
BENCHMARKING MODERN MULTIPROCESSORS

CHRISTIAN BIENIA

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: KAI LI

JANUARY 2011

c© Copyright by Christian Bienia, 2011. All rights reserved.

Abstract

Benchmarking has become one of the most important methods for quantitative perfor-

mance evaluation of processor and computer system designs. Benchmarking of modern

multiprocessors such as chip multiprocessors is challenging because of their applica-

tion domain, scalability and parallelism requirements. In my thesis, I have developed a

methodology to design effective benchmark suites and demonstrated its effectiveness by

developing and deploying a benchmark suite for evaluating multiprocessors.

More specifically, this thesis includes several contributions. First, the thesis shows

that a new benchmark suite for multiprocessors is needed because the behavior of mod-

ern parallel programs is significantly different from those represented by SPLASH-2, the

most popular parallel benchmark suite developed over ten years ago. Second, the the-

sis quantitatively describes the requirements and characteristics of a set of multithreaded

programs and their underlying technology trends. Third, the thesis presents a systematic

approach to scale and select benchmark inputs with the goal of optimizing benchmarking

accuracy subject to constrained execution or simulation time. Finally, the thesis describes

a parallel benchmark suite called PARSEC for evaluating modern shared-memory mul-

tiprocessors. Since its initial release, PARSEC has been adopted by many architecture

groups in both research and industry.

iii

Acknowledgments

First and foremost I would like to acknowledge the great support of my advisor, Kai

Li. His academic advice and patience with me was instrumental to allow my research to

make the progress which it has made. Most of all I am grateful for his ability to connect

me with the right people at the right time, which is a key factor for the success of a project

that is as interdisciplinary as the development of a new benchmark suite.

I would like to acknowledge the many authors of the PARSEC benchmark programs

which are too numerous to be listed here. The institutions who contributed the most

number of programs are Intel and Princeton University. Stanford University allowed me

to use their code and data for the facesim benchmark. Many researchers submitted

patches which were included in the PARSEC distribution.

During my time at Princeton University I also received tremendous support frommany

faculty members and graduate students. They gave my advice on possible benchmark

programs from their own research area and allowed me to use their software projects

where we identified opportunities for new workloads. Not all of their work could be

included in the final version of the benchmark suite.

I would like to explicitly acknowledge the contributions of the following individuals:

Justin Rattner, Pradeep Dubey, Tim Mattson, Jim Hurley, Bob Liang, Horst Haussecker,

Yemin Zhang, Ron Fedkiw and the scientists of the Application Research Lab of Intel.

They convinced skeptics and supported me so that a project the size of PARSEC could

succeed.

This work was supported in parts by the Gigascale Systems Research Center, the Intel

Research Council, National Science Foundation grants CSR-0509447, CSR-0509402 and

SGER-0849512, and by Princeton University.

iv

To my parents, Heinrich and Wanda Bienia, who have supported me the entire time.

v

Contents

Abstract . iii

1 Introduction 1

1.1 Purpose of Benchmarking . 2

1.2 Motivation . 4

1.2.1 Requirements for a Benchmark Suite 4

1.2.2 Limitations of Existing Benchmark Suites 5

1.3 Emerging Applications . 6

1.4 History and Impact of PARSEC . 7

1.5 Conclusions . 8

2 The PARSEC Benchmark Suite 10

2.1 Introduction . 10

2.2 The PARSEC Benchmark Suite . 11

2.2.1 Workloads . 12

2.2.2 Input Sets . 13

2.2.3 Threading Models . 14

2.3 Pipeline Programming Model . 16

2.3.1 Motivation for Pipelining . 17

2.3.2 Uses of the Pipeline Model . 18

2.3.3 Implementations . 19

2.3.4 Pipelining in PARSEC . 21

2.4 Description of PARSEC Workloads . 22

2.4.1 Blackscholes . 22

2.4.2 Bodytrack . 23

2.4.3 Canneal . 28

vi

2.4.4 Dedup . 29

2.4.5 Facesim . 32

2.4.6 Ferret . 35

2.4.7 Fluidanimate . 38

2.4.8 Freqmine . 42

2.4.9 Raytrace . 44

2.4.10 Streamcluster . 48

2.4.11 Swaptions . 50

2.4.12 Vips . 51

2.4.13 X264 . 54

2.5 Support for Research . 56

2.5.1 PARSEC Framework . 58

2.5.2 PARSEC Hooks . 59

2.6 Conclusions . 60

3 Comparison of PARSEC with SPLASH-2 61

3.1 Introduction . 61

3.2 Overview . 63

3.3 Methodology . 64

3.3.1 Program Characteristics . 64

3.3.2 Experimental Setup . 65

3.3.3 Removing Correlated Data . 66

3.3.4 Measuring Similarity . 67

3.3.5 Interpreting Similarity Results 68

3.4 Redundancy Analysis Results . 69

3.5 Systematic Differences . 73

3.6 Characteristics of Pipelined Programs 75

3.6.1 Experimental Setup . 76

3.6.2 Experimental Results . 76

3.7 Objectives of PARSEC . 78

3.7.1 Chip Multiprocessors . 78

3.7.2 Data Growth . 82

3.8 Partial Use of PARSEC . 83

vii

3.9 Related Work . 85

3.10 Conclusions . 87

4 Characterization of PARSEC 89

4.1 Introduction . 89

4.2 Methodology . 90

4.2.1 Experimental Setup . 90

4.2.2 Methodological Limitations and Error Margins 91

4.3 Parallelization . 92

4.4 Working Sets and Locality . 95

4.5 Communication-to-Computation Ratio and Sharing 98

4.6 Off-Chip Traffic . 101

4.7 Conclusions . 103

5 Fidelity and Input Scaling 104

5.1 Introduction . 104

5.2 Input Fidelity . 106

5.2.1 Optimal Input Selection . 107

5.2.2 Scaling Model . 108

5.3 PARSEC Inputs . 110

5.3.1 Scaling of PARSEC Inputs . 111

5.3.2 General Scaling Artifacts . 113

5.3.3 Scope of PARSEC Inputs . 114

5.4 Validation of PARSEC Inputs . 116

5.4.1 Methodology . 117

5.4.2 Validation Results . 120

5.5 Input Set Selection . 123

5.6 Customizing Input Sets . 125

5.6.1 More Parallelism . 125

5.6.2 Larger Working Sets . 125

5.6.3 Higher Communication Intensity 126

5.7 Related Work . 127

5.8 Conclusions . 128

viii

6 Conclusions and Future Work 129

6.1 Conclusions . 129

6.2 Future Work . 130

Bibliography 131

ix

List of Figures

1.1 Usage of PARSEC at top-tier computer architecture conferences 8

2.1 Scheme of pipeline parallelization model 17

2.2 Output of the bodytrack benchmark . 24

2.3 Output of the facesim benchmark . 33

2.4 Algorithm of the ferret benchmark . 35

2.5 Screenshot of Tom Clancy’s Ghost Recon Advanced Warfighter 38

2.6 Screenshot of the raytraced version of Quake Wars 45

2.7 Input for the raytrace benchmark . 47

2.8 Input for the vips benchmark . 51

2.9 Screenshot of Elephants Dream . 55

3.1 Similarity of PARSEC and SPLASH-2 workloads 70

3.2 Comparison of all characteristics . 72

3.3 Comparison of instruction mix characteristics 73

3.4 Comparison of working set characteristics 74

3.5 Comparison of sharing characteristics 75

3.6 Effect of pipelining on all characteristics 76

3.7 Effect of pipelining on sharing characteristics 77

3.8 Miss rates of PARSEC and SPLASH-2 workloads 79

3.9 Sharing ratio of PARSEC and SPLASH-2 workloads 80

3.10 Redundancy within the PARSEC suite 85

4.1 Upper bounds for speedups . 93

4.2 Parallelization overhead . 94

4.3 Miss rates for various cache sizes . 96

x

4.4 Miss rates as a function of line size . 98

4.5 Fraction of shared lines . 99

4.6 Traffic from cache . 100

4.7 Breakdown of off-chip traffic . 102

5.1 Typical impact of input scaling on workload 109

5.2 Fidelity of PARSEC inputs . 121

5.3 Approximation error of inputs . 123

5.4 Benefit-cost ratio of using the next larger input 124

xi

List of Tables

2.1 Summary of characteristics of PARSEC benchmarks 11

2.2 Breakdown of instruction and synchronization primitives 13

2.3 Threading models supported by PARSEC 15

2.4 Levels of parallelism . 16

2.5 PARSEC workloads which use the pipeline model 21

2.6 List of PARSEC hook functions and their meaning 59

3.1 Overview of SPLASH-2 workloads and the used inputs 63

3.2 Characteristics chosen for the redundancy analysis 65

3.3 Growth rate of time and memory requirements of the SPLASH-2 workloads 84

4.1 Important working sets and their growth rates 97

5.1 List of standard input sets of PARSEC 110

5.2 Overview of PARSEC inputs and how they were scaled 112

5.3 Work units contained in the simulation inputs 115

xii

Chapter 1

Introduction

At the heart of the scientific method lies the experiment. This modern understanding of

science was first developed and presented by Sir Isaac Newton in his groundbreaking

work Philosophiae naturalis principia mathematica in 1687. Newton suggested that re-

searchers are to develop hypotheses which they are then to test with observable, empirical

and measurable evidence. It was the first time that a world view was formulated that was

free of metaphysical considerations. Until today science follows Newton’s methodology.

Experience shows that the strength of a scientific proof is no better than the strength of

the scientific experiment used to produce it. A flawed methodology will usually result in

flawed conclusions. This makes it crucial for researchers to develop and use experimental

setups that are sound and rigorous enough to serve as a foundation for their work.

In computer science research the standard method to conduct scientific experiments is

benchmarking. Scientists decide on a selection of benchmark programs which they then

study in detail to arrive at generalized conclusions that typically apply to actual computer

systems. Unless the chosen workloads allow us to generalize to a wider range of software

the results obtained this way will only be of very limited validity. It is therefore necessary

that the selection of benchmarks is a sufficiently accurate representation of the actual

programs of interest.

My thesis makes the following contributions:

• Demonstrates that an overhauled selection of benchmark programs is needed. The

behavior of modern workloads is significantly different from those represented by

SPLASH-2, the most popular parallel benchmark suite.

1

CHAPTER 1. INTRODUCTION

• Quantitatively describes the characteristics of modern programs which allows one

to sketch out the properties of future multiprocessor systems.

• Proposes a systematic approach to scale and select benchmark inputs. The pre-

sented methodology shows how to create benchmark inputs with varying degrees

of accuracy and speed and how to select inputs from a given selection to maximize

benchmarking accuracy subject to an execution time budget.

• Creates the Princeton Application Repository for Shared-Memory Computers (PAR-

SEC), a new benchmark suite that represents modern shared-memory multithreaded

programs using the methodologies developed during the course of my research.

The suite has become a popular choice for researchers around the world.

My thesis is structured as follows: A basic overview of the work and its impact is

given in Chapter 1. It describes which requirements a modern benchmark suite should

satisfy, and why existing selections of benchmarks fall short of them. Chapter 2 presents

the PARSEC benchmark suite, a new program selection which satisfies these criteria.

Its description was previously published in [10, 12]. Chapter 3 compares PARSEC to

SPLASH-2 and demonstrates that a new benchmark suite is indeed needed [9, 13]. A

detailed characterization of PARSEC is presented in Chapter 4. Its contents was published

as the PARSEC summary paper [11]. Chapter 5 discusses aspects relevant for the creation

and selection of benchmark inputs [14]. The thesis concludes and describes future work

in Chapter 6.

1.1 Purpose of Benchmarking

Benchmarking is a method to analyze computer systems. This is done by studying the

execution of the benchmark programs, which are a representation of the programs of

interest. Benchmarking requires that the behavior of the selected workloads is a suffi-

ciently accurate description of the programs of interest, which means that the resulting

instruction streams must be representative.

Unfortunately it is extremely challenging to prove that a benchmark is representative

because the amount of information that is known about the full range of programs of

interest is limited. In cases where a successful argument for representativeness can be

2

CHAPTER 1. INTRODUCTION

made the range of applications of interest is often very narrow to begin with and can even

be as small as the benchmark program itself. For general-purpose benchmarking two

approaches are typically taken:

Representative Program Selection A benchmark suite aims to represent a wide selec-

tion of programs with a small subset of benchmarks. By its very nature a bench-

mark suite is therefore a statistical sample of the application space. Creating a

selection of benchmarks by choosing samples of applications in this top-down fash-

ion can yield accurate representations of the program space of interest if the sample

size is sufficiently high. However, it usually is impossible to make any form of hard

statements about the representativeness of the suite because the application space

covered is typically too large and not fully observable. For this reason a qualita-

tive argument is usually made to establish credibility for these types of program

selections. It is common that an interesting and important program cannot be used

directly as a benchmark due to legal issues. In these cases the program is usually

substituted with a proxy workload that implements the same algorithms. Proxy

workloads are an important method to increase the coverage of a benchmark suite,

but compared to real programs they offer less certainty because their characteristics

might not be identical to the ones of the original program.

Diverse Range of Characteristics The futility to assess the representativeness of a bench-

mark suite has motivated approaches that focus on recreating the possible program

behavior in the form of different combinations of characteristics. The advantage

of this bottom-up method is that program characteristics are quantities that can be

measured and compared. The full characteristics space is therefore significantly

easier to describe and to analyze systematically. An example for this method of

creating benchmarks are synthetic workloads that emulate program behavior to ar-

tificially create the desired characteristics. The major limitation of this method

is that not all portions of the characteristics space are equally important, which

means that design decisions and other forms of trade-offs can easily become biased

towards program behavior that has minor importance in practice.

The work presented in this thesis follows both approaches to establish the presented

methodology. The qualitative argument that the PARSEC benchmark suite covers emerg-

ing application domains better than existing benchmarks is made in Chapter 2. Chapter 3

3

CHAPTER 1. INTRODUCTION

shows that the program selection is at least as diverse as existing best-practice bench-

marking methodologies by using quantitative methods to compare the characteristics of

PARSEC with SPLASH-2.

1.2 Motivation

One goal of this work is to define a benchmarking methodology that can be used to drive

the design of the new generation of multiprocessors and to make it available in the form

of a benchmark suite that can be readily used by other researchers. Its workloads should

serve as high-level problem descriptions which push existing processor designs to their

limit. This section first presents the requirements for such a suite. It then discusses how

existing benchmarks fail to meet these requirements.

1.2.1 Requirements for a Benchmark Suite

A multithreaded benchmark suite should satisfy the following five requirements:

Multithreaded Applications Shared-memory chip multiprocessors are already ubiqui-

tous. The trend for future processors is to deliver large performance improvements

through increasing core counts while only providing modest serial performance im-

provements. Consequently, applications that require additional processing power

will need to be parallel.

Emerging Workloads Rapidly increasing processing power is enabling a new class of

applications whose computational requirements were beyond the capabilities of the

earlier generation of processors [24]. Such applications are significantly different

from earlier applications (see Section 1.3). Future processors will be designed to

meet the demands of these emerging applications.

Diversity Applications are increasingly diverse, run on a variety of platforms and ac-

commodate different usage models. They include interactive applications such as

computer games, offline applications such as data mining programs and programs

with different parallelization models. Specialized collections of benchmarks can

be used to study some of these areas in more detail, but decisions about general-

purpose processors should be based on a diverse set of applications.

4

CHAPTER 1. INTRODUCTION

State-of-Art Algorithms A number of application areas have changed dramatically over

the last decade and use very different algorithms and techniques. Visual appli-

cations for example have started to increasingly integrate physics simulations to

generate more realistic animations [38]. A benchmark should not only represent

emerging applications but also use state-of-art algorithms and data structures.

Research Support A benchmark suite intended for research has additional requirements

compared to one used for benchmarking real machines alone. Benchmark suites in-

tended for research usually go beyond pure scoring systems and provide infrastruc-

ture to instrument, manipulate, and perform detailed simulations of the included

programs in an efficient manner.

1.2.2 Limitations of Existing Benchmark Suites

Existing benchmark suites fall short of the presented requirements and must thus be con-

sidered inadequate for evaluating modern CMP performance.

SPLASH-2 SPLASH-2 is a suite composed of multithreaded applications [96] and hence

seems to be an ideal candidate to measure performance of CMPs. However, its pro-

gram collection is skewed towards HPC and graphics programs. It does not include

parallelization models such as the pipeline model which are used in other applica-

tion areas. SPLASH-2 should furthermore not be considered state-of-art anymore.

Barnes for example implements the Barnes-Hut algorithm for N-body simula-

tion [7]. For galaxy simulations it has largely been superseded by the TreeSPH [36]

method, which can also account for mass such as dark matter which is not con-

centrated in bodies. However, even for pure N-body simulation barnes must be

considered outdated. In 1995 Xu proposed a hybrid algorithm which combines the

hierarchical tree algorithm and the Fourier-based Particle-Mesh (PM) method to

the superior TreePM method [98]. My analysis shows that similar issues exist for

a number of other applications of the suite including raytrace and radiosity.

SPEC CPU2006 and OMP2001 SPEC CPU2006 and SPEC OMP2001 are two of the

largest and most significant collections of benchmarks. They provide a snap-

shot of current scientific and engineering applications. Computer architecture re-

search, however, commonly focuses on the near future and should thus also con-

5

CHAPTER 1. INTRODUCTION

sider emerging applications. Workloads such as systems programs and paralleliza-

tion models which employ the producer-consumer model are not included. SPEC

CPU2006 is furthermore a suite of serial programs that is not intended for studies

of parallel machines.

Other Benchmark Suites Besides these major benchmark suites, several smaller work-

load collections exist. They were designed to study a specific program area and

are thus limited to a single application domain. Therefore they usually include a

smaller set of applications than a diverse benchmark suite typically offers. Due

to these limitations they are commonly not used for scientific studies which do

not restrict themselves to the covered application domain. Examples for these

types of benchmark suites are ALPBench [55], BioParallel [41], MediaBench [53],

MineBench [65], the NAS Parallel Benchmarks [3] and PhysicsBench [99]. Be-

cause of their different focus I do not discuss these suites in more detail.

1.3 Emerging Applications

Emerging applications play an important role for computer architecture research because

they define the frontier of software development, which usually offers significant research

opportunities. Changes on the software side often lead to comparable changes on the

hardware side. An example for this duality is the emergence of graphics processing units

(GPUs) that followed after the transition to 3D graphics by computer games.

The use of emerging applications as benchmark programs allows hardware designers

to work on the same type of high-level problems as software developers. Emerging ap-

plications have often been studied less intensely than established programs due to their

high degree of novelty. Changes in computational trends, user requirements or potential

problems are more likely to be identified while studying emerging workloads.

An emerging application is simply a new type of software. There are several reasons

why an emerging application might not have been widely available earlier:

• The application implements new algorithms or concepts which became available

only recently due to a breakthrough in research.

6

CHAPTER 1. INTRODUCTION

• Changes in user demands or behavior made seemingly irrelevant workloads signif-

icantly more popular. This might be a consequence of disruptive changes in other

areas.

• The emerging application has high computational demands that made its use infea-

sible. This is often the case with workloads that have a real-time requirement such

as video games or other interactive programs.

1.4 History and Impact of PARSEC

The PARSEC research project started sometime in the fall of 2005. The trend to chip

multiprocessor designs was already in full swing. PARSECwas created to allow the study

of this increasingly popular architecture form with modern, emerging programs that were

not taken from the HPC domain. The lack of contemporary consumer workloads was a

significant issue at that time.

The initiative gained momentum during a project meeting sometime in 2006. It was

Affiliates Day in the Computer Science Department of Princeton University. Among

the visitors to the department was Justin Rattner, CTO of Intel, who joined us for the

meeting. In the discussion that subsequently developed it became clear that Intel saw

exactly the same problems in current benchmarking methodology. Moreover, Intel had a

similar project to develop next-generation benchmark programs. Their suite was called

RMS benchmark suite due to its focus on recognition, mining and synthesis of data. It

was quickly agreed on to merge the research efforts and develop a single suite suitable

for modern computer architecture research.

An early alpha version of the PARSEC suite was released internally on May 31, 2007.

It contained mostly programs developed by Princeton University and the open source

community. The acronym PARSEC was decided on in the days before the alpha release.

It was the first time an early version of the benchmark suite took shape under this name.

A beta version which already had most of the form of the final version followed a few

months later on October 22, 2007.

On January 25, 2008, the first public release of PARSEC became generally available

and was instantly adopted by the researchers who started putting it to use for their work.

It had 12 workloads which made it through the selection process. The second version

7

CHAPTER 1. INTRODUCTION

� �

���������	

�������

��������
���������

��������

�����

������

������

������

������

������

������

������

	�����

�����

�������

���������
�������

�������� �
�������

�������
�!�"#$%�&!�

��'��
(��
�!�"#$%�&!�

�)���

������*$#��(
+,�-,.**!/�

)��.#��������
0%.-!

�
$
#�
�+
,�
"
!
%
%
�
,�
�
$
1
#�"
.
��
�
2
%
��
�
�

Figure 1.1: Usage of PARSEC at top-tier computer architecture conferences. The figure

shows which benchmark suites were used for evaluations of shared-memory multiprocessor

machines. At the beginning of 2010 36% of all publications in this area were already using

PARSEC.

was published about a year later, on February 13, 2009. It improved several workloads

significantly, implemented more alternative threading models and added one new work-

load. A maintenance version with several important bugfixes, PARSEC 2.1, was released

six months later, on August 13, 2009.

Since its first initial release the PARSEC benchmark suite could establish itself as

a welcome addition to the workloads used by other researchers. By now the PARSEC

distribution was downloaded over 4,000 times. Figure 1.1 gives a breakdown of the types

of benchmarks used for shared-memory multiprocessor evaluations at top-tier computer

architecture conferences during the last two years. As can be seen the total usage of

PARSEC has consistently risen and has already reached 36% of all analyzed publications.

The PARSEC summary paper [11] was cited in more than 280 publications.

1.5 Conclusions

This thesis describes a holistic approach to benchmarking that covers the entire spectrum

of work necessary to create and select workloads for performance experiments, starting

from the initial program selection over the creation of accurate benchmark inputs to the

final selection of a subset of workloads for the experiment. Previous work on benchmarks

8

CHAPTER 1. INTRODUCTION

was often limited to only a description of the programs and a basic analysis of their

characteristics.

This thesis improves over previous work in the following ways:

• Demonstrates that a new benchmark suite is needed. Modern workloads come

from emerging areas of computing and have significantly different characteristics

compared to more established programs. Benchmark creators and users need to

consider current trends in computing when they select their workloads. The choice

of a set of benchmarks can influence the conclusions drawn from their measurement

results.

• Characterizes a selection of modern multithreaded workloads. The analysis results

allow to give quantitative estimates for the nature and requirements of contempo-

rary multiprocessor workloads as a whole. This information makes it possible to

describe the properties of future multiprocessors.

• Presents quantitative methods to create and select inputs for the benchmarks. Input

data is a necessary component of every workload. Its choice can have significant

impact on the observed characteristics of the program, but until now no systematic

way to create and analyze inputs has been known. The methods presented in this

thesis consider this fact and describe how to create and choose inputs in a way that

minimizes behavior anomalies and maximizes the accuracy of the benchmarking

results.

• Describes the PARSEC benchmark suite. PARSEC was created to make the re-

search results developed during the course of this work readily available to other

scientists. The overall goal of the suite is to give researchers freedom of choice for

their experiments by providing them with a range of benchmarks, program inputs

and workload features and the tools to leverage them for their work in an easy and

intuitive way.

This combination of results allows the definition of a benchmarking methodology that

gives scientists a higher degree of confidence in their experimental results than with pre-

vious approaches. The presented concepts and methods can be reused to create new and

entirely different benchmark suites that are unrelated to PARSEC.

9

Chapter 2

The PARSEC Benchmark Suite

2.1 Introduction

Benchmarking is the quantitative foundation of computer architecture research. Bench-

marks are used to experimentally determine the benefits of new designs. However, to be

relevant, a benchmark suite needs to satisfy a number of properties. First, the applications

in the suite should consider a target class of machines such as the multiprocessors that

are the focus of this work. This is necessary to ensure that the architectural features be-

ing proposed are relevant and not obviated by minor rewrites of the application. Second,

the benchmark suite should represent important applications on the target machines. The

suite presented in this chapter will focus on emerging applications. Third, the workloads

in the benchmark suite should be diverse enough to exhibit the range of behavior of the

target applications. Finally, it is important that the programs use state-of-art algorithms

and that the suite supports the work of its users, which is research for the suite presented

here.

As time passes, the relevance of a benchmark suite diminishes. This happens not only

because machines evolve and change over time but also because new applications, algo-

rithms, and techniques emerge. New benchmark suites become necessary after significant

changes in the architectures or applications.

In fact, dramatic changes have occurred both in mainstream processor designs as well

as applications in the last few years. The arrival of chip multiprocessors (CMPs) with

ever increasing number of cores has made parallel machines ubiquitous. At the same

10

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Program Application Domain
Parallelization

Working Set
Data Usage

Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low

bodytrack Computer Vision data-parallel medium medium high medium

canneal Engineering unstructured fine unbounded high high

dedup Enterprise Storage pipeline medium unbounded high high

facesim Animation data-parallel coarse large low medium

ferret Similarity Search pipeline medium unbounded high high

fluidanimate Animation data-parallel fine large low medium

freqmine Data Mining data-parallel medium unbounded high medium

raytrace Rendering data-parallel medium unbounded high low

streamcluster Data Mining data-parallel medium medium low medium

swaptions Financial Analysis data-parallel coarse medium low low

vips Media Processing data-parallel coarse medium low medium

x264 Media Processing pipeline coarse medium high high

Table 2.1: Qualitative summary of the inherent key characteristics of PARSEC benchmarks.

PARSEC workloads were chosen to cover different application domains, parallel models and

runtime behaviors. Working sets that are ‘unbounded’ are large and have the additional qual-

itative property that there is significant application demand to make them even bigger. In

practice they are typically only constrained by main memory size.

time, new applications are emerging that not only organize and catalog data on desktops

and the Internet but also deliver improved visual experience [24].

These technology shifts have galvanized research in parallel architectures. Such re-

search efforts rely on existing benchmark suites. However, as I described in Chapter 1

the existing suites [41,55,65,99] suffer from a number of limitations and are not adequate

to evaluate future CMPs.

To address this problem, I created a publicly available benchmark suite called PAR-

SEC. It includes not only a number of important RMS applications [24] but also several

leading-edge applications from Princeton University, Stanford University, and the open-

source domain. Since its release the suite has been downloaded thousands of times. More

than 280 studies using PARSEC have already been published.

The work presented in this chapter was previously published in [10, 12].

2.2 The PARSEC Benchmark Suite

One of the goals of the PARSEC suite was to assemble a program selection that is large

and diverse enough to be sufficiently representative for modern multiprocessors. It con-

11

CHAPTER 2. THE PARSEC BENCHMARK SUITE

sists of 13 workloads which were chosen from several application domains. PARSEC

workloads were selected to include different combinations of parallel models, machine

requirements and runtime behaviors. All benchmarks are written in C/C++ because of

the continuing popularity of these languages in the near future. Table 2.1 presents a qual-

itative summary of their key characteristics.

PARSEC meets all the requirements outlined in Section 1.2.1:

• All applications are multithreaded. Many workloads even implement multiple dif-

ferent versions of the parallel algorithm which users can choose from.

• The PARSEC benchmark suite focuses on emerging workloads. The algorithms

these programs implement are usually considered useful, but their computational

demands are prohibitively high on contemporary platforms. As more powerful

processors become available in the near future, they are likely to proliferate rapidly.

• The workloads are diverse and were chosen from many different areas such as

computer vision, media processing, computational finance, enterprise servers and

animation physics. PARSEC is more diverse than previous popular parallel bench-

marks [9].

• Each of the applications chosen represents the state-of-art technique in its area. All

workloads were developed in cooperation with experts from the respective applica-

tion area. Some of the programs are modified versions of the research prototypes

that were used to develop the implemented main algorithm.

• PARSEC supports computer architecture research in a number of ways. The most

important one is that for each workload six input sets with different properties are

defined. Three of these input sets are suitable for microarchitectural simulation.

The different types of input sets are explained in more detail in Section 2.2.2.

2.2.1 Workloads

The PARSEC benchmark suite is composed of 10 applications and 3 kernels which rep-

resent common desktop and server programs. The workloads were chosen from different

application domains such as computational finance, computer vision, real-time animation

or media processing. The decision for the inclusion of a workload in the suite was based

12

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Program Problem Size
Instructions (Billions) Synchronization Primitives

Total FLOPS Reads Writes Locks Barriers Conditions

blackscholes 65,536 options 4.90 2.32 1.51 0.79 0 8 0

bodytrack 4 frames, 4,000 particles 14.04 6.08 3.26 0.80 28,538 2,242 518

canneal 400,000 elements, 7.00 0.45 1.76 0.88 34 1,024 0

128 temperature steps

dedup 184 MB data 41.40 0.23 9.85 3.77 258,381 0 291

facesim 1 frame, 30.46 17.17 9.91 4.23 14,566 0 3,327

372,126 tetrahedra

ferret 256 queries, 25.90 6.58 7.65 1.99 534,866 0 1273

34,973 images

fluidanimate 5 frames, 13.54 4.30 4.46 1.07 9,347,914 320 0

300,000 particles

freqmine 990,000 transactions 33.22 0.08 11.19 5.23 990,025 0 0

raytrace 3 frames, 46.48 8.12 11.07 9.28 105 0 38

1,920×1,080 pixels
streamcluster 16,384 points per block, 22.15 16.49 4.26 0.06 183 129,584 115

1 block

swaptions 64 swaptions, 16.81 5.66 5.62 1.54 23 0 0

20,000 simulations

vips 1 image, 31.30 6.34 6.69 1.62 33,920 0 7,356

2,662×5,500 pixels
x264 128 frames, 14.42 7.37 3.88 1.16 16,974 0 1,101

640×360 pixels

Table 2.2: Breakdown of instructions and synchronization primitives of PARSEC workloads

for input set simlarge on a system with 8 cores. All numbers are totals across all threads.

