
PROBABILISTIC GRAPHICAL MODELS FOR THE

ANALYSIS AND SYNTHESIS OF MUSICAL AUDIO

MATTHEW DOUGLAS HOFFMAN

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISER: PERRY RAYMOND COOK

NOVEMBER 2010

c© Copyright by Matthew Douglas Hoffman, 2010.
All rights reserved.

Abstract
Content-based Music Information Retrieval (MIR) systems seek to automatically extract
meaningful information from musical audio signals. This thesis applies new and exist-
ing generative probabilistic models to several content-based MIR tasks: timbral similarity
estimation, semantic annotation and retrieval, and latent source discovery and separation.

In order to estimate how similar two songs sound to one another, we employ a Hier-
archical Dirichlet Process (HDP) mixture model to discover a shared representation of the
distribution of timbres in each song. Comparing songs under this shared representation
yields better query-by-example retrieval quality and scalability than previous approaches.

To predict what tags are likely to apply to a song (e.g., “rap,” “happy,” or “driving
music”), we develop the Codeword Bernoulli Average (CBA) model, a simple and fast
mixture-of-experts model. Despite its simplicity, CBA performs at least as well as state-
of-the-art approaches at automatically annotating songs and finding to what songs in a
database a given tag most applies.

Finally, we address the problem of latent source discovery and separation by developing
two Bayesian nonparametric models, the Shift-Invariant HDP and Gamma Process NMF.
These models allow us to discover what sounds (e.g. bass drums, guitar chords, etc.) are
present in a song or set of songs and to isolate or suppress individual source. These models’
ability to decide how many latent sources are necessary to model the data is particularly
valuable in this application, since it is impossible to guess a priori how many sounds will
appear in a given song or set of songs.

Once they have been fit to data, probabilistic models can also be used to drive the
synthesis of new musical audio, both for creative purposes and to qualitatively diagnose
what information a model does and does not capture. We also adapt the SIHDP model
to create new versions of input audio with arbitrary sample sets, for example, to create a
sound file that matches a song as closely as possible by combining spoken text.

iii

Acknowledgements
I want to thank, first of all, my advisor Perry Cook and my co-advisor David Blei. With-
out their time, support, advice, instruction, and insight this dissertation could never have
existed, and I would never have developed the skills I needed to write it. I also thank them
for giving me the freedom to work on whatever projects I found exciting, and for their
enthusiasm for those projects. I owe them both a tremendous debt of thanks.

I also want to thank the other members of my thesis committee, Ken Steiglitz, Adam
Finkelstein, and Rob Schapire, for their helpful comments and suggestions.

Thanks also to Ge Wang, Ananya Misra, Jeff Bernstein, Rebecca Fiebrink, Jordan
Boyd-Graber, Jonathan Chang, Sean Gerrish, Sam Gershman, Lauren Hannah, John Pais-
ley, Gungor Polatkan, Chong Wang, Sonya Nikolova, Xiaojuan Ma, Zhe Wang, Kai Li, and
the many other members of the Computer Science department who have provided me with
support, friendship, and help at various times in various ways.

Without the inspiration of the faculty, staff, and graduate students at Columbia’s Com-
puter Music Center I might never have applied to graduate school in the first place. In
particular, I want to thank Douglas Repetto, Brad Garton, Terry Pender, and Luke DuBois
for getting me interested in the world of computational music research.

This work was supported by National Science Foundation grants 0101247, 0509447,
0745520, and 9984087, National Institutes of Health grant 5R44HL072534-03, Office of
Naval Research grant 175-6343, New Jersey Center for Science and Technology grant 01-
2042-007-22, the Kimberly and Frank H. Moss ’71 Research Innovation Fund (Princeton
School of Engineering and Applied Sciences), the E. L. Keyes, Jr. Emerson Electric Co.
Faculty Award, Google Inc., Microsoft Corp., Interval Research, the Arial Foundation, and
Lingraphicare. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of these
institutions.

Finally, many thanks to my family: to my parents for their limitless love, support,
wisdom, and good humor; to my grandparents and extended family for their kind wishes
and confidence in me; and to my wife Maggie, for everything.

iv

To my wife Maggie, who has made my time as a graduate student the happiest of my life.

v

Contents

Abstract . iii
Acknowledgements . iv
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Motivation . 1
1.2 Probabilistic Graphical Modeling . 2
1.3 Contributions . 4

1.3.1 Analysis Applications . 4
1.3.2 Synthesis Applications . 5

1.4 Related Publications . 6

2 Background 7
2.1 Inference Techniques . 7

2.1.1 Variational Inference . 8
2.1.2 Markov Chain Monte Carlo Inference 10

2.2 Bayesian Nonparametric Mixture Modeling 10
2.2.1 Bayesian Mixture Models . 11
2.2.2 Dirichlet Process Mixture Models 12
2.2.3 The Hierarchical Dirichlet Process 14
2.2.4 Stick-Breaking construction . 15

3 Timbral Similarity Estimation Based on the Hierarchical Dirichlet Process 18
3.1 Introduction and Previous Work . 18
3.2 HDP-Based Similarity Using Latent Features 19

3.2.1 Representing Songs Using the HDP 19
3.2.2 Generalizing to New Songs . 20

3.3 Evaluation . 20
3.3.1 South by Southwest Dataset . 21
3.3.2 Features . 21
3.3.3 Models Evaluated . 21
3.3.4 Experiments . 22

3.4 Results . 23
3.4.1 Similarity Hubs . 24

3.5 Discussion . 25

vi

4 Codeword Bernoulli Averaging: A Model for Autotagging Songs 26
4.1 Data and Representation . 27

4.1.1 The CAL500 data set . 27
4.1.2 A vector-quantized representation 27

4.2 The Codeword Bernoulli Average model 28
4.2.1 Related work . 28
4.2.2 Generative process . 28
4.2.3 Inference using expectation-maximization 29
4.2.4 Generalizing to new songs . 30

4.3 Evaluation . 32
4.3.1 Annotation task . 32
4.3.2 Retrieval task . 33
4.3.3 Annotation and retrieval results 33
4.3.4 Computational cost . 34

4.4 Discussion . 34

5 Nonparametric Latent Source Discovery Part I: The SI-HDP 37
5.1 A Shift-Invariant Nonparametric Bayesian Model 38

5.1.1 Data Representation . 38
5.1.2 Generative Process . 40

5.2 Evaluation . 42
5.2.1 Drum Loop Transcription . 42
5.2.2 Experiments on Recorded Popular Music 45

5.3 Discussion . 48

6 Nonparametric Latent Source Discovery Part II: Gamma Process Nonnegative
Matrix Factorization 49
6.1 Introduction . 49
6.2 GaP-NMF Model . 50
6.3 Variational Inference . 52

6.3.1 Variational Objective Function . 53
6.3.2 Coordinate Ascent Optimization 55
6.3.3 Accelerating Inference . 56

6.4 Evaluation . 57
6.4.1 Synthetic Data . 58
6.4.2 Marginal Likelihood . 59
6.4.3 Bandwidth Expansion . 60
6.4.4 Blind Monaural Source Separation 61

6.5 Related Work . 62
6.6 Discussion . 63

7 HMM-Based Feature-Based Synthesis 64
7.1 Introduction . 64
7.2 Markov Chains . 65
7.3 Hidden Markov Models . 66

vii

7.3.1 Higher-order HMMs . 68
7.3.2 Generating new feature vector sequences 68

7.4 Feature-Based and Concatenative Synthesis 68
7.4.1 Feature-based synthesis . 68
7.4.2 Concatenative synthesis . 69
7.4.3 Cluster mosaicing . 69

7.5 The HDP-HMM . 70
7.5.1 The basic model . 70
7.5.2 Priors on emission density parameters 71
7.5.3 Adding another layer of hierarchy 72

7.6 Experiments . 73
7.6.1 Results . 73

7.7 Discussion . 75

8 Bayesian Spectral Matching: Turning Young MC Into MC Hammer Via
MCMC Sampling 77
8.1 Introduction . 77
8.2 The SIMM Model . 78

8.2.1 Data Representation . 78
8.2.2 Generative Process . 78

8.3 Inference and Synthesis . 80
8.3.1 Gibbs Sampler . 80
8.3.2 Sonifying the MAP Estimate . 81
8.3.3 Resampling η . 82

8.4 Evaluation . 82
8.5 Transcription . 84
8.6 Discussion . 86

9 Conclusions and Future Work 87
9.1 Contributions . 87
9.2 Future Work . 88

9.2.1 Beyond Similarity: New Applications of Mixed-Membership Mix-
ture Modeling . 88

9.2.2 Fully Generative Codeword Bernoulli Average 89
9.2.3 Pitch-Invariant and Hierarchical GaP-NMF 90
9.2.4 Temporal Modeling of Latent Source Activations 93

9.3 Conclusions . 94

A Inference Procedures for the SIHDP 95
A.0.1 Direct Assignment Gibbs Sampler 95
A.0.2 Distributed Inference . 97

B Glossary of Abbreviations 100

Bibliography 105

viii

List of Tables

3.1 Time in seconds required to compute a 121x121 distance matrix for G1,
GMM-based (K = 5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and
HDP-based algorithms. 22

3.2 Three measures of retrieval quality: mean R-Precision (RP), mean Average
Precision (AP), and mean Area Under ROC Curve (AUC) for G1, GMM-
based (K = 5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and HDP-
based algorithms on the large SXSW dataset. 23

3.3 Mean R-Precision (RP), mean Average Precision (AP), and mean Area Un-
der ROC Curve (AUC) for G1 and our HDP-based algorithm on the smaller
dataset. 23

4.1 Summary of the performance of CBA (with a variety of VQ codebook
sizes K), a mixture-of-Gaussians model (MixHier), and an AdaBoost-
based model (Autotag) on an annotation task (evaluated using precision,
recall, and F-score) and a retrieval task (evaluated using average preci-
sion (AP) and area under the receiver-operator curve (AROC)). Autotag
(MFCC) used the same Delta-MFCC feature vectors and training set size
of 450 songs as CBA and MixHier. Autotag (afeats exp.) used a larger set
of features and a larger set of training songs. UpperBnd uses the optimal
labeling for each evaluation metric, and shows the upper limit on what any
system can achieve. Random is a baseline that annotates and ranks songs
randomly. 31

4.2 Examples of semantic annotation from the CAL500 data set showing the
top 10 words associated by our model with the songs Give it Away, Fly Me
to the Moon, Blue Monday, and Becoming. 35

4.3 Examples of semantic retrieval from the CAL500 data set. The left col-
umn shows a query word, and the right column shows the five songs in the
dataset judged by our system to best match that word. 36

8.1 Errors obtained by our approach when trying to match songs by AC/DC
and Young MC using various sets of sound sources, and the learned values
of the hyperparameter η. In all cases our method outperforms a baseline of
white noise. Note that lower errors do not necessarily translate to a more
aesthetically interesting result. 82

8.2 Accuracies obtained by the SIMM model for two sample sets and two
recordings, for the best setting of the threshold τ 85

ix

List of Figures

1.1 Graphical model representation of a mixture-of-Gaussians model. 3

2.1 Graphical model for a Bayesian GMM with a full set of covariance matrices
Σ. 11

2.2 Five vectors drawn from a Dirichlet(2/K, . . . , 2/K) distribution for vari-
ous dimensionalities K. 13

2.3 Four tables and eight customers in a Chinese Restaurant Process (CRP). In
this example, the 1st, 3rd, 4th, and 7th customers all sat at an empty table,
whereas the 2nd, 5th, 6th, and 8th sat at existing tables. The 9th customer
will sit at table 1, 2, 3, or 4 with probabilities 3

8+α
, 1

8+α
, 3

8+α
, and 1

8+α

respectively, or will sit at a new table with probability α
8+α

. 14
2.4 Graphical model for the HDP. 15
2.5 Chinese Restaurant Franchise (CRF) for three groups of eight observations

each. Below are three CRPs (corresponding to the three groups), and above
is the global CRP from which the CRPs get their dishes. Each customer j, i
sitting at a table in the global CRP corresponds to table i in restaurant j,
and customer j, i’s table membership in the global CRP determines the
dish that is served at table i in restaurant j. If a new customer coming into
a restaurant j sits down at a new table, then the dish for that table will be
φ1, φ2, φ3, or φ4 with probability 5

γ+11
, 3
γ+11

, 2
γ+11

, or 1
γ+11

respectively, or
a new dish with probability γ

γ+11
. 16

3.1 Histograms of how often each song is ranked in the top five of another
song’s similarity list for similarity matrices obtained using G1 (left), the
HDP (center), and by choosing distances at random (right). 24

4.1 Graphical model representation of CBA. 29
4.2 Visual comparison of the performance of several models evaluated using

F-score, mean average precision, and area under receiver-operator curve
(AROC). 33

5.1 Spectrogram of 4.64 seconds (200 512-sample windows) of the AC/DC
song “Dirty Deeds Done Dirt Cheap,” annotated with the locations in time
and frequency of a few instrument sounds. 39

5.2 The graphical model for the shift-invariant HDP. 41

x

5.3 A graphical representation of our model’s MAP estimate of π for the 40
synthetic drum loops. A darker pixel in row k of column j indicates a
higher relative proportion πjk of latent component k in song j. 43

5.4 Left: Two latent distributions φk discovered by our model. Right: Spec-
trograms of two drum samples closely matching the latent components at
left. 44

5.5 Left: An unsupervised transcription ω̂ generated by our model of a drum
loop. Right: The actual times and amplitudes of the drum loop. Darker
pixels correspond to higher amplitudes. 45

5.6 Four latent components discovered from 48 songs taken from the CAL500
corpus of popular music. 46

5.7 The 10 most prominent components of the unsupervised transcription ω̂ in-
ferred from 11 seconds of the AC/DC song “Dirty Deeds Done Dirt Cheap.”
Some components are relatively weak here, but become more prominent
elsewhere in the song. 47

6.1 Five vectors whose entries are drawn independently from a Gamma(2/K, 2)
distribution for various dimensionalities K. 52

6.2 True synthetic bases (left) and expected values under the variational pos-
terior of the nine bases found by the model (right). Brighter denotes more
active. The 36-dimensional basis vectors are presented in 6× 6 blocks for
visual clarity. 58

6.3 Left: Bounds on log p(X|prior) for the nonparametric GaP-NMF model
and its parametric counterpart GIG-NMF with different numbers of latent
components K. Ticks on the horizontal lines showing the bound for the
GaP-NMF model indicate the number of components K used to explain
the data. For all three songs the values of K chosen by GaP-NMF are close
to the optimal value ofK for the parametric model. Right: Geometric mean
of the likelihood assigned to each censored observation by the nonparamet-
ric, finite, and unregularized models. Ticks again indicate the number of
components K used to explain the data. The unregularized models overfit.
EU-NMF performs badly, with likelihoods orders of magnitude lower than
the other models. 59

6.4 Average Signal-to-Noise Ratios (SNRs) across notes in the source separa-
tion task. Approaches based on the exponential likelihood model do well,
EU-NMF and KL-NMF do less well. Ticks on the horizontal lines showing
GaP-NMF’s performance denote the final number of components K used
to explain the data. 62

7.1 Initial state probabilities, transition matrix, and finite-state machine repre-
sentation of a simple first-order three-state Markov chain. 65

7.2 Initial state probabilities and transition matrix of a second-order two-state
Markov chain, as well as some example sequences and their likelihoods. . . 66

xi

7.3 One perspective on the hidden Markov model. Left: Finite-state machine
representation of transition probabilities between the hidden states A, B,
and C. Right: Probability density functions (PDFs) for the observed data
given the underlying state of the model xt is the observation at time t, and
zt is the underlying state label at time t. 67

7.4 Graphical model representation of a Bayesian first-order HMM with Gaus-
sian emission distributions. 67

7.5 Top: spectrogram of a clip from “Chewing Gum.” Bottom: spectrogram of
resynthesized clip. 74

7.6 Spectrograms of audio produced by (from top to bottom) a 1st-order
Markov chain, 4th-order Markov chain, and an 8th-order Markov chain. . . 76

8.1 The graphical model for SIMM. Nodes with two variable names denote tu-
ples drawn jointly—for example, ci and bi are drawn jointly from a multi-
nomial distribution with parameter φki

, and depend on both ki and φki
.

Only bi is directly observed, so only that half of the node is shaded. 79
8.2 Top: Spectrogram of 2.3 seconds of Young MC’s “Bust a Move.” Bottom:

Spectrogram of 2.3 seconds of the same song reconstructed from spoken
words from the TIMIT corpus using our SIMM model. 83

8.3 Plots of transcription accuracy versus binarization threshold τ for two
recordings analyzed using two sets of piano samples. 85

9.1 Graphical model for the genre classification model proposed in equation 9.1. 89
9.2 Graphical model for the autotagging model proposed in equation 9.2. 90
9.3 A binary subband matrix T with bandwidths determined by the Bark per-

ceptual scale. 91
9.4 Graphical model for a pitch-invariant GaP-NMF model. 92
9.5 Graphical model for a hierarchical pitch-invariant GaP-NMF model. 93

xii

Chapter 1

Introduction

1.1 Motivation
The past fifteen years have witnessed an explosion in the availability and prevalence of
digital music stored on and accessed via computers. Many individuals have accumulated
large libraries of songs, and companies such as Apple, Pandora, Amazon, Google, Spotify,
Rhapsody, Napster, and Mog (to name only a few) manage libraries of many millions of
recordings. The prevalence and size of digital music collections exposes new opportunities
and challenges in organizing these collections. In some cases, these can be addressed with-
out recourse to the music audio signals being organized. In others, content-based methods
that analyze musical audio signals are necessary.

For example, digital jukebox applications such as iTunes allow users to search and
organize their collections using metadata tags (e.g. artist name, genre, year of release,
etc.). But such tags may be missing or inadequate, especially for so-called “long-tail”
songs that have not achieved widespread popularity, and may not have received as much
curatorial attention as more mainstream recordings have. An unsigned band that posts its
home-recorded mp3s to its MySpace page (or a fan who tapes a Phish concert and uploads
the result to the Internet Archive1) may have forgotten to fill in some of the available ID3
tags, for example.

Likewise, a company may want to recommend new songs to its users based on songs
that the user has purchased or listened to in the past. Collaborative filtering methods like
those used in the Netflix Prize competition [12] offer a potential solution to this problem,
but cannot be used to recommend songs for which the company lacks sufficient user prefer-
ence data. This again makes them unable to recommend long-tail songs (which almost by
definition cannot have generated much user preference data), and limits their usefulness for
smaller companies that have not yet have accumulated large databases of user preference
data [22].

Such limitations of non-content-based approaches motivate the development of content-
based Music Information Retrieval (MIR) methods that can extract and manipulate mean-
ingful information from musical audio signals. This thesis presents several new techniques
for analyzing musical audio signals, as well as ways of applying such techniques to the

1http://www.archive.org

1

problem of generating or transforming musical audio for creative purposes. A common
thread through all of the techniques we present is the use of probabilistic graphical models,
and particularly Bayesian nonparametric models, to analyze audio signals.

1.2 Probabilistic Graphical Modeling
A cursory examination of the proceedings of ISMIR, the International Conference on Music
Information Retrieval [1], will show that machine learning plays a pivotal role in MIR. As
in other pattern recognition domains [14], data-driven approaches have generally proven
more effective than pure engineering approaches 2. There has been, however, a (by no
means universal) tendency within the MIR community to rely on well established ma-
chine learning techniques such as Gaussian Mixture Models (GMMs), Hidden Markov
Models (HMMs), Support Vector Machines (SVMs), and boosting, using these algorithms
as “black boxes” within larger systems rather than developing problem-specific machine
learning algorithms.

Although well engineered feature extraction algorithms in conjunction with off-the-
shelf learning methods can produce good results for many problems, we believe that better
performance can be achieved by using learning methods that take into account the special
structure of a problem. The framework of probabilistic graphical modeling [52] is well
suited to this approach. The process of using probabilistic modeling to address a data
analysis problem can be roughly broken into three steps:

1. Posit a probabilistic model of the data to be explained. This involves defining a family
of joint probability distributions over all observable data and any hidden variables.
This family will typically be indexed by a set of parameters—in Bayesian analyses
these parameters are endowed with their own prior probability distributions indexed
by a set of hyperparameters.

2. Derive an algorithm to infer settings of the parameters and/or hidden variables of
interest that are consistent with the observable data. In fully Bayesian inference, this
consists of reasoning about the posterior distribution over the parameters and hidden
variables conditioned on the data and any hyperparameters. Maximum-likelihood
inference algorithms instead try to find a single setting of the model parameters that
maximizes the likelihood of the observed data under the model.

3. Use the inferences about the model parameters and hidden variables to address the
problem under consideration.

In practice, this often becomes an iterative process where the results of an analysis may
suggest alterations to the model or inference algorithm, difficulties in deriving an inference
algorithm may motivate changes to the model, etc.

For example, say we want to partition some multidimensional real-valued data into K
clusters. We might

2Some notable exceptions do exist, for example the doctoral work of Anssi Klapuri [56]

2

µkπ zi xi
N K

Figure 1.1: Graphical model representation of a mixture-of-Gaussians model.

1. Assume that the data came from a mixture of Gaussians model, where each observed
vector of reals xi is generated by

(a) choosing a cluster index zi ∈ {1, . . . , K} according to a multinomial distribu-
tion with weights π, and

(b) sampling the observed vector xi from a Gaussian with mean µzi
and diagonal

covariance matrix σ2I .

Here the model parameters to be inferred are the Gaussian means µ and the mixture
weights π, and the hidden variables that need to be inferred are the cluster indices z.

2. Use the Expectation-Maximization (EM) algorithm [25] to find a setting of µ and
π that is a (local) maximum of the likelihood p(x|π,µ) of the observations x, and
infer the posterior p(z|x,π,µ) over the cluster indices z.

3. Assign each observation xi to the cluster k for which the posterior probability p(zi =
k|xi,π,µ) is highest (or, if fractional cluster membership is permissable, use the
posterior over the possible values of zi directly).

The term graphical modeling refers to the practice of representing the dependency struc-
ture of a model as a graph whose nodes denote random variables and whose edges denote
dependencies between random variables. Shaded nodes denote observable variables, un-
shaded nodes denote hidden variables whose values must be inferred (or integrated out).
A directed edge from a variable x to a variable y means that the joint probability p(x, y)
factorizes to p(x)p(y|x). Undirected edges (which do not appear in the models described in
this thesis) denote joint dependencies that cannot be factorized in this way. Replication of
random variables is denoted by “plates,” boxes that surround a group of random variables.
The number in the corner of the plate denotes how many times the set of random variables
is replicated. Figure 1.1 shows the graphical model for the mixture of Gaussians model
described above with N observations and K mixture components.

The probabilistic graphical modeling framework has several advantages to recommend
it:

It is extremely flexible. Almost any learning problem can be framed in terms of parame-
ter inference. Probabilistic models give state-of-the-art performance in problems as diverse
as regression, classification, clustering, factor analysis, collaborative filtering, etc.

3

It provides a language for formally specifying the assumptions made by an algorithm,
and for relaxing those assumptions as necessary. For example, the clustering model
discussed above assumes that all clusters should have the same size and shape, since each
Gaussian has a fixed diagonal covariance matrix. Should this assumption prove problem-
atic, it can be relaxed by changing the model to include a separate covariance matrix for
each Gaussian.

It provides a principled alternative to ad hoc algorithm design. The core computa-
tional challenge in probabilistic modeling is the well defined (and well studied) problem of
probabilistic inference, for which a large arsenal of generic techniques exists. If a model is
correctly specified, and an appropriate inference algorithm can be applied, then the problem
can be solved.

It is modular and extensible. Probabilistic graphical modeling provides a principled
paradigm for extending and combining simple models to address the unique structure of a
particular problem.

Our goal throughout this thesis will be to address problems in the analysis and synthesis
of musical audio by building and fitting problem-appropriate probabilistic graphical models
to audio data. We will generally avoid making strong assumptions about what or how many
kinds of sounds are present in our data, what insights from music theory are applicable, etc.
The motivation for this is twofold. First, models that make fewer assumptions are often
easier to build, apply, and understand. Second, a priori assumptions are often wrong, and
by relying on data rather than prior intuitions we can build models that are applicable to a
wider range of datasets.

1.3 Contributions
Below we outline the contributions of this thesis. Since a number of different problems
are addressed by these contributions, each of which has its own literature, more thorough
reviews of prior work are postponed until the chapters devoted to each application.

1.3.1 Analysis Applications
This thesis presents new techniques to address several problems in content-based analysis
of musical audio. These problems are summarized below.

Timbral similarity. The ability to automatically assess the similarity of one song to an-
other has several applications in MIR. One basic MIR paradigm is query-by-example, in
which a user has a query song and wants to find other songs that are similar to that song—
clearly the ability of a query-by-example system to evaluate the similarity of two songs
is critical to its success [71]. Audio similarity estimation also has applications to playlist

4

generation, where it can be used to ensure that a sequence of songs lacks jarring transi-
tions [72]. Finally, one approach to the problem of music recommendation is to suggest
songs to users that resemble songs they already like. Previous approaches to analyzing tim-
bral similarity have either been overly restrictive or too expensive to scale to large music
collections [71]. Furthermore, the most successful previous approaches suffered from the
problem of “hubs,” songs that are erroneously evaluted as very similar to all other songs in
the corpus [8]. In chapter 3, we will present a method based on an expressive model-based
representation that outperforms previous approaches in a query-by-example task, is more
computationally efficient than previous methods, and does not suffer from the problem of
hubs.

Automatic tagging. One way of organizing songs is by tag-based annotation, in which
a song is labeled with a set of words that apply to that song. These tags can be used to
sort songs [28], to facilitate semantic retrieval (in which a user types in a set of words
that describe the kind of song he or she is looking for) [89], or as a high-level feature
representation for other MIR tasks [10]. In chapter 4, we will present a simple, efficient
model that predicts what tags will apply to a song based on its audio content. Despite
its simplicity, this model nonetheless achieves results competitive with more complex and
expensive approaches.

Latent source discovery and separation. Most music recordings feature two or more
sound sources playing simultaneously. The challenge of Blind Monaural Source Separa-
tion (BMSS) is to separate such mixed recordings into their component source signals.
Human auditory systems can do this easily in many cases 3, but BMSS remains a dif-
ficult problem for computers. BMSS has applications to automatic music transcription,
mid-level music feature extraction [23], music production [39] and upmixing monaural or
stereophonic recordings to “surround sound” multichannel audio formats [32]. In chapters
5 and 6, we will present two models that are able to learn what sound sources are present in
a musical recording or set of musical recordings, when and how strongly they appear, and
how many such latent sources are needed to explain the variation in the audio signal. The
ability of these models to decide how many latent sources to posit is a significant advance
over previous methods, which typically assume that the number of latent sources needed to
explain the data is somehow known a priori.

1.3.2 Synthesis Applications
In addition to the analysis problems summarized above, we also present applications of
probabilistic modeling to musical audio synthesis.

3Or so human beings intuitively assume. It may be that the human auditory system merely gives the
perception of solving the problem of separation when it is in fact solving the problem of pattern recognition
in the presence of confounding signals. The second problem may have been both easier to solve and of greater
adaptive value to our ancestors.

5

Model-based feature synthesis. An interesting property of generative probabilistic mod-
els is their ability to generate new data once fit to a set of training data. In chapter 7, we
explore the use of Hidden Markov Models (HMMs) to synthesize audio inspired by a train-
ing song or set of training songs. In order to turn the sequences of feature vectors generated
by a model into audio, we use the paradigm of feature-based synthesis.

Bayesian spectral matching. The latent source model developed in chapter 5 learns both
what sources are present in a recording and how to combine those sources to approximate
that recording. By fixing a set of sources ahead of time, however, we can use a simplified
version of the same modeling machinery to learn how to combine those sources to approx-
imate arbitrary recordings. The result is a system that can automatically arrange arbitrary
samples to approximate arbitrary audio signals. This can also be thought of as a form of
cross-synthesis, where a sampler is automatically manipulated to approximate the spec-
tral characteristics of a target sound. We describe this approach and some of its creative
possibilities in chapter 8.

