
Princeton University, Department of Computer Science
Technical Report TR-885-10, September 2010

Service-Centric Networking with SCAFFOLD

Michael J. Freedman, Matvey Arye, Prem Gopalan, Steven Y. Ko,
Erik Nordström, Jennifer Rexford, and David Shue

Princeton University

Abstract
Online services are typically replicated on multiple
servers in different datacenters, and have (at best) a
loose association with specific end-hosts or locations.
To meet the needs of these online services, we intro-
duce SCAFFOLD—an architecture that provides flow-
based anycast with (possibly moving) service instances.
SCAFFOLD allows addresses to change as end-points
move, in order to retain the scalability advantages of hier-
archical addressing. Successive refinement in resolving
service names limits the scope of churn to ensure scala-
bility, while in-band signaling of new addresses supports
seamless communication as end-points move.

We design, build, and evaluate a SCAFFOLD proto-
type that includes an end-host network stack (built as
extensions to Linux and the BSD socket API) and a net-
work infrastructure (built on top of OpenFlow and NOX).
We demonstrate several applications, including a cluster
of web servers, partitioned memcached servers, and mi-
grating virtual machines, running on SCAFFOLD.

1 Introduction
The Internet is increasingly a platform for online
services—such as search engines, social networks, and
content delivery—that are replicated on servers in differ-
ent locations. These services undergo significant churn
due to failures, planned maintenance, client mobility,
workload migration, and so on. In this paper, we present
SCAFFOLD, an architecture that meets the needs of
these services by supporting flow-based anycast with
(possibly moving) services instances. To support this
communication abstraction, we rethink the relationship
between the network and the end-host stack, to simplify
the design and management of online services.

1.1 Service Replication and Dynamics
A service is a group of processes offering the same func-
tionality interchangeably (e.g., a client-facing web server
in a replicated tier). Services face two major challenges:

Replication. Services run on multiple servers, num-
bering from a few to the hundreds of thousands, stretch-

ing from local-area clusters to multiple datacenters.
Rather than host-based unicast communication, we ar-
gue that the main communication abstraction should be
service-based anycast, where each client binds to a par-
ticular instance of a named service.

Principle: The network should enable communication
with a service group, with flow-based anycast which
supports stateful connections to replica instances.

SCAFFOLD’s anycast primitive can direct individual
datagrams to different replicas, while ensuring that pack-
ets of the same flow reach the same (possibly moving)
service instance—a property that we refer to as flow affin-
ity. Furthermore, each packet includes a service-level
identifier (or serviceID) that represents an application-
level service rather than a host. Thus, the network
can forward traffic and allocate resources based on the
higher-level abstraction of a service. In contrast, today’s
IP packets contain only an end-point address.

Dynamism. Modern services operate in a dynamic en-
vironment, where a replica may fail, undergo mainte-
nance, migrate to a new location, seek to offload work,
or be powered down to save energy; new replicas may
be added to handle extra load or tolerate faults. This
dynamism stretches across many levels of granularity—
from connections, to virtual machines and physical hosts,
to entire datacenters. Rather than hosts retaining their
addresses as they move, SCAFFOLD allows end-point
addresses to change dynamically. This allows networks
to apply whatever hierarchical addressing scheme they
wish for more scalable routing, and enables hosts to mi-
grate across layer-two boundaries.

Principle: The network addresses associated with a
service should be able to change over time as service
instances fail, recover, or move.

When an end-point moves, SCAFFOLD performs in-
band signaling to update the remote end-points of estab-
lished flows. When a service instance fails, recovers, or
moves, the network automatically directs new requests
to the new location. In contrast, today’s network cannot
easily allow end-point addresses to change because these
addresses are exposed to (and cached by) applications.



1.2 Service-Centric Network Architecture
The main research contribution of SCAFFOLD is a “nar-
row waist” of network support for flow-based anycast
with dynamically-changing service instances. As an ar-
chitecture for communication with services rather than
devices, the “narrow waist” of SCAFFOLD includes
functionality normally considered part of the transport
layer, along with traditional network-layer functions.
In particular, SCAFFOLD provides (i) late binding to
instances through successive refinement of the service
identifier to maximize flexibility and contain churn (re-
alizing our first principle), and (ii) automatic adaptation
to service dynamics through tight integration of the end-
host network stack with the network (realizing our sec-
ond principle). Our solution has three main components:

Packet headers (serviceIDs and network ad-
dresses): SCAFFOLD packets include both the service
identifiers and the network addresses of communicating
end-points. The network uses the destination serviceID
to direct a new flow to an instance of the named service
(anycast), while the network addresses ensure continued
communication with that instance (flow affinity). Serv-
iceIDs are also used to remap a flow after a failure and
support service-based QoS in the network.

Network elements (service and network routers):
SCAFFOLD consists of service routers that direct a
packet to a service instance based on the serviceID, and
network routers that forward packets based on destina-
tion addresses. Service routers handle the first packet
of each flow, while the network routers directly forward
the remaining packets. Network routers do not keep per-
service state, and neither keep per-flow state, allowing
network elements to scale to many flows and services.

End-hosts (network stack and API): In SCAF-
FOLD, applications bind or connect only to serviceIDs,
so addresses can freely change as an end-point moves.
When an application binds (or closes) a socket, the net-
work stack automatically registers (or unregisters) the
service instance with the service router. When a ser-
vice instance moves to a new location, the network stack
automatically updates the service router(s) with the new
address, and performs in-band signaling to update the re-
mote end-points of established flows.

After a brief comparison of SCAFFOLD to related
work, the next section presents case studies that illustrate
the limitations of today’s architecture for handling ser-
vice replication and dynamics. Then, Section 3 describes
the service-level naming and socket API in SCAFFOLD.
Section 4 presents the main architectural contributions,
with a focus on a single datacenter. The wide-area as-
pects of SCAFFOLD are discussed briefly in Section 5.
We discuss security issues throughout Sections 3–5. Sec-
tion 6 presents our prototype, with network and service
routers built using OpenFlow [19] and NOX [12], and

both user-space and kernel-level network stacks built
as extensions to Linux, Click, and the BSD sockets
API. Section 7 evaluates our prototype, using both mi-
crobenchmarks and experiments with failover and migra-
tion. The paper concludes in Section 8.

1.3 Comparison to Related Work
While our work relates to several areas of networking
research, SCAFFOLD is distinctive in proposing a com-
prehensive architecture, revisiting the “division of labor”
between the end-host stack and the network, and having
a running prototype implementation.

Content-centric networking: CCN [14] has a differ-
ent focus, where names correspond to chunks of content
and routing does not consider host addresses; SCAF-
FOLD names a (possibly stateful) service and includes
(possibly changing) host addresses in each packet. In
contrast, DONA [17] and TRIAD [11] perform name-
based routing that provide a similar server-selection
function as SCAFFOLD’s service routers; however,
these papers do not discuss the end-host stack, host-
network integration, or service migration.

Flat service-level names: Several other papers advo-
cate the use of flat, service-level names [35, 2, 36, 33, 3].
However, these systems take a different approach to
name resolution by relying on a global lookup service
like DNS or a DHT; instead, SCAFFOLD uses succes-
sive refinement to bind to a service instance. In addition,
some of these architectures use early binding [35, 2, 36],
in contrast to SCAFFOLD’s use of late binding.

