
Game theory and optimization in
boosting

Indraneel Mukherjee

A Dissertation
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of

Computer Science
Advisor: Robert E. Schapire

November 2011

c© Copyright by Indraneel Mukherjee, 2011.
All rights reserved.

Abstract

Boosting is a central technique of machine learning, the branch of artificial intelli-
gence concerned with designing computer programs that can build increasingly better
models of reality as they are presented with more data. The theory of boosting is
based on the observation that combining several models with low predictive power can
often lead to a significant boost in the accuracy of the combined meta-model. This
approach, introduced about twenty years ago, has been a prolific area of research,
and has proved immensely successful in practice. However, despite extensive work,
many basic questions about boosting remain unanswered. In this thesis, we increase
our understanding of three such theoretical aspects of boosting.

In Chapter 2 we study the convergence properties of the most well known boosting
algorithm, AdaBoost. Rate bounds for this important algorithm are known for only
special situations that rarely hold in practice. Our work guarantees fast rates hold
under all situatons, and the bounds we provide are optimal. Apart from being impor-
tant for practitioners, this bound also has implications for the statistical properties
of AdaBoost.

Like AdaBoost, most boosting algorithms are used for classification tasks, where
the object is to create a model that can categorize relevant input data into one of
a finite number of different classes. The most commonly studied setting is binary
classification, when there are only two possible classes, although the tasks arising in
practice are almost always multiclass in nature. In Chapter 3 we provide a broad
and general framework for studying boosting for multiclass classification. Using this
approach, we are able to identify for the first time the minimum assumptions under
which boosting the accuracy is possible in the multiclass setting. Such theory existed
previously for boosting for binary classification, but straightforward extensions of that
to the multiclass setting lead to assumptions that are either too strong or too weak
for boosting to be effectively possible. We also design boosting algorithms using these
minimal assumptions, which work in more general situations than previous algorithms
that assumed too much.

In the final chapter, we study the problem of learning from expert advice which
is closely related to boosting. The goal is to extract useful advice from the opinions
of a group of experts even when there is no consensus among the experts themselves.
Although algorithms for this task enjoying excellent guarantees have existed in the
past, these were only approximately optimal, and exactly optimal strategies were
known only when the experts gave binary “yes/no” opinions. Our work derives exactly
optimal strategies when the experts provide probabilistic opinions, which can be more
nuanced than deterministic ones. In terms of boosting, this provides the optimal way
of combining individual models that attach confidence rating to their predictions
indicating predictive quality.

iii

Acknowledgements

Getting to know my advisor, Rob Schapire, has been a privilege, and working
with him a fantastic learning experience. A brilliant researcher, a wonderful human
being and a very pragmatic person at the same time, Rob is the best advisor I could
ever hope for. I thank him with all my heart, and will truly miss him when I leave.

I thank my collaborators Cynthia Rudin and David Blei, who has also been a great
mentor. I am grateful to my advisor, Yoav Freund and David Blei for taking the time
to read and comment on my thesis, and to Moses Charikar and Philippe Rigollet
for providing valuable feedback as committee members. Many thanks also to Jacob
Abernethy, Yoav Freund, Nikhil Srivastava, Aditya Bhaskara and Matus Telgarsky
for many helpful discussions on the research carried out in this thesis, and to the
machine learning group at Princeton for providing a supportive as well as stimulating
environment for carrying out research. The research in this thesis was supported by
NSF grants IIS-0325500, IIS-1016029 and IIS-1053407, for which I am grateful.

Outside of work, I have spent some splendid time with some splendid people during
my five years at Princeton. Thank you for your terrific company!

Finally, to my parents and my sister, thank you for always being there for me.

iv

To my parents

v

Contents

Abstract . iii
Acknowledgements . v
List of Figures . x

1 Overview 1

2 The Rate of Convergence of AdaBoost 10
2.1 Coordinate Descent View of AdaBoost 14
2.2 First convergence rate: Convergence to any target loss 17

2.2.1 Upper Bound . 17
2.2.2 Faster rates for a variant . 22
2.2.3 Lower-bounds . 24

2.3 Second convergence rate: Convergence to optimal loss 29
2.3.1 Upper Bound . 30
2.3.2 Proof of the decomposition lemma 38
2.3.3 Investigating the constants . 42

2.4 Improved Estimates . 45
2.5 Conclusion . 48
2.6 Appendix . 50

2.6.1 Lower bound for convergence to optimal loss 50
2.6.2 A useful technical result . 51
2.6.3 Proof of Lemma 2.25 . 53

3 A Theory of Multiclass Boosting 58
3.1 Introduction . 58
3.2 Framework . 63
3.3 Old conditions . 67

3.3.1 Old conditions in the new framework 67
3.3.2 A curious equivalence . 72

3.4 Necessary and sufficient weak-learning conditions 75
3.4.1 Edge-over-random conditions 75
3.4.2 The minimal weak learning condition 80

3.5 Algorithms . 84
3.6 Solving for any fixed edge-over-random condition 90
3.7 Solving for the minimal weak learning condition 98

vi

3.7.1 Game-theoretic equivalence of necessary and sufficient weak-
learning conditions . 98

3.7.2 Optimal strategy with the minimal conditions 101
3.8 Variable edges . 116
3.9 Consistency of the adaptive algorithm 125
3.10 Experiments . 134
3.11 Conclusion . 136
3.12 Appendix . 140

3.12.1 Optimality of the OS strategy 140
3.12.2 Consistency proofs . 148

4 Learning with Continuous Experts Using Drifting Games 152
4.1 Expert Learning Model . 155

4.1.1 The Binning Algorithm . 156
4.2 A master strategy for choosing weights 157

4.2.1 Drifting Games . 157
4.2.2 Learning with binary experts using drifting games 159
4.2.3 Drifting games for continuous experts 160

4.3 Analysis of drifting games for continuous experts 162
4.4 Lower Bounds . 167

4.4.1 Lower bound for drifting game 169
4.5 Proof of Theorem 4.5 . 173
4.6 Connections to boosting with confidence-rated hypotheses 180
4.7 Conclusion . 182
4.8 Appendix: Tight lower bounds . 183

4.8.1 Bounds are tight for abstaining 183
4.8.2 Abstaining is Continuous . 185
4.8.3 Binary less powerful than Abstaining 186

Bibliography 187

vii

List of Figures

2.1 The boosting algorithm AdaBoost. 14
2.2 The matrix used in Theorem 2.10 when m = 5. 26
2.3 A picture of the matrix used in Theorem 2.12. 28
2.4 A dataset requiring Ω(1/ε) rounds for convergence. 32
2.5 Summary of convergence bounds of AdaBoost. 49

3.1 Dataset demonstrating SAMME’s condition is too weak 83
3.2 Potential plots when loss is 0-1 error. 97
3.3 Degree plots with error as loss function 107
3.4 Plot of potential values against states 108
3.5 Potential values with minimal and edge-over-random conditions . . . 109
3.6 Degree plots with the exponential loss function 110
3.7 Comparing final test error with standard boosting algorithms 136
3.8 Comparing rate of convergence of test error with AdaBoost.M1 137
3.9 Test error with weak classifiers of varying complexity 138
3.10 Test error through rounds with very simple weak classifiers 139
3.11 Details of transformation between AdaBoost.MM and AdaBoost. . . . 150

4.1 Intuition for why the max-convex condition holds 180
4.2 Breakpoints of the intervals on which potential is piecewise convex . . 182

viii

Chapter 1

Overview

This thesis falls into the broad area of theoretical computer science, which concerns
the mathematical study of objects, typically algorithms, of interest to computer sci-
entists. In particular, we study various aspects of a certain methodology, known as
boosting, which is a very important technique in the branch of artificial intelligence
known as machine learning. In the process, we also shed light on topics in neighbor-
ing research areas such as optimization and game theory that might have significance
even outside of machine learning.

The goal of artificial intelligence is to build machines capable of mimicking intelli-
gent human behavior. Such machines would carry out a variety of very complex tasks
in a constantly changing real environment such as see, run, read and joke, among
other things, none of which can be performed by following a single static collection
of rules designed by human experts. As Schapire [43] wrote twenty years ago, “what
is needed is the development of systems that learn, computers that can program
themselves”. Machine learning is an approach to creating such computer programs,
that learn the necessary rules on the fly through some form of trial and error based
on their past failures and successes, and thereby improve at their tasks as they do
more of it. This single philosophy has led to a breakthrough and given rise to a large
number of practical and semi-intelligent pieces of software for diverse tasks such as
recommending music, detecting spam, answering web search queries, understanding
human speech and recognizing objects from their images.

The variety of techniques used to create such programs is enormous, but it is safe
to say almost all of them proceed by first building a real life model based on past
data, and then make predictions based on this inferred model. The models for some
of these tasks are very complex, and learning them all at once is next to impossible.
Various techniques have been created to learn such models incrementally. Boosting is
one such methodology that has given rise to a number of very practically successful
machine learning algorithms that also enjoy strong theoretical guarantees.

Boosting incrementally combines several models with low predictive power into a
single highly predictive meta-model. The strength of boosting comes from its flexibil-
ity to combine any kinds of models, including highly non-linear ones making sophis-
ticated predictions necessary for difficult tasks. At the same time boosted models
do not suffer from being overly complex, a pitfall for many machine-built models,

1

which has severe consequences for prediction. Finally, unlike many other non-linear
model building procedures, boosting is based on rigorous theory which is partially
responsible for both its wide adoption and its ubiquitous success.

Since its conception more than twenty years ago, thousands of articles have been
published on both its empirical and theoretical properties. While great progress has
been made in understanding boosting, many basic questions about this intriguing
and potent approach have eluded researchers. This thesis makes progress on under-
standing three such questions on the theoretical aspects of boosting, which we briefly
describe next.

In Chapter 2 we study the convergence properties of arguably the most popular
boosting algorithm, AdaBoost. Despite extensive theoretical and empirical study,
basic properties of this algorithm are not yet understood. We address one such
property, namely the rate at which AdaBoost builds up its predictive power, and
provide much faster guarantees than were previously known to hold in general.

In Chapter 3, we study the theory of boosting for multiclass classification prob-
lems. In a classification problem, we build a model for predicting one of a finite
number of fixed outcomes. Such problems were the first and are perhaps the most
common examples of machine learning applications. Classifying emails into spam or
valid, images of handwritten letters into the corresponding alphabets, a credit card
transaction as legitimate or fraudulent, etc. are some examples of the variety of situ-
ations in which such models come handy. Boosting was originally designed for binary
classification problems (when there are only two outcomes for any scenario, e.g., the
spam filtering problem), and the corresponding theory is well understood. However,
the more general case of multiclass classification is far more natural for practical ap-
plications, and despite extensive work, basic understanding of multiclass boosting was
still lacking. Here we rethink multiclass boosting by casting it into a novel framework
in which we can finally find the answers to some of these basic questions. In particular
we show how to combine the simplest models in the best possible way, which leads to
multiclass boosting algorithms that require the least assumptions and therefore are
applicable most generally.

In Chapter 4 we study a problem closely related to boosting — that of learning
from expert advice. Boosting can be viewed as combining the predictions or “advice”
of each of its constituent models, or “experts”, into one final model. In general,
one may consider what is the best way of combining the opinions of several experts
when there is no simple consensus among them. Here we show how to gather such
opinions in an optimal way, when the experts differ considerably among themselves,
and further when each expert is not even very sure of her own opinion but provides
only guesses. For boosting, this leads to algorithms for optimally combining models
that make random predictions.

Boosting. All the problems considered in this thesis are classification tasks, where
the goal is to come up with a classifier based on past data that achieves low prediction
error on unseen future data. While building a highly accurate classifier is a very
difficult task, it is not hard to generate simple rules of thumb that can predict with

2

moderate accuracy. A classic example often cited in the literature is that of filtering
spam emails. A simple rule of thumb for this problem could be to classify as spam if
the body of the message contained the word “viagra”. Other rules could correspond
to phrases such as “special offer”, “free investment” , etc. The procedure for finding
such rules of thumbs are known as “weak learning algorithms”. A boosting algorithm
typically repeatedly calls such a procedure with different weighted subsets of past
data, also known as training data. Each time it is called, the weak learning algorithm
returns a new rule of thumb, aka weak classifier or weak hypothesis, that best fits the
data it was provided in that iteration. After many such calls, the boosting algorithm
aggregates these weak classifiers into a single predictor.

The main choices left up to the boosting algorithm are how to select the training
data in each round, and how to combine the weak classifiers at the end. Typically,
in any iteration, those parts of the data that have been most poorly fit by the weak
classifiers till that point are used to form the training set. Intuitively, the weak
learning algorithm is forced to focus on the “hardest” parts of the data in each round.
To combine the weak classifiers, simply taking a (weighted) majority vote of their
predictions suffices. Behind this simplicity lies wide applicability; while combining
the classifiers, no assumptions are made about their internal form or structure, and
hence any kind of classification functions can be used.

Schapire [43] originally showed the remarkable result that with a properly de-
signed boosting algorithm, the resulting combined predictor could have much higher
accuracy than the individual weak classifiers constituting it. Many simplifications
and improvements were subsequently made to the original boosting algorithm, and
one of the most popular that emerged was the AdaBoost algorithm by Freund and
Schapire [23].

The convergence rate of AdaBoost. AdaBoost has been named in 2006 as one
of the “top 10” algorithms in data mining [54] and has performed favorably with
respect to other popular machine learning algorithms in empirical comparisons [10].
AdaBoost can be viewed as an optimization problem that iteratively minimizes a
certain loss function derived from the training data. Knowing the rate at which this
loss function is driven down is a basic question about this very important algorithm
that is highly relevant to theoreticians and practitioners alike. A number of conver-
gence guarantees have been provided till date, but each of them hold under restrictive
assumptions that are almost never true in practice. Freund and Schapire [23] gave
an exponentially fast rate of convergence under the assumption that perfect accuracy
was achievable. Compactness of the optimization space is a common assumption in
traditional optimization literature which does not hold for machine learning datasets,
and therefore many of the classical results from this neighboring area cannot be used
either. Variants of AdaBoost have been shown to converge fast, but such variants
typically cannot match AdaBoost’s performance in practice. The only rate for Ad-
aBoost known to hold in general is excruciatingly slow, and of very limited practical
or theoretical use. Therefore, despite the importance of this problem and the large

3

number of prior attempts, the state of affairs was rather poor, and Schapire [45]
announced a monetary reward for settling this problem.

In Chapter 2 we settle this conjecture. We study two rates of convergence of
AdaBoost: the first with respect to an arbitrary solution, and the second with respect
to the optimal solution. In the first case, we achieve a rate that depends only on the
approximation parameter and some notion of complexity of the reference solution.
Further, we show the dependence on both parameters is polynomial, which was the
statement of the conjecture. In the second case, we show a rate of convergence that
has optimal dependence on the approximation parameter. The two results require
different techniques, and do not follow from each other. Unlike previous work, our
rates do not require any assumption, such as weak learnability, or a compact space of
solutions. Additionally, we carefully study the constants in our bounds, and provide
estimates in terms of easily measurable parameters. Finally, we construct many lower
bound instances showing that most our rates are nearly tight, although for some of
the bounds there is scope for improvement. Our work therefore exhaustively answers
most of the questions regarding the convergence rates of AdaBoost, and uses novel
techniques to do so.

A theory of multiclass boosting. AdaBoost is an excellent algorithm for binary
classification, but most real life classification tasks require categorizing into more than
two classes. The theory of boosting for multiclass classification is surprisingly less
understood than that for binary classification, and in Chapter 3 we address this gap
in our knowledge.

One reason boosting is popular is because it places minimal demands on the
weak classifiers. For the case of binary classification, a weak learning algorithm that
predicts just better than random guessing in each iteration is sufficient for boosting
to be possible. However, straightforward extensions of this approach to the multiclass
setting do not work. Requiring better than random guessing on different weighted
subsets of the training data turns out to be too weak for multiclass boosting to be
possible. Worse still, changing this threshold to any value does not work; it leads
to either too weak conditions, or ones that are too stringent which simple boostable
weak classifiers may fail to satisfy. Knowing the correct assumptions to make about
the weak classifier will affect both the applicability, as well as performance of the
boosting algorithm. With too strong conditions, only complex weak classifiers may
be combined, and this may lead to a final model that is too complex. Such models
may be overfitted to past data and not very useful at predicting on unforeseen data,
since, according to the Occam’s razor principle, the simplest model explaining data
has the best performance. On the other hand, if the weak classifiers are too weak, no
amount of boosting can lead to high accuracy.

We create a broad and general framework for studying multiclass boosting in which
we can finally identify the correct or minimal assumptions to make about the weak
classifiers. Further, we design boosting algorithms that rely on only these minimal
assumptions and which drive down error as efficiently as possible. Additionally, with
our understanding we are able to characterize the assumptions implicitly used in

4

most prior work, and it turns out most of them were either too strong or too weak.
So, in a certain sense, our algorithm is more generally applicable than previously
existing ones. Finally, we report some preliminary experiments to demonstrate the
effectiveness of our theory.

Learning from expert advice. In the final chapter, we study a problem closely
related to that of boosting, that of learning to predict as well as the best in a group of
experts. The goal is to be able to extract the most useful expert opinion, even when
the experts differ considerably among themselves. The setup of the problem is best
explained through an example. On each day, a bunch of experts predict an outcome
for a common event, say, whether or not it will rain. Based on the expert opinions,
our algorithm makes its own prediction, whose correctness is revealed at the end of
the day, when we know whether or not it rained that day. The goal of our algorithm
is to not make too many more mistakes than the best expert over a long period of
time.

The problem of learning with expert advice has a long history, and many variants
of it have been studied. For instance, to justify the term “expert”, various perfor-
mance requirements have been placed on them. Further, different versions, based
on the nature of the outcomes predicted by the experts, and the structure on the
space of experts, have been and continue to be explored. The exponential-weights
algorithm by Littlestone and Warmuth [28] was one of the original expert learning
strategies that works for most variants, and achieves excellent guarantees. However,
for many situations, this algorithm is only approximately optimal, and tighter bounds
are desirable.

The simplest such situation is where the experts make binary “yes/no” predictions,
as in the weather predicting example above. A common requirement on the experts
is that there be at least one expert which does not make more than some given
finite number of mistakes. The task of the learning algorithm then is to make as
few mistakes overall as possible. In this situation, the Binomial Weights algorithm of
Cesa-Bianchi et al [11] achieves the optimal guarantees (when the number of experts
is sufficiently large), and is based on the sophisticated analysis for a related problem
developed by Spencer [51].

Our goal in this work was to achieve similar tightly optimal results in the case
where experts make probabilistic predictions, i.e., they guess “yes” or “no” with differ-
ent probabilities. Such experts are harder to learn from, but due to their extra power
of randomness, they also typically provide more nuanced advice than deterministic
binary experts who have to make a hard choice between one of the two outcomes. In
terms of boosting for binary classification, this leads to optimal strategies for com-
bining confidence-rated weak classifiers, that provide, along with their prediction on
each example, their confidence, encoded by a real number, in their own prediction.
Prior work [47] has shown that the use of such confidence-rated weak classifiers can
lead to dramatic speedups on practical datasets.

Technically, analyzing the optimal strategy for learning from experts making prob-
abilistic predictions turns out to be much harder than learning from their determin-

5

istic counterparts. We employ the powerful drifting games framework of Schapire
[44] for designing and analyzing our algorithm, and extend Spencer’s technique for
showing the lower bounds. A novel technical contribution is the analysis of certain
potential functions that arise frequently while studying boosting, and showing that
they do not become chaotic but remain piecewise convex.

The results in Chapters 2, 3 and 4 have appeared in [35], [34] and [33], respectively.
A preliminary version of the results in Chapter 4 have also appeared in Algorithmic
Learning Theory, 19th International Conference, 2008.

In summary, we make progress in theoretically understanding three aspects of
boosting. Along the way, we create new notions and techniques which might have
broader significance beyond boosting, and be of independent interest. Although we
try to exhaustively answer the questions we tackle, interesting questions remain, which
we hope will be addressed in the future. Finally, boosting is a beautiful and powerful
technique that holds many more mysteries, and I hope that the contributions of this
thesis will play their small part in helping unravel some of them.

6

Chapter 2

The Rate of Convergence of
AdaBoost

The AdaBoost algorithm of Freund and Schapire [23] was designed to combine many
“weak” hypotheses that perform slightly better than random guessing into a “strong”
hypothesis that has very low error. Despite extensive theoretical and empirical study,
basic properties of AdaBoost’s convergence are not fully understood. In this work,
we focus on one of those properties, namely, to find convergence rates that hold in
the absence of any simplifying assumptions. Such assumptions, relied upon in much
of the preceding work, make it easier to prove a fast convergence rate for AdaBoost,
but often do not hold in the cases where AdaBoost is commonly applied.

AdaBoost can be viewed as a coordinate descent (or functional gradient descent)
algorithm that iteratively minimizes an objective function L : Rn → R called the
exponential loss [9, 16, 24, 25, 32, 36, 38, 47]. Given m labeled training examples
(x1, y1), . . . , (xm, ym), where the xi’s are in some domain X and yi ∈ {−1,+1}, and
a finite (but typically very large) space of weak hypotheses H = {~1, . . . , ~N}, where
each ~j : X → {−1,+1}, the exponential loss is defined as

L(λ)
M
=

1

m

m∑
i=1

exp

(
−

N∑
j=1

λjyi~j(xi)

)

where λ = 〈λ1, . . . , λN〉 is a vector of weights or parameters. In each iteration, a co-
ordinate descent algorithm moves some distance along some coordinate direction λj.
For AdaBoost, the coordinate directions correspond to the individual weak hypothe-
ses. Thus, on each round, AdaBoost chooses some weak hypothesis and step length,
and adds these to the current weighted combination of weak hypotheses, which is
equivalent to updating a single weight. The direction and step length are so chosen
that the resulting vector λt in iteration t yields a lower value of the exponential loss
than in the previous iteration, L(λt) < L(λt−1). This repeats until it reaches a min-
imizer if one exists. It was shown by Collins et al [13], and later by Zhang and Yu
[56], that AdaBoost asymptotically converges to the minimum possible exponential

7

loss. That is,
lim
t→∞

L(λt) = inf
λ∈RN

L(λ).

However, that work did not address a convergence rate to the minimizer of the expo-
nential loss.

Our work specifically addresses a recent conjecture of Schapire [45] stating that
there exists a positive constant c and a polynomial poly() such that for all training
sets and all finite sets of weak hypotheses, and for all B > 0,

L(λt) ≤ min
λ:‖λ‖1≤B

L(λ) +
poly(logN,m,B)

tc
. (2.1)

In other words, the exponential loss of AdaBoost will be at most ε more than that of
any other parameter vector λ of `1-norm bounded by B in a number of rounds that
is bounded by a polynomial in logN , m, B and 1/ε. (We require logN rather than
N since the number of weak hypotheses will typically be extremely large.) Along
with an upper bound that is polynomial in these parameters, we also provide lower
bound constructions showing some polynomial dependence on B and 1/ε is necessary.
Without any additional assumptions on the exponential loss L, and without altering
AdaBoost’s minimization algorithm for L, the best known convergence rate of Ad-
aBoost prior to this work that we are aware of is that of Bickel et al [7] who prove a
bound on the rate of the form O(1/

√
log t).

We provide also a convergence rate of AdaBoost to the minimum value of the
exponential loss. Namely, within C/ε iterations, AdaBoost achieves a value of the
exponential loss that is at most ε more than the best possible value, where C depends
on the dataset. This convergence rate is different from the one discussed above in that
it has better dependence on ε (in fact the dependence is optimal, as we show), and
does not depend on the best solution within a ball of size B. However, this second
convergence rate cannot be used to prove (2.1) since in certain worst case situations,
we show the constant C may be larger than 2m (although usually it will be much
smaller).

Within the proof of the second convergence rate, we provide a lemma (called the
decomposition lemma) that shows that the training set can be split into two sets of
examples: the “finite margin set,” and the “zero loss set.” Examples in the finite
margin set always make a positive contribution to the exponential loss, and they
never lie too far from the decision boundary. Examples in the zero loss set do not
have these properties. If we consider the exponential loss where the sum is only over
the finite margin set (rather than over all training examples), it is minimized by a
finite λ. The fact that the training set can be decomposed into these two classes is
the key step in proving the second convergence rate.

This problem of determining the rate of convergence is relevant in the proof of
the consistency of AdaBoost given by Bartlett and Traskin [4], where it has a direct
impact on the rate at which AdaBoost converges to the Bayes optimal classifier (un-
der suitable assumptions). It may also be relevant to practitioners who wish to have

8

a guarantee on the exponential loss value at iteration t (although, in general, mini-
mization of the exponential loss need not be perfectly correlated with test accuracy).

There have been several works that make additional assumptions on the exponen-
tial loss in order to attain a better bound on the rate, but those assumptions are not
true in general, and cases are known where each of these assumptions are violated.
For instance, better bounds are proved by Rätsch et al [39] using results from Luo
and Tseng [31], but these appear to require that the exponential loss be minimized
by a finite λ, and also depend on quantities that are not easily measured. There
are many cases where L does not have a finite minimizer; in fact, one such case is
provided by Schapire [45]. Shalev-Shwartz and Singer [50] have proved bounds for a
variant of AdaBoost. Zhang and Yu [56] also have given rates of convergence, but
their technique requires a bound on the change in the size of λt at each iteration
that does not necessarily hold for AdaBoost. Many classic results are known on the
convergence of iterative algorithms generally [see for instance 30, 8]; however, these
typically start by assuming that the minimum is attained at some finite point in
the (usually compact) space of interest, assumptions that do not generally hold in
our setting. When the weak learning assumption holds, there is a parameter γ > 0
that governs the improvement of the exponential loss at each iteration. Freund and
Schapire [23] and Schapire and Singer [47] showed that the exponential loss is at most
e−2tγ2

after t rounds, so AdaBoost rapidly converges to the minimum possible loss
under this assumption.

In Section 2.1 we summarize the coordinate descent view of AdaBoost. Sec-
tion 2.2 contains the proof of the conjecture, with associated lower bounds proved
in Section 2.2.3. Section 2.3 provides the C/ε convergence rate. The proof of the
decomposition lemma is given in Section 2.3.2.

2.1 Coordinate Descent View of AdaBoost

From the examples (x1, y1), . . . , (xm, ym) and hypothesesH = {~1, . . . , ~N}, AdaBoost
iteratively computes the function F : X → R, where sign(F (x)) can be used as
a classifier for a new instance x. The function F is a linear combination of the
hypotheses. At each iteration t, AdaBoost chooses one of the weak hypotheses ht from
the set H, and adjusts its coefficient by a specified value αt. Then F is constructed
after T iterations as: F (x) =

∑T
t=1 αtht(x). Figure 2.1 shows the AdaBoost algorithm

[23].
Since each ht is equal to ~jt for some jt, F can also be written F (x) =

∑N
j=1 λj~j(x)

for a vector of values λ = 〈λ1, . . . λN〉 (such vectors will sometimes also be referred to
as combinations, since they represent combinations of weak hypotheses). In different
notation, we can write AdaBoost as a coordinate descent algorithm on vector λ.
We define the feature matrix M elementwise by Mij = yi~j(xi), so that this matrix
contains all of the inputs to AdaBoost (the training examples and hypotheses). Then

9

Given:(x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
set H = {~1, . . . , ~N} of weak hypotheses ~j : X → {−1,+1}.

Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . , T :

• Train weak learner using distribution Dt; that is, find weak hypothesis ht ∈ H
whose correlation rt

M
= Ei∼Dt [yiht(xi)] has maximum magnitude |rt|.

• Choose αt = 1
2

ln {(1 + rt) / (1− rt)}.
• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i) exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final hypothesis: F (x) = sign
(∑T

t=1 αtht(x)
)

.

Figure 2.1: The boosting algorithm AdaBoost.

the exponential loss can be written more compactly as:

L(λ) =
1

m

m∑
i=1

e−(Mλ)i

where (Mλ)i, the ith coordinate of the vector Mλ, is the (unnormalized) margin
achieved by vector λ on training example i.

Coordinate descent algorithms choose a coordinate at each iteration where the
directional derivative is the steepest, and choose a step that maximally decreases the
objective along that coordinate. To perform coordinate descent on the exponential
loss, we determine the coordinate jt at iteration t as follows, where ej is a vector that
is 1 in the jth position and 0 elsewhere:

jt ∈ argmax
j

∣∣∣∣(−dL(λt−1 + αej)

dα

∣∣∣
α=0

)∣∣∣∣ = argmax
j

1

m

∣∣∣∣∣
m∑
i=1

e−(Mλt−1)iMij

∣∣∣∣∣ .(2.2)

We can show that this is equivalent to the weak learning step of AdaBoost. Unraveling
the recursion in Figure 2.1 for AdaBoost’s weight vector Dt, we can see that Dt(i) is
proportional to

exp

(
−
∑
t′<t

αt′yiht′(xi)

)
.

The term in the exponent can also be rewritten in terms of the vector λt, where λtj is
the sum of αt’s where hypothesis ~j was chosen:

∑
t′<t αt′1[~j=ht′] = λt−1,j. The term

in the exponent is:∑
t′<t

αt′yiht′(xi) =
∑
j

∑
t′<t

αt′1[~j=ht′]yi~j(xi) =
∑
j

λt−1
j Mij = (Mλt−1)i,

10

where (·)i denotes the ith component of a vector. This means Dt(i) is proportional
to e−(Mλt−1)i . Eq. (2.2) can now be rewritten as

jt ∈ argmax
j

∣∣∣∣∣∑
i

Dt(i)Mij

∣∣∣∣∣ = argmax
j

∣∣∣Ei∼Dt [Mij]
∣∣∣ = argmax

j

∣∣∣Ei∼Dt [yihj(xi)]
∣∣∣,

which is exactly the way AdaBoost chooses a weak hypothesis in each round (see
Figure 2.1). The correlation

∑
iDt(i)Mijt will be denoted by rt and its absolute

value |rt| denoted by δt. The quantity δt is commonly called the edge for round t.
The distance αt to travel along direction jt is found for coordinate descent via a
linesearch [see for instance 32]:

0 = −dL(λt + αtejt)

dαt
=
∑
i

e−(M(λt+αtejt))iMijt

and dividing both sides by the normalization factor,

0 =
∑

i:Mij=1

Dt(i)e
−αt−

∑
i:Mij=−1

Dt(i)e
αt = (1+rt)e

−αt−(1−rt)eαt =⇒ αt =
1

2
ln

(
1 + rt
1− rt

)
,

just as in Figure 2.1. Thus, AdaBoost is equivalent to coordinate descent on L(λ).
With this choice of step length, it can be shown [23] that the exponential loss drops
by an amount depending on the edge:

L(λt) = L (λt−1 + αtejt) =

 ∑
i:Mij=1

Dt(i)e
−αt +

∑
i:Mij=−1

Dt(i)e
αt

L(λt−1)

=
(
(1 + rt)e

−αt + (1− rt)eαt
)
L(λt−1) =

(
2
√

(1 + rt)(1− rt)
)
L(λt)

=
(√

1− r2
t

)
L(λt−1) =

(√
1− δ2

t

)
L(λt−1).

Our rate bounds also hold when the weak-hypotheses are confidence-rated,
that is, giving real-valued predictions in [−1,+1], so that h : X → [−1,+1].
In that case, the criterion for picking a weak hypothesis in each round re-
mains the same, that is, at round t, an ~jt maximizing the absolute correlation

jt ∈ argmaxj

∣∣∣∑m
i=1 e

−(Mλt−1)iMij

∣∣∣, is chosen, where Mij may now be non-integral.

An exact analytical line search is no longer possible, but if the step size is chosen in
the same way,

αt =
1

2
ln

(
1 + rt
1− rt

)
, (2.3)

then Freund and Schapire [23] and Schapire and Singer [47] show that a similar drop
in the loss is still guaranteed:

L(λt) ≤ L(λt−1)
√

1− δ2
t . (2.4)

11

With confidence rated hypotheses, other implementations may choose the step size
in a different way. However, in this chapter, by “AdaBoost” we will always mean the
version in [23, 47] which chooses step sizes as in (2.3), and enjoys the loss guarantee
as in (2.4). That said, all our proofs work more generally, and are robust to numerical
inaccuracies in the implementation. In other words, even if the previous conditions
are violated by a small amount, similar bounds continue to hold, although we leave
out explicit proofs of this fact to simplify the presentation.

2.2 First convergence rate: Convergence to any

target loss

In this section, we bound the number of rounds of AdaBoost required to get within
ε of the loss attained by a parameter vector λ∗ as a function of ε and the `1-norm
‖λ∗‖1. The vector λ∗ serves as a reference based on which we define the target loss
L(λ∗), and we will show that its `1-norm measures the difficulty of attaining the
target loss in a specific sense. We prove a bound polynomial in 1/ε, ‖λ∗‖1 and the
number of examples m, showing (2.1) holds, thereby resolving affirmatively the open
problem posed in [45]. Later in the section we provide lower bounds showing how a
polynomial dependence on both parameters is necessary.

2.2.1 Upper Bound

The main result of this section is the following rate upper bound.

Theorem 2.1. For any λ∗ ∈ RN , AdaBoost achieves loss at most L(λ∗) + ε in at
most 13‖λ∗‖6

1ε
−5 rounds.

The high level idea behind the proof of the theorem is as follows. To show a
fast rate, we require a large edge in each round, as indicated by (2.4). A large edge
is guaranteed if the size of the current solution of AdaBoost is small. Therefore
AdaBoost makes good progress if the size of its solution does not grow too fast. On
the other hand, the increase in size of its solution is given by the step length, which in
turn is proportional to the edge achieved in that round. Therefore, if the solution size
grows fast, the loss also drops fast. Either way the algorithm makes good progress.
In the rest of the section we make these ideas concrete through a sequence of lemmas.

We provide some more notation. Throughout, λ∗ is fixed, and its `1-norm is
denoted by B [matching the notation in 45]. One key parameter is the suboptimality
Rt of AdaBoost’s solution measured via the logarithm of the exponential loss:

Rt
M
= lnL(λt)− lnL(λ∗).

Another key parameter is the `1-distance St of AdaBoost’s solution from the closest
combination that achieves the target loss:

St
M
= inf

λ

{
‖λ− λt‖1 : L(λ) ≤ L(λ∗)

}
.

12

We will also be interested in how they change as captured by

∆Rt
M
= Rt−1 −Rt, ∆St

M
= St − St−1.

Notice that ∆Rt is always non-negative since AdaBoost decreases the loss, and hence
the suboptimality, in each round. Let T0 be the bound on the number of rounds in
Theorem 2.1. We assume without loss of generality that R0, . . . , RT0 and S0, . . . , ST0

are all strictly positive, since otherwise the theorem holds trivially. Also, in the rest
of the section, we restrict our attention entirely to the first T0 rounds of boosting.
We first show that a poly(B, ε−1) rate of convergence follows if the edge is always
polynomially large compared to the suboptimality.

Lemma 2.2. If for some constants c1, c2, where c2 > 1/2, the edge satisfies δt ≥
B−c1Rc2

t−1 in each round t, then AdaBoost achieves at most L(λ∗) + ε loss after
2B2c1(ε ln 2)1−2c2 rounds.

Proof. From the definition of Rt and (2.4) we have

∆Rt = lnL(λt−1)− lnL(λt) ≥ −1

2
ln(1− δ2

t). (2.5)

Combining the above with the inequality ex ≥ 1 +x, and the assumption on the edge

∆Rt ≥ −
1

2
ln(1− δ2

t) ≥
1

2
δ2
t ≥

1

2
B−2c1R2c2

t−1.

Let T = d2B2c1(ε ln 2)1−2c2e be the bound on the number of rounds in the lemma.
If any of R0, . . . , RT is negative, then by monotonicity RT < 0 and we are done.
Otherwise, they are all non-negative. Then, applying Lemma 2.32 from the Appendix
to the sequence R0, . . . , RT , and using c2 > 1/2 we get

R1−2c2
T ≥ R1−2c2

0 + c2B
−2c1T > (1/2)B−2c1T ≥ (ε ln 2)1−2c2 =⇒ RT < ε ln 2.

If either ε or L(λ∗) is greater than 1, then the lemma follows since L(λT) ≤ L(λ0) =
1 < L(λ∗) + ε. Otherwise,

L(λT) < L(λ∗)eε ln 2 ≤ L(λ∗)(1 + ε) ≤ L(λ∗) + ε,

where the second inequality uses ex ≤ 1 + (1/ ln 2)x for x ∈ [0, ln 2].

We next show that large edges are achieved provided St is small compared to Rt.

Lemma 2.3. In each round t, the edge satisfies δt ≥ Rt−1/St−1.

Proof. For any combination λ, define Dλ as the distribution on examples {1, . . . ,m}
that puts weight proportional to the loss Dλ(i) = e−(Mλ)i/(mL(λ)). Choose any λ
suffering at most the target loss L(λ) ≤ L(λ∗). By non-negativity of relative entropy

13

we get

0 ≤ RE(Dλt−1 ‖ Dλ) =
m∑
i=1

Dλt−1 ln

(
1
m
e−(Mλt−1)i/L(λt−1)

1
m
e−(Mλ)i/L(λ)

)

= −Rt−1 +
m∑
i=1

Dλt−1(i)
(
Mλ−Mλt−1

)
i
. (2.6)

Note that Dλt−1 is the distribution Dt that AdaBoost creates in round t. The above
summation can be rewritten as

m∑
i=1

Dλt−1(i)
N∑
j=1

(
λj − λt−1

j

)
Mij =

N∑
j=1

(
λj − λt−1

j

) m∑
i=1

Dt(i)Mij

≤

(
N∑
j=1

∣∣λj − λt−1
j

∣∣)max
j

∣∣∣∣∣
m∑
i=1

Dt(i)Mij

∣∣∣∣∣
= δt‖λ− λt−1‖1. (2.7)

Since the previous holds for any λ suffering less than the target loss, the last expression
is at most δtSt−1. Combining this with (2.7) completes the proof.

To complete the proof of Theorem 2.1, we show St is small compared to Rt in
rounds t ≤ T0 (during which we have assumed St, Rt are all positive). In fact we
prove:

Lemma 2.4. For any t ≤ T0, St ≤ B3R−2
t .

This, along with Lemmas 2.2 and 2.3, immediately proves Theorem 2.1. The
bound on St in Lemma 2.4 can be proved if we can first show St grows slowly compared
to the rate at which the suboptimality Rt falls. Intuitively this holds since growth in
St is caused by a large step, which in turn will drive down the suboptimality. In fact
we can prove the following.

Lemma 2.5. In any round t ≤ T0, we have 2∆Rt
Rt−1

≥ ∆St
St−1

.

Proof. Firstly, it follows from the definition of St that ∆St ≤ ‖λt − λt−1‖1 = |αt|.
Next, using (2.5) and (2.3) we may write ∆Rt ≥ Υ(δt) |αt|, where the function Υ has
been defined in [37] as

Υ(x) =
− ln(1− x2)

ln
(

1+x
1−x

) .

It is known [37, 41] that Υ(x) ≥ x/2 for x ∈ [0, 1]. Combining and using Lemma 2.3,

∆Rt ≥ δt∆St/2 ≥ Rt−1 (∆St/2St−1) .

Rearranging completes the proof.

Using this we may prove Lemma 2.4.

14

Proof. We first show S0 ≤ B3R−2
0 . Note, S0 ≤ ‖λ∗ − λ0‖1 = B, and by definition

the quantity R0 = − ln
(

1
m

∑
i e
−(Mλ∗)i

)
. The quantity (Mλ∗)i is the inner product

of row i of matrix M with the vector λ∗. Since the entries of M lie in [−1,+1], this is
at most ‖λ∗‖1 = B. Therefore R0 ≤ − ln

(
1
m

∑
i e
−B) = B, which is what we needed.