Numbers for synchronization primitives also include primitives in system libraries. Locks

and Barriers are all lock- and barrier-based synchronizations, Conditions are all waits on

condition variables.

on the relevance of the type of problem it is solving, the distinctiveness of its characteris-

tics as well as its overall novelty.

2.2.2 Input Sets

PARSEC defines six input sets for each benchmark:

test A very small input set to test the basic functionality of the program. The test

input set gives no guarantees other than the benchmark will be executed. It should

not be used for scientific studies.

simdev A very small input set which guarantees basic program behavior similar to

the real behavior. It tries to preserve the code path of the real inputs as much as

13

CHAPTER 2. THE PARSEC BENCHMARK SUITE

possible. Simdev is intended for simulator test and development and should not be

used for scientific studies.

simsmall, simmedium and simlarge Input sets of different sizes suitable for mi-

croarchitectural studies with simulators. The three simulator input sets vary in size

but the general trend is that larger input sets contain bigger working sets and more

parallelism.

native A large input set intended for native execution. It exceeds the computational

demands which are generally considered feasible for simulation by orders of mag-

nitude. From a scientific point of view, the native input set is the most interesting

one because it resembles real program inputs most closely.

The three simulation input sets can be considered coarser approximations of the native

input set which sacrifice accuracy for tractability. They were created by scaling down the

size of the native input set. The methodology used for the size reduction and the in-

volved trade-offs are described in Chapter 5. Table 2.2 shows a breakdown of instructions

and synchronization primitives of the simlarge input set.

2.2.3 Threading Models

Parallel programming paradigms are a focus of computer science research due to their im-

portance for making the large performance potential of CMPs more accessible. The PAR-

SEC benchmark suite supports POSIX threads (pthreads), OpenMP and the Intel Thread-

ing Building Blocks (TBB). Table 2.3 summarizes which workloads support which thread-

ing models. Besides the constructs of these threading models, atomic instructions are also

directly used by a few programs if synchronized low-latency data access is necessary.

POSIX threads [89] are one of the most commonly used threading standards to pro-

gram contemporary shared-memory Unix machines. Pthreads requires programmers to

handle all thread creation, management and synchronization issues themselves. It was

officially finalized by IEEE in 1995 in section 1003.1c of the Portable Operating System

Interface for Unix (POSIX) standard in an effort to harmonize and succeed the various

threading standards that industry vendors had created themselves. This threading model

is supported by all PARSEC workloads except freqmine.

14

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Program Pthreads OpenMP TBB

blackscholes X X X
bodytrack X X X
canneal X
dedup X
facesim X
ferret X
fluidanimate X X
freqmine X
raytrace X
streamcluster X X
swaptions X X
vips X
x264 X

Table 2.3: Threading models supported by PARSEC.

OpenMP [71] is a compiler-based approach to program parallelization. To parallelize a

program with OpenMP the programmer must annotate the source code with the OpenMP

#pragma omp directives. The compiler performs the actual parallelization, and all details

of the thread management and the synchronization are handled by the OpenMP runtime.

The first version of the OpenMP API specification was released for Fortran in 1997 by the

Architecture Review Board (ARB). OpenMP 1.0 for C/C++ followed the subsequent year.

The standard keeps evolving, the latest version 3.0 was released in 2008. In the PARSEC

benchmark suite OpenMP is supported by blackscholes, bodytrack and freqmine.

TBB is a high-level alternative to pthreads and similar threading libraries [40]. It can

be used to parallelize C++ programs. The TBB library is a collection of C++ methods and

templates which allow to express high-level, task-based parallelism that abstracts from

details of the platform and the threading mechanism. The first version of the TBB library

was released in 2006, which makes it one of the more recent threading models. The

PARSEC benchmark suite has TBB support for five of its workloads: blackscholes,

bodytrack, fluidanimate, streamcluster and swaptions.

Researchers that use the PARSEC benchmark suite for their work must be aware that

the different versions of a workload that use the various threading methods can behave

differently at runtime. Contreras et al. studied the TBB versions of the PARSEC work-

loads in more detail [21]. They conclude that the dynamic task handling approach of the

15

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Bit Instruction Data Task

Exploitation hardware hardware software software

Granularity bits instructions loops functions

Dependencies gates registers variables control flow

Synchronization clock signal control logic locks conditions

Table 2.4: Levels of parallelism and their typical properties in practice. Only data and task

parallelism are commonly exploited by software to take advantage of multiprocessors. Task

parallelism is sometimes further subdivided into pipeline parallelism and ‘natural’ task par-

allelism to distinguish functions with a producer-consumer relationship from completely in-

dependent functions.

TBB runtime is effective at lower core counts, where it efficiently reduces load imbal-

ance and improves scalability. However, with increasing core counts the overhead of the

random task stealing algorithm becomes the dominant bottleneck. In current TBB imple-

mentations it can contribute up to 47% of the total per-core execution time on a 32-core

system. Results like these demonstrate the importance of choosing a suitable threading

model for performance experiments.

2.3 Pipeline Programming Model

The PARSEC benchmark suite is one of the first suites to include the pipeline model.

Pipelining is a parallelization method that allows a program or system to execute in a

decomposed fashion. It takes advantage of parallelism that exists on a function level.

Table 2.4 gives a summary of the different levels of parallelism and how they are typi-

cally exploited. Information on the different types of data-parallel algorithms has been

available for years [37], and existing benchmark suites cover data-parallel programs

well [84, 96]. However, no comparable body of work exists for task parallelism, and

the number of benchmark programs using pipelining to exploit parallelism on the task

level is still limited. This section describes the pipeline parallelization model in more

detail and how it is covered by the PARSEC benchmark suite.

A pipelined workload for multiprocessors breaks its work steps into units or pipeline

stages and executes them concurrently on multiprocessors or multiple CPU cores. Each

pipeline stage typically takes input from its input queue, which is the output queue of the

previous stage, computes and then outputs to its output queue, which is the input queue

16

CHAPTER 2. THE PARSEC BENCHMARK SUITE

� �

�����

���	
�� ���	
�� ���	
�

�����

Figure 2.1: A typical linear pipeline with multiple concurrent stages. Pipeline stages have a

producer - consumer relationship to each other and exchange data with queues.

of the next stage. Each stage can have one or more threads depending on specific designs.

Figure 2.1 shows this relationship between stages and queues of the pipeline model.

2.3.1 Motivation for Pipelining

In practice there are three reasons why workloads are pipelined. First, pipelining can

be used to simplify program engineering, especially for large-scale software develop-

ment. Pipelining decomposes a problem into smaller, well-defined stages or pieces so

that different design teams can develop different pipeline stages efficiently. As long as

the interfaces between the stages are properly defined, little coordination is needed be-

tween the different development teams so that they can work independently from each

other in practice. This typically results in improved software quality and lowered devel-

opment cost due to simplification of the problem and specialization of the developers.

This makes the pipeline model well suited for the development of large-scale software

projects.

Second, the pipeline programming model can be used to take advantage of specialized

hardware. Pipelined programs have clearly defined boundaries between stages, which

make it easy to map them to different hardware and even different computer systems to

achieve better hardware utilization.

Third, pipelining increases program throughput due to a higher degree of parallelism

that can be exploited. The different pipeline stages of a workload can operate concur-

rently from each other, as long as enough input data is available. It can even result in

fewer locks than alternative parallelization models [54] due to the serialization of data.

By keeping data in memory and transferring it directly between the relevant process-

ing elements, the pipeline model distributes the load and reduces the chance for bottle-

necks. This has been a key motivation for the development of the stream programming

17

CHAPTER 2. THE PARSEC BENCHMARK SUITE

model [46], which can be thought of as a fine-grained form of the pipeline programming

model.

2.3.2 Uses of the Pipeline Model

These properties of the pipeline model typically result in three uses in practice:

1. Pipelining as a hybrid model with data-parallel pipeline stages to increase concur-

rency

2. Pipelining to allow asynchronous I/O

3. Pipelining to model algorithmic dependencies

The first common use of the pipeline model is as a hybrid model that also exploits

data parallelism. In that case the top-level structure of the program is a pipeline, but each

pipeline stage is further parallelized so that it can process multiple work units concur-

rently. This program structure increases the overall concurrency and typically results in

higher speedups.

The second use also aims to increase program performance by increasing concurrency,

but it exploits parallelism between the CPUs and the I/O subsystem. This is done either

by using special non-blocking system calls for I/O, which effectively moves that pipeline

stage into the operating system, or by creating a dedicated pipeline stage that will handle

blocking system calls so that the remainder of the program can continue to operate while

the I/O thread waits for the operation to complete.

Lastly, pipelining is a method to decompose a complex program into simpler execu-

tion steps with clearly defined interfaces. This makes it popular to model algorithmic

dependencies which are difficult to analyze and might even change dynamically at run-

time. In that scenario the developer only needs to keep track of the dependencies and

expose them to the operating system scheduler, which will pick and execute a job as soon

as all its prerequisites are satisfied. The pipelines modeled in such a fashion can be com-

plex graphs with multiple entry and exit points that have little in common with the linear

pipeline structure that is typically used for pipelining.

18

CHAPTER 2. THE PARSEC BENCHMARK SUITE

2.3.3 Implementations

There are two ways to implement the pipeline model: fixed data and fixed code. The fixed

data approach has a static mapping of data to threads. With this approach each thread

applies all the pipeline stages to the work unit in the predefined sequence until the work

unit has been completely processed. Each thread of a fixed data pipeline would typically

take on a work unit from the program input and carry it through the entire program until

no more work needs to be done for it, which means threads can potentially execute all of

the parallelized program code but they will typically only see a small subset of the input

data. Programs that implement fixed data pipelines are therefore also inherently data-

parallel because it can easily happen that more than one thread is executing a function at

any time.

The fixed code approach statically maps the program code of the pipeline stages to

threads. Each thread executes only one stage throughout the program execution. Data is

passed between threads in the order determined by the pipeline structure. For this reason

each thread of a fixed code pipeline can typically only execute a small subset of the

program code, but it can potentially see all work units throughout its lifetime. Pipeline

stages do not have to be parallelized if no more than one thread is active per pipeline

stage at any time, which makes this a straightforward approach to parallelize serial code.

Fixed Data Approach

The fixed data approach uses a static assignment of data to threads, each of which applies

all pipeline stages to the data until completion of all tasks. The fixed data approach can be

best thought of as a full replication of the original program, several instances of which are

now executed concurrently and largely independently from each other. Programs that use

the fixed data approach are highly concurrent and also implicitly exploit data parallelism.

Due to this flexibility they are usually inherently load-balanced.

The key advantage of the fixed data approach is that it exploits data locality well. Be-

cause data does not have to be transferred between threads, the program can take full

advantage of data locality once a work unit has been loaded into a cache. This assumes

that threads do not migrate between CPUs, a property that is usually enforced by manu-

ally pinning threads to cores.

19

CHAPTER 2. THE PARSEC BENCHMARK SUITE

The key disadvantage is that it does not separate software modules to achieve a better

division of labor for teamwork, simple asynchronous I/Os, or mapping to special hard-

ware. The program will have to be debugged as a single unit. Asynchronous I/Os will

need to be handled with concurrent threads. Typically, no fine-grained mapping to hard-

ware is considered.

Another disadvantage of this approach is that the working set of the entire execution is

proportional to the number of concurrent threads, since there is little data sharing among

threads. If the working set exceeds the size of the low-level cache such as the level-two

cache, this approach may cause many DRAM accesses due to cache misses. For the

case that each thread contributes a relatively large working set, this approach may not be

scalable to a large number of CPU cores.

Fixed Code Approach

The fixed code approach assigns a pipeline stage to each thread, which then exchange

data as defined by the pipeline structure. This approach is very common because it allows

the mapping of threads to different types of computational resources and even different

systems.

The key advantage of this approach is its flexibility, which overcomes the disadvan-

tages of the fixed data approach. As mentioned earlier, it allows fine-grained partitioning

of software projects into well-defined and well-interfaced modules. It can limit the scope

of asynchronous I/Os to one or a small number of software modules and yet achieves

good performance. It allows engineers to consider fine-grained processing steps to fully

take advantage of hardware. It can also reduce the aggregate working set size by taking

advantage of efficient data sharing in a shared cache in a multiprocessor or a multicore

CPU.

The main challenge of this approach is that each pipeline stage must use the right

number of threads to create a load-balanced pipeline that takes full advantage of the tar-

get hardware because the throughput of the whole pipeline is determined by the rate of

its slowest pipeline stage. In particular, pipeline stages can make progress at different

rates on different systems, which makes it hard to find a fixed assignment of resources

to stages for different hardware. A typical solution to this problem on shared-memory

multiprocessor systems is to over-provision threads for pipeline stages so that it is guar-

anteed that enough cores can be assigned to each pipeline stage at any time. This solution

20

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Workload
Parallelism Dependency

Pipeline Data I/O Modeling

bodytrack X X
dedup X X X
ferret X X X
x264 X X

Table 2.5: The four workloads of PARSEC 2.1 which use the pipeline model. Pipeline

parallelism in the table refers only to the decomposition of the computationally intensive

parts of the program into separate stages and is different from the pipeline model as a form

to structure the whole program (which includes stages to handle I/O).

delegates the task of finding the optimal assignment of cores to pipeline stages to the OS

scheduler at runtime. However, this approach introduces additional scheduling overhead

for the system.

Fixed code pipelines usually implement mechanisms to tolerate fluctuations of the

progress rates of the pipeline stages, typically by adding a small amount of buffer space

between stages that can hold a limited number of work units if the next stage is currently

busy. This is done with synchronized queues on shared-memory machines or network

buffers if two connected pipeline stages are on different systems. It is important to point

out that this is only a mechanism to tolerate variations in the progress rates of the pipeline

stages, buffer space does not increase the maximum possible throughput of a pipeline.

2.3.4 Pipelining in PARSEC

The PARSEC suite contains workloads implementing all the usage scenarios discussed

in Section 2.3.2. Table 2.5 gives an overview of the four PARSEC workloads that use the

pipeline model.

Dedup and ferret are server workloads which implement a typical linear pipeline

with the fixed code approach (see Section 2.3.3). X264 uses the pipeline model to model

dependencies between frames. It constructs a complex pipeline at runtime based on its

encoding decision in which each frame corresponds to a pipeline stage. The pipeline has

the form of a directed, acyclical graph with multiple root nodes formed by the pipeline

stages corresponding to the I frames. These frames can be encoded independently from

other frames and thus do not depend on any input from other pipeline stages.

21

CHAPTER 2. THE PARSEC BENCHMARK SUITE

The bodytrack workload only uses pipelining to perform I/O asynchronously. It will

be treated as a data-parallel program for the purposes of this study because it does not take

advantage of pipeline parallelism in the computationally intensive parts. The remaining

three pipelined workloads will be compared to the data-parallel programs in the PARSEC

suite to determine whether the pipeline model has any influence on the characteristics.

2.4 Description of PARSECWorkloads

The following workloads are part of the PARSEC suite:

2.4.1 Blackscholes

The blackscholes application is an Intel RMS benchmark. It calculates the prices for

a portfolio of European options analytically with the Black-Scholes partial differential

equation (PDE) [15]

∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V is an option on the underlying S with volatility σ at time t if the constant

interest rate is r. There is no closed-form expression for the Black-Scholes equation

and as such it must be computed numerically [39]. The blackscholes benchmark was

chosen to represent the wide field of analytic PDE solvers in general and their application

in computational finance in particular. The program is limited by the amount of floating-

point calculations a processor can perform.

Blackscholes stores the portfolio with numOptions derivatives in array OptionData.

The program includes file optionData.txt which provides the initialization and control

reference values for 1,000 options which are stored in array data init. The initialization

data is replicated if necessary to obtain enough derivatives for the benchmark.

The program divides the portfolio into a number of work units equal to the number of

threads and processes them concurrently. Each thread iterates through all derivatives in

its contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute its

price. If error checking was enabled at compile time it also compares the result with the

reference price.

The inputs for blackscholes are sized as follows:

22

CHAPTER 2. THE PARSEC BENCHMARK SUITE

• test: 1 option

• simdev: 16 options

• simsmall: 4,096 options

• simmedium: 16,384 options

• simlarge: 65,536 options

• native: 10,000,000 options

The program writes the prices for all options to the output file prices.txt.

2.4.2 Bodytrack

The bodytrack computer vision application is an Intel RMS workload which tracks a 3D

pose of a marker-less human body with multiple cameras through an image sequence [5,

23]. This is shown in Figure 2.2. Bodytrack employs an annealed particle filter to track

the pose using edges and the foreground silhouette as image features, based on a 10

segment 3D kinematic tree body model. These two image features were chosen because

they exhibit a high degree of invariance under a wide range of conditions and because

they are easy to extract. An annealed particle filter was employed in order to be able to

search high dimensional configuration spaces without having to rely on any assumptions

of the tracked body such as the existence of markers or constrained movements. This

benchmark was included due to the increasing significance of computer vision algorithms

in areas such as video surveillance, character animation and computer interfaces.

For every frame set Zt of the input videos at time step t, the bodytrack benchmark

executes the following steps:

1. The image features of observation Zt are extracted. The features will be used to

compute the likelihood of a given pose in the annealed particle filter.

2. Every time step t the filter makes an annealing run through all M annealing layers,

starting with layer m=M.

23

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.2: Output of the bodytrack benchmark. The program recognizes the body position

of the person in the input videos and adds boxes to mark it for a human observer.

3. Each layer m uses a set of N unweighted particles which are the result of the previ-

ous filter update step to begin with.

St,m = {(s
(1)
t,m)...(s

(N)
t,m)}.

Each particle s
(i)
t,m is an instance of the multi-variate model configuration X which

encodes the location and state of the tracked body.

4. Each particle s
(i)
t,m is then assigned a weight π

(i)
t,m by using weighting functionω(Zt ,X)

corresponding to the likelihood of X given the image features in Zt scaled by an an-

nealing level factor:

π
(i)
t,m ∝ ω(Zt ,s

(i)
t,m).

24

CHAPTER 2. THE PARSEC BENCHMARK SUITE

The weights are normalized so that∑Ni=1π
(i)
t,m= 1. The result is the weighted particle

set

Sπ
t,m = {(s

(1)
t,m,π

(1)
t,m)...(s

(N)
t,m ,π

(N)
t,m)}.

5. N particles are randomly drawn from set Sπ
t,m with a probability equal to their

weight π
(i)
t,m to obtain the temporary weighted particle set

S̄π
t,m = {(s̄

(1)
t,m,π

(1)
t,m)...(s̄

(N)
t,m ,π

(N)
t,m)}.

Each particle s̄
(i)
t,m is then used to produce particle

s
(i)
t,m−1 = s̄

(i)
t,m+Bm

where Bm is a multi-variate Gaussian random variable. The result is particle set

Sπ
t,m−1 which is used to initialize layer m−1.

6. The process is repeated until all layers have been processed and the final particle

set Sπ
t,0 has been computed.

7. Sπ
t,0 is used to compute the estimated model configuration χt for time step t by

calculating the weighted average of all configuration instances:

χt =
N

∑
i=1

s
(i)
t,0π

(i)
t,0.

8. The set St+1,M is then produced from S
π
t,0 using

s
(i)
t+1,M = s

(i)
t,0+B0.

In the subsequent time step t+1 the set St+1,M is used to initialize layer M.

The likelihood ω(Zt ,s
(i)
t,m) which is used to determine the particle weights π

(i)
t,m is com-

puted by projecting the geometry of the human body model into the image observations

Zt for each camera and determining the error based on the image features. The likelihood

25

CHAPTER 2. THE PARSEC BENCHMARK SUITE

is a measure of the 3D body model alignment with the foreground and edges in the im-

ages. The body model consists of conic cylinders to represent 10 body parts 2 for each

limb plus the torso and the head. Each cylinder is represented by a length and a radius for

each end. The body parts are assembled into a kinematic tree based upon the joint angles.

Each particle represents the set of joint angles plus a global translation. To evaluate the

likelihood of a given particle, the geometry of the body model is first built in 3D space

given the angles and translation. Next, each 3D body part is projected onto each of the

2D images as a quadrilateral. A likelihood value is then computed based on the two im-

age features the foreground map and the edge distance map. To compute the foreground

term, samples are taken within the interior of each 2D body part projection and compared

with the binary foreground map images. Samples that correspond to foreground increase

the likelihood while samples that correspond to background are penalized. The edge map

gives a measure of the distance from an edge in the image - values closer to an edge have

a higher value. To compute the edge term samples are taken along the axis-parallel edges

of each 2D body part projection and the edge map values at each sample are summed to-

gether. In this way, samples that are closer to edges in the images increase the likelihood

while samples farther from edges are penalized.

Bodytrack has a persistent thread pool which is implemented in class WorkPool-

Pthread. Input images that form the individual observations are loaded using asyn-

chronous I/O so that disk I/O and computations are overlapping. The main thread ex-

ecutes the program and sends a task to the thread pool with method SignalCmd when-

ever it reaches a parallel kernel. It resumes execution of the program as soon as it re-

ceives the result from the worker threads. Possible tasks are encoded by enumeration

threadCommands in class WorkPoolPthread. The program has three parallel kernels:

Edge detection (Step 1) Bodytrack employs a gradient based edge detection mask to

find edges. The result is compared against a threshold to eliminate spurious edges.

Edge detection is implemented in function GradientMagThreshold. The output of

this kernel will be further refined before it is used to compute the particle weights.

Edge smoothing (Step 1) A separable Gaussian filter of size 7× 7 pixels is used to

smooth the edges in function GaussianBlur. The result is remapped between 0

and 1 to produce a pixel map in which the value of each pixel is related to its dis-

26

CHAPTER 2. THE PARSEC BENCHMARK SUITE

tance from an edge. The kernel has two parallel phases, one to filter image rows

and one to filter image columns.

Calculate particle weights (Step 4) This kernel evaluates the foreground silhouette and

the image edges produced earlier to compute the weights for the particles. This

kernel is executed once for every annealing layer during every time step, making it

the computationally most intensive part of the body tracker.

Particle resampling (Step 5) This kernel resamples particles by adding normally dis-

tributed random noise to them, thereby effectively creating a new set of particles.

This function is implemented in GenerateNewParticles. The random number

generator used for the task is given by class RandomGenerator.

The parallel kernels use tickets to distribute the work among threads balance the load

dynamically. The ticketing mechanism is implemented in class TicketDispenser and

behaves like a shared counter.

The inputs for bodytrack are defined as follows:

• test: 4 cameras, 1 frame, 5 particles, 1 annealing layer

• simdev: 4 cameras, 1 frame, 100 particles, 3 annealing layers

• simsmall: 4 cameras, 1 frame, 1,000 particles, 5 annealing layers

• simmedium: 4 cameras, 2 frames, 2,000 particles, 5 annealing layers

• simlarge: 4 cameras, 4 frames, 4,000 particles, 5 annealing layers

• native: 4 cameras, 261 frames, 4,000 particles, 5 annealing layers

The result of the computations is written to the output file poses.txt. The program

also creates output images that mark the exact location of the recognized body as shown

in Figure 2.2.

27

CHAPTER 2. THE PARSEC BENCHMARK SUITE

2.4.3 Canneal

This kernel uses cache-aware simulated annealing (SA) to minimize the routing cost of a

chip design [6]. SA is a common method to approximate the global optimum in a large

search space. Canneal pseudo-randomly picks pairs of elements and tries to swap them.

To increase data reuse, the algorithm discards only one element during each iteration

which effectively reduces cache capacity misses. The SA method accepts swaps which

increase the routing cost with a certain probability to make an escape from local optima

possible. This probability continuously decreases during runtime to allow the design to

converge. For benchmarking version the number of temperature steps has been fixed to

keep the amount of work constant. The program was included in the PARSEC program

selection to represent engineering workloads, for the fine-grained parallelism with its

lock-free synchronization techniques and due to its pseudo-random worst-case memory

access pattern.

Canneal uses a very aggressive synchronization strategy that is based on data race

recovery instead of avoidance. Pointers to the elements are dereferenced and swapped

atomically, but no locks are held while a potential swap is evaluated. This can cause dis-

advantageous swaps if one of the relevant elements has been replaced by another thread

during that time. This equals a higher effective probability to accept swaps which in-

crease the routing cost, and the SA method automatically recovers from it. The swap

operation employs lock-free synchronization which is implemented with atomic instruc-

tions. An alternative implementation which relied on conventional locks turned out to be

too inefficient due to excessive locking overhead. The synchronization routines with the

atomic instructions are taken from the BSD kernel. Support for most new architectures

can be added easily by copying the correct header file from the BSD kernel sources.

The annealing algorithm is implemented in the Run function of the annealer thread

class. Each thread uses the function get random element to pseudo-randomly pick one

new netlist element per iteration with a Mersenne Twister [63]. calculate delta -

routing cost is called to compute the change of the total routing cost if the two elements

are swapped. accept move evaluates the change in cost and the current temperature and

decides whether the change is to be committed. Finally, accepted swaps are executed by

calling swap locations.

Canneal implements an AtomicPtr class which encapsulates a shared pointer to the

location of a netlist element. The pointer is atomically accessed and modified with the

28

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Get and Set functions offered by the class. A special Swap member function executes an

atomic swap of two encapsulated pointers. If an access is currently in progress the func-

tions spin until the operation could be completed. The implementation of Swap imposes

a partial order to avoid deadlocks by processing the pointer at the lower memory location

first.

The following inputs are provided for canneal:

• test: 5 swaps per temperature step, 100◦ start temperature, 10 netlist elements, 1

temperature step

• simdev: 100 swaps per temperature step, 300◦ start temperature, 100 netlist ele-

ments, 2 temperature steps

• simsmall: 10,000 swaps per temperature step, 2,000◦ start temperature, 100,000

netlist elements, 32 temperature steps

• simmedium: 15,000 swaps per temperature step, 2,000◦ start temperature, 200,000

netlist elements, 64 temperature steps

• simlarge: 15,000 swaps per temperature step, 2,000◦ start temperature, 400,000

netlist elements, 128 temperature steps

• native: 15,000 swaps per temperature step, 2,000◦ start temperature, 2,500,000

netlist elements, 6,000 temperature steps

The program writes the final routing cost to the console.

2.4.4 Dedup

The dedup kernel compresses a data stream with a combination of global compression

and local compression in order to achieve high compression ratios. Such a compression

is called deduplication. The reason for the inclusion of this kernel is that deduplication

has become a mainstream method to reduce storage footprints for new-generation backup

storage systems [76] and to compress communication data for new-generation bandwidth

optimized networking appliances [85].

The kernel uses the pipeline programming model to parallelize the compression to

mimic real-world implementations. There are five pipeline stages, the intermediate three

29

CHAPTER 2. THE PARSEC BENCHMARK SUITE

of which are parallel. In the first stage, dedup reads the input stream and breaks it up into

coarse-grained chunks to get independent work units for the threads. The second stage

anchors each chunk into fine-grained small segments with rolling fingerprinting [16, 61].

The third pipeline stage computes a hash value for each data segment. The fourth stage

compresses each data segment with the Ziv-Lempel algorithm and builds a global hash

table that maps hash values to data. The final stage assembles the deduplicated output

stream consisting of hash values and compressed data segments.

Anchoring is a method which identifies brief sequences in a data stream that are iden-

tical with sufficiently high probability. It uses rolling fingerprints [45, 77] to segment

data based on its contents. The data is then broken up into two separate blocks at the

determined location. This method ensures that fragmenting a data stream is unlikely to

obscure duplicate sequences since duplicates are identified on a block basis.

Dedup uses a separate thread pool for each parallel pipeline stage. Each thread pool

should at least have a number of threads equal to the number of available cores to allow

the system to fully work on any stage should the need arise. The operating system sched-

uler is responsible for a thread schedule which will maximize the overall throughput of

the pipeline. In order to avoid lock contention, the number of queues is scaled with the

number of threads, with a small group of threads sharing an input and output queue at a

time.

Dedup employs the following five kernels, one for each pipeline stage:

Coarse-grained fragmentation This serial kernel takes the input stream and breaks it

up into work units which can be processed independently from each other by the

parallel pipeline stages of dedup. It is implemented in function Fragment. First,

the kernel reads the input file from disk. It then determines the locations where the

data is to be split up by jumping a fixed length in the buffer for each chunk. The

resulting data blocks are enqueued in order to be further refined by the subsequent

stage.

Fine-grained fragmentation This parallel kernel uses Rabin fingerprints to break a coarse-

grained data chunk up into fine-grained fragments. It scans each input block start-

ing from the beginning. An anchor is found if the lowest 12 bits of the Rabin hash

sum are 0. The data is then split up at the location of the anchor. On average,

this produces blocks of size 212/8 = 512 bytes. The fine-grained data blocks are

30

CHAPTER 2. THE PARSEC BENCHMARK SUITE

sent to the subsequent pipeline stage to compute their checksum. This kernel is

implemented in function FragmentRefine.

Hash computation To uniquely identify a fine-grained data block, this parallel kernel

computes the SHA1 checksum of each chunk and checks for duplicate blocks with

the use of a global database. It is implemented in function Deduplicate. A hash

table which is indexed with the SHA1 sum serves as the database. Each bucket

of the hash table is associated with an independent lock in order to synchronize

accesses. The large number of buckets and therefore locks makes the probability

of lock contention very low in practice.

Once the SHA1 sum of a data block is available, the kernel checks whether a cor-

responding entry already exists in the database. If no entry could be found, the

data block is added to the hash table and sent to the compression stage. If an entry

already exists the block is classified as a duplicate. The compression stage is omit-

ted and the block is sent directly to the pipeline stage which assembles the output

stream.

Compression This kernel compresses data blocks in parallel. It is implemented in func-

tion Compress. Once the compressed image of a data block is available it is added

to the database and the corresponding data block is sent to the next pipeline stage.

Every data block is compressed only once because the previous stage does not send

duplicates to the compression stage.

Assemble output stream This serial kernel reorders the data blocks and produces a

compressed output stream. It is implemented in the Reorder function. The stages

which fragment the input stream into fine-grained data blocks add sequence num-

bers to allow a reconstruction of the original order. Because data fragmentation

occurs in two different pipeline stages, two levels of sequence numbers have to be

considered - one for each granularity level. Reorder uses a search tree for the first

level and a heap for the second level. The search tree allows rapid searches for the

correct heap corresponding to the current first-level sequence number. For second-

level sequence numbers only the minimum has to be found and hence a heap is

used.

