
Understanding and Improving Modern

Web Traffic Caching

Sunghwan Ihm

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Vivek S. Pai

September 2011

c© Copyright by Sunghwan Ihm, 2011.

All rights reserved.

Abstract

The World Wide Web is one of the most popular and important Internet applications,

and our daily lives heavily rely on it. Despite its importance, the current Web access

is still limited for two reasons: (1) the Web has changed and grown significantly

as social networking, video streaming, and file hosting sites have become popular,

requiring more and more bandwidth, and (2) the need for Web access also has grown,

and many users in bandwidth-limited environments, such as people in the developing

world or mobile device users, still suffer from poor Web access.

There was a burst of research a decade ago aimed at understanding the nature

of Web traffic and thus improving Web access, but unfortunately, it has dropped off

just as the Web has changed significantly. As a result, we have little understanding

of the underlying nature of today’s Web traffic, and thus miss traffic optimization

opportunities for improving Web access. To help improve Web access, this dissertation

attempts to fill the missing gap between previous research and today’s Web.

For a better understanding of today’s Web traffic, we first analyze five years (2006-

2010) of real Web traffic from a globally-distributed proxy system, which captures

the browsing behavior of over 70,000 users from 187 countries. Using this data set,

we examine major changes in Web traffic characteristics that occurred during this

period. We also develop a new Web page analysis technique that is better suited

for modern Web page interactions. Using our analysis technique, we analyze various

aspects of page-level changes, and present a simple Web traffic model that we develop

based on our findings. Finally, we investigate the redundancy of this traffic, using

both traditional object-level caching as well as content-based approaches that use the

caching technique at the sub-object or packet level. Among many findings, we observe

a huge potential benefit of the content-based caching approaches - the byte hit rate

is almost twice as large as that of the traditional object-level caching approach.

iii

Motivated by the possible benefits from content-based caching approaches, we also

develop Wanax, a scalable and flexible wide-area network (WAN) accelerator that is

designed for low-bandwidth and resource-limited developing world environments. It

uses a novel multi-resolution chunking (MRC) scheme that provides high compression

rates and high disk performance for a variety of content, while using much less memory

than existing approaches. Wanax exploits the design of MRC to perform intelligent

load shedding to maximize throughput even when running on resource-limited shared

platforms. Finally, Wanax exploits mesh network environments, instead of just the

star topologies common in enterprise branch offices. Equally importantly, the designs

of Wanax can be applied to enterprise environments, providing the same benefits.

iv

Acknowledgements

This dissertation would not have been possible without the help and support from

many people. First of all, I owe my deepest gratitude to my advisor Vivek Pai. He

has guided me throughout my graduate program. Without his continuous support,

patience, enthusiasm, inspiration, and deep knowledge, I would not be where I am

today. I also would like to thank my thesis committee members Larry Peterson,

Jennifer Rexford, Mike Freedman, and Andrea LaPaugh for the useful feedback that

greatly improved the quality of this dissertation.

Many people in the department have made available their support in a number

of ways. The first half of this dissertation could not have been possible without the

support from the CS Department Staff. In particular, I would like to thank Scott

Karlin, Chris Tengi, Chris Miller, and Paul Lawson for helping me set up and run

large-scale data analysis jobs on the department cluster machines. For the second half

of this dissertation, I am grateful to Marc Fiuczynski for arranging and coordinating

the deployment of the Wanax system in Africa. I would like to give my special

thanks to the Graduate Coordinator, Melissa Lawson. Her help was indispensable

throughout my graduate program, and she also helped improve my language skills.

I was extremely lucky to have two research internship opportunities outside cam-

pus. I would like to thank T. V. Lakshman, Sarit Mukherjee, and Liming Wang at

Alcatel-Lucent Bell Labs, and Byoung-Gon Chun, and Petros Maniatis at Intel Labs

Berkeley for their collaboration in diverse research projects.

I would like to show my gratitude to my colleagues and friends at Princeton. I

thank KyoungSoo Park, Anirudh Badam, Wonho Kim, and Changhoon Kim, and

other members of network systems group for the useful discussion and feedback.

I am grateful to my host family from the Rotary Foundation, Knud and Lindsey

Christiansen for helping me settle down and learn the culture of the United States.

v

I also would like to thank Kuk Jin Jang for proofreading this dissertation, and my

roommate Yoosik Kim.

Last but not least, I would like to thank my father, mother, brother, and sister who

have supported and encouraged me throughout my graduate study; I dedicate this

dissertation to them. Finally, I could not imagine being able to finish this program

without Minkyung; I thank her for the endless support.

This dissertation was partly supported by the Rotary Foundation Ambassado-

rial Scholarship, NSF awards CNS-0615237, and CNS-0916204. The content of this

dissertation was previously published in conference proceedings [40, 41, 43].

vi

Contents

Abstract . iii

Acknowledgements . v

List of Tables . x

List of Figures . xi

1 Introduction 1

1.1 Previous Studies and Limitations . 2

1.1.1 Web Traffic Analysis and Modeling 3

1.1.2 Object-based Caching . 3

1.1.3 Content-based Caching . 4

1.2 Our Approach and Contributions . 5

1.2.1 Understanding Modern Web Traffic 6

1.2.2 Improving Modern Web Traffic Caching 7

1.3 Dissertation Overview . 8

2 Towards Understanding Modern Web Traffic 9

2.1 Data Set . 12

2.2 High-Level Characteristics . 15

2.2.1 Clients . 16

2.2.2 Objects and Domains . 20

2.3 Page-Level Characteristics . 25

vii

2.3.1 Page Detection Algorithm . 26

2.3.2 StreamStructure Algorithm 27

2.3.3 Analysis Results . 32

2.3.4 Simple Web Traffic Model . 35

2.4 Redundancy and Caching . 38

2.4.1 URL Popularity . 39

2.4.2 Caching Effectiveness . 41

2.4.3 Origins of Redundancy . 45

2.4.4 Cache Storage Size . 49

2.4.5 Aborted Transfers . 50

2.5 Related Work . 52

2.6 Summary . 54

3 Wide-area Network Acceleration for the Developing World 56

3.1 Background and Motivation . 58

3.1.1 WAN Accelerators . 58

3.1.2 Developing World Challenges 60

3.2 Wanax Design . 62

3.2.1 Basic Protocol . 62

3.2.2 Multi-Resolution Chunking 64

3.2.3 Resource Sharing via Peering 68

3.2.4 Intelligent Load Shedding . 69

3.2.5 Skipping Compression . 72

3.3 Simulation Analysis . 74

3.3.1 Simulator . 74

3.3.2 Workload . 75

3.3.3 Results . 76

3.4 Implementation . 83

viii

3.5 Evaluation . 87

3.6 Related Work . 94

3.7 Summary . 96

4 Conclusions and Future Work 98

4.1 Understanding Modern Web Traffic 99

4.2 Improving Modern Web Traffic Caching 100

4.3 Future Work . 101

Bibliography 105

ix

List of Tables

2.1 Summary statistics for captured access logs, sampled one month

(April) per year. 14

2.2 Summary of captured full content data (cache-misses only) 38

2.3 Aborted transfers . 51

2.4 Top ten content types for aborted transfers by bytes: Mostly video . . 51

3.1 Comparison of Chunking Schemes . 66

3.2 News Sites Cacheability Breakdown (%) – as a result of browser

caching, most traffic in this workload is HTTP-uncacheable (H-U).

However, it still has much redundancy, making most bytes Wanax-

cacheable (W-C). 76

x

List of Figures

2.1 Data collection . 12

2.2 Browser popularity: Firefox and MSIE together account for more than

86% of the entire users. MSIE dominates in China. 16

2.3 Average client bandwidth: Client bandwidth improves over time. . . . 17

2.4 NAT usage: Most (83-94%) client IPs have only one user agent. The

number has grown slightly over time due to the increasing use of NATs

or browser plug-ins. 18

2.5 Maximum number of concurrent connections per user: We observe a

large increase in 2010 due to the browsers increasing the number of

connections. 19

2.6 Content type distribution changes from 2006 to 2010: We observe a

growth of Flash video, JavaScript, CSS, and XML usage. Images are

still dominating request traffic. 20

2.7 Access rate in 2010: JavaScript, CSS, and images are served from the

browser cache and not frequently accessed. 21

2.8 Object size: The object size of JavaScript and CSS has increased.

Flash video object size is bigger than that of other video. 22

2.9 Top sites: Ads/video site traffic is increasing. A single top site tracks

up to 65% of the user population. 24

xi

2.10 Streams, Web pages, initial pages, client-side interactions, and

main/embedded objects. 27

2.11 Precision and recall: StreamStructure outperforms previous page de-

tection algorithms, simultaneously achieving high precision and recall.

It is also robust to the idle time parameter selection. 30

2.12 Initial page idle time parameter selection: The idle time between 0.5

and 2 seconds provides stable results. 31

2.13 Initial page characteristics: Pages have become bigger both in terms of

the size and number of objects. On the other hand, the page loading

latency has dropped in 2009 and 2010 because of the increased number

of concurrent connections and reduced object latency. 33

2.14 Page loading latency simulation: Increasing the number of simultane-

ous connections could further reduce page load latency by 23%. Re-

moving dependencies between objects (NoDep) would yield at most a

50% reduction. Reducing per-object latency by 50% (HalfLat) would

reduce page-load latency by 67% because of the simultaneous connec-

tions. Together, page loading latency can be reduced by up to 75%. . 34

2.15 Example Web traffic model from the United States in 2010: We define

short (0-25th percentile), medium (25-75th), and long (75-100th) pages

by total time. Short pages are bursty and HTML-oriented while long

pages are video/binary-oriented and involve heavy client-side interac-

tions. 36

2.16 URL popularity: The popular URLs grow, but the long tail of the

content is also growing. 40

xii

2.17 Uncacheable objects by content types: Overall, 19.80-32.20% of unique

URLs are uncacheable, which accounts for 21.50-28.32% of total re-

quests and 10.48-14.81% of total bytes. HTML and JavaScript are

dynamically generated and thus less cacheable. 42

2.18 Ideal cache hit rate with infinite cache storage: Content-based caching

with 128-bytes chunks achieves almost 2x larger byte hit rate than the

object-based HTTP caching. 43

2.19 Ideal redundancy by content types: Text resources have higher redun-

dancy than binary. 45

2.20 Byte saving contribution by content types: Content-based caching is

effective for any content type, but the object-based caching works well

only for JavaScript and image. 46

2.21 Origins of redundancy with 128-bytes chunks: Most of the additional

savings from the content-based caching approaches come from partial

content overlap – the redundancy across different versions of an object

as well as redundancy across different objects. 47

2.22 Cache size vs. byte hit rate: A large cache with MRC provides 2x the

byte hit rate than the object-based caching. 48

3.1 WAN Accelerator Architecture . 59

3.2 Wanax System Overview . 61

3.3 Basic Protocol . 63

3.4 Multi-Resolution Chunking . 65

3.5 Getting Chunk Content from Peers 69

3.6 Intelligent Load Shedding: by moving smaller chunks from the disk

queue to the network queue, the overall latency is further reduced. . 71

xiii

3.7 Potential Bandwidth Savings (d:degree) – SRC overheads prevent it

from reaching ideal savings for smaller chunk sizes. MRC savings are

close to ideal across all chunk sizes. 77

3.8 Disk Operation Cost (d:degree) – By using larger chunks when possible,

MRC dramatically reduces the number of disk operations needed for a

given workload. Note: Y axis is thousands of operations. 78

3.9 Memory Footprint Comparison. Note log-scale Y axis. MRC’s memory

pressure is typically one-tenth that of SRC and MRC-Small. MRC-

Large typically uses twice the memory due to backpointer overhead. . 79

3.10 Per-level Bandwidth Savings in the MRC Tree – most MRC savings

are from larger chunk sizes, reducing disk access and memory pressure. 80

3.11 Effective Bandwidth Improvement over Link Capacity (c: avg chunk

size, d: degree, m: min chunk size) – as link capacity increases and disk

performance becomes a bottleneck, MRC sheds cache hits on smaller

chunks first, leading to a graceful degradation in effective bandwidth.

With ILS disabled, the bandwidth collapses to the bottleneck disk

speed. Note log-scale Y-axis. 82

3.12 Wanax Implementation . 83

3.13 Multiplexing TCP Connections . 85

3.14 MRC Computation Overhead for 64KB Block 86

3.15 Cache Miss and Cache Hit Performance – even on all-hit or all-miss

workloads, the extra overheads of MRC are small compared to SRC.

The best SRC performers on this set use large chunk sizes, which would

produce poor compression on realistic workloads. 88

xiv

3.16 Performance with 90% redundancy and 512Kbps WAN link – MRC

without ILS produces much better compression than any SRC con-

figuration, and throughput is comparable to the best SRC. With ILS

enabled, MRC produces better compression and throughput than any

SRC configuration. When peering is used, disk is not a bottleneck, and

enabling ILS has no effect. 89

3.17 Realistic Traffic – both MRC and SRC provide compression on the

Alexa workload, but MRC’s median response time is 1.5 seconds, com-

pared to 3.8 for SRC. For the YouTube test, all students would be able

to view the video without interruption using MRC, while with SRC, it

would be 20% for the high-quality version and 50% for the low-quality

version. 91

3.18 Enterprise Environment – with no link bottleneck, the underlying sys-

tem performance can be measured. No standard test exists for these

systems, but these figures are comparable to those published for com-

mercial systems. 93

xv

Chapter 1

Introduction

The World Wide Web is one of the most popular and important Internet applications,

and many people’s daily activities heavily rely on it. For example, we read news,

send/receive emails, search, shop, and watch video through the Web. Due to the

importance of the Web in our daily lives, it is thus very critical for people to have

good Web access. Indeed, the United Nations has recently proposed that Internet

access should be a human right [34].

Despite its importance, current Web access is still limited for two reasons. First,

since its first appearance in 1991, the Web has changed and grown significantly, re-

quiring more and more bandwidth. While peer-to-peer application traffic dominated

the Internet for some time, the volume of the Web traffic is increasing and is once

again beginning to dominate Internet traffic [44,49,53]. The main driver is the popu-

larity of social networking (e.g., Facebook), file sharing (e.g., RapidShare), and video

streaming (e.g., YouTube) sites. These changes in and growth of Web traffic are

expected to continue, not only as the Web becomes a de facto front-end for many

emerging cloud-based services [76], but also as many existing applications, such as

game and video, are consolidated to the Web [49].

1

Second, the need for Web access also has grown, exposing the poor Web access

problem for many users in bandwidth-limited environments. For example, billions of

people in the developing world have very limited Web access due to poor network

infrastructures. Even in the developed countries, the problem remains for people

who access the Web via cellular or wireless networks. As the deployment of mobile

devices becomes increasingly widespread, the problem of poor Web access will be

exacerbated. Aside from mobile users, 5-10% of people in the United States do not

have the bandwidth that allows basic Web functions, such as downloading images [66].

In order to improve Web access, we must first understand the underlying charac-

teristics of Web traffic. Web traffic results from interactions among many components

including clients, proxies, and servers, so only a detailed understanding of these inter-

actions can offer insight for improving Web access. For example, analyzing end-user

browsing behavior can lead to a Web traffic model, which in turn can be used to

generate a synthetic workload for benchmarking or simulation. Also, investigating

the Web page loading process reveals where the bottleneck lies in the user-perceived

page loading latency. Furthermore, analyzing the redundancy of Web traffic and

effectiveness of caching could shape the design of caching mechanisms.

1.1 Previous Studies and Limitations

There was a burst of research a decade ago aimed at understanding the nature of Web

traffic and thus improving Web access. Unfortunately, the research has dropped off

just as the Web has changed significantly. As a result, we have little understanding of

the underlying characteristics of today’s Web traffic, and thus miss traffic optimization

opportunities for improving Web access. We group the previous studies into the

following three categories, and discuss their limitations and challenges.

2

1.1.1 Web Traffic Analysis and Modeling

A common approach for empirically modeling Web traffic is to reconstruct end-user

browsing behavior from access log data which records accesses to Web pages. It as-

sumes simple and static Web pages, and once Web pages are identified, other relevant

model parameters can be derived, such as the number of embedded objects, total page

size, total page time, and inter-arrival time. Many previous studies on analyzing and

modeling Web traffic have used this approach [10, 52, 93].

However, there are two limitations with this approach. First, as the Web has

changed significantly, the previous analysis approach has become inappropriate

for today’s dynamic Web pages that involve complex client-side interactions (e.g.,

Ajax [22]). When applied to today’s Web traffic, the resulting traffic model would

be inaccurate. For a better understanding of modern Web page interactions, we

need a new Web page analysis and modeling technique. Second, many studies have

analyzed relatively small-scale data sets that are also time and location specific

(e.g., one month of a certain university or enterprise Web proxy trace). For tracking

and understanding changes in Web traffic, we need large-scale data sets spanning a

multi-year period, collected under the same conditions.

1.1.2 Object-based Caching

Conventional object-based caching works by storing previously seen Web objects near

clients (e.g., browsers or proxies), and serving them locally for future requests [31].

It can reduce network traffic, server overhead, and user-perceived latency. Many

researchers have heavily studied the implications of object-based caching [12, 13, 36,

60, 106, 106].

Unfortunately, object-based caching has two critical limitations that diminish its

utility on modern Web traffic. First, it operates on a whole-object basis, and thus

is effective only for identical objects with the same URLs. For example, even if

3

the content of two objects is 99% identical, object-based caching cannot exploit this

redundancy. If two identical objects have different URLs (aliasing [47]), object-based

caching considers them as two different objects. Second, it is effective only for those

objects designated as cacheable, such as static text and images. However, many

uncacheable objects can be in fact similar or even identical. Object-based caching

misses this traffic optimization opportunity.

1.1.3 Content-based Caching

Content-based caching works by splitting an object or file into many smaller

chunks, and caching those chunks instead of entire objects [94]. Chunk boundaries

are determined based on the content, commonly with Rabin’s fingerprinting [80].

Unlike offset-based chunk segmentation schemes (e.g., every 1 KB), any inser-

tion/deletion/modification to the content only affects nearby chunks. Once chunk

boundaries are detected, chunks are named based on the content, often with SHA-1

hash [65]. The next time the system sees the same chunk, it can pass only a reference

instead of the original content. Since its first proposal, many systems such as

network file systems [7,64], WAN acceleration [84], Web caching [70,82], and storage

systems [24] have used this approach. When applied to Web traffic, content-based

caching can yield higher cache hit rates than the object-based caching, as it can

eliminate redundancy within objects and across different objects. Furthermore, it is

protocol independent and thus effective for uncacheable content as well.

Despite the potential benefits of content-based caching, it is still not fully under-

stood in several ways. First, while the implications of object-based caching approaches

have been heavily studied in the past, there is a lack of a detailed understanding of

content-based caching on real Web traffic. For example, it is unclear how much ad-

ditional benefit content-based caching approaches can provide compared to the use

of the object-based caching, and where the benefits arise. Also, estimating the re-

4

quired cache storage size would help plan the deployment of content-based caching

systems. Second, content-based caching systems can outperform object-based caching

systems at the cost of more resources such as large main memory and fast disk. While

bandwidth-limited developing world environments would benefit most from content-

based caching systems, how to design such systems that can run in resource-limited

environments remains an open question.

1.2 Our Approach and Contributions

To summarize, this dissertation attempts to answer the following questions.

• What has changed in Web traffic over time?

• How can we analyze today’s dynamic Web pages that involve complex client-side

interactions such as Ajax?

• What is the implication of content-based caching on today’s real Web traffic,

such as the effective byte hit rate and required cache storage size?

• How can we design a content-based caching system that is suitable for resource-

limited developing world environments?

To answer the first three questions, in Chapter 2, we analyze large-scale real Web

traffic data from a globally-distributed proxy system [40, 41]. Motivated by the po-

tential benefits of content-based caching approaches from our analysis, in Chapter 3,

we address the last question by presenting Wanax, a scalable and flexible wide-area

network (WAN) accelerator that is designed for low-bandwidth and resource-limited

developing world environments [43].

5

1.2.1 Understanding Modern Web Traffic

A better understanding of today’s Web traffic involves several challenges. First, track-

ing changes over time requires large-scale data sets spanning many years, collected

under the same conditions. Second, earlier Web page analysis techniques developed

for static pages are not suitable for modern Web traffic that involves dynamic client-

side interactions, generating inaccurate analysis results. Third, investigating the im-

plications of content-based caching approaches requires full content data rather than

just access logs.

To overcome these challenges, in Chapter 2, we analyze five years (2006-2010) of

real Web traffic from a globally-distributed proxy system, which captures the browsing

behavior of over 70,000 daily users from 187 countries. Using this data set, we examine

major changes in Web traffic characteristics that occurred during this period. We also

present a new Web page analysis technique that is better suited for modern Web page

interactions by grouping requests into streams and exploiting the structure of Web

pages. Using this analysis technique, we analyze various aspects of page-level changes,

and also present a simple Web traffic model based on our findings. Finally, we capture

the full content of traffic, and investigate the redundancy of this traffic, using both

traditional object-level caching as well as content-based approaches.

Among many findings, we observe a rise of Ajax and Flash video (FLV). For ex-

ample, we see a consistent increase of the traffic volume and object size of JavaScript,

CSS [23], advertising networks, and video sites’ traffic over time. Interestingly, the

most accessed (directly or indirectly) site by users is either a search engine or an an-

alytics site. They reach an increasingly large fraction (65%) of the user population,

which has implications for user tracking and privacy.

In addition, our new Web page analysis technique reveals that almost half the

traffic now occurs not as a result of initial page loads, but as a result of client-side

interactions after the initial load. Also, the pages have become increasingly complex

6

in that both the size and number of embedded objects have increased. Despite this

increase, the page loading latency dropped in 2009 and 2010 due to the increased

number of simultaneous connections per browser and the improved caching behavior

of Web sites.

