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Abstract

We will look at a collection of mathematical problems suggested by side-channel

attacks against public key cryptosystems, and how the techniques inspired by this

work relate to a variety of different applications.

First, we discuss the cold boot attack, a side-channel attack against disk encryption

systems that uses the phenomenon of DRAM remanence to recover encryption keys

from a running computer. In the course of the attack, however, there may be errors

introduced in the keys that the attacker obtains. It turns out that the structure of

the key data in an AES key schedule can allow an attacker to more efficiently recover

the private key in the presence of such errors.

We extend this idea to a RSA private keys, and show how the structure of RSA

private key data can allow an attacker to recover a key in the presence of random

errors from 27% of the bits of the original key.

Most previous work on RSA key recovery used the lattice-based techniques in-

troduced by Coppersmith for finding low-degree roots of polynomials mod numbers

of unknown factorization. We show how this approach can be extended from the

integers to the ring of polynomials, and give a new proof via lattice basis reduction of

Guruswami-Sudan list-decoding of Reed-Solomon codes. These theorems are in fact

instances of a general approach, which we extend to give an algorithm to find small

solutions to polynomials modulo ideals in number fields and a list-decoding algorithm

for multi-point algebraic-geometric codes.
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Chapter 1

Introduction

“You can’t hide secrets from the

future with math.”

MC Frontalot

An encryption algorithm is a mathematical procedure to obscure a message so that it

may only be read by a recipient who possesses some secret key. Both cryptography (the

making of such codes) and cryptanalysis (the breaking of such codes) have been studied

since ancient times. The study of cryptography was revolutionized by the introduction

of fast computers and the related study of computational complexity theory. At

the same time, the development of cryptography has been intimately entwined with

many of the most spectacular technological achievements of the twentieth century.

Encryption protects the data on the laptops of CEOs as they travel, the telephone

conversations of mobile phone users from eavesdroppers, the credit card numbers of

shoppers as they purchase books online, and the email of political dissidents from

their governments.

The fact that an encryption algorithm must run on an actual physical device gives

an attacker two options: either try to break the underlying algorithm directly, or use

some properties of the device performing the calculation to overcome the encryption

without breaking the underlying algorithm. This latter is called a side-channel attack.
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An attacker who wishes to directly attack a cryptosystem will typically try to

take advantage of some property of the algorithm that permits an attack faster than

brute-forcing the secret key. For example, in a symmetric cipher one might analyze

the diffusion of each bit of the key. In an asymmetric cipher one might try to take

advantage of the relationship between the public key and the private key in order to

discover the private key from public information. In a cryptographer’s paradise, it

would be possible to rigorously prove that an adversary must expend a large amount

of computational effort to learn this secret key from public information; one way of

accomplishing this would be to design a public-key cryptosystem such that learning

the secret key corresponds to solving a worst-case instance of an NP-hard problem,

and then to prove that P 6=NP. At this time, it is not known how to accomplish

either of these tasks, and the most widely used public-key algorithms are designed so

that breaking the encryption should lead to progress on a well-studied mathematical

problem that is hoped to be difficult to solve.

In this thesis, we will examine the interplay between the above ideas. First, we

will show how an attacker can use the mathematical structure of real encryption

algorithms to efficiently obtain a full break of a cryptosystem even if only partial

information about a key is learned during the course of an attack. This structure acts

as an error-correcting code for the key, and we will present algorithms for efficient

decoding in certain cases. From this point of view, the diffusion properties of a good

cipher are similar to the desired properties of a good error-correcting code. The last

part of this thesis explores this connection between coding theory and cryptography

from a different perspective, and gives a unified look at algorithms for a wide class of

key recovery problems and the problem of list-decoding of Reed-Solomon codes. The

algorithmic techniques used in the analysis of side-channel attacks can be extended

to much broader mathematical principles, and result in efficient algorithms to solve

“constructive” problems.
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In Chapter 2, we develop a real side-channel attack, the “cold boot” attack. In

this attack, an attacker uses the phenomenon of DRAM remanence to read encryption

keys from the memory of a running computer. We investigate the properties of DRAM

remanence experimentally and show how this attack can be used to break several

popular disk encryption programs in practice. This chapter and parts of the next are

based on work [49] originally published in the Proceedings of the 17th Usenix Security

Symposium in collaboration with Alex Halderman, Seth Schoen, William Clarkson,

William Paul, Joseph Calandrino, Ariel Feldman, Jacob Appelbaum, and Edward

Felten.

However, information obtained using the cold boot attack may contain errors. In

Chapter 3, we introduce a model for these errors and show how to correct AES and

RSA private keys with such errors. In the model, key bits decay unidirectionally in

random positions. Much of this chapter is based on work [50] originally published in

the Proceedings of Crypto 2009 in collaboration with Hovav Shacham.

In Chapter 4, we take a second look at techniques used in the correction of RSA

private keys in the case when the attacker learns a large block of consecutive bits

of the private key. This technique, introduced by Coppersmith and extended by

Howgrave-Graham, uses lattice basis reduction to find small solutions of a polynomial

equation modulo a large divisor of a given integer. In this chapter, we show how

to extend this technique beyond the integers to polynomials, number fields, and

function fields, where they give an improvement to the Guruswami-Sudan algorithm

for list-decoding of Reed-Solomon codes, an algorithm for finding small solutions

of polynomial equations modulo ideals in number fields, and an algorithm for list

decoding of algebraic-geometric codes. This chapter is based on work [27] originally

published in the Proceedings of Innovations in Computer Science 2011 in collaboration

with Henry Cohn.
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RSA is designed to be based on the hardness of factoring, so that any progress

on cryptanalyzing RSA would lead to improvements in factoring algorithms. After

more than three decades, significant progress has been made on methods for factoring,

but we still have neither a polynomial-time algorithm for factoring nor a proof that

breaking RSA would lead to an efficient algorithm for factoring. However, the results

of Chapter 3 introduce a new tradeoff: the known weaknesses of RSA with respect to

certain side-channel attacks translate into powerful results in coding theory.
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Chapter 2

Cold boot attacks on encryption

keys

“If a bad guy has unrestricted

physical access to your computer,

it’s not your computer anymore.”

Microsoft’s Ten Immutable

Laws of Security

Contrary to popular assumption, dynamic RAM (DRAM), the main memory used

in most modern computers, commonly retains its contents for several seconds after

power is lost, even at room temperature and even when removed from a motherboard.

In this chapter, we show how this phenomenon, called memory remanence, limits

the ability of an operating system to protect cryptographic key material against an

attacker with physical access to a machine, and we demonstrate how it can be exploited

to defeat several popular on-the-fly disk encryption systems.

Most security practitioners have assumed that a computer’s memory is erased

almost immediately when it loses power, or that whatever data remains is difficult to

retrieve without specialized equipment. We show that these assumptions are incorrect.
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Without power, DRAM loses its contents gradually over a period of seconds, and

data will persist for minutes or even hours if the chips are kept at low temperatures.

Residual data can be recovered using simple, nondestructive techniques that require

only momentary physical access to the machine.

We present a suite of attacks that exploit DRAM remanence to recover crypto-

graphic keys held in memory. They pose a particular threat to laptop users who rely

on disk encryption products. An adversary who steals a laptop while an encrypted

disk is mounted could employ our attacks to access the contents, even if the computer

is screen-locked or suspended when it is stolen. Because on-the-fly disk encryption

software typically stores the encryption key in RAM while the disk is mounted, an

attacker with access to the contents of RAM can learn the key and decrypt the disk.

We demonstrate this risk by defeating five popular disk encryption systems—

BitLocker, TrueCrypt, FileVault, LoopAES, and dm-crypt—and we expect many

similar products are also vulnerable.

Our attacks come in three variants of increasing resistance to countermeasures.

The simplest is to reboot the machine and launch a custom kernel with a small memory

footprint that gives the adversary access to the residual memory. A more advanced

attack is to briefly cut power to the machine, then restore power and boot a custom

kernel; this deprives the operating system of any opportunity to scrub memory before

shutting down. An even stronger attack is to cut the power, transplant the DRAM

modules to a second PC prepared by the attacker, and use it to extract their state.

This attack additionally deprives the original BIOS and PC hardware of any chance

to clear the memory on boot.

If the attacker is forced to cut power to the memory for too long, the data will

become corrupted. We examine two methods for reducing corruption and for correcting

errors in recovered encryption keys. The first is to cool the memory chips prior to

cutting power, which dramatically prolongs data retention times. The second is to
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apply algorithms we have developed for correcting errors in private and symmetric

keys. These techniques can be used alone or in combination.

While our principal focus is disk encryption, any sensitive data present in memory

when an attacker gains physical access to the system could be subject to attack. For

example, we found that Mac OS X leaves the user’s login password in memory, where

we were able to recover it. SSL-enabled web servers are vulnerable, since they normally

keep in memory private keys needed to establish SSL sessions. DRM systems may

also face potential compromise; they sometimes rely on software to prevent users from

accessing keys stored in memory, but attacks like the ones we have developed could

be used to bypass these controls.

It may be difficult to prevent all the attacks that we describe even with significant

changes to the way encryption products are designed and used, but in practice there

are a number of safeguards that can provide partial resistance. We suggest a variety

of mitigation strategies ranging from methods that average users can employ today

to long-term software and hardware changes. However, each remedy has limitations

and trade-offs, and we conclude that there is no simple fix for DRAM remanence

vulnerabilities.

2.1 Previous work

Though our investigation was, to our knowledge, the first security study to focus on

DRAM data remanence and the first to demonstrate how it can be used to conduct

practical attacks against real disk encryption systems, we were not the first to suggest

that data in DRAM might survive reboots or that this might have security implications.

Hints that memory behavior did not fit the widely held mental models can be found

in the literature going back more than thirty years.
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Among electrical engineering circles, it has known since at least the 1970s that

DRAM cell contents survive to some extent even at room temperature and that

retention times can be increased by cooling. In a 1978 experiment [66], a DRAM

showed no data loss for a full week without refresh when cooled with liquid nitrogen.

The first mention we can find in the computer security literature comes from

Anderson [6], who briefly discusses remanence in his 2001 book:

[A]n attacker can . . . exploit . . . memory remanence, the fact that many

kinds of computer memory retain some trace of data that have been

stored there. . . . [M]odern RAM chips exhibit a wide variety of memory

remanence behaviors, with the worst of them keeping data for several

seconds even at room temperature. . .

Anderson cites Skorobogatov [100], who found significant data retention times

with static RAMs at room temperature. Our results for modern DRAMs show even

longer retention in some cases.

Anderson’s main focus is on “burn-in” effects that occur when data is stored in

RAM for an extended period. Gutmann [47, 48] also examines “burn-in,” which he

attributes to physical changes that occur in semiconductor memories when the same

value is stored in a cell for a long time. Accordingly, Gutmann suggests that keys

should not be stored in one memory location for longer than several minutes. Our

findings concern a different phenomenon: the remanence effects we have studied occur

in modern DRAMs even when data is stored only momentarily. These effects do not

result from the kind of physical changes that Gutmann described, but rather from the

capacitance of DRAM cells.

We owe the suggestion that modern DRAM contents can survive cold boot to

Pettersson [86], who seems to have obtained it from Chow, Pfaff, Garfinkel, and

Rosenblum [25]. Pettersson suggested that remanence across cold boot could be used

to acquire forensic memory images and obtain cryptographic keys, although he did
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not experiment with the possibility. Chow et al. discovered this property in the course

of an experiment on data lifetime in running systems. While they did not exploit the

property, they remark on the negative security implications of relying on a reboot to

clear memory.

In a recent presentation, MacIver [70] stated that Microsoft considered memory

remanence attacks in designing its BitLocker disk encryption system. He acknowledged

that BitLocker is vulnerable to having keys extracted by cold-booting a machine when

it is used in “basic mode” (where the encrypted disk is mounted automatically without

requiring a user to enter any secrets), but he asserted that BitLocker is not vulnerable

in “advanced modes” (where a user must provide key material to access the volume).

He also discussed cooling memory with dry ice to extend the retention time. MacIver

apparently has not published on this subject.

Other methods for obtaining memory images from live systems include using

privileged software running under the host operating system [107], or using DMA

transfer on an external bus [38], such as PCI [23], mini-PCI, Firewire [14, 34, 35], or

PC Card. Unlike these techniques, our attacks do not require access to a privileged

account on the target system, they do not require specialized hardware, and they

are resistant to operating system countermeasures. Sophisticated tools have been

developed for analyzing memory images, regardless of the acquisition method [111].

The intelligence community may well have been aware of the attacks we describe

here, but we were unable to find any publications acknowledging this. A 1991

NSA report entitled “A Guide to Understanding Data Remanence in Automated

Information Systems” (the “Forest Green Book”) makes no mention of remanence in

RAM, discussing only remanence on other storage media such as tapes and disks [81].
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Memory Type Chip Maker Memory Density Make/Model Year

A SDRAM Infineon 128Mb Dell Dimension 4100 1999

B DDR Samsung 512Mb Toshiba Portégé 2001

C DDR Micron 256Mb Dell Inspiron 5100 2003

D DDR2 Infineon 512Mb IBM T43p 2006

E DDR2 Elpida 512Mb IBM x60 2007

F DDR2 Samsung 512Mb Lenovo 3000 N100 2007

Table 2.1: Test systems We experimented with six test systems (designated A–F) that
encompass a range of recent DRAM architectures and circuit densities.

2.2 DRAM remanence

A DRAM cell is essentially a capacitor that encodes a single bit when it is charged or

discharged [95, 48]. Over time, charge leaks out, and eventually the cell will lose its

state, or, more precisely, it will decay to its ground state, either zero or one depending

on how the cell is wired. To forestall this decay, each cell must be refreshed, meaning

that the capacitor must be recharged to hold its value—this is what makes DRAM

“dynamic.” Manufacturers specify a maximum refresh interval—the time allowed before

a cell is recharged—that is typically on the order of a few milliseconds. These times

are chosen conservatively to ensure extremely high reliability for normal computer

operations where even infrequent bit errors can cause problems, but, in practice, a

failure to refresh any individual DRAM cell within this time has only a tiny probability

of actually destroying the cell’s contents.

We conducted a series of experiments to characterize DRAM remanence effects

and better understand the security properties of modern memories. We performed

trials using PC systems with different memory technologies, as shown in Table 2.1.

These systems included models from several manufacturers and were manufactured

between 1999 and 2007.
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In each experiment, we filled representative memory regions with a pseudorandom

test pattern, and read back the data after suspending refreshes for varying periods of

time by cutting power to the machine. We measured the error rate for each sample as

the number of bit errors (the Hamming distance from the pattern we had written)

divided by the total number of bits. Fully decayed memory would have an error rate

of approximately 50%, since half the bits would match by chance.

Decay at operating temperature Our first tests measured the decay rate of each

machine’s memory under normal operating temperature, which ranged from 25.5 ◦C to

44.1 ◦C. We found that the decay curves from different machines had similar shapes,

with an initial period of slow decay, followed by an intermediate period of rapid decay,

and then a final period of slow decay, as shown in Figure 2.1.

The dimensions of the decay curves varied considerably between machines, with

the fastest exhibiting complete data loss in approximately 2.5 seconds and the slowest

taking over a minute. Newer machines tended to exhibit a shorter time to total

decay, possibly because newer chips have higher density circuits with smaller cells

that hold less charge, but even the shortest times were long enough to enable some

of our attacks. While some attacks will become more difficult if this trend continues,

manufacturers may attempt to increase retention times to improve reliability or lower

power consumption.

Decay at reduced temperature Colder temperatures are known to increase data

retention times [66, 6, 114, 48, 101, 100]. We performed another series of tests to

measure these effects. On machines A–D, we loaded a test pattern into memory, and,

with the computer running, cooled the memory module to approximately −50 ◦C. We

then cut power to the machine and maintained this temperature until power and

refresh were restored. We achieved these temperatures using commonly available

“canned air” duster products (see Section 2.3), which we discharged, with the can

11
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Figure 2.1: DRAM decay curves
We measured DRAM decay curves for
the six test systems. These reflect the
average number of bits in a pseudoran-
dom test pattern that changed value
after a given interval without power.
Data and fits are shown here for ma-
chines A and C (top), B and F (mid-
dle), and D and E (bottom). All memo-
ries were running at normal operating
temperature—i.e., without any special
cooling. Note that graphs are at differ-
ent scales.
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Seconds

Without

Power

Average Error Rates (%)

(No Cooling) (−50 ◦C)

A
60 41 [no errors]

300 50 0.000095

B
360 50 [no errors]

600 50 0.000036

C
120 41 0.00105

360 42 0.00144

D
40 50 0.025

80 50 0.18

Table 2.2: Cooling pro-
longs remanence We
measured DRAM error
rates for systems A–D af-
ter different intervals with-
out power, first at normal
operating temperatures (no
cooling) and then at a
reduced temperature of
−50 ◦C. Decay occurred
much more slowly under
the colder conditions.

inverted, directly onto the chips. As expected, we observed significantly slower rates

of decay under these reduced temperatures (see Table 2.2). On all of our test systems,

the decay was slow enough that an attacker who cut power for 1 minute would recover

at least 99.9% of bits correctly.

As an extreme test of memory cooling, we performed another experiment using

liquid nitrogen as an additional cooling agent. We first cooled the memory module

of machine A to −50 ◦C using the “canned air” product. We then cut power to the

machine, and quickly removed the DRAM module and placed it in a canister of liquid

nitrogen. We kept the memory module submerged in the liquid nitrogen for 60 minutes,

then returned it to the machine. We measured only 14,000 bit errors within a 1 MB

test region (0.17% decay). This suggests that, even in modern memory modules, data

may be recoverable for hours or days with sufficient cooling.

Decay patterns and predictability We observed that the DRAMs we studied

tended to decay in highly nonuniform patterns. While these patterns varied from chip
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to chip, they were very predictable in most of the systems we tested. Figure 2.2 shows

the decay in one memory region from machine A after progressively longer intervals

without power.

There seem to be several components to the decay patterns. The most prominent

is a gradual decay to the “ground state” as charge leaks out of the memory cells. In

the DRAM shown in Figure 2.2, blocks of cells alternate between a ground state of 0

and a ground state of 1, resulting in the series of horizontal bars. Other DRAM models

and other regions within this DRAM exhibited different ground states, depending on

how the cells are wired.

We observed a small number of cells that deviated from the “ground state” pattern,

possibly due to manufacturing variation. In experiments with 20 or 40 runs, a few

“retrograde” cells (typically ∼ 0.05% of memory cells, but larger in a few devices)

always decayed to the opposite value of the one predicted by the surrounding ground

state pattern. An even smaller number of cells decayed in different directions across

runs, with varying probabilities.

Apart from their eventual states, the order in which different cells decayed also

appeared to be highly predictable. At a fixed temperature, each cell seems to decay

after a consistent length of time without power. The relative order in which the

cells decayed was largely fixed, even as the decay times were changed by varying the

temperature. This may also be a result of manufacturing variations, which result in

some cells leaking charge faster than others.

To visualize this effect, we captured degraded memory images, including those

shown in Figure 2.2, after cutting power for intervals ranging from 1 second to

5 minutes, in 1 second increments. We combined the results into a video. Each test

interval began with the original image freshly loaded into memory. We might have

expected to see a large amount of variation between frames, but instead, most bits

appear stable from frame to frame, switching values only once, after the cell’s decay
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Figure 2.2: Visualizing remanence and decay We loaded a bitmap image into
memory on test machine A, then cut power for varying intervals. After 5 seconds (top left),
the image is nearly indistinguishable from the original; it gradually becomes more degraded,
as shown after 30 seconds, 60 seconds, and 5 minutes. Even after this longest trial, traces of
the original remain. Note patterns due to ground states (horizontal bands) and physical
variations in the chip (fainter vertical bands).
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interval. The video also shows that the decay intervals themselves follow higher order

patterns, likely related to the physical geometry of the DRAM.

BIOS footprints and memory wiping Even if memory contents remain intact

while power is off, the system BIOS may overwrite portions of memory when the

machine boots. In the systems we tested, the BIOS overwrote only relatively small

fractions of memory with its own code and data, typically a few megabytes concentrated

around the bottom of the address space.

On many machines, the BIOS can perform a destructive memory check during its

Power-On Self Test (POST). Most of the machines we examined allowed this test to

be disabled or bypassed (sometimes by enabling an option called “Quick Boot”).

On other machines, mainly high-end desktops and servers that support ECC

memory, we found that the BIOS cleared memory contents without any override

option. ECC memory must be set to a known state to avoid spurious errors if memory

is read without being initialized [10], and we believe many ECC-capable systems

perform this wiping operation whether or not ECC memory is installed.