31

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Once the next data block in the sequence becomes available it is removed from the

reordering structures. If it has not been written to the output stream yet, its com-

pressed image is emitted. Otherwise it is a duplicate and only its SHA1 signature

is written as a placeholder. The kernel uses the global hash table to keep track of

the output status of each data block.

Each input for dedup is an archive which contains a selection of files. The archives

have the following sizes:

• test: 10 KB

• simdev: 1.1 MB

• simsmall: 10 MB

• simmedium: 31 MB

• simlarge: 184 MB

• native: 672 MB

Dedup writes the compressed data stream to an output file which can then be given to

its decompression utility to restore the original input data.

2.4.5 Facesim

This Intel RMS application was originally developed by Stanford University. It takes

a model of a human face and a time sequence of muscle activations and computes a

visually realistic animation of the modeled face by simulating the underlying physics [81,

88]. The goal is to create a visually realistic result. Two examples of a fully rendered

face that were computed by facesim can be seen in Figure 2.3. Certain effects such as

inertial movements would have only a small visible effect and are not simulated [38].

The workload was included in the benchmark suite because an increasing number of

computer games and other forms of animation employ physical simulation to create more

realistic virtual environment. Human faces in particular are observed with more attention

from users than other details of a virtual world, making their realistic presentation a key

element for animations.

32

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.3: Two fully rendered output frames of the facesim benchmark. The workload is

able to compute a realistically looking face as a response to factors such as bone and muscle

configuration or external forces.

The parallelization uses a static partitioning of the mesh. Data that spans nodes be-

longing to more than one partition is replicated. Every time step the partitions process all

elements that contain at least one node owned by the particle, but only results for nodes

which are owned by the partition are written.

The iteration which computes the state of the face mesh at the end of each iteration

is implemented in function Advance One Time Step Quasistatic. Facesim employs

the fork-join model to process computationally intensive tasks in parallel. It uses the

following three parallel kernels for its computations:

Update state This kernel uses the Newton-Raphson method to solve the nonlinear sys-

tem of equations in order to find the steady state of the simulated mesh. This

quasi-static scheme achieves speedups of one to two orders of magnitudes over ex-

plicit schemes by ignoring inertial effects. It is not suitable for the simulation of

less constrained phenomena such as ballistic motion, but it is sufficiently accurate

33

CHAPTER 2. THE PARSEC BENCHMARK SUITE

to simulate effects such as flesh deformation where the material is heavily influ-

enced by contact, collision and self-collision and inertial effects only have a minor

impact on the state.

In each Newton-Raphson iteration, the kernel reduces the nonlinear system of equa-

tions to a linear system which is guaranteed to be positive definite and symmetric.

These two properties allow the use of a fast conjugate gradient solver later on. One

iteration step is computed by function Update Position Based State. The ma-

trix of the linear system is sparse and can hence be stored in two one-dimensional

arrays - dX full and R full. The matrix is the sum of the contribution of each

tetrahedron of the face mesh.

Add forces This module computes the velocity-independent forces acting on the simula-

tion mesh. After the matrix of the linear system with the position-independent state

has been computed by the previous kernel, the right-hand side of that system has

to be calculated. The kernel does this by iterating over all tetrahedra of the mesh,

reading the positions of the vertices and computing the force contribution to each

of the four nodes.

Conjugate gradient This kernel uses the conjugate gradient algorithm to solve the linear

equation system assembled by the previous two modules. The two arrays dX full

and R full which store the sparse matrix are sequentially accessed and matrix-

vector multiplication is employed to solve the system.

The inputs of facesim all use the same face mesh. Scaling down the resolution of

the mesh to create more tractable input sizes is impractical. A reduction of the number

of elements in the model would result in under-resolution of the muscle action and cause

problems for collision detection [38]. The inputs for facesim are defined as follows:

• test: Print out help message.

• simdev: 80,598 particles, 372,126 tetrahedra, 1 frame

• simsmall: Same as simdev

• simmedium: Same as simdev

• simlarge: Same as simdev

34

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.4: Algorithm of the ferret benchmark. Images are first segmented and a feature

vector is computed for each segment. To compute the final similarity score the pair-wise

distances between all segments of two images are calculated.

• native: Same as simdev, but with 100 frames

The benchmark writes the final state of the face mesh to several files whose names

start with deformable object.

2.4.6 Ferret

This application is based on the Ferret toolkit which is used for content-based similarity

search of feature-rich data such as audio, images, video, 3D shapes and so on [59]. The

reason for the inclusion in the benchmark is that it represents emerging next-generation

desktop and Internet search engines for non-text document data types. For the benchmark

the Ferret toolkit was configured for image similarity search. Ferret is parallelized using

the pipeline model with six stages. The first and the last stage are for input and output.

The middle four stages are for query image segmentation, feature extraction, indexing of

candidate sets with multi-probe Locality Sensitive Hashing (LSH) [60] and ranking. Each

stage has its own thread pool and the basic work unit of the pipeline is a query image.

Segmentation is the process of decomposing an image into separate areas which dis-

play different objects. The rationale behind this step is that in many cases only parts of

an image are of interest, such as the foreground. Segmentation allows the subsequent

stages to assign a higher weight to image parts which are considered relevant and seem

to belong together. After segmentation, ferret extracts a feature vector from every seg-

ment. A feature vector is a multi-dimensional mathematical description of the segment

contents. It encodes fundamental properties such as color, shape and area. Once the

feature vectors are known, the indexing stage can query the image database to obtain a

35

CHAPTER 2. THE PARSEC BENCHMARK SUITE

candidate set of images. The database is organized as a set of hash tables which are in-

dexed with multi-probe LSH [60]. This method uses hash functions which map similar

feature vectors to the same hash bucket with high probability. Because the number of

hash buckets is very high, multi-probe LSH first derives a probing sequence which con-

siders the success probabilities for finding a candidate image in a bucket. It then employs

a step-wise approach which indexes buckets with a higher success probability first. After

a candidate set of images has been obtained by the indexing stage, it is sent to the ranking

stage which computes a detailed similarity estimate and orders the images according to

their calculated rank. The similarity estimate is derived by analyzing and weighing the

pair-wise distances between the segments of the query image and the candidate images.

The underlying metric employed is the Earth Mover’s Distance (EMD) [79]. For two

images X and Y , it is defined as

EMD(X ,Y) =min∑
i

∑
j

fi jd(Xi,Y j)

where Xi andY j denote segments of X andY and fi j is the extent to which Xi is matched

to Y j. The fundamental steps of the algorithm can be seen in Figure 2.4.

The first and the last pipeline stage of ferret are serial. The remaining four modules

are parallel:

Image segmentation This kernel uses computer vision techniques to break an image

up into non-overlapping segments. The pipeline stage is implemented in function

t seg, which calls image segment for every image. This function uses statistical

region merging (SRM) [67] to segment the image. This method organizes the pix-

els of an image in sets, starting with a fine-granular decomposition. It repeatedly

merges them until the final segmentation has been reached.

Feature extraction This module computes a 14-dimensional feature vector for each im-

age segment. The features extracted are the bounding box of the segment (5 di-

mensions) and its color moments (9 dimensions). A bounding box is the minimum

axis-aligned rectangle which includes the segment. Color moments is a compact

representation of the color distribution. It is conceptually similar to a histogram

but uses fewer dimensions. Segments are assigned a weight which is proportional

36

CHAPTER 2. THE PARSEC BENCHMARK SUITE

to the square root of its size. This stage is implemented in function t extract. It

calls image extract helper to compute the feature vectors for every image.

Indexing The indexing stage queries the image database to obtain no more than twice

the number of images which are allowed to appear in the final ranking. This stage

is implemented in function t vec. Ferret manages image data in tables which

have type cass table t. Tables can be queried with function cass table query.

The indexing stage uses this function to access the database in order to generate

the candidate set of type cass result t for the current query image. Indexing

employs LSH for the probing which is implemented in function LSH query.

Ranking This module performs a detailed similarity computation. From the candidate

set obtained by the indexing stage it chooses the final set of images which are most

similar to the query image and ranks them. The ranking stage is implemented in

function t rank. It employs cass table query to analyze the candidate set and

to compute the final ranking with EMD. The type of query that cass table query

is to perform can be described with a structure of type cass query t.

The number of query images determine the amount of parallelism. The working set

size is dominated by the size of the image database. The inputs for ferret are sized as

follows:

• test: 1 image queries, database with 1 image, find top 1 image

• simdev: 4 image queries, database with 100 images, find top 5 images

• simsmall: 16 image queries, database with 3,544 images, find top 10 images

• simmedium: 64 image queries, database with 13,787 images, find top 10 images

• simlarge: 256 image queries, database with 34,973 images, find top 10 images

• native: 3,500 image queries, database with 59,695 images, find top 50 images

The workload prints the result of its computations to the console.

37

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.5: An example for the use of particle effects in contemporary video games. The

figure shows a screenshot of Tom Clancy’s Ghost Recon Advanced Warfighter with (left) and

without (right) particle effects.

2.4.7 Fluidanimate

This Intel RMS application uses an extension of the Smoothed Particle Hydrodynamics

(SPH) method to simulate an incompressible fluid for interactive animation purposes [64].

Its output can be visualized by detecting and rendering the surface of the fluid. The force

density fields are derived directly from the Navier-Stokes equation. Fluidanimate uses

special-purpose kernels to increase stability and speed. Fluidanimate was included in

the PARSEC benchmark suite because of the increasing significance of physics simu-

lations for computer games and other forms of real-time animations. An example for

particle effects in video games can be seen in Figure 2.5.

A simplified version of the Navier-Stokes equation for incompressible fluids [75]

which formulates conservation of momentum is

38

CHAPTER 2. THE PARSEC BENCHMARK SUITE

ρ(
∂v

∂t
+ v ·∇v) = −∇p+ρg+µ∇2v

where v is a velocity field, ρ a density field, p a pressure field, g an external force

density field and µ the viscosity of the fluid. The SPH method uses particles to model

the state of the fluid at discrete locations and interpolates intermediate values with radial

symmetrical smoothing kernels. An advantage of this method is the automatic conserva-

tion of mass due to a constant number of particles, but it alone does not guarantee certain

physical principals such as symmetry of forces which have to be enforced separately.

The SPH algorithm derives a scalar quantity AS at location r by a weighted sum of all

particles:

AS(r) = ∑
j

m j
A j

ρ j
W (r− r j,h).

In the equation, j iterates over all particles, m j is the mass of particle j, r j its position,

ρ j the density at its location and A j the respective field quantity. W (r− r j,h) is the

smoothing kernel to use for the interpolation with core radius h. Smoothing kernels are

employed in order to make the SPH method stable and accurate. Because each particle

i represents a volume with constant mass mi, the density ρi appears in the equation and

has to be recomputed every time step. The density at a location r can be calculated by

substituting A with ρS in the previous equation:

ρS(r) = ∑
j

m jW (r− r j,h)

.

Applying the SPH interpolation equation to the pressure term −∇p and the viscosity

term µ∇2 of the Navier-Stokes equation yields the equations for the pressure and vis-

cosity forces, but in order to solve the force symmetry problems of the SPH method,

fluidanimate employs slightly modified formulas:

f
pressure
i = −∑

j

m j
pi+ p j
2ρ j

∇W (ri− r j,h)

f
viscosity
i = µ∑

j

m j
vi− v j

ρ j
∇2W (ri− r j,h)

39

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Stability, accuracy and speed of fluidanimate are highly dependent on its smoothing

kernels. In all cases except the pressure and viscosity computations the program uses the

following kernel:

Wpoly6(r,h) =
315

64πh9

(h2− r2)3 0≤ r ≤ h

0 else

One feature of this kernel is that the distance r only appears squared. The compu-

tation of square roots is thus not necessary to evaluate it. For pressure computations,

fluidanimate uses Desbrun’s spiky kernelWspiky [22] andWviscosity for viscosity forces:

Wspiky(r,h) =
15

πh6

(h− r)3 0≤ r ≤ h

0 else

Wviscosity(r,h) =
15

2πh3

− r3

2h3
+ r2

h2
+ h
2r −1 0≤ r ≤ h

0 else

The scene geometry employed by fluidanimate is a box in which the fluid resides.

All collisions are handled by adding forces in order to change the direction of movement

of the involved particles instead of modifying the velocity directly. The workload uses

Verlet integration [93] to update the position of the particles. This method offers greater

numerical stability that simpler approaches because it does not store the velocity of the

particles. Instead it keeps track of the current and the last position. The velocity can thus

be implicitly calculated by dividing the distance between the two positions by the length

of the time step used by the simulator.

Every time step, fluidanimate executes five kernels, the first two of which were

further broken up into several smaller steps:

Rebuild spatial index Because the smoothing kernels W (r− r j,h) have finite support

h, particles can only interact with each other up to the distance h. The program

uses a spatial indexing structure in order to exploit proximity information and limit

the number of particles which have to be evaluated. Functions ClearParticles

and RebuildGrid build this acceleration structure which is used by the subsequent

steps.

40

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Compute densities This kernel estimates the fluid density at the position of each particle

by analyzing how closely particles are packed in its neighborhood. In a region in

which particles are packed together more closely, the density will be higher. This

kernel has 3 phases which are implemented in the functions InitDensitiesAnd-

Forces, ComputeDensities and ComputeDensities2.

Compute forces Once the densities are known, they can be used to compute the forces.

This step happens in function ComputeForces. The kernel evaluates pressure, vis-

cosity and also gravity as the only external influence. Collisions between particles

are handled implicitly during this step, too.

Handle collisions with scene geometry The next kernel updates the forces in order to

handle collisions of particles with the scene geometry. This step is implemented in

function ProcessCollisions.

Update positions of particles Finally, the forces can be used to calculate the accelera-

tion of each particle and update its position. Fluidanimate uses a Verlet integra-

tor [93] for these computations which is implemented in function AdvanceParti-

cles.

The inputs for fluidanimate are sized as follows:

• test: 5,000 particles, 1 frame

• simdev: 15,000 particles, 3 frames

• simsmall: 35,000 particles, 5 frames

• simmedium: 100,000 particles, 5 frames

• simlarge: 300,000 particles, 5 frames

• native: 500,000 particles, 500 frames

The benchmark writes the state of the fluid at the end of the computations to a user-

determined output file. For all standard inputs provided by PARSEC this file is named

out.fluid.

41

CHAPTER 2. THE PARSEC BENCHMARK SUITE

2.4.8 Freqmine

The freqmine application employs an array-based version of the FP-growth (Frequent

Pattern-growth) method [30] for Frequent Itemset Mining (FIMI). It is an Intel RMS

benchmark which was originally developed by Concordia University. FIMI is the basis

of Association Rule Mining (ARM), a very common data mining problem which is rele-

vant for areas such as protein sequences, market data or log analysis. The serial program

this benchmark is based on won the FIMI’03 best implementation award for its efficiency.

Freqmine was included in the PARSEC benchmark suite because of the increasing de-

mand for data mining techniques which is driven by the rapid growth of the volume of

stored information.

FP-growth stores all relevant frequency information of the transaction database in a

compact data structure called FP-tree (Frequent Pattern-tree) [32]. An FP-tree is com-

posed of three parts: First, a prefix tree encodes the transaction data such that each branch

represents a frequent itemset. The nodes along the branches are stored in decreasing order

of frequency of the corresponding item. The prefix tree is a more compact representation

of the transaction database because overlapping itemsets share prefixes of the correspond-

ing branches. The second component of the FP-tree is a header table which stores the

number of occurrences of each item in decreasing order of frequency. Each entry is also

associated with a pointer to a node of the FP-tree. All nodes which are associated with

the same item are linked to a list. The list can be traversed by looking up the correspond-

ing item in the header table and following the links to the end. Each node furthermore

contains a counter that encodes how often the represented itemset as seen from the root to

the current node occurs in the transaction database. The third component of the FP-tree

is a lookup table which stores the frequencies of all 2-itemsets. A row in the lookup table

gives all occurrences of items in itemsets which end with the associated item. This infor-

mation can be used during the mining phase to omit certain FP-tree scans and is the major

improvement of the implemented algorithm. The lookup table is especially effective if

the dataset is sparse which is usually the case. The FP-trees are then very big due to the

fact that only few prefixes are shared. In that case tree traversals are more expensive, and

the benefit from being able to omit them is greater. The initial FP-tree can be constructed

with only two scans of the original database, the first one to construct the header table

and the second one to compute the remaining parts of the FP-tree.

42

CHAPTER 2. THE PARSEC BENCHMARK SUITE

In order to mine the data for frequent itemsets, the FP-growth method traverses the

FP-tree data structure and recursively constructs new FP-trees until the complete set of

frequent itemsets is generated. To construct a new FP-tree TX∪{i} for an item i in the

header of an existing FP-tree TX , the algorithm first obtains a new pattern base from the

lookup table. The base is used to initialize the header of the new tree TX∪{i}. Starting

from item i in the header table of the existing FP-tree TX , the algorithm then traverses

the associated linked list of all item occurrences. The patterns associated with the visited

branches are then inserted into the new FP-tree TX∪{i}. The resulting FP-tree is less bushy

because it was constructed from fewer itemsets. The recursion terminates when an FP-

tree was built which has only one path. The properties of the algorithm guarantee that

this is a frequent itemset.

Freqmine has been parallelized with OpenMP. It employs three parallel kernels:

Build FP-tree header This kernel scans the transaction database and counts the number

of occurrences of each item. It performs the first of two database scans necessary to

construct the FP-tree. The result of this operation is the header table for the FP-tree

which contains the item frequency information. This kernel has one parallelized

loop and is implemented in function scan1 DB.

Construct prefix tree The next kernel builds the initial tree structure of the FP-tree. It

performs the second and final scan of the transaction database necessary to build

the data structures which will be used for the actual mining operation. The kernel

has four parallelized loops. It is implemented in function scan2 DB which contains

two of them. The remaining two loops are in its helper function database tiling.

Mine data The last kernel uses the data structures previously computed and mines them

to recursively obtain the frequent itemset information. It is an improved version

of the conventional FP-growth method [32]. This module has similarities with the

previous two kernels which construct the initial FP-tree because it builds a new

FP-tree for every recursion step.

The module is implemented in function FP growth first. It first derives the initial

lookup table from the current FP-tree by calling first transform FPTree into -

FPArray. This function executes the first of two parallelized loops. After that the

second parallelized loop is executed in which the recursive function FP growth

43

CHAPTER 2. THE PARSEC BENCHMARK SUITE

is called. It is the equivalent of FP growth first. Each thread calls FP growth

independently so that a number of recursions up to the number of threads can be

active.

The inputs for freqmine are defined as follows:

• test: Database with 3 synthetic transactions, minimum support 1.

• simdev: Database with 1,000 synthetic transactions, minimum support 3.

• simsmall: Database with 250,000 anonymized click streams from a Hungarian

online news portal, minimum support 220.

• simmedium: Same as simsmall but with 500,000 click streams, minimum support

410.

• simlarge: Same as simsmall but with 990,000 click streams, minimum support

790.

• native: Database composed of spidered collection of 250,000 web HTML docu-

ments [57], minimum support 11,000.

Freqmine outputs the results of its computations to the console.

2.4.9 Raytrace

The raytrace application is an Intel RMS workload which renders an animated 3D

scene. Ray tracing is a technique that generates a visually realistic image by tracing the

path of light through a scene [94]. Its major advantage over alternative rendering meth-

ods is its ability to create photorealistic images at the expense of higher computational

requirements because certain effects such as reflections and shadows that are difficult to

incorporate into other rendering methods are a natural byproduct of its algorithm. Ray

tracing leverages the physical property that the path of light is always reversible to reduce

the computational requirements by following the light rays from the eye point through

each pixel of the image plane to the source of the light. This way only light rays that

contribute to the image are considered. The computational complexity of the algorithm

depends on the resolution of the output image and the scene. The raytrace benchmark

44

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.6: Demonstration of the raytrace benchmark. The figure shows a screenshot of a

raytraced version of Quake Wars. The game was modified by Intel to use the ray tracing code

included in PARSEC for its rendering. The physically accurate reflections of the scenery on

the water surface are clearly visible.

program uses a variety of the ray tracing method that would typically be employed for

real-time animations such as computer games because it is optimized for speed rather

than realism. The raytrace benchmark was included in PARSEC because of the contin-

uing trend towards more realistic graphics in video games and other forms of real-time

animation. As of 2009 all major graphics card vendors have announced plans to incorpo-

rate ray tracing into their products in one form or another. Commercial computer games

adapted to employ ray tracing instead of rasterization have already been demonstrated.

A screenshot of a technical demonstration of the raytrace benchmark can be seen in

Figure 2.6.

All rendering methods try to solve the rendering equation [44], which uses the physical

law of conservation of energy to describe the total amount of outgoing light Lo at location

x, direction ω and time t with wavelength λ:

Lo(x,ω,λ, t) = Le(x,ω,λ, t)+
Z

Ω
fr(x,ω

′,ω,λ, t)Li(x,ω
′,λ, t)(ω′·n)dω′

45

CHAPTER 2. THE PARSEC BENCHMARK SUITE

The total amount of outgoing light Lo is the sum of the emitted light Le and an integral

over all inward directions ω′ of a hemisphere that gives the amount of reflected light. fr

is the bidirectional reflectance distribution function which describes the proportion of the

incoming light Li that is reflected from ω′ to ω at position x and time t with wavelength

λ. The term ω′·n is the attenuation of inward light. Solving the rendering equation gives

theoretically perfect results because all possible flows of light are included,1 but because

of the high computational demand it is only approximated in practice. The ray tracing

method does so by sampling the object surfaces at discrete locations and angles as given

by the scatter model.

The scatter model describes what happens when a ray hits a surface. In that case the

ray tracing method can generate up to three new types of rays: Reflection rays, refraction

rays and shadow rays. Reflection rays are created if the surface of the object is shiny. A

reflected ray continues to traverse the scene in the mirrored direction from the surface.

The closest surface it intersects will be visible as a mirror image on the surface of the

reflecting object. If the object is transparent a refraction ray is generated. It is similar to a

reflection ray with the notable exception that it enters and traverses the material. Shadow

rays are the method that is used by the ray tracing algorithm to determine whether an

intersection point is visible or not. Every time a ray intersects a surface, shadow rays

are cast into the directions of every light source in the scene. If a shadow ray reaches its

light source then the intersection point is illuminated by that light. But if the shadow ray

is blocked by an opaque object then the intersection point must be located in its shadow

with respect to that light, resulting in a lower light intensity.

To find intersection points quickly ray tracers store the scene graph in a Bounding

Volume Hierarchy (BVH). A BVH is a tree in which each node represents a bounding

volume. The bounding volume of a leaf node corresponds to a single object in the scene

which is fully contained in the volume. Bounding volumes of intermediate nodes fully

contain all the volumes of their children, up to the volume of the root node which contains

the entire scene. If the bounding volumes are tight and partition the scene with little

overlap then a ray tracer searching for an intersection point can eliminate large parts of

the scene rapidly by recursively descending in the BVH while performing intersection

tests until the correct surface has been found.

1The rendering equation does not consider certain physical effects such as phosphorescence, fluores-

cence or subsurface scattering.

46

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.7: The native input for the raytrace benchmark is a 3D model of a Thai statue

with 10 million polygons, which is about the amount of triangles that need to be rendered per

frame for modern video games.

The entry point for the rendering algorithm of the raytrace benchmark is the render-

Frame method of the Context class. In the parallel case this function merely unblocks

all threads, which start executing the task method of the Context class for each work

unit. Work units correspond to tiles on the screen. The work is distributed using the task

queue in the MultiThreadedTaskQueue class so that the program is dynamically load

balanced. The BVH containing the scene is stored in the m bvh object, which is an in-

stance of the BVH class. It uses arrays to store the BVH nodes in a compact way so they

can be traversed quickly.

For each frame the program starts traversing this scene graph with the renderTile -

With StandardMesh method. The method creates the initial rays and then calls Tra-

verseBVH with StandardMesh to handle the actual BVH traversal. This function is the

hot spot of the raytrace workload. It is a recursive function by nature, but to elimi-

nate the recursive function calls a user-level stack of BVH nodes is used. The stack is

implemented as an array and accessed with the sptr pointer. To further optimize the

intersection tests the function considers the origins and directions of rays and handles the

different cases with specialized code.

47

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.7 shows the rendered native input. The inputs for the raytrace workload

are defined as follows:

• test: 1×1 pixels, 8 polygons (octahedron), 1 frame

• simdev: 16×16 pixels, 68,941 polygons (Stanford bunny), 3 frames

• simsmall: 480× 270 pixels (14 HDTV resolution), 1 million polygons (Buddha

statue), 3 frames

• simmedium: 960× 540 pixels (12 HDTV resolution), 1 million polygons (Buddha

statue), 3 frames

• simlarge: 1,920×1,080 pixels (HDTV resolution), 1 million polygons (Buddha

statue), 3 frames

• native: 1,920×1,080 pixels (HDTV resolution), 10 million polygons (Thai statue),

200 frames

Raytrace can be configured to display its output in real-time.

2.4.10 Streamcluster

This kernel solves the online clustering problem [70]: For a stream of input points, it

finds a predetermined number of medians so that each point is assigned to its nearest

center. The quality of the clustering is measured by the sum of squared distances (SSQ)

metric. Stream clustering is a common operation where large amounts or continuously

produced data has to be organized under real-time conditions, for example network in-

trusion detection, pattern recognition and data mining. The program spends most of its

time evaluating the gain of opening a new center. This operation uses a parallelization

scheme which employs static partitioning of data points. The program is memory bound

for low-dimensional data and becomes increasingly computationally intensive as the di-

mensionality increases. Due to its online character the working set size of the algorithm

can be chosen independently from the input data. Streamcluster was included in the

PARSEC benchmark suite because of the importance of data mining algorithms and the

prevalence of problems with streaming characteristics.

48

CHAPTER 2. THE PARSEC BENCHMARK SUITE

The parallel gain computation is implemented in function pgain. Given a preliminary

solution, the function computes how much cost can be saved by opening a new center.

For every new point, it weighs the cost of making it a new center and reassigning some

of the existing points to it against the savings caused by minimizing the distance

d(x,y) = |x− y|2

between two points x and y for all points. The distance computation is implemented

in function dist. If the heuristic determines that the change would be advantageous the

results are committed.

The amount of parallelism and the working set size of a problem are dominated by the

block size. The inputs of streamcluster are defined as follows:

• test: 10 input points, block size 10 points, 1 point dimension, 2–5 centers, up to

5 intermediate centers allowed

• simdev: 16 input points, block size 16 points, 3 point dimensions, 3–10 centers,

up to 10 intermediate centers allowed

• simsmall: 4,096 input points, block size 4,096 points, 32 point dimensions, 10–20

centers, up to 1,000 intermediate centers allowed

• simmedium: 8,192 input points, block size 8,192 points, 64 point dimensions, 10–

20 centers, up to 1,000 intermediate centers allowed

• simlarge: 16,384 input points, block size 16,384 points, 128 point dimensions,

10–20 centers, up to 1,000 intermediate centers allowed

• native: 1,000,000 input points, block size 200,000 points, 128 point dimensions,

10–20 centers, up to 5,000 intermediate centers allowed

The benchmark writes the computed results to a user-determined output file. By de-

fault the file is named output.txt.

49

CHAPTER 2. THE PARSEC BENCHMARK SUITE

2.4.11 Swaptions

The swaptions application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. The HJM framework de-

scribes how interest rates evolve for risk management and asset liability management [34]

for a class of models. Its central insight is that there is an explicit relationship between the

drift and volatility parameters of the forward-rate dynamics in a no-arbitrage market. Be-

cause HJM models are non-Markovian the analytic approach of solving the PDE to price

a derivative cannot be used. Swaptions therefore employs Monte Carlo (MC) simulation

to compute the prices. The workload was included in the benchmark suite because of the

significance of PDEs and the wide use of Monte Carlo simulation.

The program stores the portfolio in the swaptions array. Each entry corresponds

to one derivative. Swaptions partitions the array into a number of blocks equal to the

number of threads and assigns one block to every thread. Each thread iterates through

all swaptions in the work unit it was assigned and calls the function HJM Swaption -

Blocking for every entry in order to compute the price. This function invokes HJM Sim-

Path Forward Blocking to generate a random HJM path for each MC run. Based on

the generated path the value of the swaption is computed.

The following inputs are provided for swaptions:

• test: 1 swaption, 5 simulations

• simdev: 3 swaptions, 50 simulations

• simsmall: 16 swaptions, 5,000 simulations

• simmedium: 32 swaptions, 10,000 simulations

• simlarge: 64 swaptions, 20,000 simulations

• native: 128 swaptions, 1,000,000 simulations

Swaptions prints the resulting swaption prices to the console.

50

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.8: The native input for vips is a satellite image of the Orion Nebula that was

taken by the Hubble Space Telescope.

2.4.12 Vips

This application is based on the VASARI Image Processing System (VIPS) [62] which

was originally developed through several projects funded by European Union (EU) grants.

The benchmark version is derived from a print on demand service that is offered at the

National Gallery of London, which is also the current maintainer of the system. The

benchmark includes fundamental image operations such as an affine transformation and

a convolution. VIPS was included as a benchmark for two reasons: First, image trans-

formations such as the ones performed by the VASARI system are a common task on

desktop computers and should be included in a diverse benchmark suite. Second, VIPS is

able to construct multithreaded image processing pipelines transparently on the fly. Fu-

ture libraries might use concepts such as the ones employed by the VASARI system to

make multithreaded functionality available to the user.

The image transformation pipeline of the vips benchmark has 18 stages. It is im-

plemented in the VIPS operation im benchmark. The stages can be grouped into the

following kernels:

51

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Crop The first step of the pipeline is to remove 100 pixels from all edges with VIPS

operation im extract area.

Shrink Next, vips shrinks the image by 10%. This affine transformation is implemented

as the matrix operation

f (~x) =

[

0.9 0

0 0.9

]

~x+

[

0

0

]

in VIPS operation im affine. The transformation uses bilinear interpolation to

compute the output values.