Finally, we find that content-based caching yields 1.8-2.5x larger byte hit rates

than object-based caching, and much larger caches can be effectively exploited us-

ing intelligent content-based caching to yield nearly ideal byte hit rates. Most of the

additional savings of content-based caching are due to partial content overlap – the re-

dundancy in the content between different versions of an object as well as redundancy

across different objects. Furthermore, a small number of aborted requests (1.8-3.1%),

mostly video, can negatively impact object-based caching performance because their

volume would comprise a significant portion of the entire traffic (69.9-88.8%) if they

were fully downloaded.

1.2.2 Improving Modern Web Traffic Caching

Wide-area network (WAN) accelerators operate by compressing redundant network

traffic from point-to-point communications, enabling higher effective bandwidth. Un-

fortunately, while network bandwidth is scarce and expensive in the developing world,

current WAN accelerators are designed for enterprise use, and are a poor fit in these

environments. More specifically, limited resources in the developing world, such as

a small amount of main memory and slow commodity disks, severely degrade WAN

acceleration performance.

In Chapter 3, we present Wanax, a WAN accelerator designed for developing-world

deployments. It uses a novel multi-resolution chunking (MRC) scheme that provides

high compression rates and high disk performance for a variety of content, while using

much less memory than existing approaches. Wanax exploits the design of MRC to

perform intelligent load shedding to maximize throughput when running on resource-

7

limited shared platforms. Finally, Wanax exploits the mesh network environments

being deployed in the developing world, instead of just the star topologies common

in enterprise branch offices. Combining these approaches, Wanax provides scalable

and flexible WAN acceleration for the developing regions.

We also implement a prototype of Wanax, and demonstrate that it not only en-

ables smooth video streaming, but also reduces response times of Web browsing in

developing world environments. Furthermore, when equipped with high-end SCSI

disks, Wanax offers comparable performance to enterprise WAN accelerators, with a

much smaller memory footprint.

1.3 Dissertation Overview

This dissertation is organized as follows: in Chapter 1, we motivate the problem of

limited Web access, and also discuss background and limitations of previous studies

for improving Web access. For a better understanding of today’s Web traffic, Chap-

ter 2 presents a detailed analysis of modern Web traffic using the CoDeeN content

distribution network data set. Based on the analysis results, Chapter 3 describes how

we design and implement Wanax, which enables high performance WAN acceleration

in resource-limited environments. Finally, we conclude and discuss future work in

Chapter 4.

8

Chapter 2

Towards Understanding Modern

Web Traffic

The World Wide Web is one of the most popular Internet applications, and its traffic

volume is increasing and evolving due to the popularity of social networking, file

hosting, and video streaming sites [44]. These changes and growth of Web traffic

are expected to continue, not only as the Web becomes a de facto front-end for

many emerging cloud-based services [76], but also as applications get migrated to the

Web [49].

Understanding these changes is important for overall system design. For example,

analyzing end-user browsing behavior can lead to a Web traffic model, which in turn

can be used to generate a synthetic workload for benchmarking or simulation. In

addition, analyzing the redundancy and effectiveness of caching could shape the design

of Web servers, proxies, and browsers to improve response times. In particular, since

content-based caching approaches [43,82,84] are a promising alternative to traditional

HTTP object-based caching, understanding their implications for Web traffic and

resource requirements (e.g., cache storage size) could help plan their deployment.

9

While much research activity occurred a decade ago aimed at better understand-

ing the nature of Web traffic [10,12,52,93,106], it subsided just as the Web changed

significantly, and we must therefore update our understanding of today’s Web traffic.

However, there are several challenges. First, examining changes over time requires

large-scale data sets spanning a multi-year period, collected under the same condi-

tions. Second, earlier Web page analysis techniques developed for static pages are

not suitable for modern Web traffic that involves dynamic client-side interactions

(e.g., Ajax [22]). Third, understanding the effectiveness of content-based caching

approaches requires full content data rather than just access logs.

In this chapter, we analyze five years (2006-2010) of real Web traffic from a

globally-distributed proxy system, which captures the browsing behavior of over

70,000 daily users from 187 countries. Using this data set, we examine major changes

in Web traffic characteristics that occurred during this period. We also present a

new Web page analysis algorithm that is better suited for modern Web page inter-

actions. Using this algorithm, we analyze various aspects of page-level changes, and

also present a simple Web traffic model that we developed based on our findings. Fi-

nally, we investigate the redundancy of this traffic, using both traditional object-level

caching as well as content-based approaches.

Our contributions and key findings are the following:

High-Level Characteristics (Section 2.2) One of the major changes in mod-

ern Web traffic is a rise of Ajax and Flash video (FLV) usage – we see a consistent

increase of its traffic volume as well as the object size of JavaScript and CSS [23],

and traffic to advertising networks and video sites. The maximum number of concur-

rent connections also has increased due to browser changes for accommodating Ajax.

Surprisingly, the most accessed site by users is either a search engine or an analytics

site. They reach an increasingly large fraction (65%) of the user population, which

10

has implications for user tracking and privacy. In addition, we observe clear regional

differences in client bandwidth, browser popularity, and dominant content types that

need to be considered when designing/deploying systems. Finally, we observe an in-

crease of Network Address Translation (NAT) [96] usage, which is likely related to

the scarcity of IPv4 addresses.

Page-Level Characteristics (Section 2.3) We have developed a new Web page

analysis algorithm called StreamStructure, and demonstrate that it is more accurate

than previous approaches. Using this algorithm, we find that almost half the traffic

now occurs not as a result of initial page loads, but as a result of client-side interactions

after the initial page load. Also, the pages have become increasingly complex in that

both the size and number of embedded objects have increased. Despite this increase,

the page loading latency dropped in 2009 and 2010 due to the increased number of

simultaneous connections in browsers and improved caching behavior of Web sites.

Furthermore, we quantify the potential reduction of page loading latency from various

tuning approaches, such as increasing the number of concurrent connections, and

prefetching/caching, via simulations. Finally, based on our findings, we provide a

simple Web traffic model that represents modern Web traffic.

Redundancy and Caching (Section 2.4) We find two interesting trends in URL

popularity: 1) the popular URLs become more popular, which potentially improves

caching, but 2) the long tail of the content is also growing, which can hurts caching.

Also, we find that content-based caching yields 1.8-2.5x larger byte hit rates than

object-based caching, and much larger caches can be effectively exploited using intel-

ligent content-based caching to yield nearly ideal byte hit rates. Most of the additional

savings of content-based caching are due to partial content overlap – the redundancy

across different versions of an object as well as the redundancy across different ob-

jects. Finally, a small number of aborted requests (1.8-3.1%), mostly video, can

11

������

�����

������

�����

������

�����

��

��	��	

�����
�	����

��� ��	��	

�����

�	�����

������

�	�����
����

����	�����

��������

�� ����

Figure 2.1: Data collection

negatively impact object-based caching performance because the volume of those tar-

get objects would comprise a significant portion of all traffic (69.9-88.8%) if they were

fully downloaded.

The rest of this chapter is organized as follows: in Section 2.1, we describe the

details of our data set. Section 2.2 examines the major changes in high-level char-

acteristics of Web traffic. Section 2.3 presents the detailed page-level analysis with

our new page detection algorithm, and Section 2.4 analyzes redundancy and caching.

Finally, we discuss related work in Section 2.5, and conclude in Section 2.6.

2.1 Data Set

We use traffic from the CoDeeN content distribution network (CDN) [103], a semi-

open globally distributed proxy that has been running since 2003, and serves over

30 million requests per day from more than 500 PlanetLab [73] nodes. The term

“semi-open” means that while anyone can use CoDeeN by configuring his or her

browser, it only allows GET requests and bans other methods such as CONNECT,

12

PUT, or POST for security reasons. When needed, the system redirects user requests

to other proxy nodes based on the load and latency. Some requests are cache-misses

or uncacheable, and need to be retrieved from the origin Web servers. CoDeeN

also deploys an automatic robot detection mechanism and has rejected accesses from

malicious robots since 2006 [71].

Our data set consists of two parts. First, CoDeeN records all requests not served

from the client’s browser cache in the Squid-style log format. 1 We use these access

logs for examining any longitudinal changes in Section 2.2, 2.3, and 2.4. In addition,

we capture the full content of the cache-miss traffic between the CoDeeN nodes and

the origin Web servers by running an agent process on each node as shown in Fig-

ure 2.1. Using this full content data, we evaluate both object-based and content-based

caching approaches, and analyze aborted transfers in Section 2.4.

For this study, we consider the data from the five-year period from 2006 to 2010.

Due to the large volume of requests, we sample one month (April) of data per year.

We only capture the full traffic content in April 2010, and use only traffic logs in

all other years. After discarding non-human traffic, the total traffic volume ranges

from 3.3 to 6.6 TB per month, and consists of about 280-460 million requests from

240-360 thousand unique client IPs. The clients IPs originate from 168-187 countries

and regions as determined using the MaxMind database [57], and cover 40-60% of

/8 networks, and 7-24% of /16 networks. The total number of unique servers ranges

from 820 thousand to 1.2 million.

Our large-scale data set spanning many years is one of the largest Web traffic data

sets collected. Also, it is potentially more representative than many other available

data sets because its world-wide client population is not skewed toward a specific

organization, such as a university or company [6, 106].

1Timestamp, service time, request URL, method, user agent, content type, referer, response code,
and response size.

13

USA 2006 2007 2008 2009 2010
Requests (K) 33457 40306 24489 23242 14425
Volume (GB) 391 627 338 316 261

IPs 19122 21767 13590 13316 12938
Agents 23323 27021 17574 16898 16720

China 2006 2007 2008 2009 2010
Requests (K) 22455 88754 29918 38108 22871
Volume (GB) 394 1177 404 409 278

IPs 49296 94892 38818 43234 33365
Agents 53877 109651 45132 51845 41933

France 2006 2007 2008 2009 2010
Requests (K) 2207 3949 3255 3550 3322
Volume (GB) 21 45 33 42 50

IPs 3619 5061 3197 3719 5111
Agents 3933 5514 3481 4293 5970

Brazil 2006 2007 2008 2009 2010
Requests (K) 1493 4452 2043 3923 7123
Volume (GB) 16 54 22 44 100

IPs 1417 8639 3261 3070 9536
Agents 1630 9986 3776 3626 10925

Total 2006 2007 2008 2009 2010
Requests (K) 59612 137461 59705 68823 47741
Volume (GB) 822 1903 797 811 689

IPs 73454 130359 58866 63339 60950
Agents 82763 152172 69963 76662 75548

Table 2.1: Summary statistics for captured access logs, sampled one month (April)
per year.

For the remainder of the chapter, we focus on the traffic of users from four coun-

tries from different continents – the United States (US), Brazil (BR), China (CN),

and France (FR). This essentially generates multiple data sets from different client

organizations, and analyzing geographically-dispersed client organizations enables us

to discover common characteristics of Web traffic across different regions as well as

region-specific characteristics. Table 2.1 shows summary statistics for these countries.

In general, the United States and China have larger data sets than France and Brazil,

mainly due to their larger client population. The yearly fluctuation of traffic volume

is due to the variation of the number of available proxy nodes. Overall, our analy-

14

sis of four countries covers 48-137 million requests, 689-1903 GB traffic, and 70-152

thousand users per month.

2.2 High-Level Characteristics

In this section, we analyze high-level characteristics of our Web traffic data, looking

at the properties of clients in Section 2.2.1, and objects and domains in Section 2.2.2.

The summary of our findings are as follows:

• One of the major changes is a rise of Ajax and Flash video (FLV) usage – its

traffic volume is steadily increasing, and also the object size of JavaScript and

CSS has grown over time. FLV object size is larger than that of other video

types.

• We also observe an increase of the maximum number of concurrent connections.

This is due to browsers increasing the default number of maximum connections,

in order to accommodate Ajax which usually requires many simultaneous con-

nections for low latency.

• In terms of domain names, we see a consistent increase of video and advertising

network/analytics sites’ traffic during the five-year period. This is also related

to the rise of Ajax and FLV. The single top site accessed by the most users

is either a search engine or an analytics site. It reaches an increasingly large

fraction (65%) of the user population, which has implications for user tracking

and privacy.

• While we find many consistent changes across different countries, we also observe

clear regional differences in client bandwidth, browser popularity, and dominant

content types. One needs to consider these differences when designing/deploying

network systems for these regions.

15

 0

 25

 50

 75

 100

 2006 2007 2008 2009 2010

%
 U

s
e
rs

Year

MSIE
Firefox

Maxthon
Chrome

Opera
Safari
Other

(a) US

 0

 25

 50

 75

 100

 2006 2007 2008 2009 2010

%
 U

s
e
rs

Year

MSIE
Firefox

Maxthon
Chrome

Opera
Safari
Other

(b) CN

 0

 25

 50

 75

 100

 2006 2007 2008 2009 2010

%
 U

s
e
rs

Year

MSIE
Firefox

Maxthon
Chrome

Opera
Safari
Other

(c) FR

 0

 25

 50

 75

 100

 2006 2007 2008 2009 2010

%
 U

s
e
rs

Year

MSIE
Firefox

Maxthon
Chrome

Opera
Safari
Other

(d) BR

Figure 2.2: Browser popularity: Firefox and MSIE together account for more than
86% of the entire users. MSIE dominates in China.

• Finally, we observe an increase of NAT usage, which is likely related to the

scarcity of IPv4 addresses and the common use of browser plug-ins.

2.2.1 Clients

In this section, we analyze the changes in browser popularity, connection speed, NAT

usage, and maximum number of concurrent connections.

Browser Popularity We first investigate browser popularity by looking at the

User-Agent field in the access log. Understanding which browser is dominant is

important because browsers behave differently under the hood, which affects the

16

 0

 25

 50

 75

 100

 0 1 2 3 4

%
 C

lie
n

ts
 (

/2
4

 I
P

s
)

Average Bandwidth (Mbps)

2006
2008
2010

(a) US

 0

 25

 50

 75

 100

 0 1 2

%
 C

lie
n

ts
 (

/2
4

 I
P

s
)

Average Bandwidth (Mbps)

2006
2008
2010

(b) CN

 0

 25

 50

 75

 100

 0 1 2 3 4

%
 C

lie
n

ts
 (

/2
4

 I
P

s
)

Average Bandwidth (Mbps)

2006
2008
2010

(c) FR

 0

 25

 50

 75

 100

 0 1 2

%
 C

lie
n

ts
 (

/2
4

 I
P

s
)

Average Bandwidth (Mbps)

2006
2008
2010

(d) BR

Figure 2.3: Average client bandwidth: Client bandwidth improves over time.

resulting Web traffic. For example, browsers have different default values for the

maximum number of concurrent connections and browser cache sizes.

Figure 2.2 shows the percentage of different browsers in terms of the number of

users. Firefox and Microsoft Internet Explorer (MSIE) account for more than 86% of

the browsers in use over the course of five years in all of the countries. The popularity

of Firefox consistently increases, exceeding the share of MSIE by 2007 and 2008. We

also observe a slowly increasing share of Chrome in the United States and Brazil.

Interestingly, MSIE remains the dominant browser in China, and Maxthon – one

of the most popular browsers in China – is losing its popularity. Considering that

Maxthon is based on a customized MSIE, Maxthon and MSIE together account for

more than 85% of the user population in China while Firefox represents only 5-11%.

17

 80

 85

 90

 95

 100

 1 10

%
 I

P
s

User Agents Per IP

2006
2008
2010

(a) US

 80

 85

 90

 95

 100

 1 10

%
 I

P
s

User Agents Per IP

2006
2008
2010

(b) CN

 80

 85

 90

 95

 100

 1 10

%
 I

P
s

User Agents Per IP

2006
2008
2010

(c) FR

 80

 85

 90

 95

 100

 1 10

%
 I

P
s

User Agents Per IP

2006
2008
2010

(d) BR

Figure 2.4: NAT usage: Most (83-94%) client IPs have only one user agent. The
number has grown slightly over time due to the increasing use of NATs or browser
plug-ins.

Connection Speed We estimate the client bandwidth by observing the download

time for objects. To minimize the effect of link latency, we consider only those objects

that are larger than 1 MB. Figure 2.3 shows CDFs of average client bandwidth per

aggregated /24 IP address. Overall, we observe that the client bandwidth is con-

sistently increasing over time. 2 Geographically, the speed of the United States and

France is faster than Brazil and China. This scarcity of bandwidth is particularly

apparent in 2006, when we did not see any clients in Brazil and China with download

speeds exceeding 2 Mbps. Interestingly, there still exist many slow clients with less

than 256 Kbps, even in the developed countries.

2PlanetLab connectivity did not have a major improvement during the five-year period.

18

 0

 25

 50

 75

 100

 5 10 15 20 25 30

%
 U

s
e

rs

Max # Concurrent Connections

2006
2008
2010

(a) US

 0

 25

 50

 75

 100

 5 10 15 20 25 30

%
 U

s
e

rs

Max # Concurrent Connections

2006
2008
2010

(b) CN

 0

 25

 50

 75

 100

 5 10 15 20 25 30

%
 U

s
e

rs

Max # Concurrent Connections

2006
2008
2010

(c) FR

 0

 25

 50

 75

 100

 5 10 15 20 25 30

%
 U

s
e

rs

Max # Concurrent Connections

2006
2008
2010

(d) BR

Figure 2.5: Maximum number of concurrent connections per user: We observe a large
increase in 2010 due to the browsers increasing the number of connections.

NAT Usage We analyze the use of NAT in Figure 2.4 where we present CDFs of

the number of different user agents per client IP address. While most (83-94%) client

IPs have just one user agent, the number has grown slightly over time. This increase

may be related to the scarcity of IPv4 addresses, or the common use of browser plug-

ins or toolbars that have its own user agent string. The maximum number of user

agents per IP we observe is 69 in the United States, 500 in China, 36 in Brazil, and

20 in France.

Maximum Concurrent Connections Figure 2.5 shows CDFs of the maximum

number of concurrent connections per user agent. We observe a large increase in

2010 – the median number grows from 4-5 in 2006 and 2008 to 6-7 in 2010. This

19

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

%
 B

y
te

s

% Requests

(a) US

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

%
 B

y
te

s

% Requests

(b) CN

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

%
 B

y
te

s

% Requests

(c) FR

 0.1

 1

 10

 100

 0.01 0.1 1 10 100
%

 B
y
te

s
% Requests

html
css
xml

javascript

image
other-video

flv-video
octet

(d) BR

Figure 2.6: Content type distribution changes from 2006 to 2010: We observe a
growth of Flash video, JavaScript, CSS, and XML usage. Images are still dominating
request traffic.

increase is mainly because the browsers change the default number of maximum

simultaneous connections per server from 4 to 6 in around 2008 [3, 86]. This is in

order to accommodate Ajax which usually requires many simultaneous connections

to reduce latency. In fact, the default number specified in HTTP/1.1 is only 2 [31],

which is very different from the current usage.

2.2.2 Objects and Domains

In this section, we examine the changes in content type distribution, object size, and

top sites in terms of requests and bytes.

20

 0

 25

 50

 75

 100

10
-2

10
0

10
2

10
4

10
6

sec min hour day month

%
 R

e
s
o

u
rc

e
s
 (

U
R

L
s
)

Inter-access Time (sec)

html
css
xml

javascript
image
video

(a) US

 0

 25

 50

 75

 100

10
-2

10
0

10
2

10
4

10
6

sec min hour day month

%
 R

e
s
o

u
rc

e
s
 (

U
R

L
s
)

Inter-access Time (sec)

html
css
xml

javascript
image
video

(b) CN

 0

 25

 50

 75

 100

10
-2

10
0

10
2

10
4

10
6

sec min hour day month

%
 R

e
s
o

u
rc

e
s
 (

U
R

L
s
)

Inter-access Time (sec)

html
css
xml

javascript
image
video

(c) FR

 0

 25

 50

 75

 100

10
-2

10
0

10
2

10
4

10
6

sec min hour day month

%
 R

e
s
o

u
rc

e
s
 (

U
R

L
s
)

Inter-access Time (sec)

html
css
xml

javascript
image
video

(d) BR

Figure 2.7: Access rate in 2010: JavaScript, CSS, and images are served from the
browser cache and not frequently accessed.

Content Type We observe a shift from static image-oriented Web pages to dynamic

rich media Web pages in Figure 2.6. It presents the content type distribution changes

Brazil from 2006 to 2010, connected by arrows. The X axis is the percentage of

requests, and the Y axis is the percentage of bytes, both in log-scale.

First, we observe a sharp increase of JavaScript, CSS, and XML, primarily due

to the increased popularity of Ajax. We also find a sharp increase of Flash video

(FLV) traffic, accounting for about 25% of the total traffic both in the United States

and Brazil in 2010. At the same time, non-FLV traffic decreases, demonstrating the

transition of the media delivery medium to the popular Flash video. In addition, while

the byte percentage of octet-stream traffic sees a general decrease, its percentage of

request traffic increases. This may be related to the custom use of HTTP as a

21

 0

 25

 50

 75

 100

10
2

10
3

10
4

10
5

10
6

%
 R

e
q

u
e

s
ts

Object Size (byte)

2006
2008
2010

(a) FR: JavaScript

 0

 25

 50

 75

 100

10
2

10
3

10
4

10
5

10
6

%
 R

e
q

u
e

s
ts

Object Size (byte)

2006
2008
2010

(b) CN: CSS

 0

 25

 50

 75

 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

%
 R

e
q

u
e

s
ts

Object Size (byte)

asf
wmv

mpeg
flv

(c) US, 2010: video

Figure 2.8: Object size: The object size of JavaScript and CSS has increased. Flash
video object size is bigger than that of other video.

transport protocol for exchanging binary data in many applications. Still, the image

traffic including all of its subtypes consumes the most bandwidth.

Despite the growth of embedded images in Web pages, we do not see a correspond-

ing surge in their numbers within the traffic patterns as shown in Figure 2.7 where we

show CDFs of inter-access time for each unique URL in 2010, with different content

types. We believe that this is due to the improved caching behavior of many Web

sites that separate the cacheable parts of their content on different servers and use

long expiration dates. As a result, most of these images are served from the browser

cache after the initial visit to the Web site.