Location/identifier separation: Recent protocols
like LISP [7] and HIP [23] separate host identifiers from
locations for more scalable routing and simpler multi-
homing and mobility. However, LISP and HIP focus on
individual hosts, rather than anycast and services or the
range of dynamics we handle in SCAFFOLD.

Transport-layer migration: TCP Migrate [32] per-
forms in-band signaling and DNS updates when a mobile
host’s address changes, but does not consider other forms
of migration (e.g., virtual machines and multi-homing) or
replicated services. SCTP [26] supports multi-homing
by specifying secondary addresses for hosts, but does
not support other forms of mobility. Trickles [31] han-
dles server dynamics by moving connection state to the
client, but only for services with compact state.

Routing protocols: SCAFFOLD is complementary
to work on routing architectures, in that our work does
not focus on routing—beyond allowing hosts to have
topology-dependent addresses. A datacenter running
SCAFFOLD is free to select whatever routing design
(e.g., [10, 25, 24]) it chooses. Similarly, inter-domain
routing in SCAFFOLD can use today’s BGP or (better
yet) a more secure wide-area routing solution [15, 1].
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2 Case Studies of Online Services
In this section, we present case studies that motivate
our two principles for supporting online services—flow-
based anycast (to support replication) and network ad-
dresses that can change over time (to support dynamism).

2.1 Replication
Online services, whether front-end web services or back-
end infrastructure services, are replicated on many ma-
chines for better performance and reliability.

2.1.1 Web Server Farm

Web services can run on many servers spread across sev-
eral datacenters. Existing techniques for directing client
requests to web servers have significant limitations:

IP anycast: IP anycast—announcing the same IP pre-
fix from each datacenter—would allow the service to rely
on wide-area routing to direct clients to the “closest” dat-
acenter. However, since different packets in the same
flow do not necessarily reach the same site, IP anycast is
typically limited to connectionless query-response pro-
tocols. In addition, IP anycast increases the size of the
global routing tables, forcing routers to store routing in-
formation for many more address blocks.

DNS: Session-based services, like HTTP, rely on other
mechanisms, like DNS, to return different IP addresses
for the same service name. However, when the set of
servers changes, an out-of-band mechanism must up-
date the authoritative DNS servers. Better responsive-
ness requires smaller DNS Time-To-Live (TTL), which
makes DNS caching less effective; in addition, many
web browsers cache DNS responses for around 15 min-
utes, independent of the TTL.

Load balancers: Within a single datacenter, a front-
end load balancer can distribute requests sent to a sin-
gle public-facing IP address. However, load balancers
must maintain state and handle all client traffic to en-
sure flow affinity, particularly when failures may change
the server pool. Some out-of-band mechanism must up-
date the load balancer when the set of servers changes,
and the load balancer itself must be replicated to avoid a
single point of failure. Making load-balancing decisions
on finer-grain names, such as URLs, typically requires
terminating the TCP connection to reconstruct and parse
the HTTP message. Since all client traffic goes through
the load balancer, the load balancer must lie close to the
clients or the servers to minimize latency.

In contrast, SCAFFOLD supports service IDs that can
correspond to a web site, a particular URL, or anything
in between. Network support for flow affinity obviates
the need for all client traffic to traverse a load balancer.

2.1.2 Back-end Data-Storage Services
Online services rely on back-end storage services to
maintain a reliable and consistent view of service-
specific data. To handle the read and write load, the
data store is commonly partitioned, with each back-end
server storing and handling requests for a subset of data
objects. For better reliability and performance, each par-
tition might be replicated across multiple servers. Com-
pared to the web service example, a back-end service has
the luxury of modifying the software running on its own
front-end servers. The service must monitor server live-
ness (to detect server additions and failures) and load (to
ensure proper load balancing over the instances). In ad-
dition, each read and write request must be directed to a
server responsible for the associated object.

Today, each service implements server monitoring and
request resolution independently, and the existing solu-
tions have scalability limitations:

Requester-side resolution: In systems like Mem-
cached [20], each client has the list of all servers and
their associated “keyspace”. Client-side resolution re-
duces lookup latency, but sending updated server lists to
all clients limits scalability and inhibits freshness.

Resolver-side resolution: In systems like Dy-
namo [6], the back-end servers run a routing protocol
that locates a correct server for each request. This al-
lows front-end servers to send requests to any back-end
server, at the expense of higher request latency and the
overhead of the routing protocol.

In contrast, SCAFFOLD has a general framework for
monitoring server liveness and load, freeing back-end
services from implementing it individually. In addition,
a back-end service can assign a service identifier to each
partition, delegating server resolution to the network.

2.2 Dynamism
An end-point’s location may change due to client mobil-
ity, server migration, or failures. Changing the host’s IP
address disrupts ongoing flows and requires out-of-band
updates to direct future requests to the right place.

2.2.1 Client Mobility
Internet users increasingly expect seamless access to ser-
vices as they move. However, connections are identified
by the fixed IP addresses of the two end-points, leading
to clumsy techniques for handling mobility:

Virtual LANs: Mobility within a single layer-two net-
work is relatively easy, since the client can retain its IP
address. However, even with an enterprise network, this
requires complex, inefficient Virtual LAN (VLAN) con-
figurations that place all wireless access points in a com-
mon layer-two subnet and force inter-VLAN traffic to
traverse an intermediate gateway router. In addition, Eth-
ernet switches are slow to react when the host changes
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locations, due to out-of-date cached entries in switch for-
warding tables.

Mobile IP: Mobility across layer-two boundaries
changes the client IP address. Solutions like Mobile-
IP [28] allow the server to direct traffic through an in-
termediate “home agent,” at the expense of additional in-
frastructure for redirecting traffic and the performance
degradation from “triangle routing.”

In contrast, SCAFFOLD allows a host’s address to
change as it moves, allowing each network to use hier-
archical addressing for better routing scalability, while
minimizing the “stretch” experienced by data traffic.

2.2.2 Virtual Machine Migration

Online services increasingly run as virtual machines
(VMs) hosted on physical servers. VM migration is a
promising way to consolidate server capacity and move
services closer to their users. VM migration is concep-
tually simpler than client mobility because (i) migration
is planned, whereas client mobility is unplanned, and (ii)
the service can include its own mechanisms for VM mi-
gration without changing the client software. However,
existing techniques remain clumsy:

Gratuitous ARP: Today, a VM cannot easily migrate
outside of its layer-two subnet, since the VM retains its
IP address. For faster migration within a layer-two sub-
net, the VM can send a broadcast packet—such as an un-
solicited ARP (Address Resolution Protocol) response—
to update the forwarding tables in the learning switches.
The gratuitous ARP also serves to update other hosts if
the VM’s MAC address has changed, at the expense of
the overhead of the extra broadcast traffic.

Mobile IP: Migrating across layer-two boundaries
raises the same challenges as with client mobility, and
the same limitations of existing solutions like Mobile IP.

In contrast, SCAFFOLD allows a server to change its
address as it moves, allowing ongoing client traffic to
flow directly to the new location while simultaneously
directing future client requests to the new address.