To complete the proof, we show that R2
tSt is non-increasing. It suffices to show

for any t the inequality R2
tSt ≤ R2

t−1St−1. This holds by the following chain:

R2
tSt = (Rt−1 −∆Rt)

2 (St−1 + ∆St) = R2
t−1St−1

(
1− ∆Rt

Rt−1

)2(
1 +

∆St
St−1

)
≤ R2

t−1St−1 exp

(
−2∆Rt

Rt−1

+
∆St
St−1

)
≤ R2

t−1St−1,

where the first inequality follows from ex ≥ 1+x, and the second one from Lemma 2.5.

This completes the proof of Theorem 2.1. Although our bound provides a rate
polynomial in B, ε−1 as desired by the conjecture in [45], the exponents are rather
large, and (we believe) not tight. One possible source of slack is the bound on St in
Lemma 2.4. Qualitatively, the distance St to some solution having target loss should
decrease with rounds, whereas Lemma 2.4 only says it does not increase too fast.
Improving this will directly lead to a faster convergence rate. In particular, showing
that St never decreases would imply a B2/ε rate of convergence. Whether or not the
monotonicity of St holds, we believe that the obtained rate bound is probably true,
and state it as a conjecture.

Conjecture 2.6. For any λ∗ and ε > 0, AdaBoost converges to within L(λ∗)+ε loss
in O(B2/ε) rounds, where the order notation hides only absolute constants.

As evidence supporting the conjecture, we show in the next section how a minor
modification to AdaBoost can achieve the above rate.

2.2.2 Faster rates for a variant

In this section we introduce a new algorithm, AdaBoost.S , which will enjoy the
much faster rate of convergence mentioned in Conjecture 2.6. AdaBoost.S is the
same as AdaBoost, except that at the end of each round, the current combination of
weak hypotheses is scaled back, that is, multiplied by a scalar in [0, 1] if doing so will
reduce the exponential loss further. The code is largely the same as in Section 2.1,
maintaining a combination λt−1 of weak hypotheses, and greedily choosing αt and ~jt
on each round to form a new combination λ̃t = λt−1 +αt~jt . However, after creating
the new combination λ̃t, the result is multiplied by the value st in [0, 1] that causes
the greatest decrease in the exponential loss: st = argmins L(sλ̃t), and λt = stλ̃

t.
Since L(sλ̃t), as a function of s, is convex, its minimum on [0, 1] can be found easily,
for instance, using a simple binary search. The new distribution Dt+1 on the examples
is constructed using λt as before; the weight Dt+1(i) on example i is proportional to

15

its exponential loss Dt+1(i) ∝ e−(Mλt)i . With this modification we may prove the
following:

Theorem 2.7. For any λ∗, ε > 0, AdaBoost.S achieves at most L(λ∗) +ε loss within
3‖λ∗‖2

1/ε rounds.

The proof is similar to that in the previous section. Reusing the same notation,
note that proof of Lemma 2.2 continues to hold (with very minor modifications to
that are straightforward). Next we can exploit the changes in AdaBoost.S to show an
improved version of Lemma 2.3. Intuitively, scaling back has the effect of preventing
the weights on the weak hypotheses from becoming “too large”, and we may show

Lemma 2.8. In each round t, the edge satisfies δt ≥ Rt−1/B.

Proof. We will reuse parts of the proof of Lemma 2.3. Setting λ = λ∗ in (2.6) we
may write

Rt ≤
m∑
i=1

Dλt−1(i) (Mλ∗)i +
m∑
i=1

−Dλt−1(i)
(
Mλt−1

)
i
.

The first summation can be upper bounded as in (2.7) by δt‖λ∗‖ = δtB. We will next
show that the second summation is non-positive, which will complete the proof. The
scaling step was added just so that this last fact would be true.

If we define G : [0, 1]→ R to be G(s) = L
(
sλ̃t
)

=
∑

i e
−(Mλ̃t)i , then observe that

the scaled derivative G′(s)/G(s) is exactly equal to the second summation. Since
G(s) ≥ 0, it suffices to show the derivative G′(s) ≤ 0 at the optimum value of s,
denoted by s∗. Since G is a strictly convex function (∀s : G′′(s) > 0), it is either
strictly increasing or strictly decreasing throughout [0, 1], or it has a local minimum.
In the case when it is strictly decreasing throughout, then G′(s) ≤ 0 everywhere,
whereas if G has a local minimum, then G′(s) = 0 at s∗. We finish the proof by
showing that G cannot be strictly increasing throughout [0, 1]. If it were, we would
have L(λ̃t) = G(1) > G(0) = 1, an impossibility since the loss decreases through
rounds.

Lemmas 2.2 and 2.8 together now imply Theorem 2.7, where we used that 2 ln 2 <
3.

In experiments we ran, the scaling back never occurs. For such datasets, Ad-
aBoost and AdaBoost.S are identical. We believe that even for contrived examples,
the rescaling could happen only a few times, implying that both AdaBoost and Ad-
aBoost.S would enjoy the convergence rates of Theorem 2.7. In the next section, we
construct rate lower bound examples to show that this is nearly the best rate one can
hope to show.

2.2.3 Lower-bounds

Here we show that the dependence of the rate in Theorem 2.1 on the norm ‖λ∗‖1 of
the solution achieving target accuracy is necessary for a wide class of datasets. The
arguments in this section are not tailored to AdaBoost, but hold more generally for

16

any coordinate descent algorithm, and can be readily generalized to any loss function
L′ of the form L′(λ) = (1/m)

∑
i φ(Mλ), where φ : R → R is any non-decreasing

function. The first lemma connects the size of a reference solution to the required
number of rounds of boosting, and shows that for a wide variety of datasets the
convergence rate to a target loss can be lower bounded by the `1-norm of the smallest
solution achieving that loss.

Lemma 2.9. Suppose the feature matrix M corresponding to a dataset has two
rows with {−1,+1} entries which are complements of each other, i.e., there are
two examples on which any hypothesis gets one wrong and one correct predic-
tion. Then the number of rounds required to achieve a target loss L∗ is at least
inf {‖λ‖1 : L(λ) ≤ L∗} /(2 lnm).

Proof. We first show that the two examples corresponding to the complementary rows
in M both satisfy a certain margin boundedness property. Since each hypothesis
predicts oppositely on these, in any round t their margins will be of equal magnitude
and opposite sign. Unless both margins lie in [− lnm, lnm], one of them will be
smaller than − lnm. But then the exponential loss L(λt) = (1/m)

∑
j e
−(Mλt)j in

that round will exceed 1, a contradiction since the losses are non-increasing through
rounds, and the loss at the start was 1. Thus, assigning one of these examples the
index i, we have the absolute margin |(Mλt)i| is bounded by lnm in any round t.
Letting M(i) denote the ith row of M, the step length αt in round t therefore satisfies

|αt| = |Mijtαt| = |〈M(i), αtejt〉| =
∣∣(Mλt)i − (Mλt−1)i

∣∣ ≤ ∣∣(Mλt)i
∣∣+∣∣(Mλt−1)i

∣∣ ≤ 2 lnm,

and the statement of the lemma directly follows.

When the weak hypotheses are abstaining [47], it can make a definitive prediction
that the label is −1 or +1, or it can “abstain” by predicting zero. No other levels
of confidence are allowed, and the resulting feature matrix has entries in {−1, 0,+1}.
The next theorem constructs a feature matrix satisfying the properties of Lemma 2.9
and where additionally the smallest size of a solution achieving L∗ + ε loss is at least
Ω(2m) ln(1/ε), for some fixed L∗ and every ε > 0.

Theorem 2.10. Consider the following matrix M with m rows (or examples) labeled
0, . . . ,m−1 and m−1 columns labeled 1, . . . ,m−1 (assume m ≥ 3). The square sub-
matrix ignoring row zero is an upper triangular matrix, with 1’s on the diagonal, −1’s
above the diagonal, and 0 below the diagonal. Therefore row 1 is (+1,−1,−1, . . . ,−1).
Row 0 is defined to be just the complement of row 1. Then, for any ε > 0, a loss of
2/m+ ε is achievable on this dataset, but with large norms

inf {‖λ‖1 : L(λ) ≤ 2/m+ ε} ≥ (2m−2 − 1) ln(1/(3ε)).

Therefore, by Lemma 2.9, the minimum number of rounds required for reaching loss

at most 2/m+ ε is at least
(

2m−2−1
2 lnm

)
ln(1/(3ε)).

A picture of the matrix constructed in the above lemma for m = 5 is shown in
Figure 2.2. Theorem 2.10 shows that when ε is a small constant (say ε = 0.01), and

17

− + + + +
+ − − − −
0 + − − −
0 0 + − −
0 0 0 + −
0 0 0 0 +

Figure 2.2: The matrix used in Theorem 2.10 when m = 5.

λ∗ is some vector with loss L∗ + ε/2, AdaBoost takes at least Ω(2m/ lnm) steps to
get within ε/2 of the loss achieved by λ∗, that is, to within L∗ + ε loss. Since m and
ε are independent quantities, this shows that a polynomial dependence on the norm
of the reference solution is unavoidable, and this norm might be exponential in the
number of training examples in the worst case.

Corollary 2.11. Consider feature matrices containing only {−1, 0,+1} entries.
If, for some constants c and β, the bound in Theorem 2.1 can be replaced by
O
(
‖λ∗‖c1ε−β

)
for all such matrices, then c ≥ 1. Further, for such matrices, the

bound poly(1/ε, ‖λ∗‖1) in Theorem 2.1 cannot be replaced by poly(1/ε,m,N).

We now prove Theorem 2.10.
Proof of Theorem 2.10. We first lower bound the norm of solutions achieving loss at
most 2/m + ε. Observe that since rows 0 and 1 are complementary, any solution’s
loss on just examples 0 and 1 will add up to at least 2/m. Therefore, to get within
2/m+ε, the margins on examples 2, . . . ,m−1 should be at least ln ((m− 2) / (mε)) ≥
ln(1/(3ε)) (for m ≥ 3). Now, the feature matrix is designed so that the margins due
to a combination λ satisfy the following recursive relationships:

(Mλ)m−1 = λm−1,

(Mλ)i = λi − (λi+1 + . . .+ λm−1) , for 1 ≤ i ≤ m− 2.

Therefore, the margin on example m − 1 is at least ln(1/(3ε)) implies λm−1 ≥
ln(1/(3ε)). Similarly, λm−2 ≥ ln(1/(3ε)) + λm−1 ≥ 2 ln(1/(3ε)). Continuing this
way,

λi ≥ ln

(
1

3ε

)
+λi+1+. . .+λm−1 ≥ ln

(
1

3ε

){
1 + 2(m−1)−(i+1) + . . .+ 20

}
= ln

(
1

3ε

)
2m−1−i,

for i = m − 1, . . . , 2. Hence ‖λ‖1 ≥ ln(1/(3ε))(1 + 2 + . . . + 2m−3) = (2m−2 −
1) ln(1/(3ε)).

We end by showing that a loss of at most 2/m + ε is achievable. The above
argument implies that if λi = 2m−1−i for i = 2, . . . ,m−1, then examples 2, . . . ,m−1
attain margin exactly 1. If we choose λ1 = λ2 +. . .+λm−1 = 2m−3 +. . .+1 = 2m−2−1,
then the recursive relationship implies a zero margin on example 1 (and hence example

18

−1 +1
+1 −1
−1 + ν +1
+1 −1 + ν

Figure 2.3: A picture of the matrix used in Theorem 2.12.

0). Therefore the combination ln(1/ε)(2m−2 − 1, 2m−3, 2m−4, . . . , 1) achieves a loss
(2 + (m− 2)ε)/m ≤ 2/m+ ε, for any ε > 0.

We finally show that if the weak hypotheses are confidence-rated with arbitrary
levels of confidence, so that the feature matrix is allowed to have non-integral entries
in [−1,+1], then the minimum norm of a solution achieving a fixed accuracy can be
arbitrarily large. Our constructions will satisfy the requirements of Lemma 2.9, so
that the norm lower bound translates into a rate lower bound.

Theorem 2.12. Let ν > 0 be an arbitrary number, and let M be the (possibly) non-
integral matrix with 4 examples and 2 weak hypotheses shown in Figure 2.3. Then for
any ε > 0, a loss of 1/2 + ε is achievable on this dataset, but with large norms

inf {‖λ‖1 : L(λ) ≤ 1/2 + ε} ≥ 2 ln(1/(2ε))ν−1.

Therefore, by Lemma 2.9, the number of rounds required to achieve loss at most 1/2+ε
is at least ln(1/(2ε))ν−1/ ln(m).

Proof. We first show a loss of 1/2+ε is achievable. Observe that the vector λ = (c, c),
with c = ν−1 ln(1/(2ε)), achieves margins 0, 0, ln(1/(2ε)), ln(1/(2ε)) on examples
1, 2, 3, 4, respectively. Therefore λ achieves loss 1/2 + ε. We next show a lower
bound on the norm of a solution achieving this loss. Observe that since the first
two rows are complementary, the loss due to just the first two examples is at least
1/2. Therefore, any solution λ = (λ1, λ2) achieving at most 1/2 + ε loss overall must
achieve a margin of at least ln(1/(2ε)) on both the third and fourth examples. By
inspecting the two columns, this implies

λ1 − λ2 + λ2ν ≥ ln (1/(2ε))

λ2 − λ1 + λ1ν ≥ ln (1/(2ε)) .

Adding the two equations we find

ν(λ1 + λ2) ≥ 2 ln (1/(2ε)) =⇒ λ1 + λ2 ≥ 2ν−1 ln (1/(2ε)) .

By the triangle inequality, ‖λ‖1 ≥ λ1 + λ2, and the lemma follows.

Note that if ν = 0, then the optimal solution is found in zero rounds of boosting
and has optimal loss 1. However, even the tiniest perturbation ν > 0 causes the
optimal loss to fall to 1/2, and causes the rate of convergence to increase drastically.

19

In fact, by Theorem 2.12, the number of rounds required to achieve any fixed loss
below 1 grows as Ω(1/ν), which is arbitrarily large when ν is infinitesimal. We may
conclude that with non-integral feature matrices, the dependence of the rate on the
norm of a reference solution is absolutely necessary.

Corollary 2.13. When using confidence rated weak-hypotheses with arbitrary con-
fidence levels, the bound poly(1/ε, ‖λ∗‖1) in Theorem 2.1 cannot be replaced by any
function of purely m, N and ε alone.

The construction in Figure 2.3 can be generalized to produce datasets with any
number of examples that suffer the same poor rate of convergence as the one in
Theorem 2.12. We discussed the smallest such construction, since we feel that it best
highlights the drastic effect non-integrality can have on the rate.

In this section we saw how the norm of the reference solution is an important
parameter for bounding the convergence rate. In the next section we investigate the
optimal dependence of the rate on the parameter ε and show that Ω(1/ε) rounds are
necessary in the worst case.

2.3 Second convergence rate: Convergence to op-

timal loss

In the previous section, our rate bound depended on both the approximation param-
eter ε, as well as the size of the smallest solution achieving the target loss. For many
datasets, the optimal target loss infλ L(λ) cannot be realized by any finite solution.
In such cases, if we want to bound the number of rounds needed to achieve within ε of
the optimal loss, the only way to use Theorem 2.1 is to first decompose the accuracy
parameter ε into two parts ε = ε1 + ε2, find some finite solution λ∗ achieving within
ε1 of the optimal loss, and then use the bound poly(1/ε2, ‖λ∗‖1) to achieve at most
L(λ∗) + ε2 = infλ L(λ) + ε loss. However, this introduces implicit dependence on ε
through ‖λ∗‖1 which may not be immediately clear. In this section, we show bounds
of the form C/ε, where the constant C depends only on the feature matrix M, and
not on ε. Additionally, we show that this dependence on ε is optimal in Lemma 2.31
of the Appendix, where Ω(1/ε) rounds are shown to be necessary for converging to
within ε of the optimal loss on a certain dataset. Finally, we note that the lower
bounds in the previous section indicate that C can be Ω(2m) in the worst case for
integer matrices (although it will typically be much smaller), and hence this bound,
though stronger than that of Theorem 2.1 with respect to ε, cannot be used to prove
the conjecture in [45], since the constant is not polynomial in the number of examples
m.

2.3.1 Upper Bound

The main result of this section is the following rate upper bound. A similar approach
to solving this problem was taken independently by Telgarsky [52].

20

Theorem 2.14. AdaBoost reaches within ε of the optimal loss in at most C/ε rounds,
where C only depends on the feature matrix.

Our techniques build upon earlier work on the rate of convergence of AdaBoost,
which have mainly considered two particular cases. In the first case, the weak learning
assumption holds, that is, the edge in each round is at least some fixed constant.
In this situation, Freund and Schapire [23] and Schapire and Singer [47] show that
the optimal loss is zero, that no solution with finite size can achieve this loss, but
AdaBoost achieves at most ε loss within O(ln(1/ε)) rounds. In the second case some
finite combination of the weak classifiers achieves the optimal loss, and Rätsch et al
[39], using results from Luo and Tseng [31], show that AdaBoost achieves within ε of
the optimal loss again within O(ln(1/ε)) rounds.

Here we consider the most general situation, where the weak learning assumption
may fail to hold, and yet no finite solution may achieve the optimal loss. The dataset
used in Lemma 2.31 and shown in Figure 2.4 exemplifies this situation. Our main
technical contribution shows that the examples in any dataset can be partitioned into
a zero-loss set and finite-margin set, such that a certain form of the weak learning
assumption holds within the zero-loss set, while the optimal loss considering only the
finite-margin set can be obtained by some finite solution. The two partitions provide
different ways of making progress in every round, and one of the two kinds of progress
will always be sufficient for us to prove Theorem 2.14.

We next state our decomposition result, illustrate it with an example, and then
state several lemmas quantifying the nature of the progress we can make in each
round. Using these lemmas, we prove Theorem 2.14.

Lemma 2.15. (Decomposition Lemma) For any dataset, there exists a partition of
the set of training examples X into a (possibly empty) zero-loss set Z and a (possibly

empty) finite-margin set F = Zc M
= X \Z such that the following hold simultaneously

:

1. For some positive constant γ > 0, there exists some vector η† with unit `1-norm
‖η†‖1 = 1 that attains at least γ margin on each example in Z, and exactly zero
margin on each example in F

∀i ∈ Z : (Mη†)i ≥ γ, ∀i ∈ F : (Mη†)i = 0.

2. The optimal loss considering only examples within F is achieved by some finite
combination η∗.

3. There is a constant µmax < ∞, such that for any combination η with bounded
loss on the finite-margin set,

∑
i∈F e

−(Mη)i ≤ m, the margin (Mη)i for any
example i in F lies in the bounded interval [− lnm,µmax].

A proof is deferred to the next section. The decomposition lemma immediately
implies that the vector η∗ +∞ · η†, which denotes

(
η∗ + cη†

)
in the limit c→∞, is

an optimal solution, achieving zero loss on the zero-loss set, but only finite margins
(and hence positive losses) on the finite-margin set (thereby justifying the names).

21

~1 ~2

a + −
b − +
c + +

Figure 2.4: A dataset re-
quiring Ω(1/ε) rounds for
convergence.

Before proceeding, we give an example dataset and
indicate the zero-loss set, finite-margin set, η∗ and η† to
illustrate our definitions. Consider a dataset with three
examples {a, b, c} and two hypotheses {~1, ~2} and the
feature matrix M in Figure 2.4. Here + means correct
(Mij = +1) and −means wrong (Mij = −1). The optimal
solution is ∞ · (~1 + ~2) with a loss of 2/3. The finite-
margin set is {a, b}, the zero-loss set is {c}, η† = (1/2, 1/2)
and η∗ = (0, 0); for this dataset these are unique. This

dataset also serves as a lower-bound example in Lemma 2.31, where we show that
2/(9ε) rounds are necessary for AdaBoost to achieve loss at most (2/3) + ε.

Before providing proofs, we introduce some notation. By ‖·‖ we will mean `2-norm;
every other norm will have an appropriate subscript, such as ‖·‖1, ‖·‖∞, etc. The set of
all training examples will be denoted by X. By `λ(i) we mean the exp-loss e−(Mλ)i on
example i. For any subset S ⊆ X of examples, `λ(S) =

∑
i∈S `

λ(i) denotes the total

exp-loss on the set S. Notice L(λ) = (1/m)`λ(X), and that Dt+1(i) = `λ
t
(i)/`λ

t
(X),

where λt is the combination found by AdaBoost at the end of round t. By δS(η; λ)
we mean the edge obtained on the set S by the vector η, when the weights over the
examples are given by `λ(·)/`λ(S):

δS(η; λ) =

∣∣∣∣∣ 1

`λ(S)

∑
i∈S

`λ(i)(Mη)i

∣∣∣∣∣ .
In the rest of the section, by “loss” we mean the unnormalized loss `λ(X) = mL(λ)
and show that in C/ε rounds AdaBoost converges to within ε of the optimal unnor-
malized loss infλ `

λ(X), henceforth denoted by K. Note that this means AdaBoost
takes C/ε rounds to converge to within ε/m of the optimal normalized loss, that is
to loss at most infλ L(λ) + ε/m. Replacing ε by mε, it takes C/(mε) steps to attain
normalized loss at most infλ L(λ) + ε. Thus, whether we use normalized or unnor-
malized does not substantively affect the result in Theorem 2.14. The progress due
to the zero-loss set is now immediate from Item 1 of the decomposition lemma:

Lemma 2.16. In any round t, the maximum edge δt is at least γ`λ
t−1

(Z)/`λ
t−1

(X),
where γ is as in Item 1 of the decomposition lemma.

Proof. Recall the distribution Dt created by AdaBoost in round t puts weight Dt(i) =
`λ

t−1
(i)/`λ

t−1
(X) on each example i. From Item 1 we get

δX(η†; λt−1) =

∣∣∣∣∣ 1

`λt−1(X)

∑
i∈X

`λ
t−1

(i)(Mη†)i

∣∣∣∣∣ =
1

`λt−1(X)

∑
i∈Z

γ`λ
t−1

(i) = γ

(
`λ

t−1
(Z)

`λt−1(X)

)
.

22

Since (Mη†)i =
∑

j η
†
j(Mej)i, we may rewrite the edge δX(η†; λt−1) as follows:

δX(η†; λt−1) =

∣∣∣∣∣ 1

`λt−1(X)

∑
i∈X

`λ
t−1

(i)
∑
j

η†j(Mej)i

∣∣∣∣∣
=

∣∣∣∣∣∑
j

η†j
1

`λt−1(X)

∑
i∈X

`λ
t−1

(i)(Mej)i

∣∣∣∣∣
=

∣∣∣∣∣∑
j

η†jδX(ej; λ
t−1)

∣∣∣∣∣ ≤∑
j

∣∣∣η†j ∣∣∣ δX(ej; λ
t−1).

Since the `1-norm of η† is 1, the weights
∣∣∣η†j ∣∣∣ form some distribution p over the columns

1, . . . , N . We may therefore conclude

γ

(
`λ

t−1
(Z)

`λt−1(X)

)
= δX(η†; λt−1) ≤ Ej∼p

[
δX(ej; λ

t−1)
]
≤ max

j
δX(ej; λ

t−1) ≤ δt.

If the set F were empty, then Lemma 2.16 implies an edge of γ is available in
each round. This in fact means that the weak learning assumption holds, and using
(2.4), we can show an O(ln(1/ε)γ−2) bound matching the rate bounds of Freund and
Schapire [23] and Schapire and Singer [47]. So henceforth, we assume that F is non-
empty. Note that this implies that the optimal loss K is at least 1 (since any solution
will get non-positive margin on some example in F), a fact we will use later in the
proofs.

Lemma 2.16 says that the edge is large if the loss on the zero-loss set is large. On
the other hand, when it is small, Lemmas 2.17 and 2.18 together show how AdaBoost
can make good progress using the finite margin set. Lemma 2.17 uses second order
methods to show how progress is made in the case where there is a finite solution.
Similar arguments, under additional assumptions, have earlier appeared in [39].

Lemma 2.17. Suppose λ is a combination such that m ≥ `λ(F) ≥ K. Then in
some coordinate direction the edge is at least

√
C0 (`λ(F)−K) /`λ(F), where C0 is

a constant depending only on the feature matrix M.

Proof. Let MF ∈ R|F |×N be the matrix M restricted to only the rows corresponding
to the examples in F . Choose η such that λ + η = η∗ is an optimal solution over
F . Without loss of generality assume that η lies in the orthogonal subspace of the
null-space {u : MFu = 0} of MF (since we can translate η∗ along the null space if
necessary for this to hold). If η = 0, then `λ(F) = K and we are done. Otherwise
‖MFη‖ ≥ λmin‖η‖, where λ2

min is the smallest positive eigenvalue of the symmetric
matrix MT

FMF (exists since MFη 6= 0). Now define f : [0, 1] → R as the loss along

23

the (rescaled) segment [η∗,λ]

f(x)
M
= `(η∗−xη)(F) =

∑
i∈F

`η
∗
(i)ex(Mη)i .

This implies that f(0) = K and f(1) = `λ(F). Notice that the first and second
derivatives of f(x) are given by:

f ′(x) =
∑
i∈F

(MFη)i`
(η∗−xη)(i), f ′′(x) =

∑
i∈F

(MFη)2
i `

(η∗−xη)(i).

We next lower bound possible values of the second derivative as follows:

f ′′(x) =
∑
i′∈F

(MFη)2
i′`

(η∗−xη)(i′) ≥
∑
i′∈F

(MFη)2
i′ min

i
`(η∗−xη)(i) ≥ ‖MFη‖2 min

i
`(η∗−xη)(i).

Since both λ = η∗ − η, and η∗ suffer total loss at most m, by convexity, so does
η∗ − xη for any x ∈ [0, 1]. Hence we may apply Item 3 of the decomposition
lemma to the vector η∗ − xη, for any x ∈ [0, 1], to conclude that `(η∗−xη)(i) =
exp {−(MF (η∗ − xη))i} ≥ e−µmax on every example i. Therefore we have,

f ′′(x) ≥ ‖MFη‖2e−µmax ≥ λ2
mine

−µmax‖η‖2 (by choice of η) .

A standard second-order result is [see e.g. 8, eqn. (9.9)]

|f ′(1)|2 ≥ 2

(
inf

x∈[0,1]
f ′′(x)

)
(f(1)− f(0)) .

Collecting our results so far, we get∑
i∈F

`λ(i)(Mη)i = |f ′(1)| ≥ ‖η‖
√

2λ2
mine

−µmax (`λ(F)−K).

Next let η̃ = η/‖η‖1 be η rescaled to have unit `1 norm. Then we have∑
i∈F

`λ(i)(Mη̃)i =
1

‖η‖1

∑
i

`λ(i)(Mη)i ≥
‖η‖
‖η‖1

√
2λ2

mine
−µmax (`λ(F)−K).

Applying the Cauchy-Schwarz inequality, we may lower bound ‖η‖
‖η‖1 by 1/

√
N (since

η ∈ RN). Along with the fact `λ(F) ≤ m, we may write

1

`λ(F)

∑
i∈F

`λ(i)(Mη̃)i ≥
√

2λ2
minN

−1m−1e−µmax

√
(`λ(F)−K) /`λ(F).

24

If we define p to be a distribution on the columns {1, . . . , N} of MF which puts
probability p(j) proportional to |η̃j| on column j, then we have

1

`λ(F)

∑
i∈F

`λ(i)(Mη̃)i ≤ Ej∼p

∣∣∣∣∣ 1

`λ(F)

∑
i∈F

`λ(i)(Mej)i

∣∣∣∣∣ ≤ max
j

∣∣∣∣∣ 1

`λ(F)

∑
i∈F

`λ(i)(Mej)i

∣∣∣∣∣ .
Notice the quantity inside the max is precisely the edge δF (ej; λ) in direction j.
Combining everything, the maximum possible edge is

max
j
δF (ej; λ) ≥

√
C0 (`λ(F)−K) /`λ(F),

where we define C0 = 2λ2
minN

−1m−1e−µmax .

Lemma 2.18. Suppose, at some stage of boosting, the combination found by AdaBoost
is λ, and the loss is K + θ. Let ∆θ denote the drop in the suboptimality θ after one
more round; i.e., the loss after one more round is K + θ − ∆θ. Then there are
constants C1, C2 depending only on the feature matrix (and not on θ), such that if
`λ(Z) < C1θ, then ∆θ ≥ C2θ.

Proof. Let λ be the current solution found by boosting. Using Lemma 2.17, pick
a direction j in which the edge δF (ej; λ) restricted to the finite loss set is at least√

2C0(`λ(F)−K)/`λ(F). We can bound the edge δX(ej; λ) on the entire set of
examples as follows:

δX(ej; λ) =
1

`λ(X)

∣∣∣∣∣∑
i∈F

`λ(i)(Mej)i +
∑
i∈Z

`λ(i)(Mej)i

∣∣∣∣∣
≥ 1

`λ(X)

(∣∣`λ(F)δF (ej; λ)
∣∣−∑

i∈Z

`λ(i)

)
(using the triangle inequality)

≥ 1

`λ(X)

(√
2C0(`λ(F)−K)`λ(F)− `λ(Z)

)
.

Now, `λ(Z) < C1θ, and `λ(F)−K = θ− `λ(Z) ≥ (1−C1)θ. Further, we will choose
C1 < 1, so that `λ(F) ≥ K ≥ 1. Hence, the previous inequality implies

δX(ej; λ) ≥ 1

K + θ

(√
2C0(1− C1)θ − C1θ

)
.

Set C1 = min
{

1/2, (1/4)
√
C0/(2m)

}
. Using θ ≤ K+θ = `λ(X) ≤ m, we can bound

the square of the term in brackets on the previous line as(√
2C0(1− C1)θ − C1θ

)2

≥ 2C0(1− C1)θ − 2C1θ
√

2C0(1− C1)θ

≥ 2C0(1− 1/2)θ − 2
(

(1/4)
√
C0/(2m)

)
θ
√

2C0(1− 0)m

= C0θ/2.

25

So, if δ is the maximum edge in any direction, then

δ ≥ δX(ej; λ) ≥
√
C0θ/(2(K + θ)2) ≥

√
C0θ/(2m(K + θ)),

where, for the last inequality, we again used K + θ ≤ m. Therefore the loss after one
more step is at most (K + θ)

√
1− δ2 ≤ (K + θ)(1 − δ2/2) ≤ K + θ − C0

4m
θ. Setting

C2 = C0/(4m) completes the proof.

Proof of Theorem 2.14. At any stage of boosting, let λ be the current com-
bination, and K + θ be the current loss. We show that the new loss is at most
K + θ − ∆θ for ∆θ ≥ C3θ

2 for some constant C3 depending only on the dataset
(and not θ). To see this, either `λ(Z) < C1θ, in which case Lemma 2.18 applies,
and ∆θ ≥ C2θ ≥ (C2/m)θ2 (since θ = `λ(X) − K ≤ m). Or `λ(Z) ≥ C1θ, in
which case applying Lemma 2.16 yields δ ≥ γC1θ/`

λ(X) ≥ (γC1/m)θ. By (2.4),
∆θ ≥ `λ(X)(1 −

√
1− δ2) ≥ `λ(X)δ2/2 ≥ (K/2)(γC1/m)2θ2. Using K ≥ 1 and

choosing C3 appropriately gives the required condition.
If K+θt denotes the loss in round t, then the above claim implies θt−θt+1 ≥ C3θ

2
t .

Applying Lemma 2.32 to the sequence {θt} we have 1/θT − 1/θ0 ≥ C3T for any T .
Since θ0 ≥ 0, we have T ≤ 1/(C3θT). Hence to achieve loss K + ε, C−1

3 /ε rounds
suffice.

2.3.2 Proof of the decomposition lemma

Throughout this section we only consider (unless otherwise stated) admissible com-
binations λ of weak classifiers, which have loss `λ(X) bounded by m (since such are
the ones found by boosting). We prove Lemma 2.15 in three steps. We begin with a
simple lemma that rigorously defines the zero-loss and finite-margin sets.

Lemma 2.19. For any sequence η1,η2, . . . , of admissible combinations of weak clas-
sifiers, we can find a subsequence η(1) = ηt1 ,η(2) = ηt2 , . . . , whose losses converge to
zero on all examples in some fixed (possibly empty) subset Z (the zero-loss set), and
losses bounded away from zero in its complement X \ Z(the finite-margin set)

∀x ∈ Z : lim
t→∞

`η(t)(x) = 0, ∀x ∈ X \ Z : inf
i
`η(t)(x) > 0. (2.8)

Proof. We will build a zero-loss set and the final subsequence incrementally. Initially
the set is empty. Pick the first example. If the infimal loss ever attained on the
example in the sequence is bounded away from zero, then we do not add it to the set.
Otherwise we add it, and consider only the subsequence whose tth element attains loss
less than 1/t on the example. Beginning with this subsequence, we now repeat with
other examples. The final sequence is the required subsequence, and the examples we
have added form the zero-loss set.

We apply Lemma 2.19 to some admissible sequence converging to the optimal loss
(for instance, the one found by AdaBoost). Let us call the resulting subsequence η∗(t),

the obtained zero-loss set Z, and the finite-margin set F = X \ Z. The next lemma

26

shows how to extract a single combination out of the sequence η∗(t) that satisfies the
properties in Item 1 of the decomposition lemma.

Lemma 2.20. Suppose M is the feature matrix, Z is a subset of the examples, and
η(1),η(2), . . . , is a sequence of combinations of weak classifiers such that Z is its zero
loss set, and X \Z its finite loss set, that is, (2.8) holds. Then there is a combination
η† of weak classifiers that achieves positive margin on every example in Z, and zero
margin on every example in its complement X \ Z, that is:

(Mη†)i

{
> 0 if i ∈ Z,
= 0 if i ∈ X \ Z.

Proof. Since the η(t) achieve arbitrarily large positive margins on Z, ‖η(t)‖ will be
unbounded, and it will be hard to extract a useful single solution out of them. On the
other hand, the rescaled combinations η(t)/‖η(t)‖ lie on a compact set, and therefore
have a limit point, which might have useful properties. We formalize this next.

We prove the statement of the lemma by induction on the total number of training
examples |X|. If X is empty, then the lemma holds vacuously for any η†. Assume
inductively for all X of size less than m > 0, and consider X of size m. Since trans-
lating a vector along the null space of M, ker M = {x : Mx = 0}, has no effect on
the margins produced by the vector, assume without loss of generality that the η(t)’s
are orthogonal to ker M. Also, since the margins produced on the zero loss set are
unbounded, so are the norms of η(t). Therefore assume (by picking a subsequence
and relabeling if necessary) that ‖η(t)‖ > t. Let η′ be a limit point of the sequence
η(t)/‖η(t)‖, a unit vector that is also orthogonal to the null-space. Then firstly η′

achieves non-negative margin on every example; otherwise by continuity for some
extremely large t, the margin of η(t)/‖η(t)‖ on that example is also negative and
bounded away from zero, and therefore η(t)’s loss is more than m, a contradiction to
admissibility. Secondly, the margin of η′ on each example in X \Z is zero; otherwise,
by continuity, for arbitrarily large t the margin of η(t)/‖η(t)‖ on an example in X \Z
is positive and bounded away from zero, and hence that example attains arbitrarily
small loss in the sequence, a contradiction to (2.8). Finally, if η′ achieves zero margin
everywhere in Z, then η′, being orthogonal to the null-space, must be 0, a contra-
diction since η′ is a unit vector. Therefore η′ must achieve positive margin on some
non-empty subset S of Z, and zero margins on every other example.

Next we use induction on the reduced set of examples X ′ = X \S. Since S is non-
empty, |X ′| < m. Further, using the same sequence η(t), the zero-loss and finite-loss
sets, restricted to X ′, are Z ′ = Z \S and (X \Z)\S = X \Z (since S ⊆ Z) = X ′ \Z ′.
By the inductive hypothesis, there exists some η′′ which achieves positive margins on
Z ′, and zero margins on X ′ \ Z ′ = X \ Z. Therefore, by setting η† = η′ + cη′′ for a
large enough c, we can achieve the desired properties.

Applying Lemma 2.20 to the sequence η∗(t) yields some convex combination η†

having margin at least γ > 0 (for some γ) on Z and zero margin on its complement,
proving Item 1 of the decomposition lemma. The next lemma proves Item 2.

27

Lemma 2.21. The optimal loss considering only examples within F is achieved by
some finite combination η∗.

Proof. The existence of η† with properties as in Lemma 2.20 implies that the optimal
loss is the same whether considering all the examples, or just examples in F . Therefore
it suffices to show the existence of finite η∗ that achieves loss K on F , that is,
`η
∗
(F) = K.
Recall MF denotes the matrix M restricted to the rows corresponding to ex-

amples in F . Let ker MF = {x : MFx = 0} be the null-space of MF . Let η(t)

be the projection of η∗(t) onto the orthogonal subspace of ker MF . Then the losses

`η
(t)

(F) = `η
∗
(t)(F) converge to the optimal loss K. If MF is identically zero, then

each η(t) = 0, and then η∗ = 0 has loss K on F . Otherwise, let λ2 be the smallest
positive eigenvalue of MT

FMF . Then ‖Mη(t)‖ ≥ λ‖η(t)‖. By the definition of finite

margin set, inft→∞mini∈F `
η(t)

(i) = inft→∞mini∈F `
η∗

(t)(i) > 0. Therefore, the norms
of the margin vectors ‖Mη(t)‖, and hence that of η(t), are bounded. Therefore the
η(t)’s have a (finite) limit point η∗ that must have loss K over F .

As a corollary, we prove Item 3.

Lemma 2.22. There is a constant µmax <∞, such that for any combination η that
achieves bounded loss on the finite-margin set, `η(F) ≤ m, the margin (Mη)i for any
example i in F lies in the bounded interval [− lnm,µmax] .

Proof. Since the loss `η(F) is at most m, therefore no margin may be less than − lnm.
To prove a finite upper bound on the margins, we argue by contradiction. Suppose
arbitrarily large margins are producible by bounded loss vectors, that is arbitrarily
large elements are present in the set {(Mη)i : `η(F) ≤ m, 1 ≤ i ≤ m}. Then for some
fixed example x ∈ F there exists a sequence of combinations of weak classifiers, whose
tth element achieves more than margin t on x but has loss at most m on F . Applying
Lemma 2.19 we can find a subsequence λ(t) whose tail achieves vanishingly small
loss on some non-empty subset S of F containing x, and bounded margins in F \ S.
Applying Lemma 2.20 to λ(t) we get some convex combination λ† which has positive
margins on S and zero margin on F \ S. Let η∗ be as in Lemma 2.21, a finite
combination achieving the optimal loss on F . Then η∗ +∞ · λ† achieves the same
loss on every example in F \ S as the optimal solution η∗, but zero loss for examples
in S. This solution is strictly better than η∗ on F , a contradiction to the optimality
of η∗. Therefore our assumption is false, and some finite upper bound µmax on the
margins (Mη)i of vectors satisfying `η(F) ≤ m exists.

2.3.3 Investigating the constants

In this section, we try to estimate the constant C in Theorem 2.14. We show that it
can be arbitrarily large for adversarial feature matrices with real entries (correspond-
ing to confidence rated weak hypotheses), but has an upper-bound doubly exponential
in the number of examples when the feature matrix has {−1, 0,+1} entries only. We

28

also show that this doubly exponential bound cannot be improved without signifi-
cantly changing the proof in the previous section.

By inspecting the proofs, we can bound the constant in Theorem 2.14 as follows.

Corollary 2.23. The constant C in Theorem 2.14 that emerges from the proofs is

C =
32m3Neµmax

γ2λ2
min

,

where m is the number of examples, N is the number of hypotheses, γ and µmax are as
given by Items 1 and 3 of the decomposition lemma, and λ2

min is the smallest positive
eigenvalue of MT

FMF (MF is the feature matrix restricted to the rows belonging to
the finite margin set F).