1.4 Related Publications
Most of the material in this dissertation is based on articles published in various conference
proceedings. Chapters 3, 4, 5, and 6 are based on papers presented at ISMIR 2008 [44],
ISMIR 2009 [47], DAFX 2009 [48], and ICML 2010 [49], respectively. Chapter 7 is based
on papers presented at ICMC 2006 [46] and ICMC 2008 [45], and chapter 8 is based on a
paper presented at ICMC 2009 [50].

6

Chapter 2

Background

In this chapter, we discuss some background knowledge and previous work helpful to un-
derstanding the rest of the thesis. We begin by reviewing some standard approaches to
probabilistic inference, and then discuss some standard models used in the Bayesian non-
parametrics literature.

2.1 Inference Techniques
As mentioned above, statistical inference is the central computational challenge in data
analysis using probabilistic modeling. Say we have a model with some unknown parame-
ters θ, some hidden variables z, and some observed data x 1. In Bayesian inference, the
goal is to reason about the posterior distribution over the parameters and hidden variables
conditioned on the data, which is given by Bayes’ rule:

p(θ, z|x) =
p(x|θ, z)p(θ, z)

p(x)
=

p(x|θ, z)p(θ, z)∫
θ

∫
z
p(x|θ, z)p(θ, z)dθdz

. (2.1)

For computational (or philosophical) reasons, one may prefer to fit a simple point esti-
mate of our model parameters according to the principle of maximum likelihood (ML) or
maximum a posteriori likelihood (MAP):

θML = arg max
θ

p(x|θ) = arg max
θ

∫
z

p(x, z|θ)dz; (2.2)

θMAP = arg max
θ

p(θ|x) = arg max
θ

p(x,θ) = arg max
θ

∫
z

p(x, z,θ)dz. (2.3)

Except in very simple models, closed-form solutions to inference problems are rarely
available. Fully Bayesian inference is particularly challenging in that computing the nor-
malizing constant p(x) requires computing the integral in the denominator of equation 2.1,
which is often intractable. Approximate numerical inference algorithms can nonetheless

1Note that the distinction between parameters and hidden variables is somewhat arbitrary, particularly in
Bayesian inference. We will usually refer to an unobserved variable as a parameter if its dimensionality does
not increase with the number of observations, and a hidden variable otherwise.

7

produce results that are sufficient for the problem at hand. In this thesis we will use two
main families of inference strategies: deterministic methods using the framework of varia-
tional inference, and Markov Chain Monte Carlo (MCMC) methods that produce samples
from a posterior distribution. A brief overview of these approaches follows—more com-
plete introductions and derivations can be found in [94] (for variational inference) and [67]
(for MCMC).

2.1.1 Variational Inference
Variational inference [53] is a deterministic approach to inference that frames the infer-
ence problem as one of maximizing a lower bound. It includes the classic Expectation-
Maximization (EM) algorithm [25] as a special case [69]. We will begin by deriving the
EM algorithm in the variational framework, then show how variational methods can be
applied to approximate Bayesian inference.

When doing maximum-likelihood estimation of a set of parameters θ for a probabilis-
tic model with hidden variables z and observed data x, it is often easier to optimize the
so-called complete log-likelihood log p(x, z|θ) than to optimize the marginal likelihood
log p(x|θ) = log

∫
z
p(x, z|θ)dz due to the intractability of integrating over all possible

settings of the hidden data. By Jensen’s inequality, which states that any concave function
(such as the logarithm) of an expectation is greater than or equal to the expectation of that
function, we can write

log p(x|θ) = log

∫
z

p(x, z|θ)dz

= log

∫
z

q(z)

q(z)
p(x, z|θ)dz

= log Eq

[
p(x, z|θ)

q(z)

]
≥ Eq

[
log

p(x, z|θ)

q(z)

]
= Eq[log p(x, z|θ)]− Eq[log q(z)],

(2.4)

which holds for any distribution q(z). An application of the chain rule p(x, z|θ) =
p(z|x,θ)p(x|θ) and little more algebraic manipulation show that the slack in the bound is
given by

log p(x|θ)− Eq[log p(x, z|θ)] + Eq[log q(z)]

= log p(x|θ)− Eq[log p(z|x,θ)]− Eq[log p(x|θ)] + Eq[log q(z)]

= Eq

[
log

q(z)

p(z|x,θ)

]
,

(2.5)

which is the Kullback-Leibler divergence (KLD) between q(z) and the posterior distribu-
tion p(z|x,θ). Since this KLD can be driven to zero by setting q(z) = p(z|x,θ), the
bound can be tightened perfectly as long as p(z|x,θ) has an analytic form (as it does for

8

many models). This is the “E” step in the EM algorithm. Holding q fixed, θ can then be
set to maximize Eq[log p(x, z|θ)]; doing so constitutes the “M” step in the EM algorithm.
Iterating between E and M steps will monotonically increase the marginal log-probability
log p(x|θ), ultimately reaching a local maximum.

The same basic approach can likewise be applied to MAP estimation. The only differ-
ence is the addition of a prior term log p(θ):

log p(x|θ)p(θ) ≥ Eq[log p(x, z|θ)] + log p(θ)− Eq[log q(z)]. (2.6)

This additional term must be accounted for during the M step.
Finally, variational inference can also be used to develop approximate Bayesian infer-

ence algorithms. The core idea is to replace the true posterior p(θ, z|x) with an approxi-
mate posterior q(θ, z), and optimize q(θ, z) to be as close as possible (in KL divergence)
to p(θ, z|x). This can be done by lower bounding the (often uncomputable) marginal prob-
ability log p(x):

log p(x) = log

∫
z,θ

p(x, z,θ)dzdθ

= log

∫
z,θ

q(z,θ)

q(z,θ)
p(x, z,θ)dzdθ

= log Eq

[
p(x, z,θ)

q(z,θ)

]
≥ Eq

[
log

p(x, z,θ)

q(z,θ)

]
= Eq[log p(x, z,θ)]− Eq[log q(z,θ)].

(2.7)

Essentially, we are treating the parameters θ as being no different from any other hidden
variable and proceeding as above. Optimizing this lower bound is equivalent to minimizing
the KL divergence between q(z,θ) and the posterior of interest, p(z,θ|x).

So far, we have said little about the form q should take. For simple models, it may
be possible to set q equal to the posterior analytically. For hierarchical Bayesian models,
however, this is not usually possible. The simplest, and most common, approach is to
instead give q a fully factorized form—that is, to make all variables independent under
q. This approach, called mean-field 2 variational inference, generally makes it impossible
to perfectly match q to the true posterior, but can also dramatically simplify optimization.
For example, if we endowed the mixture-of-Gaussians model described above with priors
on the parameters π and µ, then the mean-field variational bound for that model would
factorize to

log p(x) ≥
∑
i

Eq[log p(xi|zi,µ)] + Eq[log p(zi|π)]

+ Eq[log p(π)]− Eq[log q(π)] +
∑
k

Eq[log p(µk)]− Eq[log q(µk)].
(2.8)

2The term “mean-field” is a reference to the mean field approximation of statistical mechanics.

9

This bound can then be optimized by a coordinate ascent algorithm directly analogous
to EM, iteratively setting log q(z) = Eq[log p(z|π,x)], log q(π) = Eq[log p(π|z)], and
log q(µ) = Eq[log p(µ|z,x)]. If the priors on π and µ are conjugate to the multinomial
and normal distributions respectively, i.e. if the conditional probabilities p(µ|z,x) and
p(π|z) have the same form as the priors p(µ) and p(π), then these updates can be done
analytically.

2.1.2 Markov Chain Monte Carlo Inference
Often in Bayesian models, the joint distribution p(x, z,θ) over parameters θ, hidden data
z, and observable data θ has a convenient form but the marginal likelihood of the data
p(x) =

∫
z,θ
p(x, z,θ)dzdθ is intractable to compute. p(x) is needed to normalize the

posterior probability p(z,θ|x), but is constant with respect to the parameters and hidden
data. When this is the case, Markov Chain Monte Carlo (MCMC) methods can be used
to sample from a Markov chain whose stationary distribution is the true posterior [67].
A set of samples from this Markov chain can then be used to approximate the posterior
distribution of interest.

MCMC, like variational inference, has its roots in the statistical physics literature, be-
ginning with the classic paper of Metropolis et al. [64]. One of the simplest MCMC
algorithms used for Bayesian inference is Gibbs sampling [37], which proceeds by repeat-
edly resampling the value of each parameter conditioned on each other parameter. In the
example of the mixture-of-Gaussians model above, one might alternate between sampling
π from p(π|z), sampling each µk from p(µk|x, z), and sampling each zi from p(zi|xi,µ).
As in mean-field variational inference, these conditional distributions have an analytic form
if conjugate priors are chosen for p(π) and p(µ). After a “burn-in” period during which
the Markov chain converges to a region of high probability mass, samples from the Markov
chain will almost surely have the same distribution as the (intractable) posterior of interest.
In practice, the output of the Markov chain should be subsampled (e.g. keeping only ev-
ery 10th sample) to ensure that the samples that are used to approximate the posterior are
uncorrelated.

Although there are strong asymptotic guarantees that a properly designed MCMC sam-
pler will have the same stationary distribution as the posterior of interest, in practice Gibbs
samplers that are run for a finite amount of time usually only find a single mode of the
posterior and explore the space around it. This is due to the extremely low probability of
going from a region of high probability mass to a region of low probability mass on the
way to another distant region of high probability mass. The problem is analogous to the
problem of getting stuck in local optima when optimizing non-convex objective functions
(such as variational bounds). Nonetheless, these local modes are often good enough to
solve practical problems.

2.2 Bayesian Nonparametric Mixture Modeling
Many models have some order parameter K that must be set a priori. For example, Gaus-
sian mixture models assume that each element of a set of observations was drawn from one

10

µk
π zi xi

N

K

Σk
α

µ0

Λ0

ν0

κ0

Figure 2.1: Graphical model for a Bayesian GMM with a full set of covariance matrices Σ.

of K Gaussian mixture components. Bayesian nonparametric models sidestep the problem
of how to set K, typically by assuming the existence of an infinite number of latent vari-
ables, while placing a prior on the model that only expects a finite number of these latent
variables to have any association with the observed data.

Several of the applications in this dissertation make use of the Hierarchical Dirichlet
Process (HDP) [85], a particularly powerful Bayesian nonparametric model that extends
the Dirichlet Process Mixture Model (DPMM) [6], a standby of Bayesian nonparametric
modeling. In this section, we will review traditional mixture modeling from a Bayesian
perspective, show how the DP can be used to extend Bayesian mixture models to the setting
where the number of mixture components is unknown a priori, and then describe how the
HDP extends the DP to model grouped data.

2.2.1 Bayesian Mixture Models
Bayesian mixture models often assume a generative process of the form

φk ∼ H; π ∼ Dirichlet(α1, . . . , αK); zi ∼ Multinomial(π); xi ∼ f(φzi
), (2.9)

where H defines a prior distribution over a set of K mixture component parameters φ,
f(φk) is the probability density or mass function associated with component k, π is a
vector of nonnegative mixture weights summing to 1, zi ∈ {1, . . . , K} is an indicator
saying what mixture component is responsible for the ith observation, and xi is the ith
observation. For a Gaussian Mixture Model (GMM) with full covariance matrices Σk,
φk = {µk,Σk and f(xi;φzi

) would be the normal Probability Density Function (PDF)
N (xi;µzi

,Σzi
). A natural choice for H in this case would be the normal-inverse-Wishart

distribution, which is conjugate to the multivariate normal distribution with unknown mean
and covariance [36] and can be written as a two-stage generative process:

Σ ∼ Inverse-Wishartν0(Λ
−1
0); µ ∼ N (µ0,Σ/κ0), (2.10)

where ν0, κ0, µ0, and Λ0 are parameters to the normal-inverse-Wishart distribution. The
graphical model for the GMM is shown in figure 2.1. It differs from the GMM discussed in
the introduction in that the Gaussians are given full covariance matrices, and all parameters
are endowed with priors controlled by hyperparameters such as α.

11

The Dirichlet distribution, which has PDF

Dirichlet(π;α) =
Γ(
∑

k αk)∑
k Γ(αk)

exp

{∑
k

(αk − 1) log πk

}
, (2.11)

is the conjugate prior for the multinomial distribution, which means that given the prior
parameter α and a set of observed values for some indicator variables z, the posterior
p(π|α, z) is also a Dirichlet distribution. Conjugate priors are defined by this property
in general—if the parameter to a distribution is given a conjugate prior, then the posterior
distribution over that parameter conditioned on observed data will be in the same family
as the prior. Using conjugate priors dramatically simplifies Bayesian inference, since the
posterior distribution of each parameter conditioned on all other variables in the model is
guaranteed to have an analytic form if that parameter is endowed with a conjugate prior.

If we denote the sum of the elements of α as ᾱ =
∑

k αk, we can think of ᾱ as control-
ling the sparsity of the Dirichlet prior on π. Larger values of ᾱ will give more weight to
less sparse vectors, while smaller values of ᾱ will give more weight to sparser vectors. As
ᾱ → 0 for a fixed dimensionality K, the probability of more than one element of π being
significantly greater than 0 goes to 0, while as ᾱ → ∞, πk = αk/ᾱ for each element k of
π with probability 1. In the next section, we will consider what happens when K grows
arbitrarily large while ᾱ remains constant.

2.2.2 Dirichlet Process Mixture Models
As suggested above, a nagging issue in mixture modeling is model order selection, i.e.,
choosing the number of components K with which to explain the data. Bayesian nonpara-
metric statistics focuses on models such as the Dirichlet Process Mixture Model (DPMM)
that sidestep this issue. Where a standard mixture model assumes the existence of K mix-
ture components, the DPMM [6, 31] assumes the existence of a countably infinite set of
mixture components, only a finite subset of which are used to explain the observations.

There are a number of constructions of the DPMM. One is by considering what happens
to the finite mixture model

φk ∼ H; π ∼ Dirichlet(α/K, . . . , α/K); zt ∼ Multinomial(π); yt ∼ f(φk)
(2.12)

as K → ∞. As the number of mixture components grows larger and larger, the Dirichlet
prior on π grows sparser and sparser to compensate. This phenomenon is illustrated in
figure 2.2 for α = 2; as K increases, the number of elements of π significantly greater
than 0 remains within the same range. Even when K goes to infinity, it turns out that for
any ε ∈ (0, 1], there exists a finite set S of indices s ∈ N such that

∑
s∈S πs > 1 − ε with

probability 1 [55]. That is, only a finite number of elements of π are needed to account for
virtually all of the mass in π.

Since the number of elements of π significantly greater than zero is finite with prob-
ability 1 in the prior, it must likewise be finite with probability one in the posterior after
conditioning on a finite set of observations y. Obviously, it is computationally impossible
to explicitly represent a vector π of infinite dimensionality. It is, however, possible to inte-

12

K=4

K=19

K=49

K=99

K=199

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Figure 2.2: Five vectors drawn from a Dirichlet(2/K, . . . , 2/K) distribution for various
dimensionalities K.

grate out π and perform posterior inference by representing explicitly only the indicators z
and those emission parameters φ associated with observed data via the indicators z using
the Chinese Restaurant Process (CRP) representation of the DP [68].

In the CRP, we imagine a Chinese restaurant with an infinite number of communal
tables (each with an infinite number of seats) and a positive scalar hyperparameter α. The
restaurant is initially empty. The first customer sits at the first table and orders a dish that
will be shared by all future customers sitting at that table. The second customer enters
and decides either to sit at the first table with probability 1

1+α
or at an empty table with

probability α
1+α

. When sitting at an empty table a customer orders a new dish, when joining
an occupied table a customer eats the dish being eaten by the other customers at that table.
This process continues for each new customer, with the tth customer choosing either to sit
at a new table with probability α

α+t−1
or at the kth existing table with probability nk

α+t−1
,

where nk is the number of other customers already sitting at table k. Notice that popular
tables become more popular, and that as more customers come in they become less and less
likely to sit down at a new table.

We obtain a DPMM from a CRP as follows. The “dishes” in the CRP correspond
to probability density functions, and the process of “ordering” a dish k corresponds to
drawing the parameters φk to a PDF from a prior distribution H over those parameters.
(For example, each dish φk can be a Gaussian with parameters {µk,Σk} = φk ∼ H .)
The process of a customer t choosing a table zt corresponds to choosing a distribution φzt

from which to draw an observation yt (in our case, a feature vector). Since customers in

13

φ1 φ2 φ3 φ4

1
2

3 4

5
6

7

8
Figure 2.3: Four tables and eight customers in a Chinese Restaurant Process (CRP). In this
example, the 1st, 3rd, 4th, and 7th customers all sat at an empty table, whereas the 2nd,
5th, 6th, and 8th sat at existing tables. The 9th customer will sit at table 1, 2, 3, or 4 with
probabilities 3

8+α
, 1

8+α
, 3

8+α
, and 1

8+α
respectively, or will sit at a new table with probability

α
8+α

the CRP tend to sit at tables with many other customers, the DPMM tends to draw points
from the same mixture components again and again even though it has an infinite number
of mixture components to choose from. The process of drawing from a CRP is illustrated
in figure 2.3.

Although we have described the CRP as a sequential process, in fact data under a CRP
are exchangeable—the probability of a seating plan under the CRP is the same regardless of
the order in which the customers sat down. This allows us to think of the CRP as defining
an implicit prior on infinite multinomial distributions over mixture components. It turns
out that a draw from a CRP is equivalent (modulo a permutation of the label identities) to
a draw from the process

π ∼ Dirichlet(α/K, . . . , α/K); zt ∼ Multinomial(π) (2.13)

when K →∞.
Analysis under a DPMM involves inferring the posterior distribution over its latent

parameters conditioned on the data. This provides both a partition of the data (feature
vectors) into an unknown number of clusters (the number of tables) and the identities of
the parameters φ (the parameters to the mixture components). The posterior distribution
p(φ, z|y, α,H) of the set of mixture component parameters φ and the cluster labels z
conditioned on the data y can be inferred using Markov Chain Monte Carlo (MCMC)
methods such as Gibbs sampling [68]. For simple data, there will be relatively few unique
cluster labels in z, but more clusters will be necessary to explain more complex data.

2.2.3 The Hierarchical Dirichlet Process
The Hierarchical Dirichlet Process (HDP) [85] is a model of grouped data, which is more
appropriate than the DPMM when observations are presented in nonhomogeneous groups.
(For example, the HDP can be used to analyze text corpora where observed words are
grouped into documents. In chapter 3 the groups will be sets of feature vectors grouped by
the songs they were extracted from.) Rather than model each group using independent DP-
MMs (which would make it difficult to compare groups, and impossible to share statistical

14

φkπj zji xji
Nj ∞

β

J

γ α H

Figure 2.4: Graphical model for the HDP.

strength between groups) or model all groups using a single DPMM (which would restrict
the model’s ability to model differences between individual groups), the HDP lets us model
each group of observations as being generated using a group-specific mixture of a globally
shared set of mixture components.

The generative process underlying the HDP can be understood with the Chinese Restau-
rant Franchise (CRF) metaphor. The CRF takes two hyperparameters α and γ. Each group
(e.g., a song) j has its own CRP with hyperparameter α, and each feature vector yjt is
assigned to a group-level table zjt according to that CRP. When a customer in a group-level
CRP sits down at a new table, it chooses a dish for that table from a global CRP (with
hyperparameter γ) shared by all groups—that is, it either chooses a dish that is already
being served at some number m of other tables with probability proportional to m, or it
chooses a new dish with probability proportional to γ. The process of drawing from a CRF
is illustrated in figure 2.5.

Just as the DPMM can be thought of as the infinite limit of a finite Bayesian mixture
model, the HDP can also be thought of as the infinite limit of a finite mixed-membership
mixture model given by:

φk ∼ H; β ∼ Dirichlet(γ/K, . . . , γ/K);

πj ∼ Dirichlet(αβ); zji ∼ Multinomial(πj); yji ∼ f(φzji
) (2.14)

when K → ∞. This representation complements the CRF representation. A graphical
model for the HDP is given in figure 2.4. Note that the only group-specific parameters
that are learned in the HDP are the mixture weight vectors π. These weight vectors give a
compact summary of the observed data for each group.

For a more complete exposition of the HDP, including details of how to infer the poste-
riors for its parameters conditioned on data, see [85].

2.2.4 Stick-Breaking construction
Another construction of the DP exists, and is worth mentioning here mostly for nota-
tional convenience. The stick-breaking construction of the DP [77] gives an construc-
tive definition of the infinite Dirichlet prior defined implicitly above as the limit of

15

φ1 φ1 φ2 φ1

1
2

3 4

5
6

7

8

φ2 φ3 φ3

1 2 3
4
5

67
8

φ4 φ1 φ2 φ1

1
2
3

4 5 6
7

8

φ1 φ2 φ3 φ4

1,1
1,2
1,4

3,2

3,4

1,3

2,1

3,2 2,2

2,3

3,1

Figure 2.5: Chinese Restaurant Franchise (CRF) for three groups of eight observations
each. Below are three CRPs (corresponding to the three groups), and above is the global
CRP from which the CRPs get their dishes. Each customer j, i sitting at a table in the
global CRP corresponds to table i in restaurant j, and customer j, i’s table membership
in the global CRP determines the dish that is served at table i in restaurant j. If a new
customer coming into a restaurant j sits down at a new table, then the dish for that table
will be φ1, φ2, φ3, or φ4 with probability 5

γ+11
, 3
γ+11

, 2
γ+11

, or 1
γ+11

respectively, or a new
dish with probability γ

γ+11
.

Dirichlet(α/K, . . . , α/K) as K →∞. If

Vk ∼ Beta(1, α); πk = Vk

k−1∏
i=1

(1− Vk) (2.15)

for k = 1, . . . ,∞, then the infinite vector π is a size-biased permutation of the infinite
vector of mixture weights for a DP.

Following convention, we will use π ∼ GEM(α) to denote the process defined above.
Later in this dissertation, it will be convenient to use this notation in defining models’

16

generative processes—we will use this notation somewhat loosely in that we will generally
ignore the size-biased nature of the stick-breaking prior.

17

Chapter 3

Timbral Similarity Estimation Based on
the Hierarchical Dirichlet Process

3.1 Introduction and Previous Work
The first problem we address in this dissertation is automatic timbral similarity estimation,
the problem of estimating how similar two pieces of recorded music sound to one another.
Our technique is based on the hierarchical Dirichlet process, a flexible Bayesian model for
uncovering latent structure in high-dimensional data.

One approach to computing the timbral similarity of two songs is to train a single
Gaussian or a Gaussian Mixture Model (GMM) on the Mel-Frequency Cepstral Coefficient
(MFCC) feature vectors for each song and compute (for the single Gaussian) or approxi-
mate (for the GMM) the Kullback-Leibler (K-L) divergence between the two models [8].
The basic single Gaussian approach with full covariance matrix (“G1” [71]) has been suc-
cessful, forming the core of top-ranked entries to the MIREX similarity evaluation task for
years [2].

Although MFCC data are not normally distributed within songs, using a richer model
such as the GMM to more accurately represent their true distribution provides little or no
improvement in numerous studies [71, 51, 8]. This suggests that a “glass ceiling” has been
reached for this type of representation. Moreover, the computational cost of the Monte
Carlo estimation procedure involved in comparing two GMMs is orders of magnitude more
than that incurred by computing the K-L divergence between two single Gaussians exactly.
This is a very significant issue if we want to compute similarity matrices for large sets
of songs. Since the number of comparisons between models that must be done grows
quadratically with the number of songs, the cost of model comparison quickly dominates
the cost of model fitting.

Another approach [10] produced results statistically indistinguishable from the other
top algorithms in MIREX 2007 by using a mid-level semantic feature representation to
compute similarity. Using painstakingly human-labeled data, Barrington et al. trained
GMMs to estimate the posterior likelihood that a song was best characterized by each of
146 words. These models then produced a vector for each test song defining a multinomial

18

distribution over the 146 semantic concepts. To compute the dissimilarity of two songs, the
K-L divergence between these multinomial distributions for the songs was computed.

The success of this method suggests that alternative statistical representations of songs
are worth exploring. Rather than take a supervised approach requiring expensive hand-
labeled data, we make use of the Hierarchical Dirichlet Process (HDP), which automati-
cally discovers latent structure within and across groups of data (songs, in our case). This
latent structure generates a compact alternative representation of each song, and the model
provides a natural and efficient way of comparing songs using K-L divergence.

3.2 HDP-Based Similarity Using Latent Features
Recall from chapter 2 that the hierarchical Dirichlet process (HDP) is an extension of the
Dirichlet process (DP) designed to model grouped data. Here, our data will be sets of
MFCC feature vectors grouped by the song that they came from. Using the HDP, we will
infer the shared latent structure in these MFCC vectors, and represent each song in terms
of that latent structure.

We will assume the following generative process is responsible for generating our data:

φk = {µk,Σk} ∼ NIW(κ0, ν0,Λ0,µ0); β ∼ GEM(γ);

πj ∼ Dirichlet(αβ); zji ∼ Multinomial(πj); yji ∼ N (µzji
,Σzji

), (3.1)

where yji is the ith MFCC feature vector in song j, zji is the index of the latent mix-
ture component used to generate yji, πj is the (infinite) vector of mixture weights over
components for song j, β is the (infinite) vector of global mixture weights ensuring that
components are shared between songs, and φk denotes the set of mean and covariance
parameters for latent mixture component k. N denotes the normal distribution, NIW de-
notes the normal-inverse-Wishart distribution, and GEM denotes the stick-breaking prior
over infinite vectors that sum to 1.

We use the direct assignment Gibbs sampler derived in [85] to approximate the pos-
terior distribution over the cluster assignments z and the global mixture weight vector β,
integrating out all other parameters to speed convergence. To represent the infinite vector
β, we only need to explicitly represent the weights for those mixture components actually
associated with an observation—i.e. we only represent βk explicitly if zji = k for some
j, i. The remainder of the probability mass in β is assigned to unused latent components,
which are indistinguishable from one another since no data is associated with them.

3.2.1 Representing Songs Using the HDP
The mixture components parameterized byφ capture the latent structure in the feature data,
and the mixture proportion vectors π express the feature data for each song in terms of that
latent structure. φ and πj together can describe the empirical distribution of feature vectors
for a song j as richly as a GMM can, but the HDP does not require that we choose a fixed
value of K, and represents the songs in a more compact way.

19

To compute the dissimilarity between two songs i and j given z and π, we can com-
pute the symmetrized Kullback-Leibler (KL) divergence between the posterior distributions
p(πi|β, z) and p(πj|β, z), which have the form

p(πi|β, z) = Dirichlet(πi; β1 + nj1, . . . , βK + njK , βK+1), (3.2)

where K is the number of components for which some zji = k, and βK+1 is the probability
mass associated with unseen components in the (infinite) global mixture weight vector.

This allows us to compare two songs in terms of the latent structure of their feature
data, rather than directly comparing their distributions over the low-level features as the G1
algorithm and GMM-based algorithms do. The KL divergence between these two poste-
riors can be efficiently computed. The KL divergence between two Dirichlet distributions
with parameters v and w each of length K is:

D(Dirichlet(v)||Dirichlet(w)) = log
Γ(
∑
v)

Γ(
∑
w)

+
K∑
s=1

log(Γ(ws))

log(Γ(vs))
+

K∑
s=1

((vs − ws)(Ψ(vs)−Ψ(
∑
v))

where Γ(x) is the gamma function, Ψ(x) is the digamma function (the first derivative of
the log gamma function), and

∑
v and

∑
w denote the sum of the K elements of v and w

respectively.
For moderate numbers of mixture components, this is less expensive to compute than

the KL divergence between two high-dimensional multivariate Gaussian densities. It can
be sped up further by computing the gamma and digamma terms offline for each song.

To estimate the posterior overπ, we used the sample of z and β from the Gibbs sampler
that had the highest posterior probability conditioned on the observed data.

