
A Primal-Dual Clustering Technique

with Applications in Network Design

MohammadHossein Bateni

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Moses S. Charikar

September 2011

c© Copyright by MohammadHossein Bateni, 2011.

All Rights Reserved

Abstract

Network design problems deal with settings where the goal is to design a network

(i.e., find a subgraph of a given graph) that satisfies certain connectivity requirements.

Each requirement is in the form of connecting (or, more generally, providing large

connectivity between) a pair of vertices of the graph. The goal is to find a network of

minimum length, and in some cases requirements can be compromised after paying

their “penalties.” These are usually called prize-collecting Steiner network problems.

In practical scenarios of physical networking, with cable or fiber embedded in the

ground, crossings are rare or nonexistent. Hence, planar instances of network design

problems are a natural subclass of interest. We can usually take advantage of this

structure to find better performance guarantees.

In this thesis, we develop a primal-dual clustering technique called “prize-

collecting clustering,” which is used to give improved approximation algorithms for

several planar and nonplanar network design problems. The technique is based on a

famous moat growing procedure due to Agrawal, Klein, Ravi [AKR95] and Goemans

and Williamson [GW95]. It provides a paradigm for clustering the vertices of a graph

according to their “budgets” such that vertices of the same cluster are close compared

to their budgets, whereas distinct clusters are far compared to their budgets.

We first improve the approximation ratio of (nonplanar) Prize-collecting

Steiner Tree, Prize-collecting TSP, and Prize-collecting Stroll. For

17 years, the best known results for these problems were 2-approximation algorithms

of Goeman and Williamson [AKR95]. We show how to get around the integrality gap

of the natural linear-programming relaxation, and achieve an approximation ratio of

2− c (for a fixed, yet small c).

Next we give a thorough complexity study of Steiner Forest for graphs of

treewidth two, three, and O(1) as well as planar and bounded-genus graphs. In

particular, we provide a polynomial-time approximation scheme (PTAS) for Steiner

iii

Forest on planar graphs. Prize-collecting clustering paradigm allows us to gen-

eralize PTASes for Euclidean Steiner Tree [Aro98, Mit99], Euclidean Steiner

Forest [BKM08], and planar Steiner Tree [BKM09]. Our algorithm builds upon

the brick decomposition technique of Borradaile et al. [BKM09], in addition to a

nontrivial PTAS for bounded-treewidth Steiner Forest.

Finally, we look at several prize-collecting Steiner network problems on pla-

nar (and bounded-genus) graphs. We present a reduction from these instances

to the bounded-treewidth special cases of those problems implying, in particu-

lar, that a PTAS carries over. For Prize-collecting Steiner Tree (Prize-

collecting TSP, and Prize-collecting Stroll) as well as Multiplicative

Prize-collecting Steiner Forest, we show that this leads to PTASes. How-

ever, we show that several seemingly simple problems in this area are APX-hard. As

a result, we give the first provable separation between the complexity of a natural

network design problem and its prize-collecting variant: a PTAS for planar Steiner

Forest and APX-hardness for planar Prize-collecting Steiner Forest.

We hope that the prize-collecting clustering paradigm can be used to give PTASes

and improved approximation guarantees for several other network design problems.

iv

Acknowledgements

First and foremost, I feel indebted to my adviser, Moses Charikar, whose support

has been invaluable during my years in Princeton. Only now, preparing to move on

to the next stage of my academic life and getting out of the Princeton bubble, am

I beginning to fully appreciate the fruits of his guidance. His patience and under-

standing my situation as well as assisting me with writing papers and preparing my

presentations have been crucial. I should thank him once more since he was available

for advice or academic help whenever I needed it most, no matter how late or incon-

venient the time. I will always look up to him in my life, and aspire to attain one day

his insight into theoretical computer science.

I have also learned a lot from my main collaborator, MohammadTaghi Hajiaghayi,

who has been for me not only a collaborator, but a friend and a mentor, too. I have

sought his advice on many issues, academic or otherwise, and I have never regretted

the decisions I have made as a result. He is my coauthor on all the papers comprising

the body of the current thesis. In fact, he introduced me to the field of network

design, and the project finally leading to this thesis started when I was working with

him as an intern in AT&T Labs–Research. This thesis, therefore, would not have

been possible without his guidance and support.

I want to take on this opportunity to thank my thesis committee members—

Moses Charikar, MohammadTaghi Hajiaghayi, Sanjeev Arora, Bernard Chazelle, and

Robert Schapire—who have accommodated my timing constraints despite their full

schedules, and provided me with precious feedback for the presentation of the results,

in both written and oral form.

During my Ph.D. studies, I had the pleasure of collaborating with many re-

searchers from each and every one of which I had things to learn. The list includes

Aaron Archer, Moses Charikar, Julia Chuzhoy, Alexandre Gerber, Lukasz Golab,

Venkatesan Guruswami, MohammadTaghi Hajiaghayi, Nicole Immorlica, Sina Jafar-

v

pour, Howard Karloff, Philip Klein, Hamid Mahini, Dániel Marx, Claire Mathieu,

Dan Pei, Subhabrata Sen, and Morteza Zadimoghaddam. I wish to thank them all.

Living in Princeton without my good friends would not have been easy. I want

to thank all my friends in the department; in particular, Aditya, Aravindan, Sina,

Sushant, and Mohammad deserve special thanks, for they provided me with moments

of joy and supported me in their own capacity as I needed. Outside the department,

I wish to thank Abbas, Ahmad, Amin, Diya, Fethi, Hadee, Hadi, Hamid, Hani, Ilhan,

Iman, Mohammad, Mohammad, Mohammad, Morteza, Noori, Parween, Reza, Reza,

Reza, Shayan, Taher, Tiffany, Vahab, Wasim, and Yusuf, in particular, though I am

sure I have missed at least a handful of others.

I appreciate the generous fellowships and grants supporting my study and research

in Princeton University. I was honored to receive the Gordon Wu Fellowship for 2006-

2010, and the Elizabeth Charlotte Procter Fellowship for 2010-2011. In addition, my

research was supported by NSF ITR grants CCF-0205594, CCF-0426582 and NSF

CCF 0832797, NSF CAREER award CCF-0237113, MSPA-MCS award 0528414, NSF

expeditions award 0832797. I also spent three summers as interns in David Johnson’s

group at AT&T Labs–Research, working with Julia Chuzhoy at Toyota Technological

Institute, and working with Niv Buchbinder at Microsoft Research–New England. I

am grateful to them for the opportunities they provided for me.

Last but definitely not least, I want to express my deepest gratitude to my beloved

parents, Mahmoud and Fatemeh, and my dearest siblings, Farzaneh and Moham-

madAmin. Their unflagging love and unwavering support have been crucial to my

success, and a constant source of comfort and counsel. I can never do justice to ex-

plaining how much I owe them. During my studies at Princeton University, I sorely

missed them. Though they were not here in person, I have always felt their presence

in my heart. I dedicate this thesis to my parents.

vi

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xiii

List of Figures . xiv

List of Algorithms . xvi

I Preliminaries 1

1 Introduction 2

2 Definitions 7

2.1 Essential definitions . 7

2.1.1 Functions . 7

2.1.2 Partitions . 8

2.1.3 Submodularity . 9

2.1.4 Metrics . 10

2.2 Computational complexity . 10

2.2.1 Efficient algorithms . 10

2.2.2 Linear programming . 11

2.2.3 NP-completeness . 14

2.2.4 Hardness of approximation . 16

viii

2.3 Graph terminology . 17

2.3.1 Graph classes . 21

2.4 Problem definitions . 30

2.4.1 Connectivity problems . 30

2.4.2 Prize-collecting framework . 33

3 Thesis Organization and Contributions 41

3.1 Techniques . 41

3.1.1 Prize-collecting clustering . 41

3.1.2 Spanner framework . 42

3.1.3 Spanner construction . 42

3.1.4 Granularization . 43

3.2 Results . 43

3.2.1 Prize-collecting problems in general graphs 43

3.2.2 Steiner Forest on planar graphs 44

3.2.3 Planar Prize-collecting Steiner Forest 45

3.3 Credits . 46

II Techniques 47

4 Prize-collecting Clustering 48

4.1 Moat-growing procedure . 50

4.1.1 Implementation and further discussion 54

4.1.2 Goemans-Williamson’s algorithm for PCST 56

4.2 Classification theorem . 57

4.3 Superclustering theorem . 65

4.4 Submodular clustering . 78

ix

5 Spanner Framework 86

5.1 Spanners . 87

5.2 An example: exact algorithm for planar k-Cut 89

5.3 The general reduction . 90

6 Spanner Construction 92

6.1 Preprocessing . 92

6.2 Brick decomposition . 93

6.3 Portal designation . 94

6.4 Brick processing . 95

6.5 Overview of analysis . 96

7 Granularization 98

7.1 Static granularization . 100

7.2 Dynamic granularization . 102

III Applications 106

8 Prize-collecting Steiner Tree and TSP 107

8.1 Background . 108

8.2 Overview of the algorithm . 111

8.3 A good case, and a motivating bad example 114

8.4 Our PCST algorithm . 116

8.5 Our PCTSP algorithm . 121

8.6 Our Prize-collecting Path algorithms 124

9 Planar Steiner Forest 128

9.1 Background . 129

9.2 Steiner forest for series-parallel graphs 132

x

9.3 Steiner forest for graphs of treewidth three 141

9.4 Steiner forest for bounded-treewidth graphs 145

9.4.1 Groups . 145

9.4.2 Conforming solutions . 146

9.4.3 Constructing the partitions 158

9.5 Steiner forest for planar graphs . 162

9.5.1 Preprocessing . 164

9.5.2 Spanner construction . 168

9.5.3 The algorithm . 172

10 Prize-collecting Network Design in Planar Graphs 174

10.1 Background . 175

10.2 Reduction to the bounded-treewidth case 179

10.2.1 Overview of the reduction . 180

10.2.2 Restricting demands . 186

10.2.3 Restricting connectivity . 189

10.3 APX-hardness for PCSF . 190

10.3.1 Hardness for planar graphs of treewidth two 190

10.3.2 Remarks about the reduction 193

10.3.3 Hardness for Euclidean metrics 194

10.4 PCST, PCTSP, and PCS . 202

10.4.1 Bounded-treewidth PCST . 202

10.5 Multiplicative prize-collecting Steiner forest 206

10.5.1 Fixed prize from asymmetric small integer weights 208

10.5.2 Fixed prize from symmetric arbitrary weights 214

10.5.3 Fixed prize from asymmetric arbitrary weights 215

10.5.4 Prize-collecting tradeoff with arbitrary symmetric weights . . 217

10.5.5 Euclidean setting . 221

xi

11 Open Problems 223

xii

List of Tables

8.1 Approximation ratios implied by Theorem 8.4.4 for PCSTβ 121

9.1 Complexity of Steiner Forest for different classes of graphs. . . . 129

9.2 PTAS for Steiner Tree and Steiner Forest on Euclidean, planar

and bounded-genus graph metrics. 131

10.1 Complexity of PCSF and its special cases for different classes of graphs178

xiii

List of Figures

2.1 Graph definitions . 18

2.2 Edge contraction . 21

2.3 Tree decomposition . 22

2.4 Series-parallel graphs . 25

2.5 Planar and outerplanar graphs . 26

2.6 The relationship between graph classes 29

2.7 The relationship between connectivity problems 37

4.1 Illustration of PC-MoatGrowing . 63

4.2 Illustration of Lemmas 4.3.3 and 8.4.2 69

4.3 PC-Superclustering in one epoch 74

8.1 Bad example for GW . 115

9.1 Construction of the auxiliary graph Di for a series connection in the

DP algorithm for Steiner Forest on series-parallel graphs. 139

9.2 The graph used in the NP-hardness proof of treewidth-three Steiner

Forest . 142

9.3 Partition of a bag introduced by a forest 147

9.4 Demonstration of α ∨ β on partitions induced by forests 148

9.5 Augmenting the solution to a conforming forest 161

xiv

10.1 Illustrating the reduction from 3-Regular Vertex Cover to

Prize-collecting Steiner Forest 192

10.2 Illustrating the reduction from 3-regular Minimum Vertex Cover

to Euclidean Prize-collecting Steiner Forest 196

10.3 Illustration of sets R and R+ in the hardness proof for Euclidean PCSF199

xv

List of Algorithms

4.1 PC-MoatGrowing (G, π) . 54

4.2 GW (G, π, r) . 56

4.3 PC-Classify (G, φ) . 58

4.4 PC-Superclustering (G, φ, r) . 68

4.5 SubmodPC-Cluster (G,D, π) . 82

8.1 PCSTβ(G, π, r) . 117

8.2 PCTSPβ(G, π, r) . 121

8.3 PC-Path2β(G, π, r, t) . 125

9.1 PC-Partition(Gin,D) . 166

9.2 SF-Spanner(G,D) . 168

9.3 SF-PTAS . 172

10.1 RestrictDemands(G,D, π) . 187

xvi

Part I

Preliminaries

1

Chapter 1

Introduction

Network design problems deal with settings where the goal is to design a network (i.e.,

find a subgraph of a given graph) that satisfies certain connectivity requirements;

see, e.g., [Win87, GK11]. Edges of the given graph describe the cost of the possible

links the network may have, and each requirement is in the form of connecting (or,

more generally, providing large connectivity between) a pair of vertices of the graph.

The goal is to find the network of minimum cost (i.e., the subgraph of minimum

length), where connectivity requirements can sometimes be compromised after paying

their associated penalties. These are usually called prize-collecting Steiner network

problems.

One of the most fundamental problems in network design is Steiner Tree (a

generalization of Minimum Spanning Tree) in which, given a subset of vertices

(called terminals), the goal is to find the minimum-length subgraph (a tree, without

loss of generality) that spans all the terminals. A greedy 2-approximation algorithm

was long known [GP68] before improvements came in the form of a series of more

and more complicated greedy algorithms [Zel92, Zel93, BR92, Zel96, PS97, KZ97,

HP99, RZ00, RZ05], culminating in an approximation ratio of 1 + 1
2

ln 3 + ε ≈ 1.55.

A natural primal-dual algorithm achieving the approximation guarantee as well as

2

integrality gap of 2—the same as the first greedy algorithm—was recently enhanced

to give an approximation guarantee of 1.55 [CKP10b, CKP10a, KPT11] and finally

ln 4 + ε ≈ 1.387 [BGRS10].

Steiner Tree has been generalized in multiple directions. If each demand re-

quires two vertices to be connected to each other, we have Steiner Forest. Sur-

prisingly, after two decades, a 2-approximation algorithm of Agrawal, Klein, and

Ravi [AKR95] is still the best known for Steiner Forest.

In some applications, it is not necessary to satisfy all the demands. When serving

at least k demands suffices, we obtain k-MST or k-Steiner Forest. While k-

Steiner Forest is believed to be hard to approximate (since it can be used to solve

the notorious k-Densest Subgraph [HJ06, BCC+10]), k-MST has been studied ex-

tensively [RSM+94, AABV95, RV95, BRV96, Gar96, AR98, AK06, Gar05]: the most

recent algorithms use the fact that k-MST is the Lagrangian relaxations of Prize-

collecting Steiner Tree (to be introduced below). The best approximation ratio

for k-MST is a factor 2.

In order to model the tradeoff between the number of demands satisfied and

the length of the solution, “prizes” (sometimes called “penalties”) are assigned to

demands: the cost of a solution is then the sum of the length of the subgraph we

construct and the penalties of demands we do not serve. See, e.g., [Bal89, GW95,

HJ06, NSW08].

The prize-collecting framework, in particular Prize-collecting Steiner For-

est, can be used to address many applications. The standard application is that of

designing telecommunications local access networks, where the goal is to create or

expand a local access network to offer service to new customers [CRR01, dCLMR03].

Prizes (in the form of potential revenue) are assigned to new customers, whereas serv-

ing them imposes a cost on the network. Another application is in the area of energy

distribution, in particular planning and extending district heating networks, proposed

3

by [LWP+06]. Lee et al. [LLP96] use Prize-collecting Steiner Tree to address

a hub selection scenario in the design of digital data service networks. In addition

to the above applications, Prize-collecting Steiner Tree has been used as a

subroutine in solving several other problems such as cost allocation [EGLV98], mul-

ticasting games [CKR+03], and dynamic pricing [FP03] scenarios.

The prize-collecting framework is a broad setting that can be applied to different

problems in which a penalty is associated with not satisfying certain demands. This

has been studied, for instance, in the context of Traveling Salesman, Stroll,

and Rural Postman Problem [Bal89, AFZ06]. Generalized versions of the penalty

function have been considered, e.g., by [HJ06, SSW07, HKKN10], and extensions to

higher connectivity requirements have been studied by [NSW08, HKKN10].

We note that, in network design, planarity is a natural restriction since in prac-

tical scenarios of physical networking, with cable or fiber embedded in the ground,

crossings are rare or nonexistent. The setting of road networks, even with bridges an

underpasses, is believed to have an embedding with a small genus [BDT09, OGS11].

Since Euclidean, planar, and bounded-genus instances are ubiquitous in practice and

seem to be the more interesting cases, it makes sense to study these special cases

further. It turns out that we can usually take advantage of this additional structure

to find better performance guarantees.

There is a wealth of literature on obtaining improved approximation algorithms

for planar graphs. Here we focus on PTASes. The seminal work of Baker [Bak94] ob-

tained PTASes for several optimization problems on planar graphs (such as Minimum

Vertex Cover and Maximum Independent Set) although the corresponding

problems on general graphs are considerably harder to approximate. The main idea

in her work is a decomposition approach that reduces the problem on a planar graph

to the problem on graphs of bounded treewidth. This approach has been subsequently

applied in a variety of contexts. (The algorithmic and graph-theoretic properties of

4

treewidth are extensively studied and a well-understood dynamic programming tech-

nique can solve several NP-hard problems on bounded-treewidth graphs.) The broad

outline of the PTAS approach for planar graphs had to be augmented with a variety

of nontrivial ideas and extensions.

A parallel framework was developed at around the same time to tackle many opti-

mization problems on Euclidean metrics (see [Aro98, Mit99]). In particular, PTASes

are known for Steiner Tree, Steiner Forest, Facility Location, and good

approximation algorithms for Group Steiner Tree.

In this thesis, we develop a primal-dual clustering technique called “prize-

collecting clustering,” which is used to give improved approximation algorithms for

several planar and nonplanar network design problems. The technique is based on a

famous moat growing procedure due to Agrawal, Klein, Ravi [AKR95] and Goemans

and Williamson [GW95]. It provides a paradigm for clustering the vertices of a graph

according to their “budgets” such that vertices of the same cluster are close compared

to their budgets, whereas distinct clusters are far compared to their budgets.

We first improve the approximation ratio of (nonplanar) Prize-collecting

Steiner Tree, Prize-collecting TSP, and Prize-collecting Stroll. For

17 years, the best known results for these problems were 2-approximation algorithms

of Goeman and Williamson [AKR95]. We show how to get around the integrality gap

of the natural linear-programming relaxation, and achieve an approximation ratio of

2− c (for a fixed, yet small c).

Next we give a thorough complexity study of Steiner Forest for graphs of

treewidth two, three, and O(1) as well as planar and bounded-genus graphs. In

particular, we provide a polynomial-time algorithm for the case of treewidth two,

an NP-hardness proof for the case of treewidth three, and polynomial-time approxi-

mation scheme (PTAS) for Steiner Forest on bounded-genus (as well as planar

and bounded-treewidth) graphs. Prize-collecting clustering paradigm allows us to

5

generalize PTASes for Euclidean Steiner Tree [Aro98, Mit99], Euclidean Steiner

Forest [BKM08], and planar Steiner Tree [BKM09]. Our algorithm builds upon

the brick decomposition technique of Borradaile et al. [BKM09], in addition to a

nontrivial PTAS for bounded-treewidth Steiner Forest.

Finally, we look at several prize-collecting Steiner network problems on pla-

nar (and bounded-genus) graphs. We present a reduction from these instances

to the bounded-treewidth special cases of those problems implying, in particu-

lar, that a PTAS carries over. For Prize-collecting Steiner Tree (Prize-

collecting TSP, and Prize-collecting Stroll) as well as Multiplicative

Prize-collecting Steiner Forest, we show that this leads to PTASes. How-

ever, we show that several seemingly simple problems in this area are APX-hard. As

a result, we give the first provable separation between the complexity of a natural

network design problem and its prize-collecting variant: a PTAS for planar Steiner

Forest and APX-hardness for planar Prize-collecting Steiner Forest.

We hope that the prize-collecting clustering paradigm can be used to give PTASes

and improved approximation guarantees for several other network design problems.

6

Chapter 2

Definitions

2.1 Essential definitions

The ordering of items in a set does not matter, i.e., {a1, a2} is the same set as {a2, a1}.

When the ordering is important, we use 〈a1, a2, . . . , ak〉 to denote the sequence, or

(a1, a2, . . . , ak) to refer to a multiple.

We say a set A is the disjoint union of B and C if A = B ∪ C and B ∩ C = ∅.

As is customary, we use AT to denote the transpose of a matrix A. We think of a

vector of size n as a matrix with dimensions n × 1, hence we use the same notation

for transposing vectors. The dot product of two vectors a and b is, then, simply the

single entry in the result of their matrix products, i.e., aT · b. To make the formulas

more concise, we use A ≤ B, for a pair of matrices A,B with the same dimensions,

to denote that all entries of A are smaller than their corresponding entries in B.

2.1.1 Functions

For a function (or, equivalently, mapping) f : A 7→ B, we say A is the domain, and

B is the range. A function is injective if it does not map two elements of its domain

to the same element in its range. A surjective function is one that maps at least one

7

element of the domain to each element in the range. A function that is both injective

and surjective is called a bijection or a one-to-one correspondence. The inverse of

a unction f : A 7→ B is denoted by f−1. The inverse is a function itself if f is a

bijection, but in general we use the same notation even if there is no inverse function;

in this case f−1(x) = {y : f(y) = x} may be empty or contain more than one element.

For the ease of notation, we use f(A′) =
∑

a∈A′ f(a) if f : A 7→ R and A′ ⊆ A. If x

is a vector whose components are indexed by elements of A, we use a similar notation

xA′ =
∑

a∈A′ xa if A′ ⊆ A. As we usually work with nonnegative functions, we use

R+,Z+ to denote the set of nonnegative real and integers numbers, respectively.

The following standard asymptotic order notation are used throughout this thesis

to describe the running time, space complexity, etc. Consider a function f : R+ 7→ R+.

Then, f(n) = O(g(n)) if and only if there exists n0, c > 0 such that f(n) ≤ cg(n) for

n ≥ n0. We then have g(n) = Ω(f(n)). If f(n) = O(g(n)) and g(n) = O(f(n)), we

say f(n) = Θ(g(n)). In addition, f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n)

= 0, and

then we say g(n) = ω(f(n)).

2.1.2 Partitions

A collection S is said to be laminar if and only if for any two sets C1, C2 ∈ S, we

have C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅. Suppose C is a partition of a ground set

V . Then, C(v) denotes for each v ∈ V the class C ∈ C that contains v. Classes of a

partition are sometimes called sets, parts, or components of the partition. A partition

C of a ground set V can be considered as an equivalence relation on V . Hence, we

use notation (x, y) ∈ C to say that x and y are in the same class of C. We say that

partition α is finer than partition β if (x, y) ∈ α implies (x, y) ∈ β; in this case, β

is coarser than α. If α = β, then α is both finer and coarser than β. We denote by

α1 ∨ α2 the unique finest partition α coarser than both α1 and α2.

8

2.1.3 Submodularity

A function f : 2U 7→ R is submodular if f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) holds

for every X, Y ⊆ U . Submodularity on set functions can be thought of as the analog

of convexity for real functions. Submodular functions have found many applications

in combinatorial optimization [Edm03, Fra93, Von07] especially because they exhibit

the diminishing returns property (and, hence, can model many utility functions): i.e.,

f(A∪ {a})− f(A) ≤ f(A′ ∪ {a})− f(A′) if A′ ⊆ A and a ∈ U \A. In fact, this is an

equivalent definition. There has been considerable work on optimizing submodular

functions; see, e.g., [CFN77, NW78, NWF78, FNW78, FMV07] for maximization and

[Fle00, Mcc05] for minimization. (These are mostly for the unconstrained setting,

while there is a flurry of results in the recent years for optimizing submodular functions

given extra restrictions [LSV09, LMNS10, GRST10, BHZ10].)

Since the description of submodular functions usually requires exponential space,

we tend to have “oracle access” to these functions: for any subset S ⊆ U of the

ground set of the submodular function f , we can call a polynomial-time subroute

(whose internal working is not transparent) to find f(S). Among the many result

for submodular function optimization, we use the following. (We only give credit to

the first such result, although numerous consequent work has improved the running

time.)

Theorem 2.1.1 (Grötschel, Lovász, and Schrijver [GLS88]). Given oracle access to

a submodular function, there is a (strongly) polynomial-time algorithm that computes

a set minimizing the function.

Examples of submodular functions are rank functions of matroids, size of set

unions, and cut functions of directed graphs; see [Sch03, Chapter 44]. The first

two examples are monotone (i.e., increasing) functions, whereas the last one is a

nonmonotone submodular function.

9

2.1.4 Metrics

A metric on a set V is function µ : V × V 7→ R+ such that µ(v, v) = 0, µ(u, v) =

µ(v, u), and µ(u, v) + µ(v, w) ≥ µ(u,w) for all u, v, w ∈ V . Metrics are abstractions

of distance functions.

The two-dimensional Euclidean metric is a metric on (a subset of) the points in

the two-dimensional plane that denotes the natural straight-line distances between

points. This is a special case of `2 metric that can have arbitrary dimension. More

generally, the d-dimensional `p metric assumes distance

(
d∑
i=1

|xi − yi|p
) 1

p

between two points x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) in the d-dimensional

space.

Another very important metric is the graph metric: i.e., the distance function

obtained from the length of shortest paths in a given graph. If the given graph has

additional structure, it may lead to more special metrics such as planar graph metric,

bounded-treewidth graph metric, etc. Often times, when we mention a graph as the

input to a problem, we merely mean the metric induced by that graph.

2.2 Computational complexity

2.2.1 Efficient algorithms

The running time and space usage of algorithms are usually measured via the order

notations described above. An algorithm with a main parameter n can have a run-

ning time which is, for instance, polynomial, quasipolynomial, or exponential in n.

Exponential running times can be divided into singly exponential, i.e., 2O(n), doubly

exponential, i.e., 22O(n)
, etc. Edmonds [Edm65] was the first to suggest the notion

10

of polynomial running time—i.e., O(nc) for any fixed constant c—as a measure for

efficiency of an algorithm. In his seminal paper, he gave the first efficient algorithm

for finding a maximum matching on nonbipartite graphs.

Perhaps, one of the main techniques for deriving efficient algorithms is that of dy-

namic programming, or DP for short. Whereas a näıve algorithm attempting to solve

the problem via recursion may resolve certain subproblems many times, DP stores

sufficient information about solved subproblems to avoid resolving them. Hence, there

is usually a table of values associated with all the possible subproblems of the original

instance, and they are systematically solved based on information from previous table

entries. The solution to the original instance then appears somewhere in the table;

see [CLRS09, Chapter 15] for more details and several examples.

2.2.2 Linear programming

In mathematical programming, one tries to optimize (either maximize or minimize)

an objective function subject to several constraints. A special case that has received

particular attention in computer science is linear programming, in which a vector

x ∈ Rn is sought to optimize a linear objective function subject to linear constraints.

The following is a linear program in its standard form.

minimize cTx

subject to Ax ≥ b

x ≥ 0,

(2.1)

where b, c are vectors and A is a matrix. It is simple to observe that (2.1) captures

an arbitrary linear program defined above: in particular, equality constraints (A′x =

b′), constraints of the opposite direction (A′′x ≤ b′′), unconstrained variables (i.e.,

without the nonnegativity constraints), and maximization objective functions can

all be modeled by (2.1) via simple modifications of the parameters or adding new

11

constraints and variables; see [Sch86] for a thorough overview of linear programming.

Any linear program (LP) defined above can be solved in polynomial time [Kha79,

Kar84]. Despite having a poorer running-time bound, the ellipsoid method [Kha79]

has the advantage of not requiring all the constraints at once. In fact, it can find

an optimal solution—more precisely, a solution with arbitrary inverse polynomial

precision—in polynomial time given a polynomial-time separation oracle. A sepa-

ration oracle is a procedure that takes as input a vector x and determines whether

x satisfies all the constraints of the linear program or not; in the latter case, the

separation oracle identifies and reports at least one violated constraint. This can

be helpful when a linear program has exponentially many constraints, however, the

combinatorial structure of the constraints make it possible to verify satisfiability of a

candidate solution.

For any linear program, a dual program can be written; the original program is

then called the primal program. The dual of LP (2.1) is

maximize bTy

subject to ATy ≤ c

y ≥ 0.

(2.2)

The primal and dual programs are related by the following duality theorems.

Theorem 2.2.1 (LP weak duality). Consider a primal minimization program with

objective function cTx, and its corresponding dual program with objective function

bTy. For any two feasible solutions x, y for primal and dual programs, respectively,

we have bTy ≤ cTx.

The above theorem is easy to verify since bTy ≤ (Ax)Ty = xTATy ≤ xTc = cTx,

where the inequalities follow from the constraints in the primal and dual programs,

respectively. Von Neumann [N47] and Gale, Kuhn, and Tucker [GKT51] establish the

12

strong LP duality as follows.

Theorem 2.2.2 (LP strong duality [N47, GKT51]). Consider a primal minimization

program with objective function cTx, and its corresponding dual program with objective

function bTy. If either of primal or dual has unbounded optimum, the other is infea-

sible. Otherwise, the optimal values of the objective functions of the two programs are

identical, i.e., there exist solutions x∗, y∗ for primal and dual programs, respectively,

such that cTx∗ = bTy∗.

If variables are allowed to be constrained to take only integer values, for instance

x ∈ {0, 1}n, we obtain an integer (linear) program or IP. It turns out—see NP-hardness

in Section 2.2.3—that integer programs are hard problems to optimize. Relaxing the

integrality constraints yields a linear-programming relaxation. These relaxations have

been the subject of study for many years. The best algorithms for several problems

are derived via rounding the fractional solutions to integral ones, or are inspired by

the properties of the linear-programming relaxation (e.g., in the primal-dual method).

When we use LP relaxations for solving or approximating a problem, the integrality

gap of the LP usually proves to be a barrier on how good our solution can be. For a

minimization problem, the integrality gap is defined as

sup
instance I of the problem

optimal solution of I
value of LP relaxation of I

,

where the optimal solution is equal to the value of the integer program. In other

words, the integrality gap shows how optimistic the relaxation may be compared

to the actual solution. The integrality gap is defined similarly for a minimization

problem:

sup
instance I of the problem

value of LP relaxation of I
optimal solution of I

.

Sometimes it makes sense to relax a linear program by moving some of the hard

constraints into the objective function and imposing a penalty on the objective func-

13

tion if those constraints are violated. This method is called the “Lagrangian relax-

ation” method. For example, minx,λ≥0

{
cx− λT(Ax− b)

}
is a Lagrangian relaxation

of LP (2.1)—it is possible to move only some of the constraints although we moved

all of them in this example. Since the vector λ, called the Lagrange multipliers, is

nonnegative, we get penalized if some of the LP constraints are violated, and get

awarded if some are satisfied strictly. It is easy to see (since λ = 0 is a feasible

solution) that the value of the Lagrangian relaxation is no worse than that of the

original program. In some applications, either because rounding the original problem

is difficult or since its running time is worse, we may employ this method, and work

on the Lagrangian relaxation. By changing the range of Lagrangian multipliers and

using the lower bound as a guide, one can optimize the original problem in an iterative

fashion. This method was first developed by Held and Karp [HK70, HK71].

2.2.3 NP-completeness

As mentioned previously, algorithms with polynomial running times are most desir-

able. In fact, we call a problem admitting such an algorithm tractable, and others

are called intractable. In complexity theory, problems are grouped into several classes

according to how easy or hard they are. The class P contains all those problems

with a polynomial-time algorithm. More technically, these classes usually apply to

decision problems only, where the solution of a problem is either “yes” or “no.” A

bigger class, clearly containing P, is NP which contains any problem whose solution

can be verified in polynomial time.

For a few decades, computer scientists have tried to answer the question P
?
= NP:

i.e., whether all problem in NP admit polynomial-time algorithms. A problem L is

NP-hard if it is “harder” than all problems in NP: more specifically, any (instance

of any) problem in NP can be reduced to (an instance of) L in polynomial time in

the sense that solving the resulting instance of L gives the solution to the original

14

problem; this concept was proposed by Cook [Coo71]. An NP-hard problem in NP

is said to be NP-complete. In particular, giving a polynomial-time algorithm for any

NP-complete problem settles the “P versus NP” question by proving P = NP. The

celebrated Cook-Levin theorem [Coo71, Lev73] provided the first NP-complete prob-

lem: Circuit-SAT. Later, Karp [Kar72] proved NP-completeness for several natural

problems through reductions from Circuit-SAT. Gary and Johnson collected many

NP-complete problems in their book [GJ79].

We introduce a simple NP-complete problem here. An instance of 3SAT consists

of m disjunctive clauses of exactly three boolean literals each, where each literal is a

variable xi or its negation xi. For instance, (x1∨x2∨x3)∧ (x2∨x3∨x4) is an instance

of 3SAT with two clauses and four variables. The goal is to determine whether there

exists an assignment of {0, 1} values (i.e., true or false) to the variables that satisfies

all the clauses simultaneously.

Theorem 2.2.3 ([Kar72]). 3SAT is NP-complete.

Since many natural problems are NP-complete, the focus has shifted to finding

approximation algorithms for them. An algorithm A is an α-approximation algo-

rithm for a minimization problem if, for any instance I of the problem, A produces

in polynomial time a feasible solution whose “cost” is no more than α · opt(I). Then,

α is called the approximation ratio or the approximation guarantee. If the approx-

imation ratio is one, we have an exact algorithm. For maximization problems, the

approximation ratio is defined similarly as

sup
instance I of the problem

opt (I)

value of A’s solution for I
.

If a problem admits an α-approximation algorithm, we say it belongs to aprx(α).

For some NP-hard problems, it is still possible to obtain very good approximation

ratios. A polynomial-time approximation scheme, or a PTAS for short, is a series of

15

(1 + ε)-approximation algorithms Aε that run in polynomial time as long as ε > 0 is

a constant. If the running time is O(f(ε)nc) for a fixed constant c independent of ε,

the approximation scheme is efficient, hence we have an EPTAS. If in addition, f(ε)

is a polynomial function of 1/ε, the algorithm is a fully polynomial-time approximation

scheme (FPTAS).

2.2.4 Hardness of approximation

Certain NP-hard problems can be shown to be hard even to approximate. The seminal

work in this area is the PCP theorem [ALM+98, AS98, FGL+96] that among other

things leads to inapproximability results for optimization problems such as Max

3SAT, Maximum Independent Set, etc.

A problem is said to be APX-hard if it does not admit a PTAS unless P = NP. More

specifically, there exists a constant α > 1 such that existence of an α-approximation

algorithm for the problem proves P = NP.

Given a graph G(V,E)1, Minimum Vertex Cover asks to find the minimum

number of edges that cover all vertices as their endpoints. In this thesis, we use the

following hardness result.

Theorem 2.2.4 ([AK00]). Minimum Vertex Cover is APX-hard even when re-

stricted to 3-regular graphs.

Some optimization problems have a hard constraint on, e.g., an upper bound on

the weight of certain objects in the solution (capacity), or a lower bound on the profit

of items collected. Relaxing these hard constraints may lead to better approximation

factors on the main objective. This is formalized in the form of bicriteria approxima-

tion guarantee. Suppose, for instance, that the goal is to minimize the “cost” while

respecting a capacity constraint. An algorithm that always produces in polynomial

1Graphs are formally introduced in the next section.

16

time a solution of cost at most α times the cost of the optimal solution, but may vio-

late the capacity constraint with a factor no more than β, is said to have a bicriteria

(α, β) approximation guarantee.

2.3 Graph terminology

A graph G(V,E) is a collection of vertices, V , and a collection of edges, E, which

is a multiset of (unordered or ordered) vertex pairs. We may remove the reference

to V = V (G), E = E(G) if they are clear from the context and/or they are not

particularly important for the sake of the argument. In this thesis, unless otherwise

specified, we consider undirected graphs where edges correspond to unordered vertex

pairs, whereas in directed edges consists of ordered vertex pairs. We call u, v the

endpoints of an edge e = (u, v). An edge whose endpoints are identical is called a

loop. Two or more edges corresponding to one pair of vertices are called parallel edges.

A graph without loops or parallel edges is called a simple graph. We mostly deal with

simple graphs, using the term multigraph to emphasize the possibility of loops and

parallel edges.

An edge e = (u, v) is incident on vertices u and v. Existence of this edge makes

u and v adjacent, and each of u or v is called a neighbor of the other. The degree

of vertex v, denoted degG(v), is the number of edges incident on v, i.e., degG(v) =

| {e ∈ E : e = (u, v)} |. For a set S ⊆ V of vertices, V = V \S is the complement of S.

A set of vertices and its complement define a cut consisting of all the edges having one

endpoint in S and one in S; we refer to this cut by G[S, S], [S, S], or δG(S) = δG(S).

A cut δG(S) is an s-t cut if it separates s and t: i.e., |S ∩ {s, t} | = 1. A cut is called

simple if its removal from the graph leaves exactly two connected components, i.e.,

one on each side. The neighbor set of S, denoted ΓG(S), is defined as the set of vertices

outside S that have an edge to a vertex in S, i.e.,
{
v ∈ S : ∃u ∈ S, (u, v) ∈ E

}
. In

17

v1

v2

v3

v4

v5

v6

v7v8

v9

Figure 2.1: Illustration of basic graph definitions. The depicted graph has 9 vertices,
11 edges, and two connected components: {v1, v2, v3, v4, v5} and {v6, v7, v8, v9}. Notice
that vertices {v1, v3, v4} have degree two, and the other vertices have degree three.
Thicker edges show the cut δ({v1, v5, v9}).

our notation, we usually drop the reference to G when it is clear from the context.

Proposition 2.3.1. Sum of the degrees of vertices of a graph G is equal to twice the

number of edges in G.

The complete graph on n vertices, denoted Kn, has an edge between every pair

of vertices. A graph is bipartite if it does not have any odd cycles. The vertices of

a bipartite graph can be partitioned into two groups (or sides) such that no edge

connects vertices of the same group. A complete bipartite graph Km,n is a bipartite

graph with m vertices on one side and n on the other, with an edge between any pair

of vertices from different sides. A graph is said to be d-regular if all its vertices have

degree exactly d.

For visual illustration, graphs are normally represented by a diagram with vertices

mapped to points and edges depicted by curves joining their endpoints. See Figure 2.1.

Although not used for the most part of this thesis, we illustrate edges of directed

graphs by arrows.

A path p between u and v consists of a sequence of vertices 〈u =

u0, u1, u2, . . . , uk−1, uk = v〉 where any two consecutive vertices are connected by an

edge, i.e., (ui, ui+1) ∈ E for 0 ≤ i < k. The path is said to have size |p| = k, and its

endpoints are u and v. (For weighted graphs, the length of the path, `(p), denotes the

18

total length of all the edges on the path p.) A vertex v is said to be reachable from

u if there exists a path between them. Reachability leads to an equivalency class on

the vertices of the graph: a maximal set of vertices that are pairwise reachable is a

connected component of the graph.

A graph H(V ′, E ′) is a subgraph of G(V,E) if V ⊆ V ′ and E ′ ⊆ E. Then, G is said

to be a supergraph of H. The graph G(V,E) is isomorphic to H(V ′, E ′) if there is a

bijection f : V 7→ V ′ such that (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E ′. We say G contains

H if G has a subgraph that is isomorphic to H. A subgraph H(V ′, E ′) of G(V,E)

is the (vertex-) induced subgraph on V ′ if E ′ is the set of all edges in E both whose

endpoints are in V ′. We say H(V ′, E ′) is an (edge-) induced subgraph by E ′ if V ′ is

the set of endpoints of edges in E ′. The notation G[V ′] refers to the vertex-induced

subgraph of G on V ′, i.e., H as defined above. Whenever it is clear from the context,

we may use the edge set E ′ to refer to the induced subgraph H(V ′, E ′).

A subgraph H(V,E ′) is a spanning subgraph of G(V,E) if H is connected. A

connected graph G(V,E) is span the set V of vertices. A cycle on n vertices is formed

by adding an edge (vn, v1) to the path 〈v1, v2, . . . , vn〉. A graph T (V,E) is a forest if

it does not contain any cycles. A forest is a tree if it is connected. A vertex of degree

one is called a leaf.

Proposition 2.3.2. The number of edges in a forest on n vertices with k components

is n− k. In particular, a tree on n vertices has exactly n− 1 edges.

Proposition 2.3.3. The average degree of a tree is less than two, and any tree with

more one vertex has at least two leaves.

A cycle in G is called Hamiltonian if it passes each vertex exactly one. A Hamilto-

nian path is defined similarly. An Eulerian cycle for a graph G is one that has exactly

one copy of each edge of G. An Eulerian path is defined similarly. The following is

the characterization of “Eulerian” graphs [Eul41, Hie73].

19

Theorem 2.3.4. A graph G has an Eulerian cycle if and only if G is connected, and

all its vertices have even degree. If G is connected, and has at most two vertices of

odd degree, it has an Eulerian path.

We focus on weighted graphs where a nonnegative length function ` : E 7→ R+ is

associated with the edges of the graph. As per our general convention, we use `(E ′)

to denote the total length of all edges in E ′.

We refer to the length of a path p connecting u and v by the distance from u to v

along p. Then, the distance from u to v, denoted distG(u, v), is the minimum distance

along all paths in G between u and v. In the case when no such path exists, the

distance is said to be infinite. Otherwise, the minimum exists since lack of negative-

length edges renders repeated use of an edge useless for getting shorter paths. Each

path of length distG(u, v) from u to v is called a shortest path between u and v. We

sometimes use the notation distG(u, S), for S ⊂ V (G), to denote the length of a

shortest path of u to the set S; i.e., distG(u, S) = minv∈S distG(u, v).

Contracting an edge e = (u, v) of a graph G(V,E) gives a graph H(V ′, E ′) in

which u and v are identified, and given a new identity. Then, we remove the loops

and parallel edges formed.2 More formally, V ′ = V \ {u, v} ∪ {z} where z is a new

vertex, and e = (x, y) ∈ E ′ if x, y ∈ V ′ and

1. {x, y} ∩ {z} = ∅ and e ∈ E; or

2. x = z and y 6= z and {(u, y), (v, y)} ∩ E 6= ∅.

We denote the result of contracting G along e by G/e. In addition, G/E ′ refers to

G/e1/e2/ . . . /ek for an edge set E ′ = {e1, e2, . . . , ek} ⊆ E. The graph H is a minor

of G if H is isomorphic to the result of contracting zero or more edges of a subgraph

of G. Figure 2.2 illustrates the contraction operation.

2In the case of multigraphs, we do not need to remove the resulting loops and parallel edges.
For weighted graphs, the removal of parallel edges is not arbitrary; i.e., we are required to keep the
minimum-length one among a set of parallel edges, so as to guarantee certain desired shortest-path
properties in the contracted graph.

20

v1

v2

v3

v4

v5

v6

v7

(a)

v1

v2

v3

v4

v5

v6

(b)

Figure 2.2: Illustration of edge contraction operation. (a) shows the original graph;
(b) shows the result of contracting edge (v6, v7).

For details of these definitions, or a more thorough introduction to graph theory,

the reader can refer to a standard textbook on the subject, e.g., [Wes00].

2.3.1 Graph classes

Here we define several classes of graphs. You can take a look at their relationship in

Figure 2.6, where an arrow indicates any instance of one class is also an instance of

the other.

Graphs of bounded treewidth

We start with the definition of treewidth, as introduced by Robertson and Sey-

mour [RS86], which is a measure of how close a graph is to a tree. Notice that,

since trees have a very simple structure, one expects that many graph optimization

problems are tractable (or, at least, admit good approximation ratios) when the input

instance is a graph with small treewidth—in fact, dynamic programming can be used

to give exact algorithms for many of these scenarios.

To define treewidth, we consider representing a graph by a tree structure, called

21

a b c

ed

f g h

(a)

a, d
1

d, f, g

2

b, d, g
3

b, e, g
4

b, c, e
5

e, g, h

6

(b)

Figure 2.3: Illustration of tree decomposition. (a) shows a graph G of treewidth two
(it is indeed a series-parallel graph. The vertices of G are {a, b, c, d, e, f, g, h}. (b)
presents a tree decomposition of width two for the graph. The contents of the bag of
each node of the tree decomposition are shown inside it. Four vertices a, c, f, h, each
appears in only one node of the tree decomposition. Vertex b appears in bags for
3, 4, 5; vertex d appears in bags of 1, 2, 3; and vertex e belongs to three bags, those of
4, 5, 6. There is only one vertex, g, that belongs to four nodes. Notice that the bags
containing each vertex form a connected subgraph.

a tree decomposition; see Figure 2.5. More precisely, a tree decomposition of a graph

G(V,E) is a pair (T,B) in which T (I, F) is a tree and B = {Bi | i ∈ I} is a family of

subsets of V (G) such that

1.
⋃
i∈I Bi = V ;

2. for each edge e = (u, v) ∈ E, there exists an i ∈ I such that both u and v

belong to Bi; and

3. the set of nodes {i ∈ I |v ∈ Bi} forms a connected subtree of T for every v ∈ V .

To distinguish between vertices of the original graph G and vertices of T in the

tree decomposition, we call vertices of T nodes and their corresponding Bi’s bags.

The width of the tree decomposition is one less than the maximum size of a bag in

B. The treewidth of a graph G, denoted treewidth(G), is the minimum width over all

possible tree decompositions of G.

We say a graph has bounded treewidth if its treewidth is a constant. A simple

observation is that the treewidth is equal to one if and only if the graph is a tree.

22

As useful a parameter as it is (see, e.g., [Bod98]), computing the treewidth is NP-

hard even for restricted classes of graphs such as graphs of bounded degree [BT97],

bipartite graphs [Klo96], and their complements [ACP87]. As long as the treewidth

is a constant, though, there is a linear-time algorithm to compute the treewidth and

a corresponding tree decomposition [Bod96]. From an algorithmic point of view, we

usually work with bounded-treewidth graphs on which many problems are solvable in

polynomial time [Bod93]. In this case, a treewidth decomposition can be constructed

in linear time.

In addition, there has been a significant amount of work to approximate the

treewidth for different classes of graphs. Constant approximation factors exist for pla-

nar graphs [KR91, AKR03], and for H-minor-free graphs [Haj05]. For general graphs

of a specific treewidth, the best approximation ratio is O(
√

log(treewidth)) [Haj05,

FHL08].

For algorithmic purposes, it is convenient to define a restricted form of tree de-

composition. We say that a tree decomposition (T,B) is nice if the tree T is a rooted

tree such that for every i ∈ I either

1. i has no children (i is a leaf node),

2. i has exactly two children i1, i2 and Bi = Bi1 = Bi2 holds (i is a join node),

3. i has a single child i′ and Bi = Bi′ ∪{v} for some v ∈ V (i is an introduce node),

or

4. i has a single child i′ and Bi = Bi′ \ {v} for some v ∈ V (i is a forget node).

It is well-known that every tree decomposition can be transformed into a nice tree

decomposition of the same width in polynomial time. Furthermore, we can assume

that the root bag contains only a single vertex.

We will use the following lemma to obtain a nice tree decomposition with some

further properties; a similar trick was used in [Mar07].

23

Lemma 2.3.5. Let G be a graph having no adjacent degree 1 vertices. G has a nice

tree decomposition of polynomial size having the following two additional properties:

1. No introduce node introduces a degree 1 vertex.

2. The vertices in a join node have degree greater than 1.

Proof. Consider a nice tree decomposition of graph G. First, if v is a vertex of degree

1, then we can assume that v appears only in one bag: if w is the unique neighbor

of v, then it is sufficient that v appears in any one of the bags that contain w. Let

Bv = {v, x1, . . . , xt} be this bag where x1 = w. We modify the tree decomposition as

follows. We replace Bv with B′v = Bv \ {v}, insert a bag B′′v = Bv \ {v} between B′v

and its parent, and create a new bag Bt = Bv \{v} that is the other child of B′′v (thus

B′′v is a join node). For i = 1, . . . , t− 1, let Bi = {x1, . . . , xi}, and let Bi be the child

of Bi+1. Finally, let Bw = {w, v} be the child of B1 and let B = {v} be the child of

Bw. Observe that Bi (2 ≤ i ≤ t), Bw are introduce nodes, B1 is a forget node, and

B is a leaf node. This operation ensures that vertex v appears only in a leaf node.

It is clear that, after repeating this operation for every vertex of degree 1, the two

required properties will hold.

Series-parallel graphs

A series-parallel graph is a graph that can be built using series and parallel com-

position; see Figure 2.4. Formally, a series-parallel graph G(x, y) with distinguished

vertices x, y is an undirected graph that can be constructed using the following rules.

1. A graph with only two vertices x, y and an edge (x, y) between them is a series-

parallel graph.

2. If G1(x1, y1) and G2(x2, y2) are series-parallel graphs, then the graph G(x, y)

obtained by identifying x1 with x2 and y1 with y2 is a series-parallel graph with

distinguished vertices x := x1 = x2 and y := y1 = y2—a parallel connection.

24

(a)

(b) (c)

Figure 2.4: Illustration of series and parallel connections. (a) shows two graphs side
by side; (b) illustrated those two graphs connected via a parallel connection; and (c)
shows the combination of the two graphs in a series connection.

3. If G1(x1, y1) and G2(x2, y2) are series-parallel graphs, then the graph G(x, y)

obtained by identifying y1 with x2 is a series-parallel graph with distinguished

vertices x := x1 and y := y2—a series connection.

We sometimes call x the left exit point, and y the right exit point of the graph since

the two distinguished vertices are the only vertices that may interact with vertices

outside G if G is used in constructing a more complicated series-parallel graph.

It is well-known that the treewidth of a graph is at most 2 if and only if it is

a subgraph of a series-parallel graph [Bod98]. Since setting the length of an edge

to ∞ in a connectivity problem is essentially the same as deleting the edge, solving

such problems on graphs with treewidth at most 2 is equivalent to solving them for

series-parallel graphs.

25

(a) (b)

Figure 2.5: (a) depicts a planar graph with nine vertices, and six faces. There are
five finite faces, and one infinite face. One face is shaded. The edges of this graph are
shown by solid lines. The edges of the dual graph are drawn via dashed lines/curves.
(b) shows a 4-outerplanar graph. The vertices of the same color (and shape) form
different layers than can be peeled off one by one.

Duffin [Duf65] proved that a graph is series-parallel if and only if it has no K4

minor.

It can be easily observed that graphs with treewidth at most 2 have planar em-

beddings (see below for definition of planarity), but there are graphs of treewidth

three—e.g., K3,3—that are not planar.

Planar graphs

A graph if planar if it can be embedded into R2 in such a way that two edges may only

intersect at their endpoints. When working with planar graphs, we usually assume

such an embedding exists. (There are equivalent combinatorial definitions though.)

Each component of R2 \G is a face of G. A vertex or edge of G is said to be incident

on a face f if the boundary of f , usually denoted ∂f , contains it. Two faces are

adjacent if one edge is incident on both. There is a unique unbounded face, called

the infinite face; all other faces are bounded.

Euler’s formula relates the number of vertices, edges, and faces of a planar graph

26

as follows.

