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Sparse Approximation and Compressed Sensing
Using the Reed-Muller Sieve

Robert Calderbank, Stephen Howard, Sina Jafarpour, and Jeremy Kent

Abstract—This paper introduces the Witness-Averaging Algo-
rithm for sparse reconstruction using the Reed Muller sieve.
The Reed-Muller sieve is a deterministic measurement matrix
for compressed sensing. The columns of this matrix are obtained
by exponentiating codewords in the quaternary second order
Reed Muller code of length N . For k = Õ (N), the Witness-
Averaging improves upon prior methods for identifying the
support of a k-sparse vector by removing the requirement that the
signal entries be independent, and by providing computational
efficiency. It also enables local detection; that is, the proposed
algorithm detects the presence or absence of a signal at any given
position in the data domain without explicitly reconstructing the
entire signal. Reconstruction is shown to be resilient to noise in
both the measurement and data domains; the average-case `2/`2

error bounds derived in this paper are tighter than the worst-case
`2/`1 bounds arising from random ensembles.

Index Terms—Compressed Sensing, Reed-Muller Sieve,
Support-Localized Detection, Delsarte-Goethals Codes, The
Probabilistic Method

I. INTRODUCTION

The central goal of compressed sensing is to capture at-
tributes of a signal using very few measurements. In most work
to date, this broader objective is exemplified by the important
special case in which the measurement data constitute a vector
f = Φα+ e, where Φ is an N × C matrix called the sensing
matrix, α is a vector in CC which can be well-approximated
by a vector with at most k non-zero entries (a k-sparse vector),
and e is additive measurement noise.

The role of random measurement in compressive sensing
(see [1] and [2]) can be viewed as analogous to the role
of random coding in Shannon theory. Both provide worst-
case performance guarantees in the context of an adversarial
signal/error model. In the standard paradigm, the measurement
matrix is required to act as a near isometry on all k-sparse
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signals (this is the Restricted Isometry Property or RIP intro-
duced in [3]). Although it is known that certain probabilistic
processes generate N × C measurement matrices that satisfy
the RIP with high probability, there is no practical algorithm
for verifying whether a given measurement matrix has this
property. Storing the entries of a random sensing matrix may
also require significant resources.

Basis Pursuit [1], [4], [5], Matching Pursuit [6]–[9], and Be-
lief Propagation algorithms [10]–[12] can be used to recover a
k-sparse signal from the N measurements using a RIP matrix.
However, these algorithms only provide sparse approximation
and there is no guarantee that they recover the support of the
original sparse signal in the presence of noise.

The Reed Muller sieve is a deterministic sensing matrix.
The columns are obtained by exponentiating codewords in the
quaternary second order Reed Muller code; they are uniformly
and very precisely distributed over the surface of an N -
dimensional sphere. Coherence between columns reduces to
properties of these algebraic codes and we use these properties
to show that recovery of k-sparse signals is possible with high
probability.

The deterministic structure of the Reed-Muller sieve pro-
vides restrictive and efficient reconstruction algorithms. When
the sparsity level k = Õ

(√
N
)

1, recovery is possible using
the “quadratic reconstruction algorithm” presented in [13] and
the reconstruction complexity is only Õ(kN). The prospect
of designing matrices for which very fast recovery algorithms
are possible is one of the motivations for deterministic com-
pressive sensing. When the sparsity level k = Õ(N) recovery
is possible using the algorithm described in this paper.

Nevertheless, reconstruction of a signal from sensor data is
often not the ultimate goal and it is of considerable interest in
imaging to be able to deduce attributes of the signal from the
measurements without explicitly reconstructing the full signal.
In particular, there are many important applications where the
objective is to identify the signal model (the support of the
signal α). These include network anomaly detection where
the objective is to characterize anomalous flows and cognitive

1Throughout this paper the notation Õ is used to avoid rewriting the
constant and poly-log terms.
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radio where the objective is to characterize spectral occupancy.
The Reed Muller sieve improves on results obtained by Candès
and Plan [14] in that for k = Õ(N) it is able to identify
the signal model without requiring that the signal entries
have independent random sign. We also show that the Reed
Muller sieve is able to detect the presence or absence of
a signal at any given position in the data domain without
needing to first reconstruct the entire signal. The complexity of
such detection is N2 logN . This makes it possible to quickly
calculate thumbnail images and to zoom in on areas of interest.

There are two models for evaluating noise resilience in
compressive sensing. We provide an average case error anal-
ysis for both the stochastic model where noise in the data
and measurement domains is usually taken to be iid white
Gaussian, and the deterministic model where the goal is to
approximate a compressible signal. It is the geometry of the
sieve, more precisely the careful design of coherence between
columns of the measurement matrix, which provides resilience
to noise in both the measurement and the data domain. Our
analysis points to the importance of both the average and the
worst-case coherence.

We show that the `2 error in reconstruction is bounded above
by the `2 error of the best k-term approximation. This type
of `2/`2 bound is tighter than the `2/`1 bounds arising from
random ensembles [1], [7] and the `1/`1 bounds arising from
expander-based ensembles [15], [16]. We emphasize that our
error bound is for average-case analysis, whereas the results
obtained by Cohen et. al. [17] show that worst-case `2/`2

approximation is not achievable unless N = O(C).

Note that the average-case `2/`2 bound is also achievable by
sensing matrices constructed from hash functions [18], [19];
however, the construction of those matrices is randomized,
whereas the sensing matrices proposed in this paper have
explicit constructions. Table I summarizes the comparison of
the proposed Witness-Averaging Algorithm with prior work.

Outline. The rest of the paper is organized as follows:
Section §II clarifies the notations used in the paper. In
Section §III we introduce the Delsarte-Goethals sieves; we
further analyze the average and worst-case coherence of these
matrices. Section §IV tightens the StRIP bounds introduces
by Calderbank, Howard and Jafarpour [13], and generalizes
the results to arbitrary functions. In Section §V we introduce
the witness-averaging algorithm and its sparse reconstruction
guarantees. Sections §VI proves the main results of this paper.
Section §VII provides experimental results comparing the
proposed algorithm with the state of the art compressive
sensing algorithms in the literature. Section §VIII concludes
the paper.

II. BACKGROUND AND NOTATION

This Section introduces notation and reviews the theory of
sparse reconstruction. In this paper we focus on average case
analysis.

A. Notation

Given a vector v = (v1, · · · , vn) in Rn, ‖v‖2 denotes the
Euclidean norm of v, and ‖v‖1 denotes the `1 norm of v
defined as ‖v‖1

.=
∑n
i=1 |vi|. We further define ‖v‖∞

.=
max {|v1|, · · · , |vn|}, and ‖v‖min

.= min {|v1|, · · · , |vn|}.
Also the Hamming weight of v is defined as ‖v‖0

.= {i : vi 6=
0}. Whenever it is clear from the context, we drop the subscript
from the `2 norm. Also vi→j denotes the vector v restricted
to entries i, i+1, · · · , j, that is vi→j

.= (vi, vi+1, · · · , vj). Let
A be a matrix with rank r. We denote the conjugate transpose
of A by A†. Let σ = [σ1, · · · , σr] denote the vector of the
singular values of A. The spectral norm ‖A‖ of a matrix A is
the largest singular value of A: that is ‖A‖ .= ‖σ‖∞.

Throughout this paper we shall use the notation ϕj for the
jth column of the sensing matrix Φ; its entries will be denoted
by ϕj(x), with the row label x varying from 0 to N − 1. In
other words, ϕj(x) is the entry of Φ in row x and column j.
We denote the set {1, · · · .C} by [C]. Given a subset S of [C],
the matrix obtained by restricting Φ to the columns in S is
denoted ΦS . The indicator function δa,b is defined by

δa,b =

{
1 if a=b
0 otherwise

A vector α ∈ CC is k-sparse if it has at most k non-
zero entries. The support of the k-sparse vector α, denoted
by Supp(α), contains the indices of the non-zero entries of α.
Let π = {π1, · · · , πC} be a uniformly random permutation of
[C]. Up to section §V we always assume that α is a k-sparse
signal with Supp(α) = {π1, · · · , πk}. We further assume that
conditioned on the support, the values of the k non-zero entries
of α are sampled from a distribution which is absolutely
continuous with respect to the Lebesgue measure on Rk. The
Minimum to Average Ratio (MAR) of a k-sparse signal is
defined as MAR(α) .= k ‖α‖2min

‖α‖2 . This means that MAR(α)
is the ratio of the energy in the smallest nonzero entry of
alpha to the average signal energy per nonzero entry.

Remark 1. From Section §V onwards we consider general
vectors α ∈ CC . We generalize the average case analysis
to a non-sparse vector α as follows: Let π = {π1, · · · , πC}
be a uniformly random permutation of [C]. Without loss of
generality, we can assume that the entries of α are sorted
by there magnitudes and the columns of the sensing matrix
Φ are randomly permuted by π. Therefore, for every index i,
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TABLE I
COMPARISON OF THE WITNESS-AVERAGING ALGORITHM WITH PRIOR APPROACHES USED IN SPARSE RECOVERY AND COMPRESSED SENSING. FOR

EACH APPROACH, ONLY ONE REFERENCE IS PROVIDED AND THE READER IS ENCOURAGED TO SEE THAT REFERENCE FOR FURTHER RELATED WORK. TO

PRESERVE SPACE, ALL CONSTANTS ARE DROPPED FROM THE “NUMBER OF MEASUREMENTS” AND “RECOVERY TIME” COLUMNS. A RECONSTRUCTION

ALGORITHM PROVIDES `p/`q NOISE-TOLERANCE IF FOR EVERY SIGNAL IN THE SIGNAL MODEL, THE `p ERROR IN RECOVERY IS BOUNDED ABOVE BY

THE `q ERROR OF THE BEST k-TERM APPROXIMATION OF THE SIGNAL.

Sensing Recovery Number of Recovery Noise Explicit Signal
Matrix Algorithm Measurements Time Tolerance Construction Model

RS Codes [20] Algebraic k k2 No Yes Worst-Case

Gaussian [1] Basis Pursuit k log
“
C
k

”
C3 `2/`1 No Worst-Case

Gaussian [21] Dantzig Selector k log
“
C
k

”
C3 `2/`1 No Worst-Case

Gaussian [7] Greedy k log
“
C
k

”
kC log

“
C
k

”
`2/`1 No Worst-Case

Expander [15] Greedy k log
“
C
k

”
C log

“
C
k

”
`1/`1 No Worst-Case

RM Frame [22] LASSO k log (C) C3 `2/`2 Yes Average-Case
Hashing [18] Group Testing k log5 (C) k log5 (C) `2/`2 No Average-Case

Expander [15] Greedy k logΩ(1)
“
C
k

”
C log

“
C
k

”
`1/`1 Yes Worst-Case

Extractor [23] Basis Pursuit k1.9 C3 `2/`1 Yes Worst-Case
Toeplitz [24] Basis Pursuit k2 C3 `2/`1 Yes Worst-Case

RM sieve Witness-Averaging k log2 C kC log2 C `2/`2 Yes Average-Case

αi (which is the ith largest entry of α), corresponds to the
πthi column of the matrix. The vector α1→k denotes the best
k-term approximation of α.

Big O notation. Throughout the paper the notation � and
� will be used to provide an upper bound on the growth rate
of functions. Thus A � B and B � A if A = O(B). We
shall also use Poly(C) to denote CO(1). More precisely, the
term “with probability 1−O

(
1

Poly(C)

)
, A � B” is equivalent

to the statement “for every positive τ there exists a constant
κ(τ) such that Pr [A > κ(τ)B] ≤ 1

Cτ .”

