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Abstract
A filestore is a structured collection of data files housed in a conven-
tional hierarchical file system. Many applications use filestores as
a poor-man’s database, and the correct execution of these applica-
tions requires that the collection of files, directories, and symbolic
links stored on disk satisfy a variety of precise invariants. More-
over, all of these structures must have acceptable ownership, per-
mission, and timestamp attributes. Unfortunately, current program-
ming languages do not provide support for documenting assump-
tions about filestores, detecting errors, or safely loading from and
storing to them.

This paper describes the design, implementation, and seman-
tics of Forest, a novel domain-specific language for describing file-
stores. The language uses a type-based metaphor to specify the ex-
pected structure, attributes, and invariants of filestores. Forest gen-
erates loading and storing functions that make it easy to connect
data on disk to an isomorphic representation in memory that can be
manipulated as if it were any other data structure. Forest also gen-
erates metadata that describes the degree to which the structures on
the disk conform to the specification, making error detection easy.
Hence, in a nutshell, Forest extends the rigorous discipline of typed
programming languages and many of their benefits to the untyped
world of file systems.

We have implemented Forest as an embedded domain-specific
language in Haskell. In addition to generating infrastructure for
reading, writing and checking file systems, our implementation
generates a type class instances that make it easy to build generic
tools that operate over arbitrary filestores. We illustrate the utility of
this infrastructure by building a file system visualizer, a file access
checker, a generic query interface, description-directed variants of
several standard UNIX shell tools and (circularly) a simple Forest
description inference engine. Finally, we formalize a core fragment
of Forest in a semantics inspired by classical tree logics and prove
round-tripping laws showing that the loading and storing functions
behave sensibly.

1. Introduction
Databases are an effective, time-tested technology for storing struc-
tured and semi-structured data. Nevertheless, many computer users
eschew the benefits of structured databases and store important
semi-structured information in collections of files and directories
in a conventional file system instead. For example, the Princeton
Computer Science Department stores records of undergraduate stu-
dent grades in a structured set of directories and uses scripts to com-
pute averages and study grading trends. Similarly, Michael Freed-
man collects sets of log files from CoralCDN, a distributed content
distribution network [11, 12]. The logs are organized in hierarchical
directory structures based on machine name, time and date. Freed-
man mines the logs for information on system security and perfor-
mance. At Harvard, physics professor Vinothan Manoharan stores
his experimental data in sets of files and extracts information using
python scripts. At AT&T, vast structured repositories contain net-

work monitoring information, phone call records, and billing data.
Many software code bases, including Haskell and its associated Ca-
bal libraries, require that specific files exist in particular formats at
precise locations described in other files. Similarly, version control
systems like cvs utilize the file system to store revision informa-
tion. Web sites require various types of files to exist in particular
directories according to content type, and security considerations
often require particular permissions on these files. Many other ex-
amples exist across the computational sciences and social sciences,
in computer systems research, in computer systems administration
and in industry.

Users choose to implement ad hoc databases in this manner for
a number of reasons. A key factor is that using databases often
requires paying substantial up-front costs such as: (1) finding and
evaluating the appropriate database software (and possibly paying
for it); (2) learning how to load data into the database; (3) writing
programs to transform the raw data for loading into the database;
(4) learning how to access the data once it is in the database;
and (5) interfacing the database with a conventional programming
language to support applications that use the data. Finally, it may be
the case that the database optimizes for a pattern of use not suited
to the actual application, which makes the overhead of the database
system even less desirable.

Rather than paying these costs, programmers often store data
in the file system, using a combination of directory structure, file
names, file contents, and symbolic links to organize the data. We
call such a representation of a coherent set of data a filestore. The
“query language” for a filestore is often a shell script or conven-
tional programming language.

Unfortunately, despite their initial convenience, using filestores
can have a number of negative consequences. First, there is gener-
ally no documentation, which means it can be hard to understand
the data and its organization. New users struggle to learn the struc-
ture, and if the system administrator leaves, knowledge of the data
organization may be lost. Second, the structure of the filestore tends
to evolve: new elements are added and old formats are changed,
sometimes accidentally. Such evolution can cause hacked-up data
processing tools to break or return erroneous results; it also further
complicates understanding the data. Third, there is often no sys-
tematic means for detecting errors even though data errors can be
immensely important. For example, for filestores containing moni-
toring information, errors can signal that some portion of the mon-
itored system is broken. Fourth, analyses tend to be built from
scratch. There is no auxiliary query or tool support and no help with
debugging. Tools tend to be “one-off” efforts that are not reuseable.
Fifth, dealing with large data sets, which are common in this set-
ting, imposes extra difficulties. For example, standard shell tools
such as ls fail when more than 256 files appear on the command
line. Hence, programmers must break up their data and process it
in smaller sets, a tedious task.

We propose a better way: A type-based specification language,
programming environment and toolkit for describing and manag-
ing filestores. This language, called Forest, is implemented as an



embedded domain-specific language in Haskell. Forest allows pro-
grammers to describe the expected shape of a filestore and to ma-
terialize it as typed, format-specific Haskell data structures. Con-
versely, given data structures with the appropriate type, Forest
makes it straightforward to dematerialize these structures and write
them out to disk.

The first benefit of the Forest system is that Forest descrip-
tions provide executable documentation that can be used to check
whether a given filestore conforms to its specification. For exam-
ple, Unix file systems should be laid out according to the informal
standard set forth by the Filesystem Hierarchy Standard Group [3],
which requires, among other things, that certain directories only
contain certain files, presumably for security reasons. Forest pro-
vides a language for expressing standards precisely and for check-
ing that given file systems conform to them. As another example,
the Pads website [25] contains a complex set of scripts and data
files to implement an online demo. Unless all of the required data
files, directories, and symbolic links are configured correctly, the
web demo fails with an inscrutable error message. Forest allows
the Pads webmaster to precisely document all of these requirements
and to detect specification violations, making it easy to find and re-
pair errors. And, of course, if the current webmaster were to leave
her post, her successor could use the Forest description to help un-
derstand the system.

As well as serving as executable documentation, Forest pro-
vides substantial additional support for programmers. The goal is
for programmers to obtain a whole range benefits by writing one
simple, compact file system specification. The automatically gen-
erated auxiliary support includes: (1) a set of type declarations to
represent the filestore in memory; (2) a set of type declarations that
capture errors and file system attributes for the filestore; (3) a load-
ing function to populate these in-memory structures; (4) a storing
function to push possibly updated structures back out to disk; (5)
type class instance declarations that make it possible for program-
mers to query, analyze, and transform filestore data using generic
functions; and (6) a set of useful generic functions/scripts that op-
erate over instances of these type classes.

Overall, the main contribution of this work is conceptual: We
propose the idea of extending a modern programming language
with tightly integrated linguistic features for describing and ma-
nipulating filestores. To demonstrate the potential of this idea, the
following sections of this paper flesh our proposal in greater depth:

• Section 2 begins with two concrete motivating examples, drawn
from the authors day-to-day experience managing computer
systems. While there are just two central examples in this paper,
the Forest web site [9] contains a number of further examples
and case studies.
• Section 3 describes a concrete language design. The design is

characterized by a simple, intuitive and compositional syntax
that is tightly integrated with Haskell, our host language. The
design is also tightly integrated with Pads/Haskell, a domain-
specific language for describing individual files (as opposed to
entire file stores), inspired by past work on related data descrip-
tion languages [5, 6, 7, 22]. This tight, seemless integration was
a crucial design goal as it allows programmers to transition ef-
fortlessly between ordinary haskell data structures, file internals
and file collections, all in a uniform syntax.
• Section 4 explains how to write Haskell programs that operate

over filestores described in Forest. The goal of this section is to
provide a sense of just how easy it is to write simple file system
scripts or queries.
• Section 5 shows that it is possible to use Forest to make

management of filestores even easier by developing general-

purpose, generic tools capable of operating over any filestore!
We have developed several of these tools including a generic
query interface, a file system visualization tool, an access con-
trol permission checker, and a series of UNIX-like scripting
tools. We have also built a simple description-inference tool to
help users write a new description for a given an existing file
system. These tools are interesting in their own right and also
as case studies of putting generic programming techniques into
practice. In addition, they provide evidence that our design is
effectively integrated into the Haskell ecosystem.
• Section 6 explains our implementation, which is complete and

may be downloaded at the Forest web site [9]. In addition to
delivering a useful tool, our engineering work here has the
auxiliary benefit of serving as a rich case study in domain-
specific language implementation. In fact, it has already had
significant impact as such by influencing the development of
Haskell itself: the Haskell team modified and extended the
quasiquoting mechanism in response to our needs.
• Section 7 describes the formal semantics for core Forest and

states theorems demonstrating that the mappings between the
file system and in-memory structures behave correctly. These
theorems are inspired by the ”round-tripping” laws for well-
behaved lenses [10], but are significantly more complicated as
the load and store functions have to deal with inconsistencies
stemming from dependencies, duplication, and invalid data.
• Section 8 contains a discussion of related work. There has been

much past work on domain-specific languages for describing,
parsing and printing individual data files. Examples include
Lex, Yacc, Antlr [26], Parsec [19] and Pads [7], to name just
a few. However, Forest differs substantially from any of these
systems because it focuses on technology for describing entire
file systems. A key difference is that simple file systems are trees
and complex ones with symbolic links are graphs, whereas files
are sequences (of characters or tokens). Consequently, the lan-
guage design, formal systems, semantic issues, and underlying
implementation technology are all entirely different.
• Finally, Section 9 concludes.

2. Example Filestores
In this section, we present two example filestores. We use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information to decide on undergraduate awards and to track grading
trends. Its format has changed over time—something that is typical
for ad hoc filestores! Naturally, any description needs to cope with
the variations introduced as formats evolve.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the two
degree subdirectories ABYY and BSEYY as the computer science
department gives out both Arts and Science (AB) and Engineering
(BSE) degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
degree directory may also contain a template file named sss.txt
or sxx.txt for creating new students.
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Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

The second filestore contains log files for CoralCDN [11, 12].
To monitor the performance and security of the system, the hosts
participating in CoralCDN periodically send usage statistics back
to a central server. These statistics are collected in a filestore sim-
ilar to the one depicted in Figure 2. The filestore has a top-level
directory named dat, which contains a set of subdirectories, one
for each host. Each of those directories contain another set of direc-
tories, labeled by date and time. Finally, each of the date/time direc-
tories contain one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period. In addition to
exploring this primary filestore, we also explore a secondary, de-
rived filestore. This secondary store, named stats, contains files
that store statistics generated by Forest/Haskell scripts that analyze
and summarize the raw CoralCDN server data. These system-wide
summaries are representative of the statistics reported by Freedman
in his CoralCDN report [11].

3. Forest Design
Data stored in a filestores shares many characteristics of data stored
in ordinary, in-memory programmer data structures. Consequently,
Forest uses the same sort of language to describe filestores as one
uses to describe ordinary data structures — the language of types.
Simple base types describe individual file system objects1 and more
complex types describe organized collections of file system objects.
This idea forms the basis for our design.

1 We use the term “file system object” or more simply “object” to denote
either a file, or a directory, or a symbolic link.
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Figure 2. Coral system log data.

Embedding Forest in Haskell. In order to write lightweight
scripts, programmers must be able to manipulate and transform
file system objects side-by-side with ordinary data structures. Con-
sequently, a language like Forest must be embedded within a more
general host programming language. We chose Haskell as the host
language primarily because of its rich support for type-directed
programming, which facilitates the construction of generic tools
that can operate over any Forest description. As a bonus, Haskell’s
quasiquoting mechanism [21] proved a useful way to implement
Forest. It enabled tight integration of the two languages, while ad-
mitting fine-grained control over Forest syntax.

To introduce new Forest declarations within a Haskell pro-
gram, the programmer simply opens the Forest sublanguage using
quasiquoting notation:

[forest| ... forest declarations ... |]

When processing such a quasiquote, the Haskell compiler invokes
the Forest compiler, which converts the given Forest declarations
into a sequence of plain Haskell declarations that collectively im-
plement the Forest declarations.

Forest Structure and Interpretations. Once within the Forest
sublanguage, the programmer writes declarations that resemble
extended Haskell type declarations. Each such type declaration has
three primary semantic interpretations:

1. An interpretation as an expected on-disk shape of a file system
fragment.

2. An interpretation as an ordinary Haskell type for the in-memory
representation that will be constructed when the file system
fragment is loaded into a Haskell program.

3. An interpretation as an ordinary Haskell type for the in-memory
metadata that will be generated when the file system fragment
loaded.

All three interpretations are used by the tool that loads data from
the file system into memory as specified by a Forest description.
When supplied with a current path, the loader uses the first inter-
pretation to validate that the file system rooted at that path has the
correct shape. If the expected shape is complicated, possibly in-
volving several nested subshapes (and hence traversal through sev-
eral subdirectories), the semantics of Forest dictates how the loader
should adjust the current path as it goes. When validation (also
called matching) succeeds, we say the file system fragment matches
the description. The second interpretation is used when the loader
lazily pulls the on-disk data into memory. The in-memory data
structure is guaranteed to have the Haskell type given by the second
interpretation. The third interpretation provides a type for the meta-



data structure generated by the loader. Such metadata includes error
information (missing file, insufficient permissions, etc.) as well as
file system attributes (owner, size, etc.).

The effectiveness of the Forest language comes in part from the
fact that these three interpretations all arise from a single compact
description. Moreover to aid the programmer in navigating between
interpretations, we align the syntax of Forest with the syntax of
Haskell where possible. For example, if the Haskell types for the
in-memory representation and metadata are record types then the
Forest syntax is designed to look similar to a Haskell record type.
Likewise, if the Haskell types for the in-memory representation and
metadata are Maybe types then the Forest syntax is designed to
look similar to a Haskell Maybe type. Many of these high-level
design considerations were adopted from earlier work on Pads [5,
7, 22], though, as mentioned earlier, the semantics of Forest (which
operates over graph-based file systems) is substantially different
from the semantics of Pads (which operates over sequence-based
strings).

