
Reinforcement Learning Without

Rewards

Umar Ali Syed

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Robert E. Schapire

September 2010

c© Copyright by Umar Ali Syed, 2010.

All Rights Reserved

Abstract

Machine learning can be broadly defined as the study and design of algorithms

that improve with experience. Reinforcement learning is a variety of machine learning

that makes minimal assumptions about the information available for learning, and, in

a sense, defines the problem of learning in the broadest possible terms. Reinforcement

learning algorithms are usually applied to “interactive” problems, such as learning

to drive a car, operate a robotic arm, or play a game. In reinforcement learning, an

autonomous agent must learn how to behave in an unknown, uncertain, and possibly

hostile environment, using only the sensory feedback that it receives from the environ-

ment. As the agent moves from one state of the environment to another, it receives

only a reward signal — there is no human “in the loop” to tell the algorithm exactly

what to do. The goal in reinforcement learning is to learn an optimal behavior that

maximizes the total reward that the agent collects.

Despite its generality, the reinforcement learning framework does make one strong

assumption: that the reward signal can always be directly and unambiguously ob-

served. In other words, the feedback a reinforcement learning algorithm receives is

assumed to be a part of the environment in which the agent is operating, and is in-

cluded in the agent’s experience of that environment. However, in practice, rewards

are usually manually-specified by the practitioner applying the learning algorithm,

and specifying a reward function that elicits the desired behavior from the agent can

be a subtle and frustrating design problem. Our main focus in this thesis is the de-

sign and analysis of reinforcement learning algorithms which do not require complete

knowledge of the rewards. The contributions of this thesis can be divided into three

main parts:

• In Chapters 2 and 3, we review the theory of two-player zero-sum games, and

present a novel analysis of existing no-regret algorithms for solving these games.

Our results show that no-regret algorithms can be used to compute strategies

iii

in games that satisfy a much stronger definition of optimality than is commonly

used.

• In Chapters 4 and 5, we present new algorithms for apprenticeship learning, a

generalization of reinforcement learning where the true rewards are unknown.

The algorithms described in Chapter 5 will leverage the game-theoretic results

from Chapters 2 and 3.

• In Chapter 6, we show how partial knowledge of the rewards can be used to

accelerate imitation learning, an alternative to reinforcement learning where the

goal is to imitate another agent in the environment.

In summary, we design and analyse several new algorithms for reinforcement learn-

ing that do not require access to a fully observable or fully accurate reward signal,

and by doing so, add considerable flexibility to the traditional reinforcement learning

framework.

iv

Acknowledgements

Rob Schapire’s positive qualities as an advisor are too numerous to briefly sum-

marize, but I will try. He is always calm, cool, and relaxed. When a problem seems

insoluable, he does not worry. When we are facing a paper deadline, he does not panic.

He never said anything negative about my research that was not also constructive

and tactfully phrased. He has an ability to quickly process my often rambling and

ill-formed ideas, and then immediately offer a helpful suggestion. Someone else once

described Rob’s talent best: He does not say much, but he never, ever says anything

wrong. I was extremely lucky to have had Rob Schapire as a mentor, teacher and

friend, and my only regret is that I am unlikely to have a collegue of his caliber again.

It was great fun to work along side my fellow students Jordan Boyd-Graber, Berk

Kapicioglu, Jonathan Chang, Indraneel Mukherjee, Miro Dudik, and Melissa Carroll.

I hope we stay in touch, both personally and professionally. I am particularly grateful

to Ronny Luss for suggesting that I study lexicographic optimality, a topic which

eventually grew into a large part of this thesis.

Although our research together does not appear in this thesis, I loved working with

Jen Rexford, Alex Fabrikant, Howard Karloff and Gordon Wilfong on BGP puzzles.

I especially benefited from the mentorship of Jen Rexford, who had endless tolerance

for my divided and distracted attention.

I was fortunate to have had two rewarding summer internships while at Princeton.

Jason Williams, my mentor at AT&T, was an excellent model for me of a successful

young researcher. He is driven and focused, but with a sunny and friendly disposition,

and I hope to emulate his career. Srini Bangalore, Patrick Haffner and Mazin Gilbert

also gave me terrific advice. At Microsoft, I was lucky to work closely with Nina

Mishra, Aleks Slivkins, and Alan Halverson, who are as passionate about research as

they are talented. I learned much more from them than they probably realize.

I am grateful to the members of my committee, Dave Blei, Warren Powell, Michael

v

Littman and Yael Niv, for their suggestions on improving this thesis, which I have

tried to heed closely.

My research would not have been possible without the generous funding of the

National Science Foundation (under grant IIS-0325500), and a Wallace Memorial

Fellowship in Engineering.

Abu, Ammi and Safia can attest that my only aspiration as a young man was to

sleep in as late as possible. They helped me aim a little higher, and my long and

circuitous journey to a Ph.D. would not have been possible without their love and

support. I guess one never repay the debt that is owed to one’s parents, but this

thesis is my small attempt to do so.

As challenging as it is sometimes to be a Ph.D. student, it is even more difficult

to be married one. It certainly requires more patience. Sana suffered so many of my

long, late and uncertain nights at the office that she must have felt as though she was

married to a ghost, but she responded only with love, grace and good humor. I am

blessed to married to her. As small token of my appreciation, I will also acknowledge

our two cats, Cosmo and Bonsai.

vi

Say, “I do not ask you for any reward. All I seek is to help you find

the right path to your Lord, if that is what you choose.”

Quran 25:57

vii

Contents

Abstract . iii

Acknowledgements . v

1 Overview 1

1.1 Notational Conventions . 6

2 Two-Player Zero-Sum Games 7

2.1 Basic Theory . 9

2.2 Normal Form versus Extensive Form 13

2.3 Example: A Classification Game . 16

2.4 Algorithms for Solving Games . 19

2.4.1 Linear Programming . 19

2.4.2 Fictitious Play . 22

2.4.3 Multiplicative Weights Algorithm 23

2.5 Restricted Games . 32

2.6 Other Related Work . 35

2.7 Conclusion . 36

3 Lexicographic Optimal Strategies 37

3.1 Motivation . 39

3.1.1 Rock-Paper-Scissors . 39

3.1.2 Chess . 40

viii

3.1.3 Classification Game . 41

3.2 Definition of Lexicographic Optimality 42

3.2.1 Formal Definition . 43

3.3 Properties of the Lexicographic Optimum 44

3.3.1 Existence of a Lexicographic Optimal Strategy 45

3.3.2 Equivalence of All Lexicographic Optimal Strategies 47

3.3.3 Alternate Characterization of Lexicographic Optimum 48

3.4 Approaches to Computing Lexicographic Optimal Strategies 50

3.5 Divergence of MW Algorithm . 53

3.6 Convergence of MW Under a Strictness Condition 57

3.6.1 Sketch of Proof . 58

3.6.2 Complete Proof . 60

3.7 Algorithm-Based Sufficient Conditions 64

3.7.1 Satisfiability of Conditions . 68

3.7.2 Proof of Convergence . 70

3.7.3 Convergence of Rows . 71

3.7.4 The MW(λ) Algorithm . 73

3.8 Other Related Work . 76

3.9 Conclusion . 77

4 Mimicking Approach to Apprenticeship Learning 78

4.1 Motivation . 80

4.2 Markov Decision Processes . 82

4.2.1 Computing an Optimal Policy 86

4.2.2 Computing Value of a Policy 93

4.3 Apprenticeship Learning Framework 95

4.4 Feature-Matching Algorithms . 96

4.4.1 Projection Algorithm . 99

ix

4.4.2 Blackwell Algorithm . 101

4.5 Reduction to Classification . 106

4.5.1 Preliminaries . 107

4.5.2 Details of the Reduction . 108

4.5.3 Guarantee for Any Mentor . 110

4.5.4 Guarantee for Good Mentor 115

4.6 Other Related Work . 121

4.7 Conclusion . 123

5 Game-Theoretic Approach to Apprenticeship Learning 124

5.1 Modified Apprenticeship Learning Framework 126

5.1.1 Feature Assumptions . 127

5.1.2 Game-Theoretic Objective . 128

5.2 MWAL Algorithm . 130

5.2.1 Comparison to Feature-Matching Algorithms 132

5.2.2 Absence of a Mentor . 133

5.3 Complete Analysis of MWAL . 134

5.3.1 Approximation Version of MWAL 134

5.3.2 Guarantee for Approximation Version 135

5.4 Issues Related to Features . 140

5.4.1 Prior Knowledge . 140

5.4.2 Rescaling Units . 142

5.5 Outputting Stationary Policies . 146

5.5.1 Strict Case . 147

5.5.2 Dual Methods . 147

5.6 Algorithm Based on Linear Programming 155

5.7 Experiments . 158

5.7.1 MWAL Policy Better Than Mentor Policy 159

x

5.7.2 LPAL Converges Faster Than MWAL 160

5.7.3 Suboptimal Mentors . 162

5.8 Other Related Work . 164

5.9 Conclusion . 165

6 Imitation Learning with a Value-Based Prior 167

6.1 Motivation . 169

6.2 Problem Formulation . 170

6.3 Representing the Value-Based Prior 172

6.4 Algorithm and Analysis . 173

6.4.1 Optimization Procedure . 174

6.4.2 Analysis . 179

6.4.3 Unknown Transition Function 180

6.5 Synthetic Experiments . 181

6.5.1 Maze Environments . 182

6.5.2 Comparison to Other Methods 182

6.5.3 Sensitivity to Policy Value . 184

6.6 Application to Dialog Modeling . 186

6.6.1 Graphical Model . 187

6.6.2 EM Algorithm . 189

6.6.3 ECM Algorithm . 192

6.6.4 Target Application . 194

6.6.5 Experiments . 195

6.7 Other Related Work . 198

6.8 Conclusion . 199

7 Conclusion 200

xi

Chapter 1

Overview

Machine learning can be broadly defined as the study and design of algorithms that

improve with experience. Machine learning algorithms have been enormously suc-

cessful in domains as varied as data mining, natural language understanding, and

molecular biology.

“Machine learning” is really an umbrella term that covers several approaches to

designing learning algorithms, each with its own strengths and weaknesses. To illus-

trate these differences, consider a specific problem which machine learning algorithms

are often used to solve: filtering email spam. Different kinds of learning algorithms

make different assumptions about what information is available for spam filtering. In

supervised learning, one assumes that a human is willing to supply a data set contain-

ing many emails, each manually labeled “spam” or “non-spam”. In semi-supervised

learning, only some of the emails in the data set need to be labeled — a useful ad-

vantage because the cost of labeling an example is typically expensive. Similarly, in

active learning, a very small number of emails are labeled in an incremental fashion,

and only at the request of the learning algorithm.

Reinforcement learning is an approach to learning that makes minimal assump-

tions about the information available for learning, and, in a sense, defines the problem

1

of learning in the broadest possible terms. Reinforcement learning algorithms are not

usually applied to “static” problems, like predicting the content of an email, but more

often to “interactive” problems, such as learning to drive a car, operate a robotic arm,

or play a game. In reinforcement learning, an autonomous agent must learn how to

behave in an unknown, uncertain, and possibly hostile environment, using only the

sensory feedback that it receives from the environment. As the agent moves from one

state of the environment to another, it receives only a reward signal — there is no

human “in the loop” to tell the algorithm exactly what to do. The goal in reinforce-

ment learning is to learn an optimal behavior that maximizes the total reward that

the agent collects.

As an example, consider the task of learning to navigate a car through an obstacle

course. A typical reinforcement learning algorithm will begin this task with little

knowledge of the environment or the ultimate goal. As the algorithm executes, the

car is driven by the algorithm, randomly at first, but then more purposefully over

time, while receiving rewards for its actions. It may, for instance, receive negative

reward for hitting obstacles and positive reward for crossing the finish line. By using

this feedback, after many trials the algorithm will have learned a driving behavior

that leads the car to the finish line while avoiding as many obstacles as possible. This

learning process closely resembles — and was in fact motivated by — the way humans

and animals learn. Indeed, the reinforcement learning framework is often used as a

descriptive model in psychology and neuroscience.

Despite its generality, the reinforcement learning framework does make one strong

assumption: that the reward signal can always be directly and unambiguously ob-

served. In other words, the feedback a reinforcement learning algorithm receives is

assumed to be a part of the environment in which the agent is operating, and is in-

cluded in the agent’s experience of that environment. However, in practice, rewards

are usually manually-specified by the practitioner applying the learning algorithm,

2

and specifying a reward function that elicits the desired behavior from the agent can

be a subtle and frustrating design problem. Our main focus in this thesis is the de-

sign and analysis of reinforcement learning algorithms which do not require complete

knowledge of the rewards. The contributions of this thesis can be divided into three

main parts:

• In Chapters 2 and 3, we review the theory of two-player zero-sum games, and

present a novel analysis of existing no-regret algorithms for solving these games.

Our results show that no-regret algorithms can be used to compute strategies

in games that satisfy a much stronger definition of optimality than is commonly

used.

• In Chapters 4 and 5, we present new algorithms for apprenticeship learning, a

generalization of reinforcement learning where the true rewards are unknown.

The algorithms described in Chapter 5 will leverage the game-theoretic results

from Chapters 2 and 3.

• In Chapter 6, we show how partial knowledge of the rewards can be used to

accelerate imitation learning, an alternative to reinforcement learning where the

goal is to imitate another agent in the environment.

We now review our contributions in greater detail.

Game theory is the study of the behavior of agents who strategically interact to

achieve their goals. Game theory has had a huge impact on many fields, such as eco-

nomics, psychology, and evolutionary biology. It has been particularly influential in

machine learning, because many machine learning algorithms can be interpreted from

a game-theoretic perspective. At the same time, many problems in game theory can

be efficiently solved by techniques that were originally designed for machine learning

problems. Chapter 2 contains a review of the key ideas and results from the theory

of two-player zero-sum games, a type of game in which the goals of two agents are

3

diametrically opposed. We also describe several algorithms for computing optimal

strategies in zero-sum games.

In Chapter 3, we present a novel analysis of existing no-regret algorithms for

computing optimal strategies in games. Our analysis will reveal that no-regret al-

gorithms are particularly well-suited to computing strategies that take advantage of

weaknesses in an adversary’s strategy, a property known as lexicographically optimal-

ity. We prove that, under certain technical assumptions about the structure of the

game, a well-known no-regret algorithm called the MW algorithm can be used to

compute lexicographically optimal strategies in zero-sum games. In fact, under these

assumptions, it can be used to compute an optimal strategy that is pure, a partic-

ularly simple type of strategy. We also describe a set of basic conditions which, if

satisfied by any algorithm (MW or otherwise), allow the technical assumptions about

the game to be relaxed.

Beginning in Chapter 4, we turn to the problem designing reinforcement learn-

ing algorithms that do not require complete knowledge of the rewards. Many of our

contributions are made within the apprenticeship learning framework, a recently pro-

posed generalization of reinforcement learning. In apprenticeship learning, the goal

of the learning agent is to earn a large amount of reward relative to the behavior of

an observed mentor, though the true rewards are unknown.

Existing apprenticeship learning algorithms are premised on mimicking the men-

tor, and in Chapter 4 we present algorithms that take this approach. We offer two

main contributions. First, we present an apprenticeship learning algorithm that, like

existing algorithms, assumes that the true rewards belong to certain linear family,

but is considerably faster and simpler than existing algorithms. Next, we remove

the linearity assumption and prove that apprenticeship learning is possible even in a

situation where almost nothing is assumed about the rewards. To accomplish this, we

reduce apprenticeship learning to a supervised learning problem. Not surprisingly, in

4

both cases, the goodness of the behavior learned by our algorithm depends strongly

on the goodness of the behavior exhibited by the mentor.

In Chapter 5, instead of developing apprenticeship learning algorithms that mimic

the mentor, we apply the game-theoretic results from Chapters 2 and 3. Our approach

is to assume that the unknown rewards are controlled by an adversary, which allows us

to use the MW algorithm to solve the apprenticeship learning problem in substantially

less time than existing algorithms. We explain how our game-theoretic formulation,

and especially our results about lexicographic optimality, imply that the MW algo-

rithm can sometimes learn considerably better behavior than that demonstrated by

the mentor, a property that mimicking-based apprenticeship learning algorithms do

not share. In fact, the algorithm can be easily modified to learn a certain “con-

servative” behavior in case no mentor demonstrations are available. Moreover, our

results about lexicographic optimality imply that the MW algorithm is particularly

insensitive to the “units” in which the rewards are expressed. Our game-theoretic

formulation also yields a straightforward algorithm, based on linear programming,

that can be used to quickly solve the apprenticeship learning problem in cases where

an explicit description of the environment is given.

The objective of apprenticeship learning, as in reinforcement learning, is to max-

imize reward, and all the algorithms we have discussed thus far are designed for this

objective. But in some applications, it is more sensible to imitate the mentor ex-

actly, regardless of how much reward that behavior earns. Unfortunately, even the

mimicking-based apprenticeship learning algorithms described in Chapter 4 are not

designed to exactly reproduce the behavior exhibited by the mentor. In Chapter 6,

we develop an algorithm whose explicit goal is to imitate the mentor. What role can

rewards play in such a problem setting? Our approach is to assert an a priori belief

that the mentor is behaving in a manner that earns large reward, and use this prior

knowledge to guide our imitation of the mentor’s behavior. In a sense, this approach

5

turns the apprenticeship learning problem on its head: instead of using the mentor’s

behavior to learn the true rewards, we use our best guess of the true rewards to learn

the mentor’s behavior. We apply our method to the problem of modeling the behavior

of users in a spoken dialog system, who typically behave in a goal-directed manner,

and show that our algorithm accelerates the learning of their behavior.

In summary, our main contribution in this thesis is to design and analyse several

new algorithms for reinforcement learning that do not require access to a fully ob-

servable or fully accurate reward signal, and by doing so, add considerable flexibility

to the traditional reinforcement learning framework.

1.1 Notational Conventions

A variable written in bold lower case, such as p, denotes a vector, while a variable

written in bold upper case, such as M, denotes a matrix. We write p(i) for the ith

component of the vector p, and M(i, j) for the entry in the ith row and jth column of

the matrix M. In general, bold is used to distinguish between scalar and non-scalar

quantities.

To reduce notational overhead, we assume that, when taking the product of a

vector and a matrix, the vector is suitably transposed, though it may not be written

that way. So if p is an n×1 vector and M is an n×m matrix, then pM means pTM.

We write M(i,q) to denote the ith row of the column vector Mq, and M(p, j) to

denote the jth column of the row vector pM.