22

Object Size We find that the size of JavaScript and CSS to be increasing steadily

over time. Figure 2.8 (a) presents CDFs of JavaScript sizes in France, and we show

CDFs of CSS sizes in China in Figure 2.8 (b), from 2006 to 2010. These changes are

likely related to the popular use of Ajax. In general, other content types do not show

consistent changes.

While there seems to be no significant size changes over time in video objects, we

observe FLV is bigger than other video in general. Figure 2.8 (c) compares the object

size (CDF) of different video types in the United States for 2010. Some video objects

(e.g., ASF) are very small in size and are container objects that do not contain actual

video content. Once users fetch this kind of container object, they contact media

streaming servers that use non-HTTP protocols such as RTSP [91] or RTP [90] for

fetching the content. The median size of such container objects is typically less than

1 KB, while that of FLV, WMV, and MPEG is 1743 KB, 265 KB, and 802 KB,

respectively.

Finally, while new video streaming technologies that split a large video file into

multiple smaller files for cacheability and performance were introduced recently in

late 2009 and 2010 [1, 8, 63], we do not see its wide deployment in our data set yet.

With these new technologies, we expect to observe a decrease in size of video objects

as well as an increasing number of requests. We plan to analyze this case with a more

recent data set in the future.

Domains We examine the share of 1) video site 3 traffic, and 2) advertising net-

work/analytics 4 site traffic in Figure 2.9. We consider the top 50 sites that dominate

these kinds of traffic. In Figure 2.9 (a), we observe that the advertising network

traffic takes 1-12% of the total requests, and it consistently increases over time as the

market grows [46]. In addition, we find the volume of video site traffic is consistently

3
e.g., youtube.com

4
e.g., doubleclick.com, google-analytics.com

23

 0

 5

 10

 15

 2006 2008 2010

%
 R

e
q

u
e

s
ts

Year

US
CN
FR
BR

(a) Ads network traffic by requests

 0

 10

 20

 30

 2006 2008 2010

%
 B

y
te

s

Year

US
CN
FR
BR

(b) Video site traffic by bytes

 0

 20

 40

 60

 80

 2006 2008 2010

%
 I

P
s

Year

US
CN
FR
BR

(c) Single top site % IPs

Figure 2.9: Top sites: Ads/video site traffic is increasing. A single top site tracks up
to 65% of the user population.

increasing as shown in Figure 2.9 (b), taking up to 28% in Brazil for 2010. China,

with lower bandwidth, sees more still image traffic than video. Finally, we see that the

single top site reaches a growing fraction of all users over time in Figure 2.9 (c). All

of the single top sites by the number of client IPs during a five-year period are either

a search engine (google.com or baidu.com), or analytics (google-analytics.com).

Especially in 2010, the percentage reaches up to 65% in Brazil, which has implications

for user tracking and privacy.

24

2.3 Page-Level Characteristics

In this section, we analyze our data with Web page-level details. We first provide

background on page detection algorithms and explain the problems with previous

approaches in Section 2.3.1. In Section 2.3.2, we present a new page detection algo-

rithm called StreamStructure that is better suited for modern Web traffic analysis,

and demonstrate it is more accurate than previous approaches. Using this algorithm,

Section 2.3.3 examines the initial page characteristics, and analyzes page loading la-

tency via simulations. Finally in Section 2.3.4, we present a simple Web traffic model

that we developed based on our findings.

The summary of our findings are as follows:

• We find that almost half the traffic now occurs not as a result of initial page

loads, but as a result of client-side interactions after the initial page load. In

general, the pages become increasingly complex in that both the size and number

of objects increase. On the other hand, we observe that page loading latency

drops and the object inter-arrival rate becomes burstier in 2009 and 2010 due to

the increased number of concurrent connections and improved caching behavior

of Web sites.

• Using our simulator, we experiment with the effect of various tuning ap-

proaches. We find that increasing the number of simultaneous connections

from the browser could further reduce page load latency by 23%. Removing

dependencies between objects – some objects (e.g., images) can be fetched

only after some other objects (e.g., HTML or JavaScript) are downloaded –

would yield at most a 50% reduction. Reducing per-object latency by 50%

would actually reduce page-load latency by 67% because of the simultaneous

connections. Together, page loading latency can be reduced by up to 75%.

25

2.3.1 Page Detection Algorithm

A common approach for empirically modeling Web traffic is to reconstruct end-user

browsing behavior from the access log data, in which users repeatedly request Web

pages. Once Web pages (or main objects) are identified, we can derive relevant model

parameters such as the number of embedded objects, total page size, total page time,

and inter-arrival time. Thus, detecting Web page boundaries is crucial to the model

accuracy.

Previous approaches for detecting page boundaries fall into two categories. The

first approach (time-based) is to use the idle time between requests [10,52,93]. If the

idle time is short enough (less than a predefined threshold), the request is assumed

to be generated automatically by the browser, and it becomes an embedded object of

the previous Web page. Otherwise, the request is assumed to be generated manually

by the user’s click, and it becomes the main object of a new Web page. The second

approach (type-based) is to use the content type of the object [18]. This approach

simply regards every HTML object as a main object, and any non-HTML object as

an embedded object of the previous main object.

Unfortunately, the complex and dynamic nature of the current Web traffic blurs

the traditional notion of Web pages, and the previous approaches do not work well.

For example, client-side interactions (e.g., Ajax) that usually have longer idle time

would be misclassified as separate Web pages by the time-based approach. On the

other hand, the type-based approach would misclassify frames in a single Web page

as separate independent Web pages. As a result, these approaches would generate

inaccurate traffic models if applied to modern Web traffic. Worse, they have already

been used in hundreds of studies without validation.

26

Figure 2.10: Streams, Web pages, initial pages, client-side interactions, and
main/embedded objects.

2.3.2 StreamStructure Algorithm

To overcome the limitations of the previous approaches, we develop a new page de-

tection algorithm called StreamStructure, that is more accurate than the previous

approaches. StreamStructure exploits the stream and structure information of Web

pages, and consists of three steps – grouping streams, detecting main objects, and

identifying initial pages. Figure 2.10 depicts the definition of streams, Web pages, ini-

tial pages, main and embedded objects, and client-side interactions in our algorithm.

Step 1. Grouping Streams Instead of treating all the requests in a flat manner,

we first group them into multiple independent streams by exploiting the Referer

field. The referer of a request reveals the address of an object from which the request

came from – a dependency between two objects. For example, if a HTML object

includes two embedded objects in it, the referer of those two embedded objects would

be the HTML object. Also, if a user clicks a link to move to a new Web page, the first

request of the new Web page would have the referer field of an object in the previous

Web page.

27

At a high level, each stream is a transitive closure of the referer relation on the

set of requests. Whenever the referer of a request is empty, the request becomes the

start (or root) of a new stream. If the referer of the subsequent request matches

with any of the requests in the streams, we associate the request with the matched

stream. In case there is more than one matched stream, we choose the latest one. If

not found, we also create a new stream with the request – this happens because its

referer request could be a browser cache-hit thus not present in the log.

Grouping requests with the referer relation allows isolating logs from multiple

browser instances or tabs, since they belong to different streams. It also helps iden-

tifying frames and client-side interactions, since all the frames from the same Web

page and all the client-side interactions to the same Web page belong to the same

stream.

Even though the referer field is optional, we can safely rely on this information

because most current browsers (Firefox and MSIE) enable it by default. In fact,

Firefox and MSIE together account for more than 86% of our client population as in

Figure 2.2. When present, we use the referer field to group requests into streams.

Step 2. Detecting Main Objects Once we finish grouping streams, we detect

a main object for each stream. We first generate main object candidates by apply-

ing the type-based approach. This would find HTML frame objects as main object

candidates, but non-HTML interactions would be ignored. Among those main object

candidates, we discard those with no embedded object. This is based on the observa-

tion that the current Web pages are typically complex, consisting of many embedded

objects. We detect this by looking at the referer of the next request. If it is not the

preceding main object candidate, we remove the preceding object from consideration.

Next, we apply the time-based approach to finalize the main object selection.

If the idle time is less than a given threshold, it is likely that they belong to the

28

same Web page – overlapping HTML frame objects with a short idle time would

be eliminated from the selection. It is noteworthy that we consider the idle time

only among the main object (HTML) candidates. This is because the interactions

in a Web page happen at an arbitrary point, and it biases the idle time calculation

if included. Now all the remaining objects between two main objects become the

embedded objects of its preceding main object. This way, we could include all the

interactions in a Web page as its embedded objects.

Step 3. Identifying Initial Pages The final task of our algorithm is to identify

the initial pages, as the previous grouping still includes client-side interactions in the

Web pages. The basic idea is to apply the time-based approach. However, simply

checking the idle time is inaccurate because the DNS lookup or browser processing

time can vary significantly, especially while processing the main object before the

page is fully loaded.

To this end, we exploit the popular use of Google Analytics in the pages. It is

a piece of JavaScript code that collects various client-side information and reports

to the analytics server when the DOMContentLoaded event fires. Thus, once we see

this beacon in the access logs, we can safely assume that the Web page is successfully

loaded at that point, and start applying the time-based approach to identify the initial

page. Note that our algorithm can also use other ways than the Google Analytics

beacon to detect the page loading event. For example, one could instrument Web

pages with custom JavaScript at the proxy.

Validation We validate the accuracy of StreamStructure and the existing ap-

proaches on the manually collected data set by visiting (via CoDeeN) the top 100

sites of Alexa’s list [4] with MSIE. We visit approximately ten Web pages for each

site, resulting 1,197 Web pages in total. 5 We also record the URLs of those visited

5Some sites have many Web pages while others do not.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e
c
a
ll

Precision

Time
Type

Time+Type
StreamStructure

Figure 2.11: Precision and recall: StreamStructure outperforms previous page detec-
tion algorithms, simultaneously achieving high precision and recall. It is also robust
to the idle time parameter selection.

Web pages (or main objects), and compare them with the URLs of the Web pages

found by each approach.

Figure 2.11 shows the precision and recall of various approaches. Precision is

defined as the number of correct Web pages found divided by the total number of

Web pages found, and recall is defined as the number of correct Web pages found

divided by the total number of correct Web pages. For comparison, we also try a

simple combination of time-based and type-based approaches (Time+Type) that do

not exploit the stream and structure information. Multiple data points represent the

results of various idle time (0.1, 0.2, 0.5, and 1–5 seconds) parameters.

The time-based approach performs in general very poorly, and the best result

achieves only a precision of 0.45 and a recall of 0.55. Also, the performance is very

sensitive to the idle time selection. The type-based approach shows the highest re-

call above 0.88, which implies that the main objects of most Web pages are HTML.

However, the precision is very low, only about 0.27. StreamStructure outperforms

all of the previous approaches, achieving high precision and recall above 0.8 simul-

taneously. Furthermore, it is quite robust to the idle time parameter selection. The

30

 0

 25

 50

 75

 100

 0.1 1 10

%
 P

a
g

e
s

Latency (sec)

0.1
0.2
0.5
1.0
2.0
5.0

(a) Page loading time (sec)

 0

 25

 50

 75

 100

 1 10 100

%
 P

a
g

e
s

Objects

0.1
0.2
0.5
1.0
2.0
5.0

(b) # Objects per page

 0

 25

 50

 75

 100

 10 100 1000

%
 P

a
g

e
s

Page Size (KB)

0.1
0.2
0.5
1.0
2.0
5.0

(c) Page size (KB)

Figure 2.12: Initial page idle time parameter selection: The idle time between 0.5
and 2 seconds provides stable results.

time+type approach is less accurate, proving the importance of exploiting the stream

and structure information.

Finally, we investigate the sensitivity of the idle time parameter for identifying

initial pages by comparing CDFs of the page loading time, number of objects, and

size of the initial pages with different idle time thresholds as in Figure 2.12. Overall,

23.9% of pages have Google Analytics beacons in our manually collected data set.

We observe that an idle time of 0.1 seconds is too short and 5 seconds is too long,

distorting the distribution significantly. On the other hand, an idle time between 0.5

and 2 seconds generates quite stable and similar results.

31

2.3.3 Analysis Results

We apply the StreamStructure algorithm to our CoDeeN access log data set, and

analyze the derived Web pages in various aspects. We choose the idle time of one

second both for identifying Web pages out of streams, and for identifying initial pages

out of Web pages. Among all the users, we ignore those who are active for less than

30 minutes to reduce potential bias. We first examine the characteristics of initial

pages, and analyze the page loading latency in detail via simulations.

Initial page characteristics We first show the fraction of Web pages that have

a Google Analytics beacon in our data set in Figure 2.13 (a). It is less than 5% in

2006, but it has become increasingly popular and accounts for about 40% in 2010.

While there is a little variation over time, the volume of the initial page traffic roughly

accounts for about 40-60% of the entire Web traffic in terms of both requests and

bytes. The rest of the traffic is client-side interactions, which is a very significant

amount.

In Figure 2.13 (b)-(f), we examine the changes in the number of objects, size, and

latency of the initial pages, and the latency and inter-arrival time of each individual

object in the initial pages. We compare the median values rather than the mean,

since our page detection algorithm is not perfect and the mean can be greatly biased

by outliers/errors.

We observe a consistent increase of the number of objects and the total size in

Figure 2.13 (b) and (c), indicating that the pages have become increasingly complex.

For example, the median number of objects per page in the United States sees an

increase from 6 objects in 2006 to 12 objects in 2010, and the median page size

has become bigger from 69 KB in 2006 to 133 KB in 2010. This increase must be

related to the popular use of advertisement/analytics, and the object size increase of

JavaScript and CSS in Figure 2.8 (a) and (b).

32

 0

 10

 20

 30

 40

 2006 2007 2008 2009 2010%
 P

a
g

e
s

w
ith

 G
o

o
g

le
 B

e
a

co
n

Year

US
CN
FR
BR

(a) % pages with Google Analytics beacon

 4

 6

 8

 10

 12

 14

 16

 18

 2006 2007 2008 2009 2010

M
e

d
ia

n
 #

 O
b

je
ct

s
p

e
r

P
a

g
e

Year

(b) Median # of objects per page

 40

 60

 80

 100

 120

 140

 160

 180

 2006 2007 2008 2009 2010

M
e

d
ia

n
 P

a
g

e
 S

iz
e

 (
K

B
)

Year

(c) Median page size

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 2006 2007 2008 2009 2010
M

e
d

ia
n

 P
a

g
e

 L
a

te
n

cy
 (

se
c)

Year

(d) Median page loading latency

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2006 2007 2008 2009 2010

M
e

d
ia

n
 O

b
je

ct
 L

a
te

n
cy

 (
se

c)

Year

(e) Median object latency

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2006 2007 2008 2009 2010M
e

d
ia

n
 I

n
te

r-
a

rr
iv

a
l T

im
e

 (
se

c)

Year

(f) Median object inter-arrival time

Figure 2.13: Initial page characteristics: Pages have become bigger both in terms of
the size and number of objects. On the other hand, the page loading latency has
dropped in 2009 and 2010 because of the increased number of concurrent connections
and reduced object latency.

While the page loading latency also sees a general increase in Figure 2.13 (d) until

2008, we observe a decrease in 2009 and 2010. For example, in the United States,

the median latency increases from 5.13 seconds in 2006 to 8.45 seconds in 2008,

but decreases to 5.98 seconds in 2010. This decrease is likely due to the increased

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

M
e

d
ia

n
 N

o
rm

a
liz

e
d

 L
a

te
n

c
y

Max # Connections per Server

Default
1. No Dependency

2. Half Object Latency
1&2

(a) US, 2010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

M
e

d
ia

n
 N

o
rm

a
liz

e
d

 L
a

te
n

c
y

Max # Connections per Server

(b) CN, 2010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

M
e

d
ia

n
 N

o
rm

a
liz

e
d

 L
a

te
n

c
y

Max # Connections per Server

(c) FR, 2010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

M
e

d
ia

n
 N

o
rm

a
liz

e
d

 L
a

te
n

c
y

Max # Connections per Server

(d) BR, 2010

Figure 2.14: Page loading latency simulation: Increasing the number of simultaneous
connections could further reduce page load latency by 23%. Removing dependencies
between objects (NoDep) would yield at most a 50% reduction. Reducing per-object
latency by 50% (HalfLat) would reduce page-load latency by 67% because of the
simultaneous connections. Together, page loading latency can be reduced by up to
75%.

number of concurrent connections in Figure 2.5. Another possible explanation for this

decrease is the reduced latency of fetching an object in Figure 2.13 (e), which makes

the object inter-arrival rate burstier as shown in Figure 2.13 (f). Since the object size

does not decrease over time, the reduction of object latency is likely related to the

improved client bandwidth in Figure 2.3, as well as the improved caching behavior of

many Web sites.

Page Loading Latency Simulation As the page loading latency is determined

by many factors including the number of concurrent connections per server, object

34

latency, and dependency among objects, we examine the impact of these factors via

simulations. For simplicity, each object is fetched from a central FIFO queue, and we

use the measured object latency in the access logs for the simulated object latency.

The object dependency is extracted from the referer relations. We underestimate

the page loading latency by ignoring network latency and browser parsing/processing

time – there is no idle time. At the same time, we overestimate the latency as any

dependent object cannot be fetched before its parent object is finished. 6

Figure 2.14 presents the median simulated latency from the United States, China,

and Brazil in 2010, as a function of the maximum number of concurrent connections

per server. We simulate four different scenarios where the latency is normalized by

the default latency with one concurrent connection per server. First, we observe

that increasing the number of concurrent connections per server would reduce the

latency by up to 23%. But the latency converges at around 8 concurrent connections

per server, increasing beyond this number of connections offers no further benefit.

Second, we simulate the ideal case where there is no object dependency (NoDep) – all

of the object URLs are known in advance, and this case reduces the latency by up

to 50%. Given this latency reduction, it is worth exploring ways to relieve/eliminate

the object dependency. Third, if per-object latency is reduced by half (HalfLat) via

better caching/prefetching approaches, the page loading latency can be reduced by

up to 61% due to the simultaneous connections. All together, we observe a potential

reduction in page loading latency by 75%.

2.3.4 Simple Web Traffic Model

With our analysis, we are now able to derive a model of modern Web traffic. For

a simple Web traffic model, we divide all of the Web pages including client-side

interactions into three groups based on the total page time – short (0-25th percentile),

6In practice, a browser typically starts fetching embedded objects as soon as it finds their URLs.

35

 0

 20

 40

 60

 80

 100

Requests Bytes

%
 V

o
lu

m
e

Long
 Medium

Short

(a) % Page volume

 0

 20

 40

 60

 80

 100

Short Medium Long

%
 R

e
q
u
e
st

s

others
octet

audio
video

image
javascript

xml
css

html

(b) Page content type by % requests

 0

 20

 40

 60

 80

 100

Short Medium Long

%
 B

yt
e
s

others
octet

audio
video

image
javascript

xml
css

html

(c) Page content type by % bytes

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000
F

ra
ct

io
n

 (
%

)

Embedded Objects Per Page

short
medium

long

(d) # of objects

 0.001

 0.01

 0.1

 1

 10

 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

F
ra

ct
io

n
 (

%
)

Total Page Size (byte)

short
medium

long

(e) Total size

 0

 25

 50

 75

 100

10
-3

10
-2

10
-1

10
0

10
1

F
ra

ct
io

n
 (

%
)

Object Inter-arrival Time (sec)

short
medium

long

(f) Object inter-arrival time

Figure 2.15: Example Web traffic model from the United States in 2010: We de-
fine short (0-25th percentile), medium (25-75th), and long (75-100th) pages by total
time. Short pages are bursty and HTML-oriented while long pages are video/binary-
oriented and involve heavy client-side interactions.

medium (25-75th), and long (75-100th) pages. We then characterize these pages in

terms of the number of embedded objects, page size, object inter-arrival time, and

content type distribution. Figure 2.15 presents an example traffic model from the

United States in 2010.

36

Figure 2.15 (a) shows the volume of three different pages. In terms of requests,

long pages consume about 55%, and medium pages take about 40%. In terms of bytes,

long pages take even more than 60%. Short pages account for only about 5% in terms

of both requests and bytes. The content type distribution in Figure 2.15 (b) and (c)

reveals the characteristics of the pages more clearly. Short pages are mainly HTML-

oriented, such as those related to search activities. On the other hand, long pages

show a higher percentage of video and octet-stream bytes than others, meaning these

are mainly related to video watching activities and large file downloads. Medium

pages lie in between, such as those for reading news or blogging.

In terms of the number of embedded objects, most short pages have less than 10

objects, while medium and long pages have a larger number of embedded objects,

as in Figure 2.15 (d) where we show PDFs of the number of embedded objects.

The median is 4, 12, and 30 for short, medium, and long pages, respectively. In

particular, we observe heavy client-side interactions in long pages. Note that medium

pages include Web pages that have many embedded images, however, as Web sites

improve cacheability via best practices, we observe only 12 fetches for the changing

content. This in part explains why page loading latency is improving despite the

increase in page complexity as discussed in Section 2.3.3.

In addition, from Figure 2.15 (e) which shows PDFs of the total page sizes, we

observe that the difference in medians is about 3x in size between short (40 KB)

and medium pages (122 KB), and more than 2x between medium and long pages

(286 KB). Note that long pages have a very long tail reaching up to 370 MB, while

the largest page size is only about 5 MB for short pages and 13 MB for medium

pages. Finally, Figure 2.15 (f) presents the object inter-arrival time (CDFs), and

we observe that short and medium pages are burstier than long pages as it does not

usually involve client-side interactions. The median object inter-arrival time is 90,

89, and 114 ms for short, medium, and long pages, respectively.