2.2.3 Failover, Maintenance, and Load Shedding

Servers frequently go down (due to equipment failures or
planned maintenance), or need to shed load by directing
some traffic to other service instances. Continuing a con-
nection on another service instance relies on application-
specific solutions (e.g., shared connection state at the
servers, or clients with mechanisms like HTTP “range
requests” that can fetch the remainder of a response).
Still, the network also plays an important role in direct-
ing client traffic to the new service instance:

DNS: After detecting a service failure, a client can re-
resolve the service name to an IP address. However, the
new DNS lookup may return the address of the failed

service instance, due to caching at the local DNS server
(and some servers’ practice of not obeying TTLs).

ARP spoofing: To hide failures from clients, the re-
placement server can perform “ARP spoofing” to assume
the IP address of the old server. However, ARP spoofing
only works for servers within the same subnet, and forces
the new server to assume the load and function of an en-
tire machine, rather than a specific service or connection.

Instead, when a SCAFFOLD client detects a failure
(either through a local timeout or an explicit FAIL mes-
sage), the network stack re-resolves the serviceID to
a registered instance of the service. This ensures fast
failover to a live service instance, for applications that
can take advantage of this. In contrast to today’s solu-
tions, SCAFFOLD has a single mechanism for handling
a wide range of failures (e.g., connection, server process,
host, rack, and datacenter), both planned and unplanned.

3 Service-Centric Abstractions
In this section, we describe how services are named, and
discuss the abstraction provided by SCAFFOLD sockets.

3.1 Service Naming
A serviceID is a fixed-length, location-independent name
for a particular service. Each serviceID maps to a group
of processes, or instances, that are functionally equiva-
lent. A serviceID could correspond to the contents of a
Web site, a partition in a storage system, or an individual
file. If an application needs to communicate with a par-
ticular instance (e.g., a sensor in a particular location),
these individuals should be named separately. System
designers identify the functionality to name.1

Like other architectures with flat names, SCAFFOLD
does not dictate how clients learn of serviceIDs, but en-
visions that they are typically sent or copied between ap-
plications, much like URIs, with little human interven-
tion. We purposefully do not specify how to map human-
readable names to serviceIDs, which removes the legal
tussle over naming from the basic architecture [5, 35].
Based on their own trust relationships, users may turn to
different directory services, search engines, or social net-
works to resolve human-readable names to serviceIDs.

In pushing naming into the network architecture, serv-
iceIDs can provide a basis for secure end-to-end commu-
nication. In particular, if serviceIDs are self-certifying
identifiers [18]—cryptographic hashes of services’ pub-
lic keys—one end-point could then verify that the other
end-point is an authorized instance of its requested ser-
vice. If desired, the public key named by these service-

1For example, our port of the memcached key-value store, described
in §7, uses one name for all memcached servers (to identify resources
that can host key-value partitions) and an additional name for each par-
tition (so clients can identify where keys are stored).
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TCP/IP SCAFFOLD
s = socket(PF_INET) s = socket(PF_SCAFFOLD)
bind(s,locIP:port) bind(s,locSrvID)

// Datagram: // Unbound Datagram:
sendto(s,IP:port,data) sendto(s,srvID,data)

// Stream: // Bound flow:
connect(s,IP:port) connect(s,srvID)
send(s,data) send(s,data)

Table 1: Comparison of BSD socket protocol families: sockaddr
data structures in TCP/IP include both an IP address and port
number, while SCAFFOLD structures include only a serviceID.

IDs also can be used to establish encrypted and authenti-
cated connections between end-points as well. This does
come at the cost of increased serviceID length (256 bits
vs. 96 bits), however. On the other hand, today’s Internet
provides end-to-end authentication only at the applica-
tion layer (e.g., through SSL and certificate authorities),
which has limited its deployment.

3.2 SCAFFOLD Sockets
Given the primacy of services in SCAFFOLD, applica-
tions should be able to initiate communication with ser-
vice names. Correspondingly, SCAFFOLD defines a
new BSD protocol family (PF_SCAFFOLD) that refers
to serviceIDs, rather than the network addresses of the
IP protocol family (PF_INET). The BSD sockets API’s
flexibility allows such new protocol families to be de-
fined and implemented with relative ease, and SCAF-
FOLD therefore retains compatibility with the BSD API
itself. Table 1 highlights the main differences in the use
of the above protocol families.

Allowing network addresses to change: The net-
work addresses of the communicating endpoints are not
exposed to applications. Hiding addresses from ap-
plications is crucial since these addresses may change
over time if a session or process moves. Other high-
level socket interfaces hide addresses from applications;
for example, the Java socket API accepts a hostname,
and the new WebSockets API [37] in many browsers
accepts a URL. However, these interfaces simply per-
form DNS resolution before using a standard BSD socket
connect, and thus do not allow addresses to change
over the lifetime of the connection.

Connecting unreliable flows: To support flow affin-
ity, SCAFFOLD must distinguish between a new flow—
one that is not yet bound to a service instance—and a
bound flow. As such, both reliable streams and unreli-
able datagrams use a connection-establishment mecha-
nism (unlike today’s “connectionless” UDP). Thus, we
use the term connection to refer to a bound flow, inde-
pendent of its reliability.

flags 

Source Header 

hostAddr sockID serviceID 

Destination Header 

hostAddr sockID serviceID 

Figure 1: The SCAFFOLD packet header, with a decoupling
between who (the serviceID), where (the hostAddr), and which
connection (the socketID). Other fields like packet length, version
number, and checksum are omitted for simplicity.

Updating the network: To better handle service
churn, the bind and close calls interact with the net-
work to register and unregister serviceIDs, respectively.
For example, if host B no longer provides service X (i.e.,
the application on B closes its socket bound to serviceID
X), the network stack unregisters X . This tight coupling
between the end-host stack and the network ensures the
membership of the service group remains up-to-date.

4 SCAFFOLD Architecture
This section elaborates on the two central aspects of
SCAFFOLD’s design: support for replication through
anycast with flow affinity, and support for dynamism
through resource registration and in-band address rene-
gotiation. We restrict our consideration to the local area,
expanding to wide-area networking in the next section.

To support service naming and flow-based anycast,
SCAFFOLD introduces a new packet header. Every
packet includes the serviceID, network address, and
socket identifier for both the source and destination, as
shown in Figure 1; these fields are fixed-length for fast
processing in hardware. The address field includes a
“host” address that identifies the network attachment
point (in the RFC 1498 [30] sense), so that a host can
attach to multiple networks simultaneously or migrate a
connection from one interface to another. These fields
add up to between 40 and 92 bytes in length, depending
on whether clients include service names and whether
serviceIDs are self-certifying for secure communication.

4.1 Flow-Based Anycast
SCAFFOLD supports flow-based anycast through suc-
cessive refinement of the first packet in a flow, rather
through a single lookup in a global name-resolution ser-
vice. The first packet of a flow is directed to a service
router that selects a service instance (with a hostAddr),
and the receiving host then assigns the socketID. Suc-
cessive refinement improves scalability by scoping churn
in the set of hosts offering a service, particularly in the
wide-area setting as discussed in Section 5.

