣∣
∣∣∣〈ϕi′ ,ϕr〉 − 〈ϕi′ ,ϕs〉

∣∣∣+

∣∣∣〈ϕi′ ,ϕr〉 − 〈ϕi′ ,ϕs〉
∣∣∣

N − `− 1

∑

j>`

∣∣zj
∣∣ ≤ 2µ

(
|z`|+

∑
j>`

∣∣zj
∣∣

N − `− 1︸ ︷︷ ︸
.
= d`

)
.

(11.3.12)
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which implies that supr,s
[
Z`(r) − Z`(s)

]
≤ 2µd`, ` = 1, . . . , k. Consequently, we

have now established that (Z0, Z1, . . . , Zk) is a bounded-difference martingale with
|Z` − Z`−1| ≤ 2µd`. Therefore, since k ≤ ε2ν−2 and |Z0| ≤

√
k ν ‖z‖2, we once again

have from the complex Azuma inequality that

Pr

(∣∣
k∑

j=1

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)
≤ Pr

(∣∣Zk − Z0| > ε‖z‖2 −
√
k ν ‖z‖2

∣∣∣∣Ai′
)

(a)

≤ 4 exp

(
− (ε−

√
k ν)2

8(1 + a−1)2µ2

)
(11.3.13)

where (a) follows by noting that
∑k

`=1 d
2
` ≤ (1 + a−1)2‖z‖2

2 since k ≤ N/(1 + a).
Combining all these facts together, we finally obtain the claimed result as follows

Pr

(∥∥Φ>ΠcΦΠz
∥∥
∞ > ε‖z‖2

)

(b)

≤ (N − k) Pr

(∣∣
k∑

j=1

zj〈ϕπci ,ϕπj〉
∣∣ > ε‖z‖2

)

≤ (N − k)
N∑

i′=1

Pr

(∣∣
k∑

j=1

zj〈ϕi′ ,ϕπj〉
∣∣ > ε‖z‖2

∣∣∣∣Ai′
)

Pr (Ai′)

(c)

≤ 4(N − k) exp

(
− (ε−

√
k ν)2

8(1 + a−1)2µ2

)
(11.3.14)

where (b) follows from the union bound and the fact that the πci ’s are identically
(though not independently) distributed, while (c) follows from (11.3.13) and the fact
that πci has a uniform distribution over [N ].

Note that Lemma 11.8 and Lemma 11.9 collectively prove through a simple union
bound argument that an M × N design matrix Φ satisfies (k, ε, δ)-StOC for any

ε ∈ [0, 1) with δ ≤ 4N exp
(
− (ε−

√
k ν)2

16(2+a−1)2µ2

)
for any a ≥ 1 as long as we have that

k ≤ min
{
ε2ν−2, (1 + a)−1N

}
. We are now ready to provide a proof of Theorem 11.2.

Proof of Theorem 11.2

We begin by making use of the notation developed at the start of this section and writ-
ing the signal proxy α̃ = Φ>f as α̃ = Φ>ΦΠz+Φ>eM . Now, let Πc = (πk+1, . . . , πN)
denote the last (N−k) elements of Π̄ and note that we need to show that ‖α̃Πc‖∞ ≤ λ

and mini∈{1,...,k} |α̃πi | > λ in order to establish that Ŝ = S.

In this regard, we first assume that Φ satisfies (k, ε, δ)-StOC and define

λε
.
= max

{1

t
ε‖z‖2,

1

1− t2
√
σ2 logN

}
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for any t ∈ (0, 1). Next, it can be verified through Theorem 2.13 in Chapter 2
that ˜eM

.
= Φ>eM satisfies ‖ ˜eM‖∞ ≤ 2

√
σ2 logN with probability exceeding 1 −

2(
√

2π logN ·N)−1. Now define the probability event

G .
=

{{
Φ satisfies (StOC-1) and (StOC-2)

}⋂{
‖ ˜eM‖∞ ≤ 2

√
σ2 logN

}}

(11.3.15)

and notice that we have Pr(G) > 1 − δ − 2(
√

2π logN · N)−1. Further, conditioned
on the event G, we have

‖α̃Πc‖∞
(a)

≤ ‖Φ>ΠcΦΠz‖∞ + ‖Φ>ΠceM‖∞
(b)

≤ ε‖z‖2 + 2
√
σ2 logN

(c)

≤ λε (11.3.16)

where (a) follows from the triangle inequality, (b) is mainly a consequence of the
conditioning on the event G, and (c) follows from the definition of λε. Next, we define
r = (Φ>ΠΦΠ−I)z and notice that, conditioned on the event G, we have for any i ∈ [k]
the following inequality:

|fπi | = |zi + ri + ẽMπi | ≥ |zi| − ‖r‖∞ − ‖ ˜eM‖∞
(d)

≥ ‖α‖min − ε‖z‖2 − 2
√
σ2 logN

(e)

≥ ‖α‖min − λε . (11.3.17)

Here, (d) follows from the conditioning on G, while (e) is a simple consequence of
the choice of λε. It can therefore be concluded from (11.3.16) and (11.3.17) that if
Φ satisfies (k, ε, δ)-StOC and the OST algorithm uses the threshold λε then we have

Pr(Ŝ 6= S) ≤ Pr(Gc) as long as ‖α‖min > 2λε.

Finally, to complete the proof of this theorem, we let k ≤ M/(2 logN) and fix ε =
10µ
√

2 logN . Then the claim is that Φ satisfies (k, ε, δ)-StOC with δ ≤ 4N−1. In
order to establish this claim, we only need to ensure that the chosen parameters satisfy
the assumptions of Lemma 11.8 and Lemma 11.9. In this regard, note that (i) ε < 1
because of (CP-1), and (ii)

√
k ν ≤ ε

9
because of the assumption that k ≤M/(2 logN)

and (CP-2). Therefore, since the assumption N ≥ 128 together with k ≤M/(2 logN)

implies that 16(2 + a−1)2 < 72, we obtain exp
(
− (ε−

√
k ν)2

16(2+a−1)2µ2

)
≤ N−2. We can

now combine this fact with the previously established facts to see that the threshold

λ = max
{

1
t
10µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN guarantees that Pr(Ŝ 6= S) ≤ 6N−1

as long as M ≥ 2k logN and ‖α‖min > 2λ. Finally, note that

‖α‖min >
1

1− t4
√
σ2 logN ⇐⇒ M >

c2k logN

snrmin

and

‖α‖min >
1

t
20µ
√

2Mσ2 logN · snr ⇐⇒ M >

(
c3k logN

mar

)γ/2
.

This completes the proof of the theorem.
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Proof of Theorem 11.5

We begin by making use of the notation developed earlier in this section and condi-
tioning on the event G defined in (11.3.15) with ε = 10µ

√
2 logN . Then it is easy to

see from the proof of Theorem 11.2 that the estimate Ŝ is a subset of S because of
the fact that ‖α̃Πc‖∞ ≤ λ.

Next, assume without loss of generality that zi ≡ α∗(i) and note from (11.3.17) that

|α̃πi | ≥ |α∗(i)| − λ for any i ∈ {1, . . . , k}. Then, since πi ∈ Ŝ if and only if |α̃πi | > λ,

we have that
∣∣∣α∗(i)

∣∣∣ > 2λ ⇒ πi ∈ Ŝ. Now define L to be the largest integer for which∣∣∣α∗(L)

∣∣∣ > 2λ holds and note that
∣∣∣α∗(L)

∣∣∣ > 2λ ⇒ α∗(i) > 2λ ⇒ πi ∈ Ŝ for every

i ∈ {1, . . . , L}, which in turn implies
∣∣S − Ŝ

∣∣ ≤ (k − L). Finally, note that

∣∣α∗(L)

∣∣ > 1

1− t4
√
σ2 logN ⇐⇒ larL >

c2k logN

M · snr

and

∣∣α∗(L)

∣∣ > 1

t
20µ
√

2nσ2 logN · snr ⇐⇒ larL >
c′3k logN

µ−2
.

This completes the proof of the theorem since the event G holds with probability
exceeding 1− 6N−1.

11.4 Near-Optimal Design Matrices for One-Step

Thresholding: Some Examples

Section 11.2 establishes that design matrices with small worst-case coherence (and
consequently small average coherence) are particularly well-suited for model selection
and recovery of sparse signals using OST. Moreover, in the next chapter we will
see the implications of the spectral norm on the uniqueness of sparse representation.
Further, since the Welch bound [251] dictates that µ % M−1/2 for N � 1 and since we

have from elementary linear algebra that ‖Φ‖2 ≥
√

N
M

, we are particularly interested

in design matrices that approximately satisfy the scaling relations µ(Φ) � M−1/2,

ν(Φ) - M−1, and ‖Φ‖2 �
√

N
M

. In the following, we provide some examples of both

random and deterministic design matrices that are nearly-optimal in terms of these
requisite conditions (also, see Table 11.1 for an overview of the results reported in
here).
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11.4.1 Random Design Matrices

Random matrices are perhaps the most well-studied design matrices in the literature
on high-dimensional, linear inference problems. This is in part due to the fact that
geometric concepts such as the irrepresentable condition [261] and the restricted isom-
etry property (RIP) [49] have, to date, been shown to hold near-optimally only for the
case of random matrices. The following two lemmas make precise the intuition that
traditional random design matrices such as Gaussian matrices and (random) partial
Fourier matrices also tend to be near-optimal in terms of the geometric measures of
µ, ν, and/or ‖Φ‖2.

Lemma 11.10 (Geometry of Gaussian Matrices). Let Φ be an M ×N design matrix
with independent and identically distributed (i.i.d.) N (0, 1/M) entries and let M ≥
60 logN . Then, we have that Φ satisfies (i) µ(Φ) ≤

√
15 logN
M

, (ii) ν(Φ) ≤
√

15 logN
M

,

and (iii) ‖Φ‖2 ≤ 1 + 2
√

N
M

with probability exceeding 1− 2(N−1 +N−2 + e−N/2).2

Note that the worst-case coherence bound in this lemma follows from bounds on the
inner product of independent Gaussian vectors (see, e.g., [17, Appendix A]) and a
simple union bound argument, the proof of the average coherence bound is provided
in [17, Lemma 2], and the spectral norm bound follows from [219, (2.3)]. It is worth
pointing out here that similar results can also be obtained for sub-Gaussian design
matrices using standard concentration inequalities and [219, Proposition 2.4].

Lemma 11.11 (Geometry of Partial Fourier Matrices). Let U be an N-point (non-
normalized) discrete Fourier transform matrix such that U>U = NI. Next, populate
Ω by sampling M times with replacement from the set {1, . . . , N} and construct Φ
by collecting the rows of U corresponding to the indices in Ω and normalizing the

resulting matrix by 1/
√
M . Then Φ satisfies (i) µ(Φ) ≤

√
12 logN
M

and (ii) ν(Φ) ≤
max

{
1

N−1
, N−M
M(N−1)

}
with probability exceeding 1− 2N−1.