3.2.2 Generalizing to New Songs
It is important that our approach be scalable to new songs not seen during training. Once we
have inferred the global mixture weights β and the mixture component parameters φ, we
can infer the posterior distribution over the mixture proportions πJ+1 for a new song J + 1
conditioned on β, φ, and the new data byJ+1 using the same Gibbs sampling techniques
originally used to fit the model, holding all other parameters constant.

3.3 Evaluation
In this section we describe the experiments we performed to evaluate our approach against
G1, GK (the analogous algorithm for K-component GMMs), and a simplified approach
based on Vector Quantization (VQ).

20

3.3.1 South by Southwest Dataset
We test our approach on a dataset that we compiled from the South by Southwest (SXSW)
2007 and 2008 festivals’ freely distributed “artist showcase” mp3s [3]. We selected a set
of up to twenty mp3s (all by different artists to avoid biasing the results) for seven genres:
country, electronic, hip-hop, jazz, metal, punk, and rock. Songs that we felt were unrep-
resentative of their genre were removed or replaced prior to any quantitative evaluations.
There were fewer than 20 usable songs available for country (12), jazz (14), and metal (15),
so those genres are slightly underrepresented. There are a total of 121 songs in the dataset.

3.3.2 Features
All models were trained on the same sets of feature vectors, which for each frame consisted
of 13 MFCCs (extracted using jAudio [62]) combined with 26 delta features computed by
subtracting the MFCCs for frame t from those at frame t − 1 and t − 2, for a total of
39 dimensions. Each frame was approximately 23 ms long, or 512 samples at the files’
sampling rate of 22050 Hz, with a hop size of 512 samples (no overlap). 1000 feature
vectors were extracted from the middle of each song.

3.3.3 Models Evaluated
G1

As described above, G1 models each song’s distribution over feature vectors with a single
multivariate Gaussian distribution with full covariance matrix. Models are compared using
the symmetrized KL divergence between these Gaussians.

K-component GMMs

We train K-component GMMs for each song using the EM algorithm [25]. The sym-
metrized KL divergence between models is approximated by drawing 1000 synthetic fea-
ture vectors from the trained models and evaluating their log likelihoods under both models
[8]. This approach is evaluated for K = 5, 10, 20, and 30.

VQ Codebook

This algorithm is meant to be a simple approximation to the HDP method we outlined
above. First, we cluster all of the feature vectors for all songs into K groups using the
k-means algorithm, renormalizing the data so that all dimensions have unit standard devia-
tion. This defines a codebook of K cluster centers that identifies every feature vector with
the cluster center to which it is closest in Euclidean space. For each song j, we compute
the vector πj,1...K of the relative frequencies of each cluster label. Each πj,1...K defines a
multinomial distribution over clusters, and we compute the distance between songs as the
symmetrized KL divergence between these multinomial distributions (smoothed by a factor
of 10−5 to prevent numerical issues).

21

G1 G5 G10 G20 G30 VQ5 VQ10 VQ30 VQ50 VQ100 HDP
13.24 829 1487 2786 4072 0.58 0.59 0.63 0.686 0.85 0.25

Table 3.1: Time in seconds required to compute a 121x121 distance matrix for G1, GMM-
based (K = 5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and HDP-based algorithms.

This algorithm, like our HDP-based method, represents each song as a multinomial
distribution over latent cluster identities discovered using an unsupervised algorithm, and
lets us see how a much simpler algorithm that uses similar ideas performs compared with
the HDP. Within weeks of our first presenting this VQ-based approach at ISMIR 2008, a
very similar approach was proposed at DAFX 2008 [78].

HDP

We fit the HDP to all of the data using the direct assignment Gibbs sampler from [85], in-
ferring, inferring posterior distributions over πj for each song j and computing the dissim-
ilarity between two songs i and j as the symmetrized KL divergence between the posteriors
over πi and πj . We place vague gamma priors on α and γ [85]:

α ∼ Gamma(1, 0.1), γ ∼ Gamma(1, 0.1) (3.3)

and learn them during inference. For the priorH overφ, we use the normal-inverse-Wishart
distribution [36] with parameters κ0 = 2, ν0 = 41 (the number of dimensions plus two),
and µ0 = ȳ (the mean of all feature vectors across songs). The normal-inverse-Wishart
matrix parameter Λ0 was chosen by averaging the covariance matrices from 100 clusters
of feature vectors, each of which was obtained by choosing a feature vector at random and
choosing the 24,200 feature vectors closest to it under a Euclidean distance metric. (The
number 24,200 was chosen because it was 1/5 of the total number of points.) The goal of
this process is to choose a matrix Λ0 that resembles the covariance matrix of fairly large
cluster of points, encouraging the model to find similarly shaped clusters. Using smaller
(larger) clusters to choose Λ0 would result in the model creating more (fewer) latent topics
to explain the data.

3.3.4 Experiments
Since human-labeled ground truth similarity data is inherently expensive and difficult to
acquire, we follow previous researchers [8, 71, 92] in using genre as a proxy for similarity.
We assume that all songs labeled with the same genre are “similar,” which allows us to
use evaluation metrics from the information retrieval literature. We first compute a full
121x121 distance matrix between all songs using each algorithm. For each query song
sq, each other song si is given a rank rq,i based on its similarity to sq. The quality of
this ranking, i.e. how well it does at ranking songs of the same genre as sq more similar
than songs of different genres, is summarized using R-Precision (RP), Average Precision
(AP), and the Area Under the ROC Curve (AUC), which are standard metrics from the

22

G1 G5 G10 G20 G30
RP 0.3254 0.3190 0.3287 0.3144 0.3146
AP 0.3850 0.3761 0.3746 0.3721 0.3706
AUC 0.6723 0.6712 0.6687 0.6679 0.6661

VQ5 VQ10 VQ30 VQ50 VQ100 HDP
RP 0.2659 0.2997 0.3191 0.340 0.3313 0.3495
AP 0.3171 0.3546 0.3850 0.3989 0.3910 0.3995
AUC 0.6513 0.6675 0.6846 0.6893 0.6758 0.7002

Table 3.2: Three measures of retrieval quality: mean R-Precision (RP), mean Average
Precision (AP), and mean Area Under ROC Curve (AUC) for G1, GMM-based (K =
5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and HDP-based algorithms on the large
SXSW dataset.

G1 HDP
RP 0.5486 0.6000
AP 0.6807 0.7154
AUC 0.8419 0.8983

Table 3.3: Mean R-Precision (RP), mean Average Precision (AP), and mean Area Under
ROC Curve (AUC) for G1 and our HDP-based algorithm on the smaller dataset.

information retrieval literature [61]. All experiments were conducted on a MacBook Pro
with a 2.0 GHz Intel Core Duo processor and 2 GB of RAM. All models were implemented
in MATLAB.

Testing on Additional Data

To test our HDP-based method’s ability to generalize to unseen data using the method in
section 3.2.2, we use the HDP trained on the large SXSW set to compute a similarity matrix
on a smaller set consisting of 5 artist-filtered songs per genre (35 in all) by artists not in
the training set. The electronic, punk, rap, and rock songs came from the SXSW artist
showcase collection, and the country, jazz, and metal songs came from a dataset previously
used by George Tzanetakis [91]. We also compute a similarity matrix on this dataset using
G1, and compare the RP, AP, and AUC metrics for retrieval quality obtained using both
algorithms.

3.4 Results
Tables 3.1, 3.2, and 3.3 summarize the results of our experiments. The best results in each
row are in bold.

The amount of time required to compute the distance matrices for the GMMs was, as
expected, enormous by comparison to the other models. The cost of computing the KL

23

0 50 100
0

5

10

15

20

25

0 50 100
0

5

10

15

20

25

0 50 100
0

5

10

15

20

25

Figure 3.1: Histograms of how often each song is ranked in the top five of another song’s
similarity list for similarity matrices obtained using G1 (left), the HDP (center), and by
choosing distances at random (right).

divergence for the VQ-based and HDP-based models was more than an order of magnitude
lower even than the cost of computing the KL divergence between single Gaussians. This is
due to the costs involved in working with the Gaussians’ 39-by-39-dimensional covariance
matrices.

The HDP performed better than the other models for all three standard information
retrieval metrics, although the VQ model with K = 50 was a very close second. None of
the GMMs outperformed G1.

The results in table 3.3 show that the HDP-based approach does generalize well to new
songs, showing that the algorithm can be scaled up efficiently to databases of many songs.

3.4.1 Similarity Hubs
The G1 and GK approaches are known to produce “hubs” [8]—an undesirable phenomenon
where certain songs are found to be similar to many other songs. The hub phenomenon is a
potentially serious concern, since it can result in very bad matches being selected as similar
to a query song.

24

Our HDP-based approach does not suffer from this problem. Figure 3.1 shows how
often each song is ranked in the top five of another song’s similarity list for similarity
matrices obtained from G1, the HDP, and choosing distances at random. The randomly
generated histogram shows the sort of distribution of hubs one would expect to see due to
chance in a dataset of this size. The HDP’s histogram closely resembles the random one,
indicating an absence of abnormal hubs. G1’s histogram, by contrast, shows more severe
and more numerous hubs than the other two histograms.

3.5 Discussion
We developed a new method for assessing the similarity between songs. Our HDP-based
approach outperformed the G1 algorithm, can compute large distance matrices efficiently,
and does not suffer from the “hub” problem where some songs are found to be similar to all
other songs. Since our approach does not have access to any information about temporal
structure beyond that provided by the MFCC deltas (about 69 ms in total), we expect that
combining the distances it provides with fluctuation patterns or some similar feature set
would provide an improvement in similarity performance, as it does for the G1C algorithm
[71].

25

Chapter 4

Codeword Bernoulli Averaging: A
Model for Autotagging Songs

It has been said that talking about music is like dancing about architecture1, but people
nonetheless use words to describe music. In this chapter we will present a simple system
that addresses tag prediction from audio—the problem of predicting what words people
would be likely to use to describe a song.

Two direct applications of tag prediction are semantic annotation and retrieval. If we
have an estimate of the probability that a tag applies to a song, then we can say what words
in our vocabulary of tags best describe a given song (automatically annotating it) and what
songs in our database a given word best describes (allowing us to retrieve songs from a text
query).

We present the Codeword Bernoulli Average (CBA) model, a probabilistic model that
attempts to predict the probability that a tag applies to a song based on a vector-quantized
(VQ) representation of that song’s audio. Our CBA-based approach to tag prediction

• Is easy to implement using a simple EM algorithm.

• Is fast to train.

• Makes predictions efficiently on unseen data.

• Performs as well as or better than previous state-of-the-art approaches.

We by no means claim that CBA is the last word in autotagging. CBA was designed to
get maximum performance with minimum complexity, and in recent MIREX competitions
it has been outperformed by more sophisticated (and complex) methods [2]. Nonetheless,
it remains useful as a fast and simple baseline method, as seen in several recent ISMIR
papers (e.g. [24, 65]).

1Attribution for this quip is difficult to track down—Elvis Costello, Martin Mull, and Thelonius Monk
have all been advanced as possible sources. For a full discussion see http://www.pacifier.com/
˜ascott/they/tamildaa.htm

26

4.1 Data and Representation

4.1.1 The CAL500 data set
We train and test our method on the CAL500 dataset [88, 89]. CAL500 is a corpus of 500
tracks of Western popular music, each of which has been manually annotated by at least
three human labelers. We used the “hard” annotations provided with CAL500, which give
binary values yjw ∈ {0, 1} for all songs j and tags w. yjw = 1 indicates that tag w applies
to song j, yjw = 0 indicates that it does not.

CAL500 is distributed with a set of 10,000 39-dimensional Mel-Frequency Cepstral
Coefficient Delta (delta-MFCC) feature vectors for each song. Each delta-MFCC vector
summarizes the timbral evolution of three successive 23ms windows of a song. CAL500
provides these feature vectors in a random order, so no temporal information beyond a
69ms timescale is available.

Our goals are to use these features to predict which tags apply to a given song and
which songs are characterized by a given tag. The first task yields an automatic annotation
system, the second yields a semantic retrieval system.

4.1.2 A vector-quantized representation
Rather than work directly with the delta-MFCC feature representation, we first vector quan-
tize all of the feature vectors in the corpus, ignoring for the moment what feature vectors
came from what songs. We:

1. Normalize the feature vectors so that they have mean 0 and standard deviation 1 in
each dimension.

2. Run the k-means algorithm [59] on a subset of randomly selected feature vectors to
find a set of K cluster centroids.

3. For each normalized feature vector fji in song j, assign that feature vector to the
cluster kji with the smallest squared Euclidean distance to fji.

This vector quantization procedure allows us to represent each song j as a vector nj of
counts of a discrete set of codewords:

njk =

Nj∑
i=1

1(kji = k) (4.1)

where njk is the number of feature vectors assigned to codeword k, Nj is the total number
of feature vectors in song j, and 1(a = b) is a function returning 1 if a = b and 0 if a 6= b.

This discrete “bag-of-codewords” representation is less rich than the original continu-
ous feature vector representation. However, as seen in the previous chapter, it yields com-
petitive results for the problem of timbral similarity. VQ codebook-based representations
have also produced state-of-the-art performance in image annotation and retrieval systems
[95].

27

4.2 The Codeword Bernoulli Average model
In order to predict what tags will apply to a song and what songs are characterized by a tag,
we developed the Codeword Bernoulli Average model (CBA). CBA models the conditional
probability of a tag w appearing in a song j conditioned on the empirical distribution nj
of codewords extracted from that song. One we have estimated CBA’s hidden parameters
from our training data, we will be able to quickly estimate this conditional probability for
new songs.

4.2.1 Related work
One class of approaches treats audio tag prediction as a set of binary classification prob-
lems to which variants of standard classifiers such as the Support Vector Machine (SVM)
[60, 87] or AdaBoost [13] can be applied. Once a set of classifiers has been trained, the
classifiers attempt to predict whether or not each tag applies to previously unseen songs.
These predictions come with confidence scores that can be used to rank songs by relevance
to a given tag (for retrieval), or to rank tags by relevance to a given song (for annotation).

Classifiers like SVMs or AdaBoost focus on binary classification accuracy rather than
directly optimizing the continuous confidence scores that are used for retrieval tasks—this
goal leads them to focus on the examples that are most difficult to classify and largely
ignore those for which their confidence scores are reasonably high. In a retrieval system
that ranks results by confidence scores, however, these difficult examples near the margin
of the classification boundary are less likely to be returned than easier examples, suggesting
that these classifiers may be optimizing the wrong objective for the task.

Another approach is to fit a generative probabilistic model such as a Gaussian Mixture
Model (GMM) for each tag to the audio feature data for all of the songs manifesting that
tag [89]. The posterior likelihood p(tag|audio) of the feature data for a new song being
generated from the model for a particular tag is then used to estimate the relevance of that
tag to that song (and vice versa). Although this model tells us how to generate the audio
feature data for a song conditioned on a single tag, it does not define a generative process for
songs with multiple tags, and so heuristics are necessary to estimate the posterior likelihood
of a set of tags.

Rather than assuming that the audio for a song depends on the tags associated with that
song, we will assume that the tags depend on the audio data. This will yield a probabilistic
model with a discriminative flavor, and a more coherent generative process than that in
[89].

4.2.2 Generative process
CBA models a collection of binary random variables y, with yjw ∈ {0, 1} determining
whether or not tag w applies to song j. These variables are generated in two steps. First,
a codeword zjw ∈ {1, . . . , K} is selected with probability proportional to the number of

28

njk βkwzjw yjw
K

J K
W

Figure 4.1: Graphical model representation of CBA.

times njk that that codeword appears in song j’s feature data:

p(zjw = k|nj, Nj) =
njk
Nj

(4.2)

Then a value for yjw is chosen from a Bernoulli distribution with parameter βkw:

p(yjw = 1|zjw,β) = βzjww (4.3)
p(yjw = 0|zjw,β) = 1− βzjww

The full joint distribution over z and y conditioned on the observed counts of code-
words n is:

p(z,y|n) =
∏
w

∏
j

njzjw

Nj

βyjw
zjww

(1− βzjww)(1−yjw). (4.4)

The random variables in CBA and their dependencies are summarized in figure 4.1.

4.2.3 Inference using expectation-maximization
We fit CBA with maximum-likelihood (ML) estimation. Our goal is to estimate a set
of values for our Bernoulli parameters β that will maximize the likelihood p(y|n,β) of
the observed tags y conditioned on the VQ codeword counts n and the parameters β.
Analytic ML estimates for β are not available because of the latent variables z. We use the
Expectation-Maximization (EM) algorithm to do maximum-likelihood estimation in the
presence of the latent variables z [25].

Each iteration of EM operates in two steps. In the expectation (“E”) step, we com-
pute the posterior of the latent variables z given our current estimates for the param-
eters β. We define a set of expectation variables hjwk corresponding to the posterior
p(zjw = k|n,y,β):

hjwk = p(zjw = k|n,y,β) (4.5)

=
p(yjw|zjw = k,β)p(zjw = k|n)

p(yjw|n,β)
(4.6)

=

{ njkβkwPK
i=1 njiβiw

if yjw = 1
njk(1−βkw)PK
i=1 nji(1−βiw)

if yjw = 0
(4.7)

29

In the maximization (“M”) step, we find maximum-likelihood estimates of the parame-
ters β given the expected posterior sufficient statistics:

βkw ← E[yjw|zjw = k,h] (4.8)

=

∑
j p(zjw = k|h)yjw∑
j p(zjw = k|h)

(4.9)

=

∑
j hjwkyjw∑
j hjwk

(4.10)

By iterating between computing h (using equation 4.7) and updating β (using equation
4.10), we find a set of values for β that maximize the likelihood of the training data under
the CBA model. Since the log-likelihood function

log p(y|β,n) =
∑
j

∑
w

yjw log(
∑

knjkβkw) + (1− yjw) log(
∑

knjk(1− βkw))− log(Nj)

(4.11)
is concave in β, we are assured of finding a global maximum 2.

4.2.4 Generalizing to new songs
Once we have inferred a set of Bernoulli parameters β from our training dataset, we can
use them to infer the probability that a tag w will apply to a previously unseen song j based
on the counts nj of codewords for that song:

p(yjw|nj,β) =
∑
k

p(zjw = k|nj)p(yjw|zjw = k)

p(yjw = 1|nj,β) =
1

Nj

∑
k

njkβkw (4.12)

As a shorthand, we will refer to our inferred value of p(yjw = 1|nj,β) as sjw.
Once we have inferred sjw for all of our songs and tags, we can use these inferred prob-

abilities both to retrieve the songs with the highest probability of having a particular tag
and to annotate each song with a subset of our vocabulary of tags. In a retrieval system,
we return the songs in descending order of sjw. To do automatic tagging, we could anno-
tate each song with the M most likely tags for that song. However, this may lead to our
annotating many songs with common, uninformative tags such as “Not Bizarre/Weird” and
a lack of diversity in our annotations. To compensate for this, we use a simple heuristic:
we introduce a “diversity factor” d and discount each sjw by d times the mean of the es-
timated probabilities s·w. A higher value of d will make less common tags more likely to
appear in annotations, which may lead to less accurate but more informative annotations.
The diversity factor d has no impact on retrieval.

The cost of computing each sjw using equation 4.12 is linear in the number of code-
words K, and the cost of vector quantizing new songs’ feature data using the previously

2

30

Model Precision Recall F-Score
UpperBnd 0.712 (0.007) 0.375 (0.006) 0.491
Random 0.144 (0.004) 0.064 (0.002) 0.089
MixHier 0.265 (0.007) 0.158 (0.006) 0.198

Autotag (MFCC) 0.281 0.131 0.179
Autotag (afeats exp.) 0.312 0.153 0.205

CBA K = 5 0.198 (0.006) 0.107 (0.005) 0.139
CBA K = 10 0.214 (0.006) 0.111 (0.006) 0.146
CBA K = 25 0.247 (0.007) 0.134 (0.007) 0.174
CBA K = 50 0.257 (0.009) 0.145 (0.007) 0.185
CBA K = 100 0.263 (0.007) 0.149 (0.004) 0.190
CBA K = 250 0.279 (0.007) 0.153 (0.005) 0.198
CBA K = 500 0.286 (0.005) 0.162 (0.004) 0.207
CBA K = 1000 0.283 (0.008) 0.161 (0.006) 0.205
CBA K = 2500 0.282 (0.006) 0.162 (0.004) 0.206

Model AP AROC
UpperBnd 1 1
Random 0.231 (0.004) 0.503 (0.004)
MixHier 0.390 (0.004) 0.710 (0.004)

Autotag (MFCC) 0.305 0.678
Autotag (afeats exp.) 0.385 0.674

CBA K = 5 0.328 (0.009) 0.707 (0.007)
CBA K = 10 0.336 (0.007) 0.715 (0.007)
CBA K = 25 0.352 (0.008) 0.734 (0.008)
CBA K = 50 0.366 (0.009) 0.746 (0.008)
CBA K = 100 0.372 (0.007) 0.748 (0.008)
CBA K = 250 0.385 (0.007) 0.760 (0.007)
CBA K = 500 0.390 (0.008) 0.759 (0.007)
CBA K = 1000 0.393 (0.008) 0.764 (0.006)
CBA K = 2500) 0.394 (0.008) 0.765 (0.007)

Table 4.1: Summary of the performance of CBA (with a variety of VQ codebook sizes K),
a mixture-of-Gaussians model (MixHier), and an AdaBoost-based model (Autotag) on an
annotation task (evaluated using precision, recall, and F-score) and a retrieval task (eval-
uated using average precision (AP) and area under the receiver-operator curve (AROC)).
Autotag (MFCC) used the same Delta-MFCC feature vectors and training set size of 450
songs as CBA and MixHier. Autotag (afeats exp.) used a larger set of features and a larger
set of training songs. UpperBnd uses the optimal labeling for each evaluation metric, and
shows the upper limit on what any system can achieve. Random is a baseline that annotates
and ranks songs randomly.

computed centroids obtained using k-means is linear in the number of features, the number

31

of codewords K, and the length of the song. For practical values of K, the total cost of
estimating the probability that a tag applies to a song is comparable to the cost of feature
extraction. Our approach can therefore tag new songs efficiently, an important feature for
large commercial music databases.

4.3 Evaluation
We evaluated our model’s performance on an annotation task and a retrieval task using the
CAL500 data set. We compare our results on these tasks with two other sets of published
results for these tasks on this corpus: those obtained by Turnbull et al. using mixture
hierarchies estimation to learn the parameters to a set of mixture-of-Gaussians models [89],
and those obtained by Bertin-Mahieux et al. using a discriminative approach based on the
AdaBoost algorithm [13]. In the 2008 MIREX audio tag classification task, the approach
in [89] was ranked either first or second according to all metrics measuring annotation or
retrieval performance [2].

4.3.1 Annotation task
To evaluate our model’s ability to automatically tag unlabeled songs, we measured its av-
erage per-word precision and recall on held-out data using tenfold cross-validation.

First, we vector quantized our data using k-means. We tested VQ codebook sizes from
K = 5 to K = 2500. After finding a set of K centroids using k-means on a randomly
chosen subset of 125,000 of the Delta-MFCC vectors (250 feature vectors per song), we
labeled each Delta-MFCC vector in each song with the index of the cluster centroid whose
squared Euclidean distance to that vector was smallest. Each song j was then represented
as a K-dimensional vector nj , with njk giving the number of times label k appeared in
song j, as described in equation 4.1.

We ran a tenfold cross-validation experiment modeled after the experiments in [89].
We split our data into 10 disjoint 50-song test sets at random, and for each test set

1. We iterated the EM algorithm described in section 4.2.3 on the remaining 450 songs
to estimate the parameters β. We stopped iterating once the negative log-likelihood
of the training labels conditioned on β and n decreased by less than 0.1% per itera-
tion.

2. Using equation 4.12, for each tag w and each song j in the test set we estimated
p(yjw|nj,β), the probability of song j being characterized by tag w conditioned on
β and the vector quantized feature data nj .

3. We subtracted d = 1.25 times the average conditional probability of tag w from our
estimate of p(yjw|nj,β) for each song j to get a score sjw for each song.

4. We annotated each song j with the ten tags with the highest scores sjw.

To evaluate our system’s annotation performance, we computed the average per-word
precision, recall, and F-score. Per-word recall is defined as the average fraction of songs

32

CBA MixHier Autotag (MFCC) Autotag (afeats exp.) Random

5 10 20 50 100 200 500 1000 2000

0
.1
0

0
.1
5

0
.2
0

0
.2
5

Codebook Size K

F
-s
c
o
re

5 10 20 50 100 200 500 1000 2000

0
.2
5

0
.3
0

0
.3
5

0
.4
0

Codebook Size K

M
e

a
n

 A
v
g

.
P

re
c
.

5 10 20 50 100 200 500 1000 2000

0
.5
0

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

0
.8
0

Codebook Size K

M
e

a
n

 A
R

O
C

Figure 4.2: Visual comparison of the performance of several models evaluated using F-
score, mean average precision, and area under receiver-operator curve (AROC).

actually labeled w that our model annotates with label w. Per-word precision is defined
as the average fraction of songs that our model annotates with label w that are actually
labeled w. F-score is the harmonic mean of precision and recall, and is one metric of
overall annotation performance.

Following [89], when our model does not annotate any songs with a label w we set the
precision for that word to be the empirical probability that a word in the dataset is labeled
w. This is the expected per-word precision for w if we annotate all songs randomly. If no
songs in a test set are labeled w, then per-word precision and recall for w are undefined, so
we ignore these words in our evaluation.

4.3.2 Retrieval task
To evaluate our system’s retrieval performance, for each tag w we ranked each song j in the
test set by the probability our model estimated of tag w applying to song j. We evaluated
the average precision (AP) and area under the receiver-operator curve (AROC) for each
ranking. AP is defined as the average of the precisions at each possible level of recall, and
AROC is defined as the area under a curve plotting the percentage of true positives returned
against the percentage of false positives returned. As in the annotation task, if no songs in
a test set are labeled w then AP and AROC are undefined for that label, and we exclude it
from our evaluation for that fold of cross-validation.

4.3.3 Annotation and retrieval results
Table 4.1 and figure 4.2 compare our CBA model’s average performance under the five
metrics described above with other published results on the same dataset. MixHier is
Turnbull et al.’s system based on a mixture-of-Gaussians model [89], Autotag (MFCC)
is Bertin-Mahieux’s AdaBoost-based system using the same Delta-MFCC feature vectors
as our model, and Autotag (afeats exp.) is Bertin-Mahieux’s system trained using addi-
tional features and training data [13]. Random is a random baseline that retrieves songs in
a random order and annotates songs randomly based on tags’ empirical frequencies. Up-

33

perBnd shows the best performance possible under each metric. Random and UpperBnd
were computed by Turnbull et al., and give a sense of the possible range for each metric.

We tested our model using a variety of codebook sizes K from 5 to 2500. Cross-
validation performance improves as the codebook size increases until K = 500, at which
point it levels off. Our model’s performance does not depend strongly on fine tuning K, at
least within a range of 500 ≤ K ≤ 2500.

When using a codebook size of at least 500, our CBA model does at least as well
as MixHier and Autotag under every metric except precision. Autotag gets significantly
higher precision than CBA when it uses additional training data and features, but not when
it uses the same features and training set as CBA.

Tables 4.2 and 4.3 give examples of annotations and retrieval results given by our model
during cross-validation.

4.3.4 Computational cost
We measured how long it took to estimate the parameters to CBA and to generalize to new
songs. All experiments were conducted on one core of a server with a 2.2 GHz AMD
Opteron 275 CPU and 16 GB of RAM running CentOS Linux.

Using a MATLAB implementation of the EM algorithm described in 4.2.3, it took 84.6
seconds to estimate CBA’s parameters from 450 training songs vector-quantized using a
500-cluster codebook. In experiments with other codebook sizesK the training time scaled
linearly with K. Once β had been estimated, it took less than a tenth of a millisecond to
predict the probabilities of 174 labels for a new song.