Group Theory. In this paper, we are interested in deter-
ministic sensing matrices for which the columns form a group
G under pointwise multiplication. The multiplicative identity
is the column 1 with every entry equal to 1. The following
property is fundamental.

Lemma 2. If every row contains some entry not equal to 1,
then the column group G satisfies

∑
g∈G g = 0

Proof: Given a row x and an element f(x) 6= 1, we have

f(x)

(∑
g

g(x)

)
=
∑
g

(f(x)g(x)) =
∑
g

g(x).

B. Incoherent Dictionaries

An N × C matrix Φ with normalized columns is called
a dictionary. The two fundamental measures of coherence
between the columns of Φ are defined as [25]:

• Worst-case Coherence:

µ
.= max

i 6=j

∣∣∣ϕ†iϕj∣∣∣ .
• Average Coherence:

ν
.=

1
C − 1

max
i

∣∣∣∣∣∣
∑
j:j 6=i

ϕ†iϕj

∣∣∣∣∣∣ .
The following results are due to Tropp [26] and show that
with overwhelming probability the `0 minimization program
successfully recovers the original k-sparse signal.

Theorem 3. Assume the dictionary Φ satisfies µ ≤ c
log C ,

where c is an absolute constant. Further assume k ≤
c C

‖Φ‖2 log C . Let S be a random subset of [C] of size k, and
let ΦS be the corresponding N × k submatrix. Then there
exists an absolute constant c0 such that

Pr

[∥∥∥Φ†SΦS − I
∥∥∥ ≥ c0(µ log C + 2

√
‖Φ‖2 k
C

)]
≤ 2 C−1.

Theorem 4. Assume the dictionary Φ satisfies µ ≤ c
log C ,

where c is an absolute constant. Further assume k ≤
c C

‖Φ‖2 log C . Let α be a k-sparse vector, such that the support
of the k nonzero entries of α is selected uniformly at random.
Then with probability 1−O

(
C−1

)
, α is the unique k-sparse

vector mapped to u = Φα by the measurement matrix Φ.

III. THE REED-MULLER SIEVE

A. Delsarte-Goethals Sieves

The Delsarte-Goethals sieve is a measurement matrix in-
troduced by Calderbank, Howard, and Jafarpour [22], [27].
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It is parametrized by two integers (m, r), where m is an
odd number, r is between 0 and m−1

2 . The matrix has
N

.= 2m −m− 1 rows and C .= 2(r+1)m columns. The rows
of the sensing matrix Φ are indexed by the binary m-tuples
x (where x /∈ {0, 1, 2, 4, · · · , 2m−1} ), and the C columns
are indexed by matrices P , where P is an m × m binary
symmetric matrix in the Delsarte-Goethals set DG(m, r). The
entry ϕP (x) is given by

ϕP (x) =
1√
N
ıxPx

>
. (1)

All entries in x and P are 0 or 1, but the exponent xPx> is
calculated in the ring of integers modulo 4. In fact the vector
(xPx>) is a codeword in the Delsarte-Goethals code (defined
over the ring of integers modulo 4). The Delsarte-Goethals set
DG(m, r) is a binary vector space containing 2(r+1)m binary
symmetric matrices P with the property that the difference of
any two distinct matrices has rank at least m − 2r. The first
set DG(m, 0) is the classical Kerdock set, and the last set
DG(m, (m−1)/2) is the set of all binary symmetric matrices.
We refer the interested reader to [28]–[30] and Chapter 15 of
[31] for more information about binary symmetric matrices
and subcodes of the second order Reed-Muller code.

Let Φ̂ =
√
NΦ denote the unnormalized sensing matrix.

We can divide the columns of Φ̂ into a set H indexed by
the matrices in DG(m, r) with zero diagonal, and a set D
indexed by the matrices in the Kerdock set. The columns in
H form a group under pointwise multiplication, and since we
have excluded the rows that are a power of two, there exists
no row in H with every entry equal 1. First, using the group
property we calculate the average coherence of Φ.

Lemma 5. The average coherence of a DG(m, r) sieve is:

ν
.= max

i

∣∣∣∣∣∣ 1
C − 1

∑
j:j 6=i

ϕ†iϕj

∣∣∣∣∣∣ =
1
C − 1

.

Proof: Any column of Φ̂ can be written as a pointwise
product hd with h in H and d in D. Average coherence with
respect to hd is then

1
N(C − 1)

∑
(h′,d′)6=(h,d)

d−1h−1h′d′. (2)

case 1: d′ 6= d. In this case h′ ranges over all elements of H,
and using Proposition 2 we get

1
N(C − 1)

∑
d′ 6=d

1>d−1

∑
h′∈H

h−1h′

 d′1


=

1
N (C − 1)

∑
d′ 6=d)

1>d−1

 ∑
h′′∈H

h′′

 d′1

 = 0.

case 2: d′ = d and hence h′ 6= h. In this case (2) reduces to

1
N(C − 1)

1>d−1

∑
h′ 6=h

h−1h′

 d1

 . (3)

Again, Proposition 2 implies that∑
h′ 6=h

h−1h′

+ h−1h =
∑
h′∈H

h−1h′ =
∑
h′′∈H

h′′ = 0.

Hence Equation 3 further reduces to
−1

N (C − 1)
[
1>d−1d1

]
=
−1
C − 1

.

The next two results are generalizations of Proposition A.2
of [13] and are used in Section §VI to analyze the sparse
reconstruction algorithm.

Lemma 6. Let P be a binary symmetric m×m matrix and let
E be the null space of P . Let X be an ` dimensional subspace
of Fm2 and let f ∈ Fm2 . If

S =
∑

x∈X+f

ıxPx
>+2bx> where b ∈ Fm2 ,

then either S = 0 or

S2 = ıfPf
>+2bf> ız1Pz

>
1 +2(b+fP )z>1 2`+dim(X∩E),

where z1 ∈ X is a solution to z1P = dP and dP is the main
diagonal of P .

Proof: For simplicity we first consider the case f = 0.
We have

S2 =
∑
x,y

ıxPx
>+yPy>+2b(x+y)>

=
∑
x,y

ı(x+y)P (x+y)>+2xPy>+2b(x+y)> .

Changing variables to z = x+ y and y gives

S2 =
∑
z

ızPz
>+2bz>

∑
y

(−1)(z+y)Py>

=
∑
z

ızPz
>+2bz>

∑
y

(−1)(dP+zP )y> .

Since the diagonal of P is contained in the row space of P ,
there exits a solution z1 in Fm2 to zP = dP . Note that if
e, f ∈ E then ePe>+fPf> = (e+f)P (e+f)> (mod 4).
If there is no solution z1 in X to the equation zP = dP , then
S = 0. Otherwise

S2 = 2`
∑

e∈E∩X
ı(z1+e)P (z1+e)>+2b(z1+e)>

= 2`ız1Pz
>
1 +2z1b

> ∑
e∈E∩X

ıePe
>+2be> .

The map e → ePe> is a linear map from E to 2 Z4, so the
numerator ePe> + 2be> also determines a linear map. If this
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map is the zero map then S2 = 2`+dim(E∩X)ız1Pz
>
1 +2z1b

>
,

and if not then S = 0. The general case reduces to the case
f = 0 since∑

x∈X
ı(f+x)P (f+x)>+2b(f+x)>

= ıfPf
>+2bf>

∑
x∈X

ıxPx
>+2(b+fP )x> .

Lemma 7. Let P,Q be two binary symmetric m×m matrices
and NQ and NP−Q be the null spaces of Q and P −Q. If

S =
∑
a∈Fm2

∑
x∈Fm2

ıaPa
>+xQx>+2aQx> ,

then ∣∣S2
∣∣ ≤ 22m|NQ| |NP−Q|.

Proof: We have

S2 =
∑
a,b
x,y

ıaPa
>+bPb>+xQx>+yQy>+2aQx>+2bQy> .

Changing variables to z .= x+ y, y, c .= a+ b, and b, implies
that S2 =∑
b,c
y,z

ıcPc
>+2(b+c)Pb>+zQz>+2(y+z)Qy>+2(b+c)Q(y+z)>+2bQy>

(4)

=
∑
c,z

ıcPc
>+zQz>+2cQz>T (c, z),

with

T (c, z) .=
∑
b

(−1)(cP+dP+zQ)b>
∑
y

(−1)(zQ+dQ+cQ)y> .

The term in (4) vanishes unless cP + dP + zQ = 0 and
zQ + dQ + cQ = 0 simultaneously. Hence, we can rewrite
Equation (4) as

S2 = 22m
∑
c,z

(c+z)Q=dQ
c(P+Q)=dP+dQ

ı(c+z)Q(c+z)>+c(P−Q)c> .

Write c = c1 + e with c1(P −Q) = dP + dQ, e(P −Q) = 0,
and c+z = (c2+z2)+f with (c2+z2)Q = dQ, fQ = 0. Then
it follows from the triangle inequality that

∣∣S2
∣∣ is at most

22m

∣∣∣∣∣∣
∑
f

ıfQf
>

∣∣∣∣∣∣
∣∣∣∣∣∑
e

ıe(P−Q)e>

∣∣∣∣∣ = 22m|NQ| |NP−Q|.

Now we bound the worst-case coherence between the
columns of Φ.

Lemma 8. Let Φ be a DG(m, r) sieve. Then

µ
.= max

i6=j

∣∣∣ϕ†iϕj∣∣∣ ≤ 1

N
1
2−

r+1
m

.

Proof: Lemma 6 proves that for every P and Q in
DG(m, r) set ∣∣∣∣∣∣

∑
x∈Fm2

1
N
ıx(P−Q)x>

∣∣∣∣∣∣ ≤ 1
N

1
2−

r
m

.

Recall that we have excluded m + 1 rows from the matrix
indexed by x = 0, 1, · · · , 2m−1. However, every entry of the
sensing matrix has magnitude 1√

N
. Hence, it follows from the

triangle inequality that

µ ≤ 1
N

1
2−

r
m

+
m+ 1
N

<
1

N
1
2−

r+1
m

.

Remark 9. An argument similar to the one used in Lemma 8
can be used to generalize the upperbounds proved in Lem-
mas 6 and 7 to the case where the m+ 1 duplicate rows are
removed from the sensing matrix.

Remark 10. In this paper, we have excluded the rows of the
DG sieve which are a power of two. However, this subsampling
can be removed if we add a phase shift iwt(dP) to the columns
of the matrix. Here wt(dP) denotes the Hamming weight
of the diagonal of matrix P . Numerical experiments suggest
that the phase-shifted Reed-Muller sieve has almost the same
performance as the Reed-Muller sieve without phase shifts
[32]. However, for simplicity, throughout this paper we only
analyze the Reed-Muller sieve without phase shift, whose
entries are given by Equation (1).

B. Noise Shaping

1) Stochastic Noise Model: We have verified that for
m ≤ 17 every DG(m, r) sieve with r ≥ 2 is a tight frame
with redundancy C

N (see [22]). Note that when m = 17
the measurement matrix has 131, 072 rows. We conjecture
that all such sieves are tight frames and we will analyze
the statistical noise model under this assumption2. Therefore
ΦΦ† = C

N IN×N , and ‖Φ‖2 = C
N . This property makes it

possible to achieve resilience to Gaussian noise in both the
data and measurement domains.