Our bound on C will be obtained by in turn bounding the quantities λ−1
min, γ

−1, µmax.
These are strongly related to the singular values of the feature matrix M, and in
general cannot be easily measured. In fact, when M has real entries, we have already
seen in Section 2.2.3 that the rate can be arbitrarily large, implying these parameters
can have very large values. Even when the matrix M has integer entries (that is,
−1, 0,+1), the next lemma shows that these quantities can be exponential in the
number of examples.

Lemma 2.24. There are examples of feature matrices with −1, 0,+1 entries and at
most m rows or columns (where m > 10) for which the quantities γ−1, λ−1 and µmax

are at least Ω(2m/m).

Proof. We first show the bounds for γ and λ. Let M be an m × m upper tri-
angular matrix with +1 on the diagonal, and −1 above the diagonal. Let y =
(2m−1, 2m−2, . . . , 1)T , and b = (1, 1, . . . , 1)T . Then My = b, although the y has
much bigger norm than b: ‖y‖ ≥ 2m−1, while ‖b‖ = m. Since M is invertible, by the
definition of λmin, we have ‖My‖ ≥ λmin‖y‖, so that λ−1

min ≥ ‖y‖/‖My‖ ≥ 2m/m.
Next, note that y produces all positive margins b, and hence the zero-loss set consists
of all the examples. In particular, if η† be as in Item 1 of the decomposition lemma,
then the vector γ−1η† achieves more than 1 margin on each example: M(γ−1η†) ≥ b.
On the other hand, our matrix is very similar to the one in Lemma 2.10, and the
same arguments in the proof of that lemma can be used to show that if for some x we
have (Mx) ≥ b, then x ≥ y. This implies that γ−1‖η†‖1 ≥ ‖y‖1 = (2m − 1). Since
η† has unit `1-norm, the bound on γ−1 follows too.

Next we provide an example showing µmax can be Ω(2m/m). Consider an m ×
(m − 1) matrix M. The bottom row of M is all +1. The upper (m − 1) × (m − 1)
submatrix of M is a lower triangular matrix with −1 on the diagonal and +1 below
the diagonal. Observe that if yT = (2m−2, 2m−3, . . . , 1, 1), then yTM = 0. Therefore,
for any vector x, the inner product of the margins Mx with y is zero: yTMx = 0.
This implies that achieving positive margin on any example forces some other example
to receive negative margin. By Item 1 of the decomposition lemma, the zero loss set
in this dataset is empty, and all the examples belong to the finite loss set. Next,
we choose a combination with at most m loss that nevertheless achieves Ω(2m/m)

29

positive margin on some example. Let xT = (1, 2, 4, . . . , 2m−2). Then (Mx)T =
(−1,−1, . . . ,−1, 2m−1− 1). Then the margins using εx are (−ε, . . . ,−ε, ε(2m−1− 1))
with total loss (m − 1)eε + eε(1−2m−1). Choose ε = 1/(2m) ≤ 1, so that the loss on
examples corresponding to the first m − 1 rows is at most eε ≤ 1 + 2ε = 1 + 1/m,
where the first inequality holds since ε ∈ [0, 1]. For m > 10, the choice of ε guarantees
1/(2m) = ε ≥ (lnm)/(2m−1 − 1), so that the loss on the example corresponding to
the bottom most row is e−ε(2

m−1−1) ≤ e− lnm = 1/m. Therefore the net loss of εx is
at most (m−1)(1 + 1/m) + 1/m = m. On the other hand the margin on the example
corresponding to the last row is ε(2m−1 − 1) = (2m−1 − 1)/(2m) = Ω(2m/m).

The above result implies any bound on C derived from Corollary 2.23 will be at
least 2Ω(2m/m) in the worst case. This does not imply that the best bound one can
hope to prove is doubly exponential, only that our techniques in the previous section
do not admit anything better. We next show that the bounds in Lemma 2.24 are
nearly the worst possible.

Lemma 2.25. Suppose each entry of M is −1, 0 or +1. Then each of the quantities
λ−1

min, γ
−1 and µmax are at most 2O(m lnm).

The proof of Lemma 2.25 is rather technical, and we defer it to the Appendix.
Lemma 2.25 and Corollary 2.23 together imply a convergence rate of 22O(m lnm)

/ε to
the optimal loss for integer matrices. This bound on C is exponentially worse than the
Ω(2m) lower bound on C we saw in Section 2.2.3, a price we pay for obtaining optimal
dependence on ε. In the next section we will see how to obtain poly(2m lnm, ε−1)
bounds, although with a worse dependence on ε. We end this section by showing,
just for completeness, how a bound on the norm of η∗ as defined in Item 2 of the
decomposition lemma follows as a quick corollary to Lemma 2.25.

Corollary 2.26. Suppose η∗ is as given by Item 2 of the decomposition lemma. When
the feature matrix has only −1, 0,+1 entries, we may bound ‖η∗‖1 ≤ 2O(m lnm).

Proof. Note that every entry of MFη∗ lies in the range [− lnm,µmax = 2O(m lnm)],
and hence ‖MFη∗‖ ≤ 2O(m lnm). Next, we may choose η∗ orthogonal to the null
space of MF ; then ‖η∗‖ ≤ λ−1

min‖MFη∗‖ ≤ 2O(m lnm). Since ‖η∗‖1 ≤
√
N‖η∗‖, and

the number of possible columns N with {−1, 0,+1} entries is at most 3m, the proof
follows.

2.4 Improved Estimates

In this section we shed more light on the rate bounds by cross-application of techniques
from Sections 2.2 and 2.3. We obtain both new upper bounds for convergence to the
optimal loss, as well as lower bounds for convergence to an arbitrary target loss. We
also indicate what we believe might be the optimal bounds for either situation.

We first show how the finite rate bound of Theorem 2.1 along with the decom-
position lemma yields a new rate of convergence to the optimal loss. Although the
dependence on ε is worse than in Theorem 2.14, the dependence on m is nearly
optimal. We will need the following key application of the decomposition lemma.

30

Lemma 2.27. When the feature matrix has −1, 0,+1 entries, for any ε > 0, there
is some solution with `1-norm at most 2O(m lnm) ln(1/ε) that achieves within ε of the
optimal loss.

Proof. Let η∗,η†, γ be as given by the decomposition lemma. Let c = mini∈Z (Mη∗)i
be the minimum margin produced by η∗ on any example in the zero-loss set Z. Then
η∗− cη† produces non-negative margins on Z, and the optimal margins on the finite
loss set F . Therefore, the vector λ∗ = η∗ + (ln(1/ε)γ−1 − c) η† achieves at least
ln(1/ε) margin on every example in Z, and optimal margins on the finite loss set
F . Hence L(λ∗) ≤ infλ L(λ) + ε. Using |c| ≤ ‖Mη∗‖ ≤ m‖η∗‖, and the results in
Corollary 2.26 and Lemma 2.25, we may conclude the vector λ∗ has `1-norm at most
2O(m lnm) ln(1/ε).

We may now invoke Theorem 2.1 to obtain a 2O(m lnm) ln6(1/ε)ε−5 rate of con-
vergence to the optimal solution. Rate bounds with similar dependence on m and
slightly better dependence on ε can be obtained by modifying the proof in Section 2.3
to use first order instead of second order techniques. In that way we may obtain a
poly(λ−1

min, γ
−1, µmax)ε−3 = 2O(m lnm)ε−3 rate bound. We omit the the rather long but

straightforward proof of this fact. Finally, note that if Conjecture 2.6 is true, then
Lemma 2.27 implies a 2O(m lnm) ln(1/ε)ε−1 rate bound for converging to the optimal
loss, which is nearly optimal in both m and ε. We state this as an independent
conjecture.

Conjecture 2.28. For feature matrices with −1, 0,+1 entries, AdaBoost converges
to within ε of the optimal loss within 2O(m lnm)ε−(1+o(1)) rounds.

We next focus on lower bounds on the convergence rate to arbitrary target losses
discussed in Section 2.2. We begin by showing the rate dependence on the norm of
the solution as given in Lemma 2.9 holds for much more general datasets.

Lemma 2.29. Suppose a feature matrix has only ±1 entries, and the finite loss set
is non-empty. Then, for any coordinate descent procedure, the number of rounds
required to achieve a target loss φ∗ is at least

inf {‖λ‖1 : L(λ) ≤ φ∗} /(1 + lnm).

Proof. It suffices to upper-bound the step size |αt| in any round t by at most 1+lnm.
Notice that when the feature matrix has ±1 entries, a step in a direction that does
not end up increasing the loss is at most of length (1/2) ln ((1 + δ) / (1− δ)), where δ
is the edge in that direction. Therefore, if δt is the maximum edge achievable in any
direction, we have

|αt| ≤
1

2
ln

(
1 + δt
1− δt

)
.

Further, by (2.4), a large edge δt ensures that for some coordinate step, the new
vector λt will have much smaller loss than the vector λt−1 at the beginning of round
t: L(λt) ≤ L(λt−1)

√
1− δ2

t . On the other hand, before the step, the loss is at most
1, L(λt−1) ≤ 1, and after the step the loss is at most 1/m (since the optimal loss on

31

a dataset with non-empty finite set is at least 1/m): L(λt) ≥ 1/m. Combining these
inequalities we get

1/m ≤ L(λt) ≤ L(λt−1)
√

1− δ2
t ≤

√
1− δ2

t ,

that is,
√

1− δ2
t ≥ 1/m. Now the step length can be bounded as

|αt| ≤
1

2
ln

(
1 + δt
1− δt

)
= ln(1 + δt)−

1

2
ln(1− δ2

t) ≤ δt + lnm ≤ 1 + lnm.

We end by showing a new lower bound for the convergence rate to an arbitrary
target loss studied in Section 2.2. Corollary 2.11 implies that the rate bound in
Theorem 2.1 has to be at least polynomially large in the norm of the solution. We
now show that a polynomial dependence on ε−1 in the rate is unavoidable too. This
shows that rates for competing with a finite solution are different from rates on a
dataset where the optimum loss is achieved by a finite solution, since in the latter we
may achieve a O (ln(1/ε)) rate.

Corollary 2.30. Consider any dataset (e.g. the one in Figure 2.4) for which Ω(1/ε)
rounds are necessary to get within ε of the optimal loss. If there are constants c and β
such that for any λ∗ and ε, a loss of L(λ∗)+ε can be achieved in at most O(‖λ∗‖c1ε−β)
rounds, then β ≥ 1.

Proof. The decomposition lemma implies that λ∗ = η∗ + ln(2/ε)η† with `1-norm
O(ln(1/ε)) achieves loss at most K + ε/2 (recall K is the optimal loss). Suppose the
corollary fails to hold for constants c and β ≤ 1. Then L(λ∗) + ε/2 = K + ε loss
can be achieved in O(ε−β)/ lnc(1/ε)) = o(1/ε) rounds, contradicting the Ω(1/ε) lower
bound.

2.5 Conclusion

In this chapter we studied the convergence rate of AdaBoost with respect to the
exponential loss. We showed upper and lower bounds for convergence rates to both
an arbitrary target loss achieved by some finite combination of the weak hypotheses,
as well as to the infimum loss which may not be realizable. For the first convergence
rate, we showed a strong relationship exists between the size of the minimum vector
achieving a target loss and the number of rounds of coordinate descent required to
achieve that loss. In particular, we showed that a polynomial dependence of the rate
on the `1-norm B of the minimum size solution is absolutely necessary, and that a
poly(B, 1/ε) upper bound holds, where ε is the accuracy parameter. The actual rate
we derive has rather large exponents, and we discuss a minor variant of AdaBoost
that achieves a much tighter and near optimal rate.

For the second kind of convergence, using entirely separate techniques, we derived
a C/ε upper bound, and showed that this is tight up to constant factors. In the

32

Convergence rate with
respect to:

Reference solution
(Section 2.2)

Optimal solution (Section 2.3)

Upper bounds: 13B6/ε5
poly(eµmax , λ−1

min, γ
−1)/ε ≤ 22O(m ln m)

/ε

poly(µmax, λ
−1
min, γ

−1)/ε3 ≤ 2O(m lnm)/ε3

Lower bounds with: (B/ε)1−ν for any ν > 0
max

{
2m ln(1/ε)

lnm , 2
9ε

}
a) {0,±1} entries (2m/ lnm) ln(1/ε)
b) real entries Can be arbitrarily large even when m,N, ε are held fixed

Conjectured upper
bounds:

O(B2/ε) 2O(m lnm)/ε1+o(1), if entries in {0,±1}

Figure 2.5: Summary of our most important results and conjectures regarding the con-
vergence rate of AdaBoost. Here m refers to the number of training examples, and ε is
the accuracy parameter. The quantity B is the `1-norm of the reference solution used in
Section 2.2. The parameters λmin, γ and µmax depend on the dataset and are defined and
studied in Section 2.3.

process, we showed a certain decomposition lemma that might be of independent
interest. We also study the constants and show how they depend on certain intrinsic
parameters related to the singular values of the feature matrix. We estimate the
worst case values of these parameters, and considering feature matrices with only
{−1, 0,+1} entries, this leads to a bound on the rate constant C that is doubly
exponential in the number of training examples. Since this is rather large, we also
include bounds polynomial in both the number of training examples and the accuracy
parameter ε, although the dependence on ε in these bounds is non-optimal.

Finally, for each kind of convergence, we conjecture tighter bounds that are not
known to hold presently. A table containing a summary of the results in this chapter
is included in Figure 2.5.

33

2.6 Appendix

2.6.1 Lower bound for convergence to optimal loss

Lemma 2.31. For any ε < 1/3, to get within ε of the optimum loss on the dataset
in Table 2.4, AdaBoost takes at least 2/(9ε) steps.

Proof. Note that the optimal loss is 2/3, and we are bounding the number of rounds
necessary to get within (2/3) + ε loss for ε < 1/3. We will compute the edge in each
round analytically. Let wta, w

t
b, w

t
c denote the normalized-losses (adding up to 1) or

weights on examples a, b, c at the beginning of round t, ht the weak hypothesis chosen
in round t, and δt the edge in round t. The values of these parameters are shown
below for the first 5 rounds, where we have assumed (without loss of generality) that
the hypothesis picked in round 1 is ~b:

Round wta wtb wtc ht δt
t = 1 : 1/3 1/3 1/3 ~b 1/3
t = 2 : 1/2 1/4 1/4 ~a 1/2
t = 3 : 1/3 1/2 1/6 ~b 1/3
t = 4 : 1/2 3/8 1/8 ~a 1/4
t = 5 : 2/5 1/2 1/10 ~b 1/5.

Based on the patterns above, we first claim that for rounds t ≥ 2, the edge achieved
is 1/t. In fact we prove the stronger claims, that for rounds t ≥ 2, the following hold:

1. One of wta and wtb is 1/2.

2. δt+1 = δt/(1 + δt).

Since δ2 = 1/2, the recurrence on δt would immediately imply δt = 1/t for t ≥ 2.
We prove the stronger claims by induction on the round t. The base case for t = 2
is shown above and may be verified. Suppose the inductive assumption holds for
t. Assume without loss of generality that 1/2 = wta > wtb > wtc; note this implies
wtb = 1− (wta + wtc) = 1/2− wtc. Further, in this round, ~a gets picked, and has edge
δt = wta + wtc − wtb = 2wtc. Now for any dataset, the weights of the examples labeled
correctly and incorrectly in a round of AdaBoost are rescaled during the weight
update step in a way such that each add up to 1/2 after the rescaling. Therefore,

wt+1
b = 1/2, wt+1

c = wtc

(
1/2

wta+wtc

)
= wtc/(1 + 2wtc). Hence, ~b gets picked in round t+ 1

and, as before, we get edge δt+1 = 2wt+1
c = 2wtc/(1 + 2wtc) = δt/(1 + δt). The proof of

our claim follows by induction.
Next we find the loss after each iteration. Using δ1 = 1/3 and δt = 1/t for t ≥ 2,

the loss after T rounds can be written as

T∏
t=1

√
1− δ2

t =
√

1− (1/3)2

T∏
t=2

√
1− 1/t2 =

2
√

2

3

√√√√ T∏
t=2

(
t− 1

t

)(
t+ 1

t

)
.

34

The product can be rewritten as follows:

T∏
t=2

(
t− 1

t

)(
t+ 1

t

)
=

(
T∏
t=2

t− 1

t

)(
T∏
t=2

t+ 1

t

)
=

(
T∏
t=2

t− 1

t

)(
T+1∏
t=3

t

t− 1

)
.

Notice almost all the terms cancel, except for the first term of the first product, and
the last term of the second product. Therefore, the loss after T rounds is

2
√

2

3

√(
1

2

)(
T + 1

T

)
=

2

3

√
1 +

1

T
≥ 2

3

(
1 +

1

3T

)
=

2

3
+

2

9T
,

where the inequality holds for T ≥ 1. Since the initial error is 1 = (2/3) + 1/3,
therefore, for any ε < 1/3, the number of rounds needed to achieve loss (2/3) + ε is
at least 2/(9ε).

2.6.2 A useful technical result

Here we prove a technical result that was used for proving the various rate upper
bounds.

Lemma 2.32. Suppose u0, u1, . . . , are non-negative numbers satisfying

ut − ut+1 ≥ c0u
1+c1
t ,

for some non-negative constants c0, c1. Then, for any t,

1

uc1t
− 1

uc10

≥ c1c0t.

Proof. By induction on t. The base case is an identity. Assume the statement holds
at iteration t. Then,

1

uc1t+1

− 1

uc10

=

(
1

uc1t+1

− 1

uc1t

)
+

(
1

uc1t
− 1

uc10

)
≥ 1

uc1t+1

− 1

uc1t
+ c1c0t (by inductive hypothesis).

Thus it suffices to show 1/uc1t+1 − 1/uc1t ≥ c1c0. Multiplying both sides by uc1t and
adding 1, this is equivalent to showing (ut/ut+1)c1 ≥ 1 + c1c0u

c1
t . We will in fact show

the stronger inequality
(ut/ut+1)c1 ≥ (1 + c0u

c1
t)c1 . (2.9)

Since (1 + a)b ≥ 1 + ba for a, b non-negative, (2.9) will imply (ut/ut+1)c1 ≥
(1 + c0u

c1
t)c1 ≥ 1 + c1c0u

c1
t , which will complete our proof. To show (2.9), we first

rearrange the condition on ut, ut+1 to obtain

ut+1 ≤ ut (1− c0u
c1
t) =⇒ ut

ut+1

≥ 1

1− c0u
c1
t

.

35

Applying the fact (1 + c0u
c1
t) (1− c0u

c1
t) ≤ 1 to the previous equation we get,

ut
ut+1

≥ 1 + c0u
c1
t .

Since c1 ≥ 0, we may raise both sides of the above inequality to the power of c1 to
show (2.9), finishing our proof.

2.6.3 Proof of Lemma 2.25

In this section we prove Lemma 2.25, by separately bounding the quantities λ−1
min, γ−1

and µmax, through a sequence of Lemmas. We will use the next result repeatedly.

Lemma 2.33. If A is an n × n invertible matrix with −1, 0,+1 entries, then
minx:‖x‖=1‖Ax‖ is at least 1/n! = 2−O(n lnn).

Proof. It suffices to show that ‖A−1x‖ ≤ n! for any x with unit norm. Now
A−1 = adj(A)/ det(A) where adj(A) is the adjoint of A, whose i, j-th entry is the
i, jth cofactor of A (given by (−1)i+j times the determinant of the n − 1 × n − 1
matrix obtained by removing the ith row and jth column of A), and det(A) is
the determinant of A. The determinant of any k × k matrix G can be written as∑

σ sgn(σ)
∏k

i=1G(i, σ(j)), where σ ranges over all the permutations of 1, . . . , k.
Therefore each entry of adj(A) is at most (n− 1)!, and det(A) is a non-zero integer.
Therefore ‖A−1x‖ = ‖adj(A)x‖/ det(A) ≤ n!‖x‖, and the proof is complete.

We first show our bound holds for λmin.

Lemma 2.34. Suppose M has −1, 0,+1 entries, and let MF , λmin be as in Corol-
lary 2.23. Then λmin ≥ 1/m!.

Proof. Let A denote the matrix MF . It suffices to show that A does not squeeze too

much the norm of any vector orthogonal to the null-space ker A
M
= {η : Aη = 0} of

A, i.e. ‖Aλ‖ ≥ (1/m!)‖λ‖ for any λ ∈ ker A⊥. We first characterize ker A⊥ and
then study how A acts on this subspace.

Let the rank of A be k ≤ m (notice A = MF has N columns and fewer than m
rows). Without loss of generality, assume the first k columns of A are independent.
Then every column of A can be written as a linear combination of the first k columns
of A, and we have A = A′[I|B] (that is, the matrix A is the product of matrices A′

and [I|B]), where A′ is the submatrix consisting of the first k columns of A, I is the
k× k identity matrix, and B is some k× (N − k) matrix of linear combinations (here
| denotes concatenation). The null-space of A consists of x such that 0 = Ax =
A′[I|B]x = A′(xk + Bx−k), where xk is the first k coordinates of x, and x−k the
remaining N − k coordinates. Since the columns of A′ are independent, this happens
if and only if xk = −Bx−k. Therefore ker A =

{
(−Bz, z) : z ∈ RN−k}. Since a vector

x lies in the orthogonal subspace of ker A if it is orthogonal to every vector in the
latter, we have

ker A⊥ =
{

(xk,x−k) : 〈xk,Bz〉 = 〈x−k, z〉 , ∀z ∈ RN−K} .
36

We next see how A acts on this subspace. Recall A = A′[I|B] where A′ has k
independent columns. By basic linear algebra, the row rank of A′ is also k, and
assume without loss of generality that the first k rows of A′ are independent. Denote
by Ak the k × k submatrix of A′ formed by these k rows. Then for any vector x,

‖Ax‖ = ‖A′[I|B]x‖ = ‖A′(xk + Bx−k)‖ ≥ ‖Ak(xk + Bx−k)‖ ≥
1

k!
‖xk + Bx−k‖,

where the last inequality follows from Lemma 2.33. To finish the proof, it suffices to
show that ‖xk+Bx−k‖ ≥ ‖x‖ for x ∈ ker A⊥. Indeed, by expanding out ‖xk+Bx−k‖2

as inner product with itself, we have

‖xk + Bx−k‖2 = ‖xk‖2 + ‖Bx−k‖2 + 2 〈xk,Bx−k〉 ≥ ‖xk‖2 + 2‖x−k‖2 ≥ ‖x‖2,

where the first inequality follows since x ∈ ker A⊥ implies 〈xk,Bx−k〉 = 〈x−k,x−k〉.

To show the bounds on γ−1 and µmax, we will need an intermediate result.

Lemma 2.35. Suppose A is a matrix, and b a vector, both with −1, 0, 1 entries. If
Ax = b,x ≥ 0 is solvable, then there is a solution satisfying ‖x‖ ≤ k · k!, where
k = rank(A).

Proof. Pick a solution x with maximum number of zeroes. Let J be the set of
coordinates for which xi is zero. We first claim that there is no other solution x′

which is also zero on the set J . Suppose there were such an x′. Note any point p on
the infinite line joining x,x′ satisfies Ap = b, and pJ = 0 (that is, pi′ = 0 for i′ ∈ J).
If i is any coordinate not in J such that xi 6= x′i, then for some point pi along the
line, we have piJ∪{i} = 0. Choose i so that pi is as close to x as possible. Since x ≥ 0,

by continuity this would also imply that pi ≥ 0. But then pi is a solution with more
zeroes than x, a contradiction.

The claim implies that the reduced problem A′x̃ = b, x̃ ≥ 0, obtained by substi-
tuting xJ = 0, has a unique solution. Let k = rank(A′), Ak be a k × k submatrix
of A′ with full rank, and bk be the restriction of b to the rows corresponding to
those of Ak (note that A′, and hence Ak, contain only −1, 0,+1 entries). Then,
Akx̃ = bk, x̃ ≥ 0 is equivalent to the reduced problem. In particular, by uniqueness,
solving Akx̃ = bk automatically ensures the obtained x = (x̃,0J) is a non-negative
solution to the original problem, and satisfies ‖x‖ = ‖x̃‖. But, by Lemma 2.33,

‖x̃‖ ≤ k!‖Akx̃‖ = k!‖bk‖ ≤ k · k!.

The bound on γ−1 follows easily.

Lemma 2.36. Let γ,η† be as in Item 1 of Lemma 2.15. Then η† can be chosen such

that γ ≥ 1/
(√

Nm ·m!
)
≥ 2−O(m lnm).

37

Proof. We know that M(η†/γ) = b, where b is zero on the set F and at least
1 for every example in the zero loss set Z (as given by Item 1 of Lemma 2.15).
Since M is closed under complementing columns, we may assume in addition that
η† ≥ 0. Introduce slack variables zi for i ∈ Z, and let M̃ be M augmented with
the columns −ei for i ∈ Z, where ei is the standard basis vector with 1 on the ith
coordinate and zero everywhere else. Then, by setting z = M(η†/γ) − b, we have a
solution (η†/γ, z) to the system M̃x = b,x ≥ 0. Applying Lemma 2.35, we know
there exists some solution (y, z′) with norm at most m ·m! (here z′ corresponds to
the slack variables). Observe that y/‖y‖1 is a valid choice for η† yielding a γ of
1/‖y‖1 ≥ 1/(

√
Nm ·m!).

To show the bound for µmax we will need a version of Lemma 2.35 with strict
inequality.

Corollary 2.37. Suppose A is a matrix, and b a vector, both with −1, 0, 1 entries.
If Ax = b,x > 0 is solvable, then there is a solution satisfying ‖x‖ ≤ 1+k ·k!, where
k = rank(A).

Proof. Using Lemma 2.35, pick a solution to Ax = b,x ≥ 0 with norm at most k ·k!.
If x > 0, then we are done. Otherwise let y > 0 satisfy Ax = b, and consider the
segment joining x and y. Every point p on the segment satisfies Ap = b. Further
any coordinate becomes zero at most once on the segment. Therefore, there are
points arbitrarily close to x on the segment with positive coordinates that satisfy the
equation, and these have norms approaching that of x.

We next characterize the feature matrix MF restricted to the finite-loss examples,
which might be of independent interest.

Lemma 2.38. If MF is the feature matrix restricted to the finite-loss examples F
(as given by Item 2 of Lemma 2.15), then there exists a positive linear combination
y > 0 such that MT

Fy = 0.

Proof. Item 3 of the decomposition lemma states that whenever the loss `x(F) of a
vector is bounded by m, then the largest margin maxi∈F (MFx)i is at most µmax. This
implies that there is no vector x such that MFx ≥ 0 and at least one of the margins
(MFx)i is positive; otherwise, an arbitrarily large multiple of x would still have loss at
most m, but margin exceeding the constant µmax. In other words, MFx ≥ 0 implies
MFx = 0. In particular, the subspace of possible margin vectors

{
MFx : x ∈ RN

}
is

disjoint from the convex set ∆F of distributions over examples in F , which consists
of points in R|F | with all non-negative and at least one positive coordinates. By the
Hahn-Banach Separation theorem, there exists a hyperplane separating these two
bodies, i.e. there is a y ∈ R|F |, such that for any x ∈ RN and p ∈ ∆F , we have
〈y,MFx〉 ≤ 0 < 〈y,p〉. By choosing p = ei for various i ∈ F , the second inequality
yields y > 0. Since MFx = −MF (−x), the first inequality implies that equality
holds for all x, i.e. yTMF = 0T .

We can finally upper-bound µmax.

38

Lemma 2.39. Let F, µmax be as in Items 2,3 of the decomposition lemma. Then
µmax ≤ lnm · |F |1.5 · |F |! ≤ 2O(m lnm).

Proof. Pick any example i ∈ F and any combination λ whose loss on F ,
∑

i∈F e
−(Mλ)i ,

is at most m. Let b be the ith row of M, and let AT be the matrix MF with-
out the ith row. Then Lemma 2.38 says that Ay = −b for some positive vector
y > 0. This implies the margin of λ on example i is (Mλ)i = −yTATλ. Since
the loss of λ on F is at most m, each margin on F is at least − lnm, and there-
fore maxi∈F

(
−ATλ

)
i
≤ lnm. Hence, the margin on example i can be bounded as

(Mλ)i =
〈
yT ,−ATλ

〉
≤ lnm‖y‖1. Using Corollary 2.37, we can find y with bounded

norm, ‖y‖1 ≤
√
|F |‖y‖ ≤

√
|F |(1 + k · k!) , where k = rank(A) ≤ rank(MF) ≤ |F |.

The proof follows.

39

Chapter 3

A Theory of Multiclass Boosting

3.1 Introduction

Boosting [46] refers to a general technique of combining rules of thumb, or weak clas-
sifiers, to form highly accurate combined classifiers. Minimal demands are placed on
the weak classifiers, so that a variety of learning algorithms, also called weak-learners,
can be employed to discover these simple rules, making the algorithm widely applica-
ble. The theory of boosting is well-developed for the case of binary classification. In
particular, the exact requirements on the weak classifiers in this setting are known:
any algorithm that predicts better than random on any distribution over the training
set is said to satisfy the weak learning assumption. Further, boosting algorithms that
minimize loss as efficiently as possible have been designed. Specifically, it is known
that the Boost-by-majority [17] algorithm is optimal in a certain sense, and that
AdaBoost [23] is a practical approximation.

Such an understanding would be desirable in the multiclass setting as well, since
many natural classification problems involve more than two labels, e.g. recognizing a
digit from its image, natural language processing tasks such as part-of-speech tagging,
and object recognition in vision. However, for such multiclass problems, a complete
theoretical understanding of boosting is lacking. In particular, we do not know the
“correct” way to define the requirements on the weak classifiers, nor has the notion
of optimal boosting been explored in the multiclass setting.

Straightforward extensions of the binary weak-learning condition to multiclass do
not work. Requiring less error than random guessing on every distribution, as in
the binary case, turns out to be too weak for boosting to be possible when there
are more than two labels. On the other hand, requiring more than 50% accuracy
even when the number of labels is much larger than two is too stringent, and simple
weak classifiers like decision stumps fail to meet this criterion, even though they
often can be combined to produce highly accurate classifiers [21]. The most common
approaches so far have relied on reductions to binary classification [3], but it is hardly
clear that the weak-learning conditions implicitly assumed by such reductions are the
most appropriate.

40

The purpose of a weak-learning condition is to clarify the goal of the weak-learner,
thus aiding in its design, while providing a specific minimal guarantee on performance
that can be exploited by a boosting algorithm. These considerations may significantly
impact learning and generalization because knowing the correct weak-learning condi-
tions might allow the use of simpler weak classifiers, which in turn can help prevent
overfitting. Furthermore, boosting algorithms that more efficiently and effectively
minimize training error may prevent underfitting, which can also be important.

In this chapter, we create a broad and general framework for studying multiclass
boosting that formalizes the interaction between the boosting algorithm and the weak-
learner. Unlike much, but not all, of the previous work on multiclass boosting, we
focus specifically on the most natural, and perhaps weakest, case in which the weak
classifiers are genuine classifiers in the sense of predicting a single multiclass label
for each instance. Our new framework allows us to express a range of weak-learning
conditions, both new ones and most of the ones that had previously been assumed
(often only implicitly). Within this formalism, we can also now finally make precise
what is meant by correct weak-learning conditions that are neither too weak nor too
strong.

We focus particularly on a family of novel weak-learning conditions that have an
especially appealing form: like the binary conditions, they require performance that
is only slightly better than random guessing, though with respect to performance
measures that are more general than ordinary classification error. We introduce a
whole family of such conditions since there are many ways of randomly guessing on
more than two labels, a key difference between the binary and multiclass settings.
Although these conditions impose seemingly mild demands on the weak-learner, we
show that each one of them is powerful enough to guarantee boostability, meaning that
some combination of the weak classifiers has high accuracy. And while no individual
member of the family is necessary for boostability, we also show that the entire family
taken together is necessary in the sense that for every boostable learning problem,
there exists one member of the family that is satisfied. Thus, we have identified
a family of conditions which, as a whole, is necessary and sufficient for multiclass
boosting. Moreover, we can combine the entire family into a single weak-learning
condition that is necessary and sufficient by taking a kind of union, or logical or, of
all the members. This combined condition can also be expressed in our framework.

With this understanding, we are able to characterize previously studied weak-
learning conditions. In particular, the condition implicitly used by AdaBoost.MH [47],
which is based on a one-against-all reduction to binary, turns out to be strictly
stronger than necessary for boostability. This also applies to AdaBoost.M1 [21], the
most direct generalization of AdaBoost to multiclass, whose conditions can be shown
to be equivalent to those of AdaBoost.MH in our setting. On the other hand, the
condition implicit to the SAMME algorithm by Zhu et al [57] is too weak in the sense
that even when the condition is satisfied, no boosting algorithm can guarantee to drive
down the training error. Finally, the condition implicit to AdaBoost.MR [47, 21] (also
called AdaBoost.M2) turns out to be exactly necessary and sufficient for boostability.

Employing proper weak-learning conditions is important, but we also need boost-
ing algorithms that can exploit these conditions to effectively drive down error. For

41

a given weak-learning condition, the boosting algorithm that drives down training
error most efficiently in our framework can be understood as the optimal strategy for
playing a certain two-player game. These games are non-trivial to analyze. However,
using the powerful machinery of drifting games [20, 44], we are able to compute the
optimal strategy for the games arising out of each weak-learning condition in the
family described above. Compared to earlier work, our optimality results hold more
generally and also achieve tighter bounds. These optimal strategies have a natural
interpretation in terms of random walks, a phenomenon that has been observed in
other settings [2, 17].

We also analyze the optimal boosting strategy when using the minimal weak learn-
ing condition, and this poses additional challenges. Firstly, the minimal weak learning
condition has multiple natural formulations — e.g., as the union of all the conditions
in the family described above, or the formulation used in AdaBoost.MR — and each
formulation leading to a different game specification. A priori, it is not clear which
game would lead to the best strategy. We resolve this dilemma by proving that the
optimal strategies arising out of different formulations of the same weak learning con-
dition lead to algorithms that are essentially equally good, and therefore we are free
to choose whichever formulation leads to an easier analysis without fear of suffering in
performance. We choose the union of conditions formulation, since it leads to strate-
gies that share the same interpretation in terms of random walks as before. However,
even with this choice, the resulting games are hard to analyze, and although we can
explicitly compute the optimum strategies in general, the computational complexity
is usually exponential. Nevertheless, we identify key situations under which efficient
computation is possible.

The game-theoretic strategies are non-adaptive in that they presume prior knowl-
edge about the edge, that is, how much better than random are the weak classifiers.
Algorithms that are adaptive, such as AdaBoost, are much more practical because
they do not require such prior information. We show therefore how to derive an
adaptive boosting algorithm by modifying the game-theoretic strategy based on the
minimal condition. This algorithm enjoys a number of theoretical guarantees. Un-
like some of the non-adaptive strategies, it is efficiently computable, and since it is
based on the minimal weak learning condition, it makes minimal assumptions. In
fact, whenever presented with a boostable learning problem, this algorithm can ap-
proach zero training error at an exponential rate. More importantly, the algorithm is
effective even beyond the boostability framework. In particular, we show empirical
consistency, i.e., the algorithm always converges to the minimum of a certain exponen-
tial loss over the training data, whether or not the dataset is boostable. Furthermore,
using the results in [35] we can show that this convergence occurs rapidly.

Our focus in this chapter is only on minimizing training error, which, for the
algorithms we derive, provably decreases exponentially fast with the number of rounds
of boosting under boostability assumptions. Such results can be used in turn to derive
bounds on the generalization error using standard techniques that have been applied
to other boosting algorithms [49, 23, 27]. Consistency in the multiclass classification
setting has been studied by Tewari and Bartlett [53] and has been shown to be trickier
than binary classification consistency. Nonetheless, by following the approach in [4]

42

for showing consistency in the binary setting, we are able to extend the empirical
consistency guarantees to general consistency guarantees in the multiclass setting: we
show that under certain conditions and with sufficient data, our adaptive algorithm
approaches the Bayes-optimum error on the test dataset.

We present experiments aimed at testing the efficacy of the adaptive algorithm
when working with a very weak weak-learner to check that the conditions we have
identified are indeed weaker than others that had previously been used. We find that
our new adaptive strategy achieves low test error compared to other multiclass boost-
ing algorithms which usually heavily underfit. This validates the potential practical
benefit of a better theoretical understanding of multiclass boosting.

Previous work. The first boosting algorithms were given by Schapire [42] and
Freund [17], followed by their AdaBoost algorithm [23]. Multiclass boosting tech-
niques include AdaBoost.M1 and AdaBoost.M2 [23], as well as AdaBoost.MH and
AdaBoost.MR [47]. Other approaches include the work by Eibl and Pfeiffer [15], Zhu
et al [57]. There are also more general approaches that can be applied to boosting
including [3, 6, 14, 26]. Two game-theoretic perspectives have been applied to boost-
ing. The first one [22, 37] views the weak-learning condition as a minimax game,
while drifting games [44, 17] were designed to analyze the most efficient boosting al-
gorithms. These games have been further analyzed in the multiclass and continuous
time setting in [20].

3.2 Framework

We introduce some notation. Unless otherwise stated, matrices will be denoted by
bold capital letters like M, and vectors by bold small letters like v. Entries of a
matrix and vector will be denoted as M(i, j) or v(i), while M(i) will denote the
ith row of a matrix. Inner product of two vectors u,v is denoted by 〈u,v〉. The
Frobenius inner product of two matrices Tr(MM′) will be denoted by M •M′, where
M′ is the transpose of M. The indicator function is denoted by 1 [·]. The set of all
distributions over the set {1, . . . , k} will be denoted by ∆ {1, . . . , k}, and in general,
the set of all distributions over any set S will be denoted by ∆(S).

In multiclass classification, we want to predict the labels of examples lying in some
set X. We are provided a training set of labeled examples {(x1, y1), . . . , (xm, ym)},
where each example xi ∈ X has a label yi in the set {1, . . . , k}.

Boosting combines several mildly powerful predictors, called weak classifiers, to
form a highly accurate combined classifier, and has been previously applied for multi-
class classification. In this chapter, we only allow weak classifier that predict a single
class for each example. This is appealing, since the combined classifier has the same
form, although it differs from what has been used in much previous work. Later we
will expand our framework to include multilabel weak classifiers, that may predict
multiple labels per example.

We adopt a game-theoretic view of boosting. A game is played between two
players, Booster and Weak-Learner, for a fixed number of rounds T . With binary
labels, Booster outputs a distribution in each round, and Weak-Learner returns a

43

weak classifier achieving more than 50% accuracy on that distribution. The multiclass
game is an extension of the binary game. In particular, in each round t:

• Booster creates a cost-matrix Ct ∈ Rm×k, specifying to Weak-Learner that
the cost of classifying example xi as l is Ct(i, l). The cost-matrix may not be
arbitrary, but should conform to certain restrictions as discussed below.

• Weak-Learner returns some weak classifier ht : X → {1, . . . , k} from a fixed
space ht ∈ H so that the cost incurred is

Ct • 1ht =
m∑
i=1

Ct(i, ht(xi)),

is “small enough”, according to some conditions discussed below. Here by 1h
we mean the m× k matrix whose (i, j)-th entry is 1 [h(i) = j].

• Booster computes a weight αt for the current weak classifier based on how much
cost was incurred in this round.