In this lemma, the worst-case coherence bound follows by noting that the columns of
U form a group under pointwise multiplication and then making use of Hoeffding’s
inequality [38]. On the other hand, the average coherence expression in it follows
from the definition of the average coherence and the fact that 1 is in the null space
of any partial Fourier matrix that does not include the first row of U . Finally, note
that the fact that sampling in Lemma 11.11 is carried out with replacement, which
makes it difficult to specify the spectral norm of U . In practice, however, one would
not construct partial Fourier matrices with identical rows and the spectral norm of

partial Fourier matrices in such cases would be
√

N
M

for the simple reason that the

rows of U are mutually orthogonal.

2Note that the results (and the definition of the coherence property) presented earlier remain
valid if µ(Φ) is replaced with an upperbound µ̄(Φ).
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Table 11.1: Comparisons between different classes of random and deterministic design
matrices. All bounds ignore the O() constants.

Matrix N µ(Φ) ν(Φ) ‖Φ‖2 Randomness Complexity

Gaussian Matrices –
√

logN
M

√
logN
M

√
N
M

MN MN

Partial Fourier
–

√
logN
M

N−M
M(N−1) – M logN N logN

Matrices

Alltop Gabor
M2 1√

M
1
M

√
N
M

– N logN
Frames

Discrete-Chirp
M2 1√

M
N−M
M(N−1)

√
N
M

– N logN
Matrices

Dual BCH
N2

√
2
M

N−M
M(N−1)

√
N
M

–
N logN

Sensing Matrices

Delsarte–Goethals
M2+r 2r√

M
1

N−1

√
N
M

– N logN
Frames

11.4.2 Deterministic Design Matrices

Having described the geometry of Gaussian matrices and partial Fourier matrices, we
now show that there in fact exist many classes of deterministic design matrices that
are quite similar to these random design matrices in terms of the geometric measures
of µ, ν, and ‖Φ‖2. This is in stark contrast to the best known results for the RIP
of deterministic matrices and has important implications from an implementation
viewpoint since multiplications with the deterministic matrices described below (and
their adjoints) can be efficiently carried out using algorithms such as the fast Fourier
transform (FFT) and the fast Hadamard transform (FHT).

Geometry of Gabor Frames and Its Implications

A (finite) frame for CM is defined as any collection of N ≥ M vectors that span
the M -dimensional Hilbert space CM . Gabor frames for CM constitute an important
class of frames, having applications in areas such as communications [18] and radar
[146], that are constructed from time- and frequency-shifts of a nonzero seed vector
in CM . Specifically, let g ∈ CN be a unit-norm seed vector and define T to be an
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M ×M time-shift matrix that is generated from g as follows

T (g)
.
=




g1 gn g2

g2 g1
. . .

...
...

...
. . . gn

gn gn−1 g1


 (11.4.1)

where we write T = T (g) to emphasize that T is a matrix-valued function on
CM . Next, denote the collection of M samples of a discrete sinusoid with frequency

2π m
M
,m ∈ {0, . . . ,M − 1} as ωm

.
=
[
ej2π

m
M

0 . . . ej2π
m
M

(M−1)
]>

. Finally, define the
corresponding M ×M diagonal modulation matrices as Wm = diag(ωm). Then the
Gabor frame generated from g is an M ×M2 block matrix of the form

Φ =
[
W0T W1T . . . WM−1T

]
. (11.4.2)

In words, columns of the Gabor frame Φ are given by downward circular shifts and
modulations (frequency shifts) of the seed vector g. We are now ready to state the
first main result concerning the geometry of Gabor frames, which follows directly
from [178].

Theorem 11.12 (Spectral Norm of Gabor Frames [178]). Gabor frames generated
from nonzero (unit-norm) seed vectors are tight frames; in other words, we have that

‖Φ‖2 =
√

N
M

.

Theorem 11.12 implies that Gabor frames are the best that one can hope for in terms
of the spectral norm. The next result that we prove concerns the average coherence
of Gabor frames.

Theorem 11.13 (Average Coherence of Gabor Frames). Let Φ be a Gabor frame
generated from a unit-norm seed vector g ∈ CM . Then, using the notation gmax

.
=

maxi |gi| and gmin
.
= mini |gi|, the average coherence of Φ can be bounded from the

above as follows:

ν(Φ) ≤ M gmax(
√
M − gmin) + 1−M g2

min

M2 − 1
. (11.4.3)

Proof. In order to facilitate the proof of this theorem, we first map the indices of the
columns of Φ from {1, . . . ,M2} to C .

= {0, . . . ,M − 1} × {0, . . . ,M − 1} as follows

κ : i 7→
(

(i mod M)− 1,

⌊
i− 1

M

⌋)
. (11.4.4)

In words, κ(i) = (`,m) signifies that the i-th column of Φ corresponds to the (`+ 1)-
th column of WmT . Next, fix an index i (resp. κ(i) = (`,m)) and make use of the
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above reindexing to write

M2∑

j=1
j 6=i

〈ϕκ(i),ϕκ(j)〉 =
∑

(`′,m′)∈C
(`′,m′) 6=(`,m)

〈ϕκ(`,m),ϕκ(`′,m′)〉

=
M−1∑

`′=0
`′ 6=`

M−1∑

m′=0

〈ϕκ(`,m),ϕκ(`′,m′)〉+
M−1∑

m′=0
m′ 6=m

〈ϕκ(`,m),ϕκ(`′,m′)〉. (11.4.5)

Finally, note that we can explicitly write the columns of Φ using (11.4.2) for any
(`,m) ∈ C as follows

ϕ(`,m)
.
=
[
g(1−`)M ej2π

m
M

0 . . . g(M−`)M ej2π
m
M

(M−1)
]>

(11.4.6)

where we use the notation g(q)M as a shorthand for gq mod M . The rest of the proof
now follows from simple algebraic manipulations. Specifically, it follows from (11.4.6)
that the first term in (11.4.5) can be simplified as

N−1∑

`′=0
`′ 6=`

N−1∑

m′=0

〈ϕκ(`,m),ϕκ(`′,m′)〉

=
M∑

q=1

M−1∑

`′=0
`′ 6=`

g∗(q−`)Mg(q−`′)M

M−1∑

m′=0

ej2π
q−1
M

(m′−m)

=
M∑

q=2

M−1∑

`′=0
`′ 6=`

g∗(q−`)Mg(q−`′)M

M−1∑

m′=0

ej2π
q−1
M

(m′−m)+

+M
M−1∑

`′=0
`′ 6=`

g∗(1−`)Mg(1−`′)M
(a)
= M g∗(1−`)M

M−1∑

`′=0
`′ 6=`

g(1−`′)M (11.4.7)

where (a) in the above expression is a consequence of the fact that
∑M−1

m′=0 ej2π
q−1
M

(m′−m) =
0 for any fixed q ∈ {2, . . . ,M}. Likewise, we can simplify the second term in (11.4.5)
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as follows
N−1∑

m′=0
m′ 6=m

〈ϕκ(`,m),ϕκ(`′,m′)〉

=
M∑

q=1

g∗(q−`)Mg(q−`)M

M−1∑

m′=0
m′ 6=m

ej2π
q−1
M

(m′−m)

=
M∑

q=2

∣∣g(q−`)M
∣∣2

M−1∑

m′=0
m′ 6=m

ej2π
q−1
M

(m′−m) +
∣∣g(1−`)M

∣∣2
M−1∑

m′=0
m′ 6=m

1

(b)
= −

M∑

q=2

∣∣g(q−`)M
∣∣2 + (M − 1)

∣∣g(1−`)M
∣∣2

= −1 +M
∣∣g(1−`)M

∣∣2 (11.4.8)

where (b) follows from the fact that
∑

m′ 6=m ej2π
q−1
M

(m′−m) = −1 for any fixed q ∈
{2, . . . ,M}.
To conclude the theorem, note from (11.4.5), (11.4.7), and (11.4.8) that we can write

max
i∈{1,...,M2}

∣∣∣∣
M2∑

j=1
j 6=i

〈ϕi,ϕj〉
∣∣∣∣

= max
`

∣∣∣∣M g∗(1−`)M

M−1∑

`′=0
`′ 6=`

g(1−`′)M − 1 +M
∣∣g(1−`)M

∣∣2
∣∣∣∣

(c)

≤ max
r∈{1,...,M}

∣∣∣∣M g∗r

M∑

s=1
s 6=r

gs

∣∣∣∣+ max
r∈{1,...,M}

∣∣∣− 1 +M |gr|2
∣∣∣

≤M max
r∈{1,...,M}

|gr|
M∑

s=1
s 6=r

|gs|+ 1−M g2
min

(d)

≤ M gmax(
√
M − gmin) + 1−M g2

min. (11.4.9)

Here, (c) mainly follows from the triangle inequality and a simple reindexing argu-
ment, while (d) mainly follows from the Cauchy–Schwarz inequality since

∑M
s=1
s 6=r
|gs| =

‖g‖1−|gr| ≤
√
M−gmin. The proof of the theorem now follows by dividing the above

expression by M2 − 1.

In words, Theorem 11.13 states that the average coherence of Gabor frames cannot
be too large. In particular, it implies that Gabor frames generated from unimodal

134



(unit-norm) seed vectors (i.e., seed vectors characterized by gmin � gmax � M−1/2)
satisfy ν(Φ) - M−1. On the other hand, recall that the Welch bound [251] dictates
that µ(Φ) ≥ (M + 1)−1/2 for Gabor frames. It is therefore possible to conclude
from these two facts that Gabor frames generated from unimodal seed vectors are
automatically guaranteed to satisfy the coherence property (resp. strong coherence
property) as long as µ(Φ) - (logN)−1/2 (resp. ν(Φ) - (logN)−1). In the context
of model selection and sparse-signal recovery, Theorem 11.13 therefore suggests that
Gabor frames generated from unimodal seed vectors are the best that one can hope
for in terms of the average coherence.

Finally, recall from the discussions in Section 11.2 that—among the class of matrices
that satisfy the coherence property—design matrices with small worst-case coherence
are particularly well-suited for model selection and sparse-signal recovery. In the
context of Gabor frames, the goal then is to design unimodal seed vectors that yield
Gabor frames with the smallest-possible worst-case coherence. This, however, is an
active area of mathematical research and a number of researchers have looked at this
problem in recent years; see, e.g., [230]. As such, we can simply leverage some of
the existing research in this area in order to provide explicit constructions of Gabor
frames that satisfy the coherence property with nearly-optimal worst-case coherence.