The expressions Ex∼D[f(x)] and E[f(x) | x ∼ D] are equivalent; they both denote

the expected value of the function f(x) when x is drawn from the distribution D.

Likewise, the expressions Prx∼D(E) and Pr(E | x ∼ D) both denote the probability

of an event E when x is drawn from the distribution D.

6

Chapter 2

Two-Player Zero-Sum Games

Consider the following problems:

• A chess enthusiast is playing a game against a difficult opponent. Can she play

in a manner that guarantees that she will win, no matter how well her opponent

plays?

• A criminal is being interrogated by the police, who have no hard evidence

against him. They offer to set him free if he agrees to testify against his ac-

complice, who is being held separately by the police, and who is given the same

offer. Without knowing what his accomplice will do, should the criminal testify?

• An entrepreneur is trying to decide whether to start a business in a difficult

economy. If many other people also start businesses at the same time, their col-

lective spending will ensure strong profits for everyone. Should the entrepreneur

start a new business?

All of these problems share several elements: They involve several agents, each

with her own goal. The agents’ joint behavior determines whether those goals are

achieved. In some cases (like chess), an agent can achieve her goals only at the expense

of the other agents, while in other cases (like an economy), many agents can achieve

7

good outcomes. The study of how agents behave in these kinds of situations is the

subject of game theory.

In this chapter, we focus on a particular kind of game, called a two-player zero-sum

game. As the name suggests, these kinds of games have only two agents, or players.

They are called “zero-sum” because the two players have diametrically opposing goals.

The behavior of a player in the game is called her strategy. We are concerned with

determining the best, or optimal, strategy for each player in a zero-sum game. If

there is a recurring theme in game-theoretic literature, it is this: the appropriate

definition of an optimal strategy is a very subtle issue, because the consequences of

one player’s strategy depend strongly on which strategies the other players are using.

We describe one possible definition of optimality in this chapter, while Chapter 3 is

largely devoted to exploring a refinement of this definition.

In Section 2.1 we introduce the basics of the theory of two-player zero-sum games:

their representation, the objectives of the players, and main results. We state von

Neumann’s famous minimax theorem, a result which founded the field of game theory.

In Section 2.2, we describe an alternate representation of two-player zero-sum

games, called the extensive form, which is more natural for many classes of games,

including familiar board games like chess. Our discussion of the extensive form will

also give us an opportunity to describe a large class of games for which there are

“pure” optimal strategies, an idea we will return to in Chapters 3 and 5.

We go on in Section 2.3 to describe a particular two-player zero-sum game inspired

by a problem from machine learning. This game establishes the connection between

machine learning and game theory, a connection we will extend in Chapter 5.

In Section 2.4 we describe algorithms for computing optimal strategies in two-

player zero-sum games. One of these, called the multiplicative weights algorithm, we

will describe in considerable detail, as it features prominently in Chapters 3 and 5,

and serves as the basis for many of our algorithms.

8

The study of two-player zero-sum games is part of a vast literature on game theory.

The earliest book-length treatment is by von Neumann and Morgenstern [138]. Other

classical references are by Dresher [22], Myerson [84] and Owen [92].

2.1 Basic Theory

Perhaps the simplest examples of a two-player zero-sum game is the popular children’s

pastime “Rock-Paper-Scissors”. In this game, each player chooses, without the other

player’s knowledge, one of three possible moves : Rock, Paper, or Scissors. After the

moves have been selected, they are revealed, and the winner is determined according

to simple set of rules that have a playful interpretation: Rock “breaks” Scissors,

Scissors “cuts” Paper, and Paper “covers” Rock. If the same move is played by both

players, the game is declared a draw. To allow for a more interesting analysis, one

usually assumes that each player chooses her move according to the following two-step

process: First, she chooses a distribution over the moves, and then she selects a move

randomly according to that distribution.

One way to explicitly describe the rules of this game is with a game matrix, as

shown in Figure 2.1. The two players are called the row player and column player

respectively. Each entry of the matrix indicates the outcome of the game for a pair of

moves — a “0” means that the row player wins, a “1” means that the column player

wins, and a “1/2” indicates a draw.

Column player
Row player Rock Paper Scissors

Rock 1/2 1 0
Paper 0 1/2 1

Scissors 1 0 1/2

Figure 2.1:
Game matrix for Rock-Paper-Scissors

9

Formally, a two-player zero-sum game is defined by an n × m matrix M with

entries in [0, 1]. A strategy for the row player is a distribution on the rows of M,

and a strategy for the column player is a distribution on the columns of M. A

distribution concentrated on a single row or column is called a pure strategy ; if this is

not necessarily the case, then it is called a mixed strategy. In the game, each player

chooses a strategy independently, and for any pair of strategies p and q, the payoff

of the game is pMq (where the distributions p and q have been written as vectors).

Clearly, the payoff is just the expected value of an entry in the matrix M if the row

index is chosen according to p and the column index is chosen according to q. The

row player desires a small payoff, while the column player desires a large payoff —

this is what makes the game “zero-sum”.

Let us examine the game matrix in Figure 2.1 from the perspective of the row

player. Clearly, due to the circular nature of the game, no strategy can guarantee a

win. So how should the row player choose a strategy? One approach she can take is

to make certain assumptions about how the column player will behave. For example,

if these two players have played Rock-Paper-Scissors many times before, and the

column player played Scissors most often during these earlier games, then the row

player can exploit this tendency in the current game by choosing Rock. In general, if

the row player has any prior knowledge about the column player’s behavior, then that

knowledge can be used to inform the row player’s choice of strategy. Of course, this

approach presupposes that such prior knowledge is available, and that the column

player will continue to play in a predictable manner.

By contrast, the game-theoretic approach to this problem is to assume the oppo-

nent will be perfectly adversarial. That is, the row player imagines that the column

player is endowed with foresight about which strategy the row player will choose1,

1It is important to realize that the column player’s foresight extends only to the row player’s
strategy, i.e. the distribution over rows selected by the row player. The column player is not
presumed to be able to predict which move will be drawn from this distribution. That knowledge
would obviously be much more powerful.

10

and will always choose a strategy that does as well as possible against it. This op-

timal “counter-strategy” is called a best response. The main advantage of the game-

theoretic approach is that it has no risk of making overly optimistic assumptions

about the column player’s behavior.

Under the assumption that the column player will choose a best response, the row

player will want to choose a strategy that achieves the following objective:

min
p∈P

max
q∈Q

pMq (2.1)

where P is the set of all row strategies, and Q is the set of all column strategies.

By inspecting the matrix in Figure 2.1, it is easy to see that the minimum in (2.1)

is realized by the uniform distribution on all the rows of M. Let p∗ be this strategy.

For the game described by Figure 2.1 we have

min
p∈P

max
q∈Q

pMq = max
q∈Q

p∗Mq = 1/2

In other words, if the row player chooses the strategy p∗, then, under the assumption

that the column player will choose a best response, the expected outcome of the game

is a draw, and no strategy can guarantee a better outcome for the row player.

Now let us examine the same game from the perspective of the column player, and

also assume that her opponent will choose a best response. Then the column player

will want to choose a strategy that achieves the following objective.

max
q∈Q

min
p∈P

pMq (2.2)

Again, it is easy to see that the maximum in (2.2) is realized by the uniform distri-

11

bution on the columns of M. Let q∗ be this strategy. We have

max
q∈Q

min
p∈P

pMq = min
p∈P

pMq∗ = 1/2

We have shown that, in the Rock-Paper-Scissors game, the following equality

holds:

min
p∈P

max
q∈Q

pMq = max
q∈Q

min
p∈P

pMq (2.3)

Based on the preceding discussion, this equality should seem somewhat surprising.

To review, we examined the game from two perspectives. First, we supposed that the

row player must choose a strategy before the column player, who gets to choose her

strategy with knowledge of the row player’s choice. Then we reversed the situation,

and supposed that the row player chooses a strategy with knowledge of the column

player’s choice. One might expect that the second situation would be better for the

row player (and worse for the column player) than the first situation, but in this case,

as (2.3) indicates, it did not matter.

Remarkably, the equality in (2.3) holds for every game matrix M. The common

value of both sides of the equality is called the game value, and is denoted v∗ (so

in the case of Rock-Paper-Scissors, v∗ = 1/2). A row strategy p∗ that realizes the

minimum in (2.3) is called a minimax strategy, while a column strategy q∗ that

realizes the maximum in (2.3) is called a maximin strategy ; both strategies are called

optimal strategies. Clearly we have p∗Mq ≤ v∗ for all column strategies q ∈ Q, and

pMq∗ ≥ v∗ for all row strategies p ∈ P.

Equation (2.3) is known as the minimax theorem [137], and is the most funda-

mental result in the theory of two-player zero-sum games. In Chapter 3, we will

repeatedly make use of the minimax theorem in order to obtain our results. We

prove the minimax theorem in Section 2.4.3.

A two-player zero-sum game is a special case of an n-player noncooperative game,

12

and the minimax theorem is special case of the fundamental result due to Nash [86],

which proved that every noncooperative n-player game has at least one Nash equilib-

rium. The universal existence of Nash equilibria has made this concept enormously

influential, particularly in the field of economics.2

2.2 Normal Form versus Extensive Form

Rock-Paper-Scissors is a well-known game, and serves as a useful illustration of basic

game-theoretic concepts. But in some ways it is quite unusual. Each player acts just

once, when choosing a strategy at the start of the game, and the game’s outcome is

completely determined by those initial choices.

On the other hand, many familiar recreational games, such as chess, go, and poker,

proceed sequentially, with the players alternating turns: one player makes a move,

which changes the state of the game, then the other player responds, and the process

repeats until a state is reached that determines the game’s outcome.

These kinds of games are most naturally represented as extensive (or tree) form

games, while the matrix-based representation described in the previous section is

called the normal form. Figure 2.2 illustrates the game of chess in extensive form.

Each node of the tree represents a possible state of the game, uniquely determined

by the sequence of moves made by both players to that point in the game. There is

an arc from node x to node y if it is possible for the player whose turn it is in node x

to make a single move and change the state of the game into node y. Each player in

the game is arbitrarily assigned the role of either the “minimizing” or “maximizing”

player. The leaves of the tree are the final states of the game, labeled with the

appropriate payoffs: −1 to indicate that the minimizing player wins, +1 to indicate

that the maximizing player wins, or 0 to denote a draw. A game of chess can be

2Nash’s result relies heavily on Kakutani’s fixed point theorem [53]. When told of Nash’s result,
von Neumann famously dismissed it, saying “That’s trivial, you know. That’s just a fixed point
theorem.” [85]

13

viewed as walk from the root of this (enormous) tree to one of its leaves, with the

players alternating the decision of which node to move to next.

Figure 2.2:
Extensive form representation of chess. (This is just a portion of the entire game

tree.)

Chess is a game of perfect information, which simply means that both players

are completely aware of everything that occurs in the game. Many games cannot be

described this way — poker is an example, since each player is unaware of her oppo-

nent’s cards. Such games are called imperfect information games, and the extensive

form can be modified to represent them as well, essentially by grouping together nodes

of the tree that a player cannot distinguish.

Despite their apparent differences, every extensive form game can be converted

into an equivalent normal form game, via a procedure we will now sketch for the case

of perfect information games. The key step is to have the players choose all their

moves at the start of the game, rather than as the game goes along. This is done by

having each player choose a move function at the start of the game that maps each

node in the game tree to a move for that node. Note that, at least theoretically, this

14

is without loss of generality; it makes no difference to have the players decide far in

advance which move they would prefer to make in each situation, including situations

that may never actually arise during the course of the game.

The game matrix M in the resulting normal form representation has one row

for each possible move function for the minimizing player, and one column for each

possible move function for the maximizing player. The value of M(i, j) is the payoff

of the game if the minimizing player chooses her moves according to her ith move

function, and the maximizing player chooses her moves according to her jth move

function.

Note that each move function is a pure strategy in the game defined by the matrix

M, and in normal form games we generally allow players to choose mixed strategies,

which in this case are distributions over move functions. This may seem like more

power than is really necessary, and in fact it is, as the next theorem attests.

Theorem 2.1. In every extensive form game of perfect information, each player has

a pure optimal strategy.

Proof. The technique used to prove this result is called “backwards induction”. We

will construct a pure optimal strategy for the minimizing player; the other case is

identical. Consider a node x where it is the minimizing players turn to move, and

let y1, . . . , yk be the children of x. Let Gx be the extensive form game defined by the

subtree rooted at node x, and define Gy1 , . . . , Gyk similarly. Suppose we have shown

that, for all i ∈ {1, . . . , k}, the minimizing player in Gyi has a pure optimal strategy

(this is clearly true if y1, . . . , yk are all leaves). Then a pure optimal strategy for the

minimizing player in Gx is one that moves, in node x, to the node yi such that the

value of the game Gyi is smallest, and thereafter follows a pure optimal strategy for

Gyi .

Theorem 2.1 tells us that, for a large family of games, pure optimal strategies

15

always exist. In Section 3.6, we describe an algorithm that can, in some cases, find

an optimal strategy that is pure, even in very large games. In Section 5.5.1, we

describe a situation where a pure optimal strategy is preferred.

Theorem 2.1 is one of the earliest results in game theory, although its origins

are a bit mysterious. This result is almost universally attributed to Zermelo [149],

but Schwalbe and Walker [116] point out that this attribution is incorrect, and that

Zermelo proved no such thing. (The most probable explanation for the confusion is

that Zermelo’s original paper was written in German.)

2.3 Example: A Classification Game

Thus far, our examples of games have all literally been “games”, the kind people play

for amusement. While these kinds of games represent an interesting and non-trivial

research area, game theory has far broader applicability. One of the main themes of

Chapter 5 will be to explore and extend the connection between game theory and

reinforcement learning. To illustrate how such a connection can arise, in this section

we will describe how a well-known problem in machine learning can be reduced to

finding an optimal strategy in a certain game. This reduction was first described by

Freund and Schapire [30].

The problem of classification is one of the most well-studied in machine learning.

Consider the following archetypical instance of this problem: classifying emails as

spam or non-spam. The goal is to find a binary-valued function H, called a hypothesis,

that accurately classifies emails. Ideally, given an email x, we want H(x) = +1 if x

is spam, and H(x) = −1 otherwise.

When designing a learning algorithm for this problem, the first step is to choose a

form for the hypothesis H. A common choice is to let H be a weighted combination of

a set of binary-valued base hypotheses H. For example, we may have a base hypothesis

16

hw ∈ H for every word w, where hw(x) = +1 if email x contains the word w, and

hw(x) = −1 otherwise. A hypothesis Hq is a weighted combination of H if it classifies

an email by taking a weighted majority vote, with respect to a distribution q, of all

the base hypotheses in H. More formally

Hq(x) = sign

(∑
h∈H

q(h)h(x)

)
= sign (Eh∼q[h(x)])

Intuitively, a good distribution q will assign more weight to words that are highly

correlated with spam (e.g. “viagra”), and less weight to words that are highly corre-

lated with non-spam (e.g. the names of your friends).

In a typical email classification scenario, a learning algorithm is given a training

set X of emails, in which each email is called an example, that have all been manually

labeled as spam or non-spam. The learning algorithm uses this training set to help it

choose a particular weighted hypothesis Hq. For example, under certain reasonable

assumptions about how the training set was obtained, a hypothesis Hq that has small

error on the training set will have small error on the set of all emails, including those

not in the training set [57]. And this error, called the generalization error, is the

performance measure we actually care about.

There are other proxies for generalization error besides training error. Define the

margin µ(Hq, x) of a hypothesis Hq on an example x ∈ X to be

µ(Hq, x) =

(∑
h∈H

q(h)h(x)

)
· c(x) = Eh∼q[h(x)] · c(x)

where c(x) ∈ {−1,+1} is the correct labeling of the example x. Note that the sign

of the margin indicates whether the example was correctly classified by Hq (positive

if the classification was correct, and negative otherwise), while the magnitude of the

margin basically reflects the confidence Hq has in its classification. It is well-known

that a hypothesis for which the minimum margin over the training set is as large as

17

possible will have small generalization error [113].

It turns out that a largest-minimum-margin hypothesis corresponds to a maximin

strategy in a certain game. The game is defined by a matrix M, with rows corre-

sponding to training set examples and columns corresponding to base hypotheses, as

follows:

M(x, h) =


1 if h(x) = c(x)

0 otherwise.

A maximin strategy q∗ for the column player in this game has the following

property:

max
q

min
p

pMq = min
p

pMq∗ = min
p
Ex∼p,h∼q∗ [1{h(x) = c(x)}]

= min
x∈X

Eh∼q∗ [1{h(x) = c(x)}] (2.4)

where 1{·} ∈ {0, 1} is the indicator function, and where the last equality holds

because the minimum is realized by a distribution concentrated on a single example.

Note that the quantity in (2.4) is the minimum margin of the hypothesis Hq∗ on the

training set X , shifted and scaled to lie in the interval [0, 1] instead of [−1,+1].

So in this game, the column player’s strategy q specifies a hypothesis Hq, which

in turn determines a margin for each example in the training set. The row player’s

strategy p specifies a distribution on the examples. The game’s payoff is the average

margin of Hq with respect to p. Thus, because q∗ is a maximin strategy, the hypoth-

esis Hq∗ has the largest minimum margin on the training set of any hypothesis that

is a weighted combination of H.

18

2.4 Algorithms for Solving Games

A topic of great historical interest in game theory, and one that is major focus of

Chapters 3 and 5, is computing the optimal strategies for the row and column player

in a game. This is also called solving the game. We will describe several well-

known methods for solving games in the next few sections. One of the methods, the

multiplicative weights algorithm, will form the basis of the algorithms we develop

later in this thesis. The key feature of the multiplicative weights algorithm is that it

can solve games in which one player has an enormous (even infinite) number of pure

strategies. In Chapter 5, we explain how this makes it especially well-suited for an

application to a certain reinforcement learning problem.

2.4.1 Linear Programming

Perhaps the most obvious method for solving a game is via a technique called linear

programming. Many of the best algorithms for solving games are based on linear

programming, including some that we will discuss in Chapters 3 and 5. Consider the

following optimization problem.

max
x

F (x) (2.5)

x ∈ X (2.6)

If F is linear function, and if X can be described by a set of linear equalities and

inequalities, then we say that (2.5)-(2.6) is a linear program. The study of linear

programs is a very active research area, and many efficient solution methods have

been developed. The ellipsoid algorithm [60] was the first method for finding an x∗

that solves the linear program (2.5)-(2.6) in time polynomial in the number of bits

needed to specify F and X . Unfortunately in practice the ellipsoid algorithm is quite

19

inefficient. More recently, interior point algorithms [55, 81] have been developed

that share the polynomial-time performance guarantees of the ellipsoid algorithm

and also exhibit dramatically better efficiency in practice. An early algorithm called

the simplex method [17] is also very efficient, and is quite simple to implement, but

requires exponential time in the worst-case [61].