ECC DRAMs are not immune to retention effects, and an attacker could transfer

them to a non-ECC machine that does not wipe its memory on boot. Indeed, ECC

memory could turn out to help the attacker by making DRAM more resistant to bit

errors.

2.3 Tools and attacks

Extracting residual memory contents requires no special equipment. When the system

is powered on, the memory controller immediately starts refreshing the DRAM, reading

and rewriting each bit value; at this point, the values are fixed, decay halts, and

programs running on the system can read any residual data using normal memory-

access instructions.
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One challenge is that booting the system will necessarily overwrite some portions

of memory. While we observed in our tests that the BIOS typically overwrote only a

small fraction of memory, loading a full operating system would be very destructive.

One solution is to use tiny special-purpose programs that, when booted from either a

warm or cold reset state, copy the memory contents to some external medium with

minimal disruption to the original state.

Our memory-imaging tools make use of several different attack vectors to boot a

system and extract the contents of its memory. For simplicity, each saves memory

images to the medium from which it was booted.

PXE network boot Most modern PCs support network booting via Intel’s Preboot

Execution Environment (PXE) [55], which provides rudimentary startup and network

services. We implemented a tiny (9 KB) standalone application that can be booted

via PXE and whose only function is streaming the contents of system RAM via a

UDP-based protocol. Since PXE provides a universal API for accessing the underlying

network hardware, the same binary image will work unmodified on any PC system

with PXE support. In a typical attack setup, a laptop connected to the target machine

via an Ethernet crossover cable runs DHCP and TFTP servers as well as a simple

client application for receiving the memory data. We have extracted memory images

at rates up to 300 Mb/s (around 30 seconds for a 1 GB RAM) with gigabit Ethernet

cards.

USB drives Alternatively, most PCs can boot from an external USB device such

as a USB hard drive or flash device. We implemented a small (10 KB) plug-in for

the SYSLINUX bootloader [7] that can be booted from an external USB device or

a regular hard disk. It saves the contents of system RAM into a designated data

partition on this device. We succeeded in dumping 1 GB of RAM to a flash drive in

approximately 4 minutes.
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Figure 2.3: Advanced cold-
boot attack An advanced
cold-boot attack involves reduc-
ing the temperature of the mem-
ory chips while the computer is
still running, then physically mov-
ing them to another machine that
the attacker has configured to
read them without overwriting
any data. Before powering off the
computer, the attacker can spray
the chips with “canned air,” hold-
ing the container in an inverted po-
sition so that it discharges cold liq-
uid refrigerant instead of gas (top).
This cools the chips to around
−50 ◦C (middle). At this temper-
ature, the data will persist for sev-
eral minutes after power loss with
minimal error, even if the mem-
ory modules are removed from the
computer (bottom).
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EFI boot Some recent computers, including all Intel-based Macintosh computers,

implement the Extensible Firmware Interface (EFI) instead of a PC BIOS. We have

also implemented a memory dumper as an EFI netboot application. We have achieved

memory extraction speeds up to 136 Mb/s, and we expect it will be possible to increase

this throughput with further optimizations.

iPods We have installed memory imaging tools on an Apple iPod (which behaves

like a USB disk) so that it can be used to covertly capture memory dumps without

impacting its functionality as a music player. This provides a plausible way to conceal

the attack in the wild.

Imaging attacks

An attacker could use tools like these in a number of ways, depending on his level of

access to the system and the countermeasures employed by hardware and software.

The simplest attack is to reboot the machine and configure the BIOS to boot the

memory extraction tool. A warm boot, invoked with the operating system’s restart

procedure, will normally ensure that refresh is not interrupted and the memory has

no chance to decay, though software will have an opportunity to wipe sensitive data.

A cold boot, initiated using the system’s restart switch or by briefly removing power,

may result in a small amount of decay, depending on the memory’s retention time,

but denies software any chance to scrub memory before shutting down.

Even if an attacker cannot force a target system to boot memory extraction tools,

or if the target employs countermeasures that erase memory contents during boot,

an attacker with sufficient physical access can transfer the memory modules to a

computer he controls and use it to extract their contents. Cooling the memory before

powering it off slows the decay sufficiently to allow it to be transplanted with minimal

data loss. Widely-available “canned air” dusters, usually containing a compressed
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fluorohydrocarbon refrigerant, can easily be used for this purpose. When the can is

discharged in an inverted position, as shown in Figure 2.3, it dispenses its contents

in liquid form instead of as a gas. The rapid drop in pressure inside the can lowers

the temperature of the discharge, and the subsequent evaporation of the refrigerant

causes a further chilling. By spraying the contents directly onto memory chips, we can

cool their surfaces to −50 ◦C and below. If the DRAM is cooled to this temperature

before power is cut, and kept cold, we can achieve nearly lossless data recovery even

after the chip is out of the computer for several minutes.

2.4 Identifying keys in memory

After extracting the memory from a running system, an attacker needs some way to

locate the cryptographic keys. This is like finding a needle in a haystack, since the

keys might occupy only tens of bytes out of gigabytes of data. Simple approaches,

such as attempting decryption using every block of memory as the key, are intractable

if the memory contains even a small amount of decay.

We have developed fully automatic techniques for locating encryption keys in

memory images, even in the presence of errors. The most commonly used symmetric

ciphers typically expand the secret key into a key schedule consisting of a sequence of

several round keys. We target this key schedule instead of the key itself, searching

for blocks of memory that satisfy the properties of a valid key schedule. Using these

methods we have been able to recover keys from closed-source encryption programs

without having to disassemble them and reconstruct their key data structures, and

we have even recovered partial key schedules that had been overwritten by another

program when the memory was reallocated.

Although previous approaches to key recovery do not require a scheduled key to

be present in memory, they have other practical drawbacks that limit their usefulness
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for our purposes. Shamir and van Someren [97] propose visual and statistical tests

of randomness which can quickly identify regions of memory that might contain

key material, but their methods are prone to false positives that complicate testing

on decayed memory images. Even perfect copies of memory often contain large

blocks of random-looking data that might pass these tests (e.g., compressed files).

Pettersson [86] suggests a plausibility test for locating a particular program data

structure that contains key material based on the range of likely values for each field.

This approach requires the operator to manually derive search heuristics for each

encryption application, and it is not very robust to memory errors.

2.4.1 Identifying AES keys

For 128-bit keys, the AES key schedule consists of 11 round keys, each made up of

four 32-bit words. Figure 3.1 illustrates the key schedule generation algorithm. The

first round key is equal to the key itself. To generate the first word of the next round

key, the last word of the previous round key is run through a sequence of operations

known as the key schedule core, which rotates the bytes left, runs each byte through

an S-box to map it to a new value, and XORs the output with a round-dependent

value. The second word is generated by XORing the first word of the new round key

with the second word of the previous round key, the third word is the XOR of the

second word of the new round key with the third word of the previous round key,

and the fourth word is the XOR of the third word of the new round key with the

fourth word of the previous round key. This procedure is repeated nine more times to

generate all 11 round keys.

The key schedule algorithm for 256-bit AES is very similar.

In order to identify scheduled AES keys in a memory image, we propose the

following algorithm:

21



1. Iterate through each byte of memory. Treat the following block of 176 or 240

bytes of memory as an AES key schedule.

2. For each word in the potential key schedule, calculate the Hamming distance

from that word to the key schedule word that should have been generated from

the surrounding words.

3. If the total number of bits violating the constraints on a correct AES key schedule

is sufficiently small, output the key.

We implemented this algorithm for 128- and 256-bit AES keys in an application

called keyfind. The program takes a memory image as input and outputs a list

of likely keys. It assumes that key schedules are contained in contiguous regions of

memory and in the byte order used in the AES specification [1]; this can be adjusted

to target particular cipher implementations. A threshold parameter controls how

many bit errors will be tolerated in candidate key schedules. We apply a quick test of

entropy to reduce false positives.

We expect that this approach can be applied to many other ciphers. For example,

to identify DES keys based on their key schedule, calculate the distance from each

potential subkey to the permutation of the key.

2.4.2 Identifying tweak keys

A similar method works to identify keys for tweakable encryption modes [67], which

are commonly used in disk encryption systems.

LRW LRW augments a block cipher E (and key K1) by computing a “tweak” X

for each data block and encrypting the block using the formula EK1(P ⊕X)⊕X. A

tweak key K2 is used to compute the tweak, X = K2 ⊗ I, where I is the logical block

identifier. The operations ⊕ and ⊗ are performed in the finite field GF (2128).
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In order to speed tweak computations, implementations commonly precompute

multiplication tables of the values K2x
i mod P , where x is the primitive element

and P is an irreducible polynomial over GF (2128) [58]. In practice, Qx mod P is

computed by shifting the bits of Q left by one and possibly XORing with P .

We can search for keys by searching for the structure of such a multiplication table

in memory.

XEX and XTS For XEX [90] and XTS [54] modes, the tweak for block j in sector

I is X = EK2(I)⊗ xj, where I is encrypted with AES and x is the primitive element

of GF (2128). Assuming the key schedule for K2 is kept in memory, we can use the

AES key finding techniques to find this tweak key.

2.4.3 Identifying RSA keys

Methods proposed for identifying RSA private keys range from the purely algebraic

(Shamir and van Someren suggest, for example, multiplying adjacent key-sized blocks

of memory [97]) to the ad hoc (searching for the RSA Object Identifiers found in ASN.1

key objects [88]). The former ignores the widespread use of standard key formats, and

the latter seems insufficiently robust.

The most widely used format for an RSA private key is specified in PKCS #1 [93]

as an ASN.1 object of type RSAPrivateKey with the following fields: version, modulus

n, publicExponent e, privateExponent d, prime1 p, prime2 q, exponent1 d mod (p−1),

exponent2 d mod (q − 1), coefficient q−1 mod p, and optional other information. This

object, packaged in DER encoding, is the standard format for storage and interchange

of private keys.

This format suggests two techniques we might use for identifying RSA keys in

memory: we could search for known contents of the fields, or we could look for memory
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that matches the structure of the DER encoding. We tested both of these approaches

on a computer running Apache 2.2.3 with mod ssl.

One value in the key object that an attacker is likely to know is the public modulus.

(In the case of a web server, the attacker can obtain this and the rest of the public key

by querying the server.) We tried searching for the modulus in memory and found

several matches, all of them instances of the server’s public or private key.

We also tested a key finding method described by Ptacek [88] and others: searching

for the RSA Object Identifiers that should mark ASN.1 key objects. This technique

yielded only false positives on our test system.

Finally, we experimented with a new method, searching for identifying features

of the DER-encoding itself. We looked for the sequence identifier (0x30) followed a

few bytes later by the DER encoding of the RSA version number and then by the

beginning of the DER encoding of the next field (02 01 00 02). This method found

several copies of the server’s private key, and no false positives. To locate keys in

decayed memory images, we can adapt this technique to search for sequences of bytes

with low Hamming distance to these markers and check that the subsequent bytes

satisfy some heuristic entropy bound.

2.5 Attacking disk encryption software

Encrypting hard drives is an increasingly common countermeasure against data theft,

and many users assume that disk encryption products will protect sensitive data even

if an attacker has physical access to the machine. A California law adopted in 2002 [21]

requires disclosure of possible compromises of personal information, but offers a safe

harbor whenever data was “encrypted.” Though the law does not include any specific

technical standards, many observers have recommended the use of full-disk or file

system encryption to obtain the benefit of this safe harbor. (At least 38 other states
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have enacted data breach notification legislation [82].) Our results below suggest that

disk encryption, while valuable, is not necessarily a sufficient defense.

We have applied some of the tools developed in this chapter to attack popular

on-the-fly disk encryption systems. The most time-consuming parts of these tests

were generally developing system-specific attacks and setting up the encrypted disks.

Actually imaging memory and locating keys took only a few minutes and were almost

fully automated by our tools. We expect that most disk encryption systems are

vulnerable to such attacks.

BitLocker BitLocker, which is included with some versions of Windows Vista and

Windows 7, operates as a filter driver that resides between the file system and the disk

driver, encrypting and decrypting individual sectors on demand. The keys used to

encrypt the disk reside in RAM, in scheduled form, for as long as the disk is mounted.

In a paper released by Microsoft, Ferguson [40] describes BitLocker in enough detail

for us both to discover the roles of the various keys and to program an independent

implementation of the BitLocker encryption algorithm without reverse engineering

any software. BitLocker uses the same pair of AES keys to encrypt every sector

on the disk: a sector pad key and a CBC encryption key. These keys are, in turn,

indirectly encrypted by the disk’s master key. To encrypt a sector, the plaintext is

first XORed with a pad generated by encrypting the byte offset of the sector under

the sector pad key. Next, the data is fed through two diffuser functions, which use

a Microsoft-developed algorithm called Elephant. The purpose of these un-keyed

functions is solely to increase the probability that modifications to any bits of the

ciphertext will cause unpredictable modifications to the entire plaintext sector. Finally,

the data is encrypted using AES in CBC mode using the CBC encryption key. The

initialization vector is computed by encrypting the byte offset of the sector under the

CBC encryption key.
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We have created a fully-automated demonstration attack called BitUnlocker. It

consists of an external USB hard disk containing Linux, a custom SYSLINUX-based

bootloader, and a FUSD [39] filter driver that allows BitLocker volumes to be mounted

under Linux. To use BitUnlocker, one first cuts the power to a running Windows

Vista system, connects the USB disk, and then reboots the system off of the external

drive. BitUnlocker then automatically dumps the memory image to the external disk,

runs keyfind on the image to determine candidate keys, tries all combinations of the

candidates (for the sector pad key and the CBC encryption key), and, if the correct

keys are found, mounts the BitLocker encrypted volume. Once the encrypted volume

has been mounted, one can browse it like any other volume in Linux. On a modern

laptop with 2 GB of RAM, we found that this entire process took approximately 25

minutes.

BitLocker differs from other disk encryption products in the way that it protects

the keys when the disk is not mounted. In its default “basic mode,” BitLocker protects

the disk’s master key solely with the Trusted Platform Module (TPM) found on many

modern PCs. This configuration, which may be quite widely used [40], is particularly

vulnerable to our attack, because the disk encryption keys can be extracted with our

attacks even if the computer is powered off for a long time. When the machine boots,

the keys will be automatically loaded into RAM from the TPM before the login screen,

without the user having to enter any secrets.

It appears that Microsoft is aware of this problem [70] and recommends configuring

BitLocker in “advanced mode,” where it protects the disk key using the TPM along

with a password or a key on a removable USB device. However, even with these

measures, BitLocker is vulnerable if an attacker gets to the system while the screen is

locked or the computer is asleep (though not if it is hibernating or powered off).
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FileVault Apple’s FileVault disk encryption software has been examined and reverse-

engineered in some detail [112]. In Mac OS X 10.4, FileVault uses 128-bit AES in

CBC mode. A user-supplied password decrypts a header that contains both the AES

key and a second key k2 used to compute IVs. The IV for a disk block with logical

index I is computed as HMAC-SHA1k2(I).

We used our EFI memory imaging program to extract a memory image from

an Intel-based Macintosh system with a FileVault volume mounted. Our keyfind

program automatically identified the FileVault AES key, which did not contain any

bit errors in our tests.

With the recovered AES key but not the IV key, we can decrypt 4080 bytes of

each 4096 byte disk block (all except the first AES block). The IV key is present in

memory. Assuming no bits in the IV key decay, an attacker can identify it by testing

all 160-bit substrings of memory to see whether they create a plausible plaintext when

XORed with the decryption of the first part of the disk block. The AES and IV keys

together allow full decryption of the volume using programs like vilefault [113].

In the process of testing FileVault, we discovered that Mac OS X 10.4 and 10.5

keep multiple copies of the user’s login password in memory, where they are vulnerable

to imaging attacks. Login passwords are often used to protect the default keychain,

which may protect passphrases for FileVault disk images.

TrueCrypt TrueCrypt is a popular open-source disk encryption product for the

Windows, Mac OS, and Linux platforms. It supports a variety of ciphers, including

AES, Serpent, and Twofish. In version 4, all ciphers used LRW mode; in version 5,

they use XTS mode (see Section 2.4.2). TrueCrypt stores a cipher key and a tweak

key in the volume header for each disk, which is then encrypted with a separate key

derived from a user-entered password.
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We tested TrueCrypt versions 4.3a and 5.0a running on a Linux system. We

mounted a volume encrypted with a 256-bit AES key, then briefly cut power to the

system and used our memory imaging tools to record an image of the retained memory

data. In both cases, our keyfind program was able to identify the 256-bit AES

encryption key, which did not contain any bit errors. For TrueCrypt 5.0a, keyfind

was also able to recover the 256-bit AES XTS tweak key without errors.

To decrypt TrueCrypt 4 disks, we also need the LRW tweak key. We observed

that TrueCrypt 4 stores the LRW key in the four words immediately preceding the

AES key schedule. In our test memory image, the LRW key did not contain any bit

errors. (Had errors occurred, we could have recovered the correct key by applying the

techniques we will develop in Section 3.5.)

dm-crypt Linux kernels starting with 2.6 include built-in support for dm-crypt, an

on-the-fly disk encryption subsystem. The dm-crypt subsystem handles a variety of

ciphers and modes, but defaults to 128-bit AES in CBC mode with non-keyed IVs.

We tested a dm-crypt volume created and mounted using the LUKS (Linux Unified

Key Setup) branch of the cryptsetup utility and kernel version 2.6.20. The volume

used the default AES-CBC format. We briefly powered down the system and captured

a memory image with our PXE kernel. Our keyfind program identified the correct

128-bit AES key, which did not contain any bit errors. After recovering this key, an

attacker could decrypt and mount the dm-crypt volume by modifying the cryptsetup

program to allow input of the raw key.

Loop-AES Loop-AES is an on-the-fly disk encryption package for Linux systems.

In its recommended configuration, it uses a so-called “multi-key-v3” encryption mode,

in which each disk block is encrypted with one of 64 encryption keys. By default, it

encrypts sectors with AES in CBC mode, using an additional AES key to generate

IVs.
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We configured an encrypted disk with Loop-AES version 3.2b using 128-bit AES

encryption in “multi-key-v3” mode. After imaging the contents of RAM, we applied

our keyfind program, which revealed the 65 AES keys. An attacker could identify

which of these keys correspond to which encrypted disk blocks by performing a series

of trial decryptions. Then, the attacker could modify the Linux losetup utility to

mount the encrypted disk with the recovered keys.

Loop-AES attempts to guard against the long-term memory burn-in effects de-

scribed by Gutmann [48] and others. For each of the 65 AES keys, it maintains two

copies of the key schedule in memory, one normal copy and one with each bit inverted.

It periodically swaps these copies, ensuring that every memory cell stores a 0 bit for

as much time as it stores a 1 bit. Not only does this fail to prevent the memory

remanence attacks that we describe here, but it also makes it easier to identify which

keys belong to Loop-AES and to recover the keys in the presence of memory errors.

After recovering the regular AES key schedules using a program like keyfind, the

attacker can search the memory image for the inverted key schedules. Since very few

programs maintain both regular and inverted key schedules in this way, those keys are

highly likely to belong to Loop-AES. Having two related copies of each key schedule

provides additional redundancy that can be used to identify which bit positions are

likely to contain errors.

2.6 Countermeasures and their limitations

Memory remanence attacks are difficult to prevent because cryptographic keys in

active use must be stored somewhere. Potential countermeasures focus on discarding or

obscuring encryption keys before an adversary might gain physical access, preventing

memory extraction software from executing on the machine, physically protecting the

DRAM chips, and making the contents of memory decay more readily.
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Suspending a system safely Simply locking the screen of a computer (i.e., keeping

the system running but requiring entry of a password before the system will interact

with the user) does not protect the contents of memory. Suspending a laptop’s state

to RAM (“sleeping”) is also ineffective, even if the machine enters a screen-locked

state on awakening, since an adversary could simply awaken the laptop, power-cycle

it, and then extract its memory state. Suspending to disk (“hibernating”) may also

be ineffective unless an externally held secret is required to decrypt the disk (or the

memory image stored on disk) when the system is awakened.

With most disk encryption systems, users can protect themselves by powering off

the machine completely when it is not in use, then guarding the machine for a minute

or so until the contents of memory have decayed sufficiently. Though effective, this

countermeasure is inconvenient, since the user will have to wait through the lengthy

boot process before accessing the machine again.

Suspending can be made safe by requiring a password or other external secret to

reawaken the machine and encrypting the contents of memory under a key derived

from the password. If encrypting all of memory is too expensive [25], the system could

encrypt only those pages or regions containing important keys. An attacker might still

try to guess the password and check his guesses by attempting decryption (an offline

password-guessing attack), so systems should encourage the use of strong passwords

and employ password strengthening techniques [19] to make checking guesses slower.