Adjust white point and shadows To improve the perceived visual quality of the im-

age under the expected target conditions, vips brightens the image, adjusts the

white point and pulls the shadows down. These operations require several linear

transformations and a matrix multiplication, which are implemented in im lintra,

im lintra vec and im recomb.

Sharpen The last step slightly exaggerates the edges of the output image in order to

compensate for the blurring caused by printing and to give the image a better overall

appearance. This convolution employs a Gaussian blur filter with mask radius 11

and a subtraction in order to isolate the high-frequency signal component of the

image. The intermediate result is transformed via a look-up table shaped as

f (x) =

0.5x |x| ≤ 2.5

1.5x+2.5 x< −2.5

1.5x−2.5 x> 2.5

and added back to the original image to obtain the sharpened image. Sharpening is

implemented in VIPS operation im sharpen.

The VASARI Image Processing System fuses all image operations to construct an

image transformation pipeline that can operate on subsets of an image. VIPS can auto-

matically replicate the image transformation pipeline in order to process multiple image

regions concurrently. This happens transparently for the user of the library. Actual image

52

CHAPTER 2. THE PARSEC BENCHMARK SUITE

processing and any I/O is deferred as long as possible. Intermediate results are repre-

sented in an abstract way by partial image descriptors. Each VIPS operation can specify a

demand hint which is evaluated to determine the work unit size of the combined pipeline.

VIPS uses memory-mapped I/O to load parts of an input image on demand. After the

requested part of a file has been loaded, all image operations are applied to the image

region before the output region is written back to disk.

A VIPS operation is composed of the main function which provides the public inter-

face employed by the users, the generate function which implements the actual image

operation, as well as a start and a stop function. The main functions register the opera-

tion with the VIPS evaluation system. Start functions are called by the runtime system to

perform any per-thread initialization. They produce a sequence value which is passed to

all generate functions and the stop function. Stop functions handle the shutdown at the

end of the evaluation phase and destroy the sequence value. The VIPS system guarantees

the mutually exclusive execution of start and stop functions, which can thus be used to

communicate between threads during the pipeline initialization or shutdown phase. The

generate functions transform the image and correspond to the pipeline stages.

The image used as native input for vips is shown in Figure 2.8. The full list of all

sizes of its input images is:

• test: 256×288 pixels

• simdev: 256×288 pixels

• simsmall: 1,600×1,200 pixels

• simmedium: 2,336×2,336 pixels

• simlarge: 2,662×5,500 pixels

• native: 18,000×18,000 pixels

The benchmark writes the output image to a user-determined file. By default PARSEC

users the file name output.v for the output data.

53

CHAPTER 2. THE PARSEC BENCHMARK SUITE

2.4.13 X264

The x264 application is an H.264/AVC (Advanced Video Coding) video encoder. In the

4th annual video codec comparison [92] it was ranked 2nd best codec for its high en-

coding quality. It is based on the ITU-T H.264 standard which was completed in May

2003 and which is now also part of ISO/IEC MPEG-4. In that context the standard is also

known asMPEG-4 Part 10. H.264 describes the lossy compression of a video stream [95].

It improves over previous video encoding standards with new features such as increased

sample bit depth precision, higher-resolution color information, variable block-size mo-

tion compensation (VBSMC) or context-adaptive binary arithmetic coding (CABAC).

These advancements allow H.264 encoders to achieve a higher output quality with a lower

bit-rate at the expense of a significantly increased encoding and decoding time. The flexi-

bility of H.264 allows its use in a wide range of contexts with different requirements, from

video conferencing solutions to high-definition (HD) movie distribution. Next-generation

HD DVD or Blu-ray video players already require H.264/AVC encoding. The flexibility

and wide range of application of the H.264 standard and its ubiquity in next-generation

video systems are the reasons for the inclusion of x264 in the PARSEC benchmark suite.

H.264 encoders and decoders operate on macroblocks of pixels which have the fixed

size of 16× 16 pixels. Various techniques are used to detect and eliminate data redun-

dancy. The most important one is motion compensation. It is employed to exploit tem-

poral redundancy between successive frames. Motion compensation is usually the most

expensive operation that has to be executed to encode a frame. It has a very high impact

on the final compression ratio. The compressed output frames can be encoded in one of

three possible ways:

I-Frame An I-Frame includes the entire image and does not depend on other frames.

All its macroblocks are encoded using intra prediction. In intra mode, a predic-

tion block is formed using previously encoded blocks. This prediction block is

subtracted from the current block prior to encoding.

P-Frame These frames include only the changed parts of an image from the previous

I- or P-frame. A P-Frame is encoded with intra prediction and inter prediction

with at most one motion-compensated prediction signal per prediction block. The

prediction model is formed by shifting samples from previously encoded frames to

compensate for motion such as camera pans.

54

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Figure 2.9: The input frames for x264 were taken from the animated short film Elephants

Dream.

B-Frame B-Frames are constructed using data from the previous and next I- or P-Frame.

They are encoded like a P-frame but using inter prediction with two motion-com-

pensated prediction signals. B-Frames can be compressed much more than other

frame types.

The enhanced inter and intra prediction techniques of H.264 are the main factors for

its improved coding efficiency. The prediction schemes can operate on block of varying

size and shapes which can be as small as 4×4 pixels.

The parallel algorithm of x264 uses the pipeline model with one stage per input video

frame. This results in a virtual pipeline with as many stages as there are input frames.

X264 processes a number of pipeline stages equal to the number of encoder threads in

parallel, resulting in a sliding window which moves from the beginning of the pipeline

to its end. For P- and B-Frames the encoder requires the image data and motion vectors

from the relevant region of the reference frames in order to encode the current frame,

and so each stage makes this information available as it is calculated during the encoding

process. Fast upward movements can thus cause delays which can limit the achievable

speedup of x264 in practice. In order to compensate for this effect, the parallelization

55

CHAPTER 2. THE PARSEC BENCHMARK SUITE

model requires that x264 is executed with a number of threads greater than the number

of cores to achieve maximum performance.

X264 calls function x264 encoder encode to encode another frame. x264 encoder -

encode uses function x264 slicetype decide to determine as which type the frame

will be encoded and calls all necessary functions to produce the correct output. It also

manages the threading functionality of x264. Threads use the functions x264 frame -

cond broadcast and x264 frame cond wait to inform each other of the encoding progress

and to make sure that no data is accessed while it is not yet available.

The videos used for the inputs have been derived from the uncompressed version of

the short film Elephants Dream [27], which is shown in Figure 2.9. The number of frames

determines the amount of parallelism. The exact characteristics of the inputs are:

• test: 32×18 pixels, 1 frame

• simdev: 64×36 pixels, 3 frames

• simsmall: 640×360 pixels (13 HDTV resolution), 8 frames

• simmedium: 640×360 pixels (13 HDTV resolution), 32 frames

• simlarge: 640×360 pixels (13 HDTV resolution), 128 frames

• native: 1,920×1,080 pixels (HDTV resolution), 512 frames

The encoder writes the output video to a user-determined file. By default PARSEC

uses the file name eledream.264 for all output videos.

2.5 Support for Research

A major reason for the rapid adoption of PARSEC is its support for research and ease

of use. Countless examples demonstrate that software will struggle to develop a notable

user base if it is hard to use. Lowering the barrier of entry and simplifying its usage has

therefore been a design objective for the PARSEC suite right from the beginning.

The goal of PARSEC is to enable research. This requires that PARSEC allows for

a high degree of flexibility because the requirements of research projects are usually

too heterogeneous to be satisfied by a single benchmarking methodology. The suite is

56

CHAPTER 2. THE PARSEC BENCHMARK SUITE

therefore designed to function like a toolbox which scientists can use to develop their

own customized research infrastructure. For example, PARSEC users can choose from a

range of threading models, program features or inputs to build and run a benchmark. This

is a major difference from industry benchmark suites such as SPEC, which are scoring

systems that strive for a high degree of standardization of benchmark compilation and

execution to maximize the comparability of performance results across many different

architectures.

PARSEC achieves ease of use and flexibility with the following principles:

Automatization Part of the PARSEC distribution are scripts which allow the user to

perform standard tasks in an automated and centralized way by using a single,

common interface. Researchers can use these scripts for example to build or run

benchmarks without having to worry about details. The high degree of automation

alleviates benchmark users from tedious tasks and reduces the chance for human

errors in repetitive experiments.

Modularity The benchmark suite uses modularity to simplify its handling. New bench-

mark programs or inputs can be easily added. The scripts of the distribution can

automatically detect and use extensions. Binaries of benchmarks are installed in

directories that encode important properties such as the used ISA or operating sys-

tem API so that multiple binary versions of the same workload can be stored and

used on demand.

Abstraction PARSEC abstracts from details of the benchmark programs wherever pos-

sible. This allows users of the suite to conduct experiments without having to know

much more other than that each workload is something that can be compiled and

executed. For example, benchmarks can be run via the same generalized command

line interface by specifying as little information as the name of the workloads, the

binary version, the number of threads as well as the name of the input set (which is

again an abstract representation of the actual input files and arguments that will be

used).

Encapsulation The details of the inner workings of a workload are encapsulated in stan-

dardized configuration files to make the information usable in an easily understand-

able way. This approach hides the details of how to build or run benchmark pro-

57

CHAPTER 2. THE PARSEC BENCHMARK SUITE

grams and alleviates PARSEC users from having to memorize the peculiarities of

individual programs.

Logging PARSEC allows users to recreate their steps by automatically logging important

information. The output of benchmark builds and runs is stored in special output

files. Likewise, each benchmark binary is automatically amended with a file that

contains the exact path and version of the compiler, linker and other build tools that

were used for the build. Relevant information such as the optimization level used

to generate the individual object files of a program have thus a much higher chance

to be retrieved should it become necessary at some point.

These design concepts of the PARSEC benchmark suite simplify its use in practice

and make its features more accessible to new users.

2.5.1 PARSEC Framework

The PARSEC benchmark suite can be separated into two major parts: The packages

which contain the source code and inputs for each workload and the PARSEC framework,

which is everything else. The framework provides the users with the tools, configuration

files, documentation and other features that ease the use of the suite in practice. Its

purpose is to serve as an interface for the user and provide the glue between packages to

ascertain benchmark programs can be built and run smoothly. For example, if the tools

of the framework are used to build a benchmark, dependencies between packages such as

any library requirements are automatically taken into consideration and resolved without

the user having to know the details of the dependency structure.

All the information needed by the tools of the framework to be able to their job is

stored in configuration files. The following types of configuration files are used:

PARSEC main configuration Fundamental global properties of the PARSEC suite such

as aliases that represent groups of packages are stored in the main configuration file.

System configurations The framework stores all platform-dependent properties in sys-

tem configurations. Details such as the path to binaries needed by the framework

tools or the exact arguments to pass to them are stored in these configuration files.

The PARSEC framework can be ported to new platforms in a straightforward way

58

CHAPTER 2. THE PARSEC BENCHMARK SUITE

Hook Function Description

parsec bench begin Beginning of benchmark execution

parsec roi begin Beginning of the Region-of-Interest

parsec roi end End of the Region-of-Interest

parsec bench end End of benchmark execution

Table 2.6: The PARSEC hook functions and their meaning.

by defining the required commands in a new system configuration file for that op-

erating system.

Build configurations The details which determine how to build a workload are stored

in build configuration files. This includes necessary information such as which

compilers to use, the optimization flags to use and which features of the workloads

to enable. Benchmark users can make new versions of the benchmark binaries

accessible for the framework by creating new build configurations.

Run configurations These configuration files determine how exactly a benchmark pro-

gram is to be invoked. This includes information about any required input files that

are to be extracted and put into the working directory of the benchmark as well as

the command line arguments to use. Each standardized input set of PARSEC has

exactly one run configuration file for each workload.

All configuration files use a standardized human-readable format that allows bench-

mark users to customize the suite for their needs.

2.5.2 PARSEC Hooks

The PARSEC Hooks API is an instrumentation API that has been defined to allow the

rapid insertion of instrumentation and analysis code into the benchmark programs. All

PARSEC workloads support the instrumentation API and can be built so they call special

hook functions at predefined locations. PARSEC users can easily insert their own code at

those locations by writing a library that implements these functions or by modifying the

default hooks library offered by the PARSEC suite.

The hook functions currently supported are given in Table 2.6. A default implemen-

tation is provided which implements frequently used functionality such as time mea-

surement. The hook functions defining the Region-of-Interest have special significance

59

CHAPTER 2. THE PARSEC BENCHMARK SUITE

because they are needed to obtain measurements with the simulation inputs that have not

been skewed. As was explained in Chapter 5 the scaling of the simulation inputs caused

an inflation of the size of the initialization and shutdown phase that is not representa-

tive of real program behavior. This skew can be accounted for by only measuring the

Region-of-Interest.

2.6 Conclusions

The PARSEC benchmark suite is designed to provide parallel programs for the study

for CMPs. This chapter described the composition of the suite and its workloads. The

suite satisfies the five requirements a modern benchmark suite for multiprocessors should

have: All workloads are multithreaded so that they can take advantage of the increased

performance potential of next-generation CMPs. The suite focuses on emerging desktop

and server applications that take into account current trends in computing. PARSEC in-

cludes a diverse selection of programs from different application domains that implement

a range of threading and parallelization models. It is one of the first suites to include the

pipeline model. PARSEC workloads use state-of-art algorithms and the suite supports re-

search. This combination of criteria make the PARSEC benchmark suite a suitable choice

for computer architecture research.

60

Chapter 3

Comparison of PARSEC with

SPLASH-2

3.1 Introduction

The Princeton Application Repository for Shared-Memory Computers (PARSEC) is a

collection of multithreaded benchmarks which extends the spectrum of parallel work-

loads researchers can choose from. It is the outcome of a joint venture between Intel and

Princeton University that seeks to provide the research community with an up-to-date

collection of modern workloads for studies of chip multiprocessors (CMPs). The new

benchmark suite immediately aroused the interest of researchers around the world who

have started to use it for their work. Hundreds of papers with results obtained through

PARSEC have already been published. This motivates a fundamental question:

What distinguishes PARSEC from other benchmark suites?

Several multithreaded benchmark suites are available. SPLASH-2 [96] and SPEC

OMP2001 include workloads from different domains but focus on High-Performance

Computing. BioParallel [41] is composed of bioinformatics programs. ALPBench [55] is

a suite of multimedia workloads. MineBench [65] was created to study data mining. With

PARSEC, researcher now have a new option and need to understand how the selection of

this benchmark suite can impact their results. Other scientists might face the challenge

61

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

to interpret PARSEC results and seek ways to apply their existing knowledge of other

workloads to the new benchmarks.

To help other researchers understand PARSEC this chapter compares the suite to the

SPLASH-2 selection of programs. SPLASH-2 is probably the most commonly used suite

for scientific studies of parallel machines with shared memory. According to Google

Scholar, its characterization study [96] was cited more than 1400 times. Like PARSEC

it is one of few parallel suites that are not limited to a single application domain. Its

wide use and the thorough understanding researchers have of these workloads make it

an excellent candidate for a comparison. PARSEC tries to provide a wider selection of

workloads than SPLASH-2.

This chapter makes four contributions:

• Compares PARSEC with SPLASH-2 to determine how much the program selec-

tions of the two suites overlap. Significant differences exist that justify an overhaul

of the popular SPLASH-2 benchmark suite.

• Identifies workloads in both suites that resemble each other that can help researcher

to interpret results. A few benchmarks of the two suites have similar characteristics.

• Demonstrates how current technology trends are changing programs. The direct

comparison of the PARSEC suite with SPLASH-2 shows that the proliferation of

CMPs and the massive growth of data have a measurable impact on workload be-

havior.

• Shows that workloads using the pipeline programming model have different char-

acteristics from other programs, which justifies their inclusion in a mix of bench-

mark programs.

The scope of this chapter is the parallel aspects of the behavior of multithreaded work-

loads on CMPs. Moreover, single-core characteristics are not considered because this is

not the intended use of either benchmark suite. The focus of this study is on redundancy

within and between the suites.

The work presented in this chapter was previously published in [9, 13].

62

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

Program Application Domain Problem Size

barnes High-Performance Computing 65,536 particles

cholesky High-Performance Computing tk29.O

fft Signal Processing 4,194,304 data points

fmm High-Performance Computing 65,536 particles

lu High-Performance Computing 1024×1024 matrix, 64×64 blocks
ocean High-Performance Computing 514×514 grid
radiosity Graphics large room

radix General 8,388,608 integers

raytrace Graphics car

volrend Graphics head

water High-Performance Computing 4096 molecules

Table 3.1: Overview of SPLASH-2 workloads and the used inputs.

3.2 Overview

The SPLASH-2 suite is one of the most widely used collections of multithreaded work-

loads [96]. It is composed of eleven workloads, three of which come in two implemen-

tations that feature different optimizations. I provide an overview in Table 3.1. When

SPLASH-2 was released at the beginning of the 90s, parallel machines were still a rela-

tively uncommon and expensive type of computers. Most of them were owned by well

funded government and research institutions where they were primarily used to work on

scientific problems. The composition of the SPLASH-2 suite reflects that. The majority

of workloads belong to the High-Performance Computing domain.

The workload composition of the PARSEC suite differs significantly from SPLASH-2.

Since the release of SPLASH-2 parallel computing has reached the mainstream. The

wide availability of CMPs has turned multiprocessor machines from an expensive niche

product into a commodity that is used for problems from an increasingly wide range of

application domains. This fact has influenced the PARSEC program selection. The suite

includes benchmarks from many different areas such as enterprise servers, data mining

and animation.

Unlike SPLASH-2, PARSEC already includes input sets that reflect computing prob-

lem sizes suitable for current microarchitecture studies. The input set given as reference

for SPLASH-2, however, cannot be considered adequate for simulations anymore due to

its small size and higher age. Where possible a combination of profiling and timing on

63

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

real machines was used to determine inputs for SPLASH-2 that have computational de-

mands similar to the PARSEC inputs. In order to preserve the comparability of different

programs the same input was used for workloads that solve the same problem, even if the

computational requirements would have allowed the selection of a bigger problem size.

In each case the two versions of lu, ocean and water, but also barnes and fmm have

therefore the same input size. Table 3.1 shows the inputs that were chosen for this study.

3.3 Methodology

The following methodology is used to gather and analyze data about the behavior of

the workloads: First, a set of interesting characteristics is identified. Execution-driven

simulation is then used to obtain the data relevant for the characteristics. Finally, standard

statistical methods were applied to the data to compute the similarity of the workloads.

3.3.1 Program Characteristics

Both PARSEC and SPLASH-2 are aimed at the study of parallel machines. A comprehen-

sive benchmark suite for single processor systems already exists with SPECCPU2006 [83].

The focus of this study is therefore on the parallel behavior of the programs, which means

that characteristics were primarily chosen which reflect how threads communicate with

each other on a CMP and how data is shared. The selection of interesting program char-

acteristics and how they were measured largely follows the methodology established by

previous work on characterization of multithreaded programs [11, 38, 55, 96].

The chosen characteristics are given in Table 3.2. To capture the fundamental program

properties a set of four instruction characteristics were included that were normalized to

the total number of instructions: The number of floating point operations, ALU instruc-

tions, branches and memory accesses. Threads running on a CMP use shared caches

to communicate and share data with each other. Another five characteristics were thus

chosen that reflect properties related to data usage and communication such as the total

working set size or how intensely the program works with the shared data. These char-

acteristics are the data cache miss rate, what percentage of all cache lines is shared for

reading and what percentage for writing, the ratio of memory references that reads from

shared cache lines and the ratio that writes to them.

64

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

Characteristic Type

Floating point operations per instruction Instruction

ALU operations per instruction Instruction

Branches per instruction Instruction

Memory references per instruction Instruction

Cache misses per memory reference Working Set

Fraction of cache lines shared Sharing

Fraction of cache lines shared and
Sharing

written to

Accesses to shared lines per
Sharing

memory reference

Writes to shared lines per
Sharing

memory reference

Table 3.2: Characteristics chosen for the redundancy analysis. Instruction metrics are based

on totals across all cores for the whole program.

One difficulty in extracting properties related to cache usage is that the behavior of the

program might change with the cache size. For example, shared data might get displaced

by more frequently used private data [11] if the cache is too small to contain the whole

working set. It is therefore necessary to collect data for a sufficiently large range of cache

sizes. In order to avoid that unrealistic architecture parameters skew the data towards

aspects of the program behavior not relevant for future CMPs, the experiments were

limited to 8 cache sizes ranging from 1 MB to 128 MB. This approach results in the

following 44 characteristics:

Instruction Mix 4 characteristics that describe which instructions were executed by the

program

Working Sets 8 characteristics providing information about working set sizes

Sharing 32 characteristics describing how much of the working set is shared and how

intensely it is used

3.3.2 Experimental Setup

The data was obtained with Pin [58]. Pin is comparable to the ATOM toolkit [86] for

Compaq’s Tru64 Unix on Alpha processors. It employs dynamic binary instrumenta-

65

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

tion to insert routines into the instruction stream of the program under analysis. To ob-

tain information about the impact of different cache sizes, CMP$im [41] was employed.

CMP$im is a plug-in for Pin that simulates the cache hierarchy of a CMP.

The numbers for the working set and sharing characteristics were collected by simu-

lating a single shared cache for a CMP. This method was used because I am interested

in fundamental program properties, not processor features. This approach abstracts from

the architectural details of the memory hierarchy while still capturing the fundamental

properties of the program. It is a common method for the analysis of multithreaded pro-

grams [11, 38, 55, 96].

An 8-way CMP with a single cache shared by all cores was simulated. The cache was

4-way associative with 64 byte lines. Its capacity was varied from 1 MB to 128 MB to

collect the characteristics for different cache sizes. The experiments were conducted on

an 8-way SMP with Intel 64-bit CPUs running a Linux 2.6.9 kernel. All programs were

compiled with gcc 4.2.1. The compiler chosen was gcc because of its wide-spread use.

It is usually the compiler of choice for many non-scientific workloads. The entire runtime

of all programs was simulated.

3.3.3 Removing Correlated Data

Characteristics of real-world programs might be correlated. For example, the behavior of

programs on CMPs with two caches of similar size might be almost identical. Correlated

characteristics can skew the redundancy analysis. It is therefore necessary to eliminate

correlated information with principal component analysis (PCA) [26]. PCA is a common

method used for redundancy analysis [28, 31, 42, 51, 73]. First, the data is mean-centered

and normalized to make it comparable. PCA is then employed to remove correlated

information and reduce the dimensionality of the data. PCA computes new variables – the

principal components (PCs) – that are linear combinations of the original variables. The

vectors computed in that manner have decreasing variance, i.e., the amount of information

in each vector decreases. In order to decide objectively how much information to keep,

Kaiser’s Criterion was used to choose how many PCs to eliminate. This approach keeps

only the top few PCs that have eigenvalues greater than or equal to one. The resulting

data is guaranteed to be uncorrelated while capturing most of the information from the

original variables.

66

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

The principal components can be visualized with a scatter plot. Each workload defines

a point in the PCA space based on its characteristics. This method is only feasible with

up to three dimensions, which means that it might not be possible to consider all of the

information. The PCs created by the PCA are an alternative representation of the input

data with the property that information is concentrated in the first PCs and redundancy in

the latter ones. This means that a three-dimensional scatter plot contains the maximum

amount of information that can be expressed in three dimensions.

3.3.4 Measuring Similarity

Hierarchical clustering was employed to group similar programs into clusters. The Eu-

clidean distance between the program characteristics is a measure for the similarity of the

programs. This approach is a common way to process the output of a PCA [28,31,42,73].

Hierarchical clustering works as follows:

1. Assign each workload to its own cluster.

2. Compute the pair-wise distances of all clusters.

3. Merge the two clusters with the smallest distance.

4. Repeat steps 2 - 3 until only a single cluster is left.

The output of the hierarchical clustering algorithm can be visualized with a dendro-

gram. The vertical axis lists all workloads, the horizontal axis is the linkage distance.

Each joint in the dendrogram corresponds to a merge step of the clustering algorithm. Its

projection onto the horizontal axis shows how similar two clusters were when they were

merged. Clusters with very dissimilar workloads will be merged late, their joint will

be close to the root. Programs with very similar characteristics on the other hand will

be merged early. Their joint will be close to the leaves, which represent the individual

workloads.

67

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

3.3.5 Interpreting Similarity Results

The similarity information is analyzed with the help of dendrograms and scatter plots.

Dendrograms are used to provide an objective overview. Interesting findings are analyzed

further with scatter plots by focusing on subsets of the data. This section explains how

the visualized information can be interpreted.

Dendrograms

The similarity information shown in a dendrogram can be used in two different ways.

First, for a selection of benchmark programs it is usually desirable that their character-

istics cover a wide range, which means the workloads are very dissimilar and far away

from each other in a dendrogram. The dendrogram for a selection of workloads which

satisfy this criterion well would branch out close to the root into a wide tree. Each branch

would be very narrow because it would be composed of a single workload. This type of

dendrogram structure indicates that the analyzed workloads do not resemble each other

well.

The second way to use a dendrogram is to identify replacements for workloads. A

replacement should be very similar to the benchmarks which it replaces, which means

in a dendrogram it will merge close to the leaves which are formed by the individual

programs. Workloads frequently form local clusters that merge early. Any program from

the cluster is a suitable representative for the entire group, and the closer to the leaves

the cluster forms the more similar the workloads are. For a benchmark suite it is usually

not desirable that its programs resemble each other much. A dendrogram can be used to

optimize a benchmark selection by eliminating similar programs from local clusters until

the resulting program selection is very dissimilar.

For a comparison of two benchmark suites such as the one presented in this chapter a

dendrogram can provide the following insights:

• The dendrogram indicates how much the covered characteristics space of the two

program selections overlap. If parts of the two suites are very similar then pairs of

workloads from the two suites will merge early. If the suites cover different areas

of the characteristics space then their workloads will merge late.

68

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

• The information in a dendrogram can be used to identify workloads from the com-

pared suites which are mutually redundant. These programs will merge early. This

information is useful for a new suite because it allows one to explain the behav-

ior of new benchmarks by relating them to benchmarks which are already well-

understood. However, a new benchmark suite should generally provide programs

which are new and dissimilar to existing benchmarks to justify its existence.

• The data in a dendrogram indicates how diverse the compared suites are in a direct

comparison and how diversity is added by the individual workloads. A suite with

little diversity will have many local clusters that merge early, a property which is

generally not desirable for a benchmark program selection.

Scatter Plots

Another way to visualize the similarity information is by plotting the first three principal

components in an unmodified form as a three-dimensional scatter plot. This approach

gives insights into the relationship between the workloads at the expense of accuracy.

Unlike dendrograms, which only exploit the distances between points, scatter plots pre-

serve the information about the location of the points and make them visible. Scatter plots

can be used to identify any structure in the input data. If two different types of workloads

occupy different areas of the PCA space, they must be different in a systematic way. How-

ever, scatter plots visualize only a subset of the available information and should hence

not be used to infer information about workload similarity. Programs appearing close in

the plot might in fact be far away if all relevant dimensions are considered. Proximity in

a scatter plot does therefore not prove similarity.

3.4 Redundancy Analysis Results

This section employs PCA and hierarchical clustering to analyze how redundant the PAR-

SEC and SPLASH-2 workloads are. The following three questions are answered:

• How much do the two program collections overlap?

• In particular, which workloads of the PARSEC suite resemble which SPLASH-2

codes?

69

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

0.3 0.4 0.5 0.6 0.7 0.8 0.9

lu, contig. (SPLASH−2)

lu, non−contig. (SPLASH−2)

barnes (SPLASH−2)

fmm (SPLASH−2)

vips (PARSEC)

radiosity (SPLASH−2)

raytrace (SPLASH−2)

freqmine (PARSEC)

ferret (PARSEC)

water, nsquared (SPLASH−2)

bodytrack (PARSEC)

water, spatial (SPLASH−2)

blackscholes (PARSEC)

dedup (PARSEC)

fluidanimate (PARSEC)

cholesky (SPLASH−2)

volrend (SPLASH−2)

radix (SPLASH−2)

x264 (PARSEC)

fft (SPLASH−2)

ocean, contig. (SPLASH−2)

canneal (PARSEC)

streamcluster (PARSEC)

facesim (PARSEC)

ocean, non−contig. (SPLASH−2)

swaptions (PARSEC)

Linkage Distance

d = ~0.42 d = ~0.72

Figure 3.1: Similarity of PARSEC and SPLASH-2 workloads. The two vertical arrows are

used for illustration purposes. SPLASH-2 codes tend to cluster early (distance d <∼ 0.42),
PARSEC includes a larger number of diverse workloads (distance d >∼ 0.72).

• Which benchmark suite is more diverse?

Answers to those questions are obtained by analyzing the redundancy within and be-

tween the two benchmark suites.

My first step was to analyze both benchmark suites separately to measure their diver-

sity by computing the total variance of their characteristics. It is almost the same for

both suites: SPLASH-2 characteristics have a variance of 19.55, for PARSEC the value

is 18.98. However, the variance does not take into account how programs add diversity.

Moreover, workloads with almost identical characteristics that deviate substantially from

the mean will artificially inflate the variance without contributing much beyond the in-

clusion of only one of these programs. We will see that this is the case with the two lu

codes. A more detailed analysis is therefore necessary before conclusions can be drawn.

70

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

My second step was a direct comparison. To compare the suites directly with each

other, all workloads are analyzed jointly using a single PCA. This approach guarantees

that the PCA weighs all characteristics equally for all programs, since different data will

generally result in different correlation and hence different PCs. Having equal weights for

the characteristics of all workloads makes it possible to compare the benchmarks directly.

The PCA chose 10 principal components that retain 74.73% of the variance. Figure 3.1

shows the result as a dendrogram containing all PARSEC and SPLASH-2 workloads.

PARSEC exhibits substantially more diversity than SPLASH-2. The dendrogram shows

that several SPLASH-2 programs form clusters early on. As one would expect, most

of the SPLASH-2 programs that come in two versions exhibit significant amounts of

redundancy (lu and water). Only the two ocean codes are noticeably different. In fact,

the non-contiguous version of ocean is the one least similar to any other SPLASH-2

workloads. This is mainly a consequence of intense inter-core communication that is

caused by its two-dimensional data layout. With a 4 MB cache, 46% of all memory

references of the non-contiguous version of ocean go to shared data. About one in three

of these references is a write. That is a more than three times higher ratio of shared

writes than the next highest one of any SPLASH-2 program. This difference is caused by

optimizations for machines with distrubted shared memory and will be discussed in more

detail in Section 3.7.1.