The network consists of service routers (that re-
solve serviceIDs to hostAddrs) and network routers (that
forward packets based on their destination addresses).
While one device could perform both functions, the
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X	  

HostAddr C 

Y	  
HostAddr A 

U	   A	   p1	  
X	   B	   p2	  
X	   C	   p2	  
Y	   D	   p2	  

Service 
Router 

Network 
Routers 

HostAddr B 

HostAddr D 

X	  

U	  
A	   p1	  
B	   p4	  
C	   p3	  
D	   p5	  
__	   p2	  

A	   p1	  
B	   p3	  
C	   p3	  
D	   p3	  
__	   p2	  

1	   2	  

1	  

2	  

3	  

2	  

1	  

3	  
4	  
5	  

Figure 2: SCAFFOLD network elements, including service
routers (that resolve a serviceID to a hostAddr) and network routers
(that forward packets based on the hostAddr). Also shown are the
forwarding tables, with a numbered output port for each entry.

HostID C 

Y 
HostID A 

HostID D 

X 

U A p 

X B r SRC 

DST 

X B 

U A p 
1 

2 

3  HostID B 

X 

X 

U A p SRC 

DST 

SYN 
SYN 

SYN‐ACK 
U 

4  ACK 

Figure 3: Establishing a bound flow by routing and resolving the
first packet based on destination serviceID.

two roles are conceptually distinct, as illustrated in Fig-
ure 2. Upon initiating a connection to service X (via
a connect call), the client U’s network stack sends a
SYN packet with the destination serviceID X and the des-
tination address unset (i.e., all 0s), as shown in step (1)
in Figure 3. The network ensures that the SYN packet
reaches an instance of service X (e.g., on server B).

Service router: Upon receiving a packet with an unre-
solved destination address, the network router directs the
packet to a service router for resolution. For each serv-
iceID, the service router stores addresses corresponding
to one or more service instances. In Figure 2, serv-
iceID X maps to hosts B and C. Upon receiving the SYN
packet, the service router looks up X to set the destina-
tion hostAddr (e.g., destination B in step (2)). Our imple-
mentation supports randomized selection among match-
ing entries using a weighted proportional split, although
other policies are feasible. While service routers handle
the first packet of each flow, the remaining packets are
typically handled by network routers.

Network router: Like today’s IP routers, a SCAF-
FOLD network router forwards packets based on the
destination address, except for two additional functions.

Socket 
Descriptor 

Local  
Service ID 

Remote 
Service ID 

5  U  X 

9  U      X 

47  U         Y 

User-Space 
Process 

Network 
Stack 

Socket 
State 

Local 
SrvID 

Local 
Addr : SockID 

Remote 
SrvID 

Remote 
Addr : SockID 

bound  U  A : p  X  B : r 

bound  U  A : q  X  C : r 

connec4ng  U  A : r  Y  ‐‐‐ 

Figure 4: End-host state on client host A, with network addresses
hidden from applications.

First, network routers have a special forwarding entry to
direct unresolved packets to a service router; otherwise,
the network routers forward packets based on the desti-
nation address. Second, as an optimization for fast fail-
ure notification, the network router may send a failure
message (indicating that the service instance is unreach-
able) back to the sender (akin to ICMP host unreachable)
if no end-host matches the address. This is discussed in
§4.2. A typical network would consist mostly of network
routers, with a smaller set of service routers.

End-host network stack: SCAFFOLD’s network
stack hides network addresses from applications, as il-
lustrated in Figure 4 which shows the state for client A.
Both the application and the network stack know the lo-
cal serviceID (e.g., U), set when an application binds a
socket. The stack’s socket state also includes a local ad-
dress and socketID (e.g., A:p) that the application does
not see. The hostAddr A is unique to the host’s physical
interface, while the socketID (e.g., p) is a locally-unique
identifier the stack assigns when creating the socket. This
socketID allows the stack to demultiplex packets to the
appropriate socket after the connection is established;
this practice is unlike today’s sockets that demultiplex
packets based on the addresses and port numbers of both
end-points of the connection, making it difficult for ei-
ther end-point to change its identifiers.

The server’s network stack identifies the receiving ap-
plication and assigns a socketID. Upon receiving the
SYN packet from client A, the server B’s network stack
demultiplexes the packet to an application based on the
destination serviceID X . The stack also assigns a locally-
unique socketID, r, and includes the hostAddr and sock-
etID in the return SYN-ACK packet shown in step (3) of
Figure 3. Upon receiving the SYN-ACK, host A con-
siders the socket bound and records the remote iden-
tifier B : r, before sending an ACK packet. The ACK
packet, like subsequent packets in the connection, trav-
els directly to the remote end-point without traversing the
service router. This completes the three-way connection
establishment for a bound flow.
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Event End-Host Trigger Network Action
join Interface link up add 〈hostaddr, loc〉 at net routers

send joined(hostaddr) to host
leave Link/host down, rem 〈addr, ∗〉 from net routers

or host unavailable rem 〈∗, addr〉 from srv routers
register Socket bound add 〈srvid, addr〉 at srv routers
unregister Socket closed rem 〈srvid, addr〉 from srv routers

Table 2: End-host updates to network and service routers

The three-way handshake is overkill for services that
need only a simple datagram abstraction, where the client
sends a single datagram to the destination serviceID
and the receiver optionally sends a response. SCAF-
FOLD can support unbound datagrams in two different
ways. First, each end-point can send packets with both
addresses unset, requiring resolution through a service
router in both directions. This avoids per-flow state in
the end-host network stack, at the cost of higher stretch
for return traffic. Second, the client can send packets
with the source address set—much like the setup phase
for bound flows—which allows the recipient to bypass
serviceID resolution in the return direction.

4.2 Automatic Updates Under Dynamics
A service instance (or its underlying host) can easily fail
or move to a new location, and these changes may be
planned (e.g., planned maintenance or virtual machine
migration) or unplanned (e.g., server failure or client mo-
bility). When changes happen, SCAFFOLD automati-
cally updates the service and network routers to direct
new flows correctly. In addition, the end-host stack up-
dates the remote end-points of ongoing connections with
a new hostAddr and socketID. This tighter integration
between services, hosts, and the network allows SCAF-
FOLD to support seamless service in the face of change.

4.2.1 Updating the Service and Network Routers

When a host interface joins or leaves the network, or a
host starts or stops supporting a service, the routers are
updated automatically, as summarized in Table 2.

Join: When an interface connects to the network, a
hostAddr is assigned and the network routers are updated
to forward packets toward this address. For example,
each network router in Figure 2 has a forwarding-table
entry for hostAddr B.

Register: When an application binds on a serviceID,
the network stack registers the service instance with the
service router. For example, the service router in Figure 2
has an entry mapping serviceID X to hostAddr B.

Unregister: When an application closes a socket,
the stack unregisters the serviceID with the service
router. If the application on server B performs a close,
the service router deletes the mapping of serviceID X to
hostAddr B, and directs future flows to host C.

Leave: When an interface fails or shuts down, the net-
work routers are updated to stop forwarding packets to
the associated hostAddr. In addition, the service router is
updated to remove all entries for this hostAddr. For ex-
ample, as part of shutting down host B, the network stack
could “leave” the network to explicitly update the service
and network routers. When the interface fails, heartbeat
messages can detect the failure and trigger the “leave”
event on the host’s behalf.