Lemma 11. Let ς be a vector with C iid N (0, σ2
d) entries and

e be a vector with N iid N (0, σ2
m) entries. Let ~ = Φς and

u = ~ + e. Then u contains N entries, sampled iid from a
Gaussian distribution N

(
0, σ2

)
, with σ2 = C

N σ
2
d + σ2

m.

Proof: The tight frame property implies

E
[
~~†
]

= E[Φςς†Φ†] = σ2
dΦΦ† =

C
N
σ2
d I.

2This assumption is only used in analyzing the performance of the algorithm
in the stochastic noise model.
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Therefore, u = h+e can be considered to be white noise with
variance σ2.

2) Deterministic Noise Model: In the deterministic noise
model, we shall assume that the magnitudes of the values of
α are fixed, but their positions are distributed according to the
model specified in Remark 1. Given a DG(m, r) sieve, we
now show that with constant probability ‖Φ (α− α1→k)‖2 �
‖α−α1→k‖2, and with probability 1− k

C , ‖Φ (α− α1→k)‖2 �
‖α−α1→k‖1√

k
.

Lemma 12. Let Φ be a DG(m, r) sieve, and let α be a signal
in CC whose entries are distributed according to the model
specified in Remark 1. If 0 ≤ δ′ ≤ 1 then with probability
1− δ′

‖Φ(α− α1→k)‖2 ≤
1√
δ′

(
‖α− α1→k‖2 +

‖α− α1→k‖1√
C − 1

)
.

(5)

Proof: We have

‖Φ(α− α1→k)‖2 =
C∑

i=k+1

|αi|2 +
∑

i,j≥k+1
i6=j

αiαjϕ
†
πiϕπj .

Given linearity of expectation we can rewrite this quantity in
terms of average coherence and then apply Lemma 5 to obtain

Eπ
[
‖Φ(α− α1→k)‖2

]
= ‖α− α1→k‖2 +

∑
i,j≥k+1
i 6=j

αiαjEπ
[
ϕ†πiϕπj

]

≤
(
‖α− α1→k‖2 +

‖α− α1→k‖1√
C − 1

)2

.

It follows from the Markov inequality that if 0 ≤ δ′ ≤ 1
then with probability at least 1− δ′

‖Φ(α− α1→k)‖2 ≤ 1
δ′

(
‖α− α1→k‖2 +

‖α− α1→k‖1√
C − 1

)2

.

(6)

IV. STRIP FUNCTIONS

The Statistical Restricted isometry Property (StRIP) is de-
fined by Calderbank et. al [13]. In this section we tighten the
results in [13] for the Reed-Muller sieve. In addition, we gener-
alize the StRIP notion to arbitrary functions h : [C]×[C] → C,
and arbitrary families of functions h : [C]t × [C] × [C] → C.
We then use the StRIP property as a main tool for analyzing
the sparse reconstruction algorithm in Section §VI:

Definition 13 ((k, ε, δ)-StRIP). Let π .= {π1, · · · , πC} be a
random permutation of {1, · · · , C}. Let α be a k-sparse vector
with support {π1, · · · , πk} and with fixed values α1, · · · , αk.
A function h : [C] × [C] → C is (k, ε, δ)-StRIP if with

probability 1 − δ over the choice of π, the following two
conditions are satisfied:

1) For every index 1 ≤ i ≤ k,∣∣∣∣∣∣
∑
j:j 6=i

αjh(πi, πj)

∣∣∣∣∣∣ ≤ ε‖α‖2. (7)

2) For every index w ∈ [C]− π1→k,∣∣∣∣∣∣
k∑
j=1

αjh(w, πj)

∣∣∣∣∣∣ ≤ ε‖α‖2. (8)

A family of functions {ht}kt=1, where ht : [C]t−1 × [C] ×
[C] → C, is (k, ε, δ)-StRIP if with probability 1 − δ over the
choice of π, the following condition is satisfied:

1) For every index 1 ≤ t ≤ k∣∣∣∣∣∣
∑
j>t

αjht(π1→t−1, πt, πj)

∣∣∣∣∣∣ ≤ ε‖α‖2 (9)

Remark 14. An N × C measurement matrix satisfies the
(k, ε, δ)-StRIP, if the function h(i, j) = ϕ†iϕj is (k, ε, δ) StRIP.
In other words, Definition 13 generalizes the definition of a
StRIP for sensing matrices provided in [13], [25].

Similarly, we generalize the notion of coherence to cover
arbitrary functions h : [C]t−1×[C]×[C]→ C, where 1 ≤ t ≤ k.

Definition 15 ( (η, γ,N)-StRIP-able). A function h :
[C] × [C] → C is (η, γ,N)-StRIP-able if the following three
conditions hold:

• (St1).
µ
.= max

i 6=j
|h(πi, πj)| ≤ N−η.

• (St2).
ν
.= max

i
|Ej 6=i [h(πi, πj)]| ≤ N−γ .

• (St3). h is skew-symmetric. That is,

h(x, y) = h(y, x)

for all x, y ∈ [C].
For 1 ≤ t ≤ k, a function h : [C]t−1 × [C] × [C] → C is
(η, γ,N)-StRIP-able if for any fixed π1→t−1 the following
three conditions hold:

• (St1). For 1 ≤ j ≤ k

µ
.= max
w>t−1
j 6=w

|h(π1→t−1, πw, πj)| ≤ N−η.

• (St2). For 1 ≤ j ≤ k

ν
.= max
w>t−1

∣∣∣∣Ej>t−1
j 6=w

[h(π1→t−1, πw, πj)]
∣∣∣∣ ≤ N−γ .

• (St3). h is skew-symmetric in the last two variables. That
is,

h(π1→t−1, x, y) = h(π1→t−1, y, x)
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for all x, y ∈ [C].

In the following two theorems we show that StRIP-ability
is a sufficient condition for satisfying the StRIP property.

Theorem 16. Let h : [C] × [C] → C be an (η, γ,N)-
StRIP-able function. Then for all positive ε and for all
k ≤ min

{√
C − 1

2 , ε
2N2γ

}
, h is (k, 2ε, δ) StRIP with δ ≤

4 C exp
{
−N

2ηε2

128

}
.

Theorem 17. Let H := {ht}kt=1 be a family of functions
with ht : [C]t−1 × [C] × [C] → C an (η,∞, N)-StRIP-
able function for each t. Then for all positive ε and for
all k ≤ min

{√
C − 1

2 , ε
2N2γ

}
, H is (k, ε, δ)-StRIP with

δ ≤ 4 k exp
{
−N2ηε2

128

}
.

The proofs of Theorem 16 and Theorem 17 are similar to the
proof of Lemma 2 in [25], and are provided in Appendix §B.
3

Corollary 18. Let h be a (η, γ,N)-StRIP-able function.
Given ε > 0, let k ≤ min

{√
C − 1

2 , ε
2N2γ

}
. Suppose α

is a k-sparse vector with uniformly random support and
with fixed values α1, · · · , αk. Then with probability at least
1− 4 C exp

{
−N

2ηε2

128

}
,∣∣∣∣∣∣∣∣

∑
i,j
i 6=j

αiαjh(πi, πj)

∣∣∣∣∣∣∣∣ ≤ 2
√
kε‖α‖2.

Proof: The argument follows from Theorem 17, by ap-
plying the Cauchy-Schwarz inequality.

Next we show that if the sparsity level is sufficiently small,
then with overwhelming probability∣∣∣∣∣∣

∑
i

αi
∑
j:j 6=i

αjh(πi, πj)

∣∣∣∣∣∣ � log C
Nη
‖α‖2 :

Theorem 19. Let h be an (η, γ,N)-StRIP-able function from
[C]× [C] to C. Let π be a random permutation of [C], and let
α be a k-sparse vectors with fixed values α1, · · · , αk, such
that Supp(α) = {π1, · · · , πk}. Let ξ > 0 such that k ≤
min

{√
C − 1

2 , ξN
γ
}

. Then for any ε > 0

Pr
π


∣∣∣∣∣∣∣
k∑
i=1

αi

k∑
j=1
j 6=i

αjh (πi, πj)

∣∣∣∣∣∣∣ ≥ 2ξ‖α‖2


≤ 4 exp

{
−ξ2

8192ε2

}
3To prove the theorems, we start with a StRIP-able function of 2 arguments

then we produce a StRIP-able function of 3 arguments by creating a “virtual”
function of 3 arguments.

Proof: The proof of Theorem 19 is provided in Ap-
pendix §C.

Remark 20. By setting ε = O
(√

log C
Nη

)
and ξ = O

(
log C
Nη

)
we

can make sure that as long as k � min
{√
C − 1

2 , N
γ−η
}

the

probability that
∣∣∣(∑k

i=1 αi
∑k
j=1 αjh (πi, πj)

)
− ‖α‖2

∣∣∣ �
log C
Nη ‖α‖

2 is O
(

1

Poly(C)

)
.

V. THE WITNESS-AVERAGING ALGORITHM

Algorithm 1 The Witness-Averaging Algorithm
1: for every witness a ∈ Fm2 do
2: Pointwise multiply f with a shifted version of itself

(Auto-correlation).
3: Compute the fast Hadamard transform: Γ`a (f) (Power

spectrum).
4: Calculate Λ∆,a

.= ı−aP∆a
>

ΓaP∆
a (f) for every ∆ ∈ [C].

(Demodulation).
5: end for
6: For each index ∆ ∈ [C], take the average of

Λ∆
.= Ea [Λ∆,a] over all Λ∆,a (Witness Averaging).

7: Let S be the position of the k highest (in magnitude)
average peaks (Thresholding).

8: Output α̂ = (Φ†SΦS)−1Φ†Sf (Regression).

In this section we propose the Witness-Averaging Algorithm
for sparse recovery from measurements obtained via the Reed-
Muller sieve. The pseudocode for the Witness-Averaging Al-
gorithm is shown in Algorithm 1. The algorithm identifies the
signal model by analyzing the power spectrum of the pointwise
product of the superposition f with a shifted version of itself.
The Walsh-Hadamard transform of this pointwise product
is the superposition of k Walsh tones and a background
signal produced by cross-correlations between the k significant
entries and cross-correlations between these k entries and the
noise in the data domain and in the measurement domain.
We shall prove that with high probability the energy in
this background signal is uniformly distributed across the
Walsh-Hadamard bins, and that this background bin energy is
sufficiently small to enable threshold detection of the k tones.
We show that sparse reconstruction is possible for k = Õ (N)
by averaging over all possible shifts.

The original quadratic reconstruction algorithm, proposed
by Howard et. al [33], is a repurposing of the chirp detec-
tion algorithm commonly used in navigation radars which
is known to work extremely well in the presence of noise.
That algorithm has minimal complexity kN log2N . When
the algorithm is applied to DG(m, r) frames [22], and two



8

entries of the signal fall in the same orthonormal basis, the
corresponding cross-term is a spurious Walsh-Hadamard tone
which we refer to as an alias. Witnesses can be selected to
distinguish these aliases but it is harder to analyze the algo-
rithm, and reconstruction is only guaranteed for k = Õ

(√
N
)

(See [13]). Here by using DG(m, r) sieves, we guarantee that
the aliasing problem never happens. This means that no two
columns of Φ involve the same matrix P . This is crucial in
the concentration analysis of the chirp-like terms.

The Witness Averaging Algorithm uses 2m witnesses.
Therefore, the starting loop of the algorithm takes
O (N(N +N logN + C)) = O(NC) running time. The
algorithm also needs O(NC) time to calculate the averages
(Step 6), O(C log C) to find the k peaks via sorting, and
O(k3) to calculate the pseudo-inverse. Therefore, the overall
running-time of the algorithm is O(NC). Performance bounds
for recovery in the deterministic and stochastic noise models
are given in Theorems 21 and 22.