At the end, Booster predicts according to the weighted plurality vote of the clas-
sifiers returned in each round:

H(x)
M
= argmax

l∈{1,...,k}
fT (x, l), where fT (x, l)

M
=

T∑
t=1

1 [ht(x) = l]αt. (3.1)

By carefully choosing the cost matrices in each round, Booster aims to minimize
the training error of the final classifier H, even when Weak-Learner is adversarial.
The restrictions on cost-matrices created by Booster, and the maximum cost Weak-
Learner can suffer in each round, together define the weak-learning condition being
used. For binary labels, the traditional weak-learning condition states: for any non-
negative weights w(1), . . . , w(m) on the training set, the error of the weak classifier
returned is at most (1/2 − γ/2)

∑
iwi. Here γ parametrizes the condition. There

are many ways to translate this condition into our language. The one with fewest
restrictions on the cost-matrices requires labeling correctly should be less costly than
labeling incorrectly:

∀i : C(i, yi) ≤ C(i, ȳi) (here ȳi 6= yi is the other binary label),

while the restriction on the returned weak classifier h requires less cost than predicting
randomly: ∑

i

C(i, h(xi)) ≤
∑
i

{(
1

2
− γ

2

)
C(i, ȳi) +

(
1

2
+
γ

2

)
C(i, yi)

}
.

By the correspondence w(i) = C(i, ȳi) − C(i, yi), we may verify the two conditions
are the same.

44

We will rewrite this condition after making some simplifying assumptions. Hence-
forth, without loss of generality, we assume that the true label is always 1. Let
Cbin ⊆ Rm×2 consist of matrices C which satisfy C(i, 1) ≤ C(i, 2). Further, let
Ubin
γ ∈ Rm×2 be the matrix whose each row is (1/2 + γ/2, 1/2− γ/2). Then, Weak-

Learner searching space H satisfies the binary weak-learning condition if: ∀C ∈
Cbin,∃h ∈ H : C •

(
1h −Ubin

γ

)
≤ 0. There are two main benefits to this reformula-

tion. With linear homogeneous constraints, the mathematics is simplified, as will be
apparent later. More importantly, by varying the restrictions Cbin on the cost vectors
and the matrix Ubin, we can generate a vast variety of weak-learning conditions for
the multiclass setting k ≥ 2 as we now show.

Let C ⊆ Rm×k and let B ∈ Rm×k be a matrix which we call the baseline. We say
a weak classifier space H satisfies the condition (C,B) if

∀C ∈ C,∃h ∈ H : C • (1h −B) ≤ 0, i.e.,
m∑
i=1

C(i, h(i)) ≤
m∑
i=1

〈C(i),B(i)〉 .(3.2)

In (3.2), the variable matrix C specifies how costly each misclassification is, while the
baseline B specifies a weight for each misclassification. The condition therefore states
that a weak classifier should not exceed the average cost when weighted according
to baseline B. This large class of weak-learning conditions captures many previously
used conditions, such as the ones used by AdaBoost.M1 [21], AdaBoost.MH [47] and
AdaBoost.MR [21, 47] (see below), as well as novel conditions introduced in the next
section.

By studying this vast class of weak-learning conditions, we hope to find the one
that will serve the main purpose of the boosting game: finding a convex combination
of weak classifiers that has zero training error. For this to be possible, at the minimum
the weak classifiers should be sufficiently rich for such a perfect combination to exist.
Formally, a collection H of weak classifiers is boostable if it is eligible for boosting in
the sense that there exists a distribution λ on this space that linearly separates the
data: ∀i : argmaxl∈{1,...,k}

∑
h∈H λ(h)1 [h(xi) = l] = yi. The weak-learning condition

plays two roles. It rejects spaces that are not boostable, and provides an algorithmic
means of searching for the right combination. Ideally, the second factor will not cause
the weak-learning condition to impose additional restrictions on the weak classifiers;
in that case, the weak-learning condition is merely a reformulation of being boostable
that is more appropriate for deriving an algorithm. In general, it could be too strong,
i.e. certain boostable spaces will fail to satisfy the conditions. Or it could be too weak
i.e., non-boostable spaces might satisfy such a condition. Booster strategies relying on
either of these conditions will fail to drive down error, the former due to underfitting,
and the latter due to overfitting. Later we will describe conditions captured by our
framework that avoid being too weak or too strong. But before that, we show in the
next section how our flexible framework captures weak learning conditions that have
appeared previously in the literature.

45

3.3 Old conditions

In this section, we rewrite, in the language of our framework, the weak learning
conditions explicitly or implicitly employed in the multiclass boosting algorithms
SAMME [57], AdaBoost.M1 [21], and AdaBoost.MH and AdaBoost.MR [47]. This
will be useful later on for comparing the strengths and weaknesses of the various
conditions. We will end this section with a curious equivalence between the conditions
of AdaBoost.MH and AdaBoost.M1.

Recall that we have assumed the correct label is 1 for every example. Nevertheless,
we continue to use yi to denote the correct label in this section.

3.3.1 Old conditions in the new framework

Here we restate, in the language of our new framework, the weak learning conditions
of four algorithms that have earlier appeared in the literature.

SAMME. The SAMME algorithm [57] requires less error than random guessing on
any distribution on the examples. Formally, a space H satisfies the condition if there
is a γ′ > 0 such that,

∀d(1), . . . , d(m) ≥ 0,∃h ∈ H :
m∑
i=1

d(i)1 [h(xi) 6= yi] ≤ (1− 1/k − γ′)
m∑
i=1

d(i). (3.3)

Define a cost matrix C whose entries are given by

C(i, j) =

{
d(i) if j 6= yi,

0 if j = yi.

Then the left hand side of (3.3) can be written as

m∑
i=1

C(i, h(xi)) = C • 1h.

Next let γ = (1 − 1/k)γ′ and define baseline Uγ to be the multiclass extension of
Ubin,

Uγ(i, l) =

{
(1−γ)
k

+ γ if l = yi,
(1−γ)
k

if l 6= yi.

Then the right hand side of (3.3) can be written as

m∑
i=1

∑
l 6=yi

C(i, l)Uγ(i, l) = C •Uγ,

46

since C(i, yi) = 0 for every example i. Define CSAM to be the following collection of
cost matrices:

CSAM M
=

{
C : C(i, l) =

{
0 if l = yi,

ti if l 6= yi,
for non-negative t1, . . . , tm.

}

Using the last two equations, (3.3) is equivalent to

∀C ∈ CSAM,∃h ∈ H : C •
(
1h −Uγ

)
≤ 0.

Therefore, the weak-learning condition of SAMME is given by (CSAM,Uγ).

AdaBoost.M1 AdaBoost.M1 [23] measures the performance of weak classifiers us-
ing ordinary error. It requires 1/2 + γ/2 accuracy with respect to any non-negative
weights d(1), . . . , d(m) on the training set:

m∑
i=1

d(i)1 [h(xi) 6= yi] ≤ (1/2− γ/2)
m∑
i=1

d(i), (3.4)

i.e.
m∑
i=1

d(i)Jh(xi) 6= yiK ≤ −γ
m∑
i=1

d(i).

where J·K is the ±1 indicator function, taking value +1 when its argument is true,
and −1 when false. Using the transformation

C(i, l) = Jl 6= yiKd(i) (3.5)

we may rewrite (3.5) as

∀C ∈ Rm×k satisfying 0 ≤ −C(i, yi) = C(i, l) for l 6= yi, (3.6)

∃h ∈ H :
m∑
i=1

C(i, h(xi)) ≤ γ
m∑
i=1

C(i, yi)

i.e. ∀C ∈ CM1,∃h ∈ H : C •
(
1h −BM1

γ

)
≤ 0, (3.7)

where BM1
γ (i, l) = γ1 [l = yi], and CM1 ⊆ Rm×k consists of matrices satisfying the

constraints in (3.6).

AdaBoost.MH AdaBoost.MH [47] is a popular multiclass boosting algorithm that
is based on the one-against-all reduction, and was originally designed to use weak-
hypotheses that return a prediction for every example and every label. The implicit
weak learning condition requires that for any matrix with non-negative entries d(i, l),

47

the weak-hypothesis should achieve 1/2 + γ accuracy

m∑
i=1

{
1 [h(xi) 6= yi] d(i, yi) +

∑
l 6=yi

1 [h(xi) = l] d(i, l)

}
≤

(
1

2
− γ

2

) m∑
i=1

k∑
l=1

d(i, l).

(3.8)

This can be rewritten as

m∑
i=1

{
−1 [h(xi) = yi] d(i, yi) +

∑
l 6=yi

1 [h(xi) = l] d(i, l)

}

≤
m∑
i=1

{(
1

2
− γ

2

)∑
l 6=yi

d(i, l)−
(

1

2
+
γ

2

)
d(i, yi)

}
.

Using the mapping

C(i, l) =

{
d(i, l) if l 6= yi

−d(i, l) if l = yi,

their weak-learning condition may be rewritten as follows

∀C ∈ Rm×k satisfying C(i, yi) ≤ 0, C(i, l) ≥ 0 for l 6= yi, (3.9)

∃h ∈ H :
m∑
i=1

C(i, h(xi)) ≤
m∑
i=1

{(
1

2
+
γ

2

)
C(i, yi) +

(
1

2
− γ

2

)∑
l 6=yi

C(i, l)

}
. (3.10)

Defining CMH to be the space of all cost matrices satisfying the constraints in (3.9),
the above condition is the same as

∀C ∈ CMH,∃h ∈ H : C •
(
1h −BMH

γ

)
≤ 0,

where BMH
γ (i, l) = (1/2 + γJl = yiK/2).

AdaBoost.MR AdaBoost.MR [47] is based on the all-pairs multiclass to binary
reduction. Like AdaBoost.MH, it was originally designed to use weak-hypotheses that
return a prediction for every example and every label. The weak learning condition
for AdaBoost.MR requires that for any non-negative cost-vectors {d(i, l)}l 6=yi , the
weak-hypothesis returned should satisfy the following:

m∑
i=1

∑
l 6=yi

(1 [h(xi) = l]− 1 [h(xi) = yi]) d(i, l) ≤ −γ
m∑
i=1

∑
l 6=yi

d(i, l)

i.e.
m∑
i=1

{
−1 [h(xi) = yi]

∑
l 6=yi

d(i, l) +
∑
l 6=yi

1 [h(xi) = l] d(i, l)

}
≤ −γ

m∑
i=1

∑
l 6=yi

d(i, l).

48

Substituting

C(i, l) =

{
d(i, l) l 6= yi

−
∑

l 6=yi d(i, l) l = yi,

we may rewrite AdaBoost.MR’s weak-learning condition as

∀C ∈ Rm×k satisfying C(i, l) ≥ 0 for l 6= yi, C(i, yi) = −
∑
l 6=yi

C(i, l), (3.11)

∃h ∈ H :
m∑
i=1

C(i, h(xi)) ≤ −
γ

2

m∑
i=1

{
−C(i, yi) +

∑
l 6=yi

C(i, l)

}
.

Defining CMR to be the collection of cost matrices satisfying the constraints in (3.11),
the above condition is the same as

∀C ∈ CMR,∃h ∈ H : C •
(
1h −BMR

γ

)
≤ 0,

where BMR
γ (i, l) = Jl = yiKγ/2.

3.3.2 A curious equivalence

We show that the weak learning conditions of AdaBoost.MH and AdaBoost.M1 are
identical in our framework. This is surprising because the original motivations behind
these algorithms were completely different. AdaBoost.M1 is a direct extension of
binary AdaBoost to the multiclass setting, whereas AdaBoost.MH is based on the one-
against-all multiclass to binary reduction. This equivalence is a sort of degeneracy,
and arises because the weak classifiers being used predict single labels per example.
With multilabel weak classifiers, for which AdaBoost.MH was originally designed, the
equivalence no longer holds.

The proofs in this and later sections will make use of the following minimax result,
that is a weaker version of Corollary 37.3.2 of [40].

Theorem 3.1. (Minimax Theorem) Let C,D be non-empty closed convex subsets of
Rm,Rn respectively, and let K be a linear function on C × D. If either C or D is
bounded, then

min
v∈D

max
u∈C

K(u, v) = max
u∈C

min
v∈D

K(u, v).

Lemma 3.2. A weak classifier space H satisfies (CM1,BM1
γ) if and only if it satisfies

(CMH,BMH
γ).

Proof. We will refer to (CM1,BM1
γ) by M1 and (CMH,BMH

γ) by MH for brevity. The
proof is in three steps.

Step (i): If H satisfies MH, then it also satisfies M1. This follows since any
constraint (3.4) imposed by M1 on H can be reproduced by MH by plugging the

49

following values of d(i, l) in (3.8)

d(i, l) =

{
d(i) if l = yi

0 if l 6= yi.

Step (ii): IfH satisfies M1, then there is a convex combination Hλ∗ of the matrices
1h ∈ H, defined as

Hλ∗
M
=
∑
h∈H

λ∗(h)1h,

such that

∀i :
(
Hλ∗ −BMH

γ

)
(i, l)

{
≥ 0 if l = yi

≤ 0 if l 6= yi.
(3.12)

Indeed, Theorem 3.1 yields

min
λ∈∆(H)

max
C∈CM1

C •
(
Hλ −BM1

γ

)
= max

C∈CM1
min
h∈H

C •
(
1h −BM1

γ

)
≤ 0, (3.13)

where the inequality is a restatement of our assumption that H satisfies M1. If λ∗ is
a minimizer of the minimax expression, then Hλ∗ must satisfy

∀i : Hλ∗(i, l)

{
≥ 1

2
+ γ

2
if l = yi

≤ 1
2
− γ

2
if l 6= yi,

(3.14)

or else some choice of C ∈ CM1 can cause C•
(
Hλ∗ −BM1

)
to exceed 0. In particular,

if Hλ∗(i0, l) < 1/2 + γ/2, then(
Hλ∗ −BM1

γ

)
(i0, yi0) <

∑
l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l).

Now, if we choose C ∈ CM1 as

C(i, l) =

0 if i 6= i0

1 if i = i0, l 6= yi0
−1 if i = i0, l = yi0 ,

then,

C •
(
Hλ∗ −BM1

γ

)
= −

(
Hλ∗ −BM1

γ

)
(i0, yi0) +

∑
l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l) > 0,

50

contradicting the inequality in (3.13). Therefore (3.14) holds. Eqn. (3.12), and thus
Step (ii), now follows by observing that BMH

γ , by definition, satisfies

∀i : BMH
γ (i, l) =

{
1
2

+ γ
2

if l = yi
1
2
− γ

2
if l 6= yi.

Step (iii) If there is some convex combination Hλ∗ satisfying (3.12), then H sat-
isfies MH. Recall that BMH consists of entries that are non-positive on the correct
labels and non-negative for incorrect labels. Therefore, (3.12) implies

0 ≥ max
C∈CMH

C •
(
Hλ∗ −BMH

γ

)
≥ min

λ∈∆(H)
max

C∈CMH
C •

(
Hλ −BMH

γ

)
.

On the other hand, using Theorem 3.1 we have

min
λ∈∆(H)

max
C∈CMH

C •
(
Hλ −BMH

γ

)
= max

C∈CMH
min
h∈H

C •
(
1h −BMH

γ

)
.

Combining the two, we get

0 ≥ max
C∈CMH

min
h∈H

C •
(
1h −BMH

γ

)
,

which is the same as saying that H satisfies MH’s condition.
Steps (ii) and (iii) together imply that if H satisfies M1, then it also satisfies MH.

Along with Step (i), this concludes the proof.

3.4 Necessary and sufficient weak-learning condi-

tions

The binary weak-learning condition has an appealing form: for any distribution over
the examples, the weak classifier needs to achieve error not greater than that of
a random player who guesses the correct answer with probability 1/2 + γ/2. Fur-
ther, this is the weakest condition under which boosting is possible as follows from a
game-theoretic perspective [22, 37] . Multiclass weak-learning conditions with similar
properties are missing in the literature. In this section we show how our framework
captures such conditions.

3.4.1 Edge-over-random conditions

In the multiclass setting, we model a random player as a baseline predictor B ∈ Rm×k

whose rows are distributions over the labels, B(i) ∈ ∆ {1, . . . , k}. The prediction on
example i is a sample from B(i). We only consider the space of edge-over-random
baselines Beor

γ ⊆ Rm×k who have a faint clue about the correct answer. More precisely,
any baseline B ∈ Beor

γ in this space is γ more likely to predict the correct label than an
incorrect one on every example i: ∀l 6= 1, B(i, 1) ≥ B(i, l) + γ, with equality holding

51

for some l, i.e.:
B(i, 1) = max {B(i, l) + γ : l 6= 1} .

Notice that the edge-over-random baselines are different from the baselines used by
earlier weak learning conditions discussed in the previous section.

When k = 2, the space Beor
γ consists of the unique player Ubin

γ , and the binary
weak-learning condition is given by (Cbin,Ubin

γ). The new conditions generalize this
to k > 2. In particular, define Ceor to be the multiclass extension of Cbin: any cost-
matrix in Ceor should put the least cost on the correct label, i.e., the rows of the
cost-matrices should come from the set

{
c ∈ Rk : ∀l, c(1) ≤ c(l)

}
. Then, for every

baseline B ∈ Beor
γ , we introduce the condition (Ceor,B), which we call an edge-over-

random weak-learning condition. Since C •B is the expected cost of the edge-over-
random baseline B on matrix C, the constraints (3.2) imposed by the new condition
essentially require better than random performance.

Also recall that we have assumed that the true label yi of example i in our training
set is always 1. Nevertheless, we may occasionally continue to refer to the true labels
as yi.

We now present the central results of this section. The seemingly mild edge-over-
random conditions guarantee boostability, meaning weak classifiers that satisfy any
one such condition can be combined to form a highly accurate combined classifier.

Theorem 3.3 (Sufficiency). If a weak classifier space H satisfies a weak-learning
condition (Ceor,B), for some B ∈ Beor

γ , then H is boostable.

Proof. The proof is in the spirit of the ones in [22]. Applying Theorem 3.1 yields

0 ≥ max
C∈Ceor

min
h∈H

C • (1h −B) = min
λ∈∆(H)

max
C∈Ceor

C • (Hλ −B) ,

where the first inequality follows from the definition (3.2) of the weak-learning con-
dition. Let λ∗ be a minimizer of the min-max expression. Unless the first entry of
each row of (Hλ∗ −B) is the largest, the right hand side of the min-max expression
can be made arbitrarily large by choosing C ∈ Ceor appropriately. For example, if in
some row i, the jth

0 element is strictly larger than the first element, by choosing

C(i, j) =

−1 if j = 1

1 if j = j0

0 otherwise,

we get a matrix in Ceor which causes C•(Hλ∗ −B) to be equal to C(i, j0)−C(i, 1) > 0,
an impossibility by the first inequality.

Therefore, the convex combination of the weak classifiers, obtained by choosing
each weak classifier with weight given by λ∗, perfectly classifies the training data, in
fact with a margin γ.

On the other hand, the family of such conditions, taken as a whole, is necessary
for boostability in the sense that every eligible space of weak classifiers satisfies some
edge-over-random condition.

52

Theorem 3.4 (Relaxed necessity). For every boostable weak classifier space H, there
exists a γ > 0 and B ∈ Beor

γ such that H satisfies the weak-learning condition (Ceor,B).

Proof. The proof shows existence through non-constructive averaging arguments. We
will reuse notation from the proof of Theorem 3.3 above. H is boostable implies there
exists some distribution λ∗ ∈ ∆(H) such that

∀j 6= 1, i : Hλ∗(i, 1)−Hλ∗(i, j) > 0.

Let γ > 0 be the minimum of the above expression over all possible (i, j), and let
B = Hλ∗ . Then B ∈ Beor

γ , and

max
C∈Ceor

min
h∈H

C • (1h −B) ≤ min
λ∈∆(H)

max
C∈Ceor

C • (Hλ −B) ≤ max
C∈Ceor

C • (Hλ∗ −B) = 0,

where the equality follows since by definition Hλ∗ −B = 0. The max-min expression
is at most zero is another way of saying that H satisfies the weak-learning condition
(Ceor,B) as in (3.2).

Theorem 3.4 states that any boostable weak classifier space will satisfy some con-
dition in our family, but it does not help us choose the right condition. Experiments
in Section 3.10 suggest

(
Ceor,Uγ

)
is effective with very simple weak-learners compared

to popular boosting algorithms. (Recall Uγ ∈ Beor
γ is the edge-over-random baseline

closest to uniform; it has weight (1 − γ)/k on incorrect labels and (1 − γ)/k + γ on
the correct label.) However, there are theoretical examples showing each condition in
our family is too strong.

Theorem 3.5. For any B ∈ Beor
γ , there exists a boostable space H that fails to satisfy

the condition (Ceor,B).

Proof. We provide, for any γ > 0 and edge-over-random baseline B ∈ Beor
γ , a dataset

and weak classifier space that is boostable but fails to satisfy the condition (Ceor,B).
Pick γ′ = γ/k and set m > 1/γ′ so that bm(1/2 + γ′)c > m/2. Our dataset

will have m labeled examples {(0, y0), . . . , (m− 1, ym−1)}, and m weak classifiers. We
want the following symmetries in our weak classifiers:

• Each weak classifier correctly classifies bm(1/2+γ′)c examples and misclassifies
the rest.

• On each example, bm(1/2 + γ′)c weak classifiers predict correctly.

Note the second property implies boostability, since the uniform convex combination
of all the weak classifiers is a perfect predictor.

The two properties can be satisfied by the following design. A window is a con-
tiguous sequence of examples that may wrap around; for example

{i, (i+ 1) mod m, . . . , (i+ k) mod m}

is a window containing k elements, which may wrap around if i + k ≥ m. For each
window of length bm(1/2 + γ′)c create a hypothesis that correctly classifies within

53

the window, and misclassifies outside. This weak-hypothesis space has size m, and
has the required properties.

We still have flexibility as to how the misclassifications occur, and which cost-
matrix to use, which brings us to the next two choices:

• Whenever a hypothesis misclassifies on example i, it predicts label

ŷi
M
= argmin {B(i, l) : l 6= yi} . (3.15)

• A cost-matrix is chosen so that the cost of predicting ŷi on example i is 1, but
for any other prediction the cost is zero. Observe this cost-matrix belongs to
Ceor.

Therefore, every time a weak classifier predicts incorrectly, it also suffers cost 1. Since
each weak classifier predicts correctly only within a window of length bm(1/2 + γ′)c,
it suffers cost dm(1/2− γ′)e. On the other hand, by the choice of ŷi in (3.15),

B(i, ŷi) = min {B(i, 1)− γ,B(i, 2), . . . , B(i, k)}

≤ 1

k
{B(i, 1)− γ +B(i, 2) +B(i, 3) + . . .+B(i, k)}

= 1/k − γ/k.

So the cost of B on the chosen cost-matrix is at most m(1/k−γ/k), which is less than
the cost dm(1/2 − γ′)e ≥ m(1/2 − γ/k) of any weak classifier whenever the number
of labels k is more than two. Hence our boostable space of weak classifiers fails to
satisfy (Ceor,B).

Theorems 3.4 and 3.5 can be interpreted as follows. While a boostable space
will satisfy some edge-over-random condition, without further information about the
dataset it is not possible to know which particular condition will be satisfied. The kind
of prior knowledge required to make this guess correctly is provided by Theorem 3.3:
the appropriate weak learning condition is determined by the distribution of votes on
the labels for each example that a target weak classifier combination might be able
to get. Even with domain expertise, such knowledge may or may not be obtainable
in practice before running boosting. We therefore need conditions that assume less.

3.4.2 The minimal weak learning condition

A perhaps extreme way of weakening the condition is by requiring the performance
on a cost matrix to be competitive not with a fixed baseline B ∈ Beor

γ , but with the
worst of them:

∀C ∈ Ceor,∃h ∈ H : C • 1h ≤ max
B∈Beor

γ

C •B. (3.16)

Condition (3.16) states that during the course of the same boosting game, Weak-
Learner may choose to beat any edge-over-random baseline B ∈ Beor

γ , possibly a
different one for every round and every cost-matrix. This may superficially seem much

54

too weak. On the contrary, this condition turns out to be equivalent to boostability.
In other words, according to our criterion, it is neither too weak nor too strong as
a weak-learning condition. However, unlike the edge-over-random conditions, it also
turns out to be more difficult to work with algorithmically.

Furthermore, this condition can be shown to be equivalent to the one used by
AdaBoost.MR [47, 21]. This is perhaps remarkable since the latter is based on the
apparently completely unrelated all-pairs multiclass to binary reduction. In Sec-
tion 3.3 we saw that the MR condition is given by (CMR,BMR

γ), where CMR consists
of cost-matrices that put non-negative costs on incorrect labels and whose rows sum
up to zero, while BMR

γ ∈ Rm×k is the matrix that has γ on the first column and −γ
on all other columns. Further, the MR condition, and hence (3.16), can be shown to
be neither too weak nor too strong.

Theorem 3.6 (MR). A weak classifier space H satisfies AdaBoost.MR’s weak-
learning condition (CMR,BMR

γ) if and only if it satisfies (3.16). Moreover, this
condition is equivalent to being boostable.

Proof. We will show the following three conditions are equivalent:

(A) H is boostable

(B) ∃γ > 0 such that ∀C ∈ Ceor,∃h ∈ H : C • 1h ≤ max
B∈Beor

γ

C •B

(C) ∃γ > 0 such that ∀C ∈ CMR,∃h ∈ H : C • 1h ≤ C •BMR.

We will show (A) implies (B), (B) implies (C), and (C) implies (A) to achieve the
above.

(A) implies (B): Immediate from Theorem 2.
(B) implies (C): Suppose (B) is satisfied with 2γ. We will show that this implies

H satisfies (CMR,BMR
γ). Notice CMR ⊂ Ceor. Therefore it suffices to show that

∀C ∈ CMR,B ∈ Beor
2γ : C •

(
B−BMR

γ

)
≤ 0.

Notice that B ∈ Beor
2γ implies B′ = B−BMR

γ is a matrix whose largest entry in each
row is in the first column of that row. Then, for any C ∈ CMR, C •B′ can be written
as

C •B′ =
m∑
i=1

k∑
j=2

C(i, j) (B′(i, j)−B′(i, 1)) .

Since C(i, j) ≥ 0 for j > 1, and B′(i, j)−B′(i, 1) ≤ 0, we have our result.
(C) implies (A): Applying Theorem 3.1

0 ≥ max
C∈CMR

min
h∈H

C •
(
1h −BMR

γ

)
= min

λ∈∆(H)
max

C∈CMR
C •

(
Hλ −BMR

γ

)
.

55

h1 h2

a 1 2
b 1 2

Figure 3.1: A weak classifier space which satisfies SAMME’s weak learning condition but
is not boostable.

For any i0 and l0 6= 1, the following cost-matrix C satisfies C ∈ CMR,

C(i, l) =

0 if i 6= i0 or l 6∈ {1, l0}
1 if i = i0, l = l0

−1 if i = i0, l = 1.

Let λ belong to the argmin of the min max expression. Then C •
(
Hλ −BMR

γ

)
≤ 0

implies Hλ(i0, 1)−Hλ(i0, l0) ≥ 2γ. Since this is true for all i0 and l0 6= 1, we conclude
that the (CMR,BMR

γ) condition implies boostability.
This concludes the proof of equivalence.

Next, we illustrate the strengths of our minimal weak-learning condition through
concrete comparisons with previous algorithms.

Comparison with SAMME. The SAMME algorithm of Zhu et al [57] requires the
weak classifiers to achieve less error than uniform random guessing for multiple labels;
in our language, their weak-learning condition is (CSAM,Uγ), as shown in Section 3.3,
where CSAM consists of cost matrices whose rows are of the form (0, t, t, . . .) for some
non-negative t. As is well-known, this condition is not sufficient for boosting to
be possible. In particular, consider the dataset {(a, 1), (b, 2)} with k = 3,m = 2,
and a weak classifier space consisting of h1, h2 which always predict 1, 2, respectively
(Figure 3.1). Since neither classifier distinguishes between a, b we cannot achieve
perfect accuracy by combining them in any way. Yet, due to the constraints on
the cost-matrix, one of h1, h2 will always manage non-positive cost while random
always suffers positive cost. On the other hand our weak-learning condition allows
the Booster to choose far richer cost matrices. In particular, when the cost matrix
C ∈ Ceor is given by

1 2 3
a −1 +1 0
b +1 −1 0,

both classifiers in the above example suffer more loss than the random player Uγ,
and fail to satisfy our condition.

Comparison with AdaBoost.MH. AdaBoost.MH [47] was designed for use with
weak hypotheses that on each example return a prediction for every label. When used

56

in our framework, where the weak classifiers return only a single multiclass prediction
per example, the implicit demands made by AdaBoost.MH on the weak classifier
space turn out to be too strong. To demonstrate this, we construct a classifier space
that satisfies the condition (Ceor,Uγ) in our family, but cannot satisfy AdaBoost.MH’s
weak-learning condition. Note that this does not imply that the conditions are too
strong when used with more powerful weak classifiers that return multilabel multiclass
predictions.

Consider a space H that has, for every (1/k+γ)m element subset of the examples,
a classifier that predicts correctly on exactly those elements. The expected loss of a
randomly chosen classifier from this space is the same as that of the random player
Uγ. Hence H satisfies this weak-learning condition. On the other hand, it was shown
in Section 3.3 that AdaBoost.MH’s weak-learning condition is the pair (CMH,BMH

γ),
where CMH consists of cost matrices with non-negative entries on incorrect labels
and non-positive entries on real labels, and where each row of the matrix BMH

γ is
the vector (1/2 + γ/2, 1/2 − γ/2, . . . , 1/2 − γ/2). A quick calculation shows that
for any h ∈ H, and C ∈ CMH with −1 in the first column and zeroes elsewhere,
C •

(
1h −BMH

γ

)
= 1/2− 1/k. This is positive when k > 2, so that H fails to satisfy

AdaBoost.MH’s condition.
We have seen how our framework allows us to capture the strengths and weak-

nesses of old conditions, describe a whole new family of conditions and also identify
the condition making minimal assumptions. In the next few sections, we show how
to design boosting algorithms that employ these new conditions and enjoy strong
theoretical guarantees.

3.5 Algorithms

In this section we devise algorithms by analyzing the boosting games that employ
weak-learning conditions in our framework. We compute the optimum Booster strat-
egy against a completely adversarial Weak-Learner, which here is permitted to choose
weak classifiers without restriction, i.e. the entire space Hall of all possible functions
mapping examples to labels. By modeling Weak-Learner adversarially, we make abso-
lutely no assumptions on the algorithm it might use. Hence, error guarantees enjoyed
in this situation will be universally applicable. Our algorithms are derived from the
very general drifting games framework [44] for solving boosting games, which in turn
was inspired by Freund’s Boost-by-majority algorithm [17], which we review next.

The OS Algorithm. Fix the number of rounds T and a weak-learning condition
(C,B). We will only consider conditions that are not vacuous, i.e., at least some
classifier space satisfies the condition, or equivalently, the space Hall satisfies (C,B).
Additionally, we assume the constraints placed by C are on individual rows. In other
words, there is some subset C0 ⊆ Rk of all possible rows, such that a cost matrix C
belongs to the collection C if and only if each of its rows belongs to this subset:

C ∈ C ⇐⇒ ∀i : C(i) ∈ C0. (3.17)

57

Further, we assume C0 forms a convex cone i.e c, c′ ∈ C0 implies tc + t′c′ ∈ C0 for any
non-negative t, t′. This also implies that C is a convex cone. This is a very natural
restriction, and is satisfied by the space C used by the weak learning conditions of
AdaBoost.MH, AdaBoost.M1, AdaBoost.MR, SAMME as well as every edge-over-
random condition. 1 For simplicity of presentation we fix the weights αt = 1 in each
round. With fT defined as in (3.1), whether the final hypotheses output by Booster
makes a prediction error on an example i is decided by whether an incorrect label
received the maximum number of votes, fT (i, 1) ≤ maxkl=2 fT (i, l). Therefore, the
optimum Booster payoff can be written as

min
C1∈C

max
h1∈Hall:

C1•(1h1
−B)≤0

. . . min
CT∈C

max
hT∈Hall:

CT •(1hT−B)≤0

1

m

m∑
i=1

Lerr(fT (xi, 1), . . . , fT (xi, k)). (3.18)

where the function Lerr : Rk → R encodes 0-1 error

Lerr(s) = 1

[
s(1) ≤ max

l>1
s(l)

]
. (3.19)

In general, we will also consider other loss functions L : Rk → R such as exponential
loss, hinge loss, etc. that upper-bound error and are proper : i.e. L(s) is increasing
in the weight of the correct label s(1), and decreasing in the weights of the incorrect
labels s(l), l 6= 1.

Directly analyzing the optimal payoff is hard. However, [44] observed that the
payoffs can be very well approximated by certain potential functions. Indeed, for any
b ∈ Rk define the potential function φb

t : Rk → R by the following recurrence:

φb
0 = L

φb
t (s) =

min
c∈C0

max
p∈∆{1,...,k}

El∼p

[
φb
t−1 (s + el)

]
s.t. El∼p [c(l)] ≤ 〈b, c〉 ,

(3.20)

where l ∼ p denotes that label l is sampled from the distribution p, and el ∈ Rk is
the unit-vector whose lth coordinate is 1 and the remaining coordinates zero. Notice
the recurrence uses the collection of rows C0 instead of the collection of cost matrices
C. When there are T − t rounds remaining (that is, after t rounds of boosting), these
potential functions compute an estimate φb

T−t(st) of whether an example x will be
misclassified, based on its current state st consisting of counts of votes received so far
on various classes:

st(l) =
t−1∑
t′=1

1 [ht′(x) = l] . (3.21)

1All our results hold under the weaker restriction on the space C, where the set of possible cost
vectors C0 for a row i could depend on i. For simplicity of exposition, we stick to the more restrictive
assumption that C0 is common across all rows.

58

Notice this definition of state assumes that αt = 1 in each round. Sometimes, we
will choose the weights differently. In such cases, a more appropriate definition is the
weighted state ft ∈ Rk, tracking the weighted counts of votes received so far:

ft(l) =
t−1∑
t′=1

αt′1 [ht′(x) = l] . (3.22)

However, unless otherwise noted, we will assume αt = 1, and so the definition in
(3.21) will suffice.

The recurrence in (3.20) requires the max player’s response p to satisfy the con-
straint that the expected cost under the distribution p is at most the inner-product
〈c,b〉. If there is no distribution satisfying this requirement, then the value of the
max expression is −∞. The existence of a valid distribution depends on both b and
c and is captured by the following:

∃p ∈ ∆ {1, . . . , k} : El∼p [c(l)] ≤ 〈c,b〉 ⇐⇒ min
l
c(l) ≤ 〈b, c〉 . (3.23)

In this chapter, the vector b will always correspond to some row B(i) of the baseline
used in the weak learning condition. In such a situation, the next lemma shows that
a distribution satisfying the required constraints will always exist.

Lemma 3.7. If C0 is a cone and (3.17) holds, then for any row b = B(i) of the
baseline and any cost vector c ∈ C0, (3.23) holds unless the condition (C,B) is vacuous.

Proof. We show that if (3.23) does not hold, then the condition is vacuous. Assume
that for row b = B(i0) of the baseline, and some choice of cost vector c ∈ C0, (3.23)
does not hold. We pick a cost-matrix C ∈ C, such that no weak classifier h can satisfy
the requirement (3.2), implying the condition must be vacuous. The ith0 row of the
cost matrix is c, and the remaining rows are 0. Since C0 is a cone, 0 ∈ C0 and hence
the cost matrix lies in C. With this choice for C, the condition (3.2) becomes

c(h(xi)) = C (i, h(xi)) ≤ 〈C(i),B(i)〉 = 〈c,b〉 < min
l
c(l),

where the last inequality holds since, by assumption, (3.23) is not true for this choice
of c,b. The previous equation is an impossibility, and hence no such weak classifier
h exists, showing the condition is vacuous.

Lemma 3.7 shows that the expression in (3.20) is well defined, and takes on finite
values. We next record an alternate dual form for the same recurrence which will be
useful later.

Lemma 3.8. The recurrence in (3.20) is equivalent to

φb
t (s) = min

c∈C0

k
max
l=1

{
φb
t−1 (s + el)− (c(l)− 〈c,b〉)

}
. (3.24)

59

Proof. Using Lagrangean multipliers, we may convert (3.20) to an unconstrained
expression as follows:

φb
t (s) = min

c∈C0
max

p∈∆{1,...,k}
min
λ≥0

{
El∼p

[
φb
t−1 (s + el)

]
− λ (El∼p [c(l)]− 〈c,b〉)

}
.

Applying Theorem 3.1 to the inner min-max expression we get

φb
t (s) = min

c∈C0
min
λ≥0

max
p∈∆{1,...,k}

{
El∼p

[
φb
t−1 (s + el)

]
− (El∼p [λc(l)]− 〈λc,b〉)

}
.

Since C0 is a cone, c ∈ C0 implies λc ∈ C0. Therefore we may absorb the Lagrange
multiplier into the cost vector:

φb
t (s) = min

c∈C0
max

p∈∆{1,...,k}
El∼p

[
φb
t−1 (s + el)− (c(l)− 〈c,b〉)

]
.

For a fixed choice of c, the expectation is maximized when the distribution p is
concentrated on a single label that maximizes the inner expression, which completes
our proof.

The dual form of the recurrence is useful for optimally choosing the cost matrix
in each round. When the weak learning condition being used is (C,B), [44] proposed
a Booster strategy, called the OS strategy, which always chooses the weight αt = 1,
and uses the potential functions to construct a cost matrix Ct as follows. Each row
Ct(i) of the matrix achieves the minimum of the right hand side of (3.24) with b
replaced by B(i), t replaced by T − t, and s replaced by current state st(i):

Ct(i) = argmin
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s + el)− (c(l)− 〈c,B(i)〉)

}
. (3.25)

The following theorem, proved in the appendix, provides a guarantee for the loss
suffered by the OS algorithm, and also shows that it is the game-theoretically optimum
strategy when the number of examples is large. Similar results have been proved by
Schapire [44], but our theorem holds much more generally, and also achieves tighter
lower bounds.

Theorem 3.9 (Extension of results in [44]). Suppose the weak-learning condition
is not vacuous and is given by (C,B), where C is such that, for some convex cone
C0 ⊆ Rk, the condition (3.17) holds. Let the potential functions φb

t be defined as in
(3.20), and assume the Booster employs the OS algorithm, choosing αt = 1 and Ct

as in (3.25) in each round t. Then the average potential of the states,

1

m

m∑
i=1

φ
B(i)
T−t (st(i)) ,

60

never increases in any round. In particular, the loss suffered after T rounds of play
is at most

1

m

m∑
i=1

φ
B(i)
T (0). (3.26)

Further, under certain conditions, this bound is nearly tight. In particular, assume
the loss function does not vary too much but satisfies

sup
s,s′∈ST

|L(s)− L(s′)| ≤ �(L, T), (3.27)

where ST , a subset of
{
s ∈ Rk : ‖s‖∞ ≤ T

}
, is the set of all states reachable in T

iterations, and �(L, T) is an upper bound on the discrepancy of losses between any
two reachable states when the loss function is L and the total number of iterations is
T . Then, for any ε > 0, when the number of examples m is sufficiently large,

m ≥ T�(L, T)

ε
, (3.28)

no Booster strategy can guarantee to achieve in T rounds a loss that is ε less than the
bound (3.26).

In order to implement the near optimal OS strategy, we need to solve (3.25). This
is computationally only as hard as evaluating the potentials, which in turn reduces
to computing the recurrences in (3.20). In the next few sections, we study how to do
this when using various losses and weak learning conditions.

3.6 Solving for any fixed edge-over-random condi-

tion

In this section we show how to implement the OS strategy when the weak learning
condition is any fixed edge-over-random condition: (C,B) for some B ∈ Beor

γ . By
our previous discussions, this is equivalent to computing the potential φb

t by solving
the recurrence in (3.20), where the vector b corresponds to some row of the baseline
B. Let ∆k

γ ⊆ ∆ {1, . . . , k} denote the set of all edge-over-random distributions on
{1, . . . , k} with γ more weight on the first coordinate:

∆k
γ = {b ∈ ∆ {1, . . . , k} : b(1)− γ = max {b(2), . . . , b(k)}} . (3.29)

Note, that Beor
γ consists of all matrices whose rows belong to the set ∆k

γ. Therefore we
are interested in computing φb, where b is an arbitrary edge-over-random distribution:
b ∈ ∆k

γ. We begin by simplifying the recurrence (3.20) satisfied by such potentials,
and show how to compute the optimal cost matrix in terms of the potentials.