Before any PARSEC workloads start to form clusters with each other, the algorithm

has already identified 3 groups of workloads containing 7 SPLASH-2 programs in total

that exhibit similar characteristics. These clusters have a linkage distance less than d =∼

0.42. As was mentioned earlier workload pairs consisting of two versions of the same

program tend to form clusters (lu and water). Obviously the differences between both

versions do not noticeably affect their characteristics. The programs radiosity, fmm

and barnes form another cluster. Vips is the PARSEC workload most similar to them.

These benchmarks tend to use a limited number of branches (no more than 11.24% of all

instructions). They have medium-sized working sets and benefit from additional cache

capacity up to 16 MB. At that point their miss rates fall below 0.1%. Bodytrack is

identified as the PARSEC workload most similar to the water programs. Programs of

that cluster use about the same amount of floating point operations (between 29.88% and

31.97% of all instructions) and memory accesses (between 27.83% and 35.99% of all

instructions). About half of all memory references are used to access shared data once

71

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.5

0

0.5

−0.6−0.4−0.200.20.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC
1PC

2

P
C

3

Figure 3.2: Scatter plot of all workloads using the first three PCs of all characteristics. PAR-

SEC (black circles) and SPLASH-2 workloads (blue rhombi) tend to populate different re-

gions of the characteristics space.

the cache capacity is sufficiently large.

The first pair of PARSEC workloads to be assigned to the same cluster are bodytrack

and blackscholes. They exhibit a linkage difference of about 0.45. The algorithm then

identifies a large number of workloads with similar distances. By the time cluster pairs

with a distance of about 0.72 are considered, most workloads have been assigned to larger

clusters. A distance within that range is the common case for both suites. No obvious

similarities can be found anymore between programs clustering in that range.

Several workloads exist that are very different from all other programs in both suites

(swaptions, the non-contiguous version of ocean, facesim and streamcluster). These

programs have a high linkage distance of more than 0.72 to any other cluster of programs

and can be considered unique within the analyzed program collection. All but one of these

workloads are PARSEC programs. If the two lu kernels are treated as a single program,

they can also be added to this enumeration, however they have a significantly lower dis-

tance to the remainder of the suites than, for example, swaptions or the non-contiguous

version of ocean.

Only two PARSEC programs were identified that resemble some of the SPLASH-2

codes (bodytrack and vips). The similarity within clusters of SPLASH-2 workloads is

often greater than the similarity to most other PARSEC workloads. This finding indicates

72

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.3
−0.2
−0.1−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC
2PC

1

P
C

3

Figure 3.3: Scatter plot using only the instruction mix characteristics. SPLASH-2 workloads

(blue rhombi) form a single, major cluster in the first three PC dimensions that contains

virtually no PARSEC programs (black circles).

that the two suites cover fundamentally different types of programs. Figure 3.2 is a scatter

plot of all workloads using the first three PCs. Lines were added to indicate the regions

which are referred to. These lines are not meant to be boundaries and their exact location

is not relevant for my conclusions. They are only an aid to visualize tendencies. From

Figure 3.2 it can be seen that all but three PARSEC workloads group in the lower left part

of the chart, while all but two SPLASH-2 programs are located in the remaining space.

Obviously, PARSEC and SPLASH-2 have little overlap.

The analysis shows that on modern CMPs, the PARSEC suite contains significantly

more diversity than SPLASH-2. Benchmarks of the SPLASH-2 suite tend to cluster early

while the PARSEC suite contains a larger number of unique benchmarks. Moreover,

PARSEC and SPLASH-2 workloads are fundamentally different, as shown by the scatter

plot.

3.5 Systematic Differences

To identify the reason why the two suites differ, an analysis of subsets of the character-

istics was performed. All metrics were broken up into groups reflecting the instruction

mix, working sets and sharing behavior of the programs, which were analyzed separately

73

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.5

0

0.5

1 −1
−0.5

0
0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PC
2PC

1

P
C

3

Figure 3.4: Scatter plot using only the working set characteristics. At least half of the PAR-

SEC workloads (black circles) have substantially different working set properties in the first

three PC dimensions, whereas only one of the SPLASH-2 programs (blue rhombi) is visibly

unique.

from each other. This approach allows one to determine which types of characteristics

are the reason for the differences. The results are presented in Figures 3.3 - 3.5. Lines

were again added to identify the discussed regions.

The instruction mix of the workloads will be discussed first. It differs significantly

between PARSEC and SPLASH-2. Figure 3.3 presents a scatter plot of the first three

PCs derived from the four instruction mix characteristics. As can be seen from the fig-

ure, SPLASH-2 codes tend to populate the area in the middle. PARSEC programs can

primarily be found in the outer regions. The overlap of the suites is small. This result is

not surprising considering that the two suites include programs from different domains.

The next aspect which is analyzed is the working sets. About half of all PARSEC

workloads have noticeably different working set characteristics from all other programs.

A scatter plot based on the eight miss rates can be seen in Figure 3.4. The analysis of the

first three PCs shows that there exists a tight cluster in the first three dimensions to which

almost all SPLASH-2 codes and many PARSEC workloads belong. Only one SPLASH-2

program is visibly different, but multiple PARSEC workloads have noticeably different

working set properties.

The sharing behavior is one of the most important properties of a multithreaded pro-

gram on a CMP. Similarities between the two suites seem to exist, albeit with differ-

74

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.5

0

0.5

−0.4−0.200.20.40.6

−0.4

−0.2

0

0.2

0.4

0.6

PC
2

PC
1

P
C

3

Figure 3.5: Scatter plot using only the sharing characteristics. PARSEC benchmarks (black

circles) and SPLASH-2 programs (blue rhombi) tend to populate different areas of the first

three PC dimensions of the characteristics space.

ent tendencies. Figure 3.5 shows a scatter plot with only the 32 sharing characteristics.

Benchmarks of the SPLASH-2 suite can predominantly be found in the area on the left

side of the figure. PARSEC programs tend to populate the areas on the right and bottom

half. Some overlap seems to exist in the lower half of the figure around the horizontal

line where a sufficient number of workloads of both suites is located to indicate that com-

monalities might exist. However, these similarities can only exist between approximately

half of the programs in each suite.

The analysis shows that there is no single source for the differences of the two suites.

The program collections exhibit dissimilarities in all studied characteristics. No single

property can be identified that can be considered the main reason for the differences.

3.6 Characteristics of Pipelined Programs

This section discusses how the use of the pipeline programming model has affected the

characteristics of the PARSEC workloads. The analysis shows that there are substantial,

systematic differences, which suggests that researchers can improve the diversity of their

benchmark selection by including pipelined programs.

75

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.5

0

0.5

1

−1
−0.5

0
0.5

−1

−0.5

0

0.5

PC
1

PC
2

P
C

3

Figure 3.6: Comparison of the first three principal components of all characteristics of the

PARSEC workloads. Pipeline workloads are represented by blue dots, all other workloads

by red triangles. The data shows significant systematic differences between the two types of

programs.

3.6.1 Experimental Setup

To study the differences within the PARSEC suite a more detailed methodology was

chosen. The results in this section were obtained with Simics. A total of 73 characteristics

were measured for each of the workloads: 25 characteristics describing the breakdown

of instruction types relative to the amount of instructions executed by the program, 8

characteristics encoding the working set sizes of the program with cache sizes ranging

from 1 MB to 128 MB, and 40 characteristics describing the sharing behavior of the

program. The data was statistically processed as described before.

3.6.2 Experimental Results

Figure 3.6 shows the first three principal components derived from all studied characteris-

tics. As can be seen the three workloads which employ the pipelining model (represented

by black dots) occupy a different area of the PCA space as the rest of the PARSEC pro-

grams (represented by red triangles). The PCA space can be separated so that the different

clusters become visible, as is indicated by the dashed line which was added as a visual

aid.

76

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

−0.2

0

0.2

0.4

0.6

PC
1

PC
2

P
C

3

Figure 3.7: Comparison of the first three principal components of the sharing characteristics

of the PARSEC workloads. Pipeline workloads are represented by black dots, all other work-

loads by red triangles. Systematic differences in sharing are a major source for the different

behavior of pipelined workloads.

A further investigation of the individual characteristics reveals the sharing behavior of

the workloads as a major source for the differences. Figure 3.7 presents a scatter plot that

was obtained with just the sharing characteristics. As can be seen the PCA space of the

sharing characteristics can also be separated so that the two types of workloads occupy

different areas. However, the difference seems to be less pronounced than in the previous

case which considered all characteristics.

The remaining characteristics which encode the instruction mix and working sets of

the workloads also exhibit a small tendency to group according to the parallelization

model of the workloads. However, the differences are much smaller in scope and separa-

tion. The aggregate of these differences appears to be the reason for the clearer separation

seen in Figure 3.6 compared to Figure 3.7.

The analysis suggests that pipelined programs form their own type of workload with

unique characteristics. Their behavior is different enough to warrant their consideration

for inclusion in a mix of benchmarks for computer architecture studies.

77

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

3.7 Objectives of PARSEC

PARSEC was designed with the objective to capture recent trends in computing. The re-

markably small overlap between PARSEC and SPLASH-2 indicates that these develop-

ments might have an impact on workloads that fundamentally alters their characteristics.

This section analyzes the data from the perspective of two technology trends that have

influenced the PARSEC suite: The proliferation of CMPs and the growth of the world’s

data. PARSEC workloads have been optimized to take advantage of CMPs. Its inputs

capture the increasing amount of data that is globally available. SPLASH-2, on the other

hand, was created before either of those trends could have an impact on its composition or

the design of its programs. The section discusses how both trends are affecting programs.

The goal is to provide a basic understanding of the results of the last section.

Figures 3.8 and 3.9 show the miss rates and ratio of shared writes to all accesses of

the workloads. This information is used for the analysis of the impact of the trends. Only

a fraction of the information considered by the clustering algorithm for the redundancy

analysis can be shown here because the amount of data exceeds what can be compre-

hended by humans. The averages across all cache sizes and details for a selected cache

size for both characteristics are shown. Different cache sizes for the detailed breakdowns

in the two cases are used because the shared write ratio is positively correlated with the

cache size, unlike miss rates, which are negatively correlated. Different cache sizes from

opposite ends of the used spectrum reveal more information about the program behaviors.

3.7.1 Chip Multiprocessors

CMPs have become ubiquitous. They integrate multiple processing cores on a single die.

The implications of this integration step are twofold: First, it has turned multiprocessors

into a widely available commodity that is used to run an increasingly diverse spectrum

of programs. The PARSEC suite takes this into account and includes workloads from a

wider range of application domains. This is one of the reasons for the increased diversity

of the suite. Some characteristics such as the instruction mix seem to be directly affected

by that. Second, the trend to CMPs changes the cost model that is employed for program

optimizations: On-chip traffic between cores is fast and inexpensive. Off-chip accesses to

main memory are costly and usually limited by the available off-chip bandwidth. PAR-

SEC workloads have been adapted to this cost model. SPLASH-2 programs, however,

78

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

� �

� � � �

�
�

�
�

�
�

�
�

�

��	
��

��	�
�

�	���

�	�
�

�	
��

�����

���������������

�
��

�
��

�
��

��
�

�

�
 �

�
!

�
�

�
"

 �
�

�
"

#
$

�%
�

�
!

�
�

&
&

�
�

#
�

#
'

(

)�
�

�
�

�*

)�
%%

�
�

)
'

�#
�

&
�*

�
��

)%
�

+
*

�&
�

�
�%

�
�

*
�

 '
�

��
%

�
,

�
(

��
"

&
�

-
�(

�

.
�

�
�

�	���

�	
��

�	���

�	
��

�	���

�	
��

�	���

�	
��

�	���

�
��

�
��

�
��

��
�

�

� � � �

�
�

�
�

�
�

�
�

�

��	
��

��	�
�

�	���

�	�
�

�	
��

�/��0��

���������������

�
��

�
��

�
��

��
�

�

�
�

%&
�

�

�
�

"
 �

�
!

$))
�

)*
*

 '
��

�
"

&
��

1
	�

 '
��

&
"

&
��

"
&

��
1

	�

"
�

�
�

&
��

�
"

&
��

1
	�

"
�

�
�

&
��

&
"

&
��

"
&

��
1

	�

%�
#

�"
�

��
$

%�
#

�.

%�
$

�%
�

�
�

-
"

 %
�

&
#

,
�

��
%�

�&
�

+
'

�
%�

#
�

,
�

��
%�

��
(

�
��

�
 �

�	���

�	
��

�	���

�	
��

�	���

�	
��

�	���

�	
��

�	���

�
��

�
��

�
��

��
�

�

Figure 3.8: Miss rates of PARSEC and SPLASH-2 workloads. The top charts show the aver-

ages of the workloads and the standard deviation for all cache sizes. The bottom charts give

the detailed miss rates of the programs for a 4 MB cache. Miss rates of PARSEC workloads

are noticeably higher for caches up to 16 MB.

have been optimized for systems with distributed shared memory. They assume a large

amount of local memory that can be accessed at relatively little cost while communica-

tion with other processing nodes requires I/O and is expensive. This is the opposite of

the CMP cost model and can have a significant negative impact on the behavior of the

program on CMPs as will be demonstrated using the ocean codes.

High Impact of Optimizations

Ocean is a program that simulates large-scale ocean movements. SPLASH-2 provides

two versions that solve the same problem but employ a different memory layout: The non-

contiguous implementation manages the grid on which it operates with two-dimensional

79

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

� �

� � � �

�
�

�
�

�
�

�
�

�

�	
���

�
���

	
���

��
���

�	
���

��
���

�����

���������������

�
�
�
��

�
��

��
 �

!
��

�
�

"
#�

�
$
!
�
�
%

#�
!

"
%

�
&
 �

�
�
$

�
�
'
'
�

�
#

�
�

�
(
)

*�
�
�

!
�+

*�
��

�

*#
(
��

�
'
�+

�
 �

*�
�

,
+

�'
�

!
 �

�
�
+

�
#(

!
 �

�

!
-

�
)

 �
%

'
!

.
�)

!

/
�

�
�

�
���

	
���

��
���

�	
���

��
���

�	
���

��
���

�
�
�
��

�
��

��
 �

!
��

�
�

� � � �

�
�

�
�

�
�

�
�

�

�	
���

�
���

	
���

��
���

�	
���

��
���

�0��1��

���������������

�
�
�
��

�
��

��
 �

!
��

�
�

"
�
�'

�
!

�
�
%

#�
!
$
& **

*+
+

#(
��

�
%

'
 �
2

�

#(
��

'
%

'
��

%
'
 �
2

�

%
�
�

�
'
��

�
%

'
 �
2

�

%
�
�

�
'
��

'
%

'
��

%
'
 �
2

�

��
�

�%
!
�
&

��
�

�/

��
&
 �

�
�
�

.
%

#�
�

'
�

-
�
 �

��
�'

!
,

(
�
��

�
�

-
�
 �

��
�!

)
�
 �
�
#�

�
���

	
���

��
���

�	
���

��
���

�	
���

��
���

�
�
�
��

�
��

��
 �

!
��

�
�

Figure 3.9: Ratio of shared writes to all memory accesses of PARSEC and SPLASH-2. The

top charts show the averages of the workloads and the standard deviation for all cache sizes.

The bottom charts give the detailed ratios of the programs for a 64 MB cache. The ratio of

SPLASH-2 is dominated by the two lu workloads.

arrays. This data structure prevents that partitions can be allocated contiguously. The

contiguous version of the code implements the grid with three-dimensional arrays. The

first dimension specifies the processor which owns the partition so that partitions can

be allocated contiguously and entirely in the local memory of machines with distributed

shared memory. Figures 3.8 and 3.9 show that this optimization lowers the number of

shared writes at the cost of a much higher miss rate on CMPs. The effect is significant.

The contiguous version of ocean has a shared write ratio that is about 3-5 times lower

than the contiguous version for all cache sizes. Its miss rate, however, is about two orders

of magnitude higher for small caches. It decreases to 0.13% compared to only 0.03% for

the non-contiguous version if the cache capacity is increased to 128 MB. This makes the

80

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

contiguous ocean code the SPLASH-2 program with the worst cache behavior on CMPs.

Optimizations like that are used throughout the SPLASH-2 suite. In the case of ocean the

two available versions made it possible to make a direct comparison, but an evaluation in

all other cases is likely to require a rewrite of most of the SPLASH-2 suite. The high miss

ratio is the reason why the contiguous version of ocean was identified as most similar to

canneal by the clustering algorithm.

Intense Sharing More Common

Shared writes can be used as an approximation for the amount of communication be-

tween threads that takes place through a shared cache of a CMP. Figure 3.9 shows that

the communication intensity is about the same for both suites. It is more concentrated

in the case of SPLASH-2, where the two lu workloads are responsible for most of the

shared writes within the suite. The large growth in shared writes when the cache capacity

is increased from 4 MB to 8 MB is almost entirely caused by these two programs. Their

ratios increase from 0.88% to 26.18% and from 2.80% to 27.40%. They remain on that

level for all other cache sizes. This increase coincides with a drop in the miss rate from

0.11% to 0.01% in both cases when the cache becomes big enough to keep the shared

part of the working set that is less frequently used by the programs. This unusual behav-

ior is the reason why both lu programs have been identified as different from all other

workloads by the redundancy analysis. The fact that the program is contained twice in

two very similar versions artificially inflates the average shared write ratio of SPLASH-2.

A larger number of PARSEC workloads show increased sharing activity.

Inclusion of Pipeline Model

Another difference between PARSEC and SPLASH-2 is the inclusion of workloads that

employ the pipeline programming model in PARSEC. The programs dedup and ferret

use pipelines with functional decomposition, i.e., the various pipeline stages have their

own specialized thread pools that handle all the work for their assigned pipeline stage.

Unlike in the case of workloads such as HPC programs, the threads of these programs ex-

ecute different parts of the code. This programming model is frequently used to develop

commercial workloads because it allows to break down the problem into independent

81

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

tasks that can be assigned to different development teams, resulting in lower overall com-

plexity and development cost. As the data streams through the pipeline, it is handed from

thread to thread, which perform different operations on the data until the overall goal

of the program has been accomplished. A consequence of this model is that in general

all communication between the pipeline stages is also communication between different

cores. In extreme cases this can be as much as all of the input data, making efficient

communication channels with high bandwidth between cores a necessity. Shared caches

of CMPs satisfy these requirements. Figure 3.9 shows that both dedup and ferret make

use of this aspect of CMPs.

3.7.2 Data Growth

World data is currently doubling every three years [24]. This trend is expected to ac-

celerate further. With this huge amount of information comes the need to process and

understand it. An example for a class of programs that deal with this vast amount of data

are RMS programs. These workloads employ models that allow them to have a basic un-

derstanding of the data they process [24]. For example, the bodytrack program employs

a model of the human body to detect a person being shown in multiple video streams.

The use of models is nothing new for computing. What has changed is the order

of magnitude of the data that must be handled. Both PARSEC and SPLASH-2 contain

programs that employ models, but only the algorithms and inputs of PARSEC workloads

capture the large increase of data volume that is currently taking place. The compressed

archive that contains the whole suite with all inputs is 16 MB in the case of SPLASH-2.

For PARSEC, it is 2.7 GB. How does this affect workloads?

Large Working Sets More Common

Larger inputs are likely to result in larger working sets or require streaming program

behavior. Figure 3.8 shows the miss rates of PARSEC and SPLASH-2 workloads. For

smaller caches PARSEC workloads have a significantly higher average miss rate. The

difference is 0.26% for a 1 MB cache, approximately one fourth more. It decreases to

0.11% for an 8 MB cache. SPLASH-2 workloads have an average miss rate 0.02% higher

than PARSEC workloads if 16 MB caches are used. This trend continues to the end of

the spectrum of cache sizes.

82

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

A closer look reveals that most of the SPLASH-2 misses are caused by only one pro-

gram, the contiguous version of ocean. The last section already explained that this be-

havior is the consequence of optimizations for distributed shared memory machines that

negatively affect the program on CMPs. The contiguous version of ocean should not be

used on CMPs in favor of the non-contiguous version. This makes fft the only program

with a noticeably higher miss rate. Other SPLASH-2 programs have miss rates that are

within a very narrow range on a lower level. PARSEC captures a greater range of miss

rates in comparison. It includes workloads such as blackscholes, which has the lowest

miss rate of all programs (0.01% with 4 MB caches), up to canneal, which has the worst

cache behavior of all benchmarks (miss rate of 3.18% with 4 MB caches). A total of

four of its programs have a noticeably high miss rate (canneal, facesim, ferret and

streamcluster).

Both PARSEC and SPLASH-2 contain workloads that can generate their own input.

Can this feature be used to generate inputs for SPLASH-2 benchmarks that have large

working sets comparable to PARSEC workloads? Unfortunately, this is not the case

in practice. Most SPLASH-2 codes have runtime requirements that grow superlinearly

with the size of the input, whereas its working sets grow no more than linearly in most

cases [96]. Time limitations will thus constrain how large input problems can be in prac-

tice. For this study, the SPLASH-2 inputs were already sized such that the runtime of all

benchmarks was about the same.

Table 3.3 summarizes how time and space requirements grow with the input size for

all SPLASH-2 programs that have a parameter to scale their inputs. Only fmm, radix and

the spatial version of water employ algorithms for which the computational requirements

grow no faster than the memory requirements. Barnes can also be included in this list

for practical purposes since the logN factor can be considered constant. This limits the

number of workloads that can be tuned to reflect the enormous growth of data to only four,

too few for most scientific studies. Computationally intensive workloads with relatively

small working sets are a characteristic of the SPLASH-2 suite.

3.8 Partial Use of PARSEC

It has been shown that an incorrect benchmark subset selection can lead to misleading

results [19]. This section uses redundancy analysis to suggest possible subsets of PAR-

83

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

Code Time Space

barnes N logN N

fft N1.5 logN N

fmm N N

lu (contig.) N3 N

lu (non-contig.) N3 N

ocean (contig.) N3 N2

ocean (non-contig.) N3 N2

radix N N

water (nsquared) N2 N

water (spatial) N N

Table 3.3: Growth rate of time and memory requirements of the SPLASH-2 workloads that

have a parameter to scale the input size N. In most cases execution time grows much faster

than the working set size.

SEC that can be used for microarchitectural studies. This approach can lead to optimal

subsets [100]. Figure 3.10 shows the dendrogram which is obtained by clustering only

the PARSEC workloads. It is important to point out that it cannot be compared directly

to the dendrogram shown in Figure 3.1. Only a subset of the available data was used for

Figure 3.10 because the SPLASH-2 workloads were not included. The PCA weighs all

characteristics to form the linear combinations which become the PCs. Any changes to

the data will in general result in different weighs. However, a direct comparison shows

that the overall properties and similarities of the programs are the same in both cases.

The dendrogram can be used to pick a subset of the available workloads which min-

imal overlap as follows: Starting on the right, a vertical line can be moved towards the

left side of the chart. As the line moves left it will intersect an increasing number of

branches of the dendrogram, each one representing a cluster containing at least one PAR-

SEC workload. As soon as the number of intersections equals the desired number of

programs, exactly one workload can be selected from each cluster. The resulting selec-

tion will have a minimal amount of overlap of the characteristics which were used for this

study. For example, a good subset of six programs would include swaptions, canneal,

x264, streamcluster, bodytrack and one of the remaining workloads.

A subset obtained using the presented dendrogram should only be understood as a sug-

gestion. Depending on the study, a different set of characteristics might be more appro-

84

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

0.5 0.6 0.7 0.8 0.9 1 1.1

freqmine

vips

ferret

blackscholes

facesim

dedup

fluidanimate

bodytrack

streamcluster

x264

canneal

swaptions

Linkage Distance

Figure 3.10: Redundancy within the PARSEC suite. The dendrogram can be used to choose

a subset of PARSEC with minimal overlap.

priate, which would result in a different dendrogram. The characterization in Chapter 4

can be used as a basis to make an informed decision.

3.9 Related Work

Statistical analysis of benchmark characteristics with PCA and hierarchical clustering is

a commonly used method. Eeckhout et al. were first to make use of it for workload anal-

ysis [51]. Giladi et al. analyzed the redundancy within the SPEC CPU89 suite [28]. They

show that a subset of only six programs is sufficient to capture most of the diversity of the

SPEC CPU89 suite. Vandierendonck et al. came to a similar conclusion when they stud-

ied the SPEC CPU2000 suite on 340 different machines [31]. Phansalkar et al. presented

85

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

a study of redundancy and application balance of SPEC CPU2006 on five different ma-

chines using six characteristics [73]. Hoste et al. proposed the use of genetic algorithms

for comparisons of benchmarks [43]. Their approach is able to reduce the number of

characteristics that have to be measured. Joshi et al. compared SPEC benchmarks across

generations of the suite [42]. The selection of characteristics of this study differs from

previous work because its focus is on the parallel behavior of programs. It therefore uses

shared-memory characteristics.

Previous work on pipelining can be grouped into three categories: Studies that deal

with pipelining as a method to manually parallelize existing programs, pipelining as a

new programming model and pipelining as used by compilers to automatically parallelize

serial programs.

Pipelining has gained popularity as a method to manually parallelize existing pro-

grams. This is a relatively recent trend: Kuck published a comprehensive survey about

parallel architectures and programming models [48] over thirty years ago. He covers var-

ious early methods to parallelize programs but does not include the pipeline model. At

that time multiprocessor machines were typically used to solve scientific problems which

lend themselves well to domain decompositioning for parallelization purposes. When

parallel architectures became popular for enterprise computing, different methods were

needed and pipelining started to get used as a method to parallelize programs from that

domain. One type of workload from that domain is main memory transaction processing.

Li and Naughton studied the use of pipelining in those programs [54]. They demonstrate

that pipelined programs on multiprocessors can achieve higher throughput and less lock-

ing overhead. Subhlok et al. study how the stages of a pipeline can be mapped optimally

to processors [87]. They developed a new algorithm to compute a mapping that opti-

mizes the latency with respect to constraint throughput and vice versa. The algorithm

addresses the general mapping problem, which includes processor assignment, clustering

and replication. As the popularity of pipelining grew and its benefits became more widely

known, researchers became interested in its application to other types of programs. Thies

et al. presented a systematic technique to parallelize streaming applications written in

C with the pipeline parallelization model [90]. They suggest a set of annotations that

programmers can use to parallelize legacy C programs so they can take advantage of

shared-memory multiprocessors. The programmer is assisted by a dynamic analysis that

traces the communication of memory locations at runtime.

86

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

The success of pipelining inspired a new type of programming model - the stream pro-

gramming model. Stream programming is a parallelization approach that decomposes a

program into a parallel network of specialized kernels which are then mapped to process-

ing elements [18, 29, 46]. Data is organized as streams, which is a sequence of similar

elements. A kernel in the stream programming model consumes streams, performs a

computation, and produces a set of output streams. It corresponds to a pipeline stage of

the pipeline programming model. Stream programs are suitable for execution on general-

purpose multiprocessors [49, 56].

As it became clear that almost any type of program can be expressed as a pipeline the

use of pipelining to automatically parallelize serial programs became a focus of attention.

One such method is Decoupled Software Pipelining (DSWP). DSWP is an automatic

parallelization method which uses the pipeline model [72,78]. It exploits the fine-grained

pipeline parallelism inherent in most applications to create a multithreaded version of the

program that implements a parallel pipeline. Low-overhead synchronization between the

pipeline stages can be implemented with a special synchronization array [78].

3.10 Conclusions

This chapter statistically compared program characteristics that capture instruction mix,

communication and memory behavior of the PARSEC and SPLASH-2 benchmark suites

on chip multiprocessors. The redundancy analysis showed that PARSEC and SPLASH-2

are composed of programs with fundamentally different properties. No single reason

for the differences could be identified, but some important factors are differences in the

instruction mix, the cache sharing intensity and the working set sizes. PARSEC is the

more diverse suite in direct comparison.

Some of the observed differences can be explained by the inclusion of the pipeline

model in PARSEC. Workloads which make use of the pipeline parallelization approach

seem to have different characteristics. Other causes might be the proliferation of CMPs,

which have made parallel computing a widely available commodity. Multiprocessors are

now used in program domains that have little in common with High-Performance Com-

puting. SPLASH-2 workloads, however, are optimized for distributed shared memory

machines. As the example of ocean showed this can alter the observed characteristics to

the point where the optimizations have more impact on the program behavior on CMPs

87

CHAPTER 3. COMPARISON OF PARSEC WITH SPLASH-2

than the actual algorithm. The enormous growth of data has lead to an inflation of work-

ing set sizes. Input size and processing time limitations prevent that this behavior can be

adequately captured with the SPLASH-2 suite.

So which one is the ”right” suite to use? It depends. SPLASH-2 remains an important

and useful program collection. Researchers should consider what type of programs are

most relevant for their study when they decide on a selection of benchmark programs.

The presented comparison allows them to understand the implications of their choice.

Whatever their decision, scientists should expect different results.

88

Chapter 4

Characterization of PARSEC

4.1 Introduction

The purpose of benchmarking for research is insight, not numbers. This means that re-

sults obtained with a benchmark program must be explainable, which requires a thorough

understanding of the machine and the workload. The goal of PARSEC is to study parallel

shared-memory machines. The following characteristics of a workload are therefore of

particular interest and will be discussed in this chapter:

Parallelization PARSEC benchmarks use different parallel models which have to be

analyzed in order to know whether the programs can scale well enough for the

analysis of CMPs of a certain size.

Working sets and locality Knowledge of the cache requirements of a workload are nec-

essary to identify benchmarks suitable for the study of CMP memory hierarchies.

Communication-to-computation ratio and sharing The communication patterns of a

program determine the potential impact of private caches and the on-chip network

on performance.

Off-chip traffic The off-chip traffic requirements of a program are important to under-

stand how off-chip bandwidth limitations of a CMP can affect performance.

This chapter makes the following contributions:

89

CHAPTER 4. CHARACTERIZATION OF PARSEC

• The presented characterization of the PARSEC workloads allows other researchers

to interpret the results which they have obtained with the benchmark suite.