37

US CN FR BR
Requests (K) 8611 12036 2129 4018

Volume (GB) 198 218 42 79

Table 2.2: Summary of captured full content data (cache-misses only)

2.4 Redundancy and Caching

The last part of our study is to analyze the redundancy in the Web traffic and the

impact of caching. For this study, we consider the traditional object-based HTTP

caching as well as content-based caching which is the use of caching techniques at the

sub-object or packet level. In Section 2.4.1, we examine the changes in URL popular-

ity during the five-year period with the access log data. In April 2010, we captured the

full content of all traffic instead of just HTTP headers. Using this data, we directly

compare the effectiveness of object-based caching and content-based caching in Sec-

tion 2.4.2, and quantify the origins of redundancy in Section 2.4.3. We also calculate

the actual byte hit rate with practical cache storage sizes in Section 2.4.4. Finally,

we analyze the characteristics of aborted transfers, and discuss its implications on

caching in Section 2.4.5. Table 2.2 shows the summary of our content data set from

April, 2010. We capture cache misses only to account for simple improvements, such

as using a local proxy cache.

The summary of our findings are as follows:

• We observe two interesting trends in URL popularity over time: 1) the popular

URLs become more popular, but 2) the long tail of the content is also growing.

However, cache hit rate is affected by both factors, and we do not observe any

consistent changes in cache hit rate over time.

• We find that content-based caching yields almost 2x larger byte hit rates than

object-based caching. In terms of content types, text resources such as HTML,

JavaScript, XML, and CSS show higher redundancy than binary resources such

38

as video and image. Also, content-based caching works well regardless of content

types, but the object-based caching is mainly effective for JavaScript and image

only.

• We quantify the origins of redundancy to understand where the additional sav-

ings of content-based caching comes from. It turns out that most of the ad-

ditional savings are due to partial content overlap – the redundancy across

different versions of an object as well as redundancy across different objects.

• Multi-resolution chunking (MRC) [43] with large cache storage provides close

to the ideal byte hit rate as it increases the working set size and reduces the

metadata overhead. On the other hand, the basic content-based caching has

the same working set size as object-based caching, so increasing cache beyond

that working set size does not provide further benefits.

• A small number of requests (1.8-3.1%), mostly video, are aborted by users before

they are fully downloaded. However, the volume is very significant (69.9-88.8%)

and negatively impacts the performance of the object-based caching proxy.

2.4.1 URL Popularity

We first investigate the underlying changes in URL popularity during the five-year

period with our access log data set, which directly influences the caching effective-

ness. We find two interesting trends. First, we observe that the popular URLs are

getting more popular as seen in Figure 2.16 (a) and (b) where we present the request

percentage of the top 100,000 URLs in the United States and China. The fraction

of the most popular URL sees an increase from 0.08-0.12% in 2006 to 0.28-0.41% in

2010, which would increase the cache hit rate. The most popular URL in the United

States for 2010 is a dynamically generated beacon object from google.com, however

it is uncacheable. At the same time, we also find that the percentage of URLs that are

39

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10
0

10
1

10
2

10
3

10
4

10
5

%
 R

e
q

u
e

s
ts

URL Ranking

2006
2008
2010

(a) US: Top 100K URLs by % requests

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

10
0

10
1

10
2

10
3

10
4

10
5

%
 R

e
q

u
e

s
ts

URL Ranking

2006
2008
2010

(b) CN: Top 100K URLs by % requests

 76

 78

 80

 82

 84

 86

 88

 2006 2008 2010

%
 A

c
c
e

s
s
e

d
 O

n
c
e

 U
R

L
s

Year

US
CN
FR
BR

(c) % accessed once URLs (tail)

Figure 2.16: URL popularity: The popular URLs grow, but the long tail of the
content is also growing.

accessed only once is consistently increasing as in Figure 2.16 (c). We see its increase

from 76.87-83.33% in 2006 to 84.63-87.78% in 2010. Overall, those URLs account for

a significant amount of traffic – 29.97-48.85% of total requests and 27.27-63.94% of

total bytes. These least popular URLs are all cache-misses and would decrease the

cache hit rate.

While these two trends in URL popularity could affect cache hit rate both pos-

itively and negatively, we do not observe any consistent changes in resulting cache

hit rate during the five-year period. This is partly because the two effects cancel

each other out, and also because cache hit rate is determined by other factors such as

user population. In order to get an upper bound on the object-based cache hit rate

with our access log data set, we assume every object is cacheable, and two objects

40

are identical (cache hit) once their URLs and content lengths match. The estimated

cache hit rate we observe ranges from 35.64% to 54.48%, and the byte hit rate ranges

from 15.06% to 49.27%. The byte hit rate is smaller than the cache hit rate because

cache hits are biased towards relatively smaller objects. In fact, we observe the mean

object size of those URLs that are accessed only once is always larger than the mean

object size of those URLs that are accessed more than once over the five years.

2.4.2 Caching Effectiveness

In this section, we first investigate HTTP cacheability of the traffic, and calculate the

ideal hit rate. We then compare the effectiveness of object-based and content-based

caching on our full content data and further examine the impact of content types.

At a high level, content-based caching works by splitting an object or file into

many smaller chunks and caching those chunks instead of an entire object. The

chunk boundaries are determined based on the content, commonly with Rabin’s fin-

gerprinting [80] – if the fingerprinting value over a sliding window of data matches

with low order n bits of a predefined constant K, this region of data constitutes a

chunk boundary. The expected average chunk size is 2n bytes assuming the uniform

distribution of content value. To prevent chunks from being too small or large in

a pathological case, we specify the minimum and maximum size of chunks as well.

Unlike fixed-size chunking (e.g., every 1 KB), content-based chunking is robust to any

insertion/deletion/modification to the content since it only affects nearby chunks.

Once chunk boundaries are detected, chunks are named based on the content, often

with SHA-1 hash. The next time the systems sees the same chunk, it can pass only the

small size of chunk names instead of the original content. This way, content-based

caching could find the same content within an object and across different objects,

yielding much higher cache hit rates than the object-based caching. Furthermore,

41

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

%

Unique URLs
Requests

Bytes

(a) US

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

%

Unique URLs
Requests

Bytes

(b) CN

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

%

Unique URLs
Requests

Bytes

(c) FR

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

%

Unique URLs
Requests

Bytes

(d) BR

Figure 2.17: Uncacheable objects by content types: Overall, 19.80-32.20% of unique
URLs are uncacheable, which accounts for 21.50-28.32% of total requests and 10.48-
14.81% of total bytes. HTML and JavaScript are dynamically generated and thus
less cacheable.

content-based caching is protocol independent and effective for uncacheable content

as well. We discuss many related work on content-based caching in Section 2.5.

HTTP Cacheability We first examine HTTP cacheability of objects with our full

content data from 2010. We decide if an object is cacheable or not by looking at

its Cache-Control and Pragma fields in the response header. Figure 2.17 shows the

percentage of uncacheable objects in terms of the number of unique URLs, total

requests, and total bytes. Overall, 19.80-32.20% of unique URLs are uncacheable,

which accounts for 21.50-28.32% of total requests and 10.48-14.81% of total bytes.

42

 0

 10

 20

 30

 40

 50

 60

US CN FR BR

B
y
te

 H
it
 R

a
te

 (
%

)

Country

HTTP
HTTP-OPT

64-KB
8-KB

1-KB
128-B

Figure 2.18: Ideal cache hit rate with infinite cache storage: Content-based caching
with 128-bytes chunks achieves almost 2x larger byte hit rate than the object-based
HTTP caching.

Among different content types, HTML and JavaScript are less cacheable than other

content types, implying that they are dynamically generated and updated frequently.

We also observe a few other interesting points. First, a significant portion of

XML traffic (over 70%) in China is uncacheable, and it turns out to be due to the

popular use of Really Simple Syndication (RSS) [87] feeds – the two RSS URLs are

responsible for 90.85% of total uncacheable bytes and 64.84% of total uncacheable

requests. Second, Brazil shows a higher fraction of uncacheable XML and audio traffic

than other countries. This is due to the popular use of real-time updates of sports

games and live streaming of audio.

Ideal Byte Hit Rate We calculate the ideal bandwidth savings achievable with

infinite cache storage by the traditional object-level HTTP caching and content-based

caching. For the object-level caching, we decide if an object is cacheable with the

response header. If cacheable, we check if the URLs and content lengths match as

in Section 2.4.1. We also calculate a slightly optimistic behavior of the object-based

caching by discarding query strings from URLs in order to accommodate the case

where two URLs with different metadata actually belong to the same object. For

43

content-based caching, we vary the average chunk size from 128 bytes, 1 KB, 8 KB,

to 64 KB. Note, we apply content-based caching on compressed content without

decompressing it because the volume of compressed content such as gzip or deflate

is less than 1% in our data set.

In Figure 2.18, we observe that content-based caching outperforms the object-

based caching with any chunk size. The cache hit rate of object-level caching ranges

from 27.02-37.14% (not shown in the figure), but the actual byte hit rate is only

16.79-28.11%, which is similar to what previous studies reported [13, 36, 45, 60, 106].

The hit rate of the optimistic version (HTTP-OPT) is only slightly larger. On the

other hand, the lowest byte hit rate of content-based caching is 29.43-38.39% with

64 KB chunks, and the highest byte hit rate is 41.98-50.62% with 128 byte chunks,

1.8-2.5x larger than the object-level caching’s byte hit rate. The small chunk size

performs better than the large chunk sizes because of its finer granularity. For ex-

ample, 128 byte chunks can detect redundancy at the sentence-level, but with 64 KB

chunks, redundancy can be eliminated only at the document-level.

Impact of Content Types Among many different content types, we find that text

resources such as HTML, JavaScript, XML, and CSS have much higher redundancy

than binary resources such as image, audio, video, and octet-stream. Figure 2.19

shows the ideal redundancy by content type. In particular, JavaScript shows over

90% redundancy with the smallest chunk size of 128 bytes. On the other hand,

video exhibits a much lower redundancy of 20%, illustrating the impact of long-

tailed popularity in video content. Object-based caching performs very poorly and

its redundancy of XML in Brazil is 8x smaller than the redundancy with 128 byte

chunks.

We also find that content-based caching works well regardless of the content types,

while object-based caching is mainly effective for JavaScript and image traffic only.

44

 0

 25

 50

 75

 100

htm
l

javascript

xm
l

css
im

age

octet

audio

video

R
e
d
u
n
d
a
n
c
y
 (

%
)

HTTP
64-KB

8-KB
1-KB

128-B

(a) US

 0

 25

 50

 75

 100

htm
l

javascript

xm
l

css
im

age

octet

audio

video

R
e
d
u
n
d
a
n
c
y
 (

%
)

HTTP
64-KB

8-KB
1-KB

128-B

(b) CN

 0

 25

 50

 75

 100

htm
l

javascript

xm
l

css
im

age

octet

audio

video

R
e
d
u
n
d
a
n
c
y
 (

%
)

HTTP
64-KB

8-KB
1-KB

128-B

(c) FR

 0

 25

 50

 75

 100

htm
l

javascript

xm
l

css
im

age

octet

audio

video

R
e
d
u
n
d
a
n
c
y
 (

%
)

HTTP
64-KB

8-KB
1-KB

128-B

(d) BR

Figure 2.19: Ideal redundancy by content types: Text resources have higher redun-
dancy than binary.

Figure 2.20 depicts the contribution of byte savings, showing which caching scheme

works best for which content type. In the object-based caching, the contribution of

JavaScript and image traffic is relatively larger than that of other content types. It

should be noted that the contribution of binary resources such as video, audio, and

octet-stream is extremely low, implying that object-based caching is not suitable for

them. On the other hand, the distribution of the contribution by content type is less

skewed in content-based caching.

2.4.3 Origins of Redundancy

In order to understand how content-based caching approaches provide a more than

2x larger byte hit rate than the object-based caching approach, we quantify the

45

 0

 20

 40

 60

 80

 100

H
TTP

64-KB

8-KB
1-KB

128-B

B
y
te

 S
a

v
in

g
 C

o
n

tr
ib

u
ti
o

n
 (

%
)

video
audio
octet

image
css
xml

javascript
html

(a) US

 0

 20

 40

 60

 80

 100

H
TTP

64-KB

8-KB
1-KB

128-B

B
y
te

 S
a

v
in

g
 C

o
n

tr
ib

u
ti
o

n
 (

%
)

video
audio
octet

image
css
xml

javascript
html

(b) CN

 0

 20

 40

 60

 80

 100

H
TTP

64-KB

8-KB
1-KB

128-B

B
y
te

 S
a

v
in

g
 C

o
n

tr
ib

u
ti
o

n
 (

%
)

video
audio
octet

image
css
xml

javascript
html

(c) FR

 0

 20

 40

 60

 80

 100

H
TTP

64-KB

8-KB
1-KB

128-B

B
y
te

 S
a

v
in

g
 C

o
n

tr
ib

u
ti
o

n
 (

%
)

video
audio
octet

image
css
xml

javascript
html

(d) BR

Figure 2.20: Byte saving contribution by content types: Content-based caching is
effective for any content type, but the object-based caching works well only for
JavaScript and image.

contribution of redundancy from different sources in Figure 2.21. We use the average

chunk size of 128-bytes for this analysis.

Overall, we observe that about 40.33-58.64% of the total redundancy is due to the

identical objects with the same URLs (object-hit), which is essentially the upper

bound of the object-based caching approach’s byte hit rate. The remaining half

of the total redundancy is purely from the content-based caching approach, and we

further break it into the following three sources. First, there exists redundancy across

the content changes of an object (intra-URL), accounting for about 21.83-32.55% of

the total redundancy. Second, some objects with different URLs actually have the

identical content [47] (aliasing), taking about 6.72-9.80% of the total redundancy.

46

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

O
ri
g
in

s
 o

f
R

e
d
u
n
d
a
n
c
y
 (

%
)

inter-URL
aliasing

intra-URL
object-hit

(a) US

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

O
ri
g
in

s
 o

f
R

e
d
u
n
d
a
n
c
y
 (

%
)

inter-URL
aliasing

intra-URL
object-hit

(b) CN

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

O
ri
g
in

s
 o

f
R

e
d
u
n
d
a
n
c
y
 (

%
)

inter-URL
aliasing

intra-URL
object-hit

(c) FR

 0

 25

 50

 75

 100

all
htm

l

javascript

xm
l

css
im

age

octet

audio

video

O
ri
g
in

s
 o

f
R

e
d
u
n
d
a
n
c
y
 (

%
)

inter-URL
aliasing

intra-URL
object-hit

(d) BR

Figure 2.21: Origins of redundancy with 128-bytes chunks: Most of the additional
savings from the content-based caching approaches come from partial content overlap
– the redundancy across different versions of an object as well as redundancy across
different objects.

Finally, the rest is due to the redundancy across different objects that have different

URLs and non-identical content (inter-URL), accounting for about 12.81-20.05%

of the total redundancy. This analysis result implies that most of the additional

savings from the content-based caching approaches come from its ability to detect and

eliminate the redundancy in the content changes of an object as well as redundancy

across different objects.

In terms of content types, we find that HTML and XML generally show relatively

higher intra-URL redundancy than other content types. This implies that such types

are frequently updated but their content changes slowly. Also, generally aliasing

accounts for a small amount of the total redundancy, but we observe a significant

47

 0

 10

 20

 30

 40

 50

100M

200M

500M

1G 2G 5G 10G
20G

50G
100G

200G

IN
F

B
y
te

 H
it
 R

a
te

 (
%

)

Cache Storage Size (Byte)

HTTP
64-KB
8-KB
1-KB

128-B
MRC

(a) US

 0

 10

 20

 30

 40

 50

100M

200M

500M

1G 2G 5G 10G
20G

50G
100G

200G

IN
F

B
y
te

 H
it
 R

a
te

 (
%

)

Cache Storage Size (Byte)

HTTP
64-KB

8-KB
1-KB

128-B
MRC

(b) CN

 0

 10

 20

 30

 40

 50

100M

200M

500M

1G 2G 5G 10G
20G

50G
100G

IN
F

B
y
te

 H
it
 R

a
te

 (
%

)

Cache Storage Size (Byte)

HTTP
64-KB
8-KB
1-KB

128-B
MRC

(c) FR

 0

 10

 20

 30

 40

 50

100M

200M

500M

1G 2G 5G 10G
20G

50G
100G

IN
F

B
y
te

 H
it
 R

a
te

 (
%

)

Cache Storage Size (Byte)

HTTP
64-KB

8-KB
1-KB

128-B
MRC

(d) BR

Figure 2.22: Cache size vs. byte hit rate: A large cache with MRC provides 2x the
byte hit rate than the object-based caching.

amount of aliasing in XML and audio content types in Brazil. This is again because

of the popular use of the real-time updates of sports games (XML) and live streaming

of audio in Brazil. These objects have the identical content but with different URLs.

Finally, we see that most of the redundancy in binary resources, especially video,

come from partial content overlaps (intra URL + inter URL) rather than complete

object matches (object-hit + aliasing). This is partly because they are aborted be-

fore they are fully downloaded. We examine the aborted transfers in more detail in

Section 2.4.5.

48

2.4.4 Cache Storage Size

We simulate cache behavior with different cache storage sizes to determine the re-

quired cache storage size for achieving a close to the ideal byte hit rate. This time,

we include the metadata overhead (20 bytes per chunk) of content-based caching in

the byte hit rate calculation. We use a simple LRU cache replacement policy as a

first step and leave investigating more sophisticated policies for future work [74].

In addition to the object-based and content-based caching, we also simulate the

multi-resolution chunking (MRC) that has been proposed recently, which simultane-

ously exploits multiple chunk sizes [43]. In detail, MRC always favors large chunks

over small ones and uses small chunks only when large chunks are a cache-miss. It

also caches all of the different chunk sizes for the same content redundantly for fu-

ture reference. This way, MRC minimizes the metadata overhead, disk accesses, and

memory pressure at the cost of more disk space.

Figure 2.22 shows our simulation results in the United States, China, France, and

Brazil. 7 First, content-based caching always outperforms the object-based caching

regardless of cache storage size. However, due to the significant metadata overhead

for fixed 128 bytes chunks, the actual byte hit rate of 128 byte chunks is similar to

that of 1 KB chunks. Second, the saturation point of cache size is similar across the

different caching approaches except for MRC. For instance, beyond 100 GB of cache

storage, the byte hit rate no longer increases in the United States and China. The

saturation point essentially indicates the working set size of the traffic, so increasing

the cache size beyond it gives no further benefits. On the other hand, while MRC

performs relatively poorly when cache storage is small, it continues to increase the

byte hit rate beyond the saturation point as the multiple sized chunks start to pay

off.

7A few missing data points are because of the limitation of main memory we have (16 GB) during
the simulation. Also, the byte hit rate of MRC with infinite cache size is estimated from the ideal
byte hit rate of 128 byte chunks minus 1% overhead.

49

While increasing cache storage size gives diminishing returns as observed in a

previous study [106], using large cache storage with MRC is highly beneficial as

it doubles the byte hit rate compared to object-based caching. This option would

be especially attractive in the developing regions where bandwidth is much more

expensive than disk storage [42]. Since a TB-sized disk costs less than $100, it makes

sense to allocate much more cache storage than was used 10 years ago when disk sizes

were in the tens of GB.

In our data set, we need about 800 GB for the United States and China, 200 GB for

France, and 400 GB for Brazil to achieve a close to the ideal byte hit rate with MRC.

It is roughly four times the total traffic size because MRC uses four different chunk

sizes in our simulation. Note that one might want to reduce the storage requirement

by storing only unique content and metadata, such as offset for different chunk sizes.

However, it complicates the cache index management and increases memory pressure,

as we discuss in Chapter 3.

2.4.5 Aborted Transfers

In Table 2.3, we find a small number of requests (1.8-3.1%) are aborted before they

are fully downloaded, but their volume is quite significant. These events occur when

users cancel ongoing transfers by clicking the stop button of the browser or move

to another Web page. We detect the aborted transfer if the downloaded length is

less than the given content-length in the response header. The total volume of the

downloaded bytes until abortion is 12.4-30.8%. If the content was fully downloaded, it

would contribute to 69.9-88.8% of the entire traffic. The investigation of the content

type distribution of these transfers in Table 2.4 reveals that most of the bytes are

from the video transfers, presumably previewing the first part of the video clips. In

particular, Flash video comprises roughly 40-70% of all aborted transfers. We also

observe users canceling file downloads.

50

Request (K) Byte (GB) GB if fully downloaded
US 265 (3.1%) 61 (30.8%) 712 (83.8%)
CN 377 (3.1%) 27 (12.4%) 444 (69.9%)
FR 38 (1.8%) 10 (23.6%) 258 (88.8%)
BR 85 (2.1%) 22 (28.3%) 216 (79.3%)

Table 2.3: Aborted transfers

Ranking US CN
1 video/x-flv (67.1%) app/octet-stream (39.8%)
2 app/octet-stream (12.2%) video/x-flv (38.7%)
3 video/flv (5.5%) app/zip (3.0%)
4 video/mp4 (2.8%) text/plain (2.6%)
5 text/plain (2.5%) app/x-gzip (2.6%)
6 flv-app/octet-stream (2.0%) app/pdf (2.1%)
7 video/x-msvideo (1.9%) image/jpeg (1.5%)
8 app/x-shockwave-flash (0.8%) flv-app/octet-stream (1.4%)
9 audio/mpeg (0.6%) video/mp4 (1.3%)
10 video/x-ms-wmv (0.6%) app/x-msdos-program (0.9%)

Ranking FR BR
1 video/x-flv (67.1%) app/octet-stream (39.8%)
2 app/octet-stream (12.2%) video/x-flv (38.7%)
3 video/flv (5.5%) app/zip (3.0%)
4 video/mp4 (2.8%) text/plain (2.6%)
5 text/plain (2.5%) app/x-gzip (2.6%)
6 flv-app/octet-stream (2.0%) app/pdf (2.1%)
7 video/x-msvideo (1.9%) image/jpeg (1.5%)
8 app/x-shockwave-flash (0.8%) flv-app/octet-stream (1.4%)
9 audio/mpeg (0.6%) video/mp4 (1.3%)
10 video/x-ms-wmv (0.6%) app/x-msdos-program (0.9%)

Table 2.4: Top ten content types for aborted transfers by bytes: Mostly video

The large volume of aborted transfers could negatively impact the performance

of object-based caching proxies. Such systems have roughly four options to deal with

the aborted transfers. The first option is to discard and not cache them, but this

just wastes the bandwidth and reduces cache hit rate. The second option is to fully

download and cache them (for cacheable objects only), but this consumes significant

bandwidth for downloading objects that may not be referenced in the future. The

51

third option lies in between the first and second, and decides whether to discard or

fully download depending on the number of bytes remaining [95]. But this requires

parameter tunings and would not work well for various objects as the number of

remaining bytes varies greatly and can be very large, especially for video. The final

option is to cache the downloaded portion and do a range request on a cache hit, but

it is effective only for cacheable objects.