Errors. As with Pads [5, 7, 22], we do not assume that a given
filestore conforms perfectly to its associated Forest description. In-
stead, we check during the loading process the extent to which
the filestore conforms, marking discrepencies in the metadata. This
design allows users to respond in application-specific ways to er-
rors. It also allows us to check dynamically the conditions implied
by Forest’s dependent types, skirting issues of undecidability.2 Be-
cause Forest loads data lazily, this choice means errors will not be
detected unless the user program needs to touch the portion of the
filestore with the error. The user can force a complete conformance
check by accessing the top-level error count. It is possible for the
filestore to change during or after this check. For the filestores we
have seen in practice, there are extra-linguistic procedures in place
to prevent such concurrent modifications; we leave to future work
the possibility of using operating system support to monitor and/or
prevent such changes automatically.

Onward. In the remainder of this section, we discuss the specific
type constructors that constitute the Forest language and illustrate
their use in our running examples.

3.1 Base Types: Files
Forest provides a small collection of base types for describing
individual files: Text for ASCII files, Binary for binary files, and
Any for arbitrary files. As with all Forest types, each of these types
specifies a representation type, a metadata type, and loading and
storing functions. For all three file types, the representation type is
a ByteString. Similarly all three share a metadata type, which
pairs file-system metadata with metadata describing properties of
the file contents. The file-system metadata has type Forest_md,
shown in Figure 3. This structure stores two kinds of information:

1. the number and kind of any errors that occurred during loading

2. the attributes associated with the file (fileInfo)

File-content metadata describes errors within the file. For these
three file types, there is no meaningful content metadata and so
this type is the unit type. Leveraging Haskell’s laziness, the loading
functions create the in-memory representations and set the meta-
data on demand. The storing functions, which are described in more
detail in Section 4, do the inverse.

2 Validation that a file system obeys a Forest specification is akin type
checking. However, it is akin to type checking first-order values (trees
and graphs) as opposed to type checking higher-order values (functions).
Consequently, even though Forest has dependent types, type checking is a
simple linear traversal of the file system. Forest does not have to decide
equivalence of expressions with free variables as one must do when type
checking a dependent lambda calculus, for example.

data Forest_md = Forest_md
{ numErrors :: Int
, errorMsg :: Maybe ErrMsg
, fileInfo :: FileInfo }

data FileInfo = FileInfo
{ fullpath :: FilePath
, owner :: String
, group :: String
, size :: COff
, access_time :: EpochTime
, mod_time :: EpochTime
, read_time :: EpochTime
, mode :: FileMode
, isSymLink :: Bool
, kind :: FileType }

Figure 3. Forest metadata types.

Although useful, these three base types are not sufficient for de-
scribing the wide range of files used in practice, including XML
documents, Makefiles, source files in various languages, shell
scripts, etc. The appropriate representation and content metadata
types for each such file varies. To support such files, Forest pro-
vides a plug-in architecture, allowing third-party users to define
new file types by specifying a representation type, a metadata type,
and corresponding loading and storing functions.

A common class of files are ad hoc data files containing
semi-structured information, an example of which is the Prince-
ton student record file format. In such cases, Forest can leverage
the Pads/Haskell [8] data description language to define format-
specific in-memory representations, content metadata, and loading
and storing functions. Pads/Haskell is a recently developed version
of Pads [5, 7, 22]. Like Forest, Pads/Haskell is embedded in Haskell
using quasiquotation. For example, the following code snippet be-
gins the Pads specification of the Princeton student record format:

[pads| data Student(name::String) =
{ person :: Line (Person name)
, Header
, courses :: [Line Course]
, Trailer
}

... |]

This description is parameterized by the name of the student whose
data is in the file; the complete description appears in the compan-
ion technical report [4]. From this specification, the Pads compiler
generates an in-memory representation type Student, a content
metadata type Student_md, and parsing and printing functions.

Forest provides the File type constructor to lift Pads types to
Forest file types. For example, the declaration

[forest| type SFile(n::String) = File(Student n) |]

introduces a new file type named SFile whose format is given
by the Pads type Student. As with the Pads type, SFile is
parameterized by the name of the student.

Using Pads/Haskell descriptions in Forest not only helps spec-
ify the structure of ad hoc data files, but it also generates a struc-
tured in-memory representation of the data, allowing Haskell pro-
grammers to traverse, query and otherwise manipulate such data.
We designed Pads/Haskell and Forest to work seamlessly together.
From the perspective of the Haskell programmer traversing a re-
sulting in-memory data structure, there is effectively no difference
between iterating over files in a directory or structured sequences
of lines or tokens within a file.

While Pads/Haskell is independently interesting, this paper fo-
cuses on Forest. Henceforth, any unadorned declarations occur



within the Forest scope [forest|...|] unless otherwise noted.
Any declarations prefixed by > are ordinary Haskell declarations.

3.2 Base Type: Symbolic Links
When symbolic links occur in a described filestore, Forest follows
the symbolic link to its target, mimicking standard shell behavior.
However, Forest allows programmers to specify explicitly that a
particular file is a symbolic link using the base type SymLink.
The in-memory representation for an explicit symbolic link is the
path that is the target of the link. It is possible to use constraints
(Section 3.6) to specify desired properties of the link target, such
as requiring it to be to a specific file.

In Forest, any file system object may be described in multiple
ways. Hence, in the case of a symbolic link, it is possible to use
one declaration to specify that the object is a symbolic link and a
second to specify the type of the link target. We will see an example
of such a specification in the next subsection.

3.3 Maybe: Optional File System Objects
Sometimes, a given file (or directory or symbolic link) may or may
not be present in the file system, and either case is valid. To handle
this situation, we leverage the idea of an option type by providing
a Forest-level Maybe type constructor that maps the optional file
system object to a Maybe type in Haskell. In particular, if T is a
Forest type, then Maybe T is the Forest type denoting an optional
T. The type Maybe T succeeds and returns representation None
when the current path does not exist in the file system. Maybe T
also succeeds and returns Just v for some v of type T when the
current path exists and matches T. Maybe T registers an error in
the metadata when the current path exists but the corresponding
object does not match T.

3.4 Records: Directories
Forest directories are record-like datatype constructors that allow
users to specify directory structures. For example, to specify the
root directory of the student repository in Figure 1, we might
use the following declaration. This declaration assumes that we
have already defined Class y, a parameterized description that
specifies the structure of a directory holding data for the class of
year y, and Grads, a description that specifies the structure of the
directory holding all graduated classes.

type PrincetonCS_1 = Directory
{ notes is "README" :: Text
, seniors is "classof11" :: Class 11
, juniors is "classof12" :: Class 12
, grads is "graduates" :: Grads }

Each field of the record describes a single file system object.
It has three components: (1) an internal name (e.g., notes or
seniors) that must be a valid Haskell record label, (2) an exter-
nal name specified as a value of type String (e.g., "README" or
"classof11") that gives the name of the object on disk, and (3)
a Forest description of the object (e.g., Text or Class 11).

When the external name is itself a valid Haskell label, users may
omit it, in which case Forest uses the label as the on-disk name:

type PrincetonCS_2 = Directory
{ notes is "README" :: Text
, classof11 :: Class 11
, classof12 :: Class 12
, graduates :: Grads }

We could not abbreviate the notes field because labels must start
with a lowercase letter in Haskell.

Matching. For a file system object to match a directory descrip-
tion, the object must be a directory and each field of the record must

match. A field f matches when the object whose path is the con-
catenation of the current path and the external name of f matches
the type of f.

It is possible for the same file system object to match multiple
fields in a directory description at the same time. For example, if
"README" were actually a symbolic link, it is possible to docu-
ment that fact by mentioning it twice in the directory description,
once as a text file and once as a symbolic link:

type PrincetonCS_3 = Directory
{ link is "README" :: SymLink
, notes is "README" :: Text
, ... }

It is also possible for a directory to contain objects that are
unmatched by a description. We allow extra items because it is
common for directories to contain objects that users do not care
about. For example, a directory structure may contain extra files
or directories related to a version control system, and a description
writer may not want to clutter the Forest specification with that
information. We will see shortly that it is possible to specify the
absence of file system objects using constraints.

As suggested by the syntax, the in-memory representation of
a directory is a Haskell record with the corresponding labels. The
type of each field is the representation type of the Forest type for
the field. The metadata has a similar structure. The metadata for
each field has two components: file-system attribute information
of type Forest_md and field-specific metadata whose type is
derived from the Forest type for the field. In addition, the direc-
tory metadata contains an additional value of type Forest_md
that summarizes the errors occurring in directory components and
stores the FileInfo structure for the directory itself. When load-
ing a directory, Forest constructs the appropriate in-memory rep-
resentation for each field that matches and puts the corresponding
metadata in the metadata structure. For fields that do not match,
Forest constructs default values and marks the metadata with suit-
able error information.

Computed Paths The above descriptions are a good start for our
application, but they are not ideal. Every year, the directory for
graduating seniors (i.e., classof11) is moved into the graduates
directory, the juniors are promoted to seniors and a new junior
class is created. As it stands, we would have to edit the description
every year. An alternative is to parameterize the description with
the current year and to construct the appropriate file names using
Haskell functions:

> toStrN i n = (replicate(n - length(show i)) ’0’)
> ++ (show i)
> mkClass y = "classof" ++ (toStrN y 2)

type PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads }

The bracket syntax <|...|> provides an escape so that we may
use Haskell within Forest code to specify arbitrary computations.
When an expression is a constant or variable, it may be supplied
directly. When an argument is more complex, however, it must be
written in brackets to escape to Haskell. This example also illus-
trates abstraction: any Forest declaration may be parameterized by
specifying a legal Haskell pattern and its type. The types of the
fields for seniors and juniors illustrate the use of parameter-
ized descriptions.

Approximate Paths As filestores evolve, naming conventions
may change. Additionally, directory structures with multiple in-
stances may have minor variations in the names of individual files



across instances. For example, in each Princeton class directory,
there may (or may not) be some number of students that have with-
drawn from the program, transferred to a different program, or
gone on leave. Over the years, slightly different directory names
have been used to represent these situations.

To accommodate this variation, Forest includes the matching
construct to approximate file names. We can use this mechanism to
describe the class directory:

> transRE = RE "TRANSFER|Transfer"
> leaveRE = RE "LEAVE|Leave"
> wdRE = RE "WITHDRAWN|WITHDRAWAL|Withdrawn"

type Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major }

A field with the form <label> matches <regexp> :: T
finds the set of paths in the files system that match currentPath/
<regexp>. If there are zero or one such files, the matches form
acts just as the is form. If more than one file matches, one of the
matches is selected non-deterministically, a multiple match error
is registered in the metadata, and matching continues as it would
with the is form. In addition to regular expressions, the matching
construct also allows glob patterns, (i.e., patterns such as *.txt),
to specify the names of files on disk. An example appears in the
next subsection.

3.5 Lists
Just as Haskell has both records and lists, so too does Forest.
Records allow programmers to specify a fixed number of file sys-
tem objects, each with its own type. Lists, on the other hand, allow
programmers to specify an arbitrary number of file system objects,
each with the same type. As an example, we can use a list to specify
the Grads directory from Figure 1. We borrow Haskell’s notation
for list comprehensions to specify the names of the file system ob-
jects:

> getYear s =
> toInteger $ reverse $ take 2 $ reverse s
> cRE = RE "classof[0-9][0-9]"

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

In this specification, Grads is a directory fragment containing
a number of Class subdirectories with names c that match the
regular expression cRE. The Haskell function getYear extracts
the last two digits from the name of the directory, converts the
string digits to an integer year, and passes the year to the underlying
Class specification. More generally, Forest lists have the form
[path :: T | id <- gen, pred] where id is bound in
turn to each of the file names generated by gen, which may be
a matches clause (used to match against the files at the current
path as in the previous section) or a list computed in Haskell. These
generated ids are filtered by the optional predicate pred. For each
such legal id, there is a corresponding expression path, which
Forest interprets as extending the current path. The object at each
such path should have the Forest type T. The identifier id is in
scope in pred, path, and T.

The in-memory representation of a Forest list is a Haskell list
containing pairs of the name of a matching object and its represen-
tation. The metadata is a list of the metadata of the matching objects
paired with a summary metadata structure of type Forest_md.

Representation Transformations. Although the list representa-
tion for comprehensions is useful, it can be desirable to use a more
sophisticated data structure to represent such collections. To sup-
port this usage, Forest allows programmers to prefix a list compre-
hension with any type constructor that belongs to a Forest-defined
container type class. This type class contains functions that specify
how to convert between the list representation and the desired con-
tainer representation. We have provided such instance declarations
for Haskell’s Map and Set type constructors.

As an example, consider the specification of the Major direc-
tory. Each such directory contains a list of student files and an ad-
ditional template file named either sss.txt or sxx.txt. The
declaration below specifies the collection of student files by match-
ing with a glob pattern and filtering to exclude template files. It
uses the Map type constructor to specify that the data and metadata
should be collected in a Map rather than a list.

> template s = s ‘elem‘ ["sss.txt", "sxx.txt"]
> txt = GL "*.txt"

type Major = Map
[ s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>]

3.6 Dependent Types: Attributes and Constraints
Every file system object has a number of attributes associated with
it, such as its owner, group, permissions, and size. In general, if
a Forest identifier id refers to a path, then the identifier id_att
refers to the corresponding attributes. This attribute identifier has
type Forest_md, shown in Figure 3. Forest defines helper func-
tions to access these attributes, some of which are listed in Figure 4.

Constrained types are a simple form of dependent types that
allow users to specify required attributes. For example, the type
PrivateFile specifies a text file accessible only by its owner.

type PrivateFile =
Text where <|get_modes this_att == "-rw-------"|>

The keyword where introduces a constraint on the underlying
type. The load function for the type PrivateFile checks this
constraint during loading. If the constraint is false, it records that
fact in the metadata. Within constraints, the special identifier this
refers to the representation of the underlying object, this_att
refers to its attributes and this_md to its complete metadata.