Theorem 21. Let α be a signal in CC taken from the average
case signal analysis model (Remark 1). Then if

1) k � MAR
m

N1− 2r
m

log C , and

2) ‖u‖2 � min
{

1
10 ,
√

N
k log C MAR

}
‖α‖min,

then with probability 1−O
(

1
Poly(C)

)
, Algorithm 1 successfully

recovers the positions of the k largest entries of α. Moreover
for every positive δ′, with probability 1−O

(
1

Poly(C)

)
− δ′,

‖α̂− α1→k‖2 ≤ 2
√

2‖e‖2 +

√
C
C − 1

4
√

2√
δ′
‖α− α1→k‖2.

Theorem 22. Let ς be a vector with C iid N (0, σ2
d) entries

and e be a vector with N iid N (0, σ2
m) entries. Define σ .=√

σ2
m + C

N σ
2
d. Let α1→k be a k-sparse signal with uniformly

random support, and let f = Φ(α1→k + ς) + e. Then if

1) k � MAR
m

N1− 2r
m

log C , and

2) σ � min
{

1
10 log C ,

√
N1− r

2m

k log3 C MAR
}
‖α‖min,

then with probability 1−O
(

1
Poly(C)

)
, Algorithm 1 successfully

recovers the positions of the k largest entries of α. Moreover
for all 0 ≤ ε ≤ 1

2

Pr

[
‖α̂− α1→k‖2 ≥

√
2(1 + ε)k

(
σ2
m +

C
N
σ2
d

)]

� O
(

1
Poly(C)

)
+ exp

{
−3kε2

16

}
.

In order to prove Theorems 21 and 22, we shall analyze the
constituent steps of Algorithm 1 step by step. Let f = y + u,
where y = Φα1→k and u = e+ Φ (α− α1→k). By pointwise
multiplication of f with a shifted version of itself, followed

by the fast Hadamard transform, we form the power spectrum
across all N Hadamard bins. Each bin ` then has the value

Γ`a(f) .=
1√
N

N∑
x=1

(−1)`x
>
f(x+ a)f(x) (10)

Given the offset a, evidence for the presence or absence of
a signal at position ∆ in the data domain resides in the
Hadamard bin ` = aP∆. Then at the Demodulation Step of
Algorithm 1, for each index ∆ in [C], we choose the Hadamard
bin ` = aP∆ with a proper alignment shift in frequency. That
is, we calculate the term Λ∆,a(f) = i−aP∆a

>
ΓaP∆
a (f). After

aligning the phase, the final step is averaging over all offsets
a. The notation Ea emphasizes that the average is taken over
all offsets.

When an entry is present the evidence accumulated by
the algorithm adds constructively, and when it is absent,
the evidence adds destructively. We identify the positions
of the largest entries in the signal by averaging over all
possible witnesses. Having recovered the support, Theorem 4
guarantees that we can approximate the signal by solving a
regression program. Figure 1 illustrates the role of witness
averaging in the chirp reconstruction algorithm.

VI. PROOF OF THEOREMS 21 AND 22

Let Λ∆,a(f) .= ı−aP∆a
>

ΓaP∆
a (f). We start by using the

linearity of expectation to decompose Ea [Λ∆,a(f)] into its
four constituents as follows:

Ea [Λ∆,a(f)] = Ea [Λ∆,a(y)] + Ea [Λ∆,a(u)] (11)

+ Ea

[
i−aP∆a

>

√
N

(∑
x

y(x+ a)u(x)(−1)aP∆x
>

)]

+ Ea

[
i−aP∆a

>

√
N

(∑
x

y(x)u(x+ a)(−1)aP∆x
>

)]
,

where y = Φα1→k and u = f−y. The following lemma shows
that Ea [Λ∆,a(y)] consists of k distinct Walsh tones staying on
top of a uniform chirp-like residual term:

Lemma 23. Let Φ be a DG(m, r) sieve, and define δ`a,i
.={

1 if aPi + ` = 0
0 otherwise

. Then for all indices ∆ in [C]

Ea [Λ∆,a(y)] =
k∑
i=1

|αi|2√
N
δ∆,πi +R∆(y),

where R∆(y) contains the demodulated chirp-like cross-
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(a) Original Signal (b) a = 1 (c) a = 2

(d) a = 3 (e) a = 4 (f) a = 5

(g) a = 6 (h) a = 7 (i) a = 8

(j) Averaging over all witnesses

Fig. 1. The role of witness averaging in the chirp reconstruction algorithm. Here α is a 2-sparse signal measured by a DG(3, 1) sieve. For each witness a,
the demodulated power spectrum Λ∆,a is plotted. Figure 1(j) shows the result of averaging over all witnesses. When a signal is present, the evidence adds
constructively, and when it is not present the evidence adds destructively.
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terms: ∑
i∈{1,··· ,k}
πi 6=∆

|αi|2√
N

Ea
[
ia(Pπi−P∆)a>δaP∆

a,πi

]
(12)

+
1
N

3
2

k∑
i=1

∑
j 6=i

αiαj
∑
x

ix(Pπi−Pπj )x
>
Ex(πi,∆),

with

Ex(πi,∆) .= Ea
[
ia(Pπi−P∆)a>(−1)(aPπi−aP∆)x>

]
.

Proof: Γ`a(y) is obtained by first multiplying y with a
shifted version of itself, and then calculating the `th Hadamard
transform coefficient. We have

y(x+ a)y(x) =
k∑
i=1

αiϕπi(x+ a)

 k∑
j=1

αjϕπj (x)


=

k∑
i,j=1

αiαjϕπi(x+ a)ϕπj (x).

It follows from the construction of the DG Sieve (Equation (1))
that

ϕπi(x+ a)ϕπj (x) =
1
N
iaPπia

>
(−1)aPπix

>
ix(Pπi−Pπj )x

>
.

In other words, auto-correlating a pure tone ϕπi with a shifted
version of itself generates a Walsh tone. Now using the fast
Hadamard transform

Γ`a(y) =
k∑
i=1

iaPπia
> |αi|2√
N

δ`a,πi (13)

+
1
N

3
2

k∑
i=1

∑
j 6=i

αiαji
aPπia

>∑
x

(−1)(aPπi+`)x
>
ix(Pπi−Pπj )x

>
.

By demodulating Equation (13) (forming Λ∆,a), and then
averaging over all choices of a we get

Ea [Λ∆,a(y)] =
k∑
i=1

Ea

[
ia(Pπi−P∆)a> |αi|2√

N
δaP∆
a,πi

]

+
1
N

3
2

k∑
i=1

∑
j 6=i

αiαj
∑
x

ix(Pπi−Pπj )x
>
Ex(πi,∆).

The first term can further be expanded as
k∑
i=1

Ea

[
ia(Pπi−P∆)a> |αi|2√

N
δaP∆
a,πi

]

=
k∑
i=1

Ea

[
ia(Pπi−P∆)a> |αi|2√

N
δπi,∆

]

+
k∑
i=1

Ea

[
ia(Pπi−P∆)a> |αi|2√

N
δaP∆
a,πi (1− δπi,∆)

]
=

k∑
i=1

(
|αi|2√
N
δπi,∆ +

|αi|2√
N

(1− δπi,∆)Ea
[
ia(Pπi−P∆)a>δaP∆

a,πi

])

The Walsh-Hadamard tones appear as exactly k spikes
1√
N

∑k
i=1 |αi|2 above a constant background signalR∆(y). In

the rest of this section, we use MAR and ‖α‖min to abbreviate
MAR(α1→k) and ‖α1→k‖min. In the following lemma we
show that with overwhelming probability, for every index
∆ ∈ [C], the background chirp-like terms have magnitude at
most m log C

N
3
2−

2r
m
‖α1→k‖2.

Lemma 24. Let k � MARN1− 2r
m

log C , then with probabil-

ity 1 − O
(

1

Poly(C)

)
for every index ∆ in [C]: R∆(y) �

m log C ‖α1→k‖2

N
3
2−

2r
m

+
∑k
i=1

|αi|2

10N
1
2
δ∆,πi .

Proof: The proof of Lemma 24 is provided in Ap-
pendix §D.

Next we show that the cross-correlation between the signal
and the noise also provides uniform background terms with
sufficiently small magnitudes:

Lemma 25. Let u denote the total noise vector. If
‖α‖min ≥ 10‖u‖2 then with probability 1−O

(
1

Poly(C)

)
, for

every index ∆ in [C]:∣∣∣∣∣Ea
[
i−aP∆a

>

√
N

(∑
x

y(x+ a)u(x)(−1)aP∆x
>

)]∣∣∣∣∣
�
√

log C‖u‖2‖α‖2
N

+
k∑
i=1

|αi|2

10N
1
2
δ∆,πi .

Moreover, if the elements of u have iid random signs, then
the requirement on the noise magnitude can be relaxed to
‖α‖min ≥ 10

√
log C‖u‖2√
N

, and with probability 1−O
(

1
Poly(C)

)
for every ∆∣∣∣∣∣Ea

[
i−aP∆a

>

√
N

(∑
x

y(x+ a)u(x)(−1)aP∆x
>

)]∣∣∣∣∣
� log C‖α‖2‖u‖2

N
3
2−

r
m

+
k∑
i=1

|αi|2

10N
1
2
δ∆,πi .

The proof of Lemma 25 is provided in Appendix §E.

The term Ea
[
i−aP∆a

>
√
N

(∑
x y(x)u(x+ a)(−1)aP∆x

>
)]

can be bounded similarly. The Cauchy-Schwarz inequality can
be used to bound Ea [Λ∆,a(u)] by 1√

N
‖u‖2 which is negligible

comparing to the other three terms. Here we have shown
that the chirp-like cross-terms, and the cross correlation of
signal with noise are distributed uniformly across all indices
∆. Hence, by thresholding Ea [Λ∆,a(f)] we can recover the
support of α1→k:

Lemma 26. If

1) k � MAR
m

N1− 2r
m

log C , and

2) ‖u‖2 � min
{

1
10 ,
√

N
k log C MAR

}
‖α‖min,
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then with probability 1 − O
(

1
Poly(C)

)
, chirp reconstruction

successfully recovers the positions of the k significant entries
of α1→k.

Proof: Chirp detection generates k Walsh tones with
magnitudes at least ‖α‖

2
min√
N

above a uniform background sig-
nal. Furthermore, there exist constants c1, c2 such that with
probability at least 1− O

(
1

Poly(C)

)
every background signal

at every index ∆ is bounded by

3
10

k∑
i=1

|αi|2

N
1
2
δ∆,πi +

c1m log C ‖α1→k‖2

N
3
2−

2r
m

+
c2

√
log C‖u‖2‖α1→k‖2

N
.

Hence, if c1m log C ‖α1→k‖2

N
3
2−

2r
m

+ c2
√

log C‖u‖2‖α‖2
N is smaller than

7‖α‖2min

20
√
N

then the k tones pop up and we can detect them by
thresholding. Therefore, it is sufficient to ensure that
m log C ‖α1→k‖2

N
3
2−

2r
m

� ‖α‖
2
min

N
1
2

, and
√

log C‖u‖2‖α‖2
N � ‖α‖

2
min

N
1
2
.