Specifically, let M ≥ 5 be a prime number and construct a unimodal seed vector
g ∈ CN as follows

g =
[

1√
M

ej2π
03

M
1√
M

ej2π
13

M . . . 1√
M

ej2π
(M−1)3

M

]T

. (11.4.10)

The sequence
{

1√
M

ej2π
q3

M

}M−1

q=0
is termed the Alltop sequence [6] in the literature. This

sequence has the property that its autocorrelation decays very fast and, therefore, it is
particularly well-suited for generating Gabor frames with small worst-case coherence.
In particular, it was established recently in [230] that Gabor frames generated from
the Alltop seed vector g given in (11.4.10) satisfy

µ(Φ)
.
= max

i,j:i 6=j

∣∣〈ϕi,ϕj〉
∣∣ ≤ 1√

M
. (11.4.11)

In addition, since we have that gmin = gmax = M−1/2 for the Alltop seed vector, it is
possible to conclude from Theorem 11.13 that the average coherence of Alltop Gabor
frames satisfies ν(Φ) ≤ (M + 1)−1 ≤ µ(Φ)/

√
M . An immediate consequence of this

discussion is that all the results reported in Section 11.2 in the context of model
selection using OST apply directly to the case of Alltop Gabor frames.
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Geometry of Discrete-Chirp Matrices

An M -length chirp signal for any prime M takes the form

ϕ(m,r)(`) =
1√
M
ej2π

m`
M

+j2π r`
2

M , ` = 0, . . . ,M − 1 (11.4.12)

where m is the base frequency and r is the chirp rate of the signal. Discrete-chirp
matrices are M ×M2 matrices that are constructed by collecting all possible chirp
signals into columns[11]. The columns of the M×M2 discrete-chirp matrix Φ are the
M2 distinct chirp signals corresponding to the M2 possible pairs (m, r) ∈ ZM × ZM .
The following lemma characterizes the geometry of discrete-chirp matrices.

Lemma 11.14. Let Φ be an M ×M2 discrete-chirp matrix for any prime M . Then

Φ satisfies (i) µ(Φ) ≡ 1√
M

, (ii) ν(Φ) ≡ N−M
M(N−1)

, and (iii) ‖Φ‖2 ≡
√

N
M

.

Here, the worst-case coherence bound and the spectral norm expression follow from
[64], while the average coherence expression follows from the fact that Φ>Φ1 ≡
N
M

1. Finally, note that the structure of the discrete-chirp matrix Φ implies that the

multiplications Φv and Φ>u can be carried out using the FFT in O(N logN) time.

Geometry of Dual BCH Sensing Matrices

Dual BCH sensing matrices constitute another class of design matrices that cor-
responds to exponentiating the codewords of an algebraic code. Specifically, take
m ∈ Z+ to be an odd number and use BCH(m, 2) to denote the extended 2-error
correcting, binary BCH code of length M = 2m [183]. Then the dual of BCH(m, 2)
is a code of length M and dimension 2m + 1 that is the union of M cosets of the
first-order Reed–Muller code RM(1,m) of dimension m + 1. The important thing
to point out here is that exponentiating codewords in the dual of BCH(m, 2) and
scaling the resulting M ×M2 matrix Φ by 1/

√
M gives a union of M orthonormal

basis. This can be seen by noting that exponentiating codewords in RM(1,m) gives
Walsh basis vectors (and their negatives, which we discard in here). We also note
because of the very same reason that the multiplications Φv and Φ>u in the case
of dual BCH sensing matrices can also be carried out using the FHT in ON logN)
time. The following lemma characterizes the geometry of dual BCH(m, 2) sensing
matrices.

Lemma 11.15. Let Φ be an M ×M2 dual BCH sensing matrix obtained from the

dual of BCH(m, 2) for some odd m. Then the matrix Φ satisfies (i) µ(Φ) ≡
√

2
M

,

(ii) ν(Φ) ≡ N−M
M(N−1)

, and (iii) ‖Φ‖2 ≡
√

N
M

.
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Remark 11.16. In this section, we introduced deterministic design matrices with

optimal spectral norm ‖Φ‖2 =
√

N
M

, and worst-case coherence µ(Φ) - M−0.5. The

introduced matrices also satisfy the coherence property as ν(Φ) - M−1 - µ(Φ)M−0.5.
However, these matrices suffer from the restriction that each matrix can have at most
M2 columns (i.e., N ≤ M2). In the next chapter, we will introduce the Delsarte-
Goethals frames (DG(m, r)) as another family of design matrices with optimal spectral

norm (Φ =
√

N
M

), and worst-case coherence (µ ≤ 2r√
M

). We will see that the Delsarte-

Goethals frames also have with much smaller average coherence ν(Φ) ≤ 1
N−1
� 1

M
,

and much larger number of columns N = M r+2.

11.5 Conclusion

In this chapter, we have revisited two variants of the often forgotten but extremely fast
one-step thresholding (OST) algorithm for model selection. One of the key insights
offered by the chapter in this regard is that polynomial-time model selection can be
carried out even when signal reconstruction (and thereby the lasso) fails. In addition,
we have established in the chapter that if the M × N design matrix Φ satisfies
µ(Φ) � M−1/2 and ν(Φ) - M−1 then OST can perform near-optimally for the case
when either (i) the minimum-to-average ratio (mar) of the signal is not too small
or (ii) the signal-to-noise ratio (snr) in the measurement system is not too high. It
is worth pointing out here that some researchers in the past have observed that the
sorted variant of the OST (SOST) algorithm at times performs similar to or better
than the lasso (see Fig. 11.2 for an illustration of this in the case of an Alltop Gabor
frame in C127). One of our main contributions in this regard is that we have taken
the mystery out of this observation and explicitly specified in the chapter the four
key parameters of the model-selection problem, namely, µ(Φ), ν(Φ),mar, and snr,
that determine the non-asymptotic performance of the SOST algorithm for generic
(random or deterministic) design matrices and data vectors having generic (random
or deterministic) nonzero entries; also, see [120] for a comparison of our results with
corresponding results recently reported in the literature.

The second main contribution of this chapter—which completely sets it apart from
existing work on thresholding for model selection—is that we have proposed and ana-
lyzed a model-order agnostic threshold for the OST algorithm. The significance of this
aspect of the chapter can be best understood by realizing that in real-world applica-
tions it is often easier to estimate the snr and the noise variance in the system than to
estimate the true model order. In particular, we have established in the chapter that

the threshold λ = max
{

1
t
10µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN for t ∈ (0, 1) enables the

OST algorithm to carry out near-optimal partial model selection. Fig. 11.3 reports the
results of an experiment concerning partial model-selection performance of the OST
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(a) Plots of the fraction of detections, defined as fD = |S ∩Ŝ|/k, and the fraction of
false alarms, defined as fFA = (|Ŝ| − |S ∩ Ŝ|)/|Ŝ|, versus the model order (averaged
over 200 independent trials) for both SOST and the lasso.

(b) Plots of the amount of time (averaged over 200 independent trials) that it takes
SOST and the lasso to solve one model-selection problem versus the model order.

Figure 11.2: Numerical comparisons between the performance of the SOST algorithm
(Algorithm 9) and the lasso [233] using an Alltop Gabor frame. The M ×N design
matrix Φ has dimensions M = 127 and N = M2, the mar of the signals is 1, the snr
in the measurement system is 10 dB, and the noise variance is σ2 = 10−2.
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Figure 11.3: Partial model-selection performance of the OST algorithm (averaged
over 200 independent trials) corresponding to an Alltop Gabor frame in C997. The
mar of the signals in this experiment is 1, the snr in the measurement system is
3 dB, and the noise variance is σ2 = 10−2.

algorithm in terms of the metrics of fraction of detections, fD
.
= |S∩ bS|

k
, and fraction of

false alarms, fFA
.
= | bS|−|S∩ bS|

| bS| , averaged over 200 independent trials. In this experiment,

the M ×N design matrix Φ corresponds to an Alltop Gabor frame in C997, the noise
variance is σ2 = 10−2, the mar and the snr are chosen to be 1 and 3 dB, respectively,

and the initial threshold is set at λs
.
= max

{
1
t
c′µ
√
M · snr, 1

1−t

√
2
}√

2σ2 logN with

t = (
√

2− 1)/
√

2 and c′ = 2t. It can clearly be seen from Fig. 11.3 that OST success-
fully carries out partial model selection (fFA ≡ 0) even when the threshold is set at
0.6λs.
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Chapter 12

Reed-Muller Based Compressed
Sensing

In the previous chapter, we introduced two fundamental measures of coherence be-
tween the columns of a sensing matrix, and showed that if the matrix satisfies a
coherence property, then a simple One-Step Thresholding algorithm can successfully
recover most k-sparse vectors. In this chapter, we introduce the spectral norm of
the sensing matrix as a measure of coherence between the rows of the matrix, and
show that if a sensing also has sufficiently small spectral norm, then most k-sparse
vectors have unique representations in the measurement domain. This further im-
plies that reconstruction algorithms such as LASSO or OST not only can successfully
recover the supports of most k-sparse vectors, but are also capable of providing close
approximations to those vectors.

The coherence between rows of a sensing matrix is a measure of the new informa-
tion provided by an additional measurement. The spectral norm ‖Φ‖2 measures the
maximal coherence between the rows of the frame. The ideal case is when different
measurements are orthogonal. Then, provided that the matrix also has sufficiently low
worst-case coherence, with high probability a k-sparse vector has a unique sparse rep-
resentation [240], and this representation can be efficiently recovered using a LASSO
program [50].

In this chapter, we consider sensing matrices based on the Z4-linear representation
of Delsarte Goethals codes. The columns are obtained by exponentiating codewords
in the quaternary Delsarte-Goethals code; they are uniformly and very precisely dis-
tributed over the surface of an M -dimensional sphere. Coherence between columns
reduces to properties of these algebraic codes. Section 12.2.1 reviews the construc-
tion of Delsarte-Goethals (DG) sets of Z4-linear quadratic forms which is the starting
point for the construction of the corresponding codes; each quadratic form determines
a codeword where the entries are the values taken by quadratic form. Section 12.2.1
introduces Delsarte-Goethals frames; the columns of these sensing matrices are ob-
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tained by exponentiating DG codewords. We then determine the worst case coher-
ence, average-coherence, and spectral norm for these sensing matrices.

Candès and Plan [50] specified coherence conditions under which a LASSO program
will successfully recover a k-sparse signal when the k non-zero entries are above the
noise variance. Similarly, in Theorems 11.2 to 11.5 we proved similar coherence con-
ditions for successful recovery of the OST algorithm. We use these results to provide
an average case error analysis for stochastic noise in both the data and measurement
domains. The Delsarte Goethals (DG) sensing matrices are essentially tight frames so
that white noise in the data domain maps to white noise in the measurement domain.

Section 12.3 presents the results of numerical experiments that compare DG frames
with random Gaussian matrices of the same size. The SPGL package [244, 243] is used
to implement the LASSO recovery algorithm in all cases. It turns out that the DG
frames have almost identical performance to random matrices in terms of probability
of successful sparse recovery, but in contrast to random matrices, DG frames do not
suffer from storage and computational limitations. These matrices have deterministic
constructions, and matrix-vector multiplications Φv and Φ>u can be done efficiently
using the Fast Hadamard Transform.

We remark that there are alternative fast reconstruction algorithms that exploit the
structure of DG sensing matrices. The Chirp Reconstruction algorithm proposed in
[45, 150, 46] requires only O(kM log2M) operations, independent of the data-domain
dimension N , and is known to work extremely well in the presence of noise as long
as the sparsity level is not too high (See [46] for further discussion of the Chirp
Reconstruction algorithm).

12.1 Sparse Reconstruction using Incoherent Tight-

Frames

In Definition 2.5 of Chapter 2 we showed that an M×N dictionary Φ that satisfies the
condition ΦΦ> = N

M
IM×M is a tight-frame with redundancy N

M
. Also in Section 3.4.2

we saw that the mutual coherence of any M × N dictionary is at least 1√
M

[251].