• The identified requirements allow us to sketch out the architectural properties that

future multiprocessor machines must have.

The work presented in this chapter was previously published in [11].

4.2 Methodology

This section explains how the PARSEC benchmark suite was characterized. In order

to characterize all applications, several trade-off decisions are made. Given a limited

amount of computational resources, higher accuracy comes at the expense of a lower

number of experiments. The employed methodology follows the approach of similar

studies [41, 96] and chose faster but less accurate execution-driven simulation to charac-

terize the PARSEC workloads. This approach is feasible because this study is limited to

fundamental program properties which should have a high degree of independence from

architectural details. Where possible, measurement results from real machines are sup-

plied. This methodology allows the collection of the large amounts of data necessary for

this study. Machine models comparable to real processors were preferred over unrealistic

models which might have been a better match for the program needs.

4.2.1 Experimental Setup

CMP$im [41] was used for the workload characterization. CMP$im is a plug-in for

Pin [58] that simulates the cache hierarchy of a CMP. Pin is similar to the ATOM

toolkit [86] for Compaq’s Tru64 Unix on Alpha processors. It uses dynamic binary

instrumentation to insert routines at arbitrary points in the instruction stream. For the

characterization a single-level cache hierarchy of a CMP was simulated and its parame-

ters varied. The baseline cache configuration was a shared 4-way associative cache with

4 MB capacity and 64 byte lines. By default the workloads used 8 cores. All experi-

ments were conducted on a set of Symmetric Multiprocessor (SMP) machines with x86

processors and Linux. The programs were compiled with gcc 4.2.1.

90

CHAPTER 4. CHARACTERIZATION OF PARSEC

Because of the large computational cost simulations with the native input set could

be performed, instead the simlarge inputs were used for all simulations. Any known

differences between the two sets are described qualitatively.

4.2.2 Methodological Limitations and Error Margins

For their characterization of the SPLASH-2 benchmark suite, Woo et al. fixed a timing

model which they used for all experiments [96]. They give two reasons: First, nondeter-

ministic programs would otherwise be difficult to compare because different execution

paths could be taken, and second, the characteristics they study are largely independent

from an architecture. They also state that they believe that the timing model should have

only a small impact on the results. While I used similar characteristics and share this

belief, I think a characterization study of multithreaded programs should nevertheless an-

alyze the impact of nondeterminism on the reported data. Furthermore, because the used

methodology is based on execution on real machines combined with dynamic binary in-

strumentation, it can introduce additional latencies, and a potential concern is that the

nondeterministic thread schedule is altered in a way that might affect the reported results

in unpredictable ways. A sensitivity analysis was therefore conducted to quantify the

impact of nondeterminism.

Alameldeen and Wood studied the variability of nondeterministic programs in more

detail and showed that even small pseudo-random perturbations of memory latencies are

effective to force alternate execution paths [2]. I adopted their approach and modified

CMP$im to add extra delays to its analysis functions. Because running all experiments

multiple times as Alameldeen and Wood did would be prohibitively expensive, a random

subset of all experiments for each metric which was use was selected instead and its error

margins reported here.

The measured quantities deviated by no more than ±0.04% from the average, with

the following two exceptions. The first excpetion is metrics of data sharing. In two

cases (bodytrack and swaptions) the classification is noticeably affected by the non-

determinism of the program. This is partially caused because shared and thread-private

data contend aggressively for a limited amount of cache capacity. The high frequency

of evictions made it difficult to classify lines and accesses as shared or private. In these

cases, the maximum deviation of the number of accesses from the average was as high as

91

CHAPTER 4. CHARACTERIZATION OF PARSEC

±4.71%, and the amount of sharing deviated by as much as ±15.22%. This uncertainty

was considered for this study and no conclusions were drawn where the variation of the

measurements did not allow it. The second case of high variability is when the value of

the measured quantity is very low (below 0.1% miss rate or corresponding ratio). In these

cases the nondeterministic noise made measurements difficult. I do not consider this a

problem because this study focuses on trends of ratios, and quantities that small do not

have a noticeable impact. It is however an issue for the analysis of working sets if the

miss rate falls below this threshold and continues to decrease slowly. Only few programs

are affected, and the given estimate of their working set sizes might be slightly off in these

cases. This is primarily an issue inherent to experimental working set analysis, since it

requires well-defined points of inflection for conclusive results. Moreover, in these cases

the working set sizes seem to vary nondeterministically, and researchers should expect

slight variations for each benchmark run.

The implications of these results are twofold: First, they show that the employed

methodology is not susceptible to the nondeterministic effects of multithreaded programs

in a way that might invalidate the reported findings. Second, they also confirm that the

metrics which are presented in this chapter are fundamental program properties which

cannot be distorted easily. The reported application characteristics are likely to be pre-

served on a large range of architectures.

4.3 Parallelization

This section discusses the parallelization of the PARSEC suite. As will be demonstrated

in Section 4.4, several PARSEC benchmarks (canneal, dedup, ferret and freqmine)

have working sets so large they should be considered unbounded for an analysis. These

working sets are only limited by the amount of main memory in practice and they are

actively used for inter-thread communication. The inability to use caches efficiently is

a fundamental property of these program and affects their concurrent behavior. Further-

more, dedup and ferret use a complex, heterogeneous parallelization model in which

specialized threads execute different functions with different characteristics at the same

time. These programs employ a pipeline with dedicated thread pools for each parallelized

pipeline stage. Each thread pool has enough threads to occupy the whole CMP, and it is

the responsibility of the scheduler to assign cores to threads in a manner that maximizes

92

CHAPTER 4. CHARACTERIZATION OF PARSEC

� � � �� ��
�

�

�

��

��

��	
�

����������

���������

������

�����

�������

������

�����������

��������

������������

� �������

!���

"���

#�����$��$%����

�
�
��
!
�
�
�
$&
�
�
�
�
�
�

Figure 4.1: Upper bound for speedup of PARSEC workloads based on instruction count.

the overall throughput of the pipeline. Over time, the number of threads active for each

stage will converge against the inverse throughput ratios of the individual pipeline stages

relative to each other.

Woo et al. use an abstract machine model with a uniform instruction latency of one

cycle to measure the speedups of the SPLASH-2 programs [96]. They justify their ap-

proach by pointing out that the impact of the timing model on the characteristics which

they measure - including speedup - is likely to be low. Unfortunately, this is not true

in general for PARSEC workloads. While Section 4.2.2 explains that the fundamental

program properties such as miss rate and instruction count are largely not susceptible

to timing shocks, the synchronization and timing behavior of the programs is. Using a

timing model with perfect caches significantly alters the behavior of programs with un-

bounded working sets, for example how long locks to large, shared data structures are

held. Moreover, any changes of the timing model have a strong impact on the number

of active threads of programs which employ thread specialization. It will thus affect the

load balance and synchronization behavior of these workloads. I believe it is not possible

to discuss the timing behavior of these programs without also considering for example

different schedulers, which is beyond the scope of this work. Similar dependencies of

commercial workloads on their environment are already known [1, 8].

Unlike Woo et al. who measured actual concurrency on an abstract machine, this sec-

tion therefore analyzes inherent concurrency and its limitations. The employed approach

93

CHAPTER 4. CHARACTERIZATION OF PARSEC

� �

�
��
�
�
�
�
�
	
�

�

�
	
�
�
�
�
�
�

�
�
�
�

�
�

�

�
�
�

��
�

�
��

�

��

��
�
��
�
�
��
�

��

�
�
��

�
�

�
�
�
��
�

�

�
�
�
�
�
	
�
�

�
��
�

��
�
�

�����

�����

�����

 ����

!�����

"
�

��

�
�
�#
�
$

Figure 4.2: Parallelization overhead of PARSEC benchmarks. The chart shows the slow-

down of the parallel version on one core over the serial version.

is based on the number of executed instructions in parallel and serial regions of the code.

Any delays due to blocking on contended locks and load imbalance are neglected. This

methodology is feasible because performance is not studied, the focus of this chapter is on

fundamental program characteristics. The presented data is largely timing-independent

and a suitable measure of the concurrency inherent in a workload.

The results in Figure 4.1 show the maximum achievable speedup measured that way.

The numbers account for limitations such as unparallelized code sections, synchroniza-

tion overhead and redundant computations. PARSECworkloads can achieve actual speedups

close to the presented numbers. During the development of the programs it was verified

on a large range of architectures that lock contention and other timing-dependent factors

are not limiting factors, but there is no known way to show it in a platform-independent

way given the complications outlined above.

The maximum speedup of bodytrack, x264 and streamcluster is limited by se-

rial sections of the code. Fluidanimate is primarily limited by growing parallelization

overhead. On real machines, x264 is furthermore bound by a data dependency between

threads, however this has only a noticeable impact on machines larger than the ones de-

scribed here. It is recommended to run x264with more threads than cores, since modeling

and exposing these dependencies to the scheduler is a fundamental aspect of its parallel

algorithm, comparable to the parallel algorithms of dedup and ferret. Figure 4.2 shows

the slowdown of the parallel version on 1 core over the serial version. The numbers show

94

CHAPTER 4. CHARACTERIZATION OF PARSEC

that all workloads use efficient parallel algorithms which are not substantially slower than

the corresponding serial algorithms.

PARSEC programs scale well enough to study CMPs. I believe they are also useful on

machines larger than the ones analyzed here. The PARSEC suite exhibits a wider variety

of parallelization models than previous benchmark suites such as the pipeline model.

Some of its workloads can adapt to different timing models and can use threads to hide

latencies. It is important to analyze these programs in the context of the whole system.

4.4 Working Sets and Locality

The temporal locality of a program can be estimated by analyzing how the miss rate of a

processor’s cache changes as its capacity is varied. Often the miss rate does not decrease

continuously as the size of a cache is increased, but stays on a certain level and then makes

a sudden jump to a lower level when the capacity becomes large enough to hold the next

important data structure. For CMPs an efficient functioning of the last cache level on the

chip is crucial because a miss in the last level will require an access to off-chip memory.

To analyze the working sets of the PARSEC workloads a cache shared by all proces-

sors was studied. The results are presented in Figure 4.3. Table 4.1 summarizes the impor-

tant characteristics of the identified working sets. Most workloads exhibit well-defined

working sets with clearly identifiable points of inflection. Compared to SPLASH-2, PAR-

SEC working sets are significantly larger and can reach hundreds of megabytes such as

in the cases of canneal and freqmine.

Two types of workloads can be distinguished: The first group contains benchmarks

such as bodytrack and swaptions which have working sets no larger than 16 MB.

These workloads have a limited need for caches with a bigger capacity, and the latest

generation of CMPs often already has caches sufficiently large to accommodate most

of their working sets. The second group of workloads is composed of the benchmarks

canneal, ferret, facesim, fluidanimate and freqmine. These programs have very

large working sets of sizes 65 MB and more, and even with a relatively constrained input

set such as simlarge, their working sets can reach hundreds of megabytes. Moreover, the

need of those workloads for cache capacity is nearly insatiable and grows with the amount

of data which they process. Table 4.1 gives estimates for the largest working set of each

PARSEC workload for the native input set. In several cases they are significantly larger

95

CHAPTER 4. CHARACTERIZATION OF PARSEC

� �

� � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
	

�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

��		

�	�		

����

��
�

��
�

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

��		

�	�		

����

��
�

��
�

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

������������

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

	��	

��		

���	

��		

��������

��
�

��
�

��
�

��
�

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

	��	

��		

���	

��		

 !�"���#$

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

�	�		

�	�		

�	�		

#������

��
�

��
�

��
� ��

�

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

	��	

��		

���	

��		

�����

��
�

��
�

%
��
�
�&
�
��
�'

(

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

��		

��		

��#����

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

��		

�	�		

������

��
�

��
�

��
�

��
�

%
��
�
�&
�
��
�'

(

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

�	�		

���		

�	�		

������#������

��
�

��
�

)�#*����+��',-()�#*����+��',-(

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

�	�		

���		

�	�		

���		

 ��#$�#*!���

� � � �
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
	
�
�

�
	

�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�

�
�
�
�
�
�

	�		

��		

��		

��		

��		

��		

�.����!��

��
�

%
��
�
�&
�
��
�'

(

��
�

��
�

%
��
�
�&
�
��
�'

(

)�#*����+��',-(

Figure 4.3: Miss rates for various cache sizes. The data assumes a shared 4-way associative

cache with 64 byte lines. WS1 and WS2 refer to important working sets which are analyzed

in more detail in Table 4.1. The cache requirements of PARSEC benchmark programs can

reach hundreds of megabytes.

96

CHAPTER 4. CHARACTERIZATION OF PARSEC

Program

Input Set Input Set

simlarge native

Working Set 1 Working Set 2 Working Set 2

Data
Size

Growth Data
Size

Growth Size

Structure Rate Structure Rate Estimate

blackscholes options 64 KB C portfolio data 2 MB C same

bodytrack edge maps 512 KB const. input frames 8 MB const. same

canneal elements 64 KB C netlist 256 MB DS 2 GB

dedup data chunks 2 MB C hash table 256 MB DS 2 GB

facesim tetrahedra 256 KB C face mesh 256 MB DS same

ferret images 128 KB C data base 64 MB DS 128 MB

fluidanimate cells 128 KB C particle data 64 MB DS 128 MB

freqmine transactions 256 KB C FP-tree 128 MB DS 1 GB

streamcluster data points 64 KB C data block 16 MB user-def. 256 MB

swaptions swaptions 512 KB C same as WS1 same same same

vips image data 64 KB C image data 16 MB C same

x264 macroblocks 128 KB C reference frames 16 MB C same

Table 4.1: Important working sets and their growth rates. DS represents the data set size and

C is the number of cores. The working set sizes are taken from Figure 4.3. The values for

the native input set are analytically derived estimates. Working sets that grow proportional

to the number of cores C are aggregated private working sets and can be split up to fit into

correspondingly smaller, private caches.

and can even reach gigabytes. These large working sets are often the consequence of an

algorithm that operates on large amounts of collected input data. Ferret for example

keeps a data base of feature vectors of images in memory to find the images most similar

to a given query image. The cache and memory needs of these applications should be

considered unbounded, as they become more useful to their users if they can work with

increased amounts of data. Programs with unbounded working sets are canneal, dedup,

ferret and freqmine.

Figure 4.4 presents an analysis of the spatial locality of the PARSEC workloads. The

data shows how the miss rate of a shared cache changes with line size. All programs

benefit from larger cache lines, but to different extents. Facesim, fluidanimate and

streamcluster show the greatest improvement as the line size is increased, up to the

the maximum value of 256 bytes which was used. These programs have streaming be-

havior, and an increased line size has a prefetching effect which these workloads can

take advantage of. Facesim for example spends most of its time updating the position-

based state of the model, for which it employs an iterative Newton-Raphson algorithm.

The algorithm iterates over the elements of a sparse matrix which is stored in two one-

97

CHAPTER 4. CHARACTERIZATION OF PARSEC

��������	
������ �����
����� ����

�
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
�

�����

�����

�����

�����

������

������

 �����

!����

�
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
� � �
�
�
�
�
�
�

�
�
�

�
�
�

�����

�����

�����

�����

�����

�����
"
��
�
�#
�
��
�$
�
%

�&��	��'�&��
&��������� �(������� ������&
����� ������&�����)���

Figure 4.4: Miss rates as a function of line size. The data assumes 8 cores sharing a 4-way

associative cache with 4 MB capacity. Miss rates are broken down to show the effect of loads

and stores.

dimensional arrays, resulting in a streaming behavior. All other programs also show good

improvement of the miss rate with larger cache lines, but only up to line sizes of about

128 bytes. The miss rate is not substantially reduced with larger lines. This is due to a

limited size of the basic data structures employed by the programs. They represent in-

dependent logical units, each of which is intensely worked with during a computational

phase. For example, x264 operates on macroblocks of 8× 8 pixels at a time, which

limits the sizes of the used data structures. Processing a macroblock is computationally

intensive and largely independent from other macroblocks. Consequently, the amount of

spatial locality is bounded in these cases.

The rest of this analysis chooses a cache capacity of 4 MB for all experiments. A

matching cache size for each workload could have been used, but that would have made

comparisons very difficult, and the use of very small or very large cache sizes is not re-

alistic. Moreover, in the case of the workloads with an unbounded working set size, a

working set which completely fits into a cache would be an artifact of the limited simu-

lation input size and would not reflect realistic program behavior.

4.5 Communication-to-Computation Ratio and Sharing

This section discusses how PARSEC workloads use caches to communicate. Most PAR-

SEC benchmarks share data intensely. Two degrees of sharing can be distinguished:

98

CHAPTER 4. CHARACTERIZATION OF PARSEC

�
�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
� � �

�
�

�
�

�
�

�
�
�

�
�
�

	
		�

�	
		�

�	
		�

�	
		�

�	
		�

�	
		�

�	
		�
���������

��������

��������

��������

��������

��������

��������

��������

�
�
��
�
��
��
�
�
��
�
�

������������ ����
���!"���� #����"

#��$%���
�&� "����

'� �
(���

Figure 4.5: Portion of a 4-way associative cache with 4 MB capacity which is shared by 8

cores. The line size is varied from 8 to 256 bytes.

Shared data can be read-only during the parallel phase, in which case it is only used for

lookups and analysis. Input data is frequently used in such a way. But shared data can

also be used for communication between threads, in which case it is also modified during

the parallel phase. Figure 4.5 shows how the line size affects sharing. The data combines

the effects of false sharing and the access pattern of the program due to constrained cache

capacity. Figure 4.6 illustrates how the programs use their data. The chart shows what

data is accessed and how intensely it is used. The information is broken down in two

orthogonal ways, resulting in four possible types of accesses: Read and write accesses

and accesses to thread-private and shared data. Additionally, the amount of true shared

accesses is given. An access is a true access if the last reference to that line came from

another thread. True sharing does not count repeated accesses by the same thread. It is a

useful metric to estimate the requirements for the cache coherence mechanism of a CMP:

A true shared write can trigger a coherence invalidate or update, and a true shared read

might require the replication of data. All programs exhibit very few true shared writes.

Four programs (canneal, facesim, fluidanimate and streamcluster) showed

only trivial amounts of sharing. They have therefore not been included in Figure 4.5.

In the case of canneal, this is a result of the small cache capacity. Most of its large

working set is shared and actively worked with by all threads. However, only a minus-

cule fraction of it fits into the cache, and the probability that a line is accessed by more

than one thread before it gets replaced is very small in practice. With a 256 MB cache,

58% of its cached data is shared. Blackscholes shows a substantial amount of sharing,

99

CHAPTER 4. CHARACTERIZATION OF PARSEC

� � � �
�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� � � � �

�
�

�

�

�

�

�

�
	
���������

	
��������

������������

�����������

����	
��������

����	
���������

�
��
��
��
��
�
�
�
�
��
��

�
��
!"

#$��%��
&$�
#&������%

�$���� �'��
��('� �)�*��& �

�� �$
���*

�����'
����

����'�$���� ��*�
+���

Figure 4.6: Traffic from cache in bytes per instruction for 1 to 16 cores. The data assumes a

shared 4-way associative cache with 64 byte lines.

but almost all its shared data is only accessed by two threads. This is a side-effect of the

parallelization model: At the beginning of the program, the boss threads initializes the

portfolio data before it spawns worker threads which process parts of it in a data-parallel

way. As such, the entire portfolio is shared between the boss thread and its workers, but

the worker threads can process the options independently from each other and do not have

to communicate with each other. Ferret shows a modest amount of data sharing. Like

the sharing behavior of canneal, this is caused by severely constrained cache capacity.

Ferret uses a database that is scanned by all threads to find entries similar to the query

image. However, the size of the database is practically unbounded, and because threads

do not coordinate their scans with each other it is unlikely that a cache line gets accessed

more than once. Bodytrack and freqmine exhibit substantial amounts of sharing due to

the fact that threads process the same data. The strong increase of sharing of freqmine

is caused by false sharing, as the program uses an array-based tree as its main data struc-

ture. Larger cache lines will contain more nodes, increasing the chance that the line is

accessed by multiple threads. Vips has some shared data which is mostly used by only

two threads. This is also predominantly an effect of false sharing since image data is

stored in a consecutive array which is processed in a data-parallel way by threads. X264

uses significant amounts of shared data, most of which is only accessed by a low number

of threads. This data is the reference frames, since a thread needs this information from

other stages in order to encode the frame it was assigned. Similarly, the large amount of

shared data of dedup is the input which is passed from stage to stage.

100

CHAPTER 4. CHARACTERIZATION OF PARSEC

Most PARSEC workloads use a significant amount of communication, and in many

cases the volume of traffic between threads can be so high that efficient data exchange

via a shared cache is severely constrained by its capacity. An example for this is x264.

Figure 4.6 shows a large amount of writes to shared data, but contrary to intuition its

share diminishes rapidly as the number of cores is increased. This effect is caused by

a growth of the working sets of x264: Table 4.1 shows that both working set WS1 and

WS2 grow proportional to the number of cores. WS1 is mostly composed of thread-

private data and is the one which is used more intensely. WS2 contains the reference

frames and is used for inter-thread communication. As WS1 grows, it starts to displace

WS2, and the threads are forced to communicate via main memory. Two more programs

which communicate intensely are dedup and ferret. Both programs use the pipeline

parallelization model with dedicated thread pools for each parallel stage, and all data has

to be passed from stage to stage. Fluidanimate also shows a large amount of inter-thread

communication, and its communication needs grow as the number of threads increase.

This is caused by the spatial partitioning that fluidanimate uses to distribute the work

to threads. Smaller partitions mean a worse surface to volume ratio, and communication

grows with the surface.

Overall, most PARSEC workloads have complex sharing patterns and communicate

actively. Pipelined programs can require a large amount of bandwidth between cores in

order to communicate efficiently. Shared caches with insufficient capacity can limit the

communication efficiency of workloads, since shared data structures might get displaced

to memory.

4.6 Off-Chip Traffic

This section analyzes the off-chip bandwidth requirements of the PARSEC workloads.

The goal is to understand how the traffic of an application grows as the number of cores

of a CMP increases and how the memory wall will limit performance. A shared cache

was simulated again and the development of the traffic analyzed as the number of cores

increases. The results are presented in Figure 4.7.

The data shows that the off-chip bandwidth requirements of the blackscholes work-

load are small enough so that memory bandwidth is unlikely to be an issue. Bodytrack,

101

CHAPTER 4. CHARACTERIZATION OF PARSEC

� � � �
�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
�

�

���	

��	

��
	

�

�����������
�������� ����������

�������������
�������� ���

!���
�����

������
������

������������

� � � �
�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
�

�

���"

���	

����

���
#��������

$�����

%���

&
�
��
��
�'
(
�
��
�
)*
�
�
��
�+

Figure 4.7: Breakdown of off-chip traffic for 1 to 16 cores. The data assumes a 4-way

associative 4 MB cache with 64 byte lines, allocate-on-store and write-back policy.

dedup, fluidanimate, freqmine, swaptions and x264 are more demanding. More-

over, these programs exhibit a growing bandwidth demand per instruction as the number

of cores increases. In the case of bodytrack, most off-chip traffic happens in short, in-

tense bursts since the off-chip communication predominantly takes place during the edge

map computation. This phase is only a small part of the serial runtime, but on machines

with constrained memory bandwidth it quickly becomes the limiting factor for scalability.

The last group of programs is composed of canneal, facesim, ferret, streamcluster

and vips. These programs have very high bandwidth requirements and also large work-

ing sets. Canneal shows a decreasing demand for data per instruction with more cores.

This behavior is caused by improved data sharing.

It is important to point out that these numbers do not take the increasing instruction

throughput of a CMP into account as its number of cores grows. A constant traffic amount

in Figure 4.7 means that the bandwidth requirements of an application which scales lin-

early will grow exponentially. Since many PARSEC workloads have high bandwidth

requirements and working sets which exceed conventional caches by far, off-chip band-

width will be their most severe limitation of performance. Substantial architectural im-

provements are necessary to allow emerging workloads to take full advantage of larger

CMPs.

102

CHAPTER 4. CHARACTERIZATION OF PARSEC

4.7 Conclusions

The PARSEC benchmark suite is designed to provide parallel programs for the study for

CMPs. PARSEC can be used to drive research efforts by application demands. It focuses

on emerging desktop and server applications and does not have the limitations of other

benchmark suites. It is diverse enough to be considered representative, it is not skewed

towards HPC programs, it uses state-of-art algorithms and it supports research. In this

study I characterized the PARSEC workloads to provide the basic understanding neces-

sary to allow other researchers the effective use of PARSEC for their studies. I analyzed

the parallelization, the working sets and locality, the communication-to-computation ratio

and the off-chip bandwidth requirements of its workloads.

103

Chapter 5

Fidelity and Input Scaling

5.1 Introduction

Computer architects need detailed simulations for their microarchitecture designs. How-

ever, simulators are typically many orders of magnitude slower than a real machine. Run-

ning a set of benchmark applications with realistic inputs on a simulator will far exceed

the design time limits, even using thousands of computers.

To reduce the number of simulated instructions of a benchmark, a commonly used

method is to take a subset of the instructions with statistical sampling, which requires a

sophisticated mechanism in the simulator [17, 20, 80, 97]. Another method is to reduce

the size of the input for a benchmark [47, 91]. Reduced inputs are easy to use with any

simulator, but there is no systematic framework for scaling input sets in a continuous way.

Furthermore, there is a lack of understanding of the trade-offs between accuracy and cost

involved when reducing inputs for a given benchmark.

A good benchmark suite should provide users with inputs of multiple levels of fidelity,

scaling from realistic inputs for execution on real machines down to small inputs for

detailed simulations. The key question is how to scale such inputs for a benchmark so

that its execution with a scaled-down input produces meaningful performance predictions

for computer architects.

This chapter presents a framework for the input-scaling problem of a benchmark.

Scaled inputs are viewed as approximations of the original, full-sized inputs. As the

inputs are scaled down, the benchmark becomes increasingly inaccurate. The question of

how to create many derivatives of real inputs with varying size and accuracy motivates the

104

CHAPTER 5. FIDELITY AND INPUT SCALING

following optimization problem: Given a time budget, what is the optimal selection of in-

puts for a set of benchmark programs? This work shows that this optimization problem is

the classical multiple-choice knapsack problem (MCKP), which is NP-hard. The formu-

lation of the problem allows one to derive the general guidelines for designing multiple

inputs with different levels of fidelity for a benchmark suite.

The chapter proposes the methodology and implementation of scaled inputs for the

Princeton Application Repository for Shared-Memory Computers (PARSEC) [11]. The

PARSEC benchmark suite is designed to represent emerging workloads. The current

release (version 2.1) consists of 13 multithreaded programs in computer vision, video

encoding, physical modeling, financial analytics, content-based search, and data dedu-

plication. The methodology was used to design six sets of inputs with different levels

of fidelity. The first version of PARSEC was released only two years ago. It has been

well adopted by the computer architecture community to evaluate multicore designs and

multiprocessor systems.

To evaluate the impact of input scaling, a measure called approximation error was de-

fined. Using this measure, several input sets of PARSECwere analyzed to show which re-

duced inputs are more likely to distort the original characteristics of the PARSEC bench-

marks. This chapter furthermore analytically derive a scope for each input which defines

the range of architectures for which the input can be expected to be reasonably accurate.

Such results are helpful for PARSEC users to understand the implications when creating

customized inputs for their simulation time budgets.

This chapter makes several contributions. First, it presents a novel methodology to

analyze how scaled inputs affect the accuracy of a benchmark suite. Second, it formulates

the input selection problem for a benchmark as an optimization problem that maximizes

the accuracy of a benchmark subject to a time constraint. Third, it describes how the

PARSEC inputs have been scaled and shows which parts of the inputs are more likely

to distort the original program characteristics. More importantly, it discusses in which

situations small input sets might produce highly misleading program behavior. Finally,

the chapter provides guidelines for users to create their own customized input sets for

PARSEC.

The work presented in this chapter was previously published in [14].

105

CHAPTER 5. FIDELITY AND INPUT SCALING

5.2 Input Fidelity

This section introduces the conceptual foundation and terminology to discuss the inac-

curacies in benchmark inputs. My concepts and definitions follow the terms commonly

used in the fields of mathematical approximation theory and scientific modeling [4].

The main insight is that inputs for benchmark programs are almost never real program

inputs. An example is a server program whose behavior is input dependent, but its input

data contains confidential user information that cannot be made publicly available. Also,

computationally intensive applications require too much time to complete. For that reason

benchmark inputs are typically derived from real program inputs by reducing them in a

suitable way. I call the process of creating a range of reduced inputs input scaling. This

process can be compared to stratified sampling. The idea of stratified sampling is to take

samples in a way that leverages knowledge about the sampling population so that the

overall characteristics of the population are preserved as much as possible.

Benchmark inputs can be thought of as models of real inputs. Their purpose is to

approximate real program behavior as closely as possible, but even if the benchmark

program itself is identical to the actual application, some deviations from its real-world

behavior must be expected. I call these deviations the approximation error because they

are unintended side effects which can distort performance measurements in subtle ways.

Sometimes very noticeable errors can be identified. I will refer to these errors as scaling

artifacts. A scaling artifact can increase the inaccuracy of a benchmark and sometimes it

may lead to highly misleading results. In such cases, scaling artifacts are good indicators

whether an input set can accurately approximate the real workload inputs. Identifying

such artifacts is essential to determine the constraints of a benchmark input set.

I define fidelity as the degree to which a benchmark input set produces the same pro-

gram behavior as the real input set. An input set with high fidelity has a small approxi-

mation error with few or no identifiable scaling artifacts, whereas an input set with low

fidelity has a large approximation error and possibly many identifiable scaling artifacts.

Input fidelity can be measured by quantifying the approximation error. It is common that

approximations are optimized to achieve a high degree of fidelity in a limited target area,

possibly at the expense of reduced accuracy in other areas. I call this target area of high

fidelity the scope of an input. The scope can be thought of as a set of restrictions for a

reduced input beyond which the input becomes very inaccurate. An example is an overall

106

CHAPTER 5. FIDELITY AND INPUT SCALING

reduction of work units in an input set, which will greatly reduce execution time, but limit

the amount of CPUs that the program can stress simultaneously. Running the benchmark

on CMPs with more cores than the input includes may lead to many noticeable scaling

artifacts in the form of idle CPUs.