On the other hand, content-based caching could cache data from only the down-

loaded content without any configuration, thus any data received over network, even

uncacheable content, is useful. As evidence of this, in Figure 2.19 the byte hit rate

of video traffic is much higher with content-based caching than with object-based

caching.

2.5 Related Work

Our work is similar to previous work in a number of ways. Here, we group these

related works into three areas.

Tracking Traffic Changes There is a great deal of previous work analyzing traffic

changes. For example, Akamai analyzes data gathered from its global server network

and reports the Internet penetration rate and connection speeds for each country [11].

Also, ipoque examines traffic from its customer ISPs and universities [44] and finds

the increase of Web traffic as well as the decrease of P2P traffic due to the popularity

of file hosting, social networking, and video streaming sites. Several other studies

commonly observe the same trend of increasing Web and video traffic [28, 49, 53].

While all of these previous studies primarily focus on the analysis of overall usage

of Internet traffic, our focus is to investigate various aspects of Web traffic changes in

great detail. A few other studies also have conducted long-term characterizations of

Web traffic [14,38], but their analyses on the data set from specific organizations, such

52

as universities or research institutes, are inherently limited. Instead, our large-scale

data set, spanning a multi-year period, covers a world-wide user population.

Web Traffic Characterization The widely used Web traffic model was first pro-

posed by Mah, in which he introduces the idle time based page detection algo-

rithm [52]. Since then, this model has been widely adopted by many researchers

for characterizing Web traffic [10, 93]. Later, Choi and Limb developed a method

that simply regards every HTML object as a Web page [18]. More recently, several

studies have investigated a small number of popular Ajax Web applications, such as

maps and Web mails, and streaming services [15, 89].

However, all of the previous studies have limitations in that they either assume

simple/static Web pages ignoring client-side interactions, or rely on application/site-

specific knowledge. Instead, our page detection algorithm is able to identify initial

pages and client-side interactions, and also does not require application/site-specific

knowledge. Furthermore, we demonstrate that our algorithm is more accurate than

the previous approaches via careful validation.

Redundancy and Caching Traditional object-level Web caching works by storing

previously seen objects and serving them locally for future requests. However, the

benefit of object-based caching is limited only to cacheable objects such as static text

and image files – the typical cache hit rates reported in the previous work range from

35% to 50% [13, 36, 60, 106]. The byte hit rate is even worse as cache hits are biased

towards smaller popular objects. A recent study reports the byte hit rate of 20%

while the cache hit rate is 43% in Zambia [45]. More advanced object-based caching

techniques include delta-encoding that reduces traffic for object updates [59], and

duplicate transfer detection (DTD) that avoids downloading of aliased objects [60].

Spring and Wetherall extend the object-based caching into sub-packet granular-

ity and develop a protocol independent content-based caching technique [94]. Since

53

then, it has been widely adapted in many applications – network file systems [7, 64],

WAN acceleration [43, 84], Web caching [70, 82], and storage systems [24]. Recently,

Anand et al. analyzed the university and enterprise network traces, and show that

15-60% of the entire traffic is redundant, while the redundancy of Web traffic is only

16-32% [6].

While both the object-based and content-based caching schemes have been studied

heavily, the focus of our work is to perform a head-to-head comparison between the

two with real Web traffic. Our analysis result shows that content-based caching

achieves up to 42-51% byte hit rates, almost twice of that of object-based caching.

Furthermore, we evaluate the effectiveness of multi-resolution chunking [43], and find

that increasing cache storage size is highly beneficial. Indeed, the redundancy we

find (42-51%) is much higher than what Anand et al. report (16-32%). This is partly

because we assume a large disk-based cache while they used in-memory cache only.

2.6 Summary

For a better understanding of modern Web traffic, we analyze five years of real Web

traffic from a globally distributed proxy system that captures the browsing behavior

of over 70,000 daily users from 187 countries. Among our major findings is that Flash

video and Ajax traffic is consistently increasing, and search engine/analytics sites are

tracking an increasingly large fraction of users. Our StreamStructure algorithm re-

veals that almost half the traffic now occurs not as a result of initial page loads, but

as a result of client-side interactions after the initial load. Also, while the pages be-

come bigger in terms of both the number of objects and size, the page loading latency

sees a decrease due to the increased number of concurrent connections and improved

caching behavior. Finally, multi-resolution chunking (MRC) with large cache storage

provides almost twice the byte hit rate of traditional object-based caching, while also

54

being effective with aborted transfers. Most of the additional savings of content-based

caching are due to the partial content overlaps.

55

Chapter 3

Wide-area Network Acceleration

for the Developing World

While low-cost laptops may soon improve computer access for the developing world,

their widespread deployment will increase the demands on local networking infras-

tructure. Locally caching static Web content can alleviate some of this demand, but

this approach has limits on its effectiveness, especially in smaller environments.

We propose to augment these caches with integrated wide area network (WAN)

accelerators that have been specifically designed to operate in developing-world envi-

ronments. WAN accelerators are deployed near edge routers, and work by compressing

redundant traffic destined to locations with other WAN accelerators. To compress

traffic, the accelerators break the data stream into smaller chunks, store these chunks

at each accelerator, and then replace future instances of this data with reference to

the cached chunks. By passing references to the chunks rather than the full data, the

accelerator compresses the data stream.

Current WAN accelerators are not well-suited for the developing world. While

they typically require server-class machines with a set of fast disks and a large pool of

dedicated memory, the average school targeted by the One Laptop Per Child (OLPC)

56

project will have 100 laptops in the price range of US $100-$200 each, for a total cost

of $10K-$20K [67]. Requiring special server-class hardware for WAN acceleration

alone could increase deployment cost. Other options would be to share the machine

with other services (e.g, mail servers, Web servers, and proxies) or to use cheap,

laptop-class hardware, both of which would reduce the RAM and disk available to

the WAN accelerator. In addition, existing designs cannot exploit the mesh network

environments being deployed in the developing world, limiting their potential utility.

We have developed a new WAN accelerator, Wanax, that is designed to meet these

challenges in the developing world. Our technical contributions are the followings:

(1) a novel multi-resolution chunking (MRC) technique, which provides high compres-

sion rates and high disk performance across workloads while having a small memory

footprint; (2) an intelligent load shedding technique that exploits MRC to maximize

effective bandwidth by adjusting disk and WAN usage as appropriate; and (3) a mesh

peering protocol that exploits higher-speed local peers when possible, instead of fetch-

ing only over slow WAN links. The combination of these design techniques makes it

possible to achieve high effective bandwidth even with resource-limited shared ma-

chines.

The rest of this chapter is organized as follows: Section 3.1 provides background on

WAN accelerators and new challenges in the developing world. Section 3.2 describes

the design of Wanax, and we show the trace-based simulation analysis in Section 3.3.

In Section 3.4, we detail the prototype implementation, and Section 3.5 presents the

experimental results. Finally, we discuss related work in Section 3.6, and conclude in

Section 3.7.

57

3.1 Background and Motivation

Our goal is to improve Internet access in the developing world using WAN accelerators

designed to use low-end hardware. We primarily focus on increasing the effective

bandwidth (or throughput) of the expensive, low-bandwidth WAN link in the region.

We first provide a brief introduction to WAN accelerators, and then discuss the

specific problems.

3.1.1 WAN Accelerators

Content Fingerprinting Content fingerprinting (CF) forms the basis for WAN

acceleration, since it provides a position-independent and history-independent tech-

nique for breaking a stream of data into smaller pieces, or chunks, based only on their

content.

While early systems used Manber’s anchor technique to determine chunk bound-

aries [55], Rabin’s fingerprinting technique is now widely used for its efficiency and

flexibility [80]. It continuously generates integer values, or fingerprints, over a sliding

window (e.g., 48 bytes) of a byte stream. When a fingerprint matches a specified

global constant K, that region constitutes a chunk boundary. The average chunk

size can be controlled with a parameter n, that defines how many low-order bits of

K are used to determine chunk boundaries. In the average case, the expected chunk

size is 2n bytes. To prevent chunks from being too large or too small, minimum and

maximum chunk sizes can be specified as well. Since Rabin fingerprinting determines

chunk boundaries by content, rather than offset, localized changes in the data stream

only affect chunks that are near the changes.

Once a stream has been chunked, the WAN accelerator can cache the chunks and

pass references to previously cached chunks, regardless of their origin. As a result,

58

Figure 3.1: WAN Accelerator Architecture

WAN accelerators can compress within a stream, across streams, and even across files

and protocols.

Performance Trade-offs Figure 3.1 depicts the general architecture of modern

WAN accelerators. Chunk data is stored on disk due to cost and capacity, but an

index of chunk metadata is partially or completely kept in memory to avoid disk

accesses. Memory also serves as a cache for chunk data, to reduce disk access for

commonly-used content.

The performance of WAN accelerators is mainly determined by three factors - (1)

compression rate, (2) disk performance, and (3) memory pressure. Compression rate

refers to the fraction of the original data that actually gets sent, and reflects network

bandwidth savings by receiver-side caching. Disk performance determines the cached

chunk access time (seek time) while memory pressure affects the efficiency of the chunk

index and in-memory caching. These three factors affect the total latency, which is the

time to reconstruct and deliver the original data. Delivering high effective bandwidth

59

requires reducing the total latency – having high compression, low disk seeks, and low

memory pressure simultaneously.

Chunk size directly impacts all three factors, and consequently the effective band-

width as well. Small chunks can lead to better compression if changes are fine-grained,

such as a word being changed in a paragraph. Only the chunk containing the word

is modified, and the rest of the paragraph can be compressed. However, for the same

storage size, smaller chunks create more total chunks, increasing the metadata index

size, and increasing the memory pressure and disk seeks. Large chunks yield fewer

chunks in total, reducing memory pressure from indexing and providing better disk

usage since each read can provide more data. Large chunks, however, can miss fine-

grained changes, leading to lower compression. No chunk size is standard in systems

that use content fingerprinting – for example, VBWC [82] uses a 2KB chunk size,

LBFS [64] uses 8KB, and Shark [7] uses 16KB.

3.1.2 Developing World Challenges

Our target environment, schools in the developing world, is very different from enter-

prise branch offices, the typical candidate for WAN accelerators.

Limited RAM Due to cost, schools want a shared machine or a cheap laptop with

limited RAM running the WAN accelerator and other services, instead of using a

dedicated server appliance. Also, school children may want to access any content on

the Internet, rather than just a smaller set of work-related documents in the enterprise

environment. This larger working set requires more disk storage, more chunks, and

more metadata entries, increasing memory pressure.

Poor Disk Performance While disk capacity is cheap and large (1TB SATA per

$100), disk seek performance is still limited and is often the bottleneck. Modern desk-

top drives typically perform roughly 100 seeks/second, but cheaper laptop/external

60

Figure 3.2: Wanax System Overview

drives we may expect in the developing world are even slower, and are much slower

than the high-RPM SCSI disks commercial WAN accelerators use. Also, the larger

working set and other services sharing the disks further increase the disk load.

Low Compression Rate To handle poor disk performance in the developing world,

one choice is to use large chunks to reduce the number of disk accesses, but this reduces

the compression rate, limiting bandwidth gains.

Mesh Topology Enterprise branch offices typically communicate with a central

office in a star topology, whereas many schools in a local region may prefer to get

content from each other over cheaper local links rather than over the WAN link.

Current WAN accelerators are not designed to exploit this opportunity.

61

3.2 Wanax Design

Motivated by the challenges in the developing world, we design Wanax around four

goals - (1) maximize compression, (2) minimize disk seeks, (3) minimize memory

pressure, and (4) exploit local resources.

Wanax works by compressing redundant traffic between a pair of servers – one near

the clients, called a R-Wanax, and one closer to the content, called an S-Wanax. For

developing regions, the S-Wanax is likely to be placed where bandwidth is cheaper.

For example, in Africa, where Internet connectivity is often backhauled to Europe via

slow and expensive satellite, the S-Wanax may reside in Europe.

Since we expect most Wanax usage will be Web-related, Wanax operates on TCP

streams rather than IP packets. Also, buffering TCP flows yields larger regions for

content fingerprinting than packet boundaries, providing an opportunity for high

compression rate. The remote Wanax divides the incoming TCP stream into chunks

and sends chunk identifiers (such as SHA-1 hashes) to the local Wanax. If the local

Wanax has the chunks cached, the data is reassembled and delivered to the client. Any

chunks that are not cached can be fetched from the remote Wanax or other nearby

peer. Figure 3.2 shows the overall system architecture. Each machine is capable of

acting as both S-Wanax and R-Wanax, based on the direction of communication.

3.2.1 Basic Protocol

Wanax uses three kinds of communication channels between the accelerators – control,

data, and monitoring channels. The control channel is used for connection manage-

ment and chunk name exchange. The data channels are used to request and deliver

uncached chunks, so it is stateless and implemented as a simple request-reply proto-

col. Finally, the monitoring channel is used for checking the liveness and load levels

62

Figure 3.3: Basic Protocol

of the peers using a simple heartbeat protocol. Figure 3.3 shows typical data transfer

between two Wanax gateways.

Control Channel When client A initiates a TCP connection to client B in the

WAN, that connection is transparently intercepted by the Wanax gateway accelera-

tor 8, R-Wanax. R-Wanax selects S-Wanax which is network topologically closer to

B, and sends it an open connection message with the IP and the port number of B.

S-Wanax then opens a TCP connection to B and a logical end-to-end user connection

between A and B is established.

When the client B sends data back to S-Wanax, S-Wanax generates chunk names

from the data and sends them to R-Wanax in a chunk name message. Each chunk

name message contains a sequence number so that R-Wanax can reconstruct the

original content in the right order. After R-Wanax reconstructs and delivers the

chunk data to the original client, it sends a chunk acknowledgment (ACK) message

to S-Wanax. S-Wanax can then safely discard the delivered chunks from its memory,

and proceed with sending more chunk names.

8Non-cacheable protocols (e.g., SSH, HTTPS) are bypassed.

63

When the sender or receiver closes the connection, the corresponding Wanax sends

a close connection message to other gateway and the connections between the gate-

ways and the clients are closed once all the data is delivered. The control channel,

however, remains connected. All control messages carry flow identifiers, so one control

channel can be multiplexed for many data flows. Control messages can be batched

for efficiency.

Data and Monitoring Channels The data channel uses chunk request and chunk

response messages to deliver the actual chunk content in case of a cache miss at R-

Wanax. We also have the chunk peek message for querying if a given chunk is cached,

which is used in our load shedding system.

Each Wanax accelerator monitors the status of its peers by exchanging heartbeats

on the monitoring channel. The heartbeat response carries the load level of disk and

network I/Os of the peer so that we can balance the request load among peers. We

present the details of our load shedding scheme shortly in Section 3.2.4.

3.2.2 Multi-Resolution Chunking

MRC combines the advantages of both large and small chunks by allowing multiple

chunk sizes to co-exist in the system. Wanax uses MRC to achieve (1) high compres-

sion rate, (2) low disk seeks, and (3) low memory pressure. When content overlap is

high, Wanax can use larger chunks to reduce disk seeks and memory pressure. How-

ever, when larger chunks miss compression opportunities, Wanax uses smaller chunk

sizes to achieve higher compression. In contrast, existing WAN accelerators typically

use a fixed chunk size, which we term single-resolution chunking, or SRC.

Generating Chunks Generating multiple chunk sizes requires careful processing,

not only for efficiency, but also to ensure that chunk boundaries are aligned. A

naive approach to generating chunks can yield unaligned chunk boundaries, as shown

64

�

Figure 3.4: Multi-Resolution Chunking

in Figure 3.4(a). Here, the fingerprinting algorithm was run multiple times with

multiple sizes. However, due to different boundary-detection mechanisms, chunk size

limits, or other issues, the boundaries for larger chunks are not aligned with those of

smaller chunks. As a result, when fetching chunks to reconstruct data, some areas

of chunks overlap, while some chunks only partly overlap, causing wasted bandwidth

when a partially-hit chunk must be fetched to satisfy a smaller missing range.

Instead, we perform a single-pass fingerprinting step, in which all of the smallest

boundaries are detected, and then larger chunks are generated by matching different

numbers of bits of the same boundary detection constraint. This process produces

the MRC tree shown in Figure 3.4(b), where the largest chunk is the root, and all

smaller chunks share boundaries with some of their leaf chunks. Performing this

process using one fingerprinting pass not only produces a cleaner chunk alignment,

but also requires less CPU.

Storing Chunks All chunks generated by the MRC process are stored to disk,

even though the smaller chunks contain the same data as their parent. The rationale

65

Scheme
Compression Disk Memory Index

Rate I/O Pressure Update
SRC-Small High High High Simple
SRC-Large Low Low Low Simple
MRC-Small High High High Complex
MRC-Large High Low High Complex
MRC High Low Low Simple

Table 3.1: Comparison of Chunking Schemes

behind this decision is based on the observation that disk space is cheap, and having

all chunks be fully independent simplifies the metadata 9 indexing process, reducing

memory pressure in the system, also minimizing disk seeks as well. For example,

when reading a chunk content from disk, MRC requires only one index entry access,

and only one disk seek.

Two other options would be to reconstruct large chunks from smaller chunks,

which we call MRC-Small, and storing the smaller chunks as offsets into the root

chunk, which we call MRC-Large.

While both MRC-Small and MRC-Large can reduce disk space consumption by

saving only unique data, they suffer from more disk seeks and higher memory pressure.

To reconstruct a larger chunk, MRC-Small needs to fetch all the smaller chunks

sharing the content, which can significantly increase disk access. The metadata for

each small chunk is accessed in this process and loaded in memory, increasing memory

pressure compared to standard MRC with only one chunk index entry. MRC-Large

avoids multiple disk seeks but complicates chunk index management. When a chunk

is evicted from disk or overwritten, all dependent chunks must also be invalidated.

This requires either that each metadata entry grows to include all sub-chunk names,

or that all sub-chunk metadata entries contain backpointers to their parents.

MRC avoids these problems by making all chunks independent of each other. This

choice greatly simplifies the design at the cost of more disk space consumption. In

9chunk name, disk location of chunk content, and chunk length at a minimum.

66

practice, however, we can store more than one month’s worth of chunk data on a

single 1 TB disk assuming a 1 Mbps WAN connection. Table 3.1 summarizes the

trade-offs of different schemes.

Content Reconstruction When an R-Wanax receives an MRC tree (chunk names

only) from an S-Wanax, it builds a candidate list to determine which chunks can be

fetched locally, at peers, and from the S-Wanax. To get this information, it queries

its local cache and peers for each chunk’s status, starting from the root. Since Wanax

uses the in-memory index to handle this query, it does not require extra disk access.

If a chunk is a hit, R-Wanax stops querying for any children of the chunk. For misses,

we find the root of the subtree containing only misses, and fetch that from S-Wanax.

After reconstructing the content, Wanax stores each uncached chunk in the MRC to

disk for future reference.

Chunk Name Hints Optimization Sending full MRC trees would waste band-

width if there is a cache hit at a high level in the tree or when subtrees are all cache

misses. Sending one level of the tree at a time avoids the wasted bandwidth, but

increases the transmission latency with a large number of round trips. Instead, we

have S-Wanax predict chunk hits or misses at R-Wanax and prune the MRC tree ac-

cordingly. We augment S-Wanax with a hint table that contains recently-seen chunk

names along with timestamps. Before sending the MRC tree, S-Wanax checks all

chunk names against the hint table. For any hit in the hint table, S-Wanax avoids

sending the subtrees below the chunk. If it is a miss or the chunk name hint is stale,

S-Wanax determines the largest subtree that is a miss and sends one chunk content

for the entire subtree. This way, we eliminate any inefficiency exchanging MRC trees,

further increasing effective compression rate.

Here, we assume that the S-Wanax and the R-Wanax will be synchronized over

time – what an S-Wanax has in the hint table will already be in R-Wanax’s cache.

67

We use the timestamps to invalidate old hint entries, but even if prediction is wrong,

it does not affect correctness.

3.2.3 Resource Sharing via Peering

Wanax incorporates a peering mechanism to share the resources such as disks, mem-

ory, and CPU with nearby peers using cheaper/faster local connectivity. It allows

Wanax to distribute the chunk fetching load among the peers and utilize multiple

chunk cache stores in parallel, improving performance. In comparison, existing WAN

accelerators support only point-to-point communication.

To reduce scalability problems resulting from querying peers [106], Wanax uses a

variant of consistent hashing called Highest Random Weight (HRW) [100]. Regard-

less of node churn, HRW deterministically chooses the responsible peer for a chunk.

We considered other approaches like Summary cache [29], but HRW consumes small

memory at the expense of more CPU cycles, and this trade-off fits well in the develop-

ing world scenario. In comparison, periodic rebuilds of a Bloom filter would require

re-scanning all chunk metadata, causing significant memory pressure and possibly

disk access.