Solving a game is simply a matter of setting up an appropriate linear program.

Let us begin by considering the problem of computing an optimal strategy for the

row player. We need to find a row strategy p∗ that realizes the minimum in (2.1).

The key observation is that the inner maximum in (2.1) is realized by a pure column

strategy, because with respect to this maximization the row strategy p has already

been fixed. In other words, we have

min
p∈P

max
q∈Q

pMq = min
p∈P

max
j
M(p, j)

This can be equivalently written as

min
p

max
j
M(p, j) (2.7)

p(i) ≥ 0 for i = 1 . . . n (2.8)

n∑
i=1

p(i) = 1 (2.9)

where the constraints (2.8)-(2.9) have been introduced to specify the set P. We can

20

also introduce a variable v to represent the value of the inner maximum.

min
p,v

v (2.10)

v ≥M(p, j) for j = 1 . . .m (2.11)

p(i) ≥ 0 for i = 1 . . . n (2.12)

n∑
i=1

p(i) = 1 (2.13)

Clearly, the optimization problem (2.10)-(2.13) is a linear program. Its solution

(p∗, v∗) contains an optimal row strategy p∗ for the row player, along with an upper

bound v∗ on the payoff of the game, assuming that the row player chooses strategy

p∗.

A nearly identical argument can be made on behalf of the column player, yielding

the following linear program for computing an optimal column strategy q∗.

max
q,v

v (2.14)

v ≤M(i,q) for i = 1 . . . n (2.15)

q(j) ≥ 0 for j = 1 . . .m (2.16)

m∑
j=1

q(i) = 1 (2.17)

Readers knowledgeable in a concept called LP duality [12] will observe that the

linear program in (2.10)-(2.13) is the dual of the linear program in (2.14)-(2.17). This

immediately proves that the minimum in (2.10) is equal to the maximum in (2.14),

and thus proves the minimax theorem. However, instead of entering into a discussion

of LP duality, we will prove the minimax theorem via a different argument in Section

2.4.3.

21

2.4.2 Fictitious Play

The next algorithm we will describe for solving games is most naturally presented in

the context of a repeated game. Like the one-shot games that we have studied so far,

a repeated game is defined by a game matrix M. However, unlike a one-shot game,

a repeated game proceeds for T rounds. In each round t = 1 . . . T

1. Row player chooses row strategy pt.

2. Column player chooses column strategy qt with knowledge of pt.

Let pt = 1
t

∑t
t′=1 pt′ and qt = 1

t

∑t
t′=1 qt′ be the average of the row and column

strategies, respectively, over the first t rounds.

Suppose that the strategies pt and qt in each round t are chosen as follows: pt is a

best response to qt−1, and qt is a best responses to pt. One can justify this approach

to choosing strategies in the following way. First, suppose each player always chooses

a pure strategy. This is without loss of generality, since there is always a best response

with this property. Now consider the repeated game from the perspective of the row

player (the story for the column player is identical). Suppose the row player is unaware

of how the column player actually chooses her strategies, and instead assumes a simple

model for her behavior: she assumes that the column player has a single underlying

mixed strategy, which is never directly revealed, and that the pure strategy chosen by

the column player in each round is an independent draw from this distribution (recall

that a mixed strategy is just a distribution on the set of pure strategies). In this case,

in each round t, the rational behavior for the row player is to choose a strategy that

is a best response to the current maximum likelihood estimate of the column player’s

mixed strategy, which is qt−1.

If the two players choose their strategies in the manner described above, then

the repeated game will have the following very desirable property: the average of

the players’ strategies (i.e., pT and qT) will converge to the optimal strategies of

22

the one-shot game defined by the matrix M. This algorithm for solving a game

is called fictitious play, and was first described by Robinson [108], who resolved an

earlier conjecture by Brown [15]. The next theorem makes precise the convergence

guarantee for fictitious play.

Theorem 2.2 (Robinson [108]). Suppose the fictitious play algorithm is run for T

rounds. Let pT and qT be the average of all the row and column strategies, respectively,

generated during the algorithm. Then for all ε > 0

min
p∈P

pMqT ≥ v∗ − ε

max
q∈Q

pTMq ≤ v∗ + ε

for all sufficiently large T .

Note that, unlike the linear programming approach described in the previous

section, the amount of computation required by the fictitious play algorithm does not

explicitly depend on the size of the matrix M. All that is required is a subroutine for

each player that can compute a best response to any opponent strategy.

2.4.3 Multiplicative Weights Algorithm

The motivation for the fictitious play algorithm described in the previous section may

have seemed a little mysterious. We presented fictitious play as a method for choosing

strategies in a repeated game, but we never actually specified what the goal of the

repeated game was.

So let us define the payoff of the repeated game as the average payoff 1
T

∑
t ptMqt

of all the one-shot games over all T rounds. As usual, the row player will desire a

small payoff, while the column player will desire a large payoff. Because we will be

primarily analyzing the repeated game from the perspective of the row player in this

section, we say the quantity ptMqt is the loss suffered by the row player in round t.

23

We are interested in algorithms for choosing p1, . . . ,pT in the repeated game

so that the average loss 1
T

∑
t ptMqt suffered by the row player over all T rounds

is small — in particular, we wish it to be small relative to the least average loss

minp∈P
1
T

∑
t pMqt suffered by any single row strategy. If the difference between

these two losses vanishes as the number rounds goes to infinity, the algorithm is said

to be a no-regret algorithm [16]. The multiplicative weights (MW) algorithm [30] is

a particular no-regret algorithm that we will use extensively in this thesis.

As we will see, any no-regret algorithm can be used to solve a game in the usual

one-shot setting, i.e., to compute optimal strategies in a two-player zero-sum game. In

fact, the well-known AdaBoost algorithm [31] for classification is based on using the

MW algorithm to compute a maximin strategy in the classification game from Section

2.3. No-regret algorithms also provide a simple method for proving the minimax

theorem. Proving these results is the goal of this section, which will closely follow the

development due to Freund and Schapire [32].

The MW algorithm is related to earlier work by Hannan [43], Vovk [139] and

Littlestone and Warmuth [71]. This literature initiated the field of online learning

and prediction. An excellent book-length survey of this topic is by Cesa-Bianchi and

Lugosi [16]. Recently, the online learning framework has been generalized to online

convex optimization by Zinkevich [150] (see also Gordon [38], Kalai and Vempala [54]

for earlier similar work).

The Algorithm

In each round t, the MW algorithm maintains a weight wt(i) for each row i of the

matrix M. In round t, the row player chooses a strategy pt such that

pt(i) =
wt(i)∑n
j=1wt(j)

24

Each weight wt(i) is calculated as follows: If t = 1, then wt(i) = αi, where αi ≥ 0

is a parameter (and thus p1 is completely determined by the choice of α1, . . . , αn).

Otherwise

wt(i) = wt−1(i)βM(i,qt−1)

where β ∈ [0, 1) is a parameter.

The MW algorithm has a nice intuitive interpretation: For any two rows i and j,

if the pure strategy concentrated on row i would have suffered less loss in round t− 1

than the pure strategy concentrated on row j, then in round t the weight on row i is

“boosted” relative to the weight on row j.

Notice that the row player actually needs very little information in order to execute

the MW algorithm. She does not need to observe the strategy qt, or even the entire

matrix M, directly. She only needs to observe, in each round t, the quantities M(i,qt)

for i = 1, . . . , n.

Regret Bound

Over the course of the repeated game, the MW algorithm shifts the weight of pt onto

rows that tend to suffer less loss. So one might hope that the row player’s average

loss 1
T

∑
t ptMqt over the entire repeated game will be small. Indeed, we will prove a

bound on the following difference, which is known as the row player’s average regret

1

T

T∑
t=1

ptMqt −min
p∈P

1

T

T∑
t=1

pMqt (2.18)

This is the difference between the row player’s average loss, and the average loss she

could have suffered by playing a single row strategy every round.

The bound on the row player’s average regret will be a straightforward consequence

of the next theorem.

Theorem 2.3. Suppose the repeated game is played on a matrix M for T rounds, and

25

the row player chooses strategies p1, . . . ,pT according to the MW algorithm. Then

1

T

T∑
t=1

ptMqt ≤
log(1/β)

1− β
min
p∈P

[
1

T

T∑
t=1

pMqt +
RE(p || p1)

T (1− β)

]

where the relative entropy RE(p || p′) between distributions p and p′ is defined

RE(p || p′) =
n∑
i=1

p(i) log
p(i)

p′(i)

Proof. Let Zt =
∑n

i=1 pt(j
′)βM(j′,qt). We can use Zt to express pt+1 in terms of pt.

Specifically, for all rows i and rounds t we have

pt+1(i) =
wt+1(i)∑n
i′=1wt+1(i′)

=
wt(i)β

M(i,qt)∑n
i′=1wt(i

′)βM(i′,qt)
=

pt(i)β
M(i,qt)∑n

i′=1 pt(i
′)βM(i′,qt)

= pt(i)
βM(i,qt)

Zt
(2.19)

26

For any round t of the MW algorithm and any p ∈ P we have

RE(p || pt+1)− RE(p || pt)

=
n∑
i=1

p(i) log
p(i)

pt+1(i)
−

n∑
i=1

p(i) log
p(i)

pt(i)

=
n∑
i=1

p(i) log
pt(i)

pt+1(i)

=
n∑
i=1

p(i) log
Zt

βM(i,qt)

= log

(
1

β

) n∑
i=1

p(i)M(i,qt) + logZt

= log

(
1

β

)
pMqt + log

(
n∑
i=1

pt(i)β
M(i,qt)

)

≤ log

(
1

β

)
pMqt + log

(
n∑
i=1

pt(i) (1− (1− β)M(i,qt))

)
(2.20)

= log

(
1

β

)
pMqt + log (1− (1− β)ptMqt)

≤ log

(
1

β

)
pMqt − (1− β)ptMqt (2.21)

In (2.20) we used the fact that, by convexity, βx ≤ 1 − (1 − β)x for β ≥ 0 and

x ∈ [0, 1]. In (2.21) we used the fact that log(1− x) ≤ −x for x < 1.

Summing this inequality over all 1 ≤ t ≤ T yields

RE(p || pT+1)− RE(p || p1) ≤
(

log
1

β

) T∑
t=1

pMqt − (1− β)
T∑
t=1

ptMqt

Noting that RE(p || pT+1) ≥ 0, rearranging the inequality, multiplying both sides by

1/T , and noting that p ∈ P was chosen arbitrarily yields the theorem.

The statement of Theorem 2.3 can be simplified somewhat, by converting the

multiplicative and additive penalties in the upper bound into a single additive penalty.

Corollary 2.4. Suppose the repeated game is played on a matrix M for T rounds, and

27

the row player chooses strategies p1, . . . ,pT according to the MW algorithm. Then

1

T

T∑
t=1

ptMqt ≤
1

T
min
p∈P

T∑
t=1

pMqt + ∆T,p1,β

where

∆T,p1,β ,
log(1/β)− (1− β)

(1− β)
+ max

p∈P

RE(p || p1)

T (1− β)

Proof. By observing that
∑T

t=1 pMqt ≤ T for all p ∈ P, we can easily manipulate

the inequality in Theorem 2.3 to prove the theorem.

The quality of the regret bound in Corollary 2.4 depends on the magnitude of

∆T,p1,β. The following lemma bounds ∆T,p1,β for tuned choices of β and α1, . . . , αn.

Lemma 2.5. If β is set to

1

1 +
√

2 logn
T

and αi = αj for all rows i and j, then ∆T,p1,β ≤ ∆T,n, where

∆T,n ,

√
2 log n

T
+

log n

T

Proof. If αi = αj for all rows i and j, then p1 is the uniform distribution, and thus

RE(p || p1) ≤ log n for all p ∈ P. Also, it can be shown that − log β ≤ (1−β2)/(2β).

Applying this approximation and the given choice of β to the definition of ∆T,p1,β

yields the result.

Since ∆T,n → 0 as T →∞, by using the MW algorithm the row player’s average

regret can be made less than any positive constant, assuming the repeated game is

sufficiently long. Thus MW is a no-regret algorithm for the row player (an earlier

term for this property is Hannan consistency [43]).

28

Proving the Minimax Theorem and Solving a Game

In this section, we will prove the minimax theorem by using the existence of no-regret

algorithms for the repeated game. We will also show how the MW algorithm — in

fact, any no-regret algorithm — can be used to solve a game.

By analogy to the definition in (2.18), we define the column player’s average regret

in the repeated game as follows

max
q∈Q

1

T

T∑
t=1

ptMq− 1

T

T∑
t=1

ptMqt

Because the column player chooses a strategy after the row player in each round of

the repeated game, a no-regret algorithm for the column player is extremely simple to

implement: In each round t, just choose a best response to the row player’s strategy,

i.e., let qt = arg maxq∈Q ptMq. Then the column player’s average regret is guaranteed

to be at most zero in a repeated game of any length T .

We have thus far shown that no-regret algorithms exist for both the row player and

column player in the repeated game. The existence of these algorithms will allow us to

prove the remaining results of this section, which will be straightforward extensions

of the next theorem. For the remainder of this chapter, recall our definition from

Section 2.4.2 that pT = 1
T

∑T
t=1 pt and qT = 1

T

∑T
t=1 qt.

Theorem 2.6. Suppose the repeated game is played on a matrix M for T rounds,

and the row player’s average regret is at most ε1, and the column player’s average

regret is at most ε2. Then

max
q∈Q

pTMq ≤ min
p∈P

pMqT + ε1 + ε2

29

Proof. Note that pT ∈ P and qT ∈ Q. Therefore

max
q∈Q

pTMq

= max
q∈Q

1

T

T∑
t=1

ptMq

≤ 1

T

T∑
t=1

ptMqt + ε1

≤ min
p∈P

1

T

T∑
t=1

pMqt + ε1 + ε2

= min
p∈P

pMqT + ε1 + ε2

where the inequalities above follow from our assumptions about each player’s average

regret.

We are now ready to prove the minimax theorem.

Theorem 2.7 (Minimax Theorem). For any matrix M

min
p∈P

max
q∈Q

pMq = max
q∈Q

min
p∈P

pMq , v∗

Proof. The inequality

min
p∈P

max
q∈Q

pMq ≥ max
q∈Q

min
p∈P

pMq

is easy to establish, since clearly

min
p∈P

max
q∈Q

pMq = max
q∈Q

p∗Mq ≥ max
q∈Q

min
p∈P

pMq

We claim that

min
p∈P

max
q∈Q

pMq ≤ max
q∈Q

min
p∈P

pMq

which proves the theorem. Consider a repeated game in which the row player’s average

30

regret is at most ε1, and the column player’s average regret is at most ε2. Then by

Theorem 2.6 we have

min
p∈P

max
q∈Q

pMq ≤ max
q∈Q

pTMq ≤ min
p∈P

pMqT + ε1 + ε2 ≤ max
q∈Q

min
p∈P

pMq + ε1 + ε2

By the existence of no-regret algorithms for the row and column players, ε1 and ε2

can be made arbitrarily small for any sufficiently long repeated game, and thus the

claim follows.

Theorem 2.6 also implies that no-regret algorithms can be used to solve a game.

The next theorem proves this for the particular case of the MW algorithm, although

it will be clear from the proof that any no-regret algorithm will suffice.

Theorem 2.8. Suppose that the repeated game is played on a matrix M for T rounds,

and the row player chooses strategies p1, . . . ,pT according to the MW algorithm, and

the column player chooses qt = arg maxq∈Q ptMq in each round t. Then

max
q∈Q

pTMq ≤ v∗ + ∆T,p1,β

min
p∈P

pMqT ≥ v∗ −∆T,p1,β

Proof. By the way that the row player and column player choose their strategies,

we can directly apply Theorem 2.6 with ε1 = ∆T,p1,β and ε2 = 0. Along with the

minimax theorem, this yields

max
q∈Q

pTMq ≤ min
p∈P

pMqT + ∆T,p1,β ≤ max
q∈Q

min
p∈P

pMq + ∆T,p1,β = v∗ + ∆T,p1,β

and

min
p∈P

pMqT ≥ max
q∈Q

pTMq−∆T,p1,β ≥ min
p∈P

max
q∈Q

pMq−∆T,p1,β = v∗ −∆T,p1,β

31

As a method for computing optimal strategies, the MW algorithm can be seen

as method whose requirements are a hybrid of the requirements of linear program-

ming and fictitious play. The linear programming approach requires time and space

polynomial in nm, the size of the game matrix M. Fictitious play has no explicit

dependence on the size of M, but does require best-response oracles for both the row

and column players. Fictitious play also lacks a non-asymptotic convergence guaran-

tee. In comparison, the MW algorithm requires time and space polynomial in only

n (the number of rows of M), a best-response oracle for just the column player, and

has an explicit bound on its convergence time. So the MW algorithm is especially

well-designed for game matrices with a prohibitively large number of columns, and

for which an efficient best-response oracle for the column player exists. As we will

see in Chapter 5, the games that we are interested in solving will have exactly these

properties.

2.5 Restricted Games

In Chapter 3, we will consider strategies that are not only optimal for the game matrix

M, but are also optimal for certain “subgames” defined by M. As a result, we will

need to examine restricted games, where the row and column players’ strategies are

restricted to subsets P ⊂ P and Q ⊆ Q, respectively. When P and Q are closed

and convex, essentially all the results from Section 2.4.3 carry over to the restricted

setting.

Define the row player’s average P-regret to be

1

T

T∑
t=1

ptMqt −min
p∈P

1

T

T∑
t=1

pMqt

32

and similarly define the column player’s average Q-regret to be

max
q∈Q

1

T

T∑
t=1

ptMq− 1

T

T∑
t=1

ptMqt

Obviously, the row and column player’s average regret are, respectively, special

cases of average P-regret and average Q-regret, where P = P and Q = Q.

Theorem 2.9. Suppose the repeated game is played on a matrix M for T rounds.