Some existing systems, such as Loop-AES, can be configured to suspend safely in this

sense, although this is usually not the default behavior [9].

Storing keys differently Our attacks show that using precomputation to speed

cryptographic operations can make keys more vulnerable, because redundancy in the

precomputed values helps the attacker reconstruct keys in the presence of memory

errors. To mitigate this risk, implementations could avoid storing precomputed values,
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instead recomputing them as needed and erasing the computed information after use.

This improves resistance to memory remanence attacks but can carry a significant

performance penalty. (These performance costs are negligible compared to the access

time of a hard disk, but disk encryption is often implemented on top of disk caches

that are fast enough to make them matter.)

Implementations could transform the key as it is stored in memory in order to

make it more difficult to reconstruct in the case of errors. This problem has been

considered from a theoretical perspective; Canetti et al. [22] define the notion of an

exposure-resilient function (ERF) whose input remains secret even if all but some

small fraction of the output is revealed. This carries a performance penalty because

of the need to reconstruct the key before using it.

Physical defenses It may be possible to physical defend memory chips from being

removed from a machine, or to detect attempts to open a machine or remove the

chips and respond by erasing memory. In the limit, these countermeasures approach

the methods used in secure coprocessors [37] and could add considerable cost to a

PC. However, a small amount of memory soldered to a motherboard would provide

moderate defense for sensitive keys and could be added at relatively low cost.

Architectural changes Some countermeasures involve changes to the computer’s

architecture that might make future machines more secure. DRAM systems could be

designed to lose their state quickly, though this might be difficult given the need to keep

the probability of decay within a DRAM refresh interval vanishingly small. Key-store

hardware could be added—perhaps inside the CPU—to store a few keys securely while

erasing them on power-up, reset, and shutdown. Some proposed architectures would

routinely encrypt the contents of memory for security purposes [65, 60, 36]; these

would prevent the attacks we describe as long as the keys are reliably destroyed on

reset or power loss.
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Encrypting in the disk controller Another approach is to perform encryption

in the disk controller rather than in software running on the main CPU and to store

the key in the controller’s memory instead of the PC’s DRAM. In a basic form of

this approach, the user supplies a secret to the disk at boot, and the disk controller

uses this secret to derive a symmetric key that it uses to encrypt and decrypt the disk

contents [96].

For this method to be secure, the disk controller must erase the key from its

memory whenever the computer is rebooted. Otherwise, an attacker could reboot

into a malicious kernel that simply reads the disk contents. For similar reasons, the

key must also be erased if an attacker attempts to transplant the disk to another

computer.

While we leave an in-depth study of encryption in the disk controller to future

work, we did perform a cursory test of two hard disks with this capability, the Seagate

Momentus 5400 FDE.2 and the Hitachi 7K200. We found that they do not appear to

defend against the threat of transplantation. We attached both disks to a PC and

confirmed that every time we powered on the machine, we had to enter a password via

the BIOS in order to decrypt the disks. However, once we had entered the password,

we could disconnect the disks’ SATA cables from the motherboard (leaving the power

cables connected), connect them to another PC, and read the disks’ contents on the

second PC without having to re-enter the password.

Trusted computing Trusted Computing hardware, in the form of Trusted Platform

Modules (TPMs) [105] is now deployed in some personal computers. Though useful

against some attacks, most TPMs deployed in PCs today do not prevent the attacks

described here.

Such hardware generally does not perform bulk data encryption itself; instead, it

monitors the boot process to decide (or help other machines decide) whether it is safe
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to store a key in RAM. If a software module wants to safeguard a key, it can arrange

that the usable form of that key will not be stored in RAM unless the boot process

has gone as expected [70]. However, once the key is stored in RAM, it is subject to

our attacks. Today’s TPMs can prevent a key from being loaded into memory for use,

but they cannot prevent it from being captured once it is in memory.

In some cases using a TPM can make the problem worse. BitLocker, in its default

“basic mode,” protects the disk keys solely with Trusted Computing hardware. When

the machine boots, BitLocker automatically loads the keys into RAM from the TPM

without requiring the user to enter any secrets. Unlike other disk encryption systems

we studied, this configuration is at risk even if the computer has been shut down for

a long time—the attacker needs only power on the machine to have the keys loaded

back into memory, where they are vulnerable to our attacks.

2.7 Conclusions

Contrary to common belief, DRAMs hold their values for surprisingly long time

intervals without power or refresh. We show that this fact enables attackers to extract

cryptographic keys and other sensitive information from memory despite the operating

system’s efforts to secure memory contents. The attacks we describe are practical—for

example, we have used them to defeat several popular disk encryption systems. These

results imply that disk encryption on laptops, while beneficial, does not guarantee

protection.

The attack described in this chapter is an example of a side-channel attack, an

attack that takes advantage of the physical properties of a system running encryption

rather than attacking the algorithm itself. Examples of these attacks use timing

information, power consumption, or electromagnetic radiation to learn information

about an encryption process. Such attacks had been modeled in the theoretical
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cryptography literature by Micali and Reyzin [77], who stated as their first informal

axiom of a “physically observable” cryptographic system that “Computation, and only

computation, leaks information”. Subsequently, a large number of works developed

“leakage-resilient” cryptographic schemes secure in this model.

However, as noted by Goldwasser in Eurocrypt 2009 [44], the cold boot attack

violates this assumption, and thus new ideas are needed to develop cryptographic

schemes that are provably secure even against a very weak form of such attacks.

There seems to be no easy remedy for memory remanence attacks. Ultimately, it

might become necessary to treat DRAM as untrusted and to avoid storing sensitive

data there, but this will not be feasible until architectures are changed to give running

software a safe place to keep secrets.
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Chapter 3

Reconstructing cryptographic keys

“For example the paper tries to

factor N = pq by writing it as a set

of binary equations over the bits of

p and q.”

Ten Reasons why a Paper is Rejected

from a Crypto Conference

In the previous chapter, we saw how an attacker can use physical effects to

extract cryptographic keys from a running computer and use this information to break

encryption programs in practice.

However, as Figure 2.2 shows, the information extracted from memory may contain

a large number of errors. In this chapter, we will explore some techniques that an

attacker can use to recover full cryptographic keys even in the presence of error.

In the case of a perfectly random symmetric encryption key, it would seem that an

attacker with only partial knowledge of a key has few options other than brute force

decryptions or finding a weakness in the encryption algorithm itself.

The näıve approach to key error correction, a brute-force search over keys with

a low Hamming distance from the decayed key that was retrieved from memory, is
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computationally burdensome even with a moderate amount of error. Consider the

case of a 128-bit key with 10% error. The size of the search space, that is, the number

of keys with Hamming distance 12 from the recovered key, is
(
128
12

)
> 254, and in

expectation the attacker must try half of those keys before finding the correct key.

Our algorithms achieve significantly better performance by considering data other

than the raw form of the key. In practice, most encryption programs speed up

computation by storing data precomputed from the encryption keys—for block ciphers,

this is most often a key schedule, with subkeys for each round; for RSA, this includes

the public key as well as an extended form of the private key which includes the

primes p and q and several other values derived from d. This data contains much more

structure than the key itself, and we can use this structure to efficiently reconstruct

the original key even in the presence of errors.

We will see how the structure of this data can in many cases be used as a sort of

“error-correcting code” for the key itself, allowing an attacker to efficiently reconstruct

a key even in the presence of a large amount of error.

For asymmetric encryption keys, the question of whether the public key could

be used to reconstruct a private key from partial data was first studied decades ago.

Our error models pose a more difficult setting for this problem. We observe that

implementations of RSA typically also precompute several redundant values from the

private key, and we show how to take advantage of the algebraic relationships between

these values to correct errors in RSA private keys even in the presence of bitwise

errors.

Our approach to key reconstruction has the advantage that it is completely self-

contained, in that we can recover the key without having to test the decryption of

ciphertext. The data derived from the key, and not the decoded plaintext, provides a

certificate of the likelihood that we have found the correct key.
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The algorithms presented in this chapter can efficiently reconstruct keys when as

few as 27% of the bits are known, depending on the type of key.

These results imply an interesting trade-off between efficiency and security. All of

the disk encryption systems we studied in the previous chapter (see 2.5) precompute

key schedules and keep them in memory for as long as the encrypted disk is mounted.

While this practice saves some computation for each disk block that needs to be

encrypted or decrypted, we find that it greatly simplifies key recovery attacks.

3.1 Related work

To our knowledge, we were the first to look at the problem of reconstructing symmetric

encryption keys in this particular setting, though similar questions arise in the analysis

of other side-channel attacks.

For asymmetric keys, there has been a great deal of work on both factoring and

reconstructing RSA private keys given incomplete information about the private key.

Maurer [73] shows that integers can be factored in polynomial time given access

to an oracle answering εn yes/no questions.

In a slightly stricter model, the algorithm has access to a fixed subset of consecutive

bits of the integer factors or RSA private keys. Rivest and Shamir [89] first solved

the problem for a 2/3-fraction of the least significant bits of a factor using integer

programming. This was improved to 1/2 of the least or most significant bits of a

factor using lattice-reduction techniques pioneered by Coppersmith [28]; we refer

the reader surveys by Boneh [15] and May [75] as well as May’s Ph. D. thesis [74]

for bibliographies. More recently, Herrmann and May extended these techniques to

efficiently factor given at most log logN known blocks of bits [51]. We will discuss

Coppersmith’s techniques in much greater detail in Chapter 4.
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The problem of reconstructing RSA private keys in the context of the cold boot

attack can be viewed as a further relaxation of the conditions on access to the key

bits to a fully random subset. The lattice-reduction techniques used in the works

cited above are not directly applicable to our problem because they rely on recovering

consecutive bits of the key (expressed as small integer solutions to modular equations),

whereas the missing bits we seek to find are randomly distributed throughout the

degraded keys. It is possible to express our reconstruction problem as a knapsack,

and there are lattice techniques for solving knapsack problems (see, e.g., Nguyen and

Stern [83]), but we have not managed to improve on our solution by this approach.

Inspired by cold boot attacks, Akavia, Goldwasser, and Vaikuntanathan [4] formally

introduced memory attacks, a class of side-channel attacks in which the adversary is

leaked a (shrinking) function of the secret key. One research direction, pursued by

Akavia, Goldwasser, and Vaikuntanathan and, in followup work, Naor and Segev [80],

is constructing cryptosystems provably secure against memory attacks.1 Our work in

this chapter can be viewed as the cryptanalytic counterpart to this line of work, to

evaluate the security of existing cryptosystems against memory attacks.

3.2 Modeling the decay

To explain our error model, we have found it useful to adopt terminology from coding

theory. We may imagine that the expanded key schedule forms a sort of error correcting

code for the key, and the problem of reconstructing a key from memory may be recast

as the problem of finding the closest code word (valid key schedule) to the data once

it has been passed through a channel that has introduced bit errors.

Our experiments with DRAM remanence in the previous chapter (see Section 2.2)

showed that almost all memory bits tend to decay to predictable ground states, with

1There has been substantial other recent work on designing cryptosystems secure in related key-
leakage models (e.g., [87, 33, 5]); for a survey, see Goldwasser’s invited talk at Eurocrypt 2009 [44]
and the references therein.
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only a tiny fraction flipping in the opposite direction. In describing the algorithms in

this chapter, we assume, for simplicity, that all bits decay to the same ground state.

(They can be implemented without this requirement, assuming that the ground state

of each bit is known.)

If we assume we have no knowledge of the decay patterns other than the ground

state, we can model the decay as a binary asymmetric channel, in which the probability

of a 1 flipping to 0 is some fixed δ0 and the probability of a 0 flipping to a 1 is some

fixed δ1.

In practice, the probability of decaying to the ground state approaches 1 as time

goes on, while the probability of flipping in the opposite direction remains relatively

constant and tiny (less than 0.1% in our tests). The ground state decay probability

can be approximated from recovered key schedules by counting the fraction of 1s and

0s, assuming that the original key schedule contained roughly equal proportions of

each value.

We also observed that bits tended to decay in a predictable order that could be

learned over a series of timed decay trials, although the actual order of decay appeared

fairly random with respect to location. That is, when comparing two decayed memory

images that had been read after the computer was powered off for different lengths of

time, a bit that had decayed in the shorter of the trials was very likely to also have

decayed in the longer of the trials. An attacker with the time and physical access to

run such a series of tests could easily adapt any of the approaches in this section to

take this order into account and improve the performance of the error-correction. With

unidirectional decay, an attacker who knew the exact decay order of each bit would be

able determine the set of bits that could possibly have decayed in the image by locating

in the decay order the transition between ground state and not-yet decayed bits, and

then restrict her attention to only those bits that could possibly have decayed.
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Ideally such tests would be able to replicate the conditions of the memory extraction

exactly, but knowledge of the decay order combined with an estimate of the fraction

of bit flips is enough to give a very good estimate of an individual decay probability of

each bit. This probability can be used in our reconstruction algorithms to prioritize

guesses.

For simplicity and generality, we will analyze the algorithms assuming no knowledge

of this decay order.

3.3 Reconstructing DES keys

We begin with a relatively simple application of the above ideas: an error-correction

technique for DES keys. Before software can encrypt or decrypt data with DES, it

must expand the secret key K into a set of round keys that are used internally by

the cipher. The set of round keys is called the key schedule; since it takes time to

compute, programs typically cache it in memory as long as K is in use. The DES key

schedule consists of 16 round keys, each a permutation of a 48-bit subset of bits from

the original 56-bit key. A copy of each bit of the key appears in about 14 of the 16

round keys. For example, bit 1 of the key is replicated in bit 20 of round key 1, bit 10

of round key 2, bit 16 of round key 3, bit 24 of round key 4, bit 40 of round key 5,

does not appear in round key 6, bit 26 of round key 7, and so on.

In coding theory terms, we can treat the DES key schedule as a repetition code:

the message is a single bit, and the corresponding codeword is a sequence of n copies

of this bit.

We begin with a partially decayed DES key schedule. For each bit of the key, we

consider the n bits extracted from memory that were originally all identical copies of

that key bit. Since we know roughly the probability that each bit decayed 0→ 1 or
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1→ 0, we can calculate whether the extracted bits were more likely to have resulted

from the decay of repetitions of 0 or repetitions of 1.

If δ0 is the probability of a 1 flipping to a 0, and we assume that each flip occurs

uniformly at random, the probability that at least k of the n copies of a bit have

flipped is
n∑
i=k

(
n

k

)
δk0(1− δ0)n−k.

For δ0 = .05, that is, a 5% probability of a bit flip, the probability that a bit with

14 copies is incorrectly decoded is the probability that at least seven of the bits have

flipped; this is less than 2× 10−6. We can very conservatively bound the probability

of incorrectly decoding any of the 56 bits using a union bound; in this example the

probability is about 10−4.

This technique can be trivially extended to correct errors in Triple DES keys. Triple

DES applies the same key schedule algorithm to two or three 56-bit key components

(depending on the version of Triple DES).

3.4 Reconstructing AES keys

AES is a more modern cipher than DES, and it uses a key schedule with a more

complex structure, but nevertheless we can efficiently reconstruct keys.

The algorithm in this section has since been improved (see Tsow [106] who recovers

AES 128 key schedules from 30% of bits known), but we present our proof of concept

algorithm here for completeness.

Recall that for 128-bit keys, the AES key schedule consists of 11 round keys, each

made up of four 32-bit words. The first round key is equal to the key itself. Each

subsequent word of the key schedule is generated either by XORing two earlier words,

or by performing an operation called the key schedule core (in which the bytes of a
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word are rotated and each byte is mapped to a new value) on an earlier word and

XORing the result with another earlier word.

Instead of trying to correct an entire key at once, we can examine a smaller set of

the bits at a time and then combine the results. This separability is enabled by the

high amount of linearity in the key schedule. Consider a “slice” of the first two round

keys consisting of byte i from words 1–3 of the first two round keys, and byte i− 1

from word 4 of the first round key (see Figure 3.1). This slice is 7 bytes long, but is

uniquely determined by the 4 bytes from the first round key.

Our algorithm exploits this fact as follows. For each possible set of 4 key bytes, we

generate the relevant 3 bytes of the next round key, and we order these possibilities

by the likelihood that these 7 bytes might have decayed to the corresponding bytes

extracted from memory. Now we may recombine four slices into a candidate key, in

order of decreasing likelihood. For each candidate key, we calculate the key schedule.

If the likelihood of this key schedule decaying to the bytes we extracted from memory

is sufficiently high, we output the corresponding key.

When the decay is largely unidirectional, this algorithm will almost certainly

output a unique guess for the key. This is because a single flipped bit in the key

results in a cascade of bit flips through the key schedule, half of which are likely to

flip in the “wrong” direction.

Our implementation of this algorithm is able to reconstruct keys with 7% of the

bits decayed in a fraction of a second. It succeeds within 30 seconds for about half of

keys with 15% of bits decayed.

This idea can be extended to 256-bit keys by dividing the words of the key into

two sections—words 1–3 and 8, and words 4–7, for example—then comparing the

words of the third and fourth round keys generated by the bytes of these words and

combining the result into candidate round keys to check.
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  



Figure 3.1: Error correction for AES keys In the AES-128 key schedule, four bytes
from each round key completely determine three bytes of the next round key, as shown here.
Our error correction algorithm “slices” the key into four groups of bytes with this property.
It computes a list of likely candidate values for each slice, then checks each combination to
see if it is a plausible key.

3.5 Reconstructing tweak keys

The same methods can be applied to reconstruct keys for tweakable encryption

modes [67], which are commonly used in disk encryption systems.

LRW Recall from Section 2.4.2 that LRW implementations commonly precompute a

large multiplication table generated from the tweak key, each entry of which is generated

by shifting and possibly XORing with a known value. An entire multiplication table

will contain many copies of nearly all of the bits of K2, allowing us to reconstruct the

key in much the same way as the DES key schedule.

As an example, we apply this method to reconstruct the LRW key used by

the TrueCrypt 4 disk encryption system. TrueCrypt 4 precomputes a 4048-byte

multiplication table consisting of 16 blocks of 16 lines of 4 words of 4 bytes each. Line

0 of block 14 contains the tweak key.

The multiplication table is generated line by line from the LRW key by iteratively

applying the shift-and-XOR multiply function to generate four new values, and then

XORing all combinations of these four values to create 16 more lines of the table.

The shift-and-XOR operation is performed 64 times to generate the table, using the
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irreducible polynomial P = x128 + x7 + x2 + x+ 1. For any of these 64 values, we can

shift right i times to recover 128− (8 + i) of the bits of K2, and use these recovered

values to reconstruct K2 with high probability.

XEX and XTS For XEX [90] and XTS [54] modes, assuming the tweak key

schedule is kept in memory, we can use the AES key reconstruction techniques above

to reconstruct the tweak key.

3.6 Reconstructing RSA private keys

In this section, we give an algorithm for the problem of reconstructing RSA private

keys given a random δ-fraction of their bits. For RSA keys with small public exponent,

our algorithm reconstructs the private key with high probability when δ ≥ 0.27.

The runtime analysis of our algorithm relies on an assumption (Conjecture 3.6.3)

and is thus heuristic; but we have verified experimentally that it succeeds with high

probability.

We will first present the algorithm, and then give a combinatorial analysis of the

algorithm’s runtime behavior for random inputs that shows that it will succeed in

expected quadratic time when δ ≥ .27. The runtime analysis depends crucially on

both a uniformly random distribution of known bits and the assumption that the

effect of a bit error during reconstruction is propagated uniformly through subsequent

bits of the key.

Instead of a key schedule, the redundancy that our algorithm makes use of is five

components of the RSA private key: p, q, d, dp, and dq. We can use known bits in d, dp,

and dq to make progress where bits in p and q are not known. To relate d to the rest

of the private key, we make use of techniques due to Boneh, Durfee, and Frankel [17];

to relate dp and dq to the rest of the private key, we make new observations about
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the structure of RSA keys that may be of independent interest. This is discussed in

Section 3.6.1.

If the algorithm has access to fewer components of the RSA private key, the

algorithm will still perform well given a sufficiently large fraction of the bits. For

example, it can efficiently recover a key given

δ = .27 fraction of the bits of p, q, d, dp, and dq.

δ = .42 fraction of the bits of p, q, and d.

δ = .57 fraction of the bits of p and q.

The reconstruction algorithm itself, described in Section 3.6.2, is elementary and

does not make use of the lattice basis reduction or integer programming techniques

that have been applied to other kinds of RSA key reconstruction problems. At each

step, it branches to explore all possible keys, and prunes these possibilities using our

understanding of the structure of RSA keys and the partial information we are given

about key bits. We give an analysis of the algorithm for random inputs in Section 3.6.3.