Designing dictionaries with small spectral norms (tight frames in the ideal case), and

with small coherence
(
µ = O

(
1√
M

)
in the ideal case

)
is useful in compressed sens-

ing for the following reasons.

Uniqueness of Sparse Representation (`0 minimization) The following results
are due to Tropp [240], and Gurevich and Hadani [136]), and show that with over-
whelming probability the `0 minimization program successfully recovers the original
k-sparse signal.

Theorem 12.1 ([239, 136]). Assume the dictionary Φ satisfies µ ≤ c
logN

, where c is
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an absolute constant. Further assume k ≤ cN
‖Φ‖2 logN

. Let S be a random subset of [N ]
of size k, and let ΦS be the corresponding M × k submatrix. Then there exists an
absolute constant c0 such that

Pr

[
∥∥Φ>SΦS − I

∥∥ ≥ c0

(
µ logN + 2

√
‖Φ‖2 k

N

)]
≤ 2N−1.

Theorem 12.2 ([240, 238]). Assume the dictionary Φ satisfies µ ≤ c
logN

, where c is

an absolute constant. Further assume k ≤ cN
‖Φ‖2 logN

. Let α∗ be a k-sparse vector, such
that the support of the k nonzero coefficients of α∗ is selected uniformly at random.
Further assume that conditioned on the support, the values of the k non-zero entries
of α∗ are sampled from a distribution which is absolutely continuous with respect to
the Lebesgue measure on Rk. Then with probability 1 − O (N−1), α∗ is the unique
k-sparse vector mapped to f = Φα∗ by the measurement matrix Φ.

Sparse Recovery via LASSO (`1 minimization) Uniqueness of sparse represen-
tation is of limited utility given that `0 minimization is computationally intractable.
However, given modest restrictions on the class of sparse signals, Candès and Plan [50]
have shown that with overwhelming probability the solution to the `0 minimization
problem coincides with the solution to a convex LASSO program.

Theorem 12.3. Assume the dictionary Φ satisfies µ ≤ c
logN

, where c is an absolute

constant. Further assume k ≤ c1 N
‖Φ‖2 logN

, where c1 is a constant. Let α∗ be a k-sparse
vector, such that

1. The support of the k nonzero coefficients of α∗ is selected uniformly at random.

2. Conditional on the support, the signs of the nonzero entries of α∗ are indepen-
dent and equally likely to be −1 or 1.

Let f = Φα + eM , where eM contains M iid N (0, σ2) Gaussian elements. Then if
‖α∗‖min ≥ 8σ

√
2 logN , with probability 1−O(N−1) the LASSO estimate

α̂
.
= arg min

α∈RN

1

2
‖f −Φα‖2 + 2

√
2 logN σ ‖α‖1

has the same support and sign as α∗, and ‖Φα∗ − Φα̂‖2 ≤ c2 k σ
2, where c2 is a

constant independent of α∗.

Stochastic noise in the data domain. The tight-frame property of the sensing
matrix makes it possible to map iid Gaussian noise in the data domain to iid Gaussian
noise in the measurement domain:

Lemma 12.4. Let eD be a vector with N iid N (0, σ2
D) entries and eM be a vector

with M iid N (0, σ2
M) entries. Let ~ = ΦeD and e = ~ + eM . Then e contains M

entries, sampled iid from N (0, σ2), where σ2 = N
M
σ2
D + σ2

M .
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Proof. The tight frame property implies

E
[
~~>

]
= E[ΦeDeD

>Φ>] = σ2
DΦΦ> =

N

M
σ2
D I.

Therefore, e = ΦeD+eM contains iid Gaussian elements with zero mean and variance
σ2.

Next we construct a family of low-coherence tight frames with optimal coherence
parameters using Delsarte-Goethals codes.

12.2 Construction of the Delsarte-Goethals Frames

12.2.1 Delsarte-Goethals Sets of Binary Symmetric Matrices

The finite field F2m is obtained from the binary field F2 by adjoining a root ξ of a
primitive irreducible polynomial g of degree m. The elements of F2m are polynomials
in ξ of degree at most m−1 with coefficients in F2, and we will identify the polynomial
x0 + x1ξ + · · · + xm−1ξ

m−1 with the binary m-tuple (x0, · · · , xm−1) . The Frobenius
map f : F2m → F2m is defined by f(x) = x2 and the Trace map Tr : F2m → F2 is
defined by

Tr(x)
.
= x+ x2 + · · ·+ x2m−1

.

The identity (x+ y)2 = x2 + y2 implies that Tr(x+ y) = Tr(x) + Tr(y); the trace is a
linear map over the binary field F2. The trace inner product given by (v, w) = Tr(vw)
is non-degenerate; if Tr(vz) = 0 for all z in Fm2 then v = 0. Every element a in
F2m determines a symmetric bilinear form Tr[xya] to which is associated a binary
symmetric matrix P 0(a). That is, P 0(a) is a binary matrix such that for every field
elements x and y

Tr[xya] = (x0 · · ·xm−1)P 0(a)(yo · · · ym−1)>.

The Kerdock set Km is them-dimensional binary vector space formed by the matrices
P 0(a). For example, let m = 3, and assume the finite field F8 is generated by adjoining
a root ξ of the polynomial g(x) = x3 + x+ 1. Then K3 is spanned by

P 0(100) =




1 0 0
0 0 1
0 1 0


 , P 0(010) =




0 0 1
0 1 0
1 0 1


 , and P 0(001) =




0 1 0
1 0 1
0 1 1




Theorem 12.5. Every nonzero matrix in Km is nonsingular.

Proof. If xP 0(a) = 0 then Tr[xya] = 0 for all y ∈ F2m . Now the non-degeneracy of
the trace implies a = 0.
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Next we define higher order bilinear forms, each associated with a binary symmetric
matrix. Given a positive integer t where 0 < t ≤ m−1

2
and given a field element a

Tr
[(
xy2t + x2ty

)
a
]

defines a symmetric bilinear form that is represented by a binary symmetric matrix
P t(a) as above:

Tr
[(
xy2t + x2ty

)
a
]

= (x0 · · ·xm−1)P t(a)(yo · · · ym−1)> (12.2.1)

The Delsarte-Goethals set DG(m, r) is then defined as

DG(m, r)
.
=

{
r∑

t=0

P t(at) | at ∈ F2m , t = 0, 1, · · · , r
}
.

The Delsarte-Goethals sets are nested

Km = DG(m, 0) ⊂ DG(m, 1) ⊂ · · · ⊂ DG

(
m,

m− 1

2

)
,

and every bilinear form is associated with some matrix in DG
(
m, m−1

2

)
.

For example, let m = 3 and g(x) = x3 + x + 1, the set DG(3, 1) is spanned by K3,
and

P 1(100) =




0 0 0
0 0 1
0 1 0


 , P 1(010) =




0 1 0
1 0 0
0 0 0


 , and P 1(001) =




0 1 1
1 0 0
1 0 0


 .

Theorem 12.6. Every nonzero matrix in DG(m, r) has rank at least m− 2r.

Proof. If x is in the null space of
∑r

t=0 P
t(at), then for all y ∈ F2m

Tr

[
xya0 +

r∑

t=1

(
xy2t + x2ty

)
at

]
= 0.

Since Tr(x) = Tr(x2) = · · · = Tr
(
x

1
2

)
we have

Tr

[(
(xa0)2r +

r∑

t=1

(
(xat)

2r−t + a2r

t x
2t+r
))

y2r

]
= 0.

Non-degeneracy of the trace now implies

(xa0)2r +
r∑

t=1

(
(xat)

2r−t + a2r

t x
2t+r
)

= 0.

The LHS is a polynomial of degree at most 22r so there are at most 22r solutions.
Hence the rank of the binary symmetric matrix

∑r
t=0 P

t(at) is at least m− 2r.
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Delsarte-Goethals Frames for Compressed Sensing

In Chapter 11 we introduced two fundamental measures of coherence between the
columns of a tight-frame, and showed how these parameters can be related to the
performance of the LASSO and OST algorithms in model selection and sparse recon-
struction. In this section we construct an explicit sensing matrix (Delsarte-Goethals
frame [45, 47]) with optimal worst-case coherence µ and average coherence ν. We
start by picking an odd number m. The 2m rows of the Delsarte-Goethals frame Φ
are indexed by the binary m-tuples x, and the 2(r+2)m columns are indexed by the
pairs (P, b), where P is an m×m binary symmetric matrix in the Delsarte-Goethals
set DG(m, r), and b is a binary m-tuple. The entry ϕ(P,b),x is given by

ϕ(P,b),x =
1√
M

iwt(dP ) + 2wt(b) ixPx
> + 2bx> (12.2.2)

where dP denotes the main diagonal of P , and wt denotes the Hamming weight
(the number of 1s in the binary vector). Note that all arithmetic in the expressions
xPx> + 2bx> and wt(dP ) + 2wt(b) takes place in the ring of integers modulo 4, since
they appear only as exponents.

The Delsarte-Goethals set DG(m, r), defined in Section 12.2.1, is a binary vector
space containing 2(r+1)m binary symmetric matrices with the property that the binary
sum of any two distinct matrices has rank at least m − 2r (See [140]). The first set

DG(m, 0) is the classical Kerdock set, and the last set DG(m, (m−1)
2

) is the set of all

binary symmetric matrices. Given P and b, the vector xPx> + 2bx> is a codeword
in the Delsarte-Goethals code. The set DG(m, 0) corresponds to Kerdock codes, and
the set DG

(
m, m−1

2

)
corresponds to all codewords of the second-order Reed-Muller

codes. We refer the reader to [41], [43], and [42] for further details.

The rth Delsarte-Goethals frame is determined by DG(m, r) and has M = 2m rows
and N = 2(r+2)m columns. For a fixed matrix P , the 2m columns ϕ(P,b) (b ∈ Fm2 )
form an orthonormal basis ΓP that can also be obtained by postmultiplying the

Walsh-Hadamard basis by the unitary transformation diag
[
ixPx

>
]
.

Throughout the rest of this section let 1 denote the all-one vector. Also let A denote
the unnormalized DG frame, i.e., Φ = 1√

M
A. We use the following lemmas to show

that the Delsarte-Goethals frames are low-coherence tight-frames. First we prove
that the columns of the rth Delsarte-Goethals sensing matrix form a group under
pointwise multiplication.