Figure 3.5 shows a scenario using Wanax peers. On receiving the chunk name

message from S-Wanax, R-Wanax sends a chunk request message to its responsible

peer Wanax. The message includes the missing chunk name and the address of S-

Wanax from whom the name of the missing chunk originates. If the peer Wanax

has the chunk, it sends the requested chunk content back to R-Wanax with a chunk

response message. If not, the peer proxy can fetch the missing chunk from S-Wanax,

deliver it to R-Wanax, and save the chunk locally for future requests. If peers are not

in the same configured region/LAN and could incur separate bandwidth cost, fetching

the missing chunk falls back to the R-Wanax instead of the peer. After finishing data

68

Figure 3.5: Getting Chunk Content from Peers

reconstruction, R-Wanax also distributes any uncached chunk to its corresponding

peers. We introduce a chunk put message in the data channel for this purpose.

3.2.4 Intelligent Load Shedding

While chunk cache hits are desirable in general since they reduce bandwidth con-

sumption, too many disk accesses may degrade the effective bandwidth by increasing

the overall latency. This problem becomes even worse in the developing world where

the disk performance is poor. In such cases, we can opportunistically use network

bandwidth instead of queueing more requests to the disk. By using the disk for larger

chunks and fetching smaller chunks over the network, we can sustain high effective

bandwidth without disk overload.

We introduce intelligent load shedding (ILS), which exploits the structure of the

MRC tree and dynamically schedules chunk fetches to maximize the effective band-

width given a resource budget. The ILS algorithm is presented in Algorithm 1, and

takes the link bandwidth (BW) and round-trip latency (RTT) of the R-Wanax as

input. Each peer Wanax also uses the monitoring channel to send heartbeats that

69

Algorithm 1 Intelligent Load Shedding

Require: C: all the chunk names to be scheduled
BW , RTT : link bandwidth and RTT
Qi: # of pending disk requests for peer i
Bi: pending network bytes to receive for peer i
S: per chunk disk latency

1: partition C with HRW
2: resolve C with chunk peek message in parallel
3: generate the candidate list

Di: cache-hit chunks on peer i
N : cache-miss chunks

4: estimate each latency
TDi

= (|Di|+Qi)× S

TN = RTT + {
∑

i

Bi +
∑

c∈N

length(c)}/BW

5: while max(TDi
) > TN do

6: pick the peer k where max(TDi
) = TDk

7: move the smallest chunk from Dk to N
8: update TDk

and TN

9: end while
10: return Di and N

contain its network and disk load status in the form of the number of pending disk

requests (Qi), and the pending bytes to receive from network (Bi). We assume per-

chunk disk read latency (S), or seek time is uniform for all peers for simplicity.

The first step in the ILS process is generating the candidate list. On receiving

the chunk names from S-Wanax, R-Wanax runs the HRW algorithm to partition

the chunk names (C) into responsible peers. Some chunk names are assigned to

R-Wanax itself. Then R-Wanax checks if the chunks are cache hits by sending the

chunk peek messages to the corresponding peers in parallel. Based on the lookup

results, R-Wanax generates the candidate list (Section 3.2.2). Note that this lookup

and candidate list generation process (line 2 and 3 in Algorithm 1) can be avoided

by name hints from S-Wanax, which R-Wanax uses to determine the results without

actual lookups.

70

Figure 3.6: Intelligent Load Shedding: by moving smaller chunks from the disk queue
to the network queue, the overall latency is further reduced.

The next step in the ILS process is estimating fetch latencies for the network

and disk queues. From the candidate list, we know which chunks need to be fetched

over network (network queue, N) and which chunks need to be fetched either from

local disk or a peer (disk queues, Di). Based on this information, we estimate the

latency for each chunk source. For each disk queue, the estimated disk latency will be

per-chunk disk latency (S) multiplied by the number of cache hits. For the network

queue, the estimated network latency will be one RTT plus the total size of cache-

miss chunks divided by BW . If there were pending chunks in the network or disk

queues, each latency is accordingly adjusted. We assume the latency between the

R-Wanax and peers is small, and do not incorporate it in our model.

The final step in ILS is balancing the expected queue latencies, but doing so in

a bandwidth-sensitive manner. We decide if we need to move some cache hit chunks

from a disk queue to a network queue – since fetching chunks from each source can

be done in parallel, the total latency will be the maximum latency among them. If

the network is expected to cause the highest latency, we stop here because no further

productive scheduling is possible. When disk latency dominates, we can reduce it

by fetching some chunks from the network. We choose the smallest chunk because

71

it reduces one disk seek latency while increasing the minimum network latency. We

update the estimated latencies, and repeat this process until the latencies equalize,

as shown in Figure 3.6. After finishing ILS, R-Wanax distributes chunk request mes-

sages to corresponding peers. We send the requests in the order they appear in the

candidate list, in order to avoid possible head-of-line (HOL) blocking.

Note that ILS algorithm works with both MRC and SRC. However, by moving

the smallest chunk from the disk queue to the network queue, MRC could further

reduce the disk latency than SRC, which results in smaller overall latency. Combined

with MRC’s better overall disk performance and compression, it gives much higher

effective bandwidth.

3.2.5 Skipping Compression

While Wanax tries to save the bandwidth consumption, there are two sources of

overhead that may increase the latency – disk read latency at cache hit, and one extra

RTT at cache miss. If the overhead dominates the overall latency, it is desirable not

to perform compression and just forward the data.

We develop a simple model similar to DTD [60] in order to understand when it is

beneficial to perform compression for reducing the overall latency. For simplicity, we

assume a request-response protocol like in HTTP and ignore issues such as congestion

control, slow-start, MRC, peering, and ILS.

We first consider the case without using chunk name hints. Suppose we are re-

ceiving the data of size R where the link bandwidth is BW and the round-trip time

is RTT . We also assume the average chunk size is C, and the average disk access

time per chunk is S. From this, we can derive Tbase, the base delay without WAN

acceleration, Thit, the delay when every chunk is a cache hit, and Tmiss, the delay

when every chunk is a cache miss.

72

Tbase = RTT +
R

BW

Thit = RTT +
R

C
× S

Tmiss = RTT + Tbase

Assuming the average redundancy (or hit ratio) in R is H , we can express the

total expected latency when we perform compression as follows:

TWanax = H × Thit + (1−H)× Tmiss

The overall latency with compression will be reduced if TWanax < Tbase. This condition

holds when:

BW <
H × R

(1−H)× RTT +H × R

C
× S

R >
(1−H)× RTT

H × (1

BW
− S

C
)

We see that the bandwidth should be small enough and the data size should

be large enough to benefit from compression. WAN acceleration provides the most

benefit if the links have low bandwidth and high latency, which is what we see in

developing regions.

We also consider the case when we use the chunk name hint. In this case, we can

avoid an extra RTT of cache miss penalty since S-Wanax would send the content from

the outset. After removing an RTT from Tmiss, we derive the following condition:

73

BW <
C

S

We arrive at the same conclusion that the bandwidth should be small enough. How-

ever, the data size or the hit ratio no longer affects the overall latency in this case.

More important is that the disk latency is small enough that reading chunks from

disk is faster than retrieving them over network.

Wanax automatically turns off compression when the data size is less than the

pre-configured break-even data size, or if the link bandwidth is not small enough.

Note that this optimization, which is performed by S-Wanax is complementary to

ILS performed by R-Wanax.

3.3 Simulation Analysis

To understand the trade-offs between MRC and other schemes, we simulate their

behavior under a variety of workloads, comparing bandwidth savings, disk access

overheads, memory pressure, and performance.

3.3.1 Simulator

We develop a simulator that reads the packet-level traces from tcpdump [98] and

simulates various scenarios using SRC and MRC. The simulator uses libnids [51] for

stream reconstruction, and consists of 7,000 lines of C code. The outputs are actual

and ideal bandwidth savings with and without chunk indexing metadata overhead,

disk access overhead for chunk content fetching, and total memory usage. We use

20-byte SHA-1 hashes for the chunk names, and model point-to-point deployments

with one S-Wanax and one R-Wanax with no peers. The simulator implements all

74

of the Wanax design mentioned earlier, including the chunk name hint optimization

used for both SRC and MRC.

We vary the chunk size for both schemes, with SRC using chunks from 32 bytes

to 64 KB, and MRC using three tree configurations, with a 64 KB root chunk with

tree degrees 2, 4 and 8 each. The child chunk size is obtained by dividing the parent

chunk size by the degree. For example, a degree-2 tree (d = 2) starts with a 64 KB

root chunk and two 32 KB children chunks. Each child chunk recursively forms a

subtree with the same degree until the chunk size reaches 32 bytes. A degree-4 tree

has 64 bytes as leaf node size while a degree-8 tree has 128 bytes as the minimum

size. If needed, we also change the height of the MRC tree of the same degree, by

controlling the smallest chunk size, m.

3.3.2 Workload

We choose two types of workloads – dynamically-generated Web content and redun-

dant large files. We focus on dynamic content because the static content is likely to

be handled by a standard Web proxy, and we can further reduce bandwidth consump-

tion on uncacheable content with Wanax. We select a number of popular news sites,

fetch the front pages every five minutes, and measure the redundancy between the

fetches. 10 To generate traffic close to what actual users would produce, we use Fire-

fox 3.0 [62] to fetch the content, and we enable the browser cache to avoid re-fetching

cacheable content. We collect packet-level traces for three days, yielding a 1GB trace

with 102K TCP sessions and a 72% redundancy. We refer to this workload as “news

sites”.

The large-file workload represents long-lived connections for videos or software

packages. For this, we download two different versions of the Linux kernel source tar

files, 2.6.26.4 and 2.6.26.5, one at a time and gather packet-level traces as well. The

10CNN, Google News, NYTimes, Slashdot, Digg, Fark, Salon, Yahoo News, and Drudgereport.

75

SRC MRC-2 MRC-4 MRC-8
H-U/W-U 20 20 21 23
H-U/W-C 62 62 61 59
H-C/W-C 10 10 9 8
H-C/W-U 8 8 9 10

Table 3.2: News Sites Cacheability Breakdown (%) – as a result of browser caching,
most traffic in this workload is HTTP-uncacheable (H-U). However, it still has much
redundancy, making most bytes Wanax-cacheable (W-C).

size of each tar file is about 276 MB, and the two files are 94% redundant. We refer

to this workload as “Linux kernel”.

Cacheability Breakdown Table 3.2 separates the potential bandwidth savings

on the news sites by their HTTP cacheability, as determined by checking the cache

control directives in the response headers. The top two numbers represent the portion

of HTTP-uncacheable bytes (H-U), while the bottom two indicate HTTP-cacheable

bytes (H-C). The middle two numbers show the portion of Wanax-cacheable bytes

(W-C), while the outer two depict the Wanax-uncacheable portion (W-U).

We see that most of the bytes are not cacheable by HTTP, but are cacheable by

Wanax. Of the bytes that are not HTTP cacheable, about 75% are redundant and

can benefit from Wanax. Of the HTTP-cacheable bytes, more than half are Wanax-

cacheable as well. This result suggests that Wanax plus a browser cache can handle

much of the traffic, but that Wanax with an HTTP proxy can provide even greater

savings. Using an HTTP proxy with Wanax also allows HTTP-cacheable responses

to be served directly from the proxy without re-contacting the content provider.

3.3.3 Results

Potential Bandwidth Savings Figure 3.7 shows the ideal and actual bandwidth

savings on both workloads for various chunk sizes. As expected, the ideal bandwidth

savings increases as the chunk size decreases. However, due to the chunk indexing

76

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1K 2K 4K 8K 16K32K64K

B
a
n
d
w

id
th

 S
a
vi

n
g
s

(%
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

Ideal
SRC

MRC, d=2
MRC, d=8

(a) News Sites

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1K 2K 4K 8K 16K32K64K

B
a
n
d
w

id
th

 S
a
vi

n
g
s

(%
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

Ideal
SRC

MRC, d=2
MRC, d=8

(b) Linux Kernel

Figure 3.7: Potential Bandwidth Savings (d:degree) – SRC overheads prevent it from
reaching ideal savings for smaller chunk sizes. MRC savings are close to ideal across
all chunk sizes.

metadata transmission overhead, the actual savings with SRC peaks at a chunk size

of 256 bytes with 58% bandwidth savings on the news sites, and 82% on the Linux

kernel. The bandwidth savings drops as the chunk size further decreases, and when

the chunk size is 32 bytes, the actual savings is only 25% on the news sites and 36%

on the Linux kernel.

On the other hand, MRC approaches the ideal savings regardless of the minimum

chunk size. With 32 byte minimum chunks, it achieves close to the maximum savings

77

 10

 100

 1000

 10000

32 64 128256512 1K 2K 4K 8K 16K32K64K

#
 o

f
D

is
k

R
e
a
d
s

(x
1
0

3
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

SRC
MRC, d=2
MRC, d=4
MRC, d=8

(a) News Sites

 1

 10

 100

 1000

 10000

32 64 128256512 1K 2K 4K 8K 16K32K64K

#
 o

f
D

is
k

R
e
a
d
s

(x
1
0

3
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

SRC
MRC, d=2
MRC, d=4
MRC, d=8

(b) Linux Kernel

Figure 3.8: Disk Operation Cost (d:degree) – By using larger chunks when possible,
MRC dramatically reduces the number of disk operations needed for a given workload.
Note: Y axis is thousands of operations.

on both workloads – about 66% on the news sites and 92% on the Linux kernel.

This is because MRC uses larger chunks whenever possible and the chunk name hint

significantly reduces metadata transmission overheads. When comparing the best

compression rates, MRC’s effective bandwidth is 125% higher than SRC’s on the

Linux kernel while it shows 24% improvement on the news sites.

Disk Operation Cost MRC’s reduced per-chunk indexing overhead becomes

clearer if we look at the number of disk I/Os for each configuration, shown in

78

 0.1

 1

 10

 100

32 128 1K 32K

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(M

B
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

238

851

198 113

279

 86

 19

 34

 15

 6
 5 5

893

232

 26

 5

MRC-Small
SRC

MRC-Large
MRC

(a) News Sites

 0.1

 1

 10

 100

 1000

32 128 1K 32K

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(M

B
)

Avg Chunk Size(SRC), Min Chunk Size(MRC)

404

6760

400 234

2284

230
 87

290

 84

 4 4 3

4926

1666

230

 4

MRC-Small
SRC

MRC-Large
MRC

(b) Linux Kernel

Figure 3.9: Memory Footprint Comparison. Note log-scale Y axis. MRC’s memory
pressure is typically one-tenth that of SRC and MRC-Small. MRC-Large typically
uses twice the memory due to backpointer overhead.

Figure 3.8. SRC’s disk fetch cost increases dramatically as the chunk size decreases,

making the use of small chunks almost impossible with SRC. MRC requires far fewer

disk operations even at small chunk sizes. When the leaf node chunk size is 32 bytes,

SRC performs 8.5 times as many disk operations on the news sites, and 22.7 times

more on the Linux kernel.

Memory Pressure Memory pressure limits the amount of cache storage that a

WAN accelerator can serve and the amount of RAM it requires for that storage.

79

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 4 2 SRC

B
a
n
d
w

id
th

 S
a
v
in

g
 p

e
r

T
re

e
 L

e
v
e
l
(%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(a) News Site

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 4 2 SRC

B
a
n
d
w

id
th

 S
a
v
in

g
 p

e
r

T
re

e
 L

e
v
e
l
(%

)

MRC Tree Degree

64K
32K
16K
8K
4K
2K
1K
512
256
128
64
32

(b) Linux Kernel

Figure 3.10: Per-level Bandwidth Savings in the MRC Tree – most MRC savings are
from larger chunk sizes, reducing disk access and memory pressure.

Figure 3.9 compares the memory footprint with different chunking approaches. We

count the number of chunk index entries that are used during the simulation, and

calculate the actual memory footprint. Each bar represents the memory footprint

(MB), and the numbers on top of each bar show the number of used cache entries in

thousands. We show only the MRC trees with the degree 2, but other results follow

the same trend.

MRC incurs much less memory pressure than SRC does, since MRC requires one

cache entry for any large chunk while SRC needs several cache entries for the same

content. MRC-Small, however, requires even more cache entries than SRC does since

reconstructing a larger chunk requires accessing all of its child entries. At a 32-byte

chunk size, MRC-Small consumes almost 300 MB for the linux kernel while MRC

requires only about 10 MB for the cache entries. MRC-Large shows a similar number

of cache entries as MRC. However, the actual memory consumption of MRC-Large is

much worse than MRC because every child chunk has a back pointer to its parent.

MRC-Large consumes almost twice as much memory as MRC on the news workload.

80

MRC Chunk Size Breakdown Figure 3.10 shows the breakdown of bandwidth

savings by different chunk sizes. We present all three MRC configurations and SRC

with a 32-byte minimum chunk. For MRC, chunk sizes are sorted from smallest at

top to largest at bottom, and the bottom bar shows the root chunk size of 64KB.

The results explain MRC’s low disk overhead and low memory pressure – only

a small fraction of the total savings comes from cache hits at the smallest chunks

with MRC, whereas all of the savings is achieved by 32-byte chunk cache hits with

SRC. Most of MRC’s bandwidth reduction comes from larger chunks, which results

in a much smaller number of disk I/Os and cache entries. We can see a similar trend

across different MRC degrees. For example, the portion handled by a 4KB chunk

size in MRC degree 4 is handled by 8KB chunk size as well in MRC degree 2. This

means that some portion of 4KB chunks are merged into 8KB chunks in MRC degree

2. In all the MRC scenarios, chunks that are 4KB or larger provide 40-50% of the

bandwidth savings, drastically reducing disk I/O.

Intelligent Load Shedding Based on the previous results of bandwidth savings

and disk performance, we simulate the effective bandwidth improvement (times) given

a target link capacity using ILS in Figure 3.11. We vary the link capacity from 1Mbps

to 5Gbps, and assume one 7200RPM SATA disk.

We see that the effective bandwidth improvement of both MRC and SRC ap-

proaches one as link capacity increases, but SRC drops much faster than MRC. With

smaller chunk sizes, SRC shows a high effective bandwidth with slow links due to

its high compression rate, but the effective bandwidth quickly degrades as the link

capacity grows. This is because with small chunks, the disk soon becomes the bot-

tleneck of the system. In the same context, SRC with larger chunk sizes performs

better with fast links, but shows a worse bandwidth improvement for slow links due

to its low compression rate.

81

 0.5

 1

 2

1 2 5 10 20 50 100200 500 1K 2K 5K

B
a
n
d
w

id
th

 I
m

p
ro

ve
m

e
n
t
(x

)

Link Bandwidth (Mbps)

MRC, d=2, m=32
SRC, c=1K

SRC, c=16K
No ILS

(a) News Sites

 0.5

 1

 2

 4

 8

1 2 5 10 20 50 100200 500 1K 2K 5K

B
a
n
d
w

id
th

 I
m

p
ro

ve
m

e
n
t
(x

)

Link Bandwidth (Mbps)

MRC, d=2, m=32
SRC, c=1K

SRC, c=16K
No ILS

(b) Linux Kernel

Figure 3.11: Effective Bandwidth Improvement over Link Capacity (c: avg chunk
size, d: degree, m: min chunk size) – as link capacity increases and disk perfor-
mance becomes a bottleneck, MRC sheds cache hits on smaller chunks first, leading
to a graceful degradation in effective bandwidth. With ILS disabled, the bandwidth
collapses to the bottleneck disk speed. Note log-scale Y-axis.

MRC outperforms SRC regardless of link speed, and it sustains high effective

bandwidth by leveraging multiple chunk sizes. If the link is slow, MRC fetches even

the smallest chunks from disk, suppressing most redundancy. As the link capac-

ity increases, MRC stops fetching the smaller chunks from disk, and focuses on the

larger chunks rather than completely disabling compression, gracefully degrading the

82

Figure 3.12: Wanax Implementation

effective bandwidth. When ILS is disabled, the effective bandwidth of all three con-

figurations collapses to the bottleneck disk speed.

3.4 Implementation

The Wanax prototype consists of about 18,000 lines of C code sharing the same

MRC/SRC code base with the simulator in Section 3.3. It uses an event-driven

design with libevent [50], and has an architecture as shown in Figure 3.12.

PPTP/GRE Tunneling To provide easy access to end users, Wanax is imple-

mented as an Internet gateway with PPTP/GRE tunneling, with TUN/TAP [102]

support planned for the near future. Currently, users need to specify the IP address

of Wanax in their PPTP client on Linux (or to set up a VPN client on Microsoft

Windows), after which all traffic from the user is forwarded to the Wanax system.

Wanax performs content fingerprinting only on TCP streams, and bypasses all non-

TCP packets.

83

Reconstructing TCP Byte Streams While a fully transparent solution could

intercept all IP packets and reconstruct TCP streams, that creates unnecessary com-

plexity between layer 3 and 4. Instead, we intercept each TCP connection from the

client, and redirect it to Wanax. This greatly simplifies the buffering process since

Wanax can use the regular socket interface to recover the original content. We imple-

ment this in the PPTP server [77] by modifying the destination address and port of

the incoming packets from the client, to those of Wanax. Similar to network address

translation (NAT), we store this mapping in the address translation table, and recover

the original address and port for the outgoing packets from Wanax to the client. This

requires about 500 lines of PPTP server code modification.

Storage System We use HashCache [9] not only as an HTTP proxy, but also as

scalable storage for storing and retrieving the chunk content as well as the chunk

name hint. With a highly memory-efficient indexing scheme, HashCache fully utilizes

a Terabytes-sized disk with less than 256 MB of physical memory, which is an ideal

storage system for developing regions. HashCache is designed to use at most one

disk seek for reading a random chunk, and performs group writes of related chunks

to minimize disk latency for future reading. Wanax uses two special HashCache

APIs, hc peek() and hc hint(). hc peek() tells the existence of a chunk without

performing actual disk I/O, and we use it for ILS and chunk name hints. hc hint()

exports the queuing status of the disk I/Os and is used for ILS calculations.

Optimizing Transport Protocol Inter-Wanax communication uses a set of tech-

niques to improve network performance over high-latency WANs. While implement-

ing a fully-custom transport protocol might yield some additional benefit, we opt for

simplicity and use TCP variants optimized for high-delay, low-bandwidth links [33,37].