We obtain a sharp threshold around 2− 2(4/5) ≈ 27% of known key bits. Below this

threshold, the expected number of keys examined is exponential in the number of bits

of the key, and above this threshold, the expected number of keys examined is close to

linear. Note that this threshold applies only to our particular approach. We suspect

these results could be improved using more sophisticated methods.

Finally, we have implemented our algorithm and performed extensive experiments

using it. The results are described in Section 3.6.7. The algorithm’s observed behavior

matches our analytically derived bounds and validates the heuristic assumptions made

in the analysis.

Small public-exponent RSA. Our algorithm is specialized to the case where the

public exponent e is small. The small-e case is, for historical reasons, the overwhelm-
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ingly common one in deployed RSA applications such as SSL/TLS. For example, until

recently Internet Explorer would reject TLS server certificates with an RSA public

exponent longer than 32 bits [18, p. 8]. The choice e = 65537 = 216 + 1 is especially

widespread. Of the certificates observed in the UCSD TLS Corpus [115] (which was

obtained by surveying frequently-used TLS servers), 99.5% had e = 65537, and all

had e at most 32 bits.

3.6.1 RSA private keys

The PKCS#1 standard specifies [94, Sect. A.1.2] that an RSA private key include at

least the following information:

• the (n-bit) modulus N and public exponent e;

• the private exponent d;

• the prime factors p and q of N ;

• d modulo p− 1 and q − 1, respectively denoted dp and dq; and

• the inverse of q modulo p, denoted q−1p .

In practice, an RSA key in exactly this format can be recovered from the RAM of a

machine running Apache with OpenSSL (see Section 2.4.3). The first items —N and

e— make up the public key and are already known to the attacker. A näıve RSA

implementation would use d to perform the private-key operation c 7→ cd mod N ,

but there is a more efficient approach, used by real-world implementations such as

OpenSSL, that is enabled by the remaining private-key entries. In this approach, one

computes the answer modulo p and q as (c mod p)dp and (c mod q)dq , respectively;

then combines these two partial answers by means of q−1p and the Chinese Remainder

Theorem (CRT). This approach requires two exponentiations but of smaller numbers,

and is approximately four times as fast as the näıve method [76, p. 613].
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Recall that the Chinese Remainder Theorem tells us that for p and q relatively

prime, there is a unique solution m mod pq to the equations

m ≡ mp (mod p) and m ≡ mq (mod q). (3.6.1)

One way of solving for m is to find two values bp and bq such that

bp ≡ 1 (mod p) and bp ≡ 0 (mod q)

and

bq ≡ 0 (mod p) and bq ≡ 1 (mod q).

Then we can take

m = mpbp +mqbq

and it is easy to see that m satisfies 3.6.1.

Given q−1p = q−1 mod p we can calculate bp and bq as follows. We know that

qq−1p ≡ 1 mod p

and in particular, there is some a such that

qq−1p + ap = 1

Then qq−1p satisfies the properties we need from bp, and ap satisfies the properties we

need from bq.

Observe that the information included in PKCS#1 private keys is highly redundant.

In fact, knowledge of any single one of p, q, d, dp, dq, or q−1p is sufficient to reveal
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the factorization of N .2 It is this redundancy that we will use in reconstructing a

corrupted RSA key.

We now derive relations between p, q, d, dp, and dq that will be useful in mounting

the attack. The first such relation is obvious:

N = pq . (3.6.2)

Next, since d is the inverse of e modulo ϕ(N) = (p− 1)(q − 1) = N − p− q + 1, we

have

ed ≡ 1 (mod ϕ(N))

and, modulo p− 1 and q − 1,

edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1) .

As it happens, it is more convenient for us to write explicitly the terms hidden in the

three congruences above, obtaining

ed = k(N − p− q + 1) + 1 (3.6.3)

edp = kp(p− 1) + 1 (3.6.4)

edq = kq(q − 1) + 1 . (3.6.5)

It may appear that we have thereby introduced three new unknowns: k, kp, and kq.

But in fact for small e we can compute each of these three variables given even a

badly-degraded version of d.

2This is obvious for p and q and well known for d (cf. [32]); dp reveals p as gcd(aedp−1 − 1, N)
with high probability for random a provided dp 6= dq, and similarly for dq; if dp and dq are equal to
each other then they are also equal to d. Phong Nguyen observes (in personal communication, August
2009) that knowledge of q−1

p also reveals the factorization of N , as follows. Let A be q−1
p . Then we

have Aq = 1 +Bp for some B, and, multiplying again by q, we have Aq2 = q+BN . Written another
way, this means Aq2 − q = 0 mod N , from which q can be recovered via Coppersmith’s method.
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Computing k. The following argument, due to Boneh, Durfee, and Frankel [17],

shows that k must be in the range 0 < k < e. We know d < ϕ(N). Assume e ≤ k;

then ed < kϕ(N) + 1, which contradicts (3.6.3). The case k = 0 is also impossible,

as can be seen by reducing (3.6.3) modulo e. This shows that we can enumerate all

possible values of k, having assumed that e is small.

For each such choice k′, define

d̃(k′)
def
=

⌊
k′(N + 1) + 1

e

⌋
.

As Boneh, Durfee, and Frankel observe, when k′ equals k, this gives an excellent

approximation for d:

0 ≤ d̃(k)− d ≤ k(p+ q)/e < p+ q .

In particular, when p and q are balanced, we have p+ q < 3
√
N , which means that

d̃(k) agrees with d on their bn/2c − 2 most significant bits. (Our analysis applies also

in the less common case when p and q are unbalanced, but we omit the details.) This

means that small-public-exponent RSA leaks half the bits of the private exponent in

one of the candidate values d̃(1), . . . , d̃(e− 1).

The same fact allows us to go in the other direction, using information about d

to determine k, as again noted by Boneh, Durfee, and Frankel. We are given d̃, a

corrupted version of d. We enumerate d̃(1), . . . , d̃(e − 1) and check which of these

agrees, in its more significant half, with the known bits of d̃. Provided that δn/2� lg e,

there will be just one value of k′ for which d̃(k′) matches; that value is k. Even for

1024-bit N and 32-bit e, there is, with overwhelming probability, enough information to

compute k for any δ we consider in this paper. This observation has two implications:

1. we learn the correct k used in (3.6.3); and

49



2. we correct the more significant half of the bits of d̃, by copying from d̃(k).

Computing kp and kq. Once we have determined k, we can compute kp and kq.

First, observe that by an analysis like that above, we can show that 0 < kp, kq < e.

This, of course, means that kp = (kp mod e) and kq = (kq mod e); when we solve for

kp and kq modulo e, this will reveal the actual values used in (3.6.4) and (3.6.5). Now,

reducing equations (3.6.2)–(3.6.5) modulo e, we obtain the following congruences:

N ≡ pq (3.6.6)

0 ≡ k(N − p− q + 1) + 1 (3.6.7)

0 ≡ kp(p− 1) + 1 (3.6.8)

0 ≡ kq(q − 1) + 1 . (3.6.9)

These are four congruences in four unknowns: p, q, kp, and kq; we solve them as follows.

From (3.6.8) and (3.6.9) we write (p− 1) ≡ −1/kp and (q− 1) ≡ −1/kq; we substitute

these into the equation obtained from using (3.6.6) to reexpress ϕ(N) in (3.6.7):

0 ≡ k(N − p− q+ 1) + 1 ≡ k(p− 1)(q− 1) + 1 ≡ k(−1/kp)(−1/kq) + 1 ≡ k/(kpkq) + 1,

or

k + kpkq ≡ 0 . (3.6.10)

Next, we return to (3.6.7), substituting in (3.6.8), (3.6.9), and (3.6.10):

0 ≡ k(N − p− q + 1) + 1

≡ k(N − 1)− k(p− 1 + q − 1) + 1

≡ k(N − 1)− (−kpkq)(−1/kp − 1/kq) + 1

≡ k(N − 1)− (kq + kp) + 1 ;
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we solve for kp by substituting kq = −k/kp, obtaining

0 ≡ k(N − 1)− (kp − k/kp) + 1 ,

or, multiplying both sides by kp and rearranging,

k2p −
[
k(N − 1) + 1

]
kp − k ≡ 0 . (3.6.11)

This congruence is easy to solve modulo e and, in the common case where e is prime,

has two solutions, just as it would over C. One of the two solutions is the correct value

of kp; and it is easy to see, by symmetry, that the other must be the correct value of kq.

We need therefore try just two possible assignments to kp and kq in reconstructing the

RSA key. When e has m distinct prime factors, there may be up to 2m roots [17].

If information about dp and dq only is available, k is not known and there are

e possible choices for the pair (kp, kq). The analysis for this case was given by

Percival [85].

Note that we also learn the values of p and q modulo e. If we then use the procedure

outlined below to decode the r least significant bits of p (up to a list of possibilities),

we will know p mod e2r; we can then factor N , provided r + lg e > n/4, by applying

Boneh, Durfee, and Frankel’s Corollary 2.2 ([17]; a generalization of Coppersmith’s

attack on RSA with known low-order bits [28, Theorem 5] that removes the restriction

that the partial knowledge of p must be modulo a power of 2).

3.6.2 The reconstruction algorithm

Once we have the above relationships between key data, the remainder of the attack

consists of enumerating all possible partial keys and pruning those that do not satisfy

these constraints. More precisely, given bits 1 through i−1 of a potential key, generate
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all combinations of values for bit i of p, q, d, dp, dq, and keep a candidate combination

if it satisfies (3.6.2), (3.6.3), (3.6.4), and (3.6.5) mod 2i.

The remainder of this section details how to generate and prune these partial

solutions.

Our algorithm is quite similar to the algorithm given by Percival [85] for recon-

structing an RSA private key given partial information about dp and dq, which he

obtained using a timing side-channel attack. Our contribution is mainly in relating

five components of the private key to each other (Section 3.6.1), and in providing an

analysis of the algorithm’s runtime behavior (Section 3.6.3).

In what follows, we assume that we know the values of kp and kq. When equa-

tion (3.6.11) has two distinct solutions, we must run the algorithm twice, once for

each of the possible assignments to kp and kq.

Let p [i] denote the ith bit of p, where the least significant bit is bit 0, and similarly

index the bits of q, d, dp and dq. Let τ(x) denote the exponent of the largest power

of 2 that divides x.

As p and q are large primes, we know they are odd, so we can correct p [0] = q [0] = 1.

It follows that 2 | p− 1, so 21+τ(kp) | kp(p− 1). Thus, reducing (3.6.4) modulo 21+τ(kp),

we have

edp ≡ 1 (mod 21+τ(kp)) .

Since we know e, this allows us immediately to correct the 1+τ(kp) least significant bits

of dp. Similar arguments using (3.6.5) and (3.6.3) allow us to correct the 1 + τ(kq) and

2 + τ(k) bits of dq and d, respectively.

What is more, we can easily see that, having fixed bits < i of p, a change in

p [i] affects dp not in bit i but in bit i+ τ(kp); and, similarly, a change in q [i] affects

dq

[
i+ τ(kq)

]
, and a change in p [i] or q [i] affects d

[
i+ τ(k)

]
. When any of k, kp, or

kq is odd, this is just the trivial statement that changing bit i of the right-hand side
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of an equation changes bit i of the left-hand side. Powers of 2 in kp shift left the bit

affected by p [i], and similarly for the other variables.

Having recovered the least-significant bits of each of our five variables, we now

attempt to recover the remaining bits. For each bit index i, we consider a slice of bits:

p [i] q [i] d

[
i+ τ(k)

]
dp

[
i+ τ(kp)

]
dq

[
i+ τ(kq)

]
.

For each possible solution up to bit slice i− 1, generate all possible solutions up to

bit slice i that agree with that solution at all but the ith position. If we do this for all

possible solutions up to bit slice i− 1, we will have enumerated all possible solutions

up to bit slice i. Above, we already described how to obtain the only possible solution

up to i = 0; this is the solution we use to start the algorithm. The factorization

of N will be revealed in one or more of the possible solutions once we have reached

i = bn/2c.3

All that remains is how to lift a possible solution (p′, q′, d′, d′p, d
′
q) for slice i − 1

to possible solutions for slice i. Näıvely it might seem that there are 25 = 32 such

possibilities, but in fact there are at most 2 and, for large enough δ, almost always

fewer.

First, observe that we have four constraints on the five variables: equations (3.6.2),

(3.6.3), (3.6.4), and (3.6.5). By plugging in the values up to slice i− 1, we obtain from

each of these a constraint on slice i, namely values c1, . . . , c4 such that the following

3In fact, as we discussed in Section 3.6.1 above, information sufficient to factor N will be revealed
much earlier, at i = dn/4− lg ee.
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congruences hold modulo 2:

p [i] + q [i] ≡ c1 (mod 2)

d

[
i+ τ(k)

]
+ p [i] + q [i] ≡ c2 (mod 2)

dp

[
i+ τ(kp)

]
+ p [i] ≡ c3 (mod 2)

dq

[
i+ τ(kq)

]
+ q [i] ≡ c4 (mod 2) .

(3.6.12)

For example, if N and p′q′ agree at bit i, c1 = 0; if not, c1 = 1. Four linearly

independent constraints on five unknowns means that there are exactly two possible

choices for bit slice i satisfying these four constraints. (Expressions for the cis are

given in (3.6.14).)

Next, it may happen that we know the correct value of one or more of the bits in

the slice, through our partial knowledge of the private key. These known bits might

agree with neither, one, or both of the possibilities derived from the constraints above.

If neither possible extension of a solution up to i− 1 agrees with the known bits, that

solution is pruned. If δ is sufficiently large, the number of possibilities at each i will

be kept small.

3.6.3 Algorithm runtime analysis

The main result of this section is summarized in the following informal theorem.

Theorem 3.6.1. Given the values of a δ = .27 fraction of the bits of p, q, d, d mod p,

and d mod q, the algorithm will correctly recover an n-bit RSA key in expected O(n2)

time with probability 1− 1
n2 .

The running time of the algorithm is determined by the number of partial keys

examined. To bound the total number of keys seen by the program, we will first

understand how the structure of the constraints on the RSA key data determines
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the number of partial solutions generated at each step of the algorithm. Then we

will use this understanding to calculate some of the distribution of the number of

solutions generated at each step over the randomness of p and q and the missing bits.

Finally we characterize the global behavior of the program and provide a bound on

the probability that the total number of branches examined over the entire run of the

program is too large.

Lifting solutions mod 2i. The process of generating bit i of a partial solution

given bits 0 through i− 1 can be seen as lifting a solution to the constraint equations

mod 2i to a solution mod 2i+1. Hensel’s lemma characterizes the conditions when this

is possible.

Lemma 3.6.2 (Multivariate Hensel’s Lemma). A root r = (r1, r2, . . . , rn) of the

polynomial f(x1, x2, . . . , xn) mod πi can be lifted to a root r + b mod πi+1 if

b = (b1π
i, b2π

i, . . . , bnπ
i), 0 ≤ bj ≤ π − 1 is a solution to the equation

f(r + b) = f(r) +
∑
j

bjπ
ifxj(r) ≡ 0 (mod πi+1) .

(Here, fxj is the partial derivative of f with respect to xj.)

We can rewrite the lemma using the notation of Section 3. Write r in base π = 2

and assume the i first bits are known. Then the lemma tells us that the next bit of r,

r[i] = (r1[i], r2[i], . . .), must satisfy

f(r)[i] +
∑
j

fxj(r)rj[i] ≡ 0 (mod 2) . (3.6.13)

In our case, the constraint polynomials generated in Section 3.6.1, equations (3.6.2)–

(3.6.5) form four simultaneous equations in five variables. Given a partial solution

(p′, q′, d′, d′p, d
′
q) up to slice i of the bits, we apply the condition in equation (3.6.13)

above to each polynomial and reduce modulo 2 to obtain the following conditions on
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bit i:

p [i] + q [i] ≡ (n− p′q′) [i] (mod 2)

d

[
i+ τ(k)

]
+ p [i] + q [i] ≡

(
k(N + 1) + 1− k(p′ + q′)− ed′

) [
i+ τ(k)

]
(mod 2)

dp

[
i+ τ(kp)

]
+ p [i] ≡

(
kp(p

′ − 1) + 1− ed′p
) [
i+ τ(kp)

]
(mod 2)

dq

[
i+ τ(kq)

]
+ q [i] ≡

(
kq(q

′ − 1) + 1− ed′q
) [
i+ τ(kq)

]
(mod 2)

(3.6.14)

These are precisely (3.6.12).

3.6.4 Local branching behavior

Without additional knowledge of the keys, the system of equations in (3.6.14) is

underconstrained, and each partial satisfying assignment can be lifted to two partial

satisfying assignments for slice i. If bit i−1 of a variable x is known, the corresponding

x [i− 1] is fixed to the value of this bit, and the new partial satisfying assignments

correspond to solutions of (3.6.14) with these bit values fixed. There can be zero, one,

or two new solutions at bit i generated from a single solution at bit i− 1, depending

on the known values.

Now that we have a framework for characterizing the partial solutions generated

at step i from a partial solution generated at step i− 1, we will assume that a random

fraction δ of the bits of the key values are known, and estimate the expectation and

variance of the number of these solutions that will be generated.

In order to understand the number of solutions to the equation, we would like to

understand the behavior of the ci when the partial solution may not be equal to the

real solution. Let ∆x = x − x′, then substituting x′ = x −∆x into (3.6.14) we see
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that any solution to (3.6.12) corresponds to a solution to

∆p [i] + ∆q [i] ≡ (q∆p+ p∆q + ∆p∆q) [i] (mod 2)

∆d

[
i+ τ(k)

]
+ ∆p [i] + ∆q [i] ≡ (e∆d+ k∆p+ k∆q))

[
i+ τ(k)

]
(mod 2)

∆dp

[
i+ τ(kp)

]
+ ∆p [i] ≡ (e∆dp − kp∆p)

[
i+ τ(kp)

]
(mod 2)

∆dq

[
i+ τ(kq)

]
+ ∆q [i] ≡ (e∆dq − kq∆q)

[
i+ τ(kq)

]
(mod 2)

and ∆x [i] is restricted to 0 if bit i of x is fixed.

Incorrect solutions generated from a correct solution. When the partial

satisfying assignment is correct, all of the ∆x will be equal to 0. If all of the ∆x [i] are

unconstrained or if only ∆d [i+ τ(k)] is set to 0, there will be two possible solutions

(of which we know one is “good” and the other is “bad”), otherwise there will be

a single good solution. Let Zg be a random variable denoting the number of bad

solutions at bit i+ 1 generated from a single good solution at bit i. Since each ∆x [i]

is set to 0 independently with probability δ, the expected number of bad solutions

generated from a good solution is equal to

EZg = δ(1− δ)4 + (1− δ)5

and

EZ2
g = EZg .

Both these expressions are dependent only on δ.

Incorrect solutions generated from an incorrect solution. When the partial

satisfying assignment is incorrect, at least one of the ∆x is nonzero. The expected
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number of new incorrect satisfying assignments generated from an incorrect satisfying

assignment is dependent both on δ and on the behavior of the bj.

We conjecture the following is close to being true:

Conjecture 3.6.3. For random p and q and for ∆x not all zero and satisfying

q∆p+ p∆q −∆p∆q = 0 (mod 2i)

e∆d+ k∆p+ k∆q = 0 (mod 2i+τ(k))

e∆dp − kp∆p = 0 (mod 2i+τ(kp))

e∆dq − kq∆q = 0 (mod 2i+τ(kq)) ,

the value of the right-hand side of each equation in 3.6.14 at bit i + 1 is satisfied

independently with probability near 1/2.

We tested this empirically; each value of the vector (b1, b2, b3, b4) occurs with

probability approximately 1/16. (The error is approximately 5% for δ = 0.25 and

n = 1024, and approximately 2% for δ = 0.25 and n = 4096.)

Let Wb be a random variable denoting the number of bad solutions at bit i + 1

generated from a single bad solution at bit i. Assuming Conjecture 3.6.3,

EWb =
(2− δ)5

16

and

EW 2
b = EWb + δ(1− δ)4 + 2(1− δ)5 .

Note that the expectation is over the randomness of p and q and the positions of

the unknown bits of the key.

When partial knowledge of some of the values (p, q, d, dp, dq) is totally unavailable,

we can obtain a similar expression.
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3.6.5 Global branching behavior at each step of the program

Now that we have characterized the effect that the constraints have on the branching

behavior of the program, we can abstract away all details of RSA entirely and examine

the general branching process of the algorithm. We are able to characterize the

behavior of the algorithm, and show that if the expected number of branches from any

partial solution to the program is less than one, then the total number of branches

examined at any step of the program is expected to be constant. All of the following

analysis assumes Conjecture 3.6.3.