Theorem 2.3.6. Let n, e, f, c denote the number of vertices, edges, faces, and con-

nected components of a planar graph. Then, we have n+ f = e+ c+ 1.

An simple corollary bounds the number of edges of a planar graph in terms of its

number of vertices, hence it guarantees at least one vertex of small degree.

Corollary 2.3.7. No connected simple planar graph with at least three vertices has

more than 3n − 6 edges. Every simple planar graph has a vertex of degree no more

than 5.

The first combinatorial characterization of planar graphs is due to Kura-

towski [Kur30]. We state an extension of Kuratowski’s theorem by Wagner [Wag37]

which gives a forbidden minor characterization for planar graphs.

Theorem 2.3.8 (Wagner [Wag37]). A graph is planar if and only if it does not have

K3,3 or K5 as a minor.

The dual G∗ of an embedded planar graph G = (V,E) is a graph, whose vertex

set is the set of faces of G, that has for each edge e an edge e∗ connecting the two

faces e is incident on. The dual G∗ is planar, and (G∗)∗ is isomorphic to G if G is

connected.

Outerplanar graphs

A graph G is outerplanar if it has a planar embedding with all vertices incident on

the infinite face. A simple corollary of Kuratowski’s theorem shows that a graph is

outerplanar if and only if it has no K4 or K2,3 minor.

For k ≥ 1, we say a graph G is k-outerplanar if removing all vertices incident on

the infinite face from G (in addition to all edges incident on them) yields a (k − 1)-

outerplanar graph. In other words, the vertices of G can be peeled off in k levels.

Bodlaender [Bod96] observed that these graphs have treewidth at most 3k − 1.

27

Bounded-genus graphs

We also need a basic notion of embedding; see, e.g., [RS94, CM05]. In this thesis, an

embedding refers to a 2-cell embedding, i.e., a drawing of the vertices and edges of the

graph as points and arcs in a surface such that every face (connected component ob-

tained after removing edges and vertices of the embedded graph) is homeomorphic to

an open disk. We use basic terminology and notions about embeddings as introduced

in [MT01]. We only consider compact surfaces without boundary. Occasionally, we

refer to embeddings in the plane, when we actually mean embeddings in the 2-sphere.

If S is a surface, then for a graph G that is (2-cell) embedded in S with f facial walks,

the number g = 2− |V (G)|+ |E(G)| − f is independent of G and is called the Euler

genus of S. The Euler genus coincides with the crosscap number if S is nonorientable,

and equals twice the usual genus if the surface S is orientable. A graph is planar if

and only if it has Euler genus zero.

We note that many natural networks (e.g., caber of fiber connections in telecom-

munications networks, or road networks) are almost planar. The setting of road

networks, even with bridges an underpasses, is believed to have an embedding with

a small genus [BDT09, OGS11].

H-minor-free graphs

A (possibly infinite) family of (finite) graphs is minor-closed if all minors of any graph

in the family belongs to the family. The celebrated Graph Minor Theorem [RS94]

implies that there is a forbidden minor characterization for any minor-closed family

of finite graphs; i.e., there exists a finite set of “forbidden” graphs that the given

minor-closed family is equal to the set of graphs excluding those forbidden graphs as

minors. We have mentioned such characterizations for planar graphs (Theorem 2.3.8),

series-parallel, and outerplanar graphs.

Robertson and Seymour also give a characterization of the set of graphs excluding

28

outerplanar graphs

k-outerplanar graphs
series-parallel graphs

planar bounded-treewidth graphs

bounded-treewidth graphs

planar graphs

bounded-genus graphs

H-minor-free graphs

general graphs

Figure 2.6: The relationship between different graph classes introduced. An arrow
from class C1 to C2 denotes that any graph in class C1 also belongs to class C2.

29

a fixed minor H. All these graphs can be constructed by the “clique-sum” operation

on smaller graphs embedded on a surface of small genus.

An analog of Corollary 2.3.7 exists for H-minor-free graphs. If h = |V (H)|, the

number of edges in a simple H-minor-free graph is at most O(nh
√

log h). As a result,

H-minor-free graphs are guaranteed to have constant-degree vertices.

2.4 Problem definitions

2.4.1 Connectivity problems

Minimum Spanning Tree is perhaps one of the oldest network design problems.

Given a weighted graph G, the goal is to find the minimum-length subgraph that

spans all the vertices. Since cycles do not help in achieving more connectivity or

reducing the length, we can assume that the solution is a tree. This problem is

sometimes called MST for short.

Since all the problems discussed in this thesis involve finding a subgraph of mini-

mum length, we usually choose to drop the identifier Minimum in the problem names

for the brevity of notation.

In the Traveling Salesman Problem, or TSP for short, the goal is find a

tour3 of minimum length in the input graph that visits all the vertices, i.e., each

vertex has to appear at least once in the tour. A similar problem is Stroll4, which

is sometimes referred to as Traveling Salesman Path Problem, where we seek

to find a walk rather than a tour.

A generalization of spanning tree is that of the Steiner tree, where only some of

the vertices in the graph are terminals while others, called nonterminals or Steiner

3Tour is the same as cycle, although it is usually used to emphasize that the cycle need not be
simple.

4Stroll or walk is the same as path, although it is usually used to emphasize that the path need
not be simple.

30

vertices, are not required to appear in the solution. However, their inclusion may help

reduce the length. More formally, the input to Steiner Tree is a weighted graph

G(V,E) with a subset R ⊆ V of required vertices, i.e., the terminals, and one is asked

to find the minimum-length subgraph—subtree as per the discussion above—to span

all the terminals. We sometimes think of a rooted variant of the problem where one

particular vertex is called the root, to which all terminals should be connected. The

rooted variant can be reduced to the nonrooted version since the root can be added

to the set of terminals R. To solve the nonrooted version using the rooted variant, it

suffices to pick one terminal as the root.

If each demand5 consists of a pair of vertices that should be connected to each

other, we have Steiner Forest. An instance with graph G and demand set D =

{(s1, t1), (s2, t2), . . . , (sk, tk)} looks for a minimum-length subgraph in which every

si, ti are connected to each other, however, it does not matter whether si, tj, for i 6= j,

are connected. An equivalent definition is that we have different sets of terminals,

and the terminals in each set should be connected (as in Steiner Tree). The main

difference with Steiner Tree—that has in fact made the problem harder to tackle—

is that the solution need not be connected; the solution is without loss of generality a

forest, hence the name of the problem. Notice that, if we knew which demand pairs

are connected to each other (in addition to the instance requirements), the instance

could be reduced to Steiner Tree.

Group Steiner Tree generalizes both Steiner Tree and Set Cover.

The input to this problem is a weighted graph G, a root vertex r, and a family

{g1, g2, . . . , gk} of sets of vertices called groups. The goal is to find a subgraph of

minimum length that connected at least one element of each group gi to the root r.

While the case of singleton groups is equivalent to Steiner Tree, the setting when

G is a star can model Set Cover (the leaves of the star are the sets of the Set

5Demands are sometimes called requests or requirements.

31

Cover instance).

In Facility Location6, we are given a weighted graph G, a subset F of vertices

called facilities, a subset C of vertices called demands, and an opening cost function

φ : F 7→ R+. A solution specifies a subset F ′ of facilities that ideally minimizes the

cost, defined as φ(F ′) +
∑

j∈C distG(j, F ′); i.e., we “open” the subset F ′ of facilities,

and then connect each client to its closest open facility. The cost has two portions:

the facility cost and the connection cost.

Hard constraint on the number of demands served

In the above problems, a set of demands were given and had to be satisfied. If we

“relax” this condition and require that at least k demands has to be met7, we obtain

a host of new problems: k-MST, k-Steiner Forest, and k-Median. The first

two are simple extensions of Minimum Spanning Tree and Steiner Forest.

The latter, k-Median, is almost an extension of Facility Location as explained

below. Given a graph G and a set of clients C, k-Median seeks to find a set of at

most k centers O such that
∑

j∈C distG(j, O) is minimized. It is similar to Facility

Location except that, instead of the facility cost term, we have a hard constraint

on the number of facilities we open.

Later in this section, we introduce prize-collecting versions of the above connectiv-

ity problems, and show that the hard-constrained variants just introduced are harder

than the prize-collecting ones.

6In this thesis, all references to Facility Location, unless otherwise specified, are indeed to the
problem that is more precisely called Uncapacitated Facility Location. In the Capacitated
Facility Location , each facility has a capacity and each client has a demand; then, the total
demand of the clients served by one facility cannot exceed the capacity of that server.

7Notice this is not really a relaxation since the problem becomes more general: letting k be the
number of demands gives the original problem.

32

2.4.2 Prize-collecting framework

Prize-collecting problems involve situations, as described above, in which there are

various demand points that desire to be included in some structure and we must

find the structure of lowest cost to accomplish this. However, if some of the de-

mand points are too expensive to include, then we can refuse to include them

and instead pay a penalty. The most famous such problems, perhaps, are the

Prize-collecting Steiner Tree (PCST), Prize-collecting Steiner For-

est (PCSF), and Prize-collecting TSP (PCTSP) problems.

In particular, in the prize-collecting variant of a problem, the input is the same

except that there is an additional “penalty” (or prize) function π : D 7→ R+. The

cost of a structure (i.e., tree, path, cycle, etc. depending on the problem) is the sum

of the length of the structure (i.e., the cost with respect to the original problem) and

the penalty of demands not served by the structure. For instance, the solution to

Prize-collecting Steiner Tree is a tree whose cost is the sum of the length

of the tree and the penalty of the terminals it does not span. Prize-collecting

TSP is defined similarly. For Prize-collecting Steiner Forest, the cost of the

output forest is the sum of the length of the forest and the penalty of demands whose

endpoints are not connected in the forest.

These problems are interesting for several reasons. In particular, prize-collecting

Steiner network design problems are well-known network design problems with several

applications in expanding telecommunications networks (see, e.g., [JMP00, SCRS00]),

district heating networks (see, e.g., [LWP+06]), cost sharing, Lagrangian relaxation

techniques (see, e.g., [JV01, CRW01]), and pricing scenarios (see, e.g., [CKR+03,

FP03]).

When π(v) =∞ for all v ∈ V , Prize-collecting TSP simplifies to the ordinary

Traveling Salesman because we have no choice but to visit all nodes, and Prize-

collecting Path (PC-Path) simplifies to Path-TSP, a.k.a. Min-Cost Hamil-

33

tonian Path. Similarly, if penalty of each vertex is 0 or ∞, Prize-collecting

Steiner Tree simplifies to an instance of the ordinary Steiner Tree problem. In

this case, the vertices {v ∈ V : π(v) =∞} are called terminals, which the Steiner tree

must connect, and the vertices {v ∈ V : πv = 0} are called Steiner vertices, which the

tree may use if it helps. These are all famous NP-hard problems [Kar72], so Prize-

collecting Steiner Tree, Prize-collecting TSP, and Prize-collecting

Path are NP-hard as well. Thus, we are interested in obtaining approximation algo-

rithms for them.

When in addition all penalties are ∞ in these prize-collecting problems, we have

the classic APX-hard problems Steiner Tree, Traveling Salesman, and Stroll

for which the best approximation factors in order are 1.39 [BGRS10], 3
2

[Chr76], and

3
2

[Hoo91].

If PCTSP and PC-Path look for simple cycles and paths, one typically assumes

that the graph is complete and the edge costs satisfy the triangle inequality. Other-

wise, the problem is inapproximable since determining whether the edges of cost zero

include a Hamiltonian cycle or path is NP-hard. These assumptions open the door to

algorithms that use shortcutting to convert an Eulerian tour (respectively, path) to a

Hamiltonian cycle (respectively, path). In PCST, these extra assumptions have no

effect. One alternate way to look at this extra assumption is to relax the problem,

so that the tour may visit vertices multiple times. This is the assumption we take in

this work since it has the advantage of making the definitions simpler for planar (or

bounded-treewidth, etc.) versions of the problem where the graph is not complete.

In the rooted version of PCST and PCTSP, there is a specified root vertex r that

must be spanned. The rooted and nonrooted versions are reducible to each other,

while preserving approximation ratios. To use an algorithm for the nonrooted case

to solve the rooted case, just set π(r) = ∞. To go the other direction, just try all

possible roots. Thus, we consider only the rooted version for the rest of the paper. In

34

the case of PC-Path, there are actually three versions of the problem, PC-Path-

0, PC-Path-1, and PC-Path-2, depending on whether we specify neither, one, or

both endpoints of the path. By guessing an endpoint, one can use an algorithm for

PC-Path-2 to solve PC-Path-1, or PC-Path-1 to solve PC-Path-0, but not the

other way around.

We next mention two natural special and general forms of PCSF. In both cases,

the form of the penalty function is changed or restricted. In the Submodular

Prize-collecting Steiner Forest, the input is the same as PCSF except that,

instead of a penalty function π : D 7→ R+, we are given a monotone submodular

penalty function π : 2D 7→ R+ that determines the penalty we need to pay if a

subset of demands are not satisfied. This clearly generalizes PCSF since additive

functions are submodular, however, it can model more realistic penalty functions, as

submodular functions are natural models for utility functions.

An important special case of PCSF is Multiplicative Prize-collecting

Steiner Forest in which the demand set consists of all vertex pairs, and the penalty

function is π({u, v}) = φ(u)φ(v) for some fixed “potential” (or mass) φ(u) on vertices.

This is inspired by Product Multi-Commodity Flow in [LR99, Bon04, KS02],

and its applications in wireless networks [MSL08] or routing [CKS04, CKS05]. How-

ever, the main motivation is the setting when the weights (after some normalization)

denote the probability of a vertex appearing in a set of active vertices, and a demand

will be realized between each pair of active vertices.

The above definition is for the more interesting symmetric Multiplicative

Prize-collecting Steiner Forest, however, a more general asymmetric is de-

fined via the penalty function π({u, v}) = φs(v)φt(v) where we are given two (possi-

bly) different mass functions φs, φt on vertices. This, for instance, models the scenario

where the only valid demands are those between two disjoint sets A,B; i.e., there is

a demand for a pair (u, v) if u ∈ A, v ∈ B.

35

Similarly to the hard-constraint settings for Steiner Tree, Steiner Forest,

etc., we can define a fixed-prize version of Multiplicative Prize-collecting

Steiner Forest. In Π-Multiplicative Prize-collecting Steiner Forest

(Π-MPCSF), an additional parameter Π is provided such that any feasible solution

has to collect a prize of at least Π, i.e., pay no more than π(D) − Π in penalty.

We show implicitly in Section 10.5.4 that MPCSF is not easier than Π-MPCSF,

however, the proof is not as simple as that of Lemma 2.4.1 because penalties for

individual demands cannot be easily manipulated as required by the proof.

We study several prize-collecting and non-prize-collecting network design problems

in planar graphs. Since these are natural instances in practice, obtaining better ap-

proximation ratios for them is highly valued. In particular, we look at Steiner For-

est, PCST, sppctsp, PCSF as well as Submodular Prize-collecting Steiner

Forest and Multiplicative Prize-collecting Steiner Forest in this setting.

Connection between connectivity problems

Here we discuss how the problems defined above are related. See Figure 2.7 for a

diagram showing reductions between some of the problems. Most of the reductions

take one instance of a problem and map it to an instance of the other; however, a few

reductions take an instance of one problem, and solve it by invoking polynomially

many instances of the harder problem. Below we explain those reductions that do

not follow immediately from definitions, and have not been already discussed.

We already mentioned that PCSF and PCST generalize Steiner Forest and

Steiner Tree, respectively. We now show that they are not harder than k-Steiner

Forest and k-MST, respectively. In fact, we only give the formal proof for the case

of PCSF and k-Steiner Forest, as the other proof is essentially the same.

Lemma 2.4.1. An α-approximation algorithm for k-Steiner Forest gives an α(1+

ε)-approximation algorithm for the Prize-collecting Steiner Forest problem,

36

Minimum Spanning Tree

Steiner Tree

Steiner ForestPrize-collecting Steiner Tree

k-Steiner Treek-MST

Multiplicative Prize-collecting Steiner Forest

Prize-collecting Steiner Forest

k-Steiner Forest

Π-Multiplicative Prize-collecting Steiner Forest

Figure 2.7: The relationship between some connectivity problems we discuss. An
arrow from problem P1 to P2 denotes a reduction from P1 to P2.

37

for any constant ε > 0.

Proof. We show how to approximate a PCSF instance I by invoking several (poly-

nomially many) instances I ′ of k-Steiner Forest. Obtain an estimate ω for I such

that ω
3
≤ opt ≤ ω, using a 3-approximation algorithm for PCSF. Let π(i) be the

penalty of the pair i in I, and let m denote the number of demands in I. Let us

assume, without loss of generality, that α ≤ 3 and π(i) ≤ 2ω for any pair i. Let

θ = εω/3m. Place pi = bπ(i)
θ
c copies of the pair i in I ′. Find an α-approximate

solution to the resulting k-forest instance for every value of 0 ≤ k ≤ m′, where m′ is

the number of pairs in I ′. Compute the cost for each of these solutions with respect

to the PCSF objective, and report the best one.

We show that at least one of these candidate solutions is good. To do so, we first

argue that for a careful choice of k, the optimum of the k-Steiner Forest instance

is small. Next we show that for any α-approximate solution of that instance, the

incurred penalty is bounded conveniently.

Let `(opt) and π(opt), respectively, be the length of the forest of and the penalty

paid by the optimal solution opt. Suppose opt connects a subset of terminal pairs Q.

Then, π(opt) =
∑

i 6∈Q π(i). Focus on the candidate solution with k =
∑

i∈Qbπ(i)/θc.

The optimum of the corresponding k-Steiner Forest instance is at most `(opt)

because one possible solution is that of connecting the copies of Q.

Now we have an α-approximate solution to the k-Steiner Forest instance with

k as defined above. To compute the PCSF cost corresponding to this solution, we

add the penalty of pairs that are not connected in this forest. We can assume, for

each demand pair in the PCSF instance, either all or none of its copies are connected.

The number of (k-Steiner Forest) pairs not connected is at most m′−k, and their

38

penalties sum to no more than

∑
i not connected

π(i) ≤
∑

i not connected

(pi + 1)θ

≤

(∑
i not connected

piθ

)
+mθ

≤ (m′ − k)θ +mθ

≤ π(opt) +mθ

= π(opt) + εω/3

≤ π(opt) + ε opt.

Thus, the PCSF cost of the best candidate solution is at most α`(opt) + π(opt) +

εopt ≤ α(1 + ε)opt.

It remains to show that the instances I ′ have polynomial size. Since π(i) ≤ 2ω,

each pair i will have pi ≤ 6mε−1 copies. Hence, I ′ has polynomial size and we can

use the approximation algorithm for the k-Steiner Forest.

The above proof, mutatis mutandis, shows that k-Steiner Tree is harder than

Prize-collecting Steiner Tree. A similar trick shows that k-MST and k-

Steiner Tree are equivalent. One direction is trivial by definition, hence we only

need to argue that k-Steiner Tree can be reduced to k-MST. Suppose we have an

instance of k-Steiner Tree with n vertices. Replace each terminal with n2 vertices

at distance zero from each other. Treat this as a k′-MST instance with k′ = kn2.

Clearly the original solution for k-Steiner Tree carries over with the same cost.

Notice that any solution of the new instance has to span at least k terminals from

the original instance since (k − 1)n2 + n < kn2.

Next we show that (even the symmetric) Π-MPCSF is a generalization of the

rooted k-MST problem (for which the best known approximation guarantee is 2).

Suppose we are given an instance I of rooted k-MST. It consists of a weighted graph

39

G(V,E), a root vertex r and a number k. Suppose r is not to be counted among the

k vertices. We build the new instance I ′ of Π-MPCSF as follows. The graph G′ is

the same as G. The weights of all vertices are one, except for r whose weight is n2.

Then, the goal will be to find the minimum-length forest that gathers a prize of at

least Π = (n2 + k)2 = n4 + 2n2k + k2.

Theorem 2.4.2. The instance I of rooted k-MST is equivalent to the instance I ′ of

Π-MPCSF.

Proof. Obviously, any tree connecting k vertices to the root is translated to a forest

that collects a prize of at least Π: let each vertex not spanned by the tree be a

singleton component in the forest.

Finally, we claim that any solution of prize Π or higher translates to a tree spanning

at least k vertices in the original instance. The resulting tree is just the component of

the forest containing the root vertex. Suppose for the sake of reaching a contradiction

that the component spans k′ < k nonroot vertices. The total prize collected is at most

(n2 + k′)2 + (n− k′ − 1)2 < n4 + 2n2k′ + k′2 + n2

= Π + 2n2(k′ − k) + k′2 + n2 − k2

< Π + 2n2(k′ − k + 1)

≤ Π,

yielding a contradiction, and proving the supposition is false.

40

Chapter 3

Thesis Organization and

Contributions

Chapter 2 goes over the terminology and the definition of the problems. Part II

explains the techniques we use to derive the algorithms. Part III discusses in detail

several applications of the techniques to planar and nonplanar prize-collecting Steiner

network problems. Below we give a high-level summary of the techniques, and a

summary of the major results. The secondary results as well as more details can be

found in the appropriate chapters.

3.1 Techniques

We give a short of summary of each chapter of Part II.

3.1.1 Prize-collecting clustering

Chapter 4 introduces the main technique developed in this thesis. The technique is

used in all the applications later on. It essentially defines a paradigm for clustering

vertices of a graph such that the connections required inside each cluster is within

41

the total budget of the vertices in there. On the other hand, if some vertices fall into

different clusters, then their distance should be large compared to their budgets.

We start the chapter by introducing PC-MoatGrowing: a primal-dual procedure

that is the crux of Steiner Forest and Prize-collecting Steiner Tree al-

gorithm [AKR95, GW95]. We then state and prove two concrete theorems in the

prize-collecting clustering paradigm: the “classification theorem” (Theorem 4.2.1)

and the “superclustering theorem” (Theorem 4.3.1). The chapter concludes with an

extension of PC-MoatGrowing to submodular budgets, called SubmodPC-Cluster.

3.1.2 Spanner framework

In Chapter 5 we summarize some of the previous work (e.g., [Bak94, AGK+98, Epp00,

Kle06, DHM07, Kle08, BKM09, DHK11]) that provides a framework for obtaining

good approximation algorithms on special classes of graphs. In particular, this frame-

work allows us, provided that we can carry out certain tasks, to reduce a planar in-

stance of the problem to one that has small treewidth. Assuming that we can tackle

the bounded-treewidth case easily (say, it is in P or admits a PTAS), we obtain a

PTAS for the planar case. We define the notion of “spanner” as a subgraph of small

length (i.e., O(opt)) that contains a near-optimal solution. Then, depending on the

problem, we delete or contract a small subset of edges in the spanner in order to find

the simpler instance.

3.1.3 Spanner construction

Chapter 6 reviews a spanner construction procedure due to Borradaile, Klein, and

Mathieu [BKM09] that is based on a novel brick decomposition procedure. A subtree

of a planar graph can be expanded to a subgraph, called the mortar graph, that

partitions the graph into a set of “bricks.” The structure of each brick allows us

to break the problem into that of a subproblem (slightly different than the original)

42

inside the bricks.

3.1.4 Granularization

Next in Chapter 7, we formalize and extend a standard technique to deal with large

integer or real numbers in order to obtain a PTAS from a pseudopolynomial-time

algorithm. This is done by rounding up or down the real (or large integer) values to

the next multipel of a sufficiently small precision unit. Then, the range of values falls

into a small range, and a pseudopolynomial-time algorithm indeed runs in polynomial

time. The analysis should bound the amount of error introduced due to rounding,

and show that it is small.

3.2 Results

3.2.1 Prize-collecting problems in general graphs

Chapter 8 studies Prize-collecting Steiner Tree, Prize-collecting TSP,

and Prize-collecting Stroll. We prove the following theorem, improving the

approximation ratios for these problems after 17 years.

Theorem 3.2.1. Prize-collecting Steiner Tree, Prize-collecting TSP,

and Prize-collecting Stroll admit approximation algorithms with guarantees

2− c for some fixed positive constant c.

In fact, we show how to use Theorem 4.3.1 to bypass the integrality gap of a natural

linear-programming relaxation for these problem—which is 2—that had proved to be

a major barrier for this task.

43

3.2.2 Steiner Forest on planar graphs

In Chapter 9, we look at planar Steiner Forest, and resolve the complexity of the

problem for a large range of graphs. For graphs of treewidth two, we show that the

algorithm is in P.

Theorem 3.2.2. Steiner Forest can be solved in polynomial time on series-

parallel graphs.

The above result is complemented by a proof that the treewidth of two is a limit.

Theorem 3.2.3. Steiner Forest is NP-hard for planar graphs of treewidth at most

three.

Although the problem is NP-hard, we show how to obtain a PTAS when the

treewidth is a constant. The algorithm is quite nontrivial compared to usual dynamic-

programming algorithms for bounded-treewidth problems. We need a structural prop-

erty to simplify the solution set we want to search in, so that we can find the optimal

one using a DP approach, but is, on the other hand, so rich to contain a near-optimal

solution.

Theorem 3.2.4. Steiner Forest admits a PTAS on graphs of bounded treewidth.

This is a rare instance of a problem whose complexity changes when the treewidth

changes from two to three.

Finally, we use Theorem 4.2.1 in conjunction with the spanner framework of Chap-

ter 5 and the brick-decomposition-based spanner construction of Chapter 6 to present

a PTAS for planar (and, more generally, bounded-genus) case of Steiner Forest.

Theorem 3.2.5. Steiner Forest admits a PTAS on bounded-genus graphs.

This result generalizes PTASes for Euclidean Steiner Tree [Aro98, Mit99], pla-

nar Steiner Tree [BKM09], and Euclidean Steiner Forest [BKM08].

44

3.2.3 Planar Prize-collecting Steiner Forest

Chapter 10 consider several prize-collecting Steiner network problems in planar

graphs. We first show that, surprisingly, these problems tend to be hard on very

simple metrics.

Theorem 3.2.6. PCSF is APX-hard on (1) planar graphs of treewidth two, and on

(2) the two-dimensional Euclidean metric.

The reduced instance in the proof has a very simple structure. The reader is

referred to the discussion in Section 10.3 to find about the instance and its implications

for similar problems.

The hardness for Euclidean metric answers an open question raised in [BH10].

It also provides the first provable separation between the complexity of a natural

optimization problem and that of its prize-collecting version: Euclidean Steiner

Forest admits a PTAS [BKM08], but Euclidean PCSF is APX-hard.

On the positive side, we present a reduction from bounded-genus to bounded-

treewidth instances of large classes of prize-collecting problems.

Theorem 3.2.7. For any given constant ε > 0, an α-approximation algorithm for

SPCSF on graphs of bounded treewidth implies an (α + ε)-approximation algorithm

for SPCSF on bounded-genus graphs. The α-approximation algorithm is run on a

graph with the same vertex set and the same penalty function. The result holds for

SPCTSP and SPCS, too.

Although we do not know of an approximation guarantee better than 2.54 for

bounded-treewidth SPCSF, we can obtain a PTAS for the case of multiplicative

prizes.

Theorem 3.2.8. MPCSF admits a PTAS on bounded-treewidth graphs.

The above result immediately implies a PTAS for the bounded-genus version using

Theorem 3.2.7.

45

3.3 Credits

Chapter 4 is an abstraction of the prize-collecting clustering technique that I grad-

ually developed with my coauthors [ABHK11, BHM10a, BHM10b]. It goes over the

moat-growing procedure due to [AKR95, GW95] before explaining the prize-collecting

clustering theorems. Chapters 5, 6 overview the relevant literature. Chapter 7 is an

abstraction of the ideas I developed in joint works with Hajiaghayi [BH09a, BH10].

Chapter 8 is based on a joint work with Archer, Hajiaghayi, and Karloff [ABHK09,

ABHK11]. Chapter 9 is based on a joint work with Hajiaghayi and Marx [BHM10a].

Chapter 10 is based on a joint work with Hajiaghayi and Marx [BHM10b] and a joint

work with Hajiaghayi [BH10]. The results of Section 10.5 borrow ideas from [BH10],

however, the results in this form appear in this thesis for the first time.

During my Ph.D. studies, I have also worked on other problems that are not

closely related to the topic of this thesis. These include network optimization [BH09a,

BGHS09, BGHS10, BH09b, BC10, BHKM11], fair allocation [BCG09a, BCG09b],

bargaining games [BHIM10], submodular secretary problem [BHZ10], database

scheduling [BGHK09], and pricing mechanisms [BHJP11].

46

Part II

Techniques

47

Chapter 4

Prize-collecting Clustering

Clustering is a technique in unsupervised learning or statistical data analysis to clas-

sify a set of items into different groups, called clusters [JMF99]. The items that

are placed in one cluster are supposed to be similar to each other. Clustering has

been used in a wide range of fields such as social network analysis [SC08, MSST07],

machine learning [LCFX07, YYH03, YLZ06, BC04], image analysis [JF96], pattern

recognition [And73], information retrieval [Ras92, Sal91], and other fields [JD88].

We may have a tendency to minimize the number of clusters, which is particularly

helpful in terms of efficiency if some operation is to be performed on each cluster.

There may be an upper bound, often called the diameter, on how different two items

in one cluster can be. The diameter may be dynamic in the sense that it is not the

same for different clusters.

The notion of similarity of items in a cluster is a problem-specific notion. The

simplest case is when items are already associated with “types,” and items of the

same type should be grouped together. There may be “features” that the items

share, and two items with significant number of common features can belong to the

same cluster. However, more general cases are those in which a metric function

describes the distance—i.e., dissimilarity—between any two items. The metric can

48

be the Euclidean metric, the `p distance function, or the shortest-path metric defined

on a weighted graph.

In each case, the items put in one cluster enjoy some structure that can later be

exploited. For instance, there can be a geometric structure, say, for separating items

of different clusters. We usually think of clustering as a tool that initiates a divide-

and-conquer strategy. From this perspective, we desire a small number of clusters,

and certain structural properties associated with each cluster.

Next we give a flavor of the clustering paradigm we are interested in, followed by

two concrete theorems. Before stating and proving Theorems 4.2.1 and 4.3.1, we give

in Section 4.1 an overview of a classic moat-growing procedure that is crucial in the

proof of both theorems. This procedure is later extend (to submodular budgets) in

Section 4.4.

Think of a scenario in which several radio transmitters are to be clustered ac-

cording to their proximity. Were all the transmitters of the same type, they would

have the same power, and could serve the same radius. However, if they have dif-

ferent powers, each can reach to a different distance. This introduces an element of

asymmetry in the clustering.

Now consider a setting where different towns should join each other in some re-

gional divisions. Each division should build a road network connecting all its towns

to each other. Since each division will form an autonomous entity, the funding for

the project in a division has to come from the towns in it; each town has a particular

budget. Then, the goal is to find the divisions and decide what roads to construct

in each. Moreover, certain maximality condition needs to be met so that, roughly

speaking, the number of divisions is minimized.

49

4.1 Moat-growing procedure

The moat-growing algorithm was first proposed by Agrawal, Klein, and Ravi [AKR95]

to give a 2-approximation algorithm for Steiner Forest. Goemans and

Williamson [GW95] simplified the exposition and the analysis, although using essen-

tially the same procedure, to obtain 2-approximation algorithms for constrained forest

problems as well as for Prize-collecting Steiner Tree and Prize-collecting

TSP. One major difference is that the original algorithm enjoys a lazy buying scheme,

whereas the latter buys many edges in the “growth” phase and later on “prunes” the

unnecessary ones.

We give a brief overview of the algorithm for Prize-collecting Steiner Tree

and its concepts since they serve as the core of the algorithms used to prove the prize-

collecting clustering theorems. More details can be found in [GW95].

Consider an instance of Prize-collecting Steiner Tree with the graph

G(V,E), edge-length function ` : E 7→ R+, and penalty function π : V 7→ R+.

The natural linear-programming relaxation—see LP (4.1)—is written for the rooted

version of the problem, where a special vertex r ∈ V has to be included in the final

solution. Recall that rooted and nonrooted variants are equivalent. For simplicity of

notation, we assume π(r) =∞ even in the rooted version.

minimize
∑
e∈E

`(e)xe +
∑
v∈V

πvzv (4.1)

subject to
∑
e∈δ(S)

xe ≥ 1− zv ∀v ∈ S ⊆ V \ {r} (4.2)

xe ≥ 0 ∀e ∈ E (4.3)

zv ≥ 0 ∀v ∈ V, (4.4)

where xe denotes whether an edge e is included in the solution, and zv signifies whether

50

a vertex v is left out. Hence, the solution needs to include at least one edge leaving

any set S ⊆ V \ {r} containing a vertex v with zv = 0.

Had integral constraints xe, zv ∈ {0, 1} been substituted in place of (4.3) and

(4.4), the above formulation would have exactly matched the optimum of Prize-

collecting Steiner Tree. However, the relaxation has an integrality gap ap-

proaching to 2, even for the special case of Steiner Tree, i.e., when πv ∈

{0,∞} [GW95]; we discuss the integrality gap and some of its implications in Sec-

tion 8.3. The following is essentially the dual of the above program.

maximize
∑

v∈S⊆V \{r}

yS,v (4.5)

subject to
∑
S⊆V
e∈δ(S)

∑
v∈S

≤ `(e) ∀e ∈ E (4.6)

∑
v∈S⊆V

yS,v ≤ π(v) ∀v ∈ V (4.7)

yS,v ≥ 0 ∀v ∈ S ⊆ V. (4.8)

Notice that we have included additional variables yS,v for sets S containing the root.

These variables do not contribute to the objective function, though, and, as a result,

can be set to zero in any optimal solution. However, the primal-dual algorithm may

assign nonzero values to some of them. To simplify the presentation, we often use

the shorthand yS :=
∑

v∈S yS,v. We sometimes refer to constraints (4.6), (4.6) as edge

packing and penalty packing constraints, respectively.

The algorithm GW, as well as the procedures used to prove Theorems 4.2.1 and

4.3.1, has two phases. In the first phase, moats grow around vertices—resulting in

increase of dual variables—and consume their budgets. As moats grow, some edges—

i.e., those whose dual constraints become tight—are bought and the connectivity in

the solution increases. Roughly speaking, this continues until the budgets run out,

51

or no more connectivity is possible. A pruning phase follows that is different for

Steiner Forest and Prize-collecting Steiner Tree. (We introduce our own

pruning rules in the proofs to come.) In general, edges that are not “necessary” will

be removed.

The analysis then seeks to charge the cost of the final solution to twice the sum of

the dual variables (only those thereof that appear in the objective function), which

by weak duality—see Theorem 2.2.1—is at most the optimum of LP (4.1), which is in

turn no more than opt. The charging is done by apportioning the cost of the solution

over “time,” and then showing the rate of increase in solution cost at each point in

time is at most twice the rate of increase in the sum of dual variables. The argument,

after much preparatory work, boils down to the fact that the average degree of a

forest is at most two.

In what follows, we discuss the growth phase in more detail (PC-MoatGrowing);

however, we leave the discussion of the pruning phase to where it is used since the very

pruning procedure employed depends on the theorem we aim to prove, and, although

similar in nature, is different from that of Prize-collecting Steiner Tree.

PC-MoatGrowing takes as input a graph G(V,E) and a penalty function π (some-

times called the “budget” or “potential”). It produces a feasible solution y to dual

LP (4.5), and a forest F . The forest is empty at the beginning, and y is initialized

to a zero vector. We maintain a partition C of vertices V into clusters; it initially

consists of singleton sets. Each cluster is either active or inactive; the cluster C ∈ C

is active if and only if
∑

C′⊆C
∑

v∈C′ yC′,v <
∑

v∈C πv. A vertex v is alive if and only

if
∑

C3v yC,v < πv. A vertex that is not alive is called dead. Equivalently, a cluster

C ∈ C is active if and only if there is a live vertex v ∈ C. We simultaneously grow all

the active clusters by η. In particular, if there are κ(C) > 0 live vertices in an active

cluster C, we increase yC,v by η/κ(C) for each live vertex v ∈ C. Hence, yC defined as∑
v∈C yC,v increases by η for an active cluster C. We pick the largest value for η that

52

does not violate any of the constraints in (4.6) or (4.7). Except possibly for the last

step of PC-MoatGrowing, η will be finite. (In the last step, a cluster consisting of all

the vertices may experience an infinite growth.) Hence, at least one such constraint

goes tight after each growth step (except possibly for the last one). If this happens

for an edge constraint for e = (u, v), then there are two clusters Cu 3 u and Cv 3 v

in C; at least one of the two is growing. (In this case, we may say that the edge e

is now tight.) We merge the two clusters into C = Cu ∪ Cv by adding the edge e to

F , remove the old clusters, and add the new one to C. Nothing needs to be done if a

constraint (4.7) becomes tight. The number of iterations is at most 2|V | because at

each event point either a vertex dies, or the size of C decreases.

We can think of the growth stage as a process that paints portions of the edges of

the graph. This gives a better intuition into the algorithm, and makes several lemmas

in the proof intuitively simple. Consider a topological structure in which vertices of

the graph are represented by points, and each edge is a curve connecting its endpoints

whose length is equal to the weight of the edge. Suppose a cluster C is growing by an

amount η. Recall that this is distributed among all the live vertices v ∈ C where yC,v

is increased by η′ := η/κ(C). As a result, we paint by color v a connected portion

with length η′ of all the edges in δ(C). Finally, each edge e gets exactly
∑

C:e∈δ(C) yC,v

units of color v. Although it is not necessary for any of the proofs, we can perform a

clean-up procedure such that all the portions of color v are consecutive on an edge.1

Hence, as a cluster expands, it paints its boundary by the amount of growth. At the

time when two clusters merge, their colors barely touch each other. At each point

in time, the colors associated with the vertices of a cluster form a connected region.

Algorithm 4.1 outlines PC-MoatGrowing.

1 This can also be achieved without a clean-up procedure if we perform the coloring in a lazy
manner. That is, we do not do the actual color assignment until the edge goes tight or the algorithm
terminates. At this point, we go about putting colors on the edges, and we make sure the color
corresponding to any pair (S, v) forms a consecutive portion of the edge. This property is not
required as part of our algorithm, though, and is merely for the sake of having a nice coloring which
is of independent interest.

53

Algorithm 4.1 PC-MoatGrowing (G, π)

Input: graph G(V,E), and budgets φv ≥ 0
Output: forest F , dual LP solution y, and laminar family of clusters S

1: F ← ∅
2: yS,v ← 0 for any v ∈ S ⊆ V
3: S ← C ← {{v} : v ∈ V }
4: while there is a live vertex and |C| > 1 do
5: Let η be the largest possible value such that simultaneously increasing yC by η

for all active clusters C does not violate Constraints (4.6)-(4.8)
6: yC(v),v ← yC(v),v + η

κ(C(v))
for all live vertices v

7: if ∃e ∈ E that is tight and connects two clusters then
8: Pick one such edge e = (u, v)
9: F ← F ∪ {e}

10: C ← C(u) ∪ C(v)
11: C ← C ∪ {C} \ {C(u), C(v)}
12: S ← S ∪ {C}
13: yV,u ← φ(u)−

∑
S⊂V yS,u # no new connectivity

14: return (F, y,S)

The last step of the procedure ensures the budget of every vertex is fully used. If

there is any vertex with residual budget, F spans all vertices, and yV = 0. We assign

the residual budget of every vertex to this cluster, whose growing does not have any

effect on the connectivity of F . Since there is no edge in δ(V) = ∅, we are never going

to charge any cost to these variables. Although this last step ensures that V does not

have any remaining budget, we do not consider V to be inactive when defining B.

4.1.1 Implementation and further discussion

Although there are exponentially many variables in the LP, only a polynomial number

of them will take nonzero values during the algorithm, and the algorithm runs in

polynomial time.

To implement PC-MoatGrowing, all we need to do is compute the time at which

each active cluster would die and the time at which each edge would go tight, assuming

no other event occurs first. We then process the earliest of these events, update the

appropriate time forecasts in our priority queue, and repeat. If two or more distinct

54

events are set to occur at the same time, then we can arbitrarily choose which one

to go first. Goemans and Williamson showed how to implement PC-MoatGrowing in

O(n2 log n) time [GW95], which Gabow and Pettie later improved to O(n2) [GP02].

The purpose of the two types of events is to prevent the penalty and edge packing

constraints from being violated. Thus, by construction, the vector of dual variables

forms a feasible solution to LP (4.5) at every moment during PC-MoatGrowing.

Although the tie-breaking is arbitrary when two events are set to occur at the same

time, notice that processing one event may cause one of the other tied events to be

deleted from the queue, thereby preventing it from occurring at that time (or perhaps

ever). For instance, if the edge packing constraints for two distinct edges between

clusters C1 and C2 become tight simultaneously, then processing one of them will

merge the components, thus preventing the other event from occurring. Therefore,

F remains a forest. Similarly, recall that we trigger a tight edge event on e only if

e connects two distinct clusters C1 and C2 and at least one of them is active. The

reason is that otherwise there is no immediate danger of violating the edge packing

constraint. Thus, if C1 is already dead and C2 is set to die at the same moment that e

goes tight, then choosing to first process the death of C2 prevents the tight edge event

on e from occurring at this time, although it could occur later if an active component

merges with C1 or C2. Similarly, processing the tight edge event first would prevent

C2 from dying because it would already have merged with C1 (although in this case,

C1 ∪ C2 would be about to die because PC1∪C2 = 0).

It is helpful to visualize PC-MoatGrowing as a geometric process where moats of

water encircling clusters of vertices expand over time. The dual variable yC represents

the width of the moat encircling cluster C. As yC increases, the moat expands across

the edges δ(C) that cross the moat. As soon as the moats have collectively expanded

across an edge (possibly from both directions, meeting somewhere in the middle), the

edge packing constraint becomes tight and it triggers a tight edge event, putting that

55

edge into F . This geometric view of the dual variables as moats was suggested by

Jünger and Pulleyblank [JP95], predating GW. The potential PC = φ(C) −
∑

S⊆C yS

corresponds to the height of a reservoir that shrinks at the same rate that the width

of the surrounding moat expands.

4.1.2 Goemans-Williamson’s algorithm for PCST

The algorithm GW consists of two phases. The first phase is PC-MoatGrowing described

above. We now explain its pruning phase. The set of edges that PC-MoatGrowing

includes in F may be very expensive, so the pruning phase throws some of them away.

First, it discards all trees in the forest F aside from the one containing r. These are

precisely the dead clusters that still existed when PC-MoatGrowing terminated. Next,

we consider all clusters that existed at any point during PC-MoatGrowing, and we color

black any cluster that died (whether or not it later merged with an active cluster).

Now, we iteratively perform the following pruning step. While there exists a black

cluster C such that |F ∩ δ(C)| = 1, delete all edges from F that are incident to any

vertex of C (i.e., the edges in δ(C), plus all those internal to C). Once there are no

more such black clusters left to prune, GW returns F . This concludes the description

of GW.

Algorithm 4.2 GW (G, π, r)

Input: graph G(V,E), root r ∈ V , and penalties π(v) ≥ 0 such that π(r) =∞
Output: tree T

1: (F, y,S)← PC-MoatGrowing(G, π)

2: B ←

{
S ∈ S \ {V } |

∑
S′⊆S

∑
v∈S′

yS′,v =
∑
v∈S

φv

}
3: while ∃S ∈ B such that |F ∩ δ(S)| = 1 do
4: F ← F \ {all edges incident on S}
5: T ← the component of F containing r
6: return T

Clearly, none of these pruning operations disconnects F since that would require

56

|F ∩ δ(C)| ≥ 2. Moreover, none prunes away r since the root component never dies

in PC-MoatGrowing. Hence, the final returned set F is a tree that includes r. Refer

to [GW95] for a proof of why this is a 2-approximate solution for PCST.

As a historical note, the moat-growing procedure originally given by Goemans and

Williamson [GW95] treats the root vertex differently from others, in that any compo-

nent containing the root does not grow at all. The nonrooted growth explained above,

that avoids guessing the root vertex, is due to Johnson, Minkoff, and Phillips [JMP00];

however, a minor error in their analysis was fixed later by Feofiloff et al. [FFFdP10].

Our exposition (of the moat-growing and pruning phases) matches that of the latter

work. Our proofs heavily rely on the fact that all vertices are treated the same, i.e.,

there is no special root vertex.

4.2 Classification theorem

We start with the first prize-collecting clustering theorem. Given a weighted graph

with budgets on vertices, this theorem classifies the vertices of a graph into clusters

such that vertices of each cluster can independently of others build a tree among

themselves, using only twice their own budget. In addition, for any two (or more)

vertices classified into different clusters (barring some technical restrictions), we can

argue that placing them in the same cluster, while satisfying the above condition, is

impossible.

We first introduced this theorem in [BHM10a] to tackle Steiner Forest on

planar and bounded-genus graphs; see Chapter 9. Subsequently, it was invoked in

[BCE+11] to study Prize-collecting Steiner Forest on planar graphs—see

Chapter 10—and in [BHKM11] to present a PTAS for Planar Multiway Cut.

In all these instances, the theorem serves as a tool to initiate a divide-and-conquer

strategy.

57

Theorem 4.2.1 (Classification). Let G(V,E) be a graph with nonnegative lengths

` : E 7→ R+ on edges, and a budget φ : V 7→ R+ for each vertex. In polynomial time,

we can find a subgraph Z such that the following hold.

1. The length of Z is at most 2φ(V); in particular, `(T) ≤ 2φ(V (T)) for any

connected component T of Z.

2. For any subgraph L of G, there is a set Q of vertices such that

(a) φ(Q) is at most the length of L, and

(b) if two vertices v1, v2 6∈ Q are connected by L, then they are in the same

component of Z.

We shortly describe an algorithm—see PC-Classify below—that is the underly-

ing procedure in the proof of Theorem 4.2.1. The algorithm consists of the nonrooted

growth procedure PC-MoatGrowing followed by a special pruning phase. The anal-

ysis bears similarities to the primal-dual method due to [AKR95, GW95], yet we

strengthen the previous approaches by proving local guarantees (instead of the global

guarantee provided in previous algorithms).

Algorithm 4.3 PC-Classify (G, φ)

Input: graph G(V,E), and budgets φ(v) ≥ 0
Output: forest F

1: (F, y,S)← PC-MoatGrowing(G, φ)
2: F ′ ← F # only used in the analysis

3: B ←

{
S ∈ S \ {V } |

∑
S′⊆S

∑
v∈S′

yS′,v =
∑
v∈S

φv

}
4: while ∃S ∈ B such that F ∩ δ(S) = {e} for an edge e do
5: F ← F \ {e}
6: return F

Pruning rule for PC-Classify Let S contain every set that is a cluster at some

point during the execution of PC-MoatGrowing. It can be easily observed that the

58

clusters S are laminar and the maximal clusters are those in C. In addition, notice

that F [C] is connected for each C ∈ S.

Let B ⊆ S \ {V } be the set of all such clusters that are tight, namely, for each

C ∈ B, we have
∑

S⊆C
∑

v∈S yS,v =
∑

v∈C φv. In the pruning phase, we iteratively

remove some edges from F . More specifically, as long as there is a cluster C ∈ B such

that F ∩ δ(C) = {e}, we remove the edge e from F . (In contrast, the pruning rule

for GW would remove all edges incident on V (C), not only the edge e leaving C.)

A cluster C is called a pruned cluster if it is pruned in the second phase in which

case we have δ(C) ∩ F = ∅. We argue that a pruned cluster cannot have nonempty

and proper intersection with a connected component of F . Notice that, at the time

the cluster C is pruned, the single remaining edge of F ∩ δ(C) is removed from F ,

thus the final F cannot have any edge in δ(C). Therefore, no connected component

of F can have two vertices such that one is inside C and the other is not.

We first bound the length of the final forest F output by PC-Classify. The

following lemma is similar to the analysis of the algorithm in [GW95]. However, we

do not have a primal LP to give a bound on the dual. Rather, the upper bound for the

length is the sum of all the budget φ(V). In addition, we bound the length of a forest

F that may have more than one connected component, whereas the pruning rule for

Prize-collecting Steiner Tree algorithm of [GW95] guarantees a connected

graph at the end.

Lemma 4.2.2. The length of F is at most 2φ(V). In particular, the length of each

connected component of F can be charged to twice the budget of vertices inside it.

Proof. The strategy for establishing the first part of the lemma is to prove that the

length of the forest F is at most 2
∑

v∈S⊆V yS,v ≤ 2
∑

v∈V φ(v), where the inequality

follows from Equation (4.7). To obtain the stronger claim in the statement, we argue

that the variables yS,v with v ∈ V (T) suffice to account for the length of a connected

component T .

59

Recall that the growth phase has several events corresponding to an edge or set

constraint going tight. Conceptually, it is helpful to think of PC-MoatGrowing as

progressing continuously over time, although the actual computation is confined to

a sequence of discrete event points. Time begins at 0 and unfolds in epochs, which

are the intervals of time between two consecutive event points (possibly an empty

interval if two event points occur simultaneously). Each active cluster C increases

its yC value at rate 1 for the duration of the epoch, while all other dual variables

remain unchanged. We first break apart y variables by epoch. Let tj be the time at

which the jth event point occurs in PC-MoatGrowing (0 = t0 ≤ t1 ≤ t2 ≤ · · ·), so

the jth epoch is the interval of time from tj−1 to tj. For each cluster C, let y
(j)
C be

the amount by which yC :=
∑

v∈C yC,v grew during epoch j, which is tj − tj−1 if C

was active during this epoch, and zero otherwise. We have yC =
∑

j y
(j)
C . Because

each edge e of F was added at some point by PC-MoatGrowing when its edge packing

constraint (4.6) became tight, we can exactly apportion the length `(e) amongst the

collection of clusters {C : e ∈ δ(C)} whose variables “pay for” the edge, and can

divide this up further by epoch. In other words, `(e) =
∑

j

∑
C:e∈δ(C) y

(j)
C . We prove

that the total edge length from F that is apportioned to epoch j is at most 2
∑

C y
(j)
C .

In other words, during each epoch, the total rate at which edges of F are paid for by

all active clusters is at most twice the number of active clusters. Summing over the

epochs yields the desired conclusion.

We now analyze an arbitrary epoch j. Let Cj denote the set of clusters that existed

during epoch j. Consider the graph F , and then collapse each cluster C ∈ Cj into a

supervertex. Call the resulting graph H. Although the vertices of H are identified

with clusters in Cj, we will continue to refer to them as clusters, in order to avoid

confusion with the vertices of the original graph. Some of the clusters are active and

some may be inactive. Let us denote the active and inactive clusters in Cj by Cact

and Cdead, respectively. The edges of F that are being partially paid for during epoch

60

j are exactly those edges of H that are incident to an active cluster, and the total

amount of these edges that is paid off during epoch j is (tj − tj−1)
∑

C∈Cact degH(C).

Since every active cluster grows by exactly tj − tj−1 in epoch j, we have

∑
C

y
(j)
C ≥

∑
C∈Cj

y
(j)
C = (tj − tj−1)|Cact|.

Thus, it suffices to show that
∑

C∈Cact degH(C) ≤ 2|Cact|.

First we must make some simple observations about H. Since the final solution F

is a subset of the edges F ′ output by PC-MoatGrowing where each cluster represents a

disjoint induced connected subtree, the contraction to H introduces no cycles. Thus,

H is a forest. All the leaves of H must be alive because otherwise the corresponding

cluster C would be in B and hence would have been pruned away.

With this information about H, it is easy to bound
∑

C∈Cact degH(C). The total

degree in H is at most 2(|Cact|+|Cdead|) since H is a forest. Noticing that the degree of

dead clusters is at least two, we get
∑

C∈Cact degH(C) ≤ 2(|Cact|+ |Cdead|)− 2|Cdead| =

2|Cact| as desired.

