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Abstract

This thesis examines machine learning through the lens of human-computer interac-
tion in order to address fundamental questions surrounding the application of machine
learning to real-life problems, including: Can we make machine learning algorithms
more usable and useful? Can we better understand the real-world consequences of
algorithm choices and user interface designs for end-user machine learning? How can
human interaction play a role in enabling users to efficiently create useful machine
learning systems, in enabling successful application of algorithms by machine learning
novices, and in ultimately making it possible in practice to apply machine learning
to new problems?

The scope of the research presented here is the application of supervised learning
algorithms to contemporary computer music composition and performance. Com-
puter music is a domain rich with computational problems requiring the modeling of
complex phenomena, the construction of real-time interactive systems, and the sup-
port of human creativity. Though varied, many of these problems may be addressed
using machine learning techniques, including supervised learning in particular. This
work endeavors to gain a deeper knowledge of the human factors surrounding the
application of supervised learning to these types of problems, to make supervised
learning algorithms more usable by musicians, and to study how supervised learning
can function as a creative tool.

This thesis presents a general-purpose software system for applying standard su-
pervised learning algorithms in music and other real-time problem domains. This
system, called the Wekinator, supports human interaction throughout the entire su-
pervised learning process, including the generation of training examples and the ap-
plication of trained models to real-time inputs. The Wekinator is published as a
freely-available, open source software project, and several composers have already
employed it in the creation of new musical instruments and compositions.

This thesis also presents work utilizing the Wekinator to study human-computer
interaction with supervised learning in computer music. Research is presented which
includes a participatory design process with practicing composers, pedagogical use
with non-expert users in an undergraduate classroom, a study of the design of a
gesture recognition system for a sensor-augmented cello bow, and case studies with
three composers who have used the system in completed artistic works.

The primary contributions of this work include (1) a new software tool allowing
real-time human interaction with supervised learning algorithms, which includes a
novel “playalong” interaction for generating training data in real-time; (2) a demon-
stration of the important roles that interaction—encompassing both human-computer
control and computer-human feedback—can play in the development of supervised
learning systems, and a greater understanding of the differences between interactive
and conventional machine learning contexts; (3) a better understanding of the re-
quirements and challenges in the analysis and design of algorithms and interfaces
for interactive supervised learning in real-time and creative problem domains; (4) a
clearer characterization of composers’ goals and priorities for interacting with com-
puters in music composition and instrument design; and (5) a demonstration of the
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usefulness of interactive supervised learning as a creativity support tool. This work
both empowers musicians to create new forms of art and contributes to a broader
HCI perspective on machine learning practice.
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Chapter 1

Introduction

“The old computing was about what computers could do; the new com-
puting is about what users can do.”

—Ben Shneiderman (2002, 2)

1.1 An HCI Perspective on Machine Learning

Machine learning offers a set of powerful algorithmic tools for understanding, mod-
eling, and making decisions from data. Application of these tools through recent
decades has led to advances, if not revolutions, in domains as diverse as bioinformat-
ics, information retrieval, gaming, robotics, and beyond. It is the charge of machine
learning research to improve this palette of tools by developing algorithmic techniques
that are increasingly faster, more accurate, and applicable under a broader array of
problem structures and constraints.

Research in the field of human-computer interaction (HCI), in contrast, is con-
cerned with the broader human context of computing systems. A significant aim
of HCI research is to develop technology and practices that improve the usability
of computing systems, where usability encompasses the effectiveness, efficiency, and
satisfaction with which the user interacts with a system (ISO 9241-11:1998 1998).
Even though human application of machine learning algorithms to real-world prob-
lems requires embedding the algorithms in software or hardware tools of some sort,
and the form and usability of these tools impact the feasibility and efficacy of applied
machine learning work, research at the intersection of HCI and machine learning is
still a relatively young area.

What might be the consequences of examining machine learning through the lens
of human-computer interaction, and in particular, of enabling machine learning users
to exercise a richer array of interactions with machine learning algorithms? Can we
make machine learning more usable, thereby enabling human users’ work with these
algorithms to be more efficient, more effective, and more satisfying? Can we come
to a better understanding of how machine learning algorithms and interfaces impact
not just the speed and accuracy of users’ work, but also how users think about their
work and formulate their goals? Can we find a use for machine learning algorithms in
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unconventional contexts, such as the support of human creativity and discovery? Can
we design more effective human workflows for building machine learning systems, en-
able successful application of algorithms by machine learning novices, and ultimately
make it possible in practice to apply machine learning to new problems? These are
the fundamental questions motivating this thesis.

1.2 Supervised Learning and Computer Music

The work in this thesis concerns a family of machine learning and pattern recogni-
tion algorithms known as supervised learning. A supervised learning algorithm is
essentially a tool for producing a mathematical model or function that, given some
input, produces some output. The algorithm infers, or learns, this function from a
set of training data, which consists of a collection of example inputs paired with their
corresponding outputs. Supervised learning algorithms are designed to be capable
of modeling complex relationships between inputs and outputs while retaining the
ability to generalize, producing reasonable outputs for new inputs not present in the
training set.

Computer music is a domain rich with computational problems requiring the mod-
eling of complex phenomena, including the relationships between low-level audio and
sensor signals and higher-level analyses of pitch, harmony, instrumentation, human
gesture and intention, and even emotion. The ability to accurately model these com-
plex relationships has far-reaching implications for transforming not only live perfor-
mance, but also music composition, studio production, sound design, the design of
new musical instruments, and content-based music search and recommendation. Su-
pervised learning is an attractive tool for dealing with complex musical phenomena
across all these problems and application domains, and it has been applied to many
such problems in music. For example, to build a pitch classifier capable of transcrib-
ing the melody from an audio file, one might train a learning algorithm on a dataset
of recorded songs that have each been explicitly annotated with their melodic pitch
content over time, as in the work of Ellis and Poliner (2006). Or, to build a system
in which a human performer wearing a sensor glove can “play” a computer synthe-
sis algorithm in real-time, one could train an algorithm on the glove sensor outputs
paired with corresponding synthesis parameter values for different hand gestures, as
in work by Modler et al. (1998).

Many computer music applications possess additional characteristics, beyond the
requirement for dealing with complexity, that make them suitable to the applica-
tion of supervised learning algorithms. As in our gesture glove example, computer
music performances often incorporate significant real-time interactivity, wherein a
computer’s actions are driven by real-time analysis of live, human-generated signals.
Also, music is a creative domain, and the creativity of composers or performers can
be enhanced or inhibited by the hardware and software tools they use to do their
work. As we will show, supervised learning can be a particularly effective tool for
building real-time interactive systems and for supporting creative work.



The scope of this dissertation is therefore the study of human-computer inter-
action with supervised learning algorithms in computer music application domains.
While supervised learning has been applied to problems in computer music before,
most prior research has focused on seeking new algorithmic approaches to better solve
particular computational problems. We employ a new, complementary perspective
in this research; by focusing on questions of improving usability, leveraging interac-
tion more effectively, and better understanding the ways in which machine learning
algorithms and interfaces impact users’ work, this research opens important new av-
enues for intellectual discovery as well as opportunities for users to apply supervised
learning more effectively and in new ways.

1.3 Goals and Contributions

The goals of this work have been twofold: first, we have endeavored to make super-
vised learning algorithms more usable by practicing musicians, enabling them to work
more effectively and empowering them to create new forms of art; second, we have
aimed to gain a deeper knowledge of the human factors surrounding the application
of supervised learning to musical problems, and in the process contribute to a broader
HCI perspective on machine learning practice.

Prior to this work, there existed no software tool which met the infrastructure,
interaction, and algorithmic needs of a broad set of musicians and researchers de-
siring to apply supervised learning to musical and real-time problems. Therefore,
we have built a new, general-purpose software system for applying supervised learn-
ing in music and other real-time and creative problem domains. This system, called
the Wekinator, is unique in the breadth of applications it supports as well as the
human-computer interactions it enables. The Wekinator provides user interfaces for
the construction, evaluation, and real-time application of standard supervised learn-
ing algorithms. The system emphasizes the role of human interaction throughout the
entire supervised learning process, including the creation and modification of training
datasets and the evaluation of trained models. Among the interactions supported by
the Wekinator is a novel “playalong” interaction that enables users to create train-
ing data by gesturing along with previously-annotated performance sequences. The
Wekinator is compatible with a widely-used machine learning toolkit called Weka
(Hall et al. 2009), and its architecture allows it to be easily incorporated into real-
time systems implemented in nearly any programming language, in both musical and
non-musical domains.

We have also used the Wekinator to study human-computer interaction with su-
pervised learning in several musical applications with different types of users. These
users have been composers writing new music and designing new interactive musi-
cal instruments, students studying interactive systems-building in an undergraduate
computer music course, and a composer/cellist developing a gesture recognition sys-
tem for a sensor-augmented cello bow. Through this work, we have demonstrated the
breadth and importance of the roles that interaction—encompassing both human-
computer control and computer-human feedback—can play in the development of
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supervised learning systems, and we have achieved a greater understanding of the
differences between interactive and conventional machine learning contexts. We have
also gained a better understanding of the requirements and challenges in the analysis
and design of algorithms and interfaces for interactive supervised learning in real-time
and creative problem domains.

Additionally, practicing composers and instrument designers have rarely been
studied in their workplace interactions with technology, and our work with these
users has led to a clearer characterization of the human-computer interaction require-
ments relevant to composition and instrument design. Finally, our observations of
musical users engaged with the Wekinator have increased our understanding of how
interactive supervised learning can also function—outside its conventional usage—as
a creativity support tool.

We have previously published some of the work presented in this thesis. Specif-
ically, we have described an early version of the Wekinator software in Fiebrink,
Trueman, and Cook (2009); described our playalong method of training data creation
in Fiebrink, Cook, and Trueman (2009); discussed the participatory design process
described in Chapter 4 and its outcomes with regard to improvements to the Wek-
inator and a deeper understanding of HCI in composition in Fiebrink, Trueman, et
al. (2010); presented preliminary work on the bow gesture recognition project of
Chapter 6 in Fiebrink, Schedel, and Threw (2010); and presented a summary of the
thesis work and goals in Fiebrink (2010).

1.4 Outline

In the following chapter, we provide an overview of supervised learning and computer
music to acquaint the reader with relevant background in these fields. We also high-
light three problems within computer music where supervised learning is particularly
useful: the “mapping problem,” gesture recognition, and semantic audio analysis.
Following an overview of existing tools for applying machine learning in music and in
other domains, we motivate the need for a new software tool for interactively applying
machine learning to real-time signals. We present an overview of prior HCI research
that has investigated the questions of how to make machine learning more usable, and
how to more effectively engage human interaction in machine learning practice. We
also briefly introduce the thread of HCI research that studies the use of computers
to support human creativity.

In Chapter 3, we present our new software system, the Wekinator, which we have
created to better support the application of supervised learning to music and real-
time domains, and which we have used throughout our studies of users in this thesis.
We describe the interactive workflow it supports, walk through an example use case,
and provide a detailed overview of the system and its user interfaces.

In Chapters 4 through 7, we present four studies in which we have applied the
Wekinator to researching human-computer interaction with supervised learning in
particular computer music composition and performance scenarios. These studies
include a participatory design process with practicing composers, pedagogical use
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with non-expert users in an undergraduate classroom, a study of the design of a
gesture recognition system for a sensor-augmented cello bow, and case studies with
three composers who have used the system in completed artistic works. In each
chapter, we provide background on the application domain, describe the study goals
and method, and present the study results. In each case, we discuss the results with
particular attention to an analysis of users’ goals in their work with the Wekinator
and the actual outcomes of this work, observed patterns of user interaction with the
system, an evaluation of system usability, and implications for future work.

In Chapters 8 and 9, we further examine the most significant findings across our
four studies. Chapter 8 focuses on the roles that interaction played in different stages
of users’ work with supervised learning, from training set creation to evaluation. We
discuss the implications of our observations regarding training set size and evalua-
tion methods in interactive supervised learning. We also discuss their implications
regarding the requirements and challenges in the analysis and design of algorithms
and interfaces for interactive supervised learning, with attention to how the charac-
teristics of the computer music problem domain shaped the types of interactions that
were possible for the users we observed.

In Chapter 9, we argue that interactive supervised learning can function as an
effective creativity support tool. We examine users’ interactions with the Wekinator
in the context of prior work on creativity support tools and embodied cognition, and
we demonstrate how interactive supervised learning serves several important creative
functions. We also review how our observations of and work with Wekinator users
contribute to a deeper understanding of the human-computer interaction requirements
of composers, and we emphasize the utility of broadening the scope of discussion about
interaction in computer music to include the processes of composition and instrument
design.

We conclude in Chapter 10 with a review of our most significant findings and
contributions. We describe our next steps for improving the Wekinator software, and
we outline new research directions in HCI, machine learning, and computer music
that our work has suggested may be fruitful in further enabling users to effectively
apply supervised learning algorithms to real-world problems.



Chapter 2

Background and Motivation

This thesis draws heavily on prior work and ideas in computer music, human-computer
interaction (HCI, also sometimes called CHI), and machine learning. In this chapter,
we provide broad background information to acquaint the reader with each of these
fields, and we define key ideas and terminology that will be used throughout this
thesis. We start by providing an overview of computer music, discussing the roles
that humans and computers can play in interactive computer music performance sys-
tems, and highlighting important computational problems in the design of interactive
computer music software. Next, we provide an overview of supervised learning, the
family of machine learning algorithms that we will consider in this thesis. We define
key vocabulary relevant to this thesis, and we discuss how supervised learning algo-
rithms are conventionally applied and evaluated. We then describe three major areas
of computer music in which supervised learning is a useful tool: the creation of new
digital musical instruments, recognition of human gesture, and semantic audio anal-
ysis. We describe existing tools for applying machine learning in music and motivate
the creation of a new tool that may better meet the needs of more users applying
supervised learning to more problems. Subsequently, we discuss recent research in
HCT that seeks to leverage human interaction in new ways in the creation of machine
learning systems, as well as HCI research studying how technology can support peo-
ple doing creative work, and we describe how our work fits into these contexts. We
conclude the chapter with a review of the key findings of the prior work that provides
the foundation for this thesis, followed by a statement of our research motivations in
creating and studying our new tool for interactive supervised learning in music.

2.1 Computer Music

2.1.1 A Brief History

The use of computers to compose and play music dates back approximately sixty
years. According to Doornbusch (2004), it is possible that the first use of the computer
to make music was in 1950 or 1951, when the Australian CSIR Mkl computer was
programmed to play simple melodies by a musically-inclined mathematician named
Geoff Hill. Around the same time, the British computer scientist Christopher Strachey
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programmed the Ferranti Mark 1 machine at the University of Manchester to play
music. That machine’s renditions of classic melodies were recorded by the BBC in
the autumn of 1951 (Fildes 2008). A few years later, a researcher at Bell Labs named
Max Mathews developed MUSIC, the first programming language for creating music
and audio (Chadabe 1997, 109).

Even given the limited processing power, expense of operation, and other incon-
veniences of working with mainframe computers, pioneers such as Mathews and his
collaborators at Bell Labs recognized the potential of the computer to make wholly
new types of music and sound. By the 1950s, contemporary composers such as Pierre
Schaeffer and Karlheinz Stockhausen were already using recording technologies and
analog electronics to create music that was unconstrained by the sounds, performance
practices, and conventions of acoustic music (Doornbusch 2004). Composers (albeit
only those with the means and access to program the computers of the time) began to
employ digital technology to similarly push the boundaries of musical practice, follow-
ing Mathews’ creation of MUSIC in 1957. For example, James Tenney, Jean-Claude
Risset, and Charles Dodge were among the composers at Bell Labs and Princeton
University who used MUSIC and its descendants (the MUSIC-N family of programs)
throughout the 1960s to create new compositions that explored the computer’s mu-
sical possibilities (Chadabe 1997, 114).

Computer music has grown dramatically in the past sixty years as an area of aca-
demic inquiry and artistic pursuit. With the advent of minicomputers and then per-
sonal computers, many more musicians and researchers gained access to the means to
develop their own musical software and computer music compositions. A host of pro-
gramming languages and environments such as Max (Puckette 1991, now Max/MSP)
and CSOUND (Boulanger 2000) evolved to meet the needs of these users. Real-
time control over digital sound became possible through the use of specialized DSP
workstations such as the IRCAM Signal Processing Workstation (Lindemann et al.
1990), as well as digital synthesizers such as the Yamaha DX-7 (Reid 2001); digital
music thus became something that one could perform live. Composers and technolo-
gists began to envision, build, and use new mechanisms for controlling the computer
in real-time, ranging from manipulating GUIs (such as those in Max), to interfaces
like the MIDI keyboard which closely resembled conventional instruments, to acoustic
instruments augmented with sensors (such as the hypercello of Paradiso and Gershen-
feld 1997), to entirely new sensor-based gestural interfaces (such as the The Hands by
Waisvisz 1985). Increasing processing power has enabled the real-time execution of
complex software programs for accompanying and improvising alongside human mu-
sicians (e.g., see work by Raphael 2010 and Kapur 2007), while the shrinking size of
computing systems has enabled increasingly portable and populous computer music
performance ensembles like the Princeton Laptop Orchestra (Trueman et al. 2006)
and the Stanford Mobile Phone Orchestra (Wang et al. 2008).

The work in this thesis focuses primarily on the use of computers in academic and
art music, a field that traces its roots to the early work of Mathews, Risset, Tenney,
Dodge, and others. The question of how technology can enable new means of musical
expression remains central to the computer music field today, and it is a fundamental
question explored in this thesis. The relevance of this question is not at all limited
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to academic or art music, however, as the use of technology has also become central
to mainstream and popular music of many genres. For example, numerous popular
music artists have employed digital technology in their performances for many of the
same reasons as computer and electronic art composers and performers, including to
broaden their palette of sounds and to expressively control digitally-produced sound
in new ways. Hardware digital synthesizers were adopted by popular musicians in the
1980s and onwards, and since the 1990s, software synthesis and and audio effects mod-
ules have become widely used in both studio production and live performance. The
introduction of the MIDI communication protocol in the early 1980s (Chadabe 1997,
195-196) enabled performers to play a variety of synthesizers using standard MIDI
keyboards, foot controllers, and drum triggers. These controllers, as well as alterna-
tive hardware interfaces such as the Monome (Dunne 2007) and Lemur (JazzMutant
2009), are used not just as instruments, but also to control high-level musical pro-
cesses (e.g., to trigger sequences of rhythms in a drum machine), and to expressively
control parameters of audio effects applied to the musicians’ live sound.

Some computer music performance technologies developed in academic contexts
also end up being adopted by mainstream artists. For example, John Chowning
discovered the FM synthesis algorithm while working at Stanford University in 1967
(Chowning 1973). Packaged into the Yamaha DX7 synthesizer in 1983, FM synthesis
enabled countless artists of the 1980’s to efficiently create a wide range of artificially
synthesized sounds (Reid 2001). More recently, Max/MSP has been used by the
English alternative rock band Radiohead (Pareles 2007), and the Reactable tabletop
interface (developed at the Universitat Pompeu Fabra by Jorda et al. 2007) was used
by the Icelandic singer-songwriter Bjork on her 2007 world tour (Andrews 2007).

2.1.2 Interactive Computer Music
Definition and Scope

Computer music involves a wide range of live performance practices. One significant
dimension of variability among these practices is the extent to which human perform-
ers exercise control or influence over the live actions of the computer. At one extreme
of this spectrum of human involvement lie practices such as tape music and algorith-
mic computer music, in which the sounds produced by the computer are uninfluenced
by human performers, or in which there are no human performers at all. At the other
extreme lie practices in which the computer is highly responsive to human actions.
For example, a human performer might control the pitch, articulation, volume, and
timbre of a computer synthesis algorithm through her gestures using a hardware con-
troller. In this case, the controller and computer software together function as an
expressive musical instrument. Work mentioned above by Waisvisz (1985) falls into
this category, as do notable works by Laetitia Sonami (Bongers 2000), Trueman and
Cook (2000), and many others. Alternatively, the computer might listen to the sound
of a human musician performing on an acoustic instrument and respond by producing
its own musically appropriate output. In this case, the computer may play a role more
akin to a human accompanist or collaborator. Notable work designing collaborative
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and accompanying computer music systems has been done by Dannenberg (1989),
Lewis (2000), Rowe (1993), Raphael (2010), and others.

In this thesis, we focus primarily on computer music in which human performer(s)
exercise a high degree of performance-time control and influence over the computer(s).
Within computer music performances of this nature, there exists a great diversity in
the types of roles played by the computer, and in the ways that humans exercise
(and experience) control and influence over the computer’s behavior. For example,
Lippe (2002) writes about the role of the computer: “The computer can be given
the role of instrument, performer, conductor, and/or composer. These roles can exist
simultaneously and/or change continually...” The computer may produce sound by
digital synthesis, by applying live processing to the sound of the performer, or by a
mixture of these and other means. Simultaneously, a performer might control low-level
properties of the computer process at a fine granularity, or he might control higher-
level structural properties or influence the outcome of algorithmic processes. The
performer’s intentions may be explicitly concentrated on manipulating the computer,
or he may be focused on affecting other aspects of the performance, without attention
to how his actions are interpreted or acted upon by the computer. The computer
might sense the actions of the human through audio, sensors, or other means; and
the method by which the computer translates human actions into control parameters
driving its own synthesis algorithms or other processes may remain fixed throughout
a performance, or it may change over time.

Within this broad context, composers have offered different definitions of what
constitutes interactive computer music, as Lippe (2002) discusses:

Robert Rowe, in the seminal book Interactive Music Systems (Rowe 1993),
states: “Interactive music systems are those whose behavior changes in
response to musical input.” A dictionary definition of the word interac-
tive states: “capable of acting on or influencing each other.” This would
imply that a feedback loop of some sort exists between performer and
machine. Indeed, the Australian composer Barry Moon suggests: “levels
of interaction can be gauged by the potential for change in the behaviors
of computer and performer in their response to each other” (Moon 1997).
George Lewis, a pioneer in the field of interactive computer music, has
stated that much of what passes for interactive music today is in reality
just simple event “triggering,” which does not involve interaction except
on the most primitive level. He also states that since (Euro-centric) com-
posers often strive for control over musical structure and sound, this leads
many composers to confuse triggering with real interaction. He describes
an interactive system as “one in which the structures present as inputs
are processed in quite a complex, multi-directional fashion. Often the out-
put behavior is not immediately traceable to any particular input event
(Rowe et al. 1993). David Rokeby, the Toronto-based interactive artist,
states that interaction transcends control, and in a successful interactive
environment, direct correspondences between actions and results are not
perceivable. In other words, if performers feel they are in control of (or
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Figure 2.1: In interactive computer music, actions of a human performer are sensed
in real-time by a microphone, controller, and/or other sensing mechanism, and com-
municated to the computer. The computer interprets these actions, and this interpre-
tation is used to control or influence its future actions. The outcome of the computer
action—for example, changes in the timbre of its sound or in the type melodic material
it generates, provides real-time feedback to the human performer.

are capable of controlling) an environment, then they cannot be truly
interacting, since control is not interaction.

In this thesis, we will consider a broad definition of interactive computer music
systems, which minimally meets Rowe’s definition of changing their behavior in re-
sponse to musical inputs by a performer, but which also incorporates the possibility
for Lewis’s notions of complex and multi-directional systems of influence, as well as
the potential for transcending ideas of “control” according to Rokeby. Each of these
definitions, as well as the diversity of performance scenarios described earlier, can
be discussed in terms of the system components pictured in Figure 2.1. Fundamen-
tally, an interactive computer music system incorporates one or more mechanisms by
which the computer senses information about the actions of a performer, interprets
this information, and takes some action based on this interpretation (for example, the
setting of a synthesis parameter, or a change in tempo, or the creation of new motivic
material). The actions of the computer are conveyed to the performer (in the simplest
case, by the performer listening to the computer’s sound output), and depending on
the compositional constraints of the piece, the performer may subsequently interpret
and respond to the computer’s actions.

Composition in Interactive Computer Music

The role of the composer in interactive computer music therefore involves a much
larger scope than in traditional contexts where composition involves the specification
of how sounds will be played over time. The creation of an interactive composition
involves choosing among the many possibilities discussed above regarding the roles of
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the computers and humans and the computer mechanisms for sensing and responding
to human actions, as well as designing the computer’s processes for generating sound,
and potentially specifying the way that all of these variables will change over time.

Composer’s writings provide insight into how they have navigated through this
large set of compositional possibilities in the process of composing interactive com-
puter music. Work by Hahn and Bahn (2003), Lewis (2000), Lippe (1997), Trueman
and Cook (2000), and many others underscores the diversity of approaches taken to
computer music composition practice. Composers’ reflections on their practice also
highlight the importance that they place (and the effort they expend) on crafting the
interaction between humans and computers, as the nature of this interaction can be
integral to the identity of the piece itself.

We note that, when the computer takes the role of an instrument within an inter-
active computer music context, the process of designing how a performer will use the
computer to play sound can be understood as both composition and instrument build-
ing, or—to borrow a term from Schnell and Battier (2002)—composing the instru-
ment. This process entails the design of how the computer will sense the performer’s
actions, the design of how the computer will produce sound (e.g., using a synthesis
algorithm), and how the computer will map from the actions of the performer into
influence over the produced sound. While some interactive computer systems are
designed to be played across a variety of compositions written by different composers
(i.e., to function as conventional instruments do), it is also common for composers
to design new instruments intended only for use in a particular composition, or to
compose instruments in which there is no clear dichotomy between instrument and
composition (see, e.g., Cook 2001). In this thesis, we will not strongly distinguish
between creating compositions, interactive systems, and instruments: to the extent
to which these can even be considered to be separate tasks, we will be focusing on
computational and interactive challenges that are common across them all.

Computational Problems in Interactive Computer Music

While the many design decisions involved in the composition of an interactive com-
puter music system may, of course, be strongly influenced by composers’ aesthetic
concerns and compositional goals, they are also influenced by computational and tech-
nical concerns. In particular, creating computer systems with the ability to accurately
sense, interpret, and act on human actions touches on some difficult computational
problems. First of all, computer analysis of human gesture musical audio can be com-
putationally challenging, as there may exist a large “semantic gap” (Lew et al. 2006)
between the low-level gestural or audio signals and the semantically- or musically-
relevant interpretations of those signals (such as a performer’s cues, harmony, or
intentions) upon which the composer would like the computer to act. Such analysis
problems overlap with significant ongoing research threads in human-computer inter-
action, computer vision, signal processing, and music information retrieval, among
other domains.

Secondly, the creation of a musically satisfying and engaging interactive system
may necessitate complex relationships between performer actions and computer re-
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sponses. Such complexity can be motivated both by composers’ compositional and
aesthetic values (see the above discussion on Lewis and Rokeby, for example), and
by empirical results. For example, Hunt and Kirk (2000) created a complex musi-
cal control interface in which changes in each dimension of performer gesture affected
multiple sound synthesis parameters and each sound synthesis parameter was affected
by multiple gestural dimensions. Comparing this interface to simpler ones, they ob-
served that the more complex interface allowed participants to perform musical con-
trol tasks more accurately, that it enabled participants’ accuracy to improve more
with practice, and that it was also more fun to use. The creation of systems incorpo-
rating appropriately complex relationships between performer actions and computer
responses therefore necessitates that composers and instrument designers have ac-
cess to algorithmic tools for designing complex functions, and to user interfaces that
enable them to apply these tools effectively and efficiently.

Supervised learning has been employed by composers and researchers as a tool to
address these computational problems of interpreting complex signals and producing
complex behaviors in interactive computer music. We will further discuss in Sec-
tion 2.2.3 why supervised learning is useful for addressing these problems, after the
following general introduction to supervised learning.

2.2 Supervised Learning

2.2.1 Overview and Terminology

This work concerns a family of machine learning and pattern recognition algorithms
known as supervised learning. Here we will give only a very basic overview of super-
vised learning; a more thorough treatment can be found in Bishop (2007), which is
the reference for our overview unless otherwise indicated. In the following discussion,
key terms used throughout this thesis are printed in boldface.

A supervised learning algorithm is essentially a tool for producing a mathemati-
cal model or function that, given some input, produces some output. The algorithm
infers, or learns, this model from a training dataset, which is a collection of data
points (also called “instances” or “examples”) consisting of example inputs paired
with their corresponding outputs, or “labels” (also sometimes called “targets”). The
process of producing the model from the training set is called training. After this
model is built, it can compute new output values for new inputs, even for inputs not
present in the training set. Figure 2.2 illustrates the relationship between the data,
algorithm, training, and model.

The inputs to a model are vectors of numbers, or features (also sometimes called
attributes). For example, a model of human gesture might take in a feature vector
extracted from sensors worn on the body, where the features themselves are raw
sensor values, statistics computed on those sensor values, or both. In a classification
problem, the output of the model is one of a finite set of discrete labels, also referred
to as the set of classes. For example, a classifier algorithm could be used to build
an American Sign Language fingerspelling classifier that outputs the letter a human
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Figure 2.2: A supervised learning algorithm creates a model from training data, which
consists of example inputs paired with corresponding outputs. The trained model can
then compute new output values from new inputs.

is signing, as in work by Allen et al. (2003). In that case, the label set of the classifier
would include the 26 letters of the alphabet!.

On the other hand, in a regression problem, the model’s output value is not con-
strained to be a member of a finite class set; it may take any real value. Regression
could be used to build a continuous gesture-to-speech controller, such as one com-
ponent of Fels and Hinton’s Glove-TalkII system, in which continuous hand motions
result in gradually changing articulatory control over a speech synthesis algorithm
(1995). In this example, a regression model would compute the numeric value of
a speech synthesis parameter from the glove sensor features. (It is also possible to
build multidimensional regression models that output a vector of real numbers, but
in this work we have used collections of unidimensional regression models instead of
multidimensional models, for reasons we explain in the next chapter.)

Many different supervised learning algorithms have been designed to produce a
models from a training set. In this work, we have primarily focused on the use of
the AdaBoost, support vector machine, decision tree, and k-nearest neighbor algo-
rithms for classification, and the multilayer perceptron neural network algorithm for
regression. These algorithms are discussed in the next chapter, in Section 3.3.3.

Typically, the goal of any supervised learning algorithm is to model the relation-
ship between inputs and outputs in the training set in a way that allows generalization,
or producing reasonable outputs for new inputs not present in the training data (also

In reality, Allen et al. (2003) used only 24 classes; they ignored the letters ‘J’ and ‘Z,” whose
fingerspellings require hand motion.
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called “predictive performance”). Concern for generalization is at the core of the
theoretical analysis and design of machine learning algorithms. In the PAC-learning
framework, for example, a learning algorithm is by definition capable of classifying
instances not (necessarily) in the training set with a high accuracy rate, with a high
probability (Valiant 1984). Widely-used algorithms such as AdaBoost and support
vector machines are designed to explicitly to maximize generalization accuracy
(that is, the proportion of future inputs that are assigned the correct label) (Bishop
2007).

This primary emphasis on generalization accuracy underlies standard metrics used
to evaluate the suitability of an algorithm (or parameterization thereof) for modeling
a given dataset. Unless one knows the identity of all future inputs to a model and
their proper labels (in which case building a perfect model is trivial), generalization
accuracy must be estimated from the available data. Using accuracy on the model’s
training dataset is a poor estimate, as this can assign too favorable a rating to a model
that has “overfit” to the training data and is poor at generalizing. So, the available
data can be partitioned into a training set and a mutually exclusive (or “held-out”)
test set for evaluating performance. Generalization accuracy for a model trained
only on the training set may then be estimated by computing accuracy on the test
set.

Cross-validation is a commonly-used technique that repeats this procedure sev-
eral times in order to provide a less noisy estimator of predictive performance. As
the process is repeated, each available instance is present in the test set of a single
iteration. For example, the available data may be partitioned into two equally sized
sets (called “folds”), which we will refer to as A and B. First, the learning algo-
rithm to be evaluated is trained on A only, and the trained model’s accuracy on B
is computed. Second, the learning algorithm is retrained on B only, and the trained
model’s accuracy on A is computed. The cross-validation accuracy is computed as
the average accuracy of these two tests. Cross-validation accuracy can be computed
with larger numbers of folds (10-fold cross-validation accuracy, in which the dataset
is partitioned into ten sets, is particularly common in practice). In the general case
of n-fold cross-validation, each of the n iterations uses a different single fold as the
test set, and in each iteration, the training set consists of the n — 1 folds not currently
used as the test set.

Alternative evaluation measures such as F-measure, cost, precision, recall, and
area under ROC may be used under certain circumstances, but in each case, the goal
remains to estimate the model’s relevant future behavior from the available, finite
data. In this work, we focus primarily on the use of cross-validation as a estimator
of generalization accuracy. In Section 8.5.2, we present a discussion interrogating
the meaning and appropriateness of generalization accuracy measures in interactive
machine learning systems used in practice.
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2.2.2 Swupervised Learning in Practice
Why Supervised Learning?

Supervised learning has been applied in myriad domains, from natural language pro-
cessing to medical diagnosis to computer vision and beyond. It offers a powerful
computational tool for building models in domains where it may be easier to access
or create a training dataset than to explicitly design the model function. For exam-
ple, the construction of a software program that identifies human faces in images can
present a daunting problem for a programmer, who must discover the mathematical
relationship between individual pixel values in an image and the identity of a human
face, then encode this relationship in software. It may be much simpler and faster
to present a supervised learning algorithm with a set of images known to contain
certain faces, along with their labels, and have the algorithm learn the model from
the data. Furthermore, a programmer designing the model by hand would have to
to take into account how aspects of the classification problem are likely to vary, so
that the model’s output will be robust to changes in lighting conditions, face angle,
or haircuts. By using a training dataset in which these characteristics are varied, a
supervised learning algorithm may learn a model that is robust to these effects.

Note that, in practice, someone must still design feature extractors to extract
features from the image pixels. (Feature extraction is also typically performed to com-
pute features from the gestural or audio signals we will consider later in this chapter.)
In order for supervised learning to work, at least some of the extracted features must
provide relevant information to the classification problem of face identification. But
it is not necessary that these features be noise-free, that they all be relevant, or that
they be informative for all faces or all images. The problem of feature design is much
simpler, therefore, than designing the modeling function by hand. Additionally, in
application domains such as computer vision or audio analysis, prior research has
identified many features that are likely to be useful across many analysis problems,
and new machine learning systems can leverage this domain-specific knowledge and
even existing software tools for extracting standard features.

Modes of Application

Across different application domains, supervised learning is commonly used as a tool
in both data analysis and software engineering. In data analysis, people—often do-
main experts—use models trained from the data to provide insight into patterns in
the data, or to help them make decisions. For example, Ross et al. (2003) are hema-
tology researchers who trained classifiers to a classify a pediatric leukemia patient’s
risk group from a set of genetic features. In this work, they were able to demon-
strate that the genetic features under consideration were accurate predictors of risk
group (and therefore might be studied further to “provide new insights into the al-
tered biology underlying these leukemias.”) Furthermore, they demonstrated that
classifiers trained on these features could be useful as a new diagnostic tool. In other
work in industry, supervised learning algorithms are often applied to gain economic
advantages from a company’s data. For example, Witten and Frank (2005) write,
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“Patterns of behavior of former customers can be analyzed to identify distinguishing
characteristics of those likely to switch products and those likely to remain loyal.”
Such information can be used to provide special incentives targeted to customers
likely to leave.

Supervised learning can also be integrated into software to provide enhanced func-
tionality to end users. For example, the developers of an e-mail spam filter program
may train a classifier based on their own extensive dataset of emails labeled as “spam”
and “not spam.” By embedding the trained classifier into the software that they sell,
people who buy the software can immediately apply the trained filter to their email.
Alternatively, software applications may collect data from a user (or the user’s sys-
tem) to train a model customized to that user. For example, the spam software may
instead construct its training dataset by providing the user with an interface to flag
incoming emails as “spam” or “not spam.” A classifier trained on this dataset will
be customized to detecting spam in the types of email messages typically received by
that user. It is also possible to combine these two approaches, in which data cus-
tomized to the user is added to a pre-existing training dataset. In this case, the user
is still able to use a pre-trained model without doing any labeling himself, but as he
adds labels, the model can evolve a customized behavior.

Supervised learning components are often embedded in software systems in such a
way that offers little or no transparency or control to the end user. In the spam filter
software example, the user may understand that he is helping to improve the perfor-
mance of a pattern recognition system by providing labeled email examples, but he
may not know how this algorithm works, and he may not have the ability to modify
it through any other means (e.g., changing the learning algorithm, its parameters,
or the features it uses to classify emails). In other systems, the machine learning
component may be entirely hidden from the user. For example, the Amazon.com
recommendation engine (Linden et al. 2003) uses machine learning to suggest new
products to users based on what others have bought (i.e., based on what its set of
models have predicted a user might buy), but the workings of the models themselves
are hidden from users, and users can only influence the models indirectly, through
their purchases and browsing behaviors. This type of approach to the use of machine
learning systems contrasts significantly with “end-user machine learning,” in which
users of the software have a significant degree of direct control and influence over
the training and evaluation of supervised learning models. For example, an end-user
machine learning system might engage the user in interactively providing training
examples to teach the computer to classify images of people (e.g., Amershi et al.
2010). In our work supporting and studying human-computer interaction with ma-
chine learning systems, we focus on this latter type of context, in which users are
closely involved with the process of training supervised learning models.

Tools for Applying Supervised Learning

While machine learning researchers often do collaborate with researchers and practi-
tioners in application domains, much work applying supervised learning in research,
data mining, and software development is performed by domain experts themselves.
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The success with which these researchers and practitioners have been able to apply
supervised learning to so many domains is due in part to the availability of general-
purpose software tools for applying supervised learning to arbitrary problems. Envi-
ronments such as Weka (Hall et al. 2009) and RapidMiner (Rapid-I 2010, formerly
“YALE”), and libraries such as LIBSVM (Chang and Lin 2001) and the Neural Net-
work Toolbox (Beale et al. 2010) allow users to efficiently apply standard machine
learning algorithms to their work, without having to implement the algorithms them-
selves. Furthermore, these tools enable users who are not machine learning experts
to effectively configure, train, and evaluate machine learning systems without having
low-level knowledge of how the algorithms work.

Weka is a popular tool for applying supervised learning to many problem do-
mains?, and it supports a relatively comprehensive set of user actions, in comparison
to other tools. For example, Weka provides a suite of GUI applications for perform-
ing open-ended explorations using supervised learning algorithms and for conducting
experiments evaluating algorithms’ performance. In Weka’s “Explorer” and “Knowl-
edgeFlow” interfaces, users can explore the application of different algorithms to
different datasets: it is possible to load a dataset from a file or database, apply pro-
cessing to the dataset (e.g., to normalize or rescale feature values), configure a learning
algorithm (e.g., choose a classifier and set its parameters), and experimentally apply
the algorithm to the data. Tools for this experimentation include visualizations of
how the trained model classifies the training dataset, and an interface for computing
cross-validation accuracy or test set accuracy. In the “Experimenter” interface, the
user is able to design and execute suites of tests, for example to compare the cross-
validation performance of several different algorithms on the same dataset and test
for statistically significant differences in algorithm behaviors.

Weka also offers a Java API to allow users to use supervised learning algorithm
implementations within their own code. It is possible for a user to perform all the
aforementioned functions through calls to the Weka API. Developers may also embed
trained models in their applications, so that the models may be used by their software
(e.g., to classify users’ incoming email as spam or not spam). Developers can even
modify the source code of Weka’s algorithms themselves, and they may integrate their
own custom-designed learning algorithms into Weka by implementing them as Java
classes compatible with Weka’s object-oriented API.

RapidMiner offers much of the same functionality as Weka: it provides imple-
mentations of many standard learning algorithms, methods for visualizing datasets
and model functions, and mechanisms to evaluate the performance of algorithms on
datasets. Users may employ its GUI or integrate its engine into their own application
code.

Libraries and frameworks such as libsvm offer narrower functionality. They pro-
vide standard implementations of learning algorithms that can be embedded into the
user’s code; but it is typically up to the user to write code to load a dataset, set the
parameters of the learning algorithm, handle training and evaluation, and so on.

2As of 7 November 2010, Google Scholar indicates that the Weka book by Witten and Frank
(2005) has been cited 11,437 times.
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These tools make few assumptions about the sorts of applications to which they
will be applied. That is, they are designed to be as general-purpose as possible; many
of the constraints placed on the application of these tools arise from constraints
embedded in the supervised learning algorithms themselves. For example, most al-
gorithms cannot meaningfully take advantage of hierarchical relationships between
features or classes, and some algorithms cannot use training examples that are miss-
ing one or more feature values. However, there are a few assumptions embedded in
these tools—in particular, Weka and RapidMiner—that, as we will argue, do impose
certain limitations on their applicability to certain problem domains: they assume
that the training data comes from a database or file, that the set of data is more or
less fixed in advance, that the user will not edit the training data (other than, for
example, to perform normalization or other processing of the given examples), and
that the user will evaluate trained models using measures of generalization perfor-
mance estimated from the available data (for example, using cross-validation or test
accuracy, or visualization of the model behavior on the data).

2.2.3 Swupervised Learning in Music

In Section 2.1.2, we discussed the need for composers of interactive computer music
to deal effectively with complexity in constructing the relationship between sensed
performer actions and the computer’s response, and/or in bridging the “semantic
gap” between the sensed performer actions and the computer’s interpretation of those
actions. In the first case, the relationship between performer action and computer
response in a composed interactive system can be defined as a model function that,
given a set of inputs characterizing the performer’s actions, produces a set of outputs
that drive parameters of the computer’s behavior (e.g., parameters of a synthesis
algorithm). In the second case, in order to allow the computer to appropriately
interpret a performer’s actions, it is often helpful to create a model of the relationship
between the sensor and/or audio signals generated by the performer and the semantic
or musical meaning of the performer’s actions (e.g., the identity of the gesture she has
performed, or the tempo at which she is playing). Such a model allows the computer
to be programmed to take action based on the higher-level interpretations of these
actions, rather than based on the low-level signals generated by the performer.

In both these situations, the composer can often easily make data available, so
supervised learning can be an effective tool for using data to create these models
efficiently, and to create more accurate models than by other means. In this section,
we provide an overview of three specific interactive computer music problems in which
supervised learning has been commonly applied: the “mapping problem,” gesture
classification, and semantic audio analysis.

Creation of Mappings from Gesture to Sound

As discussed above, in interactive computer music systems, the computer may often
function as an instrument (or one component thereof). Such a system is sometimes
called a “digital musical instrument,” which is defined by Miranda and Wanderley
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(2006) as “an instrument that uses computer-generated sound..., [consisting] of a
control surface or gestural controller, which drives the musical parameters of a sound
synthesizer in real time.” Such instruments allow a performer to gesturally control the
computer’s sound in an expressive, real-time manner akin to performing on an acoustic
instrument. Historically, many digital synthesizers have been designed to to be played
with a piano-like keyboard, such as a MIDI keyboard. While such interfaces leverage
the existing skills of keyboard musicians, they offer limited dimensions of gestural
control (i.e., choice of key, time of key press and release, and velocity of key press).
These limitations often make keyboards a poor fit for creating digital instruments
that do not mimic a keyboard instrument; for example, a standard keyboard does not
afford performance techniques in which a player continuously controls sound synthesis
parameters over time.

Therefore, musicians and researchers have increasingly chosen to employ other
types of control interfaces that allow them to expressively perform digital sounds
using a wide variety of control gestures. Performers might “play” digital synthesis
algorithms with gestures sensed by sensors attached to the body (e.g., in work by
Tanaka 2000 and Knapp and Tanaka 2002) or embedded in control interfaces (e.g., the
Reactable by Jorda et al. 2007 or the SqueezeVoxen by Cook 2005), game controllers
(e.g., in work by Steiner 2005), computer vision or motion tracking (e.g., Dobrian and
Bevilacqua 2003), or native laptop inputs such as finger position on a trackpad (e.g.,
Fiebrink et al. 2007). Whereas physics dictates the relationship between performer
gesture and sound in the performance of acoustic musical instruments, the creator
of a digital musical instrument is quite free to design this relationship in new ways.
Hunt et al. (2002) argue that this mapping from sensed input gestures to sound
parameters can define “the very essence of an instrument.”

Hunt and Wanderley (2002) have characterized two general strategies by which
composers and instrument builders have designed mappings for digital musical instru-
ments. In an explicit mapping strategy, the instrument designer explicitly specifies
the mapping function from input sensed gesture to output sound parameters. This is
typically done through coding or by designing functions in a graphical programming
interface such as Max/MSP. In contrast, in a generative mapping strategy, the map-
ping is generated automatically from a set of example gestures paired with example
sound parameters?.

Supervised learning algorithms may be used for generative mapping creation:
given a training set of gestures and corresponding sound parameters, the training
step produces a model capable of producing new synthesis parameter outputs from
new gestural inputs. Significantly, the feature space and the synthesis parameter
space in these problems can be quite large, with many continuous dimensions of fea-
tures and parameters, so this space often cannot be exhaustively represented in the
training set. Fortunately, using continuous regression algorithms such as neural net-
works, the mapping function is capable both of producing outputs for gestures not

3Note that this use of the word “generative” is entirely different from how it is employed in
machine learning, where a distinction is made between “generative” and “discriminative” algorithms.
For example, it is quite possible to use a generative mapping strategy to build a mapping using a
discriminative learning algorithm.
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seen in the training set, and of producing synthesis parameters or (combinations of
synthesis parameters) not seen in the training set. Generative mappings can also
be used to control discrete synthesis parameters, either through the use of discrete
classifiers or through the quantization of continuous models’ outputs. For example,
if the instrument designer wishes to create an instrument that, like a piano, is ca-
pable of playing only pitches in the 12-tone equal-tempered scale, he could train a
classifier with 12 classes (e.g., to control pitch in a given octave) or 88 classes (e.g.,
to control pitch within the same range as a piano). Alternatively, he could train a
continuous neural network model and round its real-valued outputs to the frequency
value corresponding to the nearest discrete pitch.

Neural networks have been used for creating mappings since the work of Lee et al.
(1991). In that work, the authors used neural networks for several real-time control
tasks, one of which involved the use of a MIDI keyboard to control the timbre of
a synthesized sound. Another early use of neural networks to create mappings was
the work of Fels and Hinton (1995) mentioned above. In one component of their
system, a neural network was trained to produce a continuous mapping function
from hand gesture to vowels spoken by a speech synthesis engine, where continuous
hand motions resulted in gradually changing vowel outputs. In that same system, Fels
and Hinton used another neural network as a discrete classifier, which assigned static
consonant phonemes to particular hand gestures. A third network was trained to
output the probability that the user’s current hand configuration indicated a vowel,
and its output determined how the outputs of the vowel and consonant networks
would be combined to produce the control parameters sent to the speech synthesizer.
In other work, Modler (2000) used neural networks to generate mappings for a sensor
glove in interactive computer music performance.

Mapping design for digital musical instruments is an area of active research and
discussion in computer music. Several researchers have focused on the development of
new mapping functions, for example using matrix operations (Bevilacqua et al. 2005)
or local interpolation (Bencina 2005). Other researchers have focused on how general
properties of a mapping influence the controllability, expressivity, and other proper-
ties of digital musical instruments. (Typically, this research has focused on properties
of mappings other than whether they were produced using a generative or explicit
strategy.) One characteristic of mappings that has been shown to be particularly
important is whether the relationship between the sensed gesture parameters and
the sound synthesis parameters is one-to-one (each synthesis parameter is controlled
by exactly one gesture parameter, and each gesture parameter controls exactly one
synthesis parameter), one-to-many (each gestural parameter may control multiple
synthesis parameters; also called “divergent”), many-to-one (each synthesis param-
eter may be controlled by multiple gesture parameters; also called “convergent”) or
many-to-many (a combination of the above) (Hunt and Wanderley 2002).

Another mapping characteristic of potential significance is the extent to which
the integrality and separability of input device dimensions are matched to the in-
tegrality and separability of synthesis parameters. Vertegaal and Eaglestone (1996)
provide a summary of the definition and importance of integrality and separability
in HCI: “Garner (1974) showed that certain parameters of a task are perceived as
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being integrally related to one another (the user sees these as a unified whole), while
others are separably related (the user sees these as a collection of separate entities).
Consequently, users manipulate certain parameters simultaneously (such as the x-
and y-position of a graphical object) while others are manipulated separably (e.g.,
the colour and size of a rectangle)...For optimal performance, it is important that
the control structure of the device correlates with the perceptual structure of the
task (Jacob et al. 1994).” Based on this understanding of the perceptual structure
of a control task, mappings in which integral control parameters control perceptually
integral sonic parameters and separable control parameters control separable sonic
parameters may offer advantages.

Notably, this set of past work has primarily focused on the aesthetic and practi-
cal consequences of mapping properties that are more or less independent from the
question of whether the mappings were created using explicit or generative strate-
gies. There exists significantly less work examining the consequences of generative
versus explicit mapping strategies, on either the type of digital musical instruments
they produce, or on the larger process of composition and instrument design. How-
ever, certain work suggests that there are interactive benefits to employing generative
mapping strategies; Merrill and Paradiso (2005), for example, found that end users
of new digital instruments preferred to have the ability to customize mappings them-
selves, and a generative mapping strategy facilitated this activity. One of our goals
in the research presented in this thesis is therefore to provide further insight into the
consequences of generative mapping strategies for both performance and composition.

Finally, it bears mention that not all composers and instrument designers adhere
to the notion of a mapping as a useful compositional construct. For example, Chadabe
(2002) is critical of the the inability of mappings to adequately capture complex and
indeterministic relationships between a performer and computer. For one thing, the
goal of deterministic mappings that are constructed to replicate the performance
roles of conventional musical instruments may be “to make the performer powerful
and keep the performer in complete control.” This emphasis on performer power
and control runs contrary to Chadabe’s own definition of interaction, which involves
mutual influence between the computer and performer. In Chapter 9, we will revisit
these criticisms of mappings in a discussion grounded in our own work with composers
and instrument builders.

Gesture Classification

The goal of gesture classification is, in the simplest case, to assign a discrete class label
to each user gesture. For example, as discussed above, Allen et al. (2003) created an
American Sign Language gesture classifier that assigns to each human hand gesture
(measured using sensors on the hand) the label of the English letter corresponding to
that gesture.

Gesture classification can be used in several ways in interactive computer music
performance. A classifier may be trained to recognize natural gestures of an acoustic
performer—for example, to recognize the beat patterns of a conductor, as in work by
Brecht and Garnett (1995) and Wilson and Bobick (2000), or the bowing articulations
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of a violinist, as in work by Young (2008) and Rasamimanana et al. (2005). Accurate
classification of these gestures enables the computer to react to the performer’s actions
in a musically appropriate way, for example by playing its part according to the
conductor’s tempo. Classification of these gestures can also enable a performer to
directly control or influence the computer using a natural gestural vocabulary; for
example, a cellist might influence the computer’s playing style through changing her
bowing articulations.

Gesture classification can also be used to recognize new gestural vocabularies that
are customized for a particular performer, instrument, or composition. For example,
in Winkler’s dance/theater production Falling Up, a computer vision system identified
locations of dancers on a stage; when dancers entered particular locations, musical
events were triggered in the computer (Winkler 2002). In the next chapter we present
an example discussing how gesture classification might be used to build a gesture-
controlled drum machine, in which a performer controls the drum machine sounds
using hand gestures in front of the webcam.

Like systems for gesture mapping, systems for gesture classification may use a
variety of technologies to sense performer gesture and transmit this information to
the computer. These technologies include custom sensor systems, game controllers,
vision and motion tracking systems, and native laptop inputs, as mentioned above.
Gesture classification might also be performed on the audio signal generated by an
acoustic performer; for example, Tindale (2004) constructed a system for classifying
percussion gestures based on the resulting audio, and Wanderley (2002) demonstrated
that analysis of the audio signal of a clarinet player could reveal information about
ancillary performance gestures (e.g., angle of the clarinet relative to the floor). Audio
can also be used to classify non-musical sound-producing gestures, as was done in
recent work by Harrison and Hudson (2008), who classified gestures based on the
sound made by drawing shapes onto a wall or other hard surface using a “scratchy”
finger.

In some gesture classification contexts, such as the vision-based triggering system
of Winkler (2002) mentioned previously, the relationship between gestural features
and the identity or intended consequence of a gesture is simple enough that super-
vised learning is not necessary. However, in gesture classification applications across
many different gestural input modalities, the relationship between a gesture’s features
and its class label may be significantly more complex and difficult to understand or
programmatically define. In these circumstances, supervised learning can be a useful
tool for building models of the relationship between a sensed gesture and its class
label. This is particularly the case when it is straightforward to provide a learn-
ing algorithm with a training dataset consisting of example gestures paired with the
correct class labels. Additionally, human gesture classification systems must also be
robust to natural human variation in the execution of gestures, as well as variations
in environmental conditions such as lighting levels or sensor calibrations. Supervised
learning algorithms’ goal of producing models that are capable of generalizing and
that are robust to superfluous variations in input features are well-matched to this
requirement; users can often expect a trained model to be robust to these effects if
such variations are present in the training data.
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In the simplest case, a gesture classifier classifies static gestures (e.g., hand or
body positions) from a feature vector describing the state of a vision- or sensor-
based system at a single point in time. It is also sometimes possible to classify
dynamic gestures using feature vectors that capture temporal aspects of the gesture;
for example, features extracted at some fixed number of successive time points might
be concatenated into a single vector, or the features themselves may describe temporal
behaviors such as the number of local maxima within an analysis window, as was done
by Harrison and Hudson (2008).

Alternatively, gesture tracking systems may involve more nuanced analysis than
gesture classification. For example, they may analyze when certain gestures start and
stop, and provide real-time analysis of how much of a gesture has been completed.
Supervised learning algorithms can also be useful for gesture tracking, but this can
involve a more sophisticated type of model capable of considering the temporal evo-
lution of features and classes, such as Hidden Markov Models (Bishop 2007, Chapter
13).

Semantic Audio Analysis

Lastly, supervised learning has been well-established as a tool for the semantic analysis
of audio signals. As humans, we readily perceive musical qualities such as tempo,
pitch, harmony, and genre when we listen to a piece of music. However, the problem
of creating a computer system capable of characterizing a piece of musical audio in
these ways can be quite challenging.

Much research on computer analysis of musical audio is performed in the domain of
music information retrieval, or MIR. Though MIR also encompasses much research on
symbolic, textual, and other non-audio data, MIR research and the ISMIR conference
in particular* maintain a significant focus on the semantic analysis of audio. The
MIREX benchmarking competition, for example, includes audio analysis tasks for
note onset identification, chord estimation, pitch estimation, tempo estimation, key
detection, melody extraction, and beat tracking, among others.

Past research in MIR has identified a set of audio features and shown them to be
relevant to certain semantic analysis tasks. These features include temporal measure-
ments (e.g., the zero-crossing rate), spectral measurements (e.g., FFT bin magnitudes,
spectral centroid, and spectral flux; see Tzanetakis et al. 2001b), wavelet-based fea-
tures (Tzanetakis et al. 2001a), and other perceptually- and physiologically-motivated
features, such as Mel Frequency Cepstral Coefficients (Logan 2000).

Though these features are often correlated with perceptually salient properties of
the sound, the relationship between these features and higher-level musical properties
such as harmony, tempo, or instrumentation can be exceedingly complex. State-of-
the-art systems for identifying musical properties of audio therefore often use super-
vised learning approaches (see, e.g., systems evaluated in recent MIREX competi-
tions®). Many MIR analysis tasks of interest involve classifying audio into discrete
categories (e.g., the genre of an MP3 or the harmony of a short audio segment), and

‘http://www.ismir.net
Shttp://www.music-ir.org/mirex/wiki/MIREX_HOME
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researchers have commonly applied standard classification algorithms such as support
vector machines (Poliner and Ellis 2005) or AdaBoost (Bergstra et al. 2006) to these
tasks.

The majority of MIR research, and the evaluation methods employed in assessing
the quality of MIR algorithms by ISMIR paper authors and by the MIREX competi-
tion, emphasize offline (i.e., non-real-time) analysis tasks. Examples of typical goals
of MIR semantic analysis research include making music recommendations based on
analysis of a user’s music collection (e.g., Cano et al. 2005; Yoshii et al. 2006), anno-
tating a personal or commercial music collection with semantically-relevant tags (e.g.,
Turnbull et al. 2008; Eck et al. 2007), or enabling a user to query a music database
by humming a melody (e.g., Ghias et al. 1995; Dannenberg et al. 2004).

However, MIR research has occasionally focused explicitly on real-time audio anal-
ysis for the purposes of performance. For example, Murata et al. (2008) constructed
a robot that adapted its singing based on the tempo of music in its environment, and
previously-mentioned work by Raphael (2010) has created a computer system capable
of expressively accompanying a human performer in real-time. Furthermore, many
research systems for instrument identification, pitch classification, beat tracking, and
numerous other tasks could be adapted from analysis of whole audio files to work in
real-time performance, so long as (1) the audio feature extractors and analysis algo-
rithms they employ can compute in real-time or faster, and (2) the feature extractors
and analysis algorithms can compute on analysis windows of a “reasonable” length
(perhaps a few seconds or longer, depending on the application).

While semantic audio analysis is not explored in depth in this thesis, the exciting
potential for real-time audio analysis systems to be used more widely and more suc-
cessfully in interactive computer music performance was a strong motivating factor
of this work, and it is an application area we intend to explore further in the future.

2.3 Software Tools for Applying Supervised
Learning in Music

Application of supervised learning to work in music has employed a mixture of general-
purpose tools, music-specific tools, and custom software systems developed from the
ground up by researchers and practitioners. In this section, we provide an overview
of existing tools that people have used. Then, we discuss in detail our motivation for
the creation of a new software tool that is general purpose, runs in real-time, is usable
via a graphical interface, and supports a more interactive approach to machine learn-
ing systems-building, in order to better meet the needs of composers and musicians
desiring to apply supervised learning to their work.

2.3.1 Existing Tools

The general-purpose tools discussed above in Section 2.2.2; such as Weka and Matlab,
are often used to apply supervised learning to work in music information retrieval,
where there is an emphasis on offline audio analysis. Other tools have been developed
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to perform feature extraction and supervised learning tasks customized to the needs
of MIR researchers, such as the jJMIR Java toolkit (McKay and Fujinaga 2009), and
the MIR Toolbox (Lartillot and Toiviainen 2007) and MIDI Toolbox (Eerola and
Toiviainen 2004) tools that provide Matlab tools.

Many MIR tools—including GUI-based, general-purpose tools such as Weka and
RapidMiner, and most tools such as jMIR that are customized to offline music
analysis—are not suitable for application in interactive computer music, because they
are incapable of being applied to real-time analysis problems. These tools assume that
all relevant data exists in a file or database and typically are incapable producing a
stream of output classifications in response to a stream of input features, for example.

It is still possible, of course, to use the Weka library and other libraries or frame-
works to develop custom code for analyzing real-time signals. For example, one could
develop the software infrastructure for extracting features, passing a stream of fea-
ture vectors to a trained classifier over time, and passing the stream of classifier
outputs to control a musical process. Development of this infrastructure can involve
a significantly greater time commitment than applying these tools to offline datasets,
however, and this approach is only suitable for computer musicians who are also
software programmers.

Marsyas (Tzanetakis and Cook 2000) is a software tool designed particularly for
music information retrieval, and it is capable of analyzing both offline and real-time
audio. Neither a programming language nor a GUI, Marsyas is a framework that
provides a set of command-line tools and text-based and graphical mechanisms to
define dataflow-based analysis patches composed of built-in and user-defined anal-
ysis building blocks. Users can develop larger Marsyas-based projects in C++ or
using bindings to other standard programming languages, including Python, Ruby,
Lua, and Java (Percival and Tzanetakis 2006). Marsyas enables trained classifiers
(k-nearest neighbor, support vector machines, and Gaussian mixture models) to be
packaged as plug-ins and run on real-time audio. It also includes some support for
audio synthesis (wavetable synthesis, FM synthesis, and phase vocoder, in addition to
file playback), although the motivation for adding this capability was not necessarily
for use in for real-time music performance, but for use in development and debugging
(e.g., allowing the developer to listen to extracted chords) (Tzanetakis and Lemstrom
2007). MarsyasX is a recent extension of Marsyas that can be applied to analysis of
multimodal signals, including video and sensor data (Teixeira et al. 2008).

Composers and researchers have built several other tools that are specifically de-
signed to apply supervised learning to real-time computer music performance. These
tools are far less general-purpose than those described above, as they typically support
only single learning algorithms, and/or particular programming environments and in-
put modalities. For example, MnM (Bevilacqua et al. 2005) is a toolkit that allows
users to create custom gesture-to-sound mappings using singular value decomposi-
tion, principle components analysis, hidden Markov models, and other algorithms.
The toolkit is implemented as a suite of Max/MSP externals (i.e., processing ob-
jects that are used within Max/MSP’s graphical patching environment). Cont et al.
(2004) have developed a neural network-based gesture mapping toolkit for use in
PD, an open-source graphical patching environment for music that is very similar
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to Max/MSP. Fiebrink et al. (2008) created the “Small Music Information Retrieval
toolKit” (SMIRK) for applying supervised learning algorithms (k-nearest neighbor,
AdaBoost, and decision trees) to audio and gesture classification within the ChucK
programming language (Wang and Cook 2003).

The software described above constitutes the state of the art in tools for applying
supervised learning for music. We motivate our own set of requirements for a super-
vised learning tool for interactive computer music composition and performance in the
next section, and we describe the tool we built to meet those requirements in the next
chapter. Table 3.2 in the next chapter (page 3.2) provides a side-by-side comparison
of the above tools with our new software, compared against our requirements.

Finally, we stress that not all music researchers and system builders have used
the tools above in their work with supervised learning. The supervised learning
components of several significant projects, such as the highly-specialized computer
accompaniment systems created by Raphael (2010) and early, seminal work by Lee
et al. (1991), have been developed entirely by the researchers themselves when there
did not exist general-purpose tools or libraries that could be applied to their work.

2.3.2 Motivation and Requirements for a New Software Tool

The array of prior work applying supervised learning to music gesture and audio
analysis attests to the capability for these algorithms to be effective in musical appli-
cations, especially when researchers and musicians have access to the tools they need
to do their work, or when they possess the time and abilities necessary to develop
such tools themselves. Unfortunately, there are many established and potential uses
of supervised learning in interactive computer music for which the set of available
tools is insufficient. Because of the requirement that that models run in real-time,
the set of tools from which computer music composers and musicians may choose is
much smaller than the set of tools available to many other applied machine learning
researchers, or even researchers working in offline audio analysis. Furthermore, the
tools that do exist for use in real-time computer music place significant restrictions on
the types of algorithms that users may employ, the environments in which they may
work (e.g., only Max/MSP, or only text-based programming languages), the tasks
to which they may be applied (e.g., only to gesture mapping), and/or the degree of
programming expertise and available development time that users must possess.

We believe that these constraints presented by current tools unnecessarily limit
the pool of potential users of supervised learning (e.g., to only those who are proficient
programmers, and to those who work in certain composition software environments),
and they present unnecessary barriers to rapid prototyping and exploration (e.g., by
requiring users to develop custom code to support even casual experimentation, and
by forcing users to work in programming languages or composition software that are
unfamiliar to them). As a result, these constraints may ultimately discourage the
use of supervised learning algorithms by new types of composers and discourage their
application to new types of musical problems.

Ideally, musicians and researchers would have access to a supervised learning tool
that is general-purpose (i.e., that supports the application of arbitrary supervised
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learning algorithms to arbitrary learning problems), that is capable of running on
real-time signals, that is compatible with a variety of other software tools used in
music composition and performance, and that does not require users to write code.
Such a tool could facilitate experimentation with supervised learning algorithms by
a greater number of composers applying them to wider array of problems. Such a
tool could also lower the barriers to adapting existing supervised learning research
conducted in offline or non-musical domains to live music. For example, as mentioned
above, many research problems under investigation in MIR are potentially relevant
and useful to computer music composers and performers, but there is often no easy
way of adapting MIR research systems to run in real-time. Having a way to easily
build an instrument classifier, for example, that uses the same features and learning
algorithm as state-of-the-art systems in offline MIR research would enable composers
apply this research to creative ends. Such a tool could also be useful for leveraging
research in real-time contexts outside of music, for example work in computer vision-
based gesture analysis, in the creation of interactive computer music systems.