Let Xi be a random variable denoting the number of bad assignments at step i,

and recall that Zg and Wb are random variables denoting the number of bad solutions

at bit i+ 1 generated from a single good or bad solution at bit i.

Theorem 3.6.4.

EXi =
EZg

1− EWb

(1− (EWb)
i)

This expression can be calculated in a number of ways; we demonstrate how to do

so using generating functions in the following section.

Computing the expectation and variance

In this section, we derive expressions for the expectation and variance of the number

of incorrect keys generated at each step of the program. Let Xi be a random variable

denoting the number of bad assignments at step i. We will calculate the expectation

EXi and variance VarXi. (We know that the number of good assignments is always

equal to one.)

To calculate these values, we will use probability generating functions. For more

information on this approach, see e.g., [57, Ch. 8]. A probability generating function

F (s) =
∑

Pr[X = k]sk represents the distribution of the discrete random variable X.
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F (s) satisfies the following identities:

F (1) = 1

EX = F ′(1)

VarX = F ′′(1) + F ′(1)− F ′(1)2 .

Let Gi(s) be the probability generating function for the Xi, z(s) the probability

generating function for the Zg (the number of bad assignments generated from a

correct assignment) and w(s) the probability generating function for the Wb (the

number of bad assignments generated from a bad assignment).

From Section 3.6.3, we know that

z′(1) = EZg

z′′(1) = EZ2
g − EZg

w′(1) = EWb

and

w′′(1) = EW 2
b − EWb

Expectation of Xi. We will calculate EXi = G′i(1).

Gi(s) satisfies the recurrence

Gi+1(s) = Gi(w(s))z(s) , (3.6.15)

that is, that the number of bad solutions at each step is equal to the number of bad

solutions lifted from bad solutions plus the number of bad solutions produced from

good solutions. (Recall that a generating function for the sum of two independent
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random variables is given by the convolution of their generating functions.) We also

have that

G0(s) = 1 ,

because initially there are no bad solutions.

Differentiating (3.6.15) gives

G′i(s) = (Gi−1(w(s))w′(s)z(s) +Gi−1(w(s))z′(s) . (3.6.16)

Set s = 1 and use the fact that Gi(1) = w(1) = z(1) = 1 to obtain

G′i(1) = w′(1)G′i−1(1) + z′(1) .

Solving the recurrence yields

G′i(1) =
z′(1)

1− w′(1)
(1− (w′(1))i) . (3.6.17)

If w′(1) < 1, then w′(1)i tends to 0 as i increases and

EXi = G′i(1) <
z′(1)

1− w′(1)
(3.6.18)

for all i. The expected number of bad solutions at any step of the process will be

bounded by a value dependent only on δ and not on i.

Variance of Xi. To compute the variance VarXi = G′′i (1) +G′i(1)− (G′i(1))2, we

differentiate (3.6.16) again to obtain

G′′i (s) = G′′i−1(w(s))w′(s)w′(s)z(s) +G′i−1(w(s))w′′(s)z(s)

+ 2G′i−1(w(s))w′(s)z′(s) +Gi−1(w(s))z′′(s) .

(3.6.19)
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Evaluating at s = 1 gives

G′′i (1) = G′′i−1(1)w′(1)2 +G′i−1(1)w′′(1) + 2G′i−1(1)w′(1)z′(1) + z′′(1) .

Substitute in (3.6.17) to get

G′′i (1) = G′′i−1(1)w′(1)2 +
z′(1)

1− w′(1)
(1− (w′(1))i)w′′(1)

+ 2
z′(1)

1− w′(1)
(1− (w′(1))i)w′(1)z′(1) + z′′(1) .

(3.6.20)

The general solution to this recurrence is

G′′i (1) = c1 + c2w
′(1)i + c3w

′(1)2i (3.6.21)

with

c1 =
1

1− w′(1)2

(
z′(1)

1− w′(1)
(w′′(1) + 2w′(1)z′(1)) + z′′(1)

)
c2 = − 1

1− w′(1)
(w′′(1) + 2w′(1)z′(1))

c3 = −c1 − c2 .

Finishing the analysis

When EWb < 1, we can bound EXi from above.

EXi ≤
EZg

1− EWb

In the previous section, we calculated expressions for EZg and EWb dependent

only on δ, thus when EWb < 1, EXi can be bounded above by a constant dependent

on δ and not on i.
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We can evaluate this expression numerically using the values for the expected

number of bad solutions discovered in the last section.

In the case with four equations and five unknowns (that is, we have partial

knowledge of p, q, d, dp, and dq), EWb < 1 at δ > 2−2
4
5 . For δ = .2589, EXi < 93247;

for δ = .26, EXi < 95; and for δ = .27 EXi < 9.

In a similar fashion we can obtain the following complicated expression for the

variance VarXi = EX2 − (EX)2.

Theorem 3.6.5.

VarXi = α1 + α2(EWb)
i + α3(EWb)

2i (3.6.22)

with

α1 =
EZg VarWb + (1− EWb) VarZg

(1− (EWb)2)(1− EWb)

α2 =
EW 2

b + EWb − 2 EWb EZg − EZg
1− EWb

+ 2

(
EZg

1− EWb

)2

α3 = −α1 − α2 .

Again evaluating numerically for five unknowns and four equations, at δ = .26

VarXi < 7937, at δ = .27 VarXi < 80, and at δ = .28 VarXi < 23.

Bounding the total number of keys examined

Now that we have some information about the distribution of the number of partial

keys examined at each step, we would like to understand the distribution of the total

number of keys examined over an entire run of the program.

We know the expected total number of keys examined for an n-bit key is

E

[
n∑
i=0

Xi

]
≤ EZg

1− EWb

n .
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We will bound how far the total sum is likely to be from this expectation. First, we

apply the following bound on the variance of a sum of random variables:

Lemma 3.6.6.

Var
n∑
i=1

Xi ≤ n2 max
i

VarXi

The proof writes the variance of the sum in terms of covariance, and applies the

Cauchy-Schwarz inequality and
√
ab ≤ a+b

2
.

Apply Chebyshev’s inequality to bound the likelihood that
∑
Xi is too large:

Pr(|
∑

iXi − E
∑

iXi| ≥ nα) ≤ 1

(nα)2
Var

∑
iXi .

Apply the above lemma to obtain

Pr(|
∑

iXi − E
∑

iXi| ≥ nα) ≤ 1

α2
max
i

VarXi .

When δ = .27, setting α > 9n gives that, for an n-bit key, the algorithm will

examine more than 9n2 + 71n potential keys with probability less than 1
n2 .

3.6.6 Missing key fields

The same results apply when we have partial knowledge of fewer key fields.

• If the algorithm has partial knowledge of d, p, and q but no information on dp

and dq, we know that

EZg = δ(1− δ)2 + (1− δ)3

EZ2
g = EZg

EWb =
(2− δ)3

4

EW 2
b = EWb + δ(1− δ)2 + 2(1− δ)3 ,
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n = 512 768 1024 1536 2048 3072 4096 6144 8192

δ = 0.27 0 0 0 0 0 0 0 0 1

0.26 0 0 0 0 1 5 3 4 8

0.25 0 0 3 6 8 10 17 35 37

0.24 4 5 7 27 50 93 121 201 274

Table 3.1: Algorithm runs reaching panic width We ran our algorithm 10,000
times at each value and recorded the number of failed runs in which width exceeded 1,000,000.

so EWb < 1 when δ > 2 − 2
3
4 ≈ .4126. Then for δ = .42 the probability that

the algorithm examines more than 22n2 + 24n keys is less than 1
n2 .

• If the algorithm has partial knowledge of p and q but no information on the

other values,

EZg = (1− δ)2

EZ2
g = EZg

EWb =
(2− δ)2

2

EW 2
b = EWb + 2(1− δ)2 .

Then EWb < 1 when δ > 2 − 2
1
2 ≈ .5859. When δ = .59 the probability that

the algorithm examines more than 29n2 + 29n keys is less than 1
n2 .

3.6.7 Implementation and performance

We have developed an implementation of our key reconstruction algorithm in approxi-

mately 850 lines of C++, using NTL version 5.4.2 and GMP version 4.2.2. Our tests

were run, in 64-bit mode, on an Intel Core 2 Duo processor at 2.4 GHz with 4 MB of

L2 cache and 4 GB of DDR2 SDRAM at 667 MHz on an 800 MHz bus.

We ran experiments for key sizes between 512 bits and 8192 bits, and for δ values

between 0.40 and 0.24. The public exponent is always set to 65537. In each experiment,
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a key of the appropriate size is randomly censored so that exactly a δ fraction of

the bits of the private key components considered together is available to be used

for reconstruction. To reduce the time spent on key generation, we reused keys: We

generated 100 keys for each key size. For every δ and keysize, we ran 100 experiments

with each one of the pregenerated keys, for a total of 10,000 experimental runs. In all,

we conducted over 1.1 million runs.

For each run, we recorded the length and width. The length is the total number of

keys considered in the run of the algorithm, at all bit indices; the width is the maximum

number of keys considered at any single bit index. These correspond essentially to∑n/2
i=1Xi and maxiXi, in the notation of Section 3.6.3, but can be somewhat larger

because we run the algorithm twice in parallel to account for both possible matchings

of solutions of (3.6.11) to kp and kq. To avoid thrashing, we killed runs as soon as the

width for some index i exceeded 1,000,000.

When the panic width was not exceeded, the algorithm always ran to completion

and correctly recovered the factorization of the modulus.

Of the 900,000 runs of our algorithm with δ ≥ 0.27, only a single run (n = 8192,

δ = 0.27) exceeded the panic width. Applying a Chebyshev bound in this case (with

EXi = 9 and VarXi = 80) suggests that a width of 1,000,000 should happen with

extremely low probability.

Even below δ = 0.27, our algorithm almost always finished within the allotted

time. Table 3.1 shows the number of runs (out of 10,000) in which the panic width

was exceeded for various parameter settings. Even for n = 8192 and δ = 0.24, our

algorithm recovered the factorization of the modulus in more than 97% of all runs.

And in many of the overly long runs, the number of bits recovered before the panic

width was exceeded suffices to allow recovering the rest using the lattice methods

considered in Section 3.6.1; this is true of 144 of the 274 very long runs at n = 8192

and δ = 0.24, for example.
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Figure 3.2: Total keys examined We generated an RSA key of length 2048 at random,
erased a δ-fraction of the bits and random, then used our algorithm to recover the key. The
box-and-whisker plot shows the minimum and maximum observed (horizontal lines), the
25th and 75th quartile (upper and lower limits of the box) and median observations for
10,000 runs at each value of δ. A sharp threshold is visible around δ = .26.

As expected, search runtime was essentially linear in the total number of keys

examined. For n = 1024, for example, examining a single key took approximately

5 µsec; for n = 6144, approximately 8 µsec. The setup time varied depending on

whether k was closer to 0 or to e, but never exceeded 210 msec, even for n = 8192.

In Figure 3.3, we show the runtime behavior of the algorithm for the parameters

n = 2048 and δ = 0.27. The y axis shows the fraction of the 10,000 runs in which the

total number of keys examined by the algorithm (i.e., the length of the run) exceeded

the length given in the x axis. For example, 1442 runs had a length in excess of

10,000 and 237 had a length in excess of 25,000. Using a boxplot, we can examine

the behavior of the algorithm for different values of δ. The plot in Figure 3.2 gives

the behavior for n = 2048. The bar for δ = 0.27 summarizes the data presented in

Figure 3.3. (In our boxplot, generated using R’s boxplot function, the central bar
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Figure 3.3: Total number of keys examined For 2048-bit RSA keys with 27% of
bits known, this plot shows the fraction of our 10,000 runs in which the total number of
keys examined over the entire run of the algorithm exceeded the value in the x-axis. There
is a sharp threshold below which nearly all the runs are able to complete.

corresponds to the median, the hinges to the first and third quartiles, and the whisker

extents depend on the interquartile range.)

Figure 3.4 and Figure 3.5 show the total number of keys examined by the algorithm

as a function of n, the number of bits of the modulus, and holding δ constant at,

respectively, 0.27 and 0.24. The length is largely linear in n for δ = 0.27 but grows

more quickly than linearly for δ = 0.24.

3.7 Conclusions

The results in this chapter provide an elementary stepping stone to the more sophisti-

cated methods we will discuss in the next chapter. In particular, they illustrate how

behavior of the physical circuits in a DRAM chip introduces combinatorial constraints

when analyzing key error-correction problems. In the case of RSA, these are combina-

68



512 1024 1536 2048 3072 4096 6144 8192

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

n

le
n

Figure 3.4: Keys examined as n varies This box and whisker plot shows the
distribution of total number of keys examined over the run of an algorithm when δ = 27% of
key bits are known, as the key length varies. The median can be seen to grow approximately
linearly with the key length, while the maximum value observed grows more quickly.

torial constraints on a number-theoretic problem. We use tools from p-adic analysis in

order to think about the bit-wise information that we are given about solutions to a

set of equations, but this is far from having a complete understanding of the bit-wise

behavior of even simple multiplication.

Such an understanding would have far-reaching results. Here is an example related

to me by Mikkel Thorup. Take, for example, the universal family of hash functions

x 7→ ax+ b mod p. It is known that a random choice of constants results in a universal

family of hash functions, that is, the probability of a collision is the same as if the hash

values were randomly assigned. [24] However, applications sometimes demand stronger

properties from hash functions; for example, that they behave like error-correcting

codes. Miltersen [78] gives bounds for the probability that a random element of this

family gives an error-correcting code with some minimum distance, but it is not known
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Figure 3.5: Keys examined as n varies This box and whisker plot shows the
distribution of the total number of keys examined when δ = 24%. Compared to Figure 3.4,
the range of the distribution grows much more quickly.

how to find a concrete set of parameters that works for all inputs outside of brute-force

search.

The unusual perspective given by these kinds of key recovery problems can have

broad applications outside of cryptography in addition to providing insight to the

ciphers themselves.
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Chapter 4

Extending lattice-based methods

“Ideals are like stars; you will not

succeed in touching them with your

hands. But like the seafaring man

on the desert of waters, you choose

them as your guides, and following

them you will reach your destiny.”

Carl Schurz

In the previous chapter, we presented an algorithm for recovering errors in RSA

private keys whose bits have been subjected to random deletions.

Prior to our own work, the problem of RSA key recovery had been well studied

under a different set of assumptions. In this model, the attacker has access to a large

number of contiguous bits of the private key, for example the most significant bits

of one of the factors of the modulus N . How many bits does the attacker need in

order to efficiently recover a factor? This problem was posed by Rivest and Shamir in

1985 [89], and Coppersmith gave the best known bounds in 1996 [28].

Coppersmith’s algorithm is a celebrated technique for finding small solutions to

polynomial equations modulo integers, and it has several other important applications

in cryptanalysis.
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In this chapter, we will show how the ideas of Coppersmith’s theorem can be

extended to a more general framework encompassing the original number-theoretic

problem, list decoding of Reed-Solomon and algebraic-geometric codes, and the problem

of finding solutions to polynomial equations modulo ideals in rings of algebraic integers.

These seemingly different problems are all perfectly analogous when viewed from the

perspective of algebraic number theory.

Coppersmith’s algorithm provides a key example of the power of lattice basis

reduction. In order to extend the method beyond the integers, we illuminate the

analogous structures for polynomial rings, number fields, and function fields. Ideals

over number fields have a natural embedding into a lattice, and thus we can find a

short vector simply by applying the LLL algorithm to this canonical embedding. In

contrast to integer lattices, it turns out that lattice basis reduction is much easier

over a lattice of polynomials, and in fact a shortest vector can always be found in

polynomial time. Recasting the list decoding problem in this framework allows us

to take advantage of very efficient reduction algorithms and thus achieve the fastest

known list decoding algorithm for Reed-Solomon codes.

To extend this approach to function fields, we must overcome certain technical

difficulties. In addition, we prove a much more general result about finding short

vectors under arbitrary non-Archimedean norms, which may have further applications

beyond list decoding of algebraic-geometric codes. As an illustration of the generality

of our approach, we give the first list decoding algorithm that works for all algebraic-

geometric codes, not just those defined using a single-point divisor.

4.0.1 Analogies in number theory

The connections we have described are not isolated phenomena. Many theorems in

number theory and algebraic geometry have parallel versions for the integers and

for polynomial rings, or more generally for number fields and function fields, and
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translating statements or techniques between these settings can lead to valuable

insights.

One particular advantage of this sort of arbitrage is that proving results for

polynomial rings is usually easier. For example, the prime number theorem for Z is

a deep theorem, but the analogue for the polynomial ring Fq[z] over a finite field is

much simpler. It says that asymptotically a 1/n fraction of the qn monic polynomials

of degree n are irreducible, and in fact the error term is on the order of qn/2 (see

Lemma 14.38 in [109]). Proving a similarly strong version of the prime number

theorem for Z would amount to proving the Riemann hypothesis. Similarly, the ABC

conjecture for Z is a profound unsolved problem, while for polynomials rings it has an

elementary proof [72].

Thus, polynomial rings are worlds in which many of the fondest dreams of mathe-

maticians have come true. If a result cannot be proved in such a setting, then it is

probably not even worth trying to prove it in Z. If it can be proved for polynomial

rings, then the techniques may not apply to the integers, but they often provide

inspiration for how a proof might work if technical obstacles can be overcome.

Similarly, in computer science many computational problems that appear to be

hard for integers are tractable for polynomials. For example, factoring polynomials

can be done in polynomial time for many fields, while for the integers the problem

seems to be hard. The polynomial analogue of the shortest vector problem for lattices

can be solved exactly in polynomial time [108], while for integer lattices the problem

is NP-hard [2]. This difference in the difficulty of lattice problems is at the root of the

poor running time in Theorem 4.1.3 below for number fields of high degree.
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4.1 Overview

We set up our framework with a brief review of Coppersmith’s theorem, and then

state our theorems on polynomial rings, number fields, and function fields. Each of

these results will be discussed in more detail and proved in a later section.

4.1.1 Coppersmith’s theorem

The following extension of Coppersmith’s theorem [28] was developed by Howgrave-

Graham [52] and May [74].

Theorem 4.1.1 ([28, 52, 74]). Let f(x) be a monic polynomial of degree d with

coefficients modulo an integer N > 1, and suppose 0 < β ≤ 1. In time polynomial in

logN and d, one can find all integers w such that

|w| ≤ Nβ2/d

and

gcd(f(w), N) ≥ Nβ.

Note that when β = 1, this amounts to finding all sufficiently small solutions of

f(w) ≡ 0 (mod N), and the general theorem amounts to solving f(w) ≡ 0 (mod B),

where B is a large factor of N .

Here is a more detailed version of the example given above [28, 52]. Imagine that

an adversary has obtained through a side-channel attack some knowledge about one

of the prime factors p of an RSA modulus N = pq, for example some of its most

significant bits. We denote this known quantity by r. Then we may write p = r + w,

where the bound on w depends on how many bits of p are known. Suppose more than

half of the bits have leaked, i.e., 0 ≤ w ≤ N1/4−o(1) (we assume, as is typical, that p
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and q are both N1/2+o(1)). Now let f(x) = x+ r and β = 1/2 + o(1). Theorem 4.1.1

tells us that we can in polynomial time learn w, and hence p, thereby factoring N .

Further applications of this theorem in cryptography include other partial key

recovery attacks against RSA [17, 13], attacks on stereotyped messages and improper

padding [28], and the proof of security for the RSA-OAEP+ padding scheme [99]. See

[75] for many other applications.

It is remarkable that Theorem 4.1.1 allows us to solve polynomial equations modulo

N without knowing the factorization of N , and this fact is critical for the cryptanalytic

applications. However, even if one already has the factorization, Theorem 4.1.1 remains

nontrivial if N has many prime factors.

To solve an equation modulo a composite number, one generally solves the equation

modulo each prime power factor of the modulus and uses the Chinese remainder

theorem to construct solutions for the original modulus. (Recall that modulo a prime,

such equations can be solved in polynomial time, and we can use Hensel’s lemma to

lift the solutions to prime power moduli.) The number of possible solutions can be

exponential in the number of prime factors, in which case it is infeasible to enumerate

all of the roots and then select those that are within the desired range. In fact,

the problem of determining whether there is a root in an arbitrary given interval

is NP-complete [71]. Of course, if N has only two prime factors, then there can be

only d2 solutions modulo N , but our methods are incapable of distinguishing between

numbers with two or many prime factors.

It is not even obvious that the number of roots modulo N of size at most N1/d is

polynomially bounded. From this perspective, the exponent 1/d is optimal without

further assumptions, because f(x) = xd will have exponentially many roots modulo

N = kd of absolute value at most N1/d+ε (specifically, the 2N ε such multiples of k).