The following lemma indicates that we can tolerate larger
noise magnitude in the stochastic noise regime:

Lemma 27. Suppose the elements of u have independent
random signs. Then if

1) k � MAR
m

N1− 2r
m

log C , and

2) ‖u‖2 � min
{ √

N
10
√

log C ,
N1− r

m
√

MAR√
k log C

}
‖α‖min,

then with probability 1 − O
(

1
Poly(C)

)
, chirp reconstruction

successfully recovers the positions of the k significant entries
of α1→k.

Proof: The proof is similar to the proof of Lemma 26.
The only difference is that now we need to ensure that
m log C ‖α1→k‖2

N
3
2−

2r
m

� ‖α‖
2
min

N
1
2

, and log C‖u‖2‖α‖2
N

3
2−

r
m

� ‖α‖
2
min

N
1
2
.

Remark 28. If the conditions of Lemma 26 or Lemma 27
holds, then we can perform the Thresholding Step of Al-
gorithm 1 even without knowing the true model order
k. The Thresholding Step can be performed by forming
Ea [Λ∆,a(f)], and collecting the indices ∆ that have mag-
nitudes |Ea [Γ∆(f)]| larger than 7‖α‖2min

20
√
N

.

Remark 29. Chirp reconstruction is able to detect the pres-
ence or absence of a signal at any given index ∆ in the
data domain without needing to first reconstruct the entire
signal. The complexity of detection is O

(
N2 logN

)
(we have

2m witnesses, and for each witness the bottleneck is the
O(N logN) time of calculating the fast Hadamard transform).
If the signal α were the wavelet decomposition of an image,
then chirp reconstruction can be applied to the measured
signal to recover thumbnails and to zoom in on areas of
interest.

Having identified the support, we now analyze the sparse
reconstruction guarantees of Algorithm 1.

Lemma 30. Let S = {π1, · · · , πk} and let α̂
.=

arg minα+ ‖f − ΦSα+‖2. Then for every positive δ′, with
probability 1− δ′

‖Φ (α̂− α1→k) ‖2 ≤ 2‖e‖2 +

√
C
C − 1

4√
δ′
‖α− α1→k‖2.

Moreover, if the data domain noise consists of C iid N
(
0, σ2

d

)
random variables, and the measurement noise contains N iid
N
(
0, σ2

m

)
random variables, then for all 0 ≤ ε ≤ 1

2

Pr

[
‖Φ (α̂− α1→k)‖2 ≥

√
(1 + ε)k

(
σ2
m +

C
N
σ2
d

)]

≤ exp
{
−3kε2

16

}
.

Proof: It follows from Lemma 12 that for every positive
δ′, with probability at least 1− δ′,

‖Φ (α̂− α1→k) ‖2
≤ ‖f − Φα1→k‖2 + ‖f − Φα̂‖2 ≤ 2 ‖f − Φα1→k‖2

≤ 2‖e‖2 +
2√
δ′

(
‖α− α1→k‖2 +

‖α− α1→k‖1√
C − 1

)
< 2‖e‖2 +

√
C
C − 1

4√
δ′
‖α− α1→k‖2.

In the stochastic noise regime, Lemma 11 states that u has N
iid N

(
0, CN σ

2
d + σ2

m

)
elements. Then ‖Φ (α̂− α1→k) ‖2 =

‖PS [u]‖2, where PS [u] is the projection of u onto the space
spanned by S. The result then follows from the concentration
of the χ2 distribution (Proposition 33).

Remark 31. As long as k ≤ c C
‖Φ‖2 log C , we can use Theorems 3

and 4 to translate the approximation error in the measurement
domain to approximation error in the data domain. In partic-
ular with probability at least 1− 2

C − δ
′:

‖α̂− α1→k‖2 ≤ 2
√

2‖e‖2 +

√
C
C − 1

4
√

2√
δ′
‖α− α1→k‖2.

Moreover, if the noise is Gaussian, then

Pr

[
‖α̂− α1→k‖2 ≥

√
2(1 + ε)k

(
σ2
m +

C
N
σ2
d

)]

≤ 2
C

+ exp
{
−3kε2

16

}
.

VII. EXPERIMENTAL RESULTS

A. Recovering the Support of Random Sparse Signals

In this Section we present the results of numerical exper-
iments that make it possible to compare different measure-
ment matrices and different algorithms for sparse recovery
and model selection. We examined DG sieves, DG frames,
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Fig. 2. Comparison between the chirp reconstruction algorithm for Delsarte-Goethals sieve DG(7, 1), with Basis Pursuit algorithm for Gaussian and Expander
matrices of the same size, and with LASSO algorithm for Delsarte-Goethals frame DG(7, 0) .
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Fig. 3. Comparison between the chirp reconstruction algorithm for Delsarte-Goethals sieve DG(9, 1), with Basis Pursuit algorithm for Gaussian and Expander
matrices, CoSaMP algorithm, and with LASSO algorithm for Delsarte-Goethals frame DG(9, 0).

Gaussian matrices, and Expander matrices. The DG frames
are equiangular tight frames obtained by exponentiating all
possible Delsarte Goethals codewords. If the sparse signal has
random support and random sign, then the LASSO program
will successfully recover the support [14], [22]. Expander
graphs are bipartite graphs where the adjacency matrix satisfies
a Restricted Isometry Property with respect to the `1 norm
RIP-1); this condition guarantees that Basis Pursuit [1] will
successfully recover signals that are sufficiently sparse [34].

Here we used the `1 − magic algorithm [35] to solve the
Basis Pursuit program, and used the SpaRSA algorithm [36]
to solve the LASSO program. The SpaRSA algorithm with
`1 regularization parameter λ = 10−9 was used for signal
reconstruction in the noiseless case, and the parameter was
adjusted to 2

√
2 log Cσ in the noisy case [14]. The reason for

using SpaRSA is that is designed to solve complex valued
LASSO programs. We also present the results of numerical
experiments with CoSaMP [7].

For Gaussian matrices, we sampled 10 iid random matrices
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Fig. 4. The effect of the noise in the measurement domain (left), and in the data domain (right), on the performance of the chirp reconstruction algorithm.
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Fig. 5. The impact of subsampling a random subspace/subset on the performance of the witness averaging algorithm with DG(7, 1) sieve.

independently to eliminate the exponentially small chance of
getting a sample Φ not satisfying the RIP property, and the
median of the results among all 10 random matrices was
provided.

The experiments relate accuracy of sparse recovery to the
sparsity level and the Signal to Noise Ratio (SNR). We
measured the accuracy in terms of the statistical 0 − 1
loss metric, capturing the fraction of signal support that is
successfully recovered. Without loss of generality, we let
each reconstruction algorithm output a k-sparse vector α̂. The

statistical 0− 1 loss is the fraction of the support of α that is
not recovered in α̂. Each experiment was repeated 2000 times,
and the average 0− 1 loss was reported.

Figure 2 plots statistical 0−1 loss and complexity (average
reconstruction time) as a function of the sparsity level k. We
generated k-sparse signals with uniformly random support,
with random signs, and with the amplitude of non-zero entries
set equal to 1. Four different sensing matrices are compared; a
Gaussian matrix, an Expander Graph with left-degree d = 16,
a DG(7, 0) frame and a DG(7, 1) sieve. Figure 3 shows the
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results of applying the same experiments to larger sensing
matrices.

Figure 4(a) plots statistical 0−1 loss as a function of noise
in the measurement domain and Figure 4(b) does the same for
noise in the data domain. In the measurement noise study, a
N (0, σ2) iid measurement noise vector is added to the sensed
vector to obtain the N dimensional vector f . We use a similar
method to study noise in the data domain.

The contour plots show the average fraction of support that
is recovered successfully as a function of the sparsity level k
(horizontal axis), and the noise standard deviation 10 log10(σ)
(vertical axis). The sparsity level ranges between 8 and 20,
and the noise standard deviation ranges between 10−6 to
10−2. Recall that the witness averaging algorithm does not
require independence among the signs of the elements of α.
In this experiment the support was chosen uniformly at random
and every element of α was non-negative4. Each experiment
was then repeated 200 times. The average fraction of the
successfully recovered support is illustrated by the intensity
of the corresponding pixel in the contour plot.

B. Throwing out Witnesses: Random Subsets and Random
Subspaces

A natural question to ask about the chirp reconstruction
algorithm is the following: what is the effect of pruning the
number of witnesses on the fidelity of support recovery? There
are two distinct approaches to subsampling the set of all
witnesses Fm2 :

• Select an additive subspace of Fm2 .
• Select a random subset of witnesses.

In experiments on both approaches, we used randomness to
generate the subsets. In the first case, we only considered
additive subspaces which were spanned by standard basis
vectors. To generate such a subspace for a given dimension
t < m, we chose t standard basis vectors uniformly at
random from the m possible vectors. To generate a random
subset of witnesses for a specified size t < 2m, we chose t
vectors uniformly at random from the 2m possible choices.
Figure 5(a) compares subspace and subset performance, with
the performance of the full set of witnesses as a bench mark.
In this experiment, we used the DG(7, 1) sieve, and for each k
ran 1000 signals against 15 subspaces of dimension 5 (and thus
size 25 = 32), and also ran 1000 signals against 100 subsets
of size 32. The signal generation process was the same as in
the previous section.

It follows from Figure 5(a), and other similar experiments,
that the subset subsampling strategy outperforms the subspace

4We observed similar results for other sign patterns.

strategy. Moreover, both track the accuracy of the full witness
set fairly closely, despite the fact that only 1

4 of the witnesses
are being used. This has promising implications for reducing
runtime while maintaining accuracy.

Figure 5(b) shows the impact of the subset size on the
support recovery rate. Each data point represents 400 signals
run against 50 different random subsets of a given size. The
signal generation process was the same as before. Note that
as the subset size decreases, the support recovery rate remains
fairly constant until around 40. In other words, we can get
almost the same performance by selecting only a 1

3 fraction
of the witnesses uniformly at random, and discarding the rest
of them.

VIII. CONCLUSION

In compressed sensing the entries of the measurement vector
constitute evidence for the presence or absence of a signal at
any given location in the data domain. We have shown that the
Witness-Averaging Algorithm is able to identify the support
set of most sparse vectors from measurements obtained via the
Reed-Muller sieve. This model selection goal can be achieved
without requiring that the signal entries be independent. We
have also demonstrated feasibility of local decoding where
attributes of the signal are deduced from the measurements
without explicitly reconstructing the full signal.

Our reconstruction algorithms are resilient to noise. The
average-case `2/`2 error bounds of the Witness-Averaging
Algorithm is a direct consequence of the structured con-
struction of the Reed-Muller sieve. This type of bounds are
tighter than the `2/`1 bounds arising from random ensembles,
and are information-theoretically impossible in the worst-case
compressed sensing framework. Experimental results were
also provided to support the fidelity of the proposed algo-
rithm. Future directions involve generalizing the algorithm to
work with other other structured matrices (e.g. Gabor frames,
BCH matrices, etc), and analyzing the information-theoretic
limits of average-case compressed sensing in general, and the
Witness Averaging Algorithm in particular.
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APPENDIX A
TAIL BOUNDS AND CONCENTRATION INEQUALITIES

In this appendix, we provide the main concentration inequal-
ities which are used throughout the paper.
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Proposition 32 (Gaussian tail bound). Let X ≈ N (0, σ2) be
a zero-mean Gaussian random variable with variance σ2 Then
for all 0 ≤ ε, we have

Pr [|X| ≥ εσ] ≤ 2 exp
{
−ε

2

2

}
.