In addition to being general-purpose, capable of running on real-time inputs, and
GUI-based, we believe that a useful supervised learning tool for computer music com-
position and performance should also meet a set of more subtle requirements. First
of all, conventional machine learning tools (and many music-specific tools described
in Section 2.3.1) assume that the training data is present in a file or database. In
music composition and performance, this might sometimes be the case: for example,
in order to build an instrument classifier, one might cull training data from existing
repositories of instrument recordings, such as the McGill University Master Samples
library (Opolko and Wapnick 1989). On the other hand, in many problems in which
a composer might wish to construct a supervised learning system, there exists no
standard available training set. Furthermore, creating a custom, new dataset offers
the benefits of enabling a composer to build a model that is customized to a particular
performer, composition, or venue. For example, a composer might train a mapping
function that allows a performer to play a specific synthesis patch using certain ges-
tures, where the gestures and resulting sounds have been carefully designed by the
composer to fit into a particular composition. Or, a composer might train a vision-
based gesture classifier using a training set consisting only of gestures demonstrated
by the musician who will be performing the piece, under the same lighting conditions
that will be used in performance. In this case, the composer can take advantage of
the training data creation process to not only customize the learning problem, but
also to greatly simply the learning problem in comparison to the general problem of
constructing a gesture classifier that is accurate for all performers and all lighting
conditions.

Because of the likelihood that a composer or performer will want to create a
custom training data set, it makes sense for a supervised learning tool to provide
appropriate user interfaces for dataset creation. Furthermore, because the goal of the
learning problem may often be to create a model whose inputs will be gestures or audio
generated by a performer in real-time, it is appropriate that such user interfaces allow
the training data to be generated by a user’s actions in real-time. Some existing tools
for real-time gesture analysis, such as examples distributed with the MnM Toolkit
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(Bevilacqua et al. 2005), do incorporate support for users creating the dataset through
real-time gesture demonstration. The SMIRK tool (Fiebrink et al. 2008), a smaller-
scale project than this thesis that was nonetheless motivated by many of the same
ideas, explicitly supports the interactive creation of both audio and gestural training
sets. Other existing musical tools, such as the PD gesture toolkit by Cont et al.
(2004), demand that the dataset be created in some other environment and saved to
a file, and general-purpose tools such as Weka do not provide any support for this
action.

Also, notably, each composer or musician may have different criteria defining what
constitutes a “good” or “useful” model for a particular composition, instrument, or
other system incorporating supervised learning. A composer might require a gesture
classifier to produce very accurate classifications for the gestures of his performers, or
he might only require that any likely classifier mistake result in musically acceptable
consequences (e.g., sounds that don’t sound “too bad”). An instrument designer
might require that his created mapping produce sound output very similar to the
sounds included in the training set, especially if he has a set of sounds that are
important to play in a composition. On the other hand, it may be most important to
him to build a mapping that his performers can learn to play in a musically sensitive
and expressive manner, regardless of whether the instrument produces sounds that are
anything like those in the training set. In any case, musical users’ goals for supervised
learning models may be more nuanced, more subjective, and possibly even unrelated
to the conventional goal of supervised learning, which is to create models with high
generalization accuracy.

Metrics such as cross-validation may or may not be informative of the subjective
quality of a trained model; a supervised learning tool for musical use should therefore
provide users with the means to evaluate trained models against their own criteria.
In applications where the goal of using supervised learning is to create a model that
produces outputs in response to performer-generated inputs, this can be accomplished
by providing the user with an interface to evaluate trained models by running the
models on input signals generated by himself in real-time. For example, a composer
building a gesture classifier can evaluate the trained classifier by demonstrating new
gestures in real-time and observing the classifier’s output. This enables the composer
to evaluate the classifier’s accuracy on gestures most likely to be used in future per-
formance, and—if the classifier’s outputs are connected to the musical processes that
it will be controlling during performance—this allows the composer to evaluate the
musical consequences of the classifier’s errors.

Finally, a system for applying supervised learning to interactive computer music
should enable the user to take appropriate actions to improve a model, using in-
formation gained through evaluation. One important capability of general-purpose
supervised learning tools such as Weka is that they enable users to experiment with
different feature sets, learning algorithms, and parameterizations of those learning
algorithms to build a model that best captures the relationship between features and
labels present in the training dataset. Users who discover that a model they have
built performs poorly can attempt to find an algorithm or feature subset that that
produces a model that performs better. Because different learning algorithms model
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the training data in different ways, and because different feature subsets may allow
the data to be modeled more or less accurately, it remains appropriate to allow musi-
cal users of a supervised learning tool to improve their models through changing the
learning algorithms and feature selection.

However, changing the learning algorithms or features may not always be the best
method of improving a model in an interactive computer music context. Though
changing the algorithm or features can allow the user to build a more accurate or
faithful model of the relationship between inputs and outputs in the training dataset,
the user might instead require a model that learns a qualitatively different type of
relationship. For example, while evaluating a trained vision-based gesture classifier by
demonstrating new gestures in real-time, the user may notice that certain variations of
a gesture (e.g., changes in distance between himself and the camera) often cause that
gesture to be misclassified. Or, while evaluating a trained gesture mapping, he may
discover that the sounds produced by certain gestures he’d like to use in performance
are, unfortunately, inappropriate to the composition he is composing. In both cases,
changing the training dataset by adding new gestural examples paired with better
labels may be a much more direct and effective way of improving the trained model,
compared with using a different algorithm to model the original dataset.

Weka and other conventional supervised learning tools (including most musical
tools mentioned above) do not explicitly provide support for the user to edit the
training data, because the user’s goal in applying supervised learning is assumed to
be the creation of an accurate model of a given (and fixed) dataset. Changing this
data simply to make the model more accurate would be counterproductive to that
goal. For example, in the medical analysis work of Ross et al. (2003) mentioned above,
if the researchers had edited the dataset by changing class values or feature values,
or by adding hand-crafted training examples, their findings that the features were
useful in predicting the class values would have been meaningless. Also, the trained
models’ ability to generalize to data similar to that in the original dataset would
be compromised, so their usefulness as a tool for diagnosing new patients would be
limited. On the other hand, the primary goal of composers and musicians employing
supervised learning algorithms may be to build models that are most useful to them
in real-time, interactive performances: they may be seeking to build models that
accurately classify gestures or sounds produced by a particular performer, or that
produce musically expressive mappings. The true goals of supervised learning are not
represented definitively in the dataset, but in the imagination of the composer, where
they are defined and informed by her knowledge, imagination, and experiences. The
training dataset is merely the “interface” by which users communicate their goals
to the learning algorithm, so it is entirely appropriate that users have the ability to
modify the data to more clearly represent their goals.

2.3.3 Summary of Requirements

Based on the above discussion, we summarize our requirements for a new supervised
learning tool for interactive computer music as follows:
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1. General-purpose in nature:

(a) Capable of creating models for arbitrary signal domains, including audio,
sensor, video, and other signals generated by performers

(b) Capable of being applied to arbitrary interactive computer music problems,
including gesture-to-sound mapping, gesture classification, semantic audio
analysis, and others

(¢) Includes support for many learning algorithms for both classification and
regression

2. Supports real-time applications: Trained models can produce a stream of
output labels in response to a stream of input features.

3. Compatible with the tools composers already use: Composers can use
it alongside Max/MSP, PD, ChucK, and user-implemented code in other lan-
guages, among others.

4. Supports interaction via a GUI: Users without programming expertise can
apply supervised learning effectively, and all users are free to do rapid proto-
typing and experimentation without the need for writing code.

5. Supports rich end-user interaction with the applied supervised learn-
ing process:

(a) Users can create training data through interactive, real-time demonstra-
tion.

(b) Users can evaluate trained models through interactive, real-time experi-
mentation.

(c) Users can improve trained models by changing algorithms, algorithm pa-
rameters, and features.

(d) Users can also improve trained models by editing and deleting training
data, allowing them to cultivate a dataset that best represents their goals
for the supervised learning models.

2.4 Machine Learning and Human-Computer
Interaction

Much prior research on applications of supervised learning to music has focused on
the development and application of new algorithms. In contrast, our interests in
developing in enabling supervised learning to become a more usable tool—i.e., a more
efficient, effective, and satisfying tool—for a wider variety of users and supervised
learning applications. Our design requirements, implementation, and evaluation of
this system thus employ perspectives, values, and techniques from the domain of HCI.
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There exists an exciting, relevant thread of recent work in HCI, in which other
researchers have been investigating questions of how to make supervised learning
algorithms more usable and more accessible to people working in various domains.
This work has focused on better enabling end users—who may or may not be knowl-
edgable of machine learning—to train, evaluate, and improve supervised learning
systems. Goals of that research include both improving user experiences with super-
vised learning and improving the quality of the trained models, and prior research
has pursued these goals through proposing innovations in user interface design, of-
fering new types of human interaction with standard supervised learning algorithms,
and designing novel algorithmic approaches to supervised learning that are capable
of leveraging human expertise in new ways.

2.4.1 User Interaction with Training Data

Early work in this research area was conducted by Fails and Olsen (2003), who pro-
posed that a significant opportunity for improving supervised learning systems lay
in enabling the user to evaluate a model, then edit its training dataset based on
his or her expert judgments of how the model should improve. They termed this
approach “interactive machine learning,” in contrast to conventional systems for ap-
plying machine learning in which the user does not edit the training set. Fails and
Olsen implemented this interactive approach in their Crayons system, which allowed
users to improve an image pixel classification model by iteratively adding training
data, training a classifier, evaluating the classifier, and repeating. Users added train-
ing data through an interface that allowed them to quickly “paint” class labels (e.g.,
“skin pixel” or “background pixel”) on previously-unlabeled image pixels within a
fixed set of available images, and they evaluated the trained model by visualizing the
model’s classifications over each pixel in those images.

This approach to engaging user interaction in editing a model’s training dataset
has subsequently been applied to end-user supervised learning systems in handwriting
analysis, web image classification, document analysis, and sensor-based interaction
design. While these systems differ in the algorithms used and in the ways that
interfaces support users’ data editing and evaluation activities, they share a common
interactive workflow, illustrated in Figure 2.3.

Shilman et al. (2006) created one such interactive machine learning system, a
handwriting recognition tool called CueTip, in which users had the ability to in-
teractively correct errors made by the handwriting recognizer as they wrote. Each
user-initiated error correction resulted in the recognizer updating its handwriting
model.

In 2008, Fogarty et al. created a web image classification system called CueFlik.
The goal of CueFlik is to support “end-user interactive concept learning,” in which the
user trains a computer model to accurately rank images according to a user-defined
concept, such as “product photos” or “pictures of people.” As a user searches the
Web for images, CueFlik allows users to iteratively select images returned by a query
and add them as positive or negative examples to a concept training set. Additionally,
as the user searches for images, she is able to apply the trained concept models to
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Figure 2.3: The interactive machine learning workflow used by Fails and Olsen (2003)
and others.

re-rank images returned by the search; in this way, she is able to continually assess
the performance of the model and take action to improve it through the addition of
new training data.

Work by Amershi et al. (2009) extended the CueFlik system by implementing
user interfaces for providing “overviews” of images associated with a concept. They
demonstrated through a user study that, by providing users with relevant informa-
tion about the models currently representing a concept, overviews could aid users in
selecting better training examples to further improve the concept models. Work by
Amershi et al. (2010) further extended this work by implementing a mechanism for
allowing users to visualize the consequences of different potential modifications to the
training dataset (i.e., of different potential image labelings) before committing to a
modification. In this work, Amershi et al. demonstrated that enabling easier explo-
ration and revision of concept models in this manner allowed users to build better
models.

Baker et al. (2009) designed an interactive text document classification system in
which users were able to add labels to documents to designate them as positive or
negative examples of concepts, based on the contents of the documents. In that work,
Baker et al. used a two-dimensional visualization of the document feature space to
provide feedback to users about the extent to which documents of different classes
overlapped. Their work suggests that users were able to employ these visualizations
to understand the “inherent separability” of the dataset, which affects the extent to
which any classification algorithm would be capable of learning the concept. Users
were able to use this plot to assess the effects of modifications to the classifier algo-
rithm, as well as to select documents based on their position in the feature space,
examine them, and add new concept labels to them.

The Exemplar system created by Hartmann et al. (2007) enables users to design
sensor-driven interactions using a “programming by demonstration” (PBD) paradigm.
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In PBD, humans train computers and robotics systems to perform tasks by providing
examples of those tasks; we further discuss PBD and its relationship to our approach
to interactive machine learning in Section 3.6.3 (page 81). Exemplar users have
the ability to provide examples of sensor manipulations (e.g., a firm press on a force-
sensitive resistor), and to annotate sensor outputs with labels indicating how this type
of manipulation should be acted on by the computer (e.g., to activate a light). Users
can observe the pattern matching algorithm’s output as they demonstrate subsequent
sensor gestures in real-time, and they can employ a graphical interface to directly
modify the matching algorithm to improve its behavior.

2.4.2 Other Opportunities for User Interaction

Other work at the intersection of HCI and machine learning has investigated ap-
proaches to leveraging other types of human interaction in the creation of super-
vised learning models. For example, the EnsembleMatrix system (Talbot et al. 2009)
provides a graphical interface that harnesses human users to optimize ensembles of
learners. The ManiMatrix (Kapoor et al. 2010) system allows users to manipulate a
confusion matrix to interactively steer a model’s performance to reflect their priorities.

Additionally, systems by Nichols et al. (2009) and Morris et al. (2008) provide
users with interfaces for exercising control over the parameters of machine learning
models. For example, Morris et al. (2008) present users with a “Happy Factor” slider
whose effect is to control the relative weighting of two underlying models. By ex-
posing algorithm parameters indirectly, and by visually presenting controls alongside
labels that indicate how parameter changes are likely to affect characteristics of the
system that are relevant to the user, these systems enable users who are machine
learning novices to effectively customize machine learning systems according to their
preferences.

The Gestalt system developed by Patel et al. (2010) takes another approach to
supporting end-user application of machine learning. Gestalt is tailored to support
software developers who are machine learning novices but who wish to incorporate
trained classifiers into their software. It provides developers with visual tools, inte-
grated into the IDE, for implementing and analyzing classification pipelines in their
code.

2.4.3 Summary and Key Research Questions

This body of work demonstrates that the effectiveness of applied machine learning
in practice rests not only on the quality of the machine learning algorithms and the
quality of the data, but also on the user interfaces and interaction paradigms that
machine learning practitioners employ to do their work. Research discussed in Section
2.4.1 has shown that, for domains where it is feasible for the user to generate training
examples or apply labels to unlabeled examples, user creation and modification of
the training dataset is an effective way to leverage human expertise in improving
supervised learning systems. Additionally, research discussed in Sections 2.4.1 and
2.4.2 illustrates that appropriate user interfaces can enable even machine learning
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novices to design working supervised learning systems, and it provides examples of
how machine learning algorithms may be modified to take advantage of human input
in new ways.

While this work has inspired our own endeavors to create usable supervised learn-
ing software for use in creating interactive computer music systems, there remain
several key questions regarding interactive supervised learning that are pertinent to
our research. These include questions about how to design user interfaces for training
data creation, visualization, and editing within real-time applications; the nature and
breadth of subjective criteria that may be important to users designing supervised
learning systems for their own use, and how to provide appropriate interfaces for users
to evaluate trained models against these criteria; how to provide feedback to users in
order to enable them to interact most effectively with machine learning algorithms;
and the variety of applications that different types of users—mewly-empowered to em-
ploy supervised learning in their work—might imagine and create. We have explored
these questions and others in our work observing and collaborating with musical users
engaged with our new interactive supervised learning software, and we discuss our
findings throughout Chapters 4 to 7.

2.5 HCI and Human Creativity

Another thread of relevant research in HCI considers how computer systems can
effectively support human creativity, for example by enabling creative work to be
more efficient or productive, or by enabling people to be creative in new ways.

Early work in this area by Shneiderman (2000) aims to ground the design of com-
puter systems for creative work in an understanding of people’s creative processes.
He defines creative work broadly, encompassing not only work in the arts, but pur-
suits including the creation of knowledge and rapid communication among people.
Activities such as letter writing, architecture, scientific research, and medical and
legal practice are therefore considered to be creative endeavors.

Shneiderman outlines four phases of creativity in which technology can assist peo-
ple to be “more creative more of the time”: collecting information, relating (i.e.,
consulting with peers and mentors), creating (e.g., “explor[ing], compos|ing], eval-
uat[ing] possible solutions”), and donating (i.e., disseminating results). He also iden-
tifies eight activities that support creativity (and should therefore be the focus of
further research in HCI): searching and browsing digital libraries, consulting with
peers and mentors, visualizing data and processes, thinking by free associations, ex-
ploring solutions (“what-if tools”), composing artifacts and performances, reviewing
and replaying session histories (to enable users to reflect on their work), and dissem-
inating results.

Subsequent work by Shneiderman and others has led to the formulation of de-
sign guidelines for computer systems intended to be used in creative work (commonly
called “creativity support systems” or “creativity support tools”). Guidelines pro-
posed by Shneiderman (2007) and Resnick et al. (2005) include the need to “support

s

exploration,” “invent things that you would want to use yourself,” and provide a “low
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threshold, high ceiling, and wide walls” to accommodate both novices and experts,
and to support a wide range of applications.

Much of this prior research is relevant to the design of software used in interactive
computer music. For example, several of the creative activities outlined by Shnei-
derman (2000) are important to the work of computer music composers, instrument
designers, and performers, and many of the design guidelines proposed by Resnick
et al. (2005) were germane to the design of our new supervised learning software
tool. In this thesis, we also present work that contributes to the larger body of com-
putational creativity support research, in that we present new knowledge of users’
priorities and values with regard to interacting with technology during computer mu-
sic composition and instrument design, and in that we demonstrate how supervised
learning algorithms can be particularly useful tools in creative work. We discuss these
ideas in the context of particular user studies in Chapters 4 through 7, followed by a
more detailed discussion in Chapter 9.

2.6 Conclusions

2.6.1 Summary of Foundational Prior Work

Interactive computer music is an active area of research and creative activity, and
one that presents several interesting computational challenges related to the need to
deal with complex relationships between human actions and computer reactions to
or interpretations of those actions. Supervised learning offers an effective tool for
working with complexity in domains where training data can be made available, and
it has previously been applied to meet several of the computational challenges in
computer music, including creating gesture-to-sound mappings in the design of new
digital musical instruments and designing systems for human gesture classification
and semantic audio analysis.

In many application domains, general-purpose tools such as Weka have enabled
researchers who are not machine learning experts or programmers to effectively apply
machine learning to their work. Tools such as jMIR (McKay and Fujinaga 2009),
Marsyas (Tzanetakis and Cook 2000), and MnM (Bevilacqua et al. 2005) have been
developed especially to aid researchers applying supervised learning to music, and
they have had significant impact in particular applications in music information re-
trieval and music performance. However, there does not exist a general-purpose su-
pervised learning tool that supports application of algorithms to arbitrary real-time
problems, while also supporting appropriate user interactions with the supervised
learning process.

A growing body of work at the intersection of HCI and machine learning has
demonstrated the important role that human interaction can play in the end-user
creation of supervised learning systems in other domains. In particular, enabling
users to interactively and iteratively edit algorithms’ training sets and evaluate trained
models can be an effective and efficient way of engaging users’ expertise to improve
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supervised learning systems. Our work presented in this thesis has both been inspired
by and contributed back to this body of research.

Finally, research on computational creativity support has underscored the roles
that computers may play in enabling people to be more creative, and prior work
has produced frameworks for understanding creative activities and proposed design
guidelines for developers building creativity support tools. The work presented in this
thesis builds on this foundational work in both the development of a new creativity
support tool and the study of this tool in use by composers.

2.6.2 Statement of Research Motivations

Based on the success with which a variety of practitioners have been able to apply
machine learning to problems inside and outside music when they have had access to
software tools that enable them to work efficiently and effectively without requiring
extensive machine learning expertise, we desired to create a new software tool whose
general-purpose nature, real-time capabilities, and support for user interactions would
enable more musical users to apply supervised learning more easily to more problems.
Such a tool would have the potential to greatly benefit composers, musicians, and
interactive computer music researchers—including ourselves—as well as practitioners
working in domains with similar real-time and interaction requirements.

In Section 2.3.3, we outlined several criteria that such a tool should meet, based
on the needs of composers that are currently unmet by existing tools. These cri-
teria include the ability to apply arbitrary algorithms to arbitrary problems, to be
compatible with a variety of software used by composers, to support accessibility to
non-programmers and efficient exploration to all users by providing a graphical means
of interaction, and to support interactions appropriate to composers’ and musicians’
needs. These interactions include creating the training data in real-time, modifying
the training datasets, evaluating trained models by running them in real-time and
manipulating their inputs in a hands-on manner, and iterating between evaluating
models and improving them by making modifications to the learning problem.

We have built such a system, which we call the Wekinator. This software is
described in detail in the next chapter. Some of the research subsequently presented
in this thesis has been done with the motivation of improving the software using
feedback from and collaboration with composers applying it to their work. Other
research has demonstrated that the software in its current form accomplishes our
goals of providing a useful, usable tool—one that has, in fact, been transformative
for several of the composers who have used it.

Another significant component of our work with this system has also been to
address a set of research questions impacting interactive computer music composition
and performance, HCI, and machine learning. Through working with composers
and musicians using our new interactive machine learning system, we have learned
about the types of user interface support and interactions with machine learning
that users have found most useful (and why). We have learned about the ways
that both the system’s support for human control over supervised learning and its
feedback to users about the state of the learning process are instrumental in enabling
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users to work effectively and efficiently, and in informing, educating, and inspiring
users as they work. This research underscores the importance of interaction and
interfaces in applied machine learning, and it demonstrates numerous examples of
users benefitting from the ability to apply interactive machine learning to their work
in the real world. Our research demonstrates new and effective interaction techniques
that may be employed in interactive supervised learning in other real-time domains,
and it shows that interaction can effectively “train” novice users to become more
effective machine learning practitioners. This work also highlights important areas
for future research that may better enable novice practitioners to apply machine
learning effectively.

In this work, we have also acquired new knowledge of the human-computer inter-
action requirements of working composers and instrument designers. This research
sheds new light on how the creativity support tool design guidelines and characteriza-
tions of creativity proposed in the HCI literature intersect with the values and goals
of composers and instrument designers. Furthermore, we have demonstrated how su-
pervised learning algorithms themselves can function as creativity support tools, for
example providing access to rapid prototyping and exploration, higher-level thinking,
and surprise and inspiration.
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Chapter 3

The Wekinator:

A General-Purpose Tool for
Interactive Supervised Learning in
Music and Real-Time Domains

3.1 Introduction

As discussed in the previous chapter, prior to this work, there did not exist an ap-
propriate, general-purpose tool for interactively applying supervised learning to real-
time musical problems, including audio and gesture analysis. Our requirements for
a new tool, which we have outlined in Section 2.3.3, include compatibility with tools
composers already use, interaction via a GUI, and the ability to interactively create
training data, evaluate trained models, and modify algorithms, algorithm parameters,
features, and the training dataset itself. In this chapter, we describe our new tool in
detail, both to explain the novel approaches to interaction that it presents, and to aid
the reader in understanding the user studies presented in the next four chapters, in
which users applied our software to problems in music composition and instrument
design.

When we set out to build our new tool for interactive supervised learning in music,
we derived inspiration from the general-purpose machine learning and data mining
toolkit called Weka (Hall et al. 2009). Weka has been successfully applied to problems
in many application domains, including in our own work in offline audio analysis (e.g.,
Sinyor et al. 2005; Fiebrink and Fujinaga 2006; Fiebrink 2006). While Weka does not
itself provide infrastructure for running trained models on real-time streams of input
features, it can be used as a Java library inside other applications. Therefore, in
order to speed development, incorporate standard and widely-tested implementations
of supervised learning algorithms, and ensure maximal compatibility with Weka and
other software using its APIs, we designed our new application to use the Weka
library. As a tribute to the Weka project, and as an indication of our mission to
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make our new software application even more powerful and useful in real-time music
applications, we named our application “The Wekinator.”

The Wekinator, first introduced in Fiebrink, Trueman, and Cook (2009), is a
general-purpose software application for applying standard supervised learning al-
gorithms to real-time problem domains. In addition to being capable of running
trained supervised learning models on real-time input features to produce real-time
outputs, the Wekinator provides user interfaces to allow real-time, interactive creation
and editing of training datasets. One such interface introduces a novel, “playalong”
mechanism for creation of training data, in which the Wekinator constructs training
examples in real-time by extracting features from a user acting as if he were “play-
ing along” or controlling a sequence of target model outputs. The Wekinator also
provides support for an interactive style of supervised learning, allowing the user to
perform all of the following actions within a single graphical user interface, and in any
reasonable order: modify the training data and selected features, change the learning
algorithms and their parameters, train and retrain models following these modifica-
tions, evaluate algorithms’ cross-validation and training set accuracy scores, and run
trained models in real-time on new inputs.

The Wekinator is capable of being applied to arbitrary real-time classification and
regression problems, as it can receive input feature vectors from any type of source and
send models’ outputs to any destination in real-time. Aspects of its implementation
are tailored, though, to facilitate its application to music. The Wekinator contains
several built-in feature extractors for gestural and audio inputs, and it provides a
simple way for using model outputs to control audio synthesis programs written in
ChucK, a music programming language (Wang and Cook 2003).

In this chapter, we describe in further detail the Wekinator’s support of interactive
supervised learning, its architecture and implementation, and its user interface and
support for user interaction. We also discuss how the approaches to interactive super-
vised learning supported by the Wekinator relate to other research and applications
in domains including HCI, music, robotics, and speech.

The description of the system found in this chapter is current as of the writing
of this thesis. Many features of the Wekinator described here were implemented
as a result of the user studies described in subsequent chapters, and we discuss
such improvements in detail in those chapters. The Wekinator continues to un-
dergo development, and readers are encouraged to visit the project homepage at
http://code.google.com/p/wekinator/w/list to download the current release,
join the mailing list, and view instructions for the Wekinator’s installation and use.

3.2 Interactive Supervised Learning

In Section 2.4.1 in the previous chapter, we introduced the definition of interactive
machine learning as proposed by Fails and Olsen (2003), and we discussed related work
in the field of human-computer interaction. In this section, we provide a high-level
discussion of the interactive supervised learning workflow supported by the Wekinator,
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Figure 3.1: Workflows in conventional machine learning and in the Wekinator. In 3.1a,
human expertise is engaged in selecting features, choosing the learning algorithm and
its parameters, and analyzing evaluation outcomes; the features or algorithm may be
modified based on the outcomes of evaluation. In 3.1b, human expertise is additionally
engaged in creating and editing training data and running the model on new inputs
in real-time; the features, algorithm, or training data may all be modified based on
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followed by an example illustrating how this workflow might be used to create a
gesture-controlled drum machine.

3.2.1 Interactive Workflow

We begin by contrasting the interactive workflow supported by the Wekinator, shown
in Figure 3.1b, with that supported by the Weka application and similar tools for
non-interactive supervised learning, shown in Figure 3.1a. The workflow of Weka
assumes that the learning problem is represented by a finite, fixed dataset, and that
the goal of applying supervised learning is to model this dataset faithfully (though
typically preserving concern for generalization accuracy, as discussed in Section 2.2.1).
The user may interact with the system by modifying the feature set (e.g., selecting
some features and ignoring others, normalizing features, projecting the dataset into
a lower-dimensional space, etc.), changing the learning algorithm or its parameters,
and evaluating an algorithm’s performance by computing accuracy metrics, examining
confusion matrices, or visualizing a classifier’s decision boundaries.

In many problems for which the Wekinator was designed, it makes sense to al-
low the user to edit the training dataset as part of the process of creating a super-
vised learning model. In audio and gesture analysis problems, for example, it can
be straightforward for a user to create training data by demonstrating gestures or
sounds while providing their desired labels. Additionally, it makes sense to allow
the user to evaluate trained models by running them on real-time inputs—including
those generated by the user, through the same mechanism used for interactive train-
ing data creation—and to address model shortcomings identified during evaluation
by modifying the training data, algorithm, algorithm parameters, and features. The
Wekinator supports all these actions within its user interface.

3.2.2 Example: A Gesture-Controlled Drum Machine

We will now illustrate how the Wekinator might be used for interactive supervised
learning in a real-time domain, using the example problem of creating a computer
vision-based gesture classifier that allows a performer to “play” a digital drum ma-
chine in a live performance. To begin with, the user chooses a vision feature extractor
to extract meaningful features from his gestures in front of a camera (possibly the
webcam built into his laptop). This could be one of the Wekinator’s built-in feature
extractors or part of another software package, as we discuss later. Also, the user
must initially write or obtain a drum machine application, in ChucK or some other
environment. The number and type of parameters of this drum machine determine
the number and type of models that will be created: a regression model will be cre-
ated for each real-valued parameter, and a classifier model will be created for each
discrete- or nominally-valued parameter. In the simplest case, the drum machine
might take one discrete-valued parameter indicating how many drum loops it should
play at once. For example, one loop might provide a steady bass beat, and another
loop might add a faster hi-hat beat on top.
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Figure 3.2: An example training set, consisting of two training examples matching a
gesture with a class label and, by extension, a synthesizer’s output.
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Figure 3.3: After training on the training data in Figure 3.2, the user may evaluate
the model by running it on new gestures demonstrated in real-time.

Next, the user must create a training dataset. He first chooses some control ges-
tures and the drum machine control parameter (and, by extension, the drum machine
sound) that will correspond to each one. For each gesture, the user demonstrates the
gesture to the Wekinator while using the GUI to indicate which drum machine param-
eter value should correspond to that gesture. Figure 3.2 illustrates a simple example
training set created by the user. After at least one training example has been created,
the classifier can be trained.
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Figure 3.4: After the evaluation in Figure 3.3, the user may add training examples
to correct mistakes.

The user can evaluate the trained classifier by performing gestures in front of the
webcam and listening to how they affect the drum machine’s sound (Figure 3.3). He
may find that, for all gestures that he would want to use in a performance, the model
performs perfectly; in that case, he can save the trained model to a file and run it
during his next performance. Or, he may discover that, for certain gestures, the model
produces incorrect classifications. At that point, the user may stop evaluating the
model and attempt to fix the problem by modifying the training set. In particular, he
may create additional training examples by demonstrating gestures similar to those
classified incorrectly, but supplying the correct label for those gestures in the training
data (Figure 3.4). The user can then retrain on this modified training set, evaluate
the new model, and iteratively modify the training data and retrain until he has
created a model he likes.

Once the trained model is performing well, the user might decide to make the
classification problem harder, adding another gesture class to the training dataset
and retraining (Figure 3.5). Or, he could choose to make the model more robust
to changes in lighting conditions or to other performers’ hands, by adding training
examples with lighting and performer varied. Alternatively, the user might decide
that he has a better idea for more interesting control gestures, and he can delete
the training dataset and recreate it from scratch using these new gestures. In each
case, he can use the dataset to represent to the computer his current definition of the
learning problem, and he can count on the algorithm to try to faithfully model the
problem from this data.

If the user has reason to believe that a different classification algorithm might
produce a better model from the data, he can change the learning algorithm or its
parameters at any time and retrain on the same dataset, producing a new model for
him to evaluate. He can also try to improve the training dataset’s representation
of the learning problem by changing the features, for example specifying that the
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Figure 3.5: The user might also add training examples to make the problem harder,
for example by adding a new gesture class.

algorithm should ignore features that are likely to be noisy or irrelevant, or adding
new features that capture essential qualities of the input gesture.

Throughout the learning process, it is up to the user to evaluate whether he
likes how the model is behaving, and to take any appropriate action to attempt to
improve or change it. While it is possible to compute standard evaluation metrics to
objectively assess how well an algorithm can model the current dataset, much of the
user’s assessment of a model may ultimately rest on how suitable it is for the task
for which it is being designed; in this case, it may be most important that the model
allow a live performer to play the drum machine in an easy, accurate, and musically
expressive way. By running the current drum machine model in real-time on new
gestures, the user can assess whether the model meets these criteria, and if not, form
ideas about how he would like to change its behavior.

Notably, it is also possible that the user may change his evaluation criteria defin-
ing what a “correct” model entails. Perhaps he discovers during running a trained
classifier does not do what he intended it to do, but instead does something he likes
better. He might choose to keep the classifier as-is, or he may even decide to add more
training data to reinforce the newly-discovered behavior. Or perhaps the user began
his experimentation with the Wekinator without any clear ideas of what gestures he
wanted to use in performance; in that case, his running of the model on real-time
gestures is a means of not just assessing the model, but of evaluating the gestures
themselves, to discover how they might “feel” in performance.

The user may take a variety of other actions during work with the Wekinator, in
addition to the actions discussed above. For example, he may load and save trained
models, visualize the training data, and compute objective evaluation metrics, and
these actions are discussed in the detailed discussion of the software in the following
sections.
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Figure 3.6: The basic Wekinator architecture. Components written in Java, Chuck,
and Processing communicate via OSC. Optionally, external feature extraction systems
and controllable processes may be used, and the Wekinator state may be remotely

controlled. Communication between the Wekinator and these external processes also
uses OSC.

3.3 System Overview

The Wekinator is a cross-platform tool written primarily in Java and ChucK. Figure
3.6 illustrates the roles of the different components that make up the Wekinator. The
Java component of the system implements the user interface, application state and
logic, and the learning infrastructure built on Weka. The ChucK component, which
runs separately in its own virtual machine, contains modules for the detection and
setup of HID devices, the control of sound synthesis algorithms written in ChucK,
and both built-in and user-defined feature extractors for audio and gestural inputs.
The Wekinator also comes with two basic computer vision feature extractors written
in the Processing language (Reas and Fry 2007).

3.3.1 Open Sound Control

The ChucK, Java, and Processing components that comprise the Wekinator com-
municate via a lightweight, UDP-based protocol called Open Sound Control (OSC)
(Wright and Freed 1997). OSC is also optionally used to communicate features from
external feature extractors to the Wekinator, to communicate trained models’ out-
puts to external applications for controlling sound synthesis or other dynamically
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processes, and to control the Wekinator state itself from an external process, for
example a user-created GUIL.

OSC messages include an address (hostname and port), a URL-style message
name, and a bundle of string and/or numeric data. Because OSC messages are
sent over UDP, each communicating software component may optionally be run on
different physical machines connected to the same network. Although the ChucK
and Java components of the Wekinator will typically be run on the same machine,
it is occasionally very useful to run feature extractors on a separate machine from
the rest of the Wekinator for computational or debugging purposes. This was the
practice in the bow gesture classification work discussed in Chapter 6, for example.
Additionally, this enables input features, output parameters, and control messages to
be communicated to and from other types of networked hardware devices, such as an
iPhone running an OSC multi-touch interface application like TouchOSC! or a Make
Controller?.

OSC was developed for use in music in 1997 to address several shortcomings of
the MIDI protocol for communication among musical hardware and software devices.
Since then, it has been integrated into many music software packages and program-
ming languages used by computer musicians and composers, as well as into many mul-
timedia and other non-musical software systems. For example, most commonly-used
music composition environments support OSC, including Max/MSP?, Pure Data?,
SuperCollider (McCartney 2002), and ChucK (Wang and Cook 2003). OSC is also
supported by commercial music products including Ableton Live® and Reaktor®, and
by graphics and video processing packages popular among multimedia artists, such
as Processing (Reas and Fry 2007), Jitter”, and Veejay®. Furthermore, OSC libraries
exist for most standard programming languages, so a developer seeking to write a
new feature extractor or Wekinator-controlled process can use the implementation
language of his or her choice.

3.3.2 Feature Extraction

The Wekinator can receive input features from any of its built-in feature extractors,
a ChucK feature extractor implementing a specified API, or an arbitrary external
feature extractor capable of sending messages via OSC. In all cases, feature vectors
are communicated to the Wekinator and represented within the Wekinator as a vector
of floating-point values.

'http://hexler.net/software/touchosc
’http://makezine.com/controller/
3http://cycling74.com/products/maxmspjitter/
‘http://puredata.info/
Shttp://www.ableton.com/
Chttp://www.native-instruments.com/
"http://cycling74.com/products/maxmspjitter/
8http://www.veejayhq.net/
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Built-in Feature Extractors

The Wekinator’s built-in feature extractors support the use of basic audio and gestural
inputs. The built-in audio feature extractors use the ChucK Unit Analyzer framework
for real-time signal processing, developed by Wang et al. (2007), and the available
features include FFT magnitude spectra, spectral centroid, spectral flux, spectral
rolloff, and RMS. These features are commonly used in audio analysis and music
information retrieval, and they capture information about a sound’s pitch, timbre,
and energy (see, e.g., Tzanetakis et al. 2001b).

The built-in gesture feature extractors include support for gestural input sensing
using a laptop’s accelerometers, trackpad or mouse, and webcam, following work on
the SMELT project by Fiebrink et al. (2007). For acceleration and tilt, the Wekinator
uses Apple laptops’ internal Sudden Motion Sensors; their primary purpose is to sense
sudden changes in acceleration and “instantly [park] the hard drive heads to help
reduce the risk of damage to the hard drive on impact” (Apple Inc. 2008), but their
three axes of acceleration can also be polled in real-time from the Wekinator. For
trackpad or mouse inputs, the Wekinator extracts two features indicating the x- and
y-coordinates of the on-screen cursor, allowing the user to use the screen as a 2D
position controller. For webcam inputs, the Wekinator is packaged with two basic
vision feature extractors written in Processing, one that extracts 100 features from
from a down-sampled edge detection process, and another that extracts 6 features
pertaining to the absolute and relative position and angle of two tracked colored
objects, in colors of the users choosing”. These vision extractors allow a user to
control the Wekinator using, for example, hand gestures such as those in Section
3.2.2, larger-scale body movements, or movements of ad-hoc, colored fiducials (e.g.,
a colored pen or coffee cup).

The Wekinator also provides built-in support for gestural feature extraction from
USB gaming devices that conform to the Human Interface Device (HID) protocol
(USB Implementers’ Forum 2001). While HID devices may take any physical form,
they represent their physical states using a common set of descriptors. The Wekinator
is able to extract features from a device that represents its state using one or more
“axes” (controls that may be continuously varied), “buttons” (on-or-off controls), or
“hat switches” (discrete controls with a finite number of selectable states, for example
a direction pad). Common HID devices include joysticks (such as the one shown in
Figure 3.7), gamepad controllers, and dance pads.

External ChucK and OSC-Enabled Feature Extractors

Users can write new feature extractors in ChucK by implementing the Wekinator’s
API for custom ChucK feature extractors. (Because ChucK’s simple inheritance
system does not formally allow the declaration and implementation of an interface,
implementing the Wekinator’s custom ChucK feature extractor API entails imple-
menting a class whose name and method signatures are identical to those specified

9The edge detection extractor is adapted from code written by Tom Lieber, and the color tracker
is adapted from code written by Nikolaus Gradwohl.
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Figure 3.7: This Logitech joystick is an example of a HID device that musicians have
used with the Wekinator.

in the Wekinator documentation.) A custom ChucK feature extractor computes the
features as a vector of floating-point numbers and provides methods for the Wek-
inator to access their values and names. Figure 3.8 shows a ChucK code example
implementing part of a custom ChucK feature extractor.

The Wekinator’s support for custom ChucK feature extractors allows users fa-
miliar with ChucK to write customized audio analysis or gestural input feature ex-
tractors at a high logical level, without having to write their own code handling the
communication of features to the Wekinator. Also, because of ChucK’s cross-platform
implementation, ChucK audio and HID code can be written without concern for the
underlying operating system’s approach to audio or HID device handling.

Users can also implement their own feature extractors in other environments or
use other existing feature extraction applications, so long as these features are com-
municated to the Wekinator via OSC. This entails simply packaging each feature
vector as a set of floating-point values along with a specified OSC message name
string, then sending this message to the UDP host and port where the Wekinator is
listening. External feature extractors may also communicate their feature names to
the Wekinator over OSC for display in the Wekinator GUI.

Any number of features (up to limits imposed by OSC message size restrictions)
from different sources can be used in the same supervised learning problem. Feature
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public class CustomFeatureExtractor {
//This extractor only computes 1 feature
1 => int numFeats;

//Extractor stores computed features in this array
//Wekinator regularly grabs values directly out of this
//array, according to its feature extraction rate

new float[nhumFeats] @=> float features[];

//Set the rate at which these features are computed
100::ms => dur defaultRate => dur rate;

//A simple analysis patch: Compute an FFT from audio input
adc => FFT fft => blackhole;

//Extraction loop: Extracts features at a rate of "rate"
//Starting & stopping of this loop controlled by Wekinator
fun void extract() {
if (! isExtracting) {
1 => isExtracting;
while (isExtracting) {
computeFeatures();
rate => now; //wait 100ms

}

//When called, computes feature vector once
fun void computeFeatures() {
//trigger computation of FFT
fft.upchuck(Q;
//My feature is magnitude of @th FFT bin
fft.fval(®) => features[?];
}
//... Other methods go here, including those called by
//Wekinator to start and stop extracting; method for
//communicating feature name(s) to Wekinator
/...

Figure 3.8: Example ChucK code implementing part of a user-defined ChucK fea-
ture extractor class. This feature extractor computes the magnitude of the lowest-
frequency bin of an FFT.
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extraction may occur at any rate, and this rate may be fixed or variable. The rate
at which built-in audio features are extracted can be set and changed in the Wek-
inator GUI, and built-in feature extractors for native laptop inputs are event-driven,
causing a feature vector to be sent when a new action is performed. Due to restric-
tions imposed by the types of learning algorithms employed by the Wekinator, all
feature vectors must be one-dimensional vectors of real numbers, and the length of
the incoming feature vectors must remain consistent within the training data and the
features to be classified by the trained models.

3.3.3 Learning Algorithms, Models, and Parameters
One Model Per Parameter

The Wekinator uses standard supervised learning algorithms to build one or more
models, each of which is a function capable of computing a real-valued output in
response to an incoming vector of real-valued features (see Section 2.2.1). As the
Wekinator receives a new feature vector, each of its trained models computes its
output value from this vector. In the typical Wekinator usage scenario, this set of
model outputs is used to control the parameters of a dynamic process of some sort.
For this reason, we will commonly refer to the outputs generated by the Wekinator
as “parameters.” These parameters might control a digital synthesis algorithm, for
example causing changes in pitch, volume, or timbre. Or, these parameters might
drive higher-level processes in an interactive computer music performance, for exam-
ple triggering changes in section, tempo, or style. Alternatively, the parameters could
control low- or high-level behaviors of interactive animations, robotic systems, video
games, or other arbitrary processes.

The Wekinator will create one model to drive each parameter of the process being
controlled. Currently, the Wekinator will create a neural network for each parameter
that is real-valued and unbounded in range, and it will create a classifier for each
parameter that is discrete or nominally-valued. The parameters need not be of the
same type, and different algorithms may be used for each parameter. For example,
Figure 3.9 shows how two neural networks, a support vector machine, and a k-nearest
neighbor classifier might be used to drive four synthesis parameters.

It is up to the process using the parameters to decide how to interpret and use the
Wekinator’s outputs. The raw values output by the Wekinator may be used as-is, or
the code receiving the parameters may threshold, scale, smooth, or otherwise post-
process them before applying them for control. For example, for the learning problem
in Figure 3.9, the synthesis code would likely limit the two neural network outputs to
ensure that they conformed to the legal range of values for the PitchChangeRate and
FilterQ parameters. Additionally, if the Wekinator’s output parameters are used to
trigger events as opposed to continuously controlling real-time behaviors of a process,
the controlled process might include logic for determining when events should happen.
For example, a process might trigger the playing of a note only when a discrete
classifier’s output class changes.
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Figure 3.9: An example of a learning problem to which the Wekinator might be ap-
plied. In this example, four models drive four synthesis parameters based on the
values of five input features. A different subset of features is selected for each pa-
rameter model, and the synthesis parameters have different types, different modeling
algorithms, and different effects on the sound.

Selecting Features and Training Data for Each Model

The Wekinator allows the user to specify which of the input features will influence
which of the output parameters, that is, which of the available features will be se-
lected in the training and running of each model. This mapping from input features
to output parameters can take any configuration, including one-to-one, one-to-many,
many-to-one, and many-to-many. Figure 3.9 shows an example Wekinator config-
uration in which the PitchChangeRate parameter is influenced by all features, the
FilterQ and PitchClasses parameters are influenced by subsets of features, and the
Octave parameter is controlled by only one feature.

The Wekinator also provides the user with the ability to select training examples
for each model. We further explain and discuss this functionality in Section 3.3.5.

Algorithms

In this section, we provide an overview of the learning algorithms used in the Wek-
inator. The reader is encouraged to consult textbooks by Bishop (2007) and Witten
and Frank (2005) for further information about these algorithms and their implemen-
tation in Weka, respectively. These standard algorithms are all commonly used in
problems within music analysis as well as other applied machine learning domains.
Most have additional parameters beyond those described here, but we have omitted
their discussion for simplicity. The set of learning algorithms used in the Wekinator,
along with the algorithm parameters that the Wekinator exposes to the user, are
summarized in Table 3.1.

The neural network algorithm used to build models for real-valued, continuous
parameters is Weka’s MultilayerPerceptron neural network, which is a feedforward
neural network that uses error backpropagation for training (Witten and Frank 2005).
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Table 3.1: The learning algorithms supported by the Wekinator, the underlying Weka
class used for each algorithm, and the parameters the Wekinator exposes to the user.

Name Weka Class Parameters

Multilayer per- | MultilayerPerceptron | Architecture, # training epochs,

ceptron  neural learning rate, momentum

networks

k-nearest neigh- | IBk k (# neighbors)

bor (kNN)

J48 decision tree | J48 none

AdaBoost.M1 AdaBoostM1 # training rounds, boost on deci-
sion trees or stumps

Support  vector | SMO Complexity constant, kernel (lin-

machine (SVM) ear, polynomial, RBF). For lin-
ear kernel: No extra parameters.
For polynomial kernel: exponent,
whether to use lower-order poly-
nomial terms. For RBF kernel:
gamma.

A multilayer perceptron network is comprised of a series of computational nodes,
each of which produces an output based on a nonlinear activation function on its
inputs (Bishop 2007, Chapter 5). These nodes are interconnected, forming a model
comprised of multiple layers of logistic regression models, where the features are used
as inputs to the first layer of nodes, and the model outputs are comprised of the
outputs of the last layer of nodes. Neural networks are capable of modeling complex,
non-linear relationships between input features and output values, and the trained
network provides a compact representation of the model function, allowing for efficient
computation on new inputs.

For a learning problem with f features, the Wekinator creates a neural network
whose default architecture includes an input layer with f nodes, a hidden layer with
f nodes, and a single output node. Pairs of nodes between the input layer and hidden
layer, and between the hidden layer and output node, are fully connected. The default
network for a learning problem with five features is shown in Figure 3.10. The user is
able to change this architecture, as well as certain parameters of the backpropagation
training algorithm, using the GUI described in Section 3.4.5 and shown in Figure
3.28.

A classification algorithm is used to build a model for each discrete-valued param-
eter, and the number of discrete classes is determined by the range of legal parameter
values. For each discrete parameter model, the Wekinator can output either the single
best class label or an estimated posterior distribution over all labels. (As none of the
classifiers implement probabilistic models, this posterior is produced using heuristic
methods.)
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Figure 3.10: The neural network created by default for a continuous-valued parameter
(“VibratoFreq”) controlled by two trackpad features and three motion sensor features.
The network contains five input nodes (green), five hidden nodes in one hidden layer
(red), and one output node (orange).

The four discrete classifier algorithms currently supported by the Wekinator are
k-nearest neighbor, J48 decision trees, AdaBoost.M1, and support vector machines.
These standard algorithms each possess different characteristics regarding their train-
ing and classification times, the number and types of parameters they expose to the
user, and the types of models they produce.

A k-nearest neighbor (or kNN) classifier produces classification labels using a
majority vote of the labels of the k nearest training examples (for some integer k > 1)
in the feature space (Bishop 2007, 125). k is a parameter of the algorithm, and its
value affects the degree of smoothing. kNN is the only “instance-based” learning
algorithm included in the Wekinator, meaning that its classification computations
are performed using the training data directly, rather than requiring a “training”
phase to build the model from the data (Russell and Norvig 2003).

J48 is Weka’s implementation of the C4.5 decision tree algorithm (Witten and
Frank 2005; Quinlan 1993). A decision tree model produces classification labels by
a top-down cascade of flowchart-like, “if-then-else” decisions computed on the fea-
ture values. The training of a decision tree algorithm produces the model’s “tree”
architecture and each node’s particular decision structure from the training data,
then optionally “prunes” away nodes of the tree to simplify the model and reduce
overfitting.

AdaBoost.M1 (Schapire 2003) is a multi-class version of the two-class AdaBoost
“adaptive boosting” algorithm proposed by Freund and Schapire (1997). AdaBoost
is a meta-classifier that uses another classifier as a “weak learner” or “base learner.”
During training, the base learner algorithm is iteratively trained on variations of the
original training dataset to produce a collection of trained models; the AdaBoost
algorithm dictates how the training dataset is varied from one iteration to the next,
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based on the previously trained models’ performance. After training, AdaBoost clas-
sifies a new instance using a weighted majority vote of the trained base learner models
(these weights are also determined by the AdaBoost algorithm during training). The
number of training iterations (and, consequently, the number of trained base learn-
ers) is a parameter that may be changed by the user to affect the meta-classifier’s
classification performance, as well as the time it takes to train. AdaBoost is capable
of building a meta-classifier whose generalization accuracy is much better than that
of the base learner, and it can use virtually any base learning algorithm, under the
condition that the base learner is capable of achieving a minimum accuracy of 50% in
each training iteration. In the Wekinator, AdaBoost.M1 boosts on J48 decision trees
or decision stumps (one-level decision trees).

A support vector machine, or SVM, is a type of classifier that classifies an instance
by computing its distance to a maximum-margin hyperplane in a high-dimensional
space (Burges 1998). This space may be of a higher dimension than the feature
space, or even of infinite dimension, and the transformation into this space may
be nonlinear. SVMs do not represent the decision hyperplane directly, nor explicitly
project instances into the high-dimensional space. Instead, distance to the hyperplane
is computed implicitly using a “kernel function,” computed on the feature values of
the instance to be classified and the feature values of a subset of the training instances,
called “support vectors.” Training an SVM involves defining the maximum-margin
hyperplane as a function of support vectors, a convex optimization problem that can
be solved using quadratic programming. Many different kernel functions may be used,
and the choice of the best kernel is dependent on the learning problem. The Wekinator
allows the use of several standard kernel functions: linear, polynomial, and radial basis
function (RBF). Weka (and by extension, the Wekinator) uses the sequential minimal
optimization (SMO) algorithm for training (Platt 1999) and pairwise classification for
extending binary SVMs to multi-class problems (Witten and Frank 2005).

3.3.4 Driving Synthesis Modules and Other Dynamic
Processes

The Wekinator can send its models’ outputs either to an audio synthesis program
written in ChucK or to another process that is capable of receiving OSC messages.
If the Wekinator is controlling a ChucK program that implements the Wekinator
API for ChucK synthesizers, the user needs only to implement the audio synthesis
code, along with methods that will be called by the Wekinator to retrieve information
about parameter names and types and to update parameter values. (As discussed
in Section 3.3.2 in regard to custom ChucK feature extractors, implementing the
custom ChucK synthesizer API involves implementing a class with a specified name
and method signatures; Figure 3.11 provides code from an example ChucK synthesis
class.) Otherwise, if the process to be controlled is an external OSC process, the user
will provide information about its parameter types and ranges via the Wekinator’s
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public class SynthClass {

//The simplest sound patch: a single sinusoid
Sin0Osc s => dac;

//This method is called by the Wekinator when its
//models produce a new parameter vector.
fun void setParams(float params[]) {
if (params.size() >= 1) {
//optionally limit range of parameter
if (myParams[0] < 0)
0 => myParams[(];
i1f (myParams[0] > 23)
23 => myParams[0];

//Update the sounding frequency of the sinusoid
calcFregFromParam(myParams[0]) => s.freq;

}

//Compute a frequency value from a parameter value

fun float calcFregFromParam(float p) {
//"mtof" converts MIDI note number to frequency (Hz)
return Std.mtof(72 + p);

3

// ... Other methods for describing number, types, and names
// of parameters, turning sound on/off, etc. go here

/7. ..

Figure 3.11: Example ChucK code implementing a synthesis class. This synthesis
class is a single sine oscillator, and it has one parameter controlling the oscillator
frequency.

55



[ Wekinator GUI ] [ 0OSC-Controlled }
Process

parameters

Figure 3.12: OSC communication allows the Wekinator GUI and an OSC-controlled
process to maintain a synchronized state. User interactions with the Wekinator GUI
trigger a sending of updated parameter values to the OSC process, and changes made
to the OSC process directly (e.g., through its own GUI) trigger the sending of a
parameter message update to the Wekinator, which updates its state and GUI in
response.

The Wekinator can send its models’ outputs to any process that is capable of
receiving them as an OSC message. This message contains the new parameters as
a set of floating-point values, along with the Wekinator-specified message identifier
string. Optionally, this process can participate in additional communication with the
Wekinator to enable tighter integration with the Wekinator GUI. For example, the
Wekinator will send simple control messages via OSC to request the process to turn on
or off; in response to user interactions in the GUI. If the OSC process listens to these
messages, the user is able to exercise more control over it from the Wekinator. If the
OSC process has its own GUI for changing its parameter values, it may communicate
its parameter updates back to the Wekinator, so that the current parameter values are
always reflected in the Wekinator GUI. This functionality, illustrated in Figure 3.12,
can allow the user a more natural means of setting parameter values in the training
data creation process: he can experiment with parameter settings from within the
process’s own user interface, and once he finds a set of parameters he would like
to include in a training example, their values will have already been automatically
propagated to the Wekinator. He can construct a new training example simply by
demonstrating the input feature vector that should correspond to this parameter
vector.

3.3.5 The Processing Pipeline: Input Features to Output
Parameters

When the Wekinator receives a feature vector, it triggers a cascade of operations that
culminates in a model computation (if the user is currently running the Wekinator
models on new inputs) or the creation of a new training example (if the user is
currently recording training data). This processing pipeline is illustrated in Figure
3.13.

Each time a feature vector is received, it is first processed to compute any user-
selected “meta-features.” In the current version of the software, the user may instruct
the system to compute simple statistics on each individual feature, including the first-
and second-order difference and first-order smoothing (implemented as moving 2-point
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append to training dataset

fl f2 3 fl_smooth f2_1stDiff |p1 p2|

Output1 Output2

(a) Receiving a feature when running (b) Receiving a feature when recording

Figure 3.13: The Wekinator processing pipeline. Receiving a feature vector triggers
computation leading to model outputs (3.13a) or a new training example (3.13b). In
this example, the learning problem has three features, two meta-features, and two
parameters.

rectangular averaging) computed over time, and a “history” buffer of the most recent
n values of a feature, for some integer n.

If the user is running the trained models to produce output values from the input
features (Figure 3.13a), the feature vector (with any meta-features added) undergoes
feature selection for each of the models. By default, every feature is used by every
parameter model, but the user may choose to select different subsets of the available
features to influence each parameter. Upon receiving its vector of selected features,
each model computes its output value.

Alternatively, if the user is currently running the Wekinator to record new training
data (Figure 3.13b), the feature vector plus any meta-features is saved to the Wekina-
tor’s training dataset, along with the corresponding output parameter values—one
per model—that the user has indicated should correspond to that feature vector.
Typically, each output parameter will be an integer identifying the discrete class (for
classification) or real-valued output (for regression); the output parameter can also
be flagged as “not applicable,” if the user has indicated that the training example
should not be used to train that particular model. This behavior can be used when
the user would like to focus on how training data will affect only a subset of pa-
rameters. For example, for the learning problem in Figure 3.9, the user might like a
specific joystick gesture to result in a specific behavior of the FilterQQ parameter, and
she would like to record training data to reflect this wish without also thinking about
how that joystick gesture will affect the PitchChangeRate parameter. In this case,
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Figure 3.14: A version of the training set is created for each model, using the features
and training examples selected for that model. This example shows a training set
being created for parameter p;, using features fi, fo, and f3 (selected for p; in the
GUI), and all training examples where p; is not marked “not applicable” (NA).

she can specify in the GUI that the PitchChangeRate parameter is “not applicable”
to the training examples she records while focusing on the FilterQQ behavior.

After recording one or more training examples, the user is able to initiate training
of the models. At that point, each model is trained on a separate copy of the training
dataset, which contains only the features selected for that model, and only the training
instances applicable (i.e., not flagged as “not applicable”) to that model. Figure 3.14
illustrates how the training set for a model is created from the Wekinator’s recorded
training examples, using a subset of features and examples.

Because each feature vector sent to the Wekinator triggers a computation of the
models, a feature extractor might be designed to only output a feature vector to the
Wekinator at times when computation is required to supply the controlled process
with new parameter values. For example, a system that uses a Wekinator classifier
to label the pitch of each note played on an instrument might use a feature extractor
with an embedded onset detector that outputs one feature vector every time a note
onset is detected. Alternatively, a feature vector might extract features at a constant
rate, and the process using the Wekinator’s outputs might examine those outputs in
order to detect when the pitch of a note has changed. Or, an onset detector might
be run on the audio in parallel, and the musical process could take both the onset
detector output and the Wekinator output into account in determining its behavior.
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{ €Chuck-&05CSetup~| Features Setup | Learning Setup

1 Simple | Advanced |

Simple option: Run chuck backend from here

(" Edit ChucK configuration... )

Current configuration:
Configuration is usable and ready to run
Synth: Using chuck synth icmc_bowed_physmod.ck.
Custom features: No custom feature extractors.
Score player: not enabled

Status: Chuck not running.

—
( Run ) Stop
SNe——

Figure 3.15: The main Wekinator GUI after the application is launched, showing the
“Chuck & OSC Setup” tabbed view.

3.4 User Interface and Interaction

In this section, we provide a comprehensive description of the user interface and user
interactions in the Wekinator, roughly in the order in which they would be employed
by a user.

3.4.1 Application GUI

The main Wekinator user interface is a single window with four tabbed views: “Chuck
& OSC Setup,” “Features Setup,” “Learning Setup,” and “Use it!”. Figure 3.15 shows
these tabs on the Wekinator GUI after the application is first launched. After loading
the application, the user is led through the first three of these tabs in sequence, in
order to set up the Wekinator for a particular learning problem. In particular, the user
must specify which input features will be used, the number and types of parameters
to be used and the location to which they will be sent, and the types of learning
algorithms to use to build the models. After setup is complete, the user can interact
in a free-form manner on the “Use it!” tab to create and edit training data, and to
train, run, and evaluate models. The user can also re-visit any of the setup panes to
re-configure the Wekinator setup.

3.4.2 ChucK and OSC Setup

When the Wekinator application is launched, only the Java component of the appli-
cation runs; the ChucK component is configured and launched separately by the Java
component, after it is configured to the learning problem. In the first tabbed pane,
shown in Figure 3.15, the user configures the ChucK component of the system using
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[ Features (input) | Synthesis (output) System  Playalong ]

¥ Enable a custom ChucK feature extractor ( Choose file ) | @ |

CustomFeatureExtractor file:
/Users /rebecca/PLOrk /pieces /CMMV/mantastuff/manta_extractor.ck

53 features extracted

M Enable an OSC feature extractor (e.g., Max/MSP) (launch manually)

10 features extracted Ensure your extractor is sending these to port 6448

' Load configuration... Y ( save configuration... ) ( Export as .ck file... )

( Cancel ) ( OK )

Figure 3.16: The ChucK configuration GUI, shown in a pop-up window when the
user clicks on the button “Edit ChucK configuration...” in Figure 3.15. This first tab
of the GUI allows the user to configure a custom ChucK feature extractor and/or a
custom OSC feature extractor.

the “Edit ChucK configuration” button, then initiates running of the ChucK compo-
nent and OSC communication between ChucK and Java using the “Run” button.

When the user clicks on “Edit ChucK configuration,” a pop-up window appears.
In the first tab of this window, shown in Figure 3.16, the user specifies whether a
user-defined, external ChucK feature extractor will be run (and if so, its file location
and the number of features it extracts), and whether a custom, external OSC feature
extractor will be run (and if so, the number of features it extracts). In the second tab
of this interface, shown in Figure 3.17a, the user specifies whether the Wekinator will
send its models’ outputs to a ChucK synthesis class (and if so, its file location) or to
another process listening via OSC. If the Wekinator is to send its outputs to an OSC
process, the user specifies in another pop-up window (shown in Figure 3.17b) the
number and names of its parameters, whether each one is continuous or discrete, and
for each discrete parameter the total number of classes and whether the Wekinator
is to output the best class label or the posterior distribution over all labels.

Both a custom ChucK feature extractor and a custom OSC feature extractor
may be run simultaneously; however, the Wekinator will send its outputs to either
a ChucK program or an external OSC process, but not to multiple locations. (If
the Wekinator is used to control more than one process running independently, for
example a ChucK synthesis patch and a Processing animation, the user can implement
a process for routing the Wekinator’s outputs to all the appropriate locations, and
specify that the Wekinator should send its outputs to this routing process.)

Once the user has provided this information, she can start the ChucK component
of the system by clicking the “Run” button in the “Chuck & OSC” configuration tab.
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[ Features (input) - Synthesis (output) = System  Playalong ]

O Use a ChucK synth class [ Choose file... ) @

Location of SynthClass file

/Users /rebecca/work /projects /wekinator/project/chuck/synths /icmc_beats_mod.ck

8 Use a different Max/OSC synth module (launch manually, listen on port 12000)

OSC synth using 4 discrete and continuous parameters

(" Load configuration... ) ( Save configuration... ) ( Exportas .ck file... )

(Cancel ) ( OK )

(a) Interface for choosing a ChucK or OSC process

(L NONG)
# Name Discrete? Distribution? (Discrete only) Max value (Discrete only)
1  PitchChangeRate =) = 0
2 FilterQ (= - 0
3 PitchClasses v 11
4 Octave =) 2
[ moveup )
[ move down )
( Delete selected ) ( Add parameter ) ( cancel ) ( OK )

(b) Interface for configuring the number, names, and types of parameters for an OSC process. This
configuration corresponds to the example problem in Figure 3.9.

Figure 3.17: The second tab of the ChucK configuration GUI, shown in 3.17a, allows
the user to choose a ChucK synthesis class or specify that the Wekinator will control
an OSC process, which is configured using the interface in 3.17b.

This starts the ChucK virtual machine and runs the necessary ChucK code according
to the user-specified configuration. If ChucK is able to successfully run, the GUI
brings the user to the next pane, “Features Setup,” shown in Figure 3.19. Otherwise,
if ChucK encounters an error (for example, if a user-defined ChucK synthesis or
feature extractor class cannot be parsed), the user can view information about the
error in the Wekinator’s Console (Figure 3.18). Also, if ChucK encounters an error
later in its running (e.g., an array index out-of-bounds error in the user’s code), the
user can view information about the error in the Console, and he can use this tab to
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[keyboard_rowcol.ck]:line(69): deprecated: 'HidIn' --> use: 'Hid'...

[chuck](VM): sporking incoming shred: 1 (keyboard_rowcol.ck)...

[badchuck.ck]:line(12): undefined variable/member 'error' in class/namespace 'SynthClass'...
[no_score.ck]:line(10): undefined type 'SynthClass'...

[no_score.ck]:line(10): ... in argument 1 's' of function 'setup(.)' ...

[main_chuck.ck]:line(20): undefined type 'SynthClass'...

[main_chuck.ck]:line(20): ... in declaration ...

Oct 14, 2010 10:39:51 AM wekinator.ChuckRunner run

SEVERE: Errors encountered running chuck: [chuck(remote)]:operation failed (sorry)...(reason: line(12): undefined variable/member 'error' in class/namespace 'SynthClass'...)
[chuck(remote)]:operation failed (sorry)...(reason: line(10): ... in argument 1's' of function 'setup(.)' ...)
[chuck(remote)]:operation failed (sorry)...(reason: line(20): ... in declaration ...)