Theorem 4.1.1 can be seen as a constructive bound on the number of solutions. See

[29] for further discussion of this argument and [59] for non-constructive bounds.
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4.1.2 A polynomial analogue

To introduce our analogies, we will begin with the simplest and most familiar case:

polynomials.

There is an important analogy in number theory between the ring Z of integers

and the ring F [z] of univariate polynomials over a field F . To formulate the analogue

of Coppersmith’s theorem, one just needs to recognize that the degree of a polynomial

is the appropriate measure of its size. Thus, the polynomial version of Coppersmith’s

theorem should involve finding low-degree solutions of polynomial equations over

F [z] modulo a polynomial p(z). That is, given a polynomial f(x) =
∑d

i=0 fi(z)x
i

with coefficients fi(z) ∈ F [z], we seek low-degree polynomials w(z) ∈ F [z] such that

f(w(z)) ≡ 0 (mod p(z)).

In the following theorem, we assume that we can efficiently represent and manipu-

late elements of F , and that we can find roots in F [z] of polynomials over F [z]. For

example, that holds if we can factor bivariate polynomials over F in polynomial time.

This assumption holds for many fields, including Q and even number fields [62] as

well as all finite fields [110] (with a randomized algorithm in the latter case).

Theorem 4.1.2. Let f(x) be a monic polynomial in x of degree d over F [z] with

coefficients modulo p(z), where degz p(z) = n > 0. In polynomial time, for 0 < β ≤ 1,

one can find all w(z) ∈ F [z] such that

degz w(z) < β2n/d

and

degz gcd(f(w(z)), p(z)) ≥ βn.

In the case when p(z) factors completely into linear factors, this theorem is

equivalent to the influential Guruswami-Sudan theorem on list decoding of Reed-

Solomon codes [46]. See Section 4.4.2 for the details of the equivalence. The above
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statement of Theorem 4.1.2 appears to be new, as does the extension to higher-degree

irreducible factors.

It has long been recognized that the Coppersmith and Guruswami-Sudan theorems

are in some way analogous, although we are unaware of any previous, comparably

explicit statement of the analogy. Boneh used Coppersmith’s theorem in work on

Chinese remainder theorem codes inspired by the Guruswami-Sudan theorem [16],

and in a brief aside in the middle of [11], Bernstein noted that the Guruswami-

Sudan theorem is the polynomial analogue of a related theorem of Coppersmith,

Howgrave-Graham, and Nagaraj [30]. See also [45] for a general ideal-theoretic setting

for coding theory, and [103] for a survey of relationships between list decoding and

number-theoretic codes.

4.1.3 Number fields

A number field is a finite extension of the field Q of rational numbers. Thus it is natural

to investigate how a statement over the rationals, the simplest number field, extends

to more general number fields. We extend our analogy by adapting Coppersmith’s

theorem to the number field case.

Every number field K is of the form

K = Q(α) = {a0 + a1α + · · ·+ an−1α
n−1 : a0, . . . , an−1 ∈ Q},

where α is an algebraic number of degree n (i.e., a root of an irreducible polynomial

of degree n over Q). The degree of K is defined to be n. Within K, there is a ring

OK called the ring of algebraic integers in K. It plays the same role within the field

K as the ring Z of integers plays within Q. Sometimes OK is of the form Z[α], but

sometimes it is more subtle.
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Recall that an ideal in a ring is a non-empty subset closed under addition and

under multiplication by arbitrary elements of the ring. (Intuitively, it is a subset

modulo which one can reduce elements of the ring.) For example, the multiples of any

fixed element form an ideal, called a principal ideal. In Z every ideal is of that form,

but that is not usually true in OK .

In OK , we study the solutions of polynomial equations modulo ideals, the analogue

of such equations modulo integers in Z. To measure the size of a nonzero ideal I in

OK , we will use its norm N(I) = |OK/I|, i.e., the size of the quotient ring.

A final conceptual issue that makes this case more subtle is that a number field of

degree n has n absolute values | · |i corresponding to its n embeddings into C (as we

will explain in Section 4.5), and to obtain the theorem it is necessary to bound them

all simultaneously.

The number field analogue of Coppersmith’s theorem is as follows:

Theorem 4.1.3. Let K be a number field of degree n with ring of integers OK , f(x) ∈

OK [x] a monic polynomial of degree d, and I ( OK an ideal in OK. Assume that we

are given OK and I explicitly by integral bases. For 0 < β ≤ 1 and λ1, . . . , λn > 0, in

time polynomial in the input length and exponential in n2 we can find all w ∈ OK

with |w|i < λi such that

N(gcd(f(w)OK , I)) > N(I)β,

provided that ∏
i

λi < N(I)β
2/d.

Furthermore, in polynomial time we can find all such w provided that

∏
i

λi < (2 + o(1))−n
2/2N(I)β

2/d.
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Equivalently, we can find small solutions of equations f(x) ≡ 0 (mod J), where

the ideal J is a large divisor of I. Using improved lattice basis reduction algorithms [3]

we can achieve slightly subexponential behavior in n2. Note also that gcd(f(w)OK , I)

is the largest ideal that contains both the principal ideal f(w)OK and I; in other

words, it is their sum f(w)OK + I.

When n is fixed, our algorithm runs in polynomial time, but the dependence on n

is exponential. That appears to be unavoidable using our techniques, but it is not a

serious drawback. Many number-theoretic algorithms behave poorly for high-degree

number fields, and most computations are therefore done in low-degree cases. Even

for a fixed number field K, Theorem 4.1.3 remains of interest.

Several problems over number fields have been proposed as the basis for cryp-

tosystems; see, for example, [20] for a survey of problems over quadratic number

fields. More recently, Peikert and Rosen [84] and Lyubashevsky, Peikert, Regev [69]

developed lattice-based cryptographic schemes using lattices representing the canonical

embeddings of ideals in number fields. As a special case, Theorem 4.1.3 can be used

to solve certain cases of the bounded-distance decoding problem for such lattices, and

improving our approximation factor from (2 + o(1))−n
2/2 to 2−n

√
|∆K |, where ∆K is

the discriminant of K, would solve the problem in general; see Section 4.5.3 for more

details.

In addition, number fields have many applications to purely classical problems, the

most prominent example being the number field sieve factoring algorithm. All sieve

algorithms require generating smooth numbers, and in this context Boneh [16] showed

how to use Coppersmith’s theorem to find smooth integer solutions of polynomials in

short intervals. Using Theorem 4.1.3 analogously, one can do the same over number

fields. Nicholas Coxon has independently proven some results along these lines that

are to appear in his PhD thesis.

We prove Theorem 4.1.3 in Section 4.5.
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4.1.4 Function fields

Algebraic number theorists have developed a more sophisticated version of the analogy

between the integers and polynomial rings. A global field is a finite extension of either

the field Q of rational numbers (called a number field, as we have seen) or the field of

rational functions on an algebraic curve over a finite field, called function fields (of

curves, as opposed to higher-dimensional varieties). The parallels between number

fields and function fields are truly astonishing, and this analogy has played a crucial

role in the development of number theory over the last century.

We now complete the analogy by extending Coppersmith’s theorem to the function

field case. See Section 4.6 for a more thorough review of the setting and notation.

Theorem 4.1.4. Let X be a smooth, projective, absolutely irreducible algebraic curve

over Fq, and let K be its function field over Fq. Let D be a divisor on X whose support

supp(D) is contained in the Fq-rational points X (Fq), let S be a subset of X (Fq) that

properly contains supp(D), let OS denote the subring of K consisting of functions

with poles only in S, and let L(D) be the Riemann-Roch space

L(D) = {0} ∪ {f ∈ K∗ : (f) +D � 0}.

Let f(x) ∈ OS[x] be a monic polynomial of degree d, and let I be a proper ideal in OS.

Then in probabilistic polynomial time, we can find all w ∈ L(D) such that

N(gcd(f(w)OS, I)) ≥ N(I)β,

provided that

qdeg(D) < N(I)β
2/d.

In the case when S contains only a single point, the function field version of

Coppersmith’s theorem is equivalent to the Guruswami-Sudan theorem on list-decoding
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of algebraic-geometric codes, as we will outline in Section 4.6. The Guruswami-Sudan

theorem and the earlier Shokrollahi-Wasserman theorem in [98] are specialized to that

case, which covers many but not all algebraic-geometric codes. Our theorem extends

list decoding to the full range of such codes.

We assume that we can efficiently compute bases of Riemann-Roch spaces for

divisors in X . That can be done in many important cases (for example, for a smooth

plane curve, or even one with ordinary multiple points [53]), and it is a reasonable

assumption because even the encoding problem for algebraic-geometric codes requires a

basis of a Riemann-Roch space. Note also that although our algorithm is probabilistic,

it is guaranteed to give the correct solution in expected polynomial time; in other

words, it is a “Las Vegas” algorithm.

We prove Theorem 4.1.4 in Section 4.6.

4.2 Preliminaries

One of the main steps in Coppersmith’s theorem uses lattice basis reduction to find

a short vector in a lattice. In this section, we will review preliminaries on integral

lattices, and introduce the analogues that we will use in our generalizations.

4.2.1 Integer lattices

Recall that a lattice in Rm is a discrete subgroup of rank m. Equivalently, it is the set

of integer linear combinations of a basis of Rm.

The determinant det(L) of a lattice L is the absolute value of the determinant of

any basis matrix; it is not difficult to show that it is independent of the choice of basis.

One way to see why is that the determinant is the volume of the quotient Rm/L, or

equivalently the volume of a fundamental parallelotope.
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One of the fundamental problems in lattice theory is finding short vectors in

lattices, with respect to the `p norm

|v|p =

(
m∑
i=1

|vi|p
)1/p

.

Most often we use the `2 norm, which is of course the usual Euclidean distance. The

LLL lattice basis reduction algorithm [63] can be used to find a short vector in a

lattice.

Theorem 4.2.1 ([63]). Given a basis of a lattice L in Qm, a nonzero vector v ∈ L

satisfying

|v|2 ≤ 2(m−1)/4 det(L)1/m

can be found in polynomial time.

Note that the LLL algorithm’s input is a rational lattice, and the rationality plays

an important role in the running time analysis. In the proof of Theorem 4.1.3, we

must apply it to a lattice whose basis vectors are not in Qm; however, for our purposes

using a close rational approximation suffices.

4.2.2 Polynomial lattices

A lattice is a module over the ring Z of integers. In other words, not only is it an

abelian group under addition, but we can also multiply lattice vectors by integers

and thus take arbitrary integer combinations of them. More generally, a module for

a ring R is an abelian group in which we can multiply by elements of R (in a way

that satisfies the associative and distributive laws). In other words, an R-module is

exactly like an R-vector space, except that R is not required to be a field, as it is in

the definition of a vector space.
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The module Rm with componentwise scalar multiplication is called a free R-module

of rank m. Every lattice is a free Z-module, and free R-modules will be the analogous

structure for the ring R.

For example, if R is the polynomial ring F [z] over a field F , then we define a

polynomial lattice to be a free module over F [z] of finite rank. A polynomial lattice

will usually be generated by a basis of vectors whose coefficients are polynomials in

z. Vectors in our polynomial lattice will be linear combinations of the basis vectors

(where the coefficients are also polynomials in z).

As we will see later, an appropriate definition of the length (i.e., degree) of such a

lattice vector is the maximum degree of its coordinates:

degz(v1(z), v2(z), . . . , vm(z)) = max
i

degz vi(z). (4.2.1)

This defines a non-Archimedean norm. In fact, for lattices with a norm defined as

above, it is possible to find the exact shortest vector in polynomial time (see, for

example, [108]).

Lattices of polynomials have been well studied because of their applications to

the study of linear systems [56]. There are several notions of basis reduction for such

lattices. A basis is column-reduced (or, as appropriate, row-reduced) if the degree

of the determinant of the lattice (i.e., of a basis matrix) is equal to the sum of the

degrees of its basis vectors. Such bases always contain a minimal vector for the lattice,

and m-dimensional column reduction can be carried out in mω+o(1)D field operations

[43], where ω is the exponent of matrix multiplication and D is the greatest degree

occurring in the original basis of the lattice.

In particular, for an m-dimensional lattice L with the norm (4.2.1), the above

algorithms are guaranteed to find a nonzero vector v for which

deg v ≤ 1

m
deg detL, (4.2.2)
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where detL denotes the determinant of a lattice basis.

4.2.3 Finding short vectors under general non-Archimedean

norms

The above algorithms are specialized to norms defined by (4.2.1), but there are other

non-Archimedean norms, and we will need to use them in the proof of Theorem 4.1.4

in the function field setting. In fact, for all non-Archimedean norms, one can find a

vector satisfying the equivalent of (4.2.2) in a lattice by solving a system of linear

equations. Solving this system may be less efficient than a specialized algorithm, but

it allows us to give a general approach that will work in polynomial time for any norm.

Let R = F [z] be a polynomial ring over a field F , and for r ∈ R define

|r| = Cdegz(r)

for some arbitrary constant C > 1; we take |0| = 0 as a special case. Note that |z| = c,

and thus we can write |r| = |z|degz(r).

Suppose we have any norm | · | on Rm that satisfies the following three properties:

1. For all v ∈ Rm, |v| ≥ 0, and |v| = 0 if and only if v = 0.

2. For all v, w ∈ Rm, |v + w| ≤ max(|v|, |w|).

3. For all v ∈ Rm and r ∈ R, |rv| = |r||v|.

Note that taking

|(v1(z), v2(z), . . . , vm(z)| = Cmaxi degz vi(z)

defines such a norm, but the extra generality will prove useful in Section 4.6.

Let M ⊆ Rm be a submodule of rank m (so the quotient F -vector space Rm/M is

finite-dimensional), and let d = dimF (Rm/M).
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Lemma 4.2.2. For any R-basis b1, . . . , bm of Rm, there exists a nonzero vector v ∈M

such that

|v| ≤ m
√
|b1| . . . |bm| |z|d/m.

Proof. We will construct a nonzero vector satisfying |v| ≤ qc for some constant c to

be determined, and then we will optimize the choice of c. Let |bi| = |z|ni , and consider

the space of polynomials

V =

{∑
i

ribi : ri ∈ R and degz ri ≤ c− ni

}
.

Every v ∈ V satisfies |v| ≤ |z|c, and V is an F -vector space. To compute its dimension,

note that ri is determined by bc− nic+ 1 > c− ni coefficients. Because b1, . . . , bm is

an R-basis, dimF V > mc−
∑

i ni.

If we take c =
(
d +

∑
i ni
)
/m, then dimF V > d. Thus, there exists a nonzero

element v of V that maps to zero in the d-dimensional quotient space Rm/M and

hence lies in M . It satisfies

|v| ≤ qc = m
√
|b1| . . . |bm| |z|d/m,

as desired.

Lemma 4.2.3. Under the hypothesis of Lemma 4.2.2, a vector satisfying

|v| ≤ m
√
|b1| . . . |bm| |z|d/m

can be found in polynomial time (given an R-basis of M).

Proof. In the notation of the proof of Lemma 4.2.2, we will show that we can find

small coefficients r1, . . . , rm ∈ R (not all zero) such that
∑

i ribi is in M . Suppose

w1, . . . , wm is an R-basis of M . Then the elements of M are those that can be written
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as
∑
siwi with si ∈ R. Given a polynomial bound for the degrees of s1, . . . , sm, we

could determine the coefficients ri and si by solving linear equations over F for their

coefficients. To specify these equations, we write w1, . . . , wm as R-linear combinations

of b1, . . . , bm. Define the matrix W over R by wj =
∑

iWijbi for each j. Then

∑
i

ribi =
∑
j

sjwj

amounts to r = Ws, where s and r are the column vectors with entries si and ri,

respectively.

Thus, s determines r in a simple way, and all we need is to choose s1, . . . , sm so

that the relationship r = Ws implies degz ri ≤ c− ni, with c and ni defined as in the

proof of Lemma 4.2.2. It is not difficult to bound the degrees of the polynomials si as

follows. Let W̃ be the adjoint matrix of W (so WW̃ = det(W )I). Then

W̃ r = det(W )s.

It follows that for each i,

degz det(W ) + degz si ≤ max
j

(
degz W̃ij + degz rj

)
.

However, the entries W̃ij of W̃ have degree bounded by m− 1 times the maximum

degree of an entry of W (because they are given by determinants of (m− 1)× (m− 1)

submatrices of W ). Thus, degz si is polynomially bounded, and we can locate a

suitable vector v by solving a system of polynomially many linear equations over

F .

Note that for a rank m submodule M of Rm, the degree of the determinant of a

basis matrix B for M is the dimension of the quotient Rm/M . Thus, in Lemma 4.2.2,

if |b1| = · · · = |bm| = 1, then the norm of a minimal vector is bounded by | det(B)|1/m.
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The exponential approximation factor that occurs in LLL lattice basis reduction does

not occur here.

4.3 Coppersmith’s theorem

We now review how Coppersmith’s method works over the integers, as this provides a

template for the techniques we will apply later. We will follow the exposition of May

[75].

Let f(x) be a monic univariate polynomial of degree d, and N an integer of

potentially unknown factorization. We wish to find all small integers w such that

gcd(f(w), N) is large.

To do so, we will choose some positive integer k (to be determined later) and look

at integer combinations of the polynomials xjf(x)iNk−i. If B divides both N and

f(w), then Bk will divide wjf(w)iNk−i and thus also any linear combination of such

polynomials.

Let

Q(x) =
∑
i,j

ai,jx
jf(x)iNk−i =

∑
i

qix
i,

for some coefficients ai,j and qi to be determined. We will choose Q so that the

small solutions to our original congruence become actual solutions of Q(x) = 0 in

the integers. This will allow us to find w by factoring Q(x) over the rationals. The

construction of Q tells us that

Q(w) ≡ 0 (mod Bk). (4.3.1)

If in addition we have a lower bound Nβ on the size of B, and we can show that

|Q(w)| < Nβk ≤ Bk, (4.3.2)
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then Q(w) = 0 and we may find w by factoring Q. In fact, this observation tells us

that we can find all such w in this way. A similar observation will appear in all of our

proofs.

In the case of the integers, we introduce the bound |w| < X on our roots, and the

triangle inequality tells us that

|Q(w)| ≤
∑
i

|qi|X i. (4.3.3)

To finish the theorem, we will show that if X is sufficiently small, then we can choose

Q so that its coefficients qi satisfy

∑
i

|qi|X i < Nβk. (4.3.4)

We are now ready to prove Coppersmith’s theorem for the integers.

Proof of Theorem 4.1.1. Having outlined the general technique above, it remains to

be shown that we can construct a polynomial Q(x) whose coefficients satisfy the

bound in (4.3.4).

The polynomial Q(x) will be a linear combination of the polynomials

xjf(x)iNk−i for 0 ≤ i < k and 0 ≤ j < d

and

xjf(x)k for 0 ≤ j < t.

The right-hand side of (4.3.3) is the `1 norm of the vector of coefficients of the

polynomial Q(xX), which in turn will be a linear combination of the polynomials

(xX)jf(xX)iNk−i. Finding our desired Q(x) is thus equivalent to finding a suitably

88



short vector in the lattice L spanned by the coefficient vectors of the polynomials

(xX)jf(xX)iNk−i.

To compute the determinant of this lattice, we can order the basis vectors by the

degrees of the polynomials they represent to obtain an upper triangular matrix whose

determinant is the product of the terms on the diagonal:

det(L) =
∏

0≤i<dk+t

X i
∏

0≤j≤k

Ndj = X(dk+t−1)(dk+t)/2Ndk(k+1)/2.

Set m = dk + t. We can use the LLL algorithm [63] to find a vector v whose `2

norm is bounded by

|v|2 ≤ 2(m−1)/4 det(L)1/m.

By Cauchy-Schwarz, |v|1 ≤
√
m |v|2, and hence whenever |w| < X,

|Q(w)| ≤
√
m2(m−1)/4 det(L)1/m.

We assume m ≥ 7, and use the weaker bound

|Q(w)| ≤ 2(m−1)/2 det(L)1/m.

To prove inequality (4.3.2), we must show that

|Q(w)| ≤ 2(m−1)/2 (Xm(m−1)/2Ndk(k+1)/2
)1/m

< Nβk.

This inequality is equivalent to

(2X)(m−1)/(2k)Nd(k+1)/(2m) < Nβ. (4.3.5)
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Applying Lemma 4.3.1 below with ` = log 2X and n = logN , we obtain parameters

k and t such that (4.3.5) holds for

2X < Nβ2/d−ε.