Finally, we argue that the length of an edge e ∈ F is only charged to yS,v where v

is connected to endpoints of e in F . If we do not perform any pruning, this is simple

because F ′[S] is connected for all clusters S ∈ S. It suffices to show, thus, that the

pruning does not disconnect v from endpoints of e. Let p be a path in F ′ connecting v

to the closer endpoint of e; i.e., e is not on p, but exactly one endpoint of e is in p. All

the vertices of p belong to S, and e ∈ δ(S) is never pruned. To reach a contradiction,

suppose e′ is the first edge on p that is pruned. For the cluster S ′ ∈ S that causes

this, we have δ(S ′) ∩ p = {e′}. Laminarity of S gives S ′ ⊆ S. This cannot happen

with v ∈ S ′ since yS,v > 0 contradicts S ′ ∈ B. In the other case, e ∈ δ(S ′), hence the

intersection of δ(S ′) with F (at the time of pruning e′) has at least two edges, {e, e′},

which is a contradiction. Therefore, no edge of p is pruned, and the claim follows.

61

The following lemma gives a sufficient condition for two vertices that end up in

the same component of F . This is a corollary of our pruning rule which is different

from previous ones. Recall that, unlike previous work, we do not prune the entire

subgraph; rather, we only remove some edges, increasing the number of connected

components.

Lemma 4.2.3. Two vertices u and v of V are connected via F if there exist sets S, S ′

both containing u, v such that yS,v > 0 and yS′,u > 0.

Proof. PC-MoatGrowing connects u and v since yS,v > 0 and u, v ∈ S. Consider the

path p connecting u and v in F ′. All the vertices of p are in S and S ′. For the sake

of reaching a contradiction, suppose some edges of p are pruned. Let e be the first

edge being pruned on the path p. Thus, there must be a cluster C ∈ B cutting e;

furthermore, δ(C) ∩ p = {e} since e is the first edge pruned from p. As C cuts e,

it only has one endpoint of the edge. Then, the laminarity of the clusters S gives

C ⊂ S, S ′. In addition, we show that C contains exactly one endpoint of the path p

(as opposed to exactly one endpoint of the edge e). This holds because, if C contained

neither or both endpoints of p, the cluster C could not cut p at exactly one edge. Call

the endpoint of p in this cluster v. We then have
∑

C′⊆C yC′,v = φ(v) because C is

tight. However, as C is a proper subset of S, this contradicts with yS,v > 0, proving

the supposition false. The case when C contains u is symmetric.

Consider a pair (v, S) with yS,v > 0. If subgraph G′ of G has an edge that goes

through the cut (S, S), at least a portion of length yS,v of G′ is painted with the

color v due to the set S. Thus, if G′ cuts all the sets S for which yS,v > 0, we can

charge part of the length of G′ to the budget of v. Later in Lemma 4.2.5, we are

going to use budgets as a lower bound on the length of a graph. (When it is invoked

in Theorems 9.5.2 and 10.2.2, this serves as a lower bound on the optimum.) More

formally, we say a graph G′(V,E ′) exhausts a color u if and only if E ′ ∩ δ(S) 6= ∅ for

62

1 2

3

4 5 6

7

8
9

Figure 4.1: PC-MoatGrowing paints the graph with different colors (corresponding to
budgets of vertices), and each segment of an edge may receive a different color. Solid
edges represent F , the forest output by PC-MoatGrowing. There are five connected
components, namely K1 = {1}, K2 = {2}, K3 = {3, 4, 5, 7, 8}, K4 = {6} and K5 =
{9}. (The final pruning step of PC-Classify may remove some edges, and break up
certain components into smaller ones, but for simplicity of presentation in this figure,
we assume these are the actual components.) The dashed edges correspond to another
forest F ′, say the optimum. Roughly speaking, the budget of vertices connected by
F ′ but not by F gives a lower bound on the length of F ′ since this charging can be
done for one pair at a time. For instance, the path from 1 to 3 passes through the
colors corresponding to 1 and 3, and, since both vertices are exhausted, the length of
the path is at least the sum of the budgets of the two vertices—in general, at least
one of the involved vertices is exhausted by F ′ whenever it connects two separate
components of PC-Classify.

63

any S : yS,u > 0.

Lemma 4.2.4. If a subgraph G′(V,E ′) of G connects two vertices u, v from different

components of F , then G′ exhausts the color corresponding to at least one of u and v.

Proof. Suppose that G exhausts neither u nor v. Then, there are a set S containing

u and a set S ′ containing v such that yS,v, yS′,u > 0 and E ′ ∩ δ(S) = E ′ ∩ δ(S ′) = ∅.

Since G′ connects u and v, this is only possible if u and v are both in S and S ′. By

Lemma 4.2.3, this implies that F connects u and v, which is a contradiction.

We can relate the length of a subgraph to the budget of the colors it exhausts.

Lemma 4.2.5. Let Q be the set of colors exhausted by a subgraph G′ of G. The length

of G′(V,E ′) is at least φ(Q).

This is quite intuitive. Recall that the y variables color the edges of the graph.

Consider a segment on edges corresponding to a cluster S with color v. At least one

edge of G′ passes through the cut (S, S). Thus, a portion of the length of G′ can be

charged to yS,v. Hence, the total length of the graph G′ is at least as large as the

total amount of colors paid for by Q.

We now provide a formal proof.

Proof. The length of G′(V,E) is

∑
e∈E′

`(e) ≥
∑
e∈E′

∑
S:e∈δ(S)

yS by (4.6)

=
∑
S

|E ′ ∩ δ(S)|yS

≥
∑

S:E′∩δ(S) 6=∅

yS

=
∑

S:E′∩δ(S) 6=∅

∑
v∈S

yS,v

=
∑
v

∑
S3v:E′∩δ(S)6=∅

yS,v

64

≥
∑
v∈Q

∑
S3v:E′∩δ(S)6=∅

yS,v

=
∑
v∈Q

∑
S3v

yS,v,

because, for v ∈ Q, we have yS,v = 0 if E ′ ∩ δ(S) = ∅,

=
∑
v∈Q

φv,

since (4.7) holds with equality for all vertices.

Now we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Use PC-Classify on G and φ. The subgraph Z is the output

forest F . Condition 1 is given by Lemma 4.2.2. For condition 2, let Q be the set of

vertices exhausted by L. Condition 2(a) follows Lemma 4.2.5. For condition 2(b),

notice that v1, v2 6∈ Q implies that L does not exhaust the budget of neither vertex.

Let S1, S2 be the largest sets such that yS1,v1 > 0, yS2,v2 > 0. Since PC-MoatGrowing

exhausts the budgets of these vertices, but L that connects v1, v2 does not, it has

to be the case that u1, v2 ∈ S1 and u1, v2 ∈ S2. Then, Lemma 4.2.4 gives condition

2(b).

4.3 Superclustering theorem

The previous clustering theorem allows us to classify graph vertices into clusters such

that each cluster forms an autonomous entity. We discuss another scenario in this

section when all the information is not available at the beginning, hence the clustering

is achieved in two stages. Consider the setting in which each vertex of the graph is

either a client or a server. Each client needs to be connected to exactly one server.

Thus, the network we seek looks like a forest each of whose connected components

65

has exactly one server, but it can have any number of clients (possibly none). Again,

each connected component forms an autonomous entity, and the funding for building

the connection therein has to come from its vertices (roughly speaking). One point of

divergence from the previous theorem is that, since the server does not benefit from

its connection to clients, it is not willing to fund those connections. As a result, the

cost of each connected component should be charged to its clients only. The second

difference is the lack of full information at the beginning: we do not know which

vertices are the servers; more precisely, we are only aware of one of them.

The desired procedure PC-Superclustering, given the graph G, budgets φ, and

a known server r ∈ V , commits to a subset of exempt vertices Q 63 r—see below for

technical restrictions on Q—as well as a tree T spanning V \Q. After the announce-

ment of Q and T , the set of servers I 3 r is revealed, perhaps adversarially, at which

point T should be pruned into a forest F such that each connected component of F

contains exactly one server, and the length of the component can be charged to its

clients. For technical reasons, φ(Q) serves as a shared resource that all components

can use to build their trees.

Notice that for the task to be doable, having a flexibility in exempting a subset

Q of vertices is necessary. Consider an instance where one vertex v has budget zero,

however, the distance of v to the closest vertex is considerably larger than all the

budgets combined. No matter what tree T we commit to, we cannot pay for the

component containing v in the final step in case v 6∈ I. Therefore, we need the flexi-

bility to exempt v at the beginning. On the other hand, there has to be a restriction

preventing us from declaring all vertices exempt, making the construction trivial, and

the theorem useless. The condition we propose is a technical one, and is exactly what

we require in invoking the theorem in Chapter 8 to improve the approximation ratio

for Prize-collecting Steiner Tree and Prize-collecting TSP. We ensure

that the total budget of exempt vertices is no more than the optimum of the PCST

66

instance defined on G, π = φ. Let optPCST(G, φ) denote the latter term.

Theorem 4.3.1 (Superclustering). Let G(V,E) be a graph with nonnegative lengths

` : E 7→ R+ on edges, and budgets φ : V 7→ R+ for vertices v ∈ V . Given a root

vertex r ∈ V , we can find in polynomial time a set Q of exempt vertices, and a tree

T spanning V \Q such that

1. φ(Q) ≤ optPCST(G, φ), and

2. given any set I 3 r of servers, we can prune down (i.e., remove some edges of)

T to obtain a forest F with the following properties.

(a) Each connected component of F contains exactly one server.

(b) The length of F is at most 2φ(V \ I); in particular, after distributing φ(Q)

among the connected components of F , the length of each component is at

most twice the budget of clients in that component plus its share of φ(Q).

Superclustering is conceptually similar to hierarchical clustering (see, e.g.,

[LW67]). In hierarchical clustering, one produces a tree on the items to be clus-

tered. Then, any cross section of the tree yields one clustering of the items. In some

sense, the produced tree is an object that contains within itself many different clus-

terings, and the actual clustering is realized only after more information is provided.

In a similar manner, the Superclustering Theorem produces and commits to a tree, in

addition to the set of exempted vertices, and depending on what vertices are revealed

as servers later, the tree turns into a clustering with certain guarantees. Thus, su-

perclustering, too, produces an object that holds several different clusterings hidden

in itself.

Furthermore, notice that the theorem does not ask the pruning procedure to run

in polynomial time. When we use this theorem in Chapter 8, we do not even need a

polynomial-time algorithm for constructing T . We merely need an efficient procedure

67

to identify Q, and guarantee the other conditions of the theorem existentially. In fact,

the proof is very similar to the algorithm GW; however, interestingly this is the only

instance of GW, that we are aware of, to be used nonconstructively.

Procedure PC-Superclustering is the polynomial-time algorithm promised in

the theorem. The pruning procedure required after the servers are revealed is only

discussed in the proof of Theorem 4.3.1.

Algorithm 4.4 PC-Superclustering (G, φ, r)

Input: graph G(V,E), budgets φ(v) ≥ 0, and root r
Output: exempt vertices Q, and forest F

1: Define φ′(v) =

{
φ(v) if v 6= r

∞ if v = r

2: (F, y,S)← PC-MoatGrowing(G, φ′)

3: B ←

{
S ∈ S \ {V } |

∑
S′⊆S

∑
v∈S′

yS′,v =
∑
v∈S

φv

}
only for analysis

4: T ← the connected component of F containing r
5: Q←

⋃
S∈B S

6: return (Q, T)

The following two lemmas prove the above theorem. The first one giving the first

condition of the theorem is fairly simple. The proof of the other lemma, that achieves

the second condition involving the pruning stage, is more complicated.

Lemma 4.3.2. For the set Q of exempt vertices returned by PC-Superclustering,

we have φ(Q) ≤ optPCST(G, φ).

Proof. For every vertex v ∈ Q, we have some cluster S 3 v that became inactive

during PC-MoatGrowing. This implies that

∑
S′3v

yS′,v ≥
∑

S′:v∈S′⊆S

yS′,v = φ(v).

68

Q

V \Q

I V \ I

r

A

Figure 4.2: Illustration of Lemma 4.3.3 and Lemma 8.4.2. The Venn diagram shows
sets I,Q ⊆ V . The shaded region is A, and the solid edges represent the forest F .
In the proof of Lemma 8.4.2, we take I = V (O) and Q = DIβ , then augment the
optimal tree of dashed edges with the forest F of solid edges to obtain a tree spanning
at least V −Q.

Summing up for all v ∈ Q, we obtain

φ(Q) =
∑
v∈Q

∑
S3v

yS,v

≤
∑
v∈V

∑
S3v

yS,v.

PC-MoatGrowing ensures that the dual solution y is feasible for LP (4.5), and observe

that yV,v = 0 for v ∈ Q. Hence, weak duality yields the statement of the lemma.

Lemma 4.3.3. Let Q and T be the output of PC-Superclustering (G, φ, r), and let

y be the vector of dual variables generated by the internal call to PC-MoatGrowing.

Let I ⊆ V \ Q be any set of vertices containing r, and let A = V \ Q \ I. Then, we

can prune T down to a forest F , possessing the following three properties.

Property 1. V (F) contains every vertex in A.

Property 2. Each tree in the forest F includes exactly one vertex from I.

Property 3. `(F) ≤ 2
∑

v∈I
∑

S yS,v ≤ 2φ(I). More specifically, the length of each

tree T ′ in F can be charged to twice the budget of V (T ′) \ I, possibly using a portion

of φ(Q) which is shared among all trees.

69

Before giving the proof, we introduce some definitions. Recall that S denotes the

set of all clusters formed during PC-MoatGrowing. Since we have yS = 0 for any set

S 6∈ S, it suffices to consider only the sets in S. The following set of clusters of S

plays an important role in the proof of the lemma.

Definition 4.3.4. Let CI =
{
C ∈ S : C ⊆ I

}
.

We will refer to the clusters in CI as I-clusters. All other clusters contain at

least one element of I, so we term them I-intersecting clusters. Thus, the main

technical point we need to prove is c(F) ≤ 2
∑

C∈CI
yC , to yield the first inequality in

Property 3 from Lemma 4.3.3. To obtain the stronger claim in Property 3, it suffices

to argue that the length of each tree T ′ is only charged to variables yS,v such that

v ∈ V (T ′) ∪Q.

Proof of Lemma 4.3.3. The forest we derive must connect each vertex in A to a vertex

in I. We will derive F from T by deleting some edges in two phases, illustrated by

Figure 4.3. Since V (T) consists of the union of the dead clusters that still existed at

the end of PC-MoatGrowing, V (T) ⊆ Q, by definition of Q. Thus, T already satisfies

Property 1, and both phases of edge deletion will preserve it as an invariant. The

first phase will accomplish Property 2, and the second will preserve it as an invariant.

Both phases of edge deletion taken together will ensure that

`(F) ≤ 2
∑
C∈CI

yC , (4.9)

which is the most complicated part of the argument. By the penalty packing con-

straint (4.7), the summation is at most φ(I) since y is a feasible solution to LP (4.5).

Property 3 then follows.

We now show how to construct F by deleting edges from T . To help us prove (4.9),

we will also ensure that F satisfies the following additional property. For each pair

70

of distinct vertices u, v ∈ I, let Puv denote the path from u to v in T , and let euv be

the last edge on Puv that was added to T during PC-MoatGrowing.

Property 4. For each pair of vertices u, v ∈ I, we have euv /∈ F .

Start with F = T . As we observed above, V (T) ⊆ Q, and hence T spans at least

V \Q. Consider the edges of T in the reverse of the order in which they were added

during PC-MoatGrowing. When we arrive at an edge e, if there exist two vertices in

I that are still in the same tree of F but would be separated by deleting e, then do

so. These deletions preserve the invariant that each tree in the forest F contains at

least one vertex from I (this holds initially because T and I both contain r). Thus,

none of the edge deletions isolate any vertices in A, so Property 1 holds throughout

this pruning phase. We will satisfy Property 4 by the end because, at the time we

consider edge euv, vertices u and v are still connected by the path Puv, and so we

delete euv. Thus, F will end up with exactly one vertex of I per tree, satisfying

Property 2. Another way to view this first pruning phase is that it simply deletes

euv, for all distinct vertices u, v ∈ I. In order to achieve (4.9), we must do another

pruning phase.

In the second phase, we prune each tree in the forest F in precisely the same way

that GW would do; the result is different, though, because of the pruning phase already

performed. We color a cluster C black if C died at any point during PC-MoatGrowing.

(Notice that in this case C ∈ CI since C ⊆ Q ⊆ V \ I.) Then, as in GW, while there

exists a black cluster C such that |F ∩ δ(C)| = 1, we prune away all edges of F that

are incident to one or two vertices of C. In other words, we prune away the one

edge in F ∩ δ(C), plus all edges of F internal to C. Since the black clusters contain

only vertices from Q ⊆ I, this pruning does not throw away any vertex from A or I.

Therefore, C does not contain any entire trees of F (because that would include a

vertex from I, by Property 2). This, along with |F ∩ δ(C)| = 1, implies that C must

contain vertices from only one of the trees of F . Thus, each pruning step throws away

71

an entire limb from one of the trees of F , and the remaining part of the pruned tree

is still a single component. Thus, Properties 1 and 2 are maintained. The remaining

forest is our final F .

We now prove that this F satisfies (4.9). Our proof is very similar to the famous

proof of Theorem 8.3.1 [GW95, FFFdP10]. After much preparatory work, this proof

boils down to the fact that the average degree of the vertices in a tree is just under

2, and excluding some nonleaf vertices from the average preserves this property since

their degrees are all at least 2. This is what causes the factor of 2 to appear in (4.9).

We first break apart the dual variables by epoch. Let tj be the time at which

the jth event point occurs in PC-MoatGrowing (0 = t0 ≤ t1 ≤ t2 ≤ · · ·), so that the

jth epoch is the interval of time from tj−1 to tj. For each cluster C, let y
(j)
C be the

amount by which yC grew during epoch j, which is tj − tj−1 if C was active during

this epoch, and 0 otherwise. Thus, yC =
∑

j y
(j)
C . Because each edge e ∈ F was

added by PC-MoatGrowing when its edge packing constraint (4.6) became tight, we

can exactly apportion the cost `(e) amongst the dual variables {yC : C ∈ S, e ∈ δ(C)}

that appear in the sum on the left side of the tight edge packing constraint for e. We

can then further divide this up by epoch. In other words, `(e) =
∑

C∈S:e∈δ(C) yC =∑
C∈S:e∈δ(C)

∑
j y

(j)
C . Hence, to prove (4.9), it suffices to prove that the total edge

cost from F that is apportioned to epoch j is at most twice the amount paid by the

clusters in CI , i.e., ∑
e∈F

∑
C∈S:e∈δ(C)

y
(j)
C ≤ 2

∑
C∈CI

y
(j)
C . (4.10)

In other words, since y
(j)
C is 0 for inactive clusters and the same for all active clusters,

we wish to show that during each epoch, the total rate at which edges of F are paid

for by all active clusters is at most twice the number of active clusters in CI . Summing

72

over the epochs yields (4.9). More formally,

`(F) =
∑
e∈F

`(e) =
∑
e∈F

∑
C∈S:e∈δ(C)

∑
j

y
(j)
C

=
∑
j

∑
e∈F

∑
C∈S:e∈δ(C)

y
(j)
C

 ≤∑
j

2
∑
C∈CI

y
(j)
C

= 2

∑
C∈CI

∑
j

y
(j)
C = 2

∑
C∈CI

yC ,

where the inequality follows from (4.10).

We now fix an arbitrary epoch j and analyze it to prove (4.10), at which point we

will be done. Let Cj denote the set of clusters that existed during epoch j and contain

a vertex from V (F). The entire set of clusters that existed during epoch j partitions

V , but we are concerned only with the partition of V (F) induced by intersecting each

cluster with V (F), and hence we care about only the clusters in Cj.

Consider the graph (V (F), F), and then contract each cluster C ∈ Cj into a

supervertex. Call the resulting graph H. Notice that there is an alternate equivalent

way to construct H: starting with T , first contract all clusters that existed during

epoch j, then delete the edges corresponding to T \F , then clean up by deleting any

isolated clusters that are not in Cj (i.e., contain no vertices from V (F)). Figure 4.3

illustrates this. From this alternate description, it is obvious that each edge of H

corresponds to a unique edge in F since T is a tree and we contract clusters which

correspond to disjoint connected subtrees of T . It may be the case that some cluster

C ∈ Cj contains vertices from distinct trees in the forest F , in which case H will

have fewer distinct connected components than F does. Although the clusters in Cj

are identified with vertices of H, we will continue to refer to them as clusters rather

than vertices, in order to to avoid confusion with the vertices of the original graph

G = (V,E).

We will use the graph H to analyze epoch j and prove (4.10). Let us begin with

73

v′

u

v

euv
euv′

e

Figure 4.3: This figure illustrates the analysis of an epoch j. The hollow vertices are
in I, and the solid vertices are in I. The tree T consists of all 13 edges. The solid
edges form the forest Fj of edges already added by PC-MoatGrowing prior to epoch
j, and the shaded ovals denote the clusters that existed during epoch j. The dashed
edges were added to T later on. The 3 edges that are crossed out were deleted in the
first pruning phase, in order to separate the hollow vertices (in I). The cluster with
the dashed border had already died prior to epoch j, so the second pruning phase
colored it black. Since it also has only one external edge in T , this cluster was pruned
in the second phase, denoted by the slashes across the 3 edges incident on one or two
of its vertices. The 7 edges with no slashes or crosses make up the final forest F . The
4 clusters with solid borders are the vertices of the forest H, which contains 3 trees:
2 isolated vertices and one pair of vertices connected by edge e. The edge e is the
only edge of F that is being paid for during this epoch.

74

three simple observations about H.

Observation 4.3.5. H is a forest.

Proof. Consider the alternate construction of H, in which we contract clusters first,

then delete edges. Since each cluster is a contiguous subset of vertices from the tree T ,

contracting them introduces no cycles, so the contracted graph is still a tree. Deleting

edges just breaks up this tree into a forest.

Observation 4.3.6. Every dead leaf of H is I-intersecting.

Proof. First note that H has no black leaves. A cluster C being a leaf in H is

equivalent to having |F ∩ δ(C)| = 1 since every edge of H corresponds to a unique

edge of F . Thus, if C ∈ Cj were a black leaf, then we would have pruned it away

in our second pruning phase. Therefore, every dead leaf of H is I-intersecting since

otherwise it would be colored black.

Observation 4.3.7. Within each tree of the forest H, there is exactly one I-

intersecting cluster.

Proof. By Property 2, each tree in F includes exactly one vertex of I. Thus, each tree

in H includes at least one I-intersecting cluster, so we just need to show that there is

at most one. We show that for each pair u, v of distinct vertices in I ∩ V (F), either

u and v are contracted into the same vertex of H, or they end up in different trees of

H. Therefore, if Cu and Cv are the corresponding I-intersecting clusters, then either

Cu = Cv, or they are in different trees of H.

Consider the edge euv and the path Puv defined previously. Let Fj ⊆ T denote

the forest of edges that PC-MoatGrowing had built within T prior to epoch j; this is

the forest whose connected components are the clusters that existed during epoch j.

Suppose that euv ∈ Fj. Then Puv ⊆ Fj because euv was the last edge along path Puv

to be added (and hence the remaining edges of Puv have already been added). Thus,

75

u and v are connected in Fj, hence in the same cluster in Cj, so they are contracted

into the same vertex of H. This situation corresponds to vertices u, v in Figure 4.3.

Now suppose instead that euv /∈ Fj. Then the endpoints of euv are in different

connected components of Fj, i.e., different clusters. Now consider the alternate con-

struction of H, in which we first contract clusters, then delete the edges corresponding

to T \ F . When we contract clusters, edge euv survives (because its endpoints are

in different clusters), and u and v are contracted into clusters that are on opposite

sides of the edge corresponding to euv in the contracted tree. Property 4 guarantees

euv /∈ F , so the subsequent deletion of the edges corresponding to T \ F 3 euv en-

sures that these two clusters are separated into different trees in the forest H. This

situation corresponds to vertices u, v′ in Figure 4.3.

We now use Observations 4.3.5, 4.3.6 and 4.3.7 to prove (4.10). During the jth

epoch, some of the clusters are active and the rest are dead. Let us denote the sets

of active and dead clusters in Cj by Cact and Cdead, respectively. The edges of F that

are being partially paid for during epoch j correspond exactly to those edges of H

that are incident to an active cluster, and the total portion of these edge costs that

is paid off during epoch j is

(tj − tj−1)
∑
C∈Cact

degH(C), (4.11)

since y
(j)
C = tj − tj−1 for every active cluster C, and C pays this amount to-

ward degH(C) different edges in F . Thus, expression (4.11) equals the left side

of (4.10). Simplifying the right side of (4.10), we have
∑

C∈CI
y

(j)
C ≥

∑
C∈CI∩Cj

y
(j)
C =

76

∑
C∈CI∩Cact

y
(j)
C = (tj− tj−1)|CI ∩Cact|.2 Thus, to prove (4.10), it suffices to show that

∑
C∈Cact

degH(C) ≤ 2|CI ∩ Cact|. (4.12)

Let k be the number of trees in H, and l be the number of dead leaves in H.

By Observation 4.3.7, we know that exactly k clusters are I-intersecting. By Obser-

vation 4.3.6, the l dead leaves must be among them, so l ≤ k. Thus, the number

|{C ∈ Cact : C ∩ I 6= ∅}| of active I-intersecting clusters is at most k − l. Since every

active cluster is either an I-cluster or I-intersecting,

|Cact| = |CI ∩ Cact|+ |{C ∈ Cact : C ∩ I 6= ∅}|

≤ |CI ∩ Cact|+ (k − l).

Therefore

|CI ∩ Cact| ≥ |Cact| − (k − l). (4.13)

The number of clusters in H is |Cact|+ |Cdead|, so the number of edges is (|Cact|+

|Cdead|) − k, there being k trees in H. Hence,
∑

C∈Cact∪Cdead degH(C) = 2(|Cact| +

|Cdead|−k). Since there are only l dead leaves,
∑

C∈Cdead degH(C) ≥ 2(|Cdead|− l)+ l =

2The inequality may be strict if some C ∈ CI is growing in epoch j, and hence y(j)
C > 0, but

C ∩ V (F) = ∅, so C /∈ Cj .

77

2|Cdead| − l since every nonleaf cluster has degree at least 2. Thus,

∑
C∈Cact

degH(C) =
∑

C∈Cact∪Cdead

degH(C)−
∑

C∈Cdead

degH(C)

≤ 2(|Cact|+ |Cdead| − k)− (2|Cdead| − l)

= 2|Cact| − 2k + l

= 2(|Cact| − (k − l))− l

≤ 2(|Cact| − (k − l))

≤ 2|CI ∩ Cact|,

where the last inequality following from (4.13). Thus, we have established (4.12), as

we wished.

Finally, we are at a position to prove the Superclustering Theorem.

Proof of Theorem 4.3.1. We use PC-Superclustering (G, φ, r) to obtain T and Q.

Lemmas 4.3.2 and 4.3.3 yield the first and second conditions of the theorem, respec-

tively.

4.4 Submodular clustering

This section introduces the procedure SubmodPC-Cluster, which can be seen as an

extension of PC-MoatGrowing in two directions. First, it deals with budgets that are

associated with source-sink pairs instead of being associated to single vertices—in

this sense, this is a generalization of PCST to PCSF—and, secondly, the budget

is a submodular function of the demands involved in contrast to the usual additive

function.

SubmodPC-Cluster can be used to obtain a constant-factor approximation algo-

rithm for Submodular Prize-collecting Steiner Forest, however, we do not

78

plan to do so. Rather, we are going to employ it in Section 10.2 to reduce planar

SPCSF instances to bounded-treewidth instances of the same problem.

Consider an instance (G(V,E),D, π) of SPCSF. A set S ⊆ V is said to cut a

demand d = {s, t} if and only if |S ∩ d| = 1. We denote this by the shorthand d� S,

and say the demand d crosses the set S. In the linear program (4.14)–(4.16), there

is a variable yS,d for any S ⊆ V, d ∈ D such that d� S. For convenience, we use the

shorthands yS :=
∑

d∈D yS,d and yd :=
∑

S⊆V yS,d. Notice that this is merely a set of

linear equations with no explicit objective function, however, it looks like the dual

program of a natural linear-programming relaxation for SPCSF.

∑
S:e∈δ(S)

yS ≤ ce ∀e ∈ E (4.14)

∑
d∈D

yd ≤ π(D) ∀D ⊆ D (4.15)

yS,d ≥ 0 ∀d ∈ D, S ⊆ V, d� S. (4.16)

The following theorem presents some guarantees of SubmodPC-Cluster which pro-

duces a solution to the above LP. For convenience, we use the notation y(D) :=∑
d∈D yd for any D ⊆ D.

Theorem 4.4.1. Given an instance (G,D, π) of SPCSF, we produce in polynomial

time a forest F and a subset Dunsat ⊆ D of demands, along with a feasible vector y

for Equations (4.14)-(4.16) such that

1. y(Dunsat) = π(Dunsat);

2. F satisfies any demand in Dsat := D \ Dunsat; and

3. `(F) ≤ 2y(D).

79

SubmodPC-Cluster is in essence very similar to PC-MoatGrowing, however, these

are the major technical difficulties we face. One source of budget can be spent in

different clusters simultaneously because each demand is associated with two vertices

whose clusters grow independently until they reach each other or run out of budget.

In addition, the algorithm will find tight sets (that stop budgets of some demands

from being used any longer) that do not form connected subgraphs. Performing the

growth step faces some challenge as finding the next event point is not trivial; in

fact, it requires solving an auxiliary LP that can be dealt with only through calling

a submodular minimization procedure as the separation oracle. Last but not least,

the lower bound argument cannot charge the length to individual demands, and has

to take several demands at once.

We now describe the two phases of SubmodPC-Cluster: the growth and pruning

phases.

Growth We begin with a zero vector y, and an empty set F of edges. A demand

d ∈ D is said to be alive if and only if y(D) < π(D) for any D ⊆ D that d ∈ D—notice

that, unlike in PC-MoatGrowing, we cannot define this by considering the demand in

question alone. If a demand is not alive, it is called dead. During the execution of the

algorithm, we maintain a partition C of vertices V into clusters; it initially consists

of singleton sets. Each cluster is either active or inactive; the cluster C ∈ C is active

if and only if there is a live demand d : d�C. We simultaneously grow all the active

clusters by η. In particular, if there are κ(C) > 0 live demands crossing an active

cluster C, we increase yC,d by η/κ(C) for each live demand d : d � C. Hence, yC is

increased by η for every active cluster C. We pick the largest value for η that does

not violate any of the constraints in (4.14) or (4.15). Obviously, η is finite in each

iteration because the values of these variables cannot be larger than π(D). Hence at

least one such constraint goes tight after each growth step. If this happens for an

80

edge constraint for e = (u, v), then there are two clusters Cu 3 u and Cv 3 v in C,

and at least one of which is growing. We merge the two clusters into C = Cu ∪Cv by

adding the edge e to F , remove the old clusters and add the new one to C. Nothing

needs to be done if a constraint (4.15) becomes tight. The number of iterations is at

most 2|V | because at each event either a demand dies, or the size of C decreases.

As noted above, computing η is nontrivial here. In particular, we have to solve

an auxiliary linear program to find its value. New variables y∗S,d denote the value of

vector y after a growth of size η.

maximize η (4.17)

subject to y∗S,d = yS,d +
η

κ(S)
∀d ∈ D, S ⊆ V, d� S, κ(S) > 0 (4.18)

y∗S,d = yS,d ∀d ∈ D, S ⊆ V, d� S, κ(S) = 0 (4.19)∑
S:e∈δ(S)

y∗S ≤ ce ∀e ∈ E (4.20)

∑
d∈D

y∗d ≤ π(D) ∀D ⊆ D (4.21)

y∗S,d ≥ 0 ∀d ∈ D, S ⊆ V, d� S. (4.22)

All the constraints are written for the new variables. There are exponentially many

constraints in this LP, however, it admits a separation oracle and thus can be op-

timized as described below. Notice that there are only a polynomial number of

nonzero variables at each step since yS,d may be nonzero only for clusters S, and

these clusters form a laminar family in our algorithm. Verifying constraints (4.18)-

(4.20) and (4.22) is very simple. Verifying constraints (4.21) is equivalent to finding

minD⊆D[π(D)−y∗(D)] and ensuring that it is nonnegative. The function to minimize

is submodular (because π(D) is submodular and y∗(D) is additive), and thus can be

minimized in polynomial time; see Theorem 2.1.1. A standard argument shows that

the values of these variables have polynomial size.

81

Pruning Let S denote the set of all clusters formed during the execution of the

growth step. It can be easily observed that the clusters S are laminar and the maximal

clusters are the clusters of C. In addition, notice that F [C] is connected for each

C ∈ S.

Let B ⊆ S \ {V } be the set of all clusters C that do not cut any live demands.

Notice that a demand d may still be live at the end of the growth phase if it is

satisfied; roughly speaking, the demand is satisfied before it exhausts its budget. In

the pruning phase, we iteratively remove edges from F to obtain the final forest. More

specifically, as long as there is a cluster S ∈ B such that F ∩ δ(S) = {e}, we remove

the edge e from F .

A cluster C is called a pruned cluster if it is pruned in the second phase in which

case, δ(C) ∩ F = ∅. Hence, a pruned cluster cannot have nonempty and proper

intersection with a connected component of F .

Algorithm 4.5 SubmodPC-Cluster (G,D, π)

Input: graphG(V,E), set of demandsD, and monotone submodular penalty function
π : 2D 7→ R+

Output: forest F , subset of demands Dunsat and fractional solution y

1: F ← ∅
2: yS,d ← 0 for any d ∈ D, S ⊆ V, d� S
3: S ← C ← {{v} : v ∈ V }
4: while there is a live demand do
5: Compute η via LP (4.17)
6: yC,d ← yC,d + η

κ(C)
for all live demands d : d� C

7: if ∃e ∈ E that is tight and connects two clusters C1 and C2 then
8: F ← F ∪ {e}
9: C ← C1 ∪ C2

10: C ← C ∪ {C} \ {C1, C2}
11: S ← S ∪ {C}
12: F ′ ← F # only for the analysis
13: B ← set of all clusters S ∈ S that do not cut any live demands
14: while ∃S ∈ B such that F ∩ δ(S) = {e} for an edge e do
15: F ← F \ {e}
16: Dunsat ← set of dead demands
17: return (F,Dunsat, y)

82

We first bound the length of the forest F . The following lemma is similar to the

analysis of the algorithm in [GW95] as well as those already given in this chapter.

Lemma 4.4.2. `(F) ≤ 2y(D).

Proof. Recall that the growth phase has several events corresponding to an edge or

set constraint going tight. We first break apart y variables by epoch. Let tj be the

time at which the jth event point occurs in the growth phase (0 = t0 ≤ t1 ≤ t2 ≤ · · ·),

so the jth epoch is the interval of time from tj−1 to tj. For each cluster C, let y
(j)
C be

the amount by which yC grew during epoch j, which is tj− tj−1 if it was active during

this epoch, and zero otherwise. We clearly have yC =
∑

j y
(j)
C . Because each edge e

of F was added at some point by the growth stage when its edge packing constraint

(4.14) became tight, we can exactly apportion the length ce amongst the collection

of clusters {C : e ∈ δ(C)} whose variables “pay for” the edge, and can divide this

up further by epoch. In other words, ce =
∑

j

∑
C:e∈δ(C) y

(j)
C . We will now prove that

the total length from F that is apportioned to epoch j is at most 2
∑

C y
(j)
C . In other

words, during each epoch, the total rate at which edges of F are paid for by all active

clusters is at most twice the number of active clusters. Summing over the epochs

yields the desired conclusion.

We now analyze an arbitrary epoch j. Let Cj denote the set of clusters that existed

during epoch j. Consider the graph F , and then collapse each cluster C ∈ Cj into a

supervertex. Call the resulting graph H. Although the vertices of H are identified

with clusters in Cj, we will continue to refer to them as clusters, in order to to avoid

confusion with the vertices of the original graph. Some of the clusters are active and

some may be inactive. Let us denote the active and inactive clusters in Cj by Cact

and Cdead, respectively. The edges of F that are being partially paid for during epoch

j are exactly those edges of H that are incident to an active cluster, and the total

amount of these edges that is paid off during epoch j is (tj − tj−1)
∑

C∈Cact degH(C).

Since every active cluster grows by exactly tj − tj−1 in epoch j, we have
∑

C y
(j)
C ≥

83

∑
C∈Cj y

(j)
C = (tj−tj−1)|Cact|. Thus, it suffices to show that

∑
C∈Cact degH(C) ≤ 2|Cact|.

First we must make some simple observations about H. Since F is a subset of

the edges in F ′, and each cluster represents a disjoint induced connected subtree of

F ′, the contraction to H introduces no cycles. Thus, H is a forest. All the leaves of

H must be live clusters because otherwise the corresponding cluster C would be in B

and hence would have been pruned away.

With this information about H, it is easy to bound
∑

C∈Cact degH(C). The total

degree in H is at most 2(|Cact| + |Cdead|). Noticing that the degree of dead clusters

is at least two, we get
∑

C∈Cact degH(C) ≤ 2(|Cact| + |Cdead|) − 2|Cdead| = 2|Cact| as

desired.

Finally we can prove Theorem 4.4.1 that characterizes the output of Submod-

PC-Cluster.

Proof of Theorem 4.4.1. For every demand d ∈ Dunsat we have a set D 3 d such that

y(D) = π(D). The definition of Dunsat guarantees D ⊆ Dunsat. Therefore, we have

sets D1, D2, . . . , Dl that are all tight—i.e., y(Di) = π(Di)—and span Dunsat—i.e.,

Dunsat = ∪iDi. To prove y(Dunsat) = π(Dunsat), we use induction and combine Di’s

two at a time. For any two tight sets A,B ⊆ D we have

y(A ∪B) = y(A) + y(B)− y(A ∩B)

= π(A) + π(B)− y(A ∩B)

≥ π(A) + π(B)− π(A ∩B)

≥ π(A ∪B),

where the second equation follows from tightness of A and B, the third step is a result

of Constraint (4.15), and the last step follows from submodularity. Constraint (4.15)

has it that π(A ∪B) ≥ y(A ∪B), therefore, it has to hold with equality.

84

Clearly, at the end of execution of SubmodPC-Cluster, any live demand is already

satisfied. Notice that such demands are not affected in the pruning stage. Hence,

only dead demands may be unsatisfied. This guarantees the second condition. The

third condition follows from Lemma 4.4.2.

85

Chapter 5

Spanner Framework

In this chapter, we discuss approximation algorithms and, in particular, PTASes for

problems on planar graphs. See [Bak94, Haj05, DH08a, DH08b] for more details.

The two main tools for tackling such problems are finding small separators [LT79,

LT80] and using Baker’s idea [Bak94] or its extensions [Epp00, Kle06, DHM07, Kle08,

BKM09, DHK11]. The first one applies a divide-and-conquer strategy, whereas the

second reduces the problem into instances that are structurally simpler.

The first technique looks for small edge sets, called “separators,” in the graph

whose removal breaks the graph into pieces each of which is a constant factor small

than the original. Continuing this until all the final pieces have a constant size yields a

“recursion tree.” The leaves of the tree, corresponding to the constant-size instances

are handled via brute force, and all that remains is to glue the solutions together

and move up in the recursion tree. That the separators are small makes this possible.

Usually the resulting error is charged to the total size of all separators that is bounded

by εn. If the optimum has size Ω(n), this approach leads to a PTAS. The limitation

on the size of optimum can sometimes be avoided through the use of kernelization

(see, e.g., [AKCF+04]).

Baker introduced a technique that presents PTASes for several problem including

86

the Maximum Independent Set: given a graph, find the largest set of vertices

that do not cover both endpoints of any edge. The algorithm starts by embedding

the graph into the plane, and taking outer layers one at a time, numbering the vertices

in each layer with the number of the layer starting from zero for the outermost layer.

Notice, for 0 ≤ i < ζ, that removing all layers congruent to i modulo ζ produces a

ζ-outerplanar graph, on which Maximum Independent Set can be solved using

dynamic programming. The rest of the argument goes by observing that there is one

layer that forms no more than a 1/ζ fraction of the optimum. Therefore, trying all

the possibilities leads to a 1
1−1/ζ

-approximation algorithm that runs in polynomial

time for constant ζ.

In a more abstract sense, what Baker’s approach [Bak94]—or its generalization

by Eppstein [Epp00]—does is partition the edges of the graph into ζ sets removal

of each produces a bounded-treewidth graph. Such results have been proved not

only for planar graphs [Bak94], but also for bounded-genus [Epp00] and even H-

minor-free graphs [DDO+04, DHK05]. Though this approach seems to only work

for deletion-closed problems, similar theorems have also been proved for contraction-

closed problems [Kle06, DHM07, Kle08, DHK11]. In a deletion-closed (respectively,

contraction-closed) problem, the solution may only improve if edges are deleted (re-

spectively, contracted). Most of the problems discussed in this thesis (e.g., Steiner

Tree, PCST, PCSF) are contraction-closed.

5.1 Spanners

All the above techniques have the inherent limitation that the optimum must have a

value Ω(n). This is because the loss due to the set of edges we remove or contract can

only be compared to the total number of edges. One workaround used to alleviate

this issue, i.e., kernelization, only works for unweighted graphs.

87

A more successful approach to extend the applicability of the above decomposition

theorems is through spanners. Roughly speaking, a spanner (defined with respect to

an instance of a problem) is a subgraph of the original input graph whose total

length is relatively small (comparable to opt), but still guarantees to contain a good

(usually (1 + ε)-approximate) solution. After constructing a spanner, we apply the

decomposition theorem (for deletion or contraction) on the edges of the spanner.

Therefore, one edge set has a “negligible” cost/profit which we can ignore, and the

problem turns into a simpler instance (say, on a bounded-treewidth graph).

Definition 5.1.1. Given are an instance of a minimization problem on a graph G,

and fixed constant ε > 0. We say H is a spanner for G if

1. H is a subgraph of G,

2. `(H) ≤ O(opt), and

3. optH ≤ (1 + ε)optG.

Although the definition depends on the problem, the specific instance in question, and

the parameter ε, we usually omit these references when the context is clear.

For some problems, this is equivalent to preserving all the distances approxi-

mately. This concept has enjoyed active research in the fields of computational geom-

etry [Che86, KG92, GNS08, BS11] and algorithmic graph theory [PS89, Elk08, BS08,

Kle06, Kle08].

Let us introduce the two main theorems here.

Theorem 5.1.2 ([Bak94, Epp00, DHK05]). There is a polynomial-time algorithm

that, for each ζ ≥ 1, decomposes the edges of a planar, bounded-genus, or H-minor-

free graph into ζ color classes such that deleting the edges in each class results in

a graph with treewidth at most O(ζ). The treewidth is O(gζ) for an input graph of

88

genus g, and O(cHζ) for an H-minor-free graph where cH is a constant depending

on the size of the minor H.

Theorem 5.1.3 ([Kle08, DHM07, DHK11]). There is a polynomial-time algorithm

that, for each ζ ≥ 1, decomposes the edges of a planar, bounded-genus, or H-minor-

free graph into ζ color classes such that contracting the edges in each class results in

a graph with treewidth at most O(ζ). The treewidth is O(gζ) for an input graph of

genus g, and O(cHζ) for an H-minor-free graph where cH is a constant depending on

the size of the minor H.

Whereas the running time of the procedure for bounded-genus graphs given in

[DHM07] is O(n3/2 log n), Borradaile et al. [BDT09] observe that the running time

can be improved to O(n log n) using ideas from [CC07].

5.2 An example: exact algorithm for planar k-Cut

An instance of k-Cut is described by an undirected graph G and a parameter k, where

the goal is to delete the minimum number of edges that break G into at least k con-

nected components. The problem in NP-hard in general graphs, but Kawarabayashi

and Thorup [KT11] recently found a polynomial-time algorithm for planar graphs

when k is a fixed constant. Their approach is readily extended to H-minor-free

graphs via the stronger part of Theorem 5.1.2.

The algorithm proceeds as follows. Since each planar graph has a vertex of degree

no more than five (see Corollary 2.3.7), there is a solution to the k-Cut instance

with at most 5k edges: repeatedly take out all edges incident on the minimum-degree

vertex until the number of connected components becomes at least k. We invoke

Theorem 5.1.2 with ζ = 5k + 1. Then, at least one color class does not intersect the

optimum. We can guess that color class (i.e., enumerate all possibilities), contract it,

and solve the problem on the resulting bounded-treewidth graph—k-Cut is solvable

89

in polynomial time on graphs of bounded treewidth. Notice that, if a set of edges E ′

are guaranteed not to be part of the k-Cut solution, there is no harm in contracting

all edges in E ′—in fact, contracting an edge is tantamount to making it impossible

to cut.

5.3 The general reduction

We restate (a slightly more general form of) Theorem 2 of [DHK11] here.

Consider a minimization problem P on weighted graphs that is closed under con-

traction (i.e., contracting edges may only decrease the optimum). Suppose P satisfies

the following properties.

1. P admits an exact algorithm or a PTAS1 on graphs of bounded treewidth.

2. There is a polynomial-time procedure that, given a weightedH-minor-free graph

G and a fixed parameter δ > 0, computes an H-minor-free graph G′ such that

(a) `(G′) ≤ αoptG′ for some constant α > 0, and

(b) any ρ-approximate solution to G′ can be converted to a [(1 + δ)ρ]-

approximate solution for G in polynomial time.

3. There is a polynomial-time algorithm that, given a subset S of the edges of G

and a solution L for the instance G/S, finds a solution L′ for G of cost at most

κ(L) + β`(S), where κ(L) denotes the cost of L and β > 0 is a fixed constant.

Then, there is a PTAS for problem P on H-minor-free instances.

1Prior to our work [BHM10a] on planar Steiner forest, all the algorithms using this framework,
to the best of our knowledge, used the premise that the bounded-treewidth instance is solvable in
polynomial time. Our work was the first that used the weaker premise—existence of a PTAS—
to obtain a PTAS on the planar graphs. Notice that the problem is NP-hard even on bounded-
treewidth graphs. Moreover, we emphasize that the stronger version of the theorem does not appear
in [DHK11], although the proof is similar.

90

The PTAS starts by turning G into G′ (which is the spanner) using Property 2a.

Then, the edges of G′ are partitioned into ζ = 1/ε color classes using Theorem 5.1.3.

Let S be the color class with the smallest total length—in particular, `(S) ≤ αopt/ζ =

αεopt. Next, Property 1 allows us to find a solution of cost at most (1 + ε)optG′/S ≤

(1+ε)optG′ on G′/S, which by Property 3 can be turned into a solution of cost at most

[(1+ε)+βαε]optG′ for G′. Finally, we can turn this into a (1+f(α, β, δ)ε)-approximate

solution via Property 2b.

The general form of the reduction may look overly complicated, but in this thesis,

when we invoke the theorem,

• β = 1 usually, and β = 2 for problems involving TSP’s;

• κ(L) simply denotes the length of the edges in L, i.e., `(L);

• G′ is always a subgraph of G; and

• any solution for G′ is a solution for G, so Property 2b is trivial.

With the above discussion, most of the work in the design of PTASes in this

thesis goes into constructing a spanner on which the decomposition theorems can be

applied. In a couple of examples, the algorithm for bounded-treewidth instances is

not straight-forward, and requires elegant ideas.

91

Chapter 6

Spanner Construction

Here we give an overview of a spanner construction technique originally proposed by

Klein [Kle06, Kle08], and later improved and enhanced in [BKM09, BDT09, BHM10a,

BHKM11]. It has been used, among other applications, to give PTASes for Travel-

ing Salesman, Steiner Tree, Steiner Forest, Multiway Cut, etc. on planar

instances. The construction is usually performed in four steps:

1. Preprocessing

2. Brick decomposition

3. Portal designation

4. Brick processing

6.1 Preprocessing

The first step is trivial for Traveling Salesman and Steiner Tree; it is a divide-

and-conquer procedure based on PC-Classify for Steiner Forest, and is an in-

volved procedure consisting of several different pieces, including PC-Classify, for

Multiway Cut.

92

The goal of preprocessing is to prepare the instance for the rest of the construction.

This is going to be revisited in Section 9.5.1 for Steiner Forest, and in Section 10.2

for Prize-collecting Steiner Tree and Prize-collecting Steiner Forest.

6.2 Brick decomposition

This step involves finding a grid-like subgraph, called the mortar graph, that spans

the so-called terminals—we are not dealing with terminals in Multiway Cut, e.g.—

and has length O(opt). The mortar graph is in certain ways similar to the quadtree

partitioning used for obtaining PTASes for several Euclidean network design problems.

It provides a “grid” that guides the rest of the construction, that is going to happen

inside each grid cell, called a brick.

Suppose g, denoting the genus of a graph G, is a constant. Let constant ε > 0

be a given parameter, and recall that spanG(Q) denotes the minimum length of a

Steiner tree in G that spans all vertices Q. The mortar graph1 of G with respect to a

subset Q of vertices, called terminals, and parameter ε is a subgraph GM of G with

the following properties, among others:

1. `(GM) ≤ γ(ε, g)spanG(Q), where γ(ε, g) = 2(8g + 2)(ε−1 + 1)2.

2. A face B of GM with all edges and vertices of G embedded inside it is called a

brick. Every brick is planar.

3. The boundary of each brick B, usually denoted ∂B, consists of four sides

W,N,E, S in clockwise order; they are coded for the cardinal geographical di-

rections. The total length of all W - and E-boundaries, called supercolumns, is

at most ε2 · spanG(Q).

4. All terminals Q fall on N - or S-boundaries.

1The reader can refer to Definition 3.1 of [BDT09] for a complete definition of the mortar graph.

93

Borradaile, Klein, and Mathieu [BKM09] show how to construct a brick decom-

position for any subset Q of vertices of a planar graph G. The genus is one for

such a graph, and the guarantee of their construction is slightly better than stated

above. However, in this work, we do not intend to optimize the constants, hence, we

state the stronger form for bounded-genus graphs due to Borradaile, Demaine, and

Tazari [BDT09].

The reader is encouraged to refer to the above works for details of the procedures.

We only mention that the running time is O(n log n) in both cases. We refer to the

morar graph procedure by Brick-Decomposition(G, T, ε).

6.3 Portal designation

Guided by the brick decomposition, we seek to find inside each brick, and add to the

spanner, any structure that the optimum may require. In order to do this, though,

we first restrict our attention to a well-behaved near-optimum. In particular, we

look for solutions that cross the boundary of each brick only a constant number of

times. This limited interaction between different bricks allows us to look for simpler

structures inside each brick. In fact, we require that a solution may only intersect

the boundary of each brick at a small set of predesignated “portal vertices.” The

claim is that, if the number of portals on each brick is large enough compared to the

maximum number of crossings per brick, then the additional cost due to making a

solution portal-respecting is not too much.

The following theorem ensures that portal designation and focusing on portal-

respecting solutions is possible since there exists a near-optimum that intersects the

boundary of each brick a small number of times.

Lemma 6.3.1. [BKM09, Theorem 10.7] Consider a forest F falling inside or on the

boundary of a brick B of a brick decomposition. Then, there exists a forest F ′ with

94

the following properties.

1. `(F ′) ≤ (1 + ε)`(F).

2. F ′ crosses the boundary of B at most α times, for some constant α depending

on ε.

3. Let X denote the union of N- and S-boundaries of B. Then, any two vertices

of X connected by F are also connected in F ′.

For θ = 2γα/ε, we next designate O(θ) almost-equidistant portals on the boundary

of each brick. More specifically, we find2 a set of portals such that the distance between

any vertex on the boundary of a brick B has distance at most `(∂B)/θ to a portal.