We found that the vector-quantization process was the most expensive part of training
and applying CBA. Finding a set of 500 cluster centroids from 125,000 39-dimensional
Delta-MFCC vectors using a C++ implementation of k-means took 479 seconds, and find-
ing the closest of 500 cluster centroids to the 10,000 feature vectors in a song took 0.454
seconds. Both of these figures scaled linearly with the size of the VQ codebook in other
experiments.

4.4 Discussion
We introduced the Codeword Bernoulli Average model, which predicts the probability that
a tag will apply to a song based on counts of vector-quantized feature data extracted from
that song. Our model is simple to implement, fast to train, generalizes to new songs effi-
ciently, and yields state-of-the-art performance on annotation and semantic retrieval tasks.

34

Give it Away Fly Me to the Moon
the Red Hot Chili Peppers Frank Sinatra

Usage—At a party Calming/Soothing
Heavy Beat NOT—Fast Tempo

Drum Machine NOT—High Energy
Rapping Laid-back/Mellow

Very Danceable Tender/Soft
Genre—Hip Hop/Rap NOT—Arousing/Awakening

Genre (Best)—Hip Hop/Rap Usage—Going to sleep
Texture Synthesized Usage—Romancing
Arousing/Awakening NOT—Powerful/Strong

Exciting/Thrilling Sad
Blue Monday Becoming
New Order Pantera

Very Danceable NOT—Calming/Soothing
Usage—At a party NOT—Tender/Soft

Heavy Beat NOT—Laid-back/Mellow
Arousing/Awakening Bass

Fast Tempo Genre—Alternative
Drum Machine Exciting/Thrilling

Texture Synthesized Electric Guitar (distorted)
Sequencer Genre—Rock

Genre—Hip Hop/Rap Texture Electric
Synthesizer High Energy

Table 4.2: Examples of semantic annotation from the CAL500 data set showing the top
10 words associated by our model with the songs Give it Away, Fly Me to the Moon, Blue
Monday, and Becoming.

35

Query Top 5 Retrieved Songs
John Lennon—Imagine

Shira Kammen—Music of Waters
Tender/Soft Crosby Stills and Nash—Guinnevere

Jewel—Enter From the East
Yakshi—Chandra

Tim Rayborn—Yedi Tekrar
Solace—Laz 7 8

Hip Hop Eminem—My Fault
Sir Mix-a-Lot—Baby Got Back

2-Pac—Trapped
Robert Johnson—Sweet Home Chicago

Shira Kammen—Music of Waters
Piano Miles Davis—Blue in Green

Guns n’ Roses—November Rain
Charlie Parker—Ornithology
Tim Rayborn—Yedi Tekrar

Monoide—Golden Key
Exercising Introspekt—TBD

Belief Systems—Skunk Werks
Solace—Laz 7 8

Nova Express—I’m Alive
Rocket City Riot—Mine Tonite

Screaming Seismic Anamoly—Wreckinball
Pizzle—What’s Wrong With My Footman

Jackalopes—Rotgut

Table 4.3: Examples of semantic retrieval from the CAL500 data set. The left column
shows a query word, and the right column shows the five songs in the dataset judged by our
system to best match that word.

36

Chapter 5

Nonparametric Latent Source Discovery
Part I: The SI-HDP

In previous chapters, we used feature-based representations of the audio signal. Although
this approach makes modeling simpler, it can only model the qualities of the mixed audio
signal, not of individual sounds that occur simultaneously. In this chapter, we will present
the Shift-Invariant Hierarchical Dirichlet Process (SIHDP), a generative model that moves
beyond this approach and allows us to represent songs in terms of the instruments and other
sounds that generated them. We will be able to decompose an audio spectrogram into a set
of short spectrograms corresponding to latent sources present in the audio signal, a set of
global activation levels for those sources, and a set of time-varying activation levels for
those sources. This representation will yield a higher-level representation of a set of songs,
and also allow us to isolate or suppress the energy in a recording associated with one or
another latent source.

The same instruments tend to appear in multiple recordings in different combinations,
and without hand-generated metadata there is no way of knowing a priori how many or
which sources will appear in a given recording. This suggests that a model based on the
Hierarchical Dirichlet Process (HDP) would be ideally suited to modeling groups of songs,
since it represents groups of observations (such as songs) as being generated by an initially
unspecified number of shared latent components [85].

However, the HDP requires that our observations be directly comparable, which is not
the case for audio data. Human listeners need to hear how a sound evolves over time to
recognize and interpret that sound, but computers cannot directly observe when events in
audio signals begin and end. We therefore modified the HDP to make it invariant to shifts
in time by explicitly modeling when in each song latent sources appear.

This allows us to discover a shared vocabulary of latent sources that describe different
events in our set of songs, and to produce a rough transcription of each song in terms of
that shared vocabulary. This transcription provides a rich representation of our songs with
which we can compare and analyze our songs.

We perform posterior inference on the SIHDP using Gibbs sampling [37]. To make it
feasible to do inference on large data sets in a reasonable amount of time, we also develop
an exact parallel Gibbs sampler for the SIHDP that can also be applied to the original HDP.

37

5.1 A Shift-Invariant Nonparametric Bayesian Model
We define a probabilistic generative model for recorded songs. We assume that a song is
generated by repeatedly selecting a sonic component from a set of available components
and then selecting both a time at which it occurs and an amplitude with which it is mani-
fested. Such a component might be, for example, a snare drum or the note middle C on a
piano. Components may overlap in time. (This resembles the process by which a sample-
based sequencer produces audio.)

Below, we will present a probabilistic generative model that corresponds to this process.
Rather than operate directly on a time-domain representation of audio, we use a quantized
time-frequency representation that is robust to imperceptible changes in phase. Further,
this representation allows us to adapt existing models designed to handle counts data.

5.1.1 Data Representation
We represent each song using a quantized time-frequency spectrogram representation de-
rived from the Short-Time Fourier Transform (STFT). First, we divide the song into a
series of W short non-overlapping frames of S samples each. We multiply each frame by
the Hann window and compute the magnitude spectrum of the Discrete Fourier Transform
(DFT) for that window of samples. This yieldsB = S

2
+1 coefficients giving the amplitude

in that window of evenly spaced frequencies from 0 Hz to one half of the sampling rate.
After doing this for each frame, we have a B × W matrix ŷj of non-negative real

numbers, with ŷjbw giving the amplitude of DFT frequency bin b at time step w. Since the
overall amplitude scale of digital audio is arbitrary, we can normalize our spectrograms ŷj
so that

∑B
b=0

∑W
w=1 ŷjbw = 1, and ŷj defines a multinomial probability distribution over

times w and frequencies b.
Finally, we transform each normalized ŷj into quantized counts data whose empirical

distribution approximates ŷj . We multiply the normalized ŷj by a constant ν×W ×B and
round the result to get the number of observed magnitude “quanta” ȳjbw in bin b at time w
of song j:

ȳjbw = round(νWBŷjbw) (5.1)

Nj =
B∑
b=1

W∑
w=1

ȳjbw (5.2)

ν is roughly the average number of quanta per time/bin pair, and Nj is the total number
of observed quanta in song j. We use the notation yji = {wji, bji} to refer to the ith
(exchangeable) quantum of energy in song j as occurring at time wji and bin bji, for i ∈
{1, . . . , Nj}.

ν impacts the analysis in three ways. Larger values of ν

1. produce less quantization noise,

2. increase the cost of inference, and

3. make the posterior distribution over our model’s parameters more peaked.

38

Time

Fr
eq

ue
nc

y
Snare Drum

Bass Drum

Distorted Guitar Chords

Figure 5.1: Spectrogram of 4.64 seconds (200 512-sample windows) of the AC/DC song
“Dirty Deeds Done Dirt Cheap,” annotated with the locations in time and frequency of a
few instrument sounds.

The first two phenomena present a tradeoff between noise and computational complexity—
in practice the sparse distribution of energy in audio spectrograms makes it possible to get
away with fairly low levels of ν (i.e. ν < 1) without significantly affecting the quality of the
representation. The third phenomenon is more troubling, since the amount of data given to
a Bayesian nonparametric model like the HDP plays a role in how many latent parameters
it will use to explain the data. In the following chapter, we will present an alternative
latent source decomposition model that addresses this concern, but for the moment we put
it aside.

Although we only discuss DFT spectrogram data in this work, our model could also be
applied to other time-frequency representations such as the constant-Q spectrogram or the
output of a wavelet transform.

39

5.1.2 Generative Process
We present the Shift-Invariant Hierarchical Dirichlet Process (SIHDP), a generative model
for our quantized spectrogram data that is an extension of the Hierarchical Dirichlet Pro-
cess (HDP) [85] with discrete observations. The discrete HDP assumes an infinite number
of multinomial mixture components φk drawn independently from a Dirichlet prior with
parameter ε:

φk ∼ Dirichlet(ε, . . . , ε)

An infinite vector β defining the global proportions of these components is drawn from a
stick-breaking process with concentration parameter γ (denoted GEM(γ)). Each group j
of observations draws a group-level set of proportions πj from a Dirichlet Process (DP)
with concentration parameter α and the multinomial defined by β as its base distribution:

β ∼ GEM(γ); πj ∼ Dirichlet(αβ)

The ith observation in group j is drawn by first choosing a component kji from the group-
level proportion distribution πj , and then drawing the observation yji from φkji

:

kji ∼ Multinomial(πj); yji ∼ Multinomial(φkji
)

We will use a variant of the HDP to analyze groups of songs. Our analysis will find:

1. The set of components used to generate those songs.

2. When and how prominently those components appear in each song.

In order to do this, we need to explicitly model how prominent each component is at any
given time in each song.

The SIHDP extends the HDP by modeling each observed time wji as a sum of two
terms: a base time cji ∈ {1, . . . , C} and a discrete time offset lji ∈ {−C + 1, . . . ,W − 1}.
We define L = W +C − 1 to be the size of this set of possible time offsets. We set C to be
the length of the latent components that we wish to model (which will be short relative to
the song). The time offsets l can take on any range of values such that there is some c for
which l + c ∈ {1, . . . ,W}.

As in the HDP, we begin by drawing a set of latent components φ from a symmetric
Dirichlet prior with parameter ε, but φ is now a two-dimensional joint distribution over
base times c and frequency bins b. Each φ can be interpreted as a normalized spectrogram
of a short audio source. The global component proportion vector β is again drawn from
a stick-breaking process with concentration parameter γ, and the song-level component
proportion vector πj for each song j is drawn from a DP with concentration parameter α
and base distribution Multinomial(β).

Each component k in song j in the SIHDP has a set of multinomial distributions ωjk
over time offsets drawn from a symmetric Dirichlet prior with parameter η.

Each observed quantum of energy yji consists of a time wji and a frequency bin bji at
which the quantum appears. To generate yji, we first select a component kji to generate the
quantum. We draw kji from Multinomial(πj), the song-level distribution over components.

40

φk

πj

β

kji

yji

α

γ

ε
∞

Nj

J

lji

ωjk

η

Figure 5.2: The graphical model for the shift-invariant HDP.

We then draw a base time cji and frequency bji jointly from φkji
, and draw a time offset lji

from the distribution over time offsets ωjkji
for component kji in song j.

The observed quantum appears at time wji = cji + lji and frequency bji.
The full generative process for the SIHDP is:

φk ∼ Dirichlet(ε, . . . , ε) ωjk ∼ Dirichlet(η, . . . , η)

β ∼ GEM(γ) πj ∼ Dirichlet(αβ)

kji ∼ Multinomial(πj) lji ∼ Multinomial(ωjkji
)

cji, bji ∼ Multinomial(φkji
) wji = cji + lji

yji = {wji, bji} (5.3)

The SIHDP is a hierarchical nonparametric Bayesian version of Shift-Invariant Prob-
abilistic Latent Component Analysis (SI-PLCA) [81], which is a probabilistic version of
convolutive nonnegative matrix factorization with KL-divergence loss function [79]. It im-
proves on SI-PLCA by allowing components to be shared across multiple songs, and by
automatically determining the number of latent components that are needed to explain the
data.

41

This SIHDP is also related to the Transformed Dirichlet Process (TDP) in that draws
from a countably infinite global set of mixture components undergo transformations to
generate observations [82]. In the TDP, however, transformations are associated with ob-
servations indirectly through table assignments in the Chinese Restaurant Franchise (CRF).
This means that the concentration paramater α influences both the group-level component
proportions π and the number of transformations that a group of observations (such as a
song or an image) can take on; a high α simultaneously makes each πj less likely to diverge
from the global component proportions β and makes a large number of transformations in
each group j more likely.

Our model takes a simpler approach, directly associating each observation yji with a
transformation lji that depends only on the cluster assignment kji and a group-level multi-
nomial distribution over transformations ωjkji

. We do not need to use the CRF machinery
of the HDP to generate transformations, since our set of transformations is discrete. We
note that this decoupled approach can be generalized to continuous transformations by us-
ing a set of DP’s for each group to discretize a space of continuous transformations. This
may be worth exploring in other models.

Although this work is focused on the applications of the SIHDP to music, it could
equally well be applied to any of the other application areas described in [81], such as
images or video. Likewise, although we only discuss shift-invariance in time, analogous
models can be constructed that are invariant to shifts in frequency at extra computational
expense. A log-frequency representation such as the constant-Q transform would be a more
appropriate input for such a model than the linear frequency spectrogram.

To learn the posterior distribution over the model parameters conditioned on the ob-
served spectrograms, we adapt the direct assignment Gibbs sampler from [85]. This Gibbs
sampler gives us a set of samples from the posterior distribution over a set of the variables
in our model, which we then use to compute a Maximum A Posteriori (MAP) estimate of
the remaining parameters. Full details of the inference procedure can be found in appendix
A.

5.2 Evaluation
We conducted several experiments to test the SIHDP on music audio data—one using syn-
thetic drum loops and three using songs taken from the CAL500 dataset, which consists of
500 songs of various genres of Western popular music each recorded by a different artist
within the last 50 years [90]. In all experiments, we placed a gamma(1, 0.0001) prior on
both α and γ, and set ε = 0.02 and η = 0.01.

5.2.1 Drum Loop Transcription
We synthesized a set of 40 randomly generated 32-beat drum loops lasting 6 seconds each.
We studied the SIHDP’s ability to discover the drum sounds that were used to create the
files, and when in each file they appear. We used a simple algorithm to generate the loops:
for each drum s at each beat i in song j, we draw a Bernoulli variable rsij ∼ Bern(ps)

42

Loop j

Co
m

po
ne

nt
 k

Figure 5.3: A graphical representation of our model’s MAP estimate of π for the 40 syn-
thetic drum loops. A darker pixel in row k of column j indicates a higher relative proportion
πjk of latent component k in song j.

that indicates whether or not drum s is present at beat i. If it is, then we draw its am-
plitude asij ∼ Unif(0.3, 0.9), otherwise we set asij = 0. Audio was synthesized using
the ChucK music programming language [96] and two sets of drum samples from Apple’s
GarageBand.

Our objective was to recover from the audio alone an estimate of a for each drum in
each song, without any prior knowledge of what the drum samples sound like (aside from
their maximum length), how many there are, or how frequently they appear.

We ran our Gibbs sampler until the posterior likelihood failed to increase for 20 iter-
ations on the 40 synthesized files, choosing C = 10 and ν = 0.25. We then computed a
MAP estimate of the time offset distribution ω|k, l, and calculated a distribution ω′ quan-
tized to 32 beats, so that ω′jki is the probability that a quantum of energy generated by
component k in song j will fall anywhere in beat i. ω̂jki = πjkω

′
jki is then the relative

prominence of component k at beat i in loop j.
Figure 5.3 graphically represents the distribution π discovered by our model. Note that

most of the latent components tend to appear in either the first 20 loops or the last 20, but
not both. This is because the first 20 loops were generated using a different set of drum

43

Learned Snare Drum Snare Drum Sample

Learned Closed Hi-Hat Cymbal Closed Hi-Hat Cymbal Sample

Figure 5.4: Left: Two latent distributions φk discovered by our model. Right: Spectro-
grams of two drum samples closely matching the latent components at left.

samples than the last 20, and our model was able to distinguish between the two synthetic
drum kits.

We evaluated the Bhattacharyya distance for each song between the joint distribution
over components and times defined by ω̂j and the joint distribution over drums and times
defined by our ground truth aj (normalized so that it can be treated as a multinomial dis-
tribution). The Bhattacharyya distance between two probability distributions p and q over
the same domainX is a symmetric measure of the dissimilarity of those two distributions,
and is defined as

DB(p, q) = − log

(∑
x∈X

√
p(x)q(x)

)
(5.4)

We assume (naı̈vely) that the component k in song j that corresponds to drum s is the
one that maximizes Corr(ω̂jk,ajs). The average Bhattacharyya distance between our tran-
scription and the ground truth was 0.4236 with a standard error of 0.0204. The average
Bhattacharyya distance obtained by repeating the experiment with a a normalized matrix
of numbers drawn uniformly at random substituted for ω̂j was 1.1923 with a standard error
of 0.0131. The SIHDP did dramatically better than chance at transcribing the drum tracks.

44

Time Time

La
te

nt
 C

om
po

ne
nt

Tr
ue

 D
ru

m

Figure 5.5: Left: An unsupervised transcription ω̂ generated by our model of a drum loop.
Right: The actual times and amplitudes of the drum loop. Darker pixels correspond to
higher amplitudes.

Figure 5.4 compares the spectrograms of two of the drum samples used to generate our
data with the discovered latent components they most closely match. Figure 5.5 compares
the ground truth transcription a with the SIHDP’s transcription ω̂ for a single drum loop.
The rows of ω̂ have been manually ordered to make their correspondence to the rows of
a clearer. The second drum seems to have been split across two components, but most
of the drums have a clear one-to-one mapping to latent components, which confirms our
quantitative results. The empty rows correspond to latent components not used to model
this loop.

5.2.2 Experiments on Recorded Popular Music
We ran our distributed Gibbs sampler on a training set of 48 songs from the CAL500 dataset
to get MAP estimates of the global component proportions β, the global componentsφ, the
song-level component proportions π, and the song-level offset distributions ω. We set the
length C of the latent components to 20 windows. We used 2000 512-sample windows (46
seconds of audio) from each song with ν set to 1, for an average of 514,000 observations

45

Time Time

Time Time

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Figure 5.6: Four latent components discovered from 48 songs taken from the CAL500
corpus of popular music.

per song. The Gibbs sampler took about a day to converge running on 48 processors, and
discovered 575 components.

Figure 5.6 shows several latent components discovered by the SIHDP from the 48 train-
ing songs. Qualitatively, these sound like (clockwise from bottom left) a bass drum, a male
voice singing “aah,” a snare drum, and a high-pitched whistle. While the first three compo-
nents clearly correspond to real-world sound sources, it seems more likely that the fourth
component is being used to model fine details of the data that are cannot be captured by the
more complex components.

Figure 5.7 shows the intensities ω̂jkl = ωjklπjk with which the 10 most prominent
components k appear at each time offset l in the song “Dirty Deeds Done Dirt Cheap” by
AC/DC. Different, but related rhythmic patterns for each component are clearly visible.
Exploiting the rhythmic information in this representation may prove valuable for music
information retrieval tasks [23].

46

Time

La
te

nt
 C

om
po

ne
nt

Figure 5.7: The 10 most prominent components of the unsupervised transcription ω̂ in-
ferred from 11 seconds of the AC/DC song “Dirty Deeds Done Dirt Cheap.” Some compo-
nents are relatively weak here, but become more prominent elsewhere in the song.

Perplexity

After obtaining MAP estimates of the global component proportions β and the global com-
ponents φ, we ran our Gibbs sampler on 400 held-out songs from the same dataset holding
the global component proportions β and the component distributions φ fixed at the MAP
estimates from the training set, and estimated the perplexity on the held-out data using the
harmonic mean of the likelihoods of the data under samples from the posterior of the hid-
den parameters1. The perplexity of a model defining a probability distribution p(x) on a
held-out data set x is defined as

perplexity(x) , exp

{
− 1

N

∑
n

log p(xn)

}
. (5.5)

For comparison, we also built a simple DP model that also assumes an infinite set of latent
components, but has each song choose a single latent component that it uses to generate

1While this is a widely used method (cf. e.g. [40]) there is some debate in the statistics community as to
its effectiveness compared with alternative estimation methods such as [63].

47

every observed quantum. We estimated the perplexity of this model on the same held-
out data. The DP’s perplexity was 1265.2, and our SIHDP model’s perplexity was 62.1.
This dramatic reduction in perplexity illustrates the value of modeling songs as mixtures of
latent components.

5.3 Discussion
In this chapter, we presented the Shift-Invariant Hierarchical Dirichlet Process (SIHDP), a
model that can discover a rich representation of groups of songs in terms of the instruments
and vocal sounds that generated those songs. We developed an exact parallel Gibbs sampler
that enabled us to run experiments on a significant number of songs, and showed that the
SIHDP can discover latent audio sources that are shared across multiple songs, as well as
when those sources occur in each song. The ability of the SIHDP to automatically deter-
mine how many latent sources are needed to explain the data is a significant advance over
previous methods, which typically assume that the number of latent sources is specified a
priori.

48

Chapter 6

Nonparametric Latent Source Discovery
Part II: Gamma Process Nonnegative
Matrix Factorization

6.1 Introduction
Although the SI-HDP model discussed in the previous chapter does a good job of discov-
ering the latent sources present in audio, it suffers from two related theoretical issues.

The first issue is that the quantization level determines the number of “observations”
that the model is to explain. This is troubling from the perspective of Bayesian statistics,
in that the variance of the posterior over the model parameters depends strongly on the
number of observations, which is controlled by an arbitrary factor. Even more troubling is
that the number of components that a Bayesian nonparametric model can justify associating
with data depends on the number of observations given to the model—thus, the quality of
model order selection done by the SI-HDP may depend on the level of quantization.

The second issue relates to the signal model implied by the SI-HDP. The SI-HDP as-
sumes that the observed quantized spectrogram is generated by introducing multinomial
noise to the convolution of the latent components by their activation functions, scaled by a
set of overall gains. Although this noise model simplifies inference, there is no justification
in signal processing for the assumption of multinomial noise in audio spectrogram data.

In this chapter we develop Gamma Process Nonnegative Matrix Factorization (GaP-
NMF), an alternative Bayesian nonparametric (BNP) approach to decomposing spectro-
grams. As in the SI-HDP, we posit a generative probabilistic model of spectrogram data
where, given an observed audio signal, posterior inference reveals both the latent sources
and their number. Unlike the SI-HDP, GaP-NMF does not need to quantize real-valued
spectrogram data, and it assumes a noise model that corresponds to a more reasonable
model of how audio sources combine in the frequency domain to form power spectra.

The central computational challenge posed by our model is posterior inference. Un-
like other BNP factorization methods, our model is not composed of conjugate pairs of
distributions—we chose our distributions to be appropriate for spectrogram data, not for
computational convenience.

49

We use variational inference to approximate the posterior, and develop a novel varia-
tional approach to inference in nonconjugate models. Variational inference approximates
the posterior with a simpler distribution, whose parameters are optimized to be close to the
true posterior [53]. In mean-field variational inference, each variable is given an indepen-
dent distribution, usually of the same family as its prior. Where the model is conjugate,
optimization proceeds by an elegant coordinate ascent algorithm. Researchers usually ap-
peal to less efficient scalar optimization where conjugacy is absent. We instead use a bigger
variational family than the model initially asserts. We show that this gives an analytic co-
ordinate ascent algorithm, of the kind usually limited to conjugate models.

We evaluated GaP-NMF on several problems—extracting the sources from music au-
dio, predicting the signal in missing entries of the spectrogram, and classical measures of
Bayesian model fit. Our model performs as well as or better than the current state-of-the-
art. It finds simpler representations of the data with equal statistical power, without needing
to explore many fits over many numbers of sources, and thus with much less computation.

6.2 GaP-NMF Model
We model the Fourier power spectrogram X of an audio signal. The spectrogram X is an
M by N matrix of non-negative reals; the cell Xmn is the power of our input audio signal
at time window n and frequency bin m. Each column of the power spectrogram is obtained
as follows. First, take the discrete Fourier transform of a window of 2(M − 1) samples.
Next, compute the squared magnitude of the complex value in each frequency bin. Finally,
keep only the first M bins, since the remaining bins contain only redundant information.

We assume the audio signal is composed of K static sound sources. As a consequence,
we can model the observed spectrogramX with the product of two non-negative matrices:
an M by K matrix W describing these sources and a K by N matrix H controlling how
the amplitude of each source changes over time [80]. Each column of W is the average
power spectrum of an audio source; cell Wmk is the average amount of energy source k
exhibits at frequency m. Each row of H is the time-varying gain of a source; cell Hkn is
the gain of source k at time n. These matrices are unobserved. For simplicity of exposition,
we will assume static sources unlike the time-varying sources of the SI-HDP. The modeling
and inference techniques we develop for GaP-NMF can easily be extended to accommodate
time-varying sources.

GaP-NMF builds on the signal model motivating the Itakura-Saito NMF algorithm de-
veloped in [4] and [32], which we briefly rederive here. Consider a set of K audio signals
whose complex spectra at each time n are distributed according to

Real(Cmnk) ∼ N (0,Wmk); Imag(Cmnk) ∼ N (0,Wmk), (6.1)

where the variance Wmk is the average power at frequency m of source k and Cmnk is the
complex Fourier coefficient of the audio signal generated by source k at frequency m at
time n. Linearly combining these K signals in the time domain, weighted by their time

50

varying gains Hkn, yields a complex mixture spectrogramXc:

Real(Xc
mn) =

∑
k

Real(Cmnk)
√
Hkn; Imag(Xc

mn) =
∑
k

Imag(Cmnk)
√
Hkn; (6.2)

basic properties of the normal distribution then imply that

Real(Xc
mn) ∼ N (0,

∑
k

WmkHkn); Real(Xc
mn) ∼ N (0,

∑
k

WmkHkn). (6.3)

It is then straightforward to show that the elements of the power spectrogram X are dis-
tributed according to an exponential distribution:

Xmn , Real(Xc
mn)2 + Imag(Xc

mn)2 ∼ Exponential

(∑
k

WmkHkn

)
. (6.4)

Previous spectrogram decompositions assume the number of components K is known.
In practice, this is rarely true. Our goal is to develop a method that infers both the characters
and number of latent audio sources from data. We develop a Bayesian nonparametric model
with an infinite number of latent components, a finite number of which are active when
conditioned on observed data.

We now describe the Gamma Process Nonnegative Matrix Factorization model (GaP-
NMF). As in previous matrix decomposition models, the spectrogramX arises from hidden
matricesW andH . In addition, the model includes a hidden vector of non-negative values
θ, where each element θl is the overall gain of the corresponding source l. The key idea
is that we allow for the possibility of a large number of sources L, but place a sparse prior
on θ. During posterior inference, this prior biases the model to use no more sources than it
needs.

Specifically, GaP-NMF assumes thatX is drawn according to the following generative
process:

Wml ∼ Gamma(a, a)

Hln ∼ Gamma(b, b)

θl ∼ Gamma(α/L, αc)

Xmn ∼ Exponential(
∑

l θlWmlHln). (6.5)

As the truncation level L increases towards infinity, the vector θ approximates an infinite
sequence drawn from a gamma process with shape parameter α and inverse-scale parameter
αc [55]. A property of this sequence is that the number of elements K greater than some
number ε > 0 is finite almost surely. Specifically:

K ∼ Poisson
(

1

c

∫ ∞
ε

x−1e−xαcdx

)
. (6.6)

For truncation levels L that are sufficiently large relative to the shape parameter α, we
likewise expect that only a few of the L elements of θ will be substantially greater than 0.

51

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.01

0.02

0.03

0.04

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.1

0.2

0.3

0.4

0

0.05

0.1

0

0.5

1

1.5

0

0.5

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0.4

0

0.5

1

0

0.005

0.01

0.015

0.02

0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0.4

K=4

K=19

K=49

K=99

K=199

Figure 6.1: Five vectors whose entries are drawn independently from a Gamma(2/K, 2)
distribution for various dimensionalities K.