To eliminate ε from the statement of the theorem, take ε < 1
log2N

. Then our bound

becomes X ≤ 1
4
Nβ2/d. We can divide the interval [−Nβ2/d, Nβ2/d] into four intervals

of width 2X and solve the problem for each interval by finding solutions for the

polynomials f(x − 3X), f(x − X), f(x + X), and f(x + 3X). Thus, we achieve a

bound of X ≤ Nβ2/d, as desired.

We end with a brief lemma that will tell us how to optimize our parameters in

equation (4.3.5).

Lemma 4.3.1. The inequality `m−1
2k

+ ndk+1
2m

< nβ is satisfied for ` < n
(
β2

d
− ε
)

,

any m ≥
⌈
2β
ε

⌉
, and k =

⌊
βm
d
− 1
⌋
.

As intuition, note that if we set the two terms `m−1
2k

and ndk+1
2m

roughly equal to

nβ
2

, then we have `m2 ≈ ndk2 ≈ nβmk and hence ` ≈ nβ2/d. The proof amounts to

making this precise.

Proof. It suffices to show that these values of m and k satisfy n
(
β2

d
− ε
)
m−1
2k

< nβ
2

and ndk+1
2m
≤ nβ

2
.

The first inequality is equivalent to k
m−1 >

β
d
− ε

β
. Similarly, the second is equivalent

to k+1
m
≤ β

d
. If we set k =

⌊
βm
d
− 1
⌋
, then k+1

m
≤ β

d
, so the second inequality is satisfied.

If in addition we take m ≥ 2β
ε

, then εm
β
≥ 2 and hence k > βm

d
− 2 ≥ βm

d
− εm

β
. It

follows that k m
m−1 >

βm
d
− εm

β
, which is equivalent to the first inequality.

It is also worth noting that improving the approximation factor for the length of

the short lattice vector that we find will only improve the constants and running time

90



of the theorem, but will not provide an asymptotic improvement to the bound Nβ2/d

on |w|.

4.4 Polynomials and Reed-Solomon list decoding

In this section, we prove Theorem 4.1.2 using an approach analogous to that of

the previous section. Guruswami and Sudan’s technique for list decoding of Reed-

Solomon codes [46] is similar in that it involves constructing a bivariate polynomial

that vanishes to high order at particular points. To construct such a polynomial,

they write each vanishing condition as a set of linear equations on the coefficients of

the polynomial under construction. The linear equations can be solved to obtain the

desired polynomial, and the polynomial factored to obtain its roots.

Similarly, the polynomials used in Coppersmith’s method are constructed in order

to vanish to high order, the condition ensured by equation (4.3.1). The conceptual

difference is that this condition follows from the form of the lattice basis, rather than

being imposed as linear constraints. With the right definition of lattice basis reduction

in the polynomial setting, we can emulate the proof from the integer case.

We regard f(x) as a polynomial in x with coefficients that are polynomials in the

variable z. To prove Theorem 4.1.2, we would like to construct a polynomial Q(x)

over F [z] from the polynomials xjf(x)ip(z)k−i. If b(z) divides both p(z) and f(w(z)),

then b(z)k divides w(z)jf(w(z))ip(z)k−i and thus also any linear combination of such

polynomials.

Instead of an integer combination of these polynomials, we will allow coefficients

that are polynomials in z. Let

Q(x) =
∑
i,j

ai,j(z)xjf(x)ip(z)k−i =
∑
i

qi(z)xi.
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If we have an upper bound ` on the degree of our root w(z), then the degree of

Q(w(z)) will be

degz Q(w(z)) ≤ max
i

(degz qi(z) + `i).

If similarly we have a lower bound nβ on the degree of b(z), then if we know that both

Q(w(z)) ≡ 0 (mod b(z)k)

and

degz Q(w(z)) < nβk ≤ k degz b(z), (4.4.1)

then we may conclude that

Q(w(z)) = 0.

4.4.1 Proof of Theorem 4.1.2

We will show how finding a short vector in a lattice of polynomials will allow us to

construct a polynomial Q(x) satisfying (4.4.1).

Let ` be the upper bound on the degree of the roots w(z) we would like to find.

Using the same idea to bound the length of the vector as in the integer case, we will

form a lattice of the coefficient vectors of

(z`x)jf(z`x)ip(z)k−i for 0 ≤ j < d and 0 ≤ i < k

and

(z`x)jf(z`x)k for 0 ≤ j < t.

As always, we view them as polynomials in powers of x with coefficients that are

polynomials in z. Let M be the F [z]-module spanned by the coefficient vectors of

these polynomials, with the degree of a vector defined by (4.2.1).
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The matrix of coefficient vectors of the basis is upper triangular, so its determinant

is the product of the diagonal entries. Set m = kd+ t. Hence

deg detM = `
m−1∑
i=0

i+ nd

k∑
i=0

i

= `
m(m− 1)

2
+ nd

k(k + 1)

2
.

Since the dimension of our lattice is m, by Theorem 4.2.3 we can find a vector of

degree at most

1

m

(
`
m(m− 1)

2
+ nd

k(k + 1)

2

)
.

To prove (4.4.1), we would like this bound to be less than βkn. By Lemma 4.3.1,

we can achieve any ` ≤ n
(
β2

d
− ε
)

. If we set ε < 1
n2d

then this becomes ` < β2n
d

, as

desired, because β can be taken to have denominator n.

Note that we cannot achieve degree equal to β2n/d (as opposed to strict inequality):

for the equation xd ≡ 0 (mod p(z)d), there are infinitely many solutions x = c p(z) if

F is infinite.

4.4.2 Reed-Solomon list decoding and noisy polynomial in-

terpolation

A Reed-Solomon code is determined by evaluating a polynomial w(z) ∈ Fq[z] of

degree at most ` at a collection of distinct points (x1, . . . , xn) to obtain a codeword

(w(x1), . . . , w(xn)). In the Reed-Solomon decoding problem, we are provided with

(y1, . . . , yn), where at most e values have changed, and we want to recover w(z)

by finding a polynomial of degree at most ` that fits at least n − e points (xi, yi).

Guruswami and Sudan [46] showed how to correct up to e = n −
√
n` errors by

providing a list of all possible decodings.
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In the noisy polynomial interpolation problem, at each xi a set {yi1, . . . , yid} of

values is specified, and the goal is to find a low-degree polynomial passing through a

point from each set. This problem has been proposed as a cryptographic primitive,

for example by Naor and Pinkas [79], and studied by Bleichenbacher and Nguyen [12].

We can use Theorem 4.1.2 to solve both problems, and in particular recover the

exact decoding rates of Guruswami-Sudan. The input to our problem is a collection

of points

{(xi, yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ d}.

We set p(z) =
∏

i(z − xi), and we define a monic polynomial f(x) of degree d in x by

f(x) =
n∑
i=1

d∏
j=1

(x− yij)
n∏
k=1
k 6=i

z − xk
xi − xk

.

We have constructed f(x) by interpolation so that f(x) ≡
∏

j(x− yij) (mod (z− xi)).

Thus, f(yij) = 0 whenever z = xi.

To correct e errors, we seek a polynomial w(z) of degree at most ` such that for at

least n− e values of i, there exists a j such that w(xi) = yij. In other words, f(w(z))

must be divisible by at least n− e factors z − xi, which is equivalent to

degz gcd(f(w(z)), p(z)) ≥ n− e.

Theorem 4.1.2 tells us that we can solve this problem in polynomial time if ` <

n(1− e/n)2/d (since β = 1− e/n in the notation of the theorem). That is equivalent

to the Guruswami-Sudan bound e < n−
√
n`d.

4.4.3 Running time

The Guruswami-Sudan algorithm consists of two parts: constructing the polynomial

Q(x), and finding the roots of Q(x) in Fq[z]. In this paper, we do not address the
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second part, but we improve the running time of the first part, which has been the

bottleneck in the algorithm.

The time to construct Q is dominated by the lattice basis reduction step, which

depends on m the dimension of the lattice and the maximum degree D of a coefficient

polynomial.

Lemma 4.3.1 tells us that we have m = O(β/ε), where ε has been defined so that

` = n(β2/d− ε), and we can assume D < nk, since we can reduce the coefficients of

Q(x) modulo p(z)k, which has degree nk. The parameter k is set to O(βm/d).

Emulating the analysis from [46], when (βn)2 = (1 + δ)`n, we have δ = εn/`,

m = O((1 + δ)/(δβ)),

and

D = O(n(1 + δ)/(dδ)).

Using the fastest row reduction algorithm (see Section 4.2.2), the running time is

O
(
Dmω+o(1)

)
= O

(
n/(δω+1+o(1))

)
.

In the worst case, we set ε = 1/(n2d), which gives m = O(βn2d), k = O((βn)2), and

D = O(n3β2), so the total running time is O
(
n2ω+3+o(1)d

)
field operations. With cubic-

time matrix multiplication we achieve O(n9d), and with fast matrix multiplication

[31] we achieve O
(
n7.752+o(1)d

)
.

The original Guruswami-Sudan approach [46] requires roughly O(n3δ−6) field

operations, or O(n15) in the worst case. (The second part of their algorithm runs in

time O(n12), although there have been improvements since then [92].) The fastest

previous algorithm proposed for this problem [104] apparently runs in worst case
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time Õ(n8) when d = 1, although its running time analysis is only heuristic (see the

footnote on page 13 of [104]).

4.5 Number fields

4.5.1 Background on number fields

See [64] for a beautiful introduction to computational algebraic number theory, or [26]

for a more comprehensive treatment.

Recall that number fields are finite extensions of the field Q of rational numbers.

Each number field K is generated by some algebraic number α, and the elements

of the number field are polynomials in α with rational coefficients. If the minimal

polynomial p(x) of α (the lowest-degree polynomial over Q, not identically zero, for

which α is a root) has degree n, then every element of K = Q(α) will be a polynomial

in α of degree at most n− 1. In other words,

Q(α) = {a0 + a1α + · · ·+ an−1α
n−1 : a0, . . . , an−1 ∈ Q}.

The degree of K is defined to be n. It is the dimension of K as a Q-vector space.

The minimal polynomial p(x) must be irreducible over Q, and thus it has n distinct

complex roots α1, . . . , αn (one of which is α). Not all of these roots will necessarily be

in the field K = Q(α). For example, the field Q( 3
√

2 ) is contained in R and thus does

not contain either of the complex roots of x3 − 2.

For each i from 1 to n, we can define an embedding σi of K into C by mapping α

to αi and extending by additivity and multiplicativity. All embeddings into C arise

in this way. If p has r1 real roots and r2 pairs of complex conjugate (non-real) roots,

then there will be r1 real embeddings and 2r2 complex embeddings.
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The absolute values on K are defined by

|γ|i = |σi(γ)|

(where | · | on the right side is the familiar absolute value on C, and | · |i does not

denote the `i norm). For each i, this valuation has all the usual properties of the

absolute value on Q. These absolute values are not necessarily distinct, since they

coincide for complex conjugate roots of p(x): if αi = αj, then |γ|i = |γ|j for all γ.

Otherwise, the absolute values are all distinct.

The ring of algebraic integers OK in K consists of all the elements of K that are

roots of monic polynomials over Z. It is the natural analogue of Z in K (note that

OQ = Z). In simple cases, OK may equal Z[α], but that is not always true. When

K = Q(
√

5 ), we have OK = Z[(1 +
√

5 )/2], and for some number fields the ring of

integers cannot even be generated by a single element.

The norm of an element γ ∈ K is defined as the product

N(γ) = σ1(γ) · · ·σn(γ)

in C. (In fact, N(γ) is rational for γ ∈ K, and it is integral for γ ∈ OK .) If

γ ∈ OK and γ 6= 0, then |N(γ)| = |OK/γOK |. More generally, for any nonzero ideal

I in OK , we define its norm N(I) to be |OK/I|. The norm is multiplicative; i.e.,

N(IJ) = N(I)N(J).

The norm is a natural measure of size for both ideals and individual elements in

OK . It might be tempting to use the norm as our measure of the size of the roots of the

polynomial in Theorem 4.1.3. However, that does not work, because OK typically has

infinitely many units (elements of norm 1). For example, the powers of (1 +
√

5 )/2 are

units in Z[(1 +
√

5 )/2], which means the equation x2 ≡ 0 (mod 4) has infinitely many

solutions of norm at most N(4)1/2 = N(2) = 4, namely the numbers 2((1 +
√

5 )/2)k
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for k ∈ Z. Thus, bounding the norm alone is insufficient even to guarantee that there

will be only finitely many solutions, but bounding all the absolute values suffices.

The ring OK has an integral basis ω1, . . . , ωn (i.e., a basis such that every element

of OK can be expressed uniquely in the form
∑

i aiωi with ai ∈ Z). We assume we are

given such a basis, because finding one is computationally difficult (see Theorem 4.4

in [64]). Any reasonably explicit description of OK will yield an integral basis.

Fortunately, such a description is known for many concrete examples of number fields,

such as cyclotomic fields. Furthermore, if we are working with a fixed number field,

finding an integral basis for OK can be done with only a fixed amount of preprocessing.

We also assume that ideals in OK are given in terms of integral bases. It is not difficult

to convert any other description of an ideal (such as generators over OK) to an integral

basis.

If we do not know the full ring OK of integers, we could nevertheless work with an

order in K, i.e., a finite-index subring of OK . Everything we need works just as well

for orders, with one exception, namely that the norm is no longer multiplicative for

ideals. Fortunately, it remains multiplicative for invertible ideals (see Proposition 4.6.8

in [26]), and Coppersmith’s theorem generalizes to invertible ideals. Specifically, we

can find small roots of polynomial equations modulo an invertible ideal I, or modulo

any invertible ideal B that contains I and satisfies N(B) ≥ N(I)β.

Finally, polynomials over number fields can be factored in polynomial time [61].

Modules and canonical embeddings

The analogue of a lattice for OK is a finitely generated OK-submodule of the r-

dimensional K-vector space Kr. Recall that an OK-submodule is a non-empty subset

that is closed under addition and under multiplication by any element in OK .

Unlike the case of Z-lattices, OK-lattices may not have bases over OK . However,

an OK-lattice Λ always has a pseudo-basis, i.e., a collection of vectors v1, . . . , vs ∈ Λ
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and ideals I1, . . . , Is ⊆ OK such that

Λ = I1v1 + · · ·+ Isvs.

The key difference from Z is that the ideals may not be principal (i.e., they may not

simply be the multiples of single elements of OK).

A natural approach to finding a short vector in an OK-lattice would be to find an

algorithm to reduce a pseudo-basis. Fieker and Pohst [41] developed an OK-analogue

of the LLL lattice basis reduction algorithm, but they were unable to prove that

their algorithm runs in polynomial time. More recently, Fieker and Stehlé [42] have

given a polynomial-time algorithm to find a reduced pseudo-basis in an OK-module.

Their algorithm runs in two parts. The first is to apply LLL to an embedding of the

OK-module as a Z-lattice to find a full-rank set of short module elements, and the

second uses this collection of module elements to reduce the pseudo-basis.

As our application only requires finding a short vector in the module, we do not

need the second step of the Fieker-Stehlé algorithm. The remainder of this section

describes how to use LLL to find a short vector in an OK-lattice.

Although OK-lattices are an algebraic analogue of Z-lattices, their geometry is

not as easy to see directly from the definition. It might seem natural simply to use

one of the absolute values to define the `2 norm for vectors, but that breaks the

symmetry between them. Instead, it is important to treat each absolute value on an

equal footing, and the canonical embedding (defined below) allows us to do so.

We will describe the embedding in several steps. First, we embed OK itself as

an n-dimensional lattice in Rr1 ⊕ C2r2 by mapping γ ∈ OK to (σ1(γ), . . . , σn(γ)). An
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integral basis ω1, . . . , ωn of OK is mapped to the rows of the matrix

σ(ω) =



σ1(ω1) σ2(ω1) · · · σn(ω1)

σ1(ω2)
. . . σn(ω2)

...
...

σ1(ωn) σ2(ωn) · · · σn(ωn)


,

so OK is mapped to the Z-linear combinations of the rows.

The discriminant ∆K of K is defined by

∆K = detσ(ω)2.

It is an integer that measures the size of the ring of integers in K.

The canonical embedding of the principal ideal generated by an element γ is

generated by the rows of the matrix product



σ1(ω1) σ2(ω1) · · · σn(ω1)

σ1(ω2)
. . . σn(ω2)

...
...

σ1(ωn) σ2(ωn) · · · σn(ωn)





σ1(γ)

σ2(γ)

. . .

σn(γ)


.

More generally, suppose we have an ideal B generated by an integral basis b1, . . . , bn.

Let MB be the matrix defined by

bi =
∑
j

(
MB

)
ij
ωj.
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The canonical embedding of B is generated by the rows of

σ(b) =



σ1(b1) σ2(b1) · · · σn(b1)

σ1(b2)
. . . σn(b2)

...
...

σ1(bn) σ2(bn) · · · σn(bn)


= MB



σ1(ω1) σ2(ω1) · · · σn(ω1)

σ1(ω2)
. . . σn(ω2)

...
...

σ1(ωn) σ2(ωn) · · · σn(ωn)


.

Note that the absolute value of the determinant of σ(b) equals | detMB|
√
|∆K |, and

| detMB| = |OK/B| = N(B).

Finally, we can easily extend the canonical embedding from OK to O r
K by embed-

ding each of the r coordinates independently. Given a pseudo-basis v1, . . . , vr with

corresponding ideals I1, . . . , Ir, the canonical embedding of the lattice is generated by

the rows of the block matrix whose ij block of size n× n is equal to

MIiσ(ω)



σ1(vij)

σ2(vij)

. . .

σn(vij)


,

where vij is the j-th component of vi.

The inner product on Rr1 ⊕ C2r2 is given by the usual dot product on R and the

Hermitian inner product on C (i.e., 〈x, y〉 = xy for x, y ∈ C). Thus, it is positive

definite.

The canonical embedding’s image lies within an n-dimensional real subspace,

because the complex embeddings come in conjugate pairs. In fact, we can transform it

into a simple real embedding. To do so, consider the r2 pairs of complex embeddings.

For each pair (σj(γ), σk(γ)) of complex embeddings that are conjugates of each other,

we can map the pair (σj(γ), σk(γ)) to (
√

2 Re(σj(γ)),
√

2 Im(σj(γ))). The reason for
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the factor of
√

2 is to ensure that the inner product is preserved. Furthermore, the

absolute value of the determinant is preserved.

Once we have a real embedding of our OK-lattice, we can apply the LLL algorithm

to find a short vector in the real embedded lattice, which will correspond to a short

vector in the original OK-lattice. Unfortunately, using LLL in the canonical embedding

does not preserve the OK-structure, so it does not produce a reduced pseudo-basis

over OK , but a short vector is sufficient for our purposes here.

4.5.2 Proof of Theorem 4.1.3

The following lemma is the analogue of the statement over the integers that a multiple

of n that is strictly less than n in absolute value must be zero.

Lemma 4.5.1. For a nonzero ideal I in OK and an element γ ∈ I, if |N(γ)| < N(I)

then γ = 0.

Proof. Consider the principal ideal γOK generated by a nonzero element γ of I. The

ideal I contains γOK , and thus |OK/I| ≤ |OK/γOK |. Because N(I) = |OK/I| and

|N(γ)| = |OK/γOK |, we have |N(γ)| ≥ N(I), as desired.

Proof of Theorem 4.1.3. As in the previous proofs, we will construct a polynomial

Q(x) in the OK-module generated by

xjf(x)iIk−i for 0 ≤ i < k and 0 ≤ j < d

and

xjf(x)k for 0 ≤ j < t.

Note that because of the ideals Ik−i, this is really a pseudo-basis rather than a basis.

Let m = dk+ t. To represent this module, we will write down an nm× nm matrix

whose rows are a Z-basis for a weighted version of the module’s canonical embedding.
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Finding a short vector in this lattice will correspond to finding a Q that satisfies our

bounds.

Our lattice is constructed much as before, except that in place of a single entry for

each coefficient of xjf(x)iIk−i, we will have an n × n block matrix. Let fsij be the

coefficient of xs in xjf(x)i. Then we form the ideal fsijI
k−i, which has an integral basis

b1, . . . , bn. We incorporate the bounds λi on each absolute value into our canonical

embedding for the s-th coefficient of xjf(x)iIk−i by using



λs1σ1(b1) λs2σ2(b1) · · · λsnσn(b1)

λs1σ1(b2)
. . . λsnσn(b2)

...
...

λs1σ1(bn) λs2σ2(bn) · · · λsnσn(bn)


.

This is equal to the product of the matrix with λs1, . . . , λ
s
n on the diagonal with the

canonical embedding σ(b), so the absolute value of the determinant of the block is

λs1 . . . λ
s
n

√
|∆K | |N(fsij)|N(I)k−i.