Suppose p1, . . . ,pT ∈ P and q1, . . . ,qT ∈ Q, where P ⊆ P and Q ⊆ Q are closed

and convex. Suppose the row player’s average P-regret is at most ε1, and the column

player’s average Q-regret is at most ε2. Then

max
q∈Q

pTMq ≤ min
p∈P

pMqT + ε1 + ε2

Moreover, if ε1 → 0 and ε2 → 0 as T →∞, then

min
p∈P

max
q∈Q

pMq = max
q∈Q

min
p∈P

pMq , v∗P,Q

and

max
q∈Q

pTMq ≤ v∗P,Q + ε1 + ε2

min
p∈P

pMqT ≥ v∗P,Q − ε1 − ε2

Proof. The minima and maxima exist because P and Q are closed and bounded (they

are bounded because P and Q are bounded). Also, by convexity, we have pT ∈ P and

qT ∈ Q. The remainder of the proof is essentially identical to the proofs of Theorems

2.6-2.8.

As before, it is easy to implement an algorithm for the column player that has

average Q-regret at most zero: Simply let qt = arg maxq∈Q ptMq in each round t.

33

But is there an algorithm for the row player for which average P-regret approaches

zero as T becomes large? Note that we cannot necessarily use the MW algorithm,

because we will not be guaranteed that pt, . . . ,pT ∈ P for an arbitrary closed and

convex P ∈ P, and so Theorem 2.9 will no longer necessarily be true.

One common approach to circumventing this problem is to project the row strate-

gies onto the set P in each round [16]. There is a family of subsets of P for which

this is particularly easy to do: Let I ⊆ [n] be a subset of row indices of the matrix

M, and let

PI , {p ∈ P : p(i) = 0 for i /∈ I}

be the set of all row strategies whose support is contained in I. Clearly PI is closed

and convex for all I ⊆ [n].

There is a natural operation by which a row strategy pt can be projected onto the

set PI . Define pI,t as follows.

pI,t(j) ,

 pt(j)/ZI,t j ∈ I

0 j /∈ I

where ZI,t ,
∑

j∈I pt(j) is a normalization constant ensuring that pI,t is a distribution.

Clearly pI,t ∈ PI .

Theorem 2.10. Suppose the repeated game is played on a matrix M for T rounds,

and the row player chooses strategies p1, . . . ,pT according to the MW algorithm. Let

I ⊆ [n]. Then

1

T

T∑
t=1

pI,tMqt ≤
1

T
min
p∈PI

T∑
t=1

pMqt + ∆T,p1,β

Proof. Let MI be a matrix identical to M, except that all the rows not contained in

I are removed. Observe that the row strategies pI,t are the same as those produced

by the MW algorithm if it is run on the matrix MI . Thus Corollary 2.4 immediately

34

implies that the row player’s regret is at most

log(1/β)− (1− β)

(1− β)
+ max

p∈PI

RE(p || pI,1)

T (1− β)

It is easy to verify that this quantity is upper bounded by ∆T,p1,β.

2.6 Other Related Work

We have seen that no-regret algorithms converge to the set of equilibria of zero-sum

games. Variations on the definition of regret can be used to prove convergence to other

equilibria. One generalization of regret is called internal (or swap) regret [29], where

the performance of an algorithm is compared to the best “swapping” of its choices

in hindsight. Hart and Mas-Colell [44] showed that, in n-player repeated games, no-

internal-regret algorithms converge to the set of correlated equilibria, which includes

the set of all Nash equilibria. Greenwald and Jafari [42] generalized the notion of

internal regret to a much larger class of transformations, and showed that algorithms

which have no regret in this more general sense converge to a set of similarly-defined

equilibria. There has been considerable additional research in this vein [122, 46, 39].

The algorithms for solving games presented in this chapter operate on the normal

form representation. For some games, the extensive form is more compact, and there

are many algorithms designed for this setting. Koller et al. [63] gave the first prac-

tical algorithm for computing equilibria of games of incomplete information that is

linear in size of extensive form representation. Zinkevich et al. [151] compute mini-

max/maximin strategies in very large extensive form zero-sum games by using best-

response oracles. The complexity of their algorithm depends on a quantity called the

range of skill of the game, which may be less than size of normal form representation,

though there is no guarantee of this. Zinkevich et al. [152] use regret minimization to

compute equilibria in large extensive form zero-sum games with incomplete informa-

35

tion. They minimize a quantity called counterfactual regret, which is an upper-bound

on regret.

Some games with considerable structure have representations which are even more

compact than the normal or extensive form, and which lend themselves to even more

efficient solution techniques. Perhaps the most well-known example of this kind of

representation is a graphical game [59], which exploits independencies in the interac-

tions of the players. More recently, this framework has been extended to local effect

games by Leyton-Brown and Tennenholtz [70] and action-graph games by Bhat and

Leyton-Brown [9], which model context-specific independencies.

2.7 Conclusion

In this chapter, we discussed the basics of the theory of two-player zero-sum games.

We gave the standard definition of optimal behavior in these kinds of games, and

described the main ways that they can be represented. We also presented techniques

for solving zero-sum games, including no-regret algorithms, which will be the focus

of Chapters 3 and 5.

36

Chapter 3

Lexicographic Optimal Strategies

In Chapter 2, we defined an optimal strategy in a two-player zero-sum game as one

that achieves a certain minimax/maximin objective. This objective was justified on

the basis of a worst-case assumption about the opponent, namely that she will play

in a manner that is perfectly adversarial. Superficially, this assumption may have

seemed very safe and conservative. After all, if a strategy is optimal against a perfectly

adversarial opponent, then will it not also be optimal against every opponent?

As we will see in this chapter, this is emphatically not the case. The problem

with the minimax/maximin objective is that it does not allow for the possibility that

the opponent might make a mistake. As a result, even if a strategy is optimal in a

minimax/maximin sense, it may not exploit a failure by the opponent to choose a

best response to that strategy, and therefore may receive a payoff that is much worse

than could have been achieved by a different strategy.

It may seem that, in order to exploit mistakes by the opponent, we will have to

abandon our worst-case assumption. In other words, it may seem that planning for

a perfectly adversarial opponent, and planning for an opponent that might make a

mistake, are mutually exclusive approaches, and we will have to choose one or the

other.

37

Fortunately, there is a way to have the best of both worlds, in a certain sense. In

many games, one of the players will have more than one optimal strategy. In such

cases, some have argued that the player should choose the strategy from among her

optimal strategies that takes maximum advantage of mistakes by the opponent. A

strategy with this property is called a lexicographic optimal strategy, and our primary

objective in this chapter will be to develop algorithms that can compute these kinds

of strategies.

In Section 3.1 we revisit the games we described in Chapter 2 to further motivate

the need for strategies that take advantage of an opponent’s mistakes. In Section

3.2 we give a formal definition of a lexicographic optimal strategy, which will make

precise what we mean by a “mistake” by the opponent, and also what it means to

take “maximum” advantage of those mistakes.

Our algorithms for computing lexicographic optimal strategies are based on the

MW algorithm, and in Section 3.4 we give intuition for why the MW algorithm

might be expected to converge to this type of strategy. Unfortunately, as we will

see in Section 3.5, this intuition is not entirely sound; the MW algorithm will fail

to converge to a lexicographic optimal strategy for an infinitely large class of games.

We take two approaches to fixing this problem. In Section 3.6, we show that, for

game matrices that satisfy a certain technical condition, the MW algorithm does

indeed converge to a lexicographic optimal strategy. Introducing this condition has

the somewhat unexpected side benefit of also guaranteeing that the MW algorithm

will converge to a pure strategy. This feature will be useful in our application of MW

to reinforcement learning in Chapter 5.

In Section 3.7, we explain that our technical condition on game matrices can be

seen as somewhat restrictive. To circumvent this, we describe a set of conditions,

which, if satisfied by any algorithm, guarantee that the algorithm can be used to

efficiently compute a lexicographic optimal strategy for any game matrix. We show

38

that the MW algorithm “nearly” satisfies these sufficient conditions, which leads to

a proposal for a minor modification of the MW algorithm.

Compared to previous approaches to computing lexicographic optimal strategies,

the main advantage of our MW-based approach is that it can be feasibly applied to

games in which one player has an extremely large number of strategies. The games

we study and solve in Chapter 5 will have this property.

3.1 Motivation

In order to argue for the importance of strategies that take advantage of an opponent’s

mistakes, let us re-examine some of the games we introduced in Chapter 2.

3.1.1 Rock-Paper-Scissors

Recall the two-player zero-sum game “Rock-Paper-Scissors” from Section 2.1, and

consider a variant defined by the matrix in Figure 3.1, which we will call “Rock-

Paper-Scissors-Bomb”. In this variant, the row player is given an additional move,

called Bomb, which defeats every other move. In “Rock-Paper-Scissors”, the optimal

strategy for each player was the uniform distribution on all three moves, and the

expected outcome was a draw. “Rock-Paper-Scissors-Bomb” is much less balanced:

The minimax strategy for the row player is the pure strategy concentrated on Bomb,

and every strategy for the column player is a maximin strategy, because no matter

what choice she makes, the row player can guarantee a win by choosing Bomb.

But what if the row player makes a mistake, and fails to choose Bomb? If the

column player wants to take advantage of this possibility, then she should, as before,

choose the uniform distribution on all three moves. This strategy is not worse than

any other, but has an expected outcome of a draw in case the row player fails to

choose a best response.

39

Column player
Row player Rock Paper Scissors

Rock 1/2 1 0
Paper 0 1/2 1

Scissors 1 0 1/2
Bomb 0 0 0

Figure 3.1:
Game matrix for Rock-Paper-Scissors-Bomb

3.1.2 Chess

Of course, “Rock-Paper-Scissors-Bomb” is an artificial game constructed specifically

to highlight a problem with the minimax/maximin objective, but the problem can

arise in real games as well. Recall our discussion of chess in Section 2.2, and consider

the chess board position in Figure 3.2, known as the Saavedra position. The white

player appears to be at a major disadvantage in this position; she only has a pawn,

while the black player has a rook. Nonetheless, though it may seem improbable, there

exists a winning strategy for the white player from this position, first discovered by

Spanish priest Reverend Saavedra in 1895 [109]. Let us examine this position from

the perspective of the black player. If she assumes that the white player is perfectly

adversarial, she will regard her every available move as being consistent with an

optimal strategy, since she believes that she has already lost the game. Of course, the

Saavedra position is familiar mostly to chess experts. A typical white player probably

will not play the rest of the game perfectly — indeed, American chess champion Frank

Marshall once said “The hardest thing in chess is to win a won game” [121] — so it

would be sensible for the black player to plan for this possibility, and continue to play

as though the white player will fail to execute a perfect strategy.

40

Figure 3.2: The Saavedra position. White to move and win (note that, at the start
of the game, the white pieces are at the bottom of the board). This position was long
believed to be a draw, until an ingenious winning strategy for white was discovered
by Spanish priest Reverend Saavedra in 1895. This version of the position is due to
Laskar [67].

3.1.3 Classification Game

Finally, we return to our example from machine learning. Recall the classification

game from Section 2.3. In that game, the column player’s choice of strategy q specifies

a hypothesis Hq, which in turn determines a margin for each example in the training

set. The row player chooses a strategy p that specifies a distribution on the examples,

and the game’s payoff is the average margin of the examples with respect to p.

Therefore a best response to a column strategy by the row player is to choose a

distribution p concentrated on the examples with the minimum margin; consequently

(as we stated in Section 2.3), the column player should choose q so that the minimum

margin of Hq on any example is as large as possible.

But how should the column player distinguish between two hypotheses Hq1 and

Hq2 that induce the same minimum margin on the training set? Intuitively, choosing

the hypothesis that induces larger margins on the other examples in the training set

seems like a good idea. This approach is also supported by theoretical results that

bound generalization error in terms of the entire margin distribution, and not just

41

minimum margin [117, 118, 35, 34]. Note that this approach amounts to planning for

the possibility of a “mistake” by the row player in the classification game, specifically

the possibility that she will fail to choose an example distribution concentrated on

the examples with the minimum margin.

Interestingly, increasing the margins of all the examples in the training set seems

to roughly correspond to what the AdaBoost classification algorithm [31], which is

based on the MW algorithm, has been observed to do in practice. For example,

Reyzin and Schapire [107] compare AdaBoost to arc-gv [14], another algorithm that

is designed to find a hypothesis that maximizes the minimum margin on the training

set. They observe that, unlike arc-gv, AdaBoost tends to increase the margins of

all the examples in the training set (see their Figure 7). The analysis of the MW

algorithm given in this chapter provides a novel explanation for this behavior.

3.2 Definition of Lexicographic Optimality

Recall that the minimax theorem [137] states

min
p∈P

max
q∈Q

pMq = max
q∈Q

min
p∈P

pMq , v∗ (3.1)

where v∗ is called the value of the game. As a reminder: A row strategy p∗ that

realizes the minimum in (3.1) is called a minimax strategy, while a column strategy

q∗ that realizes the maximum in (3.1) is called a maximin strategy.

Much of our discussion will apply equally well to either the row or column player,

so here we focus on the column player’s perspective. By examining (3.1), we see that

a maximin strategy is optimal for the column player if the row player always chooses

a best response, i.e., a row strategy that realizes minp pMq for the strategy q that

the column player chooses. As we discussed in Section 3.1, assuming that the row

player will always choose a best response can have disadvantages.

42

How can we refine the notion of a maximin strategy to account for the possibility

that the row player will make a mistake? Observe that a best response to q must

be a row distribution that is concentrated on the smallest rows of the vector Mq,

and a mistake by the row player amounts to choosing a distribution that places any

weight on any other row. Thus a column strategy q∗ realizes the maximum in (3.1)

if and only if the minimum value among the rows of the vector Mq∗ is made as large

possible (with value equal to v∗). If there is more than one such column strategy,

we can take advantage of mistakes by the row player by choosing a q∗ so that the

minimum value among the other rows of Mq∗ is also made as large as possible.

Extending this idea further leads to a “lexicographic” objective for the column

player, which we now proceed to define formally.

3.2.1 Formal Definition

Define the lexicographic order ≤lex on Rn as follows: For any x,y ∈ Rn, x ≤lex y if

and only if x = y or there exists a i ∈ {1, . . . , n} such that x(j) = y(j) for j < i and

x(i) < y(i). It is easily seen that ≤lex is a total order on Rn. We define x <lex y to

mean x ≤lex y and x 6= y.

For any function F : X → Rn, define lexmaxx∈X F(x) to be the maximum element

in {F(x) : x ∈ X} with respect to ≤lex, assuming this maximum exists.

For any x ∈ Rn, let θi(x) ∈ R be the ith smallest value among the components of

x. Also let θ(x) = (θ1(x), . . . , θn(x)) be the values of the components of x sorted in

nondecreasing order.

Instead of choosing a strategy that realizes the maximum in (3.1), we would like

the column player to choose a lexicographic maximin strategy qlex ∗ that realizes

v∗ , lexmaxq∈Q θ(Mq). (3.2)

43

By definition v∗(1) ≤ · · · ≤ v∗(n). It is easily seen that v∗(1) = v∗. Therefore every

lexicographic maximin strategy is also a maximin strategy. That is, every qlex ∗ which

realizes (3.2) is also a q∗ which realizes the maximum in (3.1). However, an advantage

of qlex ∗ is that if the row player fails to choose a best-response strategy, then qlex ∗ is

a maximin strategy that takes maximum advantage of this failure, in a certain sense.

Basically, qlex ∗ is a column strategy that maximizes the smallest row of Mq, and

among all such strategies it maximizes the second smallest row of Mq, and then the

third smallest row of Mq, and so on.

Of course, one can define a lexicographic minimax strategy for the row player in an

analogous way, but in this chapter we will study games exclusively from the column

player’s perspective. A strategy that is either lexicographic minimax or lexicographic

maximin is called a lexicographic optimal strategy.

Dresher [22] was the first to describe lexicographic optimal strategies, but did

not give an explicit name to the concept; they have been termed “Dresher-optimal”

strategies by most other authors (e.g. van Damme [133]). We have adopted the label

“lexicographic optimal” from Ogryczak and Sliwinski [91], who defined the concept

in the context of multicriteria optimization. Also, while Dresher [22]’s definition is

equivalent to ours, it has a considerably different form. We discuss the relationship

between the two definitions in Section 3.3.3.

3.3 Properties of the Lexicographic Optimum

In this section, we characterize properties of lexicographic maximin strategies that

will be useful in the rest of the chapter.

44

3.3.1 Existence of a Lexicographic Optimal Strategy

The definition of v∗ in (3.2) may prompt the following concern: Can we be certain

that the set {θ(Mq) : q ∈ Q} contains a maximum element with respect to the

lexicographic order ≤lex? If not, then obviously v∗ is not well-defined.

One might be tempted to prove the existence of v∗ as a simple consequence of

compactness and total orders. In other words, we might like to prove something like

the following: If E ⊆ Rn is compact, then E contains a maximum with respect to

any total order on Rn. For the case n = 1 and the usual order ≤, this is certainly

true, since it is equivalent to stating that if E ⊆ R is compact then supE ∈ E.

Unfortunately, this fact does not extend to arbitrary total orders, as the following

simple counterexample illustrates.

Claim 3.1. There exists a nonempty compact set E ⊆ R, and a total order ≤1 on R,

such that E does not contain a maximum element with respect to ≤1.

Proof. Let E = [0, 1]. Clearly E is compact. Define a total order ≤1 on R that

agrees with the usual order ≤ except that ≤1 makes 1 the least element in R. More

formally: For all x, y ∈ R, if x = 1 then x ≤1 y; if y = 1 then y ≤1 x; otherwise

x ≤1 y ⇔ x ≤ y. Clearly E does not contain a maximum with respect to ≤1.

The problem encountered in the counterexample is that, with respect to the order

≤1, the number 1 is less than every other number, even the numbers that it is “close

to”. So, in order to prove the existence of v∗, we must verify that this pathology does

not apply to the lexicographic order ≤lex.

The existence of v∗ in (3.2) is implied by the following theorem.

Theorem 3.2. Let X be a compact metric space. For any continuous function F :

X → Rn the set {θ(F(x)) : x ∈ X} contains a maximum with respect to ≤lex.

Because Mq is a continuous function of q, and because the set of all column

45

strategies Q is a compact metric space, Theorem 3.2 implies that v∗ in (3.2) exists,

and thus that a column strategy qlex ∗ that realizes the lexicographic maximum exists.

To prove Theorem 3.2, we will need the next two lemmas.

Lemma 3.3. Every nonempty compact subset of Rn contains a maximum element

with respect to ≤lex.

Proof. Let E ∈ Rn be a nonempty compact set. Define E0 = E, and define X1 . . . Xn

and E1 . . . En as follows: Let Xi = {x(i) : x ∈ Ei−1} and let Ei = {x ∈ Ei−1 : x(i) =

supXi}.