5.2.1 Optimal Input Selection

Input scaling can be used to create a continuum of approximations of a real-world input

set with decreasing fidelity and instruction count. This allows benchmark users to trade

benefit in the form of benchmarking accuracy for lower benchmarking cost as measured

by execution or simulation time. This motivates the question what the optimal combi-

nation of inputs from a given selection of input approximations is that maximizes the

accuracy of the benchmark subject to a time budget.

If the time budget is fixed and an optimal solution is desired, the problem assumes

the structure of the multiple-choice knapsack problem (MCKP), which is a version of the

binary knapsack problem with the addition of disjoint multiple-choice constraints [66,

82]. For a given selection of m benchmark programs with disjoint sets of inputs Ni,

i = 1, . . . ,m, I will refer to the approximation error of each respective input j ∈ Ni with

the variable ai j ≧ 0. If solution variable xi j ∈ {0,1} is defined for each input that specifies

whether an input has been selected then the goal of the optimization problem can be

formally defined as follows:

min
m

∑
i=1

∑
j∈Ni

ai jxi j (5.1)

The solution of the problem is the set of all xi j that describes which inputs are optimal

to take. If the time each input takes to execute is referred to by ti j ≧ 0 and if the total

amount of time available for benchmark runs is given by T ≧ 0 then the solutions which

are acceptable can be described as follows:

m

∑
i=1

∑
j∈Ni

ti jxi j ≦ T (5.2)

Lastly, it has to be stated that exactly one input must be selected for each benchmark

program and that no partial or negative inputs are allowed:

107

CHAPTER 5. FIDELITY AND INPUT SCALING

∑
j∈Ni

xi j = 1 i= 1, . . . ,m (5.3a)

xi j ∈ {0,1} j ∈ Ni, i= 1, . . . ,m (5.3b)

MCKP is an NP-hard problem, but it can be solved in pseudo-polynomial time through

dynamic programming [25,74]. The most efficient algorithms currently known first solve

the linear version of MCKP (LMCKP) that is obtained if the integrality constraint xi j ∈

{0,1} is relaxed to 0≦ xi j ≦ 1. LMCKP is a variant of of the fractional knapsack problem

and can be solved in O(n) time by a greedy algorithm. The initial feasible solution that is

obtained that way is used as a starting point to solve the more restrictive MCKP version

of the problem with a dynamic programming approach. It keeps refining the current

solution in an enumerative fashion by adding new classes until an optimal solution has

been found. Such an algorithm can solve even very large data instances within a fraction

of a second in practice, as long as the input data is not strongly correlated [74].

5.2.2 Scaling Model

The most common way to express the asymptotic runtime behavior of a program is to

use a function of a single parameter N, which is the total size of the input. This is too

simplistic for real-world programs, which usually have inputs that are described by sev-

eral parameters, each of which may significantly affect the behavior of the programs. This

section presents a simple scaling model for reasoning about the effect of input parameters

on program behavior.

In this simple model, the inputs of a program are grouped into two components: the

linear component and the complex component. The linear component includes the parts

that have a linear effect on the execution time of the program such as streamed data or

the number of iterations of the outermost loop of the workload. The complex component

includes the remaining parts of the input which can have any effect on the program. For

example, a fully defined input for a program that operates on a video would be composed

of a complex part that determines how exactly to process each frame and a linear part that

determines how many frames to process.

108

CHAPTER 5. FIDELITY AND INPUT SCALING

� �

������ ������

�	
�������	����
��
���������������

�������	����
��
���������
����
��
�
����
	������������

���

�������

������	
�������	����
���� �������
�������������	����
����������

Figure 5.1: The impact that linear and complex input size scaling typically have on a pro-

gram. Complex scaling of M usually affects the execution time f (M) and the memory re-
quirement g(M). Linear scaling typically only changes the number of repetitions L.

Our motivation for this distinction is twofold: First, real-world workloads frequently

apply complex computational steps which are difficult to analyze in a repetitive fashion

that is easy to count and analyze. Second, the two components have different qualitative

scaling characteristics because the complex input part often has to remain in a fairly

narrow range whereas the linear component can often be chosen rather freely. In the

example of the video processing program, the complex input part determining the work

for each single frame is limited by the algorithms that are available and need to be within

the range of video frame sizes that make sense in practice, which means there is a tight

upper bound on the number of processing steps as well as lower and upper bounds on

the frame resolution that make sense. These bounds significantly limit the scaling range,

and the possible choice among different algorithms make this part of the input difficult to

analyze. The number of frames, however, is unconstrained and can practically reach any

number.

These two components of an input affect the input scaling behavior of the program in

different ways, as summarized in Figure 5.1. The impact of the complex input parts is

typically highly dependent on the workload so that few general guidelines can be given.

It is common that the asymptotic runtime of the program increases superlinearly but its

memory requirements often grow only linearly because most programs only keep the

input data in a parsed but essentially unmodified form in memory. This property makes it

hard to scale an input using its complex components without skewing it. Complex scaling

109

CHAPTER 5. FIDELITY AND INPUT SCALING

Input Set Description Time Budget Purpose

test Minimal execution time N/A Test &

simdev Best-effort code coverage of real inputs N/A Development

simsmall Small-scale experiments / 1 s
simmedium Medium-scale experiments / 4 s Simulations

simlarge Large-scale experiments / 15 s
native Real-world behavior / 15 min Native execution

Table 5.1: The six standardized input sets offered by PARSEC listed in order of increas-

ing size. Larger input sets guarantee the same properties of all smaller input sets. Time is

approximate serial execution time on real machines.

almost always reduces working set sizes.

The linear input components typically do not affect the memory requirements or work-

ing set sizes of the program that much because they involve a form of repetition of pre-

vious steps. Their strong and direct impact on the execution time of the program make

them suitable for input size scaling. Usually, there is no upper limit for linear input scal-

ing, but reducing the input to the point where it includes few if any repetitions can often

result in strong scaling artifacts because the individual steps are not exactly the same or

not completely independent from each other. For example, if a program takes the output

of its previous iteration as the input for its next iteration, it usually results in significant

communication between threads. The underlying communication patterns may vary sig-

nificantly from one iteration to the next. In this case, the number of repetitions included

in the input must be large enough to stabilize what type of tasks the program performs on

average.

5.3 PARSEC Inputs

This section describes the inputs of PARSEC and how they are scaled. PARSEC offers six

input sets. Each set contains exactly one fully defined input for each PARSEC benchmark.

An input is composed of all input files required by the program and a predetermined way

to invoke the binary. Input sets can be distinguished by the amount of work their inputs

contain. This determines what an input set can be used for. Table 5.1 gives an overview

of the six PARSEC input sets ordered in ascending order by the allowed time budget.

The native input set is the closest approximations to realistic inputs, even though it is

not authoritative. Only benchmarks with real-world programs using real-world inputs are

110

CHAPTER 5. FIDELITY AND INPUT SCALING

authoritative [35]. Smaller input sets can be considered increasingly inaccurate approx-

imations of real-world inputs. Users of the benchmark suite should therefore generally

use the largest input set possible. The smallest input set which I consider acceptable for

at least some performance experiments is simsmall.

5.3.1 Scaling of PARSEC Inputs

PARSEC inputs predominantly use linear input scaling to achieve the large size reduction

from real inputs to native and simlarge and a combination of linear and complex scal-

ing to derive the simmedium and simsmall input sets from simlarge. For that reason the

differences between real inputs, native and simlarge should be relatively small. The

input sets simdev and test were created in a completely different way and should not

be used for performance experiments at all. The various inputs suitable for performance

measurements are summarized in Table 5.2.

Most parts of the complex input components are identical between the input sets

simlarge and native. In seven cases at least one part of the complex input component is

not identical between the two input sets: Canneal, ferret, fluidanimate, freqmine,

raytrace, streamcluster and x264 all have at least one input component that exhibits

complex scaling behavior which might affect the program noticeably. However, only in

the case of streamcluster could a noticeable and strong impact of that property on the

program characteristics be measured. This is because there is a direct, linear relation-

ship between the working set of the program and the selected block size, which can be

freely chosen as part of the input and which has also been scaled between input sets.

For simlarge the working set corresponding to the block size is 8 MB, which means

a working set size between 64 MB and 128 MB can be expected for the native input.

In all other cases the differences between simlarge and native can be expected to be

negligible on contemporary machines.

Blackscholes, dedup, swaptions and vips all break their input into small chunks

which are processed one after another. Their inputs are the easiest to scale and generally

should show little variation. In the case of blackscholes and dedup some impact on the

working set sizes should be expected because each input unit can be accessed more than

once by the program.

111

CHAPTER 5. FIDELITY AND INPUT SCALING

Program Input Set
Problem Size

Comments
Complex Component Linear Component

blackscholes

simsmall 4,096 options

simmedium 16,384 options

simlarge 65,536 options

native 10,000,000 options

bodytrack

simsmall 4 cameras, 1,000 particles, 5 layers 1 frame

simmedium 4 cameras, 2,000 particles, 5 layers 2 frames

simlarge 4 cameras, 4,000 particles, 5 layers 4 frames

native 4 cameras, 4,000 particles, 5 layers 261 frames

canneal

simsmall 100,000 elements 10,000 swaps per step, 32 steps

simmedium 200,000 elements 15,000 swaps per step, 64 steps

simlarge 400,000 elements 15,000 swaps per step, 128 steps

native 2,500,000 elements 15,000 swaps per step, 6,000 steps

dedup

simsmall 10 MB data

Data affects

behavior

simmedium 31 MB data

simlarge 184 MB data

native 672 MB data

facesim

simsmall 80,598 particles, 372,126 tetrahedra 1 frame

Complex scaling

challenging

simmedium 80,598 particles, 372,126 tetrahedra 1 frame

simlarge 80,598 particles, 372,126 tetrahedra 1 frame

native 80,598 particles, 372,126 tetrahedra 100 frames

ferret

simsmall 3,544 images, find top 10 images 16 queries

simmedium 13,787 images, find top 10 images 64 queries

simlarge 34,793 images, find top 10 images 256 queries

native 59,695 images, find top 50 images 3,500 queries

fluidanimate

simsmall 35,000 particles 5 frames

simmedium 100,000 particles 5 frames

simlarge 300,000 particles 5 frames

native 500,000 particles 500 frames

freqmine

simsmall 250,000 transactions, min support 220

Data affects

behavior

simmedium 500,000 transactions, min support 410

simlarge 990,000 transactions, min support 790

native 250,000 transactions, min support 11,000

raytrace

simsmall 480×270 pixels, 1 million polygons 3 frames

Data affects

behavior

simmedium 960×540 pixels, 1 million polygons 3 frames

simlarge 1,920×1,080 pixels, 1 million polygons 3 frames

native 1,920×1,080 pixels, 10 million polygons 200 frames

streamcluster

simsmall 4,096 points per block, 32 dimensions 1 block

simmedium 8,192 points per block, 64 dimensions 1 block

simlarge 16,384 points per block, 128 dimensions 1 block

native 200,000 points per block, 128 dimensions 5 blocks

swaptions

simsmall 16 swaptions, 5,000 simulations

simmedium 32 swaptions, 10,000 simulations

simlarge 64 swaptions, 20,000 simulations

native 128 swaptions, 1,000,000 simulations

vips

simsmall 1,600×1,200 pixels
simmedium 2,336×2,336 pixels
simlarge 2,662×5,500 pixels
native 18,000×18,000 pixels

x264

simsmall 640×360 pixels 8 frames

Data affects

behavior

simmedium 640×360 pixels 32 frames

simlarge 640×360 pixels 128 frames

native 1,920×1,080 pixels 512 frames

Table 5.2: Overview of PARSEC inputs and how they were scaled. Cases in which the exact

contents of the input data can have a strong impact on the code path or the characteristics of

the program are marked.

112

CHAPTER 5. FIDELITY AND INPUT SCALING

The most difficult inputs to scale are the ones of freqmine. They exhibit no linear

component, which means that any form of input scaling might alter the characteristics of

the workload significantly. Moreover, freqmine parses and stores its input data internally

as a frequent-pattern tree (FP-tree) that will be mined during program execution. An FP-

tree is a compressed form of the transaction database that can be traversed in multiple

ways. This makes the program behavior highly dependent on the exact properties of the

input data, which might further amplify the problem.

The complex input components of the facesim inputs have not been scaled at all.

Doing so would require generating a new face mesh, which is a challenging process.

Significant reductions of the mesh resolution can also cause numerical instabilities. The

three simulation inputs of facesim are therefore identical and should be considered as

belonging to the simlarge input set.

Besides freqmine three more programs significantly alter their behavior depending

on the data received. Dedup builds a database of all unique chunks that are encountered

in the input stream. Less redundancy in the input stream will cause larger working sets.

Raytrace follows the path of light rays through a scene. Small alterations of the scene or

the movement of the camera might cause noticeable changes of the execution or working

set sizes. However, in natural scenes with realistic camera movement this effect is likely

to be small if the number of light rays is sufficiently large because their fluctuations will

average out due to the law of large numbers. Finally, x264 uses a significantly larger

frame size for its native input. Just like vips the program breaks an input frame into

smaller chunks of fixed size and processes them one at a time. However, x264 must keep

some frames in memory after they have been processed because it references them to

encode subsequent frames. This property increases working set sizes and the amount of

shared data with the frame size and is the reason why the image resolution of the input is

classified as a complex input component.

5.3.2 General Scaling Artifacts

One common scaling artifact caused by linear input scaling is an exaggerated warmup

effect because the startup cost has to be amortized within a shorter amount of time. Fur-

thermore, the serial startup and shutdown phases of the program will also appear inflated

in relation to the parallel phase. This is an inevitable consequence if workloads are to use

113

CHAPTER 5. FIDELITY AND INPUT SCALING

inputs with working sets comparable real-world inputs but with a significantly reduced

execution time - the programs will have to initialize and write back a comparable amount

of data but will do less work with it.

Consequently, all characteristics will be skewed towards the initialization and shut-

down phases. In particular the maximum achievable speedup is limited due to Amdahl’s

Law if the whole execution of the program is taken into consideration. It is important to

remember that this does not reflect real program behavior. The skew should be compen-

sated for by either excluding the serial initialization and shutdown phases and limiting

all measurements to the Region-of-Interest (ROI) of the program, which was defined to

include only the representative parallel phase, or by measuring the phases of the program

separately and manually weighing them correctly. It is safe to assume that the serial

initialization and shutdown phases are negligible in the real inputs, which allows one to

completely ignore them for experiments. Benchmark users who do not wish to correct

measurements in such a way should limit themselves to the native input set, which is

a much more realistic description of real program behavior that exhibits these scaling

artifacts to a much lesser extent.

5.3.3 Scope of PARSEC Inputs

This section briefly describes what the constraints of the PARSEC simulation inputs are

and under which circumstances one can expect to see additional, noticeable scaling ar-

tifacts. The most severe limitations are the amount of parallelism and the size of the

working sets.

The PARSEC simulation inputs were scaled for machines with up to 64 cores and with

up to tens of megabytes of cache. These limitations define the scope of these inputs, with

smaller inputs having even tighter bounds. If the inputs are used beyond these restric-

tions noticeable scaling artifacts such as idle CPUs caused by limited parallelism must

be expected. The native input set should be suitable for machines far exceeding these

limitations.

Reducing the size of an input requires a reduction of the amount of work contained in

it which typically affects the amount of parallelism in the input. Table 5.3 summarizes

the number of work units in each simulation input set. This is an upper bound on the

number of cores that the input can stress simultaneously.

114

CHAPTER 5. FIDELITY AND INPUT SCALING

Program
Input Set

simsmall simmedium simlarge

blackscholes 4,096 16,384 65,536

bodytrack 60 60 60

canneal ≤ 5.0 ·104 ≤ 1.0 ·105 ≤ 2.0 ·105

dedup 2,841 8,108 94,130

facesim 80,598 80,598 80,598

ferret 16 64 256

fluidanimate ≤ 3.5 ·104 ≤ 1.0 ·105 ≤ 3.0 ·105

freqmine 23 46 91

raytrace 1,980 8,040 32,400

streamcluster 4,096 8,192 16,384

swaptions 16 32 64

vips 475 (50) 1369 (74) 3612 (84)

x264 8 32 128

Table 5.3: Work units contained in the simulation inputs. The number of work units provided

by the inputs is an upper bound on the number of threads that can work concurrently. Any

other bounds on parallelism that are lower are given in parentheses.

Workloads with noticeably low amounts of work units are bodytrack, ferret, freq-

mine, swaptions and x264. Ferret processes image queries in parallel, which means

that the number of queries in the input limits the amount of cores it can use. This can be

as little as 16 for simsmall. The amount of parallelism in the simulation input sets of

swaptions is comparable. The smallest work unit for the program is a single swaption,

only 16 of which are contained in simsmall. X264 uses coarse-grain parallelism that as-

signs whole frames to individual threads. The number of possible cores the program can

use is thus restricted to the number of images in the input, which is only eight in the case

of simsmall. The number of work units that vips can simultaneously process is tech-

nically limited to the cumulative size of the output buffers, which can be noticeable on

larger CMPs. This limitation has been removed in later versions of vips and will proba-

bly disappear in the next version of PARSEC. The amount of parallelism contained in the

bodytrack inputs is limited by a vertical image pass during the image processing phase.

It was not artificially introduced by scaling, real-world inputs exhibit the same limitation.

It is therefore valid to use the simulation inputs on CMPs with more cores than the given

limit. The upper bound introduced by input scaling is given by the number of particles,

which is nearly two orders of magnitude larger. The natural limitation of parallelism dur-

115

CHAPTER 5. FIDELITY AND INPUT SCALING

ing the image processing phase should only become noticeable on CMPs with hundreds

of cores because image processing takes up only a minor part of the total execution time.

The bound on parallelism for canneal and fluidanimate is probabilistic and fluctuates

during runtime. It is guaranteed to be lower than the one given in Table 5.3 but should

always be high enough even for extremely large CMPs.

Input scaling can also have a noticeable effect on the working sets of a workload and

some reduction should be expected in most cases. However, the impact is significant in

the cases of ‘unbounded’ workloads [11], which are canneal, dedup, ferret, freqmine

and raytrace. A workload is unbounded if it has the qualitative property that its demand

for memory and thus working sets is not limited in practice. It should therefore never fully

fit into a conventional cache. Any type of input that requires less than all of main memory

must be considered scaled down. For example, raytracemoves a virtual camera through

a scene which is then visualized on the screen. Scenes can reach any size, and given

enough time each part of it can be displayed multiple times and thus create significant

reuse. This means the entire scene forms a single, large working set which can easily

reach a size of many gigabytes.

A scaled-down working set should generally not fit into a cache unless its unscaled

equivalent would also fit. Unfortunately larger working sets also affect program behavior

on machines with smaller caches because the miss rate for a given cache keeps growing

with the working set if the cache cannot fully contain it. Unlike for parallelism, exact

bounds on cache sizes are therefore not given. An impact on cache miss rates must be

expected for all cache sizes. Instead this effect is accounted for by including the cache

behavior for a range of cache sizes in the approximation error.

5.4 Validation of PARSEC Inputs

This section addresses the issue of accuracy of smaller input sets. It first describes the

used methodology and then reports the approximation error of the input sets relative to

the entire PARSEC benchmark suite.

116

CHAPTER 5. FIDELITY AND INPUT SCALING

5.4.1 Methodology

An ideal benchmark suite should consist of a diverse selection of representative real-

world programs with realistic inputs. As described in Section 5.2, an optimal selection

of inputs should minimize the deviation of the program behavior for a target time limit

while maintaining the diversity of the entire benchmark suite. Thus, analyzing and quan-

tifying program behavior is the fundamental challenge in measuring differences between

benchmarks and their inputs.

Program behavior can be viewed as an abstract, high-dimensional feature space of

potentially unlimited size. It manifests itself in a specific way such that it can be measured

in the form of characteristics when the program is executed on a given architecture. This

process can be thought of as taking samples from the behavior space at specific points

defined by a particular architecture-characteristic pair. Given enough samples an image

of the program behavior emerges.

A set of characteristics was measured for the PARSEC simulation inputs on a particu-

lar architecture. The data was then processed with principal component analysis (PCA) to

automatically eliminate highly correlated data. The result is a description of the program

and input behavior that is free of redundancy.

This work defines approximation error as the dissimilarity between different inputs

for the same program, as mentioned in Section 5.2. One can measure it by computing

the pairwise distances of the data points in PCA space. Approximation error is used as

the basic unit to measure how accurate a scaled input is for its program. To visualize

the approximation error of all benchmark inputs a dendrogram is used which shows the

similarity or dissimilarity of the various inputs with respect to each other.

This methodology to analyze program characteristics is the common method for sim-

ilarity analysis, but its application to analyze approximation errors is new. Measuring

characteristics on an ideal architecture is frequently used to focus on program proper-

ties that are inherent to the algorithm implementation and not the architecture [9, 11, 96].

PCA and hierarchical clustering have been in use for years as an objective way to quantify

similarity [28, 31, 42, 51, 73].

117

CHAPTER 5. FIDELITY AND INPUT SCALING

Program Characteristics

For the analysis of the program behavior a total of 73 characteristics were chosen that

were measured for each of the 39 simulation inputs of PARSEC 2.1, yielding a total of

2,847 sample values that were considered. This study focuses on the parallel behavior

of the multithreaded programs relevant for studies of CMPs. The characteristics chosen

encode information about the instruction mix, working sets and sharing behavior of each

program as follows:

Instruction Mix 25 characteristics that describe the breakdown of instruction types rel-

ative to the total amount of instructions executed by the program

Working Sets 8 characteristics encoding the working set sizes of the program by giving

the miss rate for different cache sizes

Sharing 40 characteristics describing how many lines of the total cache are shared and

how intensely the program reads or writes shared data

The working set and sharing characteristics were measured for a total of 8 different

cache sizes ranging from 1 MB to 128 MB to include information about a range of possi-

ble cache architectures. This approach guarantees that unusual changes in the data reuse

behavior due to varying cache sizes or input scaling are captured by the data. The range

of cache sizes that were considered has been limited to realistic sizes to make sure that

the results of this analysis will not be skewed towards unrealistic architectures.

Experimental Setup

To collect the characteristics of the input sets an ideal machine was simulated that can

complete all instructions within one cycle using Simics. An ideal machine architecture

was chosen because the focus of this study is on properties inherent to the program, not

in characteristics of the underlying architecture. The binaries which were used are the

official precompiled PARSEC 2.1 binaries that are publicly available on the PARSEC

website. The compiler used to generate the precompiled binaries was gcc 4.4.0.

An 8-way CMP with a single cache hierarchy level that is shared between all threads

was simulated. The cache is 4-way associative with 64 byte lines. The capacity of the

cache was varied from 1 MB to 128 MB to obtain information about the working set

118

CHAPTER 5. FIDELITY AND INPUT SCALING

sizes with the corresponding sharing behavior. Only the Region-of-Interest (ROI) of the

workloads was characterized.

Principal Component Analysis

Principal component analysis (PCA) is a mathematical method to transform a number of

possibly correlated input vectors into a smaller number of uncorrelated vectors. These

uncorrelated vectors are called the principal components (PC). PCA was employed in

the analysis because it is considered the simplest way to reveal the variance of high-

dimensional data in a low dimensional form.

To compute the principal components of the program characteristics, the data is first

mean-centered and normalized so it is comparable with each other. PCA is then used to

reduce the number of dimensions of the data. The resulting principal components have

decreasing variance, with the first PC containing the most amount of information and the

last one containing the least amount. The Kaiser’s Criterion was used to eliminate PCs

which do not contain any significant amount of information in an objective way. Only the

top PCs with eigenvalues greater than one are kept, which means that the resulting data

is guaranteed to be uncorrelated but to still contain most of the original information.

Approximation Error

All PARSEC inputs are scaled-down versions of a single real-world input, which means

the more similar an inputs is to a bigger reference input for the same program the smaller

is its approximation error. After the data has been cleaned up with PCA, this similarity

between any two PARSEC inputs can be measured in a straightforward manner by cal-

culating the Euclidean distance (or L2) between them. Inputs with similar characteristics

can furthermore be grouped into increasingly bigger clusters with hierarchical clustering.

This method assigns each input set to an initial cluster. It then merges the two most sim-

ilar clusters repeatedly until all input sets are contained in a single cluster. The resulting

structure can be visualized with a dendrogram.

Inputs which merge early in the dendrogram are very similar. The later inputs merge

the more dissimilar they are. Inputs for the same workload which preserve its character-

istics with respect to other programs in the suite should fully merge before they join with

inputs from any other benchmarks. Ideally all inputs for the same workload form their

119

CHAPTER 5. FIDELITY AND INPUT SCALING

own complete clusters early on before they merge with clusters formed by inputs of any

other workloads.

Limitations

All approximation errors are expressed relative to simlarge, the largest simulation input.

While it would be interesting to know how simlarge compares to native or even real-

world inputs, this information is of limited practical value because it is infeasible to use

even bigger inputs for most computer architecture studies. For the most part, benchmark

users are stuck with inputs of fairly limited size no matter how big their approximation

error is. Time constraints also limit the scope of this study because I believe the more

detailed behavior space exploration which becomes possible with simulation is more im-

portant than a more accurate reference point which would be feasible with experiments

on real machines.

5.4.2 Validation Results

The chosen characteristics of the inputs were studied with PCA. The results of this com-

parison are summarized by the dendrogram in Figure 5.2.

The dendrogram shows that the inputs of most workloads form their own, complete

clusters before they merge with inputs of other programs. That means that the inputs

preserve the characteristics of the program with respect to the rest of the suite. These

workloads are dedup, canneal, vips, x264, freqmine, fluidanimate, bodytrack,

swaptions and facesim.

The inputs for the benchmarks blackscholes, raytrace, streamcluster and ferret

merge with clusters formed by inputs of other programs before they can form their own,

complete cluster. This indicates that the input scaling process skewed the inputs in a way

that made the region in the characteristics space that corresponds to the workload over-

lap with the characteristics space of a different benchmark. This is somewhat less of an

issue for ferret, which simply overlaps with fluidanimate before its inputs can fully

merge. However, three inputs belonging to the simsmall input set merge significantly

later than all other inputs. These are the simsmall inputs for blackscholes, raytrace

and streamcluster. This indicates that these inputs not only start to be atypical for

120

CHAPTER 5. FIDELITY AND INPUT SCALING

0.1 0.2 0.3 0.4 0.5 0.6

facesim (simsmall)

facesim (simmedium)

facesim (simlarge)

blackscholes (simmedium)

blackscholes (simlarge)

swaptions (simsmall)

swaptions (simmedium)

swaptions (simlarge)

streamcluster (simmedium)

streamcluster (simlarge)

bodytrack (simsmall)

bodytrack (simmedium)

bodytrack (simlarge)

ferret (simsmall)

ferret (simmedium)

fluidanimate (simsmall)

fluidanimate (simmedium)

fluidanimate (simlarge)

ferret (simlarge)

raytrace (simmedium)

raytrace (simlarge)

streamcluster (simsmall)

raytrace (simsmall)

freqmine (simsmall)

freqmine (simmedium)

freqmine (simlarge)

x264 (simsmall)

x264 (simmedium)

x264 (simlarge)

vips (simsmall)

vips (simmedium)

vips (simlarge)

canneal (simsmall)

canneal (simmedium)

canneal (simlarge)

dedup (simsmall)

dedup (simmedium)

dedup (simlarge)

blackscholes (simsmall)

Linkage Distance

Figure 5.2: Fidelity of the PARSEC input sets. The figure shows the similarity of all inputs.

The approximation error is the lack of similarity between inputs for the same workload.

121

CHAPTER 5. FIDELITY AND INPUT SCALING

their workloads, they even become atypical for the entire suite. It is important to em-

phasize that this increase in diversity is not desirable because it is an artificial byproduct

of input scaling which does not represent real-world program behavior. In the case of

streamcluster the working sets change significantly as its inputs are scaled, as was

explained in the last section.

It is also worth mentioning which inputs merge late. While forming their own clusters

first, the inputs within the clusters for dedup, canneal, x264 and freqmine have a dis-

tance to each other in the dendrogram which is larger than half of the maximum distance

observed between any data points for the entire suite. In these cases there is still a signif-

icant amount of difference between inputs for the same workload, even though the inputs

as a whole remain characteristic for their program.

The same data is also presented in Figure 5.3. It shows directly what the distances be-

tween the three simulation inputs for each workload are without considering other inputs

that might be in the same region of the PCA space. The figure shows the approximation

error ai j of the simulation inputs, which is simply the distance from simlarge in this

case. As was explained earlier simlarge was chosen as reference point because it typi-

cally is the best input that is feasible to use for microarchitectural simulations. It is worth

mentioning that the data in Figure 5.3 follows the triangle inequality - the cumulative

distance from simsmall to simmedium and then from simmedium to simlarge is never

less than the distance from simsmall to simlarge.

The figure shows that the inputs for bodytrack, dedup, facesim, fluidanimate,

swaptions and vips have an approximation error that is below average, which means

they have a high degree of fidelity. This list includes nearly all benchmarks whose in-

puts could be scaled with linear input scaling. The inputs with the highest fidelity are

the ones for facesim. This is not surprising considering that the simulation inputs for

that workload have not been scaled at all and are, in fact, identical. The small differences

between the inputs that can be observed are caused by background activity on the simu-

lated machine. The inputs for blackscholes, canneal and freqmine have a very high

approximation error. These are workloads where linear input scaling has a direct effect

on their working sets or which are very difficult to scale.

122

CHAPTER 5. FIDELITY AND INPUT SCALING

� �

�
��
�
�
�
�
�
	
�

�

�
	
�
�
�
�
�
�

�
�
�
�

�
�

�

�
�
�

��
�

�
��

�

��

��
�
��
�
�
��
�

��

�
�
��

��
�
�
�
�

�
�

�
�
�
��
�

�

�
�
�
�
�
	
�
�

�
��
�

��
�
�

�

���

���

���

���

��

���

��!