The tight integration between the end-host and the net-
work ensures a fast response to both planned and un-
planned changes. Automatically updating the service
and network routers prevents accidental inconsistencies
that can easily arise in configuring load balancers and
DNS servers in today’s networks. These join/leave and
register/unregister primitives also allow an interface to
change addresses when connecting to a new location
(i.e., by having the end-host stack register the service-
IDs with the new hostAddr), or a host to start receiving
traffic on an alternate interface (i.e., by registering the
serviceIDs with the other interface’s address).

Our architecture leaves network designers with many
ways to handle join/leave and register/unregister events,
ranging from a centralized controller to a flooding pro-
tocol. For example, our prototype uses a logically-
centralized controller to install table entries in both the
network and service routers, by intercepting join/leave
and register/unregister events sent by the end-host stack.

Securing registration: SCAFFOLD must secure the
control path that governs serviceID registration, as other-
wise an unauthorized entity could register itself as host-
ing the service. Even if end-points authenticate one an-
other during connection setup using self-certifying serv-
iceIDs, faulty registrations would serve as a denial-of-
service attack. To prevent this attack, the registering end-
point must prove that it is authorized to host the serv-
iceID. This can be accomplished using similar authen-
tication mechanisms, based on self-certifying serviceIDs
(where the registering host either knows the service’s pri-
vate key itself, or has its own keypair certified by the
service’s key). On the other hand, local networks can
employ simpler mechanisms as well, e.g., place the con-
trol channel on a virtually-isolated network, as opposed
to relying on cryptographic security.

4.2.2 Updating the End-Points of Ongoing Flows

SCAFFOLD uses a single mechanism—in-band address
renegotiation, akin to TCP Migrate [32]—to allow an
ongoing connection to continue across many different
sources of churn (e.g., connection or virtual-machine mi-
gration, client mobility, and load balancing for multi-
homed hosts). When a service instance fails, SCAF-
FOLD can also support failover to another service in-
stance, for applications that want it.
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In-band signaling to change addresses: When an
end-point moves, its network stack sends an RSYN
packet—with the new hostAddr and socketID in the
source field—to the remote end-point. Upon receiv-
ing the RSYN, the stationary end-point includes the new
identifiers in its socket table, and generates a new sock-
etID for its end of the connection before sending an
RSYN-ACK. Creating new socketIDs at both end-points
ensures the renegotiation process is robust to out-of-
order packets, even when an end-point changes loca-
tion multiple times. The mobile end-point completes the
renegotiation process by sending a final ACK to acknowl-
edge the new socketID of the stationary end-point. The
end-points retransmit the RSYN and RSYN-ACK packets
until they are acknowledged.

To ensure our protocol handles complex “corner
cases” correctly, we modeled our solution in Promela and
used SPIN [13] to verify correctness under packet loss,
out-of-order packet delivery, and end-points that move
multiple times. In addition to detecting subtle bugs in
our original design, using Promela/SPIN helped us iden-
tify several properties needed for correctness: (i) The
stationary host must be able to determine if an RSYN
message reflects a migration that occurred before or af-
ter the last migration of the same remote end-point; (ii)
the RSYN message must be idempotent across multiple
address changes; and (iii) if an end-point moves to mul-
tiple locations at once (as can happen with a VM copy or
if there is a network partition), the stationary host must
commit to only one of the locations. In particular, the
first two observations drove our decision to change the
socketID of the stationary end-point.2

Failover to another service instance: If a service
instance fails (e.g., the application process crashes or
closes a socket), the network stack can respond to in-
coming packets with a FAIL message that quickly noti-
fies the remote end-point about the failure. (Optionally,
if the physical machine fails, the incident network router
could generate a FAIL message.) After detecting a failure
(via a FAIL message or a local timeout), an end-point can
initiate a new connection with another service instance
by initiating a three-way RSYN handshake with an un-
resolved destination address (i.e., all 0s). The RSYN
packet would go to a service router that would then se-
lect a service instance. Of course, failover only makes
sense for certain kinds of applications, where the server

2The situation is more complicated if both end-points change lo-
cations at the same time—e.g., a mobile client moves while a server
virtual machine migrates—because neither end-point’s RSYN packet
would successfully reach the other end-point. We plan to handle “dou-
ble migration” by having the end-point’s old location detect RSYN
messages sent to a recently-moved end-point. For example, if a VM
migrates, the network stack of old physical host could direct the mo-
bile client’s RSYN to the VM’s new physical location. Extending our
design to handle “double migration” is part of our ongoing work.
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Figure 5: Wide-area SCAFFOLD network architecture and con-
nection establishment.

instances share enough state to continue the connection,
or the client has enough information to request the re-
mainder of a response (e.g., the “range request” feature
in HTTP). As such, SCAFFOLD sockets have a “want
failover” option that allows the client to request failover
semantics from the server; this option triggers the setting
of a “want failover” flag in every packet.

Securing migration and failover. Malicious, off-path
entities should not be able to disrupt ongoing connec-
tions by spoofing migration (RSYN), failover (FAIL), or
connection close (FIN/RST) messages. To prevent such
attacks, SCAFFOLD uses long, randomly-chosen sock-
etIDs for its connections. Because SCAFFOLD only ac-
cepts control messages that include the correct destina-
tion socketID, off-path attackers must guess this sock-
etID through brute-force enumeration. While equiva-
lent to the use of randomized sequence numbers in TCP
and randomized transactions IDs in DNS, SCAFFOLD’s
socketID should be larger than these identifiers (e.g., 48
bits), as the same socketID may persist throughout the
life of a connection. To secure against migration attacks
by on-path entities, we can use the authenticated chan-
nels provided by self-certifying socketIDs.

5 SCAFFOLD in the Wide Area
Until now, we have described SCAFFOLD running in a
single datacenter network, where the service routers can
resolve all serviceIDs and the network routers can reach
all host addresses. This section expands our architecture
to the wide area, to support name resolution and routing
between multiple SCAFFOLD networks. We first dis-
cuss how service systems and autonomous systems man-
age the global name and address spaces, respectively.
Then we describe how routers forward packets based on
successively-refined addresses, and conclude with a dis-
cussion of wide-area resolution of serviceIDs.

5.1 Service and Autonomous Systems
Much like today’s Internet, a SCAFFOLD network con-
sists of multiple administrative domains. However, we
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have separate notions of the administrative domains that
manage serviceIDs and hostAddrs, respectively:

Service Systems (SSes) manage their own part of the
serviceID namespace, ensuring that each serviceID is
unique. SSes are identified by a globally-unique SS iden-
tifier (ssID) that forms the high-order bits of the serv-
iceID. SSes are responsible for providing the authorita-
tive name resolution for their serviceIDs. So, while serv-
iceIDs are location-independent (in the sense that service
instances may reside anywhere), the allocation and reso-
lution of serviceIDs is hierarchical to ensure serviceIDs
are unique and that the resolution process is scalable.