Using attributes, we can write a universal directory description,
which is sufficiently general to describe any directory:

type Universal = Directory
{ asc is [ f :: Text

| f <- matches (GL "*"),
<| get_kind f_att == AsciiK |> ]

, bin is [ b :: Binary
| b <- matches (GL "*"),
<| get_kind b_att == BinaryK |> ]

, dir is [ d :: Universal
| d <- matches (GL "*"),
<| get_kind d_att == DirectoryK |> ]

, sym is [ s :: SymLink
| s <- matches (GL "*"),
<| get_sym s_att == True |> ] }

When a directory is loaded using the Universal description, all
the ASCII files will end up the in asc field, all the binary files
in bin, all the directories in dir, and all the symbolic links in
sym. Note that the description uses recursion to describe nested
directories. In the case that a symbolic link creates a cycle in
the file system by pointing to a parent directory, the Haskell in-
memory representation is a (lazy) infinite data structure. We view
the fact that it is possible to write such a universal description in



function name information
get_group object group
get_kind the sort of file or directory
get_modes permission string
get_owner object owner
get_size object size

Figure 4. Selected file attribute functions

[forest|
data PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads }

data Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major }

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

type Major = Map
[ s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>] |]

Figure 5. Forest description of Princeton filestore.

Forest as evidence that the language is appropriately expressive.
This description also serves as an example of how to describe a
filestore by its structure rather than its names.

We can also use constraints to specify that certain files do not
appear in certain places. As an example, we might want to require
that no binaries appear in a directory given to an untrusted user as
scratch space. The description below flags an error during loading
if a binary file exists in the directory.

type NoBin =
[ b :: Binary | b <- matches (GL "*"),

<| get_kind b_att == BinaryK |> ]
where <|length this == 0|>

3.7 Specialized Constructors: Gzip and Tar
Some files need to be processed before they can be used. A typ-
ical example is a compressed file such as the gzipped log files in
CoralCDN. Forest provides processing-specific type constructors
to describe such files. For example, if CoralLog is a Pads/Haskell
description of a CoralCDN log file then

type Info = Gzip (File CoralLog)

describes a gzipped log file. Likewise, suppose logs.tar.gz
is a gzipped tar file and that the type ManyLogs describes the
directory of log files that logs.tar expands to when untarred.
Such a situation can be described using a combination of the Tar
and Gzip type constructors:

type MoreInfo = Gzip (Tar ManyLogs)

3.8 Putting it all together
The preceding subsections give an overview of Forest’s design. Fig-
ures 5 and 6 give the specifications for the two running examples,

[forest|
type Stats = Directory
{ last :: File Last, topk :: File Topk }

type Dat = [ s :: Site | s <- matches site ]
type Site = [ d :: Log | d <- matches time ]
data Log = Directory
{ log is coralwebsrv :: Gzip (File CoralLog) } |]

Figure 6. Forest CoralCDN description.

Coral Representation Types:

newtype Stats = Stats {last :: Last, topk :: Topk}
newtype Dat = Dat [(String, Site)]
newtype Site = Site [(String, Log)]
data Log = Log {log :: CoralLog}

Coral Metadata Types:

type Stats_md = (Forest_md, Stats_inner_md)
data Stats_inner_md = Stats_inner_md

{last_md :: (Forest_md, Last_md),
topk_md :: (Forest_md, Topk_md)}

type Dat_md = (Forest_md, [(String, Site_md)])
type Site_md = (Forest_md, [(String, Log_md)])
type Log_md = (Forest_md, Log_inner_md)
data Log_inner_md = Log_inner_md

{log_md :: (Forest_md, CoralLog_md)}

Load Functions:

stats_load :: FilePath -> IO (Stats, Stats_md)
dat_load :: FilePath -> IO (Dat, Dat_md)
site_load :: FilePath -> IO (Site, Site_md)
log_load :: FilePath -> IO (Log, Log_md)

Store Functions:

stats_manifest :: (Stats, Stats_md) -> IO Manifest
dat_manifest :: (Dat, Dat_md) -> IO Manifest
site_manifest :: (Site, Site_md) -> IO Manifest
log_manifest :: (Log, Log_md) -> IO Manifest

storeAt :: FilePath -> Manifest -> IO ()
store :: Manifest -> IO ()

Figure 7. Coral rep. and metadata types; load and store functions

minus the associated Pads/Haskell and Haskell declarations. The
complete descriptions of these filestores and additional descriptions
are available in a technical report [4], including descriptions of the
Pads website, a Gene Ontology filestore, and CVS repositories.

4. Programming with Forest
Many Forest programs work in two phases. In the first phase they
use Forest to load relevant portions of the file system into memory,
and in the second phase they use an ordinary Haskell function to
traverse the in-memory representation of the data (or its associated
metadata) and compute the desired result. Some Forest programs
add a third phase in which they store updated structures back to the
filestore.

To facilitate this style of programming, the Forest compiler gen-
erates several Haskell types and functions from every Forest decla-
ration. Collectively, these types and functions define an instance of
the Forest type class:

class (Data rep, ForestMD md)
=> Forest rep md | rep -> md where

load :: FilePath -> IO(rep, md)
manifest :: (rep,md) -> IO Manifest
...



In this type class, the type rep is the generated in-memory rep-
resentation type of the corresponding on-disk data. The type md
is the generated type for the associated metadata. The ForestMD
type class provides operations for manipulating Forest metadata;
all generated metadata types belong to this type class.

The generated load function lazily traverses the file system and
reads the files, directories, and symbolic links mentioned in the de-
scription into a pair of the in-memory representation and its meta-
data. To reverse the process of reading data in to memory, Forest
also generates a manifest function, which reads an in-memory data
structure, writes its contents out to disk in a temporary space, and
prepares a manifest log. The manifest log records inconsistencies
detected during this process as well as the sequence of operations
necessary to move data from the temporary space to its final resting
point. Inconsistences can arise when a programmer creates an er-
roneous in-memory representation of a filestore. The dependencies
that may be present in Forest descriptions mean that not all such
inconsistencies can be detected statically by the Haskell type sys-
tem. After creating a manifest, a programmer may analyze it and
decide whether to execute the generic store or storeAt func-
tions, which move a manifest (inconsistencies and all) to its rightful
position on disk. Details concerning the semantics of storing, espe-
cially where it concerns inconsistencies, are explained in further
depth in Section 7.

As an example, consider the CoralCDN logs described in Fig-
ure 6. The corresponding load and store functions, the represen-
tation types, and the metadata types appear in Figure 7.3 Note
that the structure of each of these artifacts mirrors the structure of
the Forest description that generated them. This close correspon-
dence makes it easy for programmers to write programs using these
Forest-generated artifacts.

For instance, consider the Dat description in Figure 6. The
dat_load function takes a path as an argument and produces the
representation and metadata obtained by loading each of the site
directories contained in the directory at that path:

(rep,md) <- dat_load "/var/log/coral/dat"

Because Dat is a Forest list, the rep is a Haskell list. More
specifically, rep has the form

Coral [("planetab2.eecs.wsu.edu", Site [...]),
("planetlab3.williams.edu",Site [...]),...]

where the list contains pairs of names of subdirectories and repre-
sentations for the data loaded from those directories. The metadata
is a pair consisting of a generic header of type Forest_md and a
list of pairs of names of subdirectories and their associated meta-
data. The header collects information about errors encountered dur-
ing loading and it stores the file system attributes of each file, direc-
tory, or symbolic link loaded from the file system. The following is
the pretty-printed version of such a structure:

Forest_md
{ numErrors = 0,
errorMsg = Nothing,
fileInfo = FileInfo

{ fullpath = /var/log/coral/dat,
owner = alice, group = staff, size = 102,
access_time = Fri Nov 19 01:47:09 2010,
mod_time = Thu Nov 18 20:42:37 2010,
read_time = Fri Nov 19 01:47:28 2010,
mode = drwxr-xr-x, isSymLink = False,
kind = Directory } },

[("planetlab2.eecs.wsu.edu", Forest_md {...}),
("planetlab3.williams.edu", Forest_md {...}), ...]

3 In the following examples, for the sake of clarity, we use type-specific
names such as dat_load and dat_manifest, rather than the over-
loaded names load and manifest.

Using these functions and types, it is easy to formulate many
useful queries as simple Haskell programs. For instance, to count
the number of sites we can simply compute the length of the nested
list in rep:

num_sites = case rep of Dat l -> List.length l

More interestingly, since the internals of the web log are specified
using Pads/Haskell (see the technical report [4] for details), it is
straightforward to dig in to the file data and combine it with file
metadata or attributes in queries. For example, to calculate the time
when statistics were last reported for each site, we can zip the
lists in rep and md together and project out the site name and the
mod_time field from each element in the resulting list of pairs:

get_site = fst
get_mod (_,(f,_)) = mod_time . fileInfo $ f
sites_mod () =
case (rep,md) of (Dat rs, (_,ms)) ->
map (get_site *** get_mod) (zip rs ms)

As this example shows, Forest blurs the distinction between
data represented on disk and in memory. After writing a suitable
Forest description, programmers can write programs that work
on file system data as if it were in memory. Moreover, because
Forest uses Haskell’s lazy I/O operations, many simple programs
do not require constructing an explicit representation of the entire
directory being loaded in memory—a good thing as the directory
of CoralCDN logs contains approximately 1GB of data! Instead,
the load functions only read the portions of the file system that are
needed to compute the result—in this case, only the site directories
and not the gzipped log files contained within them.

As a final analysis example, consider a program that computes
the top-k requested URLs from all CoralCDN nodes by size. The
CoralCDN administrators compute this statistic periodically to help
monitor and tune the performance of the system [11]. We define
the analogous function in Haskell using helper functions such as
get_sites to project out components of rep:

topk k =
take k $ sortBy descBytes $ toList $
fromListWith (+)
[ (get_url e, get_total e)
| (site,sdir) <- get_sites rep,
(datetime,ldir) <- get_dates sdir,
e <- get_entries ldir,
is_in e ]

Reading this program inside-out, we see that it first uses a list
comprehension to iterate through rep, collecting the individual log
entries in the coralwebsrv.log.gz file for incoming requests
and projecting out the URL requested and the total size of the
request. It then sums the sizes of all requests for the same URL
using the fromListWith function from the Data.Map module.
Next, it sorts the entries in descending order. Finally, it returns the
first k entries of the list as the final result.

Having implemented these analyses, a programmer may wish
to store their results. She may do so via the following code, which
uses stats_manifest to generate a manifest and store to
copy it over to the stats directory. In addition, the code uses
stats_defaultMd, a function that constructs default metadata
for stats structures (a useful function in situations that require
storing newly constructed data).

let result = Stats { last = sites_mod ()
, topk = topk 10 }

manifest <- stats_manifest
( result
, stats_defaultMd result "/var/log/coral/stats" )

store manifest



Overall, the main take-away from this section is how Forest
and its tight integration with Haskell facilitates exploratory data
analysis, enabling remarkably terse queries over the combination
of file contents, file attributes and directory structures.

5. Generic Tools
Third-party developers can use generic programming [18] to gen-
erate tools that will work for any filestore that has a Forest descrip-
tion. An advantage of these tools compared to tools that work di-
rectly on the untyped file system is that they are specific to the
fragment of the file system relevant to the filestore. This fragment
can be difficult to specify when using conventional tools since it
can rely on the contents of configuration files, file naming conven-
tions, file system attributes, etc. It is precisely these relationships
that Forest descriptions capture concisely; tools written to use For-
est specifications can leverage that information.

As a proof of concept, we have written a number of such tools,
which we describe in this section.

5.1 Generic Querying
One simple application of generic programming is querying meta-
data to find files with a particular collection of attributes. The
findFiles function

findFiles :: (ForestMD md) =>
md -> (FileInfo -> Bool) -> [FilePath]

takes as input any Forest metadata value (i.e., any value of type
md where md belongs to the Forest metadata class ForestMD)
and a predicate on FileInfo structures, and returns the list of
all FilePaths anywhere in the input metadata whose associated
FileInfo satisfies the predicate. For example, if cs_md is the
metadata associated with the Princeton computer science depart-
ment filestore, then the code

dirs = findFiles cs_md (\(r::FileInfo) ->
(kind r) == DirectoryK)

other = findFiles cs_md (\(r::FileInfo) ->
(owner r) /= "bwk")

binds dirs to the list of all directories in the data set and other
to all the directories and files not owned by user "bwk".

To implement the findFiles function, we use the generic
Haskell function listify:

findFiles md pred = map fullpath (listify pred md)

The return type of the polymorphic listify function is instan-
tiated to match the argument type of its predicate argument. We
map the fullpath function over the resulting list of FileInfo
structures to return only the FilePaths.

5.2 File System Visualization
ForestGraph generates a graphical representation of any direc-
tory structure that matches a Forest specification. We generated the
graphs in Figures 1 and 2 using this tool. In the default configu-
ration, ForestGraph uses boxes to denote directories and ovals
to denote files. Borders of varying thickness distinguish between
ASCII and binary files. Dashed node boundaries indicate symbolic
links and red nodes flag errors.

The core functionality of ForestGraph lies in the Haskell
function mdToPDF:

mdToPDF :: ForestMD md =>
md -> FilePath -> IO (Maybe String)

The function takes as input any metadata value and a filepath that
specifies where to put the generated PDF file. It optionally returns
a string (Maybe String); if the option is present, the string

contains an error message. The IO type constructor indicates that
there can be side effects during the execution of the function. A use
of this function to generate the graph for the Princeton computer
science department filestore looks like:

do { (cs_rep,cs_md) <- CS_load "facadm"
; mdToPDF cs_md "Output/CS.pdf" }

Note that this code needs only the metadata to generate the graph;
laziness means Forest will not load the representation in this case.