Lemma 12.7. Let G = G(m, r) be the set of unnormalized columns A(P,b) where

a(P,b),x = iwt(dP ) + 2wt(b) ixPx
> + 2bx> , where x ∈ Fm2

where b ∈ Fm2 and where the binary symmetric matrix P varies over the Delsarte-
Goethals set DG(m, r). Then G is a group of order 2(r+2)m under pointwise multipli-
cation.
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Proof. We have

a(P,b),xa(P ′,b′),x = iwt(dP ) + wt(dP ′) + 2wt(b⊕ b′) ix(P + P ′)x> + 2(b⊕ b′)x>

where ⊕ is used to emphasize addition in Fm2 . Write P +P ′ = (P ⊕P ′) + 2Q (mod 4)
where Q is a binary symmetric matrix. Observe that 2xQx> = 2dQx

>(mod 4), where
the diagonal dQ = dP ∗ dP ′ is a pointwise product of dP and dP ′ .
Thus a[(P,b),x]a[(P ′,b′),x] equals

i([wt(dP )+wt(dP ′ )+2wt(dP ∗dP ′ )]+2wt(b⊕b′⊕dP ∗dP ′ )) ix(P+P ′)x>+2(b⊕b′⊕dP ∗dP ′ )x> , (12.2.3)

which is equal to a[(P⊕P ′,b⊕b′⊕dP ∗dP ′ ),t]. Therefore, G is closed under pointwise multi-
plication, and the possible inner products of columns A(P,b),A(P ′,b′) are exactly the
possible column sums for columnsAQ,b′′ whereQ = P⊕P ′ and b′′ = b⊕b′⊕dP ∗dP ′ .

Next we bound the worst-case coherence of the Delsarte-Goethals frames.

Theorem 12.8. Let Q be a binary symmetric m×m matrix from the DG(m, r) set,

and let b ∈ Fm2 . If S
.
=
∑

x∈Fm2
ixQx

> + 2bx> , then either S = 0, or

S2 = 2m+ 2riv1Qv
>
1 + 2bv>1 , where v1Q = dQ.

Proof. We have

S2 =
∑

x,u∈Fm2

ixQx
> + uQu> + 2b(x+ u)> =

∑

x,u∈Fm2

i(x⊕ u)Q(x⊕ u)> + 2xQu> + 2b(x⊕ u)>

Changing variables to v = x⊕ u and u gives

S2 =
∑

v∈Fm2

ivQv
>+2bv>

∑

u∈Fm2

(−1)(dQ + vQ)u> .

Since the diagonal dQ of a binary symmetric matrix Q is contained in the row space
of Q there exists a solution for the Equation vQ = dQ. Moreover, since Q has rank at
least m−2r, the solutions to the Equation vQ = 0 form a vector space E of dimension
at most 2r, and for all e, f ∈ E

eQe> + fQf> = (e+ f)Q(e+ f)> (mod 4).

Hence

S2 = 2m
∑

e∈E

i(v1 + e)Q(v1 + e)> + 2(v1 + e)b> = 2miv1Qz
>
1 + 2v1b

>∑

e∈E

ieQe
> + 2eb> .
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The map e→ eQe> is a linear map from E to Z2, so the numerator eQe>+ 2eb> also
determines a linear map from E to Z2 (here we identify Z2 and 2Z4). If this linear
map is the zero map then

S2 = 2m+ 2riv1Qv
>
1 + 2bv>1 ,

and if it is not zero then S = 0.

Corollary 12.9. Let Φ be an M × N DG(m, r) frame whose column entries are
defined by (12.2.2). Then µ ≤ 2r√

M
.

Proof. Lemma 12.7 states that the columns of the unnormalized DG frame form a
group under pointwise multiplication. Therefore, the inner product between any two
columns of this matrix equal to the sum of the entries of another column of the matrix.
Consequently, we have

µ = max
i 6=j
|〈Φi,Φj〉| =

1

2m
max
i 6=j
|〈Ai,Aj〉| =

1

2m
max
i 6=1
|〈Ai,1〉| ≤

√
2m+2r

2m
=

2r√
M
.

Next we show that the Delsarte-Goethals frames have significantly smaller average-
coherence. In fact, the Delsarte-Goethals frames achieve the lowest average-coherence
among all known low-coherence tight-frames (see Table 11.1.)

Lemma 12.10. Let Φ be a DG(m, r) frame with M = 2m, and N = M (r+2). Then
ν = 1

N−1
.

Proof. We have

ν
.
= max

i

1

N − 1

∣∣∣∣∣
∑

j 6=i

〈ϕi,ϕj〉
∣∣∣∣∣ =

1

M(N − 1)

∣∣∣∣∣
∑

j 6=i

〈Ai,Aj〉
∣∣∣∣∣ =

1

M(N − 1)

∣∣∣∣∣
∑

i 6=1

〈1,Ai〉
∣∣∣∣∣ .

Now since the columns of A form a group under pointwise multiplication, and since
every row of A has at least one non-identity element, it follows from Lemma 2.17
that every row sum vanishes. Therefore,

∑
i∈[N ] 1

>Ai = 0, and since A1 = 1 we have

1

M(N − 1)

∣∣∣∣∣
∑

i 6=0

〈1,Ai〉
∣∣∣∣∣ =

1

M(N − 1)

∣∣−1>1
∣∣ =

1

N − 1
.

Lemma 12.11. Let Φ be a DG(m, r) frame. Then Φ is a tight-frame with redundancy
N
M

.
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Proof. Let x and x′ be two indices in [M ]. We calculate the inner-product between
the rows indexed by x and x′. It follows from Equation (12.2.2) that the inner-product
can be written as

∑

P,b

ϕ(P,b),xϕ(P,b),x =
1

M

∑

P,b

ixPx
>−x′Px′>+2bx>−2bx′>

=
1

M

(∑

P

ixPx
>−x′Px′>

)(∑

b

(−1)b(x⊕x
′)>

)
.

Therefore, it follows from Lemma 2.17 that if x 6= x′ then the inner-product is zero,
and is N

M
otherwise.

Putting all the above results together we obtain the following theorem regarding the
coherence of the Delsarte-Goethals frames

Theorem 12.12. Let M be an odd integer, and let r be a positive integer not larger
than m−1

2
. Let M = 2m, and N = 2(r+2)m. Let Φ be the M × N DG frame, whose

columns are generated by Equation (12.2.2). Then

1. Φ is a tight-frame with redundancy N
M
.

2. Φ is maximally incoherent. That is µ(Φ) ≤ 2r√
M

, and ν(Φ) = 1
N−1

.

Proof. The tight-frame property follows from Lemma 12.11. Lemma 12.9 bound the
worst-case coherence of Φ, and Lemma 12.10 calculates its average coherence.

Remark 12.13. The explicit structure of the DG frames also provides storage and
computational advantages over random Gaussian and Rademacher matrices. To see
this, observe that each DG frame has the form

Φ =

√
1

M
[D1HB, D2HB, · · · , DMr+1HB] , (12.2.4)

where B is a diagonal vector with entries
[
(−1)wt(b)

]
b∈Fm2

, H is the unnormalized

Hadamard matrix, and each [Dj ]
Mr+1

j=1 is the diagonal matrix diag
[
iwt(Pj)+xPjx

>
]
Pj∈DG(m,r)

.

As a result, matrix-vector multiplications Φv and Φ>u only require O(N logM) run-
ning time via the Fast Hadamard Transform.

12.2.2 Real-Valued Delsarte-Goethals Frames

In certain cases, we desire a CS matrix with real-valued entries; there are two possible
approaches to adapt the DG frames to a real-valued CS matrix.
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First, one can restrict the binary symmetric matrices P to the subset of the DG set
of matrices with zero-valued diagonal entries. With such a restriction, the term

xPx> = 2
∑

0≤i<j<2m

xixjPij

is an even number, rendering the entries of Φ real-valued. However, since only zero-
diagonal binary symmetric matrices are used, a zero-diagonal subset of the DG(m, r+
1) set is required in order to obtain N = M r+1 columns. As a result, Corollary 12.9
implies that the worst-case coherence of the new real-valued sensing matrix is by a
factor of

√
2 larger than the worst-case coherence of the complex DG frame.

Alternatively, one can create a CS matrix having twice as many rows as the DG frame
by applying the Gray map

g :





1→ (1, 1)
ı→ (1,−1)
−1→ (−1,−1)
−ı→ (−1, 1)





to the entries of the complex DG frame.

The Gray map has the property that the norm of the difference between any two
powers of ı is equal to the norm of the difference of their Gray map image vectors.
The new Gray-mapped CS matrix, which we denote by ΦG has M = 2m+1 rows and
N = 2(r+2)m columns. The rows of the matrix are indexed by x ∈ Fm+1

2 , and its
columns are indexed by pairs (G, b), where G is an skew-symmetric matrix, i.e. it has
zero diagonals. The entry at row x and column (G, b) of the real-valued DG frame
ΦG is therefore

ϕG(P,b),x =
1√
M

i2wt(b) ixGx
> + 2bx> , (12.2.5)

Calderbank et. al. [140] showed that the correspondence between binary symmetric
matrices P in the complex-valued DG frames, and binary skew symmetric matrices
G, in the real-valued DG frames is given by

G =

[
0 dP
d>P d>PdP + P

]
.

This mapping between M ×M binary symmetric matrices P , and (m+ 1)× (m+ 1)
binary skew-symmetric matrices G allows us to prove that real-valued DG frames are
incoherent tight-frames.

Theorem 12.14. Let m be an odd integer, and let r be a positive integer not larger
than m−1

2
. Let M = 2m+1, and N = 2(r+2)m. Let Φ be the M × N real-valued DG
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frame, whose columns are generated by Equation (12.2.5) (or equivalently by applying
the Gray map to Equation (12.2.2)). Then Φ is a tight-frame with redundancy N

M
,

and µ(Φ) ≤ 2r√
M

.

Proof. The tight-frame property follows from the fact that the real-valued DG frames
are unions of orthonormal bases. More precisely, the inner product between any two
distinct rows x and y can be written as

1

M

∑

G,b

ixGx
> + 2bx> − yGy> − 2by> (12.2.6)

=
1

M

(∑

G

ixGx
> − yGy>

)(∑

b

(−1)b(x⊕ y)>
)
,

now since b ranges over all field elements, the inner sum is equal to zero unless x = y.
On the other hand, if x = y, then

1

M

∑

G,b

ixGx
> + 2bx> − yGy> − 2by> =

N

M
.

Moreover, it follows from the distance preserving property of the Gray map [41, 42],
and Corollary 12.9, that the inner product between any two distinct columns of a
real-valued DG frame is at most 2r√

M
.

Remark 12.15. Note that even though the Gray map duplicates the number of re-
quired measurements, it also decreases the worst case coherence and the spectral norm
of the matrix by a factor 1√

2
. In other words, a complexed DG(m, r) frame has

MC = 2m rows, NC = 2(r+2)m columns, worst-case coherence µC = 1

2
m
2 −r

, and spec-

tral norm ‖ΦC‖ =
√

2(m+1)r, whereas a real-valued DG(m, r) frame has MR = 2m+1

rows, NR = 2(r+2)m columns, worst-case coherence µR = 1

2
m+1

2 −r
, and spectral norm

‖ΦR‖ =
√

2(m+1)r−1.

12.3 Efficient Compressed Sensing via the Delsarte-

Goethals Frames

So far we have proved that Delsarte-Goethals frames are tight-frames with optimal
coherence values. On the other hand, in Chapter 11 we proved that the coherence
property of Definition 11.1 is a sufficient condition for the fidelity of the OST algo-
rithm (Algorithm 8). Later on, we also showed that if a sensing matrix has sufficiently
small worst-case coherence and spectral norm, then most k-sparse vectors have unique
low-dimensional representations (Theorem 12.2), and the LASSO algorithm can suc-
cessfully recover a close approximation to them (Theorem 12.3). Now we combine the
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Figure 12.1: Probability of exact signal recovery as a function of the sparsity level k,
and the data domain dimension N using a DG(9, 0) frame.
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low-coherence results of Theorem 12.12 and provide sparse approximation guarantees
for LASSO and OST algorithms combined with the Delsarte-Goethals frames.