They modify the congestion avoidance algorithm so that they can quickly increase the

congestion window even under high latency. In addition, Wanax multiplexes all com-

84

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (k
bp

s)

of Clients

cubic-RAW
highspeed-RAW
cubic-MTPLX-10

highspeed-MTPLX-10

Figure 3.13: Multiplexing TCP Connections

munication over a set of long-lived TCP connections, avoiding an extra connection

setup overhead of one RTT [68]. We also disable slow-start after idle time because we

carefully control the number of connections per link. 11 These techniques are helpful

especially for short-lived HTTP connections, which dominates traffic in the develop-

ing world [26]. In our tests, we find this combination yields close to the line speed

even for many short connections.

Figure 3.13 shows the experiment result showing the effect of connection multi-

plexing. We capture the live CoDeeN [103] traffic, consisting of 1,000 objects, and

compare the aggreagate throughput without multiplexing (RAW) against the one

with multiplexing 10 connections (MTPLX-10), as a function of the concurrent num-

ber of clients. We run the replay test on a 1 Mbps link with 1,000 ms RTT on

Emulab [104]. We compare CUBIC [37] and High Speed TCP [33] for congestion con-

trol algorithms, and plot the best throughput out of 3 trials. MTPLX-10 outperforms

RAW when the number of clients is small due to RAW’s connection setup overhead.

MTPLX-10 shows the same trend even when the number of clients is large because

the increased nummber of TCP connections in RAW leads to packet losses and the

congestion degrades the aggregate throughput [61].

11sysctl ‘tcp slow start after idle’ in Linux.

85

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

R
u
n
n
in

g
 T

im
e
 (

m
s)

Average Chunk Size (bytes)

Rabin, Pentium III 850Mhz
SHA-1, Pentium III 850Mhz

Rabin, Pentium D 2.8Ghz
SHA-1, Pentium D 2.8Ghz

Figure 3.14: MRC Computation Overhead for 64KB Block

Minimizing MRC Computation Overhead While MRC preserves high band-

width savings without sacrificing disk performance, it consumes more CPU cycles

in fingerprinting and hash calculation due to an increased number of chunks. Fig-

ure 3.14 shows average time for running Rabin’s fingerprinting algorithm and SHA-1

on one chunk with an average size of 64 KB from a 10 MB file. Surprisingly, Rabin’s

fingerprinting, though it is known to be computationally efficient, turns out to be still

quite expensive, taking three times more than SHA-1. However, the aggregate SHA-1

cost increases as MRC’s leaf chunk size decreases. If naively implemented, the total

CPU cost of an MRC tree with a height n would be n × Rabin’s fingerprinting time

+ sum of SHA-1 calculation of each level.

We consider two general optimizations which can be applied to both S-Wanax

and R-Wanax. First, we run Rabin’s fingerprinting on content only once, detect

the smallest chunk boundaries, and derive the larger chunk boundaries from them.

Second, we compute SHA-1 hashes only when necessary using the chunk name hint.

For example, if S-Wanax knows that this chunk has been sent to R-Wanax before,

S-Wanax assumes all of its children are already in R-Wanax and sends only the name

of the parent. Likewise, if R-Wanax knows that a chunk has been stored on disk

before, it does not re-store its children.

86

In addition, we implement an R-Wanax specific optimization. When the top-level

chunk is a miss with R-Wanax but there are some chunk hits in the lower levels in the

MRC tree, we only need to run fingerprinting with the cache-missed candidate list

chunks. In order to support this, we now store a Rabin’s fingerprint value (8 bytes)

along with each chunk name hint. If a chunk in the candidate list is a cache hit, we

can retrieve the fingerprint value for the chunk. If a chunk is a cache miss, we run the

fingerprinting function to find and store any smaller chunks. We now know Rabin’s

fingerprint values for all chunks in the candidate list, so we can also reconstruct any

parents without running the fingerprinting on the cache-hit chunks.

These optimizations are mainly for the case of chunk cache hits, where more CPU

cycles are needed to deliver the chunks to the client. In case of a chunk cache miss, the

bottleneck will still be in the slow WAN link for the developing world and consuming

extra CPU cycles will not affect the download throughput.

3.5 Evaluation

In this section, we evaluate our prototype implementation of Wanax. Except for the

realistic traffic test in the middle of this section, our tests use 1GHz AMD Athlon

64 X2 CPU machines equipped with 1GB RAM and a SATA disk. We divide them

into two regions to represent the content provider and the developing region, with

intra-region bandwidths set to 100Mbps. We vary the bandwidth and latency of

the bottleneck WAN link connecting the two regions, depending on the evaluation

scenarios. We have an origin server and an S-Wanax in the content provider side, and

a client and two R-Wanax nodes in the developing region. Both the SRC and MRC

tests are conducted using the same Wanax servers with the same TCP optimizations.

To emulate the effect of large working sets which do not fit in memory, we disable

in-memory cache for serving chunk content.

87

 0.3

 0.35

 0.4

 0.45

 0.5

-50 -40 -30 -20 -10 0

T
h
ro

u
h
g
p
u
t
(M

b
p
s
)

Bandwith Saving (%)

128B

64KB
 BASE

SRC
MRC

(a) 100% Cache Miss

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

T
h
ro

u
h
g
p
u
t
(M

b
p
s
)

Bandwith Saving (%)

128B

64KB BASE
SRC
MRC

(b) 100% Cache Hit

Figure 3.15: Cache Miss and Cache Hit Performance – even on all-hit or all-miss
workloads, the extra overheads of MRC are small compared to SRC. The best SRC
performers on this set use large chunk sizes, which would produce poor compression
on realistic workloads.

Microbenchmark For our microbenchmark, we use two 1 MB files that have 90%

redundancy using a 64-byte chunk size. The bottleneck WAN link is set to 512Kbps

with a 200ms RTT. We download the first file twice to generate a cold cache miss and

a complete cache hit, and then download the second file to generate a partial cache

hit. We repeat the experiment by increasing the number of peers, and performing

ILS. The downloading throughput (effective bandwidth) without Wanax (BASE) is

only 0.41 Mbps due to the high WAN latency. We test SRC with chunk sizes from 128

bytes to 64KB, and a degree-8 MRC using a 128-byte minimum and 64KB maximum

chunks.

Figure 3.15 (a) shows the bandwidth savings and throughputs when downloading

the first file. Since every chunk is a cache miss, S-Wanax sends the content as well as

the chunk name. Due to the chunk name overhead, SRC consumes more bandwidth

than BASE, with up to 48% overhead for 128-byte chunks. However, the throughput

is higher than BASE, reaching 0.45Mbps for 64KB chunks, due to the optimized TCP

between Wanax nodes. On the other hand, the overhead of MRC is negligible since

88

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

T
h

ro
u

h
g

p
u

t
(M

b
p

s
)

Bandwith Saving (%)

128B

1KB

64KB

 BASE
SRC
MRC

MRC-ILS

(a) One node

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

T
h

ro
u

h
g

p
u

t
(M

b
p

s
)

Bandwith Saving (%)

128B

1KB

64KB

 BASE
SRC
MRC

(b) Two nodes

Figure 3.16: Performance with 90% redundancy and 512Kbps WAN link – MRC
without ILS produces much better compression than any SRC configuration, and
throughput is comparable to the best SRC. With ILS enabled, MRC produces better
compression and throughput than any SRC configuration. When peering is used, disk
is not a bottleneck, and enabling ILS has no effect.

it uses the largest chunk size of 64KB for most cache misses, yielding an overhead of

5.6% and a throughput of 0.43Mbps.

Figure 3.15 (b) compares MRC with SRC for a second download of the same file.

As expected, SRC with the large chunk sizes (16, 32, and 64KB) shows the best

throughput of 15Mbps. 12 As the chunk size decreases, the throughput degrades,

12The throughput is limited by the 200ms link latency since the total download time is 500-600ms.
Downloading a larger file (10 MB) yields 44 Mbps throughput.

89

and the bandwidth savings is also reduced due to the per-chunk metadata overhead.

However, MRC achieves both high throughput and bandwidth savings since they use

the largest chunk size in this case. The slightly lower throughput of MRC versus SRC

with large chunks is because MRC generates multiple chunk sizes for the first down-

load, spreading the layout of the large chunks on disk, whereas the SRC download

stores all of the chunks in sequence on disk.

Figure 3.16 (a) depicts the performance of downloading the second file after warm-

ing the cache with the first file (90% redundancy). In this particular workload, SRC

with 1KB chunks is the best configuration achieving both the highest bandwidth sav-

ings (80%) and highest throughput (2Mbps). MRC, in comparison, provides a higher

bandwidth savings (89%) than any SRC scheme, but without ILS, the disk becomes

the bottleneck and the throughput is almost the same as the best SRC. Enabling

ILS raises the MRC throughput to 2.4Mbps at the cost of bandwidth savings, but

beats every SRC configuration on both bandwidth savings and throughput – ILS

automatically finds the sweet spot regardless of the workload.

Figure 3.16 (b) presents the effect of peering. The experiment is the same as the

previous test, but now includes another Wanax peer in the developing region. Since

peering allows Wanax to access multiple disks in parallel, we can expect improved

throughputs by mitigating the disk bottleneck. However, for SRC, the lower com-

pression rate causes the WAN bandwidth to be the bottleneck, so peering does not

help. In comparison, MRC benefits significantly from peering, achieving 3.4Mbps

throughput. With disk no longer the bottleneck, ILS is not necessary, and enabling

it does not shed any load.

Realistic Traffic To test more general Web browsing in the developing regions, we

use Alexa Top Sites [4] and YouTube [107] for testing using realistic traffic. We use

the “pc850” nodes on Emulab [104], each equipped with an 850MHz Pentium III CPU

90

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

%
 U

s
e

rs

Response Time (sec)

BASE
MRC-8, m=128

SRC, c=1K

(a) Alexa

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

%
 U

s
e

rs

Throughput (Kbps)

BASE
MRC-8, m=128

SRC, c=1K
Normal Quality

High Quality

(b) YouTube

Figure 3.17: Realistic Traffic – both MRC and SRC provide compression on the
Alexa workload, but MRC’s median response time is 1.5 seconds, compared to 3.8
for SRC. For the YouTube test, all students would be able to view the video without
interruption using MRC, while with SRC, it would be 20% for the high-quality version
and 50% for the low-quality version.

and 512MB RAM. The bottleneck WAN link is set to 1Mbps with a 1000ms RTT,

mimicking a satellite link commonly found in the developing world. First, we collect

packet-level traces from Alexa’s top 10 sites for Ghana and Nigeria, to reflect common

Web browsing activity in these regions, including both cacheable and uncacheable

objects. We replay 5,000 connections with 200 simultaneous clients on the traffic,

and measure the response time. We also pick one of the most popular videos at the

91

time of testing 13 from YouTube, and have 100 clients simultaneously download the

whole 18 MB clip. YouTube’s video content is not cacheable by standard Web proxies

since its URL is in a customized format and changes for each download. This test is

intended to reflect a classroom scenario where a number of students watch the same

clip roughly at the same time. We introduce an 1 second interval between the client

requests, and measure the throughput of each transfer. For these experiments, we

use only one R-Wanax, configured with either a degree-8 MRC tree or a 1 KB SRC

configuration, which has shown good performance and bandwidth savings.

Figure 3.17 (a) shows the response time CDFs for the Alexa workload. The average

object size is 5,425 bytes and the median is 570 bytes. MRC outperforms both SRC

and direct transfer (BASE), and shows the median response time of 1.5 seconds while

BASE and SRC show 6.7 and 3.8 seconds each. MRC and SRC are generally faster

than BASE because they fetch most objects from the local disk cache. However, on

this workload, MRC typically uses one disk read per object while SRC frequently

uses multiple disk I/Os per object. This behavior explains the performance difference

between the two, and the disk latency sometimes makes SRC worse than BASE.

Figure 3.17 (b) shows the YouTube results. The bitrate of the video is 490 Kbps

and the BASE curve shows that nobody would be able to watch the clip reliably on

a 1 Mbps link. SRC would satisfy only about 20% of the users while MRC would

deliver the video to all 100 clients without interruption. The median throughputs are

809 Kbps and 309 Kbps for MRC and SRC each. We test the lower quality video

(320 Kbps) of the same content, and find that SRC satisfies half of the users. Without

a WAN accelerator, only two or three clients can watch the clip at any given time,

which makes using classroom video problematic.

Enterprise Environment Finally, we evaluate Wanax in an enterprise-like envi-

ronment to determine how well it performs compared to commercial WAN accel-

13The first weekly address by President Obama on 01/24/09

92

 0

 10

 20

 30

 40

 50

Slides A Slides B

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

SATA
SCSI

Figure 3.18: Enterprise Environment – with no link bottleneck, the underlying system
performance can be measured. No standard test exists for these systems, but these
figures are comparable to those published for commercial systems.

erators. Unfortunately, while vendors publish performance figures, none appear to

publish the test scenarios they use. Testing in industry magazines uses LANs to

remove network capacity as the bottleneck, which we also use in this test. That is,

we focus on the impact of disk performance by separating the network delay from

the overall throughput. This is because the disk performance is the bottleneck in

higher link capacity enterprise environments. A high-end commercial product tar-

geting large offices or data centers uses multiple small capacity SCSI disks, 14 rather

than one large capacity disk [85].

We create three sets of PowerPoint slides – an original deck that is 11.9 MB, and

two modified decks that add slides to this deck, yielding a 13.9 MB file (Slides A) and

a 14.9 MB file (Slides B). Compared with the original deck, these have redundancies of

86% and 81%. This represents a scenario where multiple people in different offices are

collaborating on a presentation. We first warm the Wanax cache with the original

file, and measure the throughput of the two modified slide decks. The measured

bandwidth savings correspond to the redundancy in the files. We use MRC degree

141U product supporting 45Mbps uses 4 disks, 3U product supporting 310Mbps uses 16 disks.

93

8 with the minimum chunk size of 128 bytes, and repeat the experiments with two

different disks.

As shown in Figure 3.18, both file downloads achieve slightly more than 20 Mbps

with a single 7200 RPM SATA disk at R-Wanax. The slightly larger redundancy

of Slides A (86%) incurs more disk hits than Slides B (81%), and it is reflected in

B’s slightly larger throughput. With a faster 15K RPM SCSI disk, the throughput

almost doubles in both cases. In examining the configurations of one of the lead-

ing WAN accelerator companies [85], we see that their per-disk performance ranges

from 8 Mbps to 20 Mbps depending on the configuration. Since we have incomplete

information about the testing scenario, we cannot draw any firm conclusions, but

our range of 20-40 Mbps suggests that we have at least comparable performance to

commercial solutions in these higher-end configurations, and our memory pressure

analysis suggests that Wanax does so using a small fraction of the memory of these

systems.

3.6 Related Work

Much work, both commercial and academic, has been done in the broad area of

redundancy elimination for network traffic. Web caching has been an active field,

with the first-generation caches [17, 54] storing unchanging objects in their entirety,

often with protocol support. Later techniques included delta encoding [59] to reduce

traffic for object updates, and duplicate detection to suppress downloading of aliased

HTTP objects [60].

Spring and Wetherall [94] further extend the previous approaches to sub-packet

granularity, and develop a protocol-independent content fingerprinting (CF) scheme

that eliminates redundancy over a single link. Recently, Anand et al. [5] extend

this idea on ISP routers, with an emphasis on redundancy-aware routing algorithms.

94

RTS-id [2] also eliminates redundancy in the wireless environment by caching recently

transferred packets through eavesdropping. However, they all work on a per-packet

basis at the link layer, which limits the potential bandwidth saving to the packet size.

Since Wanax operates on byte streams, it does not have such limits.

Content fingerprinting has been widely adapted in many applications, including

network file systems [7, 64], Web proxies [16, 82], file transfer services [78, 79], and

Web servers [70]. However, all of these systems are application-specific, and do not

work across protocols. DOT [101] proposes a flexible architecture for generic data

transfer, which is protocol independent, but it requires application-level modifica-

tion. Ditto [25] extends DOT, and targets wireless mesh network environments. It

is complementary to Wanax since Wanax focuses on eliminating redundancy on the

bottleneck WAN link.

There are a number of commercial WAN accelerators [21, 84, 92] as well. They

operate below the application layer, so they are both transparent and protocol in-

dependent. However, they are designed to run on dedicated server-class appliances

with fast disks and a large pool of memory. Also, their typical enterprise deploy-

ment scenario is a star topology where branch offices are speaking only to a central

office. Running them on the resource-limited shared machines with a mesh topology

in the developing world would be problematic, and lead to poor performance even

if possible. Instead, Wanax is designed from the scratch to specifically address the

developing world’s needs, and we believe some of our techniques such as MRC and

ILS can also be applied to the enterprise scenarios to reduce the deployment cost.

To the best of our knowledge, Wanax is the first system to simultaneously use

multiple chunk sizes. Riverbed [84] uses a bottom-up segmentation scheme [58] that

first uses 100 byte chunks, and then creates larger pseudo-chunks that contain the

names of the smaller chunks [83], which is similar to MRC-Small. This approach pro-

vides some of the disk efficiency and bandwidth benefits of MRC, but still requires

95

access to all of the metadata of the 100-byte chunks, thereby retaining the memory

pressure of the smaller chunks. In the context of large file replication, Remote Differ-

ential Compression [99] uses a similar recursive segmentation scheme with a minimum

chunk size of 1 KB, in order to reduce the size of chunk names sent over the network.

Most recently, multi-resolution handprinting [97] proposes an efficient technique for

choosing the best chunk sizes for the given similar files, by comparing handprints - a

deterministic subset of chunk hashes with different chunk sizes. We share the same

spirit of exploiting trade-offs of multiple chunk sizes. However, their method is based

on static analysis on the files they already have. MRC is a dynamic counterpart, and

is directly applicable for online processing.

Finally, there are a number of active research projects for the developing world.

DitTorrent [88] shares the same idea of exploiting better regional connectivity as

Wanax, but focuses on scheduling P2P dialup connections. As systems like rural

WiFi [72] or WiMAX [105] extend the Internet to new regions, Wanax can help

improve the effective bandwidth delivered.

3.7 Summary

We have presented the design and implementation of Wanax, a flexible and scalable

WAN accelerator targeting developing regions. Using a novel chunking technique,

MRC, Wanax provides high compression and high throughput, while maintaining a

small memory footprint. This profile enables it to run on resource-limited shared

hardware, an important requirement in developing-world deployments. By exploiting

MRC to direct load shedding, Wanax is designed to maximize the effective bandwidth

even when disk performance is poor due to overloading. The peering scheme used

in Wanax allows multiple servers in a region to share their resources, and thereby

exploit faster and cheaper local-area connectivity instead of always using the WAN. In

96

summary, through a careful design addressing the developing world challenges, Wanax

provides customized, cost-effective WAN acceleration to the region with commodity

hardware. We have begun deploying Wanax at a few partner sites in Africa, and

expect to have more results about real-world operation in the future.

97

Chapter 4

Conclusions and Future Work

The Web is clearly one of the most important Internet applications, and many people’s

daily lives rely heavily on it. Despite its importance, we still face limited Web access

problems because of the following two trends. First, the Web has changed and grown

significantly, requiring more and more bandwidth, especially due to the increasing

popularity of video streaming sites. Second, as the need for Web access has also

grown, a large fraction of users in bandwidth-limited environments, such as people in

the developing world or mobile device users, still suffer from poor Web access. While

there has been a burst of research in the past decade aimed at understanding the

nature of underlying Web traffic and thus improving Web access, unfortunately, it

has dropped off just as the Web has changed significantly. Essentially, there is a gap

between previous studies and today’s Web, which motivates this dissertation.

Towards the goal of improving Web access, this thesis has attempted to answer

the following questions.

• What has changed in Web traffic over time?

• How can we analyze today’s dynamic Web pages that involve complex client-side

interactions such as Ajax?

98

• What is the implication of content-based caching on today’s real Web traffic,

such as the effective byte hit rate and required cache storage size?

• How can we design a content-based caching system that is suitable for resource-

limited developing world environments?

We have addressed the first three questions in Chapter 2, and the last question in

Chapter 3.

4.1 Understanding Modern Web Traffic

For a better understanding of today’s Web traffic, in Chapter 2, we have analyzed

five years of real Web traffic from a globally distributed proxy system that captures

the browsing behavior of over 70,000 daily users from 187 countries. Our large-scale

data set is unique in that it spans many years, covers a world-wide user population,

and includes the full request-response content instead of just access logs.

Among our major findings, we observe a rise of Flash video and Ajax traffic,

which is also correlated with the increasing object size of JavaScript and CSS, and

the increased number of concurrent connections from Web browsers. Also, we found

that search engine and analytics sites reach an increasingly large fraction of users (up

to 65%), which has implications for user tracking and privacy.

In addition, our new Web page analysis technique called StreamStructure reveals

that almost half the traffic now occurs not as a result of initial page loads, but as a

result of client-side interactions after the initial load. Also, we find that the pages

have grown larger in terms of both the number of objects and size, but the page

loading latency has decreased due to the increased number of concurrent browser

connections and improved caching behavior.

Finally, we observe that an intelligent use of large cache storage could provide

almost twice the byte hit rate of traditional object-based caching, and is also effective

99

for aborted transfers which are mostly video. We also quantify the origins of redun-

dancy, and find that most of the additional savings of content-based caching are due

to the partial content overlaps.

4.2 Improving Modern Web Traffic Caching

Motivated by the potential benefits of content-based caching approaches from our

analysis, in Chapter 3, we present the design and implementation of Wanax, a flexible

and scalable WAN accelerator specifically targeting resource-constrained developing

regions.

The design of Wanax has the following three contributions. First, we have de-

veloped a novel chunking scheme called multi-resolution chunking (MRC). By using

multiple sized chunks simultaneously, MRC provides high compression rate and high

disk throughput at the same time, while maintaining a small memory footprint. Sec-

ond, we have developed an intelligent load shedding (ILS) scheme that exploits MRC.