The related function mdToPDFWithParams takes an addi-
tional argument that allows the user to specify how to draw the
nodes and edges in the output graph. Among other things, this pa-
rameter specifies how to map a value of type Forest_md into
GRAPHVIZ [13, 14] attributes. By appropriately setting the pa-
rameter, a user can customize the formatting of each node ac-
cording to its owner, group, or permissions, etc., as well as spec-
ify global properties of the graph such as its orientation and size.
ForestGraph uses the Haskell binding of the GRAPHVIZ library
to lay out and render the graphs, so all customizations provided by
GRAPHVIZ are available.

The listify function is at the heart of the implementation
of this tool; we use it to convert the input metadata to the list of
FileInfos in the metadata. We then convert this list into a graph
data structure suitable for use with the GRAPHVIZ library.

5.3 Permission Checker
The permission tool is designed to check the permissions on the
files and directories in a Forest description on a multi-user machine.
In particular, it enables one user to determine which files a second
user can read, write, or execute. If the second user cannot access a
file in a particular way, the tool also reports the names of the files
and directories whose permissions have to change to allow the ac-
cess. The tool is useful when trying to share files with a colleague.
It helps the first user ensure that all the necessary permissions have
been set properly to allow the second user access. The key to the
implementation of this tool is again applying the listify func-
tion to the metadata for the Forest description.

5.4 Shell Tools
We have implemented analogs of many shell tools that work over a
file system fragment defined by a Forest description:

ls :: (ForestMD md) => md -> String -> IO String
grep :: (ForestMD md) => md -> String -> IO String
tar :: (ForestMD md) => md -> FilePath -> IO ()
cp :: (ForestMD md) => md -> FilePath -> IO ()

All of these functions work by extracting the relevant file names
from the argument metadata structure using listify and then
calling out to a shell tool to do the work. For ls, the second argu-
ment gives the command-line arguments to pass to the shell version
of ls, and the result is the resulting output. The implementation
uses xarg to lift the restriction on the number of files that can be
passed to ls. For grep, the second argument is the search string
and result is the output of the shell version of grep. For tar, the
second argument specifies the location for the resulting tarball. The
implementation uses a file manifest to allow tar to work regard-
less of the number of files involved. The cp tool uses the tar tool
to move the files mentioned in the metadata to the location specified
by the second argument while retaining the same directory struc-
ture. The module that implements these tools is 80 lines of Haskell
code.

5.5 Description Inference Tool
This tool allows the user to generate a Forest description from the
contents of the file system. The function



getDesc :: FilePath -> IO String

takes as an argument the path to the root of the directory structure to
infer. It returns a string containing the generated representation. For
example, below we show a fragment of the results when getDesc
is invoked on the classof11 directory:

data classof11 = Directory {
aB11 is "AB11" :: aB11,
bSE11 is "BSE11" :: bSE11,
tRANSFER is "TRANSFER" :: tRANSFER,
wITHDREW is "WITHDREW" :: wITHDREW }

data tRANSFER = Directory {
bEAUCHEMINtxt is "BEAUCHEMIN.txt" :: File Ptext,
vERSTEEGtxt is "VERSTEEG.txt" :: File Ptext }

...

The description is not perfect: the label names are generated from
the file name, for example. Nevertheless, the tool improves pro-
grammer productivity as it is easier for a programmer to edit a gen-
erated description than to start from scratch. Our first tool in this
vein is simple; a more sophisticated variant would collapse records
of files into lists when a width limit was exceeded or other criteria
were met. Another variant might collapse deeply nested directories
into a universal directory description when a depth limit was ex-
ceeded. The getDesc function works by using the universal de-
scription to load the contents of the file system starting from the
supplied path. It then walks over the resulting metadata to generate
a Forest parse tree, which it then pretty prints.

6. Implementation
The current implementation of Forest is available from the project
web site: forestproj.org.

Haskell provides powerful language features and libraries that
greatly facilitated implementation of Forest. The most obvious
of these features is the quasiquotation mechanism [21] that we
used to embed Forest into Haskell. This mechanism provided the
benefits of being an embedded domain-specific language without
having to sacrifice the flexibility of defining our own syntax. To
use quasiquoting, we defined a Haskell value forest of type
QuasiQuoter which specifies how to convert an input string
representing a sequence of Forest declarations into the Template
Haskell [27] data structures that represent the syntax of the corre-
sponding collection of Haskell declarations. The Haskell compiler
calls the forest “compilation” function during the compilation
of any Haskell source file containing a Forest quasiquotation. The
quasiquoted syntax [forest| <input> |] is legal anywhere
the identifier forest is in scope. When the Haskell compiler pro-
cesses this declaration, it first passes <input> as a string to the
forest quasiquoter, and then it compiles the resulting Template
Haskell data structures as if the corresponding Haskell code had
appeared in the input at the location of the quasiquote. Early ver-
sions of quasiquoting supported quoting only expression and pat-
tern forms. Simon Peyton Jones extended the mechanism to per-
mit declaration and type quasi-quoting partly to enable the For-
est implementation. We used this same approach to implement
Pads/Haskell, which we built concomitantly.

Note that in implementing Forest, we had to use Template
Haskell rather than any of the other libraries that support generic
programming, both because that is what the quasiquote library ex-
pects and because we need to generate type and datatype decla-
rations (and to do so at compile time). Other available generic li-
braries do not support the latter functionality.

Parsing. We used the parsec 3.1.0 parser combinator library [19]
to implement the Forest parser. One key element of the Forest de-
sign is to allow arbitrary Haskell expressions in various places in-
side Forest descriptions. We did not want to reimplement the gram-

mar for Haskell expressions, which is quite complicated. Instead,
we structured the Forest grammar so we could always determine
the extent of any embedded Haskell code. We then used the Haskell
Source Extension package [15] to parse these fragments. The data
structure that this library returns is unfortunately not the data struc-
ture that Template Haskell requires, so we used yet another library,
the Haskell Source Meta package [16], that provides this transla-
tion.

Type checking. We would like to give users high-quality error
messages if there are type errors in their Forest declarations. At the
moment, typechecking occurs, but only after the Forest declarations
have been expanded to the corresponding Haskell code. Although
these error messages can be quite informative, it is sub-optimal to
report errors in terms of generated code. Type checking the Forest
source is complicated by the embedded fragments of Haskell. As
with the syntax, we do not want to reimplement the Haskell type-
checker! There is an active proposal [29] to extend the Template
Haskell infrastructure with functions that would enable us to ask
the native Haskell typechecker for the types of embedded expres-
sions and to extend the current type environment with type bindings
for new identifiers. With this combination of features, we would be
able to type check Forest sources directly.

Runtime. Although Forest facilitates treating the file system as
a persisent store, it does not provide the ACID guarantees famil-
iar from databases. None of the filestores we have encountered in
practice are implemented in a system that provides such support;
users instead have extra-linguistic mechanisms to make sure they
do not corrupt their data with ill-timed concurrent reads and writes.
That said, the Forest language does not preclude an implementa-
tion from providing such guarantees. We consider this issue very
interesting future work.

Forest uses Haskell’s unsafeInterleaveIO to load each
portion of a filestore only when needed by an application program.
We have not measured the performance overhead of using For-
est systematically. However, we have used our mostly-unoptimized
implementation to manipulate filestores on the order of many giga-
bytes. Currently, the performance is acceptable for many applica-
tions.

The running time of storing operations is proportional to the
“footprint” of the described filestore. However, the Forest compiler
generates load and manifest functions for each named type in
a description. Thus, updates may be made at any granularity for
which there is a named type, which is typically at the level of in-
dividual files. We plan to investigate better support for incremental
updates in future work.

7. A Core Calculus for Forest
This section describes a core calculus that formalizes the essential
features of Forest precisely in a simple setting. It is inspired by
classical (i.e., not separating, substructural or ambient) unordered
tree logics, customized for file systems. We used this calculus
to investigate various features and prove theorems (such as the
round-tripping properties presented at the end of this section) as
we developed Forest.

7.1 The Basics: File Systems and Their Specifications
Figure 8 presents the formal file system model. A path r is a
sequence of strings4 and a file system F is finite map from paths to
pairs of attributes a and file system contents T . We leave attributes
abstract but expect that they include the usual fields: owner, group,
date modified, etc. The attribute adefault contains default values for

4 For simplicity, we ignore the special path elements “..” and “.”. It would
be easy to add these features, at the cost of complicating the semantics.
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Basic definitions

Integers n ∈ Z
Strings u ∈ Σ∗

Booleans b ::= True | False
Values v ::= n | u | b | a | r |

() | (v1, v2) | Just v | Nothing | [v1, .., vn]

Types τ ::= Int | Bool | () | (τ1, τ2) | Maybe τ | [τ ]

Environments E ::= ∅ | E , x 7→ v

Expressions e ::= x | λx. e | e1 e2 | . . .

Forest definitions

Attributes a ::= v

Paths r ::= · | r /u

Contents T ::= File u | Link r | Dir {u1, .., un}
File systems F ::= {|r1 7→ (a1, T1), .., rn 7→ (ak, Tn) |}
Specifications s ::= kτ2τ1 | e::s | 〈x:s1, s2〉 | [s | x : e] | P(e) | s?

Figure 8. Forest calculus syntax

all fields. The contents T of a node in the file system is either a file
File n (where n is the string contents of the file), a symbolic link
Link r (where r is the path pointed to by the link), or a directory
Dir {n1, . . . , nk} (with paths n1 to nk). We write dom(F ) for
the set of paths F is defined on, F (r) for the contents at r, and
F (r) = ⊥ when r is not in dom(F ).

A file system F is well-formed if it encodes a tree with directo-
ries at the internal nodes and files and symbolic links at the leaves.
More formally, F is well-formed if the following conditions hold:

• dom(F ) is prefix-closed,
• F (r) = (a,Dir {n1, . . . , nk}) =⇒
∀i ∈ {1, . . . , k}. r /ni ∈ dom(F ), and

• F (r) = (a,File nr) ∨ F (r) = (a, Link r′) =⇒
∀n. r /n 6∈ dom(F ).

Note that although the structure of a well-formed file system is tree-
shaped, cycles can be also expressed using symbolic links that point
“upwards” in the file system.

Figure 8 also presents the syntax of file system specifications s.
We leave the syntax of expression language abstract but assume that
it contains values v, variables x, and other operators (of course, in
the full Forest language, expressions can be arbitrary Haskell code).
An environment E maps variables to values. The semantic function
[[e]]E,rτ evaluates an expression e in the environment E at path r,
yielding a value v of type τ .

These file system specifications are parameterized over a collec-
tion of constants kτ2τ1 , which include specifications for files (File),
directories (Dir), links (Link), and Pads/Haskell-described files
(Adhoc(b)). The annotations τ1 and τ2 supply the internal types
of the the representation and the constant-specific portion of the
meta-data. The meta-variable b ranges over bidirectional functions:
in the forward direction, such functions load (parse) data; in the
reverse direction they store (print) it.

To define the semantics of the overall language precisely, we
assume that each constant is associated with functions loadk and
storek. For example, the load function for the File construct, which
describes any file (but not symbolic links or directories), is defined

as follows:

loadFile (E , F, r) =

{
(n, (True, a)), ifF (r) = (a,File n)

(“ ”, (False, adefault)), otherwise

The arguments to the function include an environment E , a file
system F to load from, and a path r within that file system. This
function either returns the contents and attributes of the file at path
r, if it exists, or “ ” and default attributes if F does not contain a
file at r. The store function for File is defined as follows:

storeFile (E , F, r, v, d) =

(F [r := (a,File v)], if d = (True, a)

φ′ = λF ′. (F ′(r) = (a,File v)))

F [r := ⊥], if d = (False, a) ∧
φ′ = λF ′. F ′(r) 6= ( ,File )) F (r) = ( ,File )

F, otherwise
φ′ = λF ′. F ′(r) 6= ( ,File ))

The arguments to the store function include an environment E ,
an existing file system F to store into, a path r to store at, a
representation v for the data to store, and the metadata d associated
with that representation. The store function produces two results:
an updated file system F ′ and a predicate φ′ that records the
constraints needed to ensure consistency. In this case, the store
function for File overwrites the contents of the file system F at path
r with (a,File v) if d is valid (and contains a), deletes the contents
of F at r if d is not valid but F (r) contains a file, and otherwise
returns F unchanged. The predicate φ′ requires that F ′(r), the
contents of the new file system F ′ at r, be File v in the first case
and that F ′(r) not be a file in the other two cases. These constraints
must be satisfied in order to guarantee the round-tripping properties
presented at the end of this section.

In the Forest surface syntax, records and paths are specified us-
ing a single construct (and similarly for comprehensions) while the
core calculus models (dependent) records, paths, and comprehen-
sions as independent, orthogonal constructs. Path specifications are
written e::s, where e is a path name (to be appended to the cur-
rent path) and s specifies a fragment of the file system at that path.
Record specifications are written 〈x:s1, s2〉, where x may appear
in s2. Comprehension specifications are written [s | x : e], where
e is an expression that describes a set of values, x is a variable, and
s, which may depend on x, specifies a fragment of the file system
for each value of x. For example, the specification

{c is "c.txt" :: C, d is "d.txt" :: D c}

is encoded in the calculus as 〈x : ("c.txt"::C), ("d.txt"::D x)〉.
Similarly, the comprehension

[c :: C | c <- matches (GL "*")]

is encoded as: 〈x:Dir, [y::C | y : x]〉. Predicate specifications P(e)
succeed when e evaluates to True and fail when e evaluates to
False under the current environment. A Forest constraint of the
form s where e is encoded in the calculus using a dependent
pair and a predicate: 〈x:s,P(e[x/this])〉. Finally, maybe specifi-
cations are written as s? in the calculus.

7.2 Calculus Semantics
The semantics of the calculus is organized into four separate def-
initions, one for each of the four major artifacts generated by the
Forest compiler.