We claim that E0 . . . En are all nonempty and compact. By definition this holds

for E0. Now suppose for induction that Ei−1 is nonempty and compact for some

i ≥ 1. Then clearly Xi is nonempty and compact (because Ei−1 ⊆ Rn), which

implies that supXi ∈ Xi, which implies that Ei is nonempty. Also observe that

Ei = Ei−1∩(Ri−1 × {supXi} × Rn−i), which is clearly compact (because compactness

is preserved under both Cartesian product and intersection). The claims holds by

induction.

Let x∗ ∈ En. We claim that x ≤lex x∗ for all x ∈ E, which proves the lemma. For

any fixed x ∈ E, if x = x∗, then x ≤lex x∗ trivially. Otherwise let i be the smallest

integer such that x(i) 6= x∗(i). Since x∗ ∈ En ⊆ Ei, we have x∗(j) = supXj for

j ∈ {1, . . . , i}. Therefore x(j) = supXj for j ∈ {1, . . . , i − 1}, which implies that

x ∈ Ei−1. We conclude that x(i) < x∗(i), and thus x ≤lex x∗.

Lemma 3.4. The sorting function θ : Rn → Rn is continuous.

Proof. Fix x ∈ Rn and ε > 0. Let δ = min(ε, δ
′

2
), where δ′ is any value that satisfies

0 < δ′ ≤ |x(i) − x(j)| for all i, j ∈ {1, . . . , n} such that x(i) 6= x(j). Let E = {y :

‖y − x‖∞ < δ}.

We claim that ‖θ(x)− θ(y)‖∞ < ε for all y ∈ E, which proves the lemma.

Observe that for any y ∈ E and i, j ∈ {1, . . . , n}, if x(i) < x(j) then y(i) < y(j).

46

This is because δ ≤ δ′

2
. Fix y ∈ E, and let πy be a permutation of the indices of y

which leads to θ(y), and let πx be the same for x. Clearly we can choose πy and πx

so that πy = πx. Since ‖x− y‖∞ < δ we have ‖θ(x)− θ(y)‖∞ < δ ≤ ε. And this

holds for all y ∈ E because we fixed y arbitrarily.

Proof of Theorem 3.2. Since F(x) is continuous, Lemma 3.4 implies that θ(F(x)) is

continuous. Since X is compact, we have that E = {θ(F(x)) : x ∈ X} is compact,

because the image of a continuous function from a compact metric space into a metric

space is compact [110]. Thus Lemma 3.3 implies that E contains a maximum element

with respect to ≤lex.

3.3.2 Equivalence of All Lexicographic Optimal Strategies

While there may be more than one column strategy qlex ∗ that realizes (3.2), all such

strategies are equivalent in a certain sense, as established by the next theorem.

Theorem 3.5. For any pair of column strategies qlex ∗
1 and qlex ∗

2 if

v∗ = θ(Mqlex ∗
1) = θ(Mqlex ∗

2)

then Mqlex ∗
1 = Mqlex ∗

2 .

Proof. Assume without loss of generality that the rows of M are ordered so that

θ(Mqlex ∗
1) = Mqlex ∗

1 = v∗. We will prove that Mqlex ∗
2 = v∗.

For contradiction, assume Mqlex ∗
2 6= v∗, and let i be the smallest row index such

that M(i,qlex ∗
2) 6= v∗(i). This implies that M(j,qlex ∗

2) ≥ v∗(i) for j ≥ i (because

otherwise there would exist a row j ≤ i such that θj(Mqlex ∗
2) < v∗(j), which cannot

happen since θ(Mqlex ∗
2) = v∗). Therefore, by our choice of i, we have M(i,qlex ∗

2) >

v∗(i).

47

Now let q̃ = 1
2
qlex ∗

1 + 1
2
qlex ∗

2 , so we have

Mq̃ =
1

2
Mqlex ∗

1 +
1

2
Mqlex ∗

2 =
1

2
v∗ +

1

2
Mqlex ∗

2

Let i′ ≥ i be the largest row index such that v∗(i) = v∗(i′). In other words,

v∗(i) = v∗(i+ 1) = · · · = v∗(i′ − 1) = v∗(i′).

We have shown the following:

• M(j, q̃) = v∗(j) for 1 ≤ j < i (because M(j,qlex ∗
2) = v∗(j) for 1 ≤ j < i).

• M(i, q̃) > v∗(i) (because M(i,qlex ∗
2) > v∗(i)).

• M(j, q̃) ≥ v∗(i) for i < j ≤ i′ (because M(j,qlex ∗
2) ≥ v∗(i) and v∗(j) ≥ v∗(i) for

j ≥ i).

• M(j, q̃) > v∗(i) for j > i′ (because M(j,qlex ∗
2) ≥ v∗(i) for j ≥ i and v∗(j) >

v∗(i) for j > i′).

By examining this list, one can see that it implies θ(Mq̃) >lex v∗, which contra-

dicts the definition of v∗.

Theorem 3.5 is quite convenient. Since Mqlex ∗ is the same for every lexicographic

maximin strategy qlex ∗, we may assume without loss of generality that the rows of

M are ordered so that θ(Mqlex ∗) = Mqlex ∗ = v∗ for every such strategy. We make

this assumption throughout the rest of this chapter.

3.3.3 Alternate Characterization of Lexicographic Optimum

We now give an alternate characterization of v∗, which will allow us to relate the con-

cept of lexicographic optimality to earlier work. But first, let us recall our discussion

of restricted games in Section 2.5. In a restricted game, the row and column player

48

must choose their strategies from subsets P ⊆ P and Q ⊆ Q, respectively. To aid

our alternate characterization of v∗, we will examine two particular families of such

subsets, one for each player. Recalling our notation from Section 2.5, let us define

P−i , P{i+1,...,n} for each row 1 ≤ i ≤ n− 1. In other words,

P−i , {p ∈ P : p(j) = 0 for 1 ≤ j ≤ i}

So P−i is the set of row strategies concentrated on all but the first i rows of M. Now,

for each row 1 ≤ i ≤ n, we also define

Qi , {q ∈ Q : M(i,q) = v∗(i) for 1 ≤ j ≤ i}

In other words, if q ∈ Qi, then the first i rows of Mq must match the first i rows of

Mqlex ∗.

For notational convenience, we define P−0 , P and Q0 , Q. With these definitions

in place, we can state the following theorem.

Theorem 3.6. For each 0 ≤ i ≤ n− 1

v∗(i+ 1) = max
q∈Qi

min
p∈P−i

pMq = min
p∈P−i

max
q∈Qi

pMq

The significance of Theorem 3.6 is twofold. Firstly, the statement of the theorem

is the definition of v∗ in earlier work on lexicographic optimality ([22, 133]), so this

theorem shows that our definition and the original one are equivalent. Secondly, the

theorem suggests an approach for computing qlex ∗. Since each component of v∗ is

the value of a different zero-sum game, finding a lexicographic maximin strategy in

a game reduces to finding an ordinary maximin strategy in each of several smaller

games. This is precisely the approach taken by Miltersen and Sorensen [79], whose

algorithm we describe in the next section.

49

Proof of Theorem 3.6. Because qlex ∗ ∈ Qi we have

max
q∈Qi

min
p∈P−i

pMq ≥ min
p∈P−i

pMqlex ∗ = v∗(i+ 1) (3.3)

Now let q′ = arg maxq∈Qi minp∈P−i pMq. We have

v∗(i+ 1) ≥ θi+1(Mq′) ≥ min
p∈P−i

pMq′ = max
q∈Qi

min
p∈P−i

pMq (3.4)

The first inequality follows because v∗ ≥lex ∗ θ(Mq′) and q′ ∈ Qi. The second

inequality holds for any column strategy q. Together (3.3) and (3.4) imply that

v∗(i+ 1) = maxq∈Qi minp∈P−i pMq.

The fact that

max
q∈Qi

min
p∈P−i

pMq = min
p∈P−i

max
q∈Qi

pMq (3.5)

follows from our discussion of restricted games in Section 2.5. Since P−i ⊆ P and

Qi ⊆ Q are both closed and convex, Theorems 2.9 and 2.10 together imply (3.5).

3.4 Approaches to Computing Lexicographic Op-

timal Strategies

In Section 2.4.1, we showed how the optimal strategies in a two-player zero-sum game

can be computed by solving a certain linear program. A similar approach due to

Miltersen and Sorensen [79] can be used to compute lexicographic optimal strategies.

However, instead of solving a single linear program, their procedure solves a sequence

of them, where each linear program in the sequence solves a different game. The ith

game in the sequence corresponds to the characterization of v∗(i) given in Theorem

3.6.

50

Here is a sketch of the procedure described by Miltersen and Sorensen [79] for

computing qlex ∗. The first linear program in the sequence outputs a description of

the sets Q1 and P−1 (defined in Section 3.3.3). The next linear program uses Q1

and P−1 to output Q2 and P−2. The procedure continues in this manner until Qn is

output, which only contains qlex ∗ by definition. As we discussed in Section 2.4.1, a

linear program can be solved in time that is polynomial in the size of the program, so

the running time of this entire procedure is polynomial in the size of the game matrix

M.

In this rest of this chapter, we will take a markedly different approach to com-

puting a lexicographic optimal strategy than Miltersen and Sorensen [79]. Recall

that in Section 2.4.3 we showed how, in a repeated game, if the row player chooses

strategies according the MW algorithm, and the column player always chooses a best

response, then the average of the column strategies converges to a maximin strat-

egy. In this chapter, we will prove that, under very similar conditions, those column

strategies will converge to a lexicographic maximin strategy. This convergence is not

automatic, however; in Section 3.5 we prove that, without additional assumptions or

modifications, the MW algorithm may fail to converge to a strategy with the desired

property. In Section 3.6 we give a technical condition that ensures convergence to a

lexicographic maximin strategy. A side benefit of this condition is that it allows us to

prove convergence of the last column strategy, not just the average column strategy.

Since each column strategy generated during the repeated game is a pure strategy,

this allows us to prove convergence to a pure lexicographic maximin strategy, a very

useful guarantee, as we will see in Chapter 5 when we apply it to a reinforcement

learning problem.

In Section 3.7, we explain that our technical condition on game matrices is some-

what restrictive. To avoid this, we describe a set of conditions on no-regret algorithms

which suffice for lexicographic convergence. In particular, we prove that if the row

51

player chooses her strategies according to an algorithm that satisfies these conditions,

and the column player always chooses a best response, then the average column strat-

egy converges to a lexicographic optimal strategy, for any game matrix. We show that

the MW algorithm “nearly” satisfies these sufficient conditions, which leads to a pro-

posal for a minor modification of the MW algorithm.

The main advantage of using the MW algorithm instead of solving a sequence of

linear programs is that, unlike the LP-based approach, the running time of the MW

algorithm has no explicit dependence on the number of columns of the game matrix

M, provided it has access to a best-response oracle for the column player. As we will

see in Chapter 5, these advantages are particularly appropriate for the games we are

interested in solving.

Why should we expect that the MW algorithm will converge to a lexicographic

maximin strategy? Some intuition can be gained from the following discussion. As-

sume that the initial distribution p1 is set to be uniform. Then in each round t of

the MW algorithm, the weight assigned by row distribution pt to row i is

pt(i) ∝ β
∑t−1
t′=1

M(i,qt′) = β(t−1)M(i,qt−1) (3.6)

where qt−1 = 1
t−1

∑t−1
t′=1 qt′ is the average of the column strategies up to round t− 1.

Because β < 1, this means that pt places the most weight on the “hardest” row up

to round t− 1, i.e., the row imin such that M(imin,qt−1) is smallest. Therefore, if qt

is chosen to be a best response to pt, it will tend to be chosen so that M(imin,qt)

is large. This is precisely the reason why, once the MW algorithm has completed all

T rounds, the smallest row of MqT has been made nearly as large as possible, and

thus qT is an approximate maximin strategy. Essentially, the distribution pt forces

the column player to focus on the hardest rows of M.

But (3.6) also implies that pt assigns the second most weight to the second hardest

52

row of M, and that the third most weight to the third hardest row of M, etc. At

least superficially, this pattern suggests that the MW algorithm might be computing

a lexicographic maximin strategy. This turns out to be almost true. In the next

section we show exactly where this reasoning breaks down.

3.5 Divergence of MW Algorithm

When the MW algorithm is used to compute a maximin strategy for a game matrix M,

it may fail to converge to a lexicographic maximin strategy. The high-level intuition

for why this occurs is that the algorithm may choose qt’s that focus too much on the

“hard” rows of the game matrix M, at the cost of ignoring the other rows.

Theorem 3.7. For all a ∈ (0, 1
2
] and ε ∈ (0, a

4
) there exists a 3 × 4 matrix Ma,ε for

which the following holds: Suppose the repeated game is played on Ma,ε for T rounds.

Suppose the row player chooses strategies p1, . . . ,pT according to the MW algorithm,

with parameters α1, . . . , α3 > 0 and β ∈ (0, 1). Suppose the column player chooses a

best response qt = arg maxq∈Q ptMa,εq in each round t. Then

lim inf
T→∞

‖θ(Ma,εqT)− v∗‖∞ ≥ a− 2ε

Note that Theorem 3.7 immediately implies that

lim inf
T→∞

‖θ(Ma,εqT)− v∗‖∞ ≥ a− 2ε

since increasing the number of rounds in the repeated game (while keeping the other

parameters fixed) does not affect the behavior of the MW algorithm during the earlier

rounds.

53

Proof of Theorem 3.7. The matrix Ma,ε is

Ma,ε =


a+ ε a− ε a+ 2ε a− 2ε

a− ε a+ ε a− 2ε a+ 2ε

2a 2a a a


Note that our choices for a and ε guarantee that the entries of Ma,ε lie in the

interval [0, 1].

Let qj be the pure column strategy concentrated on column j. It is straightforward

to verify that qlex ∗ = 1
2
q1 + 1

2
q2, and thus

v∗ =


a

a

2a


Also, it is clear that for all q ∈ Q, we have Ma,ε(i,q) ≤ a + 2ε for i ∈ {1, 2}. So it

suffices to prove that Ma,ε(3,qT) ≤ a+ 2ε for all sufficiently large T . In fact, we will

prove Ma,ε(3,qT) ≤ a+ ε.

The basic idea of the proof is that for all rounds t — except for finitely many —

pt(3) is much smaller than the difference |pt(1)− pt(2)|. Therefore, when the column

player chooses a best response to pt, it is better for her to choose q3 over q1, and q4

over q2.

Recall that pt(i) ∝ wt(i), where wt(i) is the weight on row i in round t of the MW

algorithm. For each round t, let i−t , i
+
t ∈ {1, 2} be such that row i+t has at least the

weight of row i−t in round t, i.e., wt(i
−
t) ≤ wt(i

+
t). Also, let rt =

wt(i
−
t)

wt(i
+
t)

be the smaller

ratio of the weights on rows 1 and 2 in round t.

We make the following observation, which will be useful throughout the remainder

of the proof: For each round t, if rt < 1 (i.e., there is an imbalance of weights on rows

1 and 2), then Ma,ε(i
−
t ,qt) < Ma,ε(i

+
t ,qt) (because qt is a best response to pt), and

54

therefore by the definition of the MW algorithm

wt(i
−
t)βa−ε ≤ wt+1(i−t) ≤ wt(i

−
t)βa−2ε (3.7)

wt(i
+
t)βa+2ε ≤ wt+1(i+t) ≤ wt(i

+
t)βa+ε (3.8)

We claim that rt0 ≥ β4ε for some round t0 ≤ log r1
2ε log β

. Consider a round t such that

rt < β4ε. By (3.7) and (3.8) we have

wt+1(i−t)

wt+1(i+t)
≤ wt(i

−
t)βa−2ε

wt(i
+
t)βa+2ε

= rtβ
−4ε < β4εβ−4ε = 1

which implies that i+t+1 = i+t and i−t+1 = i−t . We can now conclude, again using (3.7)

and (3.8), that

rt+1 =
wt+1(i−t+1)

wt+1(i+t+1)
=
wt+1(i−t)

wt+1(i+t)
≥ wt(i

−
t)βa−ε

wt(i
+
t)βa+ε

= rtβ
−2ε

Note that β−2ε > 1. Thus, by repeatedly applying this recurrence, we have that

rt < β4ε for at most the first log r1
2ε log β

− 1 rounds, which proves the claim.

We claim that if rt ≥ β4ε then rt+1 ≥ β4ε. We divide into two cases: (i) i+t+1 = i+t

and i−t+1 = i−t ; (ii) i+t+1 = i−t and i−t+1 = i+t . For case (i), we can simply apply the

recurrence from above to get

rt+1 ≥ rtβ
−2ε > rt ≥ β4ε

because β−2ε > 1. For case (ii), we have by (3.7) and (3.8)

rt+1 =
wt+1(i−t+1)

wt+1(i+t+1)
=
wt+1(i+t)

wt+1(i−t)
≥ wt(i

+
t)βa+2ε

wt(i
−
t)βa−2ε

=
1

rt

βa+2ε

βa−2ε
≥ βa+2ε

βa−2ε
= β4ε

because rt ≤ 1.

To recap, we have shown that rt ≥ β4ε for all t ≥ t0. We will now use this fact to

55

argue that the number of rounds t ≥ t0 such that Ma,ε(3,qt) > a+ ε is bounded.

Choose any t ≥ t0 such that Ma,ε(3,qt) > a + ε. Note that qt, a distribution on

the columns of Ma,ε, must have support that intersects the support of either q1 or

q2. Since qt is a best response to pt, one of the following inequalities must hold:

ptMa,εq
1 ≥ ptMa,εq

3, or

ptMa,εq
2 ≥ ptMa,εq

4

Whichever is the case, multiplying both sides of the appropriate inequality by
∑

iwt(i)

(which is the normalization constant for pt) gives

(a+ ε)wt(i
+
t) + (a− ε)wt(i−t) + 2awt(3) ≥

(a+ 2ε)wt(i
+
t) + (a− 2ε)wt(i

−
t) + awt(3)

Simplifying, we get

awt(3) ≥ ε
(
wt(i

+
t)− wt(i−t)

)
(3.9)

Now choose δ, δ′ ≥ 0 so that wt(i
+
t) = βta−δ and wt(i

−
t) = βta+δ′ . By the definition

of the MW algorithm we know that wt(i) = β
∑t−1
t′=1

Ma,ε(i,qt′) for all rows i. So by the

symmetry of the matrix Ma,ε we have δ = δ′. Since t ≥ t0, then because rt =
wt(i

−
t)

wt(i
+
t)
≥

β4ε we have δ ≤ 2ε. Thus we can conclude

wt(i
+
t)− wt(i−t) ≥ βta

(
β−2ε − β2ε

)
(3.10)

Now let τ0 be the number of rounds t′ such that t0 ≤ t′ < t and Ma,ε(3,qt′) > a + ε.