[chuck](VM): removing all (0) shreds...
[chuck](VM): KILL received....

[«T»

———
Clear

( Log something )

Figure 3.18: The Wekinator error console.

stop and restart the ChucK component of the system independently from the rest of
the Wekinator.

When ChucK is run successfully, the current ChucK configuration is saved and
will be automatically reloaded the next time the user launches the Wekinator. The
ChucK configuration may also be saved to a file and reloaded manually in the future.

3.4.3 Features Setup

The “Features Setup” tab, shown in Figure 3.19, provides an interface for the user
to specify which built-in or custom feature extractors will be used. The built-in
feature extractors for gestural, audio, and vision inputs have been described in detail
in Section 3.3.2 on page 46.

In this interface, the user selects which of the built-in and custom input feature
extractors to use via a set of checkboxes; features from multiple sources may be used
simultaneously. Several of these features have parameters that may be specified: the
user may adjust the rate at which the accelerometer is polled (100 ms by default), as
well as the FF'T size, window size, window type, and hop size used for audio feature
extraction.

To set up a HID device to work with the Wekinator, the user enters a HID con-
figuration interface from within the “Features Setup” tab. Here, he interactively
demonstrates the capabilities of the device to the Wekinator by engaging all of the
device’s axes, hats, and buttons at least once. After demonstration, a message in the
GUI indicates to the user the number of axes, hats, and buttons that were detected.
The user may optionally save the created configuration and reload it the next time
he runs the Wekinator, if he does not want to re-demonstrate the device capabilities.

The user is able to add “meta-features,” described in Section 3.3.5, to any of the
extracted features via a pop-up window, shown in Figure 3.20. She can select which
of the “first-order difference,” “second-order difference,” “first-order smoothing,” or
“history” meta-features will be computed for each of the basic features selected in the
“Features Setup” tab, and she can specify the length of the “history” meta-feature.

The feature configuration, including which features will be extracted, which meta-
features will be extracted, and the HID configuration state, if any, can be saved to a
file and reloaded in the future.
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[ Trackpad / mouse
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Go! No feature configuration set.

Figure 3.19: The main Wekinator GUI, showing the “Features Setup” tab.

Once the feature setup has been specified, clicking on the “Go!” button in the
“Features Setup” tab will take the user to the “Learning Setup” tab.

Also, once the feature setup has been completed, the Wekinator’s “Feature
Viewer” interface may be used to start and stop feature extraction and allow the
user to visually monitor the values of incoming features. The user does not need
to use this viewer, but it is available to help with debugging if the user suspects
that feature values are not being received or are not being extracted properly. The
Feature Viewer can be opened through a top-level Wekinator menu item.
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Figure 3.20: The interface for adding one or more “meta-features” to the base features
selected in the interface shown in Figure 3.19.

3.4.4 Learning Setup

In the “Learning Setup” tab, shown in Figure 3.21, the user provides information
about the learning algorithms that will be used to create the models, the features
selected for each model, and the initial training dataset to be used (if any).

The Wekinator automatically creates one independent model for each parameter,
as discussed in Section 3.3.3. For continuous parameters, the Wekinator creates a
multilayer perceptron neural network. For each discrete parameters, the user is able
to pick one of the Wekinator’s classification algorithms from a drop-down menu.

By default, all features and meta-features specified in the “Features Setup” tab
will be selected for all models; that is, all inputs will potentially affect all models’
outputs. The user may change this behavior by clicking on the “View & Choose
Features” button for a model, then use a set of checkboxes (shown in Figure 3.22) to
indicate which features will be selected for that model. Different models may have
different combinations of features selected.

By default, the Wekinator allows the user to record a training dataset for the
learning algorithms from scratch, on the “Use it!” tab. However, the “Learning
Setup” tab also allows the user to load a pre-existing training dataset from a file.
This dataset may have been saved in a Wekinator-specific file format, or it may use
Weka’s ARFF file format. ARFF files may be created in Weka, Excel, text editors,
the Wekinator, or other environments; they are essentially comma-separated value
files containing header information describing the features and class value(s) of the
dataset.

The training dataset, learning algorithms, and models (trained or untrained) to-
gether make up the Wekinator’s “learning system,” the primary software component
that the user interacts with and modifies in the “Use it!” tab and that the user runs
when employing trained models in performance. This learning system can be saved
to a file and reloaded using this pane.
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Figure 3.21: The main Wekinator GUI, showing the Learning Setup tab. The setup
shown here corresponds to the example learning problem in Figure 3.9.
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Figure 3.22: The pop-up interface for selecting features for a model. This interface
appears in response to clicking a parameter’s “View & choose features...” button in
the Learning Setup tab (Figure 3.21).

Once the learning setup has been loaded from a file or configured in the GUI,
clicking on the “Go!” button of the “Learning Setup” tab will take the user to the
“Use it!” tab.

3.4.5 Using the Learning System

The “Use it!” tab, shown in Figure 3.23, has four subviews, each of which is used
for a particular type of interaction with the learning system. The user can select
the “Collect data,” “Train,” “Run,” and “Configure & Evaluate” subviews in the
menu on the lefthand side of the “Use it!” pane. The order in which the data
collection, training, running, and configuration and evaluation interactions may occur
is constrained only by the learning system state. For example, a model cannot be
trained if the training dataset is empty, and the learning system cannot be run if no
models are trained. The user will only be able to enter the subviews for the different
actions when those actions are legal according to the learning system state. However,
users are free to perform any legal action in any order, for example adding data,
training, adding more data, retraining, and then running.

Collecting Data

The “Collect Data” subview provides an interface through which the user can inter-
actively create and edit the Wekinator’s training dataset.

The “Set parameter values” section at the top of the “Collect Data” subview
allows the user to set a value for each of the Wekinator’s output parameters. For
each real-valued output parameter, the user can enter the value into a text field, and
for each discrete-valued parameter, the user can select the value from a drop-down
box pre-populated with legal values. The user has the option of sending these values
directly to the synthesizer or other process controlled by the Wekinator. This GUI
thus provides the user with a means of directly and deterministically controlling the
process without the mediation of the parameter models. This is useful, for example,
when the user wants to hear or otherwise observe the effect that different parameter
settings have on the controlled process.
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Figure 3.23: The main Wekinator GUI, showing the “Use it!” tab’s “Collect data”
subview. This interface is used to record new training data.

When the user clicks the “Begin recording examples into dataset” button, the
Wekinator causes all built-in feature extractors to begin extracting features, and the
Wekinator enters a RECORDING state, in which all incoming feature vectors are pro-
cessed and added to the training dataset as discussed in Section 3.3.5 and illustrated
in Figure 3.13b. Each time a feature vector is received and processed, it will be
added to the training set along with the parameter values currently specified in the
“Set parameter values” portion of the Wekinator GUI. Therefore, in order to create
training data, a user can set the parameter values in the GUI, click on the recording
button, then demonstrate the gestural, audio, or other inputs that she would like to
correspond to those parameters. Alternatively, if the Wekinator is being used to drive
an OSC process with its own user interface for setting parameter values, that process
can use OSC to communicate any changes in its parameters back to the Wekinator,
as mentioned in Section 3.3.4 on page 54. In that case, the “Set parameter values”
portion of the Wekinator GUI will be automatically updated to reflect the current
parameter values.
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By default, each new instance is saved to the training dataset with all the pa-
rameter values specified in the “Set parameter values” portion of the “Collect data”
subview. However, in the case that the user does not want the training instances
being recorded to affect one or more specific parameters (that is, she does not want
them to be used in the training of those parameters’ models, as discussed in Section
3.3.5), she can specify that the data being recorded is not applicable to a parame-
ter by unchecking the checkbox appearing next to the parameter value name. This
will cause each new instance to be stored in the Wekinator training set with a “not
applicable” value for that parameter.

The Wekinator will stop recording when the record button (whose text label is
changed to “Stop recording” when the Wekinator is in the RECORDING state) is clicked
again. This also causes the running built-in feature extractors to stop extracting
features.

Because each incoming feature vector results in a new training instance as long as
the Wekinator is in the RECORDING state, more than one feature vector is typically
recorded at a time for each gesture that the user demonstrates. Built-in, non-audio
feature extractors are extracted at a rate of 20Hz, and audio feature extractors use
a default rate of 10Hz, so a sizable training set can be built up quite quickly. This
behavior allows a user to easily create training instances whose parameter vector
values are the same but whose feature vectors are different. For example, to create a
gesture classifier whose output should be robust to small changes in the input gesture,
a user can subtly change his gesture over time while recording training instances for
the same set of parameter values. Also, this behavior allows the user to give certain
gestures more “weight” or importance in creating the models: by recording particular
gestures for longer amounts of time, and therefore creating more instances of that
gesture in the training dataset, the learning algorithm can be induced to implicitly
treat this gesture as more important when creating the model.

In addition to the “Begin recording examples into dataset” GUI button, the Wek-
inator offers two alternative mechanisms for starting and stopping the RECORDING
state. The first is by using a foot pedal, pictured in Figure 3.24. This pedal allows
the user to control the recording process while performing gestures that require both
hands, for example. The other mechanism is by OSC control messages that allow
any other process to start and stop the Wekinator’s RECORDING state. This allows
recording to be controlled from a different GUI or an alternative interface, for example
a musical collaborator sending control signals over a wireless network.

During recording, as new feature vectors are received and new instances are added
to the Wekinator’s training dataset, the “Manage recorded examples” portion of the
“Collect Data” subview shows the user how many examples have been recorded, in
total. By clicking on the “View examples” button, the user can view these examples
in a spreadsheet-like interface (Figure 3.25), in which each row is a unique training
example and each column is either a feature, a parameter, or a meta-data field. The
Wekinator stores meta-data describing each example’s ID (a unique identifier), the
time at which it was recorded, and the “recording round” in which it was recorded.
Each time the Wekinator enters the RECORDING state is considered a new recording
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FOOMIME™

Figure 3.24: The Footime USB controller, produced by Bili Inc., used for hands-free
control of Wekinator recording and running.

e o
ID Time Recording round RMS_0 Centroid_0 Flux_0 Hid_0 Hid_1 PitchChangeRate FilterQ PitchClasses Octave
014:26:13:591 1 0 0.078 0 -0.004 -0.004 2.0 2.9 0.0 0.0 ar
114:26:13:649 1 0 0.069 1 -0.004 -0.004 2.0 2.9 0.0 0.0
2 14:26:13:696 1 0 0.069 1 -0.004 -0.004 2.0 2.9 0.0 0.0
314:26:13:748 1 0 0.081 0.533 -0.004 -0.004 2.0 2.9 0.0 0.0
414:26:13:800 1 0 0.081 0.533 -0.004 -0.004 2.0 2.9 0.0 0.0 |
514:26:13:846 1 0 0.094 0.338 -0.004 -0.004 2.0 2.9 0.0 0.0
614:26:13:899 1 0 0.094 0.338 -0.004 -0.004 2.0 2.9 0.0 0.0
7 14:26:26:427 2 0 0.051 0.814 -1 -13.4 32.0 1.0 0.0
814:26:26:479 2 0 0.039 0.051 -1 -13.4 32.0 1.0 0.0
9 14:26:26:525 2 0 0.039 0.051 -1 -13.4 32.0 1.0 0.0
10 14:26:26:577 2 0 0.053 0.032 -1 -13.4 32.0 1.0 0.0
1114:26:26:630 2 0 0.053 0.032 -1 -13.4 32.0 1.0 0.0
12 14:26:26:676 2 0 0.049 0.013 -0.004 -13.4 32.0 1.0 0.0
13 14:26:26:728 2 0 0.049 0.013 -0.004 -13.4 32.0 1.0 0.0
14 14:26:26:775 2 0 0.038 0.024 -0.004 -13.4 32.0 1.0 0.0
15 14:26:26:827 2 0 0.038 0.024 -1 -13.4 32.0 1.0 0.0
16 14:26:26:879 2 0 0.035 0.078 -1 -13.4 32.0 1.0 0.0
17 14:26:36:440 3 0 0.06 0.828 1 -13.4 32.0 7 ?
18 14:26:36:493 3 0 0.057 0.077 1 -0.0043.4 32.0 7 ? JU
19 14:26:36:539 3 0 0.057 0.077 1 -0.0043.4 32.0 7 ?
20 14:26:36:591 3 0 0.066 0.365 1 -0.0043.4 32.0 7 ?
2114:26:36:643 3 0 0.066 0.365 1 -0.0043.4 32.0 7 ?
22 14:26:36:690 3 0 0.055 0.217 1 -13.4 320 7 ?
( Deleteselected ) ( Addrow ) ( Listen ) ( saveto ARFF... ) ( Done )

Figure 3.25: The Wekinator’s spreadsheet-style interface for viewing and editing train-
ing data.

round, so the “recording round” meta-data field can be useful when a user would like
to edit or delete all examples recorded in the same round.

In the spreadsheet interface, the user may edit the meta-data, features, or param-
eters of any training example. The user can also manually add new training examples
and delete examples. From this interface, and from a Wekinator menu item, the user
may also save the training dataset to an ARFF file for future use in the Wekinator,
Weka, or elsewhere. When certain training examples have been specified as “not
applicable” to the training of a particular parameter model (using the checkboxes in
the “Set parameter values” section of the “Collect Data” subview), those parameter
values for those instances appear in the spreadsheet as “?” values. For example,
training examples with ID values from 17 to 22 in Figure 3.25 were recorded as “not
applicable” to parameters “PitchClasses” and “Octave.” The user can manually enter
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Figure 3.26: The Wekinator’s graphical interface for viewing and editing training
data. Different colors of each discrete parameter track at the top indicate different
classes. The user can zoom, scroll, and edit class values using the mouse and the
colored class palette on the left.

“?” values and change “7”s to numeric values in the spreadsheet viewer to change
this behavior.

The Wekinator provides an alternative, graphical interface for visualizing and
editing the training dataset. This interface is shown in Figure 3.26. It presents
information about feature and parameter values using a track-based interface, similar
to that used in audio recording, where each feature or parameter appears in a separate
track. In these tracks, the value of each feature and each parameter is plotted over
time, in the order in which they were recorded into the dataset. The user can zoom in
and out to view larger or smaller segments in time, as well as scroll horizontally to view
earlier or later in time. Continuous-valued parameters and all features are plotted as
“waveform”-like lines, and discrete-valued parameters are displayed as units of color,
one unit per instance, where the color indicates the class of the instance. Users can
change the class of instances by selecting a range of consecutive instances with the
mouse and clicking on a new class value in the “palette” on the left. Instances specified
as “not applicable” to a particular model will be colored black in that model’s track.
The user can changed colored units to black and vice versa.

The user may quickly delete the entire training dataset using the “Clear examples”
button in the “Collect data” subview.
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Figure 3.27: The “Train” subview of the Wekinator’s “Use it!” tab. In this interface,
the user selects models for training, initiates training, and is informed of the training
progress.

This concludes the discussion of the first set of interfaces for creating and editing
training data; the second mode of creating training data, called “playalong example
recording,” is discussed later in Section 3.4.6.

Training

Once the training set contains data, the user may train a model for one or more pa-
rameters using the “Train” subview of the “Use it!” tab, shown in Figure 3.27. When
the user clicks the “Train now” button, a separate training dataset is constructed for
each model, including only the features selected for that model, and including only
the training examples applicable to that model (Figure 3.14). Then, each model is
built from the training data using the algorithm chosen for that parameter in the
“Learning Setup” tab.

It is also possible to initiate training by sending an OSC control message to the
Wekinator from some other program.

As each model trains, a progress bar informs the user of the progress of the training
operation. The user is able to cancel the training at any point. A status message
informs the user of the number of models trained and the number of models that
encountered errors (if the algorithm was unable to build a model from the data for
some reason).

By default, all models are trained from the entire set of applicable training data
every time the “Train now” button is clicked. If a user does not want certain models
to be trained, for example because the training data applicable to those models has
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Figure 3.28: The GUI for editing the neural network architecture, changing training
parameters, and controlling the training process. This GUI is implemented in Weka
and optionally displayed to the Wekinator user for each multilayer perceptron model.

not changed, he can indicate in a pop-up box (opened by the “Select models to train”
button) which of the models should be trained at that time.

If one or more of the parameters is continuous, the user will have the option
of viewing a GUI for controlling the multilayer perceptron training process. This
option is selected using the “View NN GUIs” checkbox in Figure 3.27. This neural
network control GUI, shown in Figure 3.28, is implemented in Weka itself. The GUI
allows the user to edit the architecture of the network, start and cancel training of
the network, and change several parameters controlling the training procedure (the
number of training epochs, learning rate, and momentum).

Running

Once the models have been trained, the user may run them in real-time on new
inputs using the “Run” subview of the “Use it!” tab, shown in Figure 3.29. When
the “Run” button is clicked, the Wekinator enters into a RUNNING state and all
built-in feature extractors begin extracting features. As shown in Figure 3.13a on
page 57, each time a new feature vector is received, it is processed and sent to each
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Figure 3.29: The “Run” subview of the Wekinator’s “Use it!” tab. In this interface,
the user starts and stops running of the trained models on new, real-time inputs.
Models’ output values (or posteriors) are displayed textually, as well as being sent to
the ChucK or OSC process as control parameters.

of the trained models. Once each of the models has produced an output value (or
posterior distribution) from the feature vector, the vector of outputs is sent to the
ChucK synthesizer or the OSC process. The model values are also displayed textually
in the GUI. When the “Run” button (whose text label changes to “Stop” when the
Wekinator is RUNNING) is clicked again, the Wekinator exits the RUNNING state and
the built-in feature extractors stop extracting features.

It is also possible to control entering and exiting the RUNNING state using the foot
pedal in Figure 3.24 or by sending OSC control messages to the Wekinator.

As the Wekinator runs, the model output vector drives the synthesis algorithm or
other dynamic process in real-time, in response to features being extracted in real-
time. This allows the user to evaluate the set of trained models in a hands-on way, for
example providing new gesture or sound inputs in real-time and observing how the
synthesis algorithm or other process being driven by the Wekinator responds. The
model outputs are also displayed textually in real-time, in the “Generated parame-
ters” section of the “Run” subview.

Configuring and Evaluating

The final subview of the “Use it!” tab is the “Configure & Evaluate” view, shown in
Figure 3.30. This view allows users to change learning algorithms’ parameters and
evaluate one or all models’ training and cross-validation accuracies (see Section 2.2.1
for a discussion of these metrics).
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Figure 3.30: The “Configure & Evaluate” subview of the Wekinator’s “Use it!” tab.
In this interface, the user is able to configure individual models and evaluate models
individually or as a set, using cross-validation and training accuracy. This figure
shows the view for evaluating all models as a set.

A drop-down box in this view enables the user to evaluate the set of models, or
to drill-down on individual models. To evaluate all models, the user can choose to
compute their training accuracy or 2-, 5-, or 10-fold cross-validation accuracy. In
each case, computation is performed on each model’s version of the training set, with
only selected features and instances included. A progress bar indicates the progress
toward completion as each model is evaluated, and the GUI displays the computed
accuracy (in the case of discrete classifiers) or RMS error (in the case of multilayer
perceptron neural networks). The user is able to cancel evaluation if it takes too long.

By selecting to drill down on a particular model, a user can evaluate the cross-
validation accuracy or training accuracy (or RMS error) for just that model. A user
can also change the parameters of the learning algorithm used to build that model.
The parameters available for each model are summarized in Table 3.1. Figure 3.31
shows a drill-down interface for an SVM model.

The user is also able to save the trained model as a Wekinator file or as a serialized
Weka classifier, which can be reloaded into Weka or used in Java code built with the
Weka libraries. The user is also able to change the learning algorithm and features
used to build a model by revisiting the “Learning Setup” tab.

3.4.6 Playalong Example Recording

In Section 3.4.5 above, we discussed how training examples may be created by spec-
ifying a single set of parameter values in the Wekinator GUI then recording feature
values as the user demonstrates inputs (e.g., a gesture) intended to correspond to
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Figure 3.31: The single-model drill-down interface of the “Configure & FEvaluate”
subview, shown here for the “PitchClasses” parameter using an SVM algorithm. This
interface allows a user to modify and evaluate the algorithm for a single model.

those parameter values. The Wekinator offers another mode of creating training
examples, which we call “playalong” example recording.

The motivation for playalong example recording is to enable a more natural
method of training data creation, in particular allowing the user to consider how
changes in the input signals over time correspond to changes in the parameters over
time. In a musical instrument creation application with continuous sound synthesis
parameters, for example, an instrument builder might not only be concerned with
obtaining particular sounds in response to particular physical gesture states, but also

5



with matching evolving performer gestures with evolving sonic gestures in a musically
expressive way.

In playalong recording, the parameters of the Wekinator-controlled process are
driven according to a “score.” Like a musical score, the Wekinator score dictates
how the parameter values change over time. In playalong mode, the parameters are
set only according to the score being played; the user-provided input features have
no influence over the parameters. As the user provides input features that change
over time, in sync with the the score-driven parameters, “snapshots” of the current
feature and parameter vectors are added to the training dataset as new examples.
Using playalong functionality, our example instrument builder might set up a score
that plays through a sequence of sounds that he’d like his new instrument to be able
to replicate. He is able to create training data by by gesturing along with the score
as if he were controlling the sound in real-time, in a manner akin to how someone
might play “air guitar” or lip-sync along with a recorded song.

Playalong scores may be encoded in a pre-written ChucK program or generated on-
the-fly by the user, within the Wekinator GUL. A ChucK score file may be designated
in the Chuck configuration step (discussed in Section 3.4.2), using the “Playalong”
configuration tab of the ChucK configuration window. This score file must implement
a ChucK class named “ScorePlayer,” containing a method “playScore” that updates
the parameters over time. The playScore method may set these parameters in a deter-
ministic manner, for example to play a melody, or it may change their values and/or
timing using a stochastic process, for example executing a random walk through the
parameter space.

In either case, ChucK offers a particularly concise syntax for specifying these pa-
rameter changes over time: in ChucK, time and duration are primitive types, and the
ChucK “=>" operator allows sub-sample-level control over the timing of events. For
example, the ChucK playScore method in Figure 3.32 increments a parameter value
every 5 audio samples (approximately every 0.11 ms). Furthermore, because of the
timing guarantees imposed by the ChucK virtual machine, the parameter changes
driven by a ChucK score are guaranteed to remain sample-synchronous with all run-
ning ChucK synthesis and feature extraction code.

ChucK scores may optionally implement a series of text strings to be displayed
to the user within the Wekinator GUI, which are updated over time in sync with the
parameter changes. For example, the message may inform the user which parameter
values will be next, and when they will be set, so that he is better prepared to react
to them.

The user has the ability to construct deterministic scores on-the-fly from the
Wekinator GUI. The Wekinator has a “parameter clipboard” consisting of one or
more parameter vectors, each associated with a duration over which those parameter
values should hold. By clicking the “Add to parameter clipboard” button in the
“Collect data” subview of the “Use it!” tab (Figure 3.23 on page 67), the current
values displayed in the “Set parameter values” portion of the GUI are appended to
the clipboard with a default duration of 1 second. This allows the user to dynamically
populate the clipboard with parameter values of his choice. Additionally, the user can
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while (isPlaying) {
i++ => p[@]; //increment 1lst parameter
mySynth.setParams(p); //set parameters
::samp => now; //wait 5 samples

}

Figure 3.32: ChucK code that, when placed inside a playScore method of a Score-
Player class, increments the value of the first parameter every 5 samples.

000
PitchChangeRate FilterQ PitchClasses Octave Seconds
3.0 2.0 6.0 2.0 1.0
0.5 3.0 1.0 2.0 1.0
0.5 10.0 1.0 2.0 1.0

5.2 21.0 5.0 1.0 3.0
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Figure 3.33: The playalong clipboard. Each row corresponds to a set of parameters
and an associated duration. Playing the clipboard will set the parameters in sequence,
from top to bottom, maintaining each set of values for the specified duration of time.

capture the current parameters being played in the RUNNING state, using the “add
to clipboard” button in the “Run” subview (Figure 3.29 on page 73).

The parameter clipboard may be viewed using the “view clipboard” button on
the “Collect data” subview. An example parameter clipboard containing four rows
of parameters is shown in Figure 3.33. Using this viewer, the user can add and delete
parameter rows, re-order parameter rows, edit parameter values and durations, and
send the parameter values of a row out to the ChucK or OSC process being controlled
(using the “Listen” button).

The “Playalong parameter collection” portion of the “Collect data” interface (Fig-
ure 3.23) allows a user to start and stop a playalong score, and to choose whether to
play a ChucK score or the score in the parameter clipboard. When the clipboard is
used as a playalong score, each row of parameters is played for its specified duration,
starting from the top row and proceeding in sequence down the list. Additionally,
the currently playing parameter row is highlighted as it is played, to provide a visual
cue to the score behavior. A playing score will repeat, causing continual changes in
the controlled process’s parameters, until the user stops it.

While a playalong score is playing, the user is able to start and stop recording
training examples using the “Begin recording examples into dataset” button, the foot
pedal controller, or OSC control messages, exactly as described above in Section 3.4.5.

We introduced playalong example recording in Fiebrink, Cook, and Trueman
(2009). In that work, we discussed an extension of this playalong interaction, called
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“playalong learning,” in which the learning algorithms are continuously retrained on
a background thread as a performer records new training data using the playalong
interface. This functionality is not present in the current version of the Wekinator,
whose GUI has been greatly redesigned since that publication. However, we plan to
re-implement this functionality in the new GUI in the future, and until that occurs
the older, playalong-learning-enabled Wekinator will remain available for download
at http://wekinator.cs.princeton.edu/.

3.5 Other Features of the Software

3.5.1 Running Saved Models and Command-line Support

In order to run a trained model in a performance, it is possible to load a saved learning
system from a file. The user may also opt to load the associated ChucK configuration
and feature configuration from a file, bypassing all interactive configuration and setup
steps. Furthermore, it is possible to run the Wekinator with command-line options to
automatically load a ChucK configuration, feature configuration, and/or learning sys-
tem, as well as to automatically run the learning system and minimize the Wekinator
GUTI as soon as the Wekinator launches. This allows a trained learning system to be
applied in real-time to a problem without a user interacting with the Wekinator GUI
at all. For example, a composer can save a learning system, ChucK configuration,
and feature configuration for her piece, then distribute a simple command-line script
to performers so that they may play the piece without ever using the Wekinator GUI.

3.5.2 0OSC Control

Throughout this chapter, we have indicated that control over several aspects of the
Wekinator state can be achieved using OSC control messages, in addition to the
GUI. In summary, the set of Wekinator behaviors that may be controlled using OSC
include: starting and stopping RECORDING, starting and stopping RUNNING, starting
and stopping a playalong score, and initiating training of the models. These control
messages may be used to implement an alternative user interface to the Wekinator,
for example an interface embedded within a GUI designed for the performance of a
specific composition. This feature also allows the Wekinator to be controlled remotely;
for example, a “conductor” machine may multicast OSC messages to many other
machines, triggering synchronous Wekinator behaviors across multiple performers.

OSC control over the Wekinator can be used simultaneously with user control via
the GUI, and the user is able to enable or disable OSC control of the Wekinator at
any time using a top-level menu item.

3.5.3 Compatibility with Weka

The Wekinator has been designed to maximize compatibility with Weka. The Wek-
inator can read and write training datasets saved in the Weka ARFF format. This
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means that a dataset created interactively in the Wekinator could be loaded in the
Weka GUI for experimentation with a wider variety of learning algorithms, feature
selection methods, and visualization tools than are implemented in the Wekinator.
Likewise, a training dataset created non-interactively (e.g., by running an audio fea-
ture extractor on a database of MP3s) can be loaded into the Wekinator, and a model
trained on that data in the Wekinator can be run in real-time (provided there exists
a way to extract identical features from real-time audio).

The Wekinator can also read and write trained models using Weka’s method of
Java serialization of Classifier objects. Therefore, a model trained in Weka can be
imported into the Wekinator for running in real-time, even if was not created using
one of the learning algorithms described in Section 3.3.3. Also, a model created in
the Wekinator can be exported for use within any other Java project that uses the
Weka library.

3.5.4 Example Feature Extractors and Controllable
Processes

The Wekinator is distributed with several examples of custom ChucK and OSC fea-
ture extractors, ChucK synthesis classes, and OSC-controllable processes. Example
custom ChucK feature extractors include: two keyboard feature extractors (one ex-
tracting the key row and column, and one buffering the last 10 key presses), a feature
extractor for use with the Manta controller (Snyder 2010), two stereo audio feature
extractors, and a vowel formant energy extractor. The Wekinator also comes with
a simple spectral centroid feature extractor and a generic custom ChucK feature ex-
tractor code skeleton, to aid users beginning to write their own custom ChucK feature
extractors.

Example OSC feature extractors include a simple three-slider GUI controller and
two audio feature extractors, all implemented in Max/MSP. The audio feature ex-
tractors uses the analyzer™ object written by Jehan and Schoner (2001), and they
computes features not included in the Wekinator’s built-in audio feature set, such as
estimated pitch, loudness, noisiness, and bark scale coefficients.

Example ChucK synthesis classes include: FM synthesis, audio live-sampling and
panning, a bowed-string physical model (Smith 1986; Cook and Scavone 1999), a
simple drum machine (the one described in Section 3.2.2), melodic synthesizers with
continuous and discrete pitch control, and a simple “twinkle twinkle” melody player
whose parameter dictates which phrase of the melody will be played next.

Example OSC processes include three versions of a simple animation written in
Processing, with continuous and discrete parameters controlling hue and position,
and a Max/MSP program for controlling the synthesis of another physical model, the
blotar (Stiefel et al. 2004).
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3.6 Related Work

We presented a broad overview of related work in supervised learning, HCI, and
music in the previous chapter. In that chapter, we also drew on that related work to
motivate the need for the Wekinator as a new tool for interactive supervised learning
in real-time problem domains. Here, we specifically discuss how the design features
and interactions supported by the Wekinator relate to particular existing tools in
interactive supervised learning and music, and to threads of research in other domains,
including robotics and speech.

3.6.1 Interactive Supervised Learning

In allowing iterative editing of the training data and retraining, the interactive su-
pervised learning workflow supported by the Wekinator is similar to that proposed
by Fails and Olsen (2003) and used in related work by Fogarty et al. (2008), Shilman
et al. (2006), and others discussed in Section 2.4.1. Like those systems, the Wekinator
uses training set editing as a way to leverage users’ domain expertise in supervised
learning problems for which users understand the supervised learning goal and are
capable of changing the training data to steer the model toward that goal.

While those systems mentioned above presume that there exists a fixed set of un-
labeled data available for training and testing, the Wekinator allows users to create
new training examples on-the-fly. Additionally, the Wekinator allows users to evalu-
ate trained models by presenting them with new, interactively-generated inputs. In
this regard, the Wekinator allows interactions similar to two other tools that aim to
build models from a user’s real-time gestures: the Exemplar system for sensor-based
interaction design (Hartmann et al. 2007) and the FlexiGesture system for person-
alizing the audio mapping of a pre-built new musical control interface (Merrill and
Paradiso 2005).

We share the goals of this prior work of moving beyond a conventional supervised
learning paradigm and engaging user interaction and expertise in appropriate and
effective ways. However, as a general-purpose tool for interactive machine learning in
real-time domains, the Wekinator offers many other user interactions that these single-
purpose tools do not. It is flexible regarding the number, type, and meaning of input
features and output parameters. It offers a choice among different general-purpose
learning algorithms for classification and regression, and it allows users a much greater
control over the machine learning problem: users can iteratively change the learning
algorithms, algorithm parameters, and features, in addition to the training data. The
Wekinator is not limited to a single learning problem or a single application domain;
it can receive features from any real-time source and send model outputs to control
any real-time process, using OSC messages. And, as discussed, the Wekinator offers
several mechanisms for users to record training data, visualize features, visualize and
edit training data, evaluate trained models, control the learning process, and import
or export models and datasets to and from Weka.
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3.6.2 Musical Audio and Gesture

As discussed in the previous chapter, one motivation for creating the Wekinator was
to produce a supervised learning tool for musical applications that—unlike existing
tools—was general-purpose, capable of working on real-time signals, and supported
appropriate user interactions. Table 3.2 uses these criteria to compare the Wek-
inator to several existing tools for applying machine learning in music: Weka (Hall
et al. 2009), jJMIR (McKay and Fujinaga 2009), Marsyas (Tzanetakis and Cook 2000),
MarsyasX (Teixeira et al. 2008), MnM (Bevilacqua et al. 2005), Matlab with MIR-
Toolbox (Lartillot and Toiviainen 2007) and MIDIToolbox (Eerola and Toiviainen
2004), the PD gesture library of Cont et al. (2004), and SMIRK (Fiebrink et al.
2008). This table does not include tools that have been created for a specific pur-
pose, for example creating mappings for a specific input device, like work by Merrill
and Paradiso (2005), or controlling specific synthesis algorithm, as in work by Brent
(2010).

The Wekinator was also very much inspired by the collection of past work that has
applied machine learning algorithms to particular musical applications, particularly
work by Lee et al. (1991) and Fels and Hinton (1995). We refer the reader to Section
2.2.3 in the previous chapter for a more thorough overview of related research in this
area.

3.6.3 Robotics and Programming by Demonstration

The Wekinator’s approach to supporting end-user systems-building by demonstrating
examples of the concept to be learned has parallels to prior work in programming by
demonstration (PbD), also called programming by example. In PbD systems, the
computer learns to perform a task by observing a human performing it. In Watch
What I Do (1993, 1), Allen Cypher writes, “The motivation behind Programming
by Demonstration is simple and compelling: if a user knows how to perform a task
on the computer, that should be sufficient to create a program to perform the task.”
PbD has been used in robotics since the 1980s, as a way for users to more efficiently
program robots used in automation processes (Billard et al. 2008). While PbD can
be useful for programming rote execution of simple tasks (or creating “macros on
steroids,” in the words of Lieberman (2001, 2), machine learning techniques are also
useful in allowing the program to generalize to scenarios that may differ from those
demonstrated by the user. Machine learning algorithms have been employed in PbD
applications in both robotics (e.g., Miinch et al. 1994) and software (e.g., Lau et al.
2001).

The Wekinator can be viewed as a tool for applying machine learning to end-user
PbD, in that users can program system behaviors (e.g., sounds played) to respond to
particular user actions (e.g., hand motions in front of a camera). Again, its general-
purpose nature (several algorithms, ability to use arbitrary input features and control
arbitrary processes) distinguishes it from other tools in this space, and its real-time
and interactive capabilities allow it to be applied to real-time user demonstrations for
which conventional machine learning tools like Weka and Matlab are inappropriate.
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Table 3.2: A comparison of the Wekinator with other tools used for supervised learning in
music. Columns include: name, whether it is can run on real-time input signals, whether
using the tool requires the writing of code, whether it explicitly supports interactive editing
of the training data (excluding the obvious ability for end-user developers to add their
own interfaces to do this, for tools that are libraries or frameworks), the built-in learning
algorithms, the application domain, and the environment in which the tool is run, if any.

Name Real- | Requires| Interactive| Built-in Domain Environ-
time coding data algo- ment
editing rithms
Weka No No No Many Any
GUI
Weka Yes Yes No Many Any Java appli-
Library cations
jMir No No No Many Audio,
MIDI, text
Marsyas Yes Yes No knn, SVM, | audio, C++
Gaussian MIDI or  other
code w/
bindings
MarsyasX | Yes Yes No knn, SVM, | audio, ges- | C++
Gaussian, ture, other | or  other
clustering code w/
bindings
MnM Yes No Yes Matrix Gesture Max/MSP
MIR No Yes No None (use | Audio, Matlab
Toolbox, within MIDI
MIDI Matlab)
Toolbox
Cont Yes No No Neural net- | Gesture Pd
et al. works mapping
(2004)
SmirK Yes Yes Yes kNN, Ad- | Audio, ChucK
aBoost, gesture
J48
Wekinator | Yes No Yes kNN, Ad- | Audio,
aBoost, gesture,
J48, SVM, | real-time
Neural applica-
networks tions using
OSC

82




However, as we will see in the next chapters, to view the Wekinator primarily
as a PbD tool is inappropriately limiting. First, the goal of using the Wekinator is
not to create a model that replaces a human in performing automated tasks, but
to create models that will be useful in some interactive context. Additionally, the
context for application of the trained models is different, in that humans (possibly the
same humans creating the models) may be both designing and participating in these
interactive contexts. Furthermore, the Wekinator can also be used in applications
where the user does not have clear a priori ideas of how the trained models should
behave; the aim of the learning problem might not at all resemble the human user
attempting to teach the computer about a concept with which he is familiar.

The playalong example recording process also invites parallels to PbD, in that
it generates training data as a human user demonstrates an action to the computer
in real-time. However, in conventional PbD, the human user is demonstrating to
the computer the actions that the computer should emulate under a given input
state, while in playalong recording, the human is demonstrating the human actions
that should ultimately result in a given computer-generated behavior. In playalong
recording, the formulation of the machine learning problem is actually reversed from
both PbD and the “active learning” (Lewis and Gale 1994) approach to engaging user
interaction with machine learning, in that here the computer is prompting the user
to provide a feature vector for a given model output, rather than prompting the user
to provide the desired output label for a given feature vector.

3.6.4 Speech Recognition

In this regard, playalong example recording is more akin to the training interfaces
employed by speech recognition systems, in which a user is asked to speak a sentence
or series of words presented to her by the computer. Speech recognition systems have
employed these types of user prompts to allow users to create and improve speaker-
dependent recognizers since at least the work of Jelinek et al. (1975). Such interfaces
are now common in commercial software such as Dragon NaturallySpeaking (Nuance
Communications, Inc. 2010), as well as speech recognition built into the Windows
operating system (Microsoft Corporation 2010).

When the goal of supervised learning is to model behaviors of the user himself,
as is the case in both these speech recognition systems and in many Wekinator ap-
plications, it is appropriate to rely on the user to provide additional information to
improve the model’s performance. Prompting the user for new training examples is a
straightforward way of obtaining such information. Ongoing research on other mech-
anisms and interfaces for effectively leveraging user interaction in speech recognition
systems, such as work by Vertanen (2009), is therefore relevant to the goals of the
Wekinator. Of course, the Wekinator may be applied to a broad array of applications,
whose characteristics regarding the difficulty of the learning problem, the extent of
the user’s flexibility in adapting her behavior in interacting with the system, and the
ease with which new training data may be provided may be very different from each
other and from other applications, including speech recognition. We will discuss these
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differences and their implications for interface and algorithm design in later chapters,
as well.

3.7 Conclusions

The Wekinator is a general-purpose tool for applying standard supervised learning
algorithms—both classifiers and neural networks—to real-time problem domains. It
leverages human interaction in creating and modifying the training set and evaluating
trained models in real-time, as well as in modifying learning algorithms and features
and computing standard evaluation metrics. It is tailored to musical applications: it
incorporates built-in feature extractors for audio and gesture signals, as well as a set
of example custom feature extractors and musical processes meant to help composers
and musicians get started with the application. At the same time, it can be applied
to arbitrary learning problems outside music, using feature extractors and controlled
processes that communicate with the Wekinator using the OSC protocol.

While many improvements could be made to the Wekinator, including support
for more algorithms, a wider variety of built-in feature extractors, and additional
interfaces to aid the user in visualizing, understanding, and modifying aspects of the
learning problem, the current version of the software meets our goals described in
the previous chapter for a general-purpose supervised learning appropriate for use in
music.

In the following chapters, we discuss how the Wekinator has been applied to
problems in music composition and performance, and how our experiences working
with users have led to the inclusion of some of the design features described above.
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Chapter 4

Participatory Design Process with
Composers

4.1 Introduction

In this chapter, we discuss our work in Autumn 2009, in which we collaborated with
seven composers as they learned how to use the Wekinator, employed it in the creation
of new musical instruments and compositions, and contributed to the improvement
and evolution of the software. The collaboration was structured as a participatory
design process, in which composers provided feedback on the Wekinator and proposed
new features or improvements over several development iterations.

Several key features of the Wekinator described in the previous chapter grew out of
this collaboration, and throughout this process, the Wekinator improved with regard
to the breadth of applications it supported, the scope of user interactions it enabled,
and the robustness of its user interfaces and underlying implementation to use by
a variety of users with different goals and backgrounds. Furthermore, by observing
composers using and discussing the Wekinator, we gained a deeper understanding of
how the Wekinator supports their creative priorities and goals, and how it influences
and informs their work. This research has thus enabled us to contribute to the
still small body of work studying human-computer interaction in computer music
composition and instrument design, and our findings underscore our belief that further
research in this area will yield insights that are important to both composition and
HCL

We begin this chapter with a brief discussion of relevant prior work on HCI in
composition and instrument building, an introduction to participatory design as used
in software design and HCI research, and details of the method employed in this
work. We discuss how the participatory design process unfolded in practice, our ob-
servations of how composers used the Wekinator and the interaction strategies they
employed to accomplish their goals, the qualities of the Wekinator that composers
found most valuable, and the changes made to the Wekinator throughout the partic-
ipatory design process. Subsequently, we present our evaluation of the Wekinator as
a compositional tool, offer a new perspective on the dichotomy between generative
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and explicit mapping strategies, and present initial discussion on the way that the
Wekinator influenced composers’ practices. We further discuss implications of this
work in the contexts of interactive supervised learning and computational creativity
support in Chapters 8 and 9.

The key findings of the work in this chapter are as follows: Composers found the
Wekinator to be a valuable tool that allowed them to create mappings for new musical
instruments and interfaces that were more expressive than using other techniques,
and to create them more easily than other techniques. They developed interactive
strategies for working with the Wekinator that involved using the training data to
initially sketch out their ideas, evaluating trained models in a hands-on manner, and
iteratively modifying the training data to change the mappings. They liked the speed
and ease with which the Wekinator allowed them to create and explore mappings,
the way the Wekinator allowed them to privilege the gesture-sound relationship via
physicality and abstraction, the ability to use the Wekinator to access surprise and
complexity, and the ability to balance surprise and complexity with predictability and
control. The many improvements made to the Wekinator software during this process
centered around supporting greater control and constraint over the learning problem,
better enabling composers to take advantage of discoveries made using the software,
further supporting abstraction and physicality, improving usability for diverse users,
improving compatibility with composers’ preferred tools, providing more information
about the learning state, and reducing barriers to rapid prototyping and exploration.

4.2 Background

4.2.1 Motivation in the Context of Prior Work in HCI and
Composition

One of the great opportunities presented by computer music is that the mechanisms
through which humans produce and control sound during a performance are flexible
and open to design and change by a composer. In composing music for acoustic ensem-
bles, the role of the composer may be limited to the specification of the sounds each
performer is to produce over time; the performer’s physical actions and the relation-
ships between physical gesture and the resulting sound are circumscribed according
to the acoustics of the instrument and and by instrumental performance techniques.
In computer music, on the other hand, a composer is free to design new physical
interactions between humans and their instruments, and new relationships between
these actions and sound. His design choices affect everything from the sounds that
can be produced to the effort and practice required of the performers, the techniques
by which performers may exercise expressive agency, and the audience’s perceptions
of the role of humans and technology and of the structure and meaning of the piece.
In short, whether these design choices are conscious or not, and whether they are
dictated by aesthetic or practical concerns, they are part of the composition. For
these reasons, computer music interfaces in which performer action is not physically
coupled to sound production have been called “composed instruments” (Schnell and
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Battier 2002), and we—like the composers with whom we worked—will not make a
clear distinction between “composition” and “instrument design” in this chapter.

There exists a body of research applying an HCI perspective to studying com-
puter music, which primarily focuses on the performance-time interactions between
a performer and a musical interface or “composed instrument.” For example, prior
work by by Wanderley and Orio (2002) and Hunt et al. (2002), has studied the effi-
cacy of different types of mapping functions from control interfaces to sound synthesis
parameters (see the discussion on mapping in Section 2.2.3).

While that work is informative regarding the practical and musical consequences
of different potential manifestations of a computer music instrument, it says nothing
about the process by which composers design new instruments and performance-time
interactions. This process is itself mediated by technology, as composers engage with
hardware and software tools to create new instruments and compositions. Composers’
and instrument designers’ writings reflecting on their own experiences, such as work
by Hahn and Bahn (2003) and Cook (2001), offer valuable insights into the practice
of composing the instrument and the ways that the tools of composition (including
software, hardware, and algorithms) influence their working processes. A broader
analysis of “interaction” (including human-computer interaction) in composition can
be found in Paine (2009), including an analysis informed by the role of embodied
cognition in interactive system design (Van Nort 2009), and by an interrogation of
the definition and scope of interaction in music (Drummond 2009).

The work presented in this chapter seeks to provide a complimentary perspective
to this prior work. We have approached questions regarding how to design technology
for use in composition and instrument building, and how technology influences the
composition process, through a methodology informed by HCI. By working closely
with several composers using the Wekinator in their work, and by directly involv-
ing them in the design of the Wekinator itself, we hoped to better understand what
aspects of the Wekinator composers most valued as a compositional tool, and how
various interactions with it supported their creative work in composition and instru-
ment building. This understanding helped us both to improve the Wekinator software
and to further contribute to an HCI perspective on how new software systems can
support the work of computer music composers and instrument builders.

4.2.2 Participatory Design

We have applied a participatory design approach to our collaboration with composers.
Participatory design, also called user-centered design, describes a process of engag-
ing users of a software artifact throughout the design and implementation process.
Originating in the work of Norman and Draper (1986), user-centered design is de-
scribed by Vredenburg et al. as including “the active involvement of users for a clear
understanding of user and task requirements, iterative design and evaluation, and a
multi-disciplinary approach.” This practice is used in product development within
commercial IT companies, for example at IBM, to create products that are more
usable by and useful to their intended users (Vredenburg et al. 2002; Vredenburg
1999).
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Participatory design has also been used in HCI research, including in the study of
music composition. Recent work by Tsandilas et al. (2009) employs an participatory
design approach to studying a new digital pen-based score annotation tool for music
composition. The authors studied five composers interacting with the tool, and they
involved the composers in a participatory design process to iteratively improve the
tool. The outcomes of the study included both the implementation of new software
functionality and an improved understanding of the roles of paper and computers in
composers’ creative processes.

As we discuss below, the primary aspects of participatory design that we have em-
ployed in our work include: observing how composers used the software in practice to
perform their work, soliciting their ideas for new features that would enable them to
use the software more effectively or in new ways, regularly presenting composers with
iterative re-designs of the Wekinator that implemented new interaction techniques
and interfaces, continually seeking composers’ feedback on each iteration of the soft-
ware and the accompanying documentation, and providing tools to facilitate group
communication in between face-to-face meetings.

4.3 Method

We worked with seven composers associated with the Music Composition program at
Princeton. Participants met weekly for ten weeks in the fall semester of 2009. The
Wekinator software, which had been undergoing development during the previous
year, was a focal point of the meetings and a foundation for the collaborative study:
composers were asked to learn to use it, employ it however they found it to be most
interesting as a compositional tool, and critique, improve, and test iterative revisions
of the software. The participation of the composers was not otherwise constrained,
and they were not obligated to produce a composition, instrument, or other artifact,
nor were they graded or otherwise compensated. Most composers were intrinsically
motivated to participate by their curiosity to learn about machine learning and explore
whether and how it might be useful to their work; over the course of the design process,
some composers were also motivated by a desire to incorporate machine learning into
pieces they were working on.

Participation was open and advertised to all composers at Princeton. Of the seven
who chose to participate, six were PhD students and one was a faculty member; four
were male and three were female. Their self-assessed programming expertise ranged
from 1 (“very low”) to 4 (“somewhat high”) on a 5-point Likert-style scale (mean
= 2.9). Six rated their prior machine learning knowledge as “very low” (1) and the
seventh rated it as “somewhat low” (2). None had used machine learning or generative
mapping strategies before in their compositions, for any purpose, though most had
experience designing and using explicit mapping strategies. Composers all had prior
experience creating computer music compositions using ChucK and/or Max/MSP.

All meetings involved group discussion and time for individuals to experiment with
the Wekinator, share their work with each other, and solicit feedback and help from
the group. We asked them to share feature requests and bug reports, invited group
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discussion of proposed improvements, and noted which aspects of the software caused
people difficulties. Each week, we implemented the requested functionality into the
Wekinator (as was feasible) and distributed an updated version to the composers
before the following meeting.

During each meeting, we recorded text minutes of the group’s activities, discussion
topics, questions, problem reports, and requests for changes to the Wekinator’s user
interface or functionality. The group communicated via an e-mail list, and composers
sometimes e-mailed and met with us directly. After ten meetings, each composer
completed an individual electronic questionnaire soliciting reflective feedback and de-
mographic information using 20 multi-part free response and Likert-style questions.
Additionally, the Wekinator’s version control system (SVN) contains a record of all
the changes that were made to the Wekinator during this process. This set of doc-
umentation forms the basis for the following discussion of the participatory design
process outcomes, composers’ use and evaluations of the software, and the improve-
ments made to the software during this work.

4.4 QOutcomes

4.4.1 The Participatory Design Process in Practice

While there was no officially designated meeting length, most weekly meetings lasted
around three hours, and this time included both discussion and hands-on experi-
mentation. Discussion topics in the first few weeks of the process centered around
teaching composers how to use the current version of the Wekinator software, brain-
storming ideas for how they might use it in new projects, and formulating a set of
shared goals for the group. Composers’ goals for the semester included learning about
the Wekinator, experimenting with machine learning, discovering techniques or ideas
that could be used in future compositions, building instruments that they could use
in performance, and collaborating on future academic publications pertaining to the
Wekinator and its use in composition.

In the second week, two composers shared new instruments that they had begun
to create with the Wekinator, and a third spent time in the meeting trying out his
ideas for a new project. By this time, several composers had enough experience
working with the software that they began to make suggestions for how it might be
improved and modified to be more easily applied to the projects that most interested
them. The first design iteration was thus begun, and a new version of the Wekinator
was distributed to the composers before the third meeting. In all, eight such weekly
design iterations were completed, though many ideas from composers have continued
to be integrated into the Wekinator since the end of the participatory design process.

From the third week on, meetings typically started with a discussion of how the
Wekinator had been changed over the last week. When changes were major, we used
an overhead projector to demonstrate to the composers how to use the new features.
During the discussion period, composers offered their feedback on the changes to the
software and discussed how they had been using the Wekinator over the past week.
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Composers often had suggestions for new software features related to how they had
been using the Wekinator, or how they discovered they wanted to be able to use the
Wekinator. These suggestions were typically discussed as a group, and we provided
our own input regarding what would be feasible to implement over the short- and
long-term.

Most suggestions and feedback centered around the user interactions that were
possible with the Wekinator, including the workflow supported in the GUI, the extent
to which users had control over and feedback about various aspects of the machine
learning process, and the ease with which the Wekinator could be used in conjunction
with other software and by people who were less comfortable programming or using
a command-line interface. Discussions of the terminology used in the documenta-
tion and user interface and of the visual presentation of the interface itself were less
frequent, though significant.

Another portion of every meeting was devoted to hands-on experimentation. In
this period, composers usually worked individually, on their own laptops, to try the
updated version of the software for themselves and work on their own projects. Peri-
ods of working independently were frequently punctuated by composers sharing their
accomplishments or discoveries with the rest of the group, for example demonstrating
a mapping that they had just created and encouraging others to play with it.

The group communicated between meetings using an email list, a wiki', and in the
last two weeks, a Google Wave group. The wiki was mostly used to share a schedule
of the group’s activities, resources for people who wanted to learn more on their
own about machine learning, instructions for updating and running the Wekinator
software, and a running list of bug reports and feature requests for both the Wekinator
software and its documentation. While we encouraged composers to edit the wiki
themselves to add their ideas or questions, no one did; instead, they opted to share
ideas and questions verbally during meetings or over email. Composers used the
email list fairly regularly for discussions, questions, and sharing feature extractor and
synthesis code with one another. They posted 28 messages in total over the eight
weeks between the email list’s creation and the end of the ten-week design process.
(This count does not include announcements we made to the email list or posts we
made answering people’s questions.)

During both the experimentation portions of meetings and through email corre-
spondence on the group mailing list, composers often sought help from each other and
from us when they did not understand some aspect of the Wekinator or were having
trouble accomplishing what they wanted to do. While we attempted to help people
accomplish their goals by using the current version of the software more effectively,
we also sought to understand the underlying causes of their misunderstandings and
difficulties; discovering barriers to the Wekinator’s usability informed many of the
changes that we made to the software.

By the end of the process, most composers had become very familiar with the
Wekinator and were able to use it effectively. Many of their questions therefore
turned from asking us how to accomplish certain tasks with the software, or whether

LA copy is available at http://www.cs.princeton.edu/~fiebrink/thesis/resources.html.
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certain tasks would be possible, to asking us about the underlying machine learning
algorithms and principles. In the ninth week, we led a high-level discussion about
how the machine learning algorithms in the Wekinator worked.

After the tenth meeting, coinciding with the end of the semester, composers com-
pleted the final questionnaire. Over the following several weeks, we collaborated on
the preparation of a conference paper about the Wekinator and our use of the partici-
patory design process to study human-computer interaction in composition, which was
presented at the 2010 International Computer Music Conference (Fiebrink, Trueman,
et al. 2010); much of the content of that paper is discussed in this chapter. Over the
following months, two of the composers developed the projects they had been working
on with the Wekinator into components of pieces that were publicly performed. We
discuss those pieces in detail in Chapter 7.

4.4.2 How Composers Used the Wekinator

A Focus on Building Continuous Gestural Controllers

The majority of composers’” work with the Wekinator focused on using neural net-
works to build new interfaces for continuous gestural control of sound synthesis, where
the input features were extracted from a gestural controller of some sort, and each
neural network output drove a parameter of a sound synthesis algorithm. The most
commonly used input devices included the laptop accelerometer, the GameTrak Real
World Golf USB controller (shown in Figure 4.1), and the 3Dconnexion brand Space-
Navigator USB controller (shown in Figure 4.2). (The choice of the GameTrak con-
troller was inspired by its use in Pendaphonics by Skriver Hansen et al. 2009.) Other
input devices used included Wacom tablets, micro-controllers outfitted with sensors,
laptop trackpads, webcams, keyboards, and USB joysticks.

Most of these devices, including the GameTrak, SpaceNavigator, and joysticks,
had been previously purchased for use in projects within the Music Department, and
were available for any participant to use. Others, including the Wacom tablet and
micro-controllers, were owned by participants themselves, who brought them to the
meetings to experiment with them. All participants experimented regularly with at
least two input devices over the ten weeks, and most experimented with three or more
devices.

The synthesis algorithms most commonly used by composers were the “blotar”
and “uBlotar” algorithms. Both were implemented as Max/MSP objects (Stiefel et al.
2004) and controlled by the Wekinator via OSC. These algorithms produce sound us-
ing a physical model of the reverberations of a flute and electric guitar. Capable of
producing both flute-like and guitar-like sounds, they include twelve or more real-
valued parameters having complex and interdependent effects on the sound produced
by the algorithm. (Because of this, Stiefel et al. describe the blotar as a‘“remarkably
difficult instrument to control and perform.”) The next most popular synthesis algo-
rithms used were granular sampling and synthesis, which were implemented within
ChucK synthesis classes.
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Figure 4.1: The GameTrak Real World Golf USB controller. The base unit houses
two spring-loaded strings that can be pulled out from the base and moved in 3D
space. The unit can be employed as a 6-axis HID device (x-, y-, and z-axes for each
string). The controller also includes a detachable button that can be pressed using
the foot.

A few composers did experiment with discrete classifiers and with using audio
input features during the first few meetings, but they did not ultimately pursue these
projects and ended up working with gestural inputs and neural networks for the rest
of the ten weeks. We discuss in Section 4.4.6 some reasons why it was less practical
to use audio inputs, and we discuss throughout Section 4.4.4 several reasons that
composers enjoyed using the neural networks.

Interactive, Iterative Application of Supervised Learning

Composers used the Wekinator to quickly prototype and experiment with different
mappings from gesture to sound, and they used the Wekinator’s interactive machine
learning capabilities to iteratively modify models after their creation. Five of the
seven composers responded to all the final questionnaire items inquiring about the
steps they took to modify the neural networks’ behavior when they were not satisfied
with the mappings. (The two composers who did not respond had used the Wekinator
the least among the group; we discuss their participation in Section 4.5.1.) Figure
4.3a shows the number of composers out of these five who had, at some point, tried
each action to attempt to improve a trained model, and Figure 4.3b shows how the
composers who had tried each action rated its usefulness. Based on these outcomes,
the most useful methods for improving mappings were adding more examples to an

92



Figure 4.2: The 3DConnexion brand SpaceNavigator USB controller. The knob,
designed for navigating through 3D environments, can be moved laterally from left
to right and front to back, pushed and pulled vertically, tilted from side to side and
from front to back, and twisted around its center axis, yielding six features describing
its position.

existing training set (5 had tried; mean usefulness score 2.6 out of 3), deleting the
training set and building a new training set from scratch (5 tried; mean score 2.8),
changing the input features or controller (5 tried; mean score 2.4), and changing
the synthesis method (4 tried; mean score 2.4). The two composers who had used
playalong example recording both rated adding examples using playalong as highly
useful. Composers rarely or never added training data manually or modified the
neural network architecture or training parameters, though these tasks were possible.
In summary, it is clear that composers found it most useful to improve models by
iteratively changing the the training data rather than by taking actions supported by
conventional machine learning tools, such as modifying the learning algorithm and
features.

4.4.3 Strategies for Using the Wekinator
Training Data as a Sketch

One of the five composers who responded in detail to the questionnaire prompt re-
garding the strategy for creating new mappings with the Wekinator indicated that he
sometimes had quite specific gesture-to-sound mappings in mind that he worked to
teach the Wekinator. The four others used the Wekinator to build mappings from less
well-formed ideas; for example, one wrote, “I typically find some synth presets [i.e.,
parameter settings| that I like, record a few examples, and train the system. So far
I have not recorded very many examples, but rather I explore the space the training
sets up. In my experiments so far I haven’t really had a preconception of how I want
the mapping to work; I've been content to discover things about the mapping the
Wekinator came up with.”

This composer’s strategy is typical of this latter set of four composers, in that they
all used the training set as a sort of “sketch,” roughly mapping out their ideas about
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# Composers who performed this action

Change algorithm params | 0

Change learning algorithm | 0

Add data in spreadsheet | 0
Add more data w/ playalong
Change feature selection
Delete data in spreadsheet

Change synthesis algorithm

Change input features or controller
Add more data (not using playalong)
Delete all data

(a) The number of composers who had used each action, out of the five who replied to these question-
naire items.

Usefulness of this action

Add more data w/ playalong
Change feature selection

Delete data in spreadsheet

Change synthesis algorithm

Change input features or controller
Add more data (not using playalong)

Delete all data

(b) The usefulness of each action, rated by composers who had used it, where 1 = “not at all useful,”
2 = “somewhat useful,” and 3 = “very useful.”

Figure 4.3: The use and rating of actions for modifying and improving trained models.
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the set of sounds and gestures that they knew they wanted to include in the model.
They then relied on the neural network training to preserve the behavior sketched out
in the training data with some faithfulness, while also filling in the rest of the mapping
behavior in some useful (and perhaps unexpected) way. While most composers did
not usually employ playalong example recording, the composer who used playalong
the most also employed a similar strategy: “I usually carefully pick 4-6 extremes
in the synthesis algorithms, places I'd like to be able to reach in some way. Then
I set up a playalong score that cycles through these, and I practice, sometimes at
length, playing the controller along with the score. Then I play along, maybe several
times, sometimes repeating the same gestures, sometimes usually different—usually
extreme—gestures that explore different parts of the interface.”

Certain mapping qualities were especially valued by composers; most notably,
several composers explicitly added examples to ensure that the mapping would include
a gesture that reliably produced silence. One composer who was particularly open to
exploring whatever mappings the Wekinator might create from his ad hoc training
data (“I've been content so far to discover what the wekinator has come up with”)
still always began by adding “examples where the synth is not making any sound.
Then I add a few other examples with different configurations and sounds and train.
Not a whole lot of strategy!”

Certain composers developed strategies in which they explicitly used the training
examples to not just denote points of interest in the sonic and gesture spaces—
sounds and gestures they knew they wanted to have available in the mapping—but
also to denote and control boundaries of the sonic and gesture spaces. For example,
one composer wrote, “I aim to combine extremes with extremes, mostly—take an
extreme controller position, connect it an extreme synthesis setting.” Another wrote,
“I keep adding trainings. .. until it feels like I've covered the outer and inner limits of
my gestural landscape. I don’t spend much time training the mid-range of gestures.
Not sure why, just haven’t done that.”

Hands-on Evaluation

Once an initial mapping was created, all composers evaluated it by running it on
new gestural inputs in real-time. That is, they played the new instrument they had
just created. In their playing, composers indicated that they tested the mapping
against several criteria. One criterion was the extent to which the mapping faithfully
modeled the training examples, for example: “...I would make sure that I could easily
recreate the various positions at which I had trained the model.” However, beyond
faithfulness to the training data, composers’ mapping evaluation criteria were quite
subjective and informed by their musical expertise. Responses included: “I play with
it to see if I like how it sounds,” “The mapping should be capable of subtlety,” “I
like when gestures feel like they ‘match’ a sound,” and “If I feel a certain level of
reproducibility, predictability, and a balance of consistency and surprise, it seems to
make me happy.” Additionally, a few composers indicated that they expended some
time and effort practicing playing the mappings in order to better evaluate them
against these criteria: “It takes time to learn what the controller/mapping does.”
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No composers ever used cross-validation or training accuracy metrics to evaluate
their models, for reasons that likely included both the fact that they were not familiar
with the metrics, and the fact that the subjective criteria above had little to do with
notions of accuracy or generalization. We present further discussion of the meaning of
supervised learning evaluation metrics in interactive and creative contexts in Section
8.5.2.

Improving the Mappings by Adding and Deleting Data

As discussed above in Section 4.4.2, the actions composers found most useful for
improving trained models against their evaluation criteria were adding more examples
to an existing training set or deleting the training dataset and adding new examples
from scratch.

One reason that composers added training data was to reinforce a behavior that
had not been learned correctly on the previous iteration of the training set. For exam-
ple, the composer whose training data creation always began with adding examples
that produced silence wrote, “Typically the only times I add new training examples
are when the initial [mapping] doesn’t have a predictable place where it’s silent.”

Composers also commonly added training data not to correct a model’s behavior,
but to further develop a mapping whose initial behavior seemed promising. One
composer wrote, “If T like [the mapping], I will save and go on and start adding
new examples.” Another wrote that he added data to enforce specific, predictable
behaviors in portions of the mapping space: “I try to add additional points in between
the extremes where I know what I want to be most predictable... These additional
points were my own imagined ‘just right’ between two such extremes.”

Three composers indicated that they most commonly deleted all training data and
started over from scratch when they were dissatisfied with how a mapping performed.
Their responses suggest that this is due to the fact that simply starting over and
providing a new set of better training examples involved a relatively low overhead of
time and effort. Composers also used the deleting of individual “recording rounds”
(i.e., training examples recorded during the same instance of the Wekinator entering a
RECORDING state; see Section 3.4.5 on page 66) to undo changes to a mapping when
they discovered their modifications had not had a beneficial effect. One composer
indicated that he was likely to delete only a subset of the training examples if he
had already spent some time refining the mapping; if he was early in the mapping
creation process, he was more likely to delete everything and start over.