Proposition 33 (χ2-concentration [38]). Let X ≈ χ2
m be a

chi-squared random variable with m degrees of freedom, with
mean mσ2, and with standard deviation

√
2mσ2. Then for all

0 ≤ ε ≤ 1
2 , we have

Pr
[
X −mσ2 ≥ εmσ2

]
≤ exp

{
− 3

16
mε2

}
.

Proposition 34 (Azuma’s Inequality [39]). Suppose
〈Z0, Z1, · · · , Zk〉 is a bounded-difference martingale
sequence, that is for each i, E [Zi] = Zi−1, and
|Zi − Zi−1| ≤ ci. Then for all ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 2 exp

{
−ε2

2
∑k
i=1 c

2
i

}
.

In this paper, we use the Azuma’s Inequality for complex
martingale random variables.

Lemma 35 (Complex Azuma’s Inequality). Let
〈Z0, Z1, · · · , Zk〉 be a set of complex random variables such
that, for each i, E [Zi] = Zi−1, and |Zi − Zi−1| ≤ ci. Then
for all ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 4 exp

{
−ε2

8
∑k
i=1 c

2
i

}
.

Proof: For each random variable Zi let Xi
.= Re (Zi)

and Yi
.= Im (Zi), so that Zi = Xi + iYi. Then E [Xi] =

Xi−1 and E [Yi] = Yi−1. Moreover, by triangle inequal-
ity |Xi −Xi−1| ≤ |Zi − Zi−1| ≤ ci, and |Yi − Yi−1| ≤
|Zi − Zi−1| ≤ ci. Hence, 〈X0, · · · , Xm〉, and 〈Y0, · · · , Ym〉
form martingale sequences. Now from the triangle inequality
we have

Pr [|Zk − Z0| ≥ ε] ≤ Pr
[
|Xm −X0| ≥

ε

2

]
+ Pr

[
|Ym − Y0| ≥

ε

2

]
≤ 4 exp

{
−ε2

8
∑k
i=1 c

2
i

}
.

Proposition 36 (Extension to Azuma’s inequality when dif-
ferences are bounded with high probability [40]). Suppose
〈Z0, Z1, · · · , Zk〉 is a martingale sequence, that is for each i,
E [Zi] = Zi−1. Moreover, suppose that with probability 1− δ
for all i: |Zi − Zi−1| ≤ ci, and always |Zi − Zi−1| ≤ bi.
Then for every ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 2

(
exp

{
−ε2

8
∑k
i=1 c

2
i

}
+ δ

k∑
i=1

bi
ci

)
.

Both the original Azuma inequality and its extension given
in Proposition 36 can be applied separately to the real and
imaginary parts of a complex random variable to prove con-
centration about the expected value.

Lemma 37. Suppose 〈Z0, Z1, · · · , Zk〉 is a complex martin-
gale sequence, that is for each i, E [Zi] = Zi−1. Moreover,
suppose that with probability 1−δ for all i: |Zi − Zi−1| ≤ ci,
and always |Zi − Zi−1| ≤ bi. Then for all ε > 0,

Pr [|Zk − Z0| ≥ ε] ≤ 4

(
exp

{
−ε2

32
∑k
i=1 c

2
i

}
+ δ

k∑
i=1

bi
ci

)
.
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The following lemma is central to many arguments through-
out the paper.

Lemma 38. Let ε be a positive number, and let 0 ≤ o ≤ k−1.
Let h : [C]o×[C]×[C]→ C be a (η, γ,N)-StRIP-able function.
Let k ≤ min

{√
C − 1

2 , ε
2N2γ

}
. Fix the values α1, · · · , αk,

and fix o+ 1 ≤ w ≤ C. Then

Pr
π


∣∣∣∣∣∣∣
k∑
j=1
j 6=w

αjh(π1→o, πw, πj)

∣∣∣∣∣∣∣ ≥ 2ε‖α‖2

 ≤ 4 exp
{
−N

2ηε2

128

}
.

Proof: We condition on the value of π1→o. Fix π1→o and
let π−1→o denote π − π1→o.

First, we bound the expectation of the sum:

Eπ−1→o

∣∣∣∣∣∣∣
k∑
j=1
j 6=w

αjh(π1→o, πw, πj)

∣∣∣∣∣∣∣
= Eπ−1→o

∣∣∣∣∣∣
k∑
j=1

αjh(π1→o, πw, πj)(1− δw,j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
j=1

αj(1− δw,j)Eπ−1→o [h(π1→o, πw, πj)]

∣∣∣∣∣∣ (14)

≤
k∑
j=1

|αj | (1− δw,j)
∣∣Eπ−1→o [h(π1→o, πw, πj)]

∣∣
≤

k∑
j=1

|αj |N−γ ≤
√
kN−γ‖α‖ ≤ ε‖α‖

where in (14) we use linearity of expectation, and the last
line follows from the assumption on average coherence, the
Cauchy-Schwarz inequality, and the assumption k ≤ ε2N2γ .

Next we bound the difference between the sum and its
expectation. For this we condition on the value of πw. Fix πw
(and recall that we have already fixed π1→o). For o+1 ≤ t ≤ k
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define the martingale sequence

Zt (πo+1→t−1, πt)
.=

E(πt+1→k)

 k∑
j=1
j 6=w

αjh(π1→o, πw, πj)|π1→t

 ,
and define

Zo = Eπ−1→o

∣∣∣∣∣∣∣
k∑
j=1
j 6=w

αjh(π1→o, πw, πj)

∣∣∣∣∣∣∣ .
Our goal is to bound the difference

Zt (π1→t−1, πt)− Zt−1 (π1→t−1) ,

for all fixed and distinct values π1→t−1, πt. It follows from the
linearity of expectation and marginalization of the probability
that

ct
.= |Zt − Zt−1| ≤ 2|αt|N−η +

2(k − t)N−η

C − t
‖α‖1 (15)

≤ 2|αt|N−η +
2kN−η

C − k
‖α‖1.

In order to use Azuma’s inequality, we need to bound
∑k
t=o c

2
t :

k∑
t=o

c2t = 4N−2η
k∑
t=1

(
|αt|+

k‖α‖1
C − k

)2

(16)

≤ 4N−2η

(
‖α‖22 +

k4

(C − k)2 ‖α‖
2
2 + 2

k2

C − k
‖α‖22

)
.

Consequently, if k ≤
√
C − 1

2 then
∑k
t=o c

2
t ≤ 16N−2η‖α‖22.

Now it follows from Azuma’s inequality (Lemma 35), that for
every ε ≥

√
kN−γ ,

Pr
π−1→o


∣∣∣∣∣∣∣
k∑
j=1
j 6=w

αjh(π1→o, πw, πj)

∣∣∣∣∣∣∣ ≥ 2ε‖α‖2


≤ 4 exp

{
−N

2ηε2‖α‖2

128 ‖α‖2

}
≤ 4 exp

{
−N

2ηε2

128

}
Taking the expectation of this probability over all values of
π1→o completes the proof.

Note that the bound on the sum is 2ε‖α‖2 and not ε‖α‖2.
This is because we use the triangle inequality to combine the
concentration of the expectation about zero, and the concen-
tration of the sum about the expectation. If the expectation of
the sum is zero, then we only have to use the concentration
of the sum about its expectation, and the triangle inequality
is unnecessary. Thus, if γ =∞ then the sum has a bound of
ε‖α‖2 with the same probability.

We now prove Theorems 16 and 17.

Proof of Theorem 16: Suppose there exists an index i,
1 ≤ i ≤ k, or an index o ∈ [C]− π1→k such that∣∣∣∣∣∣
∑
j:j 6=i

αjh(πi, πj)

∣∣∣∣∣∣ > 2ε‖α‖2 or

∣∣∣∣∣∣
k∑
j=1

αjh(o, πj)

∣∣∣∣∣∣ > 2ε‖α‖2.

(17)
In either case there is an index w ∈ [C] such that∣∣∣∣∣∣∣

k∑
j=1
j 6=w

αjh(πw, πj)

∣∣∣∣∣∣∣ > 2ε‖α‖2. (18)

We may use h to define a “virtual” StRIP-able function with
three arguments. Taking the union bound over all possible w ∈
[C], Lemma 38 implies:

Pr
π

∃w ∈ [C] :

∣∣∣∣∣∣∣
k∑
j=1
j 6=w

αjh(πw, πj)

∣∣∣∣∣∣∣ > 2ε‖α‖2

 (19)

≤ 4C exp
{
−N

2ηε2

128

}
.

The proof of Theorem 17 is similar:
Proof of Theorem 17: The StRIP condition is broken

only if there exists t, 1 ≤ t ≤ k such that∣∣∣∣∣∣∣
k∑
j=1
j 6=t

αjh(π1→t−1, πt, πj)

∣∣∣∣∣∣∣ > ε‖α‖2.

Taking the union bound over all t and applying Lemma 38
yields

Pr
π

∃ t :

∣∣∣∣∣∣∣
k∑
j=1
j 6=t

αjh(π1→t−1, πt, πj)

∣∣∣∣∣∣∣ > ε‖α‖2


≤ 4k exp

{
−N

2ηε2

128

}
.

APPENDIX C
PROOF OF THEOREM 19

This proof uses a martingale argument similar to that of
Lemma 38, and invokes the Extended Azuma’s Inequality. We
start by defining

τ(π1, . . . , πk) =
∑
i

∑
j 6=i

αiαjh(πi, πj)

which is the sum we want to bound. We next define the
Martingale sequence

Zt = Eπ [τ(π1, . . . , πk)|π1, . . . , πk]



18

Finally we define four families of functions {hi,t}kt=1. In the
following definitions, and throughout the proof, p, q denote
random variables drawn uniformly at random from [C].

1) For 1 ≤ t ≤ k, define h1,t : [C]t−1 × [C]× [C]→ C by

h1,t(π1→t−1, πt, πi) := h(πi, πt)− Ep/∈{π1→t−1}[h(πi, p)].

2) For 1 ≤ t ≤ k, define h2,t : [C]t−1 × [C]× [C]→ C by

h2,t(π1→t−1, πt, πi)
.= Ep/∈{π1→t}[h(πt, p)]− E p,q/∈{π1→t}

p6=q
[h(p, q)].

3) For 1 ≤ t ≤ k, define h3,t : [C]t−1 × [C]× [C]→ C by

h3,t(π1→t−1, πt, πi)
.= Ep/∈{π1→t}[h(πi, p)]− Ep/∈{π1→t−1}[h(πi, p)].

4) For 1 ≤ t ≤ k, define h4,t : [C]t−1 × [C]× [C]→ C by

h4,t(π1→t−1, πt, πi)
.= E p,q/∈{π1→t}

p6=q
[h(p, q)]− E p,q/∈{π1→t−1}

p6=q
[h(p, q)].

Note that we consider h2,t and h4,t as functions of πi, although
they do not truly depend on πi.