Corollary 6.3.2. For the same situation as in Lemma 6.3.1, there exists a forest F ′

of length at most (1 + ε)`(F) + `(∂B)ε/2γ that intersects the boundary of each brick

only at its portals.

Proof. Take the forest F ′ from Lemma 6.3.1, and connect each crossing point to the

closest portal. The additional length is bounded by α`(∂B)/θ.

6.4 Brick processing

The final step in the construction of the spanner is to include the very structures

the optimum may need. Notice that, up to now, we have more or less built a grid

and simplified the structure of the optimum. This last step concludes the spanner

construction, in much the same way as the base cases of a mathematical induction

do the argument there.

For some problems—e.g., Traveling Salesman, Steiner Tree, Steiner

Forest—this is relatively simple since all a portal-respecting solution may do in-

side a brick is provide some connectivity between the portals. In particular, for any

2a greedy algorithm suffices.

95

subset of portals in a brick—notice there are only a constant number of them—we

add to the spanner the optimal Steiner tree connecting those portals together. This

guarantees the first property of the spanner, i.e., the existence of a good solution in

it. For the second condition, i.e., the O(opt) length bound, we note that the length of

each Steiner tree added in the brick processing step can be charged to the boundary

of the corresponding brick, and a constant number of Steiner trees will be charged to

each brick. We will discuss this argument later in more detail.

As for Multiway Cut, the brick processing step is also more involved than what

was outlined above. As hinted previously, the structures provisioned inside each

brick need to separate certain vertices from each other, hence some digression from

the approach that only guarantees connectivity between portals.

6.5 Overview of analysis

The analysis is slightly different for each specific problem. However, we outline the

general approach here.

In order to show that the total length of the construction is O(opt), we first

of all need the fact that the preprocessing gives us “backbone” graphs whose total

length is O(opt). The preprocessing steps for PCST and PCTSP just produces

a 2-approximate solution, hence this part is trivial. For planar Steiner Forest

or Multiway Cut, this is more complicated. Next, we note that the length of the

mortar graph is bounded in terms of the length of the backbone graphs. Finally, inside

each brick, for a constant number of configurations (e.g., all subsets of portals), we

throw in pieces in the brick processing step such that the length of each piece is no

more than the length of the brick. Therefore, the total length of the construction is

O(opt).

To show that a near-optimal solution exists in the constructed spanner, we need

96

some guarantees from the preprocessing step, namely that the loss due to working

on different backbone graphs separately is negligible. For each backbone, we include

in the solution all supercolumns of the mortar graph; the total length of all super-

columns is small (i.e., O(εopt)). Then, the solution inside each brick is changed via

Corollary 6.3.2 to obtain a portal-respecting solution. The loss due to this is bounded

by εopt + εspan(Q) if Q is the set of vertices on the backbone. Preprocessing guaran-

tees that the sum of span(Q) for all backbones is O(opt), hence, the additional length

to make the solution portal-respecting is O(εopt). The part of the solution inside each

brick is found optimally in the brick processing step. This guarantees a near-optimal

solution in the spanner.

97

Chapter 7

Granularization

There are algorithms, for certain problems involving integer numbers, that run in

pseudopolynomial time, rather than polynomial time; i.e., the running time is poly-

nomial in the numeric value of the input data which is exponential in its length (i.e.,

its bit representation). For example, testing primality of an input number n can be

easily done in pseudopolynomial time, however, the algorithm that achieves this in

polynomial time is much more complicated [AKS04].

For other problems—e.g., Knapsack and Subset Sum—the only known algo-

rithms run in pseudopolynomial time; no polynomial-time algorithm has been dis-

covered (and is unlikely to exist). However, a relaxation of the problem admits a

polynomial-time algorithm. Consider a Knapsack instance, with items having val-

ues and weights, that seeks to maximize the value of a set of items that fit into a

knapsack of capacity W . The problem, as such, is NP-hard, so unlikely to have a

polynomial-time exact algorithm. Yet, the problem can be relaxed to allow for sets

of items whose total weight is no more than (1 + ε)W for a fixed constant ε > 0. The

value of the solution, however, is compared to the optimum among actual feasible

solutions with weights no more than W . To solve the relaxed problem, a technique

is used that we call granularization: the weights of items are first rounded down to

98

the next multiple of a precision unit θ, and then divided by θ. With a careful choice

of θ, one can make sure all weights are polynomial integers, and the error in the

computations is conveniently small.

In this chapter, we try to formalize the “granularization” part of the above al-

gorithm, that will be helpful in other applications as well. More specifically, we are

interested in a concise representation of a number that is updated via add operations.

In particular, the following three operations should be supported.

• R← init(x) for a nonnegative real number x produces a representation R such

that val(R) = x is the intended value.

• R ← add(R1, R2) for two representations R1, R2 outputs a representation R

such that val(R) = val(R1) + val(R2).

• x ← recover(R) for a representation R outputs a real number x. Ideally, x =

val(R), however, since the representations are not usually lossless, we can only

guarantee that x is close to val(R) in some sense.

This is the description of the “value addition” scenario. Based on a standard

technique—that we call “static granularization”—we can obtain additive guarantees

for error if the number of operations are polynomially bounded; see Section 7.1. We

call the granularization “static” because the same precision unit θ is used throughout

the algorithm. There are two caveats in this representation: first, we need to set an

upper bound on the value R represents—in practice, we can truncate the values since

larger values are indistinguishable by the algorithm. Secondly, the additive error can

be relatively large for representations of small values.

A special case of the above is the “set union” scenario that we describe below. (We

are able to address the issues raised above here.) Let U be a ground set of elements

of size |U |. Given is a weight function w : U 7→ R+. Then, we are interested in a

99

concise representation of w(S) for sets S ⊆ U obtained via init and union operations

below.

• R← init() yields a representation R that has val(R) = ∅.

• R ← init(u) for an element u ∈ U produces a representation R such that

val(R) = {u} is the intended meaning.

• R ← union(R1, R2) for representations R1, R2 of two disjoint sets, val(R1) and

val(R2), outputs a representation R such that val(R) = val(R1) ∪ val(R2).

• x ← recover(R) for a representation R outputs a real number x. Ideally, x =

w(val(R)), however, since the representations are not usually lossless, we can

only guarantee that x is close to w(val(R)) in some sense.

Using a technique that we dub “dynamic granularization,” we can get a concise

representation achieving small multiplicative error, provided that |U | is polynomially

small; see Section 7.2. Here we call the granularization “dynamic” because the preci-

sion unit changes during the course of the algorithm. It is small for smaller sets, and

large for larger sets. The intuition is that, in order to guarantee a fixed multiplicative

error, smaller sets need a finer additive representation, hence a smaller precision unit.

We have used this technique in the study of Unsplittable Hard-Capacitated

Facility Location and Euclidean MPCSF [BH09a, BH10].

7.1 Static granularization

This section uses a simple granularization trick that is widely used in Knapsack,

Subset Sum, etc. to prove the following theorem. We give a concise representation

for an instance of value addition scenario to approximate the values in the range [0, τ].

Theorem 7.1.1. Given n, ε, τ , there is a representation for the value addition sce-

nario such that

100

1. R requires O(log(n, ε−1)) bits, and,

2. letting f(x) = min(x, τ), we have f(val(R))− ετ ≤ recover(R) ≤ f(val(R)) if R

is formed by at most n init operations.

Let θ = τε
n

be the (static) precision unit, and let τR = bτ/θc. Roughly speaking,

the representation R is an integer in the range [0, τR] that is close to val(R)/θ. More

specifically, R ← init(x) produces an integer number R = min (bx/θc, τR). Further,

R← add(R1, R2) outputs R = min(R1 +R2, τR). Finally, recover(R) outputs the real

number θR.

Proof of Theorem 7.1.1. In the above representation, R takes integer values in range

[0, τR]. Notice that τR ≤ τ/θ = n/ε. Therefore, the first condition holds.

We use mathematical induction on the number of init operations used to build R

to prove a stronger claim.

Claim 1. Let R be formed by k init operations. Then, f(val(R))−kθ ≤ recover(R) ≤

f(val(R)).

Proof. We use induction on k. For k = 1, consider the corresponding operation

R ← init(x). By definition, x′ = recover(R) = θmin (bx/θc, τR). Thus, x′ =

min (θbx/θc, θbτ/θc) ≤ min(x, τ) = f(x) gives the upper bound. For the lower bound,

we have x′ = min (θbx/θc, θbτ/θc) > min(x− θ, τ − θ) = min(x, τ)− θ = f(x)− θ as

desired.

Now suppose k > 1, and let R ← add(R1, R2) be the last operation. Let k1, k2

be the number of init operations used to produce R1, R2, respectively. We have

k = k1 + k2 and k1, k2 < k. The recovered value is

x′ = θmin(R1 +R2, τR)

= min(θ(R1 +R2), θτR)

101

≤ min(θR1 + θR2, τ)

≤ min(val(R1) + val(R2), τ) by the inductive hypothesis

= min(val(R1 +R2), τ)

= f(R).

For the lower bound we have

x′ = θmin(R1 +R2, τR)

= min(θ(R1 +R2), θτR)

≥ min(θR1 + θR2, τ − θ)

≥ min(val(R1)− k1θ + val(R2)− k2θ, τ − θ) by the inductive hypothesis

= min(val(R1 +R2)− kθ, τ − θ)

≥ min(val(R1 +R2), τ)− kθ

= f(R)− kθ.

The Theorem follows by noting that k ≤ n bounds the error by nθ ≤ ετ .

7.2 Dynamic granularization

Theorem 7.2.1. Given U, ε, w, there is a representation for the value addition sce-

nario for the weight function w on the ground set U such that

1. R requires O(log(|U |, ε−1)) bits, and

2. (1− ε)w(val(R)) ≤ recover(R) ≤ w(val(R)).

In the dynamic granularization, R = (x, y) consists of two parameters. The

“base” of R is an element x of U with the largest weight, whereas y ∈ Z+, called

102

the “multiplier” of R, plays a role similar to that of R in the static granularization

framework of the previous section. Let θ = ε/2|U |, and have in mind that θ is not

used as a fixed precision unit. The precision unit depends on w(x) as well as on θ.

In particular, R = (x, y) represents a set of weight close to yθw(x).

Construction of the representation is as follows. Let us first assume that the

first operation R ← init() is not used at all. The operation R ← init(x) produces a

representation R = (x, b1/θc). Further, R ← union(R1, R2) with R1 = (x1, y1) and

R2 = (x2, y2) outputs R = min(x, y) such that x = arg maxx′∈{x1,x2}w(x′) is the base

with the larger weight, and

y =

⌊
y1θw(x1) + y2θw(x2)

θw(x)

⌋
. (7.1)

Finally, recover(R) for R = (x, y) outputs the real number yθw(x).

For the first R ← init() operation, we have a special case R = ∅. The union

operations work as follows: ∅ = union(∅, ∅), R = union(∅, R), and R = union(R, ∅).

We let 0← recover(∅).

Proof of Theorem 7.2.1. We observe that the operations regarding R = ∅ can be

safely ignored. They do not add any precision errors, and only add one more repre-

sentation, hence the bound on the size follows if we can prove it for the case these

operations do not exist. Through the rest of the proof, we have this assumption.

We first prove the following claim about the proposed representation.

Claim 2. For any representation R = (x, y), the base x is the element of val(R) of

largest weight, and we have

w(val(R))− (2|val(R)| − 1)θw(x) ≤ yθw(x) ≤ w(val(R)).

Proof. We use induction on k = |val(R)|. For k = 1, consider the corresponding

103

operation R ← init(x) with R = (x, y). Clearly, x is the element of largest weight.

The definition y = b1/θc implies 1 − θ < yθ ≤ 1, which proves the claim since

val(R) = {x} in this case.

Now suppose k > 1, and let R ← add(R1, R2) be the last operation. Suppose we

have R = (x, y), R1 = (x1, y1), R2 = (x2, y2). The definition guarantees that x is the

largest element of val(R) = val(R1) ∪ val(R2). The inductive hypothesis gives

y1θw(x1) + y2θw(x2) ≤ w(val(R1)) + w(val(R2)) = w(val(R)),

where the equality follows from additivity of w since R is the disjoint union of R1, R2.

Thus, recover(R) = yθw(x) ≤ w(val(R)).

The inductive hypothesis gives

y1θw(x1) + y2θw(x2) ≥ w(val(R1))− (2|val(R1)| − 1)θw(x1)

+ w(val(R2))− (2|val(R2)| − 1)θw(x2)

≥ w(val(R1)) + w(val(R2))− (2|val(R)| − 1)θw(x)

since R is the disjoint union of R1 and R2 and w(x) = max(w(x1), w(x2)),

= w(val(R))− (2|val(R)| − 1)θw(x).

The above claim immediately gives the desired accuracy in the theorem since, for

x ∈ val(R) we have (2|val(R)| − 1)θw(x) ≤ εw(val(R)) by definition of θ and noticing

w(x) ≤ w(val(R)).

We finally study the size of the representation. The above claim guarantees

that x is the largest-weight element of val(R) if R = (x, y). Thus, w(val(R)) ≤

|val(R)|w(x). Then, the upper bound from the claim gives y ≤ w(val(R))/θw(x) ≤

|val(R)|/θ ≤ |U |/θ = |U |2/ε. Therefore, the representation of R requires no more

104

than O(log(|U |3/ε)) bits.

We emphasize once more that the dynamic granularization does not need the

truncation at τ , and it provides a stronger guarantee whose error is multiplicative,

but works only for the special case of set union scenarios. The multiplicative error is

more desirable since two values represented as such can also be multiplied, whereas

with additive errors multiplication can introduce an unbearable error.

We finally remark that the dynamic granularization is reminiscent of the stan-

dard floating-point representation of real numbers: there a number x is represented

(possibly with some error) via two numbers, a “mantissa” y and an “exponent” z,

with x = y2z. In this representation, too, there is a normalization that ensures the

mantissa is a decimal number in the range [1, 2). The multiplicative precision error

for x is then only dependent on the size of the mantissa, provided that x is within

the range covered by the exponent size.

105

Part III

Applications

106

Chapter 8

Prize-collecting Steiner Tree and

TSP

The material in this chapter is based on a joint work with Aaron Archer, Moham-

madTaghi Hajiaghayi, and Howard Karloff [ABHK09, ABHK11]. For the first time,

after 17 years of failed attempts, we present approximation algorithms for Prize-

collecting Steiner Tree and Prize-collecting TSP whose performance

guarantees are constants smaller than two. This proves Theorem 3.2.1.

We structure the rest of the chapter as follows. Section 8.1 overviews the literature

on PCST, PCTSP, and related problems. Then, the outline of the algorithm is

presented in Section 8.2. Our proposed algorithm produces two candidate solutions

and outputs the better of the two. Section 8.3 discusses the first candidate solution

along with a bad instance that motivates the second candidate solution. In Section 8.4

we formally describe our algorithm for PCST, and prove the approximation ratio of

2 − ε. Section 8.5 applies the same techniques to derive a (2 − ε)-approximation

algorithm for PCTSP, and Section 8.6 does the same for PC-Path-1 and PC-

Path-2.

107

8.1 Background

Recall that in all these problems we are given a connected undirected graph G =

(V,E), a nonnegative length function ` : E 7→ R+ on edges, denoting the cost to

purchase that edge, and a nonnegative penalty (sometimes called the prize) function

π : V 7→ R+ for vertices. Recall that, given any subset E ′ of edges, we say E ′ spans

the set V (E ′) of vertices incident to edges in E ′. In Prize-collecting Steiner

Tree, we must select an edge set T such that (V (T), T) is a tree, so as to minimize

the combined cost

`(T) + π(V (T)).

That is, we aim to minimize the total edge length of the tree plus the penalties

of the vertices it does not span. Prize-collecting TSP is the same as Prize-

collecting Steiner Tree, except that the set of edges should form a cycle instead

of a tree. We also study the Prize-collecting Path (PC-Path) problem, in which

the edges should form a path. In some of the literature, PC-Path is instead called

Prize-collecting Stroll [CGRT03].

As mentioned in Section 2.3, even though a tree is usually defined as a graph

(V (T), T), we will slightly abuse terminology by referring to its edge set T as a tree.

The same goes for cycles, paths, and forests.

The first approximation algorithms for the PCST and PCTSP problems were

given by Bienstock et al. [BGSLW93], although PCTSP had been introduced earlier

by Balas [Bal89]. Bienstock et al. achieved a factor of 3 for PCST and 2.5 for

PCTSP by rounding the optimal solution to a linear-programming (LP) relaxation.

Later, Goemans and Williamson [GW95] constructed primal-dual algorithms using

the same LP relaxation to obtain a 2-approximation for both problems, building on

work of Agrawal, Klein and Ravi [AKR95]. Chaudhuri et al. modified the Goemans-

Williamson algorithm to achieve a 2-approximation for PC-Path [CGRT03]. There

108

has been a long dry spell with no improved approximation algorithms for PCST or

PCTSP since the Goemans-Williamson results first appeared in 1992 [GW92]. Our

work gives (2− ε)-approximation algorithms for both problems, and for PC-Path as

well.

By contrast, improvements for the ordinary Steiner Tree problem came rapidly

after 1990, when Zelikovsky’s 11/6-approximation for Steiner Tree became the first

algorithm to beat the näıve 2-approximation [Zel92, Zel93]. Berman and Ramaiyer’s

improvement of Zelikovsky’s 11/6 ≈ 1.833 bound to 1.746 appeared in 1992 [BR92].

The bound was improved to 1.693 by Zelikovsky himself in 1996 [Zel96], then to

1.667 by Prömel and Steger in 1997 [PS97], to 1.644 by Karpinski and Zelikovsky in

1997 [KZ97], to 1.598 by Hougardy and Prömel in 1999 [HP99], and to 1.550 (actually,

1 + 1
2

ln 3 + ε, for any constant ε) by Robins and Zelikovsky in 2000 [RZ00, RZ05].

Most recently, Byrka et al. improved the bound to 1.387 (actually, ln 4 + ε, for any

constant ε) in 2010 [BGRS10].

We hope for our work to trigger similar improvements for PCST, PCTSP, and

PC-Path. Indeed, this process has already begun, with Goemans improving the

ratio for PCTSP below 1.915 [Goe09].

Although the value of ε that we achieve in our (2−ε)-approximations is small (less

than 0.04 in all three cases), this is a conceptual breakthrough since the factor 2 was

thought to be a barrier, at least for PCST. The natural LP relaxation for PCST used

in [BGSLW93, GW95] is known to have an integrality gap of 2, even for the ordinary

Steiner Tree problem. Thus, it cannot by itself provide a strong enough lower

bound to prove an approximation factor better than 2. Since the preliminary version

of this work appeared [ABHK09], Byrka et al. have shown a much more complicated

LP relaxation to have an integrality gap of at most 1.550 for the ordinary Steiner

Tree problem, and their 1.387-approximation is based primarily on rounding this

LP [BGRS10]. However, their work has yet to lead to an improved approximation

109

ratio for PCST, other than via our use of their Steiner Tree algorithm as a black

box, as we describe later.

PCST and PCTSP are two of the classic optimization problems, deserving of

study in their own right. Moreover, work on the PCST has had a large impact, both

in theory and practice. At AT&T, PCST code has been used in large-scale studies in

access network design, both as described in Johnson, Minkoff and Phillips [JMP00],

and in other unpublished applied work.

The impact of PCST within approximation algorithms is also far-reaching. As

noted by Chudak, Roughgarden and Williamson [CRW04], PCST is a Lagrangian

relaxation of the k-MST problem, which asks for the minimum-length tree spanning

at least k vertices. Moreover, they note that the PCST algorithm of Goemans and

Williamson (which we call GW) is not merely a 2-approximation algorithm, but rather

a Lagrangian-preserving 2-approximation (we give a formal definition shortly). This

implies the useful property that the total edge length of the tree T returned by GW is

no more than twice the edge length of the cheapest tree that pays at most π(V (T))

penalty. Suppose that one runs GW with all penalties for each vertex set to some

constant λ, and it happens to return a tree T spanning exactly k vertices. Since

the set of all trees that pay at most π(V (T)) = λ(|V | − k) penalty is precisely the

set of trees spanning at least k vertices, T is a 2-approximate k-MST. This prop-

erty has been used in a sequence of papers [Gar96, AR98, AK06] culminating in a

2-approximation algorithm for k-MST by Garg [Gar05]. It has also been used to

improve the approximation ratio and running time of algorithms for the Minimum

Latency problem [ALW08, CGRT03, AB10]. The technique of applying Lagrangian

relaxation to a problem with hard constraints, then using a Lagrangian-preserving

approximation algorithm on the relaxed problem to recover an approximation algo-

rithm for the original problem, has been successfully applied to the k-Median and

Uncapacitated Facility Location problems as well, in a sequence of papers

110

starting with Jain and Vazirani [JV01].

8.2 Overview of the algorithm

In this chapter, we use the Lagrangian-preserving guarantee of the GW algorithm in a

different way. Tree T is a Lagrangian-preserving 2-approximate solution if

`(T) + 2π(V (T)) ≤ 2`(O) + 2π(V (O)) = 2opt, (8.1)

where O is the optimal tree. To be an ordinary 2-approximation, it would suffice to

satisfy (8.1) with the factor 2 on the left side changed to 1. Our Corollary 8.3.2 uses

cost scaling to transfer the unbalanced approximation guarantee to the right side,

as Charikar and Guha did for Uncapacitated Facility Location [CG05]. This

transforms (8.1) into

`(T) + π(V (T)) ≤ 2`(O) + π(V (O)) = 2opt− π(V (O)). (8.2)

One way to view guarantees (8.1) and (8.2) is that GW essentially achieves an approx-

imation ratio of 1 on the penalty term, and 2 on the tree term. Thus, if a constant

fraction of opt comes from the penalty term, i.e., π(V (O)) ≥ εopt, then GW achieves

a (2 − ε)-approximation (when run on an instance with costs scaled appropriately).

This frees us to search for a second solution that is guaranteed to be good, provided

that π(V (O)) ≤ εopt. Our algorithm can then return the better of the two solutions.

Although most do not explicitly work this way, we can reinterpret any PCST

algorithm as making two decisions in sequence: first it decides what subset of vertices

S ⊆ V to span, then it constructs a tree T that spans exactly S, i.e., V (T) = S.

There are three ways in which the algorithm could perform poorly on a given instance.

First, the set of vertices it chooses to exclude from the tree could contribute too much

111

penalty relative to opt, i.e., π(V (S)) is too large. Second, it could keep the penalty

π(V (S)) low, but its tree T could pay too much to span S. Since there are efficient

algorithms for the Minimum Spanning Tree (MST) problem, this second pitfall is

easily avoided by simply choosing T to be the MST of S. The third potential pitfall

is that the algorithm chooses a set S such that even the MST of S is too expensive.

Of course, most algorithms do not actually select S and T in sequence, but rather

build a tree T that implicitly defines S = V (T). While postprocessing the tree by

taking the MST of S can avoid the second pitfall in practice, this trick is typically of

no use in proving approximation guarantees since the usual way of showing that we

have avoided the third pitfall is to build a provably inexpensive tree to begin with.

We adopt the following high-level strategy for generating our second solution. We

will avoid the first pitfall by using GW to select a preliminary set S of vertices to span.

To avoid the third pitfall, we will use an algorithm for the ordinary Steiner Tree

problem to possibly enlarge S, while producing a cheap tree T spanning the new S

(even if T is not the MST of S).

Suppose we can identify a set Q of vertices such that π(Q) is a small fraction

of opt, and we can prove that there is a tree that spans at least V \ Q and costs

only slightly more than opt. Now suppose we run any ρ-approximation algorithm ST

for the ordinary Steiner Tree problem (with ρ < 2) on the instance in which the

vertices V \ Q are terminals. Then, the resulting tree will cost not much more than

ρ opt, and, since it spans at least V \Q, it pays at most π(Q) in penalties. Thus, this

tree will be a (2− ε)-approximation, provided the hypothesized bounds related to Q

are strong enough.

The key insight of our algorithm is that we can identify just such a set Q, provided

that π(V (O)) is small, which is precisely the case where we need our second solution

to do well. Interestingly, we use the GW algorithm—in the proof of Superclustering

Theorem—to compute Q before passing V \Q as terminals to a better Steiner Tree

112

algorithm ST. We use the algorithm ST as a black box: for the purpose of achieving a

(2− ε) approximation factor for PCST, any ρ-approximation for ordinary Steiner

Tree with ρ < 2 suffices, and, the smaller the value of ρ, the smaller the value we

can prove for 2− ε (see Theorem 8.4.4). We emphasize that in selecting the terminal

set to send to ST, we do not simply use the set of vertices that GW chose to span, but

rather a carefully chosen subset.

The key to this scheme is to prove the two desired properties of Q described above.

Since PC-Superclustering identifies the set Q, naturally the proof heavily relies on

Theorem 4.3.1. The upper bound on π(Q) comes through Lemma 8.4.1 and Theo-

rem 4.3.1 via LP duality, using the dual variables naturally generated while running

PC-Superclustering. The deeper result, though, is the application of Theorem 4.3.1

in Lemma 8.4.2, which guarantee that there exists an inexpensive way to augment

the optimal tree O to span whatever additional vertices are in V \Q.

One novel feature of our analysis is that we use the details of the GW moat-growing

algorithm to prove in Theorem 4.3.1 and Lemma 8.4.2 that there exists an inexpensive

set of augmenting edges, but not to find it. All other applications of GW of which we

are aware use it purely in an algorithmic sense to identify edges; this may be the first

time it has been utilized solely to provide an existence proof.

Our algorithm for PCTSP is very similar, except that our black box is an ap-

proximation algorithm for TSP such as the 3
2
-approximation of Christofides [Chr76]

instead of ST. For PC-Path-1 and PC-Path-2, our black boxes are approximation

algorithms for the corresponding versions of Path-TSP, such as the algorithms of

Hoogeveen, a 3
2
-approximation for Path-TSP1 and a 5

3
-approximation for Path-

TSP2 [Hoo91].

113

8.3 A good case, and a motivating bad example

Our starting point is the following theorem regarding GW.

Theorem 8.3.1 ([FFFdP10, CRW04, GW95]). The GW algorithm for PCST returns

a tree T that satisfies

`(T) + 2π(V (T)) ≤ 2`(O) + 2π(V (O)) = 2opt. (8.3)

As before, O denotes the optimal tree. Notice that (8.3) is stronger than what

would be necessary for GW to be a 2-approximation: there is a factor of 2 in front

of π(V (T)), where a 1 would suffice. Because of this property, GW is said to be a

Lagrangian-preserving 2-approximation algorithm.1

We can now apply cost scaling to move the unbalanced approximation factor to

the other side of the inequality. For all β > 0, let Iβ denote the PCST instance

derived from I by multiplying all penalties by β, and let optβ denote the optimal

objective value for this scaled instance. Thus, I1 = I and opt1 = opt. Let T GW denote

the tree returned by GW on instance I 1
2
. Also, let δ satisfy π(V (O)) = δopt, i.e., δ

denotes the fraction of opt contributed by the penalty term in the optimal solution

to I.

Corollary 8.3.2. T GW satisfies

`(T GW) + π(T GW) ≤ 2`(O) + π(V (O)) = (2− δ)opt. (8.4)

1The term arises because of its connections to Lagrangian relaxation, which we will not explore
here. Theorem 8.3.1 appears in exactly this form in [FFFdP10], which applies to the Johnson-
Minkoff-Phillips variant of GW, exactly as we described it in Section 4.1.2. We also cite Chudak,
Roughgarden and Williamson [CRW04] because they were the first to observe that the original ver-
sion of the Goemans-Williamson algorithm from [GW95] already achieves the Lagrangian-preserving
approximation guarantee, even though [GW95] claims only the ordinary 2-approximation. We also
credit Goemans and Williamson [GW95] because they actually implicitly proved the stronger result,
even though they neglected to make the stronger claim.

114

1 + z

1 + z

1 + z

1

1

1

1

1

1

Figure 8.1: Bad example for GW, with k = 3. The k solid vertices are terminals, while
the k + 1 hollow ones are Steiner vertices. The k bold spoke edges emanating from
the hub vertex represent the optimal tree, of cost k(1 + z), while the 2k − 2 dashed
edges represent the tree output by GW, of cost 2k − 2.

Proof. Applying Theorem 8.3.1 to instance I 1
2

yields

`(T GW) + 2 · 1

2
π(T GW) ≤ 2opt 1

2

≤ 2(`(O) +
1

2
π(V (O))) = 2`(O) + π(V (O))

= 2opt− π(V (O)) = (2− δ)opt,

the second inequality holding because O is a feasible solution, even though it may

not be optimal for I 1
2
.

Thus, if δ is at least a constant ε, then T GW is a (2−ε)-approximation. This accords

with the intuition that the GW algorithm deals especially well with the penalty term.

A näıve idea for obtaining a (2− ε)-approximation algorithm when δ < ε is to run GW

(possibly after scaling the penalties) to obtain a tree T , then designate the vertex set

V (T) as the set of terminals and run a better Steiner Tree algorithm ST on that

ordinary Steiner Tree instance. This does not work, and it is instructive to see an

example of what goes wrong.

Given k ≥ 2 and small but positive z, we construct an instance of the ordinary

Steiner Tree problem, cast as a special case of PCST, where all penalties are

115

either 0 or ∞. Thus, scaling the penalties has no effect. Moreover, since opt cannot

afford to pay an infinite penalty and all of the finite penalties are zero, we have

π(V (O)) = 0, so δ = 0. Figure 8.1 depicts the instance for k = 3. There is a

2k-cycle, alternating between terminals and Steiner vertices, connected by edges of

cost 1. There is one hub Steiner vertex in the middle, with spoke edges of cost 1 + z

to each of the terminals in the cycle. In this case, the tree T produced by GW is a

path containing all cycle edges except for the pair on either side of one of the Steiner

vertices. It costs 2k− 2 and spans all but two Steiner vertices: one on the cycle, plus

the hub vertex. Meanwhile, opt buys only the k spoke edges at total cost k(1 + z).

By contrast, it spans only one Steiner vertex, the hub. The ratio of these costs goes

to 2 as k → ∞ and z → 0. Although `(T) is essentially twice opt, T actually spans

the set V (T) optimally, even allowing ourselves to use the two vertices in V (T) as

Steiner vertices. Thus, running ST cannot help. A better idea is required.

8.4 Our PCST algorithm

We now describe our PCST algorithm PCSTβ, which is parametrized by a constant

β ≥ 1 to be optimized later. See Algorithm 8.1 for pseudocode. The algorithm is

simple to describe, but its analysis is quite involved—most of the complication of proof

is hidden in the proof of Theorem 4.3.1. We produce two trees and output the better

one. As hinted in Section 8.3, the first tree is T GW, the output of GW on instance I 1
2
.

For the second tree, we identify a set of terminals defining an instance of the ordinary

Steiner Tree problem, and run ST on it to generate a second solution T ST. The

bad example of Section 8.3 shows that we cannot simply take the set of vertices that

GW spans as our terminal set. Instead, we run PC-Superclustering on Iβ to obtain

the set Q of exempt vertices. Then, we send the terminal set V \ Q to ST. (Notice

that Q is in fact the union of all clusters that ever died during PC-MoatGrowing run

116

Algorithm 8.1 PCSTβ(G, π, r)

Input: graph G(V,E), root vertex r, and penalties π(v) ≥ 0
Output: tree T

1: Let T GW ← GW(G, 1
2
π, r) # run GW on I 1

2

2: Let (Q, T)← PC-Superclustering(G, βπ, r)
3: Let T ST ← ST(G, V \Q) # run ST on G with terminal set V \Q
4: Let T ← arg min

T∈{T GW,T ST}
(`(T) + π(V (T)))

5: return T

on Iβ.) This concludes the description of algorithm PCSTβ.2

Notice that choosing V \ Q instead of V (T) defeats the bad example from Sec-

tion 8.3 because in that case Q is the set of all Steiner vertices, so excising Q gets

rid of the k − 1 Steiner vertices on the cycle that had been part of V (T) and were

causing trouble.

Recall that δ is defined so that π(V (O)) = δopt, where O denotes the optimal tree.

Since we have control over β but not over δ, our analysis can select the best possible

β but must assume the worst δ. Lemma 8.3.2 shows that, if δ ≥ ε for some fixed

ε > 0, then T GW already provides a (2− ε)-approximation. The big work is in showing

that when δ < ε, the second solution, T ST, provides a (2 − ε)-approximation. The

main ingredients of the proof, Lemmas 8.4.1 and 8.4.2, follow from Theorem 4.3.1.

Since T ST spans at least the terminal set V \ Q, it pays at most π(Q) in penalty

cost. Thus, we need to bound π(Q). Lemma 8.4.1 shows that π(Q) can be made

negligible by choosing β large enough.

Lemma 8.4.1. For the set Q in PCSTβ,

π(Q) ≤
(

1− δ
β

+ δ

)
opt.

Proof. Recall that Q is the set of exempt vertices from PC-Superclustering run on

instance Iβ. Hence, the first guarantee of Theorem 4.3.1 gives φ(Q) = βπ(Q) ≤ optβ.

2Although T ST depends on β and PCSTβ depends on ST, we suppress this in the notation since
we view β and ST as fixed.

117

Therefore,

βπ(Q) ≤ optβ (8.5)

≤ `(O) + βπ(V (O)) (8.6)

= (1− δ)opt + βδopt, (8.7)

where (8.6) follows because O is a feasible solution to Iβ, and (8.7) follows by the

definition of δ. Rearranging terms yields the desired result.

To bound `(T ST), we use the following key (nonalgorithmic) fact: starting from the

optimal tree O, the marginal cost of extending this tree to connect to the terminals

in V \Q \ V (O) is no larger than (2βδ)opt. This guarantees existentially that there

is a tree that spans at least V \ Q and is not much more expensive than opt since δ

is small. Hence ST won’t pay too much when fed terminal set V \Q.

Lemma 8.4.2. There exists a tree that costs at most (1 + (2β− 1)δ)opt and spans at

least V \Q.

Proof. We can apply second guarantee of Theorem 4.3.1 with I = V (O) because the

optimal tree O must include the root r. This yields a forest F with

`(F) ≤ 2φ(V (O)) = 2(βπ(V (O))) = 2β(δopt).

Augmenting the optimal tree O with F yields a tree spanning at least V \ Q and

possibly part of Q as well. Since `(O) = (1− δ)opt, we obtain `(O ∪F) ≤ (1 + (2β −

1)δ)opt.

It is critical for the sake of the above proof that we are considering the rooted

version of PCST because this allows us to assume that r ∈ V (O).

All that remains is to put our bounds together, and optimize the choice of β as a

function of ρ.

118

Corollary 8.4.3. The second solution T ST in PCSTβ costs at most

(
ρ(1 + (2β − 1)δ) +

1− δ
β

+ δ

)
opt,

where ρ is the approximation ratio of algorithm ST for Steiner Tree.

Proof. Lemma 8.4.2 proves that there exists a Steiner tree spanning at least terminal

set V \ Q and costing at most (1 + (2β − 1)δ)opt. Since ST is a ρ-approximation

algorithm, we have

`(T ST) ≤ ρ(1 + (2β − 1)δ)opt.

Since T ST spans at least V \Q,

π(T ST) ≤ π(Q) ≤
(

1− δ
β

+ δ

)
opt

by Lemma 8.4.1. Summing these bounds yields the result.

It is now a simple matter to prove the approximation ratio of our algorithm.

Theorem 8.4.4. If the approximation ratio of the Steiner Tree algorithm ST

is ρ < 2, then PCSTβ with β = 2
2−ρ achieves an approximation ratio of at most

2− (2−ρ
2+ρ

)2 < 2 for PCST.

Proof. Set β = 2
2−ρ . Let BGW = 2 − δ and BST = ρ(1 + (2β − 1)δ) + 1−δ

β
+ δ be the

approximation ratios achieved by solutions T GW and T ST, as proven by Corollaries 8.3.2

and 8.4.3, respectively. If δ ≥ (2−ρ
2+ρ

)2, then BGW ≤ 2 − (2−ρ
2+ρ

)2, as desired. Otherwise,

119

δ < (2−ρ
2+ρ

)2, so

BST = ρ+
1

β
+ δ(1− 1

β
+ ρ(2β − 1))

< ρ+
2− ρ

2
+

(
2− ρ
2 + ρ

)2(
1− 2− ρ

2
+ ρ

(
4

2− ρ
− 1

))
= 1 +

ρ

2
+

(
2− ρ
2 + ρ

)2(
−ρ

2
+

4ρ

2− ρ

)
= 1 +

ρ

2

(
1 +

(2− ρ)

(2 + ρ)2
(−(2− ρ) + 8)

)
= 1 +

ρ

2(2 + ρ)2

(
(2 + ρ)2 + (2− ρ)(6 + ρ)

)
= 1 +

8ρ

(2 + ρ)2

= 2 +
8ρ− (2 + ρ)2

(2 + ρ)2

= 2−
(

2− ρ
2 + ρ

)2

,

as desired. Hence, the better of T GW and T ST gives an approximation ratio of at most

2− (2−ρ
2+ρ

)2.

The current best approximation algorithm for Steiner Tree, due to Byrka et

al., achieves an approximation ratio arbitrarily close to ln 4 ≤ 1.386295 [BGRS10].

Using this value of ρ and β = 2
2−ρ ≈ 3.258891 yields an approximation ratio of less

than 1.967155 for PCSTβ. Table 8.1 shows the approximation ratio obtained by PCSTβ,

using several different Steiner Tree algorithms as our black box, ST.

We have not discovered a family of instances on which PCST1 fails to achieve an

approximation ratio strictly below 2. Hence, we do not know whether it is strictly nec-

essary to take β > 1. The bound on the tree length `(T ST) resulting from Lemma 8.4.2

gets worse as β increases, so it would be nice if we could take β = 1. However, we

have found no better way to bound π(T ST) than by using Lemma 8.4.1, which is why

our algorithm must use a moderately large value of β. Finding a better way to sup-

120

Table 8.1: Approximation ratios implied by Theorem 8.4.4 for PCSTβ with β = 2
2−ρ ,

for various algorithms ST, rounded up to the nearest 0.0001. The algorithm that
returns the optimal Steiner tree is denoted optST.

ST ρ apx. ratio of PCSTβ
optST 1 17

9
≤ 1.8889

Byrka et al. [BGRS10] ln 4 + ε < 1.387 1.9672
Robins and Zelikovsky [RZ05] 1 + 1

2
ln 3 + ε < 1.550 1.9839

Zelikovsky [Zel93] 11
6

1057
529

< 1.9982

Algorithm 8.2 PCTSPβ(G, π, r)

Input: graph G(V,E), root vertex r, and penalties π(v) ≥ 0
Output: tour C

1: Let CGW ← output of Goemans-Williamson PCTSP algorithm on instance I 1
2

2: Let (Q, T)← PC-Superclustering(G, β
2
π, r)

3: Let CTSP ← output of algorithm TSP for Traveling Salesman instance I re-
stricted to vertices V \Q

4: Let C ← arg min
C∈{CGW,CTSP}

(`(C) + π(V (C)))

5: return C

press the penalty cost might lead to a substantial improvement in the approximation

guarantee.

8.5 Our PCTSP algorithm

Our algorithm for PCTSP, called PCTSPβ, is nearly identical to PCSTβ. See Algo-

rithm 8.3 for pseudocode. Let I denote the PCTSP instance we wish to solve, and

Iβ be the same instance except with all penalties multiplied by β. First, we run the

PCTSP algorithm of Goemans and Williamson [GW95] on I 1
2

to generate a cycle

CGW. We then run PC-Superclustering(G, β
2
π, r) to find Q. Next we run any ap-

proximation algorithm TSP for the ordinary Traveling Salesman problem on the

vertex set V \ Q to generate a second solution CTSP. We then output the better of

CGW and CTSP.

The analysis of this algorithm hews very closely to the analysis of PCSTβ. Let

121

O now denote the optimal PCTSP solution, opt its objective function value, and δ

the fraction of opt contributed by the penalty π(V (O)). First, there is an analog of

Theorem 8.3.1.

Theorem 8.5.1 ([GW95]). The PCTSP algorithm of Goemans and Williamson

returns a tour C such that

`(C) + 2π(V (C)) ≤ 2`(O) + 2π(V (O)) = 2opt.

The analog of Corollary 8.3.2 follows in exactly the same way, showing that CGW

is a (2− δ)-approximation.

Next, we must bound π(Q). The LP relaxation (4.1) that we used for PCST can

be easily modified to model PCTSP, as follows.

minimize
∑
e∈E

`(e)xe +
∑
v∈V

π(v)zv (8.8)

subject to
∑
e∈δ(S)

xe ≥ 2− 2zv ∀v ∈ S ⊆ V \ {r} (8.9)

xe ≥ 0 ∀e ∈ E (8.10)

zv ≥ 0 ∀v ∈ V, (8.11)

whose dual is

maximize 2
∑

v∈S⊆V \{r}

yS,v (8.12)

subject to
∑
S⊆V
e∈δ(S)

∑
v∈S

≤ `(e) ∀e ∈ E (8.13)

2
∑

v∈S⊆V

yS,v ≤ π(v) ∀v ∈ V (8.14)

yS,v ≥ 0 ∀v ∈ S ⊆ V. (8.15)

122

Compared to LP (4.1), in the primal constraints, the right side and the coefficient on

the zv terms change from 1 to 2. This is because every tour crosses the boundary of

every set an even number of times. In the dual, this causes there to be a coefficient of

2 instead of 1 on the yS,v terms in the objective and the penalty packing constraints,

but not the edge packing constraints. Thus, a dual solution y is feasible for the

PCTSP instance Iβ if and only if it is feasible for the PCST instance Iβ
2
. This is

why we ran PC-Superclustering with input matching Iβ
2
, instead of Iβ.

Lemma 8.5.2. For the set Q in PCTSPβ,

π(Q) ≤
optβ
β
≤
(

1− δ
β

+ δ

)
opt.

Proof. As in the proof of Lemma 8.4.1, the dual solution y generated by

PC-Superclustering on Iβ
2

is tight for the PCST penalty packing constraints on

instance Iβ
2
, so β

2
π(Q) =

∑
S⊆D yS. Because y is feasible for the PCST dual LP for in-

stance Iβ
2
, y is also feasible for the PCTSP dual LP for instance Iβ. Thus, by weak LP

duality, 2
∑

S⊆Q yS ≤ 2
∑

S⊆V−{r} yS ≤ optβ ≤ `(O)+βπ(V (O)) = (1−δ)opt+βδopt.

Combining and rearranging gives the result.

Next we have an analog to Lemma 8.4.2.

Lemma 8.5.3. There exists a cycle that costs at most (1 + (2β − 1)δ)opt and spans

(exactly) V \Q.

Proof. Applying second condition of Theorem 4.3.1 to instance Iβ
2
, with I = V (O),

yields a forest F with `(F) ≤ 2 · β
2
π(V (O)) = βδopt. Let 2F denote the multiset

that contains two copies of each edge in F . Augmenting the optimal cycle O by

2F yields an Eulerian graph spanning at least V \ Q. Since `(O) = (1 − δ)opt,

`(O∪ (2F)) ≤ (1 + (2β− 1)δ)opt. To generate the desired cycle, we trace an Eulerian

tour of the edge multiset O∪ (2F), skipping over repeated vertices and all vertices in

123

Q, to obtain a cycle spanning exactly V \Q. Because we assume the edge costs obey

the triangle inequality, this shortcutting operation does not increase the cost.

The rest of the analysis proceeds exactly as for PCSTβ. Therefore, we obtain the

following theorem.

Theorem 8.5.4. If the approximation ratio of the TSP subroutine used is ρ < 2,

then PCTSPβ with parameter β = 2
2−ρ achieves an approximation ratio of at most

2− (2−ρ
2+ρ

)2. In particular, using the 3
2
-approximation of Christofides [Chr76] yields an

approximation ratio of at most 97
49
< 1.979592.

8.6 Our Prize-collecting Path algorithms

Given any instance I of PC-Path and distinct vertices r and t, let Ir denote the same

instance but with πr =∞, and Irt denote the same instance but with πr = πt =∞.

For the PC-Path-1 problem with endpoint r fixed, instance I is equivalent to Ir,

since every feasible solution includes r, so avoids the penalty πr. For PC-Path-2

with endpoints r and t fixed, instance I is equivalent to Irt. Subscripting an instance

by β means to multiply all penalties by β.

Our algorithm for PC-Path-2, called PC-Path2β, is nearly identical to PCTSPβ.

Let I denote the PC-Path-2 instance we wish to solve, where the two specified end-

point vertices are the root r and the tail t. We run CGRT, the PC-Path-2 algorithm

of Chaudhuri, Godfrey, Rao and Talwar [CGRT03], on Irt1
2

to obtain our first solution,

P CGRT. Next, we run PC-Superclustering with input matching Irtβ
2

with root vertex

r, to obtain Q. Recall that Q is the union of all clusters that ever died during the in-

ner call to PC-MoatGrowing. Since π(t) =∞ for this instance, the clusters containing

vertex t cannot die, so t /∈ Q. Next we run any algorithm Path-TSP for the ordinary

Path-TSP2 problem on the vertex set V \Q with endpoints r and t, to generate a

second solution Path-TSP. We then output the better of P CGRT and P Path-TSP.

124

Algorithm 8.3 PC-Path2β(G, π, r, t)

Input: graph G(V,E), root vertex r, tail vertex t, and penalties π(v) ≥ 0
Output: path P

1: Let P CGRT ← output of CGRT algorithm for Path-TSP2 algorithm on instance Irt1
2

2: Let (Q, T)← PC-Superclustering(G, β
2
π, r)

3: Let P Path-TSP ← output of algorithm Path-TSP for Path-TSP2 instance Irt1
2

re-

stricted to vertices V \Q
4: Let P ← arg min

P∈{P CGRT,P Path-TSP}
(`(P) + π(V (P))

5: return P

The analysis of this algorithm is nearly identical to that of PCTSPβ. Let O now

denote the optimal PC-Path-2 solution, opt its objective function value, and δ the

fraction of opt contributed by the penalty π(V (O)). First, there is an analog of

Theorem 8.5.1.

Theorem 8.6.1 ([CGRT03]). Algorithm CGRT returns a path P from r to t such that

`(P) + 2π(V (P) ≤ 2`(O) + 2π(V (O)) = 2opt.

To prove the analog of Lemma 8.5.2, we must slightly modify the LP relax-

ations (8.8) and (8.12) as follows.

minimize
∑
e∈E

`(e)xe +
∑
v∈V

π(v)zv (8.16)

subject to
∑
e∈δ(S)

xe ≥ 2− 2zv ∀v ∈ S ⊆ V \ {r, t} (8.17)

∑
e∈δ(S)

xe ≥ 1 ∀S ⊆ V \ {r} : t ∈ S (8.18)

xe ≥ 0 ∀e ∈ E (8.19)

zv ≥ 0 ∀v ∈ V, (8.20)

125

and the dual program

maximize 2
∑

v∈S⊆V \{r,t}

yS,v +
∑

v∈S⊆V \{r}:t∈S

yS,v (8.21)

subject to
∑
S⊆V
e∈δ(S)

∑
v∈S

≤ `(e) ∀e ∈ E (8.22)

2
∑

v∈S⊆V

yS,v ≤ π(v) ∀v ∈ V \ {t} (8.23)

yS,v ≥ 0 ∀v ∈ S ⊆ V. (8.24)

The only difference between this primal LP (8.16) and LP (8.8) for Prize-

collecting TSP is that the constraint for each set S ⊆ V − {r} such that t ∈ S

reflects the fact that every feasible path runs from r to t, and every such path must

cross S an odd number of times. Using this LP relaxation, the proof is identical to

the proof of Lemma 8.5.2. The rest of the analysis is identical to that for PCTSPβ,

except that inside the proof of our analog to Lemma 8.5.3, we construct an Eulerian

path from r to t instead of an Eulerian cycle. This yields the following theorem.

Theorem 8.6.2. If the approximation ratio of the Path-TSP2 subroutine used is

ρ < 2, then PC-Path2β with parameter β = 2
2−ρ achieves an approximation ratio of

at most 2 − (2−ρ
2+ρ

)2. In particular, using the 5
3
-approximation of Hoogeveen [Hoo91]

yields an approximation ratio of at most 241
121

< 1.991736.

Our algorithm for PC-Path-1, called PC-Path1β, is exactly the same as

PC-Path2β, but for two details. First, we guess the second endpoint t of the optimal

path O, and run the algorithm for each choice of t, outputting the best solution. Sec-

ond, we use an algorithm for Path-TSP1 as our black box Path-TSP, to find a path

starting at r. Even though we have guessed t, we need not require P Path-TSP to end at

t, which is why we can get away with using an algorithm for Path-TSP1 instead of

Path-TSP2. Guessing t is necessary only so that the LP relaxation (8.16) will offer

126

a valid lower bound for opt. For the iteration in which t was guessed correctly, the

analysis is identical to that for PC-Path2β, and yields the following theorem.

Theorem 8.6.3. If the approximation ratio of the Path-TSP1 subroutine used is

ρ < 2, then PC-Path1β with parameter β = 2
2−ρ achieves an approximation ratio of

at most 2 − (2−ρ
2+ρ

)2. In particular, using the 3
2
-approximation of Hoogeveen [Hoo91]

yields an approximation ratio of at most 97
49
< 1.979592.

127

Chapter 9

Planar Steiner Forest

We give the first polynomial-time approximation scheme (PTAS) for the Steiner

Forest problem on planar graphs and, more generally, on graphs of bounded genus.

We employ the spanner framework introduced in Chapter 5, hence the first step is to

build a Steiner forest spanner that allows us to reduce the problem to bounded-

treewidth instances. Following the ideas introduced in Chapter 6, the spanner

construction starts with a preprocessing that relies on the prize-collecting cluster-

ing paradigm: in particular, the main component of the preprocessing step, called

PC-Partition, is based on PC-Classify and Theorem 4.2.1. PC-Partition breaks

the input instance down into possibly several simpler subinstances that are easier

to expand into a spanner; moreover, the terminals in different subinstances are far

from each other, so, roughly speaking, they do not interact with each other. Each

subinstance has a relatively inexpensive Steiner tree connecting all its terminals, and

the subinstances can be solved (almost) separately.

Another building block in the PTAS for planar Steiner Forest is a PTAS for

Steiner Forest on graphs of bounded treewidth. Surprisingly, the problem is

NP-hard even on graphs of treewidth 3. Therefore, our PTAS for bounded-treewidth

graphs needs a nontrivial combination of approximation arguments and dynamic pro-

128

Table 9.1: Complexity of Steiner Forest for different classes of graphs.

Graph class Lower bound Upper bound
Series-parallel graphs P P
Graphs of treewidth 3 NP-hard PTAS
Bounded-treewidth graphs NP-hard PTAS
Planar graphs NP-hard PTAS
Bounded-genus graphs NP-hard PTAS
General graphs APX-hard [CC02] aprx(2) [AKR95]

gramming on the tree decomposition. We further show that Steiner Forest can

be solved in polynomial time for series-parallel graphs (graphs of treewidth at most

two) by a novel combination of dynamic programming and minimum-cut computa-

tions, completing our thorough complexity study of Steiner Forest in the range

of bounded-treewidth graphs, planar graphs, and bounded-genus graphs.

The results of this chapter are based on a joint work with MohammadTaghi Ha-

jiaghayi and Dániel Marx [BHM10a].

After giving a brief overview of previous results in Section 9.1, we present our

polynomial-time algorithm for Steiner Forest on series-parallel graphs in Sec-

tion 9.2. Then, we show in Section 9.3 that the problem becomes NP-hard if the

treewidth reaches three. We give the PTAS for the case of bounded-treewidth graphs

in Section 9.4 before explaining how to use it as a black box to obtain a PTAS for

Steiner Forest on planar and bounded-genus instances in Section 9.5.