Theorem 12.16. Let m be an odd number, and let r be an integer less than m−1
2

.
Let Φ be an M ×N DG frame. Assume

k ≤ κ1M

22r logN
,

where κ1 is an absolute constant. Let α∗ be a k-sparse vector, such that

1. The support of the k nonzero coefficients of α∗ is selected uniformly at random.

2. Conditional on the support, the signs of the nonzero entries of α∗ are indepen-
dent and equally likely to be −1 or 1.

3. The distribution of the k non-zero entries of α∗ is absolutely continuous with
respect to the Lebesgue measure on Rk

Let f = Φα∗ + ΦeD + eM , where eMD is the data-domain noise, containing N
iid N (0, σ2

D) Gaussian elements, and eM is the measurement-domain noise, con-

tain M iid N (0, σ2
M) Gaussian elements. Let σ =

√
N
M
σ2
D + σ2

M . Then if ‖α‖min ≥
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Figure 12.2: Average reconstruction error as a function of the data domain noise (σd),
and the measurement domain noise (σm) using a DG(9, 0) frame.
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2 logN , with probability 1−O(N−1) the LASSO estimate

α̂
.
= arg min

α∈RN

1

2
‖f −Φα‖2 + 2

√
2 logN σ ‖α‖1

has the same support and sign as α, and ‖α∗ − α̂‖2 ≤ κ2 k σ
2, where κ2 is a constants

independent of α∗.

Proof. First, note that without loss of generality we can assume that the measurement
noise is e

.
= ΦeD +eM . It follows from Lemma 12.4 that Then e contains M entries,

sampled iid from N (0, σ2). Now Theorem 12.3 guarantees that with probability
1 − O(N−1) the LASSO estimate α̂ has the same support as α∗, and moreover
‖Φα∗ − Φα̂‖2 ≤ c2 k σ

2. Finally, since both α̂ and α∗ are supported on the same
random k-subset of [N ], Theorem 12.1 guarantees that with probability not exceeding
2
N

, ‖α∗ − α̂‖2 ≤ 2‖Φα∗ −Φα̂‖2, which completes the proof.

Theorem 12.17. Let m be an odd number, and let r be an integer less than m−1
2

. Let
Φ be an M ×N DG frame. Suppose eD be the data-domain noise vector containing
N iid N (0, σ2

D) elements, eM is the measurement-domain noise vector containing M

iid N (0, σ2
M) Gaussian elements, and let σ =

√
N
M
σ2
D + σ2

M . Then with probability at

least 1−O(N−1), the SOST algorithm (Algorithm 9) successfully recovers the support
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Figure 12.3: The impact of the noise in the measurement domain on the sparse
approximation error ‖α∗− α̂‖2/‖α∗‖2 of the LASSO algorithm with real-valued DG
frames (triangle), and random Gaussian matrices (square). Here the noise standard
deviation ranges from 10−6 to 10−1, and used k = 200, M = 1024, and N = 3072.

of α∗, as long as we have that k ≤M/(2 logN) and

mar > max

{
c2k logN

M · snr
,
c′322rk logN

M

}
. (12.3.1)

Here, c2 and c′3 are absolute constants, and the probability of failure is with respect to
the true model S and the noise vectors eM and eD.

Proof. Since, Φ is a tight-frame with redundancy N
M

, it follows from Lemma 12.4 that
Then e contains M entries, sampled iid from N (0, σ2). The proof of Theorem 11.4
then follows directly, from Theorem 11.3 by setting µ = 2r√

M
.

Here we present numerical experiments to evaluate the performance of the LASSO
program with DG frames. Here we used a complex-valued DG frame, with m = 9,
and r = 0. We fixed the number of measurements to M = 512 and swept across
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Figure 12.4: Probability of exact support recovery as a function of the sparsity level
k. Here we set M = 212, N = 232 and used a real-valued DG frame. The OST
algorithm is used for support recovery. Note that the OST algorithm requires less
than a minute to terminate, whereas most recovery algorithms designed for random
(or even expander-based) compressed sensing do not converge in a reasonable time.

the sparsity level k, and the data dimension N1. For each (k,N)-pair, we repeated
the following 100-times: (i) generate a random sparse vector with unit norm (ii)
generate compressive measurements (no noise) using the DG frame, and (iii) recover
the signals using LASSO. Figure 12.1 reports the probability of exact recovery over
the 100 trials.

We also performed a similar experiment in the noisy regime. Here we independently
changed the standard deviations of the data-domain noise (σd) and the measurement
noise (σm) from 10−6 to 10−1. We then used the LASSO program to obtain a sparse
approximation α̂ to the k-sparse vector α. Figure 12.2 plots the average reconstruc-
tion error (−10 log10(‖α̂−α‖2)) as a function of σM and σD.

Figure 12.3 plots the sparse approximation error as a function of the noise in the
measurement domain. In the measurement noise study, a N (0, σ2

M) iid measurement
noise vector is added to the sensed vector to obtain the M dimensional vector f . The
original k-sparse signal α∗ is then approximated by solving the LASSO program with
λ = 2

√
2 logNσM . Figure 12.3 and many similar experiments show that real-valued

DG frames and random Gaussian matrices of the same size have almost identical per-
formance in terms of noisy signal recovery using the LASSO. However, in contrast to
random Gaussian matrices, DG frames do not suffer from storage and computational
limitations.

1To vary N , we selected the first N columns of a DG(9, 0) frame (which is still an incoherent
tight-frame as long as N

M is an integer).
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Finally, consider a wireless network, in which each user is identified by a unique 32 bit
MAC address. Let Φ be a 212 × 232 sensing matrix obtained from selecting the first
232 columns of a real-valued Delsarte-Goethals frame, based on a DG(11, 1) set. Here
each user is assigned to one column of Φ. At the transmission time, each active user
i, simply submits the 212 dimensional column ϕi. Therefore, the receiver receives a
superposition of the columns of all active users. However, at each time period, there
are only very few k � 232 users that are active. The receiver can exploit this prior
sparsity knowledge, and recover the active users. However, the number of active users
is not known a priori to the receiver, and therefore the receiver must use a model-order
agnostic recovery algorithm.

In Figure 12.4 we used the OST algorithm for support recovery of sparse vectors. Here
we set N = 232, M = 212, and used the first 232 columns of a real-valued DG(11, 1)
frame. Note that here the data dimension N is too large for convex optimization
methods (or even most greedy methods) to converge in a reasonable time. Even
expander-based methods have difficulties in this situation. Nevertheless, the OST
algorithm only requires one matrix-vector multiplication using the Fast Hadamard
Transform. In our implementation, this matrix-vector multiplication took less than
one minute. The running time of the OST algorithm can be significantly reduced by
parallelizing the algorithm.

In this experiment, the sparsity level k was changed from 16 to 32. The sparse
vector was generated by selecting a random k-subset of the 232 columns. To avoid
the random-sign effect, the k non-zero entries of α∗ all had value one. We repeated
each experiment 100 times independently, and recorded the average probability of
exact recovery as a function of the sparsity level k. As illustrated in Figure 12.4, the
algorithm can recover almost all k-sparse vectors efficiently as long as k is smaller
than 25.
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Part V

Model-based Compressed Sensing
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Chapter 13

Fast Model-based Thresholding
with Nesterov’s Gradient Method

13.1 What is Model-based Compressed Sensing

In Section 3.1 we introduced the main objectives of compressed sensing as

• Designing an efficient M ×N sensing matrix Φ, and

• Designing an efficient and robust reconstruction algorithm

We then proposed expander-based and Reed-Muller-based matrices as two families
of deterministic and efficient sensing matrices. We also looked at the general prob-
lems of sparse approximation and model selection, and introduced the GAME and
OST algorithms as examples of two efficient sparse recovery algorithms, with sparse
approximation and model-selection guarantees. We further showed that in many
practical situations our proposed matrices and recovery algorithms have similar or
even better performance compared to the random sensing framework. Moreover the
structures of our deterministic matrices provide several storage and computational
advantages.

While such measurement rates and recovery complexities are impressive and have
the potential to impact a broad set of compressive sensing applications, sparsity is
merely a first-order description of signal structure; in many applications we have
considerably more a priori information on the sparse coefficients of the state-of-the-
art approaches are only recently beginning to exploit [19]. For instance, in group
testing of defective elements among a collection of N items, the defective elements
typically cluster across known blocks of items. In data streaming computing, large
elements of α∗ often have a minimum distance between each other, and have positive
values. In compressive imaging, the sparse coefficients of the signal cluster across the
branches of tree structures, such as natural images and wavelet trees [77, 81].
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In this chapter, we will show that by exploiting a priori information on coefficient
structure in addition to signal sparsity, we can make the sparse linear sketching ap-
proaches to dimensionality reduction more powerful. As an indicator of what can be
achieved, recent work [19, 67] leverages such structured sparsity in CS with random
dense matrices to reduce, in some cases significantly, the number of measurements
M required to stably recover a signal by permitting only certain configurations of
the large and zero/small coefficients via dependencies on the support of the sparse
coefficients–the set of indices corresponding to the nonzero entries. During signal re-
covery, structured sparsity also enables the recovery algorithms to better differentiate
true signal information from recovery artifacts, leading to a more robust recovery.

We will derive an algorithmic framework for structured sparse recovery, which unifies
combinatorial optimization with the non-smooth convex optimization framework by
Nesterov [204, 203]. The algorithm proposed in this chapter can be viewed as a
generalization of the OST algorithm derived in Section 11.2. In our approach, we
optimally use the gradient information in the convex data error objective to navigate
over the non-convex set of structured sparse signals. By optimal, we mean that our
algorithms match the known convergence bounds for gradient methods for convex
optimization problems [202].

Efficient combinatorial optimization is the key ingredient in this loop to calculate the
best projection of a given vector onto the non-convex sparse signal set. Our combi-
natorial approach with expander-based and Reed-Muller-based matrices achieves the
geometric, optimization-based limits for random dense matrices [98] at a fraction of
their computational cost.

13.2 Problem Formulation

Model-based compressed sensing is the topic of efficient sparse recovery when some
extra prior knowledge is available about the sparse vector α∗. Throughout this chap-
ter, we identify any extra prior knowledge about the sparse vector α∗ by a modelM.
We also use the notation ΣM(k) to denote the set of all k-sparse vectors in that model
M.