Autonomous Systems (ASes) consist of routers and
hosts visible to the external world as a single entity
(e.g., a datacenter, enterprise, or residential access net-
work), just as in today’s Internet. Each AS is iden-
tified by a globally-unique, routable network address
(ASAddr) that serves as the basis of wide-area routing.
This ASAddr appears in the high-order bits of a SCAF-
FOLD network address, ensuring that the entire address
ASAddr:hostAddr is globally unique.

An SS typically corresponds to an administrative en-
tity, while ASes connote a physical network location. For
example, we envision a single organization (like Google,
Microsoft, or Amazon) may have a single SS, but have a
separate AS for each of its datacenters, as shown in Fig-
ure 5. The SS would ensure serviceID uniqueness and
perform authoritative resolution, while one or more ASes
host the service instances that comprise a service. This
logical separation supports a wide range of usage scenar-
ios and business arrangements—from full in-house nam-
ing, resolution, and hosting, to moving each aspect to a
(possibly different) third-party provider.

5.2 Hierarchical Network Addresses
A SCAFFOLD network address consists of a fixed-
length ASAddr and a locally-meaningful hostAddr. In
practice, an AS could subdivide the hostAddr bits to
introduce multiple levels of hierarchy, as is common
in today’s IP networks. For simplicity, we focus on a
two-level hierarchy where wide-area routing relies only
on the ASAddr and intra-AS routing relies only on the
hostAddr. This model offers several advantages:

Scalable inter-domain routing: Wide-area routing
operates on fixed-length ASAddrs, similar to the ap-
proach in AIP [1]. This leads to smaller routing tables
and simpler packet forwarding, compared with the many
variable-length IP prefixes in today’s routing system.

Hiding intra-AS service dynamics: Wide-area reso-
lution of a serviceID need only set the ASAddr, rather
than the hostAddr of a specific service instance. As ser-
vice instances (un)register or move within an AS, global
name resolution does not have to change—unless an AS
no longer has any hosts offering a service.

Successive refinement of destination addresses: A
sender does not necessarily need to know the destina-
tion hostAddr—just the destination ASAddr. The sender
can leave the hostAddr unset (i.e., all 0s), allowing the
service router in the destination AS to select a specific
service instance.

Consider the example in Figure 5, where a single SS
α consists of three ASes (say, datacenters). Suppose
AS 1 handles wide-area requests for serviceIDs managed
by the SS. Upon receiving a SYN packet for destination
serviceID X , the service router in AS 1 identifies a suit-
able destination AS (e.g., AS 2) and changes the destina-
tion ASAddr accordingly. The packet then reaches AS 2,
where a network router forwards the unresolved packet to
the local service router. The service router sets the des-
tination hostAddr to one of the local instances of service
X , as shown earlier in Figure 3. Upon receiving the SYN
packet, the host sends a SYN-ACK with its hostAddr and
socketID. The SYN-ACK packet and all future packets (in
both directions) bypass the resolution process, and travel
directly between the sending and receiving ASes through
network routers.

5.3 Scalable Resolution of Service IDs
To resolve a serviceID, a sender must know which AS to
use as the initial target of the SYN packet; this AS should
have a service router with up-to-date information about
where the current service instances are located. SCAF-
FOLD does not dictate how the sender identifies this AS,
and several different approaches are possible. A wide-
area implementation of SCAFFOLD could leverage ex-
isting approaches, such as:

Hierarchical name resolution (like today’s DNS):
Name resolution could proceed through a hierarchical
collection of name servers, similar to today’s DNS. The
name-resolution servers in the hierarchy would corre-
spond to the parties responsible for managing and del-
egating portions of the serviceID namespace.

Dissemination via wide-area routing (similar to
LISP-ALT [8]): Each SS could have name resolution
performed by service routers in one or more ASes, and
these ASes could announced the ssID into a global rout-
ing protocol. For example, the SS α in Figure 5 could
announce its ssID from ASes 1, 2, and 3, ensuring un-
resolved packets reach a nearby AS that can identify a
(possibly different) AS providing the desired service.

Authoritative service routers must be updated when
mappings from serviceIDs to ASAddrs change. SCAF-
FOLD does not dictate how this intra-SS update proto-
col is implemented, and different SSes may employ dif-
ferent techniques. One possibility is to run a decentral-
ized update protocol between service routers, so that lo-
cal changes are disseminated hierarchically, propagating
between ASes only if they affect wide-area resolution.
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IP Header Field SCAFFOLD Purpose Limit
SRC, DST ports serviceID 65K
Type of Service flags n/a

Bits 0-8, IP address ASAddr 256
Bits 8-16, IP address hostAddr 256

Bits 16-32, IP address sockID 65k

Table 3: SCAFFOLD’s usage of IPv4 header and transport ports.

6 Prototype Implementation

An architectural design like SCAFFOLD would be in-
complete without incorporating implementation experi-
ence. Through a working prototype, we can (i) evaluate
the performance and scalability of the architecture and
learn of unforeseen design issues, (ii) explore incremen-
tal deployment strategies, and (iii) port applications in
order to evaluate the effort involved, and learn whether
applications can benefit from SCAFFOLD abstractions.

To implement SCAFFOLD, we chose an incremental
approach that leverages existing platforms like Click [16]
for the end-host stack, and OpenFlow/NOX [19, 12] for
network elements. These platforms allow us to rapidly
prototype and evaluate our implementation. Moreover,
OpenFlow gives us a path towards hardware implemen-
tation in commercial switches, by leveraging (and per-
haps influencing) the ongoing development of a standard
platform. A further goal is to deploy SCAFFOLD on a
variety of platforms—such as Linux, Mininet [21], Plan-
etLab [29], VINI [4], and GENI [9]—for larger-scale
evaluations. Since some of these platforms only support
user-space operation, we chose to implement our end-
host stack so that it runs in both user and kernel space—
to achieve both deployability and performance.

6.1 OpenFlow and IPv4 Headers
Since OpenFlow currently supports only IPv4, our pro-
totype repurposes the 20 bytes of the IPv4 header, plus
the combined 4 bytes of the source and destination
ports of transport headers to implement the SCAFFOLD
protocol. SCAFFOLD’s use of IPv4 header fields is
shown in Table 3, alongside the resulting scalability lim-
its. Using the high-order bits of the IP address as the
ASAddr allows SCAFFOLD to use prefix-based IP rout-
ing across the wide-area (and BGP for inter-domain route
updates). The combination of ASAddr and hostAddr per-
mits (again, prefix-based) IP routing in intra-domain set-
tings as well, which enables mixed deployments using
both IP and SCAFFOLD routers. A future implementa-
tion would use its own native headers, but requires more
flexible header matching envisioned for future releases
of OpenFlow.

6.2 OpenFlow/NOX-based Network
The resolution and routing components of the SCAF-
FOLD network are based on the OpenFlow-enabled

OpenVSwitch software switch [27], which allows the dy-
namic insertion of packet-matching rules in its forward-
ing tables. SCAFFOLD proactively installs destination-
based resolution and forwarding rules in the service and
network routers. Service routers resolve packets by
matching on the serviceID and selecting a service in-
stance according to its rule set. Network routers forward
based solely on matching the destination address, which
simplifies the routing table and minimizes the rule space
required.