9.1 Background

The first and the best approximation factor for Steiner Forest is 2 due to Agrawal,

Klein and Ravi [AKR95] (see also Goemans and Williamson [GW95]). Since the con-

ference version of Agrawal, Klein and Ravi [AKR91] in 1991, there have been no

improved approximation algorithms invented for Steiner Forest. Recently Bor-

129

radaile, Klein and Mathieu [BKM08] obtain a PTAS for Steiner Forest where

the terminals are in the Euclidean plane, and the distance function is defined ac-

cordingly. They pose obtaining a PTAS for Steiner Forest in planar graphs, the

natural generalization of the Euclidean case, as the main open problem. We settle

this open problem by obtaining a PTAS for planar graphs (and more generally, for

bounded-genus graphs) via a novel application of prize-collecting clustering paradigm.

The special case of the Steiner Forest problem when all pairs have a common

terminal is the classical Steiner Tree problem, one of the first problems shown NP-

hard by Karp [Kar72]. The problem remains hard even on planar graphs [GJ79]. In

contrast to Steiner Forest, a long sequence of papers give approximation factors

better than 2 for this problem [Zel92, Zel93, BR92, Zel96, PS97, KZ97, HP99, RZ05,

BGRS10]; the current best approximation ratio is 1.39 [BGRS10]. Since the problem

is APX-hard in general graphs [Kar72, Thi03], we do not expect to obtain a PTAS for

this problem in general graphs. However, for the Euclidean Steiner Tree problem,

the classic works of Arora [Aro98] and Mitchell [Mit99] present a PTAS. Obtaining a

PTAS for Steiner Tree on planar graphs, the natural generalization of Euclidean

Steiner Tree, remained a major open problem since the conference version of

[Aro96] in 1996. Only in 2007, Borradaile, Mathieu, and Klein [BKM09] settle this

problem with a nice technique of constructing light spanners for Steiner Tree in

planar graphs. Here we also generalize this result to obtain light spanners for Steiner

Forest; see Table 9.2.

Most approximation schemes for planar graph problems use (implicitly or explic-

itly) the fact that the problem is easy to solve on bounded-treewidth graphs—in fact,

the ideas in Baker [Bak94] and the reformulations in [DHM07, Kle08] provide a gen-

eral method of reducing many optimization problems on planar (and bounded-genus)

graphs to bounded-treewidth graphs; see Section 5.3. In particular, a keystone black-

box in the algorithm of [BKM09] for Steiner Tree is the result that, for every

130

Table 9.2: PTAS for Steiner Tree and Steiner Forest on Euclidean, planar and
bounded-genus graph metrics. Notice that Steiner Forest is a generalization of
Steiner Tree, and bounded-genus graphs generalize planar graphs that themselves
generalize Euclidean metrics.

Steiner Tree Steiner Forest

Euclidean metrics
Arora [Aro98],
Mitchell [Mit99]

Borradaile et al. [BKM08]

Planar graphs Borradaile et al. [BKM09] Bateni et al. [BHM10a]
Bounded-genus graphs Borradaile et al. [BDT09] Bateni et al. [BHM10a]

fixed value of k, the problem is polynomial-time solvable on graphs having treewidth

at most k. There is a vast literature on algorithms for bounded-treewidth graphs

and in most cases polynomial-time (or even linear-time) solvability follows from the

well-understood standard technique of dynamic programming on tree decompositions.

However, for Steiner Forest, the obvious way of using dynamic programming

does not give a polynomial-time algorithm. The difficulty is that, unlike in Steiner

Tree, a solution of Steiner Forest induces a partition on the set of terminals and

a dynamic-programming algorithm needs to keep track of exponentially many such

partitions. In fact, this approach seems to fail even for series-parallel graphs (that

have treewidth at most 2); the complexity of the problem for series-parallel graphs

was stated as an open question by [RP86]. We resolve this question by giving a

polynomial-time algorithm for Steiner Forest on series-parallel graphs. The main

idea is that, even though algorithms based on dynamic programming have to evaluate

subproblems corresponding to exponentially many partitions, the function describing

these exponentially many values turns out to be submodular, and it can be repre-

sented in a compact way by the cut function of a directed graph. On the other hand,

Steiner Forest becomes NP-hard on graphs of treewidth at most 3 [Gas10]. Thus

perhaps this is the first example when the complexity of a natural problem changes

as treewidth increases from 2 to 3. In light of this hardness result, we investigate

131

the approximability of the problem on bounded-treewidth graphs and show that, for

every fixed k, Steiner Forest admits a PTAS on graphs of treewidth at most k.

The main idea of the PTAS is that, if the dynamic-programming algorithm considers

only an appropriately constructed polynomial-size subset of the set of all partitions,

then this produces a solution close to the optimum. Very roughly speaking, the parti-

tions in this subset are constructed by choosing a set of center points and classifying

the terminals according to the distance to the center points. Our PTAS for planar

graphs (and, more generally, for bounded-genus graphs) uses this PTAS for bounded-

treewidth graphs. This completes our thorough study of Steiner Forest in the

range of bounded-treewidth graphs, planar graphs and bounded-genus graphs.

9.2 Steiner forest for series-parallel graphs

As defined in Section 2.3.1, a series-parallel graph can be built form elementary blocks

using two operations: parallel connection and series connection. The algorithm of

Theorem 3.2.2 uses dynamic programming on the construction of the series-parallel

graph. For each subgraph arising in the construction, we find a minimum-length forest

that connects some of the terminal pairs (i.e., satisfies the corresponding demands),

connects a subset of the terminals to the “left exit point” of the subgraph, and

connects the remaining terminals to the “right exit point” of the subgraph. The

minimum length depends on the subset of terminals connected to the left exit point,

thus it seems that we need to determine exponentially many values (one for each

subset). Fortunately, it turns out that the minimum length is a submodular function

of the subset. Furthermore, we show that this function can be represented by the cut

function of a directed graph and this directed graph can be easily constructed if the

directed graphs corresponding to the building blocks of the series-parallel subgraph

are available. Thus, following the construction of the series-parallel graph, we can

132

build all these directed graphs and determine the value of the optimal solution by the

computation of a minimum cut on the final directed graph.

We prove Theorem 3.2.2 in this section by constructing a polynomial-time algo-

rithm to solve Steiner Forest on series-parallel graphs. It is well-known that the

treewidth of a graph is at most 2 if and only if it is a subgraph of a series-parallel

graph [Bod98]. Since setting the length of an edge to ∞ is essentially the same as

deleting the edge, it follows that Steiner Forest can be solved in polynomial time

on graphs with treewidth at most 2.

Let (G,D) be an instance of Steiner forest where G is a series-parallel graph.

For i = 1, . . . ,m, denote by Gi(xi, yi) all the intermediary graphs appearing in the

series-parallel construction of G. We assume that these graphs are ordered such that

G = Gm, and, if Gi is obtained from Gj1 and Gj2 , then j1, j2 < i. Let Di ⊆ D

contain those pairs {u, v} where both vertices are in V (Gi). Let Ai be those vertices

v ∈ V (Gi) for which there exists a pair {v, u} ∈ D with u 6∈ V (Gi) (note that Am = ∅

and Dm = D). For every Gi, we define two integer values ai, bi, and a function fi as

follows.

1. Let ai be the minimum length of a solution F of the instance (Gi,Di) with the

additional requirements that xi and yi are connected in F and every vertex in

Ai is in the same component as xi and yi.

2. Let G′i be the graph obtained from Gi by identifying vertices xi and yi. Let bi be

the minimum length of a solution F of the instance (G′i,Di) with the additional

requirement that every vertex of Ai is in the same component as xi = yi.

3. For every S ⊆ Ai, let fi(S) be the minimum length of a solution F of the instance

(Gi,Di) with the additional requirements that xi and yi are not connected,

every v ∈ S is in the same component as xi, and every v ∈ Ai \S is in the same

component as yi. (If there is no such F , then fi(S) =∞.)

133

The main combinatorial property that allows us to solve the problem in polynomial

time is that the functions fi are submodular. We prove something stronger: the

functions fi can be represented in a compact way as the cut functions of certain

directed graphs.

In this section, we use directed graphs as part of our algorithm. Recall that here

the edges are ordered pairs of vertices; i.e., the edge (u, v) is different from the edge

(v, u). In order to emphasize this distinction throughout, we use the notation −→uv to

refer to an edge from u to v. This edge is said to be leaving u and entering v. If D

is a directed graph with lengths on the edges and X ⊆ V (D), then δD(X) denotes

the total length of the edges of D leaving X (i.e., leaving a vertex in X and entering

a vertex outside X). For X, Y ⊆ V (D), we denote by λD(A,B) the minimum length

of a directed cut that separates A from B, i.e., the minimum of δD(X) taken over all

A ⊆ X ⊆ V (D) \B; if A ∩B 6= ∅, then λD(A,B) is defined to be ∞.

Definition 9.2.1. Let Di be a directed graph with nonnegative edge lengths. Let si

and ti be two distinguished vertices of Di, and let Ai be a subset of vertices of Di.

For a function fi : 2Ai 7→ R+, we say that (Di, si, ti, Ai) represents fi if fi(S) =

λDi(S ∪{si}, (Ai \S)∪{ti}) for every S ⊆ Ai. If si, ti, Ai are clear from the context,

then we simply say that Di represents fi.

It is well-known that δG(X) is a submodular function on the subsets of V (G);

see, e.g., [Sch03, Section 44.1a]. Submodularity is a powerful unifying concept of

combinatorial optimization: classical results on flows, cuts, matchings, and matroids

can be considered as consequences of submodularity. The following (quite standard)

proposition shows that, if a function can be represented in the sense of Definition 9.2.1,

then the function is submodular. In the proof of Theorem 3.2.2, we show that every

function fi can be represented by a directed graph, thus it follows that every fi is

submodular. Although we do not use this observation directly, it explains in some

sense why the problem is solvable in polynomial time.

134

Proposition 9.2.2. If a function f : 2A 7→ R+ can be represented by (D, s, t, A) (in

the sense of Definition 9.2.1), then f is submodular.

Proof. Let X, Y ⊆ A be arbitrary sets. Since D represents f , there exist appropriate

sets X ′ and Y ′ with δD(X ′) = f(X) and δD(Y ′) = f(Y). Now we have

f(X) + f(Y) = δD(X ′) + δD(Y ′) ≥ δD(X ′ ∩ Y ′) + δD(X ′ ∪ Y ′), (9.1)

where the inequality follows from the submodularity of δD. Observe that

(X ∩ Y) ∪ {s} ⊆ X ′ ∩ Y ′ ⊆ V (D) \ [A \ (X ∩ Y)] ∪ {t} (9.2)

since X ∪ {s} ⊆ X ′ ⊆ V (D) \ ((A \X) and Y ∪ {s} ⊆ Y ′ ⊆ V (D) \ ((A \ Y). Thus

we have f(X ∩ Y) ≤ δD(X ′ ∩ Y ′). In a similar way, we have

(X ∪ Y) ∪ {s} ⊆ X ′ ∪ Y ′ ⊆ V (D) \ [A \ (X ∪ Y)] ∪ {t} (9.3)

that yields f(X ∪ Y) ≤ δD(X ′ ∪ Y ′). Together with Inequality (9.1) obtained above,

this proves that f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y).

We now get to prove the main result of this section.

Proof of Theorem 3.2.2. We assume that in the given instance of Steiner forest

each vertex appears only in at most one pair of D. To achieve this, if a vertex v

appears in k > 1 pairs, then we subdivide an arbitrary edge incident to v by k − 1

new vertices such that the length of each of the k − 1 edges on the path formed

by v and the new vertices is 0. Replacing vertex v in each pair involving it by one

of the new vertices does not change the problem, and achieves the said property.

Furthermore, we assume that there is no trivial demand (v, v).

For every i = 1, . . . ,m, we compute the values ai, and bi, as well as a representation

135

Di of fi. In the optimal solution F for the instance (Gm,D), vertices xm and ym are

either connected or not. Thus the length of the optimal solution is the minimum of

am and fm(∅) (recall that Am = ∅). The value of fm(∅) can be easily determined by

computing the minimum-length {sm, tm} cut in Dm.

If Gi is a single edge e, then ai and bi are trivial to determine: ai is the length

of e and bi = 0. The directed graph Di representing fi can be obtained from Gi by

renaming xi to si, renaming yi to ti, and either removing the edge e (if Di = ∅) or

replacing e with a directed edge
−→
siti of length ∞ (if {xi, yi} ∈ Di).

If Gi is not a single edge, then it is constructed from some Gj1 and Gj2 by either

series or parallel connection. Suppose that ajp , bjp , and Djp for p = 1, 2 are already

known. We show how to compute ai, bi, and Di in this case.

Parallel connection. Suppose that Gi is obtained from Gj1 and Gj2 by parallel

connection. It is easy to see that ai = min{aj1 + bj2 , bj1 + aj2} and bi = bj1 + bj2 .

To obtain Di, we join Dj1 and Dj2 by identifying sj1 with sj2 (call it si) and by

identifying tj1 with tj2 (call it ti). Furthermore, for every {u, v} ∈ Di \ {Dj1 ∪ Dj2},

we add directed edges −→uv and −→vu with length ∞.

To see that Di represents fi, suppose that F is the subgraph that realizes the

value fi(S) for some S ⊆ Ai. We first show that there is an appropriate X ⊆ V (Di)

certifying λDi(S ∪{s}, (Ai \S)∪{t}) ≤ `(F). The graph F is the edge disjoint union

of two graphs F1 ⊆ Gj1 and F2 ⊆ Gj2 . For p = 1, 2, let Sp ⊆ Ajp be the set of those

vertices that are connected to xjp in Fp, it is clear that Fp connects Ajp\Sp to yjp . Since

Fp does not connect xi and yi, we have that `(Fp) ≥ fjp(S
p). Since Djp represents fjp ,

there is a set Xp of vertices in Djp such that Sp ∪ {sjp} ⊆ Xp ⊆ V (Di) \ ((Ajp \ Sp)∪

{tjp}), and δDjp (Xp) = fjp(S
p). We show that δDi(X1 ∪X2) = δDj1 (X1) + δDj2 (X2).

Since Di is obtained from joining Dj1 and Dj2 , it suffices to verify that the edges with

infinite length added after the join cannot leave X1 ∪X2. Suppose that there is such

an edge −→uv; assume without loss of generality that u ∈ X1 and v ∈ V (Dj2) \X2. This

136

means that u ∈ S1 and v 6∈ S2. Thus F connects u to xi and v to yi, implying that F

does not connect u and v. However {u, v} ∈ Di by the definition of Di, contradicting

the assumption that F is a realization of fi(S). Therefore, for the set X := X1 ∪X2,

we have

δDi(X) = δDj1 (X1)+δDj2 (X2) = fj1(S
1)+fj2(S

2) ≤ `(F1)+`(F2) = `(F) = fi(S),

proving the existence of the required X.

Suppose now that for some S ⊆ Ai, there is a set X with S ∪{si} ⊆ X ⊆ V (Di) \

((Ai \ S) ∪ {ti}). We have to show that δDi(X) ≥ fi(S). If δDi(X) =∞, then this is

trivially true, thus we assume that δDi(X) is finite. For p = 1, 2, let Xp = X∩V (Djp)

and Sp = Ajp ∩Xp. As δDi(X) is finite, the infinite edges added in the construction of

Di do not appear on the boundary of X, hence δDi(X) = δDj1 (X1) + δDj2 (X2). Since

Djp represents fjp , we know that δDjp (Xp) ≥ fjp(S
p). Let Fp be a subgraph of Gjp

realizing fjp(S
p). Let F = F1∪F2; we show that `(F) ≥ fi(S) holds by verifying that

F satisfies all the requirements in the definition of fi(S). It is clear that F does not

connect xi and yi. Consider a pair {u, v} ∈ Di. If {u, v} ∈ Djp , then F connects u

and v. Otherwise, let {u, v} ∈ Di \ {Dj1 ∪Dj2} for some u ∈ V (Gj1) and v ∈ V (Gj2).

Clearly, this means that u ∈ Aj1 and v ∈ Aj2 . Suppose that F does not connect u

and v, and, without loss of generality, assume that u ∈ S1 and v 6∈ S2. By definition

of S1 and S2, it follows that u ∈ X1 and v 6∈ X2. This means that there is an edge −→uv

of length ∞ in Di, yielding δDi(X) = ∞, which contradicts our earlier assumption.

Thus we can indeed assume `(F) ≥ fi(S), which gives

δDi(X) = δDj1 (X1)+δDj2 (X2) ≥ fj1(S
1)+fj2(S

2) = `(F1)+`(F2) = `(F) ≥ fi(S).

This completes the argument for the parallel connection.

Series connection. Suppose that Gi is obtained from Gj1 and Gj2 by series

137

connection and let µ := yj1 = xj2 be the middle vertex. It is easy to see that

ai = aj1 + aj2 (i.e., vertex µ has to be connected to both xi and yi). To compute

bi, we argue as follows. Denote by GR
j2

the graph obtained from Gj2 by swapping

the names of distinguished vertices xj2 and yj2 . Observe that the graph G′i in the

definition of bi arises as the parallel connection of Gj1 and GR
j2

. It is easy to see that

aRj2 , b
R
j2

, and fRj2 corresponding to GR
j2

can be defined as aRj2 = aj2 , b
R
j2

= bj2 , and

fRj2(S) = fj2(Aj2 \S). Furthermore, if Dj2 represents fj2 , then the graph DR
j2

obtained

from Dj2 by reversing the orientation of the edges and swapping the names of sj2 and

tj2 represents fRj2 . Thus we have everything at our disposal to construct a directed

graph D′i that represents the function f ′i corresponding to the parallel connection of

Gj1 and GR
j2

. Now observe that to compute bi we can consider two cases: either µ is

connected to xj1 and yj2 or not. We take the minimum of the two values. The first

case is simply min
{
aj1 + bRj2 , bj1 + aRj2

}
= min {aj1 + bj2 , bj1 + aj2}, and the second

case is f ′i(Ai): graph G′i is isomorphic to the parallel connection of Gj1 and GR
j2

and

the definition of bi requires that Ai is connected to xi = yi. The value of f ′i(Ai) can

be determined by a simple minimum cut computation in D′i.

Let T1 ⊆ Aj1 contain those vertices v for which there exists a pair {v, u} ∈ Di

with u ∈ Aj2 and let T2 ⊆ Aj2 contain those vertices v for which there exists a pair

{v, u} ∈ Di with u ∈ Aj1 . Observe that Ai = (Aj1 \ T1) ∪ (Aj2 \ T2). (Here we are

using the fact that each vertex is contained in at most one pair, thus v ∈ T1 cannot

be part of any pair {v, u} with u 6∈ V (Di)). To construct Di, we connect Dj1 and

Dj2 with an edge
−−−→
tj1sj2 of length 0 and set si := sj1 and ti := tj2 . Furthermore, we

introduce two new vertices γ1, γ2 and add the following edges (see Figure 9.1):

1. −−→sj1γ1 with length aj2 ,

2. −−→γ1γ2 with length fj1(Aj1 \ T1) + fj2(T2),

3.
−−→
γ2tj2 with length aj1 ,

138

Dj1 T1
si := sj1

tj1

γ1

Dj2T2 ti := tj2
sj2

γ2

aj2
∞ ∞

0

aj1
∞∞∞

fj1(Aj1 \ T1) + fj2(T2)

Figure 9.1: Construction of the auxiliary graph Di for a series connection.

4. −−→γ2γ1 with length ∞,

5. −→γ1v with length ∞ for every v ∈ V (Dj1),

6. −→vγ2 with length ∞ for every v ∈ V (Dj2),

7. −→vγ1 with length ∞ for every v ∈ T1, and

8. −→γ2v with length ∞ for every v ∈ T2.

We prove the claim that Di represents fi in two parts.

Suppose that F is the subgraph that realizes the value fi(S) for some S ⊆ Ai; we

first show that Di has an appropriate cut with value at most fi(S). Subgraph F is

the edge-disjoint union of subgraphs F1 ⊆ Gj1 and F2 ⊆ Gj2 . We consider 3 cases:

in subgraph F , vertex µ is either connected to neither xj1 nor yj2 , connected only to

xj1 , or connected only to yj2 (recall that xi = xj1 , µ = yj1 = xj2 , and yi = yj2 .

Case 1: µ is connected to neither xj1 nor yj2 . In this case, vertices of Aj1 are not

connected to yi and vertices of Aj2 are not connected to xi, hence S = Ai ∩ Aj1 =

Aj1 \ T1 is the only possibility. Furthermore, F connects both T1 and T2 to µ. It

follows that `(F) = `(F1) + `(F2) ≥ fj1(Aj1 \ T1) + fj2(T2). Set X = V (Dj1) ∪ {γ1}:

now we have δDi(X) = fj1(Aj1 \ T1) + fj2(T2) ≤ `(F), X contains (Aj1 \ T1) ∪ {si},

and is disjoint from (Aj2 \ T2) ∪ {ti}.

139

Case 2: µ is connected only to xi. This is only possible if Aj1 \ T1 ⊆ S. Clearly,

`(F1) ≥ aj1 . Subgraph F2 has to connect every vertex in (S∩Aj2)∪T2 to xj2 = µ and

every vertex in Ai \S = Aj2 \ (S ∪T2) to yj2 . This implies `(F2) ≥ fj2((S ∩Aj2)∪T2).

Let X2 ⊆ V (Dj2) be the corresponding cut in Dj2 . Set X := X2 ∪ V (Dj1) ∪ {γ1, γ2};

we have δDi(X) = fj2((S ∩Aj2)∪ T2) + aj1 ≤ `(F2) + aj1 ≤ `(F). (Note that no edge

with infinite length leaves X since T2 ⊆ X2). As X contains S and contains none of

the vertices in Ai \ S, the existence of the required cut is established.

Case 3: µ is connected only to yi. The argument is very similar to case 2, but we

include it for the sake of completeness. This case happens only if Aj2 \ T2 ⊆ A \ S.

Clearly, `(F2) ≥ aj2 . Subgraph F1 has to connect every vertex in Aj1 \ S to yj1 = µ

and every vertex in S to xj1 . This implies `(F1) ≥ fj1(S). Let X1 ⊆ V (Dj1) be the

corresponding cut in Dj1 . Set X := X1; we have δDi(X) = fj1(S)+aj2 ≤ `(F2)+aj2 ≤

`(F). (Note that no edge with infinite length leaves X since T1 ∩ X1 = ∅). As X

contains S and contains none of the vertices in Ai \ S, the existence of the required

cut is established.

Suppose now that for some S ⊆ Ai, there is a set X such that S ∪ {si} ⊆ X ⊆

V (Di) \ ((Ai \ S) ∪ {ti}). We show that δDi(X) ≥ fi(S). There is nothing to show

if δDi(X) =∞. In particular, because of the edge −−→γ2γ1, the case γ2 ∈ X and γ1 6∈ X

is trivial. Thus we have to consider only 3 cases depending on which of γ1, γ2 are

contained in X.

Case 1: γ1 ∈ X, γ2 6∈ X. In this case, the edges having length ∞ ensure that

V (Dj1) ⊆ X and V (Dj2) ∩ X = ∅, thus δDi(X) = `(−−→γ1γ2) + `(
−−−→
tj1sj2) = fj1(Aj1 \

T1) + fj2(Tj2). Notice that S = Aj1 \ T1. In this case, it is easy to see that fi(S) ≤

fj1(Aj1 \ T1) + fj2(Tj2): taking the union of some F1 realizing fj1(Aj1 \ T1) and some

F2 realizing fj2(Tj2), we get a subgraph F realizing fi(S).

Case 2: γ1, γ2 ∈ X. The edges of infinite length leaving γ1 ensure that V (Dj1) ⊆

X. Furthermore, γ2 ∈ X ensures that T2 ⊆ X. Let X2 := X ∩ V (Dj2); we have

140

X2∩Aj2 = T2∪ (S ∩Aj2), which implies δDj2 (X2) ≥ fj2(T2∪ (S ∩Aj2)). Observe that

δDi(X) = aj1 + δDj2 (X2) (where the term aj1 comes from the edge
−−→
γ2tj2). Let F1 be a

subset of Gj1 realizing aj1 and let F2 be a subset of Gj2 realizing fj2(T2 ∪ (S ∩Aj2)).

Let F := F1∪F2, and note that F connects vertices S to xi, vertices Ai \S to yi, and

vertices in T1 ∪ T2 to µ. Thus fi(S) ≤ `(F) = aj1 + fj2(T2 ∪ (S ∩ Aj2)) ≤ δDi(X), as

desired.

Case 3: γ1, γ2 6∈ X. The argument is very similar to Case 2, but is included

for the sake of completeness. The edges of infinite length entering γ2 ensure that

V (Dj2) ∩ X = ∅. Furthermore, γ1 6∈ X ensures that T1 ∩ X = ∅. Let X1 := X; we

have S ⊆ X2, which implies δDj1 (X1) ≥ fj1(S). Observe that δDi(X) = aj2 +δDj1 (X1)

(where the term aj2 comes from the edge −−→sj1γ1). Let F2 be a subset of Gj2 realizing

aj2 and let F1 be a subset of Gj1 realizing fj1(S). Let F := F1 ∪ F2, and note that

F connects vertices S to xi, vertices Ai \ S to yi, and vertices in T1 ∪ T2 to µ. Thus

fi(S) ≤ `(F) = aj2 + fj1(S) ≤ δDi(X), as desired.

9.3 Steiner forest for graphs of treewidth three

In this section, we show that Steiner Forest is NP-hard on graphs with treewidth

at least 3. Shortly before our work [BHM10a], this was proved independently by

Gassner [Gas10], but our compact proof perhaps better explains the reason for the

sharp contrast between the series-parallel and the treewidth 3 cases.

Consider the graph in Figure 10.1 and let us define the function f analogously

to the function fi in Section 9.2: for every S ⊆ {1, 2, 3}, let f(S) be the minimum

length of a subgraph F where x and y are not connected, ti is connected to x for every

i ∈ S, and ti is connected to y for every i ∈ {1, 2, 3} \ S; if there is no such subgraph

F , then define f(S) = ∞. It is easy to see that f({1, 3}) = f({2, 3}) = f({1, 2, 3}),

while f({3}) =∞. Thus, unlike in the case of series-parallel graphs, this function is

141

x y

t1

t2

t3

Figure 9.2: The graph used in the proof of Theorem 3.2.3. All edges have unit length.

not submodular.

We use the properties of the function f defined in the previous paragraph to

obtain a hardness proof in a more or less “automatic” way. Let us define the Boolean

relation R(a, b, c) := (a = c) ∨ (b = c). Observe that for any S ⊆ {1, 2, 3}, we

have f(S) = 3 if R(1 ∈ S, 2 ∈ S, 3 ∈ S) = 1 and f(S) = ∞ otherwise. (Here,

i ∈ S for i ∈ {1, 2, 3} indicates the Boolean variable that takes value 1 if and only if

i ∈ S.) Thus, the gadget in Figure 10.1 in some sense represents the relation R and,

as explained below, this is sufficient to construct an NP-hardness proof.

An R-formula is a conjunction of clauses, where each clause is the relation R

applied to some Boolean variables or to the constants 0 and 1, e.g., R(x1, 0, x4) ∧

R(0, x2, x1) ∧ R(x3, x2, 1). In the R-SAT problem, the input is an R-formula and it

has to be decided whether the formula has a satisfying assignment.

Lemma 9.3.1. R-SAT is NP-complete.

Proof. Readers familiar with Schaefer’s Dichotomy Theorem (more precisely, the

version allowing constants [Sch78, Lemma 4.1]) can easily see that R-SAT is NP-

complete. It is easy to verify that the relation R is neither weakly positive, weakly

negative, affine, nor bijunctive. Thus, the result of Schaefer immediately implies that

R-SAT is NP-complete.

For completeness, we give a simple self-contained proof here. The reduction is

142

from Not-All-Equal 3SAT1, which is known to be NP-complete even if there are

no negated literals [Sch78]. Given an NAE-3SAT formula, we replace each clause as

follows. For each clause NAE(a, b, c), we introduce a new variable d and create the

clauses R(a, b, d) ∧ R(c, d, 0) ∧ R(c, d, 1). If a = b = c, then it is not possible that all

three clauses are simultaneously satisfied; observe that the second and third clauses

force c 6= d. On the other hand, if a, b, c do not have the same value, then all three

clauses can be satisfied by an appropriate choice of d. Thus, the transformation from

NAE-3SAT to R-SAT preserves satisfiability.

The main idea of the following proof is that we can simulate arbitrarily many R-

relations by joining in parallel copies of the graph shown in Figure 10.1. Here comes

the NP-hardness proof.

Proof of Theorem 3.2.3. The proof is by reduction from R-SAT. Let φ be an R-

formula having n variables and m clauses. We start the construction of the graph

G by introducing two vertices v0 and v1. For each variable xi of φ, we introduce a

vertex xi and connect it to both v0 and v1. We introduce 3 new vertices ai, bi, ci

corresponding to the ith clause. Vertices ai and bi are connected to both v0 and v1,

while ci is adjacent only to ai and bi. If the ith clause is R(xi1 , xi2 , xi3), then we add

the 3 pairs {xi1 , ai}, {xi2 , bi}, and {xi3 , ci} to D. If the clause contains constants, then

we use the vertices v0 (as “false”) and v1 (as “true”) instead of the vertices xi1 , xi2 ,

xi3 ; e.g., the clause R(0, xi2 , 1) yields the pairs {v0, ai}, {xi2 , bi}, and {v1, ci}. The

length of every edge is 1. This completes the description of the graph G and the set

of pairs D.

We claim that the constructed instance of Steiner Forest has a solution with

n + 3m edges if and only if the R-formula φ is satisfiable. Suppose that φ has a

1In Not-All-Equal 3SAT, or NAE-3SAT for short, we are given a 3SAT instance with the
extra restriction that a clause is not satisfied if all the literals in a clause are true. Similarly to
3SAT, the clause is not satisfied if all the literals are false, either. Thus, the literals in each clause
have to take both true and false values.

143

satisfying assignment f . We construct F as follows. If f(xi) = 1, then let us add

edge (xi, v1) to F ; if f(xi) = 0, then let us add edge (xi, v0) to F . For each clause,

we add 3 edges to F . Suppose that the ith clause is R(xi1 , xi2 , xi3). We add one of

(ai, v0) or (ai, v1) to F depending on the value of f(xi1) and we add one of (bi, v0)

or (bi, v1) to F depending on the value of f(xi2). Since the clause is satisfied, either

f(xi3) = f(xi1) or f(xi3) = f(xi2); we add (ci, ai) or (ci, bi) to F , respectively. (If

f(xi3) is equal to both, then the choice is arbitrary). We proceed in an analogous

manner for clauses containing constants. It is easy to verify that each pair is in the

same connected component of F ; in particular, all vertices corresponding to variables

of the same value (true or false) form one connected component.

Suppose now that there is a solution F with length n+ 3m. At least one edge is

incident on each vertex xi since it cannot be isolated in F . Each vertex ai, bi, ci has

to be connected to either v0 or v1, hence at least 3 edges of F are incident on these 3

vertices. As F has n+ 3m edges, it follows that exactly one edge is incident on each

xi, hence exactly 3 edges are incident on the set {ai, bi, ci}. It follows that v0 and v1

are not connected in F . Define an assignment of φ by setting f(xi) = 0 if and only if

vertex xi is in the same component of F as v0. To verify that a clause R(xi1 , xi2 , xi3)

is satisfied, observe that ci is in the same component of F as either ai or bi. If ci

is in the same component as, say, ai, then this component also contains xi3 and xi1 ,

implying f(xi3) = f(xi1) as required.

Finally, we claim that the graph of the above construction is planar and has

treewidth at most three. Planarity can be easily verified. We propose a tree decom-

position as follows to establish the treewidth bound. The root of the tree has a bag

containing {v0, v1}. The root has a child for each variable xi, with a bag containing

{v0, v1, xi}. In addition, there is a two-node path connected to the root corresponding

to each clause and its gadget: let ai, bi, ci be the vertices of the gadget. Then, the

root of the tree decomposition has a child, whose bag is {v0, v1, ai, bi}, and has a child

144

of its own with a bag {ai, bi, ci}. The largest bag has size four, and the endpoints of

each edge of the graph appear together in at least one tree node.

9.4 Steiner forest for bounded-treewidth graphs

The purpose of this section is to prove Theorem 3.2.4 by presenting a PTAS for

Steiner Forest on graphs of bounded treewidth.

9.4.1 Groups

We define a notion of group that will be crucial in the description of the algorithm.

A group is defined by a set S of center vertices, a set X of “interesting” vertices, and

a maximum distance r; the group GG(X,S, r) contains S and those vertices of X that

are at distance (with respect to the shortest path on G) at most r from some vertex

in S.

Lemma 9.4.1. Let T be a Steiner tree of X ⊆ V (G) with length W = `(T). For

every ε > 0, there is a set S ⊆ X of O(1 + 1/ε) vertices such that X = GG(X,S, εW).

Proof. Let us select vertices s1, s2, . . . from X as long as possible, with the require-

ment that the distance of si is more than εW from every sj, 1 ≤ j < i. Suppose

st is the last vertex selected in this way. We claim that t ≤ 1 + 2/ε. Consider a

shortest closed tour in G that visits the vertices {s1, . . . , st} (not necessarily in the

order of their indices). As the distance between any two such vertices is more than

εW , the total length of the tour is more than tεW (assuming that t > 1). On the

other hand, all these vertices are on the tree T , and it is well-known that there is a

closed tour that visits every vertex of the tree in such a way that every edge of the

tree is traversed exactly twice and no other edge of the graph is used. Therefore, the

shortest tour has length at most 2W , and the claim t ≤ 2/ε follows.

145

The following consequence of the definition of group is easy to see.

Proposition 9.4.2. If S1, S2, X1, X2 are subsets of vertices of G and r1, r2 are real

numbers, then

GG(X1, S1, r1) ∪ GG(X2, S2, r2) ⊆ GG(X1 ∪X2, S1 ∪ S2,max{r1, r2}).

9.4.2 Conforming solutions

Let (T,B) be a rooted nice tree decomposition of width k, let I be the nodes of T ,

and let B = {Bi | i ∈ I} be the bags of the decomposition. For every i ∈ I, let Vi

be the set of vertices appearing in Bi or in the bag of a descendant of i. Let Ai be

the set of active vertices at bag Bi: those vertices v ∈ Vi for which there is a demand

{v, w} ∈ D with w 6∈ Vi. Let Gi := G[Vi]. A Steiner forest F induces a partition

πi(F) of Ai for every i ∈ I: let two vertices of Ai be in the same class of πi(F) if and

only if they are in the same component of F . Note that if F is restricted to Gi, then

a component of F can be split into up to k + 1 components, thus πi(F) is a coarser

partition than the partition defined by the components of the restriction of F to Gi.

See Figure 9.5 for an example.

Let Π = (Πi)i∈I be a collection such that Πi is a set of partitions of Ai. If some

Steiner forest F satisfies πi(F) ∈ Πi for every i ∈ I, then we say that F conforms to

Π.

The aim of this subsection is to give an algorithm for bounded-treewidth graphs

that finds a minimum-length solution conforming to a given Π. For fixed k, the

running time is polynomial in the size of the graph and the size of the collection Π

on a graph with treewidth at most k. In Section 9.4.3, we construct a polynomial-

size collection Π such that there is a (1 + ε)-approximate solution that conforms

to Π. Putting together these two results, we get a PTAS for Steiner Forest on

bounded-treewidth graphs.

146

K4K3

K2

K1

Ai

Vi

Bi

Figure 9.3: The 4 components K1, K2, K3, K3 of F partition Ai into 4 classes. Note
that the restriction of F to Vi has 6 components.

Lemma 9.4.3. For every fixed k, there is a polynomial time algorithm that, given

a graph G with treewidth at most k and a collection Π, finds the minimum-length

Steiner forest conforming to Π.

The proof of Lemma 9.4.3 follows the standard dynamic programming approach,

but it is not completely trivial. First, we use a technical trick that makes the pre-

sentation of the dynamic programming algorithm simpler. We can assume that every

terminal vertex v has degree 1: otherwise, moving the terminal to a new degree 1 ver-

tex v′ attached to v with an edge (v, v′) having length 0 does not change the problem

and does not increase treewidth. Thus by Lemma 2.3.5, it can be assumed that we

have a nice tree decomposition (T,B) of width at most k where no terminal vertex is

introduced and the join nodes contain no terminal vertices; this assumption simplifies

the presentation. For the rest of the section, we fix such a tree decomposition and

notation Vi, Ai, etc. refer to this fixed decomposition.

Recall that we can treat partitions as equivalence relations. If F is a subgraph of

147

F2F1

α2α1

S

α1 ∨ α2

Figure 9.4: Forest F1 induces partition α1 on S; forest F2 induces partition α2; and
the union of the two forests induces the partition α1 ∨ α2.

G and S ⊆ V (G), then F induces a partition α of S: (x, y) ∈ α if and only if x and

y are in the same component of F (and every x ∈ S \ V (F) forms its own class). Let

F1, F2 be subgraphs of G, and suppose that F1 and F2 induce partitions α1 and α2

of a set S ⊆ V (G), respectively. If F1 and F2 intersect only in S, then the partition

induced by the union of F1 and F2 is exactly α1 ∨ α2 (see Figure 9.4). Let βi be a

partition of Bi for some i ∈ I, and let Fi be a subgraph of G[Vi]. Then, we denote by

Fi + βi the graph obtained from Fi by adding a new edge (x, y) for every (x, y) ∈ βi.

Note that Fi + βi is not necessarily a subgraph of G[Vi].

Following the usual method of designing algorithms for bounded-treewidth graphs,

we define several subproblems for each node i ∈ I. A subproblem at node i corre-

sponds to finding a subgraph Fi in Gi satisfying certain properties: informally speak-

ing, Fi is supposed to be the restriction of a Steiner forest F to Vi. The properties

defining a subproblem prescribe how Fi should look from the “outside world” (i.e.,

from the part of G outside Vi), and they contain all the information necessary for de-

ciding whether Fi can be extended, by edges outside Vi, to a conforming solution. Let

us discuss briefly and informally what information these prescriptions should contain.

148

Clearly, the edges of Fi in Bi and the way Fi connects the vertices of Bi (i.e., the

partition α of Bi induced by Fi) is part of this information. Furthermore, the way

Fi partitions Ai should also be part of this information. However, there is a subtle

detail that makes the description of our algorithm significantly more technical. The

definition of πi(F) = π means that the components of F partition Ai in a certain way.

But the restriction Fi of F to Vi might induce a finer partition of Ai than π: it is

possible that two components of Fi are in the same component of F (see Figure 9.5).

This means that we cannot require that the partition of Ai induced by Fi belongs to

Π. We avoid this problem by “imagining” the partition β of Bi induced by the full

solution F , and require that Fi partition Ai according to π if each class of β becomes

connected somehow. In other words, instead of requiring that Fi itself partitions Ai

in a certain way, we require that Fi + β induce a certain partition.

Formally, each subproblem P is defined by a tuple (i,H, π, α, β, µ), where

(S1) i ∈ I is a node of T ,

(S2) H is a spanning subgraph of G[Bi] (i.e., contains all vertices of G[Bi]),

(S3) π ∈ Πi is a partition of Ai,

(S4) α, β are partitions of Bi, β is coarser than α, and α is coarser than the partition

induced by the components of H, and

(S5) µ is an injective mapping from the classes of π to the classes of β.

The solution c(i,H, π, α, β, µ) of a subproblem P is the minimum length of a subgraph

Fi of G[Vi] satisfying all of the following requirements.

(C1) Fi[Bi] = H (which implies Bi ⊆ V (Fi)).

(C2) α is the partition of Bi induced by Fi.

(C3) The partition of Ai induced by Fi + β is π.

149

(C4) For every descendant d of i (including d = i), the partition of Ad induced by

Fi + β belongs to Πd.

(C5) If there is a terminal pair (x1, x2) with x1, x2 ∈ Vi, then they are connected in

Fi + β.

(C6) Every x ∈ Ai is in the component of Fi + β containing µ(π(x)).

We solve these subproblems by bottom-up dynamic programming. Let us discuss

how to solve a subproblem depending on the type of i.

Leaf nodes i. If i is a leaf node, then the value of the solution is trivially 0.

Join node i having children i1, i2. Note that Ai1 and Ai2 are disjoint: the

vertices of a join node are not terminal vertices. The set Ai is a subset of Ai1 ∪ Ai2

and it may be a proper subset; i.e., if there is a pair (x, y) with x ∈ Ai1 , y ∈ Ai2 , then

x or y might not be in Ai.

We show that the value of the subproblem is

c(i,H, π, α, β, µ) =

min
(J1),(J2),(J3),(J4)

[
c(i1, H, π

1, α1, β, µ1) + c(i2, H, π
2, α2, β, µ2)− `(H)

]
, (9.4)

where the minimum is taken over all tuples satisfying, for p = 1, 2, all of the following

conditions.

(J1) α1 ∨ α2 = α.

(J2) π and πp are the same on Aip ∩ Ai.

(J3) For every v ∈ Aip ∩Ai, µ(π(v)) = µp(πp(v)). (Note that the classes of β are the

domain of both µ and µp.)

(J4) If there is a terminal pair (x1, x2) with x1 ∈ A1 and x2 ∈ A2, then µ1(π1(x1)) =

µ2(π2(x2)).

150

We will use the following observation repeatedly. Let F be a subgraph of Gi and

let F p = F [Vip]. Suppose that F induces partition α on Bi and β is coarser than

α. Then two vertices of Vip are connected in F + β if and only if they are connected

in F p + β. Indeed, F 3−p does not provide any additional connectivity compared to

F p + β: as β is coarser than α3−p, if two vertices of Bi are connected by a path in

F 3−p, then they are already adjacent in F p + β.

We prove Equation (9.4) in two parts. First we show that any solution found by

the formula is valid.

Proof of (9.4) left ≤ (9.4) right.

Let P1 = (i1, H, π
1, α1, β, µ1) and P2 = (i2, H, π

2, α2, β, µ2) be subproblems min-

imizing the right-hand side of (9.4), and let F 1 and F 2 be optimal solutions of P1

and P2, respectively. Let F be the union of subgraphs F 1 and F 2. It is clear that

the length of F is exactly the right-hand side of (9.4): the common edges of F 1 and

F 2 are exactly the edges of H. We show that F is a solution of P , i.e., F satisfies

requirements (C1)–(C6).

(C1): Follows from F 1[Bi] = F 2[Bi] = F [Bi] = H.

(C2): Follows from (J1) and the fact that F 1 and F 2 intersect only in Bi.

(C3): First consider two vertices x, y ∈ Aip ∩ Ai. Vertices x and y are connected in

F + β if and only if they are connected in F p + β. By (C3) for F p, this is

equivalent to (x, y) ∈ πp, which is further equivalent to (x, y) ∈ π by (J2). Now

suppose that x ∈ Ai1 ∩Ai and y ∈ Ai2 ∩Ai. In this case, x and y are connected

in F + β if and only if there is a vertex of Bi reachable from x in F 1 + β and

from y in F 2 + β, or in other words, µ1(π1(x)) = µ2(π2(y)). By (J3), this is

equivalent to µ(π(x)) = µ(π(y)), or (x, y) ∈ π (as µ is injective).

(C4): If d is a descendant of ip, then the statement follows using that (C4) holds for

solution F p of P p and the fact that for every descendant d of ip, Fi + β and

151

F + β induce the same partition of Ad. For d = i, the statement follows from

the previous paragraph, i.e., from the fact that F + β induces partition π ∈ Πi

on Ai.

(C5): Consider a pair (x1, x2). If x1, x2 ∈ Vi1 or x1, x2 ∈ Vi2 , then the statement

follows from (C5) on F 1 or F 2. Suppose now that x1 ∈ Vi1 and x2 ∈ Vi2 ; in this

case, we have x1 ∈ Ai1 and x2 ∈ Ai2 . By (C6) on F 1 and F 2, xp is connected to

µp(πp(xp)) in F p + β. By (J4), we have µ1(π1(x1)) = µ2(π2(x2)), hence x1 and

x2 are connected to the same class of β in F + β.

(C6): Consider an x ∈ Ai that is in Aip . By condition (C6) on F p, we have that x is

connected in F p + β (and hence in F + β) to µp(πp(v)), which equals µ(π(v))

by (J3).

Next to complete the proof of Equation (9.4), we show that any valid solution is

discovered via the formula.

Proof of (9.4) left ≥ (9.4) right.

Let F be a solution of subproblem (i,H, π, α, β, µ) and let F p be the subgraph of F

induced by Vip . To prove the inequality, we need to show three things. First, we have

to define two tuples (i1, H, π
1, α1, β, µ1) and (i2, H, π

2, α2, β, µ2) that are valid sub-

problems, i.e., they satisfy (S1)–(S5). Second, we show that (J1)–(J4) hold for these

subproblems. Third, we show that F 1 and F 2 are solutions for these subproblems

(i.e., (C1)–(C6)), hence they can be used to give an upper bound on the right-hand

side that matches the length of F .

Let αp be the partition of Bi induced by the components of F p; as F 1 and F 2

intersect only in Bi, we have α = α1 ∨ α2, ensuring (J1). Since β is coarser than α,

it is coarser than both α1 and α2. Let πp be the partition of Aip defined by F + β;

we have πp ∈ Πip by (C4) for F . Furthermore, by (C3) for F , π is the partition of Ai

induced by F + β, hence it is clear that π and πp are the same on Aip ∩ Ai, so (J2)

152

holds. This also means that F + β (or equivalently, F p + β) connects a class of πp

to exactly one class of β; let µp be the corresponding mapping from the classes of πp

to β. Now (J4) is immediate. It is clear that the tuple (ip, H, π
p, αp, β, µp) satisfies

(S1)–(S5).

We show that F p is a solution of subproblem (ip, H, π
p, αp, β, µp). As the edges

of H are shared by F 1 and F 2, it will follow that the right-hand side of (9.4) is not

greater than the left hand side.

(C1): Obvious from the definition of F 1 and F 2.

(C2): Follows from the way αp is defined.

(C3): Follows from the definition of πp, and the fact that F + β and F p + β induce

the same partition on Aip .

(C4): Follows from (C4) on F and from the fact that F + β and F p + β induces the

same partition on Ad.

(C5): Suppose that x1, x2 ∈ Vip . Then by (C5) for F , x1 and x2 are connected in

F + β, hence they are connected in Fi + β as well.

(C6): Follows from the definition of µp.

Introduce node i of vertex v. Let j be the child of i. Since v is not a terminal

vertex, we have Aj = Ai. Let F ′ be a subgraph of G[Vj] and let FS be obtained from

F ′ by adding vertex v to F ′ and making v adjacent to S ⊆ Bj. If α′ is the partition

of Bj induced by the components of F ′, then we define the partition α′[v, S] of Bi to

be the partition obtained by joining all the classes of α′ that intersect S and adding

v to this new class (if S = ∅, then {v} is a class of α′[v, S]). It is clear that α′[S, v] is

the partition of Bi induced by FS.

153

We show that the value of a subproblem is given by

c(i,H, π, α, β, µ) = min
(I1),(I2),(I3)

c(j,H[Bj], π, α
′, β′, µ′) +

∑
e∈δH(v)

`(e)

 , (9.5)

where the minimum is taken over all tuples satisfying the following.

(I1) α = α′[v, S], where S is the set of neighbors of v in H.

(I2) β′ is β restricted to Bj.

(I3) For every x ∈ Ai, µ(π(x)) is the class of β containing µ′(π(x)).

In a way similar to Equation (9.4), we prove Equation (9.5) in two parts. First

we show that any solution found by the formula is valid.

Proof of (9.5) left ≤ (9.5) right.

Let F ′ be an optimal solution of subproblem P ′ = (j,H[Bj], π, α
′, β′, µ′) satisfying

(I1)-(I3). Let F be the graph obtained from F ′ by adding to it the edges of H incident

to v; it is clear that the length of F is exactly the right-hand side of (9.5). Let us

verify that (C1)–(C6) hold for F .

(C1): Immediate.

(C2): Holds because of (I1) and the way α′[v, S] was defined.

(C3)–(C5): Observe that F + β connects two vertices of Vj if and only if F ′ + β′ does.

Indeed, if a path in F + β connects two vertices via vertex v, then the two

neighbors x, y of v on the path are in the same class of β as v (using the fact

that α and β are coarser than the partition induced by H), hence (I2) implies

that x, y are in the same class of β′ as well. In particular, for every descendant

d of i, the components of F + β and the components of F ′ + β give the same

partition of Ad.

154

(C6): Follows from (C6) for F ′ and from (I3).

Next to complete the proof of Equation (9.5), we show that any valid solution is

discovered via the formula.

Proof of (9.5) left ≥ (9.5) right.

Let F be a solution of subproblem (i,H, π, α, β, µ) and let F ′ be the subgraph of

F induced by Vj. We define a tuple (j,H[Bj], π, α
′, β′, µ′) that is a valid subproblem,

show that it satisfies (I1)–(I3), and that F ′ is a solution of this subproblem.

Let α′ be the partition of Vj induced by F ′ and let β′ be the restriction of β on

Bj; these definitions ensure that (I1) and (I2) hold. Let µ′(π(x)) = µ(π(x)) \ {v},

which is a class of β′; clearly, this ensures (I3). Note that this is well-defined, as it

is not possible that µ(π(x)) is a class of β consisting of only v: by (C6) for F , this

would mean that v is the only vertex of Bi reachable from x in F . Since v is not a

terminal vertex, v 6= x; thus, if v is reachable from x, then at least one neighbor of v

has to be reachable from x as well.

Let us verify that (S1)–(S5) hold for the tuple (j,H[Bj], π, α
′, β′, µ′). (S1) and

(S2) clearly hold. (S3) follows from the fact that (C4) holds for F and Ai = Aj.

To see that (S4) holds, observe that (x, y) ∈ α′ implies (x, y) ∈ α, which implies

(x, y) ∈ β, which implies (x, y) ∈ β′. (S5) is clear from the definition of µ′.

The difference between the length of F and the length of F ′ is exactly∑
e∈δH(v) `(e). Thus to show that the left-hand side of (9.5) is at most the right-

hand side of (9.5), it is sufficient to show that F ′ is a solution of subproblem

(j,H[Bj], π, α
′, β′, µ′).

(C1)–(C2): Obvious.

(C3)–(C5): As in the other direction, follow from the fact that F ′ + β′ induces the same

partition of Vj as F + β.

155

(C6): By the definition of µ′, it is clear that µ′(π(x)) is exactly the subset of Bj that

is reachable from x in F + β and hence in F ′ + β′.

Forget node i of vertex v. Let j be the child of i. We have Vi = Vj and hence

Ai = Aj. We show that the value of a subproblem is given by

c(i,H, π, α, β, µ) = min
(F1),(F2),(F3),(F4)

c(j,H ′, π, α′, β′, µ′), (9.6)

where the minimum is taken over all tuples satisfying the following.

(F1) H ′[Bi] = H.

(F2) α is the restriction of α′ to Bi.

(F3) β is the restriction of β′ to Bi and (x, v) ∈ β′ if and only if (x, v) ∈ α′.

(F4) For every x ∈ Ai, µ(π(x)) is the (nonempty) set µ′(π(x)) \ {v} (which implies

that µ′(π(x)) contains at least one vertex of Bi).

We prove Equation (9.6) in two parts. First we show that any solution found by

the formula is valid.

Proof of (9.6) left ≤ (9.6) right.