Figure 6.1 illustrates this sparseness phenomenon. During posterior inference, this property
leads to a preference for explanations that use relatively few components.

The resemblance between figure 6.1 and figure 2.2 is not a coincidence. The Dirich-
let and gamma processes are closely related, as are the Dirichlet and gamma distribu-
tions. In general, if a set of variables are distributed according to a set of gamma dis-
tributions with constant scale parameter, then normalizing these variables to sum to one
gives a Dirichlet distribution. Specifically, if θk ∼ Gamma(αk, c) and πk , θk/

∑
i θi then

π ∼ Dirichlet(α). Similarly, a gamma process normalized so that the weights of its atoms
sum to 1 is a Dirichlet process. The Dirichlet process was in fact originally derived as a
normalized version of the gamma process [31].

Note that the expected value ofXmn under the GaP-NMF model is constant with respect
to L, α, a, and b:

Ep[Xmn] =
∑

l Ep[θl]Ep[Wml]Ep[Hln] = 1
c
. (6.7)

This equation suggests the heuristic of setting the expected mean of the spectrogram X
under the prior equal to its empirical mean X̄ by setting c = 1/X̄ .

6.3 Variational Inference
Posterior inference is the central computational problem for analyzing data with the GaP-
NMF model. Given an observed spectrogram X , we want to compute the posterior dis-

52

tribution p(θ,W ,H|X, α, a, b, c). Exact Bayesian inference is intractable. We appeal to
mean-field variational inference [53].

Variational inference is a deterministic alternative to Markov Chain Monte Carlo
(MCMC) methods that replaces sampling with optimization. It has permitted efficient
large-scale inference for several Bayesian nonparametric models [e.g. 16, 26, 70]. Vari-
ational inference algorithms approximate the true posterior distribution with a simpler
variational distribution controlled by free parameters. These parameters are optimized
to make the variational distribution close (in Kullback-Leibler divergence) to the true
posterior of interest. Mean-field variational inference uses a fully factorized variational
distribution—i.e., under the variational distribution all variables are independent. In con-
jugate models this permits easy coordinate ascent updates using variational distributions of
the same families as the prior distributions.

Less frequently, variational methods are applied to non-conjugate models, which allow
increased model expressivity at the price of greater algorithmic challenges. Our model
is such a model. The usual strategy is to use a factorized variational distribution with the
same families as the priors, bound or approximate the objective function, and use numerical
techniques to optimize difficult parameters [17, 20].

We use a different strategy. We adopt an expanded family for our variational distribu-
tions, one that generalizes the priors’ family. This allows us to derive analytic coordinate
ascent updates for the variational parameters, eliminating the need for numerical optimiza-
tion.

6.3.1 Variational Objective Function
It is standard in mean-field variational inference to give each variable a variational distri-
bution from the same family as its prior distribution [53]. We instead use the more flexible
Generalized Inverse-Gaussian (GIG) family [54]:

q(Wml) = GIG(γ
(W)
ml , ρ

(W)
ml , τ

(W)
ml)

q(Hln) = GIG(γ
(H)
ln , ρ

(H)
ln , τ

(H)
ln)

q(θl) = GIG(γ
(θ)
l , ρ

(θ)
l , τ

(θ)
l). (6.8)

The GIG distribution is an exponential family distribution with sufficient statistics x, 1/x,
and log x, and its PDF (in canonical exponential family form) is

GIG(y; γ, ρ, τ) =
exp{(γ − 1) log y − ρy − τ/y}ργ/2

2τ γ/2Kγ(2
√
ρτ)

, (6.9)

for x ≥ 0, ρ ≥ 0, and τ ≥ 0. (Kν(x) denotes a modified Bessel function of the second
kind.)

Note that the GIG family’s sufficient statistics (y, 1/y, and log y) are a superset of those
of the gamma family (y and log y), and so the gamma family is a special case of the GIG
family where γ > 0, τ → 0.

53

To compute the bound in equation 6.11, we will need the expected values of each Wml,
Hln, and θl and of their reciprocals under our variational GIG distributions. For a variable
y ∼ GIG(γ, ρ, τ) these expectations are

E[y] =
Kγ+1(2

√
ρτ)
√
τ

Kγ(2
√
ρτ)
√
ρ

; E
[

1

y

]
=
Kγ−1(2

√
ρτ)
√
ρ

Kγ(2
√
ρτ)
√
τ
. (6.10)

Having chosen a fully factorized variational family, we can lower bound the marginal
likelihood of the input spectrogram under the GaP-NMF model [53]:

log p(X|α, a, b, c) ≥ Eq[log p(X|W ,H ,θ)]

+ Eq[log p(W |a)]− Eq[log q(W)]

+ Eq[log p(H|b)]− Eq[log q(H)]

+ Eq[log p(θ|α, c)]− Eq[log q(θ)].

(6.11)

The difference between the left and right sides of equation 6.11 is the Kullback-Leibler
(KL) divergence between the true posterior and the variational distribution q. Thus, maxi-
mizing this bound with respect to q minimizes the KL divergence between q and our pos-
terior distribution of interest.

The second, third, and fourth lines of equation 6.11 can be computed using the expec-
tations in equation 6.10.

The likelihood term in equation 6.11 expands to

Eq[log p(X|W ,H ,θ)] =
∑
m,n

Eq

[
−Xmn∑
l θlWmlHln

]
− Eq

[
log
∑
l

θlWmlHln

]
. (6.12)

We cannot compute either of the expectations on the right. However, we can compute lower
bounds on both of them.

First, the function −x−1 is concave. Jensen’s inequality says that for any vector φ such
that φl ≥ 0 and

∑
l φl = 1

− 1∑
l xl

= − 1∑
l φl

xl

φl

≥ −
∑
l

φl
1
xl

φl

= −
∑
l

φ2
l

1

xl
. (6.13)

We use this inequality to derive a bound on the first expectation in equation 6.12:

Eq

[
−Xmn∑
l θlWmlHln

]
≥
∑
l

φ2
lmnEq

[
−Xmn

θlWmlHln

]
(6.14)

Second, the function− log x is convex. We can therefore bound the second expectation
in equation 6.12 using a first-order Taylor approximation about an arbitrary (positive) point

54

ωmn as in [17] 1:

−Eq

[
log
∑
l

θlWmlHln

]
≥ − log(ωmn) + 1− 1

ωmn

∑
l

Eq [θlWmlHln] . (6.15)

We use equations 6.14 and 6.15 to bound equation 6.12:

Eq[log p(X|W ,H ,θ)] ≥
∑
m,n

−Xmn

∑
l

φ2
lmnEq

[
1

θlWmlHln

]
− log(ωmn) + 1− 1

ωmn

∑
l

Eq [θlWmlHln] . (6.16)

Note that this bound involves the expectations both of the model parameters and of their
reciprocals under the variational distribution q. Since both y and 1/y are sufficient statistics
of GIG(y; γ, ρ, τ), this will not pose a problem during inference, as it would if we were to
use variational distributions from the gamma family.

We denote as L the sum of the likelihood bound in equation 6.16 and the second, third,
and fourth lines of equation 6.11. L lower bounds the likelihood p(X|α, a, b, c). Our
variational inference algorithm maximizes this bound over the free parameters, yielding an
approximation q(W ,H ,θ) to the true posterior p(W ,H ,θ|X, α, a, b, c).

6.3.2 Coordinate Ascent Optimization
We maximize the bound L using coordinate ascent, iteratively optimizing each parameter
while holding all other parameters fixed. There are two sets of parameters to optimize:
those used to bound the likelihood term in equation 6.12 and those that control the varia-
tional distribution q.

Tightening the likelihood bound

In equations 6.14 and 6.15, we derived bounds on the intractable expectations in equation
6.12. After updating the variational distributions on each set of parameters W , H , and θ,
we update φ and ω to re-tighten these bounds.

Using Lagrange multipliers, we find that the optimal φ is

φlmn ∝ Eq

[
1

θlWmlHln

]−1

. (6.17)

The bound in equation 6.15 is tightest when

ωmn =
∑
l

Eq [θlWmlHln] . (6.18)

1 [20] observe that this bound is maximized when the Taylor approximation is taken around the expected
value of the argument to the logarithm function, which corresponds to the 0th-order delta method. However,
retaining the “redundant” parameter ωmn permits faster and simpler updates for our other parameters.

55

I.e., this bound is tightest when we take the Taylor approximation about the expected value
of the function’s argument.

Optimizing the variational distributions

The derivative of L with respect to any of γ(W)
ml , ρ(W)

ml , or τ (W)
ml equals 0 when

γ
(W)
ml = a; ρ

(W)
ml = a+ Eq[θl]

∑
n

Eq[Hln]

ωmn
;

τ
(W)
ml = Eq

[
1

θl

]∑
n

Xmnφ
2
lmnEq

[
1

Hln

]
. (6.19)

Simultaneously updating the parameters γ(W), ρ(W), and τ (W) according to equation 6.19
will maximize L with respect to those parameters.

Similarly, the derivative of L with respect to any of γ(H)
ln , ρ(H)

ln , or τ (H)
ln equals 0 and L

is maximized when

γ
(H)
ln = b; ρ

(H)
ln = b+ Eq[θl]

∑
m

Eq[Wml]

ωmn
;

τ
(H)
ln = Eq

[
1

θl

]∑
m

Xmnφ
2
lmnEq

[
1

Wml

]
. (6.20)

Finally, the derivative of L with respect to any of γ(θ)
l , ρ(θ)

l , or τ (θ)
l equals 0 and L is

maximized when

γ
(θ)
l =

α

L
; ρ

(θ)
l = αc+

∑
m

∑
n

Eq[WmlHln]

ωmn
;

τ
(θ)
l =

∑
m

∑
n

Xmnφ
2
lmnEq

[
1

WmlHln

]
. (6.21)

We iterate between updating bound parameters and variational parameters according to
equations 6.17, 6.18, 6.19, 6.20, and 6.21. Each update tightens the variational bound on
log p(X|α, a, b, c), ultimately reaching a local optimum.

6.3.3 Accelerating Inference
[70] observed that if Eq[θl] becomes small for some component l, then we can safely skip

the updates for the variational parameters associated with that component. (In our experi-
ments we used 60 dB below

∑
l Eq[θl] as a threshold.) This heuristic allows the use of large

truncation levels L (yielding a better approximation to an infinite gamma process) with-
out incurring too severe a performance penalty. The first few iterations will be expensive,
but the algorithm will require less time per iteration as it becomes clear that only a small
number of components (relative to L) are needed to explain the data.

56

6.4 Evaluation
We conducted several experiments to assess the decompositions provided by the GaP-NMF
model. We tested GaP-NMF’s ability to recover the true parameters used to generate a
synthetic spectrogram, compared the marginal likelihoods of real songs under GaP-NMF
to the marginal likelihoods of those songs under a simpler version of the model, evaluated
GaP-NMF’s ability to predict held-out data with a bandwidth expansion task, and evaluated
GaP-NMF’s ability to separate individual notes from mixed recordings.

We compared GaP-NMF to two variations on the same model:
Finite Bayesian model. This is a finite version of the GaP-NMF model fit using the

same variational updates but without the top-level gain parameters θ. This simpler model’s
generative process is

Wmk ∼ Gamma(a, ac); Hkn ∼ Gamma(b, b);

Xmn ∼ Exponential(
∑

kWmkHkn), (6.22)

where k ∈ {1, . . . , K} and the model order K is chosen a priori. The hyperparameters a,
b, and c are set to the same values as in the GaP-NMF model in all experiments. We will
refer to this model as GIG-NMF, for Generalized Inverse-Gaussian Nonnegative Matrix
Factorization.

Finite non-Bayesian model. This model fits W and H to maximize the likelihood
in equation 8.9. [32] derive iterative multiplicative updates to maximize this likelihood,
calling the resulting algorithm Itakura-Saito Nonnegative Matrix Factorization (IS-NMF).

We also compared GaP-NMF to the two nonnegative matrix factorization (NMF) al-
gorithms described by [58]. Both of these algorithms also attempt to approximately de-
compose the spectrogram X into an M by K matrix W and a K by N matrix H so that
X ≈ WH . The first algorithm, which we refer to as EU-NMF, minimizes the sum of
the squared Euclidean distances between the elements of X and WH . The second algo-
rithm, which we refer to as KL-NMF, minimizes the generalized KL-divergence between
X and WH . KL-NMF (and its extensions) in particular is widely used to analyze audio
spectrograms [e.g. 80, 9].

We focus on approaches that explain power spectrograms in terms of components that
can be interpreted as audio power spectra. Other approaches may be useful for some tasks,
but they do not decompose mixed audio signals into their component sources. This require-
ment excludes, for example, standard linear Gaussian factor models, whose latent factors
cannot be interpreted as audio spectra unless audio signals are allowed to have negative
power.

We normalized all spectrograms to have a maximum value of 1.0. (The high probability
densities in our experiments result from low-power bins in the spectrograms.) To avoid
numerical issues, we forced the values of the spectrograms to be at least 10−8, 80 dB below
the peak value of 1.0.

In all experiments, we initialized the variational parameters ρ for each W , H , and θ
with random draws from a gamma distribution with shape parameter 100 and inverse-scale
parameter 1000, the variational parameters τ to 0.1, and each γ(W)

mk = a, γ(H)
kn = b, and

γ
(θ)
k = α/K. This yields a diffuse and smooth initial variational posterior, which helped

57

Figure 6.2: True synthetic bases (left) and expected values under the variational poste-
rior of the nine bases found by the model (right). Brighter denotes more active. The
36-dimensional basis vectors are presented in 6× 6 blocks for visual clarity.

avoid local optima. We ran variational inference until the variational bound increased by
less than 0.001%. The GIG-NMF and IS-NMF algorithms were optimized to the same
criterion. KL-NMF and EU-NMF were iterated until their cost functions decreased by
less than 0.01 and 0.001, respectively. (We found no gains in performance from letting
EU-NMF or KL-NMF run longer.) All algorithms were implemented in MATLAB2.

We found GaP-NMF to be insensitive to the choice of α, and so we set α = 1 in all
reported experiments.

6.4.1 Synthetic Data
We evaluated the GaP-NMF model’s ability to correctly discover the latent bases that gen-
erated a matrixX , and how many such bases exist. To test this, we fit GaP-NMF to random
matricesX drawn according to the process:

Wmk ∼ Gamma(0.1, 0.1);

Hkn ∼ Gamma(0.1, 0.1);

Xmn ∼ Exponential(
∑

kWmkHkn), (6.23)

where m ∈ {1, . . . ,M = 36}, n ∈ {1, . . . , N = 300}, k ∈ {1, . . . , K} for K = 9.
We ran variational inference with the truncation level L set to 50, and hyperparameters

α = 1, a = b = 0.1, c = 1/X̄ (where X̄ is the mean of X). After convergence, only
nine of these components were associated with the observed data. (The smallest element
of θ associated with one of these nine components was 0.06, while the next largest element
was 2.4 × 10−8). Figure 6.2 shows that the latent components discovered by the model
correspond closely to those used to generate the data.

2MATLAB code for GaP-NMF is available at http://www.cs.princeton.edu/˜mdhoffma.

58

K

lo
g

p(
X

)

87000000
87500000
88000000
88500000
89000000
89500000
90000000

39600000
39800000
40000000
40200000
40400000
40600000
40800000

43500000

44000000

44500000

45000000

20 40 60 80 100

Funky K
ingston

K
reutzer S

onata
P

ink M
oon

K

G
eo

m
et

ric
 M

ea
n

P
ro

ba
bi

lit
y

of
 H

id
de

n
D

at
a

0
500000
1000000
1500000
2000000

0e+00
2e+06
4e+06
6e+06
8e+06
1e+07

0e+00

1e+06

2e+06

3e+06

4e+06

20 40 60 80 100

Funky K
ingston

K
reutzer S

onata
P

ink M
oon

model

GaP-NMF

EU-NMF

GIG-NMF

IS-NMF

Figure 6.3: Left: Bounds on log p(X|prior) for the nonparametric GaP-NMF model and its
parametric counterpart GIG-NMF with different numbers of latent components K. Ticks
on the horizontal lines showing the bound for the GaP-NMF model indicate the number of
componentsK used to explain the data. For all three songs the values ofK chosen by GaP-
NMF are close to the optimal value ofK for the parametric model. Right: Geometric mean
of the likelihood assigned to each censored observation by the nonparametric, finite, and
unregularized models. Ticks again indicate the number of components K used to explain
the data. The unregularized models overfit. EU-NMF performs badly, with likelihoods
orders of magnitude lower than the other models.

6.4.2 Marginal Likelihood
We want to evaluate the ability of GaP-NMF to choose a good number of components to
model recorded music. To determine a “good” number of components, we use variational
inference to fit GIG-NMF with various orders K and examine the resulting variational
bounds on the marginal log-likelihood log p(X|a, b, c).

As above, we set the prior parameters for the GaP-NMF model to α = 1, a = b = 0.1,
and c = 1/X̄ . We set the prior parameters for the simplified model to a = b = 0.1 and
c = 1/X̄ . The value of 0.1 for a and b was chosen because it gave slightly better bounds
than higher or lower values. The results were not very sensitive to α.

We computed power spectrograms from three songs: Pink Moon by Nick Drake, Funky
Kingston by Toots and the Maytals, and a clip from the Kreutzer Sonata by Ludwig van
Beethoven. These analyses used 2048-sample (46 ms) Hann windows with no overlap,
yielding spectrograms of 1025 frequency bins by 2731, 6322, and 2584 time windows,
respectively. We fit variational posteriors for GaP-NMF and GIG-NMF, conditioning on
these spectrograms. We used a truncation level L of 100 for the nonparametric model, and
values of K ranging from 1 to 100 for the finite GIG-NMF model.

The computational cost of fitting the GaP-NMF model was lower than the cost of fitting
GIG-NMF with K = 100 (thanks to the accelerated inference trick in section 6.3.3), and
much lower than the cost of repeatedly fitting GIG-NMF with different values of K. For
example, on a single core of a 2.3 GHz AMD Opteron 2356 Quad-Core Processor, fitting
the 100-component GIG-NMF model to Pink Moon took 857 seconds, while fitting the
GaP-NMF model to the same song took 645 seconds.

59

The results are summarized in figure 6.3 (left). The GaP-NMF model used 50, 53, and
38 components to explain the spectrograms of Funky Kingston, the Kreutzer Sonata, and
Pink Moon respectively. In each case the value of K chosen by GaP-NMF was close to the
best value of K tested for the GIG-NMF model. This suggests that GaP-NMF performs
automatic order selection as well as the more expensive approach of fitting multiple finite-
order models.

6.4.3 Bandwidth Expansion
One application of statistical spectral analysis is bandwidth expansion, the problem of infer-
ring what the high-frequency content of a signal is likely to be given only the low-frequency
content of the signal [9]. This task has applications to restoration of low-bandwidth audio
and lossy audio compression. This is a missing data problem. We compared the ability of
different models and inference algorithms to predict the held-out data.

We computed a power spectrogram from 4000 1024-sample (23 ms) Hann windows
taken from the middles of the same three songs used to evaluate marginal likelihoods:
Funky Kingston, the Kreutzer Sonata, and Pink Moon. For each song, this yielded a
513 × 4000 spectrogram X describing 93 seconds of the song. We ran five-fold cross-
validation to compare GaP-NMF’s predictions of the missing high-frequency content to
those of GIG-NMF, EU-NMF, and IS-NMF. (It is more difficult to evaluate KL-NMF’s
ability to predict missing data, since it does not correspond to a probabilistic model of con-
tinuous data.) We divided each spectrogram into five contiguous 800-frame sections. For
each fold, we censored the top two octaves (i.e., the top 384 out of 513 frequency bins) of
one of those sections. We then predicted the values in the censored bins based on the data
in the uncensored bins.

The prior hyperparameters for the Bayesian models were set to a = b = 1, c = 1/X̄ ,
and α = 1 (for GaP-NMF). We chose a higher value for a and b for this experiment since
stronger smoothing can improve the models’ ability to generalize to held-out data.

For each fit model, we computed an estimate Xpred
mn of each missing value Xmiss

mn . For
the models fit using variational inference, we used the expected value of the missing data
under the variational posterior q, Eq[Ep[X

miss
mn]]. For the GaP-NMF model, this expectation

is
Xpred
mn = Eq[Ep[X

miss
mn]] =

∑
k Eq[θkWmkHkn],

and for the GIG-NMF model it is

Xpred
mn = Eq[Ep[X

miss
mn]] =

∑
k Eq[WmkHkn].

For IS-NMF and EU-NMF we predicted Xpred
mn =

∑
kWmkHkn.

To evaluate the quality of fit for IS-NMF, GaP-NMF, and GIG-NMF, we compute the
likelihood of each unobserved element Xmiss

mn under an exponential distribution with mean
Xpred
mn . To evaluate EU-NMF, we first compute the mean squared error of the estimate of the

observed data σ2 = Mean[(Xobs − [WH]obs)2]. We then compute the likelihood of each
unobserved element Xmiss

mn under a normal distribution with mean Xpred
mn and variance σ2.

60

Figure 6.3 (right) plots the geometric mean of the likelihood of each unobserved el-
ement of X for the nonparametric model and for models fit with different numbers of
components K. The Bayesian models do very well compared with the unregularized mod-
els, which overfit badly for any number of components K greater than 1. GaP-NMF used
fewer components to explain the songs than in the previous experiment, which we attribute
to the stronger smoothing, smaller number of observations, and smaller window size.

6.4.4 Blind Monaural Source Separation
GaP-NMF can also be applied to blind source separation, where the goal is to recover a set
of audio signals that combined to produce a mixed audio signal. For example, we may want
to separate a polyphonic piece of music into notes to facilitate transcription [80], denoising,
or upmixing [32].

The GaP-NMF model assumes that the audio signal is a linear combination of L sources
(some of which have extremely low gain). Given the complex magnitude spectrogram Xc

of the original audio and an estimate of the model parameters W , H , and θ, we can
compute maximum-likelihood estimates of the spectrograms of the L unmixed sources
using Wiener filtering [32]:

X̂lmn = Xc
mn

θlWmlHln∑
i∈{1,...,L} θiWmiHin

, (6.24)

where X̂lmn is the estimate of the complex magnitude spectrum of the lth source at time n
and frequency n. We can invert these spectrograms to obtain estimates of the audio signals
that are combined in the mixed audio signal.

We evaluated GaP-NMF’s ability to separate signals from two synthesized pieces of
music. We used synthetic music rather than live performances so that we could easily
isolate each note. The pieces we used were a randomly generated four-voice clarinet piece
using 21 unique notes, and a two-part Bach invention synthesized using a physical model
of a vibraphone using 36 unique notes.

We compared the Signal-to-Noise Ratios (SNRs) of the separated tracks for the GaP-
NMF model with those obtained using GIG-NMF, IS-NMF, EU-NMF, and KL-NMF. For
the finite models we also used Wiener filtering to separate the tracks, dropping θ from
equation 6.24.

The models do not provide any explicit information about the correspondence between
sources and notes. To decide which separated signal to associate with which note, we
adopt the heuristic of assigning each note to the component k whose gain signal Hk has
the highest correlation with the power envelope of the true note signal. We only consider
the V components that make the largest contribution to the mixed signal, where V is the
true number of notes.

Figure 6.4 shows the average SNRs of the tracks corresponding to individual notes for
each piece. The approaches based on the exponential likelihood model do comparably
well. The KL-NMF and EU-NMF models perform considerably worse, and are sensitive to
the model order K. GaP-NMF decomposed the clarinet piece into 34 components, and the

61

K

S
ig

na
l-t

o-
N

oi
se

 R
at

io
-20
-15
-10
-5
0

-10

-5

0

5

20 40 60 80 100 120 140

B
ach Invention

C
larinet P

iece

model
GaP-NMF

EU-NMF

GIG-NMF

IS-NMF

KL-NMF

Figure 6.4: Average Signal-to-Noise Ratios (SNRs) across notes in the source separation
task. Approaches based on the exponential likelihood model do well, EU-NMF and KL-
NMF do less well. Ticks on the horizontal lines showing GaP-NMF’s performance denote
the final number of components K used to explain the data.

Bach invention into 42 components. In both cases, some of these components were used to
model the temporal evolution of the instrument sounds.

6.5 Related Work
GaP-NMF is closely related to recent work in Bayesian nonparametrics and probabilistic
interpretations of NMF.

Bayesian Nonparametrics Most of the literature on Bayesian nonparametric latent fac-
tor models focuses on conjugate linear Gaussian models in conjunction with the Indian
Buffet Process (IBP) [41] or the Beta Process (BP) [86], using either MCMC or varia-
tional methods for posterior inference [e.g. 26, 70]). (An exception that uses MCMC in
non-conjugate infinite latent factor models is [84].)

A standard linear Gaussian likelihood model is not appropriate for audio spectrogram
data, whereas the exponential likelihood model has theoretical justification and gives inter-
pretable components. The nonlinearity and lack of conjugacy of the exponential likelihood
model make inference using an IBP or BP difficult. Our use of a gamma process prior
allows us to derive an infinite latent factor model that is appropriate for audio spectrograms
and permits a simple and efficient variational inference algorithm.

62

Probabilistic NMF [33] suggest the outline of a variational inference algorithm for
Itakura-Saito NMF based on the space-alternating generalized expectation-maximization
algorithm in [32]. This approach introduces K×M ×N complex hidden variables whose
posteriors must be estimated. In our informal experiments, this gave a much looser vari-
ational bound, much longer convergence times, and a less flexible approximate posterior
than the variational inference algorithm presented in this chapter. The model order selec-
tion approach they suggest requires that many models be fit independently, whereas our
GaP-NMF model can determine how many latent components are necessary without the
need to fit multiple models.

Our approach of weighting the contribution of each component k by a parameter θk re-
sembles the strategy of Automatic Relevance Determination (ARD), which has been used
in a Maximum A Posteriori (MAP) estimation algorithm for a different NMF cost func-
tion [83]. Though similar in spirit, this ARD approach is less amenable to fully Bayesian
inference.

6.6 Discussion
We developed the GaP-NMF model, a Bayesian nonparametric model capable of determin-
ing the number of latent sources needed to explain an audio spectrogram. We demonstrated
the effectiveness of the GaP-NMF model on several problems in analyzing and processing
recorded music. Although this work has focused on analyzing music, GaP-NMF is equally
applicable to other types of audio, such as speech or environmental sounds.

63

Chapter 7

HMM-Based Feature-Based Synthesis

Up to this point we have discussed applications of probabilistic modeling to computational
audio analysis problems. In this and the following chapter we will explore applications of
probabilistic modeling to audio synthesis.

7.1 Introduction
In contrast with discriminative models that typically try to infer response variables while
making few or no assumptions about observable data, generative probabilistic models de-
fine a stochastic process that is assumed to be responsible for a set of observations. An
interesting property of generative models is that, once fit, they can be used to synthesize
new data. In most domains, there is little demand for this kind of artificial data, since the
objective is to make predictions about data from the real world. But musical data may be
an exception—many listeners care very little whether the musical “data” they listen to are
“artificial” or “natural.” Indeed, it could be argued that most music qualifies as artificial
data manipulated for aesthetic purposes, in contrast to naturally occurring environmental
sound.

In this chapter we explore a novel application of the Hidden Markov Model (HMM)
and its Bayesian nonparametric cousin the HDP-HMM to data-driven music generation.
By fitting an HDP-HMM to a sequence of feature vectors extracted from sliding windows
of a recorded song, generating a new sequence of feature vectors from the trained model,
and then using feature-based or concatenative synthesis to transform the feature vectors
into audio, we can synthesize unlimited amounts of new audio based on a finite amount of
training audio. This audio is of value both for its aesthetic interest1 and for the subjective
insights it gives into models of audio that may be used for analysis problems.

The rest of the chapter is organized as follows. We begin by reviewing some back-
ground on Markov chains, HMMs, feature-based synthesis, and concatenative synthesis.
We then discuss the more recently developed hierarchical Dirichlet process HMM, which
is better suited than the traditional HMM to the long and complex input sequences pro-
duced by analyzing some musical audio. Finally, we present some experimental results
that demonstrate the viability of our approach and discuss directions for future work.