Lemma 39. For 1 ≤ t ≤ k

|Zt − Zt−1|

≤ 2|αt|

∣∣∣∣∣
t−1∑
i=1

αih1,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ 2|αt|

∣∣∣∣∣
k∑

i=t+1

αih2,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ 2‖α‖1

∣∣∣∣∣
t−1∑
i=1

αih3,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ ‖α‖1

∣∣∣∣∣
k∑

i=t+1

αih4,t(π1→t−1, πt, πi)

∣∣∣∣∣
Proof: Using the linearity of expectation and the assump-

tion of a uniform distribution for π we can write

Zt =
t∑
i=1

t∑
j=1
j 6=i

αiαjh(πi, πj)

+
t∑
i=1

k∑
j=t+1

αiαjEp/∈{π1,...,πt}[h(πi, p)]

+
k∑

i=t+1

t∑
j=1

αiαjEp/∈{π1,...,πt}[h(p, πj)]

+
k∑

i=t+1

k∑
j=t+1
j 6=i

αiαjE p,q/∈{π1,...,πt}
p 6=q

[h(p, q)] (20)

where p, q are uniformly distributed over [C]. Applying the
skew-symmetry of h and using the fact that z + z = 2<(z),

we can rewrite this as

Zt =
t∑
i=1

t∑
j=1
j 6=i

αiαjh(πi, πj)

+ 2<

 k∑
j=t+1

αj

( t∑
i=1

αiEp/∈{π1,...,πt}[h(πi, p)]

)
+

 k∑
i=t+1

k∑
j=t+1
j 6=i

αiαj

(E p,q/∈{π1,...,πt}
p6=q

[h(p, q)]
)
. (21)

Next we can find the difference Zt − Zt−1 by examining
the difference of each of the three terms in 21 with their
corresponding versions when t is set to t − 1. The first term
becomes

t∑
i=1

t∑
j=1
j 6=i

αiαjh(πi, πj)−
t−1∑
i=1

t−1∑
j=1
j 6=i

αiαjh(πi, πj)

=
t−1∑
i=1

αiαth(πi, πt) +
t−1∑
j=1

αtαjh(πt, πj)

= 2<

(
αt

t−1∑
i=1

αih(πi, πt)

)
(22)

The second term becomes

2<

 k∑
j=t+1

αj

( t∑
i=1

αiEp/∈{π1,...,πt}[h(πi, p)]

)
− 2<

 k∑
j=t

αj

(t−1∑
i=1

αiEp/∈{π1,...,πt−1}[h(πi, p)]

)
(23)

The third term becomes k∑
i=t+1

k∑
j=t+1
j 6=i

αiαj

(E p,q/∈{π1,...,πt}
p 6=q

[h(p, q)]
)

−

 k∑
i=t

k∑
j=t
j 6=i

αiαj

(E p,q/∈{π1,...,πt−1}
p 6=q

[h(p, q)]
)

=
(

E p,q/∈{π1,...,πt}
p6=q

[h(p, q)]− E p,q/∈{π1,...,πt−1}
p6=q

[h(p, q)]
)

 k∑
i=t+1

k∑
j=t+1
j 6=i

αiαj


− 2<

E p,q/∈{π1,...,πt−1}
p 6=q

[h(p, q)]

αt k∑
j=t+1

αj

 (24)
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We can now use the triangle inequality to bound |Zt−Zt−1|:

|Zt − Zt−1|

≤ 2|αt|

∣∣∣∣∣
t−1∑
i=1

αih1,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ 2|αt|

∣∣∣∣∣
k∑

i=t+1

αih2,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ 2‖α‖1

∣∣∣∣∣
t−1∑
i=1

αih3,t(π1→t−1, πt, πi)

∣∣∣∣∣
+ ‖α‖1

∣∣∣∣∣
k∑

i=t+1

αih4,t(π1→t−1, πt, πi)

∣∣∣∣∣ (25)

Lemma 40. For 1 ≤ t ≤ k the following StRIP-ability
conditions are satisfied

1) The function 1
2h1,t is (η,∞)-StRIP-able.

2) The function 1
2h2,t is (η,∞)-StRIP-able.

3) The function k2

2 h3,t is (η,∞)-StRIP-able.
4) The function k2

4 h4,t is (η,∞)-StRIP-able.

Proof: By linearity of expectation, for any fixed
{π1, . . . , πt−1} we can write

Eπt /∈{π1,...,πt−1}[h1,t(π1→t−1, πt, πi)] = 0

Also, by worst-case coherence of h, |h1,t(π1→t−1, πt, πi)| ≤
2N−η , so 1

2h1,t is (η,∞)-StRIP-able.

Next, h2,t can be rewritten as

h2,t(π1→t−1, πt, πi) = Ep/∈{π1,...,πt}[h(πt, p)]

− Eπt /∈{π1,...πt−1}
[
Ep/∈{π1,...,πt}[h(πt, p)]

]
so for any fixed {π1, . . . , πt−1} we have

Eπt /∈{π1,...,πt−1}h2,t(π1→t−1, πt, πi) = 0.

Again using worst-case coherence of h, we find
|h2,t(π1→t−1, πt, πi)| ≤ 2N−η . Thus 1

2h2,t is (η,∞)-
StRIP-able.

Next we expand h3,t for t 6= i:

|h3,t(π1→t−1, πt, πi)|

= Pr
p/∈π1→t−1

[p = πt]
∣∣Ep/∈{π1,...,πt} [h(πi, p)]− h(πi, πt)]

∣∣
=

2N−η

C − (t− 1)
≤ 2N−η

C − k
≤ 2N−η

k2

where in the last step we used the assumption k ≤
√
C− 1

2 . We
bound average coherence of h3,t by fixing {π1, . . . , πt−1}:

Eπt /∈{π1,...,πt−1}
πi 6=πt

[h3,t(π1→t−1, πt, πi)]

= Eπt /∈{π1,...,πt−1}
πi 6=πt

[
Ep/∈{π1,...,πt}[h(πi, p)]

]
− Eπt /∈{π1,...,πt−1}

πi 6=πt

[
Ep/∈{π1,...,πt−1}[h(πi, p)]

]
= Ep/∈{π1,...,πt−1}

[
Eπt /∈{π1,...,πt−1,p}

πi 6=πt

[h(πi, p)]− h(πi, p)
]

= 0

Hence k2

2 h3,t is (η,∞)-StRIP-able.
Next, for any fixed {π1, . . . , πt−1},

Eπt /∈{π1,...,πt−1} [h4,t(π1→t−1, πt, πi)]

= Eπt /∈{π1,...,πt−1}

[
E p,q/∈{π1,...,πt}

p6=q
[h(p, q)]

]
− Eπt /∈{π1,...,πt−1}

[
E p,q/∈{π1,...,πt−1}

p 6=q
[h(p, q)]

]
= E p,q/∈{π1,...,πt−1}

p6=q

[
Eπt /∈{π1,...,πt−1,p,q}[h(p, q)]− h(p, q)

]
= 0. (26)

By conditioning on whether p or q are equal to πt we can
write

|h4,t(π1→t−1, πt, πi)|

≤
(

1− Pr p,q/∈{π1,...,πt−1}
p 6=q

[p, q 6= πt]
) ∣∣∣E p,q/∈{π1,...,πt}

p 6=q
[h(p, q)]

∣∣∣
+
∣∣Eq/∈{π1,...,πt}[h(πt, q)]

∣∣
≤ 4N−η

C − (t− 1)
≤ 4N−η

k2

k2

C − k
≤ 4N−η

k2
(27)

Hence k2

4 h4,t is (η,∞)-StRIP-able.

Theorem 41. Let h be an (η, γ)-StRIP-able function. As-
suming a uniform support model, let α be a k-sparse sig-
nal, and fix the values α1, . . . , αk. Let ξ > 0 such that
k ≤ min

{√
C − 1

2 , ξN
γ
}

Then for any ε > 0

Pr

∣∣∣∣∣∣
∑
i

∑
j 6=i

αiαjh(πi, πj)

∣∣∣∣∣∣ ≥ 2ξ‖α‖2


≤ 4 exp
{
−ξ2

8192ε2

}
+

56N−ηk
7
2

ε
exp

{
−N2ηε2

128

}
Proof: Combining Lemma 40 and Theorem 17 yields the

following probabilistic bounds for all ε > 0:

1)

Pr

[
∃t :

∣∣∣∣∣
t−1∑
i=1

αih1,t(πi, πt)

∣∣∣∣∣ ≥ 2ε‖α‖2

]

≤ 4k exp
{
−N2ηε2

128

}
(28)
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2)

Pr

[
∃t :

∣∣∣∣∣
k∑

i=t+1

αih2,t(π1→t−1, πt, πi)

∣∣∣∣∣ ≥ 2ε‖α‖2

]

≤ 4k exp
{
−N2ηε2

128

}
(29)

3)

Pr

[
∃t :

∣∣∣∣∣
t−1∑
i=1

αih3,t(π1→t−1, πt, πi)

∣∣∣∣∣ ≥ 2
k2
ε‖α‖

]

≤ 4k exp
{
−N2ηε2

128

}
(30)

4)

Pr

[
∃t :

∣∣∣∣∣
k∑

i=t+1

αih4,t(π1→t−1, πt, πi)

∣∣∣∣∣ ≥ 4
k2
ε‖α‖

]

≤ 4k exp
{
−N2ηε2

128

}
(31)

Now, taking the union bound over 28, 29, 30 and 31, and
applying Lemma 39, we find that with probability 1− δ

|Zt − Zt−1| ≤ ε‖α‖
(

4|αt|+ 4|αt|+
4
k2
‖α‖1 +

4
k2
‖α‖1

)
= 8ε‖α‖

(
|αt|+

‖α‖1
k2

)
(32)

where

δ ≤ 16k exp
{
−N2ηε2

128

}
(33)

Referring back to Lemma 39, we also have the following
absolute bound on the martingale sequence:

|Zt − Zt−1| ≤
√
kN−η‖α‖ (4|αt|+ 3‖α‖1) (34)

By linearity of expectation, we can bound the expectation
of τ :

Eπ

∣∣∣∣∣∣
∑
i

∑
j 6=i

αiαjh(πi, πj)

∣∣∣∣∣∣ ≤ kN−γ‖α‖2
Therefore, for any ξ ≥ kN−γ , we can use 32, 33 and 34

with the Extended Azuma’s Inequality:

Pr

∣∣∣∣∣∣
∑
i

∑
j 6=i

αiαjh(πi, πj)

∣∣∣∣∣∣ ≥ 2ξ‖α‖2


≤ 4 exp

{
−ξ2‖α‖4

32
∑k
t=1

(
8ε‖α‖

(
|αt|+ 1

k2 ‖α‖1
))2
}

+ 64k exp
{
−N2ηε2

128

} k∑
t=1

√
kN−η‖α‖ (4|αt|+ 3‖α‖1)
8ε‖α‖

(
|αt|+ 1

k2 ‖α‖1
)

Now, by application of the Cauchy-Schwarz Inequality,
k∑
t=1

(
8ε‖α‖

(
|αt|+

1
k2
‖α‖1

))2

= 64ε2‖α‖2
k∑
t=1

(
|αt|2 +

2
k2
|αt|‖α‖1 +

1
k4
‖α‖21

)
= 64ε2‖α‖2

(
‖α‖2 +

2
k2
‖α‖21 +

1
k3
‖α‖21

)
≤ 64ε2‖α‖2

(
‖α‖2 +

2
k
‖α‖2 +

1
k2
‖α‖2

)
≤ 64ε2‖α‖4

(
1 +

1
k

)2

≤ 256ε2‖α‖4

and
√
kN−η‖α‖ (4|αt|+ 3‖α‖1)
8ε‖α‖

(
|αt|+ 1

k2 ‖α‖1
) ≤

√
kN−η

8ε
7‖α‖1
1
k2 ‖α‖1

≤ 7k
5
2N−η

8ε
.