Let F be a solution of (j,H ′, π, α′, β′, µ′). We show that F is a solution of

(j,H, π, α, β, µ) as well.

(C1): Clear because of (F1).

(C2): Clear because of (F2).

(C3)–(C5): We only need to observe that F+β and F+β′ have the same components: since

by (F3), (x, v) ∈ β′ implies (x, v) ∈ α′, the neighbors of v in F+β′ are reachable

from v in F , thus F + β′ does not add any further connectivity compared to

F + β.

156

(C6): Observe that, if µ′(π(x)) are the vertices of Bj reachable from x in F +β′, then

µ(π(x)) = µ′(π(x)) \ {v} are the vertices of Bi reachable from x in F + β′. We

have already seen that F + β and F + β′ have the same components, thus, the

nonempty set µ(π(x)) is indeed the subset of Bi reachable from x in F + β.

Furthermore, by (F3), β is the restriction of β′ on Bi, thus, if µ′(π(x)) is a class

of β′, then µ(π(x)) is a class of β.

Next to complete the proof of Equation (9.6), we show that any valid solution is

discovered via the formula.

Proof of (9.6) left ≥ (9.6) right.

Let F be a solution of (j,H, π, α, β, µ). We define a tuple (j,H ′, π, α′, β′, µ′) that

is a subproblem, we show that (F1)–(F3) hold, and that F is a solution of this

subproblem.

Let us define H ′ = F [Bj] and let α′ be the partition of Bj induced by the com-

ponents of F ; these definitions ensure that (F1) and (F2) hold. We define β′ as the

partition obtained by extending β to Bj such that v belongs to the class of β that

contains a vertex x ∈ Bi with (x, v) ∈ α′ (as β is coarser than the partition induced

by H, there is at most one such class; if there is no such class, then we let {v} be a

class of β′). It is clear that (F3) holds for this β′. Let us note that F + β and F + β′

have the same connected components: if (x, v) ∈ β′, then x and v are connected in

F . Let µ′(π(x)) be the subset of Bj reachable from x in F + β′ (or equivalently, in

F + β). It is clear that µ(π(x)) = µ′(π(x)) \ {v′} holds, hence (F4) is satisfied.

Let us verify first that (S1)–(S5) hold for (j,H ′, π, α′, β′, µ′). (S1) and (S2) clearly

holds. (S3) follows from the fact that (S3) holds for (i,H, π, α, β, µ) and Ai = Aj.

To see that (S4) holds, observe that, if x, y ∈ Bi, then (x, y) ∈ α′ implies (x, y) ∈ α,

which implies (x, y) ∈ β, which implies (x, y) ∈ β′. Furthermore, if (x, v) ∈ α′, then

(x, v) ∈ β′ by the definition of β. (S5) is clear from the definition of µ′.

We show that F is a solution of (j,H ′, π, α′, β′, µ′).

157

(C1): Clear from the definition of H ′.

(C2): Clear from the definition of α′.

(C3)–(C5): Follow from the fact that F+β and F+β′ have the same connected components.

(C6): Follows from the definition of µ′.

This concludes the proof of Lemma 9.4.3.

9.4.3 Constructing the partitions

Recall that the collection Π = (Πi)i∈I contains a set of partitions Πi for each i ∈ I.

We construct these sets Πi in the following way. Each partition in Πi is defined by a

sequence ((S1, r1), . . . , (Sp, rp)) of at most k + 1 pairs and a partition ρ of {1, . . . , p}.

The pair (Sj, rj) consists of a (seed) set Sj of O((k + 1)(1 + 1/ε)) vertices of Gi and

a nonnegative real number rj, which equals the distance between two vertices of G.

This means that there are at most |V (G)|O((k+1)(1+1/ε)) · |V (G)|2 possible pairs (Sj, rj)

and hence at most |V (G)|O((k+1)2(1+1/ε)) different sequences. The number of possible

partitions ρ is O(kk). Thus, if we construct Πi by considering all possible sequences

constructed from every possible choice of (Sj, rj), the size of Πi is polynomial in

|V (G)| for every fixed k and ε.

We construct the partition π corresponding to a particular sequence and ρ the

following way. Each pair (Sj, rj) can be used to define a group Rj = GG(Ai, Sj, rj) of

Ai. Roughly speaking, for each class P of ρ, there is a corresponding class of π that

contains the union of Rj for every j ∈ P . However, the actual definition is somewhat

more complicated. We want π to be a partition, which means that the subsets of

Ai corresponding to the different classes of ρ should be disjoint. In order to ensure

disjointness, we define R′j := Rj \
⋃j−1
j′=1 Rj′ . The partition π of Ai is then constructed

as follows: for each class P of ρ, we let
⋃
j∈P R

′
j be a class of π. Note that these

158

classes are disjoint by construction. If these classes fully cover Ai, then we place the

resulting partition π into Πi; otherwise, the sequence does not define a partition. This

finishes the construction of Πi.

Before showing that there is a near-optimal solution conforming to the collection

Π defined above, we need a further definition. For two vertices u and v, we denote

by u ≺ v the fact that the topmost bag containing u is a proper descendant of the

topmost bag containing v. Note that each bag is the topmost bag of at most one

vertex in a nice tree decomposition. (Recall that we can assume that the root bag

contains only a single vertex.) Thus, if u and v appear in the same bag, then u ≺ v

or v ≺ u holds, i.e., this relation defines a total ordering of the vertices in a bag. We

can extend this relation to connected subsets of vertices: for two disjoint connected

sets K1, K2, K1 ≺ K2 means that K2 has a vertex v such that u ≺ v for every vertex

u ∈ K1, or in other words, K1 ≺ K2 means that the topmost bag where vertices from

K1 appear is a proper descendant of the topmost bag where vertices from K2 appear.

If there is a bag containing vertices from both K1 and K2, then either K1 ≺ K2 or

K2 ≺ K1 holds. The reason for this is that the bags containing vertices from K1∪K2

form a connected subtree of the tree decomposition, and if the topmost bag in this

subtree contains vertex v ∈ K1 ∪K2, then u ≺ v for every other vertex u in K1 ∪K2.

Lemma 9.4.4. There is a (1 + kε)-approximate solution conforming to Π.

Proof. Let F be a minimum-length Steiner forest. We describe a procedure that adds

further edges to F to transform it into a Steiner forest F ′ that conforms to Π, and

has length at most (1 + kε)`(F). We need a delicate charging argument to show that

the total increase of the length is at most kε · `(F) during the procedure. In each

step, we charge the increase of the length to an ordered pair (K1, K2) of components

of F . We charge only to pairs (K1, K2) having the property that K1 ≺ K2 and there

is a bag containing vertices from both K1 and K2. Observe that, if Bi is the topmost

bag where vertices from K1 appear, then these properties imply that a vertex of K2

159

appears in this bag as well. Otherwise, if every bag containing vertices of K2 appears

above Bi, then there is no bag containing vertices from both K1 and K2; if every bag

containing vertices from K2 appears below Bi, then K1 ≺ K2 is not possible. Thus a

component K1 can be the first component of at most k such pairs (K1, K2): since the

components are disjoint, the topmost bag containing vertices from K1 can intersect

at most k other components. We will charge a length increase of at most ε · `(K1) to

the pair (K1, K2), thus, the total increase is at most kε · `(F). It is a crucial point

of the proof that we charge to (pairs of) components of the original solution F , even

after several modification steps, when the components of F ′ can be larger than the

original components of F . Actually, in the proof to follow, we will refer to three

different types of components.

(a) Components of the current solution F ′.

(b) Each component of F ′ contains one or more components of F .

(c) If a component of F is restricted to the subset Vi, then it can split into up to

k + 1 components.

To emphasize the different meanings, and be clear as well, we use the terms a-

component, b-component, and c-component.

Initially, we set F ′ := F and it will be always true that F ′ is a supergraph of F ,

thus F ′ defines a partition of the b-components of F . Suppose there is a bag Bi such

that the partition πi(F
′) of Ai induced by F ′ is not in Πi. Let K1 ≺ K2 ≺ · · · ≺ Kp

be the b-components of F intersecting Bi, ordered by the relation ≺. Some of these

b-components might be in the same a-component of F ′; let ρ be the partition of

{1, . . . , p} defined by F ′ on these b-components.

Let Ai,j be the subset of Ai contained in Kj. The intersection of b-component

Kj with Vi gives rise to at most k + 1 c-components, each of length at most `(Kj).

Thus by Lemma 9.4.1 and Proposition 9.4.2, there is a set Sj ⊆ V (Kj) of at most

160

a-components

b-components

c-components

Vi

Bi

Figure 9.5: The original solution F (blue and red edges) consists of 4 b-components.
Restricting F to Vi yields 6 c-components (red edges). Forest F ′, which is obtained
from F by adding the two dotted edges, has two a-components.

161

O((k+1)(1+1/ε)) vertices such that Ai,j = GGi(Ai,j, Sj, rj) for some rj ≤ ε ·`(Kj). If

the sequence (S1, r1), . . . , (Sp, rp) and the partition ρ give rise to the partition πi(F
′),

then πi(F
′) ∈ Πi. Otherwise, let us investigate the reason why this sequence and ρ do

not define the partition πi(F
′). Let Rj, R

′
j be defined as in the definition of Πi, i.e.,

Rj = GG(Ai, Sj, rj) and R′j := Rj \
⋃j−1
j′=1 Rj′ . It is clear that Ai,j ⊆ Rj. Therefore,

every vertex of Ai is contained in some Rj and hence in some R′j. Thus, the sequence

does define a partition π, but maybe a partition different from πi(F
′). Let ρ(j) be

the class of ρ containing j. If for every 1 ≤ j ≤ p, every vertex of Ai,j is contained in⋃
j′∈ρ(j) R

′
j′ , then π and πi(F

′) are the same. So suppose that some vertex v ∈ Ai,j is

not in
⋃
j′∈ρ(j) R

′
j′ . As v ∈ Rj, this means that v ∈ Rj∗ for some j∗ ≺ j and j∗ 6∈ ρ(j).

The fact that Rj∗ = GGi(Ai, Sj∗ , rj∗) contains v ∈ Ai,j means that there is a vertex

u ∈ Sj∗ such that dGi(u, v) ≤ rj∗ ≤ ε · `(Kj∗). Note that u is a vertex of b-component

Kj∗ (as u ∈ Sj∗ and by definition Sj∗ is a subset of V (Kj∗)), and v is a vertex of

b-component Kj. We modify F ′ by adding a shortest path that connects u and v.

Clearly, this increases the length of F ′ by at most ε · `(Kj∗), which we charge to the

pair (Kj∗ , Kj) of b-components. Note that Kj and Kj∗ both intersect the bag Bi and

Kj∗ ≺ Kj, as required in the beginning of the proof. Furthermore, Kj and Kj∗ are in

the same a-component of F ′ after the modification, but not before. Thus we charge

at most once to the pair (Kj∗ , Kj).

Since the modification always extends F ′, the procedure described above termi-

nates after a finite number of steps. At this point, every partition πi(F
′) belongs to

the corresponding set Πi, that is, the solution F ′ conforms to Π.

9.5 Steiner forest for planar graphs

This section proves Theorem 3.2.5, the most general result of this chapter, which is

a PTAS for Steiner Forest for bounded-genus graphs. To this end, we follow the

162

framework explained in Section 5.3; i.e., we first construct a Steiner forest spanner

given the input graph G and the set of demands D. The construction is based on the

prize-collecting clustering paradigm—see Theorem 4.2.1—and the brick decomposi-

tion technique introduced in Chapter 6. The spanner framework then enables us to

reduce the problem to a bounded-treewidth instance, for which a PTAS was given in

Section 9.4.

After recalling some notation and definitions, we explain the preprocessing

step in the construction of the spanner in Section 9.5.1, which invokes Procedure

PC-Classify and its corresponding Theorem 4.2.1. Then, in Section 9.5.2 we explain

the rest of the spanner construction, that is essentially the same as that of Borradaile

et al. [BKM09] for planar Steiner Tree. Finally, we summarize in Section 9.5.3.

Recall from Definition 5.1.1 that a Steiner forest spanner is a subgraph of the given

graph whose length is no more than a constant factor times the length of the optimal

Steiner forest, and furthermore, it contains a nearly optimal Steiner forest. Denote by

optD(G) the minimum length of a Steiner forest of G satisfying (connecting) all the

demands in D. We sometimes use opt instead of optD(G) when D and G are easily

inferred from the context. More specifically, a subgraph H of G is a Steiner forest

spanner with respect to demand set D and a parameter ε > 0 if it has the following

two properties.

Spanning Property: There is a forest in H that connects all demands in D and

has length at most (1 + ε)OPTD(G), namely, optD(H) ≤ (1 + ε)optD(G).

Shortness Property: The total length of H is not more than f(ε) ·OPTD(G).

Most of this section is devoted to proving the following theorem.

Theorem 9.5.1. Given any fixed ε > 0, a bounded-genus graph Gin(Vin, Ein) and

demand pairs D, we can compute in polynomial time a Steiner forest spanner H for

Gin with respect to demand set D.

163

The algorithm that we propose achieves this in time O(n2 log n). The entire

algorithm for Steiner Forest runs in polynomial time but the exponent of the

polynomial depends on ε and the genus of the input graph, so our algorithm is not

an efficient PTAS. What leads to the large running time is the algorithm for the

bounded-treewidth case. Improving the running time of that algorithm—ideally to

obtain an efficient PTAS—immediately gives a better running time for the bounded-

genus algorithm.

9.5.1 Preprocessing

A slight modification of the ideas of Borradaile et al. [BKM09] would give a span-

ner construction algorithm for Steiner Forest if one were able to find a good

“backbone” graph to start with: i.e., a connected subgraph that spans all terminals

(endpoints of every demand pair) with total length O(opt).

Notice that the backbone graph can be easily found for Steiner Tree since any

constant-factor approximate solution—in particular, that found from the Minimum

Spanning Tree 2-approximation—can serve as the backbone.

For Steiner Forest, though, the existence of the backbone graph is not guar-

anteed. Consider a disconnected graph with two demand pairs, each in a connected

component of its own. Although, the optimum may have a very small length, no sub-

graph of length O(opt) can connect all the terminals together. This example is pretty

easy to deal with since the optimum, we know, cannot connect different connected

components to each other either. Therefore, the instance can be broken down into

separate subinstances with different connected components and demand pairs inside

each.

Now consider a more challenging instance. There are several demand pairs in our

graph. Although any terminals from any pair of demand pairs can be connected to

each other with a cost much smaller than opt, to connected all terminals to each

164

other is much more expensive than opt. In other words, unlike the above instance of

the disconnected graph, it is not easy to rule out the optimum’s connecting different

demands to each other.

The following lemma introduces a relaxed notion of a backbone, which is sufficient

for the rest of the spanner construction, and at the same time, not only can we prove

that it always exists, but we can always find one in polynomial time as well.

Theorem 9.5.2. Given a parameter ε > 0, a graph Gin(Vin, Ein), and a set D of

pairs of vertices, we can compute in polynomial time a set of trees {T1, . . . , Tk}, and

a partition of demands {D1, . . . ,Dk}, with the following properties.

1. All the demands are covered, i.e., D =
⋃k
i=1Di.

2. All the terminals in Di are spanned by the tree Ti.

3. The sum of the lengths of all the trees Ti is no more than (4
ε

+ 2)optD(Gin).

4. Let D∗ ⊆ D be an arbitrary subset of demands, and define D∗i = D∗∩Di. Then,

we have
∑

i optD∗i (Gin) ≤ (1 + ε)optD∗(Gin). In particular,
∑

i optDi(Gin) ≤

(1 + ε)optD(Gin).

The (second part of the) last condition implies that (up to a small factor 1 + ε) it

is possible to solve the demands Di separately. Notice that this may lead to paying

for portions of the solution more than once.

This chapter does not use the stronger form of the fourth condition of the theo-

rem. The latter part of the condition suffices for the discussion of Steiner Forest

algorithm, however, the stronger form is required in Chapter 10 where we look at

Prize-collecting Steiner Forest.

We emphasize here that the above theorem works for any graph, and does not

need a constant ε; however, it is the rest of the construction—see Section 9.5.2—that

requires a small genus for the graph.

165

We now show that Procedure PC-Partition achieves the desired result of Theo-

rem 9.5.2.

Algorithm 9.1 PC-Partition(Gin,D)

Input: graph Gin(Vin, Ein), and demands D
Output: set of trees Ti with associated Di

1: F ∗ ← 2-approximate solution for D (found, e.g., via [AKR95])
2: Let T ∗1 , T

∗
2 , . . . denote the tree components of F ∗

3: Contract each tree T ∗i to build a new graph G(V,E)
4: Define φ : V 7→ R+ such that φ(v) = `(T ∗i) if v is a supervertex formed by

contracting some T ∗i , and φ(v) = 0 otherwise.
5: Z ← PC-Classify(G, φ)
6: Construct Zin from Z by uncontracting all the trees T ∗i
7: Zin ← Zin ∪ F ∗
8: Let {Ti}i denote the tree components of Zin
9: Di ← {(s, t) ∈ D : s, t ∈ V (Ti)} for each i

10: return ({Ti}i , {Di}i)

Proof of Theorem 9.5.2. We start with a 2-approximate solution F ∗ satisfying all the

demands inD; such a solution can be found, for instance, via Agrawal et al.’s Steiner

Forest algorithm [AKR95]. In the following, we extend F ∗ by connecting some of its

components to make the trees Ti. It is easy to see that this construction guarantees

the first two conditions of the theorem. We work on a graph G(V,E) formed from

Gin by contracting each tree component of F ∗. A potential φ(v) is assigned to each

vertex v of G, which is 1
ε

times the length of a tree component T ∗i of F ∗ corresponding

to v in case v is the contraction of T ∗i , and zero otherwise.

Let Z be the subgraph of G given by Theorem 4.2.1. Let Zin be the subgraph of

Gin obtained from Z by uncontracting the components of F ∗ and adding F ∗ to Zin;

as F ∗ is a solution for the input instance, Zin is a solution as well. Let T1, . . . , Tk

be the tree components of Zin and let D1, . . . , Dk be the set of demands spanned by

these trees. It is clear that the first two conditions of the theorem hold; the first one

holds since Zin is a valid solution, and the second condition follows from the definition

of Di. The length of Zin is the length of F ∗ (which is at most 2opt) plus the length

166

of Z (which is at most 2φ(V) ≤ 4
ε
opt), giving the third condition.

Let optD∗ be an optimal Steiner forest for demand set D∗, and let L be the

corresponding subgraph of G (obtained by contracting the components of F ∗). Let

Q be the set of vertices of G given by the second condition of Theorem 4.2.1. For

every vertex in Q, there is a corresponding component of F ∗; let Qin be the forest

of Gin composed of all these components. The way the potential φ was defined

ensures `(Qin) = εφ(Q) ≤ ε`(L) ≤ ε`(optD∗), where the second inequality follows

from condition 2(a) of Theorem 4.2.1.

To show that the last condition holds, for every D∗i we construct a subgraph Hi

that satisfies the demands in D∗i . For every demand in D∗i , if the component K of F ∗

satisfying the demand belongs to Qin, then we place K into Hi; otherwise, we put the

component of optD∗ satisfying the demand into Hi. Observe that each component of

Qin is used in at most one Hi: as Qin is a subgraph of Zin, all the demands satisfied

by a component K of Qin belong to the same D∗i . Furthermore, we claim that each

component of optD∗ is used in at most one Hi. Suppose that a component K of optD∗

was used in both Hi and Hj, i.e., K satisfies a demand in D∗i and a demand in D∗j .

The components of F ∗ satisfying these two demands are not in Qin (otherwise we

would have put these components into Hi or Hj instead of K), thus they correspond

to vertices v1, v2 6∈ Q in the contracted graph G. Thus L, the contracted version of

optD∗ , connects two vertices v1, v2 6∈ Q. Condition 2(b) of Theorem 4.2.1 implies that

v1 and v2 are in the same component of Z and hence the two demands are satisfied

by the same component of Zin. This contradicts that the two demands are in two

different sets D∗i ⊆ Di and D∗j ⊆ Dj.

Since every component of Qin and every component of optD∗ is used by at most

one Hi, we have
∑k

i=1 `(Hi) ≤ optD∗ + `(Qin) ≤ (1 + ε)optD∗ . This establishes the

last condition of the theorem.

The weaker form of the condition follows by setting D∗ = D.

167

9.5.2 Spanner construction

Here we prove Theorem 9.5.1, the existence of a Steiner forest spanner for bounded-

genus graphs. The proof follows the method explained in Chapter 6. Recall that four

steps were outlined therein: preprocessing, brick decomposition, portal designation,

and brick processing. We already described the preprocessing step, and the next

three steps essentially mirror the construction in Borradaile et al. [BKM09], with

certain differences in the analysis. Procedure SF-Spanner summarizes the spanner

construction.

Algorithm 9.2 SF-Spanner(G,D)

Input: graph G(V,E), and demands D
Output: subgraph H

1: ({Ti}ki=1 , {Di}
k
i=1)← PC-Partition(G,D)

2: for i = 1 to k do
3: Bi ← Brick-Decomposition(G, Ti, ε)
4: Hi ← Bi
5: for brick B ∈ Bi do
6: Let Π a set of portals on ∂B where distance of any boundary vertex to closest

portal ≤ `(∂B)
θ

7: for each Π′ ⊆ Π do
8: T ← optimal Steiner tree spanning Π′ using only the boundary of and

inside B, and assuming W - and E-boundaries of B have length zero (via,
e.g., Erickson et al. [EMV87])

9: Hi ← Hi ∪ T
10: H ←

⋃
iHi

11: return H

Roughly speaking, we first use PC-Partition to break up the instance into simpler

ones, where each has a subset of demands all whose terminals can be connected with a

relatively small cost. We then build the spanner separately for each subset, however,

the analysis cannot be done independently, and has to be performed together. Let us

focus on one set of demands Di from PC-Partition, and its corresponding spanning

tree Ti. We find a brick decomposition (see Section 6.2) for the terminals in Di with

respect to G and the parameter ε. Recall that each face of the brick decomposition

168

is called a brick. We designate a set of at most θ—that depends on ε, g—portals on

the (N- and S-) boundary of each brick, and finally include all optimal Steiner trees

connecting any subset of these portals. Erickson et al. [EMV87] shows how to find

in polynomial time the optimal Steiner tree if all terminals are located on the outer

face of a planar graph. The spanner consists of all the brick decompositions as well

as every Steiner tree added in the last step.

Next we prove the two properties of the spanner: a bound on its length in

Lemma 9.5.3 and its spanning property in Lemma 9.5.5. The following lemma is

the main piece in proving the shortness property. Notice that
∑

i `(Ti) = O(opt). Let

Qi denote all the terminals in Di.

Lemma 9.5.3. Length of Hi is at most f(ε, g)`(Ti) for a universal certain function

f(ε, g).

Proof. Hi is made up of the mortar graph Bi (of the brick decomposition) and the

Steiner trees added in brick processing step. We have `(Bi) ≤ γ(ε, g)span(Qi) ≤

γ(ε, g)`(Ti). The brick processing step adds for each brick B at most 2θ Steiner trees,

and each such Steiner tree has length no more than `(∂(B)) because ∂B is a candidate

solution. Since an edge of Bi may appear in the boundary of two bricks, the total

addition due to these trees is at most 2θ+1`(Bi). Therefore, `(Hi) ≤ (2θ+1 + 1)`(Bi) ≤

(2θ+1 + 1)γ(ε, g)`(Ti) = f(ε, g)`(Ti).

Next we prove a property ofHi that is crucial in establishing the spanning property

of H.

Lemma 9.5.4. For any forest F ⊆ G, there exists a forest F ∗ ⊆ Hi of length at most

(1 + ε)`(F) + ε2(3 + ε)`(Ti) that provides the same connectivity as F among Qi.

Proof. Add the set of all supercolumns of Hi to F to get F 1. Recall the total length of

these supercolumns is at most ε2span(Qi) ≤ ε2`(Ti). Next, use Lemma 6.3.1 to replace

the intersection of F 1 and each brick with another forest having the properties of the

169

lemma. Let F 2 be the new forest. The length of the solution increases to no more

than a 1 + ε factor. Furthermore, as a result, F 2 crosses each brick at most α times.

We claim, provided that θ is sufficiently large compared to α, we can ensure that

moving these intersection points to the portals introduces no more than an ε factor

in the length.

Consider a brick B. Connect each intersection point of the brick to its closest

portal. Each connection on a brick B moves by at most `(∂(B))/θ. The total move-

ment of each brick is at most α`(∂(B))/θ which is no more than ε2`(∂(B))/γ(ε, g) if

θ ≥ αγ(ε, g)/ε2. Therefore, the total additional length for all bricks of Hi is bounded

by 2ε2`(Ti) because
∑

B∈Bi `(∂(B)) ≤ 2`(Bi) ≤ 2γ(ε, g)`(Ti).

Finally, we replace the forests inside each brick B by the Steiner trees provisioned

in the last step of our spanner construction. Take a brick B. Let K1, K2, . . . be

the connected components of F 2 inside B. Each intersection point is connected to a

portal of B. Replace each Kj by the optimal Steiner tree corresponding to this subset

of portals. This procedure does not increase the length and produces a graph F ∗.

Clearly, F ∗ provides (at least) the same connectivity as F among Qi. In addition,

F ∗ is a subgraph of Hi, and we can bound its length as follows.

Replacing the Steiner trees by the optimal Steiner trees between portals cannot

increase the length, so, the only length increase comes from connections to portals.

Thus, we get

`(F ∗) ≤ `(F 2) + 2ε2`(Ti). (9.7)

From the above discussion,

`(F 2) ≤ (1 + ε)`(F 1), by Lemma 6.3.1, and (9.8)

`(F 1) ≤ `(F) + ε2`(Ti) due to supercolumns’ length. (9.9)

170

Combining (9.7), (9.8) and (9.9) yields the desired result.

Finally we prove the spanning property of H. Recall that H is formed by the

union of the graphs Hi constructed above.

Lemma 9.5.5. optD(H) ≤ (1 + c′ε)optD(G) for a universal constant c′ > 0.

Proof. Take the optimal solution opt. Find forests opti satisfying demands Di, i.e.,

`(opti) = optDi(G). Theorem 9.5.2 guarantees
∑

i `(opti) ≤ (1 + ε)opt.

Consider one opti that serves the respective set of demands Di. Use Lemma 9.5.4

to obtain opt∗i from each opti that provides the same connectivity, and has `(opt∗i) ≤

(1 + ε)opti + ε2(3 + ε)`(Ti). Define opt∗ =
⋃
i opt∗i , whose length we bound as follows.

`(opt∗) ≤
∑
i

`(opt∗i),

where the inequality may be strict due to common edges among different opti’s,

≤
∑
i

[
(1 + ε)`(opti) + ε2(3 + ε)`(Ti)

]
by Lemma 9.5.4

=
∑
i

[(1 + ε)`(opti)] +
∑
i

[
ε2(3 + ε)`(Ti)

]
≤ (1 + ε)2opt + ε2(3 + ε)

∑
i

`(Ti) by Theorem 9.5.2

≤ (1 + ε)2opt + ε2(3 + ε)(4/ε+ 2)opt by Theorem 9.5.2

=
[
1 + 14ε+ 11ε2 + 2ε3

]
opt

≤ (1 + c′ε)opt,

if we pick c′ = 27 and assume ε ≤ 1.

With the above two lemmas, the proof of spanner construction is immediate.

Proof of Theorem 9.5.1. Procedure SF-Spanner gives the spanner. The spanning

171

property was established in Lemma 9.5.5. The length property follows from

Lemma 9.5.3 and the face that
∑

i `(Ti) = O(opt) from Theorem 9.5.2.

Notice that the construction always produces a subgraph of the input, hence the

bound on genus (or planarity) carries over.

We summarize the result of Lemmas 9.5.3, 9.5.4, and the construction of Hi from

Ti in the following corollary. This abstraction is going to be useful in Chapter 10.

Corollary 9.5.6. Given are a graph G of constant genus g, and a fixed constant

λ > 0. A “spanner” graph H can be constructed from a subtree T of G in polynomial

time such that

1. `(H) = O(`(T)), and

2. for any forest F ⊆ G, there exists a forest F ′ ⊆ H of length at most `(F)+λ`(T)

that provides (at least) the same connectivity as F among vertices of T .

Proof. We can assume `(F) ≤ `(T), otherwise we can replace F with T . The result

then follows by an appropriate choice of ε such that λ ≥ ε+ ε2(3 + ε).

9.5.3 The algorithm

Having proved the spanner result, we can present the PTAS for Steiner Forest on

bounded-genus graphs here. SF-PTAS is the algorithm promised in Theorem 3.2.5.

Algorithm 9.3 SF-PTAS

Input: bounded-genus graph G(V,E), and set of demands D
Output: Steiner forest F satisfying D

1: H ← SF-Spanner(G,D)
2: ζ ← 2f(ε)/ε̄
3: ε← min(1, ε̄/6)
4: Using Theorem 5.1.3, partition edges of H into E1, . . . , Eζ
5: i∗ ← arg mini `(Ei)
6: Find a (1 + ε)-approximate Steiner forest F ∗ of D in H/Ei∗ via Theorem 3.2.4
7: return F ∗ ∪ Ei∗

172

Proof of Theorem 3.2.5. Given are bounded-genus graph G, and a set of demand

pairs D. We build a Steiner forest spanner H using Theorem 9.5.1. For a suitable

value of ζ whose precise value will be fixed below, we apply Theorem 5.1.3 to partition

the edges of H into E1, E2, . . . , Eζ . Let Ei∗ be the set having the least total length.

The total length of edges in Ei∗ is at most `(H)/ζ. Contracting Ei∗ produces a graph

H∗ of treewidth O(g2ζ).

Theorem 3.2.4 allows us to find a solution opt∗ corresponding to H∗. Adding the

edge set Ei∗ clearly produces a solution for H whose length is at most (1+ε)optD(H)+

`(H)/ζ. Letting ε = min(1, ε̄/6) and ζ = 2f(ε)/ε̄ guarantees that the length of this

solution is

≤ (1 + ε)2optD(Gin) + `(H)/ζ by Theorem 9.5.1

≤ (1 + ε)2optD(Gin) +
ε̄

2
optD(Gin) by Theorem 9.5.1 and choice of ζ

(1 + ε̄)optD(Gin) by the choice of ε.

The running time of the algorithm excluding the bounded-treewidth PTAS is

bounded by O(n2 log n). The parameter ζ above has a singly exponential dependence

on ε. Yet, the running time of the current procedure for solving bounded-treewidth

instances is not bounded by a low-degree polynomial; rather, ζ and ε appear in the

exponent of the polynomial. Were we able to improve the running time of this pro-

cedure, we would obtain a PTAS that runs in time O(n2 log n).

173

Chapter 10

Prize-collecting Network Design in

Planar Graphs

This chapter is devoted to the discussion of several prize-collecting Steiner network

problems on planar (and bounded-genus) graphs as well as their instances with small

treewidth.

In fact, most of the material in this chapter comes from a joint work with Ha-

jiaghayi and Marx [BHM10b]. This paper was merged with a work of Chekuri et

al. [CEK10], and appeared as [BCE+11]. The only part of [BCE+11] that we do not

present here is the simpler reduction for the special cases of PCST, PCTSP, and

PCS—see [BCE+11, Section 3.1]—which is due to Chekuri et al. [CEK10].

Section 10.5 is based on a joint work with Hajiaghayi [BH10], however, in con-

trast to the discussion of that paper, we apply some of its techniques to the bounded-

treewidth Multiplicative Prize-collecting Steiner Forest. We briefly high-

light the main differences with the Euclidean case.

The rest of the chapter is organized as follows. Section 10.1 recalls some of the

definitions, and goes over the relevant previous work. In Section 10.2 we show how the

ideas of the previous chapter can be extended to give a reduction from the planar (and

174

bounded-genus) case of Submodular Prize-collecting Steiner Forest to its

bounded-treewidth case (with a small loss in the approximation ratio). Section 10.3

then shows that the problem is APX-hard even when the treewidth is two (or on the

two-dimensional Euclidean metric). This provides the first provable distinction in

complexity of a network design problem and its prize-collecting variant. Nevertheless,

we present in Section 10.4 PTASes for bounded-treewidth cases of several special cases

of SPCSF—i.e., PCST, PCTSP, and PCS—that immediately give PTASes for their

planar cases. We continue on this path by providing a PTAS for bounded-treewidth

Multiplicative Prize-collecting Steiner Forest in Section 10.5.

10.1 Background

Recall that a typical network design problem is modeled as the problem of finding a

minimum-length subgraph of a given graph G that satisfies certain “requests.” The

requests often correspond to connectivity requirements between some given pairs or

sets of vertices.

In their prize-collecting variants, penalties (or prizes) are associated with requests

that are not satisfied by the subgraph. These problems are interesting for several rea-

sons. In particular, prize-collecting Steiner network design problems are well-known

network design problems with several applications in expanding telecommunications

networks (see, e.g., [JMP00, SCRS00]), cost sharing, and Lagrangian relaxation tech-

niques (see, e.g., [JV01, CRW04]).

The prize-collecting problems generalize the underlying network design problems

since one can set the penalties to ∞ which forces the solution to satisfy all re-

quests. In particular, Prize-collecting Steiner Forest generalizes the well-

studied Steiner Forest problem which is NP-hard and also APX-hard. The best

known approximation ratio for Steiner Forest is 2 − 2
n

(n is the number of ver-

175

tices of the graph) due to Agrawal, Klein, and Ravi [AKR95] (see also [GW95] for a

more general result and a simpler analysis). The special case of Prize-collecting

Steiner Forest problem in which all sinks are identical is the (rooted) Prize-

collecting Steiner Tree problem. In the nonrooted version of this problem,

there is no specific sink (root); here, the goal is to find a tree connecting some sources

and pay the penalty for the rest of them. We also study two variants of (non-

rooted) Prize-collecting Steiner Tree, Prize-collecting TSP (PCTSP)

and Prize-collecting Stroll (PCS), in which the set of edges should form a cy-

cle and a path, respectively, instead of a tree. When in addition all penalties are ∞

in these prize-collecting problems, we have the classic APX-hard problems Steiner

Tree, Traveling Salesman and Path-TSP (or Stroll) for which the best ap-

proximation factors in order are 1.39 [BGRS10], 3
2

[Chr76], and 3
2

[Hoo91].

The key difference between problems such as Prize-collecting Steiner Tree,

Prize-collecting Steiner Forest and their special cases Steiner Tree and

Steiner Forest is that we do not know a priori the set of demands that are

to be satisfied/connected; satisfying more demands reduces the penalty, but in-

creases the connection cost. This connection cost plus penalty nature of the ob-

jective function models realistic problems with multiple goals; for example, in net-

work construction, one may wish to examine the tradeoff between the cost of serv-

ing clients and the potential profit from serving them. The impact of Prize-

collecting Steiner Tree and Prize-collecting TSP within approximation

algorithms is also far-reaching, especially in the study of other problems where the

set of demands to be satisfied is not fixed: In the k-MST and k-Stroll problems

[Gar96, AR98, CRW04, AK06, Gar05, CGRT03], the goal is to find a minimum-length

tree or path containing at least k vertices, and in the Max-Prize-Tree and Orien-

teering problems [BCK+07, BBCM04, CKPar, NR07], the goal is to find a tree or

path that contains as many vertices as possible, subject to a length constraint. In par-

176

ticular, Prize-collecting Steiner Tree is a Lagrangian relaxation of k-MST,

and hence has played a crucial role in the design of algorithms for all the problems

mentioned above. Thus, we are motivated to study prize-collecting problems both

for their inherent theoretical and practical value, and because they are useful in the

study of several other problems of interest.

Traveling Salesman, Steiner Tree, and Steiner Forest all have been

studied extensively on planar graphs. Indeed, all these problems remain NP-hard

even in this setting [GJ79]. However, obtaining a PTAS for each of these problems

remained an open problem for several years. Grigni, Koutsoupias, and Papadim-

itriou [GKP95] obtained the first PTAS for Traveling Salesman on unweighted

planar graphs in 1995; this was later generalized to weighted planar graphs [AGK+98]

(and improved to linear time [Kle08]). Obtaining a PTAS for Steiner Tree on pla-

nar graphs remained elusive for almost 12 years until 2007 when Borradaile, Klein and

Mathieu [BKM09] obtained the first PTAS for Steiner Tree on planar graphs using

a new technique of contraction decomposition and building spanners (this borrowed

ideas from earlier work of Klein on Subset TSP [Kle06]). Borradaile et al. [BKM09]

posed obtaining a PTAS for Steiner Forest in planar graphs as the main open

problem. Bateni, Hajiaghayi and Marx [BHM10a] very recently solved this open

problem using a primal-dual technique for building spanners and obtaining PTASes

by reducing the problem to bounded-treewidth graphs. Interestingly, Steiner For-

est turns out to be NP-hard even on graphs of treewidth 3 and hence [BHM10a]

had to devise a PTAS for the case of bounded-treewidth graphs in order to apply the

general framework.

Obtaining PTASes for prize-collecting versions of the above network design prob-

lems was suggested as an open problem in [BHM10a, BH10]. The main technical

difficulty in prize-collecting problems is that it is not a priori clear which requests

are to be satisfied. In this paper, we resolve this difficulty for PCST, PCTSP,

177

Table 10.1: Complexity of PCSF and its special cases for different classes of graphs.
Notice that, in each row of the table, positive results are given for the most general
case applicable, and hardness results are mentioned for the most special case appli-
cable. The problem in each row generalizes those in prior rows. The algorithms for
Euclidean PCST, PCTSP, and PCS follow from the same ideas in Arora [Aro98],
although the result is not mentioned there. Similarly, the algorithms for SPCST and
SPCSF on trees can be reduced to Submodular Vertex Cover using the ideas in
Hajiaghayi and Jain [HJ06], for which Goel et al. [GKTW09] give a 2-approximation
algorithm.

Small treewidth Euclidean Small genus General
PCST,
PCTSP, PCS

P [BHM10b] PTAS [Aro98] PTAS
[BHM10b]

aprx(2 − c)
[ABHK11,
Goe09]

Multiplicative
PCSF

PTAS §10.5 PTAS [BH10] PTAS §10.5 aprx(2.54)
[HJ06]

PCSF P for trees
[HJ06]; APX-
hard [BHM10b]
for treewidth(2)

APX-hard for
treewidth(2)
[BHM10b]

aprx(2.54)
[HJ06]

Submodular
PCST

aprx(2) for trees
[GKTW09];
APX-hard for
treewidth(2)
[BHM10b]

APX-hard for
treewidth(2)
[BHM10b]

aprx(3)
[HKKN10]

Submodular
PCSF

aprx(2) for trees
[GKTW09];
APX-hard for
treewidth(2)
[BHM10b]

APX-hard for
treewidth(2)
[BHM10b]

aprx(3)
[HKKN10]

178

PCSF, and, even more generally, for SPCSF, by reducing these problems on pla-

nar graphs to the corresponding problems on graphs of bounded treewidth. More

precisely we show that any α-approximation algorithm for these problems on graphs

of bounded treewidth gives an (α + ε)-approximation algorithm for these problems

on planar graphs and bounded-genus graphs, for any constant ε > 0. Since PCST

and PCTSP can be solved exactly on graphs of bounded treewidth using standard

dynamic-programming techniques (as we discuss later in the paper), we immediately

obtain PTASes for PCST and PCTSP on planar graphs (the same holds for PCS

as well). In contrast, we show that PCSF is APX-hard already on series-parallel

graphs, which are planar graphs of treewidth at most 2, ruling out a PTAS for planar

Prize-collecting Steiner Forest (assuming P 6= NP). Apart from ruling out a

PTAS for PCSF on planar graphs and bounded-treewidth graphs, this result is also

interesting since it gives the first provable hardness separation between the approx-

imability of a problem and its prize-collecting version: Steiner Forest and Prize-

collecting Steiner Forest when restricted to planar graphs. We also show that

Prize-collecting Steiner Forest is APX-hard on Euclidean instances, that is,

when the input graph is induced by points in the Euclidean plane and the lengths are

Euclidean distances.

10.2 Reduction to the bounded-treewidth case

Recall that an instance of Submodular Prize-collecting Steiner Forest

(SPCSF) is described by a triple (G,D, π) where G is an undirected weighted graph

(with edge length function `), D is a set of di = {si, ti} demand pairs, and π : 2D 7→ R+

is a monotone nonnegative submodular penalty function. A demand d = {s, t} is sat-

isfied by a subgraph F if and only if s, t are connected in F . If a forest F satisfies a

subset Dsat of the demands, its cost is defined as cost(F) := `(F) + π(Dunsat), where

179

Dunsat := D \ Dsat denotes the subset of unsatisfied demands.

Further recall that SPCTSP, SPCS and SPCST are submodular prize-collecting

variants of Traveling Salesman, Stroll, and Steiner Tree, respectively. An

instance of these problems is represented by (G,D, π) where all the demands d =

{s, t} ∈ D share a common root vertex r ∈ V (G).1 A feasible solution F is a TSP

tour, stroll, or Steiner tree, respectively, for a subset of demands, say Dsat ⊆ D. The

cost is then cost(F) := `(F) + π(Dunsat), where Dunsat := D \ Dsat.

10.2.1 Overview of the reduction

We now outline the proof of Theorem 3.2.7 that presents a reduction from any

bounded-genus instance of SPCSF to a bounded-treewidth instance. The reduction

consists of three steps, and follows the spanner framework of Chapters 5, 6.

1. Given an instance of SPCSF, let opt denote the cost of an optimal solution.

We construct a collection of trees {T̂1, . . . , T̂k} with two crucial properties:

(a) The total length of the trees is bounded;
∑

i `(T̂i) ≤ f(ε)opt, for some

function f depending only on ε.

(b) Paying the penalty for all demand pairs not contained in the same tree does

not significantly increase the cost of an optimal solution. More formally,

let D̂ denote the set of demand pairs which are not both contained in the

same tree. There is a solution F such that, if D is the set of demands not

satisfied by F , `(F) + π(D ∪ D̂) ≤ (1 +O(ε))opt.

2. The collection of the trees can then be used as the backbone graphs to construct

a spanner H. In particular, H is a subgraph of G, whose length is at most

1Both the rooted and nonrooted variants of these problems may be more naturally defined with
single-vertex demands rather than demand pairs; having such a formulation, we can guess one vertex
of the solution, designate it as the root and obtain the rooted formulation as defined here.

180

f ′(ε, g)opt where g is the genus of G, and contains a solution of cost [1+O(ε)]opt.

The construction of this step is very similar to that in Section 9.5.

3. After constructing the spanner, we invoke Theorem 5.1.3 to obtain a bounded-

treewidth graph, whose solution leads to a solution for the input instance

(G,D, π). We finally use the α-approximation algorithm to solve the instance

of SPCSF on this bounded-treewidth graph.

The second and third steps of the reduction are very similar to those in Chapter 9,

thus we focus our attention on the first step. Recall that the additional difficulty in

solving PCST, PCSF, PCSF, and related problems comes from not knowing which

demands to connect. The first step implies that we can effectively focus our attention

only on the demand pairs that have both vertices in the same tree component of some

forest (i.e., the backbone graph). The core of the reduction, then, is obtaining the

desired collection of trees, where our algorithm employs the prize-collecting cluster-

ing paradigm. For this application, the clustering technique is generalized as follows.

First, we need to extend the ideas to work for prize-collecting variants of Steiner

network problems. (This can indeed make the problem provably harder; see Theo-

rem 3.2.6.) The standard prize-collecting clustering technique—e.g., PC-Classify—

associates a potential value to each node and grows the corresponding clusters con-

suming these potentials. However, in order to extend it to the prize-collecting set-

ting, we consider source-sink potentials. This means that there is some interaction

between the potentials of different nodes. Secondly, we consider submodular penalty

functions that model even more interaction between the demands. The extended

prize-collecting clustering procedure has two phases. In the first phase, we have a

source-sink moat-growing algorithm (SubmodPC-Cluster), and in the second phase,

we have a single-node potential moat-growing (PC-Classify).

Before presenting the formal proof, we give an informal overview. The algorithm

starts with a constant-approximate solution F 1, say, obtained using Hajiaghayi et

181

al. [HKKN10] who present a 3-approximation for SPCSF on general graphs. The

forest F 1 satisfies a subset of demands, and we know the total penalty of unsatis-

fied demands is bounded.2 The algorithm then tries to satisfy more demands by

constructing a forest F 2 ⊇ F 1 whose length is bounded; see RestrictDemands in

Section 10.2.2. This step heavily uses the SubmodPC-Cluster algorithm introduced

in Section 4.4. At the end of this step, we can assume that the near-optimal solution

does not satisfy the demands which are unsatisfied in F 2. Submodularity poses sev-

eral difficulties in proving this property: ideally, we want to say that the cost paid by

the optimal solution to satisfy these demands is significantly more than their penalty

value. Surprisingly, this is not true. Nevertheless, we can prove that the marginal

penalty of the demands satisfied in the near-optimal solution but not in F 2 can be

charged to the cost the near-optimal solution pays in order to satisfy them. The next

step of the reduction is to build a forest F 3 ⊇ F 2 of bounded length that may connect

several components of F 2 together; see Section 10.2.3. This is done via PC-Classify

(i.e., by assigning to each component of F 2 a potential proportional to its length,

and then running a standard prize-collecting clustering). This guarantees that the

near-optimal solution does not need to connect different components of F 3 to each

other.

Another difference with the discussion of the previous chapter for planar Steiner

Forest is that, unlike those reductions, we cannot solve the problem independently

on each part of the spanner constructed from different backbones. The interaction

between the demands due to the submodular penalty function requires us to solve

the reduced instance in one piece.

2Looking at the internal working of the algorithm of Hajiaghayi et al. [HKKN10] and its analysis,
we find out that the penalty portion of the cost is bounded by opt and the forest length portion is
bounded by 2opt. However, we look at the algorithm as a black box, providing a 3-approximation,
and do not try to optimize the constants in our reduction. Therefore, we use the fact that the
penalty portion of the cost is bounded by 3opt, and so is the forest length portion.

182

It is very important for the reduction that the reduced bounded-treewidth instance

have the same set D of demands and the same penalty function π. This enables us

to use the reduction not only for SPCSF, but also for SPCST, PCSF, PCST,

etc. In particular, the structure of the penalty function does not change through the

reduction; for instance, the final instance is PCST instance if the original is, and

similarly, it is multiplicative if the original instance is. Therefore, using the reduction

theorem on a Multiplicative Prize-collecting Steiner Forest instance, for

example, does not leave us with solving the bounded-treewidth instance of the more

general Submodular Prize-collecting Steiner Forest.

We now start the formal proof of Theorem 3.2.7. Recall that in the beginning of

this section, we outlined three steps of the reduction. The first step of the reduction

is itself performed in two phases.

1. We start with an instance (G,D, π) of SPCSF. We first take out a subset,

say Dunsat, of demands whose cost of satisfying, roughly speaking, is too much

compared to their penalties. Thus, we can focus on the remaining demands,

say Dsat := D \ Dunsat.

2. Afterwards, we partition the remaining demands Dsat into D1,D2, . . . ,Dp such

that, roughly speaking, the forest in the solution can be found independently

for each demand set without a substantial increase in the length.

The first phase is carried out in the following theorem. The proof appears in

Section 10.2.2, and uses SubmodPC-Cluster of Section 4.4. This phase allows us to

focus on only a subset Dsat of demands, and ignore the rest of the demands. The

additional cost due to this is only ε opt.

Theorem 10.2.1. Given an instance (G,D, π) of SPCSF (or SPCTSP or SPCS)

and a parameter ε > 0, we can construct in polynomial time a subgraph F of G,

183

satisfying only a subset Dsat ⊆ D of demands, in effect leaving Dunsat := D \ Dsat

unsatisfied, such that

1. `(F) ≤ (6ε−1 + 3)opt, and

2. the optimum of (G,Dsat, π′) is at most (1 + ε)opt where π′(D) := π(D ∪Dunsat)

is defined for D ⊆ Dsat.

At this point, we have a constant-approximate solution satisfying all the (remain-

ing) demands. The second phase (which is required only for “forest” problems, and is

irrelevant for PCTSP, e.g.) is a generalization and extension of PC-Partition—see

Algorithm 9.1. We are trying to break the instance into smaller pieces. The solu-

tion to each piece is almost independent of the others, i.e., there is little interaction

between them. The following theorem is proved in Section 10.2.3.

Theorem 10.2.2. Given an instance (G,D, π) of SPCSF, a forest F satisfying all

the demands, and a parameter ε > 0, we can compute in polynomial time a set of trees

{T̂1, . . . , T̂k}, and a partition of demands {D1, . . . ,Dk}, with the following properties.

1. All the demands are covered, i.e., D =
⋃k
i=1Di.

2. The tree T̂i spans all the terminals in Di.

3. The total length of the trees T̂i is within a constant factor of the length of F ,

i.e.,
∑k

i=1 `(T̂i) ≤ (4
ε

+ 2)`(F).

4. Let D∗ be the subset of demands satisfied by opt, the optimal solution to

(G,D, π). Then, we have
∑

i SteinerForest(G,D∗i) ≤ (1+ε)SteinerForest(G,D∗),

where D∗i := D∗ ∩Di, and SteinerForest(G,D) denotes the length of a minimum

Steiner forest in G satisfying the demands D.

The rest of the steps are similar to those for planar Steiner Forest reduction

of Section 9.5. Before proving the above theorems, we show they are sufficient for

carrying out the reduction.

184

Proof of Theorem 3.2.7. Start with an instance (G,D, π) of SPCSF or SPCTSP

(the case of SPCS is very similar). Without loss of generality we present an ap-

proximation guarantee of α + O(1)ε. Find F , Dsat and Dunsat from applying Theo-

rem 10.2.1 on (G,D, π). We know that F satisfies Dsat and `(F) = O(opt). Moreover,

monotonicity of the penalty function ensures that the optimum of the corresponding

prize-collecting problem with smaller demand set Dsat costs at most opt.

For the moment, suppose the original instance is one of SPCTSP, and let opt′ be

the optimal solution for (G,Dsat, π′), with π′ as defined in Theorem 10.2.1. (Note that

opt′ ≤ (1 + ε)opt.) In addition, let T 0 denote the tree component of F containing the

root vertex (i.e., the common sink of all demands). Since all the relevant terminals

(i.e., endpoints of demands Dsat) appear in T 0 (which has length O(opt′)), the subset

TSP spanner result of Klein [Kle06] allows us to construct from T 0 a graph H, of

total length O(opt′) = O(opt), that contains a near-optimal cycle satisfying the same

demands as opt′; i.e., the length of this cycle is at most 1 + ε times that of opt′.

Therefore, the instance (H,Dsat, π′), and as a result (H,D, π), has a solution of cost

no more than (1+ε)2opt. Applying Theorem 5.1.3 on H with sufficiently large (though

still a constant) value for ζ, we can find a set Ed of edges of H such that H/Ed has

a constant treewidth, and `(Ed) ≤ ε opt. Clearly, removing the contracted edges

from any cycle gives a cycle in H/Ed. It is well-known that any cycle in H/Ed can

be augmented using at most two copies of each edge in Ed to obtain a cycle in H

spanning a superset of the original vertices [Kle06, Kle08, AGK+98]. Therefore, the

α-approximate solution for (H/Ed,D, π) gives an (α+O(ε))-approximate solution for

the original instance (G,D, π).3

The rest of the proof applies to the case where the original instance is one of

3We are abusing the notation here, in that for the instance (H/Ed,D, π), the set of demands, and
as a result π, need to modified to reflect the renaming of vertices. In particular, for any terminal
adjacent to a contracted edge, we can add a dummy edge that is attached to the result of the
contraction with the other endpoint being the replacement of the terminal. This way, D can be the
same as the original, but the vertex set of H may have vertices outside V (G), which are the result
of edge contractions.