1To an admittedly small audience.

64

0.2

0.05

0.3

0.150.8

0.30.4

0.10.7

CBA

B

C

A
A

B C

0.1 0.8

0.20.4
0.15

0.3

0.7

0.3 0.05

B

C

A

0.3

0.4

0.3

Initial State
Probabilities

Transition
Probabilities

Figure 7.1: Initial state probabilities, transition matrix, and finite-state machine representa-
tion of a simple first-order three-state Markov chain.

7.2 Markov Chains
A first-order Markov chain is defined by a set of states, the transition probabilities between
those states, and the probability of starting in each state. The transition matrix contains
a vector of probabilities for each state describing how likely it is that the process will
transition from that state to each other state. For example, in the model in figure 7.1, if at
time t the model is in state A, at time t + 1 there is a 70% chance of being in state A, a
10% chance of being in state B, and a 20% chance of being in state C. The probability of
generating the sequence ABAC would be 0.3 ·0.1 ·0.4 ·0.2 = 0.024, that is, the probability
of starting in state A multiplied by the probabilities of the three transitions AB, BA, and
AC.

The assumption that the future state of a process depends only on its single most recent
state is often unreasonable. In such cases, it makes sense to take more than one previous
state into account using a higher-order Markov chain. Higher-order Markov chains can be
defined by letting transition probabilities depend on the lastN states in addition to the most
recent state. Figure 7.2 shows a simple second-order Markov chain’s starting probabilities
vector and transition matrix, as well as a few example state sequences and their likelihoods.

Fitting Markov chains (of any order) to data is fairly straightforward if state values are
directly observable, as they are for symbolic data such as text and musical scores. To obtain
the Markov chain under which the observed data are most likely to have occurred, one
simply sets the transition probability vector from each state (or sequence of N states for an
order-N model) to match the relative frequencies of each observed transition. For example,
in the sequence AABBABBA we find one AA transition and two AB transitions, so the
likelihood of going from A to A would be 1/3 and the likelihood of going from A to B
would be 2/3; there are two BA transitions and two BB transitions, so the likelihood of
going from B to A would be 2/4 and the likelihood of going from B to B would also be
2/4.

Once their parameters have been inferred, Markov chains can be used to generate new
state sequences of arbitrary length that bear some resemblance to the data on which they
were trained, a property that has been used to creative ends in interesting ways. The poet
Jeff Harrison has generated poems using Markov chains fit to text documents (treating each

65

BB

BA

AB

AA

0.2

0.4

0.1

0.3

Initial State
Probabilities

Transition
Probabilities

0.5 0.5

0.70.3

0.350.65

0.20.8

BA

BB

BA

AB

AA

P(AA) = 0.3

P(AAA) = 0.3 • 0.8 = 0.24

P(BAABA) = 0.4 • 0.3 • 0.2 • 0.65
= 0.0156

Figure 7.2: Initial state probabilities and transition matrix of a second-order two-state
Markov chain, as well as some example sequences and their likelihoods.

unique word as a state); a few Bell Labs researchers fit a Markov chain on posts from the
net.singles Usenet group and posted the random posts it generated back to the group under
the punning pseudonym “Mark V. Shaney.”2 Markov chains have also been used since at
least the 1950’s to produce musical scores [75, 5].

7.3 Hidden Markov Models
Although simple Markov chains lend themselves well to applications involving symbolic
data, to model continuous data such as feature vector sequences describing audio we need
to add another layer of complexity. The hidden Markov model assumes that there is still a
set of states generating our data, and that the identity of each successive state still depends
only on the state(s) before it, but now we cannot observe these states directly. Instead, each
state is associated with an emission probability density function (PDF) that generates our
observed data. Figure 7.3 represents a three-state HMM in finite-state machine form, and
figure 7.4 shows the graphical model representation of a (Bayesian) HMM with multivariate
Gaussian observations. Each hidden variable zt depends both on the transition matrixπ and
on the previous hidden state zt−1.

Parameter inference for HMMs is more complicated than inferring simple Markov
chains, and is usually done either by attempting to maximize the likelihood of the train-
ing data (using the Baum-Welch expectation maximization algorithm [74]) or by placing
priors on the HMM’s parameters and trying to find parameters that maximize the posterior
likelihood of the data [35]. Alternately, one can take a fully Bayesian approach and use
MCMC sampling or variational inference to reason about the posterior (as in e.g. [34] and
[11]).

2Those interested in playing with letter-based Markov chain text generation can open a text document in
GNU Emacs and type “<META>-x dissociated-press.”

66

A

B C

0.1 0.8

0.20.4

0.15

0.3

0.7

0.3 0.05

P(xt | zt = A)

xt

xt

P(xt | zt = B)

P(xt | zt = C)

xt

Figure 7.3: One perspective on the hidden Markov model. Left: Finite-state machine
representation of transition probabilities between the hidden states A, B, and C. Right:
Probability density functions (PDFs) for the observed data given the underlying state of the
model xt is the observation at time t, and zt is the underlying state label at time t.

µk

πk z1

x1

K

Σk

α

µ0 ν0κ0 Λ0

K

z2

x2

z3

x3

…

Figure 7.4: Graphical model representation of a Bayesian first-order HMM with Gaussian
emission distributions.

67

7.3.1 Higher-order HMMs
Although it is possible to define higher-order HMMs as well as first-order HMMs, as the
order grows even moderately high the transition matrix grows exponentially and becomes
increasingly difficult to learn. A suitable workaround for our purposes is to build higher-
order Markov models based on the state sequences obtained by fitting low-order HMMs. If
we take these state sequences as observed “true” data, then we can build Markov models of
arbitrarily high order as described for symbolic data above. This is much the same approach
as that taken by Casey [21] to build 2nd- to 8th-order lexemes for audio retrieval.

7.3.2 Generating new feature vector sequences
Once an HMM has been fit, it can be used to generate new sequences of observations in
much the same way as a Markov chain with no hidden layer. First we generate a sequence
of state assignments, then for each time step we draw an “observation” from the PDF
associated with the state for that time step.

For audio, we might fit an HMM to a sequence of vectors of 20 Mel-Frequency Cepstral
Coefficients (MFCCs) extracted from a recorded song, assuming that each state generates a
20-dimensional MFCC vector from its own multivariate normal distribution. The inference
process estimates the initial state probability vector, transition probability matrix, and the
means and covariance matrices associated with each state. These estimated parameters
describe a model that could have generated the training song. Once the model has been
fit, we can then generate a new sequence of MFCC vectors as described above, and that
sequence of MFCC vectors will describe another “song” that could have been generated
by our model. This sequence of MFCC vectors is of little interest, however, unless we can
turn it into something audible.

7.4 Feature-Based and Concatenative Synthesis
The question of how to use feature vectors describing short windows of audio to drive sound
synthesis has received some attention. We will consider several approaches to bridging the
gap between HMM-generated state sequences and audio.

7.4.1 Feature-based synthesis
Some of our previous research [46] has focused on the problem of feature-based synthesis,
which involves finding ways of synthesizing audio characterized by a desired vector of
features. For some feature sets, efficient closed-form solutions exist to this problem. The
MFCC extraction process, for example, can be reversed step by step to produce noisy audio
with the appropriate coarse spectral character.

It is not necessarily as easy to reverse arbitrary feature vectors consisting of multiple
concatenated feature sets, however. In such circumstances we can resort to global opti-
mization algorithms such as simulated annealing or genetic algorithms to find synthesizer

68

parameters that will produce audio described by a feature vector as close as possible to the
desired feature vector.

7.4.2 Concatenative synthesis
Another approach uses concatenative synthesis to produce audio matching feature descrip-
tors. This approach searches for previously recorded grains of audio that closely match the
desired feature values [76]. These short grains are retrieved from a large, efficiently indexed
database. This approach is potentially more flexible than feature-based synthesis (since the
database is not limited to synthetic sounds) and can have much less computational overhead
than repeatedly synthesizing and testing new short audio segments. However, it requires
that a sufficiently large database be compiled, analyzed, and indexed ahead of time, and
leaves no recourse if no clips described by an adequately similar feature vector are in the
database.

7.4.3 Cluster mosaicing
We also consider another concatenative approach, this one leveraging information that
comes directly out of fitting the HMM. Assuming that we still have the audio from which
the feature vector sequence(s) used to train the HMM were extracted, we can use the
maximum-likelihood state sequence obtained using the Viterbi algorithm during training
to associate each window from the training audio with a state of the HMM.

To generate audio for a new state sequence, for each time step t we can simply choose
a window uniformly at random from those windows whose state labeling is the same as the
current state zt, add it to the end of the current audio stream (with appropriate crossfading),
and move on to the next time step t+1. This is in lieu of drawing from the emission density
associated with zt. This density should nonetheless be reasonably well approximated, since
the empirical distribution of observations is what the emission density is supposed to be
modeling in the first place.

Note that the database of windows available to this technique can be expanded beyond
those provided by the audio used for training. The Viterbi algorithm can also be used
to provide maximum-likelihood labelings for new audio recordings, and each window of
a new recording can be associated with its appropriate state. Doing so does, however,
make it more likely that the empirical distribution of available windows for each state will
become skewed. In this case, it may be best to actually draw a feature vector from the
emission density and choose the cluster member with the smallest Euclidean distance, or
to use some other heuristic.

Elements of this approach resemble the audio oracle, which deterministically creates a
Markov chain in which each window of audio is a state [27]. Another approach suggested
by Casey also used HMMs to cluster windows of audio, with a focus on indexing large
databases for audio mosaicing [21].

69

7.5 The HDP-HMM
When using traditional HMMs one must decide ahead of time how many states are nec-
essary to capture the complexity of one’s data. Choosing too few states results in an in-
adequately rich model, while choosing too many may result in overfitting or difficulties in
training. By exploiting the close relationship between mixture models and HMMs, the Hi-
erarchical Dirichlet Process (HDP) can be extended to produce the HDP-HMM, an HMM
with a countably infinite number of states that can make a principled choice of how many
states are needed to explain the data [85].

7.5.1 The basic model
In the standard generative HDP-HMM model, an HDP-HMM is created by first drawing a
vector β of infinite length (whose elements sum to one) from Sethuraman’s stick-breaking
construction [77] with hyperparameter γ, denoted GEM(γ). This vector β describes the
relative frequencies with which states are expected to be visited for the whole model. β
defines a multinomial distribution over states. Next, for each state k in {1, . . . ,∞} a vector
πk (also summing to one) is drawn from a DP with hyperparameter α and base distribution
β. This vector πk defines a multinomial distribution over transitions from state k, that is,
it is the transition vector associated with state k. The higher the value of α, the less likely
it becomes that πk will deviate significantly from β. Next, parameters φk for the emission
distributions f(φ) associated with each state k are drawn from their previously specified
prior distributions H . In summary:

β ∼ GEM(γ)

πk ∼ Dirichlet(αβ) (7.1)
φk ∼ H.

Note that this process exactly corresponds to that used in the HDP to generate the parame-
ters β, π, and φ.

Next, it is assumed that such a model generated our training data y, as well as a state
sequence z. Assume for simplicity that the starting state z1 is drawn from β. Then zt+1

is drawn from πzt for t = 1, . . . , N − 1. Once each zt is drawn, each observation yt (the
observed data) is drawn from f(φzt

):

zt ∼ Multinomial(πzt−1) (7.2)
yt ∼ f(φzt

)

Given y, and having defined H and chosen values for α and γ, we can use the Gibbs
sampling method described by Teh et al. to infer the state assignments z. Given z, we
can then infer those parts of β, π, and φ that we care about—that is, those associated with
states that are associated with observations. There are still theoretically an infinite number
of states in the model, but those states that are not associated with observations can be dealt
with in the aggregate. This algorithm requires that H be a conjugate prior distribution on
f(θ), however, which can be a problematic restriction.

70

Another Gibbs sampling method can be used to train the HDP-HMM, which Fox et al.
call the blocked-z Gibbs sampler [34]. This method operates on a finite approximation to
the full HDP-HMM that uses L states instead of an infinite number of states, and converges
to the HDP-HMM as L→∞:

β ∼ Dirichlet(γ/L, . . . , γ/L)

πk ∼ Dirichlet(αβ); φk ∼ H (7.3)
zt ∼ πzt−1 ; yt ∼ f(φzt

)

The blocked-z Gibbs sampler fully instantiates and samples β, π, z, and φ for this finite
model, and can therefore exploit the relatively simple structure of the HMM to sample Z
jointly using a variant of the forward-backward procedure [74], which speeds convergence.
Another advantage of this algorithm is that it does not require that H be a conjugate prior.
Note that although the number of states L to use when training the model is specified, as
long as L is sufficiently large not all L states will be used, and as L becomes very large
the model converges to the infinite HDP-HMM described previously, in which only a finite
number of states are actually used. In practice, setting L to be more than 2–4 times the
number of states that the model winds up using does not seem to significantly alter results.

Although the hyperparameters α and γ are assumed to be given, we can place vague
prior distributions (we used Gamma(1, 0.005)) on each of them and let the model choose
them as well [34]. If we allow the model to control α and γ then the only parameters we
need to specify are those associated with the priors over emission densities.

7.5.2 Priors on emission density parameters
We choose our prior densities to require only two parameters to be manually set – one
controlling the expected size of each cluster and one controlling how much to allow cluster
sizes to vary. If we specify a preference for smaller clusters, then the training algorithm will
respond by allocating more clusters and therefore a richer model to capture the complexity
of the data. The stronger a preference we specify for clusters of a particular size, the less
variation there will be in cluster size.

Our emission distributions are multivariate normal. The conjugate prior distribution for
the mean and covariance parameters of a multivariate normal distribution is the normal-
inverse-Wishart [36]. Determining the posterior of this distribution based on observed
samples is computationally straightforward (although one must be careful of numerical
issues). But the normal-inverse-Wishart distribution makes it difficult to specify different
levels of prior certainty about the shape of the distribution (as captured by the correlations
between dimensions) and its spread (the standard deviations of the dimensions). Ideally we
would like to be able to express the sort of preferences with respect to spread described in
the previous paragraph while letting the clusters take any shape the data suggest.

Mathematically, we accomplish this by factorizing the multivariate normal distribu-
tion’s covariance matrix parameter Σ into Σ = SRS, where S is a square matrix with
the standard deviation for each dimension on its diagonal and zeros elsewhere and R is a
square symmetric positive definite correlation matrix where Rij is the correlation between
dimensions i and j. For each dimension we place an independent scaled inverse-χ2(ν, σ2)

71

distribution on the square of its standard deviation (i.e. its variance), where σ2 is our de-
sired or expected average cluster variance in that dimension and ν is a degrees of freedom
parameter that controls how much weight σ2 receives in posterior inference. Depending on
the data, it may make sense to specify different values of σ2 for each dimension. One way
to avoid having to do this manually is to look at the empirical standard deviations of the
entire sequence (or the average standard deviations of smaller clusters) of feature vectors,
scale them all by the same constant, and square them. This only requires that one parameter
be specified a priori, while keeping the proportions of the emission distributions reasonable
with respect to the data.

Unfortunately, few off-the-shelf distributions over symmetric positive definite matrices
exist, so we use a variant on a parameter expansion technique described by Boscardin
and Zhang [19]. We define an auxiliary diagonal standard deviation matrix Q and place
an inverse-Wishart prior IW(I, d + 1) on the positive definite matrix QRQ, where d is
the dimensionality of the feature vectors and I is the d-dimensional identity matrix. The
marginal prior distribution of each correlation Rij under this distribution is uniform from
-1 to 1 [36]. Although we no longer have a conjugate prior for the covariance matrix, we
can use Gibbs sampling and the Metropolis-Hastings [43] algorithm to sample from the
posterior distributions of S, R, and Q, and therefore from the posterior distribution of
Σ = SRS.

To simplify computation, we choose a conjugate multivariate normal prior on the mean
of our emission distribution [36].

7.5.3 Adding another layer of hierarchy
We add another layer of hierarchy to the standard HDP-HMM in order to allow ourselves
to fit models for multiple songs simultaneously in a way that allows these models to share
a common vocabulary of states. Sharing state vocabularies across models allows us to use
the technique described in section 7.3.1 to build Markov chains that combine the transition
characteristics of multiple songs.

The new generative model is:

β0 ∼ GEM(δ)

βi ∼ Dirichlet(γβ0) (7.4)
πij ∼ Dirichlet(αβi); zit ∼ πzi,t−1

φk ∼ H; yit ∼ f(φzit
),

where each song i has its own song-level state likelihood vector βi, transition matrix πi,
state sequence zi, and observation sequence yi, and the emission density parameters φ are
shared across all models. β0 is an infinitely long vector that defines the global likelihood of
being in a particular state across all songs, while each βi defines the likelihood of being in
a particular state for song i. The hyperparameter γ determines how much each βi is likely
to deviate from β0, much like α determines how much each πij is likely to deviate from
each βi. The same type of prior can be placed on δ as on α and γ, so it can be inferred
from data in the same way.

72

7.6 Experiments
We ran experiments on the dance-pop song “Chewing Gum” by the Norwegian record-
ing artist Annie. The song was selected because of the prominence of its strong, repeat-
ing beat. Sound examples and a link to a stream of the original song are available at
http://www.cs.princeton.edu/˜mdhoffma/icmc2008. All algorithms were
implemented in MATLAB and C++.

We began by breaking the song into non-overlapping 1024-sample windows and
extracting each window’s RMS power and first 20 Log-Frequency Cepstral Coefficients
(LFCCs) [21], resulting in a 21-dimensional feature vector for each window, 10,086 feature
vectors in all. We chose these features because they are simple to compute and, more
importantly, simple and efficient to reverse. In the future, we plan on experimenting more
with other features, particularly chroma vectors.

As a preprocessing stage, we ran Principal Component Analysis (PCA) on our 10,086
feature vectors to ensure that no global correlations exist between the 21 dimensions of the
data we are trying to model. We transform our synthetic feature vectors back to their orig-
inal basis before transforming them into audio. We then ran the blocked-z Gibbs sampler
from [34] with L = 175 until the log-probability of the data under the model failed to find
a new maximum for several iterations. We chose the parameters for our priors as follows.

For the σ2 parameters to the scaled-inverse-χ2 priors on each variance, we chose the av-
erage variance in each respective dimension of 100 clusters of 70 points each. The clusters
were selected at random by first choosing a random point and then finding the 70 closest
points to that first point under the `2 (Euclidean) norm. The goal was to push the model to
expect to find clusters with a median size of about 70 points. We chose 50 for the degrees
of freedom parameter to each scaled-inverse-χ2 prior.

The mean and covariance parameters to the prior on the emission distribution’s mean
were chosen as the mean and the covariance matrix of the entire data set.

7.6.1 Results
Figure 7.5 shows a spectrogram of a roughly 10-second clip from “Chewing Gum.” Below
it is a spectrogram of a resynthesized version of the same clip generated by extracting the
feature set described above and then converting the result back into audio. Notice that
all fine detail in the spectrum has been washed out. This is because low-order cepstral
coefficients are designed to smooth away such fine detail.

Figure 7.6 compares spectrograms of 10-second audio clips generated by 1st, 4th, and
8th-order Markov chains created from our trained model. We manually reduced the vari-
ance of each emission density by 50% when generating new feature sequences to achieve
a less noisy result. As information about more previous states is included, the model can
produce audio with more structure, but also finds itself more constrained. If the order of
the model N becomes too high, there will be almost no state sequences of length N that
are not unique, and the model will be forced to reproduce the original state sequence.

73

Figure 7.5: Top: spectrogram of a clip from “Chewing Gum.” Bottom: spectrogram of
resynthesized clip.

74

7.7 Discussion
Although our early results are interesting, they reveal some limitations of HMMs fit to
features extracted from mixed recordings. In particular, a separate state must be learned
for each distinguishable combination of instrument sounds. This leads to a large number of
states being necessary, which in turn leads to a very large and difficult-to-learn transition
matrix. In the next chapter we will look at using a model for synthesis that uses a more
factorial, source-based approach.

75

Figure 7.6: Spectrograms of audio produced by (from top to bottom) a 1st-order Markov
chain, 4th-order Markov chain, and an 8th-order Markov chain.

76

Chapter 8

Bayesian Spectral Matching: Turning
Young MC Into MC Hammer Via
MCMC Sampling

8.1 Introduction
In the previous chapter, we used Hidden Markov Models (HMMs) fit to features of mixed
audio signals to generate novel audio. One limitation of working with this sort of feature-
based representation is that the number of distinguishable mixed audio signals has the po-
tential to grow exponentially in the number of sound sources that may be mixed. When
working with mixture models or HMMs, this may mean that a very large number of states
is needed to adequately capture variation in the audio signal.

In chapters 5 and 6, we developed model formulations that explicitly take into account
the fact that musical audio signals are usually mixtures of more than one source. In this
chapter we adapt the SI-HDP developed in chapter 5 to the problem of audio mosaicing
[99, 57]. The problem we want to solve is this: given a set of (short) recorded source
sounds, how can we match a (longer) target sound as closely as possible by repeating and
combining our source sounds at different times and amplitudes? More formally, we have a
set of K source sounds xk, and we want to find a set of K functions g(t, k) with which to
convolve each sound xk such that the sum of these convolutions z is perceptually similar
to our target sound:

z(t) =
K∑
k=1

∞∑
u=0

g(t− u, k)xk(u) (8.1)

We define a probabilistic generative model, the Shift-Invariant Mixture of Multinomials
(SIMM), corresponding to a parametric process that we will use to generate our output
sound from our source sounds. If we assume that this model actually generated our target
sound, the problem of combining our sources to match the target sound becomes one of
parameter inference. SIMM has a matrix of hidden variables ω that correspond to the
functions g(t, k) that we want to find. We can find a good set of functions g(t, k) by finding
a value for ω with high posterior likelihood given the target sound—that is, a value for ω

77

that could plausibly have led to our model generating our target sound. Our probabilistic
construction allows us to use a Gibbs sampling algorithm to perform approximate posterior
inference [67].

In the sequel, we describe our generative model, define a Gibbs sampler to infer the
model’s hidden variables, show how those hidden variables tell us how to produce our
output sound, and present the results of applying our approach to various combinations of
input sources and target sounds.

8.2 The SIMM Model
Our SIMM model is adapted from the Shift-Invariant Hierarchical Dirichlet Process (SI-
HDP) defined in chapter 5.

8.2.1 Data Representation
We begin by computing the magnitude spectrogram of our target audio using W non-
overlapping windows of S samples each (multiplied by a Hann window), yielding B =
S
2

+ 1 frequency bins per window 1. We will refer to the magnitude in bin b of window w

as ŷwb. We normalize the magnitude spectrogram ŷ so that
∑B

b=1

∑W
w=1 ŷwb = 1.

We compute a scaled and quantized version of ŷ, ȳ, which we will treat as a histogram
giving the counts of amplitude quanta at each time w and frequency bin b:

ȳwb = round(WBνŷwb) (8.2)

N =
B∑
b=1

W∑
w=1

ȳwb (8.3)

ν is a constant controlling how finely we quantize the spectrogram. Choosing ν = 1 gives
us an average of about one quantum per window/bin; higher values of ν yield a closer
approximation to the continuous spectrogram and more expense. The order of these quanta
is arbitrary, so we can model them as being drawn independently from our model.

8.2.2 Generative Process
We assume we are given a set of K normalized magnitude spectrogram matrices φk of size
C × B, such that φkcb is the magnitude in frequency bin b at window c in sound source k,
and

∑C
c=1

∑B
b=1 φkcb = 1 for each k ∈ {1, . . . , K}. These spectrograms come from the

sound sources we will use to reconstruct the target sound. The normalized spectrograms
can also be interpreted as joint multinomial distributions over base times c and bins b. That
is, φkcb gives the probability of drawing a quantum i with base time c and frequency b given
that the quantum is coming from the kth source sound.

The generative process for SIMM is:

1A shorter hop size can be used, but using non-overlapping windows is simpler and reduces computational
overhead. A lack of time resolution has not been a problem in our experiments.

78

ω

φk

wiη

N
K

ci
bi

li
ki

Figure 8.1: The graphical model for SIMM. Nodes with two variable names denote tuples
drawn jointly—for example, ci and bi are drawn jointly from a multinomial distribution
with parameter φki

, and depend on both ki and φki
. Only bi is directly observed, so only

that half of the node is shaded.

1. Draw a K ×L matrix ω defining a joint multinomial distribution over sources k and
time offsets l from a symmetric Dirichlet distribution with parameter η:

ω ∼ Dirichlet(η, . . . , η) (8.4)

ωkl is the joint probability of drawing a quantum from source k with time offset l.

2. For each quantum i ∈ {1, . . . , N}:

(a) Draw a source ID ki and a time offset li jointly from Multinomial(ω):

{ki, li} ∼ Multinomial(ω) (8.5)

(b) Draw a base time ci and a frequency bin bi jointly from the spectrogram/joint
distribution φki

:
{ci, bi} ∼ Multinomial(φki

) (8.6)

(c) Set the observed time wi for quantum i based on the base time ci and the time
offset li:

wi = ci + li (8.7)

3. For each time w and frequencyB, count the quanta appearing at w and b to yield ȳwb,
the magnitude in the quantized spectrogram at w and b.

Each observed quantum i appears at time wi and frequency bin bi, which are selected
according to the process above. We assume that quanta always add constructively. As
discussed earlier, this signal model has little theoretical justification, but makes inference

79

simple and works reasonably well in practice. One could equally well develop a model
based on the more principled assumptions made by GaP-NMF, and adapt the variational
inference algorithm from chapter 6 to this problem.

Figure 8.1 shows SIMM as a graphical model, which summarizes the dependencies
between the variables. Given this generative process and an observed spectrogram ŷ, we
will infer values for the process’s hidden parameters k, l, and ω.

8.3 Inference and Synthesis
Our primary objective is to find a good value for the matrix ω, which defines the joint
distribution over time offsets l and sources k. Once we have inferred ω from the data, it
will tell us by how much to time-shift and scale each short component to recreate the target
sound.

8.3.1 Gibbs Sampler
We use Gibbs sampling, a Markov Chain Monte Carlo (MCMC) technique that allows
us to approximate a sample from the posterior distribution p(k, l|w, b,φ, η), since this
distribution is difficult to compute analytically. In Gibbs sampling, we repeatedly sample
new values for each variable conditioned on the values of all other variables. After an initial
“burn-in” period, the distribution of the sampled k and l converges to their true posterior
distribution [67].

We can avoid sampling ω, since we have placed a conjugate Dirichlet prior on ω and
can therefore compute the posterior predictive likelihood of {ki, li} given the other k’s and
l’s (denoted k−i and l−i) and the hyperparameter η. We therefore resample only the values
for the source indicators k and the time offsets l. This leads to faster convergence, since
it lets us work in a lower-dimensional space. Once we have estimates for k and l, we can
compute the Maximum A Posteriori (MAP) value for ω|k, l, η.

To resample each pair ki, li, we need to compute the joint posterior likelihood that the
quantum i appearing at time wi and bin bi was drawn from a source k at a time offset l,
holding all other variables fixed:

p(ki = k, li = l|wi, bi,k−i, l−i,φ, η) ∝
p(ci = wi − l, bi|ki = k, li = l,φ)× (8.8)

p(ki = k, li = l|k−i, l−i, η)

The joint likelihood of the base time ci = wi − l and the frequency bin bi is given by the
component distribution φk:

p(ci = wi − l, bi|ki = k, li = l,φk) = φkcibi (8.9)

80

The likelihood of the pair k, l conditioned on η and the other source indicators k−i and time
offsets l−i is

p(ki = k, li = l|k−i, l−i, η)

=
∫
ω
p(ω|k−i, l−i, η)ωkldω (8.10)

= nkl+η
N−1+KLη

Where nkl is the number of other quanta coming from source k with time offset l. We
can compute the integral in equation 8.10 analytically because the Dirichlet distribution is
conjugate to the multinomial distribution.