We have

wt(3) ≤ βta+τ0ε (3.11)

56

Combining (3.9), (3.10), and (3.11) and dividing both sides by βta yields

aβτ0ε ≥ ε
(
β−2ε − β2ε

)
and solving for τ0 we get τ0 ≤ ε(β−2ε−β2ε)−log a

ε log β
.

Since t ≥ t0 was an arbitrarily chosen round for which Ma,ε(3,qt) > a+ ε, we have

that there are at most t0+τ0+1 rounds such that Ma,ε(3,qt) > a+ε. Now observe that

for a fixed choice of parameters α1, . . . , α3 and β, and for any T ′ ≤ T , the behavior of

the MW algorithm during the first T ′ rounds is independent of the total number of

rounds T (under the mild assumption that the tie-breaking procedure when choosing

qt = arg maxq∈Q ptMa,εq is independent of T). Thus, for all sufficiently large T , we

have Ma,ε(3,qT) ≤ a+ ε.

3.6 Convergence of MW Under a Strictness Con-

dition

In this section, we prove that a certain assumption about the game matrix M guar-

antees convergence of the MW algorithm to a lexicographic maximin strategy. Recall

that by definition v∗(1) ≤ . . . ≤ v∗(n). Our key assumption is that all these inequal-

ities are strict.

Assumption 3.8 (Strictness). Define δM , mini 6=j |v∗(i)− v∗(j)|. We have δM > 0.

Intuitively, we might expect that a small value for δM will cause problems for

convergence, since when δM is small Assumption 3.8 is close to being violated. Indeed,

the magnitude of δM will constrain the values of the parameter β for which our

convergence theorem holds. In general, we must have β ≥ 2/3, and when δM is small,

β must lie in an even smaller interval. Our convergence theorem, which we state next,

makes this precise.

57

Theorem 3.9. Suppose Assumption 3.8 holds. Suppose the repeated game is played

on a matrix M for T rounds. Suppose the row player chooses strategies p1, . . . ,pT ac-

cording to the MW algorithm, with parameters α1, . . . , αn > 0 and β ≥ 1/ (1 + δM/2).

Suppose the column player chooses a pure strategy qt satisfying qt = arg maxq∈Q ptMq

in each round t. Then

lim
T→∞

MqT = v∗

Note that Theorem 3.9 is a result about the last column strategy output by the

MW algorithm, not the average column strategy qT as in Theorem 2.8 (although of

course Theorem 3.9 immediately implies that limT→∞MqT = v∗). Also note that

requiring that qt be a pure strategy is without loss of generality, since there is always

a best response with this property.

3.6.1 Sketch of Proof

It is possible to provide a general understanding for why Theorem 3.9 is true without

delving into the details.

Recall that in each round t of the repeated game, the weight assigned by row

distribution pt to row i is

pt(i) ∝ αiβ
∑t−1
t′=1

M(i,qt′) = αiβ
(t−1)M(i,qt−1) (3.12)

where qt−1 = 1
t−1

∑t−1
t′=1 qt′ is the average of the column strategies up to round t− 1.

One consequence of Assumption 3.8 is that, as the repeated game proceeds, a

“gap” appears between M(1,qt) and M(i,qT) for all rows i > 1. More precisely,

there exists an ε > 0 such that M(1,qt) < M(i,qt) − ε for all rows i > 1 and all

sufficiently large t. In any round t where this is true, we have for all i > 1

pt(1)

pt(i)
≥ α1

αi
β−ε(t−1) (3.13)

58

which follows from (3.12). Note that this lower bound is an exponentially large

quantity in t. Thus, in the later rounds of the repeated game, the distribution pt

places an overwhelming fraction of its weight on row 1.

Another consequence of Assumption 3.8 is the following:

If q ∈ Qi−1 then M(i,q) ≤ v∗(i) (3.14)

For the case i = 1, we see that no column strategy q ∈ Q can assign a higher value

than v∗(1) to the first row of Mq.

Combining (3.13) and (3.14), we can show that there must be a round t1 such

that for all rounds t ≥ t1 we have M(1,qt) = v∗(1). In other words, when t ≥ t1,

row 1 is assigned so much weight by pt that a best response to pt must be a column

strategy qt that maximizes M(1,qt) — and this maximum is equal to v∗(1). Note

that this implies that qt ∈ Q1. And clearly, among all the column strategies in Q1,

the column player will choose qt so that it is a best response to the row distribution

p−1,t ∈ P−1, which we define below to be pt restricted to all but the first row.

Now, if we examine the repeated game from round t1 onward, we see that it

corresponds exactly to an instance of a restricted repeated game on the matrix M,

where the row player’s strategies are restricted to P = P−1 and the column player’s

strategies are restricted to Q = Q1. So we can simply repeat the argument from

above for this restricted repeated game. There is one complication: The parameters

α1, . . . , αn in the first round of the restricted repeated game — i.e. round t1 — are

not set uniformly across the last n−1 rows of M, but rather are set so they match the

row distribution pt1 . But this turns out not to offer much difficulty in the analysis.

So we can repeat the argument from above and conclude that there is a round t2 such

that for all rounds t ≥ t2 we have M(2,qt) = v∗(2). Continuing in this manner yields

the theorem.

59

3.6.2 Complete Proof

Before proceeding with the proof, let us establish some additional shorthand. Recall-

ing our notation for restricted row strategies from Section 2.5, let

p−i,t , p{i+1,...,n},t

Z−i,t , Z{i+1,...,n},t

In other words, the row strategy p−i,t ∈ P−i is pt restricted to all but the first i rows

of M, and Z−i,t is its normalization constant. For convenience, define p−0,t , pt and

Z−0,t , Zt.

Our first two lemmas provide useful characterizations of the set Qi−1. Their proofs

use Assumption 3.8, and neither lemma is true if that assumption does not hold.

Lemma 3.10. If q ∈ Qi−1 then M(i,q) ≤ v∗(i)

Proof. Assume for contradiction that M(i,q) > v∗(i). Consider the column strategy

qλ = λq + (1− λ)qlex ∗

for some λ ∈ [0, 1]. Recall that Mqlex ∗ = v∗. Since both q,qlex ∗ ∈ Qi−1, we have

M(j,qλ) = v∗(j) for all j ≤ i − 1. Also, if λ > 0, then M(i,qλ) > v∗(i) by our

assumption. Moreover, as λ → 0, the value of M(j,qλ) becomes arbitrarily close to

v∗(j) for all j. And since v∗(j) > v∗(i) for all j > i (by Assumption 3.8), we can

choose a value for λ such that θ(Mqλ) >lex θ(Mqlex ∗), which is a contradiction.

Lemma 3.11. Let pt be a row strategy generated by the MW algorithm, and recall

that qt = arg maxq∈Q ptMq. If qt ∈ Qi−1, then

p−i,tMqt = max
q∈Qi

p−i,tMq

60

Proof. Let q∗i = arg maxq∈Qi p−i,tMq. Clearly p−i,tMqt ≤ p−i,tMq∗i . We also have

p−i,tMqt =
1

Z−i,t

∑
j>i

pt(j)M(j,qt)

=
1

Z−i,t

(∑
j

pt(j)M(j,qt)−
∑
j≤i

pt(j)M(j,qt)

)

≥ 1

Z−i,t

(∑
j

pt(j)M(j,q∗i)−
∑
j≤i

pt(j)M(j,qt)

)
(3.15)

≥ 1

Z−i,t

(∑
j

pt(j)M(j,q∗i)−
∑
j≤i

pt(j)M(j,q∗i)

)
(3.16)

=
1

Z−i,t

∑
j>i

pt(j)M(j,q∗i)

= p−i,tMq∗i

In (3.15) we used qt = arg maxq∈Q ptMq = arg maxq∈Q
∑

j pt(j)M(j,q).

To prove (3.16), note that since q∗i ∈ Qi, we have

M(j,q∗i) = v∗(j) for j ≤ i (3.17)

And since qt ∈ Qi−1 by assumption, we can conclude by Lemma 3.10 that

M(j,qt) = v∗(j) for j ≤ i− 1, and M(i,qt) ≤ v∗(i) (3.18)

Thus (3.17) and (3.18) allow us to conclude (3.16).

The next two lemmas are the main tools used to prove Theorem 3.9.

Lemma 3.12. Suppose the MW algorithm is run for T rounds. If there exists 1 ≤

i ≤ n− 1 such that qt ∈ Qi−1 for all 1 ≤ t ≤ T , then

min
p∈P−i

pMqT ≥ v∗(i+ 1)−∆T,p1,β

61

Before proceeding with its proof, it is instructive to pause here and contemplate

the implications of Lemma 3.12. The conditions of Lemma 3.12 certainly hold for

i = 1, since we always have qt ∈ Q0, so let us consider this case. Corollary 2.4 and

Lemma 3.12 together imply that, if ∆T,p1,β is small, then after T rounds the smallest

element of MqT is not much less than v∗(1), and also that the second smallest element

of MqT is not much less than v∗(2). This is the property that will allow us to prove

convergence to a lexicographic optimum.

Proof of Lemma 3.12. Let p−i,T = 1
T

∑T
t=1 p−i,t be the average of the restricted row

strategies, and note that p−i,T ∈ P−i. Consider this chain of equalities/inequalities:

v∗(i+ 1) = min
p∈P−i

max
q∈Qi

pMq (3.19)

≤ max
q∈Qi

p−i,TMq (3.20)

= max
q∈Qi

1

T

T∑
t=1

p−i,tMq (3.21)

≤ 1

T

T∑
t=1

max
q∈Qi

p−i,tMq

=
1

T

T∑
t=1

p−i,tMqt (3.22)

≤ min
p∈P−i

1

T

T∑
t=1

pMqt + ∆T,p1,β (3.23)

= min
p∈P−i

pMqT + ∆T,p1,β

In (3.19) we used Theorem 3.6. In (3.20) and (3.21) we used the definition of

p−i,T . In (3.21) we used Lemma 3.11. In (3.23) we used Theorem 2.10.

Our final lemma requires one additional definition. Consider an arbitrary matrix

entry M(i, j), and suppose that M(i, j) < vi. Then by the finiteness of the matrix

M, there must exist a constant γ > 0 such that v∗(i)−M(i, j) ≥ γ. We will let γ be

62

the largest constant for which this inequality holds for all choices of i and j. In other

words

γ , min
(i,j):v∗(i)>M(i,j)

v∗(i)−M(i, j)

Lemma 3.13. Suppose the MW algorithm is run for T > 2 log((n−i)/γ)
δM log(1/β)

rounds. If there

exists 1 ≤ i ≤ n− 1 such that qt ∈ Qi−1 for all 1 ≤ t ≤ T and

min
p∈P−i

pMqT ≥ v∗(i+ 1)− δM/2,

then qT ∈ Qi.

Proof. Since qT ∈ Qi−1 by assumption, we only need to show that M(i,qT) = v∗(i).

By Lemma 3.10 we have that M(i,qT) ≤ v∗(i), so assume for contradiction that

M(i,qT) < v∗(i). Consider this chain of equalities/inequalities:

pTMqT − pTMqlex ∗ =
n∑
j=1

pT (j)(M(j,qT)− v∗(j))

≤ −γpT (i) +
n∑

j=i+1

pT (j) (3.24)

= pT (i)

(
−γ +

n∑
j=i+1

pT (j)

pT (i)

)

= pT (i)

(
−γ +

n∑
j=i+1

βTM(j,qT)

βTM(i,qT)

)
(3.25)

≤ pT (i)
(
−γ + (n− i)βT (δM/2)

)
(3.26)

< 0 (3.27)

where we used the following:

In (3.24): Since qT ∈ Qi−1, we have M(j,qT) = v∗(j) for 1 ≤ j ≤ i − 1. And

since qT is a pure strategy and M(i,qT) < v∗(i) by assumption, we have M(i,qT) ≤

v∗(i)− γ by the definition of γ.

63

In (3.25): Definition of MW algorithm.

In (3.26): Since qt ∈ Qi−1 for 1 ≤ t ≤ T by assumption, by Lemma 3.10 we have

that M(i,qt) ≤ v∗(i), and hence that M(i,qT) ≤ v∗(i). By assumption M(j,qT) ≥

v∗(i+1)−δM/2 for all j ≥ i+1. And by Assumption 3.8, we have v∗(i+1)−v∗(i) ≥ δM.

In (3.27): Plugging in assumption about T .

Note that pTMqT − pTMqlex ∗ < 0 contradicts the choice of qT .

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. We will just repeatedly apply Lemmas 3.12 and 3.13. We

divide the rounds of the MW algorithm into phases i = 1, . . . , n, with phase i begin-

ning at round ti. We will prove the following claim by induction: If T is sufficiently

large, then there exist choices for t1, . . . , tn+1 such that for all rounds t ≥ ti we have

qt ∈ Qi−1.

The claim is clearly true for i = 1 by letting t1 = 1. Suppose it holds for all

1 ≤ i′ ≤ i. Consider a “shadow” instance of the MW algorithm beginning at round

ti and running for Ti rounds, where the parameters α1, . . . , αn are set to match the

distribution pti . Observe that this “shadow” instance exactly matches the behavior

of the original instance of the MW algorithm during these rounds. By Lemma 3.12,

we have minp∈P−i pMqTi ≥ v∗(i+1)−∆Ti,pti ,β
. By our assumptions about α1, . . . , αn

and β, we have that ∆Ti,pti ,β
is finite and approaches δM/3 from above as Ti → ∞.

Thus we can choose Ti large enough so that we have ∆T,pti ,β
≤ δM/2 for all T ≥ Ti,

and therefore by Lemma 3.13 we have qT ∈ Qi for all T ≥ Ti. So let ti+1 = ti+Ti.

3.7 Algorithm-Based Sufficient Conditions

While Assumption 3.8 allows us to prove convergence of the MW algorithm to a

lexicographic optimum, it can be quite a limiting assumption, as revealed by the next

theorem.

64

Theorem 3.14. Suppose Assumption 3.8 holds. Then, in the game defined by the

matrix M, there exists a pure lexicographic maximin strategy for the column player,

and a unique (and pure) minimax strategy for the row player.

Proof. The statement of Theorem 3.9 supplies a proof of the existence of a pure

lexicographic maximin strategy. Indeed, the theorem states that the last column

strategy qT generated during the repeated game is a lexicographic maximin strategy

(if T is sufficiently large), and that the column strategy generated in each round is

pure.

To show that there exists a pure minimax strategy, we must first establish a simple

claim: If p∗ and q∗ are minimax and maximin strategies, respectively, then p∗ is a

best-response to q∗. Indeed

min
p∈P

pMq∗ = v∗ = p∗Mq∗

which proves the claim.

Let qlex ∗ be a lexicographic maximin strategy. We know that qlex ∗ is also a

maximin strategy. So, by the previous claim, any minimax strategy p∗ is a best-

response to qlex ∗. But, by Assumption 3.8, the column vector Mqlex ∗ has its unique

smallest component in row 1, and so p∗ must be the pure row strategy concentrated

on row 1. Thus p∗ is the unique minimax strategy.

In Section 2.2, we showed that there exists a large class of games for which both

players have pure optimal strategies — namely, extensive form games of perfect in-

formation. This is a huge family of games, so Assumption 3.8 — even in light of

Theorem 3.14 — does not necessarily rule out every game we might be interested in

solving. Still, there are many games for which the optimal strategies for one or both

players must be mixed.

We would like an algorithm that can compute a lexicographic maximin strategy

65

in any game, even those for which Assumption 3.8 does not hold. And we would

also like to preserve the desirable properties of the MW algorithm, such as its ability

to solve games in which one player has a very large number of strategies. So in

this section, instead of describing conditions on the game matrix which guarantee

lexicographic convergence of the MW algorithm, we will describe conditions on any

algorithm which guarantee lexicographic convergence, for any game matrix.

To this end, let us re-examine the reason why the MW algorithm, when used to

solve a game, can fail to converge to a lexicographic maximin strategy. In Section

3.5, we described an infinite family of matrices for which this failure occurs. For each

matrix Ma,ε in the family, we had

v∗ =


a

a

2a

 and Ma,εqT ≈


a

a

a


for all sufficiently large T , where a is a positive constant. At a high-level, there was

one essential difficulty faced by the MW algorithm when it was applied to the matrix

Ma,ε — the value of pt(3) rapidly approached zero as t became large. As a result,

when qt was chosen to be a best-response to pt, this best-response tended to “ignore”

row 3, and hence Ma,ε(3,qt) was not as large as it could be.

Since the difficulty is that pt assigns too little weight to some rows, one solution

might be to artificially force the weight on all rows to be above some lower bound.

Indeed, as we will see, essentially any no-regret algorithm which satisfies this simple

property can be used to compute a lexicographic maximin strategy.

Before we can state the main result of this section, we need to establish some

additional shorthand. Recalling our notation for restricted row strategies from Section

66

2.5, let

Pi , P{1,...,i}

pi,t , p{1,...,i},t

Zi,t , Z{1,...,i},t

In other words, Pi is the set of row strategies concentrated on the first i rows of M.

The row strategy pi,t ∈ Pi is pt restricted to the first i rows of M, and Zi,t is its

normalization constant.

We are now ready to state the main result of this section.

Theorem 3.15. Suppose the repeated game is played on a matrix M for T rounds.

Suppose the row player chooses strategies p1, . . . ,pT , and the column player chooses a

strategy qt = arg maxq∈Q ptMq in each round t. Suppose there exists i ∈ {0, . . . , n−1}

and scalars εT and C such that

(a) 1
T

∑T
t=1 pi,tMqt ≤ minp∈Pi

1
T

∑T
t=1 pMqt + εT

(b) 1
T

∑T
t=1 p−i,tMqt ≤ minp∈P−i

1
T

∑T
t=1 pMqt + εT

(c) Z−i,t ≥ C for all rounds t

(d) Z−i,T ≤ C + εT

where Z−i,T , 1
T

∑T
t=1 Z−i,t. Then

min
p∈P−i

pMqT ≥ v∗(i+ 1)− 4εT
C

Conditions (a) and (b) of Theorem 3.15 simply require that row player’s regret

with respect to the first i rows, and also the last n− i rows, is at most εT . Conditions

(c) and (d) place upper and lower bounds on the weight assigned by pt to the last

n− i rows.

67

Note that the statement of the theorem immediately implies

θi+1(MqT) ≥ v∗(i+ 1)− 4εT
C

because θi+1(Mq) ≥ minp∈P−i pMq for any column strategy q.