So we can write

P

∣∣∣∣∣∣
∑
i

∑
j 6=i

αiαjh(πi, πj)

∣∣∣∣∣∣ ≥ 2ξ‖α‖2


≤ 4 exp
{
−ξ2

8192ε2

}
+

56N−ηk
7
2

ε
exp

{
−N2ηε2

128

}

APPENDIX D
PROOF OF LEMMA 24

We start by analyzing the first term in (12). It follows from
expanding the expectation that

k∑
i=1

|αi|2√
N

(1− δ∆,πi) Ea
[
ia(Pπi−P∆)a>δaP∆

a,πi

]
=

k∑
i=1

|αi|2√
N3

(1− δ∆,πi)
∑
a

aP∆=aPπi

ia(Pπi−P∆)a> .

Since ∆ 6= πi, the null space of P∆ + Pπi has dimension
at most 2r, and there are at most 22r vectors a for which
aP∆ = aPπi . Hence∣∣∣∣∣∣∣(1− δ∆,πi)

∑
a

aP∆=aPπi

ia(Pπi−P∆)a>

∣∣∣∣∣∣∣ ≤ 22r,

and ∣∣∣∣∣
k∑
i=1

|αi|2√
N

(1− δ∆,πi) Ea
[
ia(Pπi−P∆)a>δaP∆

a,πi

] ∣∣∣∣∣
≤

k∑
i=1

|αi|2

N
3
2−

2r
m

.
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Next we bound the second term

1
N

3
2

k∑
i=1

∑
j 6=i

αiαj
∑
x

ix(Pπi−Pπj )x
>
Ex(πi,∆). (35)

We need to analyze two distinct cases:
Case 1: All π1 · · · , πk are distinct from ∆. In this case we
define the function

h (πi, πj)
.=
∑
x

ix(Pπi−Pπj )x
>
Ex(πi,∆).

It follows from Lemma 7 that

|h(πi, πj)| ≤ m
√
|N (Pπi − P∆)| |N (Pπj − P∆)| ≤ m 22r.

(36)

The extra term m in (36) is a consequence of removing
m+ 1 rows from the Reed-Muller sieve (see Remark 9). Now
we prove the bound for the average coherence. We rewrite
h(πi, πj) as

1
N

∑
x

ıx(P∆−Pπj )x>
∑
a

ı(a+x)(Pπi−P∆)(a+x)> .

Note that as a ranges over the additive group Fm2 , a + x

also ranges over Fm2 . Therefore
∑
a ı

(a+x)(Pπi−P∆)(a+x)> is
a column sum, independent of the choice of j. By Lemma 6,
its magnitude is smaller than N

1
2 + 2r

m . As a result∣∣∣E π
j 6=i

h(πi, πj)
∣∣∣ ≤ N 1

2 + 2r
m

∣∣∣∣∣E π
j 6=i

[
1
N

∑
x

ıx(P∆−Pπj )x>
]∣∣∣∣∣ .

Lemma 5 then implies that∣∣∣∣∣E π
j 6=i

[
1
N

∑
x

ıx(P∆−Pπj )x>
]∣∣∣∣∣ ≤ 1

C − 1
.

Consequently h is
(

1
2 + r

(
1− 2

m

)
,−
(

2r+logm
m

)
, N
)

StRIP-able. Now let ξ be a positive numbers such that k ≤
min

{√
C − 1

2 , ξN
1
2 +r(1− 2

m )
}
. It follows from Theorem 19

that for any ε > 0, with probability at least

1− 4 exp
{
−ξ2N2η

8192ε2

}
+

56N−ηk
7
2

ε
exp

{
−ε2N2η

128

}
,

we have∣∣∣∣∣∣
 k∑
i=1

αi

k∑
j=1

αjh (πi, πj)

− ‖α1→k‖2
∣∣∣∣∣∣ ≤ 2ξ‖α1→k‖2.

In particular, by setting ε = O
(
mN

2r
m

√
log C

)
, and ξ =

O
(
mN

2r
m log C

)
, we can guarantee that with probability

1−O
(

1
Poly(C)

)
1
N

3
2

∣∣∣∣∣∣
∑
i

∑
j 6=i

αiαjh(πi, πj)

∣∣∣∣∣∣ � m log C‖α1→k‖2

N
3
2−

2r
m

.

Case 2: There exists an index t such that πt equals ∆. In
this case (35) can be rewritten as

1
N

3
2

∑
i

πi 6=∆

∑
j 6=i

αiαj
∑
x

ix(Pπi−Pπj )x
>
Ex(πi,∆) (37)

+
1
N

3
2
αt
∑
j 6=t

αj
∑
x

ix(P∆−Pπj )x> .

An argument similar to the argument used in case 1 can
be used to bound the first term in (37). Now we bound
the second term. Let ε′ be any positive number such that
k ≤ min

{√
C − 1

2 , ε
′2N2(r+1)

}
. It follows from Lemma 38

that with probability 1− 4 k exp
{
ε′2N1− 2r

m

128

}
,

1
N

3
2

∣∣∣∣∣∣αt
∑
j 6=t

αj
∑
x

ix(P∆−Pπj )x>
∣∣∣∣∣∣ ≤ 2ε′|αt|‖α‖2

N
1
2

.

As a result, as long as ε′ ≤ 1
20

√
MAR
k , we get the bound

1
N

3
2

∣∣∣∣∣∣αt
∑
j 6=t

αj
∑
x

ix(P∆−Pπj )x>
∣∣∣∣∣∣ ≤ |αt|

2

10N
1
2
.

Since MAR � k log C
N1− 2r

m
, by selecting ε′ = O

( √
log C

N
1
2−

r
m

)
we

guarantee that with probability 1−O
(

1
Poly(C)

)
,

1
N

3
2

∣∣∣∣∣∣αt
∑
j 6=t

αj
∑
x

ix(P∆−Pπj )x>
∣∣∣∣∣∣ ≤ |αt|

2

10N
1
2
.

APPENDIX E
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We expand Ea
[
i−aP∆a

>
√
N

∑
x y(x+ a)u(x)(−1)aP∆x

>
]

as

1√
N

k∑
i=1

αi

(∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆)

)
. (38)

There are two distinct cases to handle:

Case 1: All π1 · · · , πk are distinct from ∆. Define the
function

~ (πi)
.=
∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆). (39)

First we analyze the average behavior of ~. We rewrite
Equation (39) as

~ (πi)
.=

1
N

3
2

∑
x

ixP∆x
>
u(x)

∑
a

[
i(x+a)(Pπi−P∆)(x+a)>

]
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Note that as a ranges uniformly over the additive group Fm2 ,
a+ x also ranges uniformly over the group. Hence

|Eπ [h(πi)]|

≤

∣∣∣∑x i
xP∆x

>
u(x)

∣∣∣ ∣∣∣Eπ [∑y∈Fm2
iy(Pπi−P∆)y>

]∣∣∣
N

3
2

≤ ‖u‖1
N

1
2

1
C − 1

.

Next we provide a uniform upper-bound for the magnitude
of ~. By expanding the expectation in Equation (39) we rewrite
~ (πi) as∑

x

ixPπix
>

N
3
2

u(x)
∑
a

(
ia(Pπi−P∆)a>(−1)(aPπi−aP∆)x>

)
.

(40)
By Proposition 6, the inner sum is either 0 or it has size

2
m+t

2 for some t at most 2r. The non-zero terms occur at
indices x that are elements of a translate of some m − t-
dimensional subspace. As a result, it follows from the Cauchy-
Schwarz inequality that:

max
i
|h(πi)| ≤

‖u‖2
N

3
2

2
m+t

2 2
m−t

2 ≤ ‖u‖2
N

1
2
.

Having analyzed Eπi [~(π)], and maxπi ~(π), we can now
use Azuma’s inequality (Lemma 35) to bound the term

1√
N

∑k
i=1 αi~(πi). Let ε be any positive number such that

k ≤ min
{
ε2N2(r+2)

‖u‖21
, C−1

2

}
. Then

Pr

[∣∣∣∣∣ 1√
N

k∑
i=1

αi~(πi)

∣∣∣∣∣ ≥ 2ε‖α‖

]
≤ 4 exp

{
−ε2N2

‖u‖2128

}
.

Now the union bound over all possible choices of ∆ implies
that with probability at least 1− 4C exp

{
−ε2N2

‖u‖2128

}
, for every

index ∆

1√
N

∣∣∣∣∣
k∑
i=1

αi

(∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆)

)∣∣∣∣∣ ≤ 2ε‖α‖.

In particular, if ε = O
(√

log C‖u‖2
N

)
then the condition

k ≤ ‖u‖22N
2(r+1) log C
‖u‖21

is always satisfied; consequently, with

probability 1−O
(

1
Poly(C)

)
, for every index ∆∣∣∣∣∣ 1√

N

k∑
i=1

αi~(πi)

∣∣∣∣∣ �
√

log C‖u‖2‖α‖2
N

. (41)

Now we show that if the elements of u have independent and
random sign, then we can use the union bound to strengthen
the bound of Equation 41. Let ε be a positive number, then
using the Gaussian tail bound (Proposition 32)

Pr
u

[∃πi : |~(πi)| ≥ ε‖u‖] ≤
C∑
i=1

Pr
u

[|~(πi)| ≥ ε‖u‖]

≤ 4C exp

{
−ε2N2− 2r

m

16

}
.

Now let ξ be any positive number with

k ≤ min
{
ξ2N2(r+2)

‖u‖21
,
C − 1

2

}
,

with probability at least

4 C

(
exp

{
−ξ2‖α‖2N

128 ε2‖α‖2‖u‖2

}
+ C exp

{
−ε2N2− 2r

m

16

})
,

for every column index ∆ we have

1√
N

∣∣∣∣∣
k∑
i=1

αi

(∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆)

)∣∣∣∣∣ ≤ 2ξ‖α‖2.

Note that by choosing ε = O
( √

log C
N1− r

m

)
and

ξ = O
(

log C‖u‖2
N

3
2−

r
m

)
it is guaranteed that with probability

1−O
(

1
Poly(C)

)
, for every index ∆

1√
N

∣∣∣∣∣
k∑
i=1

αi
∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆)

∣∣∣∣∣ � log C‖α‖2‖u‖2
N

3
2−

r
m

.

case 2: There exists an index t such that πt equals ∆. In
this case (38) can be written as

1√
N

∑
i

πi 6=∆

αi
∑
x

ixPπix
>

√
N

u(x)Ex(πi,∆) (42)

+
1√
N
αt
∑
x

ixPπtx
>

√
N

u(x).

An argument similar to the one used in proving case 1 can
be used to bound the first term in (42). Now we bound the
second term. First consider the deterministic noise regime, in
which that no information about u is known. In this case if
‖α‖min ≥ 10‖u‖2 , then if follows from the Cauchy-Schwarz
inequality that∣∣∣∣∣ 1√

N
αt
∑
x

ixPπtx
>

√
N

u(x)

∣∣∣∣∣ ≤ |αt|‖u‖2√
N

≤ |αt|2

10
√
N
.

Next consider the stochastic noise regime. In this case,
it follows from Azuma’s inequality that with probability

1 − O
(

1
Poly(C)

)
,
∣∣∣∣ 1√

N
αt
∑
x
ixPπtx

>
√
N

u(x)
∣∣∣∣ � √

log C|αt|‖u‖2
N .

Therefore, as long as ‖α‖min ≥ 10
√

log C‖u‖2√
N

, we guarantee∣∣∣∣∣ 1√
N
αt
∑
x

ixPπtx
>

√
N

u(x)

∣∣∣∣∣ �
√

log C|αt|‖u‖2
N

≤ |αt|2

10
√
N
.