Type Definitions. Figure 10 defines types for the representations
(R[[s]]) and metadata (M[[s]]) generated by specifications s. The
types for constants kτ2τ1 are read off from their annotations while the



E ; r; s ` load F B (v, d)

E ; r; kτ2τ1 ` load F B (loadk(E , F, r))

E ; [[r / e]]E,rpath ; s ` load F B (v, d)

E ; r; e::s ` load F B (v, d)

E ; r; s1 ` load F B (v1, d1)
(E , xrep 7→ v1, xmd 7→ d1); r; s2 ` load F B (v2, d2)

b = valid(d1) ∧ valid(d2)

E ; r; 〈x:s1, s2〉 ` load F B ((v1, v2), (b, (d1, d2)))

[[e]]E,r[tau] = [w1, . . . , wk]

∀i ∈ {1, . . . , k}. (E , x 7→ wi); r; s ` load F B (vi, di)

b =
∧k
i valid(di) vs = [v1, . . . , vk] ds = [d1, . . . , dk]

E ; r; [s | x : e] ` load F B (vs, (b, ds))

b = [[e]]E,rbool

E ; r;P(e) ` load F B ((), (b, ()))

r 6∈ dom(F )

E ; r; s1? ` load F B (Nothing , (True,Nothing))

r ∈ dom(F ) E ; r; s1 ` load F B (v1, d1)

E ; r; s1? ` load F B (Just v1 , (valid(d1), Just d1 ))

E ; r; s ` store (F, v, d) B (F ′, φ′)

E ; r; kτ2τ1 ` store (F, v, d) B (storek(E , F, r, v, d))

E ; [[r / e]]E,rpath ; s ` store (F, v, d) B (F ′, φ′)

E ; r; e::s ` store (F, v, d) B (F ′, φ′)

E ; r; s1 ` store (F, v1, d1) B (F ′1, φ1)
(E , xrep 7→ v1, xmd 7→ d1); r; s2 ` store (F, v2, d2) B (F ′2, φ2)
φ′ = λF ′. (b = valid(d1) ∧ valid(d2)) ∧ φ′1(F ′) ∧ φ′2(F ′)

E ; r; 〈x:s1, s2〉 ` store (F, (v1, v2), (b, (d1, d2))) B (F ′1++F ′2, φ
′)

vs = [v1, . . . , vj ] ds = [d1, . . . , dl]

[[e]]E,r[τ ] = [w1, . . . , wm] k = min (j, l,m)

∀i ∈ {1, . . . , k}. (E , x 7→ wi); r; s ` store (F, vi, di) B (F ′i , φ
′
i)

φ′ = λF ′. (j = l = m) ∧ (b =
∧k
i valid(di)) ∧ (

∧k
i φ
′
i(F
′))

E ; r; [s | x : e] ` store (F, vs, (b, ds)) B (F ′1++ . . . ++F ′k, φ
′)

φ′ = λF ′. (b = [[e]]E,rbool)

E ; r;P(e) ` store (F, (), (b, ())) B (F, φ′)

E ; r; s1 ` store (F, v1, d1) B (F ′, φ′1)
φ′ = λF ′. (b = valid(d1)) ∧ (r ∈ dom(F ′)) ∧ φ′1(F ′)

E ; r; s1? ` store (F, Just v1 , (b, Just d1 )) B (F ′, φ′)

φ′ = λF ′. (d = Nothing) ∧ b ∧ r 6∈ dom(F ′)

E ; r; s1? ` store (F,Nothing , (b, d)) B (F [r := ⊥], φ′)

E ; r; s1 ` store (F, v1, d
s1
default) B (F ′, φ′1)

φ′ = λF ′. False

E ; r; s1? ` store (F, Just v1 , (b,Nothing)) B (F ′, φ′)

(a) (b)

Figure 10. Forest calculus semantics for (a) loading and (b) storing

s R[[s]] M[[s]]

kτ2τ1 τ1 Md τ2
e::s R[[s]] M[[s]]

〈x:s1, s2〉 (R[[s1]],R[[s2]]) Md (M[[s1]],M[[s2]])

[s | x : e] [R[[s]]] Md [M[[s]]]

P(e) () Md ()

s? Maybe R[[s]] Md (MaybeM[[s]])

Figure 9. Forest calculus representation and metadata types

types for other specifications are constructed from their structure in
the obvious way—e.g., the type of representations for 〈x:s1, s2〉
is a product (R[[s1]],R[[s2]]). The type constructor Md provides a
uniform representation for metadata and is defined as follows:

Md τ = (Header , τ)
Header = Bool

The function valid(d) extracts the boolean from the metadata
structure d, returning True if there are no errors in the structure
and False otherwise.

Semantics of Loading and Storing. The inference rules on the
left side of Figure 10 define the semantics of the load function.
Reading from right to left, the judgment E ; r; s ` load F B (v, d)
states one can obtain the pair (v, d) of representation and metadata,
by materializing components of the filesystem F in memory using
the specification s at path r in environment E . Reading from left
to right, this judgment may also be viewed as a total function
from E , r, s and F to (v, d). The judgment is total because when
F fails to match s, the load function generates defaults in the
representation v and records errors in the metadata d. This design
allows a programmer to explore a file system fragment even when
it does not match the given specification exactly.

Let us examine a few of the inference rules that define the
store function in detail. The rule for constants kτ2τ1 just invokes the
associated storek function. The rule for [s | x : e] comprehensions
is more interesting: it first evaluates e to a list [w1, . . . , wk] and
then invokes the store function for s k times in environments where
x is bound to each wi. It then collects up the results into lists



of representations [v1, . . . , vk] and metadata [d1, . . . , dk], which it
uses as the final result. The predicate P(e) construct tests whether
an expression e is satisfied. It returns () as the representation and
([[e]]E,rbool , ()) as the metadata. Finally, s? invokes s’s load function if
the current path r exists in the file system, injecting the result into
the maybe type using Just, and otherwise returns Nothing .

The inference rules on the right side of Figure 10 define the
store function. The judgment E ; r; s ` store (F, v, d) B (F ′, φ′)
states that in environment E storing (v, d) into file system F using
specification s yields the file system F ′ and predicate φ′. The pred-
icate φ′ tracks the conditions on the file system needed to ensure
that it accurately reflects the information in the representation and
metadata.

As a simple example to illustrate why predicates are needed,
consider the specification s = 〈x:File,File〉 and suppose that
the load function is called in an environment E with a file sys-
tem F and path r where F (r) = (a,File n). The representa-
tion returned by load will be a pair (n, n) containing two copies
of the file contents at r and the metadata will also contain a pair
(True, (True, a), (True, a))) with two copies of the metadata as-
sociated with that file. Now suppose that we change the representa-
tion to (n, n′), with n 6= n′, and we store the result back to the file
system. Unfortunately, because the representation is inconsistent—
it does not satisfy the dependency between the two components of
the pair implied by s—the store function cannot produce a new file
system containing the information in both n and n′. Thus, it must
store one and discard the other. The predicate φ′ generated by the
store function provides a way to track and report inconsistencies.
In this case, the predicate will be equivalent to the following:

φ′ = λF ′. (F ′(r) = (a,File n)) ∧ (F ′(r) = (a,File n′)

which is obviously not satisfiable when n 6= n′.
Now that the overall structure of the store judgement has been

explained, let us examine a few of the inference rules in detail. The
rule for constants kτ2τ1 simply invokes the storek function. The rule
for path specifications e::s passes off control to the store function
for s after replacing the current path r with [[r / e]]E,rpath . The rule
for dependent pairs 〈x:s1, s2〉 is more interesting. Given a pair
(v1, v2) as the representation, it first invokes the store function for
s1 with v1, producing an updated file system F ′1 and predicate φ′1.
Next, it invokes the store function for s2 with v2 in an extended
environment where x is bound to v1, yielding another updated file
system F ′2 and φ′2. It combines the updated file systems using the
following right-biased concatenation operator,

(F1++F2)(r) =
(a2,Dir N1 ∪N2) if F1(r) = (a1,Dir N1) ∧

F2(r) = (a2,Dir N2)

F1(r) if F2(r) = ⊥
F2(r) otherwise

Finally, it combines the predicates using conjunction. The result is
a file system that contains the consistent changes made to the file
system by the store functions for s1 and s2 as well as a predicate
that checks for the consistency of all of their changes.

7.3 Formal Properties
The first property of the Forest calculus is a basic type safety
property, which states that the load function for specifications s
generates representations and metadata belonging to R[[s]] and
M[[s]] respectively.

Proposition 1 (Type Safety)
If E ; r; s ` load F B (v, d) and R[[s]] = τR andM[[s]] = τM
then ` v : τR and ` d : τM,

The above property demonstrates that our type definitions are prop-
erly aligned with the semantics of loading. To ensure that the se-
mantics of loading is, in turn, aligned with the semantics of storing,
we also prove the following two round-tripping properties.

Theorem 2 (LoadStore)
Let E be an environment, F a file system, r a path, s a specification,
v a representation, and d metadata. If

E ; r; s ` load F B (v, d)
E ; r; s ` store (F, v, d) B (F ′, φ)

then F = F ′ and φ′(F ′).

Theorem 3 (StoreLoad)
Let E be an environment, F and F ′ file systems, r a path, s
a specification, v a representation, d and d′ metadata, and φ′ a
predicate. If

E ; r; s ` store (F, v, d) B (F ′, φ′)
φ′(F ′)

E ; r; s ` load F ′ B (v′, d′)

then v′ = v and valid(d) = valid(d′).

The first theorem states that loading from a file system F and im-
mediately storing the resulting representation and metadata yields
the original file system and, moreover, it satisfies the predicate pro-
duced by the store function. The second theorem states that stor-
ing an arbitrary representation and metadata and then loading the
resulting file system yields the same representation and contains
errors only if the original metadata also contained errors. These
properties are based on the general correctness conditions that have
been proposed for bidirectional transformations in the context of
lenses [10], but are generalized here to accommodate the inconsis-
tencies that can arise when working with imperfect, ad hoc data.
The proofs of these theorems can be found in Appendix A.

8. Related Work
The work in this paper builds upon ideas developed in the Pads
project [5, 7]. Pads uses extended type declarations to describe
the grammar of a document and simultaneously to generate types
for parsed data and a suite of data-processing tools. The obvious
difference between Pads (and other parser generators) and Forest
is that Pads generates infrastructure for processing strings (the
insides of a single file) whereas Forest generates infrastructure
for processing entire file systems. Forest (and Pads/Haskell) is
architecturally superior to previous versions of Pads in the tight
integration with its host language and in its support for third-party
generic programming and tool construction.

More generally, Forest shares high-level goals with other sys-
tems that seek to make data-oriented programming simpler and
more productive. For example, Microsoft’s LINQ [20] extends
the .NET languages to enable querying any data source that sup-
ports the IEnumerable interface using a simple, convenient syn-
tax. LINQ differs in that it does not provide support for declar-
atively specifying the structure of, and then ingesting, filestores.
Type Providers [28], an experimental feature of F#, help program-
mers materialize standard data sources equipped with predefined
schemas (such as XML documents or databases) in memory in
an F# program. Type Providers do not themselves provide a new
means for describing data sources (as Forest does).

Several XML-based languages for specifying file formats, file
organization and file locations have been proposed. One example of
such a language is XFiles [1]. XFiles uses RDF specifications to de-
scribe the location, permissions, ownership, and other attributes of



files, as well as the name of an application capable of parsing spe-
cific files. The key difference between XFiles and Forest is that For-
est is tightly integrated into a general-purpose, conventional pro-
gramming language. Forest declarations generate types, functions
and data structures that materialize the data within a surrounding
Haskell program while XFiles does not interoperate directly with a
conventional programming language.

A recent MSc thesis by Ntzik proposes using an extension
of context logic [2] to reason about the effects of updates made
to file systems using standard POSIX commands [24]. The core
goal of Ntzik’s work is to create a new kind of Hoare Logic,
and consequently, it is quite different from Forest. In addition,
technically, Forest is more closely related to classical tree logics
than to substructural logics such as context logic.

The round-tripping properties that core Forest programs obey
are based on laws that have been proposed in the context of well-
behaved bidirectional transformations, often called lenses [10]. As
far as we are aware, lenses for file systems have not been devel-
oped but some of the same fundamental issues that arise in core
Forest have been studied by Hu and his colleagues, including han-
dling data with internal dependencies [23] as well as graph struc-
tures [17].

9. Conclusions
In this paper, we present the design of Forest, an embedded domain-
specific language for describing filestores. A Forest description
concisely specifies a collection of files, directories, and symbolic
links as well as expected file system attributes such as owners
and permissions. From a description, the Forest compiler gener-
ates code to lazily load the on-disk data into an isomorphic in-
memory representation, lowering the divide between on-disk and
in-memory data. Forest also generates type class instances that
make it easy for third-party tool developers to use Haskell’s generic
programming infrastructure. We have used this infrastructure our-
selves to define a number of useful tools. In addition, the language
has a formal semantics based on classical tree logics and is fully
implemented. On the latter point, our work serves as an extensive
case study in domain-specific language design, and, as such, has
inspired changes in the design of Template Haskell. Source code
for Forest is available from the Forest web site [9].
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A. Proofs
This appendix contains the proofs of the theorems stated in Section 7.

Theorem 2 (LoadStore)
Let E be an environment, F a file system, r a path, s a specification, v a representation, and d metadata. If

E ; r; s ` load F B (v, d)
E ; r; s ` store (F, v, d) B (F ′, φ)

then F = F ′ and φ′(F ′).

Proof: The proof is by induction on s. For every constant kτ2τ1 , we assume that loadk and storek satisfy the theorem.

Case: s = kτ2τ1

By the definitions of the load and store functions we have

v, d = loadk(E , F, r)
F ′, φ′ = storek(E , F, r, v, d)

By the assumptions about the behavior of loadk and storek, we have F ′ = F and φ′(F ′), which finishes the case.

Case: s = e::s1

By the definitions of the load and store functions we have

E ; r′; s1 ` load F B (v, d)
E ; r′; s1 ` store (F, v, d) B (F ′, φ′)

r′ = [[r / e]]E,rpath

By the induction hypothesis applied to s1 we have F ′ = F and φ′(F ′), which finishes the case.