61

Lemma 3.10. Assume L is proper, and b ∈ ∆k
γ is an edge-over-random distribution.

Then the recurrence (3.20) may be simplified as

φb
t (s) = El∼b [φt−1 (s + el)] . (3.30)

Further, if the cost matrix Ct is chosen as follows

Ct(i, l) = φb
T−t−1(st(i) + el), (3.31)

then Ct satisfies the condition in (3.25), and hence is the optimal choice.

Proof. Let Ceor
0 ⊆ Rk denote all vectors c satisfying ∀l : c(1) ≤ c(l). Then, we have

φb
t (s) =

min
c∈Ceor0

max
p∈∆{1,...,k}

El∼p [φt−1 (s + el)]

s.t. El∼p[c(l)] ≤ El∼b [c(l)] ,
(by (3.20))

= min
c∈Ceor0

max
p∈∆

min
λ≥0

{
El∼p

[
φb
t−1 (s + el)

]
+ λ (El∼b [c(l)]− El∼p[c(l)])

}
(Lagrangean)

= min
c∈Ceor0

min
λ≥0

max
p∈∆

El∼p

[
φb
t−1 (s + el)

]
+ λ 〈b− p, c〉 (Theorem 3.1)

= min
c∈Ceor0

max
p∈∆

El∼p

[
φb
t−1 (s + el)

]
+ 〈b− p, c〉 (absorb λ into c)

= max
p∈∆

min
c∈Ceor0

El∼p

[
φb
t−1 (s + el)

]
+ 〈b− p, c〉 (Theorem 3.1) .

Unless b(1) − p(1) ≤ 0 and b(l) − p(l) ≥ 0 for each l > 1, the quantity 〈b− p, c〉
can be made arbitrarily small for appropriate choices of c ∈ Ceor

0 . The max-player is
therefore forced to constrain its choices of p, and the above expression becomes

max
p∈∆

El∼p

[
φb
t−1 (s + el)

]
s.t. b(l)− q(l)

{
≥ 0 if l = 1,

≤ 0 if l > 1.

Lemma 6 of [44] states that if L is proper (as defined here), so is φb
t ; the same result

can be extended to our drifting games. This implies the optimal choice of p in the
above expression is in fact the distribution that puts as small weight as possible in the
first coordinate, namely b. Therefore the optimum choice of p is b, and the potential
is the same as in (3.30).

We end the proof by showing that the choice of cost matrix in (3.31) is optimum.
Theorem 3.9 states that a cost matrix Ct is the optimum choice if it satisfies (3.25),
that is, if the expression

k
max
l=1

{
φ

B(i)
T−t−1 (s + el)− (Ct(i, l)− 〈Ct(i),B(i)〉)

}
(3.32)

is equal to

min
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s + el)− (c(l)− 〈c,B(i)〉)

}
= φ

B(i)
T−t (s) , (3.33)

62

where the equality in (3.33) follows from (3.24). If Ct(i) is chosen as in (3.31), then,
for any label l, the expression within max in (3.32) evaluates to

φ
B(i)
T−t−1 (s + el) −

(
φ

B(i)
T−t−1 (s + el)− 〈Ct(i),B(i)〉

)
= 〈B(i),Ct(i)〉
= El∼B(i) [Ct(i, l)]

= El∼B(i)

[
φ

B(i)
T−t−1 (s + el)

]
= φ

B(i)
T−t(s),

where the last equality follows from (3.30). Therefore the max expression in (3.32) is

also equal to φ
B(i)
T−t(s), which is what we needed to show.

Eq. (3.31) in Lemma 3.10 implies the cost matrix chosen by the OS strategy
can be expressed in terms of the potentials, which is the only thing left to calculate.
Fortunately, the simplification (3.30) of the drifting games recurrence, allows the
potentials to be solved completely in terms of a random-walk Rt

b(x). This random
variable denotes the position of a particle after t time steps, that starts at location
x ∈ Rk, and in each step moves in direction el with probability b(l).

Corollary 3.11. The recurrence in (3.30) can be solved as follows:

φb
t (s) = E

[
L
(
Rt

b(s)
)]
. (3.34)

Proof. Inductively assuming φb
t−1(x) = E

[
L(Rt−1

b (x))
]
,

φt(s) = El∼b

[
L(Rt−1

b (s) + el)
]

= E
[
L(Rt

b(s))
]
.

The last equality follows by observing that the random position Rt−1
b (s) + el is dis-

tributed as Rt
b(s) when l is sampled from b.

Lemma 3.10 and Corollary 3.11 together imply:

Theorem 3.12. Assume L is proper and b ∈ ∆k
γ is an edge-over-random distribution.

Then the potential φb
t , defined by the recurrence in (3.20), has the solution given in

(3.34) in terms of random walks.

Before we can compute (3.34), we need to choose a loss function L. We next
consider two options for the loss — the non-convex 0-1 error, and exponential loss.

Exponential Loss. The exponential loss serves as a smooth convex proxy for dis-
continuous non-convex 0-1 error (3.19) that we would ultimately like to bound, and
is given by

Lexp
η (s) =

k∑
l=2

eη(sl−s1). (3.35)

63

The parameter η can be thought of as the weight in each round, that is, αt = η in
each round. Then notice that the weighted state ft of the examples, defined in (3.22),
is related to the unweighted states st as ft(l) = ηst(l). Therefore the exponential loss
function in (3.35) directly measures the loss of the weighted state as

Lexp(ft) =
k∑
l=2

eft(l)−ft(1). (3.36)

Because of this correspondence, the optimal strategy with the loss function Lexp and
αt = η is the same as that using loss Lexp

η and αt = 1. We study the latter setting so
that we may use the results derived earlier. With the choice of the exponential loss
Lexp
η , the potentials are easily computed, and in fact have a closed form solution.

Theorem 3.13. If Lexp
η is as in (3.35), where η is non-negative, then the solution

in Theorem 3.12 evaluates to φb
t (s) =

∑k
l=2(al)

teηl(sl−s1), where al = 1 − (b1 + bl) +
eηbl + e−ηb1.

The proof by induction is straightforward. By tuning the weight η, each al can
be always made less than 1. This ensures the exponential loss decays exponentially
with rounds. In particular, when B = Uγ (so that the condition is (Ceor,Uγ)), the
relevant potential φt(s) or φt(f) is given by

φt(s) = φt(f) = κ(γ, η)t
k∑
l=2

eη(sl−s1) = κ(γ, η)t
k∑
l=2

efl−f1 (3.37)

where

κ(γ, η) = 1 +
(1− γ)

k

(
eη + e−η − 2

)
−
(
1− e−η

)
γ. (3.38)

The cost-matrix output by the OS algorithm can be simplified by rescaling, or adding
the same number to each coordinate of a cost vector, without affecting the constraints
it imposes on a weak classifier, to the following form

C(i, l) =

{
(eη − 1) eη(sl−s1) if l > 1,

(e−η − 1)
∑k

l=2 e
η(sl−s1) if l = 1.

Using the correspondence between unweighted and weighted states, the above may
also be rewritten as:

C(i, l) =

{
(eη − 1) efl−f1 if l > 1,

(e−η − 1)
∑k

l=2 e
fl−f1 if l = 1.

(3.39)

With such a choice, Theorem 3.9 and the form of the potential guarantee that the
average loss

1

m

m∑
i=1

Lexp
η (st(i)) =

1

m

m∑
i=1

Lexp(ft(i)) (3.40)

64

of the states changes by a factor of at most κ (γ, η) every round. Therefore the final
loss, which upper bounds the error, i.e., the fraction of misclassified training examples,
is at most (k − 1)κ (γ, η)T . Since this upper bound holds for any value of η, we may
tune it to optimize the bound. Setting η = ln (1 + γ), the error can be upper bounded
by (k − 1)e−Tγ

2/2.

Zero-one Loss. There is no simple closed form solution for the potential when using
the zero-one loss Lerr (3.19). However, we may compute the potentials efficiently as
follows. To compute φb

t (s), we need to find the probability that a random walk
(making steps according to b) of length t in Zk, starting at s will end up in a region
where the loss function is 1. Any such random walk will consist of xl steps in direction
el where the non-negative

∑
l xl = t. The probability of each such path is

∏
l b
xl
l .

Further, there are exactly
(

t
x1,...,xk

)
such paths. Starting at state s, such a path will

lead to a correct answer only if s1 + x1 > sl + xl for each l > 1. Hence we may write
the potential φb

t (s) as

φb
t (s) = 1−

t∑
x1,...,xk

(
t

x1,...,xk

)∏k
l=1 b

xl
l

s.t. x1 + . . .+ xk = t

∀l : xl ≥ 0

∀l : xl + sl ≤ x1 + s1.

Since the xl’s are restricted to be integers, this problem is presumably hard. In
particular, the only algorithms known to the authors that take time logarithmic in t
is also exponential in k. However, by using dynamic programming, we can compute
the summation in time polynomial in |sl|, t and k. In fact, the run time is always
O(t3k), and at least Ω(tk).

The bounds on error we achieve, although not in closed form, are much tighter
than those obtainable using exponential loss. The exponential loss analysis yields an
error upper bound of (k − 1)e−Tγ

2/2. Using a different initial distribution, Schapire
and Singer [47] achieve the slightly better bound

√
(k − 1)e−Tγ

2/2. However, when
the edge γ is small and the number of rounds are few, each bound is greater than 1
and hence trivial. On the other hand, the bounds computed by the above dynamic
program are sensible for all values of k, γ and T . When b is the γ-biased uniform
distribution b = (1−γ

k
+γ, 1−γ

k
, 1−γ

k
, . . . , 1−γ

k
) a table containing the error upper bound

φb
T (0) for k = 6, γ = 0 and small values for the number of rounds T is shown in

Figure 3.2(a); note that with the exponential loss, the bound is always 1 if the edge γ
is 0. Further, the bounds due to the exponential loss analyses seem to imply that the
dependence of the error on the number of labels is monotonic. However, a plot of the
tighter bounds with edge γ = 0.1, number of rounds T = 10 against various values of
k, shown in Figure 3.2(b), indicates that the true dependence is more complicated.
Therefore the tighter analysis also provides qualitative insights not obtainable via the
exponential loss bound.

65

T φb
T (0) T φb

T (0)

0 1.00 6 0.90
1 0.83 7 0.91
2 0.97 8 0.90
3 0.93 9 0.89
4 0.89 10 0.89
5 0.89

(a)
0 50 100 150 200

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

T = 10, edge = 0.1

k

ph
i(0
)

(b)

Figure 3.2: Plot of potential value φb
T (0) where b is the γ-biased uniform distribution:

b = (1−γ
k +γ, 1−γ

k , 1−γ
k , . . . , 1−γ

k). (a): Potential values (rounded to two decimal places) for
different number of rounds T using γ = 0 and k = 6. These are bounds on the error, and
less than 1 even when the edge and number of rounds are small. (b): Potential values for
different number of classes k, with γ = 0.1, and T = 10. These are tight estimates for the
optimal error, and yet not monotonic in the number of classes.

3.7 Solving for the minimal weak learning condi-

tion

In the previous section we saw how to find the optimal boosting strategy when using
any fixed edge-over-random condition. However as we have seen before, these condi-
tions can be stronger than necessary, and therefore lead to boosting algorithms that
require additional assumptions. Here we show how to compute the optimal algorithm
while using the weakest weak learning condition, provided by (3.16), or equivalently
the condition used by AdaBoost.MR, (CMR,BMR

γ). Since there are two possible formu-
lations for the minimal condition, it is not immediately clear which to use to compute
the optimal boosting strategy. To resolve this, we first show that the optimal boost-
ing strategy based on any formulation of a necessary and sufficient weak learning
condition is the same. Having resolved this ambiguity, we show how to compute this
strategy for the exponential loss and 0-1 error using the first formulation.

3.7.1 Game-theoretic equivalence of necessary and sufficient
weak-learning conditions

In this section we study the effect of the weak learning condition on the game-
theoretically optimal boosting strategy. We introduce the notion of game-theoretic
equivalence between two weak learning conditions, that determines if the payoffs
(3.18) of the optimal boosting strategies based on the two conditions are identical.

66

This is different from the usual notion of equivalence between two conditions, which
holds if any weak classifier space satisfies both conditions or neither condition. In
fact we prove that game-theoretic equivalence is a broader notion; in other words,
equivalence implies game-theoretic equivalence. A special case of this general result
is that any two weak learning conditions that are necessary and sufficient, and hence
equivalent to boostability, are also game-theoretically equivalent. In particular, so
are the conditions of AdaBoost.MR and (3.16), and the resulting optimal Booster
strategies enjoy equally good payoffs. We conclude that in order to derive the opti-
mal boosting strategy that uses the minimal weak-learning condition, it is sound to
use either of these two formulations.

The purpose of a weak learning condition (C,B) is to impose restrictions on the
Weak-Learner’s responses in each round. These restrictions are captured by subsets
of the weak classifier space as follows. If Booster chooses cost-matrix C ∈ C in a
round, the Weak-Learner’s response h is restricted to the subset SC ⊆ Hall defined as

SC =
{
h ∈ Hall : C • 1h ≤ C •B

}
.

Thus, a weak learning condition is essentially a family of subsets of the weak classifier
space. Further, smaller subsets mean fewer options for Weak-Learner, and hence
better payoffs for the optimal boosting strategy. Based on this idea, we may define
when a weak learning condition (C1,B1) is game-theoretically stronger than another
condition (C2,B2) if the following holds: For every subset SC2 in the second condition
(that is C2 ∈ C2), there is a subset SC1 in the first condition (that is C1 ∈ C1), such
that SC1 ⊆ SC2 . Mathematically, this may be written as follows:

∀C1 ∈ C1, ∃C2 ∈ C2 : SC1 ⊆ SC2 .

Intuitively, a game theoretically stronger condition will allow Booster to place similar
or stricter restrictions on Weak-Learner in each round. Therefore, the optimal Booster
payoff using a game-theoretically stronger condition is at least equally good, if not
better. It therefore follows that if two conditions are both game-theoretically stronger
than each other, the corresponding Booster payoffs must be equal, that is they must
be game-theoretically equivalent.

Note that game-theoretic equivalence of two conditions does not mean that they
are identical as families of subsets, for we may arbitrarily add large and “useless”
subsets to the two conditions without affecting the Booster payoffs, since these subsets
will never be used by an optimal Booster strategy. In fact we next show that game-
theoretic equivalence is a broader notion than just equivalence.

Theorem 3.14. Suppose (C1,B1) and (C2,B2) are two equivalent weak learning con-
ditions, that is, every space H satisfies both or neither condition. Then each condition
is game-theoretically stronger than the other, and hence game-theoretically equivalent.

Proof. We argue by contradiction. Assume that despite equivalence, the first condi-
tion (without loss of generality) includes a particularly hard subset SC1 ⊆ Hall,C1 ∈
C1 which is not smaller than any subset in the second condition. In particular, for

67

every subset SC2 ,C2 ∈ C2 in the second condition is satisfied by some weak classifier
hC2 not satisfying the hard subset in the first condition: hC2 ∈ SC2 \SC1 . Therefore,
the space

H = {hC2 : C2 ∈ C2} ,

formed by just these classifiers satisfies the second condition, but has an empty inter-
section with SC1 . In other words, H satisfies the second but not the first condition,
a contradiction to their equivalence.

An immediate corollary is the game theoretic equivalence of necessary and equiv-
alent conditions.

Corollary 3.15. Any two necessary and sufficient weak learning conditions are game-
theoretically equivalent. In particular the optimum Booster strategies based on Ad-
aBoost.MR’s condition (CMR,BMR

γ) and (3.16) have equal payoffs.

Therefore, in deriving the optimal Booster strategy, it is sound to work with
either AdaBoost.MR’s condition or (3.16). In the next section, we actually compute
the optimal strategy using the latter formulation.

3.7.2 Optimal strategy with the minimal conditions

In this section we compute the optimal Booster strategy that uses the minimum weak
learning condition provided in (3.16). We choose this instead of AdaBoost.MR’s
condition because this description is more closely related to the edge-over-random
conditions, and the resulting algorithm has a close relationship to the ones derived
for fixed edge-over-random conditions, and therefore more insightful. However, this
formulation does not state the condition as a single pair (C,B), and therefore we
cannot directly use the result of Theorem 3.9. Instead, we define new potentials and
a modified OS strategy that is still nearly optimal, and this constitutes the first part
of this section. In the second part, we show how to compute these new potentials and
the resulting OS strategy.

Modified potentials and OS strategy

The condition in (3.16) is not stated as a single pair (Ceor,B), but uses all possible
edge-over-random baselines B ∈ Beor

γ . Therefore, we modify the definitions (3.20) of
the potentials accordingly to extract an optimal Booster strategy. Recall that ∆k

γ

is defined in (3.29) as the set of all edge-over-random distributions which constitute
the rows of edge-over-random baselines B ∈ Beor

γ . Using these, define new potentials
φt(s) as follows:

φt(s) =
min
c∈Ceor0

max
b∈∆k

γ

max
p∈∆{1,...,k}

El∼p [φt−1 (s + el)]

s.t. El∼p[c(l)] ≤ 〈b, c〉 .
(3.41)

The main difference between (3.41) and (3.20) is that while the older potentials were
defined using a fixed vector b corresponding to some row in the fixed baseline B, the

68

new definition takes the maximum over all possible rows b ∈ ∆k
γ that an edge-over-

random baseline B ∈ Beor
γ may have. As before, we may write the recurrence in

(3.41) in its dual form

φt(s) = min
c∈Ceor0

max
b∈∆k

γ

k
max
l=1
{φt−1 (s + el)− (c(l)− 〈c,b〉)} . (3.42)

The proof is very similar to that of Lemma 3.8 and is omitted. We may now define
a new OS strategy that chooses a cost-matrix in round t analogously:

Ct(i) ∈ argmin
c∈Ceor0

max
b∈∆k

γ

k
max
l=1
{φt−1 (s + el)− (c(l)− 〈c,b〉)} . (3.43)

where recall that st(i) denotes the state vector (defined in (3.21)) of example i. With
this strategy, we can show an optimality result very similar to Theorem 3.9.

Theorem 3.16. Suppose the weak-learning condition is given by (3.16). Let the
potential functions φb

t be defined as in (3.41), and assume the Booster employs the
modified OS strategy, choosing αt = 1 and Ct as in (3.43) in each round t. Then the
average potential of the states,

1

m

m∑
i=1

φT−t (st(i)) ,

never increases in any round. In particular, the loss suffered after T rounds of play
is at most φT (0).

Further, for any ε > 0, when the loss function satisfies (3.27) and the number of
examples m is as large as in (3.28), no Booster strategy can guarantee to achieve less
than φT (0)− ε loss in T rounds.

The proof is very similar to that of Theorem 3.9 and is omitted.

Computing the new potentials.

Here we show how to compute the new potentials. The resulting algorithms will
require exponential time, and we provide some empirical evidence showing that this
might be necessary. Finally, we show how to carry out the computations efficiently
in certain special situations.

An exponential time algorithm. Here we show how the potentials may be com-
puted as the expected loss of some random walk, just as we did for the potentials
arising with fixed edge-over-random conditions. The main difference is there will be
several random walks to choose from.

We first begin by simplifying the recurrence (3.41), and expressing the optimal
cost matrix in (3.43) in terms of the potentials, just as we did in Lemma 3.10 for the
case of fixed edge-over-random conditions.

69

Lemma 3.17. Assume L is proper. Then the recurrence (3.41) may be simplified as

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s + el)] . (3.44)

Further, if the cost matrix Ct is chosen as follows:

Ct(i, l) = φT−t−1(st(i) + el), (3.45)

then Ct satisfies the condition in (3.43).

The proof is very similar to that of Lemma 3.10 and is omitted. Eq. (3.45) implies
that, as before, computing the optimal Booster strategy reduces to computing the
new potentials. One computational difficulty created by the new definitions (3.41)
or (3.44) is that they require infinitely many possible distributions b ∈ ∆k

γ to be
considered. We show that we may in fact restrict our attention to only finitely many
of such distributions described next.

At any state s and number of remaining iterations t, let π be a permutation of
the coordinates {2, . . . , k} that sorts the potential values:

φt−1

(
s + eπ(k)

)
≥ φt−1

(
s + eπ(k−1)

)
≥ . . . ≥ φt−1

(
s + eπ(2)

)
. (3.46)

For any permutation π of the coordinates {2, . . . , k}, let bπa denote the γ-biased
uniform distribution on the a coordinates {1, πk, πk−1, . . . , πk−a+2}:

bπa(l) =

1−γ
a

+ γ if l = 1
1−γ
a

if l ∈ {πk, . . . , πk−a+2}
0 otherwise.

(3.47)

Then, the next lemma shows that we may restrict our attention to only the distribu-
tions {bπ2 , . . . ,bπk} when evaluating the recurrence in (3.44).

Lemma 3.18. Fix a state s and remaining rounds of boosting t. Let π be a permuta-
tion of the coordinates {2, . . . , k} satisfying (3.46), and define bπa as in (3.47). Then
the recurrence (3.44) may be simplified as follows:

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s + el)] = max
2≤a≤k

El∼bπa [φt−1 (s + el)] . (3.48)

Proof. Assume (by relabeling the coordinates if necessary) that π is the identity
permutation, that is, π(2) = 2, . . . , π(k) = k. Observe that the right hand side of
(3.44) is at least as much the right hand side of (3.48) since the former considers more
distributions. We complete the proof by showing that the former is also at most the
latter.

70

By (3.44), we may assume that some optimal b satisfies

b(k) = · · · = b(k − a+ 2) = b(1)− γ,
b(k − a+ 1) ≤ b(1)− γ,

b(k − a) = · · · = b(2) = 0.

Therefore, b is a distribution supported on a+ 1 elements, with the minimum weight
placed on element k − a+ 1. This implies b(k − a+ 1) ∈ [0, 1/(a+ 1)].

Now, El∼b [φt−1(s + el)] may be written as

γ · φt−1(s + e1) + b(k − a+ 1)φt−1(s + ek−a+1)

+ (1− γ − b(k − a+ 1))
φt−1(s + e1) + φt−1(s + ek−a+2) + . . . φt−1(s + ek)

a

= γ · φt−1(s + e1) +
b(k − a+ 1)

1− γ
φt−1(s + ek−a+1)

+ (1− γ)
{(

1− b(k − a+ 1)

1− γ

)
φt−1(s + e1) + φt−1(s + ek−a+2) + . . . φt−1(s + ek)

a

}
Replacing b(k − a + 1) by x in the above expression, we get a linear function of x.
When restricted to [0, 1/(a+ 1)] the maximum value is attained at a boundary point.
For x = 0, the expression becomes

γ · φt−1(s + e1) + (1− γ)
φt−1(s + e1) + φt−1(s + ek−a+2) + . . . φt−1(s + ek)

a
.

For x = 1/(a+ 1), the expression becomes

γ · φt−1(s + e1) + (1− γ)
φt−1(s + e1) + φt−1(s + ek−a+1) + . . . φt−1(s + ek)

a+ 1
.

Since b(k − a+ 1) lies in [0, 1/(a+ 1)], the optimal value is at most the maximum of
the two. However each of these last two expressions is at most the right hand side of
(3.48), completing the proof.

Unraveling (3.48), we find that φt(s) is the expected loss of the final state reached
by some random walk of t steps starting at state s. However, the number of possibil-
ities for the random-walk is huge; indeed, the distribution at each step can be any of
the k−1 possibilities bπa for a ∈ {2, . . . , k}, where the parameter a denotes the size of
the support of the γ-biased uniform distribution chosen at each step. In other words,
at a given state s with t rounds of boosting remaining, the parameter a determines the
number of directions the optimal random walk will consider taking; we will therefore
refer to a as the degree of the random walk given (s, t). Now, the total number of
states reachable in T steps is O

(
T k−1

)
. If the degree assignment every such state,

for every value of t ≤ T is fixed in advance, a = {a(s, t) : t ≤ T, s reachable}, we may
identify a unique random walk Ra,t(s) of length t starting at step s. Therefore the

71

−20 −10 0 10 20

−2
0

−1
0

0
10

20

T = 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−40 −20 0 20 40

−4
0

−2
0

0
20

40

T = 50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−40 −20 0 20 40

−4
0

−2
0

0
20

40

T = 50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.3: Green pixels have degree 3, black pixels have degree 2. Each step is diagonally
down (left), and up (if x < y) and right (if x > y) and both when degree is 3. The rightmost
figure uses γ = 0.4, and the other two γ = 0. The loss function is 0-1.

potential may be computed as

φt(s) = max
a

E
[
Ra,t(s)

]
. (3.49)

A dynamic programming approach for computing (3.49) requires time and memory
linear in the number of different states reachable by a random walk that takes T
coordinate steps: O(T k−1). This is exponential in the dataset size, and hence im-
practical. In the next two sections we show that perhaps there may not be any way
of computing these efficiently in general, but provide efficient algorithms in certain
special cases.

Hardness of evaluating the potentials. Here we provide empirical evidence for
the hardness of computing the new potentials. We first identify a computationally
easier problem, and show that even that is probably hard to compute. Eq. (3.48)
implies that if the potentials were efficiently computable, the correct value of the
degree a could be determined efficiently. The problem of determining the degree
a given the state s and remaining rounds t is therefore easier than evaluating the
potentials. However, a plot of the degrees against states and remaining rounds,
henceforth called a degree map, reveals very little structure that might be captured
by a computationally efficient function.

We include three such degree maps in Figure 3.3. Only three classes k = 3 are
used, and the loss function is 0-1 error. We also fix the number T of remaining rounds
of boosting and the value of the edge γ for each plot. For ease of presentation, the 3-
dimensional states s = (s1, s2, s3) are compressed into 2-dimensional pixel coordinates
(u = s2 − s1, v = s3 − s2). It can be shown that this does not take away information
required to evaluate the potentials or the degree at any pixel (u, v). Further, only
those states are considered whose compressed coordinates u, v lie in the range [−T, T];
in T rounds, these account for all the reachable states. The degrees are indicated on
the plot by colors. Our discussion in the previous sections implies that the possible

72

!10

!5

0

5

10

!10

!5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

T=3

−10
−5

0
5

10

−10

−5

0

5

10

0.2

0.4

0.6

0.8

T=20

Figure 3.4: Optimum recurrence value. We set γ = 0. Surface is irregular for smaller values
of T , but smoother for larger values, admitting hope for approximation.

values of the degree is 2 or 3. When the degree at a pixel (u, v) is 3, the pixel is
colored green, and when the degree is 2, it is colored black.

Note that a random walk over the space s ∈ R3 consisting of distributions over co-
ordinate steps {(1, 0, 0), (0, 1, 0), (0, 0, 1)} translates to a random walk over (u, v) ∈ R2

where each step lies in the set {(−1,−1), (1, 0), (0, 1)}. In Figure 3.3, these correspond
to the directions diagonally down, up or right. Therefore at a black pixel, the random
walk either chooses between diagonally down and up, or between diagonally down and
right, with probabilities {1/2 + γ/2, 1/2− γ/2}. On the other hand, at a green pixel,
the random walk chooses among diagonally down, up and right with probabilities
(γ + (1− γ)/3, (1− γ)/3, (1− γ)/3). The degree maps are shown for varying values
of T and the edge γ. While some patterns emerge for the degrees, such as black or
green depending on the parity of u or v, the authors found the region near the line
u = v still too complex to admit any solution apart from a brute-force computation.

We also plot the potential values themselves in Figure 3.4 against different states.
In each plot, the number of iterations remaining, T , is held constant, the number of
classes is chosen to be 3, and the edge γ = 0. The states are compressed into pixels
as before, and the potential is plotted against each pixel, resulting in a 3-dimensional
surface. We include two plots, with different values for T . The surface is irregular for
T = 3 rounds, but smoother for 20 rounds, admitting some hope for approximation.

An alternative approach would be to approximate the potential φt by the poten-
tial φb

t for some fixed b ∈ ∆k
γ corresponding to some particular edge-over-random

condition. Since φt ≥ φb
t for all edge-over-random distributions b, it is natural to

approximate by choosing b that maximizes the fixed edge-over-random potential. (It
can be shown that this b corresponds to the γ-biased uniform distribution.) Two
plots of comparing the potential values at 0, φT (0) and maxb φ

b
T (0), which corre-

spond to the respective error upper bounds, is shown in Figure 3.5. In the first plot,
the number of classes k is held fixed at 6, and the values are plotted for different
values of iterations T . In the second plot, the number of classes vary, and the num-

73

0 5 10 15

0.
85

0.
90

0.
95

1.
00

k = 6

rounds

Po
te

nt
ia

ls

2 4 6 8 10

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

T = 10

k

ph
i(0
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Figure 3.5: Comparison of φt(0) (blue) with maxq φ
q
t (0) (red) over different rounds t and

different number of classes k. We set γ = 0 in both.

−20 −10 0 10 20

−2
0

−1
0

0
10

20

T = 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20

−2
0

−1
0

0
10

20

T = 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20

−2
0

−1
0

0
10

20

T = 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.6: Green pixels have degree 3, black pixels have degree 2. Each step is diagonally
down (left), and up (if x < y) and right (if x > y) and both when degree is 3. Each plot
uses T = 20, γ = 0.1. The values of η are 0.08, 0.1 and 0.3, respectively. With smaller
values of η, more pixels have degree 3.

ber of iterations is held at 10. Both plots show that the difference in the values is
significant, and hence maxb φ

b
T (0) would be a rather optimistic upper bound on the

error when using the minimal weak learning condition.
If we use exponential loss (3.35), the situation is not much better. The degree

maps for varying values of the weight parameter η against fixed values of edge γ = 0.1,
rounds remaining T = 20 and number of classes k = 3 are plotted in Figure 3.6.
Although the patterns are simple, with the degree 3 pixels forming a diagonal band,
we found it hard to prove this fact formally, or compute the exact boundary of the
band. However the plots suggest that when η is small, all pixels have degree 3. We
next find conditions under which this opportunity for tractable computation exists.

Efficient computation in special cases. Here we show that when using the
exponential loss, if the edge γ is very small, then the potentials can be computed
efficiently. We first show an intermediate result. We already observed empirically

74

that when the weight parameter η is small, the degrees all become equal to k. Indeed,
we can prove this fact.

Lemma 3.19. If the loss function being used is exponential loss (3.35) and the weight
parameter η is small compared to the number of rounds

η ≤ 1

4
min

{
1

k − 1
,

1

T

}
, (3.50)

then the optimal value of the degree a in (3.48) is always k. Therefore, in this situ-
ation, the potential φt using the minimal weak learning condition is the same as the
potential φu

t using the γ-biased uniform distribution u,

u =

(
1− γ
k

+ γ,
1− γ
k

, . . . ,
1− γ
k

)
, (3.51)

and hence can be efficiently computed.

Proof. We show φt = φu
t by induction on the remaining number t of boosting itera-

tions. The base case holds since, by definition, φ0 = φu
0 = Lexp

η . Assume, inductively
that

φt−1(s) = φu
t−1(s) = κ(γ, η)t−1

k∑
l=2

eη(sl−s1), (3.52)

where the second equality follows from (3.37). We show that

φt(s) = El∼u [φt−1(s + el)] . (3.53)

By the inductive hypothesis and (3.30), the right hand side of (3.53) is in fact equal
to φu

t , and we will have shown φt = φu
t . The proof will then follow by induction.

In order to show (3.53), by Lemma 3.18, it suffices to show that the optimal degree
a maximizing the right hand side of (3.48) is always k:

El∼bπa [φt−1 (s + el)] ≤ El∼bπk
[φt−1 (s + el)] . (3.54)

By (3.52), φt−1 (s + el0) may be written as φt−1(s) + κ(γ, η)t−1 · ξl0 , where the term
ξl0 is:

ξl0 =

{
(eη − 1)eη(sl0−s1) if l0 6= 1,

(e−η − 1)
∑k

l=2 e
η(sl−s1) if l0 = 1.

Therefore (3.54) is the same as: El∼bπa [ξl] ≤ El∼bπk
[ξl]. Assume (by relabeling if

necessary) that π is the identity permutation on coordinates {2, . . . , k}. Then the

75

expression El∼bπa [ξl] can be written as

El∼bπa [ξl] =

(
1− γ
a

+ γ

)
ξ1 +

k∑
l=k−a+2

(
1− γ
a

)
ξl

= γξ1 + (1− γ)

{
ξ1 +

∑k
l=k−a+2 ξl

a

}
.

It suffices to show that the term in curly brackets is maximized when a = k. We will
in fact show that the numerator of the term is negative if a < k, and non-negative for
a = k, which will complete our proof. Notice that the numerator can be written as

(eη − 1)

{
k∑

l=k−a+2

eη(sl−s1)

}
− (1− e−η)

k∑
l=2

eη(sl−s1)

= (eη − 1)

{
k∑

l=k−a+2

eη(sl−s1) −
k∑
l=2

eη(sl−s1)

}
+
{

(eη − 1)− (1− e−η)
} k∑
l=2

eη(sl−s1)

=
{
eη + e−η − 2

} k∑
l=2

eη(sl−s1) − (eη − 1)

{
k−a+1∑
l=2

eη(sl−s1)

}
.

When a = k, the second summation disappears, and we are left with a non-negative
expression. However when a < k, the second summation is at least eη(s2−s1). Since
t ≤ T , and in t iterations the absolute value of any state coordinate |st(l)| is at most
T , the first summation is at most (k − 1)e2ηT and the second summation is at least
e−2ηT . Therefore the previous expression is at most

(k − 1)
(
eη + e−η − 2

)
e2ηT − (eη − 1)e−2ηT

= (eη − 1)e−2ηT
{

(k − 1)(1− e−η)e4ηT − 1
}
.

We show that the term in curly brackets is negative. Firstly, using ex ≥ 1 + x, we
have 1 − e−η ≤ η ≤ 1/(4(k − 1)) by choice of η. Therefore it suffices to show that
e4ηT < 4. By choice of η again, e4ηT ≤ e1 < 4. This completes our proof.

The above lemma seems to suggest that under certain conditions, a sort of degen-
eracy occurs, and the optimal Booster payoff (3.18) is nearly unaffected by whether
we use the minimal weak learning condition, or the condition (Ceor,Uγ). Indeed, we
next prove this fact.

Theorem 3.20. Suppose the loss function is as in Lemma 3.19, and for some pa-
rameter ε > 0, the number of examples m is large enough

m ≥ Te1/4

ε
. (3.55)

76

Consider the minimal weak learning condition (3.16), and the fixed edge-over-random
condition (Ceor,Uγ) corresponding to the γ-biased uniform baseline Uγ. Then the
optimal booster payoffs using either condition is within ε of each other.

Proof. We show that the OS strategies arising out of either condition is the same. In
other words, at any iteration t and state st, both strategies play the same cost matrix
and enforce the same constraints on the response of Weak-Learner. The theorem will
then follow if we can invoke Theorems 3.9 and 3.16. For that, the number of examples
needs to be as large as in (3.28). The required largeness would follow from (3.55) if
the loss function satisfied (3.27) with �(L, T) at most exp(1/4). Since the largest
discrepancy in losses between two states reachable in T iterations is at most eηT − 0,
the bound follows from the choice of η in (3.50). Therefore, it suffices to show the
equivalence of the OS strategies corresponding to the two weak learning conditions.

We first show both strategies play the same cost-matrix. Lemma 3.19 states that
the potential function using the minimal weak learning condition is the same as when
using the fixed condition (Ceor,Uγ): φt = φu

t , where u is as in (3.51). Since, according
to (3.31) and (3.45), given a state st and iteration t, the two strategies choose cost
matrices that are identical functions of the respective potentials, by the equivalence
of the potential functions, the resulting cost matrices must be the same.

Even with the same cost matrix, the two different conditions could be imposing dif-
ferent constraints on Weak-Learner, which might affect the final payoff. For instance,
with the baseline Uγ, Weak-Learner has to return a weak classifier h satisfying

Ct • 1h ≤ Ct •Uγ,

whereas with the minimal condition, the constraint on h is

Ct • 1h ≤ max
B∈Beor

γ

Ct •B.

In order to show that the constraints are the same we therefore need to show that for
the common cost matrix Ct chosen, the right hand side of the two previous expressions
are the same:

Ct •Uγ = max
B∈Beor

γ

Ct • Beor
γ . (3.56)

We will in fact show the stronger fact that the equality holds for every row separately:

∀i : 〈Ct(i),u〉 = max
b∈∆k

γ

〈Ct(i),b〉 . (3.57)

To see this, first observe that the choice of the optimal cost matrix Ct in (3.45) implies
the following identity

〈Ct(i),b〉 = El∼b [φT−t−1(st(i) + el)] .

On the other hand, (3.48) and Lemma 3.19 together imply that the distribution b
maximizing the right hand side of the above is the γ-biased uniform distribution,
from which (3.57) follows. Therefore, the constraints placed on Weak-Learner by the

77

cost-matrix Ct is the same whether we use minimum weak learning condition or the
fixed condition (Ceor,Uγ).

One may wonder why η would be chosen so small, especially since the previous
theorem indicates that such choices for η lead to degeneracies. To understand this,
recall that η represents the size of the weights αt chosen in every round, and was
introduced as a tunable parameter to help achieve the best possible upper bound
on zero-one error. More precisely, recall that the exponential loss Lexp

η (s) of the
unweighted state, defined in (3.35), is equal to the exponential loss Lexp(f) on the
weighted state, defined in (3.36), which in turn is an upper bound on the error Lerr(fT)
of the final weighted state fT . Therefore the potential value φT (0) based on the
exponential loss Lexp

η is an upper bound on the minimum error attainable after T
rounds of boosting. At the same time, φT (0) is a function of η. Therefore, we may
tune this parameter to attain the best bound possible. Even with this motivation, it
may seem that a properly tuned η will not be as small as in Lemma 3.19, especially
since it can be shown that the resulting loss bound φT (0) will always be larger than
a fixed constant (depending on γ, k), no matter how many rounds T of boosting is
used. However, the next result identifies conditions under which the tuned value of η
is indeed as small as in Lemma 3.19. This happens when the edge γ is very small, as is
described in the next theorem. Intuitively, a weak classifier achieving small edge has
low accuracy, and a low weight reflects Booster’s lack of confidence in this classifier.

Theorem 3.21. When using the exponential loss function (3.35), and the minimal
weak learning condition (3.16), the loss upper bound φT (0) provided by Theorem 3.16
is more than 1 and hence trivial unless the parameter η is chosen sufficiently small
compared to the edge γ:

η ≤ kγ

1− γ
. (3.58)

In particular, when the edge is very small:

γ ≤ min

{
1

2
,

1

8k
min

{
1

k
,

1

T

}}
, (3.59)

the value of η needs to be as small as in (3.50).

Proof. Comparing solutions (3.49) and (3.34) to the potentials corresponding to the
minimal weak learning condition and a fixed edge-over-random condition, we may
conclude that the loss bound φT (0) is in the former case is larger than φb

T (0), for any
edge-over-random distribution b ∈ ∆k

γ. In particular, when b is set to be the γ-biased
uniform distribution u, as defined in (3.51), we get φT (0) ≥ φu

T (0). Now the latter
bound, according to (3.37), is κ(γ, η)T , where κ is defined as in (3.38). Therefore,
to get non-trivial loss bounds which are at most 1, we need to choose η such that

78

κ(γ, η) ≤ 1. By (3.38), this happens when

(
1− e−η

)
γ ≥

(
eη + e−η − 2

)(1− γ
k

)
i.e.,

kγ

1− γ
≥ eη + e−η − 2

1− e−η
= eη − 1 ≥ η.