At the heart of the SCAFFOLD network implementa-
tion is a centralized controller running on the NOX net-
work control platform [12]. The controller application,
about 5000 lines of python and 2000 lines of C++, imple-
ments the network API for managing host and service-
related events, computes forwarding rules and resolu-
tion policies, manages SCAFFOLD router rule installa-
tion, and monitors network load. While the SCAFFOLD
architecture is amenable to distributed control, using a
centralized scheme not only simplifies the implementa-
tion, but provides a basis for exerting tighter control over
network-service interaction and making joint decisions
on traffic engineering and service selection.

While essential to our goal of incremental implemen-
tation and deployability, OpenFlow did not always ful-
fill our needs. The SCAFFOLD anycast primitive re-
quired judicious modification of OpenVSwitch code. We
needed a way to choose a specific rule out of an equiv-
alent set to select a service instance, instead of always
choosing the highest priority rule, which OpenFlow does
by default. Our solution reinterprets the priority as a
proportional weight for rules matching the same serv-
iceID. This allowed us to implement weighted propor-
tional split for resolving packets according to a specified
distribution. While non-trivial, the new feature required
only 400 lines of code. Note that the OpenFlow roadmap
includes a proportional rule selection mechanism.

6.3 Fast and Portable End-Host Stacks
In designing the host stack, we sought to retain compat-
ibility with the BSD sockets API to simplify porting of
applications. Adding support for SCAFFOLD sockets to
applications should not be much more work than adding,
e.g., IPv6 support. Early experience in porting applica-
tions support this view, as detailed in §7.

The SCAFFOLD stack was implemented for a Linux
2.6.34 kernel and consists of 16792 lines of C++ code
shared between the user-space and kernel-space versions.
Because SCAFFOLD blurs the layer boundaries between
network and transport, and because we required the stack
to run in both user space and kernel, we had to re-
implement much functionality. This includes network-
layer functionality, as well as unreliable datagram and
reliable stream transport (i.e., UDP and TCP adapted for
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SCAFFOLD). Although our two versions of the stack
share most of their logic, there are some differences be-
tween them. The user-space version’s socket library ex-
poses a BSD sockets API and communicates, via IPC,
with the SCAFFOLD stack running as a user process.
The kernel version, on the other hand, implements the
backends of the BSD socket system calls in a kernel
module, which hooks directly into the SCAFFOLD stack
running as a kernel thread. Both the user stack and kernel
thread are implemented using Click [16]. In both modes,
the stack intercepts SCAFFOLD packets by attaching it-
self to the network device.

In comparison to a traditional TCP/IP stack, the
SCAFFOLD stack has a tighter host/network integra-
tion. BSD socket calls, like bind and close, trigger
network interaction (e.g., service registration). Hooking
such interaction into socket calls makes it transparent to
applications, and makes porting easier. Further, seam-
less handling of failover, migration, and mobility require
a decoupling of connection management from transport
protocols, along with new connection states, and an API
call to initiate failover/migration. The BSD sockets API
supports such extensions using its ioctl interface, but
their usage is optional in applications.

Our end-host stack currently lacks certain features and
performance optimizations, such as window scaling for
TCP. We expect a future “production quality” kernel-
only implementation to reuse much of the existing TCP
code in, e.g., the Linux kernel.

7 Evaluation
We aim to show that our architecture design is both prac-
tical and functional in terms of: (i) portability—namely
that SCAFFOLD support can be added to applications
with relative ease; (ii) performance—that our stack and
routers perform reasonably and that there are no inher-
ent limitations to our design; and (iii) dynamism—that
both planned and unplanned dynamism (e.g., failures,
migration, and maintenance) can be handled gracefully
and without unnecessary disruption to services.

To this end, we start by reviewing the effort needed to
bring SCAFFOLD support to applications. We then con-
tinue with describing our experimental setup, followed
by micro-benchmarks that show the performance of our
end host stack. We then move on to a number of illustra-
tive experimental scenarios that highlights the dynamism
of SCAFFOLD. Finally, we conclude with two case stud-
ies: The first shows that SCAFFOLD can support virtual
machine migration across broadcast domains, something
not possible with today’s infrastructure. The second ex-
plores how the abstractions offered by SCAFFOLD can
be used to make memcached, a popular back-end service,
simpler and more robust.

Application Version Codebase Changes
Iperf 2.0.0 5,934 240
TFTP 5.0 3,452 90

PowerDNS 2.9.17 36,225 160
Wget 1.12 87,164 207

Elinks browser 0.11.7 115,224 234
Mongoose web server 2.10 8,831 425

Memcached server 1.4.5 8,329 159
Memcached client 0.40 12,503 184

Apache Benchmark / APR 1.4.2 55,609 244

Table 4: Applications currently ported to SCAFFOLD, as well as
the size (in lines of code) of the original codebase and the extent of
changes needed for porting.

7.1 Application Portability
We have added SCAFFOLD support to a range of net-
work applications to demonstrate the ease of adoption.
Because many network applications today come with
support for both IPv4 and IPv6, they already have the
necessary abstractions to simplify the addition of another
family. Hence, adding SCAFFOLD support typically in-
volves adding a sockaddr_sf socket address along-
side the IPv4 and IPv6 equivalents. Further modifica-
tions involve handling SCAFFOLD specific errors from
socket calls, and adding failover/migration handling for
applications that need such functionality.

Table 4 gives an overview of the applications we have
ported and the number of lines of code changed. These
numbers are higher than strictly necessary: we were not
attempting to be parsimonious, and we often added wrap-
pers for common BSD socket calls to support both user-
and kernel-level versions of our stack. The user level
redirects the calls to a SCAFFOLD socket library instead
of the standard system libraries, and thus necessitates
renaming these functions to avoid name conflicts (e.g.,
bind becomes bind_sf, and so forth). In our experi-
ence, adding SCAFFOLD support typically takes a few
hours to a day, depending on application complexity.

7.2 Experimental Setup
The test environment we use for our experiments mod-
els a simple datacenter setup, and consists of a nine-node
topology with up to five hosts, two network routers, one
service router and a network controller, as illustrated in
Figure 6. While obviously small in scale, we use this
setup to demonstrate some of the dynamics one encoun-
ters in real settings. All links are switched GigE. Each
node has 2 quad-core 2.3 GHz CPUs and three GigE
ports, running Ubuntu 9.04. Host kernels are patched
with support for Click version 1.8.0.

7.3 Host-stack and Router Performance
Table 5 shows the TCP performance of the SCAFFOLD
host-stack implementation, both kernel and user-level,
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Figure 6: Experimental setup for evaluation.

Mean Stdev
Stack Mbit/s Mbit/s

TCP/IP 929.8 5.3
SCAFFOLD (kernel) 596.6 17.0
SCAFFOLD (user) 110.1 16.1

SCAFFOLD (user with tracing) 82.3 8.8
Router Kpkts/s Kpkts/s

Service (Resolution) 12.99 0.17
Network (Data forwarding) 13.25 1.47

Table 5: The table shows a performance comparison of the
TCP/IP stack compared to the SCAFFOLD stack’s reliable stream
protocol, running in both user and kernel space. The table also
shows processing rates for the service and network routers for
64 byte packets.

in comparison to the Linux TCP/IP stack. The num-
bers were acquired while performing five 10 second TCP
transfers between two hosts in our setup using IPerf.