One composer applied a more fine-grained strategy for choosing training data to
delete, including searching for and deleting outliers and pruning his dataset to include
fewer examples of each class: “having too much data seemed to cause the model to
even everything out to a gray middle ground, so nothing would change. I had about
60 examples of each data point (i.e. holding the controller in one position, and taking
data for 5 seconds). I deleted all but 10 of each of these and it worked much better.”
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4.4.4 What Composers Liked About the Wekinator
Speed and Ease of Creating and Exploring Mappings

When asked what aspect of the Wekinator was most useful to their work, four of the
composers’ responses included mention of the speed with which the Wekinator allowed
them to create and experiment with new mappings. Several composers expressed
frustration at the difficulty and slowness of creating and changing mappings using
previous tools; one composer who has been building new musical interfaces for over
ten years wrote, “Building these kinds of instruments requires an enormous amount of
experimentation and play. There are simply way too many combinations of features
and parameters to manually think about trying—too many decisions to make—and
too many combinations that are useless. It’s a process that invariably takes way
too much time; the ratio of time spent to satisfactory musical experiences is super
high.” In contrast, composers frequently referenced the speed and ease of creating
and exploring mappings using the Wekinator. One composer wrote, “As I work
mostly with improvisation, I found Wekinator’s ability to quickly map a number of
input features to a potentially different number of output parameters very useful.”
Another wrote, “What I've enjoyed most about the Wekinator to this point is the
speed and ease with which controllers can be prototyped, and different mappings
experimented with.”

Privileging the Gesture-Sound Relationship via Physicality and Abstrac-
tion

When asked what they liked about creating mappings with the Wekinator and how
they felt it was useful to their compositional practice, a common thread through-
out composers’ responses was the privileging of the relationship between gesture and
sound, both in composition and performance. One obvious way in which the Wek-
inator emphasizes an embodied approach to composition is by allowing the user to
generate training examples by actually performing gestures in real-time, as opposed
to approaching the mapping creation process rationally or mathematically, as is re-
quired in the design of explicit mapping functions (see Section 2.2.3 for a discussion
of explicit and generative mapping techniques). Several people contrasted their ex-
periences with the Wekinator with their previous experiences creating instruments
that used explicit mappings coded in Max/MSP or Chuck. One wrote, “I find that
I've been so overwhelmingly trained to think of these things in one-to-one ways (uh,
[ want tilting forward to control volume, and, uh, tilting left /right to, uh, control....
pitch, yeah that’s it) that I basically want to retrain myself NOT to think that way
anymore, and rather to privilege physical interactions with the interface and sonic
sculpting on the synthesis end, and ask the Wekinator to connect them for me.”
Composers frequently discussed the Wekinator’s abstraction of the mapping func-
tions as being useful in focusing their attention on sound and gesture, and contrasted
this to explicit mapping methods that drew their attention and effort to refining the
details of the mapping functions that had minor or unpredictable relationships to the
sound and movement. One wrote, “By thinking about the mapping mechanism. .. as
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a closed ‘black box’, Wekinator allowed me to explore the parameter space in a more
intuitive and natural way. In the past when I have really focused on trying to create
an expressive mapping between inputs and outputs, I ended up spending so much
time and energy on the mappings themselves that they started to eclipse the actual
sonic result.”

Several composers also commented on a prioritization of the gesture-sound rela-
tionship in the evaluation and performance of mappings after they were created. In
discussing how they evaluated a given mapping, all users emphasized the importance
of playing with it and getting a “feel” for it. This “feel” had particular implications
for performance and composition: “They (the performers) can see a relationship be-
tween my control gestures and the sounds. For dancers, at least the ones I work with,
this is really important as they want to have a sense of the musician being in it with
them, ‘getting’ the movement, rather than just playing back canned sounds that have
no relationship to the movement of the moment.” One person reflected on the type
of composition suggested by his use with the software: “I could imagine using the
Wekinator for a piece where the instrument itself was the focal point, possibly some
kind of concerto, or where there is an element of theatrics to the performance. I think
that the gestural relationships that the Wekinator creates between the controller and
the sound producer [e.g., synthesis algorithm| would be very interesting to highlight
in a piece.”

Access to Surprise and Discovery

Composers strongly emphasized the creative benefits of being surprised by the sounds
and by the sonic-physical gestures that resulted from the generated mappings. For
example: “It’s...nice to find new sounds that I hadn’t anticipated,” and “There
is the potential of creating very expressive instruments using mappings from the
Wekinator. In traditional circumstances (before the Wekinator) programmers might
try to constrain the values in such a way that they're always getting the results they
wanted for whatever piece the instrument was being designed. Nothing wrong with
that. But with Wekinator it’s possible to get the controller into an unanticipated
configuration and get an unexpected sound. Such a sound might not have a place in
the piece the composer is working on, but might if that instrument is used in another
piece.” Another wrote, “There is simply no way I would be able to manually create
the mappings that the Wekinator comes up with; being able to playfully explore
a space that I've roughly mapped out, but that the Wekinator has provided the
detail for, is inspiring.” The reliance on neural networks to create something novel
and even unexpected from the training examples contrasts sharply from conventional
supervised learning applications, as we discuss further in Chapter 9.

Access to Complexity

Almost all of the composers wrote that they valued the ease with which complex map-
pings could be created using the Wekinator. Two types of complexity were mentioned
as being important: first, composers valued being able to easily construct mappings
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in which a single gestural input feature affected multiple sound parameters, and in
which each sound parameter was affected by multiple input features. That is, it was
important to be able to create many-to-many mappings, as opposed to mappings in
which each feature affected a single parameter. Second, composers valued being able
to easily construct mappings in which output sound parameters were computed as
complex functions of the input gesture features, as opposed to using linear, exponen-
tial, or other simple mathematical functions.

These types of complexity are more easily achieved using the Wekinator than the
explicit mapping techniques composers had previously employed. Whereas the effort
required to explicitly craft a mapping function is related to the function’s number of
inputs and outputs, the Wekinator’s example-driven, generative mapping paradigm
incurred the same amount of work for creating many-to-many mappings as one-to-one
mappings. Furthermore, the Wekinator’s neural networks were capable of producing
functions with highly non-linear, complex behavior.

The musical value of many-to-many mappings in computer music interfaces has
been noted in prior work by Hunt and Wanderley (2002). Furthermore, composers’
value on complexity is understandable in the context of musical practice: in playing an
acoustic musical instrument, a performer’s gestures affect the perceived qualities of the
instrument’s sound in a highly nonlinear way, and with a many-to-many relationship.
These properties are responsible for both the difficulty inherent in learning to play
an instrument, and in the range of expression achievable by an expert performer.
Several composers actually noted parallels between the degree of complexity and
difficulty in Wekinator-created mappings and those in acoustic instruments, and they
indicated that such parallels were a very positive phenomenon and not easily achieved
using other mapping techniques. For example, one composer wrote, “Like any good
instrument, acoustic or electronic, when the Wekinator is trained well it provided
enough ‘difficulty’ in playing that it really does engage the performer. Once the
training is over, and you really start to explore, it becomes a process of finding new
sounds and spaces that the mapping has created and then trying to include those into
your vocabulary of performing with the instrument.”

Balancing Surprise and Complexity with Predictability and Control

The abilities to temper the degree to which the Wekinator behaved in surprising and
complex ways, and to enforce more predictable and controllable behavior, were also
important to composers. One wrote, “I think that the most satisfying mappings are
the ones that establish a compromise between the ability to easily and reliably get back
to a particular state and the ability to create new and unexpected outputs.” Another
wrote, “...There seems to be a happy medium where there is linear, logical control,
and more intuitive, unpredictable control. For example when I play an acoustic
string instrument, say a cello, I can predictably produce pitch by placing my finger
at a certain point on the string. However this is still dependent on a number of
other more subtle features (similar to things that have been incorporated into the
blotar model) like bow pressure, placement of the bow on the string, the angle of the
bow, the movement of the finger holding down the string. The interactions are not

99



necessarily ‘linear’ or obvious. I think the combination of the two is what makes an
acoustic instrument exciting, and the same seems true here.”

Composers used the Wekinator’s interface capabilities for selecting which features
influenced which parameters, and for influencing which training data influenced which
parameters, to enforce greater control and predictability. One composer describes
his strategy: “At first I tried to single out each output parameter individually and
train the system one at a time, although ultimately I found that it proved to be
most useful when I didn’t try to mico-manage the inputs/outputs, and just gave it
a snapshot of all the features and then let the network sort itself out. At this point
I think I've reached a compromise between the two ways of working by using the
‘Model Setup’ panel to toggle on or off which features I want to contribute to each
parameter individually. This way I can have some variables that react to the input
features in a more predictable one-to-one relationship, and others that are a little
more mysterious.”

As discussed in Section 4.4.3, composers also used the training dataset to manage
the complexity of the trained models’ functions. Composers used the initial training
dataset to delineate the boundaries within which they were willing to allow the neural
networks to surprise them, and they added training data both to enforce particular,
more predictable behaviors, and to make the models more complex.

An Invitation to Play

“Play” was a common word in composers’ descriptions of how they interacted with
the Wekinator and what they liked about it. “Play” and “playability” were impor-
tant themes related to prioritizing gestural interaction, and these terms were used
to positively characterize the tone of the interaction as collaborative, informal, and
exploratory. According to one composer, “It feels like design software that lends itself
to the imagining of ‘playful’ instrument to me. By ‘playful’ I mean both whimsical
as well as embodied and outside the box.” According to another, “The way that the
Wekinator becomes like a toy and collaborator makes it very appealing.”

Advantages Over Other Tools

Composers strongly agreed that the Wekinator offered expressive and practical ad-
vantages over other mapping techniques they had employed. Using a 5-point Likert
scale, they rated their agreement with the statement “The wekinator allows me to
create more expressive mappings than other mapping techniques” as 4.5, on average
(0 = 0.8). They rated their agreement with the statement “The wekinator allows me
to create mappings more easily than other mapping techniques” as 4.7, on average
(0 =0.5).

Asked about why they would use the Wekinator versus some other software to
create mappings for a new composition or instrument, six composers mentioned that
they would choose to use other software if they wanted very simple mappings, and
they would choose the Wekinator if they wanted something more complex. For exam-
ple, one composer wrote, “If the mapping were super simple, for example a foot switch
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that simply steps though a series of presets or triggers something, then I would not
use Wekinator, and probably just use a straight forward one-to-one mapping using
Max.” Other composers echoed these ideas, expressing that they had prior expe-
rience using Max/MSP or ChucK to create one-to-one mappings using very simple
mapping functions (e.g., linear functions or threshold triggers). They did not view
the Wekinator as necessary for designing such mappings accurately or efficiently, and
some felt that the ability to explicitly design the function (by using code and not the
Wekinator) granted them a higher, more desirable degree of control.

Other reasons composers cited for choosing the Wekinator echo the discussion
above: they viewed the Wekinator as useful for accessing unpredictable behaviors,
designing theatrical and musically sensitive performances, easily building controllers
for synthesis algorithms with many complicated parameters, and privileging abstrac-
tion, physicality, and interaction during both instrument design and performance.

4.4.5 Improvements to the Wekinator

The above discussion of the Wekinator and the qualities that people liked about it
pertain to the state of the software at the end of the ten-week participatory design
process. Throughout the eight design revisions, many changes were made to the
software in response to composers’ suggestions and to the difficulties that arose. In
this section, we detail the most significant improvements that were made to the
Wekinator, grouped by the motivations for their implementation. We finish this
section with a discussion of the proposed improvements that we still plan to implement
in the future.

Supporting Greater Control and Constraint over the Supervised Learning
Problem

At the beginning of the design process, the Wekinator offered no mechanisms for lim-
iting the number of parameters affected by an input feature (i.e., feature selection)
or for limiting the number of parameters affected by a training example. All features
and all training examples were used in the construction of the training dataset for
all models. In the second meeting, a composer mentioned that she was interested
in controlling different compositional processes using different types of inputs, for
example controlling one process with a gestural controller and one with a singer’s
voice. Another composer indicated that he was interested in using different gestural
properties to control different synthesis parameters, even though all synthesis param-
eters might be controlled using the same input device and the same input features
from that device. For example, in using the laptop motion sensor to control the pan
(between the left and right audio channels), pitch, and randomness parameters of a
Max/MSP patch, he knew he wanted pan to be controlled by tilting the laptop left
and right. Even though he also planned that tilting left and right would affect the
other sound parameters, he wanted to be able to create training examples for pan-
ning control without simultaneously thinking about how the other sound parameters
would be affected by those gestures.
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Therefore, both feature selection and training data selection functionality (de-
scribed in Sections 3.4.4 and 3.3.5) were added to the Wekinator to allow composers
greater flexibility in applying the Wekinator to the types of musical control applica-
tions that they envisioned. We also added the ability for the user to initiate training
of only a subset of models at any given time, so that users who were focusing on the
refinement of a single model or subset of models did not have to wait through the
training of models that were irrelevant to them at that moment.

The architecture of earlier versions of the Wekinator had left open the possibility
of using a single neural network with multiple outputs to control multiple continuous
parameters. However, the possibility that different parameters would be affected by
different subsets of features and/or training data, and composers’ desire to be able
to approach the training and refinement of different parameter models in separate
stages, required the use of independent neural networks for different parameters.

We also redesigned the system backend and GUI so that users could specify that
different learning algorithms would be used for different discrete parameters, for ex-
ample a support vector machine for one discrete parameter and a decision tree for
another. Originally, just one algorithm would be selected for all discrete parameters,
but this constraint became especially problematic when different parameters were
trained using very different numbers of features and training examples.

Taking Advantage of Discovery

Composers often relied on the neural networks to provide a way of gesturally exploring
the high-dimensional parameter space of synthesis algorithms like the blotar. They
enjoyed discovering new sounds that they hadn’t previously imagined, and that would
have been hard to discover by setting parameter values manually through a GUIL. By
adding the parameter clipboard to the Wekinator (Section 3.4.6 on page 74), and
adding the “add to clipboard” button to the “Run” subview of the “Use it!” interface
(Figure 3.29 on page 73), we provided users with the means to easily capture and
save parameter settings that they liked. These parameters could be used in a later
composition in which the sound was appropriate, or they could be fed back into
the current Wekinator training set to make them more prominent or more easily
attainable (e.g., by matching them with several variations of an input gesture).
Using the parameter clipboard as a playalong score also allowed composers to take
advantage of new sonic gestures, or changes in sound parameters over time, that they
discovered during experimentation. Prior to the participatory design process, the
only way to perform playalong example recording was through the use of a ChucK
score. Changing the contents of the playalong score involved editing the ChucK
code outside of the Wekinator environment, then stopping and restarting the ChucK
component of the Wekinator. This process could take a considerable amount of time
and did not allow composers to easily test the playalong score by listening to it as they
wrote it. After the parameter clipboard was added and composers could construct,
test, and modify their playalong scores on-the-fly, within the Wekinator GUI, nobody
used the ChucK playalong scores anymore, even though they in principle offered a
greater degree of control over the construction of the score. This suggests that, for
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these composers, the additional control and flexibility offered by the ChucK scores
did not compensate for the disruption and overhead incurred by switching out of the
Wekinator GUI (and the modes of interaction supported by it) and into coding in
ChucK.

Supporting Abstraction and Physicality

Another motivation for implementing the parameter clipboard playalong score was
to better support abstraction and physicality. When constructing a playalong score
in ChucK, composers had to explicitly consider the numeric parameter values and
then write code to specify how they changed over time. In contrast, a user can add
to the parameter clipboard any set of parameters whose sound he likes by clicking
on the “add to parameter clipboard” button of the “Collect Data” interface, shown
in Figure 3.23 on page 67; the user can find sets of parameters whose sound he
likes by either editing their values in the Wekinator GUI and listening to the results,
or by manipulating a control GUI for an external synthesis environment such as
Max/MSP. (As discussed in Section 3.3.4 on page 54, updates to parameter values
initiated in another environment can be automatically and immediately sent to the
Wekinator, where they are reflected in the Wekinator GUI and able to be added to
the parameter clipboard.) As mentioned above, playing the parameter clipboard as
a playalong score also allowed composers to practice gesturing along with the sounds
before recording training examples. Either the gestures or the sound parameters could
be easily changed until the composer liked both the sound and the “feel” of the score
and gestures together.

Currently, when the parameter clipboard is used as a playalong score, each pa-
rameter set is played for a set amount of time, then the parameters are immediately
changed to their next values. We are currently implementing functionality that will
allow users to specify that parameters should smoothly change from one setting to
another over a period of time, allowing training examples created during playalong to
capture more detailed information about how changes in gesture should correspond
to changes in parameters.

The “meta-features” for computing first- and second-order differences (Section
3.3.5 on page 56) were also added in response to composers desiring features that
captured what they perceived to be musically relevant aspects of their physical ges-
tures (i.e., velocity and acceleration). Musicians explicitly manipulate the velocity or
acceleration of their motions in certain musical techniques; for example, the sound
produced by the bowing of a violin is dependent on both the position of the bow
against the string and the velocity of the bow. Most gestural input devices, however,
typically transmit only information about their current state, and the learning algo-
rithms in the Wekinator do not consider how features change over time. Therefore,
without meta-features, a Wekinator user who wished to use the velocity or acceler-
ation of a gesture as a control mechanism would have to write a custom ChucK or
OSC feature extractor that computed these measures on the input features extracted
from the controller. As a result, the meta-features were added to allow performers
to easily employ estimates of velocity and acceleration for any input device. The
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smoothing and history buffer meta-features were added to provide access to other
temporal features that may be useful to composers.

Improving Usability for Diverse Users

Composers in the group had a wide variety of comfort levels in using the computer for
certain tasks, and a diversity of ways of approaching and thinking about their work.
Furthermore, the majority had no prior exposure to machine learning. Therefore, a
significant amount of meeting and development time was devoted to understanding
how to make the Wekinator more usable and more understandable by a wider variety
of users.

Initially, the Wekinator did not include any interface support for configuring the
ChucK component of the system or for running it from the Java GUI. Instead, users
encoded a ChucK configuration in a relatively succinct ChucK file (about ten lines of
code). This file indicated which ChucK implementation of each Wekinator component
(feature extractors, synthesis algorithms, playalong scores) would be loaded. Then,
the user launched the ChucK component of the Wekinator manually from the com-
mand line, in an independent step from launching the Java portion of the Wekinator.
This mechanism for running ChucK separately from Java had several advantages:
users could start and stop the ChucK and Java components of the Wekinator inde-
pendently, and they could view error messages from the two components separately
in different terminal windows. The back-end implementation of the ChucK and Java
components was also simple, in that they did not have to keep track of each other’s
state.

However, some composers in the group found it hard to get started using the
Wekinator, as they found writing ChucK and/or using the command line to be a
high barrier to both starting the system and reconfiguring the system when they
realized they wanted to change something. A substantial amount of development
was therefore devoted to providing support within the Wekinator’s Java GUI for
configuring, running, and stopping ChucK. (The final interface for this functionality
was described in Section 3.4.2 on page 59.) The console window, discussed in Section
3.4.2 on page 60, was also added to display both Java and ChucK output to the user,
so that users were still able to debug the ChucK code launched by the Wekinator.

One composer liked being able to specify the ChucK configurations as code files,
and he liked having the ability to stop and restart ChucK in the command line.
Therefore, the redesign of the Wekinator maintained these abilities, and exposed an
alternative user interface to allow manual setup of the OSC connection between the
Java component of the system and the user-launched ChucK component, within an
“Advanced” tab of the “ChucK Configuration” GUI tab shown in Figure 4.4.

Apart from this one composer, though, the rest of the composers who were initially
comfortable using ChucK configuration files and command line launching switched
to using the Java GUI for ChucK configuration and launching. Even though this
feature of the system was designed to meet the needs of less technical users, once
it was implemented, it provided an interface that many of the more technical users
found to be more convenient or more usable.
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The Wekinator

[ Chuck & OSC Setup| Features Setup | Learning Setup | Useit! |

[ Simple ~ Advanced !

Advanced option: Connect to chuck backend running in terminal
Manually connect only if you're running ChucK from command line
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[ Connect ) Disconnect
.—————
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Figure 4.4: The “Advanced” view of the “Chuck & OSC Setup” tab is used when
the ChucK component of the Wekinator is launched separately from the command
line. The Java GUI is only used to initiate OSC communication with the ChucK
component.

Another set of design revisions focused on hiding aspects of the system state or
configuration options from users who found them irrelevant or overwhelming. For
example, the initial interface for feature selection consisted of an on-screen matrix of
checkboxes, where each row corresponded to a feature, each column corresponded to a
parameter, and each matrix element indicated whether that row’s feature was selected
for that column’s parameter. The matrix offered a single interface for users to specify
their intended feature selection for all parameters, and it provided a compact repre-
sentation that visually indicated the entire state of feature selection. However, several
composers found the matrix to be overwhelming; they had a hard time understanding
how to use it, and they felt pressure to fill out the many checkboxes “correctly” before
using the Wekinator to start building the models. In response to this problem, we
created a separate user interface for feature selection for each parameter, and this
interface was hidden by default. (The feature selection interface is now accessed by
clicking the “View & choose features” button for each parameter in the “Learning
Setup” tab, shown in Figure 3.21 on page 65). Also, the console window was made to
be not visible by default, as some users found the output intimidating and were not
certain when the output signaled errors that they needed to fix, and when it could
be ignored. Logging behavior was also added to the Wekinator to address this issue;
error messages and status messages were printed to a text file that was never visible
to the user, but which the user could email or show to us when he wanted help tracing
the cause of an error he encountered.

A significant portion of the group’s questions and discussion centered around the
language used in the Wekinator interface and documentation. Several people mixed
up the meaning of “features” and “parameters.” While “features” is a fairly common
term in machine learning, it is not used in computer music, and users sometimes
thought of the values they sent to the Wekinator from the feature extractors as
“parameters” controlling the Wekinator. However, the group did not come to a
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consensus on terms that might be better, so we kept this terminology and added
more documentation to the Wekinator’s instructions to clearly define these terms
and graphically illustrate how they are used in the software. Some composers also
did not find the distinction between “discrete” parameters (i.e., those controlled by
classifiers) and “continuous” parameters (i.e., those controlled by neural networks) to
be clear. “Integer-valued” and “real-valued” were proposed as alternative category
names, but no consensus was reached on whether these would be better.

At least one composer had difficulty reconciling her own understanding of building
an instrument or composition with conventional supervised learning terminology and
the workflow for training a model from a dataset: “I think making the aspects of
Wekinator training that encompass spreadsheets and data sets a bit more organic or
transparent to those of us who don’t approach creating art work in this manner. I
just don’t ever think ‘spread sheet’ or ‘data set” when I'm creating work and this may
be because my work is usually simultaneously conceptual and narrative.” We chose
not to change the Wekinator to obfuscate the underlying supervised learning process,
both because we wanted the Wekinator to be clearly understandable by people who
were familiar with Weka and with supervised learning, and because we failed to come
up with an alternative metaphor for explaining system behavior that was any clearer
than discussing the supervised learning process itself. However, we are involving this
composer in the ongoing revision of the Wekinator instructions and documentation
to make it as clear and accessible as possible to people who might approach the
Wekinator with similar perspectives.

Another avenue of work undertaken in an attempt to make the Wekinator more
accessible to composers was the implementation of many example ChucK and OSC
feature extractors, synthesis algorithms, and other controllable processes. These mod-
ules allowed users to experiment with the Wekinator for a wider variety of applications
without having to write any code themselves, and it also provided clear examples to
help users get started writing their own code for use in the Wekinator. While many
of the example modules were written by us, some were developed in response to par-
ticular requests by composers, and others were developed by composers themselves
and shared with the group via the email list.

Improving Compatibility with Composers’ Preferred Tools

One composer in the group worked almost exclusively in Max/MSP, and he had pre-
viously developed many Max/MSP software tools for use in his own compositions.
Many other composers worked frequently in Max/MSP, and people expressed interest
in using Max/MSP for both synthesis and feature extraction. For example, composers
were interested in using the Wekinator to control compositions packaged as Max/MSP
“patches” as well as synthesis algorithms packaged as Max/MSP “externals,” includ-
ing the blotar; they were also interested in taking advantage of prior work integrating
novel gestural controllers into Max/MSP. The SpaceNavigator, in particular, does
not operate as a HID device, but we were able to use it as an input device by using
existing Max/MSP code to extract features describing its state, then sending these
features from Max/MSP to the Wekinator via OSC.
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Therefore, another significant component of the design process focused on making
it easier for composers to use the Wekinator in conjunction with Max/MSP. Features
added at the request of composers included OSC communication of synthesis param-
eter values from Max/MSP back to the Wekinator (described in Section 3.3.4 on
page 54), OSC communication of feature names from Max/MSP feature extractors to
the Wekinator (for display in the Wekinator’s interfaces for feature selection and the
Feature Viewer), OSC commands for controlling training and recording (described in
Section 3.5.2 on page 78), and the user interface for specifying all OSC parameter
names and types (shown in Figure 3.17b on page 61).

Although these added software features were used in the context of communication
between the Wekinator and synthesis patches or feature extractors running Max/MSP,
users employing a feature extractor or Wekinator-controlled process in any other OSC-
capable environment are equally able to take advantage of these features; they do not
rely on the Max/MSP environment in any way, only the ability to send and receive
OSC messages.

Providing More Information About the System State

Composers requested the addition of several interface components to improve their
ability to understand the current system state, for identifying errors as well as gaining
information to help them use the Wekinator more effectively. We added the Feature
Viewer (described in Section 3.4.3 on page 63) to aid in the detection and diagnosis
of errors in the feature extractors, in OSC communication, or in the Wekinator itself.
The Feature Viewer also allowed people to learn more about the relationships between
their gestures and the feature values, for example whether a single motion sensor axis
might be used to sense a particular laptop tilt gesture. We added progress bars
for training and evaluation (pictured in Figure 3.27 on page 71 and in Figure 3.30
on page 74) so that users could obtain an estimate of the total computation time
remaining and use that to determine whether to cancel the computation or wait for
it to complete. The spreadsheet-style data editor (shown in Figure 3.25 on page
69) was initially developed as a way for people to view the dataset, for example to
check which parameter values they had already used in training, and to check that
the feature extractors were working during the training example recording process.
We added metadata fields to the training data, indicating the time at which each
training instance was recorded and the “recording round” of each instance, to provide
additional context for understanding the dataset.

The graphical data editor (shown in Figure 3.26 on page 70) was not completed
during the participatory design process, but its development was motivated in part by
composers’ desire for an interface for understanding the training data that provided
a more visually informative alternative to the spreadsheet viewer.

Reducing Barriers to Rapid Prototyping and Exploration

Several improvements did not add new functionality to the Wekinator, but they made
the process of model building and editing faster and easier. The original version
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Figure 4.5: Discrete parameter values are set using a drop-down list populated only
with legal values.

of the Wekinator did not display names for each parameter in the “Collect Data”
pane pictured in Figure 4.5, and it allowed the user to enter any numeric value for
any parameter, leading to problems when users mistakenly set non-integer or out-of-
range values for discrete parameters. Therefore, functionality was added to retrieve
parameter names, types, and (for discrete parameters) ranges from both ChucK and
OSC processes, display the parameter names in the Wekinator GUI, and restrict the
values able to be entered for discrete parameters through the use of a pre-populated
drop-down list (Figure 4.5).

When composers had difficulty efficiently training gestural controllers that used
both hands, we added support for the foot-pedal control discussed in Section 3.4.5 on
page 68.

Because composers commonly used modification of the training data and retrain-
ing as a way to modify the mappings, adding the “training round number” metadata
field to the training dataset allowed people to easily undo changes they didn’t like,
by deleting all examples of a training round within the spreadsheet viewer.

As they worked, some composers frequently saved the trained models that they
liked so that they could build many candidate models and pick their favorite. We
added infrastructure to make dealing with saved files more convenient, including
default file extensions for all Wekinator-created files, a directory infrastructure for
organizing files (e.g., files for trained models were saved to a different directory than
saved feature configurations), and more graceful error reporting when a user tried
to load a file that was incompatible with the current state of the Wekinator (e.g.,
a learning system whose number of features does not match the number of features
being extracted).

Functionality was added to enable the Wekinator to maintain aspects of its system
state in between uses of the program. This included information about the last-used
ChucK configuration, so that the last ChucK configuration is reloaded each time the
Wekinator is run, and about the location where each Wekinator file type was last
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Figure 4.6: The drop-down list allowing the user to specify whether and when pa-
rameter values set in this GUI will be sent as control values to the ChucK synthesis
class or OSC process.

saved, so that a user attempting to load a Wekinator component from a saved file is
presented with a file chooser that defaults to the last-saved location.

To efficiently accommodate composers’ different approaches to experimenting with
the synthesizer sounds during use with the Wekinator, we added the drop-down list
shown in Figure 4.6. Some composers working with Max/MSP patches preferred to
set the synthesis parameters directly within the Max/MSP environment, for example
using sliders and number boxes attached to the synthesis object in their Max patch.
These users did not necessarily want changes in the parameter values in the Wekinator
GUI to result in new parameter values being set in Max. On the other hand, some
composers preferred to experiment with different parameter settings by changing the
values in the Wekinator GUI; for some synthesis algorithms, they were interested in
auditioning sets of parameters together, and for other algorithms, they were interested
in hearing changes caused by updates to each parameter individually. These different
approaches were accommodated by the drop-down options “send its parameters here,”
“play these parameters” (i.e., as soon as the values are updated), and “play these
parameters on demand” (i.e. only when the “play” button is hit).

4.4.6 Future Improvements Proposed

Development of the Wekinator during the participatory design process was focused
on changes that most improved the usability of the system for the greatest number
of composers within the given time constraints. Composers also proposed and par-
ticipated in the refinement of many good ideas for further improving the software,
beyond what was accomplished during the study.
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One major area for future improvement involves making the Wekinator more suit-
able as a general-purpose tool for audio classification and music information retrieval.
The current ability of the Wekinator to be applied to generic audio analysis problems
is most limited by the relatively small number of audio features built into ChuckK,
and by the inability to apply standard feature extraction packages used in music in-
formation retrieval to feature extraction from real-time audio. During the participa-
tory design process, we worked with composers interested in audio analysis to build
a ChucK vowel formant feature extractor, and we created a Wekinator-compatible
Max/MSP patch that extracts additional audio features using the analyzer™ object
(Jehan and Schoner 2001). Both of these audio feature extractors are distributed
with the Wekinator to help users get started in applying the Wekinator to working
with audio. However, the use of the Wekinator as an audio analysis tool will still be
greatly improved by future work either adding additional audio features to ChucK or
implementing a real-time feature extraction suite in another environment.

Composers’ early experimentation with the Wekinator also revealed the current
infrastructure to be problematic for classification problems involving fine-grained,
time-sensitive class labeling. For example, one composer spent some time attempting
to teach the Wekinator the difference between different types of drum strikes, using
an audio signal from a piezo pickup on the drum membrane. While the features and
classification algorithms seemed to be suitable for this type of problem, based on
prior research in drum classification (e.g., Tindale 2004), the Wekinator’s approach
to audio feature extraction and interfaces for training data creation were not suffi-
cient. Specifically, this problem required either a way to extract feature vectors for
training and classification only immediately following drum hits, and/or a mecha-
nism for annotating all extracted features with the class labels (including a label for
“no hit” in between drum hits), at a fine-grained level. The graphical editor that
was implemented later, which is shown in Figure 3.26 on page 70, provides a partial
solution, in that users can easily edit and add class labels to the recorded training
instances. However, this is only practical when the graphical editor’s display of the
feature values provides sufficient visual cues to the human user regarding where the
class labels should fall. In the future, the Wekinator might also record the raw audio
signal (or even a webcam video of the user) that is temporally aligned to the recorded
training example feature vectors, so that the human has all the relevant information
needed to perform precise class label annotations.

We also discussed with composers the possibility of adding a two-dimensional vi-
sual projection of the training data, displaying information about instances’ relative
distances in feature space as well as their class values or labels. Baker et al. (2009)
implemented this type of visualization in a system for end-user training of a document
labeling model, in order to provide users with useful information regarding the extent
to which differently-labeled instances overlapped in the feature space. Such overlap-
ping can indicate to a user that his training examples are noisy or mislabeled, or that
his features are not adequate for representing the classification problem. Composers
seemed interested in using such a tool to understand their data better and identify
when their training examples or features might be to blame for a trained classifiers’
poor performance.
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Additional features could be added to further reduce barriers to rapid experimen-
tation in the Wekinator. For example, improvements could be made to allow users to
more easily change the number of parameters on-the-fly, or reload saved models from
learning systems with different numbers of parameters and features.

Some composers desired additional support for controlling the Wekinator from
alternative interfaces, including MIDI controllers, user-designed GUIs, and Max/MSP
patches. The implementation of such control might involve, for example, the use of
OSC communication from the Wekinator about its state, and OSC commands for
configuring feature extraction and loading learning systems. We believe that such
functionality will make the Wekinator more flexible for a variety of applications,
including research applications, and we intend to add this in the future.

4.5 Discussion

4.5.1 The Wekinator as Compositional Tool

At the culmination of the participatory design process, most composers were able
to very effectively employ the Wekinator in creating new instruments and interfaces
for the continuous gestural control of sound synthesis algorithms. Composers highly
agreed that the Wekinator enabled them to create gesture-to-sound mappings more
easily than other techniques, and to create mappings that were more expressive than
other techniques. In particular, composers valued the speed and ease with which
they could create mappings, the ways that the Wekinator supported embodiment
and abstraction, and access to a balance of surprise, complexity, predictability, and
control. Two of the composers went on to use the Wekinator in publicly performed
compositions, which are discussed in Chapter 7.

The usability and usefulness of the Wekinator were supported by the Wekinator’s
user interface, the ability to interactively apply supervised learning, and the under-
lying multilayer perceptron algorithms. For example, the use of neural networks
allowed composers to easily build complex, nonlinear, and surprising mappings from
the training data. The ability for users to iteratively record and edit training data,
train the models, and “play” the resulting models, all within a single user interface,
enabled easy and fast experimentation with different mappings. The ability for users
to create training data by demonstrating gestures and by gesturing along to playalong
scores supported an embodied approach to designing and creating mappings. Other
interface features, including those for informing users of the system state and inte-
grating with other compositional tools via OSC, allowed users to build and modify
mappings more quickly, and to identify errors more easily.

Two composers had notably less success than the others in applying the Wekina-
tor to their own projects. One of these composers experienced ongoing difficulties
reconciling the supervised learning workflow and terminology with her own approach
to composition, which she described as more narrative-driven and organic than what
the Wekinator seemed to suggest and accommodate. The other composer was more
interested in using audio input than gesture, which was problematic for the reasons
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described in the previous section, and spent much less time experimenting with the
Wekinator overall. These two composers were still able to make valuable contribu-
tions to the design process, by providing feedback about what they found challenging,
and about the types of projects they wanted to be able to do with the Wekinator in
the future. Some of their concerns and difficulties have been addressed by changes
to the software and documentation, and we hope to continue to involve them in the
project to further improve the Wekinator’s usability.

The participatory design process resulted in many ideas for improvements to the
Wekinator software, some of which were implemented and contributed greatly to its
usefulness and usability, and some of which we still plan to implement in the future.
However, there still remain questions regarding how to improve the usability of the
Wekinator that were unanswered during this work, and which we intend to address in
future research. Notably, there exist many challenges regarding how to make systems
for interacting with supervised learning algorithms most useful and understandable
by users who lack a background in machine learning. The biggest challenges faced
by composers related to the use of machine learning or computer science terminol-
ogy that had no counterpart in music (e.g., “features,” “discrete” and “continuous”),
not knowing how to take action when problems occurred (e.g., using fewer features
or training instances when neural network training took an unacceptably long time,
or changing a classification algorithm or its parameters when a classifier performed
poorly), and not understanding the types of learning problems that were easy or hard
to model. Some of these difficulties (for example, not understanding the types of
functions learnable by neural networks) disappeared as users gained more experience
with the system; others (for example, not understanding how to keep neural networks
from taking a long time to train, or not understanding when one classification algo-
rithm might be better than another) did not. Future research focusing on making
supervised learning systems more accessible, through changes to interfaces, documen-
tation, or even the algorithms themselves, seems important not only to users of the
Wekinator but to end-user machine learning systems in many domains. We discuss
some ideas for this future research in Chapter 8.

4.5.2 Generative and Explicit Mappings

In light of existing work categorizing mapping strategies as generative or explicit,
many of our observations regarding composers’ interaction with the Wekinator ap-
pear at first glance to be rooted in the Wekinator’s nature as a generative mapping
creation system. Generating mappings from training examples inherently supports
an embodied and enactive (Wessel 2006) approach to the mapping specification pro-
cesses, in that gestures can be used to create the training examples. The specification
of mapping via example also enables many low-level details to be abstracted away,
speeding up the mapping exploration process, facilitating use by non-programmers,
and freeing the composer to focus on the creative process. The use of neural networks,
which are capable of introducing great nonlinearities into the learned functions, also
contributes to serendipitous discovery and efficient production of complex mappings.

112



Overall, we conclude that many qualities of the Wekinator that are most helpful in
compositional interaction are well-supported by properties of the generative mapping
strategy. However, a user who desires a more specific mathematical relationship be-
tween gestural features and sound parameters may be frustrated by the difficulty and
inefficiency of implicitly encoding this mapping via training examples; it is therefore
also obvious that the suitability of example-driven mapping generation is contingent
on users’ compositional goals.

On closer examination, one can imagine interfaces that do not enforce a clear di-
chotomy between generative, example-driven and explicit, function definition-driven
mapping creation, supported by underlying algorithms that are difficult to mathe-
matically categorize as purely generative or explicit. For example, simple linear or
polynomial regression algorithms could be embedded in an interface that allows the
user to dynamically switch between supplying examples and explicitly editing equa-
tions.

4.5.3 Influence of Technology on the Composer

Nearly all composers characterized their interaction with the Wekinator as more com-
plex than an exercising of control over technology; the ways the software challenged
and influenced them were important aspects of their experience as users. Composers
often relied on the Wekinator as a tool that could quickly take a “sketch” of the learn-
ing problem, encoded by a few training examples, and turn it into a fully-functional
mapping. Rather than relying on the neural networks to fill in this sketch according to
their preconceived plans, composers relied on the neural networks to provide interest-
ing, complicated, and unexpected mapping behaviors that incorporated complexities
and difficulties similar to those encountered in the playing of an acoustic instrument,
and that provided access to unimagined and inspiring sounds and gesture-sound re-
lationships.

Through using the system, composers also learned about what interaction strate-
gies produced mappings that they liked (for example, “At first I tried to single out
each output parameter individually and train the system one at a time, although ul-
timately I found that it proved to be most useful when I didn’t try to micro-manage
the inputs/outputs, and just gave it a snapshot of all the features and then let the
network sort itself out.”). They also learned that certain mapping strategies (such
as enforcing a linear relationship between features and parameters) were hard to
satisfactorily produce using the neural networks. As a result, their goals and subse-
quent interaction with the system often changed course according to how the trained
models behaved and according to their improving knowledge about the effort needed
accomplish different tasks.

4.5.4 Further Discussion

In Chapters 8 and 9, we further discuss the implications of this work regarding the
larger context of interaction in machine learning and machine learning in creative
contexts.
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4.6 Conclusions

In this chapter, we discussed our experiences working with a group of composers as
they experimented with the Wekinator and helped drive improvements to the software
in a participatory design process. In this process, composers were engaged in learning
to use the software, applying it to their work, and communicating to us about their
experience, feedback, and ideas. We were able to make many changes to the software
to make it more usable and useful to the composers. Through discussion with and
observation of the composers, we also learned a great deal about how composers relied
on and were influenced by technology in the process of composing new instruments,
and we learned about how the interactive supervised learning process enabled by the
Wekinator was useful in supporting their compositional goals and needs.
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Chapter 5

Teaching Interactive
Systems-Building with the
Wekinator

5.1 Introduction

In this chapter, we discuss our study of the Wekinator as a tool for teaching inter-
active systems-building to undergraduate students enrolled in the Princeton Laptop
Orchestra course. We focus on students’ use of the Wekinator in completing a struc-
tured systems-building assignment, as well as a longitudinal analysis of students’ work
with the Wekinator over the course of the semester. Through logs of students’ inter-
actions with the software and their written feedback, as well as the final outcomes of
their coursework, we examine how they used interactive learning to create musically
expressive and accurate models, the ways that the Wekinator influenced their work,
and the efficacy of the Wekinator as a teaching tool.

We begin this chapter by providing background on the Princeton Laptop Orchestra
course. We discuss how students’” work with the Wekinator fit into the goals of the
course, and we present our research goals for our study of its use in this context. We
describe the method used for studying students during their use of the Wekinator in
the midterm assignment, and we present our observations regarding the interactive
systems the students built, the actions they performed, how they used their time
during the assignment, their strategies for model building, the ways that they learned
and adapted, their degree of success in the assignment, and the effects of task type
and order on students’ behaviors. Drawing on our observations and other experiences
in the course, we discuss the usefulness of the Wekinator as a teaching tool, the
relevance of task type in studying and supporting interactive supervised learning,
and improvements to the Wekinator suggested by this work. We later draw on this
work in Chapters 8 and 9, in discussing algorithm and interface design in interactive
supervised learning, the use of interactive machine learning by novices and in creative
work, and the larger role of human interaction in applied supervised learning.
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Figure 5.1: One of the first PLOrk performances in 2006.

5.2 Background, Motivation, and Goals

5.2.1 The Princeton Laptop Orchestra

The Princeton Laptop Orchestra (PLOrk), pictured in Figure 5.1, is an undergraduate
teaching initiative and performance ensemble, created in 2005 by Princeton faculty
members Dan Trueman and Perry Cook (Trueman et al. 2006). Drawing inspiration
from historic electronic performance ensembles such as the League of Automatic Com-
posers and the Hub (Bischoff et al. 1978; Brown and Bischoff 2002), as well as from
Trueman’s own work creating digital meta-instruments such as the BoSSA (True-
man and Cook 2000), a motivation for forming PLOrk was to experiment with mak-
ing music with a larger group of performers playing laptop-based meta-instruments
(Trueman 2007). Another inspiration for PLOrk was work by Cook and Trueman
(1998), Wessel (1991), and Trueman et al. (2000), exploring how to design new elec-
tronic instruments with a physical presence more like that of acoustic instruments,
specifically through the use of spherical speakers. In PLOrk, many human laptop
performers share the stage, each using their own laptop and hemispherical speaker,
shown in Figure 5.2.

At its inception, the PLOrk ensemble consisted of fifteen human laptop players.
Through the years since 2006, the size of the ensemble has grown to over 25 perform-
ers, and the ensemble has performed both full-ensemble and “chamber” works (for
fewer performers) composed by Princeton faculty, students, and alumni, as well as
guest composers. Notable past collaborators include renowned composers Paul Lan-
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Figure 5.2: Each PLOrk student uses his or her own laptop and hemispherical speaker.

sky and Pauline Oliveros, tabla virtuoso Zakir Hussain, and experimental electronica
duo Matmos.

In addition to being an active performing ensemble, the Princeton Laptop Orches-
tra is an undergraduate educational initiative. PLOrk was first taught as a course
at Princeton University in Autumn 2005 as a Freshman Seminar. It has been taught
every year since then as an undergraduate course in Computer Science and Music,
open to students of any major and any academic year.

Since 2008, the PLOrk class has included assignments and weekly lectures devoted
to exposing students to a variety of theoretical and practical topics in computer
music composition and performance.’ The class introduces student to topics including
object-oriented design and programming (primarily using the ChucK language; see
Wang and Cook 2003), software engineering, signal processing, audio synthesis, and
interactive systems-building. A goal of the course is to give students from non-
technical majors exposure to these areas of computer science and engineering, and to
give students in technical majors practice in applying their expertise to new domains
and in creative ways.

!Syllabi for the last three offerings of the course may be found online at http://www.cs.
princeton.edu/~fiebrink/thesis/resources.html.
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5.2.2 Supporting and Studying Interactive Systems-Building
in PLOrk

In Spring 2010, the PLOrk course emphasized interactive systems-building. In many
assignments, as well as in the midterm and final projects, students built new musical
interfaces that could be used in performance and as interactive installations. These
interfaces ranged from very simple, for example using the laptop’s internal accelerom-
eters to control the pitch of a synthesis algorithm in an assignment, to quite elaborate,
for example using a custom vision-based motion tracking program to sonify the walk-
ing patterns of visitors to the music building in a final project installation. Interactive
systems-building projects were used both as a tool to help students learn course con-
cepts (e.g., software engineering and signal processing), and as an end in themselves,
to empower students to create interactions they found to be fun, compelling, and
expressive.

One of the topics emphasized in the course was the “mapping problem,” described
in Section 2.2.3. Students were first taught about “explicit mappings,” in which ges-
tural controllers are built by explicitly programming the ways that gestural controller
or sensor values drive the parameters of a synthesis algorithm. Students built several
explicit mappings in course assignments by using SMELT repository code (Fiebrink
et al. 2007) to extract gestural input signals from USB HID devices (i.e. standard
input and gaming devices; see Section 3.3.2) and native laptop inputs, then writing
their own ChucK code to change sound synthesis parameters based on the values of
these inputs.

Students were also taught about “generative” mappings that construct the
gesture-to-sound mapping function from a set of training examples, and they were
given a high-level introduction to how machine learning algorithms can be used
to generate mappings from training data. Prior to the Wekinator, there existed
no appropriate tools to allow students (especially those with limited programming
ability and machine learning knowledge) to create generative mappings for using
arbitrary input devices (including HID devices, audio and video inputs, and other
native laptop inputs) to control arbitrary synthesis programs. The Wekinator is
therefore an attractive tool for enabling students to quickly and easily build working
interactive systems and to learn about generative mappings and machine learning in
a hands-on way.

The goal of the work described here was to study the first use of the Wekinator
as a tool for teaching interactive systems-building in an undergraduate classroom.
The Wekinator was used in the PLOrk course to teach students about the breadth
of ways that computers can be used in interactive performance, to enable students
to build interactive systems that they enjoyed and found musically useful, to teach
them about the tradeoffs between explicit and generative mapping strategies, and to
foster the development of their object-oriented design, signal processing, and music
programming skills as they designed feature extractors and sound synthesis programs
to be used in conjunction with the Wekinator. In our study of students in the course,
we hoped to discover how the Wekinator was useful in meeting these goals, and
to discover what about it could be improved for future pedagogical applications.
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Additionally, we aimed to learn about how students used the Wekinator in building
interactive instruments and installations, including the actions they performed, the
strategy they employed in building models, and how the Wekinator both supported
and influenced their creative work.

5.3 Method

While we used the Wekinator throughout the latter half of the Spring 2010 PLOrk
course, we focus our study here on our observations of and feedback from the 22 stu-
dents completing the midterm assignment, which was their first and most structured
assignment using the Wekinator. The midterm assignment served as a hands-on
introduction to the Wekinator, and it prepared students to incorporate generative
mappings into their compositions in the upcoming midterm performance. Prior to
the assignment, students had five weeks of instruction in the ChucK programming
language, and they had completed assignments in which they designed explicit map-
pings using gestures to control sound synthesis algorithms. In course lectures leading
up to the assignment, students were introduced to generative mappings and to the
standard machine learning algorithms employed by the Wekinator, and they saw
demonstrations of the Wekinator performed by the author and by other instructors.

In the midterm assignment, students built two gestural musical controllers using
the Wekinator: a continuous controller using neural networks, and a discrete controller
using a classifier. Before beginning the assignment itself, the students followed a
step-by-step tutorial walking them through how to build two simple instruments for
controlling a synthesizer’s pitch using the laptop’s tilt. One of these instruments
used a classifier for discrete pitch control, and the other used a neural network for
continuous pitch control. Students worked individually on the assignment, and they
had twelve days to complete it after it was assigned. As the goal of the assignment
was to familiarize students with the Wekinator, students were informed that they
would be graded on completing the assignment in a through and thoughtful manner,
not based on the musicality of their models or the “correct” use of the Wekinator.
They were encouraged to contact the course instructors for help and questions with
the assignment.

The midterm assignment was broken into two parts, Part A and Part B, and the
order in which students completed these parts was balanced across students. In Part
A, students were asked to use the Wekinator’s multilayer perceptron neural networks
to build a new, continuous musical control interface that they thought was musically
expressive. Students could pick among three pre-built synthesis algorithms, each of
which had between three and nine parameters that affected the sound in non-linear
and interdependent ways: a physical model of a bowed string instrument (Smith
1986; Cook and Scavone 1999), a physical model of a hybrid flute/electric guitar
called the “blotar” (Stiefel et al. 2004), or an FM synthesis algorithm (Chowning
1973). Students could also pick among four gestural control methods for which the
Wekinator provided built-in feature extractors: a GameTrak USB tether HID device
(see Section 3.3.2 and Figure 4.1), a Logitech joystick HID device, the laptop’s internal
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accelerometers, or the webcam color tracking feature extractor described in Section
3.3.2.

After students had completed the construction of the musically expressive con-
troller, they were asked to discuss their work in a series of five short-answer questions.
Specifically, they were asked to explain their choice of gestural controller and syn-
thesis algorithm, discuss their goals for how the instrument would be used to control
sound through gesture, and describe their strategy for building an expressive model.
Additionally, they were asked to rate on a 5-point Likert scale whether they were
successful in building an expressive model, building a model whose gesture-to-sound
mapping could be controlled in a predictable manner, and getting the Wekinator to
learn what they wanted it to. Students were also invited to share any other comments
on what they learned, what they found confusing, or anything else.

In Part B of the assignment, students were asked to use a classification algorithm
to build a model performed reliable gesture classifications into any gesture categories
of their choosing. The class labels output by model were used to control a simple,
pre-built synthesis algorithm driven by a single discrete parameter. Students could
choose either a melodic synthesizer whose parameter controlled pitch, or a drum
machine whose parameter controlled the number of drum loops or layers to play
simultaneously. Students could also choose among the same four gestural controllers
as Part A: the tether, joystick, laptop accelerometers, or webcam color tracker.

After Part B, students completed five short-answer questions about their work
building the reliable gesture classifier. These questions were identical to those an-
swered after Part A, with the exception that they were asked about their success in
building a model that provided reliable gesture classifications, rather than building a
model that was musically expressive.

Students were provided with a special version of the Wekinator software that
logged their actions as they completed Parts A and B. All actions such as training
models, recording data, evaluating and running models, and changing algorithms and
features were recorded to a file in real-time. The students emailed us the log files at
the completion of the assignment. Students were aware that the logging was being
performed in order to discover how they were using the Wekinator, and that the log
contents would not be used in determining their grades.

All students completed the assignment, and all but one student provided the
Wekinator log files. Eleven of those students completed Part A first and ten completed
Part B first.

5.4 QObservations

5.4.1 Interactive Systems Built

In the midterm assignment, all students successfully completed Part A and Part
B, constructing an expressive continuous controller and a reliable gesture classifier.
(Because one student was unsuccessful in retrieving the Wekinator log files, all logging
analyses are performed over only 21 students.) Nearly all students used the synthesis
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Figure 5.3: The number of students who chose each gestural input and synthesis
algorithm, for Part A and Part B.

algorithms and gestural control inputs specified in the assignment instructions. Figure
5.3 shows the number of students who chose each input and synthesis algorithm for
Part A and Part B.

Figure 5.4 shows students’ levels of agreement with several statements regarding
the success with which they were able to use the Wekinator in the assignment, rated
on a H-point Likert scale. In general, students were very successful in using the
Wekinator to accomplish the goals of the assignment; the average agreement with
all statements was above 4.0. Statement S1, “My model is musically expressive,”
received the lowest average score overall (4.1), and several students indicated in the
written component of the assignment that they felt limited by the expressive potential
of the synthesis algorithm that they chose, not by the Wekinator or their mappings.

5.4.2 Actions Performed

In the midterm assignment, the logging data and students’ written work clearly in-
dicate that students employed an iterative approach to interactive model building,
in which they retrained the model multiple times following changes to the training
data or algorithm. Figure 5.5 shows the number of times a model was retrained over
the course of each task, by each student (not counting the first time the model was
trained). More than half of the 21 students retrained the model at least once, but
there was great variation in how many times students retrained the models, up to
a maximum of 17 times by one student in Part B. The average number of times a
model was retrained in Part A was 3.3 (median = 1.0, 0 = 4.2); the average number
of times a model was retrained in Part B was 4.9 (median = 1.0, 0 = 5.9).

Between model trainings, students took one or more actions to modify the model,
including modifying the training dataset and changing the learning algorithm or its
parameters. In Part A, the model was modified by changing the dataset an average of
3.1 times (median = 1.0, ¢ = 4.2); the learning algorithm was never changed. In Part
B, the model was modified by changing the dataset an average of 4.3 times (median
= 1.0, 0 = 5.2), and by changing the learning algorithm or its parameters an average
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of 0.2 times (median = 0.0, ¢ = 0.8). The features used by the models were never
changed in Part A or B, though one student changed the controller that she used in
the middle of Part B.

Figure 5.6 shows how many times each particular action was taken in order to
modify and evaluate a model, for Part A and Part B. Edits made to the training data
and algorithms before the first model training are not included, and actions that were
performed multiple times between consecutive model trainings (e.g., recording new
training examples twice before retraining the model) are counted only once. Each
student attempted to improve the model by modifying the training data significantly
more frequently than by modifying the learning algorithm or its parameters (p < .0001
using a paired t-test), and each student evaluated the model by running it in real-time
significantly more frequently than by computing cross-validation accuracy (p < .0001)
or training accuracy (p < .0001).
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Students created training data both using “playalong” recording (in which stu-
dents set up a parameter “score” and recorded training data by gesturing along to
the synthesizer playing this score; see Section 3.4.6) and by entering each set of pa-
rameter values in the GUI and demonstrating the gesture that corresponded to those
values. While only 8 of the 21 students ever used playalong recording, playalong
recording was used in 114 of the 188 total occurrences of students recording new
training data during the assignment. Students never used the graphical data editor,
perhaps because it was not demonstrated to them in class. Four students employed
the spreadsheet editor to manually change feature or parameter values; three of these
students made between one and three manual edits each, but one student made 95
manual edits as he attempted to fix his models’ misclassifications in Part B.

5.4.3 Interaction Over Time

Figure 5.7 shows the time taken by each student to complete each part of the assign-
ment. All but two students took under 45 minutes to complete Part A, and all but
one student took under 45 minutes to complete Part B. The average completion time
was 27.1 minutes (median = 16.7, ¢ = 30.5) in Part A and 16.1 minutes (median
= 14.6, 0 = 14.3) in Part B. For most students, the Wekinator offered a reasonably
fast way to build a reliable gesture classifier or an expressive continuous controller.
Incidentally, the student who took the most time on a task, 145.1 minutes in Part
A, did not appear to have had any particular trouble with the assignment; on the
contrary, his written response (the longest of any student) indicates that he spent
a lot of time experimenting with his blotar controller and exploring several different
mapping strategies over the course of the task.

Figure 5.8 shows the average total time spent performing each action with the
Wekinator, within Parts A and B. The action to which students devoted the most
time was evaluating the model by running it, followed by recording new training data.
The time spent to train the models and to compute cross-validation and training
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Figure 5.8: The average number of seconds spent performing each action over the
course of Part A or B, shown as a proportion of the average total task time.

accuracy was negligible. In the time spent on “Other” actions, the user was setting
up the Wekinator for the assignment task, setting the synthesis parameters directly
to test out new sounds, and likely reading the assignment instructions and performing
other actions not loggable by the Wekinator.

The time needed to train the models was quite short: 11.5 seconds per training
on average in A (median = 4.5, 0 = 19.4) and 0.2 seconds on average in B (median
= 0.1, 0 = 0.3). A short training time—much shorter than the minutes or hours that
are acceptable in many non-interactive supervised learning scenarios—is important in
this context, so that training does not interrupt a user’s interaction with the system
and training time does not provide a disincentive to attempt to fix a model if the user
is not satisfied with its behavior. The relatively fast training time can be attributed
to the fact that training sets were generally quite small, compared to those used
in other applied machine learning problems. The average training set size was 790.1
examples (median = 565.0, o = 604.7) in Part A and 548.0 examples (median = 424.0,
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o = 426.8) in Part B. While the difference in each students’ average training set size
in Part A and Part B was not statistically significant (p = .082 using paired t-test),
the difference in average training time was significant (p < .05). The difference in
training time is due to both differences in learning algorithms and the number of
synthesis parameters used in the two parts of the assignment: Part B required the
training of only one classifier, while Part A required the training of between three
and nine neural networks. We discuss the phenomenon of small training size further
in Section 8.6.

5.4.4 Model-Building Strategy

Both the logging data discussed above and students’ own written remarks on their
strategies for model building emphasize an iterative process: students repeatedly
built a model from the training data, evaluated it to assess whether they liked it, and
attempted to improve it. In this section, we discuss in more detail the actions that
students took and the criteria they used to evaluate models, and how they acted on
the knowledge gained from model evaluation to attempt to improve the system.

Training Data Creation

A few students began Part A with quite clear ideas regarding the types of gestures
and mappings that they wanted the model to learn. The students with a clear plan
for how they wanted the instrument to work developed strategies for creating training
examples that often focused on just one aspect of the mapping function at a time. For
example, one student described his strategy: “I started by first determining which
of the HID input parameters corresponded to which axis on the actual tether (i.e.
HID 6 ...reflected the length of the right tether string). I then adjusted the neural
networks accordingly so they would only be looking at what I wanted it to ...I then
attempted to train each parameter independent of the others by unchecking their
boxes and giving Wekinator some training samples and then training and running it.
Based off how it did here, I went back and gave it more samples before moving onto
the next parameter. After all three parameters were trained I went back and gave
it more samples again for each (again, each parameter was trained independently of
the others) before I was satisfied with how well it could predict what I wanted the
parameters to be for a given motion.”

Many students who did not have such clear a priori goals described a model-
building strategy for Part A that was quite similar to the strategy employed by
composers in Chapter 4: they created training examples matching sound parameters
that they liked with a few different gestures, then let the model “fill in the blanks.”
One student wrote, “I found it the easiest and clearest to create a model from the
outside in, sort of: specifically, I would create the extreme sounds and positions, train
those extremes, and then fill in more information about the transition between the
already learned extremes.” Other students also indicated that they used iterative
retraining to make a model gradually more complex, for example: “I started with
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just experimenting with one of the parameters at a time, and slowly worked my way
up so that eventually I was manipulating all three parameters.”

In Part B, some students worked methodically to build the gesture classifier, for
example carefully controlling the way in which parameters and gestures co-varied to
clearly represent their ideas for how the classifier should work. As in part A, some
students used iterative retraining to gradually increase the complexity of their model,
adding new gestures and classes once a model was performing well. For example: “I
didn’t immediately do all of these gestures at first but started with only a few to
get warmed up.” Other students, though, provided training data for all gestures and
classes all at once, or did not seem to have much of a conscious strategy.

Just as in Part A, there was a wide variety of among the extent to which students
had clear plans about the sorts of models they wanted the Wekinator to build. In
some cases, students’ plans for which gestures they would use were informed by which
gestures they thought the Wekinator would be able to easily classify. One student
who was using color tracking to control the drum machine also formed her plan for the
model based on how frequently she expected to use different classes in performance,
writing: “I tried to assess which beats I would use more often and correlate them
with [feature values] that were easier to obtain on the colour tracker.”

In both Part A and Part B, students’ strategies for creating and modifying the
training data evolved as they worked with the Wekinator; we discuss this phenomenon
further in Section 5.4.5.

Model Evaluation

The Wekinator allows users to evaluate trained models using two approaches: comput-
ing standard metrics (training and cross-validation accuracy) to assess the capability
of the algorithm to accurately model the training set, and directly evaluating the
trained model by running it on new gestural inputs in real-time and observing its
behavior. In order to assess a newly trained model’s performance and determine how
to improve it, students employed cross-validation accuracy 13.8% of the time, training
accuracy 28.9% of the time, and direct evaluation 93.7% of the time.

Over the course of the assignment, 13 students computed cross-validation accuracy
at least once, and 12 students computed training accuracy at least once. Each student
computed cross-validation accuracy an average of 0.9 times (median = 1.0, 0 = 1.0)
in A, and an average of 1.0 times (median = 0.0, ¢ = 1.9) in B. Each student
computed training accuracy an average of 1.7 times (median = 0.0, ¢ = 2.9) in A
and an average of 1.6 times (median = 0.0, o = 3.7) in B. Students employed direct,
hands-on evaluation significantly more often than they computed cross-validation or
training accuracy, as discussed in Section 5.4.2; each student directly evaluated models
an average of 4.2 times (median = 2.0, ¢ = 4.2) in A and an average of 5.3 times
(median = 2.0, 0 = 5.3) in B.

Students used accuracy metrics and direct evaluation to gain different types of
knowledge about the models. In their written work, several students implied that
they treated a high cross-validation or training accuracy as reliable evidence that a
model was performing well, and students often reported cross-validation accuracy or
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training accuracy scores of their final models as evidence to the grader that a model
was in fact performing well or poorly. At least one student used cross-validation
to validate his own model-building ability, writing “Following [dataset creation], I
would usually quickly check the cross-validation and training accuracy and see if the
Wekinator thought that my model was a good one. If it was, my next step was usually
to run the model myself and observe how it reacted to different gestures.” This echoes
the findings of Amershi et al. (2010), who observed that users felt pressure to optimize
cross-validation accuracy as an end in itself, rather than using it as an informative
tool. Six students never computed cross-validation or training accuracy, and some
students indicated that they did not understand the metrics or that they found them
irrelevant or unhelpful: “...I preferred to just run the machine and see how it worked
when I was actually trying to use it in practice.”

Students reported using direct evaluation to assess models against a variety of cri-
teria, encompassing correctness, musical expressiveness, complexity, and naturalness.
In both Part A and Part B, students identified a model’s behavior as incorrect when
it produced an output contrary to what they believed was appropriate and expected.
Students also used direct evaluation to assess the model against the assignment goals
of musical expressiveness in Part A and reliably accurate classification in Part B. Like
the composers in Chapter 4, students sometimes indicated that, in Part A, complexity
and unexpected behavior were in fact desirable properties in a model. One student
wrote: “I actually found myself happiest with my model when I had introduced less
predictability into it,” and indicated that his goal ended up being to build a model
with “an optimal balance between controllability and versatility.” In Part A and
Part B, seven students mentioned that it was important to them that, when using
the models, the gestures and gesture-sound relationships felt “intuitive” or “natural.”

Model Modifications

Figure 5.6 on page 123 shows that the most frequent actions taken by students to
improve or change models were the adding, deleting, and editing of training data.
Students’ written work reveals that they typically performed these actions for rational
and predictable reasons. Students added new training data to correct errors or to
make a model’s behavior more complicated. They deleted subsets of examples to
address particular problems in a model, for example deleting the last round of training
examples recorded when a retrained model did not perform as anticipated, or deleting
all training examples that affected a parameter whose model was not performing well.
They cleared the training dataset when they gave up on fixing a model and wanted to
start anew; one student wrote: “I found it often easier to just start over again when
certain things were not working. When recording more examples, I often found that
the training got even more muddled.” Students who did change the learning algorithm
changed it when they thought it should be possible to build a more accurate model
from data.

In addition to modifying the training data to attempt to build models that better
met their goals for the system, students also often modified the data to reflect changes
to their goals, as we discuss next.
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5.4.5 Human Learning and Adaptation
Changing Goals

Students often adapted their goals for what they wanted the Wekinator to learn based
on what they discovered through direct evaluation. One reason for this adaptation
was that, through experimentation with the Wekinator, they realized that it was too
difficult or impossible to build a model that conformed to their initial ideas about
how they wanted gestures to control sound. When this occurred, students sometimes
simplified the learning problem, for example by reducing the number of classes in Part
B or changing the gestures themselves to be more easily differentiable. One student
actually changed from using the webcam color tracker to using the trackpad input,
which she understood better, so that she could better control the learning problem
she presented to the Wekinator.

Another reason that students changed their goals for the models was that, through
hands-on experimentation with the system, they sometimes discovered models per-
forming in unexpected ways that they actually liked better than how they had planned
for the system to work. One student described this experience in Part B: “...[A]s
I was trying to train [the model], T began to get a model that would play beats de-
pending on the extremity of the tilt. Beat 0 would be stationary, beat 1 would then
be a slight tilt in any direction, and beat 2 would be an extreme tilt in any direction.
I hadn’t really thought to do this initially, but once the training to some extent got
there on its own I decided to go with it.” Another student wrote in Part A: “First
I wanted to make something that worked just how I wanted, but then I thought it
more important to create something that was controllable but also generated awe-
some sounds I would never have thought of. In my estimation, this was a mission
accomplished!”