185

SPCSF. As in Theorem 10.2.1, define π′(D) := π(D∪Dunsat) for all D ⊆ D. Let opt′

denote the optimal solution of (G,Dsat, π′) and its cost with some abuse of notation.

We also use `(opt′) and π(opt′) to refer to the length of the forest in opt′ and the

penalty it pays, respectively. Clearly, opt′ = `(opt′) + π(opt′) ≤ (1 + ε)opt. Pick

ε′ < ε · `(F)/opt and feed (G,Dsat, π′) along with F and ε′ into Theorem 10.2.2

in order to obtain Di’s and T̂i’s for i = 1, . . . , k. We have
∑

i `(T̂i) = O(`(F)) =

O(opt) since ε′ is a constant. Define D∗i as in the statement of Theorem 10.2.2,

from which we have forests Fi (for 1 ≤ i ≤ k) satisfying D∗i such that
∑

i `(Fi) ≤

(1 + ε)`(opt′). Using Corollary 9.5.6 we can find subgraphs Hi from each backbone

T̂i (and a sufficiently small parameter λ > 0) such that there exists a forest F ∗i ⊆ Hi

satisfying D∗i with `(F ∗i) ≤ `(Fi) + λ`(T̂i). Let H =
⋃
iHi be the spanner graph. We

have a forest
⋃
i F
∗
i ⊆ H satisfying D∗ with length at most (1 + 2ε)`(opt′) provided

that λ ≤ 1
opt′

∑
i `(T̂i). Therefore, the optimum of (H,D, π) costs no more than

(1 + 2ε)`(opt′) + π(opt′) ≤ (1 + 2ε)opt′ ≤ (1 + 2ε)(1 + ε)opt.

We next invoke Theorem 5.1.3 on H with a sufficiently large ζ to obtain Ed ⊆ H

such that `(Ed) ≤ ε opt, and H/Ed has a constant treewidth. Let us find an α-

approximate solution to the instance (H/Ed,D, π).4 Clearly, this solution costs no

more than α(1+ε)3opt, and can be extended to a solution for (H,D, π) by adding the

edges Ed. The final solution is an (α +O(ε))-approximate solution of (G,D, π).

10.2.2 Restricting demands

We prove Theorem 10.2.1 in this section. First, we obtain a constant-factor approxi-

mate solution F+ (via the 3-approximation algorithm for general graphs [HKKN10]).

Let D+ denote the demands satisfied by F+. We denote by T+
j the connected com-

ponents of F+. For each demand d = {s, t} ∈ D+ we clearly have {s, t} ⊆ V (T+
j) for

some j. However, for an unsatisfied demand d′ = {s′, t′} ∈ D \ D+, the vertices s′

4The technicalities of the previous footnote apply here, too.

186

and t′ belong to two different components of F+. Construct G∗ from G by reducing

the length of edges of F+ to zero. The new penalty function π∗ is defined as follows:

π∗(D) := ε−1π(D) for D ⊆ D. (10.1)

Finally we run SubmodPC-Cluster on (G∗,D, π∗); see Algorithm 10.1.

Algorithm 10.1 RestrictDemands(G,D, π)

Input: instance (G,D, π) of Submodular Prize-collecting Steiner Forest
Output: forest F and Dunsat

1: Use the algorithm of Hajiaghayi et al. [HKKN10] to find a 3-approximate solution:
a forest F+ satisfying subset D+ of demands.

2: Construct G∗(V,E∗) in which E∗ is the same as E except that the edges of F+

have length zero in E∗.
3: Define π∗ as Equation (10.1)
4: (F,Dunsat, y)← SubmodPC-Cluster(G∗,D, π∗)
5: return (F,Dunsat)

Now we show that the algorithm RestrictDemands outlined above satisfies the

requirements of Theorem 10.2.1. Before doing so, we show how the length of a forest

can be compared to the output vector y.

Lemma 10.2.3. If a graph F satisfies a set Dsat of demands, then `(F) ≥ y(Dsat).

This is quite intuitive. Recall that the y variables paint the edges of the graph.

Consider a segment on edges corresponding to cluster S with color d. At least one

edge of F passes through the cut (S, S). Thus, a portion of the cost of F can be

charged to yS,d. Hence, the total cost of the graph F is at least as large as the total

amount of colors paid for by Dsat. We now provide a formal proof.

Proof. The length of the graph F is

∑
e∈F

ce ≥
∑
e∈F

∑
S:e∈δ(S)

yS by (4.14)

187

=
∑
S

|F ∩ δ(S)|yS

≥
∑

S:F∩δ(S)6=∅

yS

=
∑

S:F∩δ(S)6=∅

∑
d:d�S

yS,d

=
∑
d

∑
S:d�S

F∩δ(S)6=∅

yS,d

≥
∑
d∈Dsat

∑
S:d�S

F∩δ(S)6=∅

yS,d

=
∑
d∈Dsat

∑
S:d�S

yS,d,

because yS,d = 0 if d ∈ Dsat and F ∩ δ(S) = ∅,

=
∑
d∈Dsat

yd.

Proof of Theorem 10.2.1. We know that `(F+) + π(D \D+) ≤ 3opt because we start

with a 3-approximate solution. For any demand d = (s, t), we know that yd is not

more than the distance of s, t in G∗. Since the distance between endpoints of d

is zero if it is satisfied in D+, yd is nonzero only if d ∈ D \ D+. Thus, we have

y(D) = y(D \ D+) ≤ π∗(D \ D+) by Constraint (4.15). Theorem 4.4.1 gives `(F) in

G∗, denoted by `G∗(F), is at most 2y(D) ≤ 2π∗(D\D+) = 2ε−1π(D\D+) ≤ 6ε−1opt.

Therefore `(F) = `(F+) + `G∗(F) ≤ (6ε−1 + 3)opt.

To establish the second condition of the theorem, take an optimal forest F ′ for

(G,D, π): F ′ satisfies demands Dopt, and we have `(F ′) + π(D \ Dopt) = opt. Define

A := Dopt \ Dsat and B := Dunsat \ A. The penalty of F ′ under π′ is π((D \ Dopt) ∪

Dunsat) = π((Dsat \ Dopt) ∪ A ∪ B). Hence, the increase in penalty of F ′ due to

changing from π to π′ is π((Dsat \ Dopt) ∪ A ∪ B) − π((Dsat \ Dopt) ∪ B) ≤ π(A ∪

188

B) − π(B) due to the diminishing returns property of submodular functions. We

have y(A ∪ B) = π∗(A ∪ B) = ε−1π(A ∪ B) because A ∪ B = Dunsat is the set

of dead demands of SubmodPC-Cluster; see the first condition of Theorem 4.4.1.

We also have ε−1π(B) = π∗(B) ≥ y(B) because of Constraint (4.15). Therefore,

the additional penalty is at most ε[y(A ∪ B) − y(B)] = εy(A). Since F ′ satisfies

the demands A, we have y(A) ≤ `(F ′) ≤ opt from Lemma 10.2.3. Therefore, the

additional penalty is at most εopt.

The extension to SPCTSP and SPCS is straight-forward once we observe that

the cost of building a tour or a stroll5 on a subset of vertices is at least the cost of

constructing a Steiner tree on the same set. The algorithm in this case pretends it has

an SPCST instance, and restricts the demand set accordingly. However, the extra

penalty due to the ignored demands Dunsat is charged to the Steiner tree cost which

is no more than the TSP or stroll length.

10.2.3 Restricting connectivity

In this section we prove that PC-Partition(G,D) accomplishes the task outlined in

Theorem 10.2.2.

Proof of Theorem 10.2.2. The first two conditions are the same as those in Theo-

rem 9.5.2. The third condition follows from the fact that optD(G) ≤ `(F), where

optD(G) denotes the length of the optimal Steiner forest of demand set D in G.

The last condition is a consequence of the stronger form of the fourth condition of

Theorem 9.5.2.

5A stroll is similar to a tour, except that it may start and end on different vertices.

189

10.3 APX-hardness for PCSF

10.3.1 Hardness for planar graphs of treewidth two

We first present the hardness proof for Prize-collecting Steiner Forest on a

planar graph of treewidth two. The proof shows hardness for a very restricted class

of graphs: short cycles passing through a single central vertex.

Proof of Theorem 3.2.6(1). We reduce an instance I of Minimum Vertex Cover

on 3-regular graphs to an instance I ′ of Prize-collecting Steiner Forest on a

planar graphs of treewidth two. The former is known to be APX-hard [AK00]. The

instance I is defined by an undirected graph G. If n denotes the number of vertices

of G, the number edges is m = 3n/2. We will denote the ith vertex of G by vi, the

jth edge by ej, and the first and second endpoints of ej by e
(1)
j and e

(2)
j , respectively.

We now specify the reduction (illustrated in Figure 10.1); I ′ is represented by

(H,D, π). The graph H consists of the vertices

• ai for 1 ≤ i ≤ n,

• bj, c1
j , c

2
j for 1 ≤ j ≤ m, and

• central vertex w,

with the edges

• {w, ai} of length 2 (1 ≤ i ≤ n), and

• {w, c1
j}, {w, c2

j}, {c1
j , bj}, {c2

j , bj} of length 1 (1 ≤ j ≤ m).

The instance contains the following demands:

• {w, bj} with penalty 3 (1 ≤ j ≤ m), and

• {ai, cpj} with penalty 1 if vi = e
(p)
j for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, and p ∈ {1, 2}.

190

Thus the number of demands is exactly m+ 3n, and each ai appears in exactly 3

demands. We claim that the cost of the optimum of I ′ is exactly 2m + 2n + τ(G),

where τ(G) is the size of the minimum vertex cover in G. Note that, since τ(G) ≥ m/3

(as G is 3-regular), 2m + 2n + τ(G) is at most a constant times τ(G). In order to

prove the correctness of the reduction, we prove the following two statements.

(1) Given a vertex cover of size k for G, a solution of cost 2m + 2n + k can be

constructed for I ′.

(2) Given a solution of cost at most 2m+2n+k for I ′, a vertex cover of size at most

k can be constructed for G.

To prove (1), suppose that C is a vertex cover of size k for G. Let T be a tree of

H that contains

• edge {w, ai} if and only if vi 6∈ C,

• edges {w, c1
j}, {c1

j , bj} if and only if e1
j 6∈ C, and

• edges {w, c2
j}, {c2

j , bj} if and only if e1
j ∈ C.

The length of T is 2(n − k) + 2m. Observe that all the demands {w, bj} are

connected (via either c1
j or c2

j). Furthermore, if vi 6∈ C, then all three demands where

ai appears are satisfied: edge {w, ai} is in T and if vi = e1
j , then edge {w, c1

j} is in

T as well. (Note that if vi = e2
j and vi 6∈ C, then e1

j ∈ C must hold, and therefore

{w, c2
j} is in T .) Thus, the total penalty paid by the solution T is at most 3k, and

hence the cost of the solution is at most 2n+ 2m+ k, as claimed.

To prove (2), suppose that subgraph F of G is a solution to I ′ such that the sum

of the length of F and the penalties of its unserved demands is at most 2m+ 2n+ k.

We can assume that, for every 1 ≤ i ≤ n, vertex bj can be reached from w via F :

otherwise, we can decrease the penalty by 3 at the cost of adding two edges of length

1. Furthermore, we can assume that only one of c1
j and c2

j can be reached from w

191

w

c1
3

c2
3

c1
2

c2
2

c2
4

c2
1

c1
4

c1
1

b2

b3

b4

b1

a2

a3

a4

a1

Figure 10.1: Illustrating the reduction from 3-regular Minimum Vertex Cover
to Prize-collecting Steiner Forest. The solid edges represent the edges of
the graph H—representing the PCSF instance—and the dashed edges depict the
demands. See the description in the text for penalties and edge lengths. The graph
G of the Minimum Vertex Cover instance consists of four vertices and four edges,
where the edges e1, e2, e4 are incident on v3.

192

via F : otherwise, we can remove an edge without disconnecting bj from w, thus the

length decreases by 1 and the penalty increases by at most 1. Finally, we can assume

that, if {w, ai} ∈ F , then all 3 demands containing ai are connected: otherwise,

removing {w, ai} decreases the length by 2 and increases the penalty by at most 2.

Define C as follows. Let vertex vi be in C if and only if {w, ai} 6∈ F . We claim that

C is a vertex cover of size at most k. To see that C is a vertex cover, consider an edge

ej. We have observed above that one of c1
j and c2

j cannot be reached from w. Without

loss of generality, assume that c1
j cannot be reached from w and e

(1)
j = vi. Then the

demand {vi, c1
j} is not connected by F . Therefore, not all 3 demands containing ai are

connected, which means (as observed above) that {w, ai} 6∈ F . Thus vi ∈ C covers

the edge ej.

We next compute the size of C. Since every bj can be reached from w and {w, ai} ∈

F if vi 6∈ C, the length of F is at least 2m + 2(n − |C|). Furthermore, if vi ∈ C,

then {w, ai} 6∈ F , which means that we have to pay the penalty for the 3 demands

containing ai. Therefore, the total cost of the solution is at least 2m+ 2n+ |C|. We

assumed that the cost of the solution is at most 2m+ 2n+ |C|, thus |C| ≤ k follows,

as promised.

Finally, we notice that H is a subgraph of a series-parallel graph—duplicating

edges {w, ai} turns H into a collection of cycles of length two and four sharing the

central vertex w. Therefore, it is planar and has treewidth at most two.

10.3.2 Remarks about the reduction

It was previously noted that not only is the reduced instance a series-parallel graph,

but it is indeed a very simple one. The graph only consists of cycles of length four

and paths of length one sharing a common central vertex.

Besides, the solution to the instance can be assumed—as proved and used in the

analysis—to be a tree rather than a forest of trees. Therefore, the difference between

193

the reduced instance and an instance of PCST is not in the ability of optimum

of forming multiple connected components, but it is in the interaction between two

endpoints of each demand. In particular, an alternative way to look at the demands

is as single-sink demands (with the central vetex as the sink), however, the penalty

function charges the solution even if only one of the endpoints of an original demand

is not connected to the central vertex. As a result, the same hardness holds for

Submodular Prize-collecting Steiner Tree since the interaction between

the endpoints of a demand can be captured via a submodular function.

We emphasize that PCSF has two major differences with PCST: choosing the

demands to satisfy, and deciding how to form the connected components. Although

the machinery of the previous chapter can take care of the second difficulty, the

complexity of the problem, as shown in the above reduction, turns out to stem from

the first issue; i.e., what demands should be satisfied.

The above reduction gives the first provable separation between complexity of a

natural network optimization problem and its prize-collecting variant. In fact, it was

believed that the prize-collecting extension of a problem does not make it harder.

We presented a PTAS for planar Steiner Forest in Chapter 9, however, the above

reduction proves that PCSF does not admit any PTAS on planar graphs, unless

P = NP. We show the separation holds in the two-dimensional Euclidean plane as

well—the PTAS for this case is due to Borradaile et al. [BKM08], and our hardness

proof follows.

10.3.3 Hardness for Euclidean metrics

The proof for the Euclidean version is very similar to the graph version. The main

difference is that the central vertex w is replaced by a set of points arranged along a

long vertical path.

Proof of Theorem 3.2.6(2). We reduce an instance I of Minimum Vertex Cover

194

on 3-regular graphs to an instance I ′ of Prize-collecting Steiner Forest on

points in the Euclidean plane. If n denotes the number of vertices of the 3-regular

graph G in I, then the number edges is m = 3n/2. We will denote the ith vertex of

G by vi, the jth edge by ej, and the first and second endpoints of ej by e
(1)
j and e

(2)
j ,

respectively.

We now specify the reduction (illustrated in Figure 10.2). Let us define µ :=

10000(n+m) (“basic unit of cost”), µH = 10µ (“horizontal length”), and µV = 100µ

(“vertical spacing”). Instance I ′ contains a set P of points with integer coordinates.

There are two groups of vertices Z and P \ Z; set Z includes

• (0, y) for every −mµV ≤ y ≤ nµV ,

• (x, y) for every 1 ≤ x ≤ µH and y = iµV for 1 ≤ i ≤ n, and

• (x, y) and (x, y + 4µ) for every 0 ≤ x ≤ µH and y = −jµV for 1 ≤ j ≤ m,

whereas P \ Z includes

• ai = (µH + 2µ, iµV) for 1 ≤ i ≤ n,

• bj = (µH ,−jµV + 2µ) for 1 ≤ j ≤ m, and

• c1
j = (µH ,−jµV + µ), and c2

j = (µH ,−jµV + 3µ) for 1 ≤ j ≤ m.

Note that |Z| = µV (n+m) + 1 +µH(n+ 2m). For the ease of notation, we define

wi = (µH , iµV), w1
j = (µH ,−jµV), w2

j = (µH ,−jµV + 4µ), that are all in Z.

The instance contains the following demands.

1. If (x, y) and (x+ 1, y) are both in Z, there is a demand {(x, y), (x+ 1, y)} with

penalty 1. This applies to vertices (x, y) such that y = iµV or y = −jµV or

y = −jµV + 4µ.

2. If (x, y) and (x, y+ 1) are both in Z, there is a demand {(x, y), (x, y+ 1)} with

penalty 1. This applies to the points (x, y) with x = 0.

195

w1 a1

w2 a2

w3 a3

w4 a4

w5 a5

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

(0, 0)

4µ
µ

2µ

µH

µV

µV

w1 a1

w2 a2

w3 a3

w4 a4

w5 a5

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

w1
j

c1
j

bj

c2
j

w2
j

(0, 0)

4µ
µ

2µ

µH

µV

µV

Figure 10.2: Illustrating the reduction from 3-regular Minimum Vertex Cover to
Euclidean Prize-collecting Steiner Forest. Points with integer coordinates on
the solid lines form the set Z. There are n horizontal lines corresponding to vertices
of G, and m pairs of horizontal lines corresponding to its edges. These lines are used
to simulate the role of the central vertex w in the planar graph reduction. Notice
that distances in the figure do not always mirror the actual distances.

196

3. There is a demand {(0, 0), bj} with penalty 3µ for 1 ≤ j ≤ n.

4. If vi = e
(p)
j for some 1 ≤ i ≤ n, 1 ≤ j ≤ m, and p ∈ {1, 2}, then {ai, cpj} is a

demand with penalty µ− 10.

The total number of demands is |Z| − 1 + n + 3m, and each ai appears in exactly 3

demands. We claim that the cost of the optimum of I ′ is between |Z|+µ(2m+ 2n+

τ(G)) and |Z|+µ(2m+2n+τ(G))−100n, where τ(G) is the size of the minimum vertex

cover in G. Since m = 3n/2 and τ(G) ≥ m/3, we know that |Z|+µ(2m+ 2n+ τ(G))

is at most a constant factor larger than µτ(G). Therefore, a change in τ(G) by a

constant factors translates to a constant-factor change in the optimum of I ′.

More precisely, in order to prove the correctness of the reduction, we prove the

following two statements.

(1) Given a vertex cover of size k for G, a solution of cost at most |Z|+(2m+2n+k)µ

for I ′ can be constructed.

(2) Given a solution of cost at most |Z| + (2m + 2n + k)µ for I ′, a vertex cover of

size at most k can be constructed for G.

To prove (1), suppose that C is a vertex cover of size k for G. Let F be the forest

(actually, a tree) that contains

1. an edge {(x, y), (x+ 1, y)} if both these points are in P ,

2. an edge {(x, y), (x, y + 1)} if both these points are in P ,

3. an edge {wi, ai} if vi 6∈ C,

4. edges {w1
j , c

1
j} and {c1

j , bj} if e
(1)
j 6∈ C, and

5. edges {w2
j , c

2
j} and {c2

j , bj} if e
(1)
j ∈ C.

197

The total length of F is |Z| − 1 + 2µ(n − k) + 2µm, where |Z| − 1 accounts for

the first two categories of edges above; 2µ(n − k) accounts for the third category;

and 2µm takes into account the last two categories. Observe that all the demands

{(0, 0), bj} are satisfied: F connects (0, 0) to all points (x, y) in P with x = 0, to

w1
j and w2

j for 1 ≤ j ≤ m; moreover, F connects one of w1
j or w2

j to bj through the

appropriate cpj . Furthermore, if vi 6∈ C, then all three demands where ai appears are

satisfied. This can be seen as follows. First, ai is in the same component as wi and

hence as every vertex of Z. If vi = e
(1)
j , then there is a demand {ai, c1

j} and c1
j is

connected with w1
j (and hence with ai). If vi = e

(2)
j , then vi 6∈ C implies that e

(1)
j ∈ C

must hold—since C is a vertex cover—and therefore c2
j is connected to w2

j , satisfying

the demand {ai, c2
j}. Thus, the total penalty is at most 3k(µ − 10), and hence the

cost of the solution is at most |Z| − 1 + (2m+ 2n+ k)µ− 30k, as claimed.

To prove (2), suppose that forest F is an optimal solution such that the sum of the

length of F and the penalties it pays is at most |Z|+ µ(2n+ 2m+ k). First, we can

assume that every demand of the first two types is satisfied: if, say, {(x, y), (x+ 1, y)}

is not satisfied, then we can extend F by adding an edge of length 1, which decreases

the penalty by at least 1. Thus, all points in Z points are in the same connected

component K of F . We can also assume that every demand of the third type is

satisfied: if {(0, 0), bj} is not satisfied, we can decrease the penalty by 3µ at the cost

of at most 2µ by adding edges {w1
j , c

1
j} and {c1

j , bj}, contradicting the optimality of

F . Therefore, every vertex bj is in the component K.

Let Z ′ = {(x, y) ∈ Z | x = 0 ∨ x ≥ 10}. Let R be the region of the plane at

Manhattan distance at most 3 from Z ′. Note that R consists of one “vertical” and

n+ 2m “horizontal” components. See Figure 10.3a.

Claim 3. The length of F inside R is at least |Z ′|.

Proof. We have seen above that a single component K of F contains every point of

P∩R (because P∩R ⊆ Z). The restriction of K to R gives rise to several components.

198

(a) R (b) R+

Figure 10.3: Illustration of sets R and R+ in the hardness proof for Euclidean PCSF.
Notice that scales do not always mirror actual distances.

Consider such a component K ′ containing a subset S ⊆ Z ′ of vertices. We show that

the length of K ′ is at least |S|. The vertices of S lie on a horizontal or vertical line.

This means that there are two vertices s1, s2 ∈ S at distance d ≥ |S|−1. As K is not

contained fully in any component of R, component K ′ has to contain a point s3 on

the boundary of R. As s3 is at distance at least 3 from s1 and s2, it can be verified

that any Steiner tree of s1, s2, s3 has length at least d+ 1 = |S|. Summing for every

component K ′ of the restriction of K to R, we get that the length of K in R is at

least |Z ′|.

Let R+ be the region of space at Manhattan distance at most 3 from Z. See

Figure 10.3b.

Claim 4. The length of every component of F \R+ is at most 3µ.

Proof. There are two types of components of F \R+: (1) those that contain a point of

199

P , and (2) those that do not contain such a point. Clearly, there are at most n+ 3m

components of the first type (since |P \ Z| ≤ n+ 3m).

Suppose that there is a component D of the second type having length more than

3µ. In this case, we modify F to obtain a better solution as follows. Consider F \R+

(i.e., let us remove the part of F inside R+) and let us remove every component of

the second type. After that, let us add all the |Z| − 1 edges of the form {zx,y, zx+1,y},

{zx,y, zx,y+1}. Finally, for every component of the first type, if it intersects R+, then

let us choose a point of the component on the boundary of R+ and connect this point

to the nearest point of Z. It is clear that the new forest F ′ satisfies every demand

satisfied by F : every point of P connected to Z remains connected to Z. Claim 3

and R ⊆ R+ ensure that the length of F \ R′ is less than the length of F by at

least |Z ′| = |Z| − 9(n+ 2m). Removing components of the second type decreases the

length by more than 3µ (as there are at least one such component having length more

than 3µ). The edges connecting Z increase the length by |Z| − 1. Adding the new

connections corresponding to the components of the first type increases the length

by at most 3(n+ 3m). Since 3µ ≥ 9(n+ 2m)− 1 + 3(n+ 3m), forest F ′ is a strictly

better solution, which is a contradiction.

Suppose now that there is a component D of the first type with length more than

3µ. For −m ≤ s ≤ n, let Rs be the region of the plane at Manhattan distance at

most 4µ from (µH , sµV). Any point in P \ Z falls within exactly one Rs. Observe

that, for each s, all the points of P ∩ Rs can be connected to the nearest point of Z

with a total length of at most 3µ. This implies that, if D intersects only one of these

regions, say Rs, we can substitute D with a curve of length at most 3µ in such a

way that every demand satisfied by F remains satisfied, contradicting the optimality

of F . Suppose, therefore, that D intersects t ≥ 2 of these regions; in this case, the

length of D is at least (t− 1)(µV − 8µ) > 90(t− 1)µ ≥ 45tµ ≥ 3tµ. Let us replace D

by connecting every point of P ∩D to the closest point of Z. The new connections

200

increase the length by at most t ·3µ, which is less than the length of D, contradicting

the optimality of F .

Observe that the distance of ai, ai′ for i 6= i′ is more than 3µ; so is the distance

of ai to the set
{
bj, c

1
j , c

2
j

}
; similarly, the distance of any two sets

{
bj, c

1
j , c

2
j

}
and{

bj′ , c
1
j′ , c

2
j′

}
for j 6= j′ is more than 3µ. It now follows from Claim 4 that, for every

component D of F \ R+, D ∩ P is either a single ai, or a (possibly empty) subset of

{bj, c1
j , c

2
j}. Therefore, every such component D intersects R+: otherwise, D could

be safely removed as it does not satisfy any demand. Next we show that it can

be assumed that only one of c1
j and c2

j is in K. Otherwise, we can remove every

component of F \ R+ intersecting {c1
j , c

2
j} and replace them with the edges {w1

j , c
1
j}

and {c1
j , bj}. The total length of the components removed in this way is at least

2µ + µ − 3 (which is the minimum cost of connecting c1
j and c2

j to each other and

to R+), and the new edges have length 2µ. This transformation might disconnect

the demand containing c2
j , hence the penalty can increase by at most µ − 10 only,

contradicting the optimality of F .

We can assume that, if ai is in K, all 3 demands containing ai are connected:

otherwise removing the component of F \ R+ containing ai decreases the length by

at least 2µ− 3 and increases the penalty by at most 2(µ− 10).

Let vertex vi be in C if and only if ai is not in component K. We claim that C is a

vertex cover of size at most k. To see that C is a vertex cover, consider an edge ej. We

have observed above that one of c1
j and c2

j is not in K. If c1
j 6∈ K and e

(1)
j = vi, then

the demand {ai, c1
j} is not connected by F . Therefore, not all 3 demands containing

ai are connected, which implies (as observed above) that ai is not in K. Thus, vi ∈ C

covers the edge ej. Similarly, c2
j 6∈ K gives e

(2)
j ∈ C.

The length of F ∩ R+ is at least |Z| − 9(n + 2m). Since every bj is in K and ai

is in K if vi 6∈ C, the length of F \ R+ is at least (2µ − 3)m + (2µ − 3)(n − |C|).

Furthermore, if vi ∈ C, we have to pay the penalty for the 3 demands containing ai.

201

Therefore, the total cost of the solution is at least

|Z| − 9(n+ 2m) + (2µ− 3)m+ (2µ− 3)(n− |C|) + 3|C|(µ− 10)

≥ |Z|+ (2m+ 2n+ |C|)µ− 100n.

We assumed that the cost of the solution is at most |Z|+(2m+2n+k)µ. As µ > 100n,

this is only possible if |C| ≤ k. This concludes of the proof.

10.4 PCST, PCTSP, and PCS

Theorem 3.2.7 states that solving any of these problems—i.e., PCST, PCTSP, or

PCS—on bounded-treewidth graphs immediately yields a PTAS for its bounded-

genus instances. The PTAS follows since the reduced problem has the same structure

as that of the original instance: if it is a single-sink demand set, it remains so; and a

PCTSP or PCS problem remains so after the reduction.

In the following, we present an exact algorithm for Prize-collecting Steiner

Tree on bounded-treewidth instances. The algorithms for Prize-collecting TSP

and Prize-collecting Stroll require only minor changes, and are not explicitly

given here.

10.4.1 Bounded-treewidth PCST

Recall that the input consists of a graph G(V,E) with length ` : E 7→ R+ on edges,

as well as a penalty function π : V 7→ R+ on vertices. In addition, we have a nice

tree decomposition (T,B) for G where each bag Bi ∈ B has size at most k for some

constant k; i.e., the treewidth of G is at most k − 1. We use I as the set of nodes

of T . Let Ti denote the subtree of T rooted at i ∈ I. The vertices of Bi are called

portals of Ti.

202

As hinted earlier, we employ the dynamic-programming technique to solve the

problem. A dynamic-programming entry is specified by a tuple (i, S,P) where

• i ∈ I is a node in the tree decomposition,

• S ⊆ Bi is a subset of portals of the subtree Ti, and

• P is a partition of S.

Let us denote by Vi the vertices corresponding to the subtree Ti, i.e., Vi := ∪i′∈V (Ti)Bi′ .

Notice that, to avoid confusion, we refer to “nodes” of the tree decomposition and

“vertices” of the original graph. A dynamic-programming entry DP(i, S,P) takes up

the least cost (i.e., length and penalty) of a subgraph H such that

• H uses only the edges both whose endpoints are in Vi,

• H connects the vertices in each part Pj of the partition P = {P1, P2, . . . , Pm},

and

• S is the subset of Bi whose penalty is not paid; moreover, if a vertex v ∈ Vi is

not connected to S via H, its penalty π(v) is already paid in the total cost.

The final solution to the problem can be found as

min
S⊆Br

DP(r, S, {S})

where r is the root of the tree decomposition, i.e., it does not matter which subset of

the bag of the root is picked as long as they form a single component.

As is customary for dynamic-programming algorithms, we only describe how to

obtain the value of the optimum rather the actual solution itself. Standard techniques

can be used to store additional information in DP entries for recovering the final

solution.

We next describe the DP algorithm for different nodes of T .

203

Leaf node i: there are two DP entries associated with i ∈ I, and we set them as

DP(i, ∅, ∅) = π(v) and DP(i, {v}, {{v}}) = 0.

Introduce node i is the parent of i′, and we have Bi = Bi′∪{v}. Then, DP(i, S,P) =

π(v) + DP(i′, S,P) if v 6∈ S. For the case v ∈ S, we have P = {P1, P2, . . . } such

that v ∈ P1. We set

DP(i, S,P) = min
P ′,S′

[
DP(i′, S \ {v} ,P ′) +

∑
v′∈S′

`((v, v′))

]
,

where

(I1) P ′ is a partition on S \ {v}; and

(I2) P = P ′ ∨ {{v} ∪ S ′}.

The second term accounts for the cost of connecting v to all vertices in S ′, and

these connections in addition to P ′ yield the connectivities in P .

Forget node i is the parent of i′, and we have Bi′ = Bi ∪ {v}. Then, we set

DP(i, S,P) = min
[
DP(i′, S,P),min

P ′
DP(i′, S ∪ {v} ,P ′)

]
, (10.2)

where P ′ is a partition of S∪{v} that induces P on S. The first term considers

the case where we have already paid the penalty for v and do not plan to connect

it in the final Steiner tree, whereas the second term takes into account the case

where v is connected to one connected component of the partition.

Join node the node i has two children i1 and i2 with the same bags. We set

DP(i, S,P) = min
P1,P2

{DP(i1, S,P1) + DP(i2, S,P2)− π(Bi \ S)} , (10.3)

where the minimization goes over all pairs P1 and P2 such that P = P1 ∨ P2.

204

The last term cancels out the effect of paying the penalty of the unsatisfied

terminals of Bi twice, i.e., once in each subtree.

It is straight-forward to verify that the value of each DP entry corresponds to a

valid solution, i.e., the computed value is at least the desired one. Next we discuss

why the computation indeed produces the desired result, by showing that any valid

solution is discovered in the process.

The claim is trivial for the leaf nodes since there are only two possible DP entries

at each leaf, and the values are computed correctly there.

For the DP entry (i, S,P) at the introduce node i, that is the parent of i′ with the

introduced vertex v, we consider two cases. The solution for connecting S according

to P does not use v since v 6∈ S, hence the same solution exists in subgraph Ti′ . The

only additional penalty the solution needs to pay at node i is that of v.

The second case is when v ∈ S. Let S ′ denote the neighbors of v in the subsolution;

observe that they all have to be in the bag Bi. Removing the edges connecting v to S ′

refines the partition P , and further removing v itself gives a partition P ′ on S \ {v}.

Then, the solution cost comes from a subsolution for DP(i′, S \ {v} ,P ′) as well as the

edges connecting v to its neighbors S ′.

Now consider (i, S,P) for a forget tree node i. If the solution does not use v,

the first term of Equation (10.2) finds the desired solution. Otherwise, suppose v is

indeed used in the solution. Thus, S ∪ {v} is part of the solution. Let P ′ be the

partition the subsolution induces on S ∪ {v}. Clearly, P ′ induces P on S. Therefore,

the solution is discovered during the minimization.

Finally, we look at (i, S,P) where i is a join node whose children are i1 and i2. If

we simply take Pj, for j = 1, 2, to be partitions induced by P on Vij , the solution may

pay the cost of some edges more than once. Thus, we need to find P1 and P2 carefully.

Let F be the intended subsolution corresponding to DP(i, s,P). Let F ∗ = F \F [Bi] be

the forest formed from F by removing edges with both endpoints in the bag Bi. Let

205

Fj, for j = 1, 2, be the forest F ∗[Bij] induced in each subtree. Let P∗j , for j = 1, 2, be

the partition of vertices of S induced by F ∗j . Clearly, F ∗1 is a solution for DP(i1, S,D∗1),

and F ∗2 ∪ F [Bi] is a solution for DP(i2, S,D∗2 ∨ D). Notice that these two forests are

disjoint. Therefore, their total length is equal to the length of F . That F is correctly

discovered via Equation (10.3) follows because the only penalties from F that the two

forest (F ∗1 and F ∗2 ∪ F [Bi]) pay together are those in Bi \ S.

Notice that the number of DP entries is at most kO(k)|I|. Since finding the value of

each DP entry takes kO(k) time, we obtain an EPTAS for Prize-collecting Steiner

Tree on bounded-treewidth graphs, that yields an EPTAS for the bounded-genus

version as discussed above.

To extend the algorithm to Prize-collecting TSP, we augment the DP state to

(i, S,P , Q) where Q contains one pair of vertices from each part of P . The implication

is that in each part P ∈ P with (s, t) ∈ Q and {s, t} ∈ P , we have a path from s to t

spanning P among Bi (and possibly some vertices of Vi \Bi) such that the path only

uses the edges of Ti. Dynamic programming stitches these paths together as it moves

up the tree towards the root r. The final solution is mins∈S⊆Br DP(r, S, {(s, s)}). The

algorithm for Prize-collecting Stroll works in the same way except that the

final solution can be founded in mins,t∈Br,S⊆Br DP(r, S, {(s, t)}) since we do not need

to have a closed tour.

10.5 Multiplicative prize-collecting Steiner forest

Here we discuss Prize-collecting Steiner Forest where penalties (or prizes)

have a multiplicative nature. In the symmetric case, each vertex v has a nonnegative

real weight w(v), and there is a demand with penalty w(v1)w(v2) between any pair

(v1, v2) of vertices. In the asymmetric case, each vertex v has two types of weights,

namely ws(v) and wt(v), and the penalty for the demand (v1, v2) is ws(v1)wt(v2). This

206

can model situations where there are two types of vertices and any demand should

be between vertices of two different types.6

This setting is inspired by Product Multi-Commodity Flow in [LR99,

Bon04, KS02], and its applications in wireless networks [MSL08] or routing [CKS04,

CKS05]. However, the main motivation is the setting when the weights (after some

normalization) denote the probability of a vertex appearing in a set of active vertices,

and a demand will be realized between each pair of active vertices.

Theorem 3.2.7 reduces the bounded-genus variant of MPCSF to its bounded-

treewidth version. We show in Section 10.5.4 how to obtain a PTAS for the latter

(for arbitrary vertex weights, or an exact algorithm for small integer weights). This

immediately implies a PTAS for bounded-genus MPCSF. The PTAS for the bounded-

treewidth case is based on a bicriteria approximation algorithm for the fixed-prize

variant of the problem, Π-MPCSF, in the bounded-treewidth setting. However, we

emphasize that this does not lead to a PTAS for bounded-genus Π-MPCSF since the

reduction only works for the prize-collecting setting, not for the fixed-prize setting.

In fact, obtaining a PTAS for this problem—or its special case, k-MST—is still an

interesting open question.

When the weights are polynomially small integers, we can extend the DP algorithm

of the previous section to solve the fixed-prize (and as a result the prize-collecting

version of) MPCSF for bounded-treewidth graphs even for asymmetric weights; see

Section 10.5.1. Roughly speaking, this is done by storing in DP entries the weight of

the component associated with each part of the partition the subsolution induces on

the portals.

Then in Section 10.5.2 we discuss how granularization can be used to generalize

the said algorithm to the case of arbitrary weights. The idea is to round the weights

to integer multiples of some unit, so that addition and multiplication can be stored

6This can be generalized to more than two types, but in the interest of simplicity of getting the
ideas across, we focus on the case of two types or weights.

207

approximately without compromising too much on the size of the DP table (and the

algorithm’s running time).

The asymmetric setting requires additional tricks and is discussed separately in

Section 10.5.3. In particular, a single precision unit for the weights of all vertex sets

may not be sufficient, and as the algorithm proceeds it uses different units for storing

the weights. This idea is explained in Chapter 7 as dynamic granularization.

Section 10.5.4 gives the PTAS for MPCSF. This is simple if the weights are

polynomially small integers since we can try all possible values for the collected prize

to find the optimal choice. However, for the case of arbitrary weights, we show that,

if the penalty portion of the optimal solution is comparable to the total penalties of

all demands, polynomially many calls to the fixed-prize algorithm suffices for finding

the optimum. If the penalty paid by the optimum is very small, though, most of the

prize has to be collected. In this case, roughly speaking, we can find and leave aside

most of the vertex weights and focus on the rest of the problem that can be solved

using a modified version of the fixed-prize algorithm. Yet, unlike our previous work

[BH10], we use this information to solve the original problem via several calls to the

unmodified fixed-prize algorithm.

Finally in Section 10.5.5 we hint on the major differences of the bounded-treewidth

and Euclidean settings.

10.5.1 Fixed prize from asymmetric small integer weights

Recall that the input consists of a graph G(V,E) with length ` : E 7→ R+ on edges,

as well as two weight functions ws, wt : V 7→ Z+ on vertices. We are also given a

nonnegative integer Π as a lower bound on how much prize we should collect. In

addition, we have a nice tree decomposition (T,B) for G where each bag Bi ∈ B has

size at most k for some constant k; i.e., the treewidth of G is at most k − 1. We

208

assume in this section that the bag Br of the root r of T is empty.7 We use I as the

set of nodes of T . Let Ti denote the subtree of T rooted at i ∈ I. The vertices of Bi

are called portals of Ti. Define W = max[ws(V), wt(V)] as an upper bound on the

(type-one or type-two) weights of all vertices.

As hinted earlier, we employ the dynamic-programming technique to solve the

problem. A dynamic-programming entry is specified by a tuple (i,P , ωs, ωt, σ) where

• i ∈ I is a node in the tree decomposition,

• P is a partition of Bi,

• ωs, ωt are functions mapping parts of P to nonnegative integers less than W ,

and

• σ is a nonnegative integer no more than W 2.

We sometimes abuse the notation ωs(P) =
∑

Pi⊆P ωs(Pi) or ωt(P) =
∑

Pi⊆P ωt(Pi)

if ωs, ωt are defined on parts of P = {P1, P2, . . . }. For any function ωs, ωt defined on

the parts of a partition P of Bi, we use the notation ω̂s(P) = ωs(P) +ws(P ∩Bi) and

ω̂t(P) = ωt(P) + wt(P ∩Bi) for any P ⊆ P .

Let us denote by Vi the vertices corresponding to the subtree Ti, i.e., Vi :=

∪i′∈V (Ti)Bi′ . Notice that, to avoid confusion, we refer to “nodes” of the tree de-

composition and “vertices” of the original graph. A dynamic-programming entry

(i,P , ωs, ωt, σ) takes up the least cost (i.e., length and penalty) of a subgraph H such

that the following hold.

• H uses only the edges both whose endpoints are in Vi.

• H connects the vertices in each part Pj of the partition P = {P1, P2, . . . , Pm}.
7This can be easily obtained from any tree decomposition by adding a path, from the original

root to a new root node, consisting of forget nodes only.

209

• ωs(Pi) (respectively, ωt(Pi)) denotes the total type-one (respectively, type-two)

weight of nonportals in the component of H containing Pi—i.e., we do not

include the weight of Pi. Notice that ω̂s(Pi) = ωs(Pi) +ws(Pi) holds the actual

weight of all vertices in the component containing Pi; the same is true for ω̂t.

• σ is the total prize collected by H from (satisfied) demands that are not con-

nected to any portal in Bi. Notice that the total prize collected by H is then

σ +
∑

i ω̂s(Pi)ω̂t(Pi), however, for entries corresponding to the root of the tree

decomposition, this is simply σ since Br = ∅.

The definitions of σ, ωs, ωt may seem strange at this point, but, not only do they

simplify the presentation of the algorithm, but they are crucial for the case of arbitrary

weights. Roughly speaking, with the natural definitions of σ, ωs, ωt, one would have

to perform subtraction as well as addition on them to fill the DP table. This makes

it very difficult, if not impossible, to carry out the charging via granularization.

The final solution to the problem can be found from

min
σ≥Π

DP(r, {} , ωs, ωt, σ),

where σs, σt are trivial functions (since their domains are empty).

As is customary for dynamic-programming algorithms, we only describe how to

obtain the value of the optimum rather the actual solution itself. Standard techniques

can be used to store additional information in DP entries for recovering the final

solution.

We next describe the DP algorithm for different nodes of T .

Leaf node i: there is only one DP entry associated with i ∈ I, and we set it as

DP(i, {{v}} , ωs, ωt, 0) = 0 with ωs, ωt being the appropriate functions.

Introduce node i is the parent of i′, and we have Bi = Bi′ ∪ {v}. We have P =

210

{P1, P2, . . . } such that v ∈ P1. We set

DP(i,P , ωs, ωt, σ) = min
P ′,S′

[
DP(i′,P ′, ω′s, ω′t, σ) +

∑
v′∈S′

`((v, v′))

]
, (10.4)

where

(I1) P ′ is a partition on Bi \ {v};

(I2) P = P ′∨P ′′, where P ′′ is a partition of Bi all whose elements are singletons

except for a single part for {v} ∪ S ′;

(I3) ωs(Pi) = ω′s(Pi \ {v}); and

(I4) ωt(Pi) = ω′t(Pi \ {v}).

The second term of (10.4) accounts for the cost of connecting v to all vertices

in S ′, and these connections in addition to P ′ yield the connectivities in P .

Forget node i is the parent of i′, and we have Bi′ = Bi ∪ {v}. Then, we set

DP(i,P , ωs, ωt, σ) = min
P ′

DP(i′,P ′, ω′s, ω′t, σ′), (10.5)

where the following hold.

(F1) P ′ is a partition of Bi ∪ {v} that induces P on Bi.

(F2) Let v ∈ P ′1 ∈ P ′. We have ωs(P
′
1) = ω′s(P

′
1) + ws(v) and ωs(P

′
i) = ω′s(P

′
i)

for i > 1.

(F3) We have ωt(P
′
1) = ω′t(P

′
1) + wt(v) and ωt(P

′
i) = ω′t(P

′
i) for i > 1.

(F4) If |P ′1| > 1, then σ = σ′, otherwise we have σ = σ′ + ω′s(P
′
1)ω′t(P

′
1).

No edge is added in a forget node, hence no new connectivity or change in

collected prize unless the forgotten vertex v forms a singleton part by itself in

P ′.

211

Join node the node i has two children i1 and i2 with the same bags. We set

DP(i,P , ωs, ωt, σ) = min
P1,P2

ω1
s ,ω

2
s

ω1
t ,ω

2
t

σ1,σ2

{
DP(i1,P1, ω1

s , ω
1
t , σ

1) + DP(i2,P2, ω2
s , ω

2
t , σ

2)
}
,

(10.6)

where the following hold.

(J1) P = P1 ∨ P2.

(J2) Let P1 = {P 1
1 , P

1
2 , . . . } and P2 = {P 2

1 , P
2
2 , . . . }. Then, we have ωs(Pi) =

ω1
s(Pi) + ω2

s(Pi).

(J3) ωt(Pi) = ω1
t (Pi) + ω2

t (Pi).

(J4) σ = σ1 + σ2.

Now we verify that DP computes what it is supposed to do. This is trivial for leaf

nodes. Before verifying the claim for the other three types of nodes, we observe that

the conditions for ωs, ωt in the above are immediate consequences of the relationship

between P ,P ′ and {v}. The same holds for computation of σ in the recursion.

Notice that in an introduce (or joint) node, no vertex disappears, nor do nonportals

get connected to each other. This happens for a forget node if v is in a singleton

part of the partition (possibly with some nonportal vertices), hence we account for

the disappearance of this part of the partition in σ.

It is now easy to see that the solution produced by DP is always a valid solution,

i.e., costs no less than the desired solution. It suffices to show that any valid solution

is discovered in the process.

For the DP entry DP(i,P , ωs, ωt, σ) at the introduce node i, that is the parent of

i′ with the introduced vertex v, let S ′ denote the neighbors of v in the subsolution;

observe that they all have to be in the bag Bi. Removing the edges connecting v to

S ′ refines the partition P , and further removing v itself gives a partition P ′ on Bi′ =

212

Bi \ {v}. Thus, P = P ′ ∨P ′′, where P ′′ is defined in (I2). Then, for ω′s, ω
′
t as defined

in (I3)-(I4), the solution cost comes from a subsolution for DP(i′,P ′, ω′s, ω′t, σ)—which

is considered by DP since (I1)-(I4) hold—as well as the edges connecting v to its

neighbors S ′.

Now consider DP(i,P , ωs, ωt, σ) for a forget tree node i, with the intended solution

F . Let P ′ be the partition of Bi′ induced by F . If ω′s, ω
′
t, σ
′ are defined according to

(F2)-F(4), F is a solution for DP(i,P ′, ω′s, ω′t, σ′). Since (F1)-(F4) hold, the solution

F is discovered during the minimization.

Finally, we look at DP(i,P , ωs, ωt, σ) where i is a join node whose children are

i1 and i2. If we simply take Pj, for j = 1, 2, to be partitions induced by P on

Vij , the solution may pay the cost of some edges more than once. Thus, we need

to find P1 and P2 carefully. Let F be the intended subsolution corresponding to

DP(i,P , ωs, ωt, σ). Let F ∗ = F \F [Bi] be the forest formed from F by removing edges

with both endpoints in the bag Bi. Let Fj, for j = 1, 2, be the forest F ∗[Bij] induced

in each subtree. Let P∗j , for j = 1, 2, be the partition of vertices of Bi induced by F ∗j .

Clearly, F ∗1 is a solution for DP(i1,P∗1 , ω1
s , ω

1
t , σ1) for appropriately defined ω1

s , ω
1
t , σ1.

Similarly, F ∗2 ∪F [Bi] is a solution for DP(i2,P∗2∨P , ω2
s , ω

2
t , σ2) for appropriately defined

ω2
s , ω

2
t , σ2. Notice that these two forests are disjoint. Therefore, their total length is

equal to the length of F . As discussed above, (J2)-(J4) follow from (J1) and the fact

that F is the disjoint union of the two forests F ∗1 , F
∗
2 ∪F [Bi]. Therefore, F is correctly

discovered via Equation (10.6).

The number of DP entries is at most kO(k)WO(k)|I|. Since finding the value of

each DP entry takes (kW)O(k) time, we obtain a PTAS for Π-MPCSF on bounded-

treewidth graphs.

213

10.5.2 Fixed prize from symmetric arbitrary weights

For the case of arbitrary weights, MPCSF generalizes the Knapsack problem.

Thus, unless P = NP, we do not expect a polynomial-time algorithm that works

for every value Π of collected prize. Instead, we relax the requirement to a bicriteria

one. We want to find a solution whose cost is no more than opt, but collects almost

as much prize as required (i.e., at least (1− ε′)Π).

Let the original instance consist of G, `, w,Π, where w is a nonnegative real weight

function on vertices. Let n = |V (G)| denote the number of vertices of the graph.

Maintaining the values of ωs, ωt, σ during the algorithm only requires addition

and zero initialization. Indeed, ωs, ωt represent the weight of a set (i.e., the forgotten

vertices of each part of a partition of the portals) with size at most n. The only

operation performed on them is (1) initialization to a singleton set, (2) copying, and

(3) taking unions. A static granularization with precision θ = ε′
√

Π
2n

is sufficient to

give, roughly speaking, an additive error of ε′
√

Π on the weight of each set. This

gives an algorithm for the case of symmetric weights since the weights of sets are,

roughly speaking, guaranteed to be within the range [0,
√

Π]. The prize in a set of

weight A is A2, and the error in the prize can be bounded in terms of the error in

the weight. Therefore, static granularization suffices for storing values of ωs, ωt, σ

throughout, and the final error is bounded.

For asymmetric weights, static granularization runs into trouble because the final

solution may be the result of product of a very small ws term and a very large wt

term. Therefore, the said upper bound on these sets do not hold, nor is the additive

error of ws term sufficient for getting a bound on the error of the product term. Even

worse, it may be the case that portions of the solution require employing a small

precision unit for ws and a large precision unit for wt, whereas other portions of the

solution require employing a small precision unit for wt and a large precision unit

for ws; i.e., there is no fixed precision unit that works throughout the algorithm for

214

ws, wt. This is why we utilize dynamic granularization to obtain multiplicative errors.

In particular, (1− ε′)A · (1− ε′)B ≥ (1− 2ε′)AB no matter how small or large A,B

are.

Since the next section explains the algorithm for the more general case of asym-

metric weights, we do not give any more details for the symmetric case here.

10.5.3 Fixed prize from asymmetric arbitrary weights

Run the algorithm of Section 10.5.1 with the following modification. Use dynamic

granularization (Theorem 7.2.1) with parameters U = V (G), ε = ε′/6, w = ws, wt

to store ωs, ωt, and static granularization (Theorem 7.1.1) with parameters n =

4|V (G)|, ε = 4ε′/6, τ = Π for storing σ.

As mentioned earlier, ωs, ωt represent weights of sets of vertices. Leaf nodes ini-

tialize them with empty sets. The sets are copied in (I3), (I4). In a forget node, (F2)

and (F3) either copy the sets or add one element to them. Union of two sets is taken

during (J2), (J3). Finally, in the computation of ω̂s, ω̂t, set union is performed.

Let dyn-granular(ω̂s(Pi)) and dyn-granular(ω̂t(Pi)) denote the recovered values from

dynamic granularization of ωs(Pi) and ωt(Pi). Theorem 7.2.1 guarantees that the error

in any of these computations is small. In particular, we have

(
1− ε′

6

)
ω̂s(Pi) ≤ dyn-granular(ω̂s(Pi)) ≤ ω̂s(Pi), (10.7)(

1− ε′

6

)
ω̂t(Pi) ≤ dyn-granular(ω̂t(Pi)) ≤ ω̂t(Pi). (10.8)

Therefore, when in (F4) we have σ = σ′ + dyn-granular(ω̂s(P
′
1))dyn-granular(ω̂t(P

′
1)),

the added term may have an error of (2ε′/6)ω̂s(P
′
1)ω̂s(P

′
1).