Although the SCAFFOLD stack lacks a number of
TCP optimizations, performance is within two-thirds of
the native TCP/IP stack when running in kernel mode.
This performance degradation arises because our current
implementation lacks TCP window scaling and uses a
64 KB window size. Therefore, after slow start and ad-
ditive increase, we are limited by the under-sized receive
window, and a single flow cannot claim the full band-
width of our links. This is not fundamental to SCAF-
FOLD: we are in the process of adding such optimiza-
tions, and this performance gap should narrow greatly.

To make sure a single flow can claim the full band-
width, we introduced bandwidth shaping at hosts. Shap-
ing allows a configurable maximum rate of packets to
be transmitted and, therefore, competing flows share the
limited bandwidth rather than claiming chunks of the un-
used bandwidth.

Table 5 also shows the packet processing rate of our
service and network routers. The multiple-rule match-
ing in service routers has a slightly higher overhead.
While included for completeness, these measurements
primarily evaluate the performance of the OpenVSwitch
software router; hardware implementations would see
orders-of-magnitude improvements.
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Figure 7: High availability with two clients and two servers,
showing how a client is transparently redirected to another service
instance as failure happens.

7.4 High Availability with Failover
SCAFFOLD’s handling of churn allows services to
maintain high availability in the face of failures. This
is illustrated by our experiment where we force a server
process to fail and ongoing flows are seamlessly redi-
rected to the remaining server instances.

Figure 7 shows the TCP goodput of two Wget [38]
clients (hosts 1 and 2 in Figure 6), being individ-
ually served by two server instances of the same
mongoose [22] Web service (hosts 3 and 4). Band-
width shaping limited the maximum rate to 5 Mbps3.
The clients each download a 200 MB file, with client 2
starting around 70 seconds after client 1. They are ini-
tially directed to one service instance each, due to the
load balancing scheme. At the 170 second mark, we
trigger a failure in one of the server processes, causing
client 2 to failover to the server instance serving client
1. The failover completes within a couple of round trip
times (i.e., the time needed to complete an RSYN hand-
shake). Client 1 finishes its request at the 500 second
mark and client 2 can then utilize the full bandwidth for
the remainder of its request.

7.5 Load Balancing and Shedding
To demonstrate SCAFFOLD’s ability to scale a dis-
tributed service using anycast resolution we ran an ex-
periment representative of a typical front-end web server
farm as shown in Figure 8. A network delay of 100 ms
is applied to emulate link latency and improve visualiza-
tion. Without this delay, requests would complete too
quickly and provide little insight into the request load
characteristics of the system. In the experiment, from
time 0 to 40 seconds, 2 Wget clients issue 3 HTTP re-
quests per second to download a 100KB file from a web
service running mongoose. As the request load in-
creases on Server 1, we add additional servers: Server 2
at the 5 second mark and Server 3 at the 10 second mark.
SCAFFOLD automatically balances requests across the

3The spikes in throughput seen as clients initiate their requests is
due to bandwidth shaping—the shaper needs a number of packets to
learn the correct rate at which to shape the traffic.
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Figure 8: Replicated service support with 2 clients and 3 servers
showing load-balancing as additional servers are added, request
shedding for planned maintenance, and the residual effects of lin-
gering requests with draining.

new service instances as the active request count of the
three servers begins to converge. At 20 seconds, Server
3 is gracefully shut down for planned maintenance by
closing its listening socket and by invoking a system call
that results in a FAIL messages being sent to all of its ac-
tive connections. This allows Server 3 to quiesce quickly
(80% of active connections shed in < 1 second). The ac-
tive connections are then re-resolved to the other server
instances as seen by the subsequent increases in requests
at Servers 1 and 2. In contrast, the current practice of
server draining for maintenance, which is shown starting
at the 30 second mark on Server 2, delays the server shut-
down time by the longest lived connection which finishes
at the 53 second mark.

7.6 VM Migration
Today, it is not possible to seamlessly migrate virtual
machines across layer-2 subnets, but SCAFFOLD en-
ables such functionality with its in-band signaling. We
performed a proof-of-concept experiment using Virtual-
Box [34], in which we migrated guest VMs across host
machines on different network segments. The connec-
tions were maintained across migration, with a transfer
pause ranging from 0.5 to 2.5 seconds. This delay is
primarily due to our need to externally signal the VM
after migration occurs so that it cycles its network inter-
face to get assigned a new SCAFFOLD address. Virtu-
alBox, like most VMs, uses gratuitous ARP for layer-2
migration; going forward, we will modify the VM mi-
grate code to signal its kernel of an “interface up” event
instead.

7.7 Dynamic Memcached
Memcached is a popular backend service that provides
a distributed hash table to clients (typically web servers)
with get/set key-value semantics. To use memcached,
clients need to maintain a list of memcached servers that
make up the hash-table storage. They use this list to de-
cide which server is responsible for a certain partition of
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Figure 9: Memcached Server Throughput. Server 2 joins the net-
work after around 15 seconds; server 1 leaves after 30 seconds. In
both cases, the network transparently redistributes the data parti-
tions (named by unique serviceIDs) over the available servers.

the keyspace, and hence should be contacted for particu-
lar keys. Memcached itself does not provide any means
to keep this server list up-to-date, and many deployments
perform manual administration.

With SCAFFOLD, the server selection and keyspace
partitioning can be made more dynamic by moving them
from clients to the network, and delegating their man-
agement to the service router and controller. To enable
this memcached dynamism, we name partitions by serv-
iceIDs, and clients issue requests to partitions instead of
specific servers. Hence, a server responsible for a spe-
cific partition is resolved via the service router when a
request is made. When a new memcached server reg-
isters with the network, the controller reassigns some
partitions from existing servers to the new one (like Dy-
namo’s tokens [6]). When an instance is unregistered (or
overloaded), the controller reassigns all (or some) of its
partitions simply by changing rules in the service routers.

Figure 9 demonstrates the behavior of memcached on
SCAFFOLD with three clients and two servers. In the
experiment, three clients issue set requests (each with a
data object of 1024 bytes) with random keys at the to-
tal rate of 14000 requests per second on average. Re-
quests are sent using SCAFFOLD’s unbound datagram.
In the beginning, only one memcached server is operat-
ing. Around the 15 second mark, a second server comes
online, while the first server leaves the network after
30 s. Figure 9 illustrates that, with the network reassign-
ing partitions following server churn, the system reacts
quickly to dynamism and each server receives its appro-
priate fraction of requests.

8 Conclusions
Accessing large, distributed, replicated services is a
hallmark of today’s Internet; yet, the underlying net-
work does not support these applications well. As we
have outlined in this paper, the central challenges of
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service-centric networking are replication and dynamism
that span across the classic problems in networking—
naming, addressing, and routing. SCAFFOLD takes
a “clean-slate” approach to the problem by supporting
flow-based anycast with service instances and rethink-
ing the division of labor between end-hosts and the net-
work. We believe that SCAFFOLD is a promising ap-
proach that can make future services easier to design, im-
plement, and manage, as evidenced by our prototype and
the set of applications we have ported to SCAFFOLD.
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