Therefore (3.58) holds. When γ is as small as in (3.59), then 1−γ ≤ 1
2
, and therefore,

by (3.58), the bound on η becomes identical to that in (3.59).

The condition in the previous theorem, that of the existence of only a very small
edge, is the most we can assume for most practical datasets. Therefore, in such
situations, we can compute the optimal Booster strategy that uses the minimal weak
learning conditions. More importantly, using this result, we derive, in the next section,
a highly efficient and practical adaptive algorithm, that is, one that does not require
any prior knowledge about the edge γ, and will therefore work with any dataset.

3.8 Variable edges

So far we have required Weak-Learner to beat random by at least a fixed amount
γ > 0 in each round of the boosting game. In reality, the edge over random is larger
initially, and gets smaller as the OS algorithm creates harder cost matrices. Therefore
requiring a fixed edge is either unduly pessimistic or overly optimistic. If the fixed
edge is too small, not enough progress is made in the initial rounds, and if the edge
is too large, Weak-Learner fails to meet the weak-learning condition in latter rounds.
We fix this by not making any assumption about the edges, but instead adaptively
responding to the edges returned by Weak-Learner. In the rest of the section we
describe the adaptive procedure, and the resulting loss bounds guaranteed by it.

The philosophy behind the adaptive algorithm is a boosting game where Booster
and Weak Learner no longer have opposite goals, but cooperate to reduce error as
fast as possible. However, in order to create a clean abstraction and separate imple-
mentations of the boosting algorithms and the weak learning procedures as much as
possible, we assume neither of the players has any knowledge of the details of the
algorithm employed by the other player. In particular Booster may only assume that
Weak Learner’s strategy is barely strong enough to guarantee boosting. Therefore,
Booster’s demands on the weak classifiers returned by Weak Learner should be mini-
mal, and it should send the weak learning algorithm the “easiest” cost matrices that
will ensure boostability. In turn, Weak Learner may only assume a very weak Booster
strategy, and therefore return a weak classifier that performs as well as possible with
respect to the cost matrix sent by Booster.

At a high level, the adaptive strategy proceeds as follows. At any iteration, based
on the states of the examples and number of remaining rounds of boosting, Booster
chooses the game-theoretically optimal cost matrix assuming only infinitesimal edges
in the remaining rounds. Intuitively, Booster has no high expectations of Weak
Learner, and supplies it the easiest cost matrices with which it may be able to boost.

79

However, in the adaptive setting, Weak-Learner is no longer adversarial. Therefore,
although only infinitesimal edges are anticipated by Booster, Weak Learner cooper-
ates in returning weak classifiers that achieve as large edges as possible, which will
be more than just inifinitesimal. Based on the exact edge received in each round,
Booster chooses the weight αt adaptively to reach the most favourable state possible.
Therefore, Booster plays game theoretically assuming an adversarial Weak Learner
and expecting only the smallest edges in the future rounds, although Weak Learner
actually cooperates, and Booster adaptively exploits this favorable behavior as much
as possible. This way the boosting algorithm remains robust to a poorly performing
Weak Learner, and yet can make use of a powerful weak learning algorithm whenever
possible.

We next describe the details of the adaptive procedure. With variable weights we
need to work with the weighted state ft(i) of each example i, defined in (3.22). To
keep the computations tractable, we will only be working with the exponential loss
Lexp(f) on the weighted states. We first describe how Booster chooses the cost-matrix
in each round. Following that we describe how it adaptively computes the weights in
each round based on the edge of the weak classifier received.

Choosing the cost-matrix. As discussed before, at any iteration t and state ft
Booster assumes that it will receive an infinitesimal edge γ in each of the remaining
rounds. Since the step size is a function of the edge, which in turn is expected to be
the same tiny value in each round, we may assume that the step size in each round
will also be some fixed value η. We are therefore in the setting of Theorem 3.21, which
states that the parameter η in the exponential loss function (3.35) should also be tiny
to get any non-trivial bound. But then the loss function satisfies the conditions in
Lemma 3.19, and by Theorem 3.20, the game theoretically optimal strategy remains
the same whether we use the minimal condition or (Ceor,Uγ). When using the latter
condition, the optimal choice of the cost-matrix at iteration t and state ft, according
to (3.39), is

Ct(i, l) =

{
(eη − 1) eft−1(i,j)−ft−1(i,1) if l > 1,

(e−η − 1)
∑k

j=2 e
ft−1(i,j)−ft−1(i,1) if l = 1.

(3.60)

Further, when using the condition (Ceor,Uγ), the average potential of the states ft(i),
according to (3.37), is given by the average loss (3.40) of the state times κ(γ, η)T−t,
where the function κ is defined in (3.38). Our goal is to choose η as a function of γ
so that κ(γ, η) is as small as possible. Now, there is no lower bound on how small the
edge γ may get, and, anticipating the worst, it makes sense to choose an infinitesimal
γ, in the spirit of [19]. Eq. (3.38) then implies that the choice of η should also be
infinitesimal. Then the above choice of the cost matrix becomes the following (after

80

some rescaling):

Ct(i, l) = lim
η→0

Cη(i, l)
M
=

1

η

{
(eη − 1) eft−1(i,j)−ft−1(i,1) if l > 1,

(e−η − 1)
∑k

j=2 e
ft−1(i,j)−ft−1(i,1) if l = 1.

=

{
eft−1(i,j)−ft−1(i,1) if l > 1,

−
∑k

j=2 e
ft−1(i,j)−ft−1(i,1) if l = 1.

(3.61)

We have therefore derived the optimal cost matrix played by the adaptive boosting
strategy, and we record this fact.

Lemma 3.22. Consider the boosting game using the minimal weak learning condition
(3.16). Then, in iteration t at state ft, the game-theoretically optimal Booster strategy
chooses the cost matrix Ct given in (3.61).

We next show how to adaptively choose the weights αt.

Adaptively choosing weights. Once Weak Learner returns a weak classifier ht,
Booster chooses the optimum weight αt so that the resulting states ft = ft−1 + αt1ht
are as favorable as possible, that is, minimizes the total potential of its states. By
our previous discussions, these are proportional to the total loss given by Zt =∑m

i=1

∑k
l=2 e

ft(i,l)−ft(i,1). For any choice of αt, the difference Zt − Zt−1 between the
total loss in rounds t− 1 and t is given by

(eαt − 1)
∑
i∈S−

eft−1(i,ht(i))−ft−1(i,1) −
(
1− e−αt

)∑
i∈S+

Lexp(ft−1(i))

= (eαt − 1)At− −
(
1− e−αt

)
At+

=
(
At+e

−αt + At−e
αt
)
−
(
At+ + At−

)
,

where S+ denotes the set of examples that ht classifies correctly, S− the incorrectly
classified examples, and At−, A

t
+ denote the first and second summations, respectively.

Therefore, the task of choosing αt can be cast as a simple optimization problem
minimizing the previous expression. In fact, the optimal value of αt is given by the
following closed form expression

αt =
1

2
ln

(
At+
At−

)
. (3.62)

With this choice of weight, one can show (with some straightforward algebra) that
the total loss of the state falls by a factor less than 1. In fact the factor is exactly

(1− ct)−
√
c2
t − δ2

t , (3.63)

where
ct = (At+ + At−)/Zt−1, (3.64)

81

and δt is the edge of the returned classifier ht on the supplied cost-matrix Ct. Notice
that the quantity ct is at most 1, and hence the factor (3.63) can be upper bounded

by
√

1− δ2
t . We next show how to compute the edge δt. The definition of the edge

depends on the weak learning condition being used, and in this case we are using
the minimal condition (3.16). Therefore the edge δt is the largest γ such that the
following still holds

Ct • 1h ≤ max
B∈Beor

γ

Ct •B.

However, since Ct is the optimal cost matrix when using exponential loss with a
tiny value of η, we can use arguments in the proof of Theorem 3.20 to simplify the
computation. In particular, eq. (3.56) implies that the edge δt may be computed as
the largest γ satisfying the following simpler inequality

δt = sup
{
γ : Ct • 1ht ≤ Ct •Uγ

}
= sup

{
γ : Ct • 1ht ≤ −γ

m∑
i=1

k∑
l=2

eft−1(i,l)−ft−1(i,1)

}

=⇒ δt = γ : Ct • 1ht = −γ
m∑
i=1

k∑
l=2

eft−1(i,l)−ft−1(i,1)

=⇒ δt =
−Ct • 1ht∑m

i=1

∑k
l=2 e

ft−1(i,l)−ft−1(i,1)
=
−Ct • 1ht

Zt
, (3.65)

where the first step follows by expanding Ct • Uγ. We have therefore an adaptive
strategy which efficiently reduces error. We record our results.

Lemma 3.23. If the weight αt in each round is chosen as in (3.62), and the edge δt
is given by (3.65), then the total loss Zt falls by the factor given in (3.63), which is

at most
√

1− δ2
t .

The choice of αt in (3.62) is optimal, but depends on quantities other than just
the edge δt. We next show a way of choosing αt based only on δt that still causes the
total loss to drop by a factor of

√
1− δ2

t .

Lemma 3.24. Suppose cost matrix Ct is chosen as in (3.61), and the returned weak
classifier ht has edge δt i.e. Ct • 1ht ≤ Ct •Uδt. Then choosing any weight αt > 0
for ht makes the loss Zt at most a factor

1− 1

2
(eαt − e−αt)δt +

1

2
(eαt + e−αt − 2)

of the previous loss Zt−1. In particular by choosing

αt =
1

2
ln

(
1 + δt
1− δt

)
, (3.66)

the drop factor is at most
√

1− δ2
t .

82

Proof. We borrow notation from earlier discussions. The edge-condition implies

At− − At+ = Ct • 1ht ≤ Ct •Uδt = −δtZt−1 =⇒ At+ − At− ≥ δtZt−1.

On the other hand, the drop in loss after choosing ht with weight αt is(
1− e−αt

)
At+ − (eαt − 1)At−

=

(
eαt − e−αt

2

)(
At+ − At−

)
−
(
eαt + e−αt − 2

2

)(
At+ + At−

)
.

We have already shown that At+ − At− ≥ δtZt−1. Further, At+ + At− is at most Zt−1.
Therefore the loss drops by a factor of at least

1− 1

2
(eαt − e−αt)δt +

1

2
(eαt + e−αt − 2) =

1

2

{
(1− δt)eαt + (1 + δt)e

−αt
}
.

Tuning αt as in (3.66) causes the drop factor to be at least
√

1− δ2
t .

Algorithm 1 contains pseudocode for the adaptive algorithm, and includes both
ways of choosing αt. We call both versions of this algorithm AdaBoost.MM. With the
approximate way of choosing the step length in (3.67), AdaBoost.MM turns out to
be identical to AdaBoost.M2 [23] or AdaBoost.MR [47], provided the weak classifier
space is transformed in an appropriate way to be acceptable by AdaBoost.M2 or
AdaBoost.MR. We emphasize that AdaBoost.MM and AdaBoost.M2 are products
of very different theoretical considerations, and this similarity should be viewed as a
coincidence arising because of the particular choice of loss function, infinitesimal edge
and approximate step size. For instance, when the step sizes are chosen instead as in
(3.68), the training error falls more rapidly, and the resulting algorithm is different.

As a summary of all the discussions in the section, we record the following theorem.

Theorem 3.25. The boosting algorithm AdaBoost.MM, shown in Algorithm 1, is the
optimal strategy for playing the adaptive boosting game, and is based on the minimal
weak learning condition. Further if the edges returned in each round are δ1, . . . , δT ,

then the error after T rounds is (k−1)
∏T

t=1

√
1− δ2

t ≤ (k−1) exp
{
−(1/2)

∑T
t=1 δ

2
t

}
.

In particular, if a weak hypothesis space is used that satisfies the optimal weak
learning condition (3.16), for some γ, then the edge in each round is large, δt ≥ γ,
and therefore the error after T rounds is exponentially small, (k − 1)e−Tγ

2/2.

The theorem above states that as long as the minimal weak learning condition is
satisfied, the error will decrease exponentially fast. Even if the condition is not satis-
fied, the error rate will keep falling rapidly provided the edges achieved by the weak
classifiers are relatively high. However, our theory so far can provide no guarantees
on these edges, and therefore it is not clear what is the best error rate achievable in
this case, and how quickly it is achieved. The assumptions of boostability, and hence
our minimal weak learning condition does not hold for the vast majority of practical
datasets, and as such it is important to know what happens in such settings. In par-
ticular, an important requirement is empirical consistency, where we want that for

83

Algorithm 1 AdaBoost.MM

Require: Number of classes k, number of examples m.
Require: Training set {(x1, y1), . . . , (xm, ym)} with yi ∈ {1, . . . , k} and xi ∈ X.

• Initialize m× k matrix f0(i, l) = 0 for i = 1, . . . ,m, and l = 1, . . . , k.
for t = 1 to T do
• Choose cost matrix Ct as follows:

Ct(i, l) =

{
eft−1(i,l)−ft−1(i,yi) if l 6= yi,

−
∑

l 6=yi e
ft−1(i,j)−ft−1(i,yi) if l = 1.

• Receive weak classifier ht : X → {1, . . . , k} from weak learning algorithm
• Compute edge δt as follows:

δt =
−
∑m

i=1 Ct(i, ht(xi))∑m
i=1

∑
l 6=yi e

ft−1(i,l)−ft−1(i,yi)

• Choose αt either as

αt =
1

2
ln

(
1 + δt
1− δt

)
, (3.67)

or, for a slightly bigger drop in the loss, as

αt =
1

2
ln

(∑
i:ht(xi)=yi

∑
l 6=yi e

ft−1(i,l)−ft−1(i,yi)∑
i:ht(xi) 6=yi e

ft−1(i,ht(xi))−ft−1(i,yi)

)
(3.68)

• Compute ft as:
ft(i, l) = ft−1(i, l) + αt1 [ht(xi) = l] .

end for
• Output weighted combination of weak classifiers FT : X×{1, . . . , k} → R defined
as:

FT (x, l) =
T∑
t=1

αt1 [ht(x) = l] . (3.69)

• Based on FT , output a classifier HT : X → {1, . . . , k} that predicts as

HT (x) =
k

argmax
l=1

FT (x, l). (3.70)

84

any given weak classifier space, the algorithm converge, if allowed to run forever, to
the weighted combination of classifiers that minimizes error on the training set. An-
other important criterion is universal consistency, which requires that the algorithm
converge, when provided sufficient training data, to the classifier combination that
minimizes error on the test dataset. In the next section, we show that AdaBoost.MM
satisfies such consistency requirements. Both the choice of the minimal weak learning
condition as well as the setup of the adaptive game framework will play crucial roles
in ensuring consistency. These results therefore provide evidence that game theoretic
considerations can have strong statistical implications.

3.9 Consistency of the adaptive algorithm

The goal in a classification task is to design a classifier that predicts with high accuracy
on unobserved or test data. This is usually carried out by ensuring the classifier fits
training data well without being overly complex. Assuming the training and test
data are reasonably similar, one can show that the above procedure achieves high
test accuracy, or is consistent. Here we work in a probabilistic setting that connects
training and test data by assuming both consist of examples and labels drawn from
a common, unknown distribution.

Consistency for multiclass classification in the probabilistic setting has been stud-
ied by Tewari and Bartlett [53], who show that, unlike in the binary setting, many
natural approaches fail to achieve consistency. In this section, we show that Ad-
aBoost.MM described in the previous section avoids such pitfalls and enjoys various
consistency results. We begin by laying down some standard assumptions and setting
up some notation. Then we prove our first result showing that our algorithm mini-
mizes a certain exponential loss function on the training data at a fast rate. Next,
we build upon this result and improve along two fronts: firstly we change our metric
from exponential loss to the more relevant classification error metric, and secondly
we show fast convergence on not just training data, but also the test set. For the
proofs, we heavily reuse existing machinery in the literature.

Throughout the rest of this section we consider the version of AdaBoost.MM
that picks weights according to the approximate rule in (3.67). All our results most
probably hold with the other rule for picking weights in (3.68) as well, but we did
not verify that. These results hold without any boostability requirements on the
space H of weak classifiers, and are therefore widely applicable in practice. While
we do not assume any weak learning condition, we will require a fully cooperating
Weak Learner. In particular, we will require that in each round Weak Learner picks
the weak classifier suffering minimum cost with respect to the cost matrix provided
by the boosting algorithm, or equivalently achieves the highest edge as defined in
(3.65). Such assumptions are both necessary and standard in the literature, and are
frequently met in practice.

In order to state our results, we will need to setup some notation. The space of
examples will be denoted by X , and the set of labels by Y = {1, . . . , k}. We also
fix a finite weak classifier space H consisting of classifiers h : X → Y . We will be

85

interested in functions F : X ×Y → R that assign a score to every example and label
pair. Important examples of such functions are the weighted majority combinations
(3.69) output by the adaptive algorithm. In general, any such combination of the
weak classifiers in space H is specified by some weight function α : H → R; the
resulting function is denoted by Fα : X × Y → R, and satisfies:

Fα(x, l) =
∑
h∈H

α(h)1 [h(x) = l] .

We will be interested in measuring the average exponential loss of such functions. To
measure this, we introduce the r̂isk operator:

r̂isk(F)
M
=

1

m

m∑
i=1

∑
l 6=yi

eF (xi,l)−F (xi,yi). (3.71)

With this setup, we can now state our simplest consistency result, which ensures that
the algorithm converges to a weighted combination of classifiers in the space H that
achieves the minimum exponential loss over the training set at an efficient rate.

Lemma 3.26. The r̂isk of the predictions FT , as defined in (3.69), converges to that
of the optimal predictions of any combination of the weak classifiers in H at the rate
O(1/T):

r̂isk(FT)− inf
α:H→R

r̂isk(Fα) ≤ C

T
, (3.72)

where C is a constant depending only on the dataset.

A slightly stronger result would state that the average exponential loss when
measured with respect to the test set, and not just the empirical set, also converges.
The test set is generated by some target distribution D over example label pairs,
and we introduce the riskD operator to measure the exponential loss for any function
F : X × Y → R with respect to D:

riskD(F) = E(x,y)∼D

[∑
l 6=y

eF (x,l)−F (x,y)

]
.

We show this stronger result holds if the function FT is modified to the function
F̄T : X × Y → R that takes values in the range [0,−C], for some large constant C:

F̄T (x, l)
M
= max

{
−C,FT (x, l)−max

l′
FT (x, l′)

}
. (3.73)

Lemma 3.27. If F̄T is as in (3.73), and the number of rounds T is set to Tm =
√
m,

then its riskD converges to the optimal value as m→∞ with high probability:

Pr

[
riskD

(
F̄Tm

)
≤ inf

F :X×Y→R
riskD(F) +O

(
m−c

)]
≥ 1− 1

m2
, (3.74)

86

where c > 0 is some absolute constant, and the probability is over the draw of training
examples.

We prove Lemmas 3.26 and 3.27 by demonstrating a strong correspondence be-
tween AdaBoost.MM and binary AdaBoost, and then leveraging almost identical
known consistency results for AdaBoost [4]. Our proofs will closely follow the expo-
sition in Chapter 12 of [46] on the consistency of AdaBoost, and are deferred to the
appendix.

So far we have focused on riskD, but a more desirable consistency result would
state that the test error of the final classifier output by AdaBoost.MM converges to
the Bayes optimal error. The test error is measured by the errD operator, and is given
by

errD(H) = Pr
(x,y)∼D

[H(x) 6= y] . (3.75)

The Bayes optimal classifier Hopt is a classifier achieving the minimum error among
all possible classifying functions

errD(Hopt) = inf
H:X→Y

errD(H), (3.76)

and we want our algorithm to output a classifier whose errD approaches errD(Hopt).
In designing the algorithm, our main focus was on reducing the exponential loss,
captured by riskD and r̂isk. Unless these loss functions are aligned properly with
classification error, we cannot hope to achieve optimal error. The next result shows
that our loss functions are correctly aligned, or more technically Bayes consistent. In
other words, if a scoring function F : X ×Y → R is close to achieving optimal riskD,
then the classifier H : X → Y derived from it as follows:

H(x) ∈ argmax
l∈Y

F (x, y), (3.77)

also approaches the Bayes optimal error.

Lemma 3.28. Suppose F is a scoring function achieving close to optimal risk

riskD(F) ≤ inf
F ′:X×Y→R

riskD(F ′) + ε, (3.78)

for some ε ≥ 0. If H is the classifier derived from it as in (3.77), then it achieves
close to the Bayes optimal error

errD(H) ≤ errD(Hopt) +
√

2ε. (3.79)

Proof. The proof is similar to that of Theorem 12.1 in [46], which in turn is based
on the work by Zhang [55] and Bartlett et al [5]. Let p(x) = Pr(x′,y′)∼D (x′ = x)
denote the the marginalized probability of drawing example x from D, and let pxy =
Pr(x′,y′)∼D [y′ = y|x′ = x] denote the conditional probability of drawing label y given
we have drawn example x. We first rewrite the difference in errors between H and
Hopt using these probabilities. Firstly note that the accuracy of any classifier H ′ is

87

given by ∑
x∈X

D(x,H ′(x)) =
∑
x∈X

p(x)pxH′(x).

If X ′ is the set of examples where the predictions of H and Hopt differ, X ′ =
{x ∈ X : H(x) 6= Hopt(x)}, then we may bound the error differences as

errD(H)− errD(Hopt) =
∑
x∈X ′

p(x)
(
pxHopt(x) − pxH(x)

)
. (3.80)

We next relate this expression to the difference of the losses.
Notice that for any scoring function F ′, the riskD can be rewritten as follows :

riskD(F ′) =
∑
x∈X

p(x)
∑
l<l′

{
pxl e

F ′(x,l′)−F ′(x,l) + pxl′e
F ′(x,l)−F ′(x,l′)

}
.

Denote the inner summation in curly brackets by Ll,l
′

F ′ (x), and notice this quantity is
minimized if

eF
′(x,l)−F ′(x,l′) =

√
pxl /p

x
l′ , i.e., if F ′(x, l)− F ′(x, l′) = 1

2
ln pxl − 1

2
ln pxl′ .

Therefore, defining F ∗(x, l) = 1
2

ln pxl leads to a riskD minimizing function F ∗. Fur-

thermore, for any example and pair of labels l, l′, the quantity Ll,l
′

F ∗(x) is at most

Ll,l
′

F (x), and therefore the difference in losses of F ∗ and F may be lower bounded as
follows:

ε ≥ riskD(F)− riskD(F ∗) =
∑
x∈X

p(x)
∑
l 6=l′

(
Ll,l

′

F − L
l,l′

F ∗

)
≥

∑
x∈X ′

p(x)
{
L
H(x),Hopt(x)
F − LH(x),Hopt(x)

F ∗

}
. (3.81)

We next study the term in the curly brackets for a fixed x. Let A and B denote H(x)
and Hopt(x), respectively. We have already seen that LA,BF ∗ = 2

√
pxAp

x
B. Further, by

definition of Bayes optimality, pxA ≥ pxB. On the other hand, since x ∈ X ′, we know
that B 6= A, and hence, F (x,A) ≥ F (x,B). Let eF (x,B)−F (x,A) = 1 + η, for some
η ≥ 0. The quantity LA,BF may be lower bounded as:

LA,BF = pxAe
F (x,B)−F (x,A) + pxBe

F (x,A)−F (x,B)

= (1 + η)pxA + (1 + η)−1pxB
≥ (1 + η)pxA + (1− η)pxB
= pxA + pxB + η(pxA − pxB) ≥ pxA + pxB.

Combining we get

LA,BF − LA,BF ∗ ≥ pxA + pxB − 2
√
pxAp

x
B =

(√
pxA −

√
pxB
)2
.

88

Plugging back into (3.81) we get∑
x∈X ′

p(x)
(√

pxH(x) −
√
pxHopt(x)

)2

≤ ε. (3.82)

Now we connect (3.80) to the previous expression as follows

{errD(H)− errD(Hopt)}2

=

{∑
x∈X ′

p(x)
(
pxHopt(x) − pxH(x)

)}2

≤

(∑
x∈X ′

p(x)

)(∑
x∈X ′

p(x)
(
pxHopt(x) − pxH(x)

)2
)

(Cauchy-Schwartz)

≤
∑
x∈X ′

p(x)
(√

pxHopt(x) −
√
pxH(x)

)2 (√
pxHopt(x) +

√
pxH(x)

)2

(3.83)

≤ 2
∑
x∈X ′

p(x)
(√

pxHopt(x) −
√
pxH(x)

)2

(3.84)

≤ 2ε, (by (3.82))

where (3.83) holds since ∑
x∈X ′

p(x) = Pr
(x′,y′)∼D

[x′ ∈ X ′] ≤ 1,

and (3.84) holds since

pxH(x) + pxHopt(x) = Pr
(x′,y′)∼D

[y′ ∈ {H(x), Hopt(x)} |x] ≤ 1

=⇒
√
pxH(x) +

√
pxHopt(x) ≤

√
2.

Therefore, errD(H)− errD(Hopt) ≤
√

2ε.

Note that the classifier H̄T , derived from the truncated scoring function F̄T in the
manner provided in (3.77), makes identical predictions to, and hence has the same
errD as, the classifier HT output by the adaptive algorithm. Further, Lemma 3.27
seems to suggest that F̄T satisfies the condition in (3.78), which, combined with our
previous observation errD(H) = errD(H̄T), would imply HT approaches the optimal
error. However, the condition (3.78) requires achieving optimal risk over all scoring
functions, and not just ones achievable as a combination of weak classifiers in H.
Therefore, in order to use Lemma 3.28, we require the weak classifier space to be
sufficiently rich, so that some combination of the weak classifiers in H attains riskD
arbitrarily close to the minimum attainable by any function:

inf
α:H→R

riskD(Fα) = inf
F :X×Y→R

riskD(F). (3.85)

89

The richness condition, along with our previous arguments and Lemma 3.27, imme-
diately imply the following result.

Theorem 3.29. If the weak classifier space H satisfies the richness condition (3.85),
and the number of rounds T is set to

√
m, then the error of the final classifier HT

approaches the Bayes optimal error:

Pr
[
errD

(
H√m

)
≤ errD(Hopt) +O

(
m−c

)]
≥ 1− 1

m2
, (3.86)

where c > 0 is some positive constant, and the probability is over the draw of training
examples.

A consequence of the theorem is our strongest consistency result:

Corollary 3.30. Let Hopt be the Bayes optimal classifier, and let the weak classifier
space H satisfy the richness condition (3.85). Suppose m example and label pairs
{(x1, y1), . . . , (xm, ym)} are sampled from the distribution D, the number of rounds T
is set to be

√
m, and these are supplied to AdaBoost.MM. Then, in the limit m→∞,

the final classifier H√m output by AdaBoost.MM achieves the Bayes optimal error
almost surely:

Pr
[{

lim
m→∞

errD(H√m)
}

= errD(Hopt)
]

= 1, (3.87)

where the probability is over the randomness due to the draw of training examples.

The proof of Corollary 3.30, based on the Borel-Cantelli Lemma, is very similar to
that of Corollary 12.3 in [46], and so we omit it. When k = 2, AdaBoost.MM is iden-
tical to AdaBoost. For Theorem 3.29 to hold for AdaBoost, the richness assumption
(3.85) is necessary, since there are examples due to Long and Servedio [29] showing
that the theorem may not hold when that assumption is violated.

Although we have seen that technically AdaBoost.MM is consistent under broad
assumptions, intuitively perhaps it is not clear what properties were responsible for
this desirable behavior. We next briefly study the high level ingredients necessary for
consistency in boosting algorithms.

Key ingredients for consistency. We show here how both the choice of the
loss function as well as the weak learning condition play crucial roles in ensuring
consistency. If the loss function were not Bayes consistent as in Lemma 3.28, driving
it down arbitrarily could still lead to high test error. For example, the loss employed
by SAMME [57] does not upper bound the error, and therefore although it can manage
to drive down its loss arbitrarily when supplied by the dataset discussed in Figure 3.1,
although its error remains high.

Equally important is the weak learning condition. Even if the loss function is
chosen to be error, so that it is trivially Bayes consistent, choosing the wrong weak
learning condition could lead to inconsistency. In particular, if the weak learning
condition is stronger than necessary, then, even on a boostable dataset where the
error can be driven to zero, the boosting algorithm may get stuck prematurely because

90

its stronger than necessary demands cannot be met by the weak classifier space. We
have already seen theoretical examples of such datasets, and we will see some practical
instances of this phenomenon in the next section.

On the other hand, if the weak learning condition is too weak, then a lazy Weak
Learner may satisfy the Booster’s demands by returning weak classifiers belonging
only to a non-boostable subset of the available weak classifier space. For instance,
consider again the dataset in Figure 3.1, and assume that this time the weak classifier
space is much richer, and consists of all possible classifying functions. However, in
any round, Weak Learner searches through the space, first trying hypotheses h1 and
h2 shown in the figure, and only if neither satisfy the Booster, search for additional
weak classifiers. In that case, any algorithm using SAMME’s weak learning condition,
which is known to be too weak and satisfiable by just the two hypotheses {h1, h2},
would only receive h1 or h2 in each round, and therefore be unable to reach the
optimum accuracy. Of course, if the Weak Learner is extremely generous and helpful,
then it may return the right collection of weak classifiers even with a null weak learning
condition that places no demands on it. However, in practice, many Weak Learners
used are similar to the lazy weak learner described since these are computationally
efficient.

To see the effect of inconsistency arising from too weak learning conditions in
practice, we need to test boosting algorithms relying on such datasets on significantly
hard datasets, where only the strictest Booster strategy can extract the necessary
service from Weak Learner for creating an optimal classifier. We did not include such
experiments, and it will be an interesting empirical conjecture to be tested in the
future. However, we did include experiments that illustrate the consequence of using
too strong conditions, and we discuss those in the next section.

3.10 Experiments

In the final section of this chapter, we report preliminary experimental results on
13 UCI datasets: letter, nursery, pendigits, satimage, segmentation, vowel, car, chess,
connect4, forest, magic04, poker, abalone. These datasets are all multiclass except for
magic04, have a wide range of sizes, contain all combinations of real and categorical
features, have different number of examples to number of features per example ratios,
and are drawn from a variety of real-life situations. Most sets come with prespecified
train and test splits which we use; if not, we picked a random 4 : 1 split. Throughout
this section by MM we refer to the version of AdaBoost.MM studied in the consistency
section, which uses the approximate step size (3.67).

There were two kinds of experiments. In the first, we took a standard implemen-
tation M1 of AdaBoost.M1 with C4.5 as weak learner, and the Boostexter implemen-
tation MH of AdaBoost.MH using stumps [48], and compared it against our method
MM with a naive greedy tree-searching weak-learner Greedy. The size of trees to be
used can be specified to our weak learner, and was chosen to be the of the same order
as the tree sizes used by M1. The test-error after 500 rounds of boosting for each
algorithm and dataset is bar-plotted in Figure 3.7. The performance is comparable

91

Figure 3.7: This is a plot of the final test-errors of standard implementations of M1, MH and
MM after 500 rounds of boosting on different datasets. Both M1 and MM achieve comparable
error, which is often larger than that achieved by MH. This is because M1 and MM used trees
of comparable sizes which were often much larger and powerful than the decision stumps
that MH boosted.

abalone car chess connect4 forest letter magic04 nursery pendigits poker satimage segmentation vowel

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7 MH

M1
MM

with M1 and far better than MH (understandably since stumps are far weaker than
trees), even though our weak-learner is very naive. The convergence rates of error
with rounds of M1 and MM are also comparable, as shown in Figure 3.8 (we omitted
the curve for MH since it lay far above both M1 and MM).

We next investigated how each algorithm performs with less powerful weak-
learners. We modified MH so that it uses a tree returning a single multiclass
prediction on each example. For MH and MM we used the Greedy weak learner, while
for M1 we used a more powerful-variant Greedy-Info whose greedy criterion was
information gain rather than error (we also ran M1 on top of Greedy but Greedy-Info
consistently gave better results so we only report the latter). We tried all tree-sizes
in the set {10, 20, 50, 100, 200, 500, 1000, 2000, 4000} up to the tree-size used
by M1 on C4.5 for each data-set. We plotted the error of each algorithm against
tree size for each data-set in Figure 3.9. As predicted by our theory, our algorithm
succeeds in boosting the accuracy even when the tree size is too small to meet
the stronger weak learning assumptions of the other algorithms. More insight is
provided by plots in Figure 3.10 of the rate of convergence of error with rounds when
the tree size allowed is very small (5). Both M1 and MH drive down the error for a
few rounds. But since boosting keeps creating harder distributions, very soon the

92

Figure 3.8: Plots of the rates at which M1(black,dashed) and MM(red,solid) drive down test-
error on different data-sets when using trees of comparable sizes as weak classifiers. M1
called C4.5, and MM called Greedy, respectively, as weak-learner. The tree sizes returned by
C4.5 were used as a bound on the size of the trees that Greedy was allowed to return. This
bound on the tree-size depended on the dataset, and are shown next to the dataset labels.

0 100 200 300 400 500

0.
74

0.
78

abalone : 1000

0 100 200 300 400 500

0.
30

0.
40

car : 50

0 100 200 300 400 500

0.
01

0.
03

0.
05

chess : 200

0 100 200 300 400 500

0.
28

0.
34

0.
40

connect4 : 2000

0 100 200 300 400 500

0.
24

0.
30

forest : 2000

0 100 200 300 400 500

0.
05

0.
15

letter : 2000

0 100 200 300 400 500

0.
12

0.
16

0.
20

magic04 : 1000

0 100 200 300 400 500
0.
10

0.
20

nursery : 500

0 100 200 300 400 500

0.
04

0.
08

0.
12

pendigits : 200

0 100 200 300 400 500

0.
25

0.
35

0.
45

poker : 2000

0 100 200 300 400 500

0.
10

0.
14

satimage : 500

0 100 200 300 400 500

0.
05

0.
15

segmentation : 20

0 100 200 300 400 500

0.
45

0.
55

0.
65

vowel : 100

M1
MM

93

Figure 3.9: For this figure, M1(black, dashed), MH(blue, dotted) and MM(red,solid) were de-
signed to boost decision trees of restricted sizes. The final test-errors of the three algorithms
after 500 rounds of boosting are plotted against the maximum tree-sizes allowed for the weak
classifiers. MM achieves much lower error when the weak classifiers are very weak, that is,
with smaller trees.

5 10 50 200 1000

0.
75

0.
85

0.
95

abalone

5 10 20 50 100 500

0.
20

0.
30

0.
40

car

5 10 20 50 100 200

0.
01

0.
03

0.
05

chess

5 10 50 200 1000

0.
30

0.
40

connect4

5 10 50 200 1000

0.
3

0.
5

0.
7

forest

5 10 50 200 1000

0.
0

0.
4

0.
8

letter

5 10 50 200 1000

0.
12

0.
16

magic04

5 10 20 50 200 500

0.
10

0.
20

nursery

5 10 20 50 100 500

0.
1

0.
3

0.
5

pendigits

5 10 50 200 1000

0.
20

0.
30

0.
40

0.
50

poker

5 10 20 50 100 500

0.
08

0.
14

0.
20

satimage

5 10 20 50 100

0.
00

0.
10

segmentation

5 10 20 50 100 200

0.
4

0.
6

0.
8

1.
0

vowel

M1
MH
MM

small-tree learning algorithms Greedy and Greedy-Info are no longer able to meet
the excessive requirements of M1 and MH respectively. However, our algorithm makes
more reasonable demands that are easily met by Greedy.

3.11 Conclusion

In summary, we create a new framework for studying multiclass boosting. This
framework is very general and captures the weak learning conditions implicitly used
by many earlier multiclass boosting algorithms as well as novel conditions, including
the minimal condition under which boosting is possible. We also show how to design
boosting algorithms relying on these weak learning conditions that drive down train-
ing error rapidly. These algorithms are the optimal strategies for playing certain two
player games. Based on this game-theoretic approach, we also design a multiclass
boosting algorithm that is consistent, i.e., approaches the minimum empirical risk,
and under some basic assumptions, the Bayes optimal test error. Preliminary exper-

94

Figure 3.10: A plot of how fast the test-errors of the three algorithms drop with rounds
when the weak classifiers are trees with a size of at most 5. Algorithms M1 and MH make
strong demands which cannot be met by the extremely weak classifiers after a few rounds,
whereas MM makes gentler demands, and is hence able to drive down error through all the
rounds of boosting.

0 100 200 300 400 500

0.
75

0.
85

0.
95

abalone

0 100 200 300 400 500

0.
30

0.
40

car

0 100 200 300 400 500

0.
00

0.
04

0.
08

chess

0 100 200 300 400 500

0.
32

0.
36

0.
40

connect4

0 100 200 300 400 500

0.
4

0.
6

0.
8

1.
0

forest

0 100 200 300 400 500

0.
4

0.
8

letter

0 100 200 300 400 500

0.
12

0.
16

0.
20

magic04

0 100 200 300 400 500
0.
05

0.
15

0.
25

nursery

0 100 200 300 400 500

0.
1

0.
3

0.
5

pendigits

0 100 200 300 400 500

0.
40

0.
50

poker

0 100 200 300 400 500

0.
10

0.
20

satimage

0 100 200 300 400 500

0.
05

0.
20

0.
35

segmentation

0 100 200 300 400 500

0.
5

0.
7

0.
9

vowel

M1
MH
MM

95

iments show that this algorithm can achieve much lower error compared to existing
algorithms when used with very weak classifiers.

Although we can efficiently compute the game-theoretically optimal strategies un-
der most conditions, when using the minimal weak learning condition, and non-convex
0-1 error as loss function, we require exponential computational time to solve the cor-
responding boosting games. Boosting algorithms based on error are potentially far
more noise tolerant than those based on convex loss functions, and finding efficiently
computable near-optimal strategies in this situation is an important problem left for
future work. Further, we primarily work with weak classifiers that output a single
multiclass prediction per example, whereas weak hypotheses that make multilabel
multiclass predictions are typically more powerful. We believe that multilabel pre-
dictions do not increase the power of the weak learner in our framework, and our
theory can be extended without much work to include such hypotheses, but we do
not address this here. Finally, it will be interesting to see if the notion of minimal
weak learning condition can be extended to boosting settings beyond classification,
such as ranking.

3.12 Appendix

3.12.1 Optimality of the OS strategy

Here we prove Theorem 3.9. The proof of the upper bound on the loss is very similar
to the proof of Theorem 2 in [44]. For the lower bound, a similar result is proved in
Theorem 3 in [44]. However, the proof relies on certain assumptions that may not
hold in our setting.

We first show that the average potential of states does not increase in any round.
The dual form of the recurrence (3.24) and the choice of the cost matrix Ct in (3.25)
together ensure that for each example i,

φ
B(i)
T−t (st(i)) =

k
max
l=1

{
φ

B(i)
T−t−1 (st(i) + el)− (Ct(i)(l)− 〈Ct(i),B(i)〉)

}
≥ φ

B(i)
T−t−1

(
st(i) + eht(xi)

)
− (Ct(i, ht(xi))− 〈Ct(i),B(i)〉) .

Summing up the inequalities over all examples, we get

m∑
i=1

φ
B(i)
T−t−1

(
st(i) + eht(xi)

)
≤

m∑
i=1

φ
B(i)
T−t (st(i)) +

m∑
i=1

{Ct(i, ht(xi))− 〈Ct(i),B(i)〉}

The first two summations are the total potentials in round t + 1 and t, respectively,
and the third summation is the difference in the costs incurred by the weak-classifier
ht returned in iteration t and the baseline B. By the weak learning condition, this
difference is non-positive, implying that the average potential does not increase.