Using equations 8.9 and 8.10, equation 8.8 becomes:

p(ki = k, li = l|wi, bi,k−i, l−i,φ, η) ∝ φkcibi
nkl + η

N − 1 +KLη
(8.11)

We repeatedly resample the source indicator ki and time offset li for each observed
quantum i conditioned on the other indicators k−i and l−i until 20 iterations have gone by
without the posterior likelihood p(k, l|w, b, η,φ) yielding a new maximum. At this point
we assume that the Gibbs sampler has converged and that we have found a set of values for
k and l that is likely conditioned on the data.

Once we have drawn values from the posterior for k and l, we compute the MAP
estimate ω̂ of the joint distribution over sources and times ω conditioned on k, l, and the
hyperparameter η. Since the prior on ω is a Dirichlet distribution, the MAP estimate ω̂ of
ω|k, l, η is given by:

ω̂kl ∝ max(0, nkl + η − 1) (8.12)

Here nkl is the total number of observed quanta that came from source k at time l.

8.3.2 Sonifying the MAP Estimate
By sonifying ω̂, the MAP estimate of ω, we can produce an approximate version of our
input audio using only the short sources corresponding to the component distributions φ.
ω̂kl gives the amplitude of source k at time offset l, which corresponds to sample S(l − 1),
where S is the number of samples per window, and samples begin at sample 0. If we
convolve each short input source k by a signal g such that

g(t, k) =

{
0 if mod(t, S) 6= 0

ω̂k, t
S

+1 if mod(t, S) = 0
(8.13)

and add the result for each source, we obtain a signal whose spectrogram approximates the
spectrogram of the target. Figure 8.2 shows an example of the final result of this process.

81

AC/DC Young MC
Sound Source K Sample Length Error η Error η

Noise N/A N/A 0.6395 N/A 0.6265 N/A
Ramones 100 116 ms 0.3844 0.004569 0.4039 0.001979
Ramones 200 116 ms 0.3787 0.002386 0.4100 0.003376
AC/DC 100 116 ms 0.3455 0.005579 0.3821 0.003689
AC/DC 200 116 ms 0.3349 0.002382 0.3841 0.001939

MC Hammer 100 116 ms 0.3838 0.005017 0.3753 0.003875
MC Hammer 200 116 ms 0.3740 0.002993 0.3732 0.002499

TIMIT 100 464 ms 0.5898 0.004742 0.6102 0.003262
TIMIT 200 464 ms 0.5275 0.002097 0.6110 0.001796

Table 8.1: Errors obtained by our approach when trying to match songs by AC/DC and
Young MC using various sets of sound sources, and the learned values of the hyperparame-
ter η. In all cases our method outperforms a baseline of white noise. Note that lower errors
do not necessarily translate to a more aesthetically interesting result.

8.3.3 Resampling η
η controls the sparseness of our joint distribution ω over times and sources. Rather than
specify η a priori, we place a gamma prior on η and adapt the hyperparameter sampling
technique in [30] to resample η each iteration.

8.4 Evaluation
Ultimately the effectiveness of our approach should be evaluated qualitatively. Sound ex-
amples generated by the method described in this chapter are available at
http://www.cs.princeton.edu/˜mdhoffma/icmc2009.

We also performed a quantitative evaluation of our approach. We tested SIMM’s abil-
ity to find an arrangement of the given components φ to match the target spectrogram ŷ
by computing and sonifying a MAP estimate ω̂ of the joint distribution over times and
components as described in section 8.3, then comparing the sum of the magnitudes of the
differences between the normalized spectrograms of the target sound and resynthesized
sound. Let ẑ be the normalized spectrogram of the resynthesized sound. Our error metric
is

err = 0.5
B∑
b=1

W∑
w=1

|ẑwb − ŷwb| (8.14)

which ranges between 0.0 (perfect agreement between the spectrograms) and 1.0 (no over-
lap between the spectrograms).

Table 8.4 presents the errors obtained by our approach when trying to match 23.2 sec-
ond clips (1000 512-sample windows at 22.05 KHz) from the songs “Dirty Deeds Done
Dirt Cheap” by AC/DC and “Bust a Move” by Young MC, using samples selected at ran-
dom from the songs “Dirty Deeds Done Dirt Cheap,” “Blitzkrieg Bop” by the Ramones,

82

Figure 8.2: Top: Spectrogram of 2.3 seconds of Young MC’s “Bust a Move.” Bottom:
Spectrogram of 2.3 seconds of the same song reconstructed from spoken words from the
TIMIT corpus using our SIMM model.

and “U Can’t Touch This” by MC Hammer. We also used words spoken by various speak-
ers from the TIMIT corpus of recorded speech as source samples. Samples from similar
songs tend to produce lower errors, whereas the model had trouble reproducing music using
spoken words. The speech samples produce a quantitatively weaker match to the target au-
dio, but the “automatic a cappella” effect of trying to reproduce songs using speech proved
aesthetically interesting.

83

All output sounds are available at the URL given above.

8.5 Transcription
Besides creating novel sounds, the method described above can be adapted to produce
rough transcriptions of polyphonic music. For example, if a set of piano sample spectro-
grams is used for φ and the target audio spectrogram ŷ is a recording of piano music, then
the MAP estimate of ωkl will give an estimate of how forcefully the kth sample was acti-
vated at time l. By thresholding the MAP estimate of ω, we can predict whether or not a
note was struck at any particular time.

To evaluate this transcription technique, we analyzed two pieces of music from the
Midi-Aligned Piano Sounds (MAPS) database of piano music [29]—Bach’s Prelude in
C Minor, and Beethoven’s “Pathetique” piano sonata. Both were synthesized from midi
scores provided as part of the MAPS database. The prelude was synthesized using a
Yamaha Disklavier, and the piano sonata was synthesized using Bosendorfer 290 Impe-
rial model from Native Instruments’ “Akoustik Piano” sound library. All recordings had a
sampling rate of 44.1KHz. Each piece was analyzed once using a set of isolated samples
from the same instrument or synthesizer used to produce the mixed recording, and once us-
ing a set of isolated samples from the other instrument/synthesizer. We used 2048-sample
(46.4ms) Hann windows to compute the spectrograms. As in the experiments above, we ran
the collapsed Gibbs sampler until 20 iterations went by without finding a new maximum
of the joint likelihood, and then computed a MAP estimate of ω from the last sample of k
and l. A threshold τ was then applied to the elements of ω to yield a binary transcription
ψ of the recording—if omegakl > τ , then ψkl = 1, otherwise ψkl = 0.

The binary transcriptions ψ were compared with the ground truth midi files used to
synthesize the recordings. A positive label ψkl = 1 was considered a true positive if the
note k was played within 69.7ms of the center of the lth window—that is, if it appeared in
a window from l − 1 to l + 1. Following [73], we used the following metric to score each
transcription:

acc ,
true positives

true positives + # false positives + # false negatives
. (8.15)

This metric defines accuracy as the number of true notes found divided by the sum of the
total number of true notes plus the number of false alarms, i.e. notes in the transcription
that did not appear in the recording.

Table 8.5 shows the performance of our approach for each sample set/recording pair
with the best threshold τ . Clearly, using a set of samples that matches the timbre of the in-
strument used to generate the recording being analyzed results in much better transcription
performance.

Figure 8.3 summarizes the performance of our approach for various thresholds τ . Per-
formance depends strongly on using a threshold within an appropriate range for the piece,
but the best threshold does not seem to be very sensitive to the choice of sample set used to
analyze the recording. The Bach piece (recorded using the “Bosendorfer” sample set) de-

84

Sample Set Transcription Accuracy
Beethoven (Disklavier) Bach (Bosendorfer)

Disklavier 0.733 0.345
Bosendorfer 0.358 0.808

Table 8.2: Accuracies obtained by the SIMM model for two sample sets and two record-
ings, for the best setting of the threshold τ .

10−6 10−5 10−4 10−3 10−2 10−10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Threshold τ

Ac
cu

ra
cy

Bosendorfer recording/Disklavier samples

10−6 10−5 10−4 10−3 10−2 10−10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold τ

Ac
cu

ra
cy

Bosendorfer recording/Bosendorfer samples

10−6 10−5 10−4 10−3 10−2 10−10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold τ

Ac
cu

ra
cy

Disklavier recording/Disklavier samples

10−6 10−5 10−4 10−3 10−2 10−10.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Threshold τ

Ac
cu

ra
cy

Disklavier recording/Bosendorfer samples

Figure 8.3: Plots of transcription accuracy versus binarization threshold τ for two record-
ings analyzed using two sets of piano samples.

mands a lower threshold than the Beethoven piece (recorded using the “Disklavier” sample
set), which can be attributed to the greater number of notes per second in the Bach piece.

These results are not bad, considering how little tuning and postprocessing went into
the transcription procedure. However, they are certainly less impressive than those obtained
by state-of-the-art methods designed to address the problem of polyphonic transcription
such as those proposed in [42, 98]. Any number of model improvements are possible that
would improve transcription performance. For example, we could explicitly model the
on-off sparsity that should be present in the activation matrix via a spike-and-slab prior
[66], or we might build a model that allows samples to adapt to the sounds actually present

85

in a recording. Such elaborations would allows us to sidestep the problems of choosing
a threshold τ , and alleviate the errors caused by using a sample set not actually used to
generate the recording being analyzed.

8.6 Discussion
We presented a new audio mosaicing approach that attempts to match the spectrogram
of a target sound by combining a vocabulary of shorter sounds at different time offsets
and amplitudes. We introduced the SIMM model and showed how to use it to find a set
of time offsets and amplitudes that will result in an output sound that matches the target
sound. We also explored the applicability of the SIMM model to the problem of polyphonic
transcription.

86

Chapter 9

Conclusions and Future Work

9.1 Contributions
In this dissertation, we presented several new techniques making use of the framework of
probabilistic graphical modeling to address problems in computational audio analysis:

Timbral similarity using the Hierarchical Dirichlet Process: Using the Hierarchical
Dirichlet Process (HDP) to discover a shared representation of the distributions of feature
vectors within multiple songs, we were able to compare those songs with greater accuracy
and lower computational cost than previous methods, while eliminating the problem of
“hubs,” i.e. songs that are wrongly evaluated to be similar to all other songs.

Automatic tagging with the Codeword Bernoulli Average model: We derived the
Codeword Bernoulli Average (CBA) model, a simple probabilistic model that predicts the
probability that a tag will apply to a song based on a vector-quantized representation of
that song’s feature data. CBA was able to achieve state-of-the-art performance on both
annotation and retrieval tasks compared with previous methods, despite its comparative
simplicity and the low computational complexity of inferring its parameters.

Latent source discovery with the Shift-Invariant Hierarchical Dirichlet Process: We
derived the Shift-Invariant HDP (SI-HDP), an extension of the HDP that can discover the
time-varying latent sources present in a set of audio recordings, when they occur, and how
many sources are needed to explain the data. The ability of the SI-HDP to automatically
choose how many latent sources to use addresses is particularly important to this appli-
cation, where it is difficult to know a priori how many sources will appear in a piece of
music.

Latent source discovery with Gamma Process Nonnegative Matrix Factorization:
We derived the Gamma Process Nonnegative Matrix Factorization (GaP-NMF) model,
which addresses certain theoretical limitations with the SI-HDP’s signal model and allows
for more principled Bayesian inference while retaining the ability to choose how many
latent sources are needed to explain an audio spectrogram. In order to derive a variational

87

inference algorithm for GaP-NMF, we had to devise new techniques that can be used to
derive variational inference algorithms for other non-conjugate models.

Hidden Markov Models for audio synthesis: We explored the potential of Hidden
Markov Models (HMMs) to synthesize musical audio. The results are suggestive both of
the power of generative models to produce audio and of the limitations of HMMs trained
on features extracted from mixed audio.

Bayesian spectral matching: The SI-HDP was adapted to the problem of layering short
samples to create an audio signal whose spectrogram resembles that of a target audio signal.
The resulting model can be applied to create novel transformations of existing recordings,
to find ways to mimic recordings by arranging a limited set of instruments, and to produce
rough polyphonic transcriptions.

9.2 Future Work
One of the most powerful features of the graphical modeling framework is it extensibility,
in particular to hierarchical applications. Any of the models presented in this thesis could
be extended and made more useful by relaxing oversimplistic assumptions or incorporating
new sources of information. Below we present several ideas for what such extensions
might look like. Some of these ideas we are currently pursuing actively, others are more
speculative.

9.2.1 Beyond Similarity: New Applications of Mixed-Membership
Mixture Modeling

In chapter 3, we presented an application of the Hierarchical Dirichlet Process (HDP) with a
multivariate Gaussian observation model to the problem of estimating the timbral similarity
of two songs. The HDP learned to represent songs as a set of mixture weight vectors over
a set of shared mixture components, and this representation turned out to be useful for
estimating the similarity of two songs. This sort of higher-level representation could allow
us to leverage techniques from the text modeling literature for music analysis problems.

One classic problem in the area of Music Information Retrieval (MIR) is genre
classification—given a set of recordings labeled with genre information, the goal is to
predict the genres of unlabeled recordings from the audio signal [91]. To address this
problem, we could consider an approach like that taken in supervised topic modeling [18],
where the topic labels given to each word in a document are replaced with cluster labels
given to each feature vector in a song. Adapting the model in [18], we might assume a
model like

φk ∼ H; πj ∼ Dirichlet(α); zji ∼ Multinomial(πj); yji ∼ f(φzji
);

ηck ∼ N (0, σ2); p(gj = c) ∝ exp{
∑

k ηckz̄jk}, (9.1)

88

φkπj zji yji
Nj K

J

α H

gj η σ2

Figure 9.1: Graphical model for the genre classification model proposed in equation 9.1.

where gj = c denotes song j as belonging to genre c, and z̄jk , 1
Nj

∑Nj

i=1 I[zji = k] is the
normalized counts vector of how many times cluster k is associated with a feature vector
in song j. η is a matrix of weights for a logistic regression model whose covariates are the
hidden matrix z̄ and whose responses are the genre labels g. The graphical model for this
generative process is given in figure 9.1.

Posterior inference reveals

1. a set of clusters parameterized by φ capturing the latent structure of the training
songs’ feature data and

2. a set of weights η that describe the relationship between the clusters that a song’s
feature vectors fall into and the genre label assigned to that song by a listener.

To label a new song a whose genre label ga we are not given, we examine the posterior
p(ga|ya,α,η,φ) =

∑
za
p(ga|za,η)p(za|ya,α,φ). By learning the clusters and weights

simultaneously, the model may be able to discover representations of feature data that are
tuned to be useful for solving the genre classification problem.

Other topic models designed for text could be adapted to address problems in audio
analysis via a similar approach. For example, the influence model presented in [38] could
be adapted using a similar strategy to determine what songs in a corpus were influential
on what other songs1. Another interesting research direction would be to use this mixed-
membership representation to combine content-based and collaborative filtering methods
for music recommendation—a heuristic model presented in [97] suggests that such an ap-
proach may be promising.

9.2.2 Fully Generative Codeword Bernoulli Average
The Codeword Bernoulli Average (CBA) model presented in chapter 4 analyzes songs by
first finding a vector quantized representation of a set of continuous-valued feature vectors,
and then analyzing the relationship between the fixed “codeword” counts for each song and

1Strictly speaking, this model cannot guarantee that the relationships it finds are causal—it may be more
accurate to say that it would find what songs caught onto emerging trends before any other songs in the
corpus.

89

φkπj zji yji
Nj

KJ

α

tjg βkgajg
G

Figure 9.2: Graphical model for the autotagging model proposed in equation 9.2.

that song’s tag labels. An alternative approach would be to build a model that combines the
clustering and tag modeling steps, again making use of the mixed-membership clustering
paradigm. One such model is given by the following generative process:

πj ∼ Dirichlet(α); zji ∼ Multinomial(πj); yji ∼ f(φzji
);

ajg ∼ Uniform(1, . . . , Nj); tjg ∼ Multinomial(βajgg
), (9.2)

where yji is the ith feature vector in song j and tjg is the binary label denoting whether or
not tag g applies to song j. The graphical model for this generative process is given in figure
9.2. This model is very closely related to the Correspondance Latent Dirichlet Allocation
(Corr-LDA) annotation model in [15]. The main difference is that this process models both
positive and negative annotations via a Bernoulli distribution, whereas Corr-LDA models
only positive annotations via a multinomial distribution.

As in the model defined in equation 9.1, jointly fitting φ and β allows the clusters
found by the model to be tuned to be useful for solving the autotagging problem. Note that
if f(y;φ) = N (φ, ε), then as ε→ 0 we recover the original CBA model, since the mixture
model assumed to have generated y reduces to k-means clustering.

9.2.3 Pitch-Invariant and Hierarchical GaP-NMF
A limitation of the latent source decompositions presented in chapters 5 and 6 is that they
assume total independence between all latent components, even components that corre-
spond to different notes from the same instrument. This may lead to worse performance
compared to a model that shared statistical strength between multiple latent components
from the same instrument. Furthermore, if we want to isolate or suppress all of the energy
associated with a particular instrument across all notes, the only option is to do a post-hoc
analysis (by hand or automatically) to partition the components into one instrument class
or another.

90

Figure 9.3: A binary subband matrix T with bandwidths determined by the Bark perceptual
scale.

One way of addressing this problem might be to incorporate pitch-invariant cluster-
ing into the GaP-NMF model. Recall that each element Wmk of the matrix W gives the
average power at frequency bin m of latent component k. The goal would be to cluster
the latent components given by the columns of the matrix W in a way that considers their
coarse spectral shape (which will be roughly the same for sounds with similar timbre across
multiple pitches) but not their fine spectral details (which are strongly affected by pitch).
A first step towards doing this is to decompose each columnW k into a set of variables V k

and φk so that Wmk = φmk
∑

s TmsVsk, where every element of V and φ are nonnegative,
and

∑
m Tmsφmk = 1 for any s ∈ {1, . . . , S}. We construct T to be a binary matrix whose

columns define subbands of the spectrum, such as the one shown in figure 9.3. The matrix
product TV k gives the coarse spectral shape ofW k. Each subvector φ{m|Tms=1},k sums to
one, and determines how the energy in the coarse spectrum TV k is distributed.

We can replace the symmetric gamma prior

Wmk ∼ Gamma(a, a) (9.3)

91

πη zk Vk

µl

φk

ε

a

Hkb

θkα

X

K

a0
L

Figure 9.4: Graphical model for a pitch-invariant GaP-NMF model.

used in GaP-NMF, which assumes that all elements Wmk are independent and identically
distributed, with a generative process of the form

π ∼ Dirichlet(η/L, . . . , η/L); zk ∼ Multinomial(π); µsl ∼ Gamma(a0, a0); (9.4)

Vsk ∼ Gamma(a, aµszk
); φ{m|Tms=1},k ∼ Dirichlet(ε, . . . , ε); Wmk = φmk

∑
s

TmsVsk.

The hidden variable zk indicates which cluster the kth latent component belongs to, and
the hidden parameter µl gives the reciprocal of the expected value of V k if zk = l. Since
only V k, the coarse shape of W k, is affected by zk, the partitioning given by the hidden
z variables is largely invariant to pitch. Furthermore, the columns of W k are tied under
this model through the parameter µ (as can be seen in the graphical model in figure 9.4),
allowing the latent components to share timbral information.

Deriving a variational inference algorithm for this model is nontrivial, but not impossi-
ble. Early informal results suggest that the unsupervised partitionings of latent components
produced by this model do tend to correspond to groups of notes from the same instruments.

The model in equation 9.4 could be further extended to the hierarchical setting where
we want to analyze many songs at once. In the simplest case, where we would just assume
that µ and π are shared across all songs, variational inference can proceed by repeatedly
updating an independent variational posterior q(W j,Hj,θj) for each song j, then updat-
ing the top-level variational posterior q(µ,π) over the globally shared parameters. That the
global representation is pitch-invariant would sidestep an issue with the SI-HDP, namely
that two songs that include the same instrument but are in different keys will not use the
same set of latent components, making it more difficult to compare them. The graphi-

92

πη zjk Vjk

µl

φjk

ε

a

Hjkb

θjkα

Xj

K

a0
L

J

Figure 9.5: Graphical model for a hierarchical pitch-invariant GaP-NMF model.

cal model for this simple hierarchical extension is shown in figure 9.5. A more elaborate
version might incorporate a mixed-membership mixture model like the HDP.

9.2.4 Temporal Modeling of Latent Source Activations
Just as we can think about relaxing the independence assumptions on the matrix of latent
components W in GaP-NMF, we can also think about more elaborate modeling of the
matrix of time-varying activations H . In the simplest case, this might involve assuming a
Markov chain of the form

Hkn ∼ Gamma(b, bH−1
k,n−1), (9.5)

which is essentially the approach taken in [32, 93]. This modeling choice says that
E[Hkn] = Hk,n−1, which embodies the intuition that a component being loud at time n− 1
makes it more likely to be loud at time n.

More interesting approaches are also possible. In general, we can consider any prior of
the form

Hkn ∼ Gamma(b, bf(H1:n−1)
−1), (9.6)

whereH1:n−1 denotes the first n−1 columns ofH , so long as f is a linear additive function
of its arguments. A variational inference scheme can be derived that accomodates any such
prior using the tricks in chapter 6.

For example, if we knew that the tempo of the song was such that there is a beat every
T frames, we might choose a prior like

Hkn ∼ Gamma(b, 1
3
b(
∑3

i=1Hk,n−iT)−1). (9.7)

93

This prior says that the expected activation of a component k at a particular time n is the
average activation of that component at the corresponding time over the last three beats.

Any number of further elaborations are possible. We could put a prior on T and learn
it as well. Instead of using the constant weight 1

3
, a vector of weights could be learned.

Components could be allowed to influence each other’s activation levels. The parameters
to the prior could be shared across multiple songs. The decision of how to structure the
prior onH depends on what information the modeler wants to discover, and to what end.

One possible motivation for incorporating more sophisticated temporal modeling into a
latent source decomposition is that it may allow us to do better data-driven audio synthesis.
A generative hierarchical latent source model sophisticated enough to learn how audio
sources fit together to make a song might be able to learn to produce audio of real aesthetic
interest.

9.3 Conclusions
In this dissertation we have presented a number of graphical models designed to address
specific problems in the analysis of musical audio. We believe that the successes of these
models underscore the effectiveness of the basic approach outlined in the introduction:

1. posit a parametric stochastic process that explains the most important aspects of the
data,

2. derive and apply an algorithm to infer the parameters to that process from observed
data,

3. use the model and inferred parameters to address the problem.

The previous section illustrates two core benefits of the graphical modeling framework
beyond its effectiveness at solving specific problems: extensibility and modularity. Most
of the proposed extensions above came about as a result of phrasing the inadequacy of a
previous model for a particular task in terms of overly simplistic modeling assumptions.
For example, GaP-NMF cannot explicitly tell us anything about what components are de-
rived from the same instrument, since it assumes that all components are independent and
identically distributed. By replacing this assumption with a more elaborate (though still
arguably simplistic) model that takes into account the relationship between Fourier spectra
and the percept of timbre, we can extract additional useful information from our data. The
modularity inherent in the graphical modeling formalism allows us to relax our models’
assumptions piecemeal without having reevaluate our entire algorithmic strategy.

Another attractive feature of the probabilistic modeling framework is that it can be used
not just to analyze but also to synthesize audio by sampling from a model’s generative
process. Perhaps someday someone will derive a generative model that will infer so much
about the structure and content of a large corpus of songs that it can learn to stochastically
“compose” new recordings that human beings will want to listen to over and over. Until
then, there remain many problems in the computational analysis and synthesis of music
that can be profitably addressed by devising and extending probabilistic graphical models.

94

Appendix A

Inference Procedures for the SIHDP

A.0.1 Direct Assignment Gibbs Sampler
To draw from the posterior of the SIHDP, we adapt the direct assignment Gibbs sampler
described in [85]. We integrate out all variables besides the component indicators k, the
time offsets l, and the global component proportions β, whose values comprise the state of
the Markov chain.

Resampling the component indicators k and time offsets l: First, we jointly resample
each pair of variables kji, lji indicating which component kji at what time offset lji gener-
ated observation i in song j, conditioned on the values of all other indicator variables k−ji,
l−ji, the global component proportion weights β, the observed data y, the concentration
parameter α, and the prior on the mixture components φ defined by ε.

p(kji, lji|k−ji, l−ji,β, α, ε,y) ∝ (A.1)
p(yji|k, l,y−ji, ε)p(kji, lji|k−ji, l−ji,β, α, η) =

p(yji|k, l,y−ji, ε)p(lji|kji, l−ji, η)p(kji|k−ji,β, α)

Define nlkj to be the number of observations in song j coming from component k with
time offset l, excluding the observation we’re currently resampling. Define ocbjk to be the
number of observations in song j coming from component k with base time c and frequency
bin b, again excluding the current observation.

Given lji and yji = {wji, bji}, we can calculate the base offset cji = wji − lji, and so
the first term becomes:

p(yji|k, l,y−ji, ε) = p(cji, bji|k, l,y−ji, ε)
=
∫
φ
p(cji, bji|φ)p(φ|c−ji, b−ji,k, l, ε)dφ

= (ocjibjijkji
+ ε)/(o··jkji

+ CBε) (A.2)

For a new component k, the predictive likelihood is a constant 1
CB

, since the prior on φ is
symmetric.

The marginal likelihood of the component indicator kji conditioned on the other kj,−i
in the same song j and on the global component proportions β is given by the Chinese

95

restaurant franchise:

p(kji|kj,−i,β, α) =

n·kj+αβk

Nj+α
if k ∈ {1, . . . , K}

αβnew

Nj+α
if k = knew

(A.3)

Where βnew is the global likelihood of choosing a component not currently associated
with any observations:

βnew = 1−
K∑
k=1

βk (A.4)

The likelihood of time offset lji conditioned on the other lj,−i and on kji if kji ∈
{1, . . . , K} is given by:

p(lji|kji, l−ji, η) =

∫
ω

p(lji|ω)p(ω|lj,−i, η)dω

=
nljikjij + η

n·kjij + ηL
(A.5)

The predictive likelihood for a new component knew is a constant 1
L

, since the prior on ω is
symmetric.

Therefore, the joint posterior likelihood of kji and lji for a given observation yji =
{cji + lji, bji} conditioned on k−ji, l−ji, y−ji, β, α, and ε is:

p(kji = k, lji = l|k−ji, l−ji,β, ε, α,y)

∝
(ocjibjijk+ε)(n·kj+αβk)(nlkj+η)

(o··jk+CBε)(n··j+α)(n·kj+ηL)
(A.6)

for k ∈ {1, . . . , K}. For k = knew,

p(kji = knew, lji = l|β, α,Nj) ∝
αβnew

CBL(Nj − 1 + α)
(A.7)

If n·k· = 0 for some component k at some point during resampling, then that component
may be eliminated from future considerations.

Creating a new mixture component: If kji = knew, then a new mixture component needs
to be created. When this happens, we draw a stick-breaking weight s ∼ beta(1, γ), set
βknew = sβnew and then update βnew := (1 − s)βnew, as in the direct assignment sampler for
the HDP [85]. We choose the time offset lji uniformly at random from the set of offsets
{wji − C + 1, . . . , wji} that are consistent with an observation at time wji.

Resampling the global mixture proportions β: After the component indicators k
and time offsets l have been resampled, we resample the global component proportions
β|k, α, γ by simulating the Chinese Restaurant Franchise. Let mjk be the number of tables
in restaurant j eating dish k. Then

β|m, γ ∼ Dirichlet(m·1, . . . ,m·K , γ) (A.8)

96

For each restaurant j and dish k, draw mjk|α, β, n·kj as follows1:

1. Set mjk = 0

2. For i ∈ {0, . . . , n·kj − 1}:

(a) Increment mjk by ti ∼ Bernoulli(αβk

αβk+i
)

Oncem has been drawn for all j, k, redraw β according to equation A.8.
Sampling the components φ: We can also sample the latent components φ instead of

integrating them out—this slows convergence, but makes the distributed inference algo-
rithm presented in the following section possible, which allows us to apply our model to
larger datasets.