3.7.1 Satisfiability of Conditions

Before proving Theorem 3.15, we should ask whether its conditions are reasonable.

Is there an algorithm for choosing p1, . . . ,pT so that the conditions of Theorem 3.15

are satisfied? The next theorem proves that the MW algorithm suffices, albeit with

a very strong caveat.

Define ı̃ to be the largest row index such that v∗(̃ı) = v∗(1). Therefore, v∗(1) =

· · · = v∗(̃ı) < v∗(̃ı + 1) ≤ · · · ≤ v∗(n). Or, put differently, ı̃ is the index of the first

“breakpoint” in the sequence of values v∗(1), . . . , v∗(n).

Recall our definition of δM (in Assumption 3.8) as the minimum difference between

v∗(i) and v∗(j) for any distinct pair i and j. Let us define

δvM , min
v∗(i)6=v∗(j)

|v∗(i)− v∗(j)|

as the minimum difference between any distinct pair v∗(i) and v∗(j).

Theorem 3.16. Suppose the repeated game is played on a matrix M for T rounds.

Suppose the row player chooses strategies p1, . . . ,pT according to the MW algorithm,

and the column player chooses a strategy qt = arg maxq∈Q ptMq in each round t.

Then the conditions of Theorem 3.15 are satisfied for all i ∈ {ı̃ . . . n− 1}, with εT =

∆T,p1,β/δ
v
M and C = 0.

68

Proof. By Theorem 2.10 we immediately have

1

T

T∑
t=1

pi,tMqt ≤ min
p∈Pi

1

T

T∑
t=1

pMqt + ∆T,p1,β

and

1

T

T∑
t=1

p−i,tMqt ≤
1

T
min
p∈P−i

T∑
t=1

pMqt + ∆T,p1,β

which proves conditions (a) and (b). Clearly Z−i,t ≥ 0 for all rounds t, which proves

condition (c).

We claim that Z−i,T ≤ ∆T,p1,β/δ
v
M, which proves condition (d) and completes the

proof of the theorem. Recall from Theorem 2.8 that

max
q∈Q

pTMq ≤ v∗(1) + ∆T,p1,β (3.28)

However

max
q∈Q

pTMq ≥ pTMqlex ∗ ≥ Zi,Tv
∗(1) + Z−i,T (v∗(1) + δvM) (3.29)

where Zi,T , 1
T

∑T
t=1 Zi,t, and the last inequality follows from that fact thatM(j,qlex ∗) ≥

v∗(1) + δvM for all j ∈ {ı̃, . . . , n}. Combining (3.28) and (3.29), and noting that

Zi,T + Z−i,T = 1, proves the claim.

It may appear at first glance that Theorem 3.16 implies that the column strategy

qT output by the MW algorithm converges to a lexicographic maximin strategy.

Indeed, for all i ∈ {0 . . . ı̃− 1}, we have

θi+1(MqT) ≥ v∗(i+ 1)−∆T,p1,β (3.30)

by the original analysis of the MW algorithm in Theorem 2.8, and for all i ∈ {ı̃ . . . n−

1} we have

θi+1(MqT) ≥ v∗(i+ 1)− 4

CδvM
∆T,p1,β (3.31)

69

by Theorems 3.15 and 3.16. Since ∆T,p1,β can be made arbitrarily close to zero for suf-

ficiently large T , (3.30) and (3.31) together imply that qT is nearly a lexicographically

optimal maximin strategy, if C is a positive constant.

The difficulty, of course, is that Theorem 3.16 only tells us that MW satisfies

the conditions of Theorem 3.15 for C = 0, and so the bound in (3.31) is vacuous.

Nonetheless, Theorem 3.16 suggests that the MW algorithm is “almost” suitable for

computing lexicographic maximin strategies, and perhaps only needs to be modified

slightly. We explore this possibility in Section 3.7.4.

3.7.2 Proof of Convergence

We are now ready to prove the main result of this section.

Proof of Theorem 3.15. By the definition of qlex ∗ we have

ptMqlex ∗ =
∑
j

pt(j)v
∗(j) ≥ Zi,tv

∗(1) + Z−i,tv
∗(i+ 1) (3.32)

where the inequality uses the fact that v∗(1) ≤ · · · ≤ v∗(n). We also have

ptMqt = Zi,tpi,tMqt + Z−i,tp−i,tMqt (3.33)

Since ptMqt ≥ ptMqlex ∗ by the choice of qt, we can combine (3.32) and (3.33) and

rearrange terms to find

Zi,t [pi,tMqt − v∗(1)] + Z−i,tp−i,tMqt ≥ Z−i,tv
∗(i+ 1)

which will be convenient to re-write as

[Zi,t− (1−C) + (1−C)] [pi,tMqt − v∗(1)] + [Z−i,t−C +C]p−i,tMqt ≥ Z−i,tv
∗(i+ 1)

70

By condition (c) we have Z−i,t ≥ C, and since Zi,t+Z−i,t = 1, condition (c) also implies

that 1 − C ≥ Zi,t. Applying these inequalities, as well as the obvious inequalities

pi,tMqt − v∗(1) ≥ −1 and p−i,tMqt ≤ 1, and averaging both sides over all T rounds

yields

(1− C)− Zi,T + (1− C)
1

T

T∑
t=1

[pi,tMqt − v∗(1)]

+ Z−i,T − C + C
1

T

T∑
t=1

p−i,tMqt ≥ Z−i,Tv
∗(i+ 1)

Applying conditions (a), (c) and (d) to this expression and simplifying gives us

1

T

T∑
t=1

p−i,tMqt ≥ v∗(i+ 1)− 3εT
C

(3.34)

By condition (b) we have

1

T

T∑
t=1

p−i,tMqt ≤ min
p∈P−i

1

T

T∑
t=1

pMqt + εT (3.35)

Combining (3.34) and (3.35) proves the theorem.

3.7.3 Convergence of Rows

Theorem 3.15 shows that, if a particular row index i satisfies a certain set of condi-

tions, then the i + 1st best component of the vector MqT is (approximately) lower-

bounded by v∗(i + 1). When the conditions of Theorem 3.15 are satisfied for all

j ∈ {0, . . . , i}, we can further characterize MqT . Stated informally, the next theorem

shows that not only will the top i+ 1 components of MqT be lower-bounded by the

top i+1 components of v∗ (respectively), but additionally the first i+1 rows of MqT

will have converged to the first i+ 1 rows of v∗ (respectively).

71

Theorem 3.17. Suppose that for all j ∈ {0, . . . , i}

lim inf
T→∞

min
p∈P−j

pMqT ≥ v∗(j + 1)

Then for all j ∈ {0, . . . , i}

lim
T→∞

M(j + 1,qT) = v∗(j + 1)

Proof. Choose any i′ ∈ {0, . . . , i}, and suppose that for all j ∈ {0, . . . , i′− 1} we have

lim
T→∞

M(j + 1,qT) = v∗(j + 1) (3.36)

and

lim inf
T→∞

min
p∈P−i′

pMqT ≥ v∗(i′ + 1) (3.37)

Now consider the following claim:

lim
T→∞

M(i′ + 1,qT) = v∗(i′ + 1) (3.38)

In the rest of the proof, we will show that (3.36) and (3.37) imply (3.38). It is easy

to check that this proves the theorem.

Fix i′ ∈ {0, . . . , i} and ε > 0. Let

Qε = {q : M(i′ + 1,q) ≥ v∗(i′ + 1) + ε}

Since (3.37) implies that M(i′ + 1,qT) ≥ v∗(i′ + 1) − ε for all sufficiently large T , it

suffices to show that qT /∈ Qε for all sufficiently large T .

Let q̃ ∈ Qi′ ∩ Qε. We claim that minp∈P−i′ pMq̃ < v∗(i′ + 1). Suppose for

contradiction that minp∈P−i′ pMq̃ ≥ v∗(i′ + 1). Thus we have the following:

72

• M(j, q̃) = v∗(j) for 1 ≤ j ≤ i′ (because q̃ ∈ Qi).

• M(i′ + 1, q̃) > v∗(i′ + 1) (because q̃ ∈ Qε).

• M(j, q̃) ≥ v∗(i′ + 1) for i′ + 1 < j ≤ n (because minp∈P−i′ pMq̃ ≥ v∗(i′ + 1)).

By examining this list, one can see that it implies θ(Mq̃) >lex v∗, which contradicts

the definition of v∗.

Now, for each q, let E(q) be the following set of at most i′ + 1 elements:

E(q) = {|M(j,q)− v∗(j)| : 1 ≤ j ≤ i′} ∪
{

max

(
0, v∗(i′ + 1)− min

p∈P−i′
pMq

)}

and let E = {minE(q) : q ∈ Qε}. If there exists q ∈ Qε such that minE(q) = 0,

then q ∈ Qi and minp∈P−i pMq ≥ v∗(i + 1). But this contradicts our claim above.

Hence x > 0 for all x ∈ E.

It is easy to see that E is compact, and therefore inf E ∈ E. Let ε′ = inf E > 0.

By the conditions of the lemma, for all sufficiently large T we have minE(qT) < ε′,

and thus qT /∈ Qε.

3.7.4 The MW(λ) Algorithm

The conditions of Theorem 3.15 essentially require two things: that the row strategies

have the no-regret property for the first i rows and the last n− i rows, and that the

weights on the last n− i rows are lower- and upper-bounded. As we saw in Theorem

3.16, while the MW algorithm has the first of these properties, its weights are only

trivially lower-bounded by zero, rendering the guarantees of Theorem 3.15 vacuous.

How might we ensure that the weights assigned to each row by the MW algorithm

are lower-bounded by a constant? Here is one simple approach: replace pt with pλt ,

where pλt = (1 − λ)pt + λu, and u is the uniform distribution on all the rows, and

λ ∈ [0, 1]. Note that pλt (i) ≥ λ
n

for all rows i. We call this the MW(λ) algorithm, and

73

we will apply it in Chapter 5 to a reinforcement learning problem.

We will now prove that the MW(λ) algorithm converges to the lexicographic

maximin column strategy for the matrices Ma,ε from the proof of Theorem 3.7, for

which we have already shown that the MW algorithm provably diverges.

Theorem 3.18. Let Ma,ε be as in the proof of Theorem 3.7, for any a ∈ (0, 1
2
] and

ε ∈ (0, a
4
). Suppose the repeated game is played on Ma,ε for T rounds. Suppose

the row player chooses strategies pλ1 , . . . ,p
λ
T according to the MW(λ) algorithm, with

parameters α1, . . . , α3 and β tuned as in Lemma 2.5 so that ∆T,p1,β = ∆T,n. Suppose

the column player chooses a best response qt = arg maxq∈Q pλt Ma,εq in each round t.

Then

θi(Ma,εqT) ≥ v∗(i)−max

{
∆T,n + λ,

12∆T,n

λδvM

}
for all rows i.

Proof. We claim that θ1(Ma,εqT) ≥ v∗(1) − (∆T,n + λ). Since v∗(1) = v∗(2), this

immediately implies that θ2(Ma,ε) ≥ v∗(2)− (∆T,n + λ).

Consider the repeated game in which the row player chooses p1, . . . ,pT and the

column player chooses q1, . . . ,qT . We know that the row player’s average regret in

this repeated game is at most ∆T,n. And since pλt Ma,εqt = maxq∈Q pλMa,εq by the

choice of qt, and pλ = (1− λ)pt + λu, we have that

ptMa,εqt + λ ≥ max
q∈Q

pλMa,εq

So the column player’s average regret in this repeated game is at most λ. A direct

application of Theorem 2.8 proves the claim.

To prove that θ3(Ma,εqT) ≥ v∗(3)− 12∆T,n

λδvM
, we will simply verify that the conditions

of Theorem 3.15 hold with εT =
∆T,n

δvM
and C = λ

3
.

To prove condition (a), we inspect the matrix Ma,ε and observe that by the choice

of qt we have Ma,ε(1,qt) ≥ Ma,ε(2,qt) if and only if pλt (1) ≥ pλt (2). Since |pλt (1) −

74

pλt (2)| ≤ |pt(1)− pt(2)|, we have that pλ2,tMa,εqt ≤ p2,tMa,εqt. Thus we can conclude

1

T

T∑
t=1

pλ2,tMa,εqt ≤
1

T

T∑
t=1

p2,tMa,εqt ≤ min
p∈P2

1

T

T∑
t=1

pMa,εqt + ∆T,n

where the second inequality follows from Theorem 2.10.

Condition (b) clearly holds, because pMa,εq = Ma,ε(3,q) for all p ∈ P−2 and

q ∈ Q.

Condition (c) clearly holds with C = λ
3
.

To prove condition (d), it suffices to show that pλT (3) ≤ λ
3

+
∆T,n

δvM
, where pλT (3) ,

1
T

∑T
t=1 p

λ
t (3). Since pλT (3) = (1−λ)pT (3)+ λ

3
, we only need to show that pT (3) ≤ ∆T,n

δvM
.

Consider a repeated game in which the row player chooses strategies p′1, . . . ,p
′
T ac-

cording to the MW algorithm, and the column player chooses strategy q′t = arg maxq∈Q p′tMa,εq

in each round t. We have

p′tMa,εq
′
t ≥ p′tMa,εq

lex ∗ ≥ v∗(1) + δvMp
′
t(3)

where the first inequality holds by the choice of q′t, and the second inequality holds

because v∗(3) = v∗(1) + δvM. Taking the average of both sides over all T rounds and

applying Corollary 2.4 yields

∆T,n ≥ δvMp
′
T (3)

If we can show p′T (3) ≥ pT (3), we are done. We will prove something stronger:

Ma,ε(3,q
′
t) ≤Ma,ε(3,qt) for all rounds t (which implies that that p′t(3) ≥ pt(3) for all

rounds t). For contradiction, let t be the first round where Ma,ε(3,q
′
t) > Ma,ε(3,qt).

Then it must be that

|p′t(1)− p′t(2)| < |pλt (1)− pλt (2)|

75

But by the choice of t, it must be that

|pt(1)− pt(2)| ≤ |p′t(1)− p′t(2)|

And we have already argued that |pλt (1)− pλt (2)| ≤ |pt(1)− pt(2)|, which is a contra-

diction.

3.8 Other Related Work

Lexicographic optimal strategies are closely related to several other concepts in game-

theoretic literature. The most similar is the notion of proper equilibria in n-player

noncooperative games, introduced by Myerson [83]. Proper equilibria are themselves

defined in terms of ε-proper equilibria: With respect to a particular assignment of

strategies to the players, let us order each player’s pure strategies from best to worst.

If each player has been assigned a mixed strategy which places at most ε times as

much weight on a worse pure strategy than on a better one, then this assignment

of strategies is called an ε-proper equilibrium. A proper equilibrium is the limit of

a sequence of ε-proper equilibria in which ε → 0. Myerson [83] showed that proper

equilibria always exist, and they are a subset of the Nash equilibria. Later, van

Damme [133] showed that if both players in a zero-sum game are using a lexicographic

optimal strategy, then their strategies constitute a proper equilibrium — thus, in the

case of two-player zero-sum games, these concepts are equivalent.

Other related game-theoretic concepts are subgame perfect, sequential, and quasiper-

fect equilibria. Like lexicographic optimality, these concepts are based on anticipating

the possibility that an opponent will make a mistake. A good reference for these so-

called equilibrium refinements is by van Damme [134].

Potters and Tijs [95] defined the nucleolus of a convex map, and showed that,

for any two-plyaer zero-sum game, one can construct a convex map such that its

76

nucleolus coincides with the set of lexicographic optimal strategies.

As we have already discussed, Miltersen and Sorensen [79] were the first to describe

a polynomial-time algorithm for computing lexicographic optimal strategies in two-

player zero-sum games. Miltersen and Sorensen [80] improve their earlier algorithm

so that it runs in time polynomial in the game’s extensive form representation. For

some games, the extensive form is much more compact than the normal form, but

this is not always true. In particular, it is not the case for the games we described in

Sections 2.1 and 2.3, or the game we will discuss at length in Chapter 5.

The importance of lexicographic optimal strategies, and related concepts, has long

been recognized in applications. For example, Koller and Pfeffer [62] noted that their

poker-playing application tends to give back “gifts” it receives from her opponent,

i.e., it does not take advantage of mistakes.

McCracken and Bowling [76] and Johanson et al. [51] introduced the concepts of

safe and robust strategies, respectively, which bear a resemblance to lexicographic

optimal strategies. In their setting, one player builds a model of her opponent’s

behavior, and then calculates a best response to the model. Safe and robust strategies

provide a way, derived from game-theoretic principles, to guard against the possibility

that the opponent will deviate from the model.

3.9 Conclusion

In this chapter, we defined a useful refinement of the minimax/maximin optimal

strategy concept for two-player zero-sum games. We also showed how no-regret algo-

rithms, in particular the MW algorithm, are well-suited to computing these kinds of

strategies. We will use these algorithms in the Chapter 5.

77

Chapter 4

Mimicking Approach to

Apprenticeship Learning

In this chapter and Chapter 5, we present algorithms for a variant of reinforcement

learning called apprenticeship learning, first introduced by Abbeel and Ng [1]. The

basic idea underlying apprenticeship learning is that a learning agent, called the ap-

prentice, is able to observe another agent, called the mentor, behaving in an environ-

ment. The mentor’s behavior “teaches” the apprentice about the unknown rewards.

The goal of the apprentice is to learn a policy — i.e., a concrete prescription of how

to behave in the environment — that is at least as good as the mentor’s policy, rel-

ative to the unknown rewards. This is a weaker requirement than the usual goal in

reinforcement learning, which is to find a policy that maximizes reward.

Rewards are generally regarded as the sine qua non of reinforcement learning, and

it is certainly difficult to imagine reinforcement learning without the “reinforcement”

that rewards provide. However, merely stating the centrality of rewards to the frame-

work does not avoid a difficult truth about them: in practice, specifying the rewards

correctly is often very hard. Of course, in any application, some basic properties of

the rewards will be obvious. For example, when driving a car, crashing should be a

78

low-reward event. When operating a robotic arm, grasping the target object should

earn higher reward than missing it. And when playing a game of backgammon, the

highest reward should be assigned to winning the game.

In the reinforcement learning framework, rewards are represented by real num-

bers, which means that one must select specific values to represent “high” and “low”

rewards. Choosing the exact values for the rewards is a subtle and delicate design

problem. When driving a car, should staying on the road be ten times more rewarding

than avoiding a crash? Or one hundred times more rewarding? Unfortunately, the

behavior learned by most reinforcement learning algorithms can be quite sensitive to

the specific numerical values of the rewards. As a result, in practice, rewards are fre-

quently tweaked and tuned to elicit the desired behavior. We present an illustration

of this phenomenon in Section 4.1.