Case: s = 〈x:s1, s2〉
By the definitions of the load and store functions we have

E ; r; s1 ` load F B (v1, d1)
E ′; r; s2 ` load F B (v2, d2)
E ; r; s1 ` store (F, v1, d1) B (F ′1, φ

′
1)

E ′; r; s2 ` store (F, v2, d2) B (F ′2, φ
′
2)

E ′ = E , xrep 7→ v1, xmd 7→ d1
b = valid(d1) ∧ valid(d2)
v = (v1, v2)
d = (b, (d1, d2))
F ′ = F ′1++F ′2
φ′ = λF ′. (b = valid(d1) ∧ valid(d2)) ∧ φ′1(F ′) ∧ φ′2(F ′)

By the induction hypothesis applied to s1, we have F ′1 = F and φ′1(F ′1). Likewise, by the induction hypothesis applied to s2, we have
F ′2 = F and φ′2(F ′2). We immediately have φ′(F ′) and F ′ = F as (++) is idempotent, which finishes the case.

Case: s = [s1 | x : e]

By the definitions of the load and store functions we have

[[e]]E,r[tau] = [w1, .., wk]

∀i ∈ {1, ..., k}. (E , x 7→ wi); r; s1 ` load F B (vi, di)
∀i ∈ {1, ..., k}. (E , x 7→ wi); r; s ` store (F, vi, di) B (F ′i , φ

′
i)

v = [v1, .., vk]

b =
∧k
i valid(di)

d = (b, [d1, .., dk])
F ′ = F ′1++..++F ′k
φ′ = λF ′. (b =

∧k
i valid(di)) ∧ (

∧k
i φ
′
i(F
′))

By the induction hypothesis applied to s (k times), we have F ′i = F and φ′i(F
′
i ) for i from 1 to k. We immediately have φ′(F ′) and

F ′ = F as (++) is idempotent, which finishes the case.

Case: s = P(e)

By the definition of the load and store functions we have

v = ()
d = (b, ())

b = [[e]]E,rbool

F ′ = F

φ′ = λF ′. (b = [[e]]E,rbool)

Thus, we immediately have F ′ = F and φ′(F ′).

Case: s = s1?

We analyze two subcases:

Subcase: r ∈ dom(F )

By the definition of the load and store functions we have

E ; r; s ` load F B (v1, d1)
E ; r; s ` store (F, v1, d1) B (F ′, φ′1)

v = Just v1
d = (b, Just d1 )
b = valid(d1)
φ′ = λF ′. (b = valid(d1)) ∧ (r ∈ dom(F )) ∧ φ′1(F ′)



By the induction hypothesis applied to s1 we have F ′ = F and φ′1(F ′). We immediately have φ′(F ′).

Subcase: r 6∈ dom(F )

By the definition of the load and store functions we have

v = Nothing
d = (b, d1)
d1 = Nothing
b = True

F ′ = F [r := ⊥]
φ′ = λF ′. (d1 = Nothing) ∧ b ∧ (r 6∈ dom(F ′))

We immediately have F ′ = F and φ′(F ′), which finishes the case and the inductive proof. �

Theorem 3 (StoreLoad)
Let E be an environment, F and F ′ file systems, r a path, s a specification, v a representation, d and d′ metadata, and φ′ a predicate. If

E ; r; s ` store (F, v, d) B (F ′, φ′)
φ′(F ′)

E ; r; s ` load F ′ B (v′, d′)

then v′ = v and valid(d) = valid(d′).

Proof: We will prove a slightly stronger result that implies the theorem: for all environments E , file systems F , G1, G2, and F ′, paths r,
specifications s, representations v and v′, metadata d and d′, and constraints φ′, if

E ; r; s ` store (F, v, d) B (F ′, φ′)
φ′(G1++F ′++G2)

E ; r; s ` load (G1++F ′++G2) B (v′, d′)

then v′ = v and valid(d) = valid(d′).
The proof is by induction on s. For every constant kτ2τ1 , we assume that loadk and storek satisfy the strengthened property.

Case : s = kτ2τ1

By the definitions of the load and store functions we have

F ′, φ = storek(E , F, r, v, d)
v′, d′ = loadk(E , (G1++F ′++G2), rs)

By assumptions about the behavior of loadk and storek, we have v′ = v and valid(d) = valid(d′), which finishes the case.

Case: s = e::s1

By the definitions of the load and store functions we have

E ; r′; s1 ` store (F, v, d) B (F ′, φ′)
E ; r′; s1 ` load (G1++F ′++G2) B (v′, d′)

r′ = [[r / e]]E,rpath

By the induction hypothesis applied to s1 we have v′ = v and valid(d) = valid(d′), which finishes the case.

Case: s = 〈x:s1, s2〉
By the definition of the load function we have

E ; r; s1 ` store (F, v1, d1) B (F ′1, φ
′
1)

(E , x 7→ v1); r; s2 ` store (F, v2, d2) B (F ′2, φ
′
2)

v = (v1, v2)
d = (b, (d1, d2))
F ′ = F ′1++F ′2
φ′ = λF ′. (b = valid(d1) ∧ valid(d2)) ∧ φ′1(F ′) ∧ φ′2(F ′)

By φ′(G1++F ′++G2) we have
b = valid(d1) ∧ valid(d2)
φ′1(G1++F ′++G2)
φ′2(G1++F ′++G2)

As (++) is associative we also have,

(G1++(F1++F2)++G2) = (G1++F1++(F2++G2))
(G1++(F1++F2)++G2) = ((G1++F1)++F2++G2),

and hence:
φ′1(G1++F1++(F2++G2))
φ′2((G1++F1)++F2++G2)

By the definition of the load function we have

E ; r; s1 ` load (G1++F1++(F2++G2)) B (v′1, d
′
1)

(E , x 7→ v1); r; s2 ` load ((G1++F1)++F2++G2) B (v′2, d
′
2)

v′ = (v′1, v
′
2)

b′ = valid(d1) ∧ valid(d2)
d′ = (b′, (d′1, d

′
2))



By the induction hypothesis applied to s1 and s2, we have

v′1 = v1
v′2 = v2

valid(d1) = valid(d′1)
valid(d2) = valid(d′2)

It follows that (v1, v2) = (v′1, v
′
2) and b = b′, which finishes the case.

Case: s = [s | x : e]

By the definition of the store function we have

∀i ∈ {1, .., k}. (E , x 7→ wi); r; s ` store (F, vi, di) B (F ′i , φi)

[[e]]E,r[tau] = [w1, .., wm]

v = [v1, .., vj ]
d = [d1, .., dl]
k = min (j, l,m)
F ′ = F ′1++..++F ′k
φ = λF ′. (j = k = l) ∧ (b =

∧k
i valid(di))

∧k
i φi(F

′)

By φ′(G1++F ′++G2) we have

k = j = l = m

b = (
∧k
i valid(di))

∀i ∈ {1, .., k}. φ′i(G1++F ′++G2)

Let

Hi = ((G1++F1++..++Fi−1)++Fi++(Fi+1++..++Fk++G2))

for i from 1 to k. As (++) is associative we have,

(G1++(F1++..++Fk)++G2) = Hi for i ∈ {1, .., k}

and hence:

φ′i(Hi) for i ∈ {1, .., k}
By the definition of the load function we also have

∀i ∈ {1, .., k} (E , x 7→ wi); r; s1 ` loadHi B (vi, d
′
i)

v′ = [v′1, .., v
′
k]

b′ =
∧k
i valid(d′i)

d′ = (b′, [d′1, .., d
′
k])

By the induction hypothesis applied to s (k times), we have v′i = vi and valid(d′i) = valid(di) for = i from 1 to k. It follows that
[v1, .., vk] = [v′1, .., v

′
k] and b = b′, which finishes the case.

Case: s = P(e)

By the definitions of the store and load functions we have

v = ()
d = ((), b)
F ′ = F

φ′ = λF ′. (b = [[e]]E,rbool)

v′ = ()
d′ = (b′, ())

b′ = [[e]]E,rbool

By φ′(G1++F ′++G2) we have b = [[e]]E,rbool . It follows that v = v′ and b = b′, which finishes the case.

Case: s = s1?

We analyze several subcases:

Subcase: v = Just v1 and d = (b, Just d1 )

By the definition of the store function we have

E ; r; s1 ` store (F, v1, d1) B (F ′, φ′1) φ′ = λF ′. (b = valid(d1)) ∧ (r ∈ dom(F )) ∧ φ′1(F ′)

By φ′(G1++F ′++G2) we have b = valid(d1) and r ∈ dom(G1++F ′++G2). By the definition of the load function we also have

E ; r; s1 ` load (G1++F ′++G2) B (v′1, d
′
1)

v′ = Just v ′1
b′ = valid(d′1)
d′ = (b′, Just d ′1 )

By the induction hypothesis applied to s1 we have v′1 = v1 and b′ = b. It follows that v′ = v.

Subcase: v = Nothing

By the definition of the store and load functions we have

F ′ = F [r := ⊥]
φ′ = λF ′. (d = Nothing) ∧ b ∧ (r 6∈ dom(F ′))

v′ = Nothing
b′ = True
d′ = (b′,Nothing)

As φ′(G1++F ′++G2) we have d = Nothing and b and r 6∈ dom(G1++F ′++G2). Thus, we immediately have v′ = v and b′ = b.



Subcase: v = Just v1 and d = Nothing

Vacuously holds: by the definition of the store function we have φ′ = λF ′. False , which contradicts the assumption that
φ′(G1++F ′++G2).

Thus, in each subcase we have v′ = v and valid(d) = valid(d′), which finishes the subcase and the inductive proof. �

B. Appendix
This appendix contains contains Forest descriptions of a variety of different filestores. Please note that this appendix is best viewed
electronically. Some of the graphs generated are very large, but shrunk down to fit on a single page. They will not display well when
printed. However, reviewers may zoom in electronically on the PDF to view the details.

C. Pads Web Site Description
This Forest description describes the Pads web site. The description starts with Pads descriptions of files that contain information that
impacts the directory structure. The configuration file supplies the paths where various components of the website should be located. The
SourceNames file lists the names of the data files available for the demo. Each user directory will have a subdirectory for each file listed
in SourceNames. Each user is logged in the file UserEntries. For each user in this file, there is a directory with a corresponding name
containing all of the information relevant to that user. A graph of the Pads website, generated using the ForestGraph tool follows the
description.

[pads|
-- Configuration file for learning demo web site; contains paths to various web site components.
data Config_f = {

header :: [Pstringln] with term length of 13,
"$host_name =", host_name :: Config_entry_t, --Name of machine hosting web site
"$static_path =", static_path :: Config_entry_t, --URL prefix for static content
"$cgi_path =", cgi_path :: Config_entry_t, --URL prefix for cgi content
"$script_path =", script_path :: Config_entry_t, --Path to directory of scripts in live web site
"$tmp_root =", tmp_root :: Config_entry_t, --Path to directory for demo user data
"$pads_home =", pads_home :: Config_entry_t, --Path to directory containing pads system
"$learn_home =", learn_home :: Config_entry_t, --Path to directory containing learning system
"$sml_home =", sml_home :: Config_entry_t, --Path to directory containing SML executable
"$install_src =", install_src :: Config_entry_t, --Path to directory containing learning demo website source
"$static_dst =", static_dst :: Config_entry_t, --Path to directory for static content in live web site
"$cgi_dst =", cgi_dst :: Config_entry_t, --Path to directory for cgi content in live web site site

trailer :: [Pstringln]
}

type Config_entry_t = Line (" \"", Pstring ’\"’, "\";")
type Header_t = [Pstringln] with term length of 13

{- File listing data sources for web site -}
type SourceNames_f = [Pstringln]

{- Information related to a single user’s use of the web site -}
type UserEntries_f = [Line UserEntry_t] with term Eor

{- Each visitor gets assigned a userId that is passed as a ? parameter in URL.
Security considerations preclude using user-modifiable values as part of file paths.
Thus, we map each userId to a corresponding dirId.
The dirId names the directory containing the associated user’s data.
A userEntry_t contains a single such mapping.
A file with type userEntries_t describes a collection of such mappings.