Next we show that the bound is tight. In particular choose any accuracy parameter
ε > 0, and total number of iterations T , and let m be as large as in (3.28). We show
that in any iteration t ≤ T , based on Booster’s choice of cost-matrix C, an adversary

96

can choose a weak classifier ht ∈ Hall such that the weak learning condition is satisfied,
and the average potential does not fall by more than an amount ε/T . In fact, we
show how to choose labels l1, . . . , lm such that the following hold simultaneously:

m∑
i=1

C(i, li) ≤
m∑
i=1

〈C(i),B(i)〉 (3.88)

m∑
i=1

φ
B(i)
T−t (st(i)) ≤

mε

T
+

m∑
i=1

φ
B(i)
T−t−1 (st(i) + eli) (3.89)

This will imply that the final potential or loss is at least ε less than the bound in
(3.26).

We first construct, for each example i, a distribution pi ∈ ∆ {1, . . . , k} such that
the size of the support of pi is either 1 or 2, and

φ
B(i)
T−t(st(i)) = El∼pi

[
φ

B(i)
T−t−1 (st(i) + el)

]
. (3.90)

To satisfy (3.90), by (3.20), we may choose pi as any optimal response of the max
player in the minimax recurrence when the min player chooses C(i):

pi ∈ argmax
p∈Pi

{
El∼p

[
φ

B(i)
t−1 (s + el)

]}
(3.91)

where Pi = {p ∈ ∆ {1, . . . , k} : El∼p [C(i, l)] ≤ 〈C(i),B(i)〉} . (3.92)

The existence of pi is guaranteed, since, by Lemma 3.7, the polytope Pi is non-empty
for each i. The next result shows that we may choose pi to have a support of size 1
or 2.

Lemma 3.31. There is a pi satisfying (3.91) with either 1 or 2 non-zero coordinates.

Proof. Let p∗ satisfy (3.91), and let its support set be S. Let µi denote the mean
cost under this distribution:

µi = El∼p∗ [C(i, l)] ≤ 〈C(i),B(i)〉 .

If the support has size at most 2, then we are done. Further, if each non-zero coor-
dinate l ∈ S of p∗ satisfies C(i, l) = µi, then the distribution pi that concentrates all

its weight on the label lmin ∈ S minimizing φ
B(i)
t−1 (s + elmin) is an optimum solution

with support of size 1. Otherwise, we can pick labels lmin
1 , lmin

2 ∈ S such that

C(i, lmin
1) < µi < C(i, lmin

2).

Then we may choose a distribution q supported on these two labels with mean µi:

El∼q [C(i, l)] = q(lmin
1)C(i, lmin

1) + q(lmin
2)C(i, lmin

2) = µi.

97

Choose λ as follows:

λ = min

{
p∗(lmin

1)

q(lmin
1)

,
p∗(lmin

2)

q(lmin
2)

}
,

and write p∗ = λq + (1− λ)p. Then both p,q belong to the polytope Pi, and have
strictly fewer non-zero coordinates than p∗. Further, by linearity, one of q,p is also
optimal. We repeat the process on the new optimal distribution till we find one which
has only 1 or 2 non-zero entries.

We next show how to choose the labels l1, . . . , lm using the distributions pi. For
each i, let

{
l+i , l

−
i

}
be the support of pi so that

C
(
i, l+i

)
≤ El∼pi [C(i, l)] ≤ C

(
i, l−i

)
.

(When pi has only one non-zero element, then l+i = l−i .) For brevity, we use p+
i and

p−i to denote pi
(
l+i
)

and pi
(
l−i
)
, respectively. If the costs of both labels are equal, we

assume without loss of generality that pi is concentrated on label l−i :

C
(
i, l−i

)
− C

(
i, l−i

)
= 0 =⇒ p+

i = 0, p−i = 1. (3.93)

We will choose each label li from the set
{
l−i , l

+
i

}
. In fact, we will choose a partition

S+, S− of the examples 1, . . . ,m and choose the label depending on which side Sξ, for
ξ ∈ {−,+}, of the partition element i belongs to:

li = lξi if i ∈ Sξ.

In order to guide our choice for the partition, we introduce parameters ai, bi as follows:

ai = C(i, l−i)− C(i, l+i),

bi = φ
B(i)
T−t−1

(
st(i) + el−i

)
− φB(i)

T−t−1

(
st(i) + el+i

)
.

Notice that for each example i and each sign-bit ξ ∈ {−1,+1}, we have the following
relations:

C(i, lξi) = El∼pi [C(i, l)]− ξ(1− pξi)ai (3.94)

φ
B(i)
T−t−1

(
st(i) + elξi

)
= El∼pi

[
φ

B(i)
T−t(i, l)

]
− ξ(1− pξi)bi. (3.95)

98

Then the cost incurred by the choice of labels can be expressed in terms of the
parameters ai, bi as follows:∑

i∈S+

C(i, l+i) +
∑
i∈S−

C(i, l−i) =
∑
i∈S+

{
El∼pi [C(i, l)]− ai + p+

i ai
}

+
∑
i∈S−

{
El∼pi [C(i, l)] + p+

i ai
}

=
m∑
i=1

El∼pi [C(i, l)] +

 m∑
i=1

p+
i ai −

∑
i∈S+

ai

≤

m∑
i=1

〈C(i),B(i)〉+

 m∑
i=1

p+
i ai −

∑
i∈S+

ai

 ,(3.96)

where the first equality follows from (3.94), and the inequality follows from the con-
straint on pi in (3.92). Similarly, the potential of the new states is given by∑

i∈S+

φ
B(i)
T−t−1

(
st(i) + el+i

)
+
∑
i∈S−

φ
B(i)
T−t−1

(
st(i) + el−i

)
(3.97)

=
∑
i∈S+

{
El∼pi

[
φ

B(i)
T−t−1 (st(i) + el)

]
− bi + p+

i bi

}
+
∑
i∈S−

{
El∼pi

[
φ

B(i)
T−t−1 (st(i) + el)

]
+ p+

i bi

}

=
m∑
i=1

El∼pi

[
φ

B(i)
T−t−1 (st(i) + el)

]
+

 m∑
i=1

p+
i bi −

∑
i∈S+

bi

=

m∑
i=1

φ
B(i)
T−t (st(i)) +

 m∑
i=1

p+
i bi −

∑
i∈S+

bi

 , (3.98)

where the first equality follows from (3.95), and the last equality from an optimal
choice of pi satisfying (3.90). Now, (3.96) and (3.98) imply that in order to satisfy
(3.88) and (3.89), it suffices to choose a subset S+ satisfying

∑
i∈S+

ai ≥
m∑
i=1

p+
i ai,

∑
i∈S+

bi ≤
mε

T
+

m∑
i=1

p+
i bi. (3.99)

We simplify the required conditions. Notice the first constraint tries to ensure that
S+ is big, while the second constraint forces it to be small, provided the bi are non-
negative. However, if bi < 0 for any example i, then adding this example to S+ only
helps both inequalities. In other words, if we can always construct a set S+ satisfying
(3.99) in the case where the bi are non-negative, then we may handle the more general
situation by just adding the examples i with negative bi to the set S+ that would be

99

constructed by considering only the examples {i : bi ≥ 0}. Therefore we may assume
without loss of generality that the bi are non-negative. Further, assume (by relabeling
if necessary) that a1, . . . , am′ are positive and am′+1, . . . am = 0, for some m′ ≤ m. By
(3.93), we have p+

i = 0 for i > m′. Therefore, by assigning the examples m′+1, . . . ,m
to the opposite partition S−, we can ensure that (3.99) holds if the following is true:

∑
i∈S+

ai ≥
m′∑
i=1

p+
i ai, (3.100)

∑
i∈S+

bi ≤
m′

max
i=1
|bi|+

m′∑
i=1

p+
i bi, (3.101)

where, for (3.101), we additionally used that, by the choice of m (3.28) and the bound
on loss variation (3.27), we have

mε

T
≥ �(L, T) ≥ bi for i = 1, . . . ,m.

The next lemma shows how to construct such a subset S+, and concludes our lower
bound proof.

Lemma 3.32. Suppose a1, . . . , am′ are positive and b1, . . . , bm′ are non-negative reals,
and p+

1 , . . . , p
+
m′ ∈ [0, 1] are probabilities. Then there exists a subset S+ ⊆ {1, . . . ,m′}

such that (3.100) and (3.101) hold.

Proof. Assume, by relabeling if necessary, that the following ordering holds:

a(1)− b(1)

a(1)
≥ · · · ≥ a(m′)− b(m′)

a(m′)
. (3.102)

Let I ≤ m′ be the largest integer such that

a1 + a2 + · · ·+ aI <
m′∑
i=1

p+
i ai. (3.103)

Since the p+
i are at most 1, I is in fact at most m′ − 1. We will choose S+ to be the

first I + 1 examples S+ = {1, . . . , I + 1}. Observe that (3.100) follows immediately
from the definition of I. Further, (3.101) will hold if the following is true

b1 + b2 + · · ·+ bI ≤
m′∑
i=1

p+
i bi, (3.104)

since the addition of one more example I+1 can exceed this bound by at most bI+1 ≤
maxm

′
i=1 |bi|. We prove (3.104) by showing that the left hand side of this equation is not

much more than the left hand side of (3.103). We first rewrite the latter summation
differently. The inequality in (3.103) implies we can pick p̃+

1 , . . . , p̃
+
m′ ∈ [0, 1] (e.g., by

100

simply scaling the p+
i ’s appropriately) such that

a1 + . . .+ aI =
m′∑
i=1

p̃+
i ai (3.105)

for i = 1, . . . ,m′: p̃+
i ≤ pi. (3.106)

By subtracting off the first I terms in the right hand side of (3.105) from both sides
we get

(1− p̃+
1)a1 + · · ·+ (1− p̃+

I)aI = p̃+
I+1aI+1 + · · ·+ p̃+

m′am′ .

Since the terms in the summations are non-negative, we may combine the above with
the ordering property in (3.102) to get

(1− p̃+
1)a1

(
a1 − b1

a1

)
+ · · ·+ (1− p̃+

I)aI

(
aI − bI
aI

)
≥ p̃+

I+1aI+1

(
aI+1 − bI+1

aI+1

)
+ · · ·+ p̃+

m′am′

(
am′ − bm′
am′

)
. (3.107)

Adding the expression

p̃+
1 a1

(
a1 − b1

a1

)
+ · · ·+ p̃+

I aI

(
aI − bI
aI

)
to both sides of (3.107) yields

I∑
i=1

ai

(
ai − bi
ai

)
≥

m′∑
i=1

p̃+
i ai

(
ai − bi
ai

)

i.e.
I∑
i=1

ai −
I∑
i=1

bi ≥
m′∑
i=1

p̃+
i ai −

m′∑
i=1

p̃+
i bi

i.e.
I∑
i=1

bi ≤
m′∑
i=1

p̃+
i bi, (3.108)

where the last inequality follows from (3.105). Now (3.104) follows from (3.108) using
(3.106) and the fact that the bi’s are non-negative.

This completes the proof of the lower bound.

3.12.2 Consistency proofs

Here we sketch the proofs of Lemmas 3.26 and 3.27. Our approach will be to relate
our algorithm to AdaBoost and then use relevant known results on the consistency
of AdaBoost. We first describe the correspondence between the two algorithms, and
then state and connect the relevant results on AdaBoost to the ones in this section.

101

For any given multiclass dataset and weak classifier space, we will obtain a trans-
formed binary dataset and weak classifier space, such that the run of AdaBoost.MM
on the original dataset will be in perfect correspondence with the run of AdaBoost on
the transformed dataset. In particular, the loss and error on both the training and
test set of the combined classifiers produced by our algorithm will be exactly equal
to those produced by AdaBoost, while the space of functions and classifiers on the
two datasets will be in correspondence.

Intuitively, we transform our multiclass classification problem into a single binary
classification problem in a way similar to the all-pairs multiclass to binary reduction.
A very similar reduction was carried out by [23]. Borrowing their terminology, the
transformed dataset roughly consists of mislabel triples (x, y, l) where y is the true
label of the example and l is an incorrect example. The new binary label of a mislabel
triple is always −1, signifying that l is not the true label. A multiclass classifier
becomes a binary classifier that predict ±1 on the mislabel triple (x, y, l) depending
on whether the prediction on x matches label l; therefore error on the transformed
binary dataset is low whenever the multiclass accuracy is high. The details of the
transformation are provided in Figure 3.11.

Some of the properties between the functions and their transformed counterparts
are described in the next lemma, showing that we are essentially dealing with similar
objects.

Lemma 3.33. The following are identities for any scoring function F : X × Y → R
and weight function α : H → R:

r̂isk (Fα) =
˜̂
risk

(
F̃eα
)

(3.109)

riskD
(
F̄
)

= r̃iskD

(
¯̃
F
)
. (3.110)

The proofs involve doing straightforward algebraic manipulations to verify the
identities and are omitted.

The next lemma connects the two algorithms. We show that the scoring function
output by AdaBoost when run on the transformed dataset is the transformation of
the function output by our algorithm. The proof again involves tedious but straight-
forward checking of details and is omitted.

Lemma 3.34. If AdaBoost.MM produces scoring function Fα when run for T rounds
with the training set S and weak classifier spaceH, then AdaBoost produces the scoring
function F̃eα when run for T rounds with the training set S̃ and space H̃. We assume
that for both the algorithms, Weak Learner returns the weak classifier in each round
that achieves the maximum edge. Further we consider the version of AdaBoost.MM
that chooses weights according to the approximate rule (3.67).

We next restate the result for AdaBoost corresponding to Lemma 3.26 which we
have already seen in Chapter 2.

102

AdaBoost.MM AdaBoost

Labels
Y = {1, . . . , k} Ỹ = {−1,+1}

Examples
X X̃ = X × ((Y × Y) \ {(y, y) : y ∈ Y})

Weak classifiers
h : X → Y h̃ : X̃ → {−1, 0,+1}, where

h̃(x, y, l) = 1 [h(x) = l]− 1 [h(x) = y]

Classifier space
H H̃ =

{
h̃ : h ∈ H

}

Scoring function
F : X × Y → R F̃ : X̃ → R where

F̃ (x, y, l) = F (x, l)− F (x, y)

Clamped func-
tion

F̄ (x, y) = ¯̃
F (x, y, l) = F̃ (x, y, l), if

∣∣∣F̃ (x, y, l)
∣∣∣ ≤ C

max {−C,F (x, l)−maxl′ FT (x, l′)} ¯̃
F (x, y, l) = C, if

∣∣∣F̃ (x, y, l)
∣∣∣ > C

Classifier
weights

α : H → R α̃ : H̃ → R where

α̃
(
h̃
)

= α(h)

Combined hypo-
thesis

Fα where F̃eα where

Fα(x, l) =
∑
h∈H α(h)1 [h(x) = l] F̃eα(x, y, l) =

∑eh∈ eH α̃
(
h̃
)
h̃(x, y, l)

Training set
S = {(xi, yi) : 1 ≤ i ≤ m} S̃ =

{((xi, yi, l), ξ) : ξ = −1, l 6= yi, 1 ≤ i ≤ m}

Test distribu-
tion

D over X × Y D̃ over X̃ × Ỹ where

D̃((x, y, l),−1) = D(x, y)/(k − 1)
D̃((x, y, l),+1) = 0

Empirical risk
r̂isk(F) = ˜̂risk(F̃)
1
m

∑m
i=1

∑
l 6=yi

eF (xi,l)−F (xi,yi) 1
m(k−1)

∑m
i=1

∑
l 6=yi

e−ξ
eF (xi,yi,l)

Test risk
riskD(F) = r̃iskD

(
F̃
)

=

E(x,y)∼D

[∑
l 6=y e

F (x,l)−F (x,y)
]

E((x,y,l),ξ)∼ eD
[
e−ξ

eF (x,y,l)
]

Figure 3.11: Details of transformation between AdaBoost.MM and AdaBoost.

103

Lemma 3.35. [Theorem 2.14] Suppose AdaBoost produces the scoring function F̃eα
when run for T rounds with the training set S̃ and space H̃. Then

˜̂
risk

(
F̃eα
)
≤ infeβ: eH→R

˜̂
risk

(
F̃eβ
)

+ C/T, (3.111)

where the constant C depends only on the dataset.

The previous lemma, along with (3.109) immediately proves Lemma 3.26. The
result for AdaBoost corresponding to Lemma 3.27 appears in [46].

Lemma 3.36 (Theorem 12.2 in [46]). Suppose AdaBoost produces the scoring function

F̃ when run for T =
√
m rounds with the training set S̃ and space H̃. Then

Pr

[
riskD

(
¯̃
F
)
≤ inffF ′: eX→R

riskD(F̃ ′) +O
(
m−c

)]
≥ 1− 1

m2
, (3.112)

where the constant C depends only on the dataset.

The proof of Lemma 3.27 follows immediately from the above lemma and (3.110).

104

Chapter 4

Learning with Continuous Experts
Using Drifting Games

Although boosting is mainly studied as a statistical learning algorithm, the theory
of boosting has benefited greatly from viewpoints borrowed from related areas. One
such area is online learning, where the goal is to design algorithms that can constantly
learn from a stream of signals supplied to it. At least superficially, this is similar to
the boosting framework, where the boosting algorithm has to constantly make use of
signals in the form of weak classifiers that are supplied to it each round. In this chapter
we flesh out this connection by focusing on a particular online learning problem that
will lead to boosting algorithms with certain optimality properties.

We consider the problem of learning to predict as well as the best in a group
of experts. Our model consists of a series of rounds. In each round, experts make
predictions in [−1,+1]. This can be interpreted as giving a binary prediction, for
example, if it will rain or not, with a certain degree of confidence. In particular, this
means that an expert can choose to abstain from giving any prediction at all, in which
case it predicts 0. The problem is to design a master algorithm that combines the
expert predictions in each round to give its own binary prediction in {−1,+1}. At
the end of each round, nature (or an adversary) reveals the truth, which is a value
in {−1,+1}. The experts and the master suffer loss that depends on the amount
by which their predictions deviated from the truth. Our goal is to ensure that our
master algorithm does not suffer much loss relative to the best expert.

An important feature of our model, which we define rigorously in Section 4.1, is
that we assume the master algorithm has prior knowledge of a bound k on the total
loss that the best expert will suffer. With binary experts, outputting predictions
in {−1,+1}, this problem was essentially solved entirely by Cesa-Bianchi et al. [11]
who proposed the Binomial Weights (BW) algorithm. However, their work cannot
be applied to our setting since here the experts are continuous, with predictions in
[−1,+1]. In such a setting, other methods, notably exponential-weight algorithms [12,
23, 28], can be used instead. However, such algorithms do not enjoy the same level
of tight optimality of the BW algorithm, and it has been an open problem since
the introduction of BW as to whether this method can be generalized to continuous
experts.

105

In this chapter, we present just such a generalization. In Section 4.2, we propose
a new master strategy that gives the best possible performance for this problem.
Our algorithm predicts using a weighted majority of the experts’ predictions in each
round, where the weights are carefully chosen to ensure that the master’s loss is small
relative to k. We also show that our algorithm runs in polynomial time.

Our algorithm is based on the drifting games framework introduced by
Schapire [44]. This framework generalizes a number of on-line and boosting
learning algorithms, including boost-by-majority [17], AdaBoost [23], the weighted
majority algorithm [28] and Binomial Weights [11]. We apply the drifting games
framework directly both to derive our algorithm, and to analyze its performance
which, as seen in Section 4.3, relies heavily on properties of drifting games.

We also provide in Section 4.4 new lower bound constructions for master algo-
rithms which employ weighted-majority predictions. These are slightly weaker than
those provided by Cesa-Bianchi et al. [11] which already show that our algorithm is
nearly the best possible when the number of experts is very large. However, their
techniques are based on Spencer’s [51] sophisticated results for Ulam’s game, and
require an enormous number of experts. In contrast, our lower bounds use simpler
arguments based on the drifting games framework, and are meaningful for any num-
ber of experts. In the Appendix, we show how to extend the Spencer’s [51] and
Cesa-Bianchi et al.’s [11] approaches to achieve exactly tight lower bounds.

A consequence of our results is that learning in our framework with continuous
experts is no harder than learning with abstaining experts, i.e., experts whose pre-
dictions are restricted to be in {−1, 0,+1} (assuming that 2k is an integer), although
there is a small gap between abstaining and binary experts.

Our results also have applications in boosting, where it leads to optimal algorithms
for combining weak hypotheses that return confidence-rated predictions instead of just
binary labels [47]. Although the algorithm turns out to be more complicated than in
the expert learning setting, our theory ensures that it remains efficiently computable.

Other related work. Abernethy et al. [1] extended the BW algorithm to the
setting where the experts remain binary, but the master is allowed to predict con-
tinuously. Their results do not directly apply to our setting, but with some effort
can be used to obtain sub-optimal bounds. For completeness, a sketch is included in
Section 4.1.1.

Continuous-time versions of drifting games, with potential applications to on-line
learning, were studied by Freund and Opper [20]. In their setting, learning rounds
are no longer discrete, but are instead continuous.

4.1 Expert Learning Model

Our expert learning model can be viewed as the following game. The players of the
game are a fixed set of m experts, a master algorithm, and an adversary. The game
proceeds through T rounds. In each round t, the following happen:

• The master chooses real weights wt1, . . . , w
t
m over the experts.

106

• Each expert i makes a prediction xti ∈ [−1,+1]. The experts’ predictions are
controlled by the adversary; we distinguish between the experts and the adver-
sary for clarity of exposition.

• The master predicts ŷt
M
= sign(

∑
iw

t
ix
t
i) ∈ {−1, 0,+1}. The sign function maps

positive reals to 1, negative reals to −1 and 0 to itself.

• The adversary then chooses a label yt ∈ {−1,+1}, causing expert i to suffer
loss 1

2
|yt − xti|, and the master to suffer loss 1(yt 6= ŷ), where 1 is the indicator

function. Note that predicting 0 counts as a mistake.

The total loss of any player is the sum of the losses in each round. It is guaranteed
that some expert will suffer at most k total loss, where k is known ahead of time to the
master. The goal of the master is to come up with a strategy to choose distributions
wt in each round, so as to minimize its loss against the worst possible adversary. The
performance of every fixed strategy will thus be a function of m and k.

We will only consider conservative master algorithms, i.e., algorithms that ignore
rounds where it does not make a mistake, so that the weights it chooses in a certain
round depend only on past rounds where it made a mistake. This will also allow us to
assume that as long as the game can continue, the master makes a mistake in every
round. Since one can easily convert any master algorithm in a mistake bounded model
like ours to a conservative one without loss of performance, we do not lose generality
with this assumption.

4.1.1 The Binning Algorithm

Abernethy et al. [1] study a similar game, where the Master predicts continuously,
but the expert-predictions are binary. Experts in their model may split themselves
into two parts of varying masses; each part independently makes a prediction and
suffers integral loss. The game terminates when the total mass of experts with error
at most k is less than one. They develop an optimal algorithm for their model, called
binning. Superficially, the two models appear to be the same, but in fact, critical
differences exist.

The first main difference between the models assumed by binning and ours is that
experts suffer integral losses in binning, whereas in our case experts suffer continuous
losses. However their experts are amorphous, and can split themselves into different
parts which make different predictions and suffer different integral losses. The game-
state in the binning model is captured by the total mass of experts that have suffered
losses 0, . . . , k, respectively. Mathematically, their state-space is [0,m]k+1. Their
terminal states are those in which the sum of coordinates is less than 1. In contrast,
the state of our expert learning game in any given round is given by the (possibly
fractional) cumulative losses of each expert. Mathematically, our state-space is [0, k+
1]m; the terminal states are the ones where each coordinate is greater than k.

The next main difference is that whereas we find the optimal deterministic Master,
Abernethy et al. [1] bound the expected error of a Master that predicts randomly.
The very point of their work was to compute the improvement that a random Master

107

could achieve over the best possible deterministic master, which, in their setting, was
known to be the Binomial Weights algorithm of Cesa-Bianchi et al. [11]. Hence, their
techniques are suited for finding optimal random Master algorithms, which is not the
question we study here.

4.2 A master strategy for choosing weights

We describe a strategy of the master for choosing a distribution on the experts in
each round. Computing this strategy requires playing a different type of game called a
drifting game introduced by Schapire ([44]), which we have already briefly encountered
in Chapter 3. We begin with an abstract definition of the game, and then go on
to show how such games can be used to derive the BW algorithm [11], which is
the optimal (in the broadest possible sense) master strategy in the case of binary
experts. We then show how similar ideas can be used to derive a master algorithm
for continuous experts.

4.2.1 Drifting Games

A drifting game is played by a shepherd and m sheep (also known as chips in [44]). In
general, sheep exist in Rd; however, in this chapter, we only consider drifting games
in which d = 1. The game proceeds through T rounds. In each round t, the following
happen:

• The shepherd chooses a weight wti ∈ R for each sheep i. The sign indicates
the direction he intends the sheep to move, and the magnitude encodes the
importance he places on that sheep.

• Sheep i responds by shifting by zti , where zti belongs to a fixed set of directions
B. Additionally, the following drifting constraint is obeyed

m∑
i=1

wtiz
t
i ≥ δ

m∑
i=1

|wi|. (4.1)

Here δ ≥ 0 and B ⊆ R are parameters of the game.

The shepherd suffers a loss L(s) for every sheep that is at location s ∈ R at the
end of the game; here L : R → R is a real function on the space. Initially, all the
sheep are at the origin, so at the end of the game, sheep i is at

∑T
t=1 z

t
i . The goal

of the shepherd is to choose weights in a way that would minimize its average loss
1
m

∑
i L(
∑

t z
t
i), assuming the worst behavior from the sheep.

Schapire [44] suggests a shepherd strategy OS based on a set of potential functions
φt : Rd → R defined recursively as follows:

• φT (x) = L(x)

108

• φt−1(x) = min
w∈R

max
z∈B

(φt(x+ z) + wz − δ|w|).

Denoting by sti the position of sheep i at time t, the OS algorithm chooses wti as
follows

wti ∈ arg min
w∈R

max
z∈B

(φt+1(sti + z) + wz − δ|w|). (4.2)

(In this chapter, we regard arg min or arg max as returning the set of all values
realizing the minimum or maximum.) Note that the time subscripts t on the potentials
and the weights run in the opposite direction to that used in Chapter 3. This is only
a superficial notational difference, and does not affect the results. We choose this over
here since they match more closely the notation in the paper [44], whose results we
will be heavily relying on. Schapire [44] provides an upper bound on the performance
of the OS algorithm, and argues that (under some natural assumptions) it is optimal
when the number of sheep m is very large. We record the results in the theorem
below.

Theorem 4.1 (Drifting Games [44]). If B is a bounded subset of R, and L is locally
bounded, then the loss suffered by the OS algorithm is upper bounded by φ0(0), where
φ is defined as above. Additionally, if B contains both positive and negative numbers
of magnitude greater than δ, and L is globally bounded, then, given any ε > 0, for
sufficiently large m, the sheep can force any shepherd algorithm to suffer at least
φ0(0)− ε loss at the end of the game.

4.2.2 Learning with binary experts using drifting games

Consider our expert learning model with the change that experts make {−1,+1}
instead of continuous predictions. The Binomial Weights algorithm [11] is the best
possible master strategy for this problem, even among master algorithms not re-
stricted to predicting a weighted majority of the experts’ predictions at each stage.
We show how a master can simulate a drifting game to derive a strategy for choosing
weights on the experts so as to perform as well as the BW algorithm.

The drifting game parameters are B = {−1,+1} and δ = 0, and the loss function
is L(s) = 1(x ≤ 2k−T). The number of rounds is T = T0+1 where T0 will be specified
later. For every expert, there is a sheep. At the beginning of a round, the master
uses the shepherd’s choice w1, . . . , wm for that round to assign weights to experts.
After seeing the expert predictions xi and the label y produced by the adversary, the
master causes sheep i to drift by zi = −yxi. The drifting constraint (4.1) holds since
we are in the conservative setting and assume a mistake is made by the master in
each round. Schapire [44] shows that the resulting algorithm is equivalent to BW, for
a certain choice of T0.

We use the notation
(
q
≤k

)
to denote

∑k
i=0

(
q
i

)
.

Theorem 4.2 (Learning with Binary Experts [11],[44]). Consider the expert learning
model described in Section 4.1, with the change that the expert predictions lie in

109

{−1,+1}. For this problem, when T0 is set to be

max

{
q ∈ N : q ≤ lgm+ lg

(
q

≤ k

)}
(4.3)

the number of mistakes made by the master algorithm described in this section is
upper bounded by T0. Further, the resulting algorithm can be computed efficiently.

Proof. At the heart of the proof, and the reason behind our choice of T0, lies the
following result which was proved by Schapire [44]: If a drifting game with parameters
δ = 0, B = {−1,+1} and loss function L(x) = 1(x ≤ 2k − T) is played for T rounds,
then φt can be computed exactly, yielding

φ0(0) = 2−T
(
T

≤ k

)
. (4.4)

Note that the position of a sheep after t rounds is 2M−t, where M is the loss suffered
by the corresponding expert until then. Since we are guaranteed a mistake bound
of at most k on some expert, we always have

∑
i L(sti) ≥ 1, where sti is sheep i’s

position after t rounds of play. If the game could continue for T = 1 + T0 rounds,
using Theorem 4.1 and (4.4) we would have the following contradiction:

1

m
≤ 1

m

∑
i

L(sTi) ≤ φ0(0) = 2−T
(
T

≤ k

)
<

1

m
.

The last inequality follows from the fact that T0 was chosen to satisfy T0 =
max{number of rounds : φ0(0) ≥ 1

m
}. This upper bounds the maximum number of

rounds for which the game can continue, or equivalently, the maximum number of
mistakes our master algorithm makes, by T0.

4.2.3 Drifting games for continuous experts

The same approach from the previous section can be applied to our expert learning
model, where experts make [−1,+1] predictions. The drifting game parameter B
changes to B = [−1,+1], and a new expression for T0 has to be chosen; everything
else remains the same. We summarize the master strategy in Algorithm 2, where

we choose T0 = max
[
q ∈ N : q ≤ lgm+ lg

(
T+1
≤k

)]
. We can now state our first main

result.

Theorem 4.3 (Learning with Continuous Experts). Consider the expert learning
model described in Section 4.1. For that problem, the loss of the master algorithm
described in Algorithm 2 is upper bounded by T0, which is equal to

max

[
q ∈ N : q ≤ lgm+ lg

(
q + 1

≤ k

)]
. (4.5)

110

Algorithm 2 Master algorithm for continuous experts

Require: k - mistake bound, m - number of experts

T0 ← max
[
q ∈ N : q ≤ lgm+ lg

(
T+1
≤k

)]
B ← [−1,+1], L← 1(x ≤ 2k − T)
δ ← 0
Setup drifting game with T = 1 + T0, B, δ, L, and shepherd OS

{Note: Game cannot continue beyond T0 rounds}
for t = 1 to T0 do

Accept wt1, . . . , w
t
m from shepherd (Algorithm 3)

Accept predictions xt1, . . . , x
t
m from experts.

Predict ŷt = sign(
∑

iwix
t
i)

Accept label yt from adversary.

For each i, make sheep i drift by zti
M
= −ytxti

end for

The bound for continuous experts looks very similar to the one for binary ex-
perts, except lg

(
q
≤k

)
in (4.3) is replaced by lg

(
q+1
≤k

)
in (4.5). Roughly, this means the

continuous bound is twice as much as the binary one.
As in learning with binary experts, the choice of T0 in Theorem 4.3 is dictated

by the analysis of the drifting game used for playing with continuous experts. This
analysis also constitutes our main technical contribution, and is summarized in the
next theorem, but we defer a proof until the next section.

Theorem 4.4 (Drifting Games for [−1,+1] Experts). Consider the drifting game
with parameters δ = 0, B = [−1,+1], total number of rounds T and loss function
L(x) = 1(x ≤ 2k − T). The value of the potential function for this game at any
integer point s+ 2k − T is given by

φT−t(s+ 2k − T) =

{
1 if s ≤ 0

1− 2−t
∑s−1

i=0

(
t

d t+i
2
e

)
else.

(4.6)

In particular we have

φ0(0) = 2−T
(
T + 1

≤ k

)
.

Further, the OS strategy for this game can be computed efficiently.

Proof of Theorem 4.3. Observe that T0 = max{number of rounds : φ0(0) ≥ 1
m
},

where φ0 is the potential associated with the drifting game in Theorem 4.4. The rest
of the proof is the same as that for Theorem 4.2.

We can loosely upper bound the expression for the number of mistakes in Theo-
rem 4.3 by

2k + lnm

(
1 +

√
1 +

4k

lnm

)
− 1.

111

In Section 4.4 we will prove that, when the number of experts m is around 2k,
the mistake guarantee given in Theorem 4.3 is the best possible, up to an additive
O(log k) term, when considering master algorithms that predict a weighted majority
of the experts’ predictions in each round. When m ≥ 22k , our upper bound is exactly
tight as shown in the Appendix.

4.3 Analysis of drifting games for continuous ex-

perts

In this section we analyze the continuous drifting game and prove Theorem 4.4.
Throughout we will be using the following two facts: φt is decreasing, and takes
values in [0, 1]. These facts were proved more generally by Schapire [44].

We begin with a technical result necessary for proving Theorem 4.4.

Theorem 4.5 (Piecewise Convexity). For every round t, φt is piecewise convex with
pieces breaking at integers, i.e., for every integer n, φt is convex in [n, n+ 1].

The proof of this theorem is complicated and we defer it to Section 4.5. The proof
relies on Lemma 4.6, which will also be useful otherwise. The lemma gives us a tool
for recursively computing the potentials φt. It can be proved using a more general
result in [44], but here we give a direct proof for the case of interest.

Lemma 4.6. If φt is piecewise convex with pieces breaking at integers, then for s 6∈ Z,

φt−1(s) = max
{zφt(s+ z′)− z′φt(s+ z)

z − z′
: z, z′ ∈ Z, zz′ < 0

}
(4.7)

where
Z = {z ∈ [−1,+1] : s+ z ∈ Z} ∪ {−1,+1}. (4.8)

For s integral, φt−1(s) is the maximum of φt(s) and the above expression.

Proof. By definition

φt−1(s) = min
w

max
z∈[−1,+1]

(φt(s+ z) + wz).

For fixed s and w, our assumptions imply that φt(s + z) + wz is piecewise convex
in z. As z varies over the convex set [−1,+1], the maximum will be realized either
at an endpoint, −1 or 1, or when s + z lies at one of the endpoints of the convex
pieces, which happens at the integers. This shows that we can restrict z to Z while
evaluating φt−1(s).

Denote by ∆ the simplex of distributions over Z. By the discussion above,

φt−1(s) = min
w

max
z∈Z

(φt(s+ z) + wz)

= min
w

max
p∈∆

Ez∼p {φt(s+ z) + wz}

= max
p∈∆

min
w

Ez∼p {φt(s+ z) + wz}

112

where the last equality comes from Corollary 37.3.2 of [40]. Interpreting the right
side as the Lagrangian dual we may compute φt−1(s) as the solution to the following
optimization problem

maxp∈∆ Ez∼p {φt(s+ z)}
s.t. Ez∼p[z] = 0.

The above is a linear program and is hence optimized at vertices of the polytope
{p ∈ ∆ : Ez∼p[z] = 0}, which are mean-zero distributions supported on two points z, z′

of opposite signs, or concentrated on 0 when feasible, i.e., when s ∈ Z. Maximizing
Ez∼p {φt(s+ z)} over such vertices p yields the lemma.

As a corollary, we show how the OS algorithm may use the potentials to compute
weights according to (4.2).

Corollary 4.7. In round t−1, the OS algorithm puts the following weight on a sheep
at location s

w∗
M
= −

(
φt(s+ z2)− φt(s+ z1)

z2 − z1

)
, (4.9)

where z1 < 0 < z2 realize the maximum in the right hand side of (4.7).

Proof. We need to show

∀z ∈ [−1,+1] : φt(s+ z) + w∗z ≤ φt−1(s).

As in the proof of Lemma 4.6, the maximum of the left hand side is attained by
some z lying in Z (defined in (4.8)). Positive and negative z need to be handled
separately but are symmetric (the case z = 0 ∈ Z occurs only when s is integral; but
for such s, Lemma 4.6 tells us φt−1(s) ≥ φt(s) = φt(s+ 0) +w∗ ·0 anyway). Therefore
it suffices to show

if z ∈ Z, z > 0, then φt(s+ z) + w∗z ≤ φt−1(s).

Call the expression being maximized in (4.7) f(z′, z) and rewrite it as

f(z′, z) = φt(s+ z′)− s(z′, z)z′.

where s(z′, z) denotes the slope (φt(s+ z)− φt(s+ z′)) / (z − z′). Note both s, f are
symmetric functions of their arguments. Since

z1 < 0 < z2 ∈ arg max
z,z′∈Z:z′<0<z

φt(s+ z′)− s(z′, z)z′,

we may conclude
w∗ = − max

0<z∈Z
s(z1, z). (4.10)

113

Finish by observing

φt−1(s) ≥ max
0<z∈Z

f(z, z1) (Lemma 4.6)

= max
0<z∈Z

φt(s+ z)− s(z1, z)z

≥ max
0<z∈Z

φt(s+ z) + w∗z (by (4.10))

It is now straightforward to prove Theorem 4.4.
Proof of Theorem 4.4: Theorem 4.5 and Lemma 4.6 imply that for integer points
s

φt−1(s) = max

{
φt(s),

φt(s− 1) + φt(s+ 1)

2

}
. (4.11)

One can finish the proof by directly substituting into (4.11) the expression for φt(s)
given in (4.6), and verifying that the inequality holds. We omit calculations.

Corollary 4.7 shows how the shepherd computes weights in each round. The
OS routine is summarized in Algorithm 3. All we now need is a way to efficiently
compute the potentials using recurrences (4.7) and (4.11). Note the value of φt at
point s depends upon values at Z and s + Z. An easy induction yields for all t,
φt(s) = 1 for s ≤ 2k − T and φt(s) = 0 for s ≥ T . Standard dynamic programming
techniques can now be used to compute φt(s) in time polynomial in T .

Algorithm 3 OS subroutine: initialized with T,B, δ, L from Algorithm 2

Require: Current round t and positions st1, . . . , s
t
m of each sheep : sti =

∑
t′<t z

t
i

(see Algorithm 2 for a definition of zti)

for each sheep i do
Z ← [−1, bstic − sti, dstie − sti,+1] as in (4.8)
Pick z, z′ ∈ Z maximizing, as in (4.7),

zφT−(t−1)(s+ z′)− z′φT−(t−1)(s+ z)

z − z′

Set wti ←
φT−(t−1)(s+z

′)−φT−(t−1)(s+z)

z−z′ as in (4.9)
end for
return wt1, . . . , w

t
m

Notice that (4.11) is the same as what we would get if the sheep were allowed
to drift only by −1, 0,+1 at each time step. Correspondingly, in terms of provable
upper bounds, our algorithm performs no worse with continuous experts than it does
with abstaining experts, while with binary experts, the upper bound on performance
is a tiny bit better. Combined with our lower bound results, this implies that, for

114

sufficiently many experts, abstaining experts are exactly as powerful as continuous
ones, while binary experts are only slightly less powerful.

4.4 Lower Bounds

In this section we provide lower bounds for on-line learning with continuous experts
which almost match the upper bounds of Theorem 4.3, thus showing that the drifting
game based on Algorithm 2 is near optimal. The bounds we obtain are weaker than
those provided in the Appendix (which exactly match the upper-bounds derived in
the previous section). We nevertheless include these, since the arguments are much
simpler, and do not require the number of experts to depend on the mistake bound.
The main result of this section is the following theorem.

Theorem 4.8 (Lower bound for expert learning). Consider the expert learning model
defined in Section 4.1. For every master algorithm, the adversary can choose labels
and cause the experts to make predictions in each round in a manner so as to force
the master algorithm to suffer a loss of

max

{
q ∈ N : q < lg

(
m√
k

)
+ lg

(
q + 1

≤ k

)
+ Θ(1)

}
, (4.12)

where Θ(1) is a quantity bounded between some absolute constants c1 and c2.