As for σ, we have an initialization to zero in leaf nodes. Introduce nodes copy σ,

whereas forget nodes either simply copy or add one term to σ. A join node adds two

σ elements to each other.

215

Induction on the size of subtrees shows that the number of addition operations

performed on the σ term of any DP entry for i ∈ I is less than the number of nodes in

the subtree rooted at i, hence the computation for the final σ in root node r requires

at most |I| addition operations.

We prove that |I| ≤ 4n. There are at most 2n nodes with one children, i.e., at

most one introduce and one forget node for each vertex. Besides, there are at most n

nodes with no children. Subtracting one for the root that does not have any parents,

we obtain that the sum of all degrees of I is at least n + 2(2n) + 3(|I| − 3n) − 1 =

3|I| − 4n − 1 ≤ 2(|I| − 1) where the last inequality follows from T being a tree.

Rearranging we get |I| ≤ 4n− 1.

Therefore, Theorem 7.1.1 ensures that the final value of σ for a root node DP

entry has error at most 4ε′/6Π = 2ε′/3Π with respect to the number added to σ.

Those values for themselves may have a multiplicative (1− ε′/3) error. Since for any

feasible solution the total real sum forming σ should be at least Π, the recovered value

from dynamic granularization is no less than (1−ε′/3)Π, and then the recovered value

of the corresponding σ is at least (1 − ε′/3)Π − (2ε′/3)Π = (1 − ε′)Π. This means

that, if the final step of the DP looks for a solution with σ ≥ (1 − ε′Π), it will find

a solution whose cost is no more than opt. All the errors in the static and dynamic

granularizations are one-sided, i.e., if they claim the value is σ, the actual value cannot

be less. Therefore, the solution picked by the DP indeed collects a prize of at least

(1− ε′)Π giving the bicriteria guarantee.

It is worth emphasizing that the cost guarantee is optimal, and the only approx-

imation is there for the collected prize. Even for the (1 − ε′) approximation on the

collected prize, we can push the value of ε′ to be inverse polynomially small since the

dependence in the running time is polynomial in ε′−1.

216

10.5.4 Prize-collecting tradeoff with arbitrary symmetric

weights

We first observe that in the case of small integer weights, we can run the fixed-prize

algorithm for all possible values of collected prize, and find the best solution (after

adding the uncollected prize as the penalty to the cost of the forest). Therefore,

polynomially many calls to the fixed-prize algorithm suffices in this case. In the

following we focus on the case of arbitrary nonnegative real weights (in the symmetric

case).

In the prize-collecting setting, recall, we pay for the length of the forest, and for

the prizes not collected (usually called penalties). If the total weight of all vertices

is ∆, the prize not collected is ∆2 minus the collected prize. One difficulty here is to

determine the correct range for the collected prize so that we can use the algorithm of

Section 10.5.3. The trivial range is [0,∆2]. However, the rounding precision we pick

for the penalties should also take into account the length of the forest. If the cost of

the intended solution is much smaller than ∆2, we cannot simply go with rounding

errors similar to ε∆/n. Otherwise, the error caused due to rounding the penalties

will be too large compared to the solution value. The problem, in other words, stems

from the fact that approximating the collected prize does not necessarily results in a

good approximation of the uncollected prize. This becomes crucial if the uncollected

prize is small, and so is the cost of the prize-collecting instance in which case the

error in the penalty is important.

The trick is to find an estimate of the solution value, and then consider two cases

depending on how the cost compares to the total penalty (of satisfied and unsatisfied

demands). Using a 3-approximation algorithm, we obtain a solution of value C.

We are guaranteed that opt ≥ C/3. If ∆2 ≤ C/3, the optimal solution does not

collect any prize at all; i.e., it pays the penalties for all demands without building

any connectivity. Otherwise, assume ∆2 > C/3. To beat the solution of value C, we

217

should collect a prize of at least ∆2 − C.

We first consider the simpler case when C/∆2 > 1/n2. For an ε′ > 0 whose precise

value will be fixed below, we use the algorithm of Section 10.5.3 to find a bicriteria

(1, 1− ε′)-approximate solution for collecting a prize Π; this is done for any Π which

is a multiple of ε′∆2 in range [(1− ε′)∆2−C,∆2]. We select the best one after adding

the uncollected prize to each of these solutions. Suppose the optimal solution opt

collects a prize Π′. Let `(opt) = opt− (∆2−Π′) be the length of the forest. Round Π′

down to the next multiple of ε′∆2, say Π. Starting with prize value Π, the algorithm

finds a solution that collects a prize of at least (1 − ε′)Π with forest cost at most

`(opt).

Claim 5. The total cost of this solution is at most (1 + ε)opt if ε′ = ε
6n2 .

Proof. The total cost of this solution is

`(opt) +
[
∆2 − (1− ε′)Π

]
≤ `(opt) +

[
∆2 − (1− ε′)(Π′ − n2ε′C)

]

since ε′∆2 ≤ n2ε′C,

≤ opt + ε′Π + n2(ε′ − ε′2)C

= opt + ε′
Π′

opt
opt + n2(ε′ − ε′2)C

≤ opt + ε′
∆2

opt
opt + 3n2ε′opt

≤ opt + 6ε′n2opt (10.9)

≤ opt + εopt (10.10)

= (1 + ε)opt,

where (10.9) follows from ∆2

opt
≤ n2C

C/3
= 3n2, and (10.10) uses the definition of ε′.

The other case, i.e., C/∆2 ≤ 1/n2, is more challenging. Notice that, in order to

218

carry out the same procedure in this case, ε′ may not be bounded by 1/poly(n) and

thus the running time may not be polynomial. The solution, however, has to collect

almost all the prize. Thus, one of the connected components includes almost all the

vertex weights. We set aside a subset B of vertices of large weight. The vertices of

B have to be connected in the solution, or else the paid penalty will be too large.

Then, dynamic programming proceeds by ignoring the effect of these vertices and

only keeping tabs on how many vertices from B exist in each component. At the

end, we only take into account the solutions that gather all the vertices of B in one

component and compute the actual cost of those solutions and pick the best one. In

the following, we provide the details of our method and prove its correctness.

Let B be the set of all vertices whose weight is larger than nC/∆. Notice that B

is nonempty since C/∆2 ≤ 1/n2.

Lemma 10.5.1. All the vertices of B are connected in the optimal solution.

Proof. There are at most n components, so there is a component, say C, whose total

weight is not less than ∆/n. We claim all the vertices of B are inside this component.

The penalty paid by the optimal solution is at most C ≤ ∆2/n. If there is any vertex

of B outside C, the penalty of the solution is more than ∆/n · nC/∆ = C, yielding a

contradiction.

Next, we round up all the weights to the next multiple of θ = ε′C/∆ for vertices

not in B. Define opt′ as the optimal solution of the resulting instance. Let `(opt) be

the length of the forest in opt, and define `(opt′) similarly. Let π(opt) and π(opt′)

denote the penalty paid by opt and opt′, respectively. Assume that ε′ ≤ 1.

Lemma 10.5.2. π(opt′) ≤ π(opt) + 12nε′opt.

Proof. We recompute the penalties paid by opt using the rounded weights. The pair

(s, t) not connected in opt is either of the two kinds: (1) one of s and t is in B; or (2)

none of them is in B. The total rounding error for the penalties of the first type is

219

bounded by n∆θ. There are at most n2 pairs of the second type. Since the weights

of these terminals are at most nC/∆, the error is not more than n2[2(nC/∆)θ + θ2].

Hence, the total error is at most

n2[2(nC/∆)θ + θ2] + n∆θ ≤ n2

[
(ε′2 + 2nε′)

C2

∆2

]
+ nε′C

≤ n2

[
3nε′

C2

∆2

]
+ nε′C because ε′ ≤ 1

=

(
3n2 C

∆2
+ 1

)
nε′C

≤ 4nε′C because
C

∆2
≤ 1

n2
,

which is no more than 12nε′opt as desired.

Therefore, it suffices to solve the new instance. We modify the instance further.

Divide all weights by θ and all edge lengths by θ2. We denote this instance by I1. Any

approximation for I1 immediately translates to the original one. In the new instance,

small-weight vertices—those not in B—have integer weights in [0, τ], where τ = n/ε′.

(We assume without loss of generality that τ is an integer). The large-weight vertices

all have weights at least τ , and the weight is not necessarily an integer. Let b = |B|,

and set the weight of the vertices of B to 2n2τ 2. Let this final instance be called I2.

We run the fixed-prize algorithm on I2 for specific values for Π, and then infer the

optimum of I1 from them.

We proved that all vertices of B should be in one component of the solution in I1.

Any such solution collects a prize of at least 4b2n4τ 4. On the other hand, any solution

that collects a prize of at least 4b2n4τ 4 must gather all vertices of B in one component

since, otherwise, it collects no more than 4(b−1)2n4τ 4 +2bn3τ 3 +n2τ 2 < 4b2n4τ 4. We

only call the fixed-prize algorithm with parameters Π ≥ 4b2n4τ 4. Let the component

containing B be called the “big” component.

Consider a solution that gathers a weight bn2τ 2 + s in the big component. It

220

collects a prize of 4b2n4τ 4 + s · 2bn2τ 2 + s2 + p where s2 ≤ s2 + p ≤ n2τ 2 (since

total prize corresponding to small-weight vertices cannot be more than (nτ)2). This

ensures that any solution with prize 4b2n4τ 4 + s · 2bn2τ 2 + s2 + p necessarily gathers

a weight bn2τ 2 + s in its big component.

As all weights in I2 are polynomially small integers, we can run the fixed-prize

algorithm for any prize value Π. In particular, we do this for Π = 4b2n4τ 4 + s ·

2bn2τ 2 + s2 + p for any s ∈ [0, nτ] and p ∈ [0, n2τ 2 − s]. After finding the best

forest cost from the fixed-prize algorithm, we can recover the actual prize collected

by the solution: knowing s, p, we can cancel out the effect of prize corresponding

to big-weight vertices, and add the actual prize for these demands from the correct

weights of vertices in B. Adding the penalties with forest cost, we obtain the cost of

each such solution. Taking a minimum over all cases gives the optimum for I1.

Notice that the running time depends polynomially on ε′, hence we give an FPTAS

for MPCSF on bounded-treewidth instances.

10.5.5 Euclidean setting

We studied MPCSF and Π-MPCSF on Euclidean metrics in [BH10]. We obtain

bicriteria (1+ ε, 1− ε′)-approximation algorithms for the fixed-prize case, and a PTAS

for the prize-collecting case. The latter is not an efficient PTAS since the fixed-prize

algorithm has an exponential running time in terms of ε. The algorithm works, as is

usual for many optimization problems on Euclidean metrics (e.g., [BKM08, Aro98]),

on a random quadtree decomposition of the plane. Portals are placed on the boundary

of each quadtree square. For Euclidean Steiner Forest, each square should further

be decomposed into a grid of “cells.” For each portal on the boundary, one should

also include some information about what cells are connected to it. The ideas for

the prize-collecting case are more or less the same as those presented above. Another

point of departure between the two algorithms is that for the Euclidean case we have

221

to satisfy certain initial conditions by possibly decomposing the input into different

pieces. For the bounded-treewidth case this has already been performed during the

reduction from bounded-genus graphs.

222

Chapter 11

Open Problems

We conclude this thesis by mentioning some open problems.

The technique used in Chapter 8 (based on Theorem 4.3.1) may be applicable to

other problems such as k-MST and the Submodular Prize-collecting Steiner

Tree problem introduced in [HST05].

Improving the approximation ratio for Prize-collecting Steiner Tree fur-

ther than that in the proof of Theorem 3.2.1 is a challenging question. This has

been already done for Prize-collecting TSP by Goemans [Goe09]. In light of the

recent improvement for Steiner Tree due to [BGRS10], there is hope that better

approximation algorithms for PCST may exist. It is worth noting that even now

we do not know of any linear-programming relaxation with an integrality gap better

than two (i.e., 2 − c for constant c) for PCST. In particular, if the integrality of

the LP relaxation used by Byrka et al. is shown to match the approximation guar-

antee they obtain, their LP can be augmented to give an LP relaxation for PCST

with an integrality gap bounded away from two. In fact, this approach would beat

Theorem 3.2.1.

All the demands in the problems we discussed in this thesis are for single connec-

tivity. In order to extend the results to higher-connectivity requirements, the prize-

223

collecting technique, the spanner framework, and the spanner construction all need

to be generalized. For constant-connectivity demands (that allows an edge to be used

multiple times), all the three pieces seem to work with appropriate modifications—the

spanner construction requires nontrivial ideas similar to those in [BK08]. Neverthe-

less, we do not know how to do this for superconstant connectivity.

The prize-collecting clustering technique, in conjunction to the spanner machin-

ery, may be useful in obtaining better approximation ratios (PTAS for most) for

several other problems on planar graphs. The list of these algorithm includes, but

is not limited to, Facility Location, k-Median, k-MST, and Group Steiner

Tree. In particular, although we still do not know how to carry out the reduction

to bounded-treewidth instances, solving those reduced instances is easy for Facility

Location, k-Median, and k-MST.

Recall that for PCSF the reduction works (Theorem 3.2.7), but we do not hope

to obtain a PTAS for the bounded-treewidth case (Theorem 3.2.6). However, the

treewidth reduction approach can still be useful for obtaining constant-factor approx-

imations for planar graphs better than the 2.54-approximation algorithm of [HJ06]

for general graphs. We pose it as an open question whether this is indeed possible

for PCSF.

Nothing in the prize-collecting clustering theorems (i.e., Theorems 4.2.1, 4.3.1)

is restricted to planar graphs. The theorems work with any graph, although the

first theorem has only been used, as of now, in the context of building spanners

for planar graphs. A recent development [DHK11] extends the spanner framework

to H-minor-free graphs, hence, an analog of the spanner construction of Chapter 6

immediately results in a PTAS for Steiner Forest, PCST, PCTSP, etc. on H-

minor-free graphs. In addition, it will provide a reduction from H-minor-free graphs

to bounded-treewidth graphs for SPCSF.

A much harder question to answer is whether any of the spanner machinery,

224

or the prize-collecting clustering technique, can be modified to work for directed

graph metrics. Unfortunately, Traveling Salesman and Steiner Tree seem

much harder on directed graphs: the best known approximation ratio for the former

problem is O(log n/ log log n), whereas the latter is known not to be approximable

(unless P = NP) to within polylogarithmic factors. This also renders the use of the

spanner framework, as is, impossible since those ideas require a constant-approximate

solution to build the spanner on.

The issue of running time is important not only from a practical point of view, but

also from a theoretical perspective. The focus of this thesis was on the theoretical side

where, in particular, we are interested in improving the running time of the planar

Steiner Forest algorithm of Chapter 9. Currently, the PTAS for the bounded-

treewidth case is not efficient, as the exponent of the polynomial depends on ε. This

stems from the way we construct the collection of partitions. A nice question is

whether we can find a smaller number of partitions, so as to obtain an EPTAS.

225

Bibliography

[AABV95] Baruch Awerbuch, Yossi Azar, Avrim Blum, and Santosh Vempala.

Improved approximation guarantees for minimum-weight k-trees and prize-

collecting salesmen. In Proceedings of the 27th Annual ACM Symposium on

Theory of Computing, pages 277–283. ACM, 1995.

[AB10] Aaron Archer and Anna Blasiak. Improved approximation algorithms for the

minimum latency problem via prize-collecting strolls. In Proceedings of the 21st

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 429–447, 2010.

[ABHK09] Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi,

and Howard Karloff. Improved approximation algorithms for prize-collecting

Steiner tree and TSP. In Proceedings of the 50th Annual Symposium on Foun-

dations of Computer Science, pages 427–436, 2009.

[ABHK11] Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi,

and Howard Karloff. Improved approximation algorithms for prize-collecting

Steiner tree and TSP. SIAM Journal of Computing, 40(2):309–332, 2011.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowksi. Complexity

of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete

Methods, 8(2):277–284, 1987.

226

[AFZ06] Julián Aráoz, Elena Fernández, and Cristina Zoltan. Privatized rural post-

man problems. Computers and Operations Research, 33:3432–3449, December

2006.

[AGK+98] Sanjeev Arora, Michelangelo Grigni, David Karger, Philip N. Klein, and

Andrzej Woloszyn. A polynomial-time approximation scheme for weighted

planar graph TSP. In Proceedings of the 9th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 33–41, 1998.

[AK00] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic

graphs. Theoretical Computer Science, 237(1-2):123–134, 2000.

[AK06] Sanjeev Arora and George Karakostas. A 2 + ε approximation algorithm for

the k-MST problem. Mathematical Programming, 107(3):491–504, 2006.

[AKCF+04] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows,

Michael A. Langston, W. Henry Suters, and Christopher T. Symons. Kernel-

ization algorithms for the vertex cover problem: Theory and experiments. In

Proceedings of the 6th Workshop on Algorithm Engineering and Experiments

and the First Workshop on Analytic Algorithmics and Combinatorics, pages

62–69, 2004.

[AKR91] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An ap-

proximation algorithm for the generalized Steiner problem on networks. In

Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,

pages 134–144, New York, NY, United States, 1991. ACM.

[AKR95] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An ap-

proximation algorithm for the generalized Steiner problem on networks. SIAM

Journal of Computing, 24(3):440–456, 1995.

227

[AKR03] Eyal Amir, Robert Krauthgamer, and Satish Rao. Constant factor approxi-

mation of vertex-cuts in planar graphs. In Proceedings of the 35th Annual ACM

Symposium on Theory of Computing, pages 90–99. ACM, 2003.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.

Annals of Mathematics, 160:781–793, 2004.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof verification and the hardness of approximation problems. Jour-

nal of the ACM, 45:501–555, May 1998.

[ALW08] Aaron Archer, Asaf Levin, and David P. Williamson. A faster, better ap-

proximation algorithm for the minimum latency problem. SIAM Journal of

Computing, 37(5):1472–1498, 2008.

[And73] Michael R. Anderberg. Cluster analysis for applications. Academic Press,

Inc., New York, NY, United States, 1973.

[AR98] Sunil Arya and Hariharan Ramesh. A 2.5 factor approximation algorithm for

the k-MST problem. Information Processing Letters, 65(3):117–118, 1998.

[Aro96] Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP

and other geometric problems. In Proceedings of the 37th Annual Symposium

on Foundations of Computer Science, page 2, Washington, DC, United States,

1996. IEEE Computer Society.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean trav-

eling salesman and other geometric problems. Journal of the ACM, 45(5):753–

782, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new

characterization of NP. Journal of the ACM, 45:70–122, January 1998.

228

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on

planar graphs. Journal of the ACM, 41(1):153–180, 1994.

[Bal89] Egon Balas. The prize collecting traveling salesman problem. Networks,

19:621–636, 1989.

[BBCM04] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Ap-

proximation Algorithms for Deadline-TSP and Vehicle Routing with Time-

Windows. In Proceedings of the 36th Annual ACM Symposium on Theory of

Computing, pages 166–174, New York, NY, United States, 2004. ACM.

[BC04] Daniel Boley and Dongwei Cao. Training support vector machine using adap-

tive clustering. In Proceedings of the 4th SIAM International Conference on

Data Mining, pages 126–137, New York, NY, United States, 2004. Society for

Industrial and Applied Mathematics.

[BC10] MohammadHossein Bateni and Julia Chuzhoy. Approximation algorithms

for the directed k-tour and k-stroll problems. In Proceedings of the 13th In-

ternational Workshop on Approximation Algorithms for Combinatorial Opti-

mization Problems, volume 6302 of Lecture Notes in Computer Science, pages

25–38. Springer, 2010.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Ar-

avindan Vijayaraghavan. Detecting high log-densities: an O(n1/4) approxima-

tion for densest k-subgraph. In Proceedings of the 42nd Annual ACM Sympo-

sium on Theory of Computing, pages 201–210, 2010.

[BCE+11] MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Mohammad-

Taghi Hajiaghayi, Nitish Korula, and Dániel Marx. Prize-collecting Steiner

problems on planar graphs. In Proceedings of the 22nd Annual ACM-SIAM

229

Symposium on Discrete Algorithms, pages 1028–1049, Philadelphia, PA, United

States, 2011. Society for Industrial and Applied Mathematics.

[BCG09a] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami.

MaxMin allocation via degree lower-bounded arborescences. In Proceedings of

the 41nd Annual ACM Symposium on Theory of Computing, pages 543–552,

2009.

[BCG09b] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami.

New approximation algorithms for degree lower-bounded arborescences and

Max-Min allocation. Technical Report TR-848-09, Princeton University, March

2009.

[BCK+07] Avrim Blum, Shuchi Chawla, David Karger, Terran Lane, Adam Mey-

erson, and Maria Minkoff. Approximation algorithms for orienteering and

discounted-reward TSP. SIAM Journal of Computing, 37(2):653–670, 2007.

Preliminary version in Proceedings of the 44th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), 46–55, 2003.

[BDT09] Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-

time approximation schemes for subset-connectivity problems in bounded genus

graphs. In Proceedings of the 26th International Symposium on Theoretical

Aspects of Computer Science, pages 171–182, New York, NY, United States,

2009. Springer.

[BGHK09] MohammadHossein Bateni, Lukasz Golab, MohammadTaghi Hajiaghayi,

and Howard J. Karloff. Scheduling to minimize staleness and stretch in real-

time data warehouses. In Proceedings of the 21st Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 29–38. ACM, 2009.

230

[BGHS09] MohammadHossein Bateni, Alexandre Gerber, MohammadTaghi Haji-

aghayi, and Subhabrata Sen. Multi-VPN optimization for scalable routing

via relaying. In Proceedings of the 28th IEEE International Conference on

Computer Communications, pages 2756–2760. IEEE Computer Society, 2009.

[BGHS10] MohammadHossein Bateni, Alexandre Gerber, MohammadTaghi Haji-

aghayi, and Subhabrata Sen. Multi-VPN optimization for scalable routing

via relaying. IEEE/ACM Transactions on Networking, 18(5):1544–1556, 2010.

[BGRS10] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità.

An improved LP-based approximation for Steiner tree. In Proceedings of the

42nd Annual ACM Symposium on Theory of Computing, pages 583–592, 2010.

[BGSLW93] Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P.

Williamson. A note on the prize collecting traveling salesman problem. Math-

ematical Programming, 59:413–420, 1993.

[BH09a] MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Assignment

problem in content distribution networks: unsplittable hard-capacitated facility

location. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 805–814, 2009.

[BH09b] MohammadHossein Bateni and MohammadTaghi Hajiaghayi. A note on the

subadditive network design problem. Operations Research Letters, 37(5):339–

344, 2009.

[BH10] MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean

prize-collecting Steiner forest. In Proceedings of the 9th Latin American The-

oretical Informatics Symposium, volume 6034 of Lecture Notes in Computer

Science, pages 503–514. Springer, 2010.

231

[BHIM10] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Nicole Immor-

lica, and Hamid Mahini. The cooperative game theory foundations of net-

work bargaining games. In Proceedings of the 37th International Colloquium

on Automata, Languages and Programming, volume 6198 of Lecture Notes in

Computer Science, pages 67–78. Springer, 2010.

[BHJP11] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Sina Jafaropur,

and Dan Pei. Towards an efficient algorithmic framework for pricing cellular

data service. In Proceedings of the 30th IEEE International Conference on

Computer Communications. IEEE, 2011.

[BHKM11] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Philip N.

Klein, and Claire Mathieu. A polynomial-time approximation scheme for pla-

nar multiway cut, 2011. manuscript.

[BHM10a] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel

Marx. Approximation schemes for Steiner forest on planar graphs and graphs

of bounded treewidth. In Proceedings of the 42nd Annual ACM Symposium on

Theory of Computing, pages 211–220, 2010. To appear in SIAM Journal of

Computing.

[BHM10b] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel

Marx. Prize-collecting network design on planar graphs. CoRR, abs/1006.4339,

2010.

[BHZ10] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza

Zadimoghaddam. Submodular secretary problem and extensions. In Pro-

ceedings of the 13th International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems, pages 39–52, 2010.

232

[BK08] Glencora Borradaile and Philip N. Klein. The two-edge connectivity surviv-

able network problem in planar graphs. In Proceedings of the 35th International

Colloquium on Automata, Languages and Programming, volume 5125 of Lecture

Notes in Computer Science, pages 485–501. Springer, 2008.

[BKM08] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-

time approximation scheme for Euclidean Steiner forest. In Proceedings of the

49th Annual Symposium on Foundations of Computer Science, pages 115–124,

2008.

[BKM09] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n)

approximation scheme for Steiner tree in planar graphs. ACM Transactions on

Algorithms, 5(3), 2009.

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernica,

11(1-2):1–22, 1993.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions

of small treewidth. SIAM Journal of Computing, 25(6):1305–1317, 1996.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded

treewidth. Theoretical Computer Science, 209(1-2):1–45, 1998.

[Bon04] Paul Bonsma. Sparsest cuts and concurrent flows in product graphs. Discrete

Applied Mathematics, 136(2-3):173–182, 2004.

[BR92] Piotr Berman and Viswanathan Ramaiyer. Improved approximations for the

Steiner tree problem. In Proceedings of the 3rd Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 325–334, 1992.

[BRV96] Avrim Blum, R. Ravi, and Santosh Vempala. A constant-factor approxi-

mation algorithm for the k MST problem (extended abstract). In Proceedings

233

of the 28th Annual ACM Symposium on Theory of Computing, pages 442–448,

1996.

[BS08] Surender Baswana and Sandeep Sen. Algorithms for spanners in weighted

graphs. In Encyclopedia of Algorithms. Springer-Verlag, 2008.

[BS11] Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and

open problems, 2011.

[BT97] Hans L. Bodlaender and Dimitrios M. Thilikos. Treewidth for graphs with

small chordality. Discrete Applied Mathematics, 79(1-3):45–61, 1997.

[CC02] Miroslav Chlebik and Janka Chlebikova. Approximation hardness of the

Steiner tree problem on graphs. In Proceedings of the 8th Scandinavian Work-

shop on Algorithm Theory, pages 170–179. Springer, 2002.

[CC07] Sergio Cabello and Erin W. Chambers. Multiple source shortest paths in

a genus g graph. In Proceedings of the 18th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 89–97, Philadelphia, PA, United States, 2007.

Society for Industrial and Applied Mathematics.

[CEK10] Chandra Chekuri, Alina Ene, and Nitish Korula. Prize-collecting Steiner

tree and forest in planar graphs. CoRR, abs/1006.4357, 2010.

[CFN77] G. Cornuejols, M. L. Fisher, and G. Nemhauser. Location of bank accounts

to optimize oat: An analytic study of exact and approximate algorithms. Man-

agement Science, 23:789810, 1977.

[CG05] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for

facility location problems. SIAM Journal of Computing, 34(4):803–824, 2005.

[CGRT03] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar.

Paths, Trees, and Minimum Latency Tours. In Proceedings of the 44th Annual

234

Symposium on Foundations of Computer Science, pages 36–45. IEEE Computer

Society, 2003.

[Che86] Paul L. Chew. There is a planar graph almost as good as the complete

graph. In Proceedings of the 2nd Annual Symposium on Computational Geom-

etry, pages 169–177, 1986.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling-

salesman problem. Technical report, Graduate School of Industrial Adminis-

tration, Carnegie-Mellon University, 1976.

[CKP10a] Deeparnab Chakrabarty, Jochen Könemann, and David Pritchard. Hyper-

graphic LP relaxations for Steiner trees. In Proceedings of the 14th International

Conference on Integer Programming and Combinatorial Optimization, volume

6080 of Lecture Notes in Computer Science, pages 383–396. Springer, 2010.

[CKP10b] Deeparnab Chakrabarty, Jochen Könemann, and David Pritchard. Inte-

grality gap of the hypergraphic relaxation of Steiner trees: A short proof of a

1.55 upper bound. Operations Research Letters, 38(6):567–570, 2010.

[CKPar] Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms

for orienteering and related problems. ACM Transactions on Algorithms, to

appear. Preliminary version in Proceedings of the 19th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 661–670, 2008.

[CKR+03] Shuchi Chawla, D. Kitchin, Uday Rajan, R. Ravi, and Amitabh Sinha.

Profit guaranteeing mechanisms for multicast networks. In Proceedings of the

4th ACM Conference on Electronic Commerce, pages 190–191. ACM, 2003.

[CKS04] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint

paths in planar graphs. In Proceedings of the 45th Annual Symposium on Foun-

dations of Computer Science, pages 71–80, 2004.

235

[CKS05] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommod-

ity flow, well-linked terminals, and routing problems. In Proceedings of the 37th

Annual ACM Symposium on Theory of Computing, pages 183–192, New York,

NY, United States, 2005. ACM.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3 edition,

2009.

[CM05] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-

contractible cycles for topologically embedded graphs. In Proceedings of the

13th Annual European Symposium of Algorithms, pages 131–142, New York,

NY, United States, 2005. Springer.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the 3rd Annual ACM Symposium on Theory of Computing, pages

151–158, New York, NY, USA, 1971. ACM.

[CRR01] S. A. Canuto, Mauricio G. C. Resende, and Celso C. Ribeiro. Local search

with perturbations for the prize-collecting Steiner tree problem in graphs. Net-

works, 38(1):50–58, 2001.

[CRW01] Fabián A. Chudak, Tim Roughgarden, and David P. Williamson. Approxi-

mate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean

relaxation. In Proceedings of the 8th International Conference on Integer Pro-

gramming and Combinatorial Optimization, pages 60–70, London, UK, 2001.

Springer-Verlag.

[CRW04] Fabián A. Chudak, Tim Roughgarden, and David P. Williamson. Approxi-

mate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean

relaxation. Mathematical Programming, 100:411–421, 2004.

236

[dCLMR03] Alexandre Salles da Cunha, Abilio Lucena, Nelson Maculan, and Mauri-

cio G. C. Resende. A relax and cut algorithm for the prize collecting Steiner

problem in graphs. In Proceedings of Mathematical Programming in Rio, pages

72–78, 2003.

[DDO+04] Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce A.

Reed, Paul D. Seymour, and Dirk Vertigan. Excluding any graph as a minor

allows a low tree-width 2-coloring. Journal of Combinatorial Theory, Series B,

91(1):25–41, 2004.

[DH08a] Erik D. Demaine and MohammadTaghi Hajiaghayi. Approximation schemes

for planar graph problems (1983, 1984; Baker). In Encyclopedia of Algorithms,

pages 59–62. Springer-Verlag, 2008.

[DH08b] Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality (2004;

Demaine, Fomin, Hajiaghayi, Thilikos). In Encyclopedia of Algorithms, pages

88–90. Springer-Verlag, 2008.

[DHK05] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi

Kawarabayashi. Algorithmic graph minor theory: Decomposition, ap-

proximation, and coloring. In Proceedings of the 46th Annual Symposium on

Foundations of Computer Science, pages 637–646, 2005.

[DHK11] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi

Kawarabayashi. Contraction decomposition in H-minor-free graphs and

algorithmic applications. In Proceedings of the 43rd Annual ACM Symposium

on Theory of Computing, page to appear, 2011.

[DHM07] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. Ap-

proximation algorithms via contraction decomposition. In Proceedings of the

237

18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 278–287,

2007.

[Duf65] Richard J. Duffin. Topology of series-parallel networks. Journal of Mathe-

matical Analysis and Applications, 10:303–318, 1965.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467, 1965.

[Edm03] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In

Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial

optimization - Eureka, you shrink!, pages 11–26. Springer-Verlag, New York,

NY, United States, 2003.

[EGLV98] Stefan Engevall, Maud Göthe-Lundgren, and Peter Värbrand. A strong

lower bound for the node weighted Steiner tree problem. Networks, 31(1):11–17,

1998.

[Elk08] Michael Elkin. Sparse graph spanners. In Encyclopedia of Algorithms.

Springer-Verlag, 2008.

[EMV87] Ranel E. Erickson, Clyde L. Monma, , and Arthur F. Veinott. Send-and-

split method for minimum-concave-cost network flows. Mathematics of Oper-

ations Research, 12:634–664, 1987.

[Epp00] David Eppstein. Diameter and treewidth in minor-closed graph families.

Algorithmica, 27(3):275–291, 2000.

[Eul41] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-

mentarii academiae scientiarum Petropolitanae, 8:128–140, 1741.

238

[FFFdP10] Paulo Feofiloff, Cristina G. Fernandes, Carlos Eduardo Ferreira, and

José Coelho de Pina. A note on Johnson, Minkoff and Phillips’ algorithm

for the prize-collecting Steiner tree problem. arXiv:1004.1437v2 [cs.DS], 2010.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario

Szegedy. Interactive proofs and the hardness of approximating cliques. Journal

of the ACM, 43:268–292, March 1996.

[FHL08] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved ap-

proximation algorithms for minimum weight vertex separators. SIAM Journal

of Computing, 38(2):629–657, 2008.

[Fle00] Lisa Fleischer. Recent progress in submodular function minimization. OP-

TIMA: Mathematical Programming Society Newsletter, 64:1–11, 2000.

[FMV07] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-

monotone submodular functions. In Proceedings of the 48th Annual Symposium

on Foundations of Computer Science, pages 461–471, 2007.

[FNW78] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An

analysis of approximations for maximizing submodular set functions—ii. Math-

ematical Programming Studies, 8:7387, 1978.

[FP03] Eric J. Friedman and David C. Parkes. Pricing WiFi at Starbucks: issues

in online mechanism design. In Proceedings of the 4th ACM Conference on

Electronic Commerce, pages 240–241. ACM, 2003.

[Fra93] András Frank. Applications of submodular functions. In Surveys in Combi-

natorics, pages 85–136. London Mathematical Society, 1993.

239

[Gar96] Naveen Garg. A 3-approximation for the minimum tree spanning k vertices.

In Proceedings of the 37th Annual Symposium on Foundations of Computer

Science, pages 302–309, 1996.

[Gar05] Naveen Garg. Saving an epsilon: a 2-approximation for the k-MST problem

in graphs. In Proceedings of the 37th Annual ACM Symposium on Theory of

Computing, pages 396–402, 2005.

[Gas10] Elisabeth Gassner. The Steiner forest problem revisited. Journal of Discrete

Algorithms, 8(2):154–163, 2010.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GK11] Anupam Gupta and Jochen Könemann. Approximation algorithms for net-

work design: A survey. Surveys in Operations Research and Management Sci-

ence, 16(1):3 – 20, 2011.

[GKP95] Michelangelo Grigni, Elias Koutsoupias, and Christos H. Papadimitriou. An

approximation scheme for planar graph TSP. In Proceedings of the 36th Annual

Symposium on Foundations of Computer Science, page 640, Washington, DC,

United States, 1995. IEEE Computer Society.

[GKT51] David Gale, Harold W. Kuhn, and Albert W. Tucker. Linear programming

and the theory of games. In T. C. Koopmans, editor, Activity Analysis of Pro-

duction and Allocation, pages 317–329. Wiley, New York, NY, United States,

1951.

[GKTW09] Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Ap-

proximability of combinatorial problems with multi-agent submodular cost

functions. In Proceedings of the 50th Annual Symposium on Foundations of

Computer Science, pages 755–764, 2009.

240

[GLS88] Martin Grötschel, Laszlo Lovász, and Alexander Schrijver. Geometric Algo-

rithms and Combinatorial Optimization. Springer-Verlag, 1988.

[GNS08] Joachim Gudmundsson, Giri Narasimhan, and Michiel H. M. Smid. Geo-

metric spanners. In Encyclopedia of Algorithms. Springer-Verlag, 2008.

[Goe09] Michel X. Goemans. Combining approximation algorithms for the prize-

collecting TSP. arXiv:0910.0553v1 [cs.DS], 2009.

[GP68] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on

Applied Mathematics, 16(1):1–29, 1968.

[GP02] Harold N. Gabow and Seth Pettie. The dynamic vertex minimum problem

and its application to clustering-type approximation algorithms. In Proceedings

of the 8th Scandinavian Workshop on Algorithm Theory, pages 190–199, 2002.

[GRST10] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar.

Constrained non-monotone submodular maximization: Offline and secretary

algorithms. In Proceedings of the 6th International Workshop on Internet and

Network Economics, pages 246–257, 2010.

[GW92] Michel X. Goemans and David P. Williamson. A general approximation

technique for constrained forest problems. In Proceedings of the 3rd Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 307–316, 1992.

[GW95] Michel X. Goemans and David P. Williamson. A general approximation tech-

nique for constrained forest problems. SIAM Journal of Computing, 24:296–

317, 1995.

[Haj05] MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its Algo-

rithmic Applications. PhD thesis, Massachusetts Institute of Technology, June

2005.

241

[Hie73] Carl Hierholzer. über die Möglichkeit, einen Linienzug ohne Wiederholung

und ohne Unterbrechnung zu umfahren. Mathematische Annalen, 6:3032, 1873.

[HJ06] MohammadTaghi Hajiaghayi and Kamal Jain. The prize-collecting general-

ized Steiner tree problem via a new approach of primal-dual schema. In Pro-

ceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 631–640, New York, NY, United States, 2006. ACM.

[HK70] Michael Held and Richard M. Karp. The traveling-salesman problem and

minimum spanning trees. Operations Research, 18(6):1138–1162, 1970.

[HK71] Michael Held and Richard M. Karp. The traveling-salesman problem and

minimum spanning trees: Part II. Mathematical Programming, 1:6–25, 1971.

[HKKN10] MohammadTaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Zeev

Nutov. Prize-collecting Steiner network problems. In Proceedings of the 14th In-

ternational Conference on Integer Programming and Combinatorial Optimiza-

tion, volume 6080 of Lecture Notes in Computer Science, pages 71–84. Springer,

2010.

[Hoo91] J. A. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more

difficult than cycles. Operations Research Letters, 10:291–295, July 1991.

[HP99] Stefan Hougardy and Hans Jürgen Prömel. A 1.598 approximation algorithm

for the Steiner problem in graphs. In Proceedings of the 10th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 448–453, Philadelphia, PA,

United States, 1999. Society for Industrial and Applied Mathematics.

[HST05] Ara Hayrapetyan, Chaitanya Swamy, and Éva Tardos. Network design for

information networks. In Proceedings of the 16th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 933–942, 2005.

242

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-

Hall, 1988.

[JF96] Anil K. Jain and Patrick J. Flynn. Image segmentation using clustering.

In N. Ahuja and K. Bowyer, editors, Advances in Image Understanding: A

Festschrift for Azriel Rosenfeld, pages 65–83. IEEE Computer Society Press,

Los Alamitos, CA, USA, 1996.

[JMF99] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering:

A review. ACM Computing Surveys, 31(3):264–323, 1999.

[JMP00] David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting

Steiner tree problem: theory and practice. In Proceedings of the 11th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 760–769, 2000.

[JP95] Michael Jünger and William R. Pulleyblank. New primal and dual matching

heuristics. Algorithmica, 13(4):357–386, 1995.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric

facility location and k-median problems using the primal-dual schema and La-

grangian relaxation. Journal of the ACM, 48(2):274–296, 2001.

[Kar72] Richard Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum Press, 1972.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the 16th Annual ACM Symposium on Theory of Com-

puting, pages 302–311, New York, NY, United States, 1984. ACM.

[KG92] J. Keil and Carl Gutwin. Classes of graphs which approximate the complete

Euclidean graph. Discrete & Computational Geometry, 7:13–28, 1992.

243

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming. Dok-

lady Akademiia Nauk SSSR, 244:1093–1096, 1979. translated in Soviet Math-

ematics Doklady 20:1 (1979), p. 191-194.

[Kle06] Philip N. Klein. A subset spanner for planar graphs, with application to

subset TSP. In Proceedings of the 38th Annual ACM Symposium on Theory of

Computing, pages 749–756, 2006.

[Kle08] Philip N. Klein. A linear-time approximation scheme for TSP in undirected

planar graphs with edge-weights. SIAM Journal of Computing, 37(6):1926–

1952, 2008.

[Klo96] Ton Kloks. Treewidth of circle graphs. International Journal of Foundations

of Computer Science, 7(2):111–120, 1996.

[KPT11] Jochen Könemann, David Pritchard, and Kunlun Tan. A partition-based

relaxation for Steiner trees. Mathematical Programming, 127(2):345–370, 2011.

[KR91] Arkady Kanevsky and Vijaya Ramachandran. Improved algorithms for graph

four-connectivity. Journal of Computer and System Sciences, 42(3):288–306,

1991. Preliminary version in Twenty-Eighth IEEE Symposium on Foundations

of Computer Science (1987).

[KS02] Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable

flow problem. In Proceedings of the 13th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 184–193, Philadelphia, PA, United States, 2002.

Society for Industrial and Applied Mathematics.

[KT11] Ken-ichi Kawarabayashi and Mikkel Thorup. Minimum k-way cut of bounded

size is fixed-parameter tractable. CoRR, abs/1101.4689, 2011.

244

[Kur30] Casimir Kuratowski. Sur le problème des courbes gauches en topologie.

Fundamenta Mathematicae, 15:271–283, 1930.

[KZ97] Marek Karpinski and Alexander Zelikovsky. New approximation algorithms

for the Steiner tree problems. Journal of Combinatorial Optimization, 1(1):47–

65, 1997.

[LCFX07] Bin Li, Mingmin Chi, Jianping Fan, and Xiangyang Xue. Support clus-

ter machine. In Proceedings of the 24th International Conference on Machine

Learning, pages 505–512, New York, NY, United States, 2007. ACM.

[Lev73] Leonid Levin. Universal search problems. Problems of Information Transmis-

sion, 9:265–266, 1973. translated into English by Trakhtenbrot, B. A. (1984).

[LLP96] Youngho Lee, Byung Ha Lim, and June S. Park. A hub location problem

in designing digital data service networks: Lagrangian relaxation approach.

Location Science, 4(3):185 – 194, 1996.

[LMNS10] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviri-

denko. Maximizing nonmonotone submodular functions under matroid or knap-

sack constraints. SIAM Journal on Discrete Mathematics, 23(4):2053–2078,

2010.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems

and their use in designing approximation algorithms. Journal of the ACM,

46(6):787–832, 1999.

[LSV09] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization

over multiple matroids via generalized exchange properties. In Proceedings of

the 12th International Workshop on Approximation Algorithms for Combina-

torial Optimization Problems, pages 244–257, 2009.

245

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar

graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[LT80] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar sepa-

rator theorem. SIAM Journal of Computing, 9(3):615–627, 1980.

[LW67] G. N. Lance and W. T. Williams. A general theory of classificatory sorting

strategies 1. Hierarchical systems. Computer Journal, 9:373–380, 1967.

[LWP+06] Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra

Mutzel, and Matteo Fischetti. An algorithmic framework for the exact solu-

tion of the prize-collecting Steiner tree problem. Mathematical Programming,

105:427–449, 2006.

[Mar07] Dániel Marx. Precoloring extension on chordal graphs. In A. Bondy,

J. Fonlupt, J.-L. Fouquet, J.-C. Fournier, and J.L. Ramirez Alfonsin, editors,

Graph Theory in Paris. Proceedings of a Conference in Memory of Claude

Berge, Trends in Mathematics, pages 255–270. Birkhäuser, Basel, Switzerland,

2007.

[Mcc05] S. Thomas Mccormick. Submodular function minimization. In Handbook on

Discrete Optimization, pages 321–391. Elsevier, 2005.

[Mit99] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdi-

visions: A simple polynomial-time approximation scheme for geometric TSP,

k-MST, and related problems. SIAM Journal of Computing, 28(4):1298–1309,

1999.

[MSL08] Ritesh Madan, Devavrat Shah, and Olivier Leveque. Product multicom-

modity flow in wireless networks. IEEE Transactions on Information Theory,

54(4):1460–1476, 2008.

246

[MSST07] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert Endre Tar-

jan. Clustering social networks. In Proceedings of the 5th International Work-

shop on Algorithms and Models for the Web-Graph, pages 56–67. Springer,

2007.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins

University Press, Baltimore, MD, United States, 2001.

[N47] John von Neumann. On a maximization problem. Manuscript, Institute for

Advanced Studies, Princeton University, Princeton, NJ 08544, USA, 1947.

[NR07] Viswanath Nagarajan and R. Ravi. Poly-logarithmic approximation algo-

rithms for directed vehicle routing problems. In Proceedings of the 10th Interna-

tional Workshop on Approximation Algorithms for Combinatorial Optimization

Problems, pages 257–270, 2007.

[NSW08] Chandrashekhar Nagarajan, Yogeshwer Sharma, and David P. Williamson.

Approximation algorithms for prize-collecting network design problems with

general connectivity requirements. In Proceedings of the 6th International

Workshop on Approximation and Online Algorithms, pages 174–187, 2008.

[NW78] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approxi-

mating the maximum of a submodular set function. Mathematics of Operations

Research, 3:177–188, 1978.

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An

analysis of approximations for maximizing submodular set functions—i. Math-

ematical Programming, 14:265–294, 1978.

[OGS11] Shayan Oveis Gharan and Amin Saberi. Asymmetric traveling salesman

problem on graphs with bounded genus. In Proceedings of the 22nd Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 967–975, 2011.

247

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph

Theory, 13, 1989.

[PS97] Hans Jürgen Prömel and Angelika Steger. RNC-approximation algorithms

for the Steiner problem. In Proceedings of the 14th Annual Symposium on

Theoretical Aspects of Computer Science, pages 559–570, 1997.

[Ras92] Edie M. Rasmussen. Clustering algorithms. In Information Retrieval: Data

Structures & Algorithms, pages 419–442. Prentice-Hall, 1992.

[RP86] M. B. Richey and R. Gary Parker. On multiple Steiner subgraph problems.

Networks, 16(4):423–438, 1986.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects

of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[RS94] Neil Robertson and Paul D. Seymour. Graph minors. XI. circuits on a surface.

Journal of Combinatorial Theory, Series B, 60(1):72–106, 1994.

[RSM+94] R. Ravi, Ravi Sundaram, Madhav V. Marathe, Daniel J. Rosenkrantz, and

S. S. Ravi. Spanning trees—short or small. In Proceedings of the 5rd Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 546–555, 1994.

[RV95] Sridhar Rajagopalan and Vijay V. Vazirani. Logarithmic approximation of

minimum weight k trees. Unpublished Manuscript, 1995.

[RZ00] Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree approxima-

tion in graphs. In Proceedings of the 11th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 770–779, 2000.

[RZ05] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph Steiner

tree approximation. SIAM Journal on Discrete Mathematics, 19(1):122–134,

2005.

248

[Sal91] Gerard Salton. Developments in automatic text retrieval. Science,

253(5023):974–980, August 1991.

[SC08] Karsten Steinhaeuser and Nitesh V. Chawla. Community detection in a large

real-world social network. In Huan Liu, John J. Salerno, and Michael J. Young,

editors, Social Computing, Behavioral Modeling, and Prediction, pages 168–

175. Springer US, 2008.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings

of the 10th Annual ACM Symposium on Theory of Computing, pages 216–226,

New York, NY, United States, 1978. ACM.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. John Wiley

& Sons, Inc., New York, NY, United States, 1986.

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.

Springer, 2003.

[SCRS00] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and S. Subramanian. Ap-

proximating the single-sink link-installation problem in network design. SIAM

Journal on Optimization, 11(3):595–610, 2000.

[SSW07] Yogeshwer Sharma, Chaitanya Swamy, and David P. Williamson. Approxi-

mation algorithms for prize collecting forest problems with submodular penalty

functions. In Proceedings of the 18th Annual ACM-SIAM Symposium on Dis-

crete Algorithms, pages 1275–1284, 2007.

[Thi03] Martin Thimm. On the approximability of the Steiner tree problem. Theo-

retical Computer Science, 295(1-3):387–402, 2003.

[Von07] Jan Vondrák. Submodularity in Combinatorial Optimization. PhD thesis,

Charles University, 2007.

249

[Wag37] Klaus W. Wagner. über eine Eigenschaft der ebenen Komplexe. Mathema-

tische Annalen, 114:570–590, 1937.

[Wes00] Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice-Hall,

August 2000.

[Win87] Pawel Winter. Steiner problem in networks: a survey. Networks, 17:129–167,

April 1987.

[YLZ06] Jinhui Yuan, Jianmin Li, and Bo Zhang. Learning concepts from large

scale imbalanced data sets using support cluster machines. In Proceedings of

the 14th Annual ACM International Conference on Multimedia, pages 441–450,

New York, NY, United States, 2006. ACM.

[YYH03] Hwanjo Yu, Jiong Yang, and Jiawei Han. Classifying large data sets using

SVMs with hierarchical clusters. In Proceedings of the 9th International Con-

ference on Knowledge Discovery and Data Mining, pages 306–315, New York,

NY, United States, 2003. ACM.

[Zel92] Alexander Zelikovsky. An 11/6-approximation for the Steiner problem on

graphs. In Proceedings of the 4th Czechoslovakian Symposium on Combina-

torics, Graphs, and Complexity (1990) published in Annals of Discrete Mathe-

matics, volume 51, pages 351–354, 1992.

[Zel93] Alexander Zelikovsky. An 11/6-approximation algorithm for the network

Steiner problem. Algorithmica, 9(5):463–470, 1993.

[Zel96] Alexander Zelikovsky. Better approximation bounds for the network and Eu-

clidean Steiner tree problems. Technical report, University of Virginia, Char-

lottesville, VA, USA, 1996.

250

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	I Preliminaries
	Introduction
	Definitions
	Essential definitions
	Functions
	Partitions
	Submodularity
	Metrics

	Computational complexity
	Efficient algorithms
	Linear programming
	NP-completeness
	Hardness of approximation

	Graph terminology
	Graph classes

	Problem definitions
	Connectivity problems
	Prize-collecting framework

	Thesis Organization and Contributions
	Techniques
	Prize-collecting clustering
	Spanner framework
	Spanner construction
	Granularization

	Results
	Prize-collecting problems in general graphs
	Steiner Forest on planar graphs
	Planar Prize-collecting Steiner Forest

	Credits

	II Techniques
	Prize-collecting Clustering
	Moat-growing procedure
	Implementation and further discussion
	Goemans-Williamson's algorithm for PCST

	Classification theorem
	Superclustering theorem
	Submodular clustering

	Spanner Framework
	Spanners
	An example: exact algorithm for planar k-Cut
	The general reduction

	Spanner Construction
	Preprocessing
	Brick decomposition
	Portal designation
	Brick processing
	Overview of analysis

	Granularization
	Static granularization
	Dynamic granularization

	III Applications
	Prize-collecting Steiner Tree and TSP
	Background
	Overview of the algorithm
	A good case, and a motivating bad example
	Our PCST algorithm
	Our PCTSP algorithm
	Our Prize-collecting Path algorithms

	Planar Steiner Forest
	Background
	Steiner forest for series-parallel graphs
	Steiner forest for graphs of treewidth three
	Steiner forest for bounded-treewidth graphs
	Groups
	Conforming solutions
	Constructing the partitions

	Steiner forest for planar graphs
	Preprocessing
	Spanner construction
	The algorithm

	Prize-collecting Network Design in Planar Graphs
	Background
	Reduction to the bounded-treewidth case
	Overview of the reduction
	Restricting demands
	Restricting connectivity

	APX-hardness for PCSF
	Hardness for planar graphs of treewidth two
	Remarks about the reduction
	Hardness for Euclidean metrics

	PCST, PCTSP, and PCS
	Bounded-treewidth PCST

	Multiplicative prize-collecting Steiner forest
	Fixed prize from asymmetric small integer weights
	Fixed prize from symmetric arbitrary weights
	Fixed prize from asymmetric arbitrary weights
	Prize-collecting tradeoff with arbitrary symmetric weights
	Euclidean setting

	Open Problems