-}
data UserEntry_t = {

"id.", usrId :: Pint,
",id.", dirId :: (Pint, ’.’, Pint) where <| usrId == fst dirId |>

}

{- Log of requests. Used to prevent denial of service attacks. -}
type LogFile_f = [LogEntry_t]



{- Request entry. -}
data LogEntry_t = {
userId :: Pint, ’,’, --user making request
ip :: IP_t, ’,’, --IP address of requestor
script :: Pstring ’ ’, ’ ’, --script to be executed
userDir:: Pstring ’ ’, ’ ’, --directory to put results, corresponds to user
padsv :: Pstring ’ ’, ’ ’, --version of PADS used
sml :: PstringSE(RE " "), --version of SML used
msg :: Maybe Pstringln --optional message

}

type IP_t = (Pint, ’.’, Pint, ’.’, Pint, ’.’, Pint)
|]

[forest|
{- Files with various permission settings. -}
type BinaryRO = Binary where <| get_modes this_att == "-rw-r--r--" |>
type BinaryRX = Binary where <| get_modes this_att == "-rwxr-xr-x" |>
type TextRX = Text where <| get_modes this_att == "-rwxr-xr-x" |>
type TextRO = Text where <| get_modes this_att == "-rw-r--r--" |>

{- Optional binary file with read/execute permission. -}
type OptBinaryRX = Maybe BinaryRX

{- Files with PADS descriptions -}
type Config = File Config_f where <| get_modes this_att == "-rw-r--r--" |>
type SourceNames = File SourceNames_f where <| isReadOnly this_att |>
type UserEntries = File UserEntries_f where <| isReadOnly this_att |>
type LogFile = File LogFile_f where <| isReadOnly this_att |>

{- Directory of image files -}
type Imgs_d = Directory {

logo is "pads_small.jpg" :: BinaryRO,
favicon is "favicon.ico" :: BinaryRO

}

{- Directory of static content -}
type Static_d = Directory {
style_sheet is "pads.css" :: TextRO,
intro_redir is "learning-demo.html" :: TextRO,
title_frame is "atitle.html" :: TextRO,
logo_frame is "top-left.html" :: TextRO,
top_frame is "banner.html" :: TextRO,
empty_frame is "nothing.html" :: TextRO,
images is "images" :: Imgs_d where <| get_modes images_md == "drwxr-xr-x" |>

}

{- Directory of dynamic content -}
type Cgi_d = Directory {

config’ is "PLConfig.pm" :: TextRO,
perl_utils is "PLUtilities.pm" :: TextRO,
intro is "learning-demo.cgi" :: TextRX,
intro_nav is "navbar-orig.cgi" :: TextRX,
select_data is "pads.cgi" :: TextRX,
result_nav is "navbar.cgi" :: TextRX,
format_chosen is "data-results.cgi" :: TextRX,
gen_desc is "build-description.cgi" :: TextRX,
get_user_data is "build-roll-your-own.cgi" :: TextRX,
gen_desc_usr is "genData.cgi" :: TextRX,
build_lib is "build-library.cgi" :: TextRX,
build_accum is "build-accum.cgi" :: TextRX,
build_xml is "build-xml.cgi" :: TextRX,
build_fmt is "build-fmt.cgi" :: TextRX

}



{- Directory of shell scripts invoked by CGI to run learning system -}
type Scripts_d = Directory {

rlearn :: TextRX, --Shell script for running PADS comiler on stock format
rlearnown is "rlearn-own" :: TextRX, --Shell script for running PADS compiler on user format
raccum is "r-accum" :: TextRX, --Shell script to generate and run accumulator
rxml is "r-xml" :: TextRX, --Shell script to generate and run XML converter
rfmt is "r-fmt" :: TextRX, --Shell script to generate and run formating program
rlibrary :: TextRX --Shell script to build PADS library

}

{- Directory containing administrative files used by demo web site -}
type Info_d = Directory {

sources is "sampleFiles" :: SourceNames, --List of source data files whose formats can be learned
users is "userFile" :: UserEntries, --Mapping from userIDs to associated directory names
logFile is "logFile" :: LogFile --Log of server actions

}

{- Collection of files named by sources containing actual data. -}
type DataSource_d(sources :: [String]) = [ s :: Text | s <- sources ]

{- Type of a symbolic link with pointing to source-}
type SymLink_f (path :: FilePath) = SymLink where <| this == path |>

{- Directory of optional links to source data files -}
type Data_d ((root,sources) :: (FilePath, [String])) = Directory {

datareps is [s :: Maybe Text | s <- sources],
datalinks is [s :: Maybe (SymLink_f <| root++"/"++ s |>) | s <- sources]

}

{- Directory that stores the generated machine-dependent output for data source named source -}
type MachineDep_d (source :: String) = Directory {
pads_c is <| source ++ ".c" |> :: TextRO, --Generated C source for PADS description
pads_h is <| source ++ ".h" |> :: TextRO, --Generated C header for PADS description
pads_o is <| source ++ ".o" |> :: BinaryRO, --Compiled library for PADS description
pads_pxml is <| source ++ ".pxml" |> :: TextRO, --PADS description in xml syntax
pads_xsd is <| source ++ ".xsd" |> :: TextRO, --Xschema of XML syntax for source description
pads_acc is <| source ++ "-accum"|> :: OptBinaryRX, --Optional generated accumulator program
pads_fmt is <| source ++ "-fmt" |> :: OptBinaryRX, --Optional generated formatting program
pads_xml is <| source ++ "-xml" |> :: OptBinaryRX --Optional generated XML conversion program

}

{- Directory that stores the generated output for data source named "source". -}
type Example_d (source :: String) = Directory {

pads_p is <| source ++ ".p" |> :: TextRO, --PADS/C description of data source
pads_pml is <| source ++ ".pml" |> :: Maybe TextRO, --PADS/ML description of data source
vanilla is "vanilla.p" :: TextRO, --input tokenization
makefile is "GNUmakefile" :: Text, --Makefile
machine is <| envVar "AST_ARCH"|> :: Maybe (MachineDep_d source), --Platform dependent files
accum_c is <| source ++ "-accum.c" |> :: Maybe TextRO, --Template for accumulator program
accum_out is <| source ++ "-accum.out"|> :: Maybe TextRO, --ASCII Accumulator output
accum_xml_out is <| source ++ "-accum_xml.out"|> :: Maybe TextRO, --XML Accumulator output
xml_c is <| source ++ "-xml.c"|> :: Maybe TextRO, --Template for XML converter
xml_out is <| source ++ "-xml.out"|> :: Maybe TextRO, --XML representation of source
xml_xsd is <| source ++ ".xsd" |> :: Maybe TextRO, --Xschema for XML representation of source
fmt_c is <| source ++ "-fmt.c" |> :: Maybe TextRO, --Template for formatting program
fmt_out is <| source ++ "-fmt.out" |> :: Maybe TextRO --Formatted representation of source

}

{- Directory that stores all information for one user. -}
type User_d(arg@ (r, sources) :: (FilePath, [String])) = Directory {

dataSets is "data" :: Maybe (Data_d arg),
runExamples is [ s :: Maybe (Example_d s) | s <- sources]

}



{- Collection of directories containing temporary information for all users. -}
type Users_d((r,info) :: (FilePath, Info_d)) =

[userDir :: User_d <|(r, getSources info) |> | userDir <- <| userNames info |> ]

{- Top-level of PADS website. -}
type Website_d(config::FilePath) = Directory {
c is config :: Config, --Configuration file with locations of other components
static_content is <| gstatic_dst c |> :: Static_d, --Static web site content
dynamic_content is <| gcgi_path c |> :: Cgi_d, --Dynamic web site content
scripts is <| gscript_path c |> :: Scripts_d, --Shell scripts invoked by cgi to run learning system
admin_info is <| gstatic_dst c |> :: Info_d, --Administrative information about website
data_dir is <| (glearn_home c)++"/examples/data" |> --Stock data files for website

:: DataSource_d <|(getSources admin_info)|>,
usr_data is <| gtmp_root c |> :: Users_d <|(get_fullpath data_dir_md, admin_info)|> --User info
}
|]

{- HASKELL HELPER FUNCTIONS -}
isReadOnly md = get_modes md == "-rw-r--r--"

{- Function userName gets the list of user directorn names from an info structure. -}
userNames info = getUserEntries (users info)
getUserEntries (UserEntries (UserEntries_f users)) = map userEntryToFileName users
userEntryToFileName userEntry = pairToFileName (dirId userEntry)
pairToFileName (Pint n1, Pint n2) = "id."++(show n1)++"."++(show n2)

{- Helper functions to convert a Config entry to a FilePath -}
cToS (Config_entry_t (Pstring s)) = s
ghost_name (Config c) = cToS $ host_name c
gstatic_path (Config c) = cToS $ static_path c
gcgi_path (Config c) = cToS $ cgi_path c
gscript_path (Config c) = cToS $ script_path c
glearn_home (Config c) = cToS $ learn_home c
gtmp_root (Config c) = cToS $ tmp_root c
gstatic_dst (Config c) = cToS $ static_dst c
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D. Students.hs Description
This section includes the Forest description of the Princeton Computer Science Department filestore. The following is the initial portion of a
student record, shown here to illustrate the format.

KESSEL, PHIL BSE ’11
- - - - - - - - - - - - - - - - - - -
Type Yr Course Grade

1 A+ to F
d 2 P ( Pass )
t D p 3 INC
o . . 4 Dept xxx N (Not Avail)
- - - - - - - - - - - - - - - - - - -
d . . 1 COS 101 C
o . . 1 HOC 101 A
o . . 1 GOL 599 A+
...

-- Auxiliary Haskell functions for PADS description
ws = RE "[ �]+"
ows = RE "[ �]*"
junk = RE ".*"
space = ’ ’
quote = ’´’
comma = ’,’

-- PADS description of Princeton CS Student Record Format
[pads|
type Grade = Pre "[ABCD][+-]?|F|AUD|N|INC|P"

data Course =
{ sort :: Pre "[dto]", ws
, departmental :: Pre "[.D]", ws
, passfail :: Pre "[.p]", ws
, level :: Pre "[1234]", ws
, department :: Pre "[A-Z][A-Z][A-Z]", ws
, number :: Pint where <| 100 <= number && number < 600 |>, ws
, grade :: Grade, junk
}

data Middle_name = {space, middle :: Pre "[a-zA-Z]+[.]?" }

data Student_Name(myname::String) =
{ lastname :: Pre "[a-zA-Z]*" where <| toString lastname == myname |>, comma, ows
, firstname :: Pre "[a-zA-Z]*"
, middlename :: Maybe Middle_name
}

data School = AB | BSE

data Person (myname::String) =
{ fullname :: Student_Name myname, ws
, school :: School, ws, quote
, year :: Pre "[0-9][0-9]"
}

type Header = [Line (Pre ".*")] with term length of 7
type Trailer = [Line (Pre ".*")] with term Eof
data Student (name::String) =

{ person :: Line (Person name)
, Header
, courses :: [Line Course]
, Trailer
}

|]



-- Auxiliary Haskell functions for Forest description
template s = s ‘elem‘ ["SSSS.txt", "SSS.txt", "sxx.txt", "sss.txt", "ssss.txt"]
not_template = not . template

getYear :: String -> Integer
getYear s = read (reverse (take 2 (reverse s)))
toStrN i n = (replicate (n - length (show i)) ’0’) ++ (show i)
mkClass y = "classof" ++ (toStrN y 2)

transferRE = RE "TRANSFER|Transfer"
leaveRE = RE "LEAVE|Leave"
withdrawnRE = RE "WITHDRAWN|WITHDRAWAL|Withdrawn|Withdrawal|WITHDREW"
cRE = RE "classof[0-9][0-9]"
txt = GL "*.txt"

-- FOREST description of Princeton CS Department Database
[forest|
-- Root of the hierarchy
type PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkClass (y + 1)|> :: Class <| y + 1 |>
, graduates :: Grads
}

-- Collection of directories containing graduated students
type Grads =

Map [ c :: Class <| getYear c |> | c <- matches cRE ]

-- Directory containing all students in a particular year
type Class (y :: Integer) = Directory
{ bse is <|"BSE" ++ (toStrN y 2)|> :: Major
, ab is <|"AB" ++ (toStrN y 2)|> :: Major
, transfer matches transferRE :: Maybe Major
, withdrawn matches withdrawnRE :: Maybe Major
, leave matches leaveRE :: Maybe Major
}

-- Collection of files containing all students in a particular major.
type Major = Map
[ s :: File (Student <| dropExtension s |>)
| s <- matches txt, <| (not . template) s |> ]

|]



D.1 Generated Description
Here follows a description generated from a small sample of the student directory data using the description inference tool.

data transfer = Directory {
}
data wITHDREW = Directory {

fingertxt is "finger.txt" :: File Ptext
}
data tRANSFER = Directory {

bEAUCHEMINtxt is "BEAUCHEMIN.txt" :: File Ptext,
vERSTEEGtxt is "VERSTEEG.txt" :: File Ptext

}
data bSE11 = Directory {

transfer is "transfer" :: transfer,
bOZAKtxt is "BOZAK.txt" :: File Ptext,
kESSELtxt is "KESSEL.txt" :: File Ptext,
ssstxt is "sss.txt" :: File Ptext

}
data aB11 = Directory {

kADRItxt is "KADRI.txt" :: File Ptext,
mACARTHERtxt is "MACARTHER.txt" :: File Ptext,
oRRtxt is "ORR.txt" :: File Ptext,
sSSStxt is "SSSS.txt" :: File Ptext

}
data classof11 = Directory {

aB11 is "AB11" :: aB11,
bSE11 is "BSE11" :: bSE11,
tRANSFER is "TRANSFER" :: tRANSFER,
wITHDREW is "WITHDREW" :: wITHDREW

}



E. Coral.hs Description
This section gives the PADS and Forest descriptions for the CoralCDN Log repository. A graph of the CoralCDN repository, generated like
the graph above using the ForestGraph tool from the description and (a subset of) the actual repository follows.