The loss bound given above, and the upper bound in (4.5) define the smallest

integer T such that 2−T
(
T+1
≤k

)
is less than O(

√
k
m

) and 1
m

, respectively. Since O(logm)

rounds will always be necessary, and 2−T
(
T+1
≤k

)
decreases exponentially fast when

T > 3k, we see that the gap between the upper and lower bounds is onlyO(log k) when
the number of experts m is around 2k. When the number of experts is much larger
(m > 22k), a very different and highly involved analysis included in the Appendix
shows that there is essentially no gap between the upper and lower bounds.

The proof of Theorem 4.8 consists of showing how an adversary in the expert
model can exploit adversarial sheep movement in the drifting game to force any
master algorithm to suffer high loss. This is the converse of what we saw in Section
4.2.3, where a well performing shepherd algorithm gave rise to master algorithms
suffering low loss. At the heart of the proof of Theorem 4.8 is the following result
on drifting games, showing how the sheep may drift without violating the drifting
constraint, and yet cause any shepherd a large amount of loss.

Theorem 4.9. Consider the drifting game with parameters δ = 0, B = [−1,+1],
number of rounds T and loss function 1(x ≤ 2k − T). For any shepherd algorithm,
there exists a strategy for the sheep that causes the shepherd to suffer a loss of

φ0(0)− Θ(
√
k)

m

at the end of the game.

115

We prove Theorem 4.9 in the next section, but first we show how it can be used
to prove Theorem 4.8.
Proof of Theorem 4.8: The adversary in our expert model (defined in Section
4.1) simulates a drifting game in R, with parameters as above. The drifting game
is played for T rounds, where T is given by the expression (4.12). For every expert,
there is a sheep. At the beginning of a round, if the master places weights w1, . . . , wm
on the experts, the adversary causes the shepherd to drive each sheep i in direction
wi. If the sheep drift in direction z1, . . . , zm, the adversary causes expert i to predict
xi = zi (remember the adversary controls expert predictions). The drifting constraint∑

iwizi ≥ δ = 0 ensures that the weighted majority prediction of the master is 0 or 1.
The adversary then outputs the label y = −1, causing the master to make a mistake
in each round.

Note that the position of a sheep after t rounds is 2M − t where M is the loss
suffered by the corresponding expert until then; thus an expert has suffered at most
k loss if and only if the corresponding sheep lies at a point less than 2k − T at the
end of the game. Hence, by our choice of loss function, the mistake bound on the
experts is equivalent to ensuring the constraint that the loss suffered by the shepherd
algorithm is strictly positive at the end of the game, so that at least one sheep has a
final loss of 1.

Theorem 4.9 guarantees that the sheep can drift in a way so that the shepherd
suffers at least φ0(0)−Θ(

√
k)/m loss, where we know from Theorem 4.4 that φ0(0) =(

T+1
≤k

)
. Our choice of T satisfies φ0(0)−Θ(

√
k)/m > 0, completing the proof.

4.4.1 Lower bound for drifting game

We prove Theorem 4.9. Schapire ([44]) provides a similar though slightly weaker lower
bound (φ0(0) − O(T/

√
m) instead of φ0(0) − (

√
k/m)) which leads to considerably

weaker expert learning lower bounds. The reason is that Schapire’s arguments hold
for much more general drifting games. By carefully tailoring his proof to our specific
learning model, we achieve significant improvements.
Proof of Theorem 4.9: We will show that on round t, the sheep can choose to drift
in directions zi so that

1

m

∑
i

φt+1(st+1
i) ≥ 1

m

∑
i

φt(s
t
i)−

Ut
m
. (4.13)

Here sti is the position of sheep i in round t, and

Ut
M
= max

st

φt+1(st − 1)− φt+1(st + 1)

2
(4.14)

where the maximum is taken over all possible integral positions st of any sheep in
round t. Note that this is different from the set of all possible positions, since the
movement of the sheep is restricted to change by at most +1 or −1 in each round.

116

Among the possible positions, we take supremum over only those positions which
happen to lie at an integer.

Repeatedly applying the above yields

1

m

∑
i

L(sTi) ≥ φ0(0)− 1

m

∑
t

Ut.

Appealing to Lemma 4.12 will then produce the desired bound.
For each i, s0

i = 0. Our sheep strategy will choose every drift to be in {−1, 0, 1}.
Hence we may assume sti ∈ Z for each i, t.

Fix a round t. From Lemma 4.6 we have

φt(s) = max

{
φt+1(s),

φt+1(s− 1) + φt+1(s+ 1)

2

}
.

Let I = {1, . . . ,m}, I0 = {i : φt(s
t
i) = φt+1(sti)}, I1 = I \ I0. For each i ∈ I0 we

set zti = 0. This ensures ∑
i∈I0

φt+1(st+1
i) =

∑
i∈I0

φt(s
t
i).

For each i ∈ I1 we must have

φt(s
t
i) =

φt+1(sti − 1) + φt+1(sti + 1)

2
.

For such i we will choose zti in {−1,+1}. Define ati
M
=

φt+1(sti−1)−φt+1(sti+1)

2
. Then,

for each i ∈ I1,

φt+1(st+1
i) = φt(s

t
i)− ztiati

since st+1
i = sti + zti . Thus∑

i∈I1

φt+1(st+1
i) =

∑
i∈I1

φt(s
t
i)−

∑
i∈I1

ztia
t
i

Note that ati ∈ [0, Ut] by definition. If the shepherd weights for this round are
wt1, . . . , w

t
m, it suffices to ensure that

∑
i∈I1 w

t
iz
t
i ≥ 0 while keeping

∑
i∈I1 a

t
iz
t
i below

Ut.
By Lemma 4.10, there exists a subset P ⊆ I1 such that∣∣∣∣∣∣

∑
i∈P

ati −
∑
j∈I1\P

atj

∣∣∣∣∣∣ ≤ Ut.

Assume without loss of generality that
∑

i∈P w
t
i −

∑
i∈I1\P w

t
j ≥ 0. Then assigning

zti = +1 for i ∈ P and zti = −1 for i ∈ I1 \ P would ensure the drifting constraints as
well as (4.13), completing our proof.

117

Lemma 4.10. For any sequence a1, . . . , an of numbers in [0, U]

min
P⊆I

∣∣∣∣∣∣
∑
i∈P

ai −
∑
j∈I\P

aj

∣∣∣∣∣∣ ≤ U

where I = {1, . . . , n}.

Proof. Define discrepancy to be the argument of the min, and let P ∗ realize the
minimum. If P ∗’s discrepancy were greater than U , we could transfer any ai from the
heavier group to get a partition with lower discrepancy, a contradiction.

Notice that the Ut can be trivially bounded by 1, since the φt take values in [0, 1].
That would give us a lower bound of φ(0) − T

m
. By being more careful, we get the

following improvement.

Lemma 4.11. Define Ut as in (4.14). Then

UT−t =

{
2−t
(
t
k

)
if t > 2k

2−t
(
t
d t
2
e

)
if t ≤ 2k.

Proof. Using (4.6), we have, for s ≥ 0

1

2
[φT−t(s− 1 + 2k − T)− φT−t(s+ 1 + 2k − T)]

= 2−t−1

((
t

d t+s−1
2
e

)
+

(
t

d t+s
2
e

))
. (4.15)

Let s+ 2k− T be the position of a sheep at the end of T − t rounds. Since it can
drift by at most −1 in the negative direction in any round, we have s+2k−T ≥ t−T
so that s ≥ t− 2k. We take two cases, depending on the value of k.

Suppose t > 2k. Then s ≥ t − 2k ≥ 1. Since (4.15) is larger for smaller (and
non-negative) s, we can plug in s = t− 2k to compute UT−t.

UT−t =2−t−1

((
t

d2t−2k−1
2
e

)
+

(
t

d2t−2k
2
e

))
= 2−t

(
t

t− k

)
= 2−t

(
t

k

)
.

When t ≤ 2k, s can be less than 1. If s < 0, the left hand side of (4.15) is zero.
If s = 0, the right hand side of the same equation equals 2−t

(
t
d t
2
e

)
. Hence for t ≤ 2k,

UT−t = 2−t
(
t
d t
2
e

)
.

Lemma 4.12. Define Ut as in (4.14). Then,
∑

t Ut ≤ Θ(
√
k).

118

Proof. Lemma 4.11 yields∑
t

Ut =
∑
t>2k

Ut +
∑
t≤2k

Ut =
∑
t>2k

2−t
(
t

k

)
+
∑
t≤2k

2−t
(

t

d t
2
e

)
.

The terms in the first summation decrease by at least a factor of 3/4 successively, so

that we can upper bound it by 4
(

2k
k

)
. Stirling’s approximation yields

(
t
d t
2
e

)
< O(1)√

t
for

all positive integers t. Hence we have∑
t

Ut ≤
4√
2k

+
∑
t≤2k

O(1)√
t

= Θ(
√
k)

completing our proof.

4.5 Proof of Theorem 4.5

In this section we prove Theorem 4.5, which states that the potentials arising out of
drifting games against continuous experts are not too complicated, but are in fact
piecewise convex. Without this result, none of the computations would be possible.
This is also the main reason lying behind the surprising fact that continuous experts
are no stronger than abstaining ones, given a large number of experts.

We prove the Theorem by (backward) induction on time steps. Our proofs would
be far simpler if we could inductively assume convex, rather than piecewise-convex,
potentials at later time steps. Unfortunately, this is not the case, e.g. the end-
potential is the non-convex 0 − 1 loss function. The considerably weaker piecewise-
convex condition causes many technical complications, and our proof is rather long
and messy. The main ingredient is Lemma 5, proved below. We first show how this
lemma suffices to prove the theorem.
Proof of Theorem 4.5: Lemma 4.13 shows that φt is convex in (n, n+ 1). Since φt
is decreasing, it is right-convex at n. We are left to show φt is left convex at n + 1;
since φt is convex and decreasing in (n, n + 1), this is equivalent to showing φt is
left-continuous at n+ 1. Inductively, φt+1 is decreasing and convex in [n, n+ 1], and
hence necessarily left-continuous at n+ 1. Since φt(n+ 1) is decreasing, it suffices to
show

φt(n+ 1) ≥ lim
s→(n+1)−

φt(s).

By (4.7), for s ∈ (n, n+ 1), φt(s) is either

φt+1(s− z1) + z1φt+1(s+ 1)

1 + z1

,

where z1 ∈ [1, s− n], or

(n+ 1− s)φt+1(s− z1) + z1φt+1(n+ 1)

n+ 1− s+ z1

.

119

As s→ (n+ 1)−, the first expression tends to

lims1→n− φt+1(s1) + lims2→(n+2)− φt+1(s2)

2

=
φt+1(n) + φt+1(n+ 2)

2
,

where the equality holds since by induction, φt+1 is left continuous at integers. Simi-
larly, the second expression tends to φt+1(n+ 1). Therefore,

lim
s→(n+1)−

φt(s) ≤ max

[
φt+1(n+ 1),

φt+1(n) + φt+1(n+ 2)

2

]
.

But the right hand side of the above equation is φt(n+ 1) by (4.11). This completes
the proof.

Lemma 4.13. For every integer n and round t, φt is convex in (n, n+ 1).

Proof. By backwards induction on t. The base case holds since φT is the loss function
1(x ≤ 2k − T). Assume φt+1 is piecewise convex. Fix any integer n ∈ Z. We have to
show that φt is convex in (n, n+ 1). Recall that, for non-integral points s, Eqs (4.7)
and (4.8) state that φt = max{H13, H23, H14, H24} where

Hij(s) =
ziφt+1(s+ zj)− zjφt+1(s+ zi)

zi − zj
,

and (z1, z2, z3, z4) = (−1, n − s, n + 1 − s,+1). Checking that H14 and H23

are convex is straightforward. It turns out that H13 and H24 need not be con-
vex. However, below we show that max{H23, H24} is convex, and a very similar
proof works for showing max{H23, H13} is convex. As the supremum of con-
vex functions is convex (Theorem 5.5 [40]), and because φt can be written as
φt = max{max{H23, H13},max{H23, H24}, H14}, we are done.

We begin by making our task of showing max{H23, H13} is convex a little easier.
The next lemma shows that it suffices to show only local convexity, meaning every
point in the domain has a neighborhood over which the function is convex. The proofs
of this and other technical lemmas are given later.

Lemma 4.14. A locally convex function on (0, 1) is convex.

We eliminate a degenerate case before proceeding. If φt+1(n) = 0, then φt+1(s) = 0
for s ≥ n, and H24 ends up being the 0 function. Then max{H23, H24} = H23 is
convex. So assume φt+1(n) > 0.

If H24 were locally convex, then it would immediately follow that max{H23, H24} is
also locally convex. Unfortunately, H24 may fail to be convex in some neighborhood.
We instead show that in any neighborhood, either H24 is convex, or H23 ≥ H24,
which suffices. The conditions for each fact to hold are given in the next two lemmas.
Since we are in the non-degenerate case (φt+1(n) > 0), we can algebraically simplify

120

the conditions by introducing some notation. To that end, we define functions f, g :
(0, 1)→ R

f(x) =
φt+1(n+ 1 + x)

φt+1(n)
, g(x) =

f(x)− 1

1 + x
(4.16)

and we continuously extend them at 0.

Lemma 4.15. Let f, g be as in (4.16). Then max{H23, H24} = H23 at a point (n+x)
if g(0) ≥ g(x).

Proof. Using φt+1 is decreasing, f(0) ≤ φt+1(n+1)
φt+1(n)

. The rest is simple algebra.

Lemma 4.16. Let f, g be as in (4.16). Then the left derivative fL of f exists.
Further, if g(x) ≤ fL(x) in some open set U , then H24 is convex in the neighborhood
n+ U .

The conditions in Lemmas 4.15 and 4.16 motivate the following definition.

Definition 4.17. Let f : [0, 1)→ R have a left-derivative fL at all points, and define
g : [0, 1)→ R as in (4.16). Then f satisfies the max-convex condition if around every
point there is a neighborhood U ⊆ [0, 1) for which at least one of the following holds:

• ∀x ∈ U : g(0) ≥ g(x).

• ∀x ∈ U : g(x) ≤ fL(x).

If f satisfies the max-convex condition, then our proof is complete, since then
either Lemma 4.15 or Lemma 4.16 will apply. In either case, max{H23, H24} is locally
convex. A picture providing intuition for why this might happen is given in Figure
4.1.

Continuing with our proof, observe that (4.16) defines f to be a positive scaling of
φt+1, which is convex by the inductive assumption. By construction, f is continuous
at 0 and hence convex in [0, 1). By Theorem 10.1 of [40], convexity of f implies
continuity in (0, 1) as well. It turns out that by the next lemma these properties are
sufficient.

Lemma 4.18. Every convex, continuous f : [0, 1) → R satisfies the max-convex
condition.

We are now done showing Lemma 4.13, except for proving Lemmas 4.14, 4.16
and 4.18, which we do next. We will use the following standard fact about convex
functions (Theorems 23.1 and 24.1 in [40]).

Lemma 4.19. If f is convex in a neighborhood, then its left derivative fL exists and
may be defined as

fL(x) = sup
y<x

f(x)− f(y)

x− y
. (4.17)

Further, fL is non-decreasing and left continuous.

121

Proof of Lemma 4.14. Suppose a function F is convex on (a, b) and (c, d) with
a < c < b < d. We show F is convex on (a, d). Take any three points x < y <
z ∈ (a, d). It suffices to show sx,y ≤ sy,z where sp,q denotes the slope between points
(p, F (p)) and (q, F (q)). Consider any two points u, v ∈ (c, b). Let the set of five points
{x, y, z, p, q} in increasing order be p1, . . . , p5. Then every three adjacent points lie
entirely in (a, b) or (c, d); hence the slopes spi,pi+1

are increasing, and it follows that
sx,y ≤ sy,z will hold.

Now consider any compact set [a, b] with 0 < a ≤ b < 1. Since F is locally
convex, every point in (0, 1) has an open interval containing it where F is convex.
These form an open cover of [a, b] and hence there is a minimal finite sub-cover
(a1, b1), . . . , (aN , bN) with a1 < · · · < aN and b1 < · · · < bN by minimality. Using the
procedure outlined above, we may conclude that F is convex over [a, b]. Since this
holds for arbitrary 0 < a and b < 1, F is convex over (0, 1).
Proof of Lemma 4.16. As noted in the proof of Lemma 4.13, f is convex, so that
by Lemma 4.19, its left derivative exists. Next observe that function h, defined as

h(x)
M
=

1 + xf(x)

1 + x
=
H24(n+ x)

φt+1(n)
,

is convex in a neighborhood U if and only if H24 is convex in n + U (for geometric
intuition about h, refer to Figure 4.1). For any points 0 < x < y < 1, and convex
combination z = λx+ µy, we get, after some algebra,

λh(x) + µh(y)− h(z) =
λµ(y − x)

1 + z
(g(y)− g(x)) +

z(λf(x) + µf(y)− f(z))

1 + z
.

The second term is non-negative since f is convex, and the first term is non-negative
if g is non-decreasing. Hence h, and thus H24, is convex in a region where g is not

decreasing, which happens if 0 ≤ gL(x) = fL(x)−g(x)
1+x

, i.e., fL(x) ≥ g(x).
Proof of Lemma 4.18. We will need the following fact. For any points x < y ∈ (0, 1)

g(y) is a weighted average of g(x) and
f(y)− f(x)

y − x
. (4.18)

We take cases to show that for every point x, there is a neighborhood U containing
it where either g(0) ≥ g(y)∀y ∈ U , or fL(y) ≥ g(y)∀y ∈ U .

case 1: g(0) > g(x): By the continuity of f and hence g, we get g(0) ≥ g(y) for y
in an interval containing x.

case 2: g(0) < g(x): We have

g(x) <
f(x)− f(0)

x
≤ fL(x),

122

since the first inequality follows from (4.18), and the second one from (4.17). By left
continuity, fL(y) > g(y) in a left neighborhood of x. For any y > x,

g(y) ≤ max{g(x),
f(y)− f(x)

y − x
} (by (4.18))

≤ max{g(x), fL(y)} (by (4.17))

= fL(y).

The last equality holds since fL is increasing and fL(x) > g(x).
We have therefore shown fL(y) ≥ g(y) holds in a neighbourhood of x.
case 3: g(0) = g(x): We have

g(x) =
f(x)− f(0)

x
≤ fL(x),

since, the equality follows from (4.18), and the inequality from (4.17). If strict in-

equality holds, then we are done as in case 2. Otherwise we have fL(x) = f(x)−f(0)
x

.

By Lemma 4.19, fL(x) = supy<x
f(y)−f(x)

y−x , so that for any y < x,

f(x)− f(y)

x− y
≤ f(x)− f(0)

x
.

If strict inequality holds then, since f(x)−f(0)
x

is a weighted average of f(x)−f(y)
x−y and

f(y)−f(0)
y

, we get

fL(x) =
f(x)− f(0)

x
<
f(y)− f(0)

y
≤ fL(y),

a contradiction, since f convex implies fL is non-decreasing. Hence f(x)−f(y)
x−y =

f(x)−f(0)
x

for all y < x and the segment of the curve f between (0, x) is a straight

line. It follows from (4.18) that g(y) = f(x)−f(0)
x

, which in turn is equal to fL(y),
for y in a left neighborhood around x; since fL(x) ≥ g(x) implies fL(y) ≥ g(y) for
y in a right neighborhood of x (as shown in case 2), we have fL(y) ≥ g(y) in some
neighborhood of x.

We have considered all cases. The proof follows.

4.6 Connections to boosting with confidence-rated

hypotheses

An important application of the theory we derived so far is the design of optimally
efficient boosting algorithms when using confidence rated weak hypotheses. Such
weak hypotheses map examples not to just binary labels {−1,+1}, but to a real
number in the unit interval [−1,+1]. The sign of the prediction denotes the label,

123

A=!1 Y!1X!1 X C=1B=0 Y

h(0)=1

f(x)

g(0)=g(Y)

h(Y)

h(X)

g(x)=f’(x)

Figure 4.1: The diagram shows how any convex, continuous f : [0, 1) → R satisfies the
max-convex condition in Definition 4.17. The slopes of the dotted lines trace the function
g, while the bold curved line indicates f . X is the x-coordinate of the point of contact of
the tangent from (A, 1) to f . The value Y is the x-coordinate of the point where the line
joining (A, 1) and (B, f(0)) hits the curve f again. For every point z in the region (B, Y),
g(0) ≥ g(z). The other case, i.e. g(z) ≤ fL(z) happens for every point in the region (X,C).
Also included in the figure is a geometric intuition for the function h(x) = 1+xf(x)

1+x , used in
the proof of Lemma 4.16.

and the magnitude denotes the confidence of the hypothesis in its own prediction.
Schapire and Singer [47] have shown that appropriate use of such weak hypotheses
can lead to very efficient boosting algorithms. In this section, we see how to apply
the results of the previous sections to derive such algorithms.

The results of Schapire [44], discussed in Theorem 4.1, show that computing the
optimal boosting strategy with confidence rated hypotheses boils down to solving the
drifting games recurrence when the response set of the adversary is the unit interval,
B = [−1,+1]. Accordingly, the relevant recurrence is:

φ0 = L

φt−1(x) = min
w∈R

max
z∈[−1,+1]

(φt(x+ z) + wz − δ|w|), (4.19)

where δ represents the edge over random guessing that the weak hypothesis must
achieve in each round. Theorem 4.4 solves the above recurrence when the value δ = 0,
and a key ingredient was Theorem 4.5 which showed that the potential functions φt
were piecewise convex, with pieces breaking at integers. A variation of this latter
result can be shown using our previous techniques for non-zero values of δ. The
potential still remains piecewise convex, but the break-points could be at any point
that is the sum of an integer and a multiple of δ: {a+ bδ : a, b ∈ Z}. The proofs are
tedious but straightforward, and are omitted. Figure 4.2 shows the break points of

124

2.0 2.5 3.0 3.5 4.0

Breakpoints: T=40

state: s

delta
0.00
0.10
0.25
0.50

Figure 4.2: Breakpoints of the intervals on which the potential φ0(s) is piecewise convex, for
various values of δ. Only breakpoints for values of state s between 2 and 4 are considered,
and the number of rounds is fixed at T = 40. The potential satisfies the recurrence in
(4.19), where the loss function is set to be 0-1 error: L(x) = 1(x ≤ 0). Different values of
δ ∈ {0, 0.10, 0.25, 0.50} are considered. The gridlines are drawn at every multiple of 0.05.
We can see that the breakpoints occur only at values of the state s which are a sum of some
integer multiple of δ and some integer.

the potential function φ0(s) computed using 0-1 loss L(x) = 1(x ≤ 0) and number
of rounds T = 40, for different values of δ. As a consequence, our neat formula (4.6)
for calculating the potentials no longer applies for non-zero δ, although a dynamic
programming procedure for calculating the value at any point in time poly(T, 1/δ)
can be derived, using the fact that the potentials still remain piecewise convex, with
at most poly(T, 1/δ) pieces. Further, by continuity, the potential value is very well
approximated by (4.6) for small values of δ. We already saw in Section 3.8 how
adaptive strategies arise when the edge is assumed to be infinitesimal, and therefore
Theorem 4.4 may prove useful in designing optimally efficient adaptive algorithms
for 0-1 error with confidence rated hypotheses. We note that such an approach has
already been implemented in [18] for the case of weak hypotheses that return binary
predictions without any confidence attached to them.

4.7 Conclusion

In this chapter we designed the optimal deterministic Master algorithm for continuous
experts in the mistake bounded model, and computed the exact worst case error it
suffers. Computing the optimal random Master algorithm against continuous experts
is an open question. A combination of our techniques and the binning algorithm [1]
might prove useful there. Finally we show how our techniques may be useful in
deriving highly efficient boosting algorithms when the weak hypotheses are confidence
rated.

125

4.8 Appendix: Tight lower bounds

We establish exact tightness of our upper bound (4.5) . As a consequence we are able
to conclusively show that abstaining experts are as powerful as continuous experts
for sufficiently many experts, as well as show that binary experts are strictly less
powerful (although only slightly) than abstaining experts for infinitely many games.
Our arguments are based on minor modifications of the reasoning in Section 2.3 of
[11] and [51].

We setup some notation. An (m, k) game is an on-line expert game with m
experts and k mistake bound. The optimal number of mistakes made by the Master
in an (m, k) game assuming optimal play is denoted by q∗abs(m, k) and q∗bin(m, k)

for abstaining and binary experts, respectively. We define Abs(q, k)
M
= 2q/

(
q+1
≤k

)
,

and Bin(q, k)
M
= 2q/

(
q
≤k

)
. Then the upper bounds obtained by us (4.5) and the

Binomial Weights(BW) [11] algorithm (4.3) are given by max{q : Abs(q, k) ≤ m}
and max{q : Bin(q, k) ≤ m}, respectively.

4.8.1 Bounds are tight for abstaining

Theorem 4.20. For any k and m > 22k , let Abs(q, k) ≤ m < Abs(q + 1, k). Then,

1. q ≤ q∗abs(m, k) + 1.

2. If m ≥ Abs(q, k) + 2k, then q = q∗abs(m, k).

It is not difficult to check, that for q � k, Abs(q+ 1, k)−Abs(q, k)� 2k, so that
condition 2 is satisfied by almost all games.

Proof of Theorem 4.20. We assume familiarity with Section 2.3 of [11] and [51].
Consider the following chip game with two players Paul and Carole. There are k + 2
bins on the non-negative integer line, initially all at 0. In every round, Paul abstains
on an arbitrary subset of the chips, and splits the remaining chips arbitrarily into two
sets. Then Carole chooses one of the two sets and advances each chip in it by one.
Abstaining twice on the same chip causes it to advance by one bin. The game ends
when all chips are located beyond k. Carole wants the game to end soon, whereas
Paul wants it to drag. Reasoning very similar to that in Section 2.3 of [11] shows
that, assuming optimal play, the number of rounds in the chip game is q∗abs(m, k). In
the rest of the proof, we describe a strategy for Paul that ensures the game lasts for
at least q − 1 rounds, and when condition 2 is met, for q rounds.

The strategy consists of three stages. In the first two stages, Paul never abstains,
so the state of the game can be described by a configuration I = (I0, . . . , Ik), where
Ij denotes the number of chips in position j (chips beyond k do not matter). For
any r, define the weight Wr(I) of configuration I to be

∑
j Ij
(
r+1
≤j

)
. Chips in position

k are called pennies. At the end of the first two stages, there will be at most one
non-penny remaining.

By choice of q, the weight of the initial configuration given by Wq is m2q. The
first stage lasts for k steps at the end of which, like in the proof of Theorem 5 in

126

[11], Paul can reach a configuration Ik where Wq̃(I
k) = 2q̃, and Ikk > c(k)q̃k, where

c(k) is sufficiently large. If condition 2 holds then q̃ = q − k or else q̃ = q − k − 1.
We will show that the game lasts for q̃ more rounds which will complete the proof of
the theorem. Henceforth, the weight of a configuration is given by Wr where r is the
number of rounds remaining.

Next, in the second stage, we apply fictitious play as described in [51]. The
analysis of the First Steps, Middle, Late Middle and Early End stages in the proof
of Main Theorem in [51] carries through with our modified weight function W as
well, as straightforward calculations show. Therefore, we halve the weight of the
configuration every round, until, as [51] shows, we reach a configuration with at most
one non-penny.

Finally, in the third stage, we modify the Endgame Lemma of [51] in
Lemma 4.21 to finish off the proof. This is the only place where Paul might
use abstaining moves.

Lemma 4.21. Let (x0, . . . , xk) be a configuration with x0 ≤ 1, x1 = . . . = xk−1 = 0
and Wj(x0, . . . , xk) = 2j. Then Paul can play for j more rounds.

Proof. Note that Wj(x0, . . . , xk) = x0

(
j+1
≤k

)
+ xk. If x0 = 0, then xk = 2j, and Paul

may continue halving for j more rounds. So assume x0 > 0. If j ≤ 2k, then Paul
may use abstaining moves on the chip at position 0 to make the game last for at
least 2k ≥ j moves. If j > 2k, then both

(
j
≤k

)
,
(

j
≤k−1

)
, are less than 2j−1. Since(

j+1
≤k

)
=
(
j
≤k

)
+
(

j
≤k−1

)
, there is a way to split the chips into two parts of exactly equal

weight. The proof follows by induction.

4.8.2 Abstaining is Continuous

Whenever condition 2 of Theorem 4.20 is satisfied, the upper-bound for continuous
experts matches the lower bound for abstaining experts, and hence both classes of
experts are equally powerful. For number-theoretic reasons, the upper-bound might
occasionally be one less than the optimum. The same situation occurs for the BW
upper-bound and the true optimum in games against binary experts. Appendix A of
[11] contain an enhanced version of the BW algorithm which always achieves the exact
optimum. It is straightforward to check that our algorithms for continuous and ab-
staining experts may be enhanced similarly to achieve exactly optimum performance
for all (m, k) games with m > 22k . This implies, that whenever m is sufficiently large
with respect to k, abstaining and continuous experts are game-theoretically equally
powerful.

4.8.3 Binary less powerful than Abstaining

Basic calculations show the next useful Lemma.

Lemma 4.22. The following hold:

1. For q > 2k, Bin(q, k) < Abs(q + 1, k) < Bin(q + 1, k)

127

2. For q � k, Bin(q + 1, k)− Abs(q + 1, k)� 2k.

A straightforward application of the above and Theorem 4.20 now yields the fol-
lowing separation, which is the best possible according to point 1 in Lemma 4.22.

Corollary 4.23. For any k, define

Mk
M
= ∪q>2k{Abs(q + 1, k) + 2k, . . . ,Bin(q + 1, k)− 1}.

Then, Mk has constant density, and if m ∈Mk, q∗abs(m, k) = q∗bin(m, k) + 1.

128

Bibliography

[1] Abernethy J, Langford J, Warmuth MK (2006) Continuous experts and the
binning algorithm. In: 19th Annual Conference on Learning Theory

[2] Abernethy J, Bartlett PL, Rakhlin A, Tewari A (2008) Optimal stragies and
minimax lower bounds for online convex games. In: COLT, pp 415–424

[3] Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: A
unifying approach for margin classifiers. Journal of Machine Learning Research
1:113–141

[4] Bartlett PL, Traskin M (2007) AdaBoost is consistent. Journal of Machine Learn-
ing Research 8:2347–2368

[5] Bartlett PL, Jordan MI, McAuliffe JD (2006) Convexity, classification, and risk
bounds. Journal of the American Statistical Association 101(473):138–156

[6] Beygelzimer A, Langford J, Ravikumar P (2009) Error-correcting tournaments.
In: Algorithmic Learning Theory: 20th International Conference, pp 247–262

[7] Bickel PJ, Ritov Y, Zakai A (2006) Some theory for generalized boosting algo-
rithms. Journal of Machine Learning Research 7:705–732

[8] Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University
Press

[9] Breiman L (1999) Prediction games and arcing classifiers. Neural Computation
11(7):1493–1517

[10] Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised
learning algorithms. In: Proceedings of the 23rd International Conference on
Machine Learning

[11] Cesa-Bianchi N, Freund Y, Helmbold DP, Warmuth MK (1996) On-line predic-
tion and conversion strategies. Machine Learning 25:71–110

[12] Cesa-Bianchi N, Freund Y, Haussler D, Helmbold DP, Schapire RE, Warmuth
MK (1997) How to use expert advice. Journal of the Association for Computing
Machinery 44(3):427–485

129

[13] Collins M, Schapire RE, Singer Y (2002) Logistic regression, AdaBoost and Breg-
man distances. Machine Learning 48(1/2/3)

[14] Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2:263–286

[15] Eibl G, Pfeiffer KP (2005) Multiclass boosting for weak classifiers. Journal of
Machine Learning Research 6:189–210

[16] Frean M, Downs T (1998) A simple cost function for boosting. Tech. rep., Depart-
ment of Computer Science and Electrical Engineering, University of Queensland

[17] Freund Y (1995) Boosting a weak learning algorithm by majority. Information
and Computation 121(2):256–285

[18] Freund Y (1999) An adaptive version of the boost by majority algorithm. In:
Proceedings of the Twelfth Annual Conference on Computational Learning The-
ory, pp 102–113

[19] Freund Y (2001) An adaptive version of the boost by majority algorithm. Ma-
chine Learning 43(3):293–318

[20] Freund Y, Opper M (2002) Continuous drifting games. Journal of Computer and
System Sciences pp 113–132

[21] Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In:
Machine Learning: Proceedings of the Thirteenth International Conference, pp
148–156

[22] Freund Y, Schapire RE (1996) Game theory, on-line prediction and boosting.
In: Proceedings of the Ninth Annual Conference on Computational Learning
Theory, pp 325–332

[23] Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences 55(1):119–139

[24] Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: A sta-
tistical view of boosting. Annals of Statistics 28(2):337–374

[25] Friedman JH (2001) Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics 29(5)

[26] Hastie T, Tibshirani R (1998) Classification by pairwise coupling. Annals of
Statistics 26(2):451–471

[27] Koltchinskii V, Panchenko D (2002) Empirical margin distributions and bound-
ing the generalization error of combined classifiers. Annals of Statistics 30(1)

130

[28] Littlestone N, Warmuth MK (1994) The weighted majority algorithm. Informa-
tion and Computation 108:212–261

[29] Long PM, Servedio RA (2010) Random classification noise defeats all convex
potential boosters. Machine Learning 78:287–304

[30] Luenberger DG, Ye Y (2008) Linear and nonlinear programming, 3rd edn.
Springer

[31] Luo ZQ, Tseng P (1992) On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and Ap-
plications 72(1):7–35

[32] Mason L, Baxter J, Bartlett P, Frean M (2000) Boosting algorithms as gradient
descent. In: Advances in Neural Information Processing Systems 12

[33] Mukherjee I, Schapire RE (2010) Learning with continuous experts using drifting
games. Theoretical Computer Science 411(29-30):2670–2683

[34] Mukherjee I, Schapire RE (2010) A theory of multiclass boosting. In: Twenty
Third Annual Conference on Neural Information Processing Systems

[35] Mukherjee I, Rudin C, Schapire RE (2011) The rate of convergence of AdaBoost.
In: The 24th Annual Conference on Learning Theory

[36] Onoda T, Rätsch G, Müller KR (1998) An asymptotic analysis of AdaBoost in
the binary classification case. In: Proceedings of the 8th International Conference
on Artificial Neural Networks, pp 195–200

[37] Rätsch G, Warmuth MK (2005) Efficient margin maximizing with boosting. Jour-
nal of Machine Learning Research 6:2131–2152

[38] Rätsch G, Onoda T, Müller KR (2001) Soft margins for AdaBoost. Machine
Learning 42(3):287–320

[39] Rätsch G, Mika S, Warmuth MK (2002) On the convergence of leveraging. In:
Advances in Neural Information Processing Systems 14

[40] Rockafellar RT (1970) Convex Analysis. Princeton University Press

[41] Rudin C, Schapire RE, Daubechies I (2007) Analysis of boosting algorithms using
the smooth margin function. Annals of Statistics 35(6):2723–2768

[42] Schapire RE (1990) The strength of weak learnability. Machine Learning
5(2):197–227

[43] Schapire RE (1991) The design and analysis of efficient learning algorithms. PhD
thesis, Massachusetts Institute of Technology, supervised by Ronald L. Rivest.
Technical Report MIT/LCS/TR-493, MIT Laboratory for Computer Science

131

[44] Schapire RE (2001) Drifting games. Machine Learning 43(3):265–291

[45] Schapire RE (2010) The convergence rate of AdaBoost. In: The 23rd Conference
on Learning Theory, open problem

[46] Schapire RE, Freund Y (2012) Boosting: Foundations and Algorithms. MIT
Press

[47] Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-
rated predictions. Machine Learning 37(3):297–336

[48] Schapire RE, Singer Y (2000) BoosTexter: A boosting-based system for text
categorization. Machine Learning 39(2/3):135–168

[49] Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: A
new explanation for the effectiveness of voting methods. Annals of Statistics
26(5):1651–1686

[50] Shalev-Shwartz S, Singer Y (2008) On the equivalence of weak learnability and
linear separability: New relaxations and efficient boosting algorithms. In: 21st
Annual Conference on Learning Theory

[51] Spencer J (1992) Ulam’s searching game with a fixed number of lies. Theoret
Comput Sci 95(2):307–321

[52] Telgarsky M (2011) The convergence rate of AdaBoost and friends,
http://arxiv.org/abs/1101.4752

[53] Tewari A, Bartlett PL (2007) On the Consistency of Multiclass Classification
Methods. Journal of Machine Learning Research 8:1007–1025

[54] Wu X, Kumar V, Quinlan R, Ghosh J, Yang Q, Motoda H, Mclachlan G, Ng
A, Liu B, Yu P, Zhou ZH, Steinbach M, Hand D, Steinberg D (2008) Top 10
algorithms in data mining. Knowledge and Information Systems 14(1):1–37

[55] Zhang T (2004) Statistical behavior and consistency of classification methods
based on convex risk minimization. Annals of Statistics 32(1):56–134

[56] Zhang T, Yu B (2005) Boosting with early stopping: Convergence and consis-
tency. Annals of Statistics 33(4):1538–1579

[57] Zhu J, Zou H, Rosset S, Hastie T (2009) Multi-class AdaBoost. Statistics and
Its Interface 2:349360

132

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Overview
	2 The Rate of Convergence of AdaBoost
	2.1 Coordinate Descent View of AdaBoost
	2.2 First convergence rate: Convergence to any target loss
	2.2.1 Upper Bound
	2.2.2 Faster rates for a variant
	2.2.3 Lower-bounds

	2.3 Second convergence rate: Convergence to optimal loss
	2.3.1 Upper Bound
	2.3.2 Proof of the decomposition lemma
	2.3.3 Investigating the constants

	2.4 Improved Estimates
	2.5 Conclusion
	2.6 Appendix
	2.6.1 Lower bound for convergence to optimal loss
	2.6.2 A useful technical result
	2.6.3 Proof of Lemma 2.25

	3 A Theory of Multiclass Boosting
	3.1 Introduction
	3.2 Framework
	3.3 Old conditions
	3.3.1 Old conditions in the new framework
	3.3.2 A curious equivalence

	3.4 Necessary and sufficient weak-learning conditions
	3.4.1 Edge-over-random conditions
	3.4.2 The minimal weak learning condition

	3.5 Algorithms
	3.6 Solving for any fixed edge-over-random condition
	3.7 Solving for the minimal weak learning condition
	3.7.1 Game-theoretic equivalence of necessary and sufficient weak-learning conditions
	3.7.2 Optimal strategy with the minimal conditions

	3.8 Variable edges
	3.9 Consistency of the adaptive algorithm
	3.10 Experiments
	3.11 Conclusion
	3.12 Appendix
	3.12.1 Optimality of the OS strategy
	3.12.2 Consistency proofs

	4 Learning with Continuous Experts Using Drifting Games
	4.1 Expert Learning Model
	4.1.1 The Binning Algorithm

	4.2 A master strategy for choosing weights
	4.2.1 Drifting Games
	4.2.2 Learning with binary experts using drifting games
	4.2.3 Drifting games for continuous experts

	4.3 Analysis of drifting games for continuous experts
	4.4 Lower Bounds
	4.4.1 Lower bound for drifting game

	4.5 Proof of Theorem 4.5
	4.6 Connections to boosting with confidence-rated hypotheses
	4.7 Conclusion
	4.8 Appendix: Tight lower bounds
	4.8.1 Bounds are tight for abstaining
	4.8.2 Abstaining is Continuous
	4.8.3 Binary less powerful than Abstaining

	Bibliography