Two students indicated that they chose control gestures to use solely through
exploration, rather than starting from a set of gestures they were interested in the
Wekinator recognizing. One student wrote, “I didnt have a very clear idea in my
head of how I wanted the sound to change as the tether moved, so I used a trial and
error method. Eventually, I realized that there were certain gestures that I wanted
to correspond to certain sounds, so I recorded more examples to train the system
accordingly. As I noticed patterns starting to emerge in my tests, I recorded more
examples to make these patterns reliable while using the tether.”

Through direct evaluation and retraining, students also learned about the tradeoffs
associated with different variations of their models, and they used their judgement to
pick a model with the set of tradeoffs that they liked the best. One student wrote, “I
had originally tried to use all four beats. I first tried using a neutral position where
the computer was not tilted at all, and later used a position where the computer was
tilted to the left. I eventually decided to eliminate this fourth position, as every single
time it did this, I would lose two or three of my other beats, and get a much less
accurate model (usually a cross validation accuracy of 50%). I eventually forfeit the
extra beat for a much more accurate model.”
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Learning Effective Strategies for Interactive Machine Learning

Students also adapted their strategies for effectively performing machine learning,
based on their observations of how their actions affected the trained models. When
asked about their strategies for model building, ten students indicated that they
had learned during their interaction with the software to provide training data that
more clearly expressed their intentions. One student wrote, “In collecting data, it is
crucial, especially in Motion Sensor, that the positions recorded are exaggerated (i.e.
tilt all the way, as opposed to only halfway).” Another wrote, “I tried to use very
clear examples of contrast in colour for the tracker. If the examples I recorded had
values that were not as satisfactory, I deleted them and rerecorded. .. until the model
understood the difference.” Many students reported that they looked for outliers in
their training examples and deleted them. Some students even learned to balance
class proportions in the training set (“Each extreme of a parameter should be trained
with roughly the same number of examples”). This is remarkable, given that none of
these machine learning concepts were introduced or discussed in class.

Learning Effective Gestures

Finally, students adapted the ways in which they interacted with the trained models,
based on which gestures yielded the best results. Students’ comments indicated that
they did not necessarily view models’ “musical expressivity” and “reliable classifica-
tions” as intrinsic properties of the models themselves; rather, these qualities had to
do with the extent to which the students could learn to make musically expressive and
reliably classifiable gestures using the models. Direct evaluation allowed students to
find gestures that created the desired sonic outcomes, “practice” these gestures, and
evaluate the extent to which a performer could learn to play the mappings well. Many
of the students in the class were proficient musicians (outside of PLOrk), and their
written comments revealed that they treated the process of learning to effectively
play a model as similar to the process of practicing a traditional musical instrument,
and that they viewed human effort and adaptation to be appropriate and necessary
in both cases. For example, comments included: “The more time I spend with the
instrument, the more I know how to control it” and “Practice is useful when learning
an instrument.”

5.4.6 Success in Using the Wekinator

As shown in Figure 5.4 on page 122, students agreed that they were able to suc-
cessfully create musically expressive instruments and reliable gesture classifiers using
the Wekinator. In general, the feedback from students in the written component of
the assignment indicated that they enjoyed using the Wekinator and found it useful.
Their comments included: “Learning by experimentation was a lot of fun!”, “I very
much enjoyed this project!”, “I love Wekinator!”, and “Its so cool, the Wekinator
rocks.” Furthermore, students were able to build models that they were happy with
in just 27.1 minutes in A and 16.1 minutes in B, on average. This is an extremely
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short amount of time compared to what would be required to build a reliable clas-
sifier or expressive continuous mapping by writing code in ChucK or Max/MSP, for
example, even for an expert programmer.

A few aspects of the Wekinator were confusing or frustrating to some students.
Some students did not realize that they could limit the features selected for each
model or restrict the parameters affected by a training example, so they relied on
encoding their goals for independencies among parameters and between features and
parameters through carefully designing the training set (a difficult feat). Several stu-
dents also expressed frustration that the learning algorithm they used did not create
accurate models from the data. In particular, students using AdaBoost.M1 boost-
ing on decision stumps encountered many difficulties creating accurate models for
multi-class problems; these difficulties are predictable from the perspective of some-
one familiar with the algorithms, but students did not necessarily know that changing
the algorithm would likely fix many of their problems. Apart from these issues, which
can be addressed through interface improvements and better educating users about
how to use the Wekinator, students did not present complaints or criticisms about
the software.

5.4.7 Effects of Task and Order

To examine effects of task (A or B) and order (A first or B first) on the model
building process, we conducted a two-way ANOVA with one within-subjects factor
(task) and one between-subjects factor (order).? We examined the total number of
model retrainings, the total time spent on the task, and students’ agreement that
they could reliably predict the sound the model would make for a given input gesture
and that the Wekinator learned what they wanted it to (i.e., ratings for statements S3
and S4 in Figure 5.4). There was no significant effect of task on number of retrainings
(Fl’lg = 108, p > 05), total time (Fng = 246, p > 05), or S4 rating (Fng = 021,
ns); there was a significant effect of task on S3 rating (Fy19 = 12.04, p < .005).
There was no significant effect of order on number of retrainings (F3 19 = 0.29, ns),
total time (F} ;9 = 1.46, p > .05), S3 rating (Fi19 = 1.19, p > .05), or S4 rating
(F1 19 = 0.93, ns). We discuss these findings in Section 5.5.2.

5.5 Discussion

5.5.1 The Wekinator as a Teaching Tool

As discussed above, students were generally very successful in achieving the assign-
ment goals of building musical and reliable models, and they did so relatively quickly.
In this regard, the Wekinator was a highly successful pedagogical tool: no other soft-
ware system could have been used to allow students to build these types of musical

2Because the order was unbalanced with 21 students, we used SPSS to compute a Type III SS
ANOVA.
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Figure 5.9: Three PLOrk students performing their adaptation of George Gersh-
win’s “Summertime” from Porgy and Bess during the midterm concert. The leftmost
performer is playing the melody using laptop tilt, the middle player is using the Wek-
inator to control mandolin chords with the joystick, and the rightmost player is using
the Gametrak tether controller with the Wekinator to play an FM-synthesis drone.

gestural classification and regression systems, without requiring them to have signifi-
cantly more expertise in machine learning and requiring them to write a great deal of
code. By enabling students to design their own classifier- and neural network-based
systems very quickly, the Wekinator allowed students to experience new ways inter-
acting with computer music systems, as well as to explore the musical consequences
of their design decisions.

The Wekinator was a useful teaching tool in other assignments throughout the
semester. All students used the knowledge gained in the assignment discussed in this
chapter to create successful midterm performance pieces using the Wekinator. In the
midterm performance, students worked in groups of two or three and built new inter-
active, gesturally-controlled instruments, then composed pieces for these instruments
and performed them for their classmates and other Princeton students in a concert.
Some of the more creative new instruments built using the Wekinator for the per-
formance included a tether-controlled tubular bell synthesizer, a joystick-controlled
mandolin chord generator in a laptop re-adaptation of Gershwin’s “Summertime”
(Figure 5.9), and an accelerometer-controlled algorithmic glockenspiel process, where
the Wekinator affected the glockenspiel tempo and volume. Two groups of students
also chose to use the Wekinator in the final course project, which was left open-ended
with regard to the nature of the performance or installation that students created
and the hardware and software tools they used. In one of these projects, pictured in
Figure 5.10, the students created a “musical petting zoo” of instruments including a
joystick harmony-generator and a “tether harp” that played notes when the strings
were plucked. The students invited bystanders to play with these instruments, then
taught groups of people to collaboratively perform a simple piece.
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Figure 5.10: The “Musical Petting Zoo” final course project in action. These visitors
to the project exhibition are learning to play a Wekinator-based joystick harmony
generator and a Gametrak tether harp.

In addition to providing a tool for students to effectively build new instruments and
installations, several students commented in their written work later in the semester
that they found the Wekinator useful as a creative tool for discovering and realizing
new uses of the computer in their projects and compositions. For example, excerpts
from the midterm performance reports include: “Generated mappings can produce
interesting and unique sounds that you never would have thought of on your own,
which can later be used to great effect,” and “Sometimes, too, interesting things that
you didn’t intend happen ‘between the cracks’ of the examples you trained the model
with. This can lead to some neat musical effects.”

The Wekinator was used throughout the semester as a tool for teaching modular
design, object-oriented programming, and signal processing. In the midterm assign-
ment, several groups of students chose to implement their own synthesis classes. By
implementing the Wekinator ChucK synthesis class interface (see Section 3.3.4), they
were able to use the Wekinator to control new synthesis algorithms and composi-
tional processes that they designed themselves. Also, in an assignment later in the
semester, all students used their signal processing knowledge gained in the course to
build a ChucK audio feature extractor that implemented the custom ChucK feature
extractor interface (see Section 3.3.2).

Involving the students in designing their own code components to plug into the
Wekinator not only allowed them to discover through practice why modular design
and APIs are useful; it also gave them a quick way to experiment with their own
feature extractors and synthesis algorithms, discover whether or not they worked
correctly, and create something musically interesting with them without writing any
additional code. Because the Wekinator was used so extensively in the course, some
students expressed that they felt limited by the small number of available, pre-written
synthesis algorithms available for them to use. Therefore, in future classroom use of
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the Wekinator, we plan to engage students themselves in building more synthesis
classes and making them available to other students and all Wekinator users in an
online repository.

As machine learning was not itself a primary focus of the course, we did not
directly evaluate how much students learned about machine learning during the as-
signment or during their use of the Wekinator. However, as we discussed above, some
students did learn a surprising number of fundamental and subtle machine learning
concepts, including the circumstances under which some algorithms worked better
than others, and how properties of the training data such as noise, inter-class and
intra-class variability, and class imbalances affected the trained models. They learned
this information not from discussion in class, but simply by interacting with the sys-
tem and observing how different interactions and datasets produced different models.
Therefore, using interactive machine learning seems like a potentially useful and fun
way to explicitly teach students about machine learning principles and algorithms,
and this is another potential future application of the Wekinator.

5.5.2 Interactive Supervised Learning and Task Type

As discussed in Section 5.4.7 on page 131, students’ level of agreement with Statement
S3 was the only measured quantity where a significant difference was found between
Part A and Part B: students more strongly agreed in Part B than in Part A that they
could reliably predict the sound the model would make for a given gesture. Accord-
ing to the students’ written responses, some of them intentionally created models
with some built-in unpredictability in Part A, because they felt such models were
more interesting or musical. In Part B, on the other hand, unpredictability seemed
to be in competition with the primary goal of the task, creating a reliable gesture
classifier. Future work might more deeply investigate the differences in interactive
and algorithmic needs of users with different priorities regarding predictability versus
reliability:.

Based on the students’ written discussion of their strategy and evaluation meth-
ods, we believe there were other important differences between the way students built
and evaluated the systems, and perhaps differences in how to improve the Wekinator
to better support different types of tasks. The extent to which students had clear
and fixed ideas about the gestures and gesture-sound relationships they wanted to
learn did seem to be important in determining the strategy that they used to build
the models. Several students with clear goals for the models went to great lengths
to carefully design the training dataset to represent the precise gesture-sound rela-
tionship that they wanted, and it was students in Part B with clear ideas about the
mapping they wanted who changed the learning algorithms or expressed frustration
that the classifier they were using did not work. While more students in Part B than
Part A expressed having clear ideas about the mapping they wanted before start-
ing to use the Wekinator (19 in B, 8 in A), many students in B ended up changing
those ideas once they started working with the system; so in this study, the extent
to which students had fixed ideas they wanted the Wekinator to learn did not break
down cleanly by task. Students’ written responses regarding the extent to which
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their strategy remained fixed were not clear enough to allow testing for significant
differences in their behaviors. Additionally, it is unclear why different students had
such different goals for the system: this could be a matter of demographics (e.g., their
academic major), aesthetic priorities, or other factors.

We believe that future work might explicitly compare differences in how users
execute the interactive building of models when they have fixed versus more flexible
goals, and future work on improving interfaces for interactive machine learning might
consider the needs of these types of users separately. For example, an interface that
can provide feedback to a user indicating that a different learning algorithm might be
more appropriate for the current training dataset might be more valuable to a user
with fixed goals who has more limited ability to change the training set. We discuss
these ideas further in Chapter 6, where we present work with a user whose goals for
the trained models are relatively fixed by musical conventions, and in Chapter 8.

5.5.3 Improving the Wekinator

Students’ written comments highlighted several aspects of the Wekinator that might
be improved to make it more usable by people who are machine learning novices.
First, as mentioned above, several students indicated frustration that their models
were incapable of learning more than two or three classes. Examining the logs of their
work, it became clear that these students were using AdaBoost.M1 boosting on deci-
sion stumps. This algorithm will perform poorly in certain simple classification prob-
lems, such as recognizing a laptop’s tilt forward, backward, left, and right. It seems
that the students used AdaBoost.M1 because it was the first learning algorithm in
the alphabetically-organized list in the Wekinator GUI, and they used decision stump
base learners because that was the default setting for the AdaBoost.M1 algorithm.
In response, we modified the Wekinator so that the default setting for AdaBoost.M1
is now to boost on decision trees, which do not suffer from the limitations of decision
stumps on multi-class problems. The question still remains, though, of how to most
effectively educate novice users about which algorithms might perform best for their
data, or to inform them about how they might change the parameters of an algorithm
to achieve better results. At the very least, offering the user the suggestion that he
might experiment with changing the learning algorithm if he is having problems might
circumvent some of the frustration experienced by the students.

The question of how to educate novice users about certain machine learning con-
cepts that might be helpful to them is also relevant to other aspects of the system,
including interfaces for feature selection, adding meta-features, and computing train-
ing and cross-validation accuracy. It was clear from students’ comments that some
of them did not understand how to use or interpret one or more of these components
of the Wekinator. However, we believe that machine learning novice users could be
better educated about these concepts through careful explanations within the user
interface and/or a “help” system or tutorial, and that these users should be able to
use the Wekinator effectively for many problems without having to acquire too much
theoretical knowledge about machine learning. In the near future, we hope to collab-
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orate further with target novice users, such as students and professional composers,
to create more helpful documentation.

5.5.4 Further Discussion

We further discuss the implications of this work regarding algorithm and interface
design, the use of interactive machine learning by novices and in creative work, and
the larger role of interaction in supervised learning in Chapters 8 and 9.

5.6 Conclusions and Future Work

In this work, we have found that the Wekinator enables students to successfully and
quickly build musically expressive and accurate models, and observed that students
relied greatly on being able to evaluate models in a hands-on way and modify models’
training data in order to assess models’ subjective quality and improve them over time.
We have also gained a valuable perspective on how the Wekinator can teach users to
develop effective strategies for interactive machine learning, and how interaction can
over time help users develop and change their goals for the interactive systems they
are creating, as well as allow them to practice interacting effectively with the models
they have built.

This work suggests several veins of further research, including studying how the
flexibility of users’ goals for supervised learning might impact their interface and
algorithm requirements, how to better support interactive machine learning by users
who are machine learning novices, and how to integrate hands-on interaction into the
teaching of machine learning concepts. This work also suggested several improvements
to the Wekinator, some of which have been implemented and some of which are
planned for the near future.

Although the Wekinator was not developed as a teaching tool, our experiences
using it in the classroom have been remarkably positive: students were able to use
the Wekinator to create projects that would not have been possible otherwise, and
they were able to learn about a variety of topics, including machine learning, object-
oriented programming, sound synthesis, and gestural analysis in a hands-on manner
that engaged their creativity. At the same time, observing students using the Wek-
inator and hearing their feedback about the software was highly informative to us,
not only suggesting how the software could be improved, but also suggesting new
research questions. In our future work with the Wekinator, we hope to continue to
create and take advantage of these synergies between teaching and research.
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Chapter 6

Bow Gesture Recognition

6.1 Introduction

In this chapter, we discuss work undertaken with a professional cellist/composer to
build a gesture recognition system for a commercially-produced, sensor-equipped cello
bow. This bow, called the “K-Bow,” contains embedded sensors for measuring the
position and motion of the bow in real-time (McMillen 2008). One goal of this work
was to build a gesture classification system for standard cello bowing gestures, such as
bow direction (“up-bow” or “down-bow”) and articulation (e.g., “legato,” “marcato,”
and “spiccato”), for use in composition and live performance. A second goal of this
work was to investigate how interactive machine learning can be useful for building
gesture classifiers for discriminating among a pre-defined set of musical gestures. We
sought to discover the subjective criteria employed by the cellist to evaluate trained
models, how interactive model evaluation and training data editing enabled her to
improve the models, and the ways that she was educated and influenced by her
interactions with the software.

In this work, we have employed a user-centered design approach to the collab-
orative creation of the classifier suite and supplemental software infrastructure, in
conjunction with an observation-analysis approach to discovering how the cellist em-
ployed the Wekinator to evaluate models, create training data, and refine her strate-
gies for effective model-building. We begin this chapter with an overview of related
work on bowing gesture analysis, a description of the K-Bow, and a more thorough
discussion of our research motivation and goals. We describe our research method
in detail and present the findings of our collaboration with and observation of the
cellist /composer. Specifically, we present our observations regarding how interactions
with the Wekinator were used in model-building, the quality of the models produced,
the cellist’s techniques and criteria for model evaluation, the ways in which the Wek-
inator drove the cellist’s own learning and adaptation, and the cellist’s overall evalu-
ation of the Wekinator and models. We then briefly discuss the findings of this work
with regard to the subjective and objective evaluation of supervised learning systems,
the efficacy of applying interactive supervised learning with the Wekinator to bow ges-
ture classification, and proposed future improvements to the Wekinator software. We
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further discuss the implications of this work regarding interactive machine learning
applications, interfaces, algorithms, and evaluation methods in Chapter 8.

In the work presented in this chapter, we found that the cellist was able to success-
fully employ the Wekinator to create bow gesture models that were of a sufficiently
high quality to use in performance. She employed an interactive, iterative approach
to building most of these models, in which she alternated between evaluating models
and taking action to improve them by changing the training set, feature selection,
or learning algorithm. We found that the cellist employed a variety of criteria for
assessing the quality of a trained model, beyond just an assessment of its correct-
ness; furthermore, the cellist’s subjective rating of a model’s quality did not always
positively correlate with its cross-validation accuracy. These findings raise questions
regarding the extent to which cross-validation and other accuracy measures are use-
ful evaluation metrics in interactive contexts. We also found that interacting with
the Wekinator led the cellist to become a more effective user of interactive machine
learning, enabled her to redefine her goals for the models over time to account for
what the models were able to learn well, and led her to gain a new perspective on her
own bowing technique.

6.2 Background and Motivation

6.2.1 Bowing Gesture Classification

The problem of identifying and analyzing standard violin bow strokes by applying
supervised learning to analyze bow sensor data has been studied previously (Peiper
et al. 2003; Rasamimanana et al. 2005; Young 2008). This prior work focuses specif-
ically on classifying different bowing articulation techniques, where articulation is
defined as the “...manner in which notes are joined one to another by the performer;
specifically, the art of clear enunciation in singing and precise rhythmic accentuation
in instrumental playing...” (Slonimsky 1998, 16). There are several standard string
instrument articulation techniques, each of which prescribes a particular use of the
bow and bow arm before, during, and after contact with the strings; definitions and
instructions for producing each articulation can be found in Flesch (2000).

Peiper et al. (2003) built a bow position sensor system using a pair of electromag-
netic field sensors, then studied the application of decision tree classifiers to discrim-
inate among subsets of standard bow strokes (martelé, détaché, spiccato, legato, and
staccato). They designed the feature extraction system so that each feature vector
characterized the bow position, speed, and acceleration for a complete bowing action
in a single direction (i.e., an up-bow or a down-bow). The dataset for this work was
collected by recording sensor outputs during a human demonstration of different bow
strokes, then manually annotating the dataset with the proper bow labels; the design
of the dataset (e.g., the proportions of each class, and the string or dynamic level
used to demonstrate each stroke) is not otherwise specified in the published work.
The decision trees obtained accuracy in the range of 71% (discriminating among all
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five bowing classes) to 100% (discriminating between only détaché and martelé) on
the data.

Rasamimanana et al. (2005) more thoroughly investigated the effects of features,
performer, dynamic level, and tempo on the classification of martelé, détaché, and
spiccato strokes. For the measurements, they attached position and acceleration
sensors to a standard violin bow. The data used for experimentation was collected
from two violinists who were directed to play each articulation while varying the vi-
olin string, dynamic level, and tempo in a prescribed manner. It was observed that
the maximum and minimum acceleration and velocity in the direction of the bow
movement were the features most predictive of the articulation style. In applying a
k-nearest neighbor algorithm to the three-stroke classification problem on the data
collected from the two performers, Rasamimanana et al. achieved per-class classifica-
tion accuracy in the range of 85.8% to 96.7% on a held-out test set.

Most recently, Young (2008) applied a k-nearest neighbor algorithm to discriminat-
ing among six articulations: accented détaché, détaché lancé, louré, martelé, staccato,
and spiccato. The bow used in this work was a standard violin bow specially outfit-
ted with sensors for measuring downward and lateral force, three axes of acceleration,
and angular velocity around these three axes. Data was collected from eight violinists
playing an musical excerpt demonstrating each articulation on every string, and play-
ing at a single dynamic level and a fixed tempo set by a metronome. In this work, each
data instance used for training and classification was comprised of features extracted
over a set of sequential, tempo-controlled bow strokes of the same type; that is, the
goal of the classification was not to provide a note-level or instantaneous classifica-
tion of articulation. Applying a standard dimensionality reduction technique to the
dataset followed by a k-nearest neighbor classifier resulted in per-class classification
accuracies of 91.7% to 97.9%, computed by three-fold cross-validation.

The dataset creation and evaluation methodologies employed in this prior work,
especially in the work by Rasamimanana et al. and Young, have treated the prob-
lem of bow gesture classification as a conventional machine learning problem. The
datasets were carefully designed, with certain bowing characteristics (such as tempo)
intentionally held fixed in order to create a simpler problem than that of classifying
realistic performance-time gestures, while other bowing characteristics (such as which
of the four instrument strings were played) were intentionally varied in order to cre-
ate classifiers that were robust to these variations. Having created a dataset that
was thus representative of the researchers’ chosen scope of the problem, the goal of
algorithm and feature selection was to model the dataset as faithfully as possible, and
to measure success using test set or cross-validation accuracy. Therefore, the eval-
uations performed in this prior work are not directly informative of how accurately
the classifiers would classify bow gestures used in an actual performance, nor how
useful they would be for a composer desiring to incorporate them into a composition.
However, these results do indicate that supervised learning is a promising technique
for classifying articulatory bow gestures from these types of sensors and features.
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6.2.2 The K-Bow

The K-Bow is the first commercially-developed, mass-produced sensor bow for string
players (McMillen 2008). It contains several sensors, shown in Figure 6.1, for mea-
suring the position and motion of the bow in real-time. A three-axis accelerometer
located inside the frog (i.e., the large, rectangular assembly at the bottom left of
Figure 6.1, located at the end of the bow held by the player) senses tilt and accel-
eration of the bow in space. A grip sensor senses changes in the grip pressure and
surface area of the cellist’s bow hand. An angle-sensitive pressure sensor located at
the junction between the bow hair and the frog measures changes in the tension of
the bow hair as the cellist plays the strings of the instrument. The player also affixes
a small circuit board, shown in in Figure 6.2, beneath the fingerboard of the instru-
ment. This board creates an RF field and an infrared modulated wide field light cone,
whose interactions with the loop antennas inside the bow stick and with the infrared
detector inside the frog allow the measurement of the bow position and angle relative
to the instrument. These sensors are summarized in Table 6.1.

The K-Bow is manufactured in versions for violin, viola, cello, and bass. Each
version of the bow is designed to allow the string player to play using standard
technique without encumbrance by the sensors, and this is accomplished through a
wireless setup and through the bow’s physical construction, which is designed so that
the size and distribution of weight throughout the bow match a standard instrument
bow. The power source and circuitry for the on-bow sensors are located inside the frog,
and the sensor values are wirelessly communicated to a computer up to 10m away via
Bluetooth. The published data rate for the Bluetooth transmission or sensor values
is up to 625Hz, and we observed similar data rates in our work.

The K-Bow is shipped with a software suite, K-Apps, which receives sensor values
from the bow. This software provides a GUI interface for sensor calibration and
debugging, for example to allow the musician to check that the Bluetooth connection
is still alive and all bow sensors are working properly. K-Apps performs real-time
scaling of sensor values (e.g., into the range 0-4095), and it provides infrastructure
for sending sensor values to other software programs via OSC or MIDI, as well as
mapping sensor values directly to controlling K-Apps’ built-in modules for audio
spatialization, sample looping, and other musical processes. In our work, we used
K-Apps only for sensor calibration and scaling, debugging, and sending sensor values
to our own software via OSC.

6.2.3 Motivation and Research Goals

One goal of this work was to use the Wekinator to construct a set of robust classifiers
for standard cello bowing gestures that the cellist /composer could use in composition
and performance. As a professional computer music composer, she often creates inter-
active computer music compositions in which human actions trigger or dynamically
influence sound and visuals produced by the computer. Additionally, she often partic-
ipates in the performance of her own compositions, playing the cello with the K-Bow
as well as as manipulating the computer directly through a GUI. Having access to a
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Figure 6.1: The K-Bow sensors. From Keith McMillen Instruments (2009b).

Figure 6.2: The K-Bow emitter, attached beneath the instrument fingerboard. From
Keith McMillen Instruments (2009a).

set of real-time bow gesture classifiers would enable more natural performance-time
interactions with the computer; in the words of the cellist, “It allows me to augment
the bowing skills I spent years working on.” These classifiers could enable her to
trigger and control computer processes using her existing repertoire of bowing tech-
niques, and potentially enable the computer to track the position of the cellist as she
plays through a notated score. Additionally, bow gesture classifiers can reshape the
process of composition, allowing her to focus on how the musical meaning of bowing
gestures—rather than the sensor values themselves—might affect the evolution of a
piece. This presents clear practical benefits: “The Wekinator makes the composi-
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Table 6.1: A summary of K-Bow sensors.

Name | Description

X
y Bow acceleration and tilt, measured by internal 3-axis accelerometer
z

hair (h) | Bow hair tension

)
grip (g) | Grip pressure and surface area
length (1) | Horizontal distance between frog and fingerboard
bridge (b) | Vertical distance between bow and bridge
tilt (¢) | Tilt of bow relative to instrument

tional /programming process faster—its something I've wanted to do for a long time,
but the amount of data was daunting.” Finally, incorporating computer understand-
ing of bowing gestures also has aesthetic appeal to her as a composer, as “the bow is
really where the expression in a string instrument lies.”

A second goal of this work was to investigate human-computer interaction with su-
pervised learning algorithms in a gesture classification task that was more constrained
than those explored in the previous two chapters. While the composers in Chapter 4
and the students in Chapter 5 had some leeway in choosing and changing the gestural
vocabulary and the gesture-sound relationships they wanted the Wekinator models to
learn, the learning problems addressed in our work with the K-Bow were constrained
to modeling a gestural vocabulary that was fixed according to musical conventions.
Furthermore, while the users studied in the previous two chapters were able to adapt
their own performance-time gestures in order to elicit certain model behaviors, the
goal in this work was to create classifiers that worked with the cellist’s existing bow-
ing technique, without any adaptation on her part. The aspects of human interaction
that we were most interested in were the evaluation criteria and techniques used by
the cellist to evaluate bowing gesture models, the ways that interaction with the Wek-
inator enabled her to improve the models, and the ways that the cellist was educated
and influenced by the interactive machine learning process.

This work complements previous research on bowing gesture classification in that
it is focused on the process and techniques through which people—perhaps the per-
formers themselves—can build gesture classifiers that are most accurate and useful.
Prior work has focused on designing and evaluating supervised learning systems that
model a carefully pre-defined dataset as accurately as possible, without attention to
how the models will be used in practice, and without engaging musicians’ interaction
or expertise beyond the initial creation of the fixed training set. In contrast, the
goal here is to enable the musician who will be performing with the models to apply
her musical expertise to making them as useful as possible. As we will demonstrate,
this entails both enabling her to evaluate the models based on her own criteria for
usefulness (which, as it turns out, includes more than just classification accuracy),
and allowing her to take action to improve the models against these criteria.

142



6.3 Preliminary Project

We conducted a preliminary project with the cellist/composer and with the software
engineer of K-Apps to develop and refine infrastructure for computing features from
the raw bow sensor outputs and communicating these features to the Wekinator. In
parallel, we collaborated with the cellist to teach her how to use the Wekinator, solicit
her feedback on its user interface and design, and experimentally apply it to classifying
several standard bowing gestures. These classification problems, which are further
explained in Table 6.2, included bow direction, position on or off the strings, speed,
vertical position, horizontal position, roll, and articulation. We aimed to demonstrate
that the standard classification algorithms and interactive supervised learning process
supported by the Wekinator—in particular, the use of training sets created through
a few minutes of unstructured, interactive demonstration—were sufficient to allow
a K-Bow user to construct her own working classifiers. We also wanted to discover
which methods for segmenting and extracting features from the sensor outputs were
viable, given that previous work on bow gesture classification had employed different
sensors and a variety of segmentation methods. Additionally, we sought to discover
which improvements to the Wekinator software were necessary to better support this
type of classification task, and to implement them. This work was presented at the
Third International Conference on Music and Gesture (Fiebrink, Schedel, and Threw
2010).

Our working process in this preliminary project was unstructured and exploratory.
We met with the cellist in person on four occasions, for several hours each time, over
the course of six months. During each meeting, we showed the composer how to use
the most current version of the Wekinator, tested our current feature extraction and
communication software, experimented with building gesture classifiers using different
algorithms and features, and discussed how the Wekinator might be improved to make
the classifier-building process easier. In between meetings, we further developed the
Wekinator and feature extraction software based on our experiences and discussion.

We were successful in building proof-of-concept classifiers for each of the seven bow
gesture classes listed above. The cellist did not rigorously evaluate the classifiers,
but in each of the seven problems, she assessed that the classifier’s accuracy was
adequate and that she was confident she could address remaining significant errors in
its performance through further refinement of the training data or algorithms within
the Wekinator. Computing cross-validation accuracy of these classifiers yielded scores
in the range of 80% to 100%.

This project led to several features being added to the Wekinator software. Most
notably, the graphical interface discussed in Section 3.4.5 was created for visualiz-
ing and editing the training data. By using this interface to manually add class
labels, the cellist could use more natural performative gestures to create the training
data, switching fluidly between gesture classes (e.g., up-bows and down-bows) with-
out pausing to interact with the GUI. This interface was also useful in cleaning up the
training data, for example removing ambiguous instances recorded while the cellist
was switching from an up-bow to a down-bow.
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Figure 6.3: The K-Bow feature extraction GUI.

This project also led to the development of a K-Bow feature extraction application,
external to the Wekinator, which computed features found to be useful for bow gesture
classification. This application’s GUI is shown in Figure 6.3. The values of the eight
bow sensors are sent to this application from K-Apps, and it computes the feature
vector and sends it to the Wekinator using OSC. For each of the bow sensors, this
application computes the average, minimum, and maximum of the sensor value, and
of the first- and second-order differences of the sensor value, calculated over a sliding
analysis window whose size is specified by the user. The software also samples the
raw sensor values once per window. The GUI allows a user to select which of these
available features are sent to the Wekinator, adjust the window size, and adjust the
rate at which features are computed and sent (i.e., the “hop size”). Furthermore, to
aid in debugging, the GUI displays the current value of each K-Bow sensor output.
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Table 6.2: Bow gesture classification tasks.

Name Description
Direction The direction the player is bowing, e.g., up-bow, down-bow,
neither
On/Off String Whether or not the bow is in contact with one or more
strings of the instrument
Grip Whether or not the cellist was squeezing the grip sensor
Roll Whether or not the bow was rolled with the edge of the

hair against the strings (to play more quietly) or positioned
normally, with the hair more flat against the strings
Horizontal Position | The horizontal position of the bow relative to the instru-
ment, i.e., whether the frog, middle, or tip of the bow is in
contact with the strings

Vertical Position | The vertical position of the bow relative to the instrument,
i.e., sul tasto (bow over the fingerboard), sul ponticello (bow
near the bridge), or neither (bow in the middle)

Speed The speed of the bow against the strings, e.g., “Very slow”
to “Very fast,” according to the cellist’s own definitions of
these terms

Articulation The bowing technique employed to affect notes’ onsets, re-
leases, and transitions, including: legato (smooth and con-
nected), marcato (onsets emphasized and slightly detached),
spiccato (“enunciated” and percussive), riccocet (a “bounc-
ing series of rapid notes”), battuto (struck with the wood of
the bow), hooked (re-articulation of notes without a change
in bow direction), and tremolo (rapid alternation of up-bows
and down-bows) (see Flesch (2000) for further discussion)

6.4 Method

Having established the Wekinator as a suitable tool for building bow gesture classi-
fiers, we conducted a more formal study of the application of interactive supervised
learning to the construction of performance-ready classifiers. In this study, conducted
five months after the preliminary project, we sought to address our research questions
through observing and analyzing the cellist’s actions and comments as she worked to
construct eight usable classifiers for the gestures in Table 6.2.

The process of applying the Wekinator to creating these classifiers was collab-
orative. We assisted the cellist with the machine learning component of the work,
discussing the algorithms, parameters, and features with her. She was responsible for
assessing the quality of the trained classifiers and creating training data, and we did
not assist in these tasks. We recorded the cellist’s actions and comments throughout
this process using a combination of written notes, video, and automated logging. The
Wekinator logged all interactions with the software, and it saved all models, all train-
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ing data, and all data generated as the cellist ran trained models to classify new bow
gesture inputs. Additionally, we asked the cellist to evaluate and verbally rate the
quality of each trained model on a 10-point scale. We recorded these ratings along
with her commentary explaining the scores, if any.

For each of the eight gesture classification tasks, the cellist started from an empty
training set and built a classifier from scratch (i.e., the training data and models from
the preliminary study were not used). She worked on improving the classifier for
each task until she was satisfied with its performance or felt she could not improve
it further. The cellist freely chose the order in which the classification tasks were
addressed and the amount of time to allocate to each one. A secondary set of classifiers
were built in a separate, later session of model-building for five of the more difficult
tasks, in order to allow the cellist to use her knowledge gained from building the first
set of models. For clarity in the following discussion, we will refer to the first session
of model-building, in which models were built for all eight classification problems, as
“A)” and to the second session, in which models were re-built from scratch for five
classification problems, as “B.”

6.5 Observations

6.5.1 Interactions with the Wekinator

In building the Vertical Position, Grip, and Roll classifiers in Session A, the cellist
did not employ an iterative approach to model building. After creating each classifier
and directly evaluating it, she rated their subjective performance as “10” and judged
that they did not require further improvement. These three classification problems
were among the most straightforward of the tasks: each had only two or three classes,
which were easy for the cellist to demonstrate unambiguously and which depended
on quite simple properties of the K-Bow sensor features. Iteration was not needed
because the initial set of training examples clearly represented the problem, and the
initially-chosen classifier algorithm was able to create an accurate model from the
data.

In building the other five classifiers in Session A, the cellist employed an iterative
approach to model building. She identified problems with a model through evaluating
it (typically by running it on new gestures in real-time, as discussed in Section 6.5.3),
then addressed these problems through modifications of the training data, algorithm,
and/or features. Figure 6.4 illustrates the actions taken to build the models in the
five classification tasks in A for which the model was trained more than once. These
actions are summarized in Figure 6.6a, which displays the total and per-task average
of the number of times each system interaction occurred.

In building each of the eight classifiers in Session A, the learning algorithm was
retrained an average of 3.7 times (0 = 6.8, median = 1.0) (not counting the first
training). Each retraining followed a modification of the training set, learning algo-
rithm, and/or selected features, and each of these actions was important in at least
one task. Among the five tasks for which the classifier was retrained at least once,
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the training data was modified somehow after its initial creation an average of 2.5
times (median= 1.5, ¢ = 3.1), the learning algorithm and/or its parameters were
changed an average of 2.8 times (median = 1.5, ¢ = 4.1), and the selected features
were changed an average of 2.3 times (median= 1.0, o = 3.8).

In the second session of model building, B, the learning algorithm was retrained
an average of 1.0 times (median= 1.0, ¢ = 1.0) during each of the five tasks, after
the initial training. Again, editing the training data, algorithm, and features each
played a part in the process of improving the models. Figure 6.5 illustrates the actions
taken to build the models in the three classification tasks in B for which the model
was trained more than once. Figure 6.6b summarizes the total and per-task average
number of occurrences of each system interaction in B.

The cellist iteratively modified the training set, algorithm, and features in pre-
dictable ways as she worked to improve the models. To correct misclassifications
occurring for a particular type of gesture, she would often add more examples of that
gesture to the training set, with the proper labels. When she felt her training set was
well-representative of the problem, but classification accuracy was still poor, the al-
gorithm, its parameters, or its features were changed in an attempt to create a better
model of the current data. Occasionally the algorithm parameters were changed to
address very specific goals, such as increasing the value of k£ for k-nearest neighbor to
make the model’s labels more consistent through small changes in gesture.

In general, the attempted improvements to the model were effective, in that they
resulted in a subjectively improved model rating following retraining. The average
increase in rating from one iteration to the next was 0.48 (median= 0.5, ¢ = 2.1),
and the average increase in model rating from the first iteration of the problem to
the final iteration was 2.7 (median= 2.0, o = 2.0).

The training datasets were small enough that the training process did not interrupt
interaction with the system. Figure 6.7 shows the size of the average and largest
training dataset for each classification task, and the average and maximum training
time per task, for all trainings in A and B. Over all, the average model training took
4.4 seconds (median= 0.2, o = 17.7). In total, 204.9 minutes were spent interacting
with the Wekinator to build the eight classifiers in A, and 44.4 minutes were spent
to build the five classifiers in B.

6.5.2 Bowing Gesture Models

The best-rated models developed for each classification problem are described in
Table 6.3. As the table shows, it was possible to construct models rated highly by the
cellist (as “9” or “10”) for all classification problems. The cross-validation accuracy
computed on the training set of each of these models is also moderately high, with a
minimum of 83.5% and an average of 91.8%.

6.5.3 Techniques and Criteria for Model Evaluation

Many of our recorded observations and logging concerned the ways in which the
cellist evaluated trained models, the criteria she used to assess a model’s quality, and
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Figure 6.4: Actions taken for each task in A for which the model was retrained at
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between the first and second trainings of the Horizontal Position model, the model
was directly evaluated and the algorithm parameters were changed. Actions above
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Figure 6.6: Summary of the number of times each action was performed in between
retrainings of the model. Here, if an action was performed more than once between
subsequent retrainings, it is only counted once.

the ways her evaluations informed her interactions with the system. In this section,
we discuss our observations with regard to the two evaluation techniques employed:
cross-validation, and running the trained model on new gestural inputs in real time,
which we will refer to as direct evaluation.

Cross-Validation

Cross-validation was used only in Session A, and it was computed 14 times in total:
once for On/Off, once for Direction, once for Articulation, and 11 times for Speed.
Cross-validation was used for the Speed, Articulation, and Direction tasks after direct
evaluation had revealed the learning problem to be particularly stubborn, and several
different algorithms and feature selections were tried in succession to see if any one
might result in a usable model. Cross-validation was convenient for this purpose
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Figure 6.7: Training set sizes and times.

because it provided a faster and more consistent way of comparing models than direct
evaluation: each round of cross-validation took, on average, 1.1 seconds (o = 1.5).

Direct Evaluation

When the cellist wanted to assess the performance of a model, to decide whether the
model performed satisfactorily and she could start a new classification task, or to
assess how the model might be improved, she ran the trained model as she demon-
strated bowing gestures in real-time. During this direct evaluation of a model, the
cellist had the option of displaying its outputs textually in the Wekinator GUI or
using them to control a live visualization, as discussed below.

Because the cellist was asked to assign the current model a subjective rating from 1
to 10 based on her direct evaluation, this entailed a minimum of one direct evaluation
per classification task. It took her an average of 44.1 seconds of hands-on evaluation
to make a rating judgement (median = 35.5, 0 = 31.3). On average, she spent 52.8
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Table 6.3: The models rated by the cellist as the best for each classification task, built
in the first model-building session, “A.” The columns, in order, include: the task, the
cellist’s rating (on a 1-10 scale), the number of training iterations performed before
producing this model, its 10-fold cross-validation accuracy, the number of discrete
classes, the classification algorithm, and the features used by the classifier. The
features are computed by the feature extraction application described in Section 6.3,
computed from the base features listed in Table 6.1

Task Rating | Iter. CV | Classes | Classifier | Features
Direction 10 5 87.3 | 4 kNN lomin,  lovmaz,

lvmearm lamin7

lamax I lamean 7

On/Off 10 2 83.5 |2 AdaBoost | hmean
String on J48
Grip 10 1 100.0 | 2 kNN Imean
Roll 10 1 98.2 |2 AdaBoost | min, max,
on J48 and mean of
x, y, and z;
bmin7 bmaaz7
bmean
Horizontal | 10 2 89.3 | 3 kNN Lraw, lmean
Position
Vertical 10 1 90.0 | 3 J48 braw, bmean
Position
Speed 9 21 875 |5 AdaBoost | lymin, lomaz,
on J48 lomean — lamin,
lama:pu lamean
Articulation| 9 5 98.8 | 7 SVM all

seconds (median = 36.9, 0 = 52.2) in each round of direct evaluation, and in total,
38.3 of 249.2 minutes with the system were spent directly evaluating the models. The
cellist directly evaluated models an average of 5.4 times per task in A (median = 1.5,
o = 7.6) and an average of 2.6 times (median= 3, o = 1.7) per task in B.

The cellist’s verbal comments during direct evaluation and her choices to act to
correct certain aspects of model behavior indicated that her criteria for assessing a
model’s quality included its correctness, subjective cost or severity of errors, decision
boundary shape, and posterior probability distribution shape. We elaborate on these
criteria in the next sections.

Correctness and Cost

In all bowing classification tasks except for Speed, the categories being learned by
the model were defined by musical convention. (In the Speed task, the cellist herself
designated certain ranges of speed as “fast,” “very fast,” etc.) When a model’s clas-
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sifications output during direct evaluation deviated from what was musically correct,
this was predictably judged by the cellist to be an incorrect model behavior. This
behavior was most often addressed by adding additional training examples to the
training dataset, which were similar to those that caused the misclassification, but
with the correct labels. In extreme cases of failure, the cellist recreated the train-
ing set from scratch. The cellist did indicate that different misclassifications had
different degrees of severity, based on the musical appropriateness of the classifier’s
label. For example, classification mistakes a human cellist might easily make were
less problematic.

Decision Boundary Shape

The cellist occasionally complained that, as she gradually changed from one bow
gesture to another, a classifier’s output might jump around unpredictably before
stabilizing. When classifying Horizontal Position, for example, it was very important
to her that the classifier cleanly switch from a label of “frog” to a label of “middle”
at some point during a down-bow stroke, rather than jump between the two; it
was less important that this label switching happen at a precise horizontal position.
In other words, the shape and smoothness of the classifier decision boundaries in
the gesture space were more important than their exact locations. Actions taken
to smooth jagged decision boundaries included changing algorithm parameters (e.g.,
increasing k in k-nearest neighbor) and adding smoothly-labeled training data along
the boundary area.

Confidence and Posterior Distribution Shape

When evaluating a model’s quality, the cellist also took into account the shape of
the model’s estimated posterior probability distribution over the class label set. The
cellist was a proficient programmer, and she worked with us during the study to
design several simple visualization applications to help her understand more about the
model during direct evaluation. One frequently-used visualization, shown in Figure
6.8, displayed the estimated posterior distribution as it changed in real-time, using a
set of sliders. When the model classified her current bow gesture correctly but also
assigned relatively high posterior probabilities to several incorrect labels, the cellist
expressed dissatisfaction (at one point exclaiming, “Come on, be more sure than
that!”) and attempted to improve the model’s confidence. In the Horizontal Position
task, she actually changed her model rating from “10” to “9” when observing that
the distribution appeared to gradually change between the “middle” and “tip” classes
but not between the “frog” and “middle” classes while she bowed.

The cellist also considered the information gained from the posterior distribution
as potentially helpful for improving the practical usefulness of a poorly-performing
classifier. For example, when evaluating an Articulation classifier using the posterior
visualization, she noticed that although the model often output the wrong label for
three of the articulations, the posterior distribution for these articulations had a
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legato marcato spiccato riccocet  battuto hook tremolo

Figure 6.8: The posterior distribution visualization used for the articulation task. The
position of each vertical slider indicates the classifier’s estimated posterior probability
that each corresponding label is correct, given the current bow features.

predictable “signature” shape that could be post-processed by some simple code to
produce the correct label.

6.5.4 Human Learning and Adaptation

The cellist modified her own goals and behaviors throughout the interactive machine
learning process. She remarked that her strategy for providing training data “defi-
nitely evolved over the training sessions.” By the end of the study, her strategy for
classification problems she knew from experience were easier to model was to provide
as varied a training dataset as possible, varying “which string, bow position (frog
to tip and fingerboard to bridge), [and] speed and preparation (i.e., how high off the
string I would start)...” to make the trained model maximally robust to these effects.
On the other hand, for problems that she discovered were more difficult to model,
she started by simplifying the problem represented in the training dataset, keeping
variables such as speed and choice of string constant across all training examples in
order to build a model more likely to discriminate between classes based on only truly
relevant criteria. In this, the cellist intentionally used the training set to represent
the scope of the classification problem, just as was done in the prior bow classification
research discussed in Section 6.2.1. However, here, this scoping was fluid, changing
from problem to problem and over the course of a task, in response to both how the
cellist anticipated using the model in performance as well as how well the model was
performing.

There were no significant differences between model ratings in A compared to
those in B; final model ratings for the five classification tasks completed in both A
and B were identical, and a paired t-test comparing initial model ratings for each task
yields p = 0.88. Nor was there a statistically significant difference in the number of
iterations performed for each task (paired t-test yields p = 0.55), though the average
number of iterations for these tasks was 5.4 in A and 2.6 in B, due in large part to
the fact that it took 21 iterations to create a satisfactory Speed classifier in A, but
only 1 iteration in B. Also, the total time spent on these tasks in B was markedly less
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than in A (44.6 minutes in B versus 118.5 minutes in A), but this is due primarily to
the reduced time spent on the Speed task, and the paired t p-value is not significant
(p = 0.32). One interpretation of these results is that, while the knowledge gained
in the thorough and long investigation of training data creation strategies, learning
algorithms, and features undergone in building the Speed classifier in A was clearly
beneficial in building the Speed classifier in B, the one or two training rounds devoted
in A to each of the other four tasks (On/Off, Horizontal Position, Vertical Position,
and Roll) did not provide noticeable benefits to attempting these tasks a second time.

The cellist’s goals for the models, though constrained by the need to apply musi-
cally appropriate labels to natural performer gestures, were still sometimes adjusted
to reflect what a model was able to learn. For example, in the Speed task in session
A, after building a Speed classifier that worked well for three classes of speeds, she
decided to try building a finer-grained Speed classifier for five classes. As another ex-
ample, the cellist started the Bow Direction classification task with only three classes,
“up-bow,” “down-bow,” and “not moving.” However, when the initial trained models
did not perform as well as expected for this very simple classification task, a fourth
class was added. This class, “none of the above,” was used to represent the state of
the bow when it was changing direction.

Interaction with the Wekinator also led the cellist to gain a new perspective on her
own bowing technique, when occasionally she discovered through consistently poor
model performance that her training data was not as clear as she thought it had been.
For example, noticing that the bowing articulation model was not discriminating well
between riccocet and spiccato strokes, she reexamined her own technique for those
strokes and discovered that her spiccato technique actually needed to be improved
in order to be less like riccocet. After adjusting her technique, she was able to both
train a model that performed better and produce a better cello sound. As a second
example, the cellist learned through many subsequent failures to produce a working
Speed classifier in Session A that her bow speed was often inconsistent and did not
match her perception of how fast she was bowing. In reality, her perception of bow
speed had more to do with the speed at which she was playing notes (i.e., by moving
her non-bow-hand fingers on the strings) and the speed at which she was changing
bow direction (which was increased by shortening the length of the bow used in each
up-bow and down-bow, not increasing the horizontal bow speed). Neither of these
components of bowing speed were well-captured by the bow length sensor features
being used to classify speed, so the model performed poorly. The cellist decided that
her goal for the Speed classifier was nevertheless to classify the horizontal speed of
the bow, not her perception of speed, so she trained herself to consistently move the
bow at set speeds by attaching colored markers to her bow and watching them as she

played. Through this technique, she was able to create a cleaner training set and a
model that she liked.

6.5.5 Cellist’s Final Evaluation of the Wekinator and Models

The cellist moderately to very highly agreed with each of three statements regarding
the usefulness of the Wekinator. On a 5-point Likert scale, she rated “The Wekinator
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was able to create accurate bow stroke classifiers in our work so far” as a 4. She had
two responses for the rating of “The Wekinator was able to create bowing classifiers
that would be useful in performance”: indicating that “they could be used in perfor-
mance, but would have to be combined with other factors in order to make [them]
truly musically relevant,” she rated her agreement as 3.5, but said that her rating
increased to 4.5 “if you simply want a bow stroke to trigger. ..a change.” That is, as a
composer, she considered the job of making models musically useful to encompass far
more than creating models that performed accurately; it also encompassed composing
a musically appropriate context in which the models could be used most effectively.
Finally, asked to rate her agreement with the statement “The Wekinator was able to
create bow stroke classifiers more easily than other approaches” on the 5-point scale,
she responded “10 (so 5),” indicating that the ease of creating classifiers with the
Wekinator was a key advantage of the software.

6.6 Discussion

6.6.1 Subjective Ratings and Cross-Validation

We compared the cellist’s subjective model ratings against 10-fold cross-validation
accuracy computed on the same models, to assess the relationship between subjec-
tive model quality and the estimated generalization accuracy computed by cross-
validation. Figure 6.9 plots rating against cross-validation accuracy (computed after
the study’s completion) for all models created and rated in both A and B.

The cellist’s rating of a model was sometimes—and sometimes strongly—
correlated with the estimated generalization accuracy, but this was not the case for
all tasks. For each of the six classification tasks where three or more training iter-
ations were performed, we computed the Pearson’s correlation between the cellist’s
rating and the cross-validation accuracy. The Horizontal Position, Vertical Position,
Bow Direction, and On/Off String classification tasks had negative correlation coef-
ficients (—0.59, —0.44, —0.74, and —0.50, respectively), while speed and articulation
classification tasks (for which there were considerably more trainings performed) had
positive coefficients (0.65 and 0.93). Computing the Pearson’s correlation between
cellist rating and cross-validation accuracy over all models and all tasks yields a co-
efficient of » = 0.69. Computing the Spearman’s rho rank correlation—a measure of
correlation without an assumption of a linear relationship (Wilcox 2010, 178)—yields
a coefficient of p = 0.68.

The finding of a negative correlation between subjective rating and cross-
validation score for some tasks seems unexpected in the context of prior work in
building music classification systems. For example, in all work discussed in Section
6.2.1 above, cross-validation and test accuracy are the only evaluation methods used
to assess the trained models’ performance. The underlying assumption is therefore
that cross-validation and test accuracy are good indicators of how well a model will
perform in practice. In the four tasks here with negative correlation coefficients,
models with high cross-validation accuracy and a low user rating can be explained as
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Figure 6.9: The cellist’s subjective rating and the 10-fold cross-validation accuracy
score for all models created in A and B, grouped by classification task.

the result of the training set providing a representation of the learning problem that
was both inaccurate and too simple. For example, an initial version of the horizontal
position training set contained mislabeled examples for all instances of one class. The
training dataset was easy to classify correctly but the resulting model was useless. In
the other tasks, this negative correlation likely resulted from the cellist unknowingly
co-varying the bowing class of interest with more easily distinguishable aspects of the
gesture (such as the string being played), effectively leading the model to learn the
wrong concept. In all four cases, problems with the training set were undetectable
using cross-validation, whereas direct evaluation allowed the cellist to discover the
problems, fix them, and ultimately create models rated “10” for each task.

The sometimes negative correlation between cross-validation accuracy and sub-
jective rating suggests that the training set may be a poor resource for estimating
generalization performance during certain stages of the interactive model creation
process, especially when the user has not yet discovered problems with the training
data. We further discuss implications of this finding in Section 8.5.2.

6.6.2 Efficacy of Interactive Supervised Learning with the
Wekinator

The high quality ratings assigned to the final models in Table 6.2 and the cellist’s
overall assessment of model accuracy and usefulness presented in Section 6.5.5 indi-
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cate that these models are of a quality high enough to be used in performance. (The
cellist /composer is currently working to integrate them into new compositions.) Be-
cause our work only concerned a single cellist, we do not claim that our classifier suite
will generalize well to the bowing of other performers. Through future work with a
larger pool of string players, we could apply this process to creating a more robust set
of classifiers for wider distribution. However, a more immediate future application of
this work is to produce a K-Bow-specific version of the Wekinator, with algorithms
and features pre-selected for standard bowing gestures, and with an interface for
K-Bow users to interactively provide and refine their own training examples.

The final Articulation model’s cross-validation score of 98.8% is better than or
comparable to previously reported results for bow classification by Rasamimanana
et al. (2005), Peiper et al. (2003), and Young (2008), even while it is capable of
discriminating among more articulation classes than those studies. While there is
still room to improve the performance of the Articulation model, and while cross-
validation is a problematic metric for reasons discussed above, this and other study
outcomes indicate that an interactive supervised learning approach can build models
that are at least as accurate as the non-interactive, though methodical, approaches
to training data creation and model design described in the literature. In contrast to
a conventional machine learning approach, the interactive process enabled the user
to effectively improve the models’ performance on each task through a variety of
strategies, including modification of the training data. Additionally, the interactive
direct evaluation process enabled the user to identify problems with a model at a
fine level of granularity, as she explored the models’ outputs for specific gestural
inputs. This exploration allowed her to to judge a model’s quality according her expert
knowledge of how it should behave for particular gestures, which in turn allowed her
to drive improvements to the model based on precise knowledge of how she wanted the
model’s performance to change. Interaction thus offers a more direct way of building
models based on users’ priorities, compared to the more coarse-grained strategy for
model improvement used in a conventional supervised learning approach, which is to
search for algorithms and features that yield higher overall accuracy. Furthermore,
the interactive process enabled the user to make adjustments to the problem definition
and scope, and to her strategies for providing the most effective training data, based
on her evolving experience with the system.

6.6.3 The Wekinator Software

Building the bow gesture classification models engaged the use of nearly all of the
Wekinator’s current interfaces and features. The spreadsheet dataset editor was used
for deleting segments of training data that were noisy or contained mistakes, and
the graphical dataset editor was used extensively for visualizing the sensor features
and manually cleaning and re-labeling the training data. Both cross-validation and
direct evaluation were useful mechanisms in the interactive model building process:
cross-validation allowed an efficient means of comparing algorithms on the same data,
and direct evaluation using a variety of visualizations of the model outputs allowed
the cellist to explore models’ behavior and evaluate them against her own subjective
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criteria. The foot pedal input was critical to allowing an uninterrupted, hands-free
means of training data collection and model evaluation.

Several additional features could make the Wekinator a better tool for this sort of
gestural recognition task, to allow for more flexible handling of features and support
more appropriate modeling algorithms. First, for complex modeling tasks such as
articulation, it was not clear a priori which features that could be computed from
the bow sensors would be most useful for classification. Based on previous published
work finding that minima and maxima of acceleration and velocity were highly rele-
vant features, we integrated these measurements into our feature extractor applica-
tion. However, similar gestural modeling problems in music—for example, identifying
the beat patterns of a conductor—would likely require a different set of features to
be computed from the sensor or video input features. (Notably, analysis of human
conducting and interfaces for musical control using conducting gestures have been
studied extensively, for example by Boie et al. 1989, Lee et al. 1992, and Nakra 2000,
among many others.)

Experimentation with different types of features is likely to be necessary for com-
plex modeling problems for which the user is not able to redefine or restructure the
problem so that it can be modeled appropriately with the given features and al-
gorithms. The Wekinator itself currently offers no way to experimentally add new
features using its GUI, other than those already offered in the set of standard meta-
features. Support for interactively designing new features to be computed from the
existing feature set, and for retroactively adding them to the current training set,
could be very helpful for these types of problems.

Additionally, much of the prior work on bow gesture recognition has applied vari-
ous segmentation methods to the incoming sensor values, so that a new data example
is computed for each note, as in work by Rasamimanana et al. (2005), or each full
bow, as in work by Peiper et al. (2003). The Wekinator does not currently support
any such segmentation; rather, each incoming feature vector is treated as a separate
instance to be added to the training set or classified. This can make the learning
problem more difficult, in that it can lead to a higher degree of variance among train-
ing examples within a given class; for example, the “spiccato” training instances were
extracted not only from moments in time when spiccato notes were being played, but
also from moments in time where no articulation label truly applied, such as mo-
ments in between notes and during changes in bow direction. Segmentation methods
are useful in other classification problems beyond gesture analysis, as well; in music
information retrieval, for example, a common method of extracting feature vectors
from a music signal is to first detect the locations of note onsets, then extract a single
feature vector per note (West and Cox 2005). Therefore, it may be sensible to add
support within the Wekinator for specifying a segmentation mechanism that will dy-
namically identify moments in time when a training or classification instance should
be constructed, and accordingly readjust the windows over which meta-features are
computed.

Finally, though the current suite of classification algorithms performed well on
these gesture classification problems, there are other bow gesture analysis tasks for
which other learning algorithms might be more appropriate. For example, the cellist
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was also interested in building classifiers for user-defined control gestures, such as the
discrimination among digits (e.g., “1” through “5”) drawn in the air with the bow. In
a brief experimentation with digit classification, we were able to construct a 5-digit
classifier that worked reasonably well (rated “8” by the cellist and obtaining 98.9%
cross-validation accuracy), but the performance of the model was quite sensitive to
the speed of the gesture and the size of the “history” meta-features used. While
this type of task can be supported moderately well using the “history” meta-feature,
which represents temporal variation directly in the feature vector by concatenating a
set of the most recent values of an incoming feature, other learning algorithms that
are structured to take temporal behavior into account might be more appropriate,
such as hidden Markov models (Bishop 2007).

Additionally, the Wekinator’s current set of algorithms cannot meaningfully use
training examples that have partial or ambiguous class memberships. This type of
designation would be appropriate, for example, when switching between up and down
bows, or even changing from one articulation to another. A learning algorithm capable
of effectively handling these designations could make the training example creation
process more natural (e.g., the user would not have to create artificial additional
classes for ambiguous examples, as was done in the Bow Direction task above), and it
might produce more meaningful posterior distributions (e.g., representing a smoothly
changing decision boundary as a gesture moves from one class to another). Therefore,
future work might also examine incorporating heuristic methods for handling partial
class memberships into the Wekinator’s existing set of algorithms, and/or adding
probabilistic learning algorithms that can handle ambiguity in a principled manner.

6.6.4 Further Discussion

We further discuss the implications of this work regarding model evaluation, algo-
rithm and interface design, and the larger role of interaction in supervised learning
in Chapter 8.

6.7 Conclusions and Future Work

In this chapter, we have discussed the application of the Wekinator to classification
of standard cello bow gestures. Through an interactive machine learning process, a
cellist was able to construct working models for eight bowing gestures. The cellist’s
subjective rating of these models was quite high—“9” to “10” on a 10-point scale—and
their cross-validation accuracy is comparable to or better than previously published
results in bow gesture modeling.

The most significant findings of this work entail a greater understanding of the
range of interactions with the training data, algorithms, and features that support
building an effective classifier for natural musical gestures; an understanding of the
priorities and evaluation criteria of the cellist and information about how the subjec-
tive quality or usefulness of a model might not be well-described by a cross-validation
accuracy score; and confirmation that an interactive supervised learning process can
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still lead to and benefit from evolutions in users’ knowledge and goals, even for mod-
eling problems whose structure and goals are fixed and beyond the user’s control.
We have discussed above the future improvements to the Wekinator software that
could be helpful in modeling similar problems. Additionally, a wider study with more
cellists (or other string players using the K-Bow) would be valuable in gaining a
broader perspective on inter-player variations in bowing techniques and in studying
other musicians’ criteria for evaluating model correctness, their strategies for effec-
tively creating models, and the ways in which their interactions with the system
inform them about machine learning and about their own technique. While some
prior work in bow gesture classification has motivated by pedagogical applications,
the motivation seems to focus on the use of models trained by experts to give feed-
back to novice players. In contrast, a new vein of work might also use the process of
interactive model building itself to elicit critical reflection from students as they are
prompted by the system to consider how to provide a set of gesture examples that
successfully demonstrate the essential characteristics of a particular technique.
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Chapter 7

Case Studies:
Compositions Completed by
Wekinator Users

7.1 Introduction

In this chapter, we discuss case studies of three composers—a faculty member, a
graduate student, and an undergraduate student—who have employed the Wekinator
in the composition and performance of new musical works. In each of the follow-
ing sections, we draw on informal interviews with the composers to illustrate how
the Wekinator was used in their compositions, present their reflections on how the
software was most useful to their work, and discuss possible improvements to the soft-
ware that are suggested by their experiences. Following our discussion of the three
compositions, we present a brief summary of how composers used the Wekinator,
which aspects of the software were most useful to them, and how it influenced the
compositions they created. We further draw on the work presented in this chapter in
our discussions of interaction in supervised learning in Chapter 8 and of the use of
interactive supervised learning in creative contexts in Chapter 9.

Our own role in the compositions described below was minimal. We seldom dis-
cussed the compositions with composers as they worked, and on a few occasions, we
implemented new features or fixed bugs in response to users’ requests. The compo-
sitions presented here constitute users’ own work, and they illustrate the types of
projects that end users of the Wekinator may accomplish on their own, using the
version of the software that was presented in Chapter 3.

Overall, these users found the Wekinator to be a tremendously useful tool that
enabled them to approach their work in new and more effective ways. Each composer
employed an interactive approach to successfully building supervised learning models
for use in their instruments and compositions, and they used interaction with the
Wekinator to find inspiration, to take advantage of new ideas, and to work around
challenges they encountered. The composers valued that the Wekinator allowed them
to prioritize expression and embodiment, both during the compositional process and
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Figure 7.1: A performance of CMMV by PLOrk in April 2010. Drum Machinists sit
in the center of the stage, surrounded by Silicon/Carbonists, Tethered-uBlotarists,
and guest percussionists Cameron Britt and Anders Astrand.

in the compositions they created. They expressed that the Wekinator enabled them
to approach the process of composition in a new way and to create new and more
expressive types of instruments.

7.2 Clapping Machine Music Variations by Dan
Trueman

Daniel Trueman is a faculty member in Music Composition at Princeton University.
He is an active composer and performer of music for laptop, the Norwegian Hardanger
fiddle, and a variety of new and folk music ensembles. Trueman was a co-founder of
the Princeton Laptop Orchestra, and he has created, composed for, and performed
with several original computer music interfaces, including the BoSSA (Trueman and
Cook 2000). His work at Princeton has also included teaching, advising, and research
activities focused on the development of new instruments and interfaces for computer
music performance.

Trueman employed the Wekinator in the composition and performance of the piece
Clapping Machine Music Variations, or CMMYV, which is written for a variable-sized
chamber ensemble of acoustic and laptop musicians. The piece was performed at
Princeton by members of PLOrk on 3 April 2010, at the International Computer
Music Conference by the Sideband ensemble on 5 June 2010, and by participants
in the So Percussion Summer Institute on 25 July 2010. Figure 7.1 shows PLOrk
students performing the piece at the April concert. Audio and video from the PLOrk
and So Percussion Institute performances may be viewed online at http://www.cs.
princeton.edu/~fiebrink/thesis/resources.html.

Trueman’s program notes (Trueman 2010b) for the piece read: “At the core of
Clapping Machine Music Variations is a pair of laptop-based Drum Machinists. Sur-
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rounding this duo is an assortment of other instruments, some clearly defined laptop-
based instruments, others more variable and traditional in type. CMMYV takes spe-
cific inspiration from works by Steve Reich, Gyorgi Ligeti and Bjork. In particular,
the drum-machine algorithm was initially designed to mimic certain rhythmic pro-
cesses in the Ligeti Etudes pour Piano, processes which also coincidentally generate
the rhythmic pattern for Reich’s Clapping Music (this should come as no surprise,
as both composers were deeply influenced by traditional African rhythms); this al-
gorithm is then used to generate variations on the original Clapping Music pattern,
variations that are explored over the course of CMMYV. More generally inspiring are
pieces like Riley’s In C) and Andriessen’s Worker’s Union, where some things are
specified, other things are not, and anyone can join the party.”