If we instantiate φ rather than integrating it out, equation A.6 simplifies to:

p(kji = k, lji = l|k−ji, l−ji,β, ε, α,y)

∝ φcjibjik
(n·kj+αβk)(nlkj+η)

(n··j+α)(n·kj+ηL)
(A.9)

All other updates are the same as before.
To update φk, we can simply draw from its posterior conditioned on the indicator vari-

ables k, l, the observations y, and the prior parameter ε:

φk|k, l,y, ε ∼ Dirichlet(o1,1,·,k + ε, . . . , oC,B,·,k + ε) (A.10)

Resampling the hyperparameters α and γ: We can resample the hyperparameters α and
γ in the same way as in the HDP.

A.0.2 Distributed Inference
Resampling the component indicators k and time offsets l for each observation requires
O(CKN·) operations per iteration. Say that our songs are all 2000 512-sample frames long
(corresponding to 46 seconds at a sampling rate of 22050 Hz) and we choose ν = 1.0 and
C = 20 (corresponding to components lasting 460 ms). Then if our model discovers 200
latent components, resampling k and l will require billions of floating-point operations and
memory accesses per song. This may lead to unacceptably long run times even for small
datasets, particularly if the songs are heterogeneous and a larger number of components is
needed to model them.

A solution to this problem is to split the work of resampling k and l across multiple
processors, assigning one processor to deal with each song j. These indicator variables
for each song are conditionally independent of those in all other songs given the global
component proportions β and the components φ, so the only situation in which we have to
do anything differently from the single-processor Gibbs sampler described in the previous
section is when creating or eliminating components, since these actions affect the state of
the global variables β and φ.

1Note that n and o here include all observations in all songs, unlike when we were redrawing k and l.

97

We can put off eliminating components until after all k and l have been resampled. At
that point, if a component k has no observations associated with it then p(βk > 0|k, α, γ)
will be 0 and the component can be eliminated.

Creating a new component knew is more complicated, since creating a new component
involves sampling βknew and φknew , which alters the global state of the Markov chain in ways
that affect other groups. In [7], Asuncion et al. propose an approximate Gibbs sampler for
the HDP that allows each process to create new components as usual, and then merges the
component ID’s across processors arbitrarily. This approach is not guaranteed to converge,
and they report experimental results in which it converges to a final number of topics much
more slowly than a single-threaded exact Gibbs sampler does.

We instead propose a method for allowing multiple processes to create new components
without sacrificing consistency. Before resampling the indicator variables k and l, we draw
a set of A global auxiliary components φK+1,...,K+A from their prior:

φK+a ∼ Dirichlet(ε, . . . , ε) (A.11)

We also augment the global component proportions β with a series of A additional weights
partitioning the probability mass in βnew using the stick-breaking process:

sa ∼ Beta(1, γ); βK+1 = s1β
new (A.12)

βK+a = sa(1− sa−1)βK+a−1;

β̂new = (1− sA)βA

Effectively we have sampled from the prior an extraA latent components not associated
with any observations, and assigned them weights in β according to the stick-breaking
process. If we include these auxiliary components when resampling k and l, then the
model has a set of A new components to which it can assign observations without having
to change any global variables. There is still a chance that a song will choose a component
k̂new for which we have not sampled a component φ, however:

p(kji = k̂new) ∝ αβ̂new

LB(Nj − 1 + α)
(A.13)

If the number of auxiliary components A is chosen to be sufficiently large, β̂new will be
dramatically smaller than βnew, and so this will be a much less likely event than choosing a
component k ∈ {K + 1, . . . , K +A}. It is important to choose a value for A large enough
that k̂new is never chosen, since it is difficult to deal with this event in a principled way. We
could simply abort this round of resampling k and l, increaseA, draw a new set of auxiliary
variables and try again, but this could potentially introduce a bias that is hard to account
for. In our experiments we chose a sufficiently large value for A that k̂new was never chosen.

If A is large, a naı̈ve approach introduces significant extra computation. Since there are
no observations associated with the auxiliary components, however, we can sidestep this
extra computation by efficiently precalculating the marginal probability of associating an
observation with any component not yet associated with any observations. Denote this set

98

as knew = {K + 1, . . . , K + A, k̂new}.

p(kji ∈ knew|yji,β, β̂new,φ, α,Nj)

∝ p(yji|kji ∈ knew,φ,β, β̂new)× (A.14)
p(kji ∈ knew|βnew, α,Nj)

The first term can be summarized as a weighted average of the auxiliary components φ and
the likelihood of an observation drawn from a φk̂new

p(yji|kji ∈ knew,φ,β, β̂new) (A.15)

=
C∑
c=1

[
p
(
c, bji|kji ∈ knew,φ,β, β̂new

)
×

p (lji = wji − c|kji ∈ knew)
]

=
1

Lβnew

C∑
c=1

(
β̂new

CD
+

K+A∑
k=K+1

φcbjikβk

)

The second term is simply the prior likelihood of sitting at any empty table in the CRF:

p (kji ∈ knew|βnew, α,Nj) =
αβnew

Nj − 1 + α
(A.16)

Neither of these terms depend on the component indicators k or the time offsets l, so they
only need to be computed once for each possible frequency bin b before resampling k and l.
Then, when resampling kji we can efficiently sample whether or not kji ∈ knew. If kji /∈ knew

(as will usually be the case) we can safely ignore all auxiliary variables.
A simpler version of this auxiliary variable method can also be applied to the original

HDP formulation, as long as the global component proportions β and latent components φ
are sampled rather than integrated out, and the space of possible observations is discrete.
Although this case is known to converge slowly, for some very large datasets this might be
outweighed by the ability to deploy more computational resources.

99

Appendix B

Glossary of Abbreviations

This dissertation uses many abbreviations to refer to models, algorithms, and mathematical
objects. This results in a document that is arguably more readable (and undeniably shorter),
but also results in an “alphabet soup” that may be confusing if the reader forgets what a
particular recurring jumble of characters refers to.

The glossary below is provided to allow the reader to quickly look up the meaning of
these abbreviations without having to search for the place in the text where they were first
defined.

AP: Average Precision. A measure summarizing retrieval quality.

ARD: Automatic Relevancy Determination. A technique for automatic order selection in
probabilistic models.

AROC/AUC: Area under the Receiver-Operating Characteristic curve. A measure sum-
marizing retrieval quality.

BMSS: Blind Monaural Source Separation. The problem of isolating invidiual sound
sources from a mixed single-channel audio signal.

BNP: Bayesian NonParametric. Describes a class of Bayesian models for which the
number of parameters to be inferred from data is not fixed a priori.

BP: Beta Process. A Bayesian nonparametric prior on binary matrices of infinite dimen-
sion.

CAL500: A corpus of human-labeled songs released by the Computer Audition Lab at
the University of California, San Diego.

CBA: Codeword Bernoulli Average. A probabilistic model for automatically tagging
songs based on their audio content.

100

CRF: Chinese Restaurant Franchise. A metaphor for the Hierarchical Dirichlet Process.

CRP: Chinese Restaurant Process. A metaphor for the Dirichlet Process.

DAFX: Conference on Digital Audio Effects.

DFT: Discrete Fourier Transform. Transforms a discrete signal from the time domain to
the frequency domain.

DP: Dirichlet Process. A Bayesian nonparametric prior on partitions over an infinite set
of possible labels.

DPMM: Dirichlet Process Mixture Model. A Bayesian nonparametric model that avoids
the usual problem in mixture modeling of specifying model order a priori.

EM: Expectation-Maximization algorithm. An algorithm for maximum-likelihood pa-
rameter estimation in the presence of hidden data.

EU-NMF: Nonnegative Matrix Factorization with a EUclidean cost function.

FBS: Feature-Based Synthesis. A set of techniques for synthesizing audio characterized
by a given vector of automatically extracted features.

GEM: Abbreviation for the names Griffiths, Engen, and McCloskey. Often used to de-
note the stick-breaking distribution over infinite vectors whose elements are nonnegative
and sum to one.

GIG: Generalized Inverse-Gaussian distribution. A distribution over the nonnegative real
line that generalizes not only the inverse-Gaussian but also the gamma and inverse-gamma
distributions.

GK: Shorthand for the use of a K-component Gaussian mixture model in density estima-
tion.

GMM: Gaussian Mixture Model. A model often used to estimate the density from which
a set of (possibly multivariate) real-valued observations were sampled independently and
identically.

HDP: Hierarchical Dirichlet Process. An extension of the Dirichlet process mixture
model to the mixed-membership mixture modeling setting.

101

HMM: Hidden Markov Model. A model of time-series data that assumes that each ob-
servation depends on a hidden state that in turn depends on the hidden state associated with
the previous observation.

IBP: Indian Buffet Process. A Bayesian nonparametric prior on binary matrices of infi-
nite dimension. Arises as a special case of the beta process.

ICMC: International Computer Music Conference.

ID3: A tagging standard for MP3 files.

IS-NMF: Nonnegative Matrix Factorization with an Itakura-Saito cost function.

ISMIR: The International Conference on Music Information Retrieval (formerly the In-
ternational Symposium on Music Information Retrieval, currently the conference organized
by the International Society for Music Information Retrieval).

IW: Used to denote the Inverse-Wishart distribution.

KHz: KiloHertz. 1000 cycles per second.

KL/KLD: Kullback-Leibler Divergence. A measure of the dissimilarity of two probabil-
ity mass functions or probability density functions.

KL-NMF: NMF with a generalized Kullback-Leibler Divergence cost function.

LDA: Latent Dirichlet Allocation. A Bayesian model of text used to find “topics” (dis-
tributions over words) that make up text corpora.

LFCC: Log-Frequency Cepstral Coefficients. A set of coefficients summarizing the
rough spectral shape of a (typically short) audio signal. Uses a log-frequency filter bank.

MAP: Maximum A Posteriori. Refers to the practice of estimating the parameters to
a probabilistic model from data by choosing the parameter setting that has the highest
posterior likelihood.

MAPS: Midi-Aligned Piano Sounds database. A database of piano recordings with the
midi scores used to generate those recordings. Used to evaluate transcription systems.

MATLAB: MATrix LABoratory. A popular software package/programming environ-
ment for numerical computation.

102

MCMC: Markov Chain Monte Carlo. A set of techniques for drawing samples from a
probability distribution that is known only up to a normalizing constant.

MFCC: Mel-Frequency Cepstral Coefficients. A set of coefficients summarizing the
rough spectral shape of a (typically short) audio signal. Uses a perceptually motivated
Mel-frequency filter bank.

MIDI: Musical Instrument Digital Interface. A standard protocol used to allow digital
devices to communicate musical commands and information.

MIR: Music Information Retrieval. An umbrella term for methods related to extracting
and retrieving information from music.

MIREX: Music Information Retrieval EXchange. An annual comparative evaluation of
the performance of various systems on various music information retrieval tasks.

ML: Maximum Likelihood. Refers to the practice of estimating the parameters to a prob-
abilistic model from data by choosing the parameter setting that assigns the highest likeli-
hood to the observed data.

N : Used to denote the Normal distribution.

NIW: Used to denote the Normal-Inverse-Wishart distribution.

NMF: Nonnegative Matrix Factorization. Refers to any of a set of techniques for finding
two nonnegative matrices that, when multiplied, approximate a given nonnegative matrix.

PCA: Principal Components Analysis. A technique for finding a low-dimensional linear
transformation of a set of multidimensional variables that preserves as much of the variance
of the original data set as possible.

PDF: Probability Density Function. A function whose integral over a set of outcomes
gives the likelihood of one of those outcomes occurring.

PLCA: Probabilistic Latent Component Analysis. Used to refer to the application of the
probabilistic latent semantic indexing model to the problem of latent source discovery.

RMS: Root Mean-Squared. A measure of the (square root of the) average power of a
signal.

103

ROC curve: Receiver-Operating Characteristic curve. A summary of the true positive
rate versus the false positive rate of a classifier. Commonly used as a performance measure
in information retrieval.

RP: R-Precision. A measure summarizing retrieval quality.

SI-HDP: Shift-Invariant Hierarchical Dirichlet Process. An extension of the hierarchi-
cal Dirichlet process to the problem of discovering time-varying sources in audio spectro-
grams.

SI-PLCA: Shift-Invariant Probabilistic Latent Component Analysis. An extension to
probabilistic latent component analysis to the problem of finding latent components that
vary over time, in pitch, or in some other dimension.

SIMM: Shift-Invariant Mixture of Multinomials. A probabilistic model used to recon-
struct target audio signals from a given set of short audio samples.

SNR: Signal-to-Noise Ratio. Among other uses, a measure of the quality of source sep-
aration algorithms.

STFT: Short-Time Fourier Transform. Transforms a discrete signal of finite duration
from the time domain to the frequency domain.

SVM: Support Vector Machine. A classification algorithm that predicts binary labels on
the basis of corresponding vectors of features.

SXSW: South-by-SouthWest festival. In this dissertation, refers to a collection of 121
mp3s distributed to promote bands at the 2007 and 2008 festivals.

TDP: Transformed Dirichlet Process. An extension of the hierarchical Dirichlet process
that allows for the possibility that groups of observations have undergone transformations
before being observed.

TIMIT: Refers to the Texas Instruments-Massachusetts Institute of Technology corpus
of recorded speech. A well annotated corpus of recordings of American speakers.

VQ: Vector Quantization. A technique whereby each of a set of real-valued vectors is
represented by one of a finite set of “codewords,” typically denoting which of a set of
cluster centroids each vector is closest to.

104

Bibliography

[1] International Society for Music Information Retrieval website. http://www.
ismir.net.

[2] MIREX wiki. http://www.music-ir.org/mirex.

[3] South by Southwest artist showcase. http://2008.sxsw.com/music/
showcases/alpha/0.html.

[4] S.A. Abdallah and M.D. Plumbley. Polyphonic music transcription by non-negative
sparse coding of power spectra. In Proc. 5th Int’l Conf. on Music Information Re-
trieval (ISMIR), pages 10–14, 2004.

[5] C. Ames. The Markov process as a compositional model: a survey and tutorial.
Leonardo, 22(2):175–188, 1989.

[6] C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonpara-
metric problems. The Annals of Statistics, 2(6):1152–1174, 1974.

[7] A. Asuncion, P. Smyth, and M. Welling. Asynchronous Distributed Learning of Topic
Models. In Advances in Neural Information Processing Systems 20 (NIPS) 20. MIT
Press, 2008.

[8] J.J. Aucouturier and F. Pachet. Improving timbre similarity: How high is the sky.
Journal of Negative Results in Speech and Audio Sciences, 1(1):1–13, 2004.

[9] D. Bansal, B. Raj, and P. Smaragdis. Bandwidth expansion of narrowband speech
using non-negative matrix factorization. In Proc. 9th European Conf. on Speech Com-
munication and Technology, 2005.

[10] L. Barrington, D. Turnbull, D. Torres, and G. Lanckriet. Semantic similarity for
music retrieval. In Proceedings of the International Symposium on Music Information
Retrieval, Vienna, Austria. Citeseer, 2007.

[11] M Beal. Variational algorithms for approximate Bayesian inference. PhD thesis,
Gatsby Computational Neuroscience Unit, University College London, 2003.

[12] J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD Cup and
Workshop, volume 2007. Citeseer, 2007.

105

[13] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: a model for pre-
dicting social tags from acoustic features on large music databases. Journal of New
Music Research, 37(2):115–135, 2008.

[14] C.M. Bishop et al. Pattern recognition and machine learning. Springer New York:,
2006.

[15] D. Blei and M. Jordan. Modeling annotated data. In Proc. 26th annual Int’l ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages 127–134.
ACM Press, 2003.

[16] D. Blei and M. Jordan. Variational methods for the Dirichlet process. In Proc. 21st
Int’l Conf. on Machine Learning, 2004.

[17] D. Blei and J. Lafferty. Correlated topic models. In Advances in Neural Information
Processing Systems 18 (NIPS) 18, pages 147–154. MIT Press, 2006.

[18] D. Blei and J. Lafferty. A correlated topic model of Science. Annals of Applied
Statistics, 1(1):17–35, 2007.

[19] W.J. Boscardin and X. Zhang. Modeling the covariance and correlation matrix of
repeated measures. Applied Bayesian modeling and causal inference from incomplete-
data perspectives, pages 215–226, 2004.

[20] M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete
choice. arXiv, (0712.2526), 2008.

[21] M.A. Casey. Acoustic lexemes for organizing internet audio. Contemporary Music
Review, 24(6):489–508, 2005.

[22] Òscar Celma and Paul Lamere. If you like the Beatles you might like...: a tutorial
on music recommendation. In MM ’08: Proceeding of the 16th ACM international
conference on Multimedia, pages 1157–1158, New York, NY, USA, 2008. ACM.

[23] P. Chordia and A. Rae. Using source separation to improve tempo detection. In Proc.
Tenth Int’l Conf. on Music Information Retrieval (ISMIR), 2009.

[24] E. Coviello, L. Barrington, A.B. Chan, and G.R.G. Lanckriet. Automatic music tag-
ging with time series models. In Proceedings of the International Conference on
Music Information Retrieval, 2010.

[25] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977.

[26] F. Doshi-Velez, K.T. Miller, J. Van Gael, and Y.W. Teh. Variational inference for the
indian buffet process. In Proc. 13th Int’l Conf. on Artificial Intelligence and Statistics,
pages 137–144, 2009.

106

[27] S. Dubnov, G. Assayag, and A. Cont. Audio oracle: A new algorithm for fast learning
of audio structures. In Proceedings of International Computer Music Conference
(ICMC), pages 224–228, 2007.

[28] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic generation of so-
cial tags for music recommendation. In Advances in neural information processing
systems, volume 20, pages 385–392. Citeseer, 2007.

[29] V. Emiya, R. Badeau, and B. David. Multipitch estimation of piano sounds using
a new probabilistic spectral smoothness principle. IEEE Transactions on Audio,
Speech, and Language Processing, 18(6), 2007.

[30] M. Escobar and M. West. Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90:577–588, 1995.

[31] T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of
Statistics, 1:209–230, 1973.

[32] C. Févotte, N. Bertin, and J.L. Durrieu. Nonnegative matrix factorization with the
Itakura-Saito divergence: With application to music analysis. Neural Computation,
21(3):793–830, 2009.

[33] C. Févotte and A.T. Cemgil. Nonnegative matrix factorizations as probabilistic in-
ference in composite models. In Proc. 17th European Signal Processing Conf. (EU-
SIPCO), Glasgow, Scotland, 2009.

[34] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Developing a tempered HDP-HMM
for systems with state persistence. Technical report, MIT Laboratory for Information
and Decision Systems, 2007.

[35] J.L. Gauvain and C.H. Lee. MAP estimation of continuous density HMM: theory and
applications. In Proceedings of the workshop on Speech and Natural Language, page
190. Association for Computational Linguistics, 1992.

[36] A. Gelman. Exploratory data analysis for complex models. Journal of Computational
and Graphical Statistics, 13(4):755–779, 2004.

[37] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:721–741, 1984.

[38] S.M. Gerrish and D.M. Blei. A language-based approach to measuring scholarly
impact. In ICML, 2010.

[39] Celemony Software GmbH. Melodyne. http://www.celemony.com/cms/.

[40] T. Griffiths and M. Steyvers. Finding scientific topics. Proc. National Academy of
Science, 2004.

107

[41] T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the indian buffet
process. In Advances in Neural Information Processing Systems 17 (NIPS), pages
475–482. MIT Press, 2005.

[42] G. Grindlay and D.P.W. Ellis. Multi-voice polyphonic music transcription using
eigeninstruments. In IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics, 2009.

[43] W. Hastings. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57:97–109, 1970.

[44] M. Hoffman, D. Blei, and P. Cook. Content-based musical similarity computation
using the hierarchical Dirichlet process. In Int’l Conf. on Music Information Retrieval,
2008.

[45] M. Hoffman, P. Cook, and D. Blei. Data-driven recomposition using the hierarchical
Dirichlet process hidden Markov model. In Int’l Computer Music Conf., 2008.

[46] M. Hoffman and P.R. Cook. Feature-based synthesis: mapping acoustic and percep-
tual features onto synthesis parameters. In Proceedings of the International Computer
Music Conference (ICMC06), volume 4, 2006.

[47] M.D. Hoffman, D.M. Blei, and P.R. Cook. Easy as CBA: a simple probabilistic model
for tagging music. In Proceedings of the 10th International Conference on Music
Information Retrieval, 2009.

[48] M.D. Hoffman, D.M. Blei, and P.R. Cook. Finding latent sources in recorded music
with a shift-invariant HDP. In Proc. Digital Audio Effects (DAFx-09), 2009.

[49] M.D. Hoffman, D.M. Blei, and P.R. Cook. Bayesian nonparametric matrix factoriza-
tion for recorded music. In ICML, 2010.

[50] M.D. Hoffman, P.R. Cook, and D.M. Blei. Bayesian spectral matching: Turning
Young MC into MC Hammer via MCMC sampling. In Int’l Computer Music Conf.,
2009.

[51] J.H. Jensen, D.P.W. Ellis, M.G. Christensen, and S.H. Jensen. Evaluation of distance
measures between gaussian mixture models of mfccs. In Proc. ISMIR, pages 107–
108, 2007.

[52] M. Jordan. An introduction to probabilistic graphical models. 2009.

[53] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduction to variational meth-
ods for graphical models. Machine Learning, 37:183–233, 1999.

[54] Bent Jørgenson. Statistical properties of the generalized inverse-Gaussian distribu-
tion. Springer-Verlag, New York, 1982.

[55] J.F.C. Kingman. Poisson processes. Oxford University Press, USA, 1993.

108

[56] A. Klapuri. Signal processing methods for the automatic transcription of music. PhD
thesis, Tampere University of Technology, Finland, 2004.

[57] A. Lazier and P. Cook. MOSIEVIUS: Feature driven interactive audio mosaicing. In
International Conference on Digital Audio Effects (DAFx), 2003.

[58] D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization. In Ad-
vances in Neural Information Processing Systems 13 (NIPS), pages 556–562. MIT;
1998, 2001.

[59] J.B. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, 1966.

[60] M. Mandel and D. Ellis. LabROSA’s audio classification submissions, mirex 2008
website. http://www.music-ir.org/mirex/2008/abs/AA AG AT MM CC mandel.pdf.

[61] P. Manning, C. Raghavan and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK, 2008.

[62] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle. jAudio: A feature extraction
library. In Proceedings of the International Conference on Music Information Re-
trieval, pages 600–603, 2005.

[63] X. Meng and W. Wong. Simulating ratios of normalizing constants via a simple
identity: A theoretical exploration. Statistica Sinica, 6:831–860, 1996.

[64] N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller. Equations
of state calculations by fast computing machines. Journal of Chemical Physics,
21:1087–1092, 1953.

[65] R. Miotto, L. Barrington, and G. Lanckriet. Improving auto-tagging by modeling
semantic co-occurrences. In Proceedings of the International Conference on Music
Information Retrieval, 2010.

[66] T.J. Mitchell and J.J. Beauchamp. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023–1032, 1988.

[67] R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Techni-
cal Report CRG-TR-93-1, Department of Computer Science, University of Toronto,
1993.

[68] R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Jour-
nal of Computational and Graphical Statistics, 9(2):249–265, 2000.

[69] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Learning in graphical models, pages 355–
368. MIT Press, 1999.

[70] J. Paisley and L. Carin. Nonparametric factor analysis with beta process priors. In
Proc. 26th Int’l Conf. on Machine Learning, 2009.

109

[71] E. Pampalk. Computational Models of Music Similarity and their Application to
Music Information Retrieval. PhD thesis, Vienna University of Technology, Austria,
2006.

[72] E. Pampalk and M. Gasser. An implementation of a simple playlist generator based
on audio similarity measures and user feedback. In Int. Conf. on Music Information
Retrieval. Citeseer, 2006.

[73] G.E. Poliner and D.P.W. Ellis. A discriminative model for polyphonic piano transcrip-
tion. EURASIP Journal on Applied Signal Processing, 2007(1):154, 2007.

[74] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE, 77:257–286, 1989.

[75] C. Roads. The computer music tutorial. The MIT Press, 1996.

[76] D. Schwarz. Concatenative sound synthesis: The early years. Journal of New Music
Research, 35(1):3–22, 2006.

[77] J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–
650, 1994.

[78] K. Seyerlehner, A. Linz, G. Widmer, and P. Knees. Frame level audio similarity—a
codebook approach. In Proc. of the 11th Int. Conference on Digital Audio Effects
(DAFx08), Espoo, Finland, September, 2008.

[79] P. Smaragdis. Non-negative matrix factor deconvolution; extraction of multiple sound
sources from monophonic inputs. Independent Component Analysis and Blind Signal
Separation, pages 494–499, 2004.

[80] P. Smaragdis and J.C. Brown. Non-negative matrix factorization for polyphonic music
transcription. In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pages 177–180, 2003.

[81] P. Smaragdis, B. Raj, and M. Shashanka. Sparse and shift-invariant feature extraction
from non-negative data. In Acoustics, Speech and Signal Processing, 2008. ICASSP
2008. IEEE Int’l Conf. on, pages 2069–2072, 2008.

[82] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes
using transformed Dirichlet processes. In Advances in Neural Information Processing
Systems 18, 2005.

[83] V.Y.F. Tan and C. Févotte. Automatic relevance determination in nonnegative ma-
trix factorization. In Proc. Workshop on Signal Processing with Adaptative Sparse
Structured Representations (SPARS09), 2009.

[84] Y. Teh, D. Gorur, and Z. Ghahramani. Stick-breaking construction for the Indian
buffet process. In 11th Conf. on Artificial Intelligence and Statistics, 2007.

110

[85] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. Journal of
the American Statistical Association, 101(476):1566–1581, 2007.

[86] R. Thibaux and M. Jordan. Hierarchical beta processes and the Indian buffet process.
In 11th Conf. on Artificial Intelligence and Statistics, 2007.

[87] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification of
music into emotions. In Proceedings of the 9th International Conference on Music
Information Retrieval (ISMIR), 2008.

[88] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Towards musical query-
by-semantic-description using the CAL500 data set. In Proc. ACM SIGIR, pages
439–446, 2007.

[89] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation and re-
trieval of music and sound effects. IEEE Transactions on Audio Speech and Language
Processing, 16(2), 2008.

[90] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. Towards mu-
sical query-by-semantic description using the CAL500 data set. In ACM Special
Interest Group on Information Retrieval Conference (SIGIR ’07), 2007.

[91] G. Tzanetakis. Manipulation, Analysis and Retrieval Systems for Audio Signals. PhD
thesis, Princeton University, Princeton, New Jersey, 2002.

[92] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE
Transactions on speech and audio processing, 10(5):293–302, 2002.

[93] T. Virtanen, A.T. Cemgil, and S. Godsill. Bayesian extensions to non-negative matrix
factorisation for audio signal modelling. In Proc. of IEEE Int’l Conf. on Acoustics,
Speech and Signal Processing (ICASSP08), pages 1825–1828, 2008.

[94] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305,
2008.

[95] C. Wang, D. Blei, and L. Fei-Fei. Simultaneous image classification and annotation.
In Proc. IEEE CVPR, 2009.

[96] Ge Wang and Perry R. Cook. Chuck: A concurrent, on-the-fly, audio programming
language. In 2003 Int’l Computer Music Conference, 2003.

[97] K. Yoshii and M. Goto. Continuous pLSI and smoothing techniques for hybrid mu-
sic recommendation. In Proceedings of the 10th International Conference on Music
Information Retrieval (ISMIR), 2009.

[98] K. Yoshii and M. Goto. Infinite latent harmonic allocation: A nonparametric Bayesian
approach to multipitch analysis. In Proceedings of the 11th International Conference
on Music Information Retrieval (ISMIR), 2010.

111

[99] A. Zils and F. Pachet. Musical mosaicing. In International Conference on Digital
Audio Effects (DAFx), 2001.

112