Let Φ be an arbitrary M ×N matrix, and let f be an M dimensional vector. In the
model-based sparse-approximation in `2 norm, we focus on the following non-convex
optimization problem.

minimizeR(α) s.t. α ∈ ΣM(k) (13.2.1)

where the loss function R(α) : ΣM(k) → R+ is defined as the squared `2 loss

R(α)
.
= ‖f −Φα‖2

2. (13.2.2)
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Here ΣM(k) is any k-dimensional restricted union-of-subspace (RUS) model with a
tractable approximation algorithmM that can calculate the projection of any v ∈ RN

into ΣM(k):
Mk(v) = arg min

α∈ΣM(k)

‖v −α‖2. (13.2.3)

Tractable RUS models include but are not limited to (i) k-sparse signals (Σk), (ii)
(k, b)-sparse signals where k-sparse coefficients live in at most b unknown contiguous
blocks on a chain graph, (iii) k-tree sparse where k-sparse coefficients lie on a rooted
connected subtree of an N -dimensional tree, and (iv) (k,∆)-sparse signals where
k-sparse coefficients are separated by at least ∆ zeros on a chain graph. For Σk,
Mk is simple hard thresholding based on sorting the signal coefficients in terms of
decreasing magnitude and keeping the largest k while setting the others to zero.
For other models, efficient combinatorial and mixed integer model approximation
algorithms exist [20].

In the rest of this chapter we propose an efficient algorithm for efficiently solving
Equation (13.2.1). In Section 13.3, we set up key properties of objective function
that the later sections build upon. Section 13.4 provides the proposed NIHT algo-
rithms, and Section 13.5 illustrates the compressive sensing performance of NIHT,
and compares it with the `1 minimization algorithms.

13.3 Bregman Proxies for Model-Based Sparse Ap-

proximation

The model-based sparse approximation problem is not only ill-posed (since the matrix
Φ has a nontrivial kernel), but is also known to be NP -hard [197]. In other words,
there is no hope of being able to find an exact solution for Equation (13.2.1) in general.
However, in Chapter 6.1 we proposed efficient algorithms for approximately solving
the problem of sparse approximation in the `q norm. Here we use similar ideas and
show that even though the model-based sparse approximation is NP -had, it is still
possible to propose efficient algorithms for approximately solving it.

Similar to Chapter 6.1, we start by defining a proper Bregman function (see Sec-
tion 7.1 for definitions). We use the loss function R(α)

.
= ‖f−Φα‖2

2 as the Bregman
function. The following lemma relates that the Bregman distance between any two
points α,α′ ∈ ΣM(k) to their Euclidean distance in the measurement domain.

Lemma 13.1. Let Φ be an M×N matrix, and f be an M dimensional vector. Define
the Bregman function R(α) : ΣM(k) → R+ as

R(α)
.
= ‖f −Φα‖2

2.

Then the Bregman distance between any two model-sparse vectors α,α′ ∈ ΣM(k) is

BR(α,α′) = ‖Φ(α−α′)‖2
2.
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Proof. The proof of Lemma 13.1 relies on some obvious algebraic manipulation. From
the definition of the Bregman distance (Definition 7.1) we have

BR(α,α′) = R(α)−R(α′)− 〈(α−α′),∇R(α′)〉
= ‖f −Φα‖2

2 − ‖f −Φα′‖2
2 + 2〈(α−α′),Φ>(f −Φα′)〉

= ‖Φα‖2
2 − ‖Φα′‖2

2 − 2〈f ,Φ(α−α′)〉+ 2〈(f −Φα′),Φ(α−α′)〉
= 〈Φ(α+α′),Φ(α−α′)〉 − 2〈Φα′,Φ(α−α′)〉 = ‖Φ(α−α′)‖2

2.

Throughout the rest of this chapter let L2k denote the restricted Lipschitz constant
of Φ:

‖Φ(α−α′)‖2
2 ≤ L2k‖α−α′‖2

2,

for everyα,α′ ∈ ΣM(k). Observe that from Lemma 13.1 we have BR(α,α′) ≤ L2k‖α−
α′‖2

2; therefore if we define,

U(α,α′)
.
= f(α′) + 〈(α−α′),∇f(α′)〉 − L2k‖α−α′‖2

2,

then for every α′ ∈ ΣM(k) we have

min
α∈ΣM(k)

f(α) ≤ min
α∈ΣM(k)

U(α,α′).

In the next section we propose an iterative approximation algorithm that iteratively
selects a proper value α′t through the Nesterov scheme [204], and then solves the
corresponding optimization problem

minimizeα∈ΣM(k)
U(α,α′t),

as a proxy for minimizing the loss functionf(α).

13.4 Algebraic pursuits and the NIHT algorithm

In [68], Cevher proposes two algorithms, called Algebraic Pursuits (ALPS), that
fuse Nesterov’s optimal gradient methods with combinatorial model-based projec-
tion algorithms for sparse approximation. For instance, the fast Lipschitz iterative
hard thresholding (FLIHT) scheme of ALPS has the following recursion (at+1 =
0.5
(
1 +
√

1 + 4at2
)
, a1 = 1, and θt = at−1

at+1
):

αt+1 .
= ×Mk

(
yt − 1

L3K

∇f(yt)

)
, yt+1 .

= αt + θi(α
t −αt−1). (13.4.1)

Here we propose a third algebraic pursuit algorithm, called NIHT for Nesterov Iter-
ative Hard Thresholding. The algorithm is based upon Nesterov’s proximal gradient
method [204]. The pseudocode of the NIHT algorithm is summarized as Algorithm 10.
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Algorithm 10 NIHT Algorithm for Model-Based Sparse Approximation in `2-norm.

Inputs: M -dimensional vector f , M ×N matrix Φ, and number of iterations T
Output: N -dimensional vector α̂

0. Set α0 .
= 0N and x0 .

= 0N .
for t = 1, . . . , T do

1. Set xt
.
= xt−1 + 2(t+1)

L2k
Φ>(f −Φαt−1).

2. Set yt
.
= αt−1 + 2

L2k
Φ>(f −Φαt−1).

3. Set αt
.
=Mk (τtx

t + (1− τt)yt) . where τt
.
= 2

t+3
.

end for
6. Output α̂

.
= αT .

The proposed NIHT algorithm is a first-order gradient projection algorithm. By
first-order, we mean that at each iteration, the algorithm only requires one gradient
calculation and a k-sparse model approximation. If an expander-based or a Reed-
Muller-based sensing matrix is used, the matrix-vector multiplication can be calcu-
lated efficiently in time O (N logN). Therefore, in contrast to convex-programming
algorithms, NIHT is scalable and can handle much larger data dimensions.

Nevertheless, although the exact behavior of the NIHT algorithm is known in some
special cases [68], deriving sharp estimation guarantees for the performance of the
NIHT algorithm is still an interesting open problem. However, in the next sec-
tion we provide several practical comparisons between the NIHT algorithm and `1-
minimization methods in the compressive sensing to demonstrate its superiority.

13.5 Experimental Results

13.5.1 Phase Transition

Donoho and Tanner’s combinatorial geometry based theory precisely quantifies the
fundamental `1-sparsity and compression trade-off (k vs. M) that NIHT is compet-
ing with. The theory predicts the exact location in sparsity-undersampling domain
where state-of-the-art algorithms exhibit phase transitions in their performance. The
theory states that CS algorithms should be able to recover k-sparse signals from
M & 2k log

(
N
M

)
measurements; this threshold appears quite sharp for Gaussian par-

tial Fourier, and expander-based measurement matrix ensembles [98, 29].

To see how NIHT compares to the `1 theoretical phase transitions, we performed
Monte Carlo simulations amounting to a month of CPU time. We fixed the signal
dimension to N = 1000 and sweep across k and M values (120 and 200 sample points,
respectively). For each (k,M)-pair, we repeated the following 100 times: (i) generated
a random sparse vector with unit norm, (ii) generated compressive measurements (no
noise) using Gaussian, Fourier, and expander graph sampling matrices (incomplete),
and (iii) recovered the signals using Basis Pursuit (BP), FLIHT, and NIHT. Both
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Figure 13.1: Phase transition curves FLIHT (top row) and NIHT (bottom row) are
compared to Donoho-Tanner bound (dashed). Corresponding failure percentages are
shown.

FLIHT and NIHT algorithms use the same number of iterations 1000. We then
reported the number of recoveries that obtain this accuracy or better.

Figure 13.1 summarizes the results for Gaussian and partial Fourier matrices. The
results are quite promising for NIHT. For comparison, we also provide the `1-magic
basis pursuit results (the interior point method where the Newton system is solved
with conjugate gradients) [52], which match the Donoho-Tanner phase transition
curve (c.f., within NIHT/Gaussian). Compared to `1-magic, NIHT increases the
number of sparse coefficients that can be recovered from the same measurements
approximately by 25%. FLIHT performs on par with `1-magic. Both FLIHT and
NIHT algorithms achieve this performance at the fraction of `1-magic’s computational
cost. Figure 13.2 shows the results of the same experiment with 8-regular expander
graphs.
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Figure 13.2: Phase transition curves of expander-based FLIHT (a) and NIHT (b)
algorithms in expander-based compressed sensing. Here we fixed N = 1000, and
d = 8. Corresponding failure percentages are shown.

13.5.2 Empirical Noise Robustness

Figure 13.3 illustrates the impact of the measurement noise on the sparse approxi-
mation error of the NIHT algorithm and the Basis Pursuit Denoising algorithm of
Theorem 3.7. Here we set M = 1024, N = 3072, and k = 100. The measurement
noise elements are sampled iid from a N (0, σ2) Gaussian distribution. In this experi-
ment we ranged σ from 10−6 to 10−1. Each experiment is repeated independently 100
times in the following way. We first generated a 1024 × 3072 real-valued DG frame,
and a random Gaussian matrix of the same size. We then generated a k-sparse vectors
with random support, random sign, and unit `2 norm. The SPGL package is used for
solving the Basis Pursuit Denoising problem [244, 243], and the reconstruction error
is measured as ‖α̂−α∗‖2.

Figure 13.3 compares the mean `2 approximation error of the four (matrix,algorithms)
pairs as a function of the measurement noise. It turns out that NIHT outperforms
Basis Pursuit Denoising in high SNR regimes, whereas Basis Pursuit Denoising is
the winner when the noise level is too high. Moreover, there is almost no difference
between the performance of a real-valued DG frame, and a Gaussian matrix of the
same size.
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Figure 13.3: Noise tolerance of NIHT, and Basis Pursuit Denoising algorithms are
illustrated for k = 300, M = 1024, and N = 3072. Note that there is almost
no difference between the performance of a real-valued DG frame, and a random
Gaussian matrix of the same size.

13.5.3 Model-based Recovery

All-positive Model

Figure 13.4 show the phase transition of NIHT with positive k-sparse signals, using
Gaussian, partial Fourier, and expander-based sensing matrices. We set N = 1000,
and each experiment was repeated independently 100 times. The `1-magic results
are also provided for comparison. At the end of each iteration, the algorithm only
maintains the k largest positive entries of the recovered vector. Observe that the
prior positivity information, i.e. knowing that the k-sparse signal has positive values
a priori, significantly increases the performance of the NIHT algorithm.

Block Sparsity Model

In this experiment, we considered a specific nested RUS model: block sparsity. In a
block-sparse signal, the locations of the sparse coefficients cluster in blocks under a
specific sorting order. Block-sparse signals have been previously studied in several
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(a) Gaussian (b) Partial Fourier.

(c) Expander.