CMMYV is written for three sets of human performers: “Drum Machinists,”, “Sil-
icon/Carbonists,” and “Any Instrumentalists.” The two Drum Machinists employ a
laptop GUI and a MIDI keyboard to control the delay-line-driven rhythmic patterns
and drum sample instrumentation of a ChucK drum machine. The Silicon/Carbonists
manipulate timbral and dynamic properties of sound produced by a granular sam-
pling synthesis patch, also written in ChucK. The piece requires an even number of
at least two Silicon/Carbonists. The Any Instrumentalists can play any instrument,
and they are also matched in pairs.

The Wekinator was used in the creation of the instruments played by the Sili-
con/Carbonists during two of the performances, and of the “Tethered-uBlotar” in-
struments played by the Any Instrumentalists in all three performances to date. In
the PLOrk performance, each Silicon/Carbonist employed the 3Dconnexion Space-
Navigator interface, pictured in Figure 4.2 on page 93, to drive six Wekinator neural
networks controlling continuous parameters of the synthesis patch. These networks
were trained by Trueman. In the ICMC performance, two performers familiar with
the Wekinator (Rebecca Fiebrink and Jeff Snyder) used the Wekinator to train a new
set of neural networks for controlling the same synthesis parameters using Snyder’s
Manta interface, pictured in Figure 7.2. Trueman modified the Silicon/Carbon map-
ping again in the So Percussion Summer Institute performance, this time creating an
explicit mapping between a Wacom tablet and the synthesis parameters.

The “Tethered-uBlotar” instrument was created by Trueman to be capable of
controlling eleven synthesis parameters of the uBlotar algorithm using the GameTrak
Real World Golf “tether” controller, pictured in Figure 4.1 on page 92. This USB
controller, which was used frequently by composers in the participatory design pro-
cess in Chapter 4, contains two strings that a performer can pull out of the base.
The controller measures the x-, y-, and z-coordinates of the two string handles in
3D space, and the Wekinator’s built-in HID feature extractor (Section 3.3.2 on page
47) is able to use these six features as input into its supervised learning models.
The uBlotar synthesis algorithm, described in Stiefel et al. (2004), employs a physi-
cal model capable of producing flute-like and electric guitar-like sounds, and it was
used by composers in the participatory design process in Chapter 4. Here, Trueman
used the Wekinator to train a set of neural networks to control eleven continuous
uBlotar parameters affecting the sound’s volume, timbre, vibrato, feedback, sustain,
and distortion. Figure 7.3 shows a performer playing the Tethered-uBlotar in the
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Figure 7.2: The Manta touch controller, created by Jeff Snyder 2010 and used in
the second performance of CMMYV. Each hexagon senses the surface area under a
performer’s touch, and programmable LEDs beneath the surface provide feedback to
the performer.

PLOrk performance of CMMYV. As the figure shows, the performance gestures for
this instrument were capable of being quite dramatic and large in scale.

Our discussion of CMMYV draws on e-mail correspondence with Trueman in Octo-
ber 2010, as well as on his published paper describing the piece and his compositional
process (Trueman 2010a).

7.2.1 Composing the Piece with the Wekinator
Background

Trueman was actively involved in the participatory design process described in Chap-
ter 4. During that process, he experimented extensively with the Wekinator, and he
built many models using the SpaceNavigator and tether controllers, and using vari-
ants of the Silicon/Carbon and uBlotar synthesis patches. His experiences during that
process informed both many changes to the Wekinator software and the development
of the instruments he created for CMMYV.

Trueman’s interests include creating new sensor-based musical instruments, re-
purposing commercial hardware and built-in laptop capabilities as control interfaces
for performing computer music, and composing and performing pieces for these new
instruments. He has been building and performing with new musical controllers since
the mid-1990s, and he has significant expertise in using ChucK and Max/MSP to
create mappings for these instruments and write software for many other aspects of
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Figure 7.3: A PLOrk students plays the Tethered-uBlotar in the first performance of
CMMYV. The performer has pulled the red strings out of the base of the GameTrak
USB controller, and he is controlling the uBlotar synthesis algorithm by manipulating
their positions in space.

his compositions. Prior to beginning work on CMMYV, Trueman characterized his
familiarity with machine learning as a “2” and his familiarity with the Wekinator as
a “4” on a scale from 1 (“Not at all familiar”) to 5 (“Extremely familiar”).

Asked about the motivation for using the Wekinator in CMMYV, Trueman wrote,
“I had two instruments in mind for the piece that posed problems for explicit mapping
approaches (both had many control features and many synthesis parameters) and lent
themselves nicely to the implicit [i.e., generative, not explicit mapping| approach of
the Wekinator.”

Using the Wekinator

Trueman characterized his use of the Wekinator as initially focused on experimentally
building many models to find out what he liked, then ultimately focusing more on
refining a few models over a longer period of time. He trained the Tether-uBlotar
and SpaceNavigator Silicon/Carbon models late in the composition process, and he
distributed final versions of the trained models to performers at the beginning of the
rehearsal process. He did not change the models after rehearsals began. He did,
however, continue to experiment with alternative controllers for the Silicon/Carbon
instrument through the subsequent performances of the piece, finding that he was
unsatisfied with the SpaceNavigator instrument.
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Trueman used the Wekinator to craft expressive instruments that sonically fit
into the overall piece, that lent themselves to playing using subtle gestures, and that
provided challenges to the performer while maintaining a predictability of control:
“For this piece, I wanted an expressive instrument within a narrow sound-range. I
wanted to be able to make small, subtle moves, and have them reflected appropriately
in the sound. I also wanted to have, at least in part, continuity, so that most of the
time there wouldn’t be sudden changes in the sound world. However, I did find that I
really liked having ‘tipping points,” gestural areas where the model changed suddenly;
these continue to be quite fun and interesting to negotiate. However, if there are too
many of these, and not enough continuity, the instrument begins to feel random, and
I prefer to have consistency and reproducibility in behavior.”

In performances of CMMYV, the performers launched the software component of
their instruments, which contained Trueman’s trained models, by running a shell
script. This script launched the Wekinator using the command line options described
in Section 3.5.1 on page 78 to automatically load the Feature Configuration and
trained Learning System, begin running the Wekinator to produce output synthesis
parameters from the extracted gestural features, and minimize its GUI. Performers
therefore did not interact at all with the Wekinator GUI.

Interactions During Model Creation

Trueman used playalong recording almost exclusively to create the training data for
the models, and he developed his own strategy for using the Wekinator to discover
the sounds that he wanted to use in the piece and to sculpt the behavior of the
trained models. He writes: “I had the most success with playalong situations, where
I refined a playalong score to outline the sonic extremes of the instrument I was
interested in playing, and where I then practiced playing along before creating a
data set.” Trueman often deleted all the training data and recorded new training
examples from scratch. As he played with the models and discovered more about the
sounds he wanted to use, he performed subsequent iterations of of playalong recording
using modified parameter values in order to narrow the instrument’s initially broad
sonic range down to a “more specific sound-world.” Additionally, he sometimes used
subsequent playalong iterations to provide better gestures in conjunction with the
same parameter sets, “so I can playalong again, but playalong *better® than I had
previously; I find I need to practice!”

He found that adding more data to existing training sets was an effective way to
“refine or bring out a particular feature of the sound world that [he was] after,” but
this action also sometimes changed the models in other ways that he liked: “The
most memorable example is when I wanted to teach it to be quiet when the tethers
were fully released. I added more training data to that effect, which worked well, but
it also changed the way the model behaved when the tethers [were] extended, and in
quite exciting ways. This was a nice, unintended result.”

Trueman also experimented with adding meta-features to the models, though he
states, “I feel like I need a lot more experience with the meta-features before I really
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understand them and can use them effectively.” He never edited the training data or
deleted subsets of the training data.

Trueman agrees that he became better at using the Wekinator as he composed,
“though I still feel like a beginner. I mostly got better at anticipating what kind of
training sets would work well and give me something that I found interesting to play.”
He indicates that he developed the strategy of using playalong recording, described
above, to become best able to create those types of training sets.

7.2.2 The Wekinator’s Influence on the Composition

The Wekinator software influenced the composition of CMMV by enabling Trueman
to discover new mappings and compositional ideas, challenging him to reflect on the
nature and role of the Silicon/Carbon instrument when he could not create a suitable
mapping for it, and enforcing particular constraints on the type of mappings he was
able to easily create using playalong recording.

Table 7.1 shows the extent to which he had initial plans for the gestures, sounds,
and mappings, and the extent to which he changed his mind about those aspects of the
instruments as he worked. Although he began the process of composition with some
clear ideas about the interfaces and sounds he wanted to use, the final realization of
the instruments was continually informed by his hands-on experimentation with the
Wekinator: “After creating an initial model, I spent a fair [amount| of time exploring
the model, learning what was possible and interesting. I created new models and
revised models many times, constantly re-evaluating based on how the instrument
responded. The final instrument is not one I would have, or could have, envisaged
before beginning.” He also writes that the instruments created with the Wekinator
could “themselves inspire new compositional ideas.”

Trueman was satisfied with the Tether-uBlotar instrument that he created with
the Wekinator, and he has not changed it since the first performance of CMMYV.
However, over the course of the three performances of the piece, he has experimented
with a number of different physical controllers for the Silicon/Carbon instrument.
Ultimately, he found that he was not satisfied with any of the mappings he created
for Silicon/Carbon using the Wekinator, and the failure of the Wekinator to produce
a satisfactory instrument led him to reflect on the nature of the instrument itself and
to reconsider its role in the piece. He writes, “in the end I found that an explicit
approach to creating a mapping for the CMMYV granulator instrument (with [the]
Wacom tablet) worked the best; somehow, the synthesis parameters suggested one-
to-one mappings quite naturally, and the non-linearity of the Wekinator models were
a bit frustrating. That said, in the end I think that that instrument is a bit of loser
for CMMYV, and I'm probably going to cut it completely; it may be that the fact that
it wanted an explicit mapping was a sign that it wasn’t a very good instrument.”

Although the playalong recording process was integral to Trueman’s strategy for
building his instruments, he was frustrated by the way that it privileged certain
types of playalong gestures and training datasets that had characteristics he felt were
contrary to his compositional goals. As discussed in Section 3.4.6 on page 74, the
parameter clipboard can be used as a playalong score that sequentially plays each
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Table 7.1: Rated level of agreement with statements about compositional goals before
and during work with the Wekinator in CMMYV, rated on a 5-point Likert scale from
1 = “Strongly disagree” to 5 = “Strongly agree.”

’ Statement \ Agreement ‘

Before I started working with the Wekinator. ..
I had a specific gestural interface in mind that [ wanted | 5
to use or build for the piece
I had specific physical gestures I wanted to use in the | 2
piece
I had a specific palette of sounds I wanted to use in | 4
the piece
I had specific ideas about how I wanted gestures to | 3
control sounds in the piece

While working with the Wekinator. ..
I changed my mind or had new ideas about the gestu- | 3
ral interface(s) that I wanted to use, or that [ wanted
to build
I changed my mind or had new ideas about the phys- | 5
ical gestures I wanted to use in the piece
I changed my mind or had new ideas about the palette | 4
of sounds I wanted to use in the piece
I changed my mind or had new ideas about how I | 5
wanted gestures to control sounds in the piece

set of parameters for a set duration of time. It does not currently support gradual
transitions from one set of parameters to the next; though Trueman requested this at
the culmination of the participatory design process, it has not yet been implemented.
Reflecting on this problem, he writes, “It’s hard to make playalong scores that don’t
feel ‘edgy’” and ‘pointy’ with the sudden changes, and so it’s hard to make an instru-
ment where you want to move smoothly but the playalong is so jerky.” Because it
was important to him to create instruments capable of subtle and smooth changes,
and to be able to practice along with the playalong scores in a natural manner, he
sometimes ended up creating new clipboard-based playalong scores to work around
this problem: “...with the tether-blotar, I made a fairly narrow playalong score—the
parameter changes were minimal—so the pointy-ness was minimized and the playa-
long more closely approximated what I wanted to ultimately do with the instrument
after training.”

7.2.3 Evaluation of the Wekinator

As illustrated in Table 7.1, Trueman found the Wekinator to be extremely valuable
as a compositional tool. He strongly agreed that it allowed him to create mappings
more easily, to create more expressive mappings, to create new kinds of music, and to

169



Table 7.2: Rated level of agreement with statements about the Wekinator’s usefulness,
in CMMYV; rated on a 5-point Likert scale from 1 = “Strongly disagree” to 5 =
“Strongly agree.”

Statement Agreement
The Wekinator allowed me to create mappings between ges- | 5

ture and sound more easily than other techniques.
The Wekinator allowed me to create mappings between ges- | 5
ture and sound that were more musically expressive than
other techniques

The Wekinator allowed me to create a kind of music that | 5
isn’t possible or that is hard to create using other techniques
Using the Wekinator allowed me to approach the process of | 5
composition in a new way

approach composition in a different—and more enjoyable—way. Addressing this last
characteristic, he emphasizes the usefulness of the Wekinator for rapid experimen-
tation and inspiration during the composition process: “I like to enjoy the process
of composing, however difficult it may be. I have a variety of tools and approaches
towards composing that I switch between, depending on the needs of the piece and
where I am creatively. The Wekinator suits this approach nicely, allowing me to create
new tools quickly and on the fly. These tools tend to have personality, which suggest
different kinds of music; I have always found musical instruments tremendously in-
spiring compositionally, and the Wekinator enables the rapid and fun construction of
new instruments that can themselves inspire new compositional ideas.”

Discussing the aspects of the Wekinator that were most useful to him, Trueman
highlights its support for creating instruments with a broad capacity for expressive-
ness, that were customized to a particular composition, and that were both accessible
and musically engaging to the performer: “The Wekinator enabled me to create a
physically expressive instrument that was precisely tailored to the sound-world of the
piece. In particular, I was able to prescribe a narrow pitch range around the primary
pitches of the piece that the tether performer could subtly navigate, creating a range
of timbres that are simply impossible with acoustic instruments. In performance, the
physical aspects of the tether controller combine, through the Wekinator mapping,
with the blotar physical model to create an instrument that is both compelling to play
and watch. It requires practice to explore and master, and is constantly revealing
new possibilities, but is fairly easy to get started on; the player doesn’t need to spend
lots of hours learning the instrument before joining the piece—rather the instrument
teaches the player how to play it, especially when within the complete sound-world
of the piece.”

Trueman further writes that the Wekinator “enables certain kinds of instruments
that simply wouldn’t exist otherwise,” and “I don’t think I would have attempted to
create this instrument without the Wekinator, given the complexity of the mapping
problem, and the piece would have turned out differently.” Elaborating on the type of
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instruments that may be created with the Wekinator, he emphasizes both the ease of
creating complex mappings and enabling the composer to privilege the physical “feel”
of the instrument during the design process: “Without [the Wekinator]|, it’s either
impossible or practically impossible (just too hard and tedious to do by hand) to create
certain kinds of instruments, so they never come into existence. .. But, maybe there is
another way of thinking about it. With [the Wekinator], it’s possible to create physical
sound spaces where the connections between body and sound are the driving force
behind the instrument design, and they *feel* right. It’s very difficult to do this with
explicit mapping for any situation greater than 2-3 features/parameters, and most of
the time we want more than 2-3 features/parameters, otherwise it feels too obvious
and predictable. So, it’s very difficult to create instruments that feel embodied with
explicit mapping strategies, while the whole approach of [the Wekinator], especially
with playalong, is precisely to create instruments that feel embodied. I like to think
of digital instrument building as a kind of choreography. choreographers are hands-
on—they like to push, pull, hold their dancers, demonstrate how things should go,
in order to get what they want, and the resistance and flow of their dancers in turn
feeds back into their choreography. This is quite similar to the approach that [the
Wekinator| engenders, and radically different than what explicit mapping strategies
enable.”

Trueman ties his extensive use of playalong recording to the importance he places
on physicality, and he relates this to his experiences as a fiddler: “The score creation
and practicing aspects are really important for me. It reminds me of learning to play
fiddle tunes; takes a long time, and I have to really work on the feel of the bowings,
beyond just getting the notes. I play along with other fiddlers a lot, live in jam
sessions and with recordings, so the playalong notion is very familiar. I'm used to
putting in a lot of deliberate work to get these tunes in my body, and I feel like I had
the most success with [the Wekinator] when I could set up a situation where I could
practice like that to a good score, and then train from that data.”

7.2.4 Suggested Improvements

Asked what new features of the Wekinator might be most helpful to him in the future,
Trueman reiterated his wish for parameter smoothing in the playalong parameter
clipboard, to give him a greater freedom to practice smoothly changing gestures along
with playalong scores, and to create training datasets that more effectively captured
his intentions for the instrument.

He also expressed interest in adding interfaces within the Wekinator to support
explicit mappings. Such support would enable more efficient experimentation with
explicit alternatives to the neural network models; Trueman performed such experi-
mentation when designing mappings for the Silicon/Carbon instrument, but he had
to design the explicit mappings outside the Wekinator environment. Additionally, he
saw this as being potentially quite helpful in applying the Wekinator to controlling in-
struments that used explicit mappings for some parameters and generative mappings
for others.
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7.3 The Gentle Senses by Michelle Nagai

Michelle Nagai is a graduate student in Music Composition at Princeton University.
In her work, she “creates site-specific performances, compositions, installations, radio
broadcasts, dances and other interactions that address the human state in relation-
ship to its setting” (Nagai 2010a). A composer of both acoustic and digital/computer
music, Nagai used the Wekinator throughout the conception, development, and per-
formance of a new musical instrument, the MARtLET, and in a composition for the
MARtLET called The Gentle Senses. The Gentle Senses was publicly performed on
27 April 2010 at Princeton University.

MARSLET is an acronym that stands for “Material Artifact, Responding to Light,
Emitting Tones.” The MARtLET interface, shown in Figure 7.4, is a wearable piece
of tree bark containing 28 light sensors. Nagai designed the MARtLET to be con-
trolled by “[t|racing inflections of light and shadow as [she moves her| hands and
arms across the surface” during performance (Nagai 2010b). She describes the rela-
tionship between the MARtLET instrument and The Gentle Senses as follows: “The
composition was developed in tandem with the construction of the instrument itself.
Although I am composing new work for the MARtLET, many of the sounds and
techniques that I created for The Gentle Senses have persisted. In this way, the first
work made for the instrument has also become the voice of the instrument (in part).”

Describing her performance technique, Nagai writes, “In performance on the
MARSLET, I work with very slow, subtle gestures, sometimes shifting only a few
inches away or towards the light. I use my hands to seek out the possibilities for
sound control across the surface of the instrument. Depending on the performance
environment, I am able to get a range of sound results from this type of movement.”
Sonically, The Gentle Senses is “a quiet, slowly changing piece with a lot of delicate
and subtle gradations of sound.” An audio excerpt of the piece may be heard at
http://www.cs.princeton.edu/~fiebrink/thesis/resources.html.

In the instrument and piece, the Wekinator is used in conjunction with several
Max/MSP patches created by Nagai. The light sensor values are communicated via
USB to a laptop, where they are first sent to a Max/MSP patch that applies filtering
to the values. This patch is used by the Wekinator as an OSC feature extractor (see
Section 3.3.2 on page 47), which sends the processed feature values to the Wekinator
to drive four multilayer perceptron neural networks. The Wekinator communicates
the outputs of these neural networks via OSC to a Max/MSP synthesis patch. In
that patch, they control the register (i.e., pitch range) of the generated sounds, as
well as the pulse period, amplitude, and filter () parameters of a vocoder.

The following discussion of The Gentle Senses draws on an in-person interview
conducted with Nagai on 27 May 2010 and on e-mail correspondence conducted in
October 2010.
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(a) Nagai wearing the MARtLET. (b) The sensing hardware behind the bark.

Figure 7.4: The MARtLET instrument, created by Michelle Nagai and performed in
her composition The Gentle Senses. Photos are by Kenta Nagai and are used with
permission.

7.3.1 Composing the Piece with the Wekinator
Background

Nagai took part in the participatory design group described in Chapter 4. During
that process, she experimented with using the Wekinator for building gestural control
interfaces for controlling the blotar synthesis algorithm (Stiefel et al. 2004) using
interfaces including the GameTrak Real World Golf controller (Figure 4.1 on page
92) and the laptop’s internal motion sensor. In parallel, she worked to develop her
ideas and the sensor hardware for the instrument that would become the MARtLET,
and she used the Wekinator to experiment with a light sensor prototype at the very
end of the participatory design process. From January 2010 until the performance
in April 2010, she worked independently on the composition of her instrument and
piece, using a version of the Wekinator software that incorporated the majority of
the improvements resulting from the participatory design process.

Nagai had considerable prior experience working in Max/MSP before composing
this piece, and she estimates that she had previously created “maybe a half dozen”
pieces or instruments that involved some sort of gestural mapping before her par-
ticipation in the participatory design work. She had not previously used machine
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learning, however, and she rated her familiarity with both machine learning and with
the Wekinator as low (“2” on a scale from 1 = “Not at all familiar” to 5 = “Extremely
familiar”) before beginning her work on the MARtLET.

The inspiration of the physical form of the MARtLET came to Nagai one day on
a walk through Princeton, when she passed a fallen tree. She immediately knew she
wanted to turn the wearable bark into an instrument, and she took it home. Nagai’s
plans for using the Wekinator in this new instrument took shape during her experi-
ences with the software in the participatory design workshop sessions: “After getting
familiar with the software, I began to understand the real value of the Wekinator
in working with the MARtLET—mnamely, the possibility for gestural control that is
non-explicit, changeable with each different performance environment and sensitive
to subtle differences in gesture and interpretation.”

Using the Wekinator

Nagai developed the trained Wekinator models in conjunction with the development
of the Max/MSP synthesis patches. She describes the composition process as entailing
“lots of back and forth” between adjusting how the Max/MSP patch produced sound
from the parameters and retraining the Wekinator models to adjust the types of
parameters it output for different gestures. She continued to refine the Wekinator’s
models “up until fairly late in the compositional process. At a certain point, just a few
days before performance, I settled on a set of models and saved that and worked with
it. I felt I needed time to learn the model before going on stage.” After practicing
with the final set of models, she continued to experiment with modifications to the
synthesis code “right up until dress rehearsal time. I was getting [Wekinator outputs]
that I liked, in terms of a steady stream of suitable numbers, and then I was switching
this stream of numbers into other parameters in my algorithm, or scaling it in different
ways, sort of on the fly, to see if I liked the results.”

Her goal for the Wekinator was to produce models that provided her with a
large expressive range while also allowing her to use a gestural vocabulary that was
appropriate to the piece: “I was always searching for [models| that would provide
enough sound variation, not just one or two different sounds types, but many, with
interesting, unpredictable transitions in between them. I did also prefer models that
responded to the most subtle movements and gestures. I didn’t like models that only
responded with a few big movements.”

To build models with these characteristics, she developed a strategy of using the
training data to map out the range of effects that she hoped to control, and to
associate different areas of the instrument with the different effects: “I worked with
blocking light to specific areas of the instrument and sending in different processing
effects (all sound sources were sine tones, with various processing added). In this way
I was trying set up zones for different textural, timbral and registral effects, hoping
that I could work with them somewhat independently and also in combination with
one another.”
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Interactions During Model Creation

Nagai primarily created training data by specifying sets of parameter values in the
“Collect Data” subview of the Wekinator’s “Use it!” tab (see Section 3.4.5 on page
66) and recording the corresponding gestural inputs, stating that she “never was
comfortable with playalong learning. I would have liked to work more with the
spreadsheet and graphical editor, but time didn’t allow for that.” She frequently
added more data to the training set and retrained when she wanted to change a
model without starting over, but she was often unsatisfied with the outcomes: *“I
don’t think [adding data] was all that useful a strategy...It seems to just muddy
what I was working with. I almost always was forced to delete and start from scratch
at some point after adding more training data, when I lost my sense of where things
were headed.” She frequently deleted the entire training data set and started over,
and she only occasionally edited the training set.

Nagai experimented extensively with using feature selection to limit which light
sensors influenced each sound parameter, and to reduce the sometimes significant
training time required by the neural networks. As mentioned above, she also fre-
quently experimented with how the neural network outputs were used in the synthe-
sis patch. She did not edit the neural network architecture or change its learning
parameters.

Nagai remarked that, through her interactions with the Wekinator, she learned to
use it more effectively. She also learned to take measures to reduce the training time
of the neural networks; training could take up to 30 minutes, presenting an obstacle
to efficient work: “I learned to limit features in my training sessions so that it would
take less time to train. I also learned how to retrain only a part of model. This was
very helpful. And I learned how to distinguish what part of the model wasn’t working
and could better focus on changing just that part.”

7.3.2 The Wekinator’s Influence on the Composition

As shown in Table 7.3, Nagai approached her work with the Wekinator without clear
initial ideas about the gestures or sounds she wanted to use; instead, she developed
these ideas during and through her work with the software. Commenting on the
slow and subtle gestural vocabulary she used in the piece, she writes, “I've developed
this kind of gesture, I believe, as a direct result of the responses I got from training
the Wekinator. More specifically, I wasn’t getting entirely predictable results from
the Wekinator using gestures that were fairly consistent and specific. So instead I
developed a kind of searching, sensing performance gesture that seems to work very
well with the visual element of the MARtLET and allows the Wekinator to trigger
sounds with more subtlety and in a more aesthetically satisfying way.” Additionally,
she wrote about the sound of the piece: The Gentle Senses turned out to be a quiet,
slowly changing piece with a lot of delicate and subtle gradations of sound. I think,
again, this was largely due to the kind of responses I was getting from my trainings
with the Wekinator.”
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Table 7.3: Rated level of agreement with statements about compositional goals before
and during work with the Wekinator in The Gentle Senses, rated on a 5-point Likert
scale from 1 = “Strongly disagree” to 5 = “Strongly agree.”

’ Statement \ Agreement ‘

Before I started working with the Wekinator. ..
[ had a specific gestural interface in mind that [ wanted | 1
to use or build for the piece
I had specific physical gestures I wanted to use in the | 1
piece
I had a specific palette of sounds I wanted to use in | 1
the piece
I had specific ideas about how I wanted gestures to | 1
control sounds in the piece

While working with the Wekinator. ..
I changed my mind or had new ideas about the gestu- | 5
ral interface(s) that I wanted to use, or that [ wanted
to build
I changed my mind or had new ideas about the phys- | 5
ical gestures I wanted to use in the piece
I changed my mind or had new ideas about the palette | 5
of sounds I wanted to use in the piece
I changed my mind or had new ideas about how I | 5
wanted gestures to control sounds in the piece

7.3.3 Evaluation of the Wekinator

As illustrated in Table 7.4, the Wekinator offered Nagai a valuable tool for creating
mappings more easily, creating more expressive mappings, and creating a new kind
of music and taking a new approach to composition.

Compared to the music she might have created with other techniques, Nagai valued
how she was able to use the Wekinator to create music where, in her experience as
a performer, “[tlhere was a stronger connection between the physicality of specific
gestures and the resulting sounds, more like playing a violin or some other acoustic
instrument.” It was important to her that this relationship was both direct and
complex; because the logical, mathematical relationship between a gesture and the
perceived sound was less obvious, her attention (and that of the audience members)
was more focused on the experience of the piece and not on attempting an intellectual
deconstruction of the mapping function.

Nagai discusses how the Wekinator enabled a new approach to composition: “I
have never before been able to work with a musical interface (i.e. the MARtLET)
that allowed me to really ‘feel” the music as I was playing it and developing it. The
Wekinator allowed me to approach composing with electronics and the computer more
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Table 7.4: Rated level of agreement with statements about the Wekinator’s usefulness,

in The Gentle Senses; rated on a 5-point Likert scale from 1 = “Strongly disagree”
to 5 = “Strongly agree.”
Statement Agreement

The Wekinator allowed me to create mappings between ges- | 4
ture and sound more easily than other techniques.
The Wekinator allowed me to create mappings between ges- | 5
ture and sound that were more musically expressive than
other techniques

The Wekinator allowed me to create a kind of music that | 5
isn’t possible or that is hard to create using other techniques
Using the Wekinator allowed me to approach the process of | 5
composition in a new way

in the way I might if I was writing a piece for cello, where I would actually sit down
with a cello and try things out.”

Asked what aspects of the Wekinator were most useful in composing the instru-
ment and piece, Nagai responds, “...[T]he ability for sound-gesture mappings that
are flexible and somewhat unpredictable (within a larger pre-determined framework).
This not only contributed to the composing of the piece, but helped to influence the
construction of the instrument, the gestures used for performance and subsequent
revisions of both of these elements.”

The most significant difficulty Nagai encountered during her use of the Wekina-
tor was the sometimes high training time of the neural networks. Throughout the
composition process, she at times used up to 15 neural networks, each with up to
28 features and several thousand training examples. In the worst case, training the
entire set of neural networks took up to half an hour or more, and she found this
frustrating and disruptive. Additionally, she was distressed by not having a clear
idea of how long to expect the training to take, as the progress bar displayed by
the Wekinator only indicates the percentage of models that have been trained, not
the progress of the currently training model. (This aspect of the Wekinator’s imple-
mentation is constrained by the fact that finer-grained information about training
progress is not easily accessed from Weka). She did not feel like she had adequate
information to choose whether to cancel the training or wait for it to complete. A
significant amount of her work with the system therefore concentrated on figuring out
how to reduce training time, in particular by using feature selection and only training
a subset of models at any given time.

Nagai expressed a desire to edit the training data more often in the future, using
the spreadsheet viewer or graphical editor. She found that deleting all the training
data and starting over sometimes involved more overhead than she was willing to
expend, while simply adding more training examples muddied up the models’ behavior
in an unsatisfying way. She saw editing the data as a viable alternative that she was
more comfortable trying after gaining more experience using the Wekinator: “As I
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Figure 7.5: PLOrk students performing G. Performers are following the Processing
score on their laptop screens and playing the piece by tilting and hitting their laptops.

got more comfortable with the software, I attempted it more. In future work with
the Wekinator, this will certainly be something I do more of.”

7.4 G by Raymond Weitekamp

Raymond Weitekamp was a senior undergraduate student at Princeton in Spring
2010 when he composed the piece G for the Princeton Laptop Orchestra (PLOrk).
Though a Chemistry major at Princeton, and now a graduate student in Chemistry,
Weitekamp is an active electronic musician and performs under the name “Altitude
Sickness.” He describes his compositional background as “primarily rooted in sample-
based music, as well as in on-the-fly looping of live instruments.” Weitekamp’s com-
positions are “heavily inspired by the hip hop and ‘beat music’ cultures, which are
rooted in sampling,” and his music frequently “recontextualiz|es] the sampled works
by layering loops and non-linear patterns of those loops.”

Weitekamp was a member of the PLOrk ensemble for several years, and he wrote
G to be performed by nine members of the group during his final semester. He
describes the motivation and concept of the piece as follows: “Compositionally, my
motivation for G was to step outside of my mode of working with sample-based music;
every instrument in the piece was synthesized in Chuck (in realtime). Conceptually,
the original idea for the piece was to have each performer map their own physical
gestures on the laptop to specific musical events. The idea was to use the play
along learning algorithm at the beginning of the piece to classify which gestures (as
read by the internal accelerometer) correspond to which sounds. The only controller
for each of the instruments was the keyboard and [motion-sensor-driven] Wekinator
output. The score for the piece was delivered in realtime using a 3-D Processing
sketch, delivering notes in a ‘Guitar Hero’ fashion.” A screenshot of this score as it
was displayed on performers’ laptop screens appears in Figure 7.6. Figure 7.5 shows
students performing G during a concert on 3 April 2010 at Princeton University; a
second performance was given at Princeton on 15 May 2010. Audio and video of
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Figure 7.6: The Processing-driven score for Weitekamp’s G. Objects in the score
float through the three-dimensional grid towards the performer, and they indicate
the timing and location of laptop hits as well as the timing and position of laptop
tilts.

the 3 April performance can be accessed online at http://www.cs.princeton.edu/
~fiebrink/thesis/resources.html.

Compositionally, G is beat-oriented and tonal, and the use of the Processing
score enables a style of performance that is—compared to many PLOrk pieces—
less improvisatory and more rigidly structured with regard to both the temporal
evolution of the piece and the roles played by each performer. G employs four virtual
instruments created by Weitekamp, which are characterized by distinct synthesis
algorithms and distinct roles in the piece. These instruments were each played by
two or three performers, and they are described in Table 7.5.

As the table shows, each instrument is played using the same set of laptop gestures:
horizontal and vertical tilt, and physical hits to two different locations on the laptop.
The composition uses the Wekinator to detect these gestures using three support
vector machine classifiers. The first classifier classified performers’ hits or taps on the
laptop into two discrete hit locations at the side and top of the machine, as well as into
“no hit” and “tilting” states. All performers used the same set of hit classifiers. The
second and third classifiers quantized horizontal and vertical tilt, respectively, into
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Table 7.5: The four laptop instruments played in G. Columns indicate the instrument
name, the ChucK classes used for synthesis, and the mapping from vertical tilt,
horizontal tilt, and hits at two locations on the laptop to the parameters of the
sound.

Name Synthesis Mapping
Algorithms

Vert. tilt: “Wobble frequency”
Horiz. tilt: Pulse width

Hit 1: Sidechain compressor

Hit 2: “Frequency jump effect”

Vert. tilt: High-pass cutoff frequency

Wobble Bass | PulseOsc

Lond Sonth iu'l(s)e()sc Horiz. tilt: Pulse width
ead Syn nse Hit 1: Start “howl effect”
Saxofony

Hit 2: Stop “howl effect”

Vert. tilt: Chorus effect mix level

Horiz. tilt: Rhythm patterns of “Fast for-
Bells BandedWG ward” effect

Hit 1: “Fast forward” effect

Hit 2: Variation of “Fast forward” effect

?{:S(gzcz Vert. tilt: Select drum sounds used
Drum Shakers Horiz. tilt: “Bitcrush effect”
e Noise Hit 1: Play drum 1 of selected set
ModalBar Hit 2: Play drum 2 of selected set

3 or 5 discrete classes, depending on the instrument. The three classifiers’ outputs
were used to control different ChucK synthesis classes depending on the performer’s
instrument, as described in Table 7.5.

To perform classification, the Wekinator used the built-in motion feature extractor
alongside a custom ChucK feature extractor written by Weitekamp. This custom
extractor computed additional features from the laptop’s accelerometers, including
multiple time-averaged derivatives and maxima. The tilt classifiers used only the
built-in motion feature extractor, and the hit classifier used only the custom features.

The following discussion of G draws on an in-person interview conducted with
Weitekamp on 23 April 2010 and e-mail correspondence in October 2010.

7.4.1 Composing the Piece with the Wekinator
Background

Prior to creating G, Weitekamp had considerable expertise developing music perfor-
mance software in ChucK and Processing. He had developed software for use by both
himself and other musicians; notably, Weitekamp had previously written and pub-
licly distributed “SmackTop,” a software package for translating a performers’ laptop
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“smacks” into MIDI messages (Weitekamp 2009). The SmackTop package was im-
plemented without using machine learning or the Wekinator, and prior to beginning
work on G, Weitekamp characterized his familiarity with the Wekinator as “1” and
his familiarity with machine learning as “2” on a scale from 1 (Not at all familiar)
to 5 (Extremely familiar). Weitekamp did not take part in the participatory design
seminar discussed in Chapter 4, and did not receive instruction on the Wekinator in
the PLOrk class discussed in Chapter 5 (he was enrolled in a different section of the
course, COS/MUS 316).

The motivation for using the Wekinator in G' stemmed from Weitekamp’s desire
for a larger gestural vocabulary than that offered by SmackTop, and a potential to
customize the vocabulary in a way that was appropriate for the performers: “I was
interested in the challenge of classifying different types of ‘hits’ using Wekinator. For
example, using the algorithm to classify between hitting the right and left sides of the
laptop, or soft vs. hard hits. I really wanted the performers to be able to choose their
own gestures to perform a fixed musical composition.” As we discuss below, he did not
ultimately find it feasible to allow performers to design customized gestures, but he
writes, “Though this wasn’t realized, I feel that with more preparation time it would
have been possible to do play along learning as the prelude to the piece. Some of the
motivation for allowing the performers gestural freedom comes from my experience
performing with PLOrk. Many of the hard-coded, linear mappings between controller
and instrument lead to awkward physical gestures that were either uncomfortable or
unrealizable for some of the performers. As well, there were certain pieces where I
felt my gestures were more of a gimmick than an expression. I wanted to develop
a piece which would remain fixed musically, but allow each performer to create an
individual gestural mapping that was both comfortable and expressive.”

Using the Wekinator

Weitekamp’s work with the Wekinator entailed some research to determine which
custom features he might compute from the raw built-in accelerometer outputs in
order to best discriminate among different hit locations. Over the semester, he de-
veloped his own set of Wekinator-trained models for hit classification in conjunction
with refinements to his custom feature extractor.

As mentioned above, Weitekamp’s original plan for the piece was to have per-
formers define their own gestures to use in performance. Though Weitekamp himself
was able to use his final set of features to train a hit classifier capable of reliably
discriminating among four different hit locations, he was disappointed to find that,
after several weeks of rehearsal in which performers used playalong learning to train
their own models, not all of his performers were consistently successful in creating
classifiers that were accurate enough for use in performance. Therefore, for the final
performance, he chose to remove the playalong component of the piece. Instead, he
distributed pre-trained models to the performers a few weeks before the performance.
These models were trained by him to recognize just two hit locations, and performers
could practice with them outside of the performance to ensure they could consistently
perform hits that were distinguishable by the classifiers.
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Early in the process of developing the piece, Weitekamp contacted us and ex-
pressed that he was having difficulty creating training data for the different hits. In
particular, it was hard to synchronize his hitting of the laptop precisely with a play-
along score or with manually clicking on the GUI button to start and stop recording,
so that training features extracted just before, during, and just after a laptop hit were
labeled cleanly. To help solve this problem, we implemented the OSC control mecha-
nism for starting and stopping recording, described in Section 3.5.2. Weitekamp then
wrote OSC “gating” code in ChucK, which he used during training of the different
hit locations. The gating mechanism enabled recording of new training examples
only when the internal accelerometer values exceeded a hard-coded threshold (i.e.,
immediately after a laptop was hit). With this mechanism in place, Weitekamp was
able to successfully train accurate classifiers.

Interactions During Model Creation

When creating the training data for the models he built himself, Weitekamp used
playalong recording as well as the standard training data recording mechanism. He
focused his effort on building classifiers that “classified the different hits correctly and
accurately, and [were| not sensitive to laptop orientation.” To improve models whose
performance Weitekamp characterized as “loose” (meaning that hits that seemed
similar to the training examples did not result in accurate classifications), Weitekamp
added more training examples. Before getting the gating mechanism to work well,
he often used manual editing of the training data in the spreadsheet editor, in order
to delete all but the training data produced immediately after a hit was performed.
He very frequently deleted the entire training set and started building a model from
scratch, “Especially when I had to update the models or change input features, or if
classification was wrong.” As mentioned above, Weitekamp experimented extensively
with using feature selection to discover which of his custom features were most useful
for classifying different types of hits.

Weitekamp states that he never changed the classifier algorithm or its parameters
in an attempt to improve the models. He started by using a support vector machine
algorithm for classification, and it just “seemed to work...and I had too many other
things to optimize.”

When asked if he became better at using the Wekinator at he composed, Weit-
ekamp replied, “Certainly. Primarily, I became better at providing consistent exam-
ples to the models. This was a hard skill to try to teach my performers. ... We spent a
lot of time learning how to ‘teach’ the computer. I also feel that I became better at
thinking ‘like a computer’; once I was able to understand which input features were
important, I felt I could better prepare the input data to optimize classification.”
Weitekamp describes his approach to training the models as conscientious: “In or-
der to train my model successfully, I needed to sit very still and give the machine
consistent inputs during the play along learning.” He seemed confident that, given
more rehearsal time and experience with the Wekinator, his performers could have
also learned to use the Wekinator more effectively to create classifiers for their own
gestures. In practice, the need to teach performers to use the Wekinator effectively
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ended up conflicting with the need to simultaneously teach performers how to play
the piece; during the rehearsal process, performers communicated to Weitekamp that
it was important to them to have access to a set of classifiers that they could use
to practice their part of the piece and play effectively in rehearsal, even before they
possessed the expertise to successfully create customized models for themselves.

7.4.2 The Wekinator’s Influence on the Composition

As illustrated in Table 7.6, although Weitekamp began the composition of G with
specific ideas about the gestures and sounds he wanted to use in the piece, he changed
his mind about these aspects of the composition during his work with the Wekinator.
The gestural vocabulary he ultimately used in the piece was highly informed by the
gestures that he found to be easy to classify, and that rehearsals revealed to be robust
across different performers and laptops. He wrote, “I quickly found that certain types
of hits were not easy to classify. For example, classifying a hit on the right vs. left
side of the laptop is not trivial-—most likely because it only involves one accelerometer
axis. For the final performance, I used one side hit and one top hit as the training
examples.”

As discussed above, the failure of his original plans to teach performers to suc-
cessfully train their own models led to a significant change in the character and
performance technique involved in the piece, when Weitekamp decided to have the
performers use only classifiers pre-trained by him.

Additionally, Weitekamp believes that the sonic character of the piece was influ-
enced by his experiences developing the gesture classifiers, and by testing out many
different mappings to find one that was suitable: “I developed the Wekinator code
well before designing the instruments or composing the final score. As a result, most
of the ideas for percussive events or tilt-controlled FX were either directly or sub-
consciously influenced by Wekinator. Because the gesture-sound mappings had to
be both robust and interesting, it took a number of iterations to develop a good
combination.”

Finally, Weitekamp describes the Wekinator as an essential force motivating the
constraints he chose to shape the composition. “T’he Wekinator provided a new tool
for employing the laptop as an expressive controller. For this composition, I chose to
use no additional hardware because I wanted to explore the limits of this idea.”

7.4.3 Evaluation of the Wekinator

As illustrated in Table 7.7, Weitekamp evaluated the Wekinator as being highly valu-
able in creating mappings more easily, creating more expressive mappings, and cre-
ating a new type of composition using a new type of compositional process. Asked
to specifically describe how the Wekinator enabled a new approach to composition,
Weitekamp responded, “Wekinator allowed me to turn the laptop into both a per-
cussive and graduated controller (simultaneously). Because the gestural mapping
between the inputs and outputs need not be linear, the process of sonifying a gesture
was easier and ultimately lead to a more natural mapping.”
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Table 7.6: Rated level of agreement with statements about compositional goals before
and during work with the Wekinator in G, rated on a 5-point Likert scale from 1 =
“Strongly disagree” to 5 = “Strongly agree.”

’ Statement \ Agreement ‘

Before I started working with the Wekinator. ..
I had a specific gestural interface in mind that [ wanted | 5
to use or build for the piece
I had specific physical gestures I wanted to use in the | 3
piece
I had a specific palette of sounds I wanted to use in | 4
the piece
I had specific ideas about how I wanted gestures to | 5
control sounds in the piece

While working with the Wekinator. ..
I changed my mind or had new ideas about the gestu- | 5
ral interface(s) that I wanted to use, or that [ wanted
to build
I changed my mind or had new ideas about the phys- | 5
ical gestures I wanted to use in the piece
I changed my mind or had new ideas about the palette | 4
of sounds I wanted to use in the piece
I changed my mind or had new ideas about how I | 4
wanted gestures to control sounds in the piece

When asked what aspects of the Wekinator were most helpful in composing and
performing the piece, his first response was “Every aspect, because it was integral
to the concept of the piece.” He then added that the OSC gating mechanism was
particularly useful for recording clean training data for different laptop hits.

Even though Weitekamp was a proficient software developer, he indicates that
he would not have been able to create this piece by hard-coding the analysis of the
features and their mapping to sound. In his opinion, the accelerometer analysis and
classification would have been exceedingly difficult, awkward, and time consuming, if
not impossible, to perform by writing code.

Weitekamp continues to be excited by the Wekinator’s potential to allow computer
music performers to customize their performance interfaces. Having participated in a
performance of CMMV (Section 7.2), he appreciated that supervised learning could
be used to create new instruments with greater expressive possibilities than simple,
linear, and one-to-one mappings. At the same time, he desires to create expressive
instruments that do not lose all of the transparency that such simpler interfaces
offer to a performer learning how to play them, and he is interested in how the
Wekinator could be used by performers to create their own mappings or to customize
mappings created by a composer (e.g., by adding new data or changing the model in
minor ways). One potential application of the Wekinator that he proposed involves
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Table 7.7: Rated level of agreement with statements about the Wekinator’s usefulness,
in G; rated on a 5-point Likert scale from 1 = “Strongly disagree” to 5 = “Strongly
agree.”

Statement Agreement
The Wekinator allowed me to create mappings between ges- | 5

ture and sound more easily than other techniques.
The Wekinator allowed me to create mappings between ges- | 5
ture and sound that were more musically expressive than
other techniques

The Wekinator allowed me to create a kind of music that | 5
isn’t possible or that is hard to create using other techniques
Using the Wekinator allowed me to approach the process of | 5
composition in a new way

having performers use playalong recording to construct their own training sets, while
watching a video of the composer playing along to the same sounds: this would allow
performers insight into the composer’s training data creation process, and it would
allow them the freedom to deviate from the composer’s training process for aesthetic
or practical reason (e.g., having shorter limbs).

Weitekamp composed G using a version of the Wekinator that did not yet have the
graphical editor, and when he was shown the graphical editor he saw it as potentially
greatly useful to informing the user about the nature of the training data and speeding
up the model-building process. He is interested in having additional capabilities
to visualize or otherwise understand how the models were working and how a user
might most meaningfully change the learning algorithms or parameters to achieve
different results. Weitekamp has also expressed interest in making the Wekinator
more available to a wider variety of electronic musicians, through integrating it with
a future version of the SmackTop software, and by enabling it to output and receive
MIDI for easier use by musicians who do not use OSC.

7.5 Discussion

7.5.1 How the Wekinator was Used

The composers discussed in this chapter applied the Wekinator to the creation of
diverse and distinctive new musical instruments and compositions. In the works
by Trueman, Nagai, and Weitekamp, the Wekinator was used to create instruments
from commodity computer input devices, from a piece of tree bark containing custom
light-sensor circuitry, and from the laptop’s built-in sudden motion sensors. Nagai
and Trueman created instruments with continuous gesture-to-sound mappings, and
Weitekamp created instruments incorporating discrete gesture classifiers. Nagai’s in-
strument was performed solo, and Trueman’s were performed within a heterogenous
ensemble of acoustic and laptop performers; Weitekamp used the same gesture clas-
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sifiers within all four different laptop instruments used in his composition for laptop
ensemble. The compositional styles of these pieces also spanned a wide range, from
avant-garde to electronica-inspired and rhythmic.

Each composer developed distinct strategies for interacting with the Wekinator
and for integrating it into his or her larger compositional process. Nagai experimented
with many different neural networks for creating mappings for her instrument, and she
developed the sound synthesis component of her composition in conjunction with the
development of the mappings. She only finalized her instrument’s mapping a few days
before the performance of her piece. Trueman, on the other hand, gradually refined
his mappings over time, and he used the Wekinator to create mappings for hardware
controllers and synthesis algorithms that were relatively fixed. Trueman completed
his mappings before rehearsals of his piece so that performers could learn how to play
them, and through three performances of his composition, he has kept the mapping of
one instrument fixed while continuing to change both the mapping and the hardware
controller for the other. Weitekamp used the Wekinator to experiment with different
gesture classifiers while at the same time refining and improving his feature extractor,
and throughout the rehearsal period for his piece, he experimented with both allowing
performers to train their own classifiers and with training classifiers himself for them
to use. Both Trueman and Nagai developed strategies for creating training data that
would produce mappings that balanced predictability and control with surprise and
complexity, while Weitekamp developed a strategy for creating training data that
resulted in classifiers whose behavior was as predictable and robust as possible.

Despite these differences, each of the instruments created by these three composers
shares a common focus on the expressive use of the human body, and each composer
saw the Wekinator as a valuable tool in enabling him or her to prioritize expression
and physicality throughout the activities of composition, instrument-building, and
performance. Nagai and Trueman both expressed that, in the process of composing
and instrument building, it was important to establish a mode of performance in
which the relationship between performer gesture and sound was tightly coupled, not
simple or linear, and offered an range of expressive possibilities that a performer could
learn—with practice—to control in a musically sensitive manner. When the instru-
ments they created were successful in meeting these criteria, the composers likened
them to acoustic musical instruments. In other words, they used the Wekinator to cre-
ate new performance interfaces that possessed certain musically essential qualities of
conventional, existing instruments, but which—through their use of new controller in-
terfaces and synthesis algorithms, and the ability to tailor their design to a particular
performer or composition—transcended certain physical or compositional limitations
of such instruments. For Weitekamp, the Wekinator was the inspiring force behind
his attempt to create a composition wherein each performer had the freedom to de-
sign his own expressive gestural vocabulary. While this vision was not realized in the
performance, his ultimate use of the software still enabled him to efficiently build a
set of laptop instruments whose performance technique demanded performer-laptop
interactions that were physically engaging to the performers and visually engaging to
the audience.
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We further discuss how the Wekinator supported this type of work, and the con-
sequences for future use of machine learning in musical and non-musical applications,
in Chapters 8 and 9.

7.5.2 Useful Features of the Wekinator

The working process of all three composers took advantage of the Wekinator’s func-
tionality for iteratively creating and editing training data, building models, exper-
imentally running the models in real-time, and modifying the supervised learning
problem, data, and/or other aspects of their instruments or compositions in order
to improve the models. Some of the aspects of the Wekinator that allowed them to
perform this work successfully included its capabilities for users to switch between
these different tasks with a low amount of overhead, to efficiently provide training
data, to frequently evaluate models by interacting with them in a real-time manner
similar to the way in which they would be used in performance, and to perform all
these tasks without the need to write code or become machine learning experts.

The Wekinator’s ability to use OSC to receive features and control messages and
to send synthesis parameters was also particularly useful to all composers, and this
ability enabled composers to apply the Wekinator alongside the compositional soft-
ware tools they already knew how to use and preferred.

The particular learning algorithms built into the Wekinator were also useful to
composers. In Chapter 9, we discuss how neural networks functioned as a useful
compositional tool for composers discussed here and in Chapter 4. Support vector
machines were useful to Weitekamp because they were capable of accurately classify-
ing the input gestures of interest to him.

7.5.3 Influence of the Wekinator on Composition

Each of the composers agreed or strongly agreed that, while they were working with
the Wekinator, they changed their minds about the gestures, sounds, and gesture-
sound mappings that they planned to use in their instrument or composition. Oc-
casionally, these changes of course were a result of working around barriers that the
software presented to their achieving their initial goals: for example, Nagai took many
measures to reduce the training time of her neural networks, including limiting the
number of light sensors that influenced each sonic parameter, and Trueman ended up
crafting his Tethered-uBlotar playalong score to reside within a narrow sonic range to
avoid the “pointy” mappings that were most easily produced from playalong record-
ing. Sometimes, composers discovered through their use of the Wekinator that their
initial goals were simply infeasible: Weitekamp discovered, for instance, that it was
too hard for him to train all of his performers to produce consistently good classifiers
given the practical and compositional constraints of his piece.

At the same time, composers often relied on their experimentation with the Wek-
inator to discover new sonic and gestural possibilities that they had not previously
imagined, and they adapted aspects of their instruments or compositions to take
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advantage of these possibilities. The Wekinator also inspired composers to con-
sider new composition and performance paradigms, such as the composition of com-
plex mappings or the engagement of performers in the instrument building process,
which would not have been possible—or which just seemed too impractical to be
considered—using other tools.

7.6 Conclusions

In this chapter, we have described three new musical compositions that have been
completed by Wekinator users. The success with which these users have been able
to apply the Wekinator to their work demonstrates that, while various improvements
could still be made to the software, the Wekinator in its current form is a useful
tool for real-world applications. Furthermore, users having low low familiarity with
machine learning were able to apply it successfully to their work.

The diversity of ways that these users applied the Wekinator in their work also
attests to its flexibility as a compositional tool. The Wekinator’s OSC capabilities,
which allow it to be used in conjunction with arbitrary feature extractors, synthesis
algorithms, and visualizations, were crucial to enabling these users to employ the
software in conjunction with other software and hardware systems of their choosing.
Different users also took advantage of different mechanisms for interactively applying
supervised learning to their work, including different mechanisms for recording and
editing the training data (e.g., playalong recording, OSC-gated recording, and editing
using the spreadsheet editor) and for modifying the supervised learning problem (e.g.,
changing the classifiers, changing feature selection, and adding meta-features).

Furthermore, the Wekinator invited users to imagine vastly different applications,
from performer-customizable mappings to turning a piece of tree bark into an expres-
sive instrument, each of which incorporated a unique musical aesthetic and presented
distinct technical challenges. While each of these applications was different from those
we had imagined when designing the software, the Wekinator was able to inspire these
projects and function as a useful tool for tasks that would have been impossible or dif-
ficult for users to accomplish otherwise. Additionally, the Wekinator supported each
of the composers in creating music that privileged the expressive use of the human
body during both composition and performance.

The composers discussed in this chapter have been extremely helpful in informing
us about the features of the Wekinator that are important to users, the features that
they would like to see added to the software, and the potential future applications they
envision may be possible with the Wekinator. We intend to continue to collaborate
closely with them and other Wekinator users to drive improvements to the software
and cultivate ideas for future research directions.
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Chapter 8

Discussion: Interacting With
Supervised Learning

8.1 Introduction

In each of the last four chapters, we presented a study of a user or set of users ap-
plying interactive machine learning to their work in computer music. Users’ projects
included the creation of continuous gesture-to-sound mappings in the design of new,
musically expressive digital instruments; the recognition of customized, discrete gestu-
ral vocabularies for controlling sound; and the classification of standard cello bowing
gestures. In these projects, the goal of the supervised learning system ranged from
being constrained by musical conventions to being completely open to creative design
by the user.

Across this range of musical applications, all users took advantage of the Wek-
inator’s capabilities to interact with the supervised learning process. Users rarely
employed a workflow typical of conventional machine learning applications, involv-
ing the application of standard metrics of generalization accuracy to choose among
candidate models trained on the same dataset. Instead, users interactively created
and edited the training data, they interactively evaluated trained models by running
them in real-time, and they iteratively refined their models by modifying the data or
algorithm, evaluating the trained model, and repeating until they were satisfied with
the outcome.

In this chapter, we will examine findings across all four user studies to discuss
the important roles that interaction—encompassing both human-computer control
and computer-human feedback—played in the development of supervised learning
systems, and to discuss our findings regarding the differences between interactive
and conventional machine learning contexts. We will also discuss the implications
of our findings regarding the requirements and challenges in the analysis and design
of algorithms and interfaces for interactive supervised learning, with attention to
how the characteristics of the computer music problem domain shaped the types of
interactions that were possible for the users we observed.
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We begin this chapter with a review of how users in the four studies employed
interaction in modifying the training data and feature selection, changing algorithms
and parameters, and evaluating the supervised learning systems. We discuss the
roles that evaluation played in enabling users to assess models against objective and
subjective criteria, in providing feedback about the efficacy of users’ actions, and in
shaping users’ goals. We then discuss the role that generalization accuracy plays in
interactive supervised learning, which we propose may be different from its role in
conventional machine learning. We also discuss the role that training set size plays
in interactive machine learning and raise the possibility that interaction might serve
to decrease sample complexity.

We then present our observations of the characteristics of algorithms and interfaces
that impacted users’ experiences with the Wekinator, and we outline a framework for
understanding algorithm and interface analysis and design in terms of affordances,
usefulness, and usability. Last, we enumerate the characteristics of the computer
music domain that were key to enabling the types of interactions that we observed,
and we discuss how the findings of our work might be generalized to other domains.

8.2 Interactively Modifying the Learning Problem

In all four studies, users employed interactions with the training set—including cre-
ating data, adding new data, and deleting and editing data—more frequently than
interactions that modified other aspects of the learning problem, such as editing the
learning algorithm or its parameters, or changing the features selected for a model.
The training dataset itself can be interpreted as an important interface through which
users exercised control over the supervised learning problem. Significantly, interac-
tions with the training set often enabled users a direct and effective means of exer-
cising control over aspects of the learning problem that were important to them, but
which could not always be directly controlled solely through the conventional machine
learning interactions of changing the learning algorithms or their parameters. In this
section, we review how users employed interactions with the training set to accom-
plish their goals. We also review how users employed feature selection to modify the
learning problem.

8.2.1 Creating the Training Dataset

In all applications studied in this thesis, users created the entire training datasets
interactively. The choice of what training data to create reflected fundamental char-
acteristics of the learning problem, and we observed that users developed conscious
strategies for creating training datasets that best helped them accomplish their goals.
In particular, the training set was used to define the scope of the learning problem,
to communicate the essential characteristics of each class, to preemptively minimize
error and cost of the trained model, and to sketch out areas of interest and denote
boundaries of the input and output spaces to be used.
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First, a user’s choice of training examples communicated the desired scope of
the learning problem. One component of scope is the number of classes assigned to
instances in the training set. The number of gesture classes was varied by PLOrk
students and the K-Bow cellist to adjust the computational difficulty of producing
a working classifier and to adjust the musical usefulness of the trained model (e.g.,
the number of sounds it could be used to control). Another component of scope
concerns the dimensions of input variability to which a model should be robust. For
example, the K-Bow cellist created training datasets for most gesture problems by
demonstrating each gesture across all four instrument strings, and the training set
typically included gestures performed within a limited range of bowing speeds that
excluded extremely fast and slow bows. By exhaustively varying the set of strings but
not the range of possible tempos present in the data, she created classifiers that could
perform well for gestures on different strings, but that might fail at extreme tempos.
The choice of scope may reflect a choice about tradeoffs between creating models
with limited power that are easy to create and creating more expressive models that
may require more training examples and more fine-tuning of other aspects of the
learning problem. We observed users dynamically changing the scope represented by
their datasets in order to build models that were both feasible to construct and that
effectively met their musical goals.

Second, several users consciously employed training data for classification prob-
lems to communicate what they felt to be essential characteristics of each class, or
“prototypical” gestures of each class. Commonly, this was done by providing in-
put gestures that were as free as possible from non-essential variations in the input
features. Many users reported learning through their use of the Wekinator that
minimizing noise and unnecessary variation in the training examples led to better
classifiers.

Third, some users’ strategy for creating classification training examples involved
explicit attention to designing classifiers with low misclassification error or cost. For
example, several PLOrk students (who had the ability to design their own gestures
for classification) defined their set of gestures according to what they thought the
Wekinator would be able to easily classify. Often, this amounted to maximizing
the inter-class variance of the gestural features. Another PLOrk student consciously
defined her gesture set so that the feature values that were easiest for her to produce
corresponded to the classes she expected to use most often during performance. These
actions reflect the fact that users created training data not just to represent the
abstract concept they intended the model to learn, but according to assumptions and
intuition about which characteristics of the dataset would affect the trained classifier.

Fourth, in continuous regression problems, many users discussed in Chapters 4,
5, and 7 used the training dataset—especially the first training dataset created—to
provide a “sketch” of the learning problem intended to produce a simpler model than
the one they ultimately planned to build. For some users, this sketch was constructed
to denote both areas of interest and limiting boundaries in the spaces of input gestures
and output sounds that they intended the model to use.

Importantly, the ability to delete the entire training set and create a new training
set from scratch enabled users to employ the training set as an interface to express

191



changes in the learning problem scope, class definitions, cost, or other priorities,
when these changed throughout the use of the system. Furthermore, even when these
properties of the intended learning problem did not change, many users found that
their strategies for employing the training set to accomplish their goals evolved as
they gained more experience with the system. Deleting and re-creating the training
data enabled them to employ their new strategies.

8.2.2 Creating Training Data Through Playalong

Some composers discussed in Chapters 4 and 7 frequently used the playalong interface
for creating training data for their neural network mappings. Like the training ex-
amples created without the playalong interface, the examples created using playalong
also reflected users’ choices of scope and the intended sonic and gestural bound-
aries of a mapping. Furthermore, users employed the playalong interface to create
data that encoded more fine-grained information about the desired model function.
Whereas creating training data without playalong involved decisions about which
static gestures (e.g., joystick or tether positions) would correspond to which static
sounds, composers used the playalong interface to create data that captured more
fine-grained aspects of their ideas for how sound should vary with performer motion.

Additionally, composers used playalong to engage their own musical and physical
expertise more deeply in the model-building process. For one composer in Chapter 7
(Trueman), the playalong interface was important because it allowed him to practice
the gestures along with the sound before creating training examples. The training
examples he ultimately used therefore represented a gesture-to-sound mapping that
he felt was appropriate, and that he felt comfortable using. In this way, playalong
enabled composers to create mappings that had already been roughly evaluated for
how they might be used in expressive, real-time performance, and that had been
judged to be suitable. In contrast, users who did not employ playalong had to train
the models and run them in order to make such judgments.

Not all composers used playalong frequently. It could be that composers who did
not use playalong were not as concerned with managing the ways in which sounds
and gestures co-varied over time (at least within the projects they were working
on). Or, it could be that they were content with how the Wekinator managed these
characteristics for them when they didn’t use the playalong interface. This seemed
to be the case for one composer discussed in Chapter 7 (Nagai), who indicated that
she developed a slow and subtle gestural vocabulary for playing her Wekinator-based
instrument because she found such gestures to be most expressively effective within
the mappings the Wekinator generated.

8.2.3 Incrementally Modifying the Training Set
Adding More Training Data

When composers and students in chapters Chapters 4, 5, and 7 wanted to improve or
change a trained model, they often found it most convenient or useful to delete the
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entire dataset and begin creating new examples from scratch. However, users in each
of those studies, as well as the K-Bow cellist, found adding data to an existing training
set to be useful under certain circumstances: to correct errors, to take advantage of
desirable output values, and to make models more complex.

First, data was sometimes added to correct model errors. For example, when
the K-Bow cellist discovered that a trained classifier made a mistake on a gesture,
she often added more training examples created by demonstrating that gesture and
supplying the correct label.

Second, users employing neural networks for gesture mappings sometimes added
more training examples to take advantage of new sounds that they discovered; in this
case, the construction of the new examples involved deciding which input gestures
should produce the desired synthesis parameter set. Sometimes, composers discovered
new sounds they liked by typing new parameter values into the Wekinator interface
or by manipulating an external synthesis environment GUI (e.g., a Max/MSP patch
being controlled by the Wekinator). By adding these parameter sets to the training
set, along with new gestural feature vectors, composers aimed to make these sounds
available in the instrument mapping. Additionally, sometimes composers discovered
new sounds that they liked while playing with a trained mapping in real-time, and
they desired to make these sounds more prominent or more easily playable in the
instrument. In this case, they accomplished this by adding more training examples
associating that sound with additional gestural inputs.

Third, users employing neural networks for gesture mappings sometimes added
more training examples in order to produce more complex mappings. For example,
sometimes composers desired to broaden the range of sounds capable of being pro-
duced by the mapping. They accomplished this by adding examples in which the
synthesis parameter values deviated from the types of values output by the current
trained models. As another example, sometimes composers desired to create mapping
functions in which the sound changed in more complex ways with changes gesture,
and they accomplished this by creating new examples at locations in the gestural
input space where they wanted to insert complexity into the mapping.

Deleting Training Data

While it was more common for users in all studies to delete the entire training dataset
and re-create it than to delete only a portion of the training set, sometimes a subset of
training examples were deleted to undo changes to a model, to remove errors from a
training set, to reduce training time, or to attempt to incrementally change a model’s
behavior in other subtle ways.

Using the spreadsheet editor, users could delete all training examples recorded in
a single training round. Commonly, this was done to effectively “undo” the changes
recently made to a model and restore it to an earlier state.