-- Auxiliary Haskell definitions for PADS description
comma_ws = RE ",[ �]*"
status_re = RE "[0-9]+"

-- PADS description of CoralCDN Webserver Log Format
[pads|
type Time = (Pint, ".", Pint)

type Byte = constrain x :: Pint where <| 0 <= x && x <= 256 |>

type IP_Port =
{ ’"’,

ip :: (Byte,’.’,Byte,’.’,Byte,’.’, Byte), ":",
port :: Pint, ’"’ }

type Status = PstringME(status_re)

type Statistics =
{ stats_size :: Pint, comma_ws
, stats_proxy :: Pre "[01]", comma_ws
, stats_level :: Pint, comma_ws
, stats_lookup :: Pint, comma_ws
, stats_xfer :: Pint, comma_ws
, stats_total :: Pint }

type NoQuote = PstringME (RE "[ˆ\"]*")

type Generic = (’"’,NoQuote,’"’)

type Url = Generic

data Header =
{ version :: Maybe (Pre "[12],[ \t]*")
, time :: Time }

data Request =
{ src :: IP_Port, comma_ws
, dst :: IP_Port, comma_ws
, url :: Url }

data InData =
{ "\"IN\"", comma_ws
, in_req :: Request, comma_ws
, in_status1 :: Status, comma_ws
, in_status2 :: Status, comma_ws
, in_stats :: Statistics }

data OutData =
{ "\"OUT\"", comma_ws
, out_remote :: Pre "\"(REM|LOC)\"", comma_ws
, out_req :: Request, comma_ws
, out_referrer :: Url, comma_ws
, out_status :: Status, comma_ws
, out_stats :: Statistics, comma_ws
, out_forwarded :: Generic, comma_ws
, out_via :: Generic }

data InOut = In InData | Out OutData

data Entry =
{ header :: Header, comma_ws
, payload :: InOut
, Eor }

type Entries = [Entry] with term Eor

type Coral = (Entries, Eof)
|]



-- Forest description of CoralCDN Log Repository
[forest|
-- Directory containing log files
type Log = Directory
{ web is "coralwebsrv.log.gz" :: Gzip (File Coral),

dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),
prb is "probed.log.gz" :: Maybe (Gzip (File Ptext)),
dmn is "corald.log.gz" :: Maybe (Gzip (File Ptext)) }

-- Directory containing dates
type Site = [ d :: Log | d <- matches (RE "[0-9]{4}_[0-9]{2}_[0-9]{2}-[0-9]{2}_[0-9]{2}") ]

-- Directory containing sites
type Top = [ s :: Site | s <- matches (RE "[ˆ.].*") ]

|]



-- Load function for CoralCDN description
(rep,md) = unsafePerformIO $ top_load "/var/log/coral"

-- Helpers: deconstruct representations
get_sites :: Top -> [(String,Site)]
get_dates :: Site -> [(String,Log)]
get_entries :: Log -> [Entry]

-- Helpers: project fields
get_stats :: Entry -> Statistics
get_total :: Entry -> Int
get_date :: String -> String
get_url::Entry -> String
string_of_url :: Url -> String
is_in :: Entry -> Bool
is_out :: Entry -> Bool

-- Helper: builds an association list
lmap f p tdir =

[ f host datetime e | (host,hdir) <- get_sites tdir,
(datetime,ldir) <- get_dates hdir,
e <- get_entries ldir,
p e ]

-- Uses of lmap
by_date = lmap (\h d e -> (get_date d, get_total e))
by_host = lmap (\h d e -> (h, get_total e))
by_url_bytes = lmap (\h d e -> (get_url e, get_total e))
by_url_counts = lmap (\h d e -> (get_url e, 1))

-- Helpers: fold down an association list
go_bins m p = fromListWith (+) (m p rep)

count_bins m = fromListWith (+) (fold (\ c l -> (c,1):l) [] m)

go_flat p =
sum [ (get_total e) | (host,hdir) <- get_sites tdir,

(datetime,ldir) <- get_dates hdir,
e <- get_entries ldir,
p e ]

-- Several useful queries
in_total = go_flat is_in
out_total = go_flat is_out
in_by_host = go_bins by_host is_in
out_by_host = go_bins by_host is_out
in_by_date = go_bins by_date is_in
out_by_date = go_bins by_date is_out
in_url_bytes = go_bins by_url_bytes is_in
out_url_bytes = go_bins by_url_bytes is_out
in_url_counts = go_bins by_url_counts is_in
out_url_counts = go_bins by_url_counts is_out
in_counts_urls = count_bins $ go_bins by_url_counts is_in
out_counts_urls = count_bins $ go_bins by_url_counts is_out
num_sites () = case load_logs () of Top l -> List.length l

-- Top-k URLs
topk k =
take k $ sortBy sortDown $ toList $
fromListWith (+)
[ (get_url e, get_total e)
| (site,sdir) <- get_sites rep,

(datetime,ldir) <- get_dates sdir,
e <- get_entries ldir,
is_in e ]























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































F. Gene Ontology
This section presents a description of gene ontology data found here: http://www.geneontology.org/gene-associations/.
A graph generated using ForestGraph on a subset of the data follows the description.

This filestore is a web directory of gene association data files. The root directory contains a number of .gz files, a readme directory
and a submission directory. Each .gz file is the gene ontology (GO) data of the genes in one or more organism, and the file names have
the format "gene_association.XXX_YYY.gz", where XXX represents the name of the institute that provides the data and YYY is the
name of the organism. YYY is optional because some institute provides the data for only one organism.

The readme directory contains a set of .README files for a subset of the GO data in the root.
The submission directory contains a set of .gz files, their corresponding .conf files, and a paint sub-directory. The .gz files

are similar to the ones in root except they are older. The .conf file summarizes some attributes of the .gz file such as “the name of the
project”, “contact email”, etc. The paint sub-directory contains a further set of subdirectories of the form PTHRXXXXX, where XXXXX is a
5-digit number. These subdirectories each contain six text files and an XML file. These are the annotation inference of the gene ontology
using phylogenetic trees and the PAINT tool.

-- PADS descriptions of data file format.
[pads|
type Pfloat = (Pint, ’.’, Pint)
type Pdate = {mon :: Pint, ’/’, day :: Pint, ’/’, year :: Pint}
type Purl = ("http://", Pstringln)
type Version_t = ("!CVS Version: Revision: ", Pfloat, ws, ’$’)
type Valid_date_t = ("!GOC Validation Date: ", Pdate, ws, ’$’)
type Sub_date_t = ("!Submission Date: ", Pdate)
type Project_name_t = ("!Project_name: ", Pstringln)
type URL_t = ("!URL: ", Purl)
type Email_t = ("!Contact Email: ", Pstringln)
type Funding_t = ("!Funding: ", Pstringln)
type Gaf_ver_t = ("!gaf-version: ", Pfloat)
type Organism_t = ("!organism:", ws, Pstringln)
type Date_t = ("date:", ws, Pdate)
type Note_t = (’!’, ws, Pstringln)

data Header_line_t =
Version Version_t
| Valid_date Valid_date_t
| Sub_date Sub_date_t
| Project_name Project_name_t
| URL URL_t
| Email Email_t
| Funding Funding_t
| Gaf_ver Gaf_ver_t
| Organism Organism_t
| Date Date_t
| Note Note_t
| Other (’!’, Pstringln)

type Other_line_t = Pstringln

type GA_f = ([Line Header_line_t], [Line Other_line_t] with term Eof)
|]

[pads|
data Pair_t = {key::Pstring ’=’, ’=’, val::Pstringln}
type Conf_f = [Line Pair_t] with term Eof

|]

[pads|
type Xml_header = ("<?xml ", Pstringln)
type XML_f = (Line Xml_header, [Line Pstringln])

|]

http://www.geneontology.org/gene-associations/


-- Forest description of Gene Ontology filestore
[forest|
type Readme_d = Directory {
readmes is [rm :: Maybe Text | rm <- <|map get_readme_file (comb_source sources)|>]

}

type PTHR_d (name :: String) = Directory {
attr is <| name ++ ".save.attr" |> :: Text,
gaf is <| name ++ ".save.gaf" |> :: Text,
msa is <| name ++ ".save.msa" |> :: Text,
paint is <| name ++ ".save.paint" |> :: File XML_f,
sfan is <| name ++ ".save.sfan" |> :: Text,
tree is <| name ++ ".save.tree" |> :: Text,
txt is <| name ++ ".save.txt" |> :: Text,
wts is <| name ++ ".save.txt" |> :: Text
}

type Pre_sub_d = Directory {
pre_gz_files is [gz :: Maybe (Gzip (File GA_f)) | gz <- <|map get_gz_file (comb_source sources)|>],
pre_conf_files is [conf :: Maybe (File Conf_f) | conf <- <|map get_conf_file (comb_source sources)|>]

}

type Paint_d = Directory {
pthr_dirs is [dir_name :: PTHR_d (dir_name) | dir_name <- matches RE "PTHR[0-9]+"],
pre_sub is "pre-submission" :: Pre_sub_d

}

type Submission_d = Directory {
gz_files is [gz :: Maybe (Gzip (File GA_f)) | gz <- <|map get_gz_file (comb_source sources)|>],
conf_files is [conf :: Maybe (File Conf_f) | conf <- <|map get_conf_file (comb_source sources)|>],
paint_files is [cs :: Maybe (File Conf_f)

| cs <- <|map (\x -> get_conf_file ("paint" ++ x)) (comb_source sources)|>],
paint_d is "paint" :: Paint_d

}

type Top_d = Directory {
data_files is [gz :: Maybe (Gzip (File GA_f)) |

gz <- <|map get_gz_file (comb_source sources)|>],
readme is "readme" :: Readme_d,
sub is "submission" :: Submission_d

}
|]

-- Haskell code to generate graph corresponding to sample data set in filestore "Data/ga"
doImg = do
(rep,md) <- top_d_load "Data/ga"
; mdToPDF md "Examples/ga.pdf"



-- Auxiliary Haskell Definitions
ws = RE "[ �]+"
title = "gene_association"
get_gz_file f = title ++ "." ++ f ++ ".gz"
get_readme_file f = f ++ ".README"
get_conf_file f = title ++ "." ++ f ++ ".conf"

{- each source is a pair (institute name, list of organisms the institute provides) -}
sources = [

("Compugen", [])
, ("GeneDB", ["Lmajor","Pfalciparum","Spombe","Tbrucei","tsetse"])
, ("PAMGO", ["Atumefaciens","Ddadantii","Mgrisea","Oomycetes"])
, ("aspgd", [])
, ("cgd", [])
, ("dictyBase", [])
, ("ecocyc", [])
, ("fb", [])
, ("goa", ["arabidopsis","chicken","cow","human","mouse","pdb","rat",

"uniprot","uniprot_noiea","zebrafish"])
, ("gramene", ["oryza"])
, ("jcvi", ["Aphagocytophilum","Banthracis","Cburnetii","Chydrogenoformans",

"Cjejuni","Cperfringens","Cpsychrerythraea","Dethenogenes","Echaffeensis",
"Gsulfurreducens","Hneptunium","Lmonocytogenes","Mcapsulatus","Nsennetsu",
"Pfluorescens","Psyringae","phaseolicola","Soneidensis","Spomeroyi",
"Vcholerae"])

, ("mgi", [])
, ("pseudocap", [])
, ("reactome", [])
, ("rgd", [])
, ("sgd", [])
, ("sgn", [])
, ("tair", [])
, ("wb", [])
, ("zfin", []) ]

comb_source [] = []
comb_source ((inst, organs):sources) =

let cl = case organs of
[] -> [inst]
_ -> map (\organism -> inst ++ "_" ++ organism) organs

in cl ++ (comb_source sources)

{- the GO files, when unzipped, contain a header like the following:
!CVS Version: Revision: 1.19 $
!GOC Validation Date: 01/27/2007 $
!Submission Date: 1/15/2007
-}

ga

gene_association.GeneDB_Lmajor.gz

gene_association.jcvi_Aphagocytophilum.gz

readme

submission

GeneDB_Lmajor.README

paint

PTHR10000

pre-submission

PTHR10000.save.attr

PTHR10000.save.gaf

PTHR10000.save.msa

PTHR10000.save.paint

PTHR10000.save.sfan

PTHR10000.save.tree

PTHR10000.save.txt



G. CVS.hs Description
This section provides a generic description for CVS repositories.

-- PADS description of CVS file formats
[pads| type Repository_f = Line Pstringln

data Mode_t = Ext ":ext:" | Local ":local:" | Server ":server:"
data Root_t = { cvs_mode :: Maybe Mode_t

, machine :: Pstring ’:’, ’:’
, path :: Pstringln
}

type Root_f = Line Root_t
data Dentry_t = { "D/"

, dirname :: Pstring ’/’
, "////"
}

data Revision_t = Version (Pint, ’.’, Pint) | Added ’0’ | Removed ’-’
data TimeStamp_t = { ts :: PstringSE (RE "[/+]")

, conflict :: Maybe (’+’, Pstring ’/’) }

type Fentry_t = { "/"
, filename :: Pstring ’/’, "/"
, revision :: Revision_t, "/"
, timestamp :: TimeStamp_t, "/"
, options :: Pstring ’/’, "/"
, tagdate :: Pstringln
}

data Entry_t = Dir Dentry_t | File Fentry_t | NoDir ’D’
type Entries_f = [Line Entry_t] with term Eof

|]

-- Auxiliary Haskell functions
getEntries cvs = let (Entries_f l) = entries cvs in l
getDirName d = let (Pstring s) = dirname d in s
getFileName f = let (Pstring s) = filename f in s

isDir entry = case entry of Dir _ -> True; otherwise -> False
isFile entry = case entry of File _ -> True; otherwise -> False

getDirs cvs = map (\(Dir d) -> d) (filter isDir (getEntries cvs))
getFiles cvs = map (\(File f) -> f) (filter isFile (getEntries cvs))

-- FOREST description of CVS directory structure
-- Note that this description is recursive.
-- Note also that the collection of dirs and the
-- collection of files are determined from information in the cvs
-- directory.
[forest| type CVS_d = Directory

{ repository is "Repository" :: File Repository_f
, root is "Root" :: File Root_f
, entries is "Entries" :: File Entries_f
}

type CVS_Repository_d = Directory
{ cvs is "CVS" :: CVS_d
, dirs is [ n as <| getDirName d |> :: CVS_Repository_d | d <- <| getDirs cvs |> ]
, files is [ <| getFileName f |> :: Text | f <- <| getFiles cvs |> ]
} |]

-- Sample use of PADS and FOREST descriptions
meta_dir = "Examples/CVS"
entries_file = meta_dir ++ "/Entries"
doParseEntries = do {
(rep, md) <- parseFile entries_file
}

doLoadCVS = do {
(meta_rep, meta_md) <- cVS_d_load meta_dir

}



H. Universal.hs Description
This section includes a universal data description. This universal description is used to drive some of our generic tools.

-- Universal Forest Directory Description
[forest|
type Universal_d = Directory

{ ascii_files is [ f :: Text | f <- matches (GL "*"), <| get_kind f_att == AsciiK |> ]
, binary_files is [ b :: Binary | b <- matches (GL "*"), <| get_kind b_att == BinaryK |> ]
, directories is [ d :: Universal_d | d <- matches (GL "*"), <| get_kind d_att == DirectoryK |> ]
, symLinks is [ s :: SymLink | s <- matches (GL "*"), <| get_isSym s_att == True |> ]
}

|]

-- Use of Universal directory
universal_dir = "Examples/data/universal"
doLoadUniverse = do {
(rep, md) <- universal_d_load universal_dir
}
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