By carefully balancing network and disk usage, ILS maximizes the effective bandwidth

even when disk performance is poor due to overloading. Finally, Wanax is designed

to exploit mesh network environments in developing regions. By sharing resources

among multiple servers in a region, Wanax enables aggregation of disk space, parallel

disk access, and efficient use of faster and cheaper local bandwidth, instead of always

using the WAN.

We have also implemented a prototype of Wanax, and demonstrated that Wanax

not only enables smooth video streaming but also reduces response time of Web brows-

ing in low-bandwidth environments. In addition, when equipped with server-class

hardware, Wanax provides comparable performance to enterprise WAN accelerators,

but with a small memory footprint.

100

4.3 Future Work

There are many open issues along the line of research in this dissertation. We discuss

several future directions that deserve further investigations.

New prefetching technique Prefetching is a well-known technique to reduce user-

perceived latency by downloading objects in advance that are likely requested by

users. Unlike caching that works passively on-demand, prefetching proactively pre-

dicts future requests at the cost of extra network traffic from wrong guesses. Due

to the potential benefit of prefetching, browsers have begun to employ prefetching

in one way or another [19, 32]. While many schemes have been proposed in the past

decade [27, 30, 48, 56, 69], they essentially rely on users’ access history for prediction

– they can prefetch known objects only. This becomes problematic for today’s Web

where more and more previously unseen objects are continuously generated. Indeed,

we observed that the fraction of such objects is growing, and they account for up to

90% of the entire objects in 2010 as shown in Section 2.4. Therefore, it would be

interesting to develop a new prefetcing scheme that could predict previously unseen

objects. While it looks challenging, it would greatly reduce Web page loading latency

as discussed in Section 2.3. Another intriguing direction is to investigate the case for

combining content-based caching with prefetching. This will allow more aggressive

prefetching as content-based caching can reduce network bandwidth consumption.

Analysis of new video streaming technologies Video traffic has seen a rapid

growth, and one study expects that it will account for 61% of the Internet traffic by

2015 [20]. To accommodate this huge volume of traffic, several new video streaming

technologies called adaptive streaming over HTTP [1, 8, 63] were proposed in 2009

and 2010. Similar to content-based caching, adaptive streaming splits a large video

file into multiple smaller chunks for cacheability and performance. In addition, it

101

switches video quality in real-time by dynamically monitoring local bandwidth and

video rendering performance. Despite the potential benefits from adaptive streaming,

these relatively new technologies are not fully understood yet and thus require careful

assessment. For example, it would be interesting to investigate the effectiveness of

adaptive streaming, such as its actual cache hit rate, bandwidth savings, and required

cache storage size. Another possible direction is to examine the interaction between

adaptive streaming and content-based caching. Whether they impact each other

positively or negatively remains an open question.

Precise analysis of Web page loading latency Page loading latency is a very

important metric that directly affects users’ browsing experience as well as the traffic

and revenue of Web sites. Recently, search engines such as Google incorporate the

page loading speed into their page ranking algorithm, giving a higher rank to the

faster Web sites as an incentive for optimizing page loading latency [35]. Despite its

importance, page loading latency is not fully understood because it is determined

by many factors including DNS lookup, object downloading time, server processing

time, and browser parsing/rendering time. Furthermore, today’s Web pages consist

of many third-party components such as advertisement network and analytics sites,

but it is unclear how much they contribute to the page loading latency. While this

dissertation briefly investigates this issue with access log data sets in Section 2.3, it

would be more interesting if we could analyze the page loading process precisely with

more detailed information. For example, we could instrument browsers or proxies

to capture all meaningful events during the page loading process. Another possible

direction is to analyze publicly available data sets that have much more detailed

information than simple access logs [39].

Network acceleration on mobile devices Mobile devices has become an essen-

tial part of our lives and a popular means to access the Internet. Unfortunately,

102

the wireless network bandwidth (3G/4G/WiFi) of mobile devices is still very poor,

and it severely limits the potential benefit and application of the always-on Internet

connectivity of mobile devices. While deploying WAN accelerators between mobile

devices and remote servers can reduce bandwidth consumption in the WAN link, the

last-mile link near mobile devices still remains a bottleneck. Thus, it would be inter-

esting to investigate the case for incorporating network acceleration on mobile devices

themselves. Unlike network acceleration on proxy machines, this case opens up mul-

tiple new challenges: (1) the cache storage of mobile devices is very limited – how to

manage the limited storage while achieving high cache hit rates is an interesting ques-

tion to investigate, (2) users are mobile – assuming that WAN acceleration boxes are

already widely deployed, how to synchronize the cache with different boxes as users

move will be an essential part of the research, and (3) a battery is another scarce

resource on mobile devices – network acceleration should be performed carefully not

so as to drain the battery.

Unified framework for network acceleration Network acceleration is a popu-

lar and effective technique to relieve a network bottleneck and is used in numerous

systems such as file systems, storage systems, Web servers, and network accelerators.

At the core of network acceleration is data deduplication – to identify redundant

data and avoid sending them, which requires schemes for data segmentation (chunk

generation), indexing, and storing content. Unfortunately, while virtually all net-

work acceleration systems exploit data deduplication under the hood, they are built

separately from the scratch with different storage options and schemes, due to dif-

ferent workloads and application requirements. If one wants to utilize a new storage

medium such as solid-state disk [75] (SSD) or phase-change memory [81] (PCM), one

needs to redesign and rebuild everything. So, it would be useful to develop a unified

framework for network acceleration, which relieves such burdens. The end result will

103

be a flexible and adaptive middleware or proxy that performs network acceleration

given a specification of application requirements and resource budget. For example,

one could specify the amount of memory, flash/SSD and disk, network bandwidth,

and the number and speed of CPU cores.

104

Bibliography

[1] Adobe HTTP Dynamic Streaming. http://www.adobe.com/products/

httpdynamicstreaming/.

[2] Mikhail Afanasyev, David G. Andersen, and Alex C. Snoeren. Efficiency
through eavesdropping: Link-layer packet caching. In Proc. 5th USENIX NSDI,
San Francisco, CA, April 2008.

[3] AJAX - Connectivity Enhancements in Internet Explorer 8.
http://msdn.microsoft.com/en-us/library/cc304129(v=vs.85).aspx.

[4] Alexa the Web Information Company. http://www.alexa.com/.

[5] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott
Shenker. Packet caches on routers: The implications of universal redundant
traffic elimination. In Proc. ACM SIGCOMM, Seattle, WA, August 2008.

[6] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ram-
jee. Redundancy in network traffic: Findings and implications. In Proc. ACM
SIGMETRICS, Seattle, WA, June 2009.

[7] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières. Shark:
Scaling file servers via cooperative caching. In Proc. 2nd USENIX NSDI,
Boston, MA, May 2005.

[8] Apple HTTP Live Streaming. http://developer.apple.com/resources/

http-streaming/.

[9] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and Larry L. Peterson. Hash-
cache: Cache storage for the next billion. In Proc. 6th USENIX NSDI, Boston,
MA, April 2009.

[10] P. Barford and M. Crovella. Generating Representative Web Workloads for
Network and Server Performance Evaluation. In Proc. ACM SIGMETRICS,
Madison, WI, June 1998.

[11] David Belson. Akamai state of the Internet report, q4 2009. SIGOPS Oper.
Syst. Rev., 44(3):27–37, 2010.

105

[12] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching
and zipf-like distributions: Evidence and implications. In Proc. IEEE INFO-
COM, New York, NY, March 1999.

[13] Ramón Cáceres, Fred Douglis, Anja Feldmann, Gideon Glass, and Michael Ra-
binovich. Web proxy caching: the devil is in the details. In Proc. 1st ACM
Workshop on Internet Server Performance, Madison, WI, June 1998.

[14] Tom Callahan, Mark Allman, and Vern Paxson. A longitudinal view of HTTP
traffic. In Passive & Active Measurement (PAM), Zurich, Switzerland, April
2010.

[15] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue
Moon. I Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest
User Generated Content Video System. In Proc. ACM SIGCOMM Internet
Measurement Conference, San Diego, CA, USA, October 2007.

[16] R. Chakravorty, A. Clark, and I. Pratt. Optimizing web delivery over wireless
links: Design, implementation and experiences. IEEE JSAC, 2003.

[17] A. Chankhunthod, P. Danzig, C. Neerdaels, M.F. Schwartz, and K.J. Worrell.
A Hierarchical Internet Object Cache. In Proc. USENIX Annual Technical
Conference, San Diego, CA, January 1996.

[18] Hyoung-Kee Choi and John O. Limb. A behavioral model of web traffic. In IEEE
International Conference on Network Protocols (ICNP), Toronto, Canada, Oc-
tober 1999.

[19] Chromium Blog: Prerendering in Chrome. http://blog.chromium.org/2011/
06/prerendering-in-chrome.html.

[20] Cisco Visual Networking Index (VNI) Forecast (2010-2015). http:

//www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_

solution.html#~forecast.

[21] Citrix Systems. http://www.citrix.com/.

[22] Dave Crane, Eric Pascarello, and Darren James. Ajax in Action. Manning
Publications Co., Greenwich, CT, USA, 2005.

[23] Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. http://

www.w3.org/TR/CSS2/.

[24] Data Domain. http://www.datadomain.com/.

[25] Fahad Dogar, Amar Phanishayee, Himabindu Pucha, Olatunji Ruwase, and
David Andersen. Ditto - a system for opportunistic caching in multi-hop wireless
mesh networks. In Proc. ACM MobiCom, San Francisco, CA, September 2008.

106

[26] Bowei Du, Michael Demmer, and Eric Brewer. Analysis of WWW traffic in
Cambodia and Ghana. In Proc. Fifteenth International World Wide Web Con-
ference, Edinburgh, Scotland, May 2006.

[27] Dan Duchamp. Prefetching hyperlinks. In Proc. 2nd USENIX Symposium on
Internet Technologies and Systems (USITS), Boulder, CO, October 1999.

[28] Jeffrey Erman, Alexandre Gerber, Mohammad T. Hajiaghayi, Dan Pei, and
Oliver Spatscheck. Network-aware forward caching. In Proc. 18th International
World Wide Web Conference, Madrid, Spain, May 2009.

[29] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. In Proc. ACM SIGCOMM,
pages 254–265, Vancouver, British Columbia, Canada, September 1998.

[30] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web prefetching between
low-bandwidth clients and proxies: potential and performance. In Proc. ACM
SIGMETRICS, Atlanta, GA, June 1999.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hyptertext Transfer Protocol – HTTP/1.1. Internet Engi-
neering Task Force, June 1999. RFC 2616.

[32] Link prefetching FAQ – MDN Docs. https://developer.mozilla.org/en/

Link_prefetching_FAQ.

[33] S. Floyd. HighSpeed TCP for Large Congestion Windows. United States, 2003.
RFC 3649.

[34] Frank La Rue. Report of the Special Rapporteur on the promotion and protec-
tion of the right to freedom of opinion and expression. United Nations General
Assembly Human Rights Council, May 2011.

[35] Official Google Webmaster Central Blog: Using site speed in web search
ranking. http://googlewebmastercentral.blogspot.com/2010/04/using-

site-speed-in-web-search-ranking.html.

[36] S. Gribble and E. Brewer. System Design Issues for Internet Middleware Ser-
vices: Deductions from a Large Client Trace. In Proc. 1st USENIX Symposium
on Internet Technologies and Systems (USITS), Monterey, CA, December 1997.

[37] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new TCP-friendly high-
speed TCP variant. Operating Systems Review, 42(5), 2008.

[38] F. Hernandez-Campos, K. Jeffay, and F.D. Smith. Tracking the evolution of
web traffic: 1995-2003. In Proc. IEEE/ACM MASCOTS, oct 2003.

[39] HTTP Archive. http://httparchive.org/.

107

[40] Sunghwan Ihm and Vivek S. Pai. Towards understanding modern web traf-
fic. In Proc. Internet Measurement Conference (to appear), Berlin, Germany,
November 2011.

[41] Sunghwan Ihm and Vivek S. Pai. Towards understanding modern web traffic
(extended abstract). In Proc. ACM SIGMETRICS, San Jose, CA, June 2011.

[42] Sunghwan Ihm, KyoungSoo Park, and Vivek S. Pai. Towards Understanding
Developing World Traffic. In Proc. 4th ACM Workshop on Networked Systems
for Developing Regions (NSDR), San Francisco, CA, June 2010.

[43] Sunghwan Ihm, KyoungSoo Park, and Vivek S. Pai. Wide-area Network Accel-
eration for the Developing World. In Proc. USENIX Annual Technical Confer-
ence, Boston, MA, June 2010.

[44] ipoque. Internet Study 2008/2009. http://www.ipoque.com/resources/

internet-studies/internet-study-2008_2009.

[45] D. L. Johnson, Elizabeth M. Belding, Kevin Almeroth, and Gertjan van Stam.
Internet usage and performance analysis of a rural wireless network in Macha,
Zambia. In Proc. 4th ACM Workshop on Networked Systems for Developing
Regions (NSDR), San Francisco, CA, June 2010.

[46] JPMorgan Chase & Company. The Rise of Ad Networks. http://www.

mediamath.com/docs/JPMorgan.pdf.

[47] Terence Kelly and Jeffrey Mogul. Aliasing on the world wide web: prevalence
and performance implications. In Proc. Eleventh International World Wide
Web Conference, Honolulu, Hawaii, USA, May 2002.

[48] Thomas M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring
the bounds of web latency reduction from caching and prefetching. In Proc. 1st
USENIX Symposium on Internet Technologies and Systems (USITS), Monterey,
CA, December 1997.

[49] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. Internet inter-domain traffic. In Proc. ACM SIGCOMM,
New Delhi, India, August 2010.

[50] Libevent. http://monkey.org/~provos/libevent/.

[51] Libnids. http://libnids.sourceforge.net/.

[52] B. A. Mah. An Empirical Model of HTTP Network Traffic. In Proc. IEEE
INFOCOM, Kobe, Japan, April 1997.

[53] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. On domi-
nant characteristics of residential broadband internet traffic. In Proc. Internet
Measurement Conference, Chicago, Illinois, November 2009.

108

[54] Carlos Maltzahn, Kathy J. Richardson, and Dirk Grunwald. Performance issues
of enterprise level web proxies. In Proc. ACM SIGMETRICS, Seattle, WA, June
1997.

[55] Udi Manber. Finding similar files in a large file system. In Proc. Winter
USENIX Conference, pages 1–10, San Francisco, CA, January 1994.

[56] Evangelos P. Markatos and Catherine E. Chronaki. A top-10 approach to
prefetching on the web. In In Proceedings of the Annual Conference of the
Internet Society, 1998.

[57] MaxMind. http://www.maxmind.com/.

[58] Steven McCanne and Michael J. Demmer. US patent #7,116,249: Content-
based segmentation scheme for data compression in storage and transmission
including hierarchical segment representation, 2006.

[59] J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland, A. van Hoff,
and D. Hellerstein. Delta encoding in HTTP, January 2002. RFC 3229.

[60] Jeffrey C. Mogul, Yee Man Chan, and Terence Kelly. Design, implementation,
and evaluation of duplicate transfer detection in HTTP. In Proc. 1st USENIX
NSDI, San Francisco, CA, March 2004.

[61] Robert Morris. TCP Behavior with Many Flows. In IEEE International Con-
ference on Network Protocols (ICNP), October 1997.

[62] Firefox web browser. http://www.mozilla.com/firefox/.

[63] Microsoft Smooth Streaming. http://www.iis.net/download/

SmoothStreaming/.

[64] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth
network file system. In Proc. 18th ACM Symposium on Operating Systems
Principles (SOSP), Banff, Canada, October 2001.

[65] NIST. Secure Hash Standard (SHS). In FIPS Publication 180-1, 1995.

[66] NTIA National Broadband Map reveals Internet deserts, oases in US.
http://www.digitaltrends.com/computing/ntia-national-broadband-

map-reveals-internet-deserts-oases-in-us/.

[67] One Laptop Per Child. http://www.laptop.org/.

[68] V. N. Padmanabhan and J. C. Mogul. Improving HTTP Latency. In Proc.
Second International WWW Conference, October 1994.

[69] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive prefetching
to improve world wide web latency. ACM Computer Communications Review,
26, January 2005.

109

[70] KyoungSoo Park, Sunghwan Ihm, Mic Bowman, and Vivek S. Pai. Support-
ing practical content-addressable caching with CZIP compression. In Proc.
USENIX Annual Technical Conference, Santa Clara, CA, June 2007.

[71] KyoungSoo Park, Vivek S. Pai, Kang-Won Lee, and Seraphin Calo. Securing
web service by automatic robot detection. In Proc. USENIX Annual Technical
Conference, Boston, MA, June 2006.

[72] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshmi-
narayanan Subramanian, and Eric Brewer. Wildnet: Design and implemen-
tation of high performance wifi based long distance networks. In Proc. 4th
USENIX NSDI, Cambridge, MA, April 2007.

[73] PlanetLab. http://www.planet-lab.org/, 2008.

[74] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement
strategies. ACM Computing Surveys, 35, December 2003.

[75] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid state disks per-
formance. In Proc. of Workshop on Integrating Solid-state Memory into the
Storage Hierarchy, Mar 2009.

[76] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as the Narrow Waist of the Fu-
ture Internet. In Proc. 9th ACM Workshop on Hot Topics in Networks (Hotnets-
IX), Monterey, CA, October 2010.

[77] Poptop - The PPTP Server for Linux.
http://www.poptop.org/.

[78] Himabindu Pucha, David G. Andersen, and Michael Kaminsky. Exploiting sim-
ilarity for multi-source downloads using file handprints. In Proc. 4th USENIX
NSDI, Cambridge, MA, April 2007.

[79] Himabindu Pucha, Michael Kaminsky, David G. Andersen, and Michael A.
Kozuch. Adaptive file transfers for diverse environments. In Proc. USENIX
Annual Technical Conference, Boston, MA, June 2008.

[80] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-15-81, Center for Research in Computing Technology, Harvard University,
1981.

[81] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam. Phase-
change random access memory: a scalable technology. IBM J. Res. Dev., 52,
July 2008.

[82] Sean C. Rhea, Kevin Liang, and Eric Brewer. Value-based web caching. In
Proc. Twelfth International World Wide Web Conference, Budapest, Hungary,
May 2003.

110

[83] RiOS 5.5 Technical Whitepaper.
http://www.riverbed.com/docs/TechOverview-Riverbed-RiOS_5.5.pdf.

[84] Riverbed Technologies, Inc. http://www.riverbed.com/.

[85] Riverbed Steelhead Product Family Datasheet.
http://www.riverbed.com/docs/DataSheet-Riverbed-FamilyProduct.

pdf.

[86] Roundup on Parallel Connections.
http://www.stevesouders.com/blog/2008/03/20/roundup-on-parallel-

connections/.

[87] RSS 2.0 Specification.
http://www.rssboard.org/rss-specification.

[88] Umar Saif, Ahsan Latif Chudhary, Shakeel Butt, and Nabeel Farooq Butt. Poor
man’s broadband: Peer-to-peer dialup networking. ACM Computer Communi-
cations Review, 37(5), 2007.

[89] Fabian Schneider, Sachin Agarwal, Tansu Alpcan, and Anja Feldmann. The
new web: Characterizing Ajax traffic. In Passive & Active Measurement (PAM),
Cleveland, OH, April 2008.

[90] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. Internet Engineering Task Force, January
1996. RFC 1889.

[91] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol
(RTSP). Internet Engineering Task Force, April 1998. RFC 2326.

[92] Silver Peak Systems, Inc. http://www.silver-peak.com/.

[93] F. Donelson Smith, Félix Hernández Campos, Kevin Jeffay, and David Ott.
What TCP/IP protocol headers can tell us about the web. In Proc. ACM
SIGMETRICS, Cambridge, MA, June 2001.

[94] Neil Spring and David Wetherall. A protocol-independent technique for elimi-
nating redundant network traffic. In Proc. ACM SIGCOMM, Stockholm, Swe-
den, September 2000.

[95] Squid Configuration Directive. http://www.squid-cache.org/Doc/config/

quick_abort_min/.

[96] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Tra-
ditional NAT). United States, 2001. RFC 3022.

[97] Kanat Tangwongsan, Himabindu Pucha, David G. Andersen, and Michael
Kaminsky. Efficient similarity estimation for systems exploiting data redun-
dancy. In Proc. IEEE INFOCOM, San Diego, CA, April 2010.

111

[98] TCPDUMP. http://www.tcpdump.org/.

[99] Dan Teodosiu, Nikolaj Bjrner, Yuri Gurevich, Mark Manasse, and Joe Porkka.
Optimizing file replication over limited-bandwidth networks using remote differ-
ential compression. Technical Report MSR-TR-2006-157, Microsoft Research,
November 2006.

[100] David G. Thaler and Chinya V. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Transactions on Networking, 6(1):1–14, Febru-
ary 1998.

[101] Niraj Tolia, Michael Kaminsky, David G. Andersen, and Swapnil Patil. An
architecture for Internet data transfer. In Proc. 3rd USENIX NSDI, San Jose,
CA, May 2006.

[102] Universal TUN/TAP driver.
http://vtun.sourceforge.net/tun/.

[103] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai, and Larry Peter-
son. Reliability and security in the CoDeeN content distribution network. In
Proc. USENIX Annual Technical Conference, Boston, MA, June 2004.

[104] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proc. 5th
USENIX OSDI, pages 255–270, Boston, MA, December 2002.

[105] WiMAX. http://www.wimaxforum.org/home/.

[106] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell, Anna Kar-
lin, and Henry M. Levy. On the scale and performance of cooperative web
proxy caching. In Proc. 17th ACM Symposium on Operating Systems Princi-
ples (SOSP), Kiawah Island, SC, December 1999.

[107] Youtube - broadcast yourself. http://www.youtube.com/.

112