Sections 4.2 and 4.3 provide a detailed presentation of the apprenticeship learning

framework. All existing algorithms for apprenticeship learning are based on mimicking

the behavior of the mentor as closely as possible, and the algorithms we develop in

this chapter do this as well. On the other hand, in Chapter 5 we explain how the

game-solving techniques from Chapters 2 and 3 can be applied to apprenticeship

learning.

In Section 4.4, we review the main algorithm due to Abbeel and Ng [1], and de-

scribe an improved version of the algorithm that is both simpler and has superior

theoretical guarantees. Our algorithm is based on Blackwell’s theory of approacha-

bility [10].

The algorithms of Section 4.4 have one major drawback; they assume the true

rewards can be expressed as a linear combination of a set of known features. In many

cases, even this knowledge of the rewards may be difficult to obtain. In Section 4.5,

we remove this requirement, and describe an approach to apprenticeship learning that

assumes almost no prior knowledge about the true rewards. The idea is to reduce the

79

apprenticeship learning problem to classification, one of the oldest and most well-

studied problems in machine learning. The idea of reducing one learning problem to

another is a powerful one, and was first proposed by Zadrozny et al. [147]. Using this

approach, we show how any existing classification algorithm can be converted into an

apprenticeship learning algorithm, with its theoretical guarantees carrying over into

the new setting. The classification algorithm is used to mimic the behavior of the

mentor.

4.1 Motivation

We have asserted that specifying rewards can be difficult. For an illustration of this

phenomenon, consider the simple car driving simulator depicted in Figure 4.1. We

will return to this simulator in Section 5.7. In this simulator, the agent is the driver of

the dark-colored car, which is on a busy three-lane highway. Light-colored cars pass

by the agent’s car continually. The agent’s car has three available speeds: “fast”,

“medium”, and “slow”.

Figure 4.1:
Screenshot of car driving simulator.

How should the agent drive her car? Perhaps the most simple and natural way

to describe the behavior we want is to use plain English: the agent should “drive

as fast as possible while avoiding other cars”. But how does one translate this goal

into rewards? In practice, this is usually done in a fairly ad hoc fashion. As a first

80

attempt, let us try assigning a reward of +10 to each time step in which the agent’s

car is traveling at high speed, +5 for medium speed, and 0 for slow speed. Let us

also assign a reward of −100 for colliding with other cars.

We applied a reinforcement learning algorithm called value iteration — reviewed

in Section 4.2.1 — to learn a policy for the agent’s car that maximizes reward. The

first line of Table 4.1, denoted Attempt 1, describes the behavior of the learned policy.

It is clear that something has gone wrong. The agent’s car is driving fast and avoiding

other cars, but spends all its time off-road. The problem, of course, is that we forgot

to add a penalty for driving off-road.

Speed Collisions Off-roads
(per sec) (per sec)

Attempt 1 Fast 0 8.0
Attempt 2 Fast 0.5 0
Attempt 3 Medium 0 1.3
Attempt 4 Medium 0 0

Table 4.1:
Attempts to tune reward function.

So let us add such a penalty. We assigned a reward of −50 to driving off-road,

and then re-learned a policy that maximizes reward. The results are given in Table

4.1, as Attempt 2. In this case, the agent’s car stays on the road, but does not

completely succeed in avoiding other cars. Evidently, the penalty for crashing is too

small relative to the reward for driving fast.

The rest of Table 4.1 describes attempts to tweak the rewards to fix this problem.

By Attempt 4, we have succeeding in learning a crash-free, on-road driving policy

for the blue car. Because the environment of the car driving simulator is small and

simple, we can manually verify that “medium” is indeed the fastest speed that the

blue car can drive while ensuring that no crashes occur and the car stays on the road.

In a more complicated environment, of course, it would be impossible to check this.

The illustration given above actually understates the difficulty of specifying ap-

81

propriate rewards. In the car driving simulator, it was fairly painless to tweak the

rewards until the desired behavior was achieved. But suppose we had been doing this

experimentation while driving a real car? Tweaking the rewards in such a situation

could be disastrous.

Repeatedly adjusting rewards to correct for unintended behavior is a common

experience when using reinforcement learning algorithms. This often happens when

rewards are given for “intermediate” goals that can inadvertently cause the algorithm

to ignore the actual goal. For example, in work by Randlov and Alstrom [103] on

teaching an agent to ride a simulated bicycle, the agent only learned to ride the

bicycle in a circle, because rewards were given for staying upright. Also, Andre and

Teller [2] describe a soccer-playing robot which learned only to “vibrate” next to the

ball, hitting it repeatedly, because rewards were given for contact with the ball.1

Apprenticeship learning is one approach to dealing with the difficulty of specifying

the rewards in a reinforcement learning problem. Before describing this approach

precisely, we will describe Markov Decision Processes in Section 4.2, which provide

a mathematical foundation for reinforcement learning. Then, in Section 4.3, we will

explain how the apprenticeship learning framework departs from a Markov Decision

Process.

4.2 Markov Decision Processes

Reinforcement learning and Markov Decison Processes (MDPs) are so closely related

that the terms are sometimes used interchangeably. Put simply, an MDP is the for-

mal mathematical framework within which the problem of reinforcement learning is

studied.2 MDPs are used extensively in many fields besides machine learning, such

as control theory and operations research. They are a natural formalism for study-

1These anecdotes were first related by Ng et al. [90].
2There are some alternative frameworks (e.g. Predictive State Representations [74]), but these

have been developed relatively recently and have not been widely adopted.

82

ing problems in which an agent must make a sequence of decisions in an uncertain

environment.

The main elements of an MDP are the state space S, action space A, policies Π,

transition function θ, and reward function R. We will describe each of these in turn.

Each state s ∈ S describes a possible configuration of the environment. In our car

driving simulator, a state of the environment is just a description of the positions and

speeds of all the cars. Choosing an appropriate definition for the state space is itself

a subtle design issue (Powell [96, p. 139] provides an extensive discussion). It can

sometimes be difficult to know which details of the environment should be included in

the state descriptor, and which should be abstracted away. Ideally, the state should

contain all the information that an agent needs to predict the future evolution of the

environment, so that, conditioned on the state, the future of the environment should

be independent of its past. Put another way, the state should render the environment

Markovian — hence the name “Markov Decision Process”. The state space can be

infinite, but unless we specify otherwise, the state space will be presumed to be finite,

though possibly very large. Infinite state spaces will be considered in Section 4.5.

Each action a ∈ A is an option available to the agent for controlling its environ-

ment at a given moment. In our car driving simulator, the actions are: moving left

and moving right, and speeding up and slowing down. Like the state space, we will

assume that the set of actions is finite.

A policy π ∈ Π is a prescription for an agent for controlling its environment.

Policies link states to actions. A policy π can be deterministic, in which case π : S →

A is a function mapping each state to a single action. A policy can also be randomized,

in which case π : S × A → [0, 1] is a function mapping each state-action pair to a

probability. For randomized policies, we let π(s, a) denote the probability, according

to policy π, of taking action a in state s (observe that this notation is general enough to

describe deterministic policies as well). We must have
∑

a∈A π(s, a) = 1 for all states

83

s ∈ S. For both the deterministic and randomized cases, we have assumed that π

is stationary, which means that it does not vary with time. The MDP framework is

flexible enough to allow for nonstationary policies, which can also be further divided

into deterministic and randomized types. However, unless specified otherwise, we will

consider only stationary policies (or mixtures of stationary policies; see Section 4.4).

Nonstationary policies will be studied in Section 4.5.

The transition function θ : S × A × S → [0, 1] describes the dynamics of the

environment, i.e., how the environment evolves from state to state, under a specific

choice of action by the agent. The quantity θ(s, a, s′) is the probability of transitioning

to state s′ when the agent takes action a in state s. We must have
∑

s′∈S θ(s, a, s
′) = 1

for all states s ∈ S and actions a ∈ A. Algorithms for reinforcement learning can be

divided into two major categories: those which require that the transition function be

given, and those which do not assume that it is given.3 In this thesis, we will study

both settings.

Finally, we come to the most crucial element of MDPs, which we have already

discussed at length: the reward function. A reward function R : S → R maps each

state to a real number. It is possible to generalize this definition to allow reward

functions to depend jointly on both states and actions. Making this generalization is

easy, but having a dependence on actions tends to clutter the analysis. Consequently,

in much of reinforcement learning literature this generalization is ignored, and we

will also follow this convention. We also let Rmax = maxs∈S |R(s)| denote the largest

reward magnitude.

Having described the main elements of an MDP, we can formalize the goal of

reinforcement learning within the MDP framework. To do this, we first need to

define the value function V π for a policy π. The value function is defined in terms of

3Some authors take the position that the reinforcement learning algorithms by definition may not
assume that the transition function is given, but this strict usage of terminology is not universally
accepted.

84

all the elements of an MDP that we have described so far, and is given by

V π(s) , E

[
∞∑
t=0

γtR(st)
∣∣∣ s0 = s, at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

In other words, V π(s) is the expected cumulative discounted reward for following

policy π when starting in state s. The discount factor γ ∈ [0, 1) encodes the principle

that rewards received sooner are worth more than rewards received later. The discount

factor also offers the mathematical convenience of ensuring that the infinite sum in

the definition of V π(s) is finite, as long as the reward function is bounded. The fact

that V π(s) depends on rewards received infinitely far into the future is known as an

infinite horizon. While V π(s) could have been defined using a finite horizon, tasks

that take a long or indefinite amount of time to complete are often well-modeled using

an infinite horizon plus a discount factor. We will use a finite horizon in Section 4.5.

Let α : S → [0, 1] denote an initial state distribution, where α(s) ≥ 0 for all

states s ∈ S and
∑

s∈S α(s) = 1. The value of a policy π is defined to be V (π) ,∑
s∈S α(s)V π(s), and an optimal policy for the MDP is

π∗ , arg max
π∈Π

V (π) (4.1)

We say that a policy π is ε-optimal if V (π) ≥ V (π∗)− ε.

We note that our definition of optimality is weaker than the definition most often

used in literature on MDPs. Usually, an optimal policy π∗ is defined to be one that

satisfies

V π∗(s) ≥ V π(s) for all π ∈ Π and s ∈ S (4.2)

Clearly, (4.2) is a stronger requirement than (4.1). Indeed, (4.2) is a very strong

property for a policy to have. It is not obvious that a policy that maximizes the value

function at every state simultaneously even exists. One of the most fundamental

85

results in the study of MDPs is that such a policy does exist, and moreover that it is

both deterministic and stationary [7, 50].

For our purposes, the weaker definition of optimality given in (4.1) will suffice. One

reason is that many applications have a well-known initial state distribution. Games

like chess, backgammon, etc., for instance, are in this category. Another reason is

that, when we introduce the apprenticeship learning framework in Section 4.3, this

weaker definition will allow us to make weaker assumptions about the mentor. In

particular, we will only need to assume that we can observe the mentor starting in a

state drawn from the initial state distribution, and not in each state separately.

The usual goal in reinforcement learning is to efficiently find an approximately

optimal policy in the MDP, using time that is polynomial in the quality of the ap-

proximation and the size of the MDP. We state this goal formally so we can easily

compare it with the goal of apprenticeship learning that we present in the Section

4.3.

Goal of Reinforcement Learning: Find an ε-optimal policy in

poly(|S|, |A|, 1/ε, Rmax/(1− γ)) time.

4.2.1 Computing an Optimal Policy

The goal of reinforcement learning is to compute an optimal policy in an MDP, and

a huge array of methods have been developed for this task. In this section we review

several of the better-known reinforcement learning algorithms. These algorithms will

be used as subroutines for the apprenticeship learning algorithms that we developed

in later sections. All of these algorithms are designed to compute a policy that is

optimal in the strong sense defined in (4.2) — i.e., a policy that maximizes the value

function at every state simultaneously — and throughout this section we will use this

definition of optimalty exclusively. Of course, any such policy is also optimal in the

weaker sense defined in (4.1).

86

Value Iteration

The original algorithms for computing optimal policies require access to both the

reward function R and the transition function θ of the MDP. The earliest such al-

gorithm is value iteration, first proposed by Bellman [7], who also proved that every

MDP has an optimal deterministic policy. Bellman’s approach was to show that, if

such a policy π∗ exists, its value function V π∗ must satisfy

V π∗(s) = R(s) + γmax
a∈A

∑
s′∈S

θ(s, a, s′)V π∗(s′) (4.3)

for all states s ∈ S. Moreover, any real-valued function V ∗ : S → R satisfying (4.3)

is the value function of an optimal deterministic policy π∗, and this policy can be

recovered by setting

π∗(s) = arg max
a∈A

∑
s′∈S

θ(s, a, s′)V ∗(s′)

for each s ∈ S. In other words, π∗(s) is the action that realizes the maximum on the

right-hand side of (4.3).

Let V be the set of all functions V : S → R such that maxs∈S |V (s)| ≤ Rmax

1−γ . It is

easy to show that the value function V π of any policy π belongs to V . Now define an

operator T ∗ : V → V which, given a function V ∈ V , returns a new function T ∗(V)

that is obtained by plugging V into the right-hand side of (4.3) and returning the

left-hand side (i.e., treating (4.3) as an assignment instead of an equation). Bellman

proved that a solution to (4.3) always exists by showing that the operator T ∗ is a

contraction on V , and thus has a (unique) fixed point [110]; this fixed point is the

solution V ∗ of (4.3). Appropriately, (4.3) is known as the Bellman equation.

Moreover, the operator T ∗ can used to estimate V ∗; this is the value iteration

algorithm. Starting at any function V 1 ∈ V , value iteration produces a sequence of

87

functions V 1, V 2, . . . by setting V i+1 = T ∗(V i). The contraction property of T ∗ can

be used to show that the function V n satisfies

|V n(s)− V ∗(s)| ≤ 2Rmax γn

1− γ

for all states s ∈ S.

Policy Iteration

While value iteration operates on value functions, the policy iteration algorithm op-

erates directly on policies. The algorithm produces a sequence of policies π1, π2, . . .

over the course of its operation. The policy π1 is chosen arbitrarily, and for each

policy πi, the value function V πi is computed using any of the methods described in

Section 4.2.2. If πi is an optimal policy, then V πi satisfies the Bellman equation (4.3);

in this case the algorithm terminates. If πi is not an optimal policy, then the next

policy πi+1 is obtained by setting

πi+1(s) = arg max
a∈A

∑
s′∈S

θ(s, a, s′)V πi(s′)

for each state s ∈ S. It is easy to show that V πi+1(s) > V πi(s) for at least one state s,

and therefore the algorithm cannot cycle. Moreover, since the number of deterministic

policies is finite, the algorithm must eventually terminate. A more refined analysis

due to Puterman [100] shows that policy iteration converges no more slowly than

value iteration.

Despite the similar bounds on their worst-case running time, policy iteration is

often much faster than value iteration in practice, and is widely-used in applications.

In Section 5.7 we will discuss several experiments involving both value iteration and

policy iteration.

Value iteration and policy iteration can be combined to form hybrid methods,

88

such as modified policy iteration [101], which interleaves the operation of the two

algorithms. Also, we have thus far assumed that value iteration and policy iteration

update every state in every iteration. In large environments, this can cause progress

to be very slow. Asynchronous policy iteration algorithms [8] update only a few states

every iteration; prioritized sweeping [82, 93] is one method for intelligently selecting

the states to update.

Linear Programming

It was observed quite early in the study of MDPs that the problem of computing an

optimal policy can be formulated as a linear program [20]. The linear program has

the following form:

min
V

∑
s∈S

V (s)

V (s) ≥ R(s) + γ
∑
s∈S

θ(s, a, s′)V (s) for all s ∈ S, a ∈ A

Note that the optimal value function V ∗, which is a solution to (4.3), is also a

feasible solution for this linear program. Moreover, if a feasible solution V to the

linear program differs from V ∗, then there must be some state s ∈ S such that all

the constraints in which V (s) appears on the left-hand side are loose, which implies

that V is not an optimal solution. These facts together prove the correctness of the

linear program.

We will use the dual of this linear program in Section 5.6, where we describe an

efficient method for solving the apprenticeship learning problem.

Model-Free Algorithms

All the reinforcement learning algorithms that we have reviewed thus far require an

explicit description of the environment, in the form of the reward function R and tran-

89

sition function θ. It is often unrealistic to assume that such a description is available,

and much of reinforcement learning research has been driven by an interest in remov-

ing this requirement. Indeed, as we mentioned in Section 4.2, some authors argue

that only algorithms that do not require an explicit description of the environment

can be properly called “reinforcement learning” algorithms.

The algorithms we describe below do not operate on a description of the en-

vironment, but interact with the environment directly. Their experience with the

environment takes the form of one continuous trajectory {(st, rt, at)}∞t=1. When one

of these algorithms visits state st, it observes a reward rt = R(st), takes some action

at, and is then sent to a new state st+1 according to the distribution θ(st, at, ·). As

usual, the aim of the algorithm is to learn an optimal policy π∗.

Reinforcement learning algorithms for this setting can be divided into two major

types. The first type are model-based algorithms, which construct an approximation,

or model, of the true MDP by estimating the unknown functions R and θ, and then use

a method like value iteration to learn an optimal policy in the model. We will describe

model-based algorithms in the next subsection, where we review algorithms that

have polynomial-time bounds on their running time. In this subsection, we describe

model-free algorithms, which make no attempt to explicitly model the dynamics of

the environment, but instead learn an optimal policy via a more direct approach.

Q-learning [142] is one of the most popular and elegant model-free reinforcement

learning algorithms. It belongs to a family of model-free algorithms that estimate the

state-action value function Qπ of a policy π, defined

Qπ(s, a) , R(s) + γ
∑
s′∈S

θ(s, a, s′)V π(s′)

The objective of Q-learning is to estimate Qπ∗ , the state-action value function of the

optimal policy π∗. Since V π∗(s) = maxa∈AQ
π∗(s, a), the policy π∗ can be recovered

90

from Qπ∗ by setting π∗(s) = arg maxa∈AQ
π∗(s, a). The Q-learning algorithm esti-

mates Qπ∗ by maintaining a function Q : S × A → R whose values are updated at

each time step t as follows

Q(st, at)← Q(st, at) + αt

[
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

]

where αt ∈ R is called the learning rate at time t. If each state-action pair (s, a) is

visited infinitely often by the sequence {(st, rt, at)}