Users also sometimes deleted examples that were suspected of containing errors or
likely to be noisy. Several PLOrk students reported using the spreadsheet editor to
visually identify examples that appeared to be outliers, then delete them. In building
the K-Bow gesture classifiers, the graphical editor was occasionally used to manually
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remove class labels from certain training examples, for example when it was clear
from the visualization that a feature vector represented a bow movement that was in
between up- and down-bow gestures.

Occasionally, PLOrk students and composers used selective deletion to simplify
the learning problem or to reduce the training time of the learning algorithms. For
example, one composer in Chapter 7 (Nagai) reduced her training set sizes to reduce
the training time of her neural networks, which she found to be frustratingly long
when she had many parameters, many features, and many data examples. Another
composer in Chapter 4 wrote that “having too much data seemed to cause the model
to even everything out to a gray middle ground, so nothing would change.” By
deleting a portion of his examples, he obtained a model with more varied outputs.

Editing Training Data

Users very rarely employed the spreadsheet editor or graphical editor to change the
feature or parameter value of existing training examples. Our observations seem to in-
dicate that in most applications, given the Wekinator’s available interfaces for creating
and editing data, re-creating the training examples was a more efficient and accurate
means of modifying the training set compared to making manual edits. Manual edit-
ing was only commonly done in the K-Bow project, in order to enable the cellist to
first create the training examples by using natural performative gestures, in which
she switched fluidly between gesture classes (e.g., up-bows and down-bows) without
pausing to interact with the GUI. The graphical editor was then used to manually
apply labels to the recorded gesture features. This enabled greater labeling precision
than using a playalong score, because gesture beginnings and endings could be labeled
precisely without requiring the cellist to synchronize with a score. However, this type
of interaction was only feasible for gestures classes such as Bow Direction where the
gesture class was clearly distinguishable within the graphical editor’s visualization of
the input features.

8.2.4 Editing Feature Selection

Feature selection—the choice of which of the available input features would affect
which of the trained models—was employed by some composers and students and by
the K-Bow cellist as another means of modifying the learning problem. Like modifica-
tions to the training dataset, different feature selections were applied iteratively over
the course of working with the system: it was common for users to try one feature se-
lection setting, train and evaluate a model using that setting, then change the feature
selection later and evaluate the outcome. Feature selection was employed by users to
improve classification accuracy, reduce training time, and enforce independencies.

In conventional (non-interactive) machine learning, it is common to experiment
with selecting different subsets of the available features to use in creating a model.
Certain learning algorithms are particularly sensitive to features that are redundant
or that are irrelevant to the learning problem, so removing these features can allow
for the construction of more accurate models (Guyon and Elisseeff 2003; Fiebrink
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2006). Feature selection was used for this same reason in creating the K-Bow gesture
classifiers. Some features were clearly irrelevant to certain classification problems
(e.g., the “grip” sensor was not relevant to the Bow Direction problem) and they
were unselected. For other problems, several available features presented somewhat
redundant information; for example, the minimum, maximum, and mean hair features
were all relevant to the “On/Off String” classification problem, but only the mean
was used to train the classifier.

Second, in her composition discussed in Chapter 7, one composer (Nagai) used
feature selection to shorten the training times of her models. By using fewer features,
as well as by limiting her number of training examples, her set of neural networks
became faster to train and easier, overall, to use.

Finally, composers and students in Chapters 4, 5, and 7 sometimes used feature
selection to enforce independencies between certain gestural dimensions and certain
behaviors of the trained model. For example, a few PLOrk students experimented
with building mappings where the x-axis of the built-in laptop accelerometer con-
trolled one aspect of the sound only, and the y-axis controlled another.

Several composers and students—though not all-—seemed to naturally imagine
mappings in which certain gestural dimensions were constrained to affect certain
compositional dimensions, and they found it important to be able to construct these
types of mappings in the Wekinator. Composers in the participatory design process
were frustrated by the Wekinator’s inability to enforce these independencies before
feature selection was added to the software. Also, PLOrk students who did not
understand what the feature selection mechanism of the Wekinator did, yet who
desired to create these types of mappings, went to great lengths to construct the
training dataset in a way that would allow them to approximate these independencies
without explicit feature selection.

8.3 Editing Algorithms and Algorithm
Parameters

Users in all four studies changed the learning algorithms or their parameters much less
frequently than they modified the training data or features. Composers and students
creating continuous gesture-to-sound mappings only used neural networks (the only
algorithm available to them), and they almost never changed the network architecture
or learning parameters, though these actions were possible. One composer in Chapter
4 experimented casually with changing the network learning parameters, but he had
difficulty setting the parameters to values that meaningfully and predictably affected
the outcome of training (e.g., by affecting training time or the quality of the trained
models).

Editing the algorithms and their parameters was sometimes useful, though, for
PLOrk students, composers, and the K-Bow cellist in building discrete gesture classi-
fiers. Most frequently, users experimented with changing the classifier algorithm when
they observed that the current classifier produced a poor model. This was especially
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apparent in the PLOrk study, where the default algorithm (AdaBoost boosting on
decision stumps) performed poorly for many multi-class problems of interest to the
students. Different classifiers were also used in the K-Bow study to obtain more
accurate models.

The parameters of classifier algorithms were almost never changed. In the PLOrk
study, only two students ever tried changing parameters of an algorithm. In the K-
Bow study, the k parameter of a k-nearest neighbor (kNN) classifier was increased to
produce a smoother decision boundary.

8.4 Interactively Evaluating Trained Models

The Wekinator offered two mechanisms for evaluating trained models: computing ob-
jective metrics (training accuracy and cross-validation accuracy), and directly eval-
uating the models by running them on real-time inputs and visually or auditorily
observing their real-time outputs. Users employed interactive, direct evaluation more
frequently than computing cross-validation or training accuracy, but some users still
found the objective metrics useful. In this section, we will discuss how users em-
ployed both types of accuracy to judge trained models against a variety of objective
and subjective criteria, and how they used the outcomes of evaluation to inform their
subsequent actions with the system.

8.4.1 The Use of Direct, Interactive Evaluation

Direct evaluation was the most frequent method of evaluating trained models used by
the PLOrk students and the K-Bow cellist, and it was the only evaluation method that
composers used in the work discussed in Chapters 4 and 7. The composers and PLOrk
students in Chapters 4, 5, and 7 all directly evaluated trained models by listening to
how the models’ outputs drove synthesis parameters as they demonstrated real-time
gestures, and the K-Bow cellist evaluated models by visually examining their output
values and posterior distributions in the Wekinator or in a Max/MSP visualization.
When users experimented with models in real-time, they evaluated the models against
a variety of criteria, including correctness, cost, decision boundary shape, confidence,
complexity, and unexpectedness. Users employed direct evaluation both to evaluate
whether or not a model was good enough for use in performance (i.e., good enough
to stop the interactive machine learning process) and, in the case that a model was
not yet good enough, to help them decide how to take action to improve the model.

Next, we summarize common evaluation criteria employed by users and how users
took action to improve the model against these criteria.

Correctness

Predictably, direct evaluation was employed to systematically check a model’s cor-
rectness over a range of the input space of gestures. In all studies—including the
design of new, expressive musical instruments, where there was no objectively right
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or wrong model behavior—users identified a model’s behavior as incorrect when it
produced an output contrary to what they believed was appropriate and expected.
As discussed earlier, users often addressed incorrect model behaviors by adding new,
correctly-labeled examples to the training set, or by deleting the whole training set
and re-creating it.

Cost

Our observations suggest that users held an implicit error cost function that vari-
ably penalized model mistakes based on both the type of misclassifications (i.e., the
user’s label and the model’s label) and their locations in the gesture space. For
example, the K-Bow cellist verbally indicated that classification mistakes a human
cellist might easily make were less problematic. Another concern for PLOrk students
and composers was whether a model could produce desirable or correct outputs for
the types of gestures that would be used in a performance; the model’s behavior on
gestures not used in performance was inconsequential. Users expended more effort
fine-tuning model behavior on gestures likely to be used in performance by adding to
and re-creating the training dataset.

Shape Decision Boundary and Posterior Distribution

As discussed in Section 6.5.3, the shape of a classifier’s decision boundary was some-
times important to the K-Bow cellist. It was somewhat more important to her that
the switch from one gesture label to another happen smoothly as she varied her ges-
ture, than that this label switching happen at a precise location in the gesture space.
Actions taken to smooth jagged decision boundaries included changing algorithm pa-
rameters (e.g., increasing k in kNN) and adding smoothly-labeled training data along
the boundary area.

As discussed in the same section, the K-Bow cellist also took model confidence into
account when evaluating its quality. She reacted unfavorably when a gesture model
classified her gesture correctly but also assigned relatively high posterior probabilities
to several incorrect labels, and she sometimes attempted to improve the model’s con-
fidence by adding more training data. She judged more “certain” classifiers as being
of a better quality than less certain ones, and she also valued posterior distribution
shapes that had predictable behaviors that she could use in post-processing (e.g., to
look for “signature” distribution shapes that signaled likely misclassifications).

Complexity and Unexpectedness

Finally, composers and students discussed in Chapters 4, 5, and 7 evaluated models to
assess whether they produced sonically interesting parameterizations of the synthesis
algorithm, which a human could manipulate over time in a musically sensitive way.
Most composers and students using the Wekinator to produce continuous mappings
typically did not construct the models with a full set of physical and musical gestures
already in mind; rather, a common strategy for building the models was to choose a
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few different and interesting synthesis parameter values that they wanted the instru-
ment to be capable of playing, match each of these with a different gestural input
in the training set, then directly evaluate the trained model to discover and explore
the sounds that arose as they moved between and around the gestures present in the
training set.

When evaluating the model using gestures outside the training set, two of the char-
acteristics that were most important to users were its complexity and unexpectedness.
Unlike in a conventional machine learning application, complexity and nonlinearity
were desirable, and composers sometimes added training data with the explicit in-
tention of making the model more complex. Some composers remarked that the
complexity of functions generated by the Wekinator’s neural networks made their
new instruments feel more like traditional, acoustic instruments, which by nature in-
volve very complicated relationships between the physical gestures of a performer and
the sound produced. Additionally, users valued the fact that they could be surprised
by the sounds generated by a gesture not in the training set, allowing them to find
unimagined and compositionally useful sounds in the synthesis space. As discussed
above, users frequently modified the training dataset to make models more complex,
take advantage of new sounds, and reflect changes in their choice of the range of
gestures and sounds they wanted to use.

8.4.2 The Use of Cross-Validation and Training Accuracy

The composers discussed in Chapters 4 and 7 never computed cross-validation or
training accuracy. PLOrk students did sometimes compute these measures, though
they employed direct evaluation significantly more frequently. Students commonly
accepted a high training or cross-validation accuracy as evidence that a model was
performing well, and at least one student used cross-validation to validate his own
model-building ability.

In the K-Bow work, cross-validation was used to quickly and objectively compare
alternative classifier algorithms on the same dataset. This was done either after di-
rect evaluation had shown that a reasonably good model had been built from the
current training dataset, and it was uncertain which algorithm might perform most
accurately, or when direct evaluation had revealed the learning problem to be par-
ticularly stubborn, and many different algorithms and feature selections were tried
in succession to see if any one might result in a usable model. Cross-validation was
convenient for this purpose because it provided a faster and more consistent way of
comparing models than direct evaluation.

8.4.3 Correlation of Subjective Evaluation and Cross-
Validation

The K-Bow study was the only study in which we collected data to compare the user’s
evaluation of each model against its cross-validation accuracy. For each of the bow
gesture classification tasks for which three or more training iterations were performed,
we computed the correlation between the cellist’s subjective rating of the model and
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its cross-validation accuracy on the data (computed offline, after the study). In four of
the six tasks, the correlation between user rating and accuracy was negative (between
—0.74 and —0.44). In these cases, some iterations’ training sets contained mislabeled
data and other problems such that the training set represented the learning problem
in a way that was both inaccurate and too simple, leading the trained model to
learn the wrong concept very well. When the cellist fixed the data sets to remove
these problems, her rating of the model increased, but its cross-validation accuracy
decreased. In the other two classification tasks, there was a moderately positive
(0.65) or strongly positive (0.93) correlation between cross-validation accuracy and
user rating, indicating that the training set likely did not mischaracterize the learning
problem, and that the cellists’ subjective evaluation criteria were correlated with the
model’s estimated generalization performance.

8.5 Model Evaluation and Generalization in
Interactive Machine Learning

8.5.1 The Roles of Model Evaluation

In Section 8.4.1 above, we discussed how evaluation helped to inform users’ subse-
quent interactions with the system. For example, identifying particular errors using
direct evaluation led users to add corrective examples to the training dataset, and
discovering that one learning algorithm had better cross-validation accuracy than an-
other led to choosing the more accurate algorithm. Additionally, evaluation played
an important role in training users to be more effective at using supervised learning
to accomplish their goals, enabling users to practice employing trained models effec-
tively (and assessing the degree to which they might, through practice, be able to
employ them effectively in the future), and informing and guiding users’ goals for the
application of supervised learning to their work.

Training Users to be Better Supervised Learning Practitioners

Cross-validation and training accuracy metrics and direct evaluation served as feed-
back mechanisms to the users, enabling them to discover whether or not their recent
changes to the training set or algorithms had had the desired effect on the retrained
models. In fact, as the Wekinator did not provide any machine learning tutorials or
hints, the feedback obtained from cross-validation or direct evaluation was the only
mechanism for users to learn how their actions were likely to affect the system. In
this way, evaluation actions trained the users—none of whom had significant experi-
ence or instruction in machine learning—to become more effective machine learning
practitioners.

Users in all four studies indicated that they had learned during their interaction
with the software to provide training data that more clearly expressed their intentions.
By iteratively changing the training sets or other aspects of the learning problem and
evaluating the results, users developed more effective strategies for interacting with
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the system. For example, they learned to provide training examples that minimized
noise and maximized inter-class variance and to make their models more robust by
choosing which dimensions of the input gestures to vary in the training data.

Practicing and Assessing “Practiceability”

In many of the projects discussed in this thesis, users were creating trained models
that they planned to use themselves in the future. Users employed direct evaluation
to assess how well they were able to use a model expressively, or how well they were
able to work around its shortcomings. Furthermore, several students and composers
indicated that they expected to have to practice working with the trained models in
order to use them most effectively, just as they would practice a traditional musical
instrument. So, users employed direct evaluation to practice using the models, and in
doing so assess how useful the models might eventually become as their skill at using
the models improved.

Informing Users’ Goals for Machine Learning

Users also employed evaluation to continually assess how well the model met their
expectations, and they often adjusted their expectations or goals for the model based
on the outcome. For example, they adjusted the scope of the problem to re-balance
the tradeoff between the expressive capacity of the model and the time and effort
required to build it. This was frequently true for problems in which users had freedom
to define the gestures and mappings in creative ways. For example, several students
and composers adopted model-building strategies in which they began by building
simple models, then made the learning problem more complicated or more difficult
over time as they discovered what the model was capable of. Also, sometimes PLOrk
students building gesture classifiers consciously chose and modified the definition of
each gesture class based on which gestures were most easily differentiable by the
classifier they were using.

Significantly, even the K-Bow cellist, who was more restricted in her ability to
re-define the learning problem of bow gesture recognition, adjusted the scope of the
problem in response to discovering how well a classifier performed. For example,
when the 3-class Bow Speed classifier performed very well, she decided to attempt to
build a 5-class Speed classifier instead, and when the 2-class (“Up” versus “Down”)
Bow Direction classifier performed poorly on live bow gestures, she decided to add a
third class (“Not Moving”) and apply that class as a label to ambiguous examples.

As machine learning novices, users often did not have well-formed expectations
of how different algorithms worked or what could be accomplished with supervised
learning. They therefore also sometimes adjusted their goals when they discovered
that their efforts were failing to produce a model that worked how they wanted (for
example, failing to create a neural network with a smoothly linear mapping between
a gesture and a synthesis parameter).

Through hands-on experimentation with the system, users also sometimes dis-
covered that models performed in unexpected ways that they liked. This was es-
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pecially true for composers and students building continuous gesture-to-sound map-
pings, where users had great freedom over the nature of the models to build and
had the opportunity to be surprised by sounds not in the training set. In fact, many
PLOrk students and composers intentionally relied on direct evaluation of the trained
models to discover the sounds and gestures that they would later use in performance,
rather than using the Wekinator to build a mapping between particular gestures and
sounds they already had in mind.

Model evaluation also sometimes caused users to reflect on their on their model-
building technique and goals in useful ways. For example, the K-Bow cellist gained
a new perspective on her own bowing technique when she discovered through consis-
tently poor system behavior that her training data was not as clear as she thought
it had been. After adjusting her technique, she was able to both train a model that
performed better and produce a better cello sound. One composer in Chapter 7 re-
flected on the quality of an instrument he had tried to build with the Wekinator, and
having failed to produce a mapping he liked, he wrote, “it may be that the fact that
it wanted an explicit mapping was a sign that it wasn’t a very good instrument.”
Based on that assessment, he planned to cut it from his piece.

8.5.2 Generalization and Interactive Supervised Learning

Supervised learning algorithms are often explicitly designed with the goal of maxi-
mizing generalization performance, and standard algorithm evaluation metrics such
as cross-validation typically reflect this goal. Generalization accuracy was indeed a
goal for many of our observed users, in that they intended the system to produce
reasonable outputs for gestural inputs that were not identical to those in the training
set. In systems employing classifiers, it was important that the classifiers accurately
classify gestures that were similar to the training examples. In systems employing
neural networks, generalization typically played a lesser role, but it was still impor-
tant to some users that gestures similar to those in the training set caused the trained
network to produce sounds similar to the sounds paired with those gestures in the
training data.

In the music performance scenarios for which users were creating the models, there
would be inevitable variation in future inputs due to human error and environmental
factors, including for example room lighting and camera position when using the
video input, or non-identical sensor calibrations when using the sensor bow. To some
degree, so long as model training does not take too long, a human user can mitigate
the effects of a changing environment by adding additional training examples and
retraining. But so long as the goal is to create a robust system for use in performance,
the ability to accurately generalize to previously unseen inputs remains important.

That is not to say, though, that metrics such as test set accuracy or cross-validation
accuracy remain good ways to evaluate generalization accuracy. First, users were con-
cerned with evaluating more than the overall accuracy or error rate. Direct evaluation
allowed them to identify where and how the model was likely to make mistakes, en-
abling them to make a cost-sensitive assessment based on criteria like error severity
and the extent to which it might be possible to avoid using error-prone gestures
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during a performance. Second, cross-validation is a metric designed to produce a
good estimate of generalization accuracy under the condition that a fixed amount of
data is available. However, in applications such as those explored here, generating
additional evaluation data (i.e., gesturing during direct evaluation) is easy. Third,
cross-validation estimates generalization performance by repeatedly using a held-out
portion of the training set as a proxy for future, unseen data. In the case that the
person driving the interactive machine learning process will also be the future user of
the trained model, this proxy may be unnecessary if the user knows how to generate
evaluation data that is best representative of future inputs. Furthermore, and most
interestingly, in this interactive approach to machine learning, the user manipulates
the training set as a means to directly influence the trained model’s behavior, for ex-
ample by adding properly-labeled examples to correct mistakes in error-prone areas of
the input gesture space. Given that the user is consciously employing the training set
to manipulate model performance, it is not necessarily reasonable to assume that the
training examples will at all resemble the examples seen by the model in the future.
Speaking probabilistically, it may be too strong an assumption to say that the train-
ing examples and the future examples are sampled i.i.d.! from a shared underlying
distribution, which is a standard assumption in the design of learning algorithms and
evaluation methods. So, evaluation based on a test set partition of the user-generated
training data may not be meaningful.

A held-out partition of the training set may also be a particularly poor resource for
estimating generalization performance during certain stages of the interactive model
creation process, especially when the human has not yet discovered problems with
the training data. In four of the K-Bow gesture classification tasks, there existed
negative correlations between cross-validation accuracy and subjective rating for the
models produced over the course of the task. In these tasks, models with high cross-
validation accuracy and a low user rating can be explained as the result of the training
set providing a representation of the learning problem that was both inaccurate and
too simple. In all four cases, problems with the training set were undetectable using
cross-validation, whereas direct evaluation allowed the cellist to discover the problems,
fix them, and ultimately create models rated “10” for each task.

It is still worth questioning whether generalization performance, while undoubt-
edly relevant, remains more important than other objectively measurable model prop-
erties. As we've discussed, editing the training set is often the most direct and un-
derstandable way for a user to improve a model’s quality, for example by deleting
noisy training examples or adding new examples of inputs that were previously mis-
classified. The user relies on the algorithm’s attention to the training examples as
the primary means of influencing its behavior after training. On the other hand,
many learning algorithms are designed to produce a model with good generalization
accuracy (as estimated, again, from the available training data), at the cost of good
training accuracy. By down-weighting the importance of training accuracy—that is,
by being willing to misclassify portions of the training dataset—the algorithm may be

lindependent and identically distributed; i.e., each example is drawn from the same distribution,
and examples are mutually independent.
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ignoring an intentional attempt by the user to shape the model’s behavior. It is pos-
sible, therefore, that training accuracy may play a more important role in interactive
supervised learning than in conventional supervised learning. While several common
supervised learning algorithms such as AdaBoost, support vector machines, and de-
cision trees privilege expected generalization accuracy through various methods, this
is not universally the case. The kNN algorithm, for example, does not explicitly ad-
dress generalization accuracy, and it can trivially achieve perfect training accuracy.
It is possible that such algorithms may be more appropriate for certain interactive
machine learning applications, and we believe that further work investigating users’
algorithm preferences in interactive contexts is needed.

Finally, users’ evaluation criteria reveal that the best model for a problem might
not necessarily be the model with the best accuracy. Other model characteristics
that users judged important were the shape of decision boundaries, the shape of
the posterior probability distribution over labels, the degree to which errors were
clustered in avoidable regions of the input gesture space, and the complexity of the
learned function. These criteria differed among users performing different tasks. This
suggests that the evaluation of supervised learning systems constructed for interactive
use, such as real-time gesture recognition or audio analysis, should attend to users’
goals and priorities in the application context. That is, whether or not a supervised
learning system was constructed interactively or by the end user of that system,
evaluating the quality of that system must take users’ experiences and expectations
into account; a mere use of cross-validation or other objective metrics to assess the
accuracy of the trained models in insufficient.

8.6 Training Set Size and Interactive Machine
Learning

Significantly, the supervised learning models built by users for which we have logging
data employed training sets whose size is relatively small compared to datasets used
in conventional machine learning. The average PLOrk student dataset size was 651
examples, and the average K-Bow gesture dataset included 2104 examples. The
largest dataset ever used in our logged data included 11,435 examples. Discussions
with composers studied in Chapters 4 and 7 suggest that their datasets were also
likely small. At the same time, the majority of these users were satisfied with the
models that they built, indicating that these datasets were still big enough to be
useful.

This observation is significant for two reasons: First, for most learning algorithms,
the computational complexity (and therefore time) of training grows as the training
set size grows, so small training set sizes enable fast training. Fast training is impor-
tant to the type of interactive machine learning employed by users studied here: fast
training allows users to move seamlessly from evaluating models to modifying models’
algorithms or data, to evaluating models again, without a disruption in interaction
caused by waiting for the models to retrain. This is not to say that interactive ma-
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chine learning could not be effective under circumstances demanding a longer training
time of several minutes, hours or longer, but it is possible that the interface and inter-
action needs of end users may be different in interactive machine learning scenarios
in which there is a much higher penalty incurred for each retraining action.

Second, this observation demonstrates that several key problems of interest to
musicians can be addressed effectively using small datasets. This finding is of practical
importance, as the small size of the datasets allows users to spend relatively little
time and effort creating training examples. It is possible, again, that users would
require different user interface or interaction support to effectively apply interactive
supervised learning problems requiring a greater number of training examples or
incurring greater time and effort in the creation of each example.

An important question, therefore, is why are so few examples necessary? Are the
supervised learning problems in computer music just inherently “easier” or “simpler”
than those in other domains, in which tens or hundreds of thousands of training
examples (if not more) are routinely used? This could be the case, but there is
another possible explanation: that the small number of training examples is possible
because the systems built in this work were built with human interaction.

The fact that successful learning can take place with relatively few training exam-
ples in the applications considered in this thesis indicates that the sample complezity
of these learning problems is low. In the PAC-learning framework (Valiant 1984; see
also Section 2.2.1), sample complexity is a measure of the training set size required
to claim that, with some high probability, a classifier trained on the training set
and achieving a high training accuracy will in fact also have a high generalization
accuracy (Eisenberg 1992). The sample complexity of a learning problem, and by
extension the lower bounds on the number of training examples required to produce
a probably-accurate model, are contingent on the the complexity of the concept to
be learned (called the “concept class,” and characterizable by the VC dimension; see
Blumer et al. 1986). In other words, more complex learning problems require more
training examples.

In the applications studied in this thesis, users often employed editing of the
training set to interactively control the complexity of the learning problem (i.e., the
concept class). For example, some PLOrk students chose a vocabulary of control
gestures based on what they observed was easily learnable by the algorithm they
had chosen. Even in the K-Bow work, where the bow-gesture classification problems
were tightly constrained according to musical convention, the user made adjustments
to the problems (such as the number of classes to use) based on her observations
of classifiers’ performance. In reducing the complexity of the concept class, it is
possible that users were also sometimes reducing the sample complexity, making it
easier to produce working models from datasets that were small enough to be created
conveniently and that allowed fast training time.

The number of examples needed to create an accurate model also rests on the
process used to generate the training examples. In the PAC-learning framework, the
assumption is typically made that the training examples are sampled randomly from
an underlying probability distribution over the space of possible examples (Blumer
et al. 1986; Valiant 1984). This may be a fair assumption for many supervised learning
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problems, for example when medical researchers take care to obtain data from human
subjects representative of the broader population of patients, or when data mining is
done on all data generated by a company’s customers within a given period of time.
However, this is not at all the case for the training datasets created by the interactive
supervised learning users studied in this thesis. Not only do users often carefully
construct the training set according to certain criteria (e.g., by providing gestures
that are prototypical representations of their class), but users also, over time, learn
to supply examples that allow the learning algorithm to produce a better model (e.g.,
by reducing noise and other non-essential variations as much as possible).

We can understand the potential for interactive supervised learning to reduce
sample complexity by considering theoretical work in active learning. Active learning
algorithms are suitable for problems in which there exist many unlabeled training
examples, and in which users are able to provide labels for unlabeled examples when
prompted. By prompting the user to label carefully-chosen examples, an active learn-
ing algorithm may need a smaller training set to construct a model with high accuracy,
compared to a “passive” algorithm (such as those considered in this work) modeling
the same problem. Recent work by Balcan et al. (2010) has shown that active learning
can “essentially always achieve asymptotically superior sample complexity compared
to passive learning when the VC dimension is finite” (where the VC dimension de-
scribes a measure of the “capacity” of a learning algorithm to model a wide set of
concepts; see Burges 1998 and Vapnik 1999).

Active learning is not particularly well-suited to the type of learning applications
studied in this thesis: for gesture classification and gesture mapping problems, there
typically exists no unlabeled training set, and it may be just as much work for a
user to create an unlabeled set as to create a labeled one. Furthermore, it may be
difficult for a user to appropriately label an unlabeled feature vector (e.g., to assign
a gesture label to a vector of gesture sensor outputs). However, in the interactive
machine learning process studied here, the user himself plays a role similar to that
of an active learning algorithm, in that he chooses additional examples to add to
the training set based on their likelihood of improving the model’s performance. Of
course, users’ assessments of this likelihood may not be accurate in any formal sense,
and their choice of examples may be driven by intuition and other non-quantifiable,
non- “optimal” processes. However, our observations do show that, through their
interaction with the system over time, users learn something about what makes certain
training examples more useful than others in building working, accurate models, and
users consciously employ this knowledge when creating new training examples. In
this way, it is reasonable to hypothesize that interactive machine learning might
enable a lower sample complexity in practice, compared to a conventional application
of supervised learning in which the training examples are generated by some non-
interactive random process.
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8.7 Algorithm Analysis and Design for Interactive
Supervised Learning

In the work discussed in this thesis, users were able to successfully apply off-the-
shelf supervised learning algorithms in an interactive manner to gestural analysis and
control problems in computer music. In this section, we first outline the characteristics
of these algorithms that were key to users being able to interact effectively with them
in the ways discussed above. We also highlight challenges to effective interaction
that these algorithms presented to users and discuss how future work might produce
algorithms that afford new, useful interactions or present fewer barriers to usability.
In the next section, we will discuss the properties of the Wekinator user interface that
were key to enabling users to interact effectively with the algorithms, as well as control
and understand other aspects of the supervised learning problem. Subsequently, we
discuss how future work at the user interface level might enable more effective control
or feedback for interactive supervised learning in similar problem domains.

In this section and the next, we will use the term affordance to refer to the qualities
of algorithms and interfaces that made it possible for users to take actions that were
useful to them. This term is often used in HCI in discussing the ways in which an
object—e.g., a software program, a user interface element, a chair—can be used by a
human actor. (Norman 1988, p. 9) describes affordances as “fundamental properties
that determine just how the thing could possibly be used. A chair affords (‘is for’)
support and, therefore, affords sitting. A chair can also be carried.”

8.7.1 Algorithm Characteristics that Enabled Effective In-
teractions

Several characteristics of the supervised learning algorithms employed in this thesis
were necessary in allowing users to employ the interactive strategies described in Sec-
tion 8.2. Each of these relates to fundamental affordances of the learning algorithms,
as well as the way these affordances intersected with characteristics of the concepts
being learned.

Low Training Time

In nearly all applications studied in this thesis, the training time of algorithms was
short enough to allow users to retrain the algorithms multiple times without experi-
encing an interruption in interaction. When users did experience longer training times
(especially longer than a few minutes), they became frustrated and sought to take
action to reduce the training time. As discussed in the previous section, the training
time of most algorithms is contingent on the number of training examples, as well as
the number of features and, often, subtler aspects of the relationship between inputs
and outputs in the training set.

One of the algorithms used in this work, kNN, offers a unique interactive benefit
in that it is an instance-based algorithm with no separate training stage. This means
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that users do not have to wait for the algorithm to retrain after adding data or
changing its parameters.

Low Number of Training Examples Needed

As discussed above, sample complexity is formally a function of the learning concept.
Additionally, though, the number of examples needed to build a working model in
practice may vary according to the learning algorithm used (Eisenberg 1992). It was
important that, given the sample complexity of the concepts of interest to users, the
algorithms be capable of building useful models with a relatively small number of
training examples (i.e., in the range of a few thousand or less). Requiring users to
provide tens or hundreds of thousands of examples to produce usable models may have
made supervised learning less useful, especially without the presence of additional
interface support to facilitate more efficient construction of training examples.

Appropriate Capacity of Learning Algorithm

In all applications, it was also crucial that the learning algorithm employed be capable
of producing a model function that met users’ needs. Generally, a given supervised
learning algorithm is not capable of producing any arbitrary modeling function, re-
gardless of how the training set and algorithm parameters are configured. Each learn-
ing algorithm has the capacity to produce certain types of functions and not others.
Users became frustrated or had to change their goals when a learning algorithm did
not have the capacity to learn the concept they had in mind; for example, several
PLOrk students encountered problems trying to use AdaBoost boosting on decision
stumps to create multi-class models. In general, the necessary capacity of a learning
algorithm is likely to vary greatly from task to task.

Ability to Produce Complex Functions (Neural Networks)

A few users attempted to employ neural networks to produce mappings with specific
behaviors that matched functions that they had in mind, for example to produce
linear relationships between gesture features and sound parameters. This was often
a difficult or impossible task, considering the set of functions producible by neural
networks using a small number of nodes and a small number of training examples.
This mismatch between users’ goals and the algorithm’s abilities resulted in neural
networks not being very useful or usable to users performing these tasks.

On the other hand, most users did not employ neural networks for this purpose.
It was more important to them that the model produce a function that “interesting”
or “musically useful.” While it was sometimes important that the algorithm have
the capacity of producing a model that behaved predictably for gestures like those
in the training set (i.e., a model with good training accuracy), the “capacity” of
the algorithm seemed to be less of a concern than in gesture classification tasks.
Instead, it was important to users that the neural networks were capable of producing
complex functions in which each input parameter affected each output parameter in
non-linear and interdependent ways. This affordance of neural networks was key to
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easily producing models that some users said “felt” like acoustic musical instruments,
and to producing models that were qualitatively different to the models users could
easily create using explicit mapping strategies.

Ability to Use the Training Set to Steer Model Behavior

By definition, supervised learning algorithms produce models whose behavior is in-
fluenced by the type and amount of data in the training dataset. Wekinator users
exploited this fact by using the training set to explicitly steer models toward behav-
iors that they judged to be desirable. Through their interaction with the training
set, users were often able to iteratively refine models both to be more accurate and
to exhibit a variety of properties not explicitly optimized by the learning algorithms
themselves, such as musical expressiveness and low error cost.

Ability to Use Algorithm Parameters to Steer Model Behavior

The nature of an algorithm’s parameters controls the range and dimensions of vari-
ations that are possible to effect in a trained models’ behavior for a given learning
algorithm and training set. The ability to employ algorithm parameters to influence
the behavior of the trained models was occasionally useful to users in our studies.
For example, the k& parameter of kNN was used to control the smoothness of decision
boundaries in the K-Bow gesture classification work.

Certain algorithms also had parameters that could be used to modify the amount
of time an algorithm required to train. In particular, the number of AdaBoost’s
boosting rounds could be manipulated to incur a shorter training time, but potentially
at the cost of decreased accuracy.

Fast Running Time

The algorithms employed in this work produced models capable of running very
quickly: that is, very little time was needed for the model to compute an output
value from an input feature vector. This was crucial to enabling real-time evaluation
of the trained models, as well as in making the models usable for the real-time mu-
sical applications of interest to users. Furthermore, both training time and running
time influence the feasibility of computing cross-validation accuracy, which involves
repeated retraining and running of a model. If either training or running time is high,
computing cross-validation can take a long time.

8.7.2 Barriers to Effective Interaction and Possible Solutions

Certain characteristics of the algorithms presented barriers to effective interactions,
in that algorithms did not afford control along dimensions that were meaningful to
users, or that they did not expose this control in ways that were easily usable. These
barriers might be addressed through selecting or designing algorithms with additional
affordances or with affordances that are more easily exercisable.
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Long Training Time, Insufficient Capacity, and Insufficient Parameters

Sometimes, the extent of the above affordances was insufficient to enable users to
accomplish their initial goals for using supervised learning. When confronted with
neural networks that took a long time to train using the given training data and
features, users sometimes attempted to shorten the training time by using smaller
data sets or fewer features. This process sometimes required users to modify their
ideas for how the models would work. Other times, users put up with the long training
times required to accomplish their goals, but found the long training frustrating.

As mentioned above, users sometimes tried to employ algorithms to learn concepts
that were not learnable by those algorithms. Sometimes the mismatch in an algo-
rithm’s capacity and a users’ goals was solvable by using a different algorithm within
the Wekinator (e.g., boosting on decision trees instead of stumps). Other times, an-
other algorithm not currently supported in the Wekinator would suffice (e.g., linear
regression could be used instead of neural networks to create continuous linear func-
tions). When a user desired to build a model for which no learning algorithm would
suffice, or when the user was unaware that a different available learning algorithm
would meet his needs, the user was forced to modify his goals for how the system
would work.

Neither modifying the training data nor modifying the algorithm parameters nec-
essarily offered users a means to improve the model against certain of the evaluation
criteria described in Section 8.4.1. Some algorithms include parameters that can be
manipulated in ways to influence certain of these criteria—for example, adjusting k
in kNN can adjust decision boundary smoothness—but this is not always the case.
For example, decision trees and SVMs do not expose parameters that will necessar-
ily affect boundary smoothness, and none of the algorithms offered parameters that
could be manipulated to achieve particular effects on shape of the model posterior
distribution.

These observations suggest that the user experience might be improved by offering
a wider variety of learning algorithms—for example, to increase the likelihood that
some available algorithm will meet the user’s needs in terms of training time, capacity,
and parameters. Additionally, learning algorithms might be designed to particularly
match the constraints and goals of interactive supervised learning users in a given
context. For example, algorithms could be designed with parameters for explicitly
controlling boundary smoothness and function complexity, or they could be designed
to allow users to specify absolute time limits on training. Additionally, engineering
approaches could address high training time in the same ways that it is often addressed
in conventional machine learning, for example using parallel processing on multiple
machines or multiple processor cores, and/or assigning training to be done on more
powerful machines or in the cloud (Armbrust et al. 2010).

Unusable Parameters

Some algorithms offered users several parameters to control the model behavior, but
it was unclear to users whether or how they could use these parameters to improve
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the models in ways that were meaningful and useful to them. For example, SVMs
have a “complexity constant” parameter, which affects the degree to which training
errors are penalized in the creation of the model. Additionally, a user must choose
a kernel type (e.g., linear, polynomial, radial basis function are the kernels available
in the Wekinator), and each kernel has its own parameters to set. It is unclear how
changing these parameters will affect the trained model in ways that are meaningful
to a user, including but not limited to the generalization accuracy of the model. Users
of neural networks were faced with a similar problem: it was not clear to them how
changing the network architecture, learning rate, momentum, or number of epochs
would affect the model function, the time required to train the network, or any other
characteristics that users cared about. Furthermore, setting these parameters to
certain values sometimes resulted in errors being encountered during training, which
was upsetting to users. Additionally, our conversations with users revealed that they
often felt daunted by the sheer number of parameters of SVMs and neural networks,
as well as by their uninformative names. Across all four studies, nobody that we
know of ever changed parameter values for an SVM. While a few composers played
with changing neural network architecture and parameters very early in their work
in Chapter 4, nobody continued to do so.

To some degree, a user interface can be designed to repackage control over stan-
dard algorithms’ parameters in a way that makes it clear to a user how the setting of
a parameter will adjust a model according to his goals, as discussed in prior work by
Morris et al. (2008) and Fiebrink, Cook, and Trueman (2009). However, if the avail-
able parameters are themselves insufficient to adjust a model along the dimensions
of interest to a user, no user interface will be able to compensate for the barrier this
presents to an algorithm’s usability.

Notably, machine learning practitioners employing SVMs or neural networks in
conventional contexts must themselves grapple with the problems of how to choose
the SVM kernel and parameters or design the neural network architecture. While
there exist conventional mechanisms for handling this (e.g., a grid search for SVM
parameter values on a portion of the available data), addressing these questions effec-
tively still takes time and effort. Practitioners must weigh this usability cost against
the perceived benefits of using these algorithms as opposed to others, such as better
classification accuracy or running time.

Constraints on the Learning Problem

All learning algorithms considered in this work produced a model that output a single
output value in response to a vector of input features. The algorithms’ lack of ability
to take temporal variations over subsequent feature vectors into account constrained
the types of models that could be learned. In particular, some users proposed ideas
for employing the Wekinator to recognize gesture “shapes,” such as numbers drawn
in the air with the K-Bow or certain hand motions in front of the webcam. The
Wekinator’s meta-features (Section 3.3.5) are somewhat helpful in enabling users to
build these models, in that feature vectors over time can be concatenated into a larger
vector and then classified. However, this approach does not elegantly handle gestures
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of the same class performed at different speeds, nor does it handle the requirement to
identify the point at which a gesture ends (i.e., the point at which the meta-feature
vector will contain features describing the completed gesture, not the gesture mid-way
through execution).

The use of learning algorithms such as hidden Markov models that are capable of
modeling temporal behaviors might be more appropriate for certain learning prob-
lems of interest to users. However, such algorithms would likely require different
interfaces for training data creation and would involve different tradeoffs among ca-
pacity, training time, and sample size than the algorithms studied here. Further work
implementing these algorithms for use in a similar interactive context is necessary
to understand the interactional affordances such algorithms offer and how to build
interfaces that allow users to employ these algorithms effectively.

Additionally, the fact that the Wekinator did not used temporally-aware learning
algorithms, coupled with the fact that the Wekinator did not incorporate any mecha-
nisms for segmenting the training examples into onsets or other events, made it more
difficult to create high-quality training data for applications in which the modeling
problem was sensitive to fine-grained timing. The composer studied in Chapter 7
who used the Wekinator to classify laptop hit position had to build additional infras-
tructure managing feature segmentation, so that his training examples consisted only
of features extracted immediately after a hit. Some of the cello bow gesture training
data had to be manually edited in the graphical editor so that the training examples
only corresponded to clear bow gestures, and not moments in time between gestures.

8.8 User Interface Affordances and Challenges

We observed several aspects of the Wekinator’s user interface to be important in
positively and negatively impacting users’ experiences. These aspects include the
manner in which the algorithms’ affordances are communicated and exposed by the
user interface, the ways in which the user interface enabled users to control aspects
of the learning problem that were important to them, and the mechanisms by which
users gained feedback about the state of the learning algorithm and model.

8.8.1 Exposing Affordances of the Learning Algorithms

Users’ ability to interact with supervised learning in the ways described in Section
8.2 was contingent not only on the affordances of the algorithms themselves, but on
the user interfaces of the Wekinator exposing these affordances to the user in us-
able ways. In particular, the Wekinator software exposed to the user the affordance
to steer model behavior through modifications to the training set. This interactive
affordance of learning algorithms is rendered unusable, or nearly unusable, in conven-
tional supervised learning software, in which no user interfaces exist for interactively
creating and modifying the training data.

The nature of the user interfaces through which users interacted with the learning
algorithms were also key to enabling users to build interactive systems that were
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useful to them. The Wekinator’s interface for creating training and testing data
through gestural demonstration allowed users to create a sufficient number of training
examples quite quickly. It also contributed to an embodied approach to designing and
evaluating interactive systems. (We discuss the importance of embodiment in the next
chapter.) The playalong interface allowed some users to create training examples that
they felt better represented the learning problem. (And, for at least one composer, the
inability of the playalong interface to smooth between sound parameter sets interfered
with his ability to create better training examples.)

8.8.2 Enabling Effective Control

Much of our discussion in Section 8.2 focused on how users exercised control over
the learning problem through modifying the training set, and changing algorithms
and their parameters. Additionally, as discussed in Section 8.2.4, it was important
for users to be able to enforce independencies between inputs and outputs through
the use of feature selection. Based on our observations, even some users who had
never heard the term “feature selection” found it natural to want to limit which
input features affected which output parameters. This finding is understandable in
light of the work by Jacob et al. (1994) studying how users perceive the integrality
and separability of input devices and control tasks. Therefore, in situations in which
interactive machine learning is used to build control systems where perceptually sep-
arable phenomenon are likely to be involved, feature selection should be seen not as
an “advanced” machine learning technique, but as a system capability that should be
easily accessible by all users.

The user interfaces used for providing control over how the training dataset was
constructed also significantly impacted the usability of the system. As mentioned
earlier, some users found it important to be able to design the dataset with attention
to how their gestures affected one parameter at a time. Creating the Wekinator’s
parameter checkboxes to enable the selection of training examples for a subset of
parameter models allowed users to employ this strategy. Additionally, users’ ability
to restrict which output parameters were influenced by certain training examples was
contingent on the Wekinator software’s use of an independent model for each param-
eter. Had multidimensional models been used (e.g., neural networks with multiple
output nodes), separate training sets could not be used for each output parameter,
and each training example would necessarily impact the behavior of all parameters.

8.8.3 Providing Effective Feedback

In Section 8.5.1, we discussed how direct evaluation provided a feedback mechanism
that enabled users to assess the quality of the trained models, as well as become
better machine learning users and refine their goals for the system. In the current
version of the Wekinator, direct evaluation was the only means for providing feedback
about the efficacy of users’ interactions with the system, or about the feasibility of
accomplishing their current goals using a given dataset or algorithm. Although it was
surprisingly effective in providing these types of feedback, we do not claim that direct
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evaluation is the best mechanism for this feedback, or that it should be the only such
mechanism. As discussed above, a significant source of problems for users was an
inability to understand how certain actions, such as changing a learning algorithm
or its parameters, would affect the trained models. Additional feedback about these
actions might affect the model might complement feedback from direct evaluation, and
provide more efficient mechanisms that enabled users to understand the consequences
of actions without having to explore the trained model. Providing additional feedback
about the state of the learning system—e.g., indicating that training examples of
different classes overlap in the feature space, or that the algorithm has a low training
accuracy—could also aid users in identifying errors more quickly or in fixing errors
more efficiently.

8.9 An HCI Perspective on Algorithms

The analysis and design of supervised learning algorithms is conventionally focused on
the computational power of the algorithms, for example focusing on an algorithm’s
capacity to learn certain types of functions, its ability to generalize well from the
available training data, and its ability to build the model efficiently (i.e., with rea-
sonable bounds on computational complexity). These properties of algorithms are
all important in interactive contexts as well, as we have discussed above. However,
in order to analyze the consequences of using a given algorithm in an interactive
scenario, and to examine how future work might design more usable algorithms and
interfaces for interactive machine learning, we have framed the previous discussion of
both interfaces and algorithms using a perspective grounded in HCI rather than in
machine learning theory. In particular, we have focused on describing the affordances
of algorithms that were important to users’ work, and how these affordances were
exposed and made usable by the Wekinator’s user interfaces.

We will now outline our perspective on how the interactional affordances of algo-
rithms shape their usefulness and usability, both independently of the user interface,
and as mediated by the user interface. We will briefly analyze the algorithms used in
this work based on their characteristics that contributed to or impeded users’ success.
Finally, we will end the section with a review of future work in algorithm design that
is motivated by an HCI perspective on supervised learning algorithms in interactive
contexts.

8.9.1 Usefulness, Usability, and Algorithm Affordances

As proposed by McGrenere and Ho (2000), following the original definition by Gibson
(1979), an affordance is a property of an object that “exists relative to the action
capabilities of a particular actor,” exists “independent[ly] of the actor’s ability to
perceive it,” and “does not change as the needs and goals of the actor change.”
The existence of affordances is related to the usefulness of an object. However,
an affordance exists independently of the actor’s ability to perceive its existence or
the actor’s ability to use it effectively (McGrenere and Ho 2000). Good design,
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therefore, is concerned both with making an object useful by designing to include the
affordances needed by users, and with making an object usable by making affordances
clearly apparent to users and easy for users to exercise. McGrenere and Ho write that
making affordances usable entails “account|ing] for various attributes of the end users,
including their cultural conventions and level of expertise.”

The question of designing a useful interactive machine learning system can be seen
first as a question of choosing underlying supervised learning algorithms possessing
the necessary affordances. The primary affordances needed by users in this work were
described in Section 8.7.1. Some of these affordances—in particular, the capacity of an
algorithm to model a particular concept, and the use of parameters to tune a model’s
behavior—are of routine concern to the analysis and design of learning algorithms
within conventional machine learning contexts. Others—in particular, the ways in
which interaction with the training set afforded users the ability to iteratively refine
models to best meet their subjective goals—depart from the affordances defined in
a conventional machine learning context. However, affordances are defined as the
ways in which an object may be used by an actor, regardless of the intentions of the
designer; in this work, users took advantage of the affordance to steer model behavior
through modifications to the training set, even though this behavior departs from
the conventional usage of these algorithms as typically presented to machine learning
students and practitioners.

Of course, the affordances available to users are mediated by the user interface and
software through which users interact with the algorithms themselves. For example,
the Wekinator software did not afford users the ability to change the distance metric
used by kNN, even though the Weka API exposed this affordance to the Wekinator
software. We intentionally hid many algorithm parameters of this sort, in an attempt
to make the software interface more usable at the expense of removing functionality
that we did not judge to be too useful. However, had the software prevented users
from editing the training dataset, this important affordance would have effectively
disappeared, and the usefulness of the algorithms would be reduced. Had the software
provided an inappropriate interface for the creation and editing of training data—
for example, only an interface in which users had to manually type in every feature
and parameter value for each training example—the usability of this aspect of the
software would be reduced to render this affordance nearly unusable. A primary goal
of building the Wekinator has therefore been to make supervised learning more useful
and more usable compared to other supervised learning software, through exposing
more affordances of algorithms within usable interfaces.

The design of the user interface plays an important role in informing the user of
the existence of these affordances, the possibilities they present for working with the
system, and the means to exercise them. A significant challenge that we encountered
in this work was how to educate users, especially those who were machine learning
novices, about affordances offered by the algorithms. For example, PLOrk students
who encountered problems applying boosting on decision stumps to multi-class prob-
lems could have easily fixed those problems by choosing a different learning algorithm
whose capacity afforded the ability to model the concept the student had in mind.
However, the Wekinator interface provided no way for a user to understand this, so
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some users were unable to build the multi-class classifiers they had envisioned. On the
other hand, users did not seem to require extra information beyond what the Wek-
inator user interface offered them in order to understand how to employ the training
set effectively to control the behavior of the trained models.

While user interfaces may improve the usability of supervised learning algorithms
by exposing their affordances in understandable and usable ways, we argue that a
user interface cannot add new affordances to a learning algorithm, and that usability
of a machine learning system can be fundamentally limited by qualities of the under-
lying algorithms. For example, a user cannot employ kNN for regression, no matter
what the user interface looks like. A user cannot apply a decision stump to create an
accurate model for a three-class classification problem. Furthermore, kNN’s parame-
ters can be tuned to make the decision boundary smoother, but no matter what the
user interface to kNN looks like, the algorithm’s parameters cannot be guaranteed to
be tunable to enforce a linear decision boundary (even though a linear hyperplane
is within the set of decision functions capable of being produced by kNN for certain
training sets). A decision tree’s parameters, on the other hand, can be tuned to
enforce a linear boundary (i.e., by limiting the tree to one level).

In summary, the affordances of algorithms themselves determine the potential
usefulness of the system. A user interface can make an algorithm less useful by
hiding affordances, or it can provide access to the affordances that are important
to users (even affordances not typically exploited in conventional machine learning).
Certain algorithms are more or less amenable to embedding in usable interface, in
that the affordances they expose may be more or less difficult to present to users in a
meaningful way, and for users to learn to use effectively. While a good user interface
may make an algorithm easier or more difficult to use, the usability of the system
remains fundamentally limited by the affordances exposed by the algorithm, as the
user interface cannot compensate for an algorithm that does not afford control over
aspects of the model or learning process that are important to users.

8.9.2 Improving Algorithms’ Usability and Usefulness in
Interactive Supervised Learning

Potential improvements of interactive supervised learning systems can therefore take
three somewhat different directions: the design of algorithms with new and more
useful affordances, the design or modification of algorithms to make their affordances
more usable, and the design of interfaces that make algorithm affordances more ap-
parent and easier to exercise effectively.

In this work, we have focused on improving usefulness and usability by exposing
more of algorithms’ innate affordances to the user—particular, the ability to create
and modify training data, and to evaluate on new examples—and on providing usable
interfaces for exercising these affordances.

Prior work by other researchers has focused on adding new affordances to the
underlying algorithms, including work in both HCI focused on adding affordances
that take advantage of human interaction in new ways (e.g., work by Shilman et al.
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2006 and Kapoor et al. 2010), and work in machine learning research. We next outline
a few other possible avenues for designing new algorithms for interactive learning by
creating new affordances and making them more usable.

One significant example of machine learning algorithms being developed to take
advantage of human interaction is the development of active learning algorithms,
which we described above in Section 8.6. Active learning algorithms leverage human
interaction in domains where much unlabeled data is available and where human
interactors are capable of providing labels to unlabeled examples selected by an al-
gorithm. Active learning algorithms can improve the usability of supervised learning
in these domains, because humans may have to spend less time and effort labeling
data that may not be useful to the algorithm. One could imagine a similar type of
interactive learning algorithm that prompts the user not for labels, but for feature
vectors. In the musical problems considered here, a natural part of many users’ work-
ing process was to come up with gestures that produced sounds they wanted to be
able to control. By extension, it could be easy for a user to listen to a sound generated
by a set of target outputs selected by a learning algorithm, then to demonstrate one
or more gestures (i.e., input feature vectors) to add to the training set along with the
parameters producing that sound. (In practice, for continuous mapping problems, it
would also be useful for a user to be able to indicate that she did not want that sound
to be part of the training set, or producible by the trained model.) Such a learning
algorithm could select its prompts with the goal of improving usability by making the
training set creation process more efficient, or with the goal of improving classifier
accuracy by selecting prompts from classes likely to be misclassified.

Another avenue for algorithm development might be to explicitly design algo-
rithms whose parameters enable tuning of the models along dimensions that are im-
portant to users. For example, algorithms might be designed to include parameters
that allow a user to explicitly adjust decision boundary smoothness, function com-
plexity, or the tradeoff between training time and model accuracy. To some degree, a
user interface can be designed to repackage control over standard algorithms’ param-
eters in a way that makes it clear to a user how the setting of a parameter will adjust
a model according to his goals, as discussed in prior work by Morris et al. (2008) and
Fiebrink, Cook, and Trueman (2009). However, it may not always be straightforward
or even possible to re-parameterize an existing algorithm to provide control against
the dimensions of interest to a user, so new algorithms or new variations on existing
algorithms might be useful. Additionally, algorithms could be designed to better take
advantage of a user’s knowledge of the real-world costs of misclassifications, as was
done for example in work by Kapoor et al. (2010). To some degree, this might be
addressed through allowing the user to interactively apply weights to classes or ex-
amples, communicating their relative importance to the learning algorithm. In Weka,
most standard classifiers can take advantage of weighted instances, so in future work
we plan to augment the Wekinator user interface with this ability.

In addition to allowing users to interact with algorithms in new ways and use
parameters more effectively, algorithms might be designed to enable users to exercise
control via the training sets more effectively. As we discussed in Section 8.5.2, this
might be accomplished through the use of algorithms that prioritize training accuracy
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over generalization, or through algorithms which expose a regularization parameter
to the user.

8.10 Significance of Domain Characteristics in
Interactive Machine Learning

Based on our work presented in this thesis as well as prior research in interactive and
conventional machine learning, there are several characteristics of a problem domain
that we see as important in establishing whether interactive machine learning is fea-
sible in that domain, in defining the types of interactions that are possible, and in
shaping what users require from a system’s algorithms and interfaces. These char-
acteristics include the extent of users’ expertise in the application domain, whether
the interactive machine learning user will also be the end user of the trained mod-
els, whether the application domain involves real-time interaction, and the extent to
which users may be flexible in adapting their goals for the supervised learning process.
For each of these criteria, we describe why it is relevant to our results and how our
findings in this thesis intersect with existing or potential interactive machine learning
applications or research in other domains.

8.10.1 What is the User’s Expertise?

In applications studied in this thesis, users were familiar with the learning problem
(i.e., the concept the model would learn) and proficient in the domain (e.g., producing
hand gestures or cello bowing articulations). These characteristics were essential in
making it appropriate and feasible for users to create training examples and to create
the new inputs used to directly evaluate models. Therefore, our findings regarding
how users developed strategies for creating and modifying training data, and for how
they evaluated the trained models by generating new inputs, are most relevant to
other domains where this is the case. For example, this type of interaction might be
useful to enable domain experts in medicine, the sciences, or other technical domains
to build models whose goal is to replicate—but not augment or surpass—the expertise
of a trained human. Additionally, there are many pursuits in which many humans
are “experts,” including understanding speech, perceiving objects visually, driving a
car, etc. In creating computer systems capable of such pursuits, programming by
demonstration has long been used to address computational challenges by leveraging
human expertise.

8.10.2 Who Uses the Trained Models?

In many of the applications studied in this thesis, users were engaged in building
models that, once trained, would be used only by them. This enabled users to consider
simplified versions of the learning problems: for example, the K-Bow cellist only had
to create a set of classifiers usable by her, so she did not have to consider how to
create training or testing data that might be representative of cellists of different
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sizes or skill levels. Users also had a high degree of knowledge about the types of
applications in which the models would be employed, and about the sorts of future
inputs the models would see. This further simplified the learning problem, and it also
meant that users could evaluate trained models by providing inputs that were similar
to those likely to be used in practice. Other domains in which end users routinely
assist the computer in building models or control vocabularies to be used only by
them include speech recognition and gestural gaming systems.

Furthermore, for some of the applications studied here, users had some degree of
control over how they would use the models in the future. By gaining experience with
the models, they could identify where models were likely to fail and potentially avoid
using failure-producing inputs in future interactions with the system. The extent to
which this is the case in other applications, such as speech recognition and gaming
gesture recognition, is dependent on the application.

In applications for which the interactive machine learning user is not the end
user of the trained models, the interactive machine learning user must find a way
to accommodate the increased uncertainty and variability in future model inputs. A
conventional machine learning approach that uses a fixed dataset for training and/or
evaluation may be appropriate, or the user might augment data generated by other
users with his own. Collaborative approaches in which multiple users interactively
contribute training data or evaluate trained models could be useful, for example in
the construction of general-purpose speech or gesture recognition systems.

8.10.3 Real-time or Offline?

In all of the applications studied here, users created models that would ultimately be
used to produce real-time outputs in response to a stream of real-time inputs. The
real-time nature of the problem domain presents unique challenges: for example, it
is difficult to imagine a way to produce concise visualizations of the problem space
or trained model, as was done in work on web image classification by Amershi et al.
(2009). On the other hand, the real-time nature of the domain—coupled with the
domain expertise of users—Ilends itself well to creating interfaces for users to generate
training examples and evaluation examples in real-time. Users were able to generate
training examples very quickly by demonstration, and they were able to evaluate the
models in real-time in a manner very similar to how they planned to use the final set
of trained models in the future.

The direct evaluation mechanism of the Wekinator allowed users to employ an
exploratory approach to evaluation of the trained models. They were free to quickly
assess the model behavior over a wide range of the input space, focus on how the
model function varied with small and subtle changes in inputs, or focus attention
only on the parts of the model space that they had just edited. We did not make
a detailed assessment of users’ strategies for exploring the models during evaluation,
but the actions that people took in order to improve the models (discussed in Section
8.2) do underscore that the evaluation strategies that people developed were informa-
tive of a variety of evaluation criteria. An interesting avenue for future work might
be to investigate whether rapid, open-ended exploration of the trained model space
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(within a user interface for conducting this exploration efficiently) is beneficial for
users applying supervised learning to offline domains, such as image classification.
Using a gestural controller and a mapping from the controller into the model space,
users could even employ gesture-driven exploration of models in other domains, which
might allow for both rapid exploration and an embodied approach to understanding
the modeling problem. On the other hand, future research could also investigate how
to extend approaches for feedback in offline domains (e.g., by Amershi et al. 2009)
into real-time domains. For example, instantaneous visual feedback on qualities of
the model function that are important to users could allow users to focus their direct
evaluation on exploring the most informative areas of the model space.

8.10.4 How Flexible are Users’ Goals?

In the applications studied here, the degree of control that users exercised over the
scope and definition of the learning problem ranged from completely open-ended
(e.g., designing both the gestural vocabulary and its discrete or continuous mapping
to sound) to quite constrained (i.e., designing K-Bow models that classified gestures
according to conventional string technique). In open-ended applications, users were
free to change nearly every aspect of the learning problem in order to create a model
that worked in a particular compositional context. For example, they were free to
make the learning problem easier by using fewer classes or by using different gestures
when they found it difficult to train a model according to their original plans, or
they were free to take advantage of surprising behaviors of the mapping function. On
the other hand, the K-Bow user was less flexible in her ability to make the learning
problem easier, and some PLOrk students were intent on creating particular types of
gesture recognizers.

Based on our observations, we believe it is likely that the extent to which users’
goals are flexible influences the nature of the support they require from the algorithms
and user interface. For example, a user who must create an accurate model of a very
specific concept may have a greater incentive to compare many algorithms, parameter
settings, and feature selections before choosing the best of them; a user who must
create an accurate model of a less specific concept may be able to modify the concept
to be easier to classify, and he may be able to do so more easily than finding a more
accurate learning algorithm. Highly-constrained users may therefore require a wider
assortment of algorithmic tools (including learning algorithms, feature extractors,
etc.) as well as greater interface support in helping them to understand these tools and
wield them effectively. Less-constrained users, on the other hand, might require tools
to help them efficiently identify ways that the learning problem might be re-defined to
produce better accuracy, and to explore the consequences of choosing among possible
problem definitions. In our user studies, users often did not fall cleanly into one or
other other of these categories, so we could not directly compare the needs of these
groups. However, we believe that future work more rigorously exploring these needs
of these two types of users would be informative.

Additionally, we underscore that even the most constrained of our observed users,
the K-Bow cellist, was flexible with regard to certain aspects of the learning problem,
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such as the number of gestural classes used and (sometimes) the precise locations
of the decision boundaries. In many conventional supervised learning application
domains, from gesture recognition to medical diagnosis, the translation of a real-
world phenomenon into a supervised learning problem definition likely involves a set
of subtle and sometimes flexible human decisions about the number of classes, what
constitutes a correct or incorrect classification, and other aspects of the problem. In
conventional applications, these decisions are implicit and fixed in the training set.
However, our observations suggest that interactive supervised learning by domain
experts can enable these flexibilities to be exploited in appropriate ways. Further
research might investigate the nature of these flexibilities in a range of conventional
domains and demonstrate how allowing them to be manipulated interactively by end
users enables the construction of better models.

8.10.5 Other Domain Characteristics

Computer music is a domain in which systems-building can often be a long, arduous
process, and one that does not always engage the creative or musical strengths of users.
As we discuss in the next chapter, composers particularly valued the Wekinator’s
ability to enable a high-level, embodied, and efficient approach to systems design,
in contrast to their experiences with other tools. Our observations suggest that
interactive machine learning may be useful as a tool in domains for which supervised
learning isn’t always computationally necessary, but where users may benefit from
a tool for high-level design and rapid prototyping. This encompasses many creative
domains, as we discuss in the next chapter. Prior work by Hartmann et al. (2007) has
also found interactive supervised learning to be suitable under these circumstances,
in sensor-based interaction design prototyping.

Additionally, Wekinator users sometimes found that interacting with supervised
learning provided a useful perspective on themselves as creators of examples or demon-
strators of gestures. For example, the K-Bow cellist learned through model-building
that two of her articulations were not as clearly distinct as they should have been, and
she was able to improve her technique as a result. One of the case study composers
(Weitekamp) and many of the PLOrk students learned to provide very clear and
consistent gestures, because not doing so resulted in models that performed poorly.
This suggests that interactive machine learning might be a useful tool in application
domains where computers are used to provide feedback on human actions, including
feedback about consistency with oneself or with an expert. Such domains might in-
clude music pedagogy (e.g., teaching someone to play an instrument), sports pedagogy
and training, physical therapy, and speech therapy, among others.
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8.11 Conclusions

8.11.1 Why Interaction Matters

Our observations of users applying interactive supervised learning to their work and
the success with which diverse users employed the Wekinator to create a variety of
useful musical systems underscore the fact that interaction can play an important
role in enabling end users to employ supervised learning algorithms effectively.

Interaction with the training dataset allows users to employ their expertise in
defining the nature and scope of the learning problem, to correct errors in a model,
and to iteratively improve a model against their own criteria for success. Furthermore,
modifications to the training set allow users to change the nature of the learning
problem as their goals for the learning process change, or to take advantage of newly-
acquired knowledge of what types of training data will most likely create the desired
model qualities. Interactively modifying learning algorithms, their parameters, and
the features they use are also sometimes important, but modifying the training data
is often the most direct way of influencing the behavior of the trained model to better
meet users’ goals.

Interactive evaluation of the trained models allows users to assess models against
their own criteria for success, which include accuracy as well as a range of other
characteristics, such as decision boundary shape, complexity, misclassification cost,
and posterior confidence, which are likely to be different for different users and appli-
cations. Interactive evaluation informs users how they might take action to correct
shortcomings of the models by modifying the training set or other aspects of the
learning problem. Interacting with trained models can also enable people to discover
new capabilities of models that they hadn’t expected, and it can allow people to
develop and practice strategies for using the models most effectively.

Repeatedly modifying the data or other aspects of the learning problem and eval-
uating the effects of those modifications serves to inform users over time about the
types of interactions that are most likely to produce the desired outcomes; in other
words, iteration enables users to develop effective strategies for interactive supervised
learning. Users also learn over time which model behaviors are easily obtained, and
which are more difficult. Ultimately, users employ interaction to discover and man-
age tradeoffs among their goals for the learning problem and the effort required to
accomplish those goals. Interaction can also be useful in helping a user to formulate
and refine their goals, as we discuss in the next chapter.