Figure 13.4: Phase transition curve of the NIHT algorithm with positive sparse sig-
nals is compared to Donoho-Tanner bound (dashed). Not that the prior positivity
knowledge significantly improves the reconstruction accuracy.
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Figure 13.5: The impact of block-sparsity on the performance of the NIHT algorithm
is significant. Exploiting the block structure in addition to signal sparsity, NIHT
decreases the number of measurements significantly.

different applications, including DNA microarrays and magnetoencephalography. An
equivalent problem arises in signal ensembles, such as array signal processing and
MIMO communication [20]. It has been shown that the block-sparse structure en-
ables signal recovery from a reduced number of CS measurements when the recovery
algorithms exploit this specific structure [20, 19].

The block sparse model approximation is quite simple: if a sparse coefficient is se-
lected within the predefined block of size b, all the coefficients must be turned within
the same block. Hence, block sparse approximation is–in a way–equivalent to un-
structured sparse approximation: instead of picking the top k-coefficients by their
energy, we pick the top k/b blocks by summing up their `2-energy. For simplicity, we
consider uniform block sizes of powers of 2 on the signal vector; hence, the signal
sparsity is also restricted to be a power of 2.

Figure 13.5 investigates the advantage of incorporating the block-sparsity informa-
tion on the probability of exact recovery for N = 1024 and k = 256. We vary the
block sparsity level as b = (2, 4, . . . , 128, 256) and also the number of expander-based
measurements from M = 256 to 1024. Figure 13.5(a) plots the probability of suc-
cessful recovery while using the NIHT algorithm, whereas Figure 13.5(b) plots the
probability of success of the NIHT algorithm with the block-sparsity projection. We
observe that the block-sparsity model significantly reduces the minimum number of
measurements required for exact recovery.
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13.5.4 Compressive Imaging

In our first experiment, we compared the performance of the NIHT and Basis Pursuit
algorithms on recovering the 128 × 128 phantom image. Here N = 1282. We used
M = 0.33 × N expander-based measurements using an expander-graph with left
degree d = 8. We also set the number of iterations of the NIHT algorithm to 2000
with sparsity level k = 0.5 ×M . For sparsity basis, we chose the db2 Daubechies
wavelets basis, and use the SPGL package [244, 243] for solving the Basis Pursuit
optimization.

Figure 13.6 compares the NIHT algorithm with the Basis Pursuit method. Since
the Lipschitz constant for this problem is not available, we chose a large constant
and ran the algorithm for 2000 iterations. The reconstruction SNR is measured as

SNR
.
= −10 log10

(
‖α̂−α∗‖2
‖α∗‖2

)
, where α∗ is the wavelet coefficient vector and α̂ is the

output of the algorithm. As illustrated in Figure 13.6, the NIHT algorithm dominates
the Basis Pursuit algorithm in terms of the reconstruction accuracy.

We also used a real image of size 1024 × 1024 and generated compressive samples
using a scrambled partial Fourier sensing matrix with M = 0.33 × N . For sparsity
basis, we picked Daubechies db8 wavelets and judiciously chose k = 0.15 × N for
sparse recovery. To recover the target image, we then ran NIIHT for 2000 iterations.
Figure 13.7 illustrates the reconstructed image, as well as the difference between the
reconstruction image and the true image. Here the NIHT algorithm has recovery
SNR 19.81, on par with the Basis Pursuit reconstruction SNR.

(a) Original 128 × 128 phan-
tom image.

(b) BP: (SNR: 12.86dB. (c) NIHT: (SNR: 15.05dB.

Figure 13.6: Recovery of the 128×128 phantom image using the NIHT and the Basis
Pursuit algorithms. The reconstruction SNR of the NIHT algorithm is about 2dB
higher than that of the Basis Pursuit algorithm.
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(a) NIHT (SNR: 19.81dB).

Figure 13.7: Compressive imaging with NIHT algorithm.
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Chapter 14

Conclusion

In this thesis, we provided two deterministic alternatives to the classical random
sensing framework. The first alternative was constructed from the adjacencies of
vertex expander graphs, and the second alternative was constructed from the Delsarte-
Goethals codes. It has been known for a long time that both (explicit) expander
graphs, and error-correcting codes, are extremely powerful pseudo-random objects.
This pseudo-randomness was our first motivation for suggesting the deterministic
sensing frameworks of this thesis.

Nevertheless, in contrast to truly random matrices, one can prove that neither the
expander based nor the Delsarte-Goethals based sensing matrices satisfy the Re-
stricted Isometry Property. Whereas almost every result in the classical random
sensing framework relies on the RIP. Therefore, this makes the use of our suggested
deterministic frameworks unintuitive. Hence, in order to show the strength of our
deterministic sensing frameworks, we introduced verifiable conditions that are satis-
fied by our deterministic matrices, and are sufficient to guarantee successful sparse
recovery. We also showed that by exploiting the structure of our design matrices, one
can propose efficient reconstruction algorithms with similar, or in cases even better,
performance than the `1 reconstruction methods.

The expander based compressive sensing framework provides efficiency in storage,
computation, explicit construction, and resilience against Poisson noise. If the noise
level is not too high, reconstruction is possible via a simple message-passing algo-
rithm which requires at most 2k simple messages. If the noise level is high, stable
reconstruction is possible using an iterative algorithm that is obtained from a game
theoretic interpretation of the expander based sparse reconstruction problem.

The Delsarte-Goethals based compressed sensing framework relies on the coherence
between the rows and the columns of the matrix. In this thesis we showed that these
coherence properties are sufficient to guarantee successful model-selection and sparse
approximation in the average-case compressed sensing framework. The Delsarte-
Goethals frames have optimal coherence values, and therefore provide optimal average-
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case model selection guarantees. The average-case CS is a reasonable model for ap-
plications such as multi-user detection. Our experiments suggested that in the DG
sensing framework, it is possible to detect 25 active users from the set of all 232 (32-
bit) users by taking only 212 measurements. Moreover, the reconstruction takes less
than one minute. In contrast, it takes several weeks to recover the same active users
in the random sensing framework.

One interesting future direction is to apply the deterministic compressed sensing
framework to new applications. In applications such as speech or video recognition, or
quantum computing, the sensing matrix is often provided to us by the nature. In those
cases the matrix hardly satisfied the Restricted Isometry Property. However, there is a
much higher chance that the matrix satisfies (some version of) the coherence property
required in the deterministic sensing framework. Adopting the sparse reconstruction
algorithms of this thesis to those applications is a challenging, and also extremely
interesting, future plan.

171



Bibliography

[1] J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In the 21st Annual Conference on
Learning Theory (COLT), pages 263–274, 2008.

[2] V. Aggarwal, L. Applebaum, A. Bennatan, A. R. Calderbank, S. D. Howard,
and S. J. Searle. Enhanced CDMA communications using compressed-sensing
reconstruction methods. In Proceedings of the 47th Annual Allerton Conference
on Communication, Control, and Computing, pages 1211–1215, 2009.

[3] H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723, 1974.

[4] M. Akcakaya, J. Park, and V. Tarokh. Compressive sensing using low density
frames, 2011. available at http://arxiv.org/abs/0903.0650.

[5] M. Akcakaya and V. Tarokh. A frame construction and a universal distortion
bound for sparse representations. IEEE Transactions on Signal Processing,
56(6):2443–2450, 2008.

[6] W. Alltop. Complex sequences with low periodic correlations. IEEE Transac-
tions on Information Theory, 26(3):350–354, 1980.

[7] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of al-
most k-wise independent random variables. Random Structures and Algorithms,
3(3):289–303, 1992.

[8] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating
the Frequency Moments. Journal of Computer and System Sciences, 58(1):137–
147, 1999.

[9] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, New
York, 1992.

[10] L. Applebaum, W.U. Bajwa, M.F. Duarte, and A. R. Calderbank. Multiuser
detection in asynchronous onoff random access channels using LASSO. In Pro-
ceedings of the 48th Annual Allerton Conference on Communication, Control,
and Computing, pages 130–137, 2010.

172



[11] L. Applebaum, S. D. Howard, S. J. Searle, and A. R. Calderbank. Chirp sens-
ing codes: Deterministic compressed sensing measurements for fast recovery.
Applied and Computational Harmonic Analysis, 26(2):283–290, 2009.

[12] K. Azuma. Weighted sums of certain dependent random variables. Tohuoku
Mathematical Journal, 19:357–367, 1967.

[13] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff. Lower bounds for sparse
recovery. In Symposium on Discrete Algorithms (SODA), pages 1190–1197,
2010.

[14] W. Bajwa, R. Calderbank, and S. Jafarpour. Model selection: Two fundamental
measures of coherence and their algorithmic significance. In proceedings of the
International Symposium on Information Theory (ISIT), 2010.

[15] W. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured
compressed sensing matrices. In Proceedings of the 14th IEEE/SP Workshop
on Statistical Signal Processing (SSP), 2007.

[16] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Revisiting model selection and
recovery of sparse signals using one-step thresholding. In Proceedings of the
47th Annual Allerton Conference on Communication, Control, and Computing,
2010.

[17] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Why Gabor frames? Two
fundamental measures of coherence and their role in model selection. Journal
of Communications and Networks, 12(4):289–307, 2010.

[18] W. U. Bajwa, A. M. Sayeed, and R. Nowak. Learning sparse doubly selective
channels. In Proceedings of the 45th Annual Allerton Conference on Commu-
nication, Control, and Computing, pages 575–582, 2008.

[19] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based com-
pressive sensing. IEEE Transactions on Information Theory, 56(4):1982–2001,
2010.

[20] R. G. Baraniuk, V. Cevher, and M. B. Wakin. Low-dimensional models for
dimensionality reduction and signal recovery: A geometric perspective. Pro-
ceedings of The IEEE, 98:959–971, 2010.

[21] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive Approximation,
28(3):253–263, 2008.

[22] R.G. Baraniuk, M.A. Davenport, M.F. Duarte, and C. Hegde. An introduction
to compressive sensing. In Connexions e-textbook, 2011.

173



[23] D. Baron, S. Sarvoham, and R. G. Baraniuk. Bayesian compressive sensing via
belief propagation. IEEE Transactions on Information Thoery, 58(1):269 – 280,
2010.

[24] L. Bassalygo and M. Pinsker. Complexity of an Optimum Nonblocking Switch-
ing Network without Reconnections. Problem in Information Transmission,
9(1):289–313, 1973.

[25] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs,
with applications to compressed sensing. IEEE Transactions on Information
Theory, 57:765–785, 2010.

[26] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31:167–175,
2003.

[27] S. Becker, J. Bobin, and E. J. Candès. NESTA: a fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39,
2009.

[28] R. Berinde. Advances in Sparse Signal Recovery Methods. Master’s thesis, MIT
Department of Electrical Engineering and Computer Science, August 2009.

[29] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining
geometry and combinatorics: a unified approach to sparse signal recovery. In
46th Annual Allerton Conference on Communication, Control, and Computing,
pages 798–805, 2008.

[30] R. Berinde and P. Indyk. Sequential sparse matching pursuit. In 47th annual
Allerton conference on Communication, control, and computing, pages 36–43,
2009.
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