��"

��#

�

$��������%�
$���
����

$���
�����%�
$�����&

$��������%�
$�����&

'
��
�
�
�

Figure 5.3: Approximation error of inputs. The approximation error or dissimilarity between

any two pairs of simulation inputs for the same workload is given by the distance between

the corresponding points in PCA space.

5.5 Input Set Selection

PARSEC is one of few benchmark suites which offers multiple scaled-down input ver-

sions for each workload that were derived from a single real-world input. This requires

users to select appropriate inputs for their simulation study. This section discusses how

to make this decision in practice.

As mentioned in Section 5.2.1, designing or selecting an input set is an optimization

problem which has the structure of the classical multiple-choice knapsack problem. In

practice, the simulation time budget T is often somewhat flexible. Thus, the problem

can be simplified to the fractional knapsack problem, for which a simple greedy heuristic

based on the benefit-cost ratio (BCR) leads to the optimal solution. With this approach

first the optimal order in which to select the inputs is determined, then the simulation

time budget is implicitly sized so that there is no need to take fractional inputs. The input

selection problem is furthermore expressed as a selection of upgrades over simsmall

to prevent the pathological case where the greedy heuristic chooses no input at all for a

given benchmark program. The cost in this case is the increase in instructions, which is

a reasonable approximation of simulation time. The task of the greedy algorithms is thus

to maximize error reduction relative to the increase of instructions for each input upgrade

over simsmall.

123

CHAPTER 5. FIDELITY AND INPUT SCALING

� �

�
��
�
�
�
�
�
	
�

�

�
	
�
�
�
�
�
�

�
�
�
�

�
�

�

�
�
�

��
�

�
��

�

��

��
�
��
�
�
��
�

��

�
�
��

��
�
�
�
�

�
�

�
�
�
��
�

�

�
�
�
�
�
	
�
�

�
��
�

��
�
�

�

���

���

���

���

��

���

��!

"�#���
�	�
����
����

"�#���
�	�
������#
$

%
&
�'
��
�
�

Figure 5.4: Benefit-cost ratio (BCR) of using the next larger input. The chart shows the

reduction in approximation error relative to the increase of cost in billion instructions. The

data for facesim had to be omitted due to a division by zero.

More formally, the benefit-cost ratio of upgrading from input k to input l of benchmark

i is BCRi(k, l) = −ail−aik
til−tik

. The negative value is used because the metric is derived from

the reduction of the approximation error, which is a positive benefit. The values for the

variables aik are simply the distances of the respective inputs from the corresponding

reference inputs of the simlarge input set, which is given in Figure 5.3. The values for

the cost tik can be measured directly by executing the workloads with the desired inputs

and counting the instructions. Figure 5.4 shows all relevant BCRs. As can be expected,

the data shows diminishing returns for upgrading to a more accurate input set: Making

the step from simsmall to simmedium is always more beneficial than making the step

from simmedium to simlarge.

As can be seen from the data, if simulation cost is considered there are three ob-

vious candidates which are interesting for an upgrade: Using simmedium instead of

simsmall is highly attractive for the workloads blackscholes, canneal and raytrace.

The benchmarks blackscholes and canneal are furthermore interesting for another up-

grade to the simlarge inputs, raytrace to a much lesser extent. The next tier of work-

loads with an attractive BCR is formed by bodytrack, dedup, ferret, fluidanimate,

streamcluster and swaptions. These workloads also show an increased benefit-cost

ratio for an upgrade from simsmall to simmedium. An interesting fact is that it is more

attractive to upgrade blackscholes, canneal and raytrace to simlarge first before

124

CHAPTER 5. FIDELITY AND INPUT SCALING

upgrading any other inputs to simmedium. This is primarily due to the fact that the in-

puts for these programs contain significantly fewer instructions than those of the other

benchmarks. Benchmark users should furthermore verify that all selected inputs are used

within their scope as defined in Section 5.3.3. If this is not the case it might be necessary

to create custom benchmark inputs, which is discussed in the next section.

5.6 Customizing Input Sets

The input sets of the PARSEC release are scaled for a wide range of evaluation or sim-

ulation cases. However, for specific purposes one may want to consider designing their

own input sets based on the methodology proposed in this chapter. This section presents

a guideline for customizing inputs for more parallelism, larger working sets or higher

communication intensity.

5.6.1 More Parallelism

The amount of work units available in an input can typically be directly controlled with

the linear component of the input. In almost all cases, the amount of parallelism can be

increased significantly so that enough concurrency is provided by the input to allow the

workload to stress CMPs with hundreds of cores. However, it is important to remember

that the amount of work units contained in an input are at best only potential parallelism.

It is likely that not all workloads will be able to scale well to processors with hundreds of

cores. Section 5.3.3 describes some technical limitations.

5.6.2 Larger Working Sets

It is straightforward to create massive working sets with PARSEC. The standard input

sets already provide fairly big working sets, but as mentioned in Section 5.3, linear input

scaling was used to aggressively reduce the input sizes of the simulation inputs. This

can significantly reduce working set sizes if the outer-most loop has a direct impact on

the amount of data that will be reused, which is especially true for benchmarks with

unbounded working sets.

125

CHAPTER 5. FIDELITY AND INPUT SCALING

The general approach to obtain a larger working set with a PARSEC program is to

first use complex input scaling to increase the amount of data that the program keeps in

memory and then guaranteeing enough reuse of the data by linear input scaling.

It is easy to underestimate the impact of increasing working set sizes on execution

time. It is known that program execution time grows at least linearly with the program’s

memory requirements because each item in memory has to be touched at least once. How-

ever, most programs use algorithms with complexities higher than linear, which means

increasing problem sizes may lead to a prohibitively long execution time. For example,

increasing the working set size of an algorithm which runs in O(N logN) time and re-

quires O(N) memory by a factor of eight will result in a 24-fold increase of execution

time. If the simulation of this workload took originally two weeks, it would now take

nearly a full year for a single run - more than most researchers are willing to wait.

5.6.3 Higher Communication Intensity

The most common approach to increase communication intensity is to reduce the size of

the work units for threads while keeping the total amount of work constant. For example,

the communication intensity of fluidanimate can be increased by reducing the volume

of a cell because communication between threads happens at the borders between cells.

However, this is not always possible in a straightforward manner because the size of a

work unit might be determined by the parallel algorithm or it might be hardwired in the

program so that it cannot be chosen easily.

The communication intensity is limited in nearly all lock-based parallel programs.

Communication among threads requires synchronization, which is already an expensive

operation by itself that can quickly become a bottleneck for the achievable speedup. Pro-

grams with high communication intensity are typically limited by a combination of syn-

chronization overhead, lock contention or load imbalance, which means that parallel pro-

grams have to be written with the goal to reduce communication to acceptable levels. The

PARSEC benchmarks are no exception to this rule.

126

CHAPTER 5. FIDELITY AND INPUT SCALING

5.7 Related Work

Closely related work falls into three categories [101]: reduced inputs, truncated execu-

tion, and sampling.

A popular method to reduce the number of simulated instructions of a benchmark is

called reduced inputs. The test and train input sets of the SPEC CPU2006 bench-

mark suite are sometimes used as a reduced version of its authoritative ref input set.

MinneSPEC [47] and SPEClite [91] are two alternative input sets for the SPEC CPU2000

suite that provide reduced inputs suitable for simulation. My work goes beyond previous

work by proposing a framework and employing a continuous scaling method to create

multiple inputs suitable for performance studies with varying degrees of fidelity and sim-

ulation cost.

Truncated execution takes a single block of instructions for simulation, typically from

the beginning (or close to the beginning) of the program. This method has been shown to

be inaccurate [101].

Sampling is a statistical simulation method that provides an alternative to reduced in-

puts. It selects small subsets of an instruction stream for detailed simulation [17, 20,

80, 97]. These sampling methods choose brief instruction sequences either randomly

or based on some form of behavior analysis. This can happen either offline or during

simulation via fast forwarding. Statistically sampled simulation can be efficient and ac-

curate [101], but it requires a sophisticated mechanism built into simulators.

The importance of limiting simulation cost while preserving accuracy has motivated

studies that compare sampling with reduced inputs. Haskins et al. concluded that both

approaches have their uses [33]. Eeckhout et al. showed that which method was superior

depended on the benchmark [50]. Finally, Yi et al. concluded that sampling should gener-

ally be preferred over reduced inputs [101]. These comparisons however did not consider

that the accuracy of either method is a function of the input size. My work provides the

framework to allow benchmark users to decide for themselves how much accuracy they

are willing to give up for faster simulations.

Another approach is statistical simulation [52, 68, 69]. The fundamental concept of

statistical simulation is to generate a new, synthetic instruction stream from a benchmark

program with the same statistical properties and characteristics. These statistical proper-

ties have to be derived by first simulating a workload in sufficient detail. The statistical

127

CHAPTER 5. FIDELITY AND INPUT SCALING

image obtained that way is then fed to a random instruction trace generator which drives

the statistical simulator.

5.8 Conclusions

This chapter presented a framework to scale input sets for a benchmark suite. The ap-

proach considers that benchmark inputs are approximations of real-world inputs that have

varying degrees of fidelity and cost. By employing concepts of mathematical approx-

imation theory and scientific modeling a methodology can be developed which allows

benchmark creators and users to reason about the inherent accuracy and cost trade-offs in

a systematic way.

The described work shows that the problem of choosing the best input size for a bench-

mark can be solved in an optimal way by expressing it as the multiple-choice knapsack

optimization problem. The inputs can then be selected by standard algorithms so that

benchmarking accuracy is maximized for a given time budget. For practical situations

the problem can be further simplified so that it can be solved optimally with a simple

greedy heuristic.

This chapter quantifies the approximation errors of multiple scaled input sets of the

PARSEC benchmark suite and suggests a sequence of input upgrades for users to achieve

higher simulation accuracies for their simulation time budgets. It also presents an analysis

of the constraints of the PARSEC simulation inputs to provide users with the scope of

architectures for which the inputs exhibit reasonably accurate behavior.

This chapter also gives guidelines for users to create their own input sets for PARSEC

benchmark programs with a scope more fitting for their specific simulation purpose. The

proposed scaling model is used to categorize the various input parameters of the PARSEC

benchmarks, which gives users a better understanding of the input creation process and

its impact on program behavior.

128

Chapter 6

Conclusions and Future Work

6.1 Conclusions

My dissertation has proposed a methodology to develop effective benchmarks for mul-

tiprocessors. During the course of my research I used the methodology to develop the

PARSEC benchmark suite which allows other researchers to use my work for their own

studies. An analysis of the use of benchmark programs at top-tier computer architecture

conferences shows that PARSEC has been widely accepted by other researchers who are

publishing results obtained with my proposed methodology.

A direct statistical comparison of PARSEC and SPLASH-2 shows significant system-

atic differences between the two suites which justifies the use of new benchmarks like the

ones included in PARSEC. These differences are largely driven by a shift in what con-

stitutes a typical shared-memory multiprocessor application. Both suites focus on work-

loads that are typical for their time: HPC and graphics programs in the case of SPLASH-2

and desktop and server programs in the case of PARSEC, which means that systematic

differences between these types of programs will also become differences between the

two suites.

To gain a better understanding of the nature of modern workloads I studied the charac-

teristics of PARSEC benchmarks in more detail. In my thesis I report details for the paral-

lelization, working set sizes, sharing behavior and off-chip traffic of those programs. The

presented data allows researchers to interpret results they have obtained with PARSEC

and what the requirements of the represented workloads for future chip multiprocessors

are.

129

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

For my research I also studied how to create realistic inputs for benchmark programs,

a necessary step for the creation of any type of workload. I proposed to consider bench-

mark inputs as approximations of real program inputs because the creation of benchmark

inputs usually necessitates changes that might alter the nature of the work done by the

program. Using standard methods of scientific modeling and approximation theory I de-

veloped methods that can be used to quantify the approximation error and to select input

approximations in a way that optimizes accuracy subject to a restricted execution time

budget. These methods can be used by benchmark creators and users alike to determine

the desired degree of input fidelity and cost.

The presented methodology can be reused to create new benchmark suites that give

scientists a higher degree of confidence in their experimental results than existing ap-

proaches.

6.2 Future Work

Future work could build on my research by increasing the number and type of applications

included in PARSEC to achieve more diversity and give scientists more choice. PARSEC

focuses on desktop and server applications, future releases could also include different

domains such as workloads for embedded devices, middleware or other types of software.

In a similar way the requirements of emerging applications for metrics other than

performance are currently not fully understood. Especially at the frontier of computer

development, in areas such as cloud or ubiquitous computing, the requirements of appli-

cations often reach the limits of technology. Examples are reliability of data warehouses

or energy consumption of smart sensors.

Another area for future work is the programming model for next-generation shared-

memory multiprocessors such as transactional memory. Developing parallel programs is

significantly more challenging than writing serial code and a method to do so without ma-

jor limitations has not yet been discovered. Most PARSEC workloads already implement

multiple threading models among which benchmark users can choose. This selection al-

lows comparative studies of the impact of the threading model on the workload, which

might help to determine the impact of this choice.

130

Bibliography

[1] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, and D. Sorin. Evaluat-

ing Non-Deterministic Multi-Threaded Commercial Workloads. In Proceedings

of the Fifth Workshop on Computer Architecture Evaluation using Commercial

Workloads, February 2002.

[2] A. Alameldeen and D. Wood. Variability in Architectural Simulations of Multi-

threaded Workloads. In Proceedings of the 9th International Symposium on High-

Performance Computer Architecture, February 2003.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and

S. Weeratunga. The NAS Parallel Benchmarks. International Journal of High

Performance Computing Applications, 5(3):63, 1991.

[4] M. P. Bailey and W. G. Kemple. The Scientific Method of Choosing Model Fi-

delity. In Proceedings of the 24th Conference on Winter Simulation, pages 791–

797, New York, NY, USA, 1992. ACM.

[5] A. Balan, L. Sigal, and M. Black. A Quantitative Evaluation of Video-based 3D

Person Tracking. In IEEE Workshop on VS-PETS, pages 349–356, 2005.

[6] P. Banerjee. Parallel Algorithms for VLSI Computer-Aided Design. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1994.

[7] J. Barnes and P. Hut. A Hierarchical O(N log N) Force-Calculation Algorithm.

Nature, 324:446–449, December 1986.

131

[8] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory System Characterization

of Commercial Workloads. In Proceedings of the 25th International Symposium

on Computer Architecture, pages 3–14, June 1998.

[9] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative Com-

parison of Two Multithreaded Benchmark Suites on Chip-Multiprocessors. In

Proceedings of the 2008 International Symposium on Workload Characterization,

September 2008.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications. Technical Report TR-811-08, Prince-

ton University, January 2008.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications. In Proceedings of the 17th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, October

2008.

[12] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite for Chip-

Multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling, Bench-

marking and Simulation, June 2009.

[13] C. Bienia and K. Li. Characteristics ofWorkloads Using the Pipeline Programming

Model. In Proceedings of the 3rd Workshop on Emerging Applications and Many-

core Architecture, June 2010.

[14] C. Bienia and K. Li. Fidelity and Scaling of the PARSEC Benchmark Inputs. In

Proceedings of the 2010 International Symposium on Workload Characterization,

December 2010.

[15] F. Black andM. Scholes. The Pricing of Options and Corporate Liabilities. Journal

of Political Economy, 81:637–659, 1973.

[16] S. Brin, J. Davis, and H. Garcia-Molina. Copy Detection Mechanisms for Digital

Documents. In Proceedings of Special Interest Group on Management of Data,

1995.

132

[17] P. D. Bryan, M. C. Rosier, and T. M. Conte. Reverse State Reconstruction for Sam-

pled Microarchitectural Simulation. International Symmposium on Performance

Analysis of Systems and Software, pages 190–199, 2007.

[18] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-

han. Brook for GPUs: Stream Computing on Graphics Hardware. In International

Conference on Computer Graphics and Interactive Techniques 2004, pages 777–

786, New York, NY, USA, 2004. ACM.

[19] D. Citron. MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in

Computer Architecture Conferences. In Proceedings of the 30th International

Symposium on Computer Architecture, pages 73–77, June 2003.

[20] T. Conte, M. Ann, H. Kishore, and N. Menezes. Reducing State Loss for Effective

Trace Sampling of Superscalar Processors. In Proceedings of the 1996 Interna-

tional Conference on Computer Design , pages 468–477, 1996.

[21] G. Contreras and M. Martonosi. Characterizing and Improving the Performance of

the Intel Threading Building Blocks Runtime System. In International Symposium

on Workload Characterization, September 2008.

[22] M. Desbrun and M.-P. Gascuel. Smoothed Particles: A New Paradigm for Animat-

ing Highly Deformable Bodies. In Proceedings of the 6th Eurographics Workshop

on Computer Animation and Simulation, pages 61–76, August 1996.

[23] J. Deutscher and I. Reid. Articulated Body Motion Capture by Stochastic Search.

International Journal of Computer Vision, 61(2):185–205, February 2005.

[24] P. Dubey. Recognition, Mining and Synthesis Moves Computers to the Era of Tera.

Technology@Intel Magazine, February 2005.

[25] K. Dudzinski and S. Walukiewicz. Exact Methods for the Knapsack Problem and

its Generalizations. European Journal of Operations Research, 28(1):3–21, 1987.

[26] G. Dunteman. Principal Component Analysis. Sage Publications, 1989.

[27] Elephants Dream. Available at http://www.elephantsdream.org/, 2006.

133

[28] R. Giladi and N. Ahituv. SPEC as a Performance Evaluation Measure. Computer,

28(8):33–42, 1995.

[29] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-Grained Task,

Data, and Pipeline Parallelism in Stream Programs. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 151–162, New York, NY, USA, 2006. ACM.

[30] G. Grahne and J. Zhu. Efficiently Using Prefix-Trees in Mining Frequent Item-

sets. In Proceedings of the Workshop on Frequent Itemset Mining Implementations,

November 2003.

[31] H. Vandierendonck and K. De Bosschere. Many Benchmarks Stress the Same Bot-

tlenecks. In Workshop on Computer Architecture Evaluation Using Commercial

Workloads, pages 57–64, 2 2004.

[32] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.

In W. Chen, J. Naughton, and P. A. Bernstein, editors, Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, pages 1–12.

ACM Press, 05 2000.

[33] J. W. Haskins, K. Skadron, A. J. Kleinosowski, and D. J. Lilja. Techniques for Ac-

curate, Accelerated Processor Simulation: Analysis of Reduced Inputs and Sam-

pling. Technical report, University of Virginia, Charlottesville, VA, USA, 2002.

[34] D. Heath, R. Jarrow, and A. Morton. Bond Pricing and the Term Structure of Inter-

est Rates: A New Methodology for Contingent Claims Valuation. Econometrica,

60(1):77–105, January 1992.

[35] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 2003.

[36] L. Hernquist and N. Katz. TreeSPH - A Unification of SPH with the Hierarchical

Tree Method. The Astrophysical Journal Supplement Series, 70:419, 1989.

[37] W. D. Hillis and G. L. Steele. Data-Parallel Algorithms. Communications of the

ACM, 29(12):1170–1183, 1986.

134

[38] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle,

J. Chhugani, M. Holliman, and Y.-K. Chen. Physical Simulation for Animation

and Visual Effects: Parallelization and Characterization for Chip Multiprocessors.

SIGARCH Computer Architecture News, 35(2):220–231, 2007.

[39] J. C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, 2005.

[40] Intel. Threading Building Blocks. Available at http://www.

threadingbuildingblocks.org/, 2008.

[41] A. Jaleel, M.Mattina, and B. Jacob. Last-Level Cache (LLC) Performance of Data-

Mining Workloads on a CMP - A Case Study of Parallel Bioinformatics Work-

loads. In Proceedings of the 12th International Symposium on High Performance

Computer Architecture, February 2006.

[42] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring Benchmark Sim-

ilarity Using Inherent Program Characteristics. IEEE Transactions on Computers,

28(8):33–42, 1995.

[43] K. Hoste and L. Eeckhout. Comparing Benchmarks Using Key Microarchitecture-

Independent Characteristics. In Proceedings of the IEEE International Symposium

on Workload Characterization 2006, pages 83–92, 2006.

[44] J. T. Kajiya. The Rendering Equation. In Proceedings of the 13th Annual Con-

ference on Computer Graphics and Interactive Techniques, pages 143–150, New

York, NY, USA, 1986. ACM.

[45] R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-Matching Algorithms.

IBM Journal of Research and Development, 31(2):249–260, 1987.

[46] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,

B. Towles, A. Chang, and S. Rixner. Imagine: Media Processing with Streams.

IEEE Micro, 21(2):35–46, 2001.

[47] A. J. Kleinosowski and D. J. Lilja. MinneSPEC: A New SPEC Benchmark Work-

load for Simulation-Based Computer Architecture Research. Computer Architec-

ture Letters, 1, 2002.

135

[48] D. J. Kuck. A Survey of Parallel Machine Organization and Programming. ACM

Computing Surveys, 9(1):29–59, 1977.

[49] M. Kudlur and S. Mahlke. Orchestrating the Execution of Stream Programs on

Multicore Platforms. SIGPLAN Notices, 43(6):114–124, 2008.

[50] L. Eeckhout and A. Georges and K. De Bosschere. Selecting a Reduced but Rep-

resentative Workload. In Middleware Benchmarking: Approaches, Results, Expe-

riences. OOSPLA workshop, 2003.

[51] L. Eeckhout and H. Vandierendonck and K. De Bosschere. Quantifying the Im-

pact of Input Data Sets on Program Behavior and its Applications. Journal of

Instruction-Level Parallelism, 5:1–33, 2003.

[52] L. Eeckhout and S. Nussbaum and J. E. Smith and K. De Bosschere. Statistical

Simulation: Adding Efficiency to the Computer Designer’s Toolbox. IEEE Micro,

23:26–38, 2003.

[53] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communicatons Systems. In Pro-

ceedings of the 30th Annual ACM/IEEE International Symposium on Microarchi-

tecture, pages 330–335, Washington, DC, USA, 1997. IEEE Computer Society.

[54] K. Li and J. F. Naughton. Multiprocessor Main Memory Transaction Processing.

In Proceedings of the First International Symposium on Databases in Parallel and

Sistributed Systems, pages 177–187, Los Alamitos, CA, USA, 1988. IEEE Com-

puter Society Press.

[55] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The ALPBench

Benchmark Suite for Complex Multimedia Applications. In Proceedings of

the IEEE International Symposium on Workload Characterization 2005, October

2005.

[56] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and Computation Transforma-

tions for Brook Streaming Applications on Multiprocessors. In Proceedings of the

International Symposium on Code Generation and Optimization, pages 196–207,

Washington, DC, USA, 2006. IEEE Computer Society.

136

[57] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. WebDocs: A Real-Life Huge

Transactional Dataset. In 2nd IEEE ICDM Workshop on Frequent Itemset Mining

Implementations 2004, November 2004.

[58] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Janapa,

and R. K. Hazelwood. Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 190–200. ACM

Press, June 2005.

[59] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A Toolkit for

Content-Based Similarity Search of Feature-Rich Data. In Proceedings of the 2006

EuroSys Conference, pages 317–330, 2006.

[60] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-Probe LSH: Efficient

Indexing for High-Dimensional Similarity Search. In Proceedings of the 33rd

International Conference on Very Large Data Bases, pages 950–961, 2007.

[61] U. Manber. Finding Similar Files in a Large File System. In Proceedings of the

USENIXWinter 1994 Technical Conference, pages 1–10, San Fransisco, CA, USA,

October 1994.

[62] K. Martinez and J. Cupitt. VIPS - A Highly Tuned Image Processing Software

Architecture. In Proceedings of the 2005 International Conference on Image Pro-

cessing, volume 2, pages 574–577, September 2005.

[63] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally

Equidistributed Uniform Pseudo-Random Number Generator. In ACM Transac-

tions on Modeling and Computer Simulation, volume 8, pages 3–30, January 1998.

[64] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid Simulation for Inter-

active Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 154–159, Aire-la-Ville, Switzerland,

Switzerland, 2003. Eurographics Association.

[65] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. N. Choudhary.

MineBench: A Benchmark Suite for Data Mining Workloads. In Proceedings

137

of the IEEE International Symposium on Workload Characterization 2006, pages

182–188, 2006.

[66] R. M. Nauss. The 0-1 Knapsack Problem with Multiple-Choice Constraints. Eu-

ropean Journal of Operations Research, 2(2):125–131, 1978.

[67] R. Nock and F. Nielsen. Statistical Region Merging. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26:1452–1458, 2004.

[68] S. Nussbaum and J. E. Smith. Modeling Superscalar Processors via Statistical

Simulation. In Proceedings of the 2001 International Conference on Parallel Ar-

chitectures and Compilation Techniques, pages 15–24, Washington, DC, USA,

2001. IEEE Computer Society.

[69] S. Nussbaum and J. E. Smith. Statistical Simulation of Symmetric Multiprocessor

Systems. In Proceedings of the 35th Annual Simulation Symposium, page 89,

Washington, DC, USA, 2002. IEEE Computer Society.

[70] L. O’Callaghan, A. Meyerson, R. M. N. Mishra, and S. Guha. High-Performance

Clustering of Streams and Large Data Sets. In Proceedings of the 18th Interna-

tional Conference on Data Engineering, February 2002.

[71] OpenMP Architecture Review Board. OpenMP Application Program Interface.

Available at http://www.openmp.org/, 2008.

[72] G. Ottoni, R. Rangan, A. Stoler, and D. August. Automatic Thread Extraction with

Decoupled Software Pipelining. In Proceedings of the 38th Annual International

Symposium on Microarchitecture, page 12, 2005.

[73] A. Phansalkar, A. Joshi, and L. K. John. Analysis of Redundancy and Application

Balance in the SPEC CPU2006 Benchmark Suite. In Proceedings of the 34th

Annual International Symposium on Computer Architecture, pages 412–423, New

York, NY, USA, 2007. ACM.

[74] D. Pisinger. A Minimal Algorithm for the Multiple-Choice Knapsack Problem.

European Journal of Operational Research, 83:394–410, 1994.

[75] D. Pnueli and C. Gutfinger. Fluid Mechanics. Cambridge University Press, 1992.

138

[76] S. Quinlan and S. D. Venti. A New Approach to Archival Storage. In Proceedings

of the USENIX Conference on File And Storage Technologies, January 2002.

[77] M. Rabin. Fingerprinting by Random Polynomials. Technical Report TR-15-81,

Harvard University, 1981.

[78] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August. Decoupled Soft-

ware Pipelining with the Synchronization Array. In Proceedings of the 13th Inter-

national Conference on Parallel Architecture and Compilation Techniques, pages

177–188, 2004.

[79] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a Metric

for Image Retrieval. International Journal of Computer Vision, 40:99–121, 2000.

[80] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Charac-

terizing Large-Scale Program Behavior. In Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 45–57, New York, NY, USA, 2002. ACM.

[81] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Determination of Facial Mus-

cle Activations from Sparse Motion Capture Marker Data. ACM Transactions on

Graphics, 24(3):417–425, 2005.

[82] P. Sinha and A. A. Zoltners. The Multiple-Choice Knapsack Problem. Operations

Research, 27(3):503–515, 1979.

[83] SPEC CPU2006. Available at http://www.spec.org/cpu2006/, 2006.

[84] SPEC OMP2001. Available at http://www.spec.org/cpu2001/, 2001.

[85] N. T. Spring and D. Wetherall. A Protocol-Independent Technique for Eliminating

Redundant Network Traffic. In Proceedings of ACM SIGCOMM, August 2000.

[86] A. Srivastava and A. Eustace. ATOM: A System for Building Customized Pro-

gram Analysis Tools. In Proceedings of the 1994 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 196–205. ACM, June

1994.

139

[87] J. Subhlok and G. Vondran. Optimal Latency-Throughput Tradeoffs for Data Par-

allel Pipelines. In Proceedings of the Eighth Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 62–71, New York, NY, USA, 1996. ACM.

[88] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust Quasistatic Finite Elements

and Flesh Simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 181–190, New York, NY, USA, 2005.

ACM Press.

[89] The Open Group and IEEE. IEEE Std 1003.1, 2004.

[90] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A Practical Approach to Ex-

ploiting Coarse-Grained Pipeline Parallelism in C Programs. In Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

356–369, Washington, DC, USA, 2007. IEEE Computer Society.

[91] R. Todi. SPEClite: Using Representative Samples to Reduce SPEC CPU2000

Workload. In Proceedings of the 2001 IEEE International Workshop of Workload

Characterization, pages 15–23, Washington, DC, USA, 2001. IEEE Computer So-

ciety.

[92] D. Vatolin, D. Kulikov, and A. Parshin. MPEG-4 AVC/H.264 Video Codecs Com-

parison. Available at http://compression.ru/video/codec_comparison/

pdf/msu_mpeg_4_avc_h264_codec_comparison_2007_eng.pdf, 2007.

[93] L. Verlet. Computer Experiments on Classical Fluids. I. Thermodynamical Prop-

erties of Lennard-Jones Molecules. Physical Review, 159:98–103, 1967.

[94] T. Whitted. An Improved Illumination Model for Shaded Display. Commun. ACM,

23(6):343–349, 1980.

[95] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the

H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560–576, 2003.

[96] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations. In Proceedings of

140

the 22nd International Symposium on Computer Architecture, pages 24–36, June

1995.

[97] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Accelerating

Microarchitecture Simulation via Rigorous Statistical Sampling. In Proceedings of

the 30th Annual International Symposium on Computer Architecture, pages 84–97,

2003.

[98] G. Xu. A New Parallel N-Body Gravity Solver: TPM. The Astrophysical Journal

Supplement Series, 98:355, 1995.

[99] T. Y. Yeh, P. Faloutsos, S. Patel, and G. Reinman. ParallAX: An Architecture

for Real-Time Physics. In Proceedings of the 34th International Symposium on

Computer Architecture, June 2007.

[100] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. K. John. Evaluating

Benchmark Subsetting Approaches. In Proceedings of the International Sympo-

sium on Workload Characterization, pages 93–104, October 2006.

[101] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Characterizing

and Comparing Prevailing Simulation Techniques. In Proceedings of the 11th In-

ternational Symposium on High-Performance Computer Architecture, pages 266–

277, Washington, DC, USA, 2005. IEEE Computer Society.

141