8.11.2 Summary and Future Research

Our work in this thesis has demonstrated that interaction offers numerous practical
benefits to end users applying supervised learning to their work. Additionally, our
work has highlighted some key differences between interactive and conventional ma-
chine learning applications, particularly with regard to the role that generalization
accuracy plays in interactive contexts. Future work might explicitly investigate the
relationship between generalization accuracy and users’ goals in a variety of domains,
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and it might explore whether algorithms that build models with attention to criteria
other than generalization accuracy are useful in interactive contexts.

Another open question is the extent to which human creation of the training
dataset in interactive contexts serves to reduce the sample complexity of learning
problems. It may be the case that aspects of the strategies naturally adopted by
interactive supervised learning users are effective in reducing sample complexity, or
that users can be encouraged through education or user interfaces to adopt strategies
that enable them to use less data. Either case would bode well for the possibility of
using interactive supervised learning to effectively and efficiently create models with
few training examples in other domains.

In this chapter, we have suggested that the HCI framework for understanding
affordances, usefulness, and usability can be applied to the analysis of supervised
learning algorithms. We believe that qualities of algorithms intersect with qualities
of the user interface in determining the usefulness and usability of the system. Under-
standing these qualities can inform choices of algorithms to use in interactive contexts,
and future work designing new algorithms to be more useful and usable interactive
contexts will be valuable. For example, new algorithms could be designed to take ad-
vantage of different human interactions, and to provide parameters that correspond
to dimensions of behavior that are important and understandable to users.

We have also discussed how the user interfaces for control and feedback presented
opportunities and challenges to users of the Wekinator, independently of the learning
algorithms used. There exist remaining design challenges on how to support and
encourage effective interaction with machine learning algorithms, particularly by users
who are machine learning novices.

We have achieved a good understanding of the nature and breadth model evalua-
tion criteria and goals employed by users in our studies. Future work might study the
criteria and goals of users in other application domains, such as gesture recognition in
non-musical applications. If commonalities across domains are found—for example,
in users’ desire for increased control over decision boundary smoothness or training
time—these may suggest fruitful avenues for the design or modification of learning
algorithms to be used across many different domains.

In this chapter, we have outlined characteristics of the computer music applica-
tion space that have been crucial to enabling the application of interactive super-
vised learning to users’ work. Our findings generalize most clearly to domains that
share similar characteristics: where users are domain experts, constructing models
for themselves to use, and working in real-time domains; extension of interactive ma-
chine learning to different types of domains presents interesting research challenges.
One domain characteristic which we believe has a significant impact on users’ re-
quirements, but which has been unexplored in past research, is the degree to which
users are able to redefine aspects of the learning problem. In future research, we hope
to explore how interaction may allow users to exploit areas of flexibility not only in
creative work, but also in more conventional application domains.
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Chapter 9

Discussion: Interactive Supervised
Learning and Creativity

9.1 Introduction

As we discussed in Section 2.2.3, prior research has demonstrated that supervised
learning can be a useful tool in several key problems in computer music composition
and performance, including the creation of gesture-to-sound mappings, the classifi-
cation of human gesture, and the semantic analysis of audio. In this thesis, we have
demonstrated that it is both feasible and valuable to enable end users to take an
interactive approach to applying supervised learning to their work in gesture analysis
and mapping.

Some of our goals for the Wekinator outlined in Chapter 2 included the creation
of a supervised learning tool that worked in real-time, that was compatible with a
range of tools that composers used, and that was possible to use without program-
ming. Clearly, the Wekinator software meets these goals, and these characteristics
have been instrumental in allowing the range of musical projects discussed in this
work. The software has been used successfully by professional composers and under-
graduate students, and by people building expressive musical instruments and gesture
classifiers. Musicians have used it to design interactive systems controlled by a range
of input modalities and controller hardware, and to control sound and visuals within
the ChucK, Max/MSP, and Processing environments. Users in every study indicated
that they were able to use the Wekinator to do their work more efficiently, to create
systems with great potential for musical expressivity, and to build new instruments
that they would not have been able to create using other methods. Furthermore,
users were able to accomplish these things without, in most cases, knowing much at
all about machine learning.

Based on these observations, we claim that interactive supervised learning is an
appropriate and useful tool for creative users working in computer music. In this
chapter, we more deeply interrogate why this is so: How has interactive supervised
learning functioned to support the creative activities of the users we have observed?
In particular, we examine interactive supervised learning in the context of prior work
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on creativity support tools and embodied cognition, and we demonstrate how it serves
several important creative functions.

Subsequently, we review how our observations of and work with Wekinator users
contribute to a deeper understanding of the human-computer interaction require-
ments of composers. Our work both illuminates the values and goals held by users
engaged in music composition and instrument building and highlights roles that tech-
nology may play in helping users achieve their goals. In particular, composers in our
studies valued being able to use technology to access inspiration and to engage their
musical, creative, embodied expertise in their work. Our work specifically sheds new
light on the importance of interaction and algorithms in enabling generative map-
ping strategies to offer distinct benefits to digital musical instrument designers. Our
findings also emphasize the utility of broadening the scope of discussion about in-
teraction in computer music to include the processes of composition and instrument
design, and we propose a view of the Wekinator and other compositional tools as
“meta-instruments.”

9.2 Interactive Supervised Learning and
Creativity Support

9.2.1 Creativity Support and HCI

In Section 2.5 in Chapter 2, we briefly outlined the existing thread of research in
HCT on the use of technology to support human creativity. Fundamental research in
this area, particularly work by Shneiderman (2000, 2007), is aimed at understanding
people’s creative processes and the opportunities for technology to support types of
thinking and working that are common across creative domains. Also relevant is
a growing body of domain-specific work investigating the needs of particular user
communities and assessing the usability of software designed for those communities.

In 2005, a group of seven creativity support researchers—people familiar in both
foundational and domain-specific research on HCI and creativity—proposed a set of
design principles for tools to support creative thinking (Resnick et al. 2005). Their
intention was for these principles to “guide the development of new creativity sup-
port tools—that is, tools that enable people to express themselves creatively and to
develop as creative thinkers.” This set of principles was amalgamated and refined
from prior research and previously-proposed design guidelines, and like much of that
prior research, the authors define creative work broadly. Creative work encompasses
not only work in the arts and other “creative” domains, but work such as software
engineering, architecture, science, and education in which people musts “be not only
more productive, but more innovative.”

In particular, the design guidelines proposed by Resnick et al. pertain to what
the authors call “composition tools,” where “composition” is used not in the musical
sense, but in the sense of “computational systems and environments that people can
use to generate, modify, interact and play with, and/or share both logical and/or
physical representations. A creative composition process is not a routine production
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process that can be prescribed, and what tools and representations people use strongly
affect their courses of actions and thought processes.”

The design guidelines for composition tools proposed by Resnick et al. can be
paraphrased as follows:

1.

10.

11.

Support Exploration: A tool should allow users to try many alternatives, ex-
plore the space of possibilities, backtrack when actions are unsuccessful, make it
clear to users how the tool might be used, and support “sketching” of incomplete
ideas.

Provide a Low Threshold, High Ceiling, and Wide Walls: A tool should
be usable by novices and experts, and it should support and suggest a diversity
of applications.

Support Many Paths and Many Styles: A tool should support different
learning styles and approaches and even work against traditional biases toward
certain cognitive styles.

. Support Collaboration: A tool should allow each person in a team to con-

tribute according to their strengths and to work in parallel.

Support Open Interchange: A tool should seamlessly operate with other
tools used in creative work, and it should be extensible (e.g., providing support
for user-generated plug-ins).

Make It As Simple As Possible, And Maybe Even Simpler: The user
experience should be simple, even for tools that allow users to accomplish com-
plex tasks.

Choose Black Boxes Carefully: Black boxes or “primitive elements” deter-
mine what ideas users can explore and what ideas remain hidden. The choice
about what to hide or reveal should consider the goals and knowledge of the
target audience.

. Invent Things That You Would Want to Use Yourself: Tools should be

enjoyable, and they should foster communities of users who enjoy using them.

Balance User Suggestions With Observation and Participatory Pro-
cesses: Observing how users work can be more informative than asking them
for suggestions; participatory methods can involve substantial effort but lead to
projects that are better accepted by the broader community of users.

Iterate, Iterate—Then Iterate Again: Tool designers should constantly
revise their tools, using design prototypes with potential users when possible.

Design for Designers: Design tools that enable users to design, create, invent,
explore, and reflect; foster creative thinking, not a “paint-by-numbers” approach
to creative work.
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12. Consider the Evaluation of Tools: “It is still an open question how to
measure the extent to which a tool fosters creative thinking,” but longitudinal
studies over long periods of time can lead to deep insights about whether a tool
is helpful and why.

Of these guidelines, numbers 1-8 and 11 pertain to qualities of the creativity
support tools themselves, as well as principles for designers to consider when creating
them. Guidelines 9, 10, and 12 refer only to guidance for the design process. In this
chapter, we focus on the former set of guidelines in our discussion of the usefulness
of interactive machine learning as a creativity support tool. However, we note that
our own experiences working with composers in the participatory design process in
Chapter 4 revealed the guidelines regarding the design and implementation process
to offer sound advice. Iteration, participatory design, and longitudinal study were
essential in enabling us to improve the usefulness of the Wekinator software and to
understand users’ needs more deeply.

9.2.2 Interactive Supervised Learning and Creativity
Support Tool Design Principles

As a tool for enabling end users to create, modify, and interact and play with super-
vised learning systems in music, the Wekinator falls squarely into the the scope of
“composition tools” targeted by the above design guidelines. Indeed, our work with
users of the Wekinator reveals that many of these guidelines intersect with the prior-
ities of users employing technology in their work, and that the manner in which the
Wekinator implemented certain of these design ideas contributed significantly to its
usefulness and usability. In this section, we examine many of these design principles
and discuss how they were important to users and how they were supported by the
interactive supervised learning process in the Wekinator.

Support Exploration

The Wekinator’s support for exploration and prototyping was of crucial importance
to composers. At the conclusion of the participatory design process in Chapter 4,
when asked what aspect of the Wekinator was most useful to their work, four of the
composers’ responses included mention of the speed with which the Wekinator allowed
them to create and experiment with new mappings. Composers strongly contrasted
their experiences experimenting with the Wekinator with the difficulty and slowness
of creating and changing mappings using other tools.

Interactive supervised learning was essential to supporting exploration and pro-
totyping with the Wekinator. First, given a working feature extractor and synthesis
algorithm, the construction of an initial prototype could be completed in a few min-
utes; all that was necessary was the demonstration of a few training examples and
the training of a model. Because the training process completed so quickly, the time
between choosing some gestures and sounds to explore and experimenting with the
newly-created instrument or controller was often only a few seconds.
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Within the interactive supervised learning paradigm, the actions of revising mod-
els or starting over completely were easily executable and understandable. Incremen-
tal changes could be induced by adding training examples that encoded the way in
which the user wanted the model to change, and changes could be rolled back by
deleting one or more recent “rounds” of training data and retraining. Starting over
involved simply deleting the training set and adding new examples. Some composers
commented that the ease of creating and changing mappings in the Wekinator en-
abled them to build instruments that they were ultimately happier with than those
built using explicit mapping techniques: not only were they able to explore more
possibilities, but they were less likely to feel they needed to keep a mapping they
disliked simply because of the amount of time and effort that had gone into building
it.

Because of the ease of rapidly building prototypes in this way, some composers
actually proposed applying the Wekinator for building interactive systems that did
not strictly require machine learning. For example, one composer in Chapter 4 pro-
posed using the Wekinator to construct a text command interface in which feature
vectors were character buffers and class values were the identities of commands. Even
though machine learning is not at all necessary to recognize text commands, the effort
required to write the feature extraction code and provide some command examples
may be less than that required to construct a standalone, real-time command in-
terface for controlling a synthesis patch. Furthermore, using machine learning to
implement such an interface allows additional capabilities, such as some robustness
to misspellings and the ability to define new commands on-the-fly.

Resnick et al. also discuss the usefulness of sketching in creative exploration, and
users in our work frequently employed the training dataset as a sketching tool. Both
the K-Bow cellist and PLOrk students using the Wekinator to build classifiers some-
times began by sketching out simpler versions of the classification problem, for ex-
ample using only a subset of the classes of interest and a few training examples.
This enabled them to build a first prototype even more quickly than using more and
more carefully-chosen examples, and it enabled them to discover almost immediately
whether their current approach to building the classifier (i.e., their chosen features
and/or input device coupled with their chosen gestures and classifier) was capable of
working.

Composers constructing continuous mappings often used the training dataset to
sketch out the boundaries of the sonic and physical gestures they were interested
in using in the mapping, and they relied on the neural networks to “fill in” this
sketch with detail. Because the neural networks were used as a continuous mapping
function, they were able to literally fill in the modeling function in between the
training examples, so that users of the trained models could employ any gesture—even
gestures very different from the training examples—and still produce sound. Neural
networks were thus usable for turning a rough sketch of a couple examples into an
immediately-usable, fully-functional instrument. Composers could then incrementally
add detail to the sketch by adding more training examples then expect the neural
network to fill in around these new details after retraining.
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In addition to saving composers time by filling in the details of the sketch, the
continuous nature of the neural networks meant that the trained models were capable
of producing output values not in the training set. When the networks controlled a
sound synthesis algorithm, this meant that composers could use the trained models to
discover new sounds that they hadn’t employed in the training data, and which they
might not have even imagined previously. In their gesture-driven explorations of the
trained models, they could also discover new gesture-sound relationships that they
hadn’t anticipated. Both composers and PLOrk students emphasized the creative
value of discovering new sounds, both as a way to inspire further development of the
composition or instrument currently being built, and to inspire future compositions.
Furthermore, once new sounds or gesture-sound pairs had been discovered, interactive
machine learning made it easy for users to take advantage of these discoveries. By
adding them to the training set as additional examples, users could often effectively
ensure that they would remain accessible in future versions of the mapping.

The neural network algorithms themselves were useful in filling in composers’
sketches in a musically constructive way, in that they facilitated the creation of com-
plex mappings. First, the use of several neural networks in parallel, each of which
computed an output as a function of many or all input features, enabled an easy way
to construct many-to-many mappings. Furthermore, neural networks are capable of
creating highly nonlinear, mathematically complex functions. The use of many-to-
many relationships (Hunt and Wanderley 2002) and complex functions are musically
valuable: acoustic musical instruments are characterized by such “functions” from
performer gesture to perceived sound, and users of the Wekinator often commented
that the mappings they built “felt” more like acoustic instruments. However, these
properties can be difficult to design efficiently and effectively in an explicit mapping,
where considerable effort must be spent considering the functional role of each input
in relation to each output.

Low Threshold, High Ceiling, and Wide Walls

Interactive supervised learning offered a “low threshold” to accommodate users who
were machine learning novices, as well as people who were new to instrument de-
sign and to programming. Users who did not understand how the machine learning
algorithms worked still found it easy to grasp how to influence the nature of the
trained models by making modifications to the training set. Furthermore, the feed-
back they received through model evaluation allowed many users to learn to improve
their strategies for providing useful training data, for example by minimizing noise
or choosing classes that were easily distinguishable in the feature space. Users who
were new to instrument design, computer music, or gestural interfaces were also able
to use the Wekinator successfully, both because the Wekinator was packaged with
built-in feature extractors and example synthesis patches, and because the use of in-
teractive machine learning accommodated users who did not understand the nature
of the features being extracted or how the synthesis algorithm parameters were used
to produce sound. Instead, users only had to manipulate the synthesis parameters to
find some initial sounds they wanted to use, then record training examples by demon-
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strating the corresponding gestures. Furthermore, the interaction with the machine
learning algorithms could be performed effectively within a GUI, so users neither had
to program nor understand machine learning well enough to use a machine learning
APT or library.

Interactive supervised learning can also offer a “high ceiling” for users who are
knowledgeable in machine learning, programming, and/or composition and instru-
ment design. Although none of our users discussed in this thesis were machine learning
experts, someone who is knowledgable about the way particular algorithms construct
models from the data or how algorithm parameters are likely to affect the models
can exploit this information in interacting with the system. The modular nature of
supervised learning means that users can design highly-customized feature extractors,
learning algorithms, and/or synthesis algorithms or other processes without having
to modify other aspects of the system or change the way in which they interact with
the system. (In fact, in work with the Wekinator not discussed in this thesis, a user
who is a researcher proficient in machine learning and programming implemented a
new learning algorithm class to be used within the software.) Furthermore, as our
observations of users show, interactive machine learning is a useful tool for users who
are musical experts. By leveraging their musical expertise in the process of both eval-
uating models and improving models using new training examples, the Wekinator
allowed these users to create instruments that were both musically expressive and
highly customized to their compositions. These users also leveraged the modularity
of machine learning, in that they used the outputs of standard learning algorithms
to control their own expertly-refined software for sound synthesis and music perfor-
mance.

The generality of machine learning algorithms further contributes to fulfilling the
“wide walls” principle: because supervised learning algorithms are designed to effec-
tively create models from data without regard to the application domain, users are
free to apply them to connect virtually any type of inputs to virtually any type of
outputs. The diversity of projects created by users observed in this thesis attests to
the width of the Wekinator’s walls. Users’ proposals for other projects that might
be accomplished with new feature extractors and controllable software processes are
even more diverse, spanning real-time audio analysis, interactive animations, and
gesturally-controlled games.

Support Many Paths and Many Styles

In terms of approaches to creating models and mapping functions, interactive ma-
chine learning clearly privileges a high-level, holistic approach to systems-building,
as opposed to a low-level approach characterized by applying logical reasoning to the
construction of the model function. Certain interactions with the Wekinator were,
however, structured to allowed people who preferred to think in lower-level ways
to work more efficiently. In particular, feature selection enabled users to efficiently
communicate their ideas for how certain input dimensions controlled certain output
dimensions, and training example selection enabled them to engage a more piece-wise
approach to model creation, in which they considered the effects of each training ex-
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ample on just one (or a subset) of the sound parameters. Nevertheless, when users
had very specific mathematical ideas about how they wanted the models to work—for
example, to create a linear function of inputs to outputs, or to trigger an event when
a feature value surpassed a specific threshold—users indicated that they would prefer
to explicitly design these functions in code rather than use the Wekinator.

On the other hand, some composers did not like feature or example selection at all,
and all composers valued the fact that the Wekinator allowed them the opportunity to
think and design at a high level. Other tools that composers had used—in particular,
using programming to explicitly create instrument mappings—strictly enforced a low-
level, mathematically-based approach to constructing instruments and compositions.
Those tools were not only less efficient to use in constructing the types of many-to-
many, complex mappings that composers valued; they also enforced a way of thinking
about the design and composition process that was counterproductive and did not
engage composers’ musical expertise. One composer in Chapter 4 wrote, “I basically
want to retrain myself NOT to think that way anymore, and rather to privilege
physical interactions with the interface and sonic sculpting on the synthesis end.”

Interactive supervised learning supports a high-level, holistic approach to design
in that the models are created from training examples, and in creating the training
examples, users can simultaneously communicate information about the way that
many dimensions of input features will influence many dimensions of model outputs.
Users can design from the top down by specifying behaviors they want the model to
have; the learning algorithm does the work of translating the prescribed behaviors into
low-level functions capable of producing those behaviors. Additionally, debugging and
improving systems can also be done at this high level, as users can interact with the
trained model to identify behaviors that they would like to change, and then specify
additional training examples to communicate the new behaviors.

A related and significant benefit of applying interactive machine learning to work
in music is that, by providing interfaces for creating training and evaluation data
through real-time demonstration, the high-level process of design, evaluation, and
improvement also leverages musicians’ embodied expertise and knowledge. We fur-
ther discuss the importance of embodiment in creative work in music composition in
Section 9.2.3.

Resnick et al. propose that one component of the “many paths” principle is to
work against traditional biases toward certain cognitive styles. Although interactive
machine learning does not effectively support all ways of thinking and doing, it does
provide a set of approaches to thinking about and implementing design that are not
well-supported by existing tools. By providing an alternative to programming and
programming-like interfaces in which low-level aspects of the design must be reasoned
about individually, interactive machine learning can be a useful tool for creative work
by people who are averse to thinking in these ways, for creating projects that can
be more effectively implemented and improved without dissection in these ways, and
for work by people who do not know how to program. In our work, it was more
important to create a software application that broadened the types of ways people
could approach the design process, and the types of people who could participate, than
to try to accommodate ways of working and thinking that are already well-supported
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by existing tools. Interactive machine learning was fundamental to creating such an
application.

Support Open Interchange

Compatibility with many other software and hardware tools was key to making the
Wekinator useful to the students and composers with whom we worked. At the inter-
face level, we established this compatibility through the use of OSC communication
and a ChucK API (see Sections 3.3.2 and 3.3.4), which allowed the Wekinator to
obtain features from any type of feature extractor and send its outputs to control
any type of dynamic process that conformed to its simple communication protocol.
OSC even allowed the support of “coordination across windows,” a specific sugges-
tion made by Resnick et al., by synchronizing synthesis parameter states between the
Wekinator and external synthesis programs (see Section 3.3.4).

Underneath the user interface, the general-purpose, modular nature of supervised
learning algorithms was also valuable to supporting compatibility. As mentioned
above, the learning algorithms are naive to the nature of the input features and
output values, so users can apply these algorithms to highly-customized problems in
many domains.

Choose Black Boxes Carefully

The modularity and generality of supervised learning algorithms also lend themselves
to encapsulation in appropriate “black boxes.” In order to apply an algorithm to a
given problem, a user does not necessarily have to understand the inner workings of
the algorithm, only the fact that it requires a training dataset and a training action in
order to produce a model that computes outputs from inputs. Opening up the algo-
rithm black box can be useful; the more a user understands about how the algorithm
works and how its parameters function, the more information she has about how she
might apply it more effectively. In the Wekinator, therefore, we did not completely
hide control over the algorithm parameters so that users who needed to manipulate
them could do so. However, our observations show that many creative tasks in music
may be accomplished effectively without understanding or manipulating the inner
workings of the algorithms.

The fact that users could interact with the training set was particularly important
to enabling algorithms to be treated as black boxes. In conventional machine learning,
when the goal is to create a model for a fixed dataset, a greater proportion of the
options available to a user for improving a model are contingent on his understanding
something about the algorithm. However, when a user has the ability to create and
modify the dataset itself, this allows him to engage a set of strategies for modifying
model behavior (discussed in the previous chapter) whose effects are, to a great extent,
independent of the choice of the underlying algorithm. Furthermore, the feedback that
users receive about their actions through the evaluation of the trained models enables
them to develop practical strategies for more effective interaction while leaving the
algorithm in its black box.
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Importantly, interactive machine learning is able to support creative work in these
ways because only the algorithm is in a black box—the training set and the supervised
learning process itself are not. These properties are central in distinguishing the
creative possibilities available with interactive machine learning from those available
in conventional, non-interactive machine learning.

Design for Designers

Composers using the Wekinator highly valued its potential for providing them with
access to surprise and inspiration. The Wekinator was not just a tool for them
to efficiently build mappings they had in mind; it was a tool for presenting them
with inspiring new possibilities and facilitating the creation of new instruments and
systems that embodied these possibilities. The ways in which users could interact
with machine learning and the properties of the algorithms themselves that have
been described above were all key in supporting composers in the creation of novel,
expressive, musical systems.

At a high level, the usability and usefulness of the Wekinator rested on composers’
ability to rapidly iterate between using models—to evaluate them, practice them,
and explore them—and modifying the training data or other aspects of the system,
including the algorithms, controllers, and synthesis algorithms. This iteration enabled
composers to leverage their musical skills in the design process to create systems that
met their goals, as well as to develop and evolve their goals as they used the Wekinator
to discover new sonic and gestural possibilities. The fact that the Wekinator not only
allowed them to easily change and refine their goals (e.g., through modifications to
the training data), and the fact that it seemed to actively suggest certain musical
possibilities and even defy absolute control by the composer, were fundamental to its
creative utility.

One composer in Chapter 4 summed up his experience with the Wekinator: “The
Wekinator enables you to focus on what your primary sonic and physical concerns
are, and takes away the need to address so many details, and it does so in such a
way that even if you DID spend all the time on building the mappings manually, you
would *never* come up with what the Wekinator comes up with. So, the process
becomes more focused, more musical, more creative, more playful. I actually *want*
to do it.”

9.2.3 The Importance of Embodiment in “Performative
Creativity”

Although embodiment is not discussed in the design guidelines by Resnick et al.; our
observations and work with users suggest that embodiment plays an important role
in musical creative practice, and it should be emphasized in tools intended to support
creativity in musical and other “performative” contexts involving human gesture and
real-time motion.

In cognitive science, embodiment refers to “the role of an agent’s own body in
its everyday, situated cognition” (Gibbs 2006, 1). Whereas Cartesian mind/body
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dualism considers learning, knowledge, and reasoning to be mental phenomena that
take place independently of the body, understanding cognition as an embodied phe-
nomenon presents ways of recognizing these activities as arising from a deep integra-
tion of the mind and body together.

Klemmer et al. (2006) have summarized the value that an understanding of “hu-
man embodied engagement in the world” offers to the design and evaluation of in-
teractive systems. Two themes they emphasize are thinking through doing, which
“describes how thought (mind) and action (body) are deeply integrated and how
they co-produce learning and reasoning,” and performance, which “describes the rich
actions our bodies are capable of, and how physical action can be both faster and
more nuanced than symbolic cognition.” Considering these themes provides an addi-
tional set of of perspectives on why supporting embodied thinking and interaction can
be an asset to creativity support tools, and to creative tools for music in particular.

In discussing “thinking through doing,” Klemmer et al. raise several points rel-
evant to our discussion: (1) “Humans learn about the world and its properties by
interacting within it.” (2) Epistemic actions, which involve “manipulating artifacts
to better understand [a] task’s context ...are one of many helpful ways in which a
user’s environment may be appropriated to facilitate mental work.” (3) People think
by prototyping. “Reflective practice, the framing and evaluation of a design challenge
by working it through, rather than just thinking it through, points out that physi-
cal action and cognition are interconnected ... The epistemic production of concrete
prototypes provides the crucial element of surprise, unexpected realizations that the
designer could not have arrived at without producing a concrete manifestation of her
ideas.”

These points suggest that systems used for designing interaction, exploration,
learning, and creation—all activities targeted by the “composition tools” discussed by
Resnick et al.—can leverage a broader range of human skill and leverage this skill more
effectively by considering the embodied role of the human actor. In the Wekinator,
these skills were leveraged by engaging a user’s body in the creation of training data
and in the evaluation and exploration of models. Not only that, but the gestural input
device, trained model, and synthesis algorithm together can be seen as constituting
a prototype instrument—an embodied, concrete artifact in itself.

In discussing “performance,” Klemmer et al. raise several additional relevant
points: (1) “Physical tacit knowledge is an important part of professional skill.”
(2) “We are able to sense, store and recall our own muscular effort, body position
and movement to build skill. It is this motor, or kinesthetic, memory that is involved
in knowing how to ride a bicycle, how to swim, how to improvise on the piano.”
(3) “[S]peed of execution ... favors bodily skill for a class of interactive systems that
require tight integration of a human performer ‘in the loop.” (4) “One of the most
powerful human capabilities relevant to designers is the intimate incorporation of an
artifact into bodily practice to the point where people perceive that artifact as an
extension of themselves; they act through it rather than on it.”

Given the importance of exploration and reflection in the creative process, these
points suggest that, when creative tools are used to build systems for physical inter-
action, such tools should engage users’ physical knowledge, kinesthetic memory, and
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capabilities for tightly-integrated control in evaluating, discovering, and even realiz-
ing the creative artifacts. In engaging the user’s body in designing and evaluating
models, the Wekinator enabled composers to employ their physical knowledge gained
through years of musical training. For some users, especially the K-Bow cellist, this
tacit knowledge directly involved the knowledge of how to play a specific musical
instrument. In the design of instruments that used new physical gestures, users were
able to employ the musical skill of performing physical actions while listening crit-
ically to the sonic response, all the while reflecting on their own technique and the
actions required produce useful sounds. In other words, users were able to employ
an enactive approach to gestural-sonic exploration, the utility of which has also been
noted by Wessel (2006) and Armstrong (2006) in their work on digital instrument
design.

Furthermore, the hands-on evaluation of models was used by composers not just to
assess the ability to which they could employ the models expressively, but to practice
using the models and assess the extent to which, after further practice, they might
be able to employ them more expressively in the future. That is, composers relied
on their kinesthetic memory and kinesthetic understanding to evaluate and later use
the models.

Musical instruments clearly fall into the category of systems that require tight
integration of humans “in the loop” and bodily skill, and the goal of many com-
posers using the Wekinator was arguably to build new instruments that—Ilike acoustic
instruments—became extensions of the performers rather than interfaces that were
“acted on.” Users were able to employ hands-on evaluation in the Wekinator to as-
sess whether the instruments they had created were capable of this type of expressive
playability.

Composers themselves often discussed the significance of having access to a soft-
ware tool that enabled them to compose in an embodied way. For example, one of
the composers studied in Chapter 7 (Trueman) writes: “With [the Wekinator]|, it’s
possible to create physical sound spaces where the connections between body and
sound are the driving force behind the instrument design, and they *feel® right. It’s
very difficult to do this with explicit mapping for any situation greater than 2-3 fea-
tures/parameters, and most of the time we want more than 2-3 features/parameters,
otherwise it feels too obvious and predictable. So, it’s very difficult to create instru-
ments that feel embodied with explicit mapping strategies, while the whole approach
of [the Wekinator], especially with playalong, is precisely to create instruments that
feel embodied.”

9.3 Understanding and Supporting HCI in
Computer Music Composition

9.3.1 Technology and Composers’ Priorities

Our work observing composers using the Wekinator and engaging them in the process
of improving and evaluating the software has led to an understanding that several
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interactive affordances offered by the Wekinator are of critical importance in the com-
position process. In Chapter 4, we identified key priorities that were important to
composers in their interactions with technology in the composition and instrument
design process. Those priorities include: the speed and ease with which they could
create and explore mappings, privileging the gesture-sound relationship via physical-
ity and abstraction, access to surprise and discovery, access to complexity, the ability
to balance surprise and discovery with predictability and control, and an invitation to
play. Many of these priorities dovetail with the general creativity support guidelines
proposed by Resnick et al. and others. While physicality and embodied interaction
are not discussed by Resnick et al., these were among the most significant values
held by composers, and they pertained to the characteristics of the Wekinator that
most distinguished it from other compositional tools. The composers who partici-
pated in the case studies in Chapter 7 and the PLOrk students in Chapter 5 echoed
that many of these priorities were relevant both to continuous mapping and discrete
gesture classification tasks.

The K-Bow cellist applied the Wekinator in an appreciably different scenario. Be-
cause her goal for the models was to accurately classify standard cello bow gestures,
she was less free to innovate in the design of the models themselves, and she was not
as interested in being surprised by the behaviors of the trained models or in creating
models that were unnecessarily complex. However, her work with the Wekinator was
still embedded within a larger creative context, in that she was interested in using
the models for controlling sound and visual systems in live performance. First, she
appreciated that, by creating accurate models of her cello gestures, the Wekinator
enabled her to build more natural performance-time interactions into her composi-
tions: “It allows me to augment the bowing skills I spent years working on.” She
also valued that interacting with the trained models during the model creation pro-
cess enabled her to assess their suitability for use in performance—e.g., she could
discover whether they made mistakes on gestures she was likely to use in a piece—as
well as help her to imagine ways to use them creatively. In particular, she liked the
richness of the information available in the models’ posterior distribution outputs,
which suggested the use of model certainty or uncertainty in driving both feedback
mechanisms to a user as well as continuous parameters of the computer performance
program. She also valued that she could modify the models in ways that might make
them easier to use in imagined performance scenarios—for example by adding extra
classes to a classification problem to indicate that a gesture was “None of the Above”
and so should be ignored. Additionally, she found it useful that she had the option
to quickly re-create or modify models before a performance to adjust for changes in
sensor calibrations on the K-Bow itself.

9.3.2 Interactive Supervised Learning and Instrument
Design

As discussed in Section 2.2.3, prior research has proposed a dichotomy of generative
and explicit techniques for creating mappings in new musical interfaces. In Section
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4.5.2, we proposed that many of the qualities of the Wekinator that were most useful
to composers arose from its nature as a generative mapping tool. We now revisit that
idea in the context of the other user studies and the above discussion on creativity.

The use of supervised learning algorithms to construct mapping functions is rel-
evant to the support of many of the creative design principles discussed above. In
particular, the ability to build mappings from examples as opposed to designing the
mapping functions in code allowed for the efficient construction of complex, many-
to-many mappings, and it made the instrument-building process more accessible to
non-programmers. The general-purpose and modular nature of the functions enabled
applicability to a wide range of input devices and control tasks. However, the inter-
active aspect of the supervised learning process was also fundamentally important to
realizing the creative benefits of generative mapping: it was only through the ability
to interactively create the training data, interactively evaluate the trained models,
and iteratively modify the mappings that users were able to take advantage of the
full benefits of designing, exploring, and refining at a high conceptual level and in an
embodied manner. In other words, the creative potential of the Wekinator arose both
from the fact that data-driven algorithms were used to create the mapping functions
and the fact that the interactive affordances (see Section 8.7) of these algorithms were
exposed to the user in an appropriate, usable interface.

Additionally, certain characteristics of the learning algorithms themselves may
have been important to supporting creative work in music. The neural networks used
to create continuous mappings afforded users the ability to create complex, non-linear
functions that—when coupled with complex physical modeling synthesis algorithms—
reminded them of acoustic instruments, required practice in order to be played well,
and exhibited behaviors that surprised and inspired users. Furthermore, the training
time of these algorithms was usually short enough that they afforded efficient, frequent
mode-switching between mapping evaluation and mapping modification.

Neural networks are not the only learning algorithm capable of exhibiting these
characteristics. A broader class of useful mapping-building algorithms might be de-
fined as those offering the affordances most needed by instrument-building users.
In particular, this class of algorithms could be characterized by the following affor-
dances: providing a means of creating a many-to-many function from some training
data (either through multiple parallel models or a single multidimensional model),
creating that function quickly, and possibly creating a function that is complex (e.g.,
incorporating non-linearities, discontinuities, or other behaviors). Many algorithms
in this family might not be considered to be “supervised learning” algorithms in any
traditional sense, and indeed, dynamic time warping and other algorithms that have
been used for mapping creation fit into this family although they are not supervised
learning algorithms per se. Defining this algorithm family based on the fit of the al-
gorithms’ affordances to users’ needs, rather than the computational approaches used
to build the model, gives us a framework for analyzing a given algorithm’s suitability
for use in mapping. It also suggests a set of design criteria for creating new mapping-
creation algorithms that does away with the pretense of supporting generalization
accuracy or otherwise functioning like a machine learning algorithm.
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Our observations of and conversations with users suggest several new such func-
tions that might be embedded into future versions of the Wekinator. For example,
algorithms that inject randomness into the mapping function could enable users to
explore several alternative ways of “filling in” a training data sketch for the same
training examples. Such algorithms could expose parameters for users to control the
dimensions and extent of random variation. Also, algorithms that designate “islands”
of model flatness in portions of the feature space surrounding the training examples
could enable users to reach the sounds present in the training set more reliably by giv-
ing them a larger gestural “target” area for sounds they have indicated are important
to them.

Finally, our work with composers and students has shown that some users, in-
cluding both expert and novice instrument designers, do sometimes find that explicit
mapping strategies are useful or necessary. Sometimes users imagine aspects of an
instrument working in very simple ways, for example a single synthesis parameter
value varying linearly with a single gestural input dimension. In these cases, users
may desire to explicitly specify and manipulate the mapping function at a low level.
This behavior is not well-supported in the current version of the Wekinator. However,
adding support for mapping-creation algorithms that do afford lower-level manipula-
tion of the model functions could address this issue. For example, embedding linear
and polynomial regression algorithms into the Wekinator could enable users to still
take advantage of the high-level design, embodiment, and other benefits of a data-
driven mapping creation paradigm, while also allowing them the option to directly
edit the mapping functions after they are created from the data.

9.3.3 Interaction in Music Composition

Much prior work studying and theorizing about human-computer interaction in com-
puter music has focused on performance-time interactions. For example, the work by
Hunt and Kirk (2000) described in Section 2.1.2 studied the consequences of mapping
function properties on real-time musical control. Composers’ perspectives on musi-
cal human-computer interaction discussed in Section 2.1.2 also largely pertained to
the role of the human, the computer, and the control and influence between the two
during live performance.

A theme across several of these composers’ perspectives is concern that the def-
inition of human-computer interaction—and, by extension, the implementation of
interactive possibilities in musical systems—not be limited to a one-way exercising
of control by the human over the computer. Instead, they valued a definition of
interaction and the creation of musical experiences that included the capacity for
non-determinism, complexity, and rich mutual influence between human and com-
puter.

Many composers observed in our work valued these same characteristics in their
interactions with the computer in the process of composition and instrument design.
The ways the software challenged and influenced them were important aspects of their
experience as users, and many users routinely relied on influence by the computer to
shape the gestural vocabularies they constructed, the sound worlds of their new in-
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struments, the aesthetic nature of their compositions, and the roles of the instrument
and human in performance.

These observations suggest that the scope of discussion surrounding human-
computer interaction in computer music should be expanded to include consideration
of interaction during composition and instrument building. Composition-time in-
teraction has been considered in the writings of individual composers reflecting
on their working process (e.g., Hahn and Bahn 2003), by a few HCI researchers
studying composers (e.g., Tsandilas et al. 2009), and in some recent work discussing
interaction from a broad, musical perspective (see Paine 2009). However, relatively
little discussion has focused on the relationship between human-computer interaction
in composition and performance at a general level (i.e., as opposed to within the
context of a particular composition). We have found it useful to reflect on our work
studying human-computer interaction in composition within the context of the larger
body of work on performance-time interaction by understanding the Wekinator as a
“meta-instrument,” as we describe next.

Design Tools and Meta-Instruments

The description of “creativity support tools” by Shneiderman (2000), as well as the
scope of subsequent research employing this term, leaves room for the two-way, mutual
interaction and influence between users and tools that is so important to composers.
The creativity support tool guidelines described above recognize the value of users
being inspired and influenced by technology. However, the definition of software
such as the Wekinator as a “creativity support tool” is somewhat problematic, in
that it implies a subtle distinction between the support tool itself and the creative
work being supported. Composers using the Wekinator were typically constructing
instruments and compositions that could be seen as both containing and deriving
their identity from the models created by the software. Also, the instruments designed
using interaction with the Wekinator themselves contained the Wekinator software
embedded inside of them, patching gestural inputs to sound parameters during live
performance. Thus, the Wekinator was simultaneously a tool that enabled users
to build an instrument, a piece of configurable software that users turned into an
instrument, and a set of compositional possibilities defined by the dimensions along
which it could be configured.

Dan Trueman, one of the composers studied in Chapters 4 and 7 who has used the
Wekinator extensively, takes exception to using the term “creativity support tool” to
describe the Wekinator. In e-mail to the author on 15 October 2010, he wrote: “I tend
not to think of the software that I use as ‘support tools’ but rather as contexts and
instruments in themselves that suggest particular kinds of musical possibilities. They
aren’t necessarily [a] means to an end, but rather creative spaces. [The Wekinator] is
particularly rich in this regard, both when using it to actually build an instrument,
and then finally when using that instrument post-training.”

Since the Wekinator’s creation, we have referred to it ourselves not as a “creativity
support tool,” but as a “meta-instrument” (Fiebrink, Trueman, and Cook 2009). As
an instrument for creating instruments, the Wekinator invites the understanding that
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users engaged with it are expressing themselves in real-time through their work, in a
way that requires musical expertise and real-time, embodied skills. This perspective
is particularly suitable given the fact that, at any one time, a user of the Wekinator
may be simultaneously composing a piece, designing an instrument, practicing the
instrument, and rehearsing the piece, among other activities. (In fact, in one of our
first uses of the Wekinator, in a piece called nets0, users were engaged in all of these
actions while simultaneously performing the unfolding piece in front of an audience.!)
Each of these activities, like playing an instrument, involves the real-time translation
of human intention into musical expression.

Musical Interaction with Meta-Instruments

Viewing the Wekinator and other technologies for supporting composition as meta-
instruments suggests a way to reconnect our analysis of interaction with the large
body of work discussing interaction in performance. For example, it is useful to con-
sidering interactions with the Wekinator through the lens of interactive performance
paradigms and metaphors proposed in the computer music literature.

As a meta-instrument, the Wekinator supports many of the interactive values de-
scribed by composers that we discussed in Section 2.1.2. For example, the Wekinator
supports a high “potential for change in the behaviors of computer and performer
in their response to each other” in accordance with to Moon (1997). The Wekinator
presents an interface in which “interaction transcends control” in accordance with
David Rokeby as described by Rowe et al. (1993), and it supports a relationship be-
tween user and computer akin to an ongoing, mutually-influential conversation, such
as that described by Chadabe (2002).

Arguably, the mutual influence involved in instrument design in the Wekinator
can facilitate the creation of more complex, surprising, and even difficult mappings
than those created by explicit strategies. These properties can enable instruments
created with the Wekinator to involve performance-time interactions that, while still
incorporating deterministic mappings, themselves incorporate richer styles of mutual
human-computer influence than those possible with simpler mappings. For example,
composer Michelle Nagai indicated that, because of the complexity of the relationship
between gesture and sound in instruments created by the Wekinator, the attention
of the performer and audience were likely to be more focused on the experience of
the piece and not on decoding the mechanisms used for control. For Dan Trueman,
instruments created with the Wekinator were designed to challenge and influence their
players: “[The instrument| requires practice to explore and master, and is constantly
revealing new possibilities, but is fairly easy to get started on; the player doesn’t need
to spend lots of hours learning the instrument before joining the piece—rather the
instrument teaches the player how to play it...”

Video of nets0 is available at http://www.cs.princeton.edu/~fiebrink/thesis/resources.
html.

239



9.4 Conclusions

In this chapter, we have discussed the Wekinator and the style of interactive super-
vised learning that it supports in the context of HCI design guidelines for creativity
support tools. Our work has demonstrated that interactive supervised learning can
effectively support creative work through assisting in the exploration of design pos-
sibilities, rapid prototyping, and sketching; accommodating novice and expert users
working on a range of tasks; supporting a high-level and holistic approach to design;
integrating well with other software tools; enabling learning algorithms to be treated
as black boxes when appropriate; and providing users with access to surprise, com-
plexity, and inspiration. Furthermore, through engaging embodied interactions with
the training data and trained models, interactive supervised learning can leverage
embodied knowledge, skill, learning, and memory in the creative design of interactive
systems.

In this chapter, we have also discussed how our work in this thesis has led to
a deeper understanding of how technology can support composers in the process of
composition and instrument design. Composers and students creating new instru-
ments valued the speed and ease with which they could create and explore mappings,
privileging the gesture-sound relationship via physicality and abstraction, access to
surprise and discovery, access to complexity, the ability to balance surprise and dis-
covery with predictability and control, and tools that presented an invitation to play.
The K-Bow cellist valued the speed and ease with which she could construct accurate
and musically-useful models of her natural cello gestures.

We have also emphasized how, due to both the affordances of particular algo-
rithms and the interactive context, interactive supervised learning offers advantages
to the instrument design process. We have proposed the utility of defining, analyz-
ing, and designing algorithms according to the match between their affordances and
the instrument design process. Finally, we have outlined our understanding of the
Wekinator as a meta-instrument and discussed how it embodies the performance-time
interaction values of composers, especially the possibility for rich, mutual influence
between the human user and the computer.

In the future, we plan to continue working with musicians applying the Wekinator
to their work to further improve it as a creative tool. For example, improving the
range of algorithms supported, the tightness of integration with other tools using OSC,
and the simplicity and informativeness of the user interface may make the Wekinator
a more usable tool for a wider range of applications and users. In addition, we are
interested in using the Wekinator to support and study creativity in other application
domains. Interactive art and game design, for example, are other domains in which
interactive supervised learning could serve as a creative design tool, and in which users
may similarly benefit from embodied approaches to system design and evaluation.

The idea we find most exciting in this work is that interactive supervised learning
systems can support embodied and high-level approaches to design, as well as provide
users access to complexity and discovery. These characteristics are, we believe, hard
to achieve in software systems, but they may be of critical value in supporting efficient
and innovative creative work in many domains.

240



Chapter 10

Conclusion

10.1 Summary and Contributions

In this thesis, we have examined applied machine learning through the lens of human-
computer interaction. In doing so, we have created, studied, and improved systems for
users to interactively apply supervised learning algorithms to their work in computer
music composition, performance, and instrument design. We have created a useful
software tool that has aided students and professional composers in creating new
musical works, and in doing so, we have demonstrated the feasibility and efficacy of
interactive machine learning in this application domain. Our work with users has
led to a clearer characterization of the requirements and goals of interactive machine
learning users and of the different roles that interaction may play in allowing them
to design and evaluate systems, to learn to become more effective users of machine
learning, and to work creatively. As a result, this work has both empowered musicians
to create new forms of art and contributed to a broader HCI perspective on machine
learning practice.

In this section, we present a summary of our work and highlight the contributions
that are most significant to future research in HCI and machine learning, as well as
to research and creative work in computer music.

These contributions include:

1. A new software tool allowing real-time human interaction with supervised learn-
ing algorithms and, within it, a new “playalong” interaction for training data
creation.

2. A demonstration of the important roles that interaction—encompassing both
human-computer control and computer-human feedback—can play in the de-
velopment of supervised learning systems, and a greater understanding of the
differences between interactive and conventional machine learning contexts.

3. A better understanding of the requirements and challenges in the analysis and
design of algorithms and interfaces for interactive supervised learning in real-
time and creative problem domains.
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4. A clearer characterization of composers’ goals and priorities for interacting with
computers in music composition and instrument design, and a demonstration
that interactive supervised learning is useful in supporting composers in their
work.

5. A demonstration of the usefulness of interactive supervised learning as a cre-
ativity support tool.

10.1.1 The Wekinator

Our work has produced a new software tool, the Wekinator, that allows end users
to interactively apply supervised learning learning to their work in real-time problem
domains. It is general-purpose in nature, in that users may apply it to creating
trained models that analyze gesture, audio, or other arbitrary real-time input signals
and produce outputs that drive sound synthesis, visualizations, or other arbitrary
dynamic processes. It is tailored for use in music: it comes packaged with a set of
audio and gesture feature extractors and example synthesis patches; and it uses Open
Sound Control (OSC: Wright and Freed 1997), a communication protocol common
in music and media software, to support compatibility with other software systems
designed and used by composers. It supports a rich set of user interactions with
the supervised learning process, including the creation of training data by real-time
demonstration and the evaluation of trained models through real-time demonstration
of testing examples and observation of model behaviors. It also supports interactive,
iterative modification of the training data, the selection and configuration of learning
algorithms, and the selection of features.

10.1.2 Playalong Learning

In addition to enabling users to create training data by demonstrating gestures that
correspond to a fixed set of model outputs, we have enabled Wekinator users to create
training using a “playalong” interface in which they gesture along with a changing
“score” of model outputs, as if they were controlling those outputs in real-time.

Some of the composers who used the Wekinator found playalong useful in creating
data that captured more fine-grained aspects of their ideas for how model outputs
should vary with the input features. Additionally, composers used playalong to engage
their own musical and physical expertise more deeply in the model-building process.
It allowed them to use a more embodied approach to instrument design and to create
models that captured something about how an instrument should “feel” in expressive,
real-time performance.

10.1.3 Demonstrating the Feasibility and Usefulness of
Interactive Supervised Learning in Music

We have observed and collaborated with a variety of musical users applying the
Wekinator to their work. During a 10-week participatory design process with seven
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composers, we made many improvements to make the software more usable and use-
ful to composers building expressive new instruments. We used the Wekinator as a
teaching tool with 22 undergraduate students, who used it to build new expressive
controllers and gesture recognition systems. We also collaborated with a professional
cellist /composer using a sensor-equipped bow to interactively build classifiers capa-
ble of recognizing standard cello bow gestures. Finally, we conducted interviews with
three composers—an undergraduate student, a graduate student in composition, and
a professional composer—who have used the Wekinator in publicly-performed com-
puter music compositions.

The outcomes of this work with Wekinator users first underscore the feasibility
and usefulness of applying interactive supervised learning to a range of applications
in computer music. Most of the users studied in this work knew very little or nothing
about machine learning before starting their work with the Wekinator, yet the soft-
ware enabled them to apply standard supervised learning algorithms effectively to
create a variety of interactive music systems. These systems included expressive new
musical instruments, which used supervised learning models to translate sensed per-
former gestures into continuous changes in synthesis algorithm parameters; as well as
systems for the recognition of standard or novel discrete performance gestures (such
as cello bow articulations or physical hits to the laptop) and the translation of these
gestures into changes in sound or visualizations.

Students were successful in building accurate classifiers and expressive instruments
using the Wekinator in their coursework. The cellist/composer was able to build
classifiers with which she was highly satisfied, and which performed comparably to
or better than classifiers created by researchers using conventional (non-interactive)
machine learning on the same problems. Composers indicated that the Wekinator
enabled them to work more efficiently and to build new instruments that were more
musically expressive than those built in other ways. Furthermore, several composers
remarked that the Wekinator enabled them to attempt and succeed in creating mu-
sical systems or compositions that they would not have attempted or even imagined
without the use of the software.

10.1.4 Demonstrating The Usefulness of Interaction in
Supervised Learning

Our studies of these users have also led to new knowledge about the roles that interac-
tion can play in allowing end users to successfully create supervised learning systems.
Specifically, in our studies, interactive creation of the training set allowed users to
define the scope of the learning problem, to communicate the essential characteristics
of each class, to preemptively minimize error and cost of the trained model, and to
sketch out areas of interest and denote boundaries of the input gesture and output
sound spaces. The “playalong” interface for data creation allowed users greater con-
trol over the learning concept expressed in the training set and further engaged their
physical and musical expertise in the design process. Interactive modification of the
training set allowed users to correct errors, to take advantage of new and desirable
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sounds they discovered during their work, to make models more complex, and to roll-
back changes they had made. Interactive evaluation of trained models enabled users
to evaluate models against their goals for the learning process; assess how they might
improve models through modifications to the training data and learning concept; com-
pare models produced by different learning algorithms; and identify problems with
the training data not identifiable using cross-validation. Interactive evaluation also
trained users to become better machine learning practitioners, served as a method
of “practice” in which they assessed and improved their own abilities to behave in
ways that produced the desired model outputs, and led to refinements and changes
in users’ goals for the machine learning system.

Through repeated iterations of model evaluation and modification, users were able
to construct interactive systems that met their goals. Significantly, throughout these
iterations, users worked to improve the performance of the trained models accord-
ing to their criteria for success, while also refining their goals for how the trained
models should function and how the models would ultimately be used. Users some-
times simplified the problem when models performed poorly, sometimes increased the
complexity of the problem when models performed well, and sometimes changed the
nature of their goals entirely when they discovered unexpected new behaviors in the
models. The abilities to iteratively evaluate models against an array of subjective
criteria and to change the training set to reflect their evolving goals for the system
were crucial.

10.1.5 Understanding the Differences between Interactive
and Conventional Machine Learning

These studies also led to a better understanding of differences between interactive
and conventional supervised learning that may be useful in designing new learn-
ing algorithms for interactive applications. Importantly, generalization accuracy was
sometimes relevant to users’ goals for the system, but it was not the only or most
important evaluation criterion that users employed. This suggests that future work
might investigate whether existing or new algorithms that build models according
to other criteria might be appropriate for interactive scenarios, and it suggests that
evaluation by human users should supplement conventional metrics such as cross-
validation accuracy in the evaluation of models intended to be used in interactive
contexts.

Additionally, the size of the training sets employed by users in this work was
often small compared to those used conventional supervised learning. This offers a
practical advantage, in that short training times lead to less interruption between
model modification and model evaluation actions. We hypothesize that the smaller
size of the training sets is due to users adjusting the difficulty of the target learning
concept to ensure that it is possible to learn with a training set size that is both feasible
to interactively create and allows short training times, and/or to the fact that users
learn through experience to provide training examples that are more effective than
randomly-chosen examples in modeling the target concept.

244



10.1.6 Understanding Requirements and Challenges of
Algorithm and Interface Analysis and Design

Through our analysis of how users interacted with supervised learning within the
Wekinator, the characteristics of the software they most valued, and the challenges to
effective interaction that remained following our work with composers to improve the
system, we have come to understand how the interactional affordances of a learning
algorithm play a role in shaping its usefulness and usability. Among the interactional
affordances that were key to making standard supervised learning algorithms usable
in this work were their low training time, their capability for building models for the
chosen learning concepts using a small number of training examples, their fast running
time, and their ability to be “steered” in different directions via users’ modifications
to the training set. Future work to improve algorithms for interactive contexts could
focus on adding new interactive affordances, for example mechanisms similar to active
learning that prompt the user to provide training examples that are anticipated to
be useful. Or, future work could focus on making the algorithms more amenable
to embedding in a usable user interface, for example by designing algorithms with
tunable parameters that can more be easily manipulated to change the model along
dimensions of interest to a user.

Characteristics of the interface that were key to making the Wekinator usable
included exposing the above affordances of the learning algorithms, rather than hiding
them from the user (for example, conventional machine learning interfaces hide the
affordance for tuning model performance using the training set); enabling effective
control over feature selection to allow users to create systems with independencies
between features and outputs, and enabling training example selection to allow users
to employ a training data creation strategy in which they considered one output
parameter at a time; and providing feedback to the user about the state of the learning
system and the efficacy of users’ actions. Future work might improve the user interface
to more effectively address the challenge of providing useful, timely, and fine-grained
feedback over learning system state, the actions available to a user to interact with
the system, the consequences of past actions, and the likely consequences of future
actions. In particular, this work might explicitly address the challenge of providing
this information in a manner that is suitable to machine learning novices.

The ways that users employed algorithms and interfaces, and by extension, the
properties of the algorithms and interfaces that were important to them, were contin-
gent on several characteristics of the problem domain. In the applications studied in
this thesis, users were domain experts (i.e., experts at performing the gestures used
to provide input to the models). The users were building models for themselves or
for other users they understood well, creating models that would be used in a real-
time context, and working with a set of goals that ranged from mostly inflexible to
completely flexible. Future work might investigate interactive supervised learning in
other domains whose characteristics vary along these dimensions to identify common-
alities or differences in users’ interaction and algorithm needs, thereby generalizing
our findings to other domains and identifying the most fruitful avenues for improving
algorithms and interfaces for a wide population of users.
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10.1.7 Demonstrating the Usefulness of Interactive
Supervised Learning as a Creativity Support Tool

Users” work with the Wekinator has demonstrated that interactive supervised learn-
ing can be a useful tool in creative contexts: the Wekinator enabled users to not
only work more efficiently and productively than other tools they had used, but it
also inspired them and helped them to create musical compositions and systems to
express themselves in new ways. In fact, many of the ways that users in our studies
employed the Wekinator can be understood as taking advantage of the capabilities
of interactive supervised learning to function as a creativity support tool. We have
discussed how interactive supervised learning effectively addresses many of the re-
quirements of creativity support tools as proposed in work by Resnick et al. (2005)
and others. In particular, our work has demonstrated that interactive supervised
learning can effectively support creative work through assisting in the exploration of
design possibilities, rapid prototyping, and sketching; accommodating novice and ex-
pert users working on a range of tasks; supporting a high-level and holistic approach
to design; integrating well with other software tools; enabling learning algorithms
to be treated as black boxes when appropriate; and providing users with access to
surprise, complexity, and inspiration.

Furthermore, Wekinator users felt strongly that they benefited from the physical,
embodied approach to design that was supported by the software. Through engaging
embodied interactions with the training data and trained models, interactive super-
vised learning can leverage embodied knowledge, skill, learning, and memory in the
creative design of interactive systems.

10.1.8 Understanding Composers’ Priorities for Human-
Computer Interaction in Composition

Finally, our work has led to a clearer characterization of composers’ priorities for
human-computer interaction in composition and instrument design. Composers and
students creating new instruments valued the speed and ease with which they could
create and explore mappings, approaches to design that privileged the gesture-sound
relationship via physicality and abstraction, access to surprise and discovery, access
to complexity, the ability to balance surprise and discovery with predictability and
control, and tools that presented an invitation to play. Additionally, the cellist valued
the speed and ease with which she could construct accurate and musically-useful
models of her natural cello gestures.

Composers using the Wekinator to build new, expressive instruments especially
valued the way they could use the Wekinator for inspiration, surprise, and discovery.
Their work with the Wekinator was not a one-way exercising of control over technology
to build a model that met their specifications; rather, it was a mutually influential,
richly interactive process. By considering the Wekinator as a meta-instrument, these
types of interactions can be seen as fulfilling the requirements of real-time musical
interactivity put forth by composers such as Moon (1997) and Chadabe (2002) in
their writings about performance-time interactions.
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10.2 Future Work

10.2.1 Improvements to the Wekinator

Our discussions with composers and musicians have provided us with many ideas for
further improving the Wekinator as a creativity support tool and meta-instrument.
Some of these improvements involve supporting new interactions to benefit composers’
work. For example, adding parameter smoothing to the playalong process will enable
composers to create training datasets capable of faithfully representing a broader
range of goals, and to create training data in a way that better takes advantage of
composers’ embodied expertise. Incorporating additional interactions for generating
and editing training data, for example enabling users to annotate video of performers
executing gestures and to “replay” recorded gesture sequences through the trained
models, may facilitate deeper and more natural control over the training data in
ways that benefit composers and musicians, as well as dancers and others interested
in gestural interaction. Adding mechanisms to visualize the training dataset and
decision boundaries might provide additional means to understand how the learning
algorithm is working, thereby helping machine learning novices to better understand
the effects of their actions and helping users to identify and fix problems when the
models do not work as they expect.

Another set of improvements will focus on making the software interface even
simpler and easier for more people to use. The current terminology in the interface
(especially with regard to features and parameters) is confusing to novice users and
should be changed or augmented with more helpful contextual information. Fur-
ther integration with OSC—for example, enabling users to send OSC commands to
load and save learning systems—would enable users greater freedom to embed the
Wekinator within their own systems.

Throughout these changes, we plan to maintain the general-purpose nature of the
Wekinator so that it remains possible to apply the system to non-musical problems.
We would like to work with non-musical users, for example users designing interactive
art or gaming systems, to better understand their needs and ensure that the Wekina-
tor supports this work well. We would also like to apply the Wekinator to real-time
audio analysis problems in computer music performance, an initial goal of our work
that has not yet been realized.

An additional set of improvements will focus on continuing to improve the use-
fulness of the Wekinator as a tool for conducting research in interactive supervised
learning in real-time domains. We will strive to make it as easy as possible for our-
selves and other researchers to add new learning algorithms, new modes of feedback
to users, and new mechanisms for logging and understanding users’ actions with the
system.
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10.2.2 Research Directions in HCI, Machine Learning, and
Computer Music

This work has helped to formulate several research directions surrounding the im-
provement of software systems for end-user interactive machine learning and the ap-
plication of interactive machine learning to new problems and domains. First, our
work has shown that users applying interactive machine learning may or may not
be concerned with the generalization accuracy of models, and even when generaliza-
tion accuracy is important, it may be only one of several characteristics that users
care about. Through future work investigating what characteristics of trained models
may be important to users across different application domains, we might arrive at a
better understanding of how to design algorithms that create models with these char-
acteristics and how to design interfaces that allow users to evaluate models against
these characteristics. Furthermore, future work should investigate whether learning
algorithms capable of prioritizing training accuracy at the expense of generalization
accuracy may be better-suited to interactive applications in which users exercise con-
trol over the learning problem primarily through modifications to the training set.

Other future work might combine HCI and machine learning approaches in other
ways. For example, research into the design of algorithms with parameters whose
effects are clearly understandable to users and likely to affect dimensions of a model
that users care about could result in more usable algorithms. Alternatively, work that
combines theoretical understanding of algorithms and novel user interface techniques
might better enable users to employ the parameters of standard algorithms to more
effectively improve models against their criteria for success.

Our findings suggest that the degree to which users’ goals for supervised learning
are flexible impacts the ways in which they may use interaction to build models to
achieve their goals. Future work might study users completing different types of
tasks in a more controlled environment to better understand how users’ interface and
interaction requirements differ according to the degree of this flexibility. Additionally,
future work might consider other problem domains in which users’ goals are relatively
fixed—including domains where conventional machine learning is often applied—and
investigate the extent to which interactive approaches can still exploit the aspects of
the learning problem (e.g., number and nature of classes, sources of features) that
remain flexible.

Another research direction concerns the creation and analysis of additional in-
terface mechanisms to provide richer and more useful feedback to users, including
users who are machine learning novices. In our observations, users employed inter-
active evaluation of models for a variety of purposes, including to assess the quality
of trained models against their evaluation criteria, to determine which actions they
might take to improve those models, to learn what might or might not be possible
to accomplish using the given algorithms, and to learn which of their actions were
most effective in creating the types of models they wanted. These types of feedback
were all important to users, and future work might investigate new user interfaces
to provide this feedback more efficiently and effectively, to provide complementary
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information, or to provide information tailored to novice users who are just learning
how to use interactive machine learning effectively.

Our research has highlighted the ability for interactive machine learning to effec-
tively support creativity and an embodied approach to building interactive systems.
We are excited about the prospects to explore how users in other creative and in-
teractive problem domains, including interactive art and game design, might benefit
from interactive supervised learning tools. Additionally, we observed the capability
for interactive supervised learning to cause users to reflect on their own abilities and
actions; for example, users sometimes discovered through their failure to build an
accurate classifier that the training data they created was not consistent or clear. Fu-
ture work could therefore investigate the potential of interactive supervised learning
in pedagogical or therapy applications where users may benefit from mechanisms for
learning about the consistency of their actions.

Finally, further work with composers, instrument designers, musicians, and mu-
sic students will likely illuminate new avenues for interactive supervised learning to
be applied more effectively and more broadly to creative work in computer music.
New algorithms could be designed to incorporate behaviors and tunable parameters
tailored specifically for application to the design of new musical instruments. New
interfaces could also be built to allow new types of supervised learning systems. For
example, systems with hierarchical relationships between models, in which the out-
puts of some models serve as input features to other models, could be useful for
problems in which more sophisticated segmentation mechanisms are necessary, as
well as for allowing synthesis or other music-producing processes to be controlled in
new ways. Or, interfaces and algorithms could be constructed that enable the trained
models to smoothly evolve or change over time in response to human actions or ran-
dom processes. In any case, we hope to continue to engage composers and musicians
in participatory design of these systems, as we have found our work with users to
be crucial in improving and evaluating our software, understanding their priorities
for incorporating technology into their work, and identifying key research questions
pertaining to interactive supervised learning in music and other domains.

10.3 Conclusion

Our work has emphasized the importance of considering the human context of ma-
chine learning practice. By providing users with the ability to engage in a wider
variety of interactions with supervised learning algorithms, the software we have cre-
ated has enabled people to put standard learning algorithms to use to do their work
more efficiently and effectively, and to imagine and accomplish goals that were not
possible with the tools previously available to them. Our work has shown that these
interactions can empower end users to build interactive systems for themselves and for
others while employing an approach to design that leverages their domain knowledge,
embodied expertise, and understanding of the context in which the trained models
will be used. Furthermore, these interactions can inspire users to consider new design
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possibilities and engage in self-reflection and growth as machine learning users and
creative beings.

In our work, the principles and methodologies of HCI research, the computational
possibilities presented by machine learning, and the knowledge, values, and ideas
of domain experts have been instrumental in shaping our research questions about
how the computational and interactive affordances of learning algorithms can be ex-
ploited to meet real-world application requirements and support users’ values. Having
demonstrated the feasibility and usefulness of applying interactive supervised learning
to the musical problems studied in this thesis, we are excited by the opportunities for
future work that, by continuing to build on the intersection of HCI, machine learn-
ing, and application domain knowledge, will lead to new algorithms, interfaces, and
interactions capable of supporting even more users in applying supervised learning
more effectively and to more problems.
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