Now consider a vector v in this lattice and the polynomial Q(x) =
∑

j qjx
j that it

represents. If |w|i < λi for all i, then we can bound |N(Q(w))| using the `1 norm by

applying the arithmetic mean-geometric mean inequality. We have

|N(Q(w))| =
∏
i

∣∣∣∣∑
j

qjw
j

∣∣∣∣
i

,
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and hence

|N(Q(w))|1/n ≤ 1

n

∑
i

∣∣∣∣∑
j

qjw
j

∣∣∣∣
i

≤ 1

n

∑
i

∑
j

|qj|iλji .

Thus,

|N(Q(w))| ≤
(

1

n
|v|1
)n

.

As in the integer case, LLL produces a nonzero vector v whose `1 norm is bounded

by ∑
i

∑
j

|vi|j ≤
√
nm2(nm−1)/4| det(M)|

1
nm .

Note that here, |vi|j denotes the j-th number field norm applied to the i-th entry of v.

Now it remains to compute the determinant of our weighted canonical embedding.

The lattice basis we produced in our construction is block upper triangular, so the

determinant is the product of the blocks on the diagonal. Letting
∏

i λi = X, we get

| detM | =
∏

0≤i<m

(
X i
√
|∆K |

) ∏
0≤j≤k

N(I)dj

=
√
|∆K |

m
Xm(m−1)/2N(I)dk(k+1)/2.

Thus, we have

|v|1 <
√
nm2(nm−1)/4

√
|∆K |

1
n
(
Xm(m−1)/2N(I)dk(k+1)/2

) 1
nm .

Recall that if |w|i < λi for all i, then

|N(Q(w))| ≤ 1

nn
|v|n1 .
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We will compute a c so that

(
1

nn
(√

nm2(nm−1)/4)n√|∆K |
) 2

m−1

< c.

Then by the same analysis as in the proof of Theorem 4.1.1, we can prove the theorem

with a bound of

1

c
N(I)β

2/d−ε

on the product
∏

i λi. A simple asymptotic analysis shows that we can take c =

(2 + o(1))n
2/2 as m→∞. Thus, we achieve a bound of

(2 + o(1))−n
2/2N(I)β

2/d−ε.

As before, we can take ε = 1/ logN(I) to achieve in fact (2 + o(1))−n
2/2N(I)β

2/d.

Note that so far, everything runs in polynomial time, with no exponential depen-

dence on n. Unfortunately, removing the factor of (2 + o(1))−n
2/2 is computationally

expensive. We can use the same trick as in Theorem 4.1.1. In the canonical embedding

of OK , the region we would like to cover is a box of dimensions 2λ1 × · · · × 2λn (the

factor of 2 comes from including positive and negative signs). The proof so far shows

that we can deal with a box that is a factor of (2+o(1))−n/2 smaller in each coordinate.

We can cover the large box with (2 + o(1))n
2/2 of the smaller ones and compute the

solutions in each smaller box in polynomial time, but the total running time becomes

exponential in n2.

4.5.3 Solving the closest vector problem in ideal lattices

In [84], Peikert and Rosen proposed using the closest vector problem for ideal lattices

as a hard problem for use in constructing lattice-based cryptosystems. In [69], Lyuba-

shevsky, Peikert, and Regev gave hardness reductions for such cryptosystems via the
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bounded-distance decoding problem, defined for the `∞ norm as follows. Given an

ideal I in OK , a distance δ, and an element y ∈ K, find y+w ∈ I such that ||w||∞ < δ,

where || · ||∞ denotes the `∞ norm on K (i.e., the maximum of the n absolute values).

If y ∈ OK , then we can define f(x) = x + y and find the roots w of f(x) ≡ 0

(mod I) satisfying

||w||∞ < (2 + o(1))−n/2N(I)1/n.

This amounts to taking d = 1, β = 1, and λ1 = · · · = λn = (2 + o(1))−n/2N(I)1/n.

Because we are using the `∞ norm, the minimal nonzero norm of I is at

most
(√
|∆K |N(I)

)1/n
. Thus, our algorithm can handle distances δ less than

(2 + o(1))−n/2|∆K |−1/(2n) times the minimal norm of I. (Of course, this is somewhat

worse than using LLL directly.) Note also that if y 6∈ OK , then we can rescale y and I

by a positive integer to reduce to the previous case.

If the (2 + o(1))−n
2/2 could be improved to 2−n

√
|∆K |, then we could solve the

bounded-distance decoding problem up to half the minimal distance, by the same

argument as above with λ1 = · · · = λn = |∆K |1/(2n)N(I)1/n/2. This suggests that it

will be difficult to remove the multiplicative factor entirely.

4.6 Function Fields

Much as number fields are finite extensions of Q, function fields are finite extensions

of the field Fq(x) of rational functions over a finite field Fq. They arise naturally from

algebraic curves over Fq, as the field of rational functions on the curve. For example,

for a plane curve defined by the polynomial equation f(x, y) = 0, the function field

will be Fq(x, y)/(f(x, y)) (i.e., rational functions of x and y, where the variables satisfy

f(x, y) = 0). See [102] and [91] for background on function fields, and [68] for a

beautiful account of the analogies between number fields and function fields.
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More generally, let X be an algebraic curve over Fq. Specifically, it must be a

smooth, projective curve that remains irreducible over the algebraic closure of Fq. Our

function field K will be the field of rational functions on X defined over Fq. (Note that

we are assuming Fq is the full field of constants in K; in other words, each element of

K is either in Fq or transcendental over Fq.)

Let X (Fq) be the set of points on X with coordinates in Fq. Every point p ∈ X (Fq)

gives a valuation vp on K, which measures the order of vanishing at that point. Poles

are treated as zeros of negative order. The corresponding absolute value on K is

defined by

|f |p = q−vp(f).

(Note that this is not the `p norm on a vector; in this section, the `p norm will not be

used.) In other words, high-order zeros make a function small, while poles make it

larger. Not every absolute value on K is of this form—there is a slight generalization

that corresponds to points defined over finite extensions of Fq (more precisely, Galois

orbits of such points). For our purposes we can restrict our attention to the absolute

values defined above, but in fact all our results generalize naturally to places of degree

greater than 1.

In the number field case, the Archimedean absolute values (which come from the

complex embeddings) play a special role, although there are infinitely many non-

Archimedean absolute values as well, namely the p-adic absolute values measuring

divisibility by primes. In the function field case, there are no Archimedean absolute

values, and any set of absolute values can play the same role.

Let S be a nonempty subset of X (Fq), and let OS be the subring of K consisting of

all rational functions whose poles are confined to the set S. The ring OS is analogous

to the ring of algebraic integers in a number field; in this analogy, the condition of

having no poles outside S amounts to the condition that an algebraic integer has no
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primes in its denominator, because the valuations from points outside S correspond

to the p-adic valuations.

For example, if X is the projective line (i.e., the ordinary line completed with a

point at infinity), then K is simply the field Fq(z) of rational functions in one variable.

If we let S = {∞} be the set consisting solely of the point at infinity, then OS is the

set of rational functions that have poles only at infinity. In other words, it is the

polynomial ring Fq[z]. (A polynomial of degree d has a pole of order d at infinity.)

The norm of an element f ∈ OS is defined by

N(f) =
∏
p∈S

|f |p,

and the norm of a nonzero ideal I is defined by N(I) = |OS/I|. As in the number

field case, the norm of the principal ideal fOS is N(f).

4.6.1 Background on algebraic-geometric codes

Algebraic-geometric codes are a natural generalization of Reed-Solomon codes. They

are of great importance in coding theory, because for certain finite fields they beat the

Gilbert-Varshamov bound (which is the performance of a random code, and which

aside from algebraic-geometric codes is the best bound known). See Section 8.4 in

[102].

To define an algebraic-geometric code on X , we specify for each point in S the

maximum allowable order of a pole there (and we allow no poles outside of S). The

space of functions satisfying these restrictions is a finite-dimensional Fq-vector space,

and we can produce an error-correcting code by looking at the evaluations of these

functions at a fixed set of points (disjoint from S).

This is typically described using the language of algebraic geometry. A divisor D

on X is a formal Z-linear combination of finitely many points on X ; the support of D
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is the set of points with nonzero coefficients. (We will restrict our attention to divisors

supported at points in X (Fq).) The divisor D is called effective, denoted D � 0, if all

its coefficients are nonnegative. For every function f ∈ K∗, the principal divisor (f) is

the sum of the zeros and poles of f , with their orders as coefficients. (The identically

zero function does not define a principal divisor, since it has a zero of infinite order at

every point.) The degree deg(D) of D to be the sum of its coefficients, and the degree

of a principal divisor is always zero.

Given a divisor D, the Riemann-Roch space L(D) is defined by

L(D) = {0} ∪ {f ∈ K∗ : (f) +D � 0}.

In other words, if the coefficient of p in D is k, then f can have a pole of order at

most k at the point p. The space L(D) is a finite-dimensional Fq-vector space, and

the famous Riemann-Roch theorem describes its dimension:

dimFq L(D) = deg(D)− g + 1 + dimFq L(W −D),

where g is a nonnegative integer called the genus of the curve and W is a particular

divisor called the canonical divisor. It follows that dimFq L(D) ≥ deg(D)− g + 1, and

equality holds if deg(D) > 2g − 2.

To translate the definition of an algebraic-geometric code to this language, let D

be the divisor with support in S whose coefficients specify the allowed order of a pole

at each point, and let p1, . . . , pn be distinct points in X (Fq) but not in S. Then the

corresponding algebraic-geometric code consists of the codewords (w(p1), . . . , w(pn))

for w ∈ L(D).

In the case of the projective line, let S = {∞}, so OS = Fq[z], and let D = d∞.

Then L(D) is the space of polynomials in Fq[z] of degree at most d. Thus, this

construction yields Reed-Solomon codes as a special case.
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Theorem 4.1.4 corresponds to list decoding of algebraic-geometric codes in much

the same way as Theorem 4.1.2 does for Reed-Solomon codes. The evaluation points

p1, . . . , pn correspond to prime ideals P1, . . . , Pn in OS, where Pi consists of the

functions vanishing at pi, and we can let I be the product P1 . . . Pn. If the received

codeword is (y1, . . . , yn) ∈ Fnq , then we define the linear polynomial f so that f(x) ≡ x−

yi (mod Pi) for all i. (The Chinese remainder theorem lets us solve this interpolation

problem.) Thus, for w ∈ OS, f(w) is in the ideal Pi if and only if w(pi) = yi. We have

N(I) = qn, and gcd(f(w)OS, I) is divisible by Pi exactly when w(pi) = yi. Therefore

the inequality

N(gcd(f(w)OS, I)) ≥ N(I)β

simply means that w(pi) = yi for at least βn values of i. Thus, Theorem 4.1.4 solves

the list decoding problem.

4.6.2 Proof of Theorem 4.1.4

As in the number field case, we would like to deal with lattices over a simpler ring

than OS; there, we used the complex embeddings to construct a Z-module. Here, we

will use Fq[z]-modules instead, but there is a key conceptual difference, because there

are many embeddings of Fq[z] into OS and we must choose the correct one, while

there is only one embedding of Z into OK .

The property we would like z to have is that |z|p should be independent of p, as

long as p ∈ S. In that case, the absolute values | · |p with p ∈ S will all restrict to the

same absolute value on the ring R = Fq[z], which we will denote | · |.

When |S| = 1, we can choose any nonconstant element z of OS. When |S| > 1, it

is not as trivial, but fortunately there is always such an element:
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Lemma 4.6.1. There exists an integer a ≥ 1 and an element z ∈ OS such that

vp(z) = −a for all p ∈ S, and we can find such an element in probabilistic polynomial

time.

Proof. Let ∆a be the divisor ∑
p∈S

ap

with coefficient a for each p ∈ S, and let g be the genus of the curve X . If a|S| > 2g−2,

then by the Riemann-Roch theorem,

dimFq L(∆a) = a|S| − (g − 1).

Furthermore, if a|S| > 2g − 1, then for each p ∈ S,

dimFq L(∆a − p) = a|S| − g.

Thus, if |S| < q, then L(∆a) cannot be contained in the union of L(∆a − p) over all

p ∈ S, and therefore there exists a function with poles of order exactly a at each point

in S. If |S| < q/2, then it is easy to find such a function by random sampling, since at

least half the elements in L(∆a) will work. (Recall that as mentioned in Section 4.1.4,

we assume that we can efficiently compute bases of Riemann-Roch spaces.)

This proof requires |S| < q, but the same idea works if we pass to a finite extension

Fqi of Fq, and it can handle |S| < qi. Thus, if we take i large enough, there exists a

function defined over Fqi with poles of equal order a at the points in S (and no poles

elsewhere). Now multiplying the i conjugates of this function over Fq produces such a

function over Fq, as desired, with poles of order ai. Taking qi > 2|S| gives an efficient

algorithm as well.
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For the rest of this section, let z be such a function and let R = Fq[z]. Then the

ring OS is a free R-module of rank a|S| by Theorem 1.4.11 in [102], as is every nonzero

ideal in OS.

As in the previous proofs, we will construct a polynomial Q(x) in the OS-module

M generated by

xjf(x)iIk−i for 0 ≤ i < k and 0 ≤ j < d

and

xjf(x)k for 0 ≤ j < t.

Let m = dk + t.

The module M is a submodule of the OS-module P of polynomials of degree less

than m, which is a free OS-module of rank m and hence a free R-module of rank

ma|S|. Thus, as in the setting of Lemmas 4.2.2 and 4.2.3, we are working with an

R-module contained in a free R-module.

We want Q(x) to have the property that for w ∈ L(D),

N(Q(w)) < N(I)βk.

In fact, we will bound N(Q(w)) by

N(Q(w)) =
∏
p∈S

|Q(w)|p ≤
(

max
p∈S
|Q(w)|p

)|S|
,

and we will ensure that

(
max
p∈S
|Q(w)|p

)|S|
< N(I)βk.
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Let q0, . . . , qm−1 denote the coefficients of Q, so

Q(x) =
m−1∑
i=0

qix
i.

Then

|Q(w)|p ≤ max
i
|qi|p|w|ip.

Suppose the divisor D is given by

D =
∑
p∈S

λpp.

Then |w|p ≤ qλp for w ∈ L(D), and thus

|Q(w)|p ≤ max
i
|qi|p qiλp .

To emulate the analysis from Sections 4.3 and 4.4, we would like to find X ∈ OS

such that vp(X) = −λp for all p ∈ S. However, such an element does not always exist.

Instead, we will construct an element with the desired valuations at all but one point in

S. This approach is a special case of the strong approximation theorem (Theorem 1.6.5

in [102] or Theorem 6.13 in [91]), but as we need only a weaker conclusion and must

consider computational feasibility, we will give a direct proof.

Lemma 4.6.2. Suppose q ≥ 2|S|. Then for any point p0 ∈ S and each divisor∑
p∈S µpp satisfying

∑
p∈S µp ≥ 0 and µp0 = 0, there exists an element X ∈ OS such

that vp(X) = −µp for all p ∈ S \ {p0}, and vp0(X) = −2g, where g is the genus of X .

Furthermore, we can construct such an X in probabilistic polynomial time.

Proof. Let ∆ =
∑

p∈S µpp+ 2gp0. Then deg(∆) ≥ 2g, and it follows from Riemann-

Roch that dimFq L(∆) = deg(∆)− (g− 1) and that dimFq L(∆− p) = dimFq L(∆)− 1

for all p ∈ S. We are looking for an element X in L(∆) but not L(∆ − p) for any
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p ∈ S. By assumption we can construct these Riemann-Roch spaces, and because

|S| ≤ q/2 at least half the elements of X will have the desired property, so we can

find one by random sampling.

The assumption that q ≥ 2|S| will hold in most applications: most algebraic-

geometric codes use a small set S, and in fact |S| cannot be much larger than q

because S ⊆ X (Fq) and |X (Fq)| ≤ q+2g
√
q+1 (see Theorem 5.2.3 in [102]). However,

if |S| > q/2, then we can simply pass to a finite extension of Fq. Thus, without loss of

generality we can assume that q ≥ 2|S|.

By assumption in Theorem 4.1.4, the support of D is a proper subset of S, so

we can let p0 ∈ S be a point such that λp0 = 0. Because of the limitations of the

strong approximation theorem, we require such a point to make the remainder of

the proof work. This is not an obstacle to the applicability of the theorem, because

algebraic-geometric codes will generally not use every point in X (Fq) for poles or

evaluation points, and if they do we can pass to a finite extension of Fq to generate

more points. Note also that we can assume deg(D) ≥ 0, because otherwise L(D) is

the empty set.

Now, Lemma 4.6.2 lets us construct an element X ∈ OS such that vp(X) = −λp

for p ∈ S \ {p0}. This element has the property that vp(X
i) = −iλp for p ∈ S \ {p0}.

Unfortunately, the valuation at p0 grows linearly with i as well, and that will damage

our bounds. However, we can avoid that problem by applying Lemma 4.6.2 to construct

elements Xi so that vp(Xi) = −iλp for p ∈ S \ {p0} while maintaining vp0(Xi) = −2g.

Of course we set X0 = 1.

In terms of the elements Xi, we have

|Q(w)|p ≤ max
i
|qiXi|p
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for p ∈ S \ {p0}. Furthermore, this inequality holds for p = p0 because vp0(w) ≥ 0 ≥

vp0(Xi).

Define the norm of a polynomial
∑

i cix
i ∈ P (with ci ∈ OS) by

∣∣∣∣∑
i

cix
i

∣∣∣∣ = max
i

max
p∈S
|ci|p.

Note that this defines a non-Archimedean norm on the free R-module P satisfying all

three properties required in Section 4.2.3 (with the absolute value | · | on R). Here, we

crucially use the fact that we have only one absolute value on R; if that were not the

case, then property 3 would fail.

Let T : P → P be the linear transformation that multiplies the degree i term by

Xi. Then

max
p∈S
|Q(w)|p ≤ max

p∈S
max
i
|qiXi|p = |TQ|.

Thus, it will suffice to construct a nonzero polynomial Q ∈ M such that |TQ||S| <

N(I)βk.

Now we can apply Lemma 4.2.3. We need to determine two things: the geometric

mean C of the norms of an R-basis of P and the dimension of the quotient P/TM.

Then there exists a nonzero Q ∈M such that

|TQ| ≤ C|z|dimFq (P/TM)/(a|S|m) = CqdimFq (P/TM)/(|S|m),

because these R-modules have rank a|S|m and |z| = qa.

Let b1, . . . , ba|S| be any R-basis of OS, and let

C =

( a|S|∏
i=1

max
p∈S
|bi|p

) 1
a|S|

.
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Then the elements bix
j ∈ P (with 1 ≤ i ≤ a|S| and 0 ≤ j < m) form an R-basis of

P, and the geometric mean of their norms is C because |bixj| is independent of the

degree j.

To compute the dimension of P/TM, note that the generators ofM are triangular

(i.e., given by polynomials of each degree). Thus, we merely need to add the dimensions

of the quotients of OS by the modules of leading coefficients. From the polynomials

Xdi+jx
jf(x)iIk−i, we see that the leading coefficients form the ideal Xdi+jI

k−i. Thus,

qdimFq P/TM = |P/TM| = N(I)dk(k+1)/2

m−1∏
i=0

N(Xi)

= N(I)dk(k+1)/2

(∏
p∈S

qλpm(m−1)/2
)m−1∏

i=0

|Xi|p0 .

Thus,

qdimFq P/TM ≤ N(I)dk(k+1)/2qdeg(D)m(m−1)/2q2mg.

Now applying Lemma 4.2.3 shows that we can find a nonzero polynomial Q ∈M

such that

|TQ||S| ≤ Cq2gqdeg(D)(m−1)/2N(I)dk(k+1)/(2m).

We want to achieve |TQ||S| < N(I)βk. Let N(I) = qn and

` = deg(D) +
2

m− 1
logq

(
Cq2g

)
.

Then Lemma 4.3.1 applies, and shows that we can achieve |TQ||S| < N(I)βk whenever

` < n
(
β2

d
− ε
)

, which is equivalent to

(
Cq2g

) 2
m−1 qdeg(D) < N(I)

β2

d
−ε.
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We can take the denominator of β to be a divisor of n (because N(I) = qn). Thus,

N(I)β
2/d is an integral power of q1/(nd), as of course is qdeg(D), and to prove the bound

in Theorem 4.1.4 it suffices to prove it to within a factor of less than q1/(nd).

Now let ε < 1/(2n2d) and m > 1 + 4nd(2g + logq C). Then N(I)ε and (Cq2g)
2

m−1

are both strictly less than q1/(2n
2d). Thus, our algorithm works as long as

qdeg(D) < N(I)β
2/d.

This completes the proof of Theorem 4.1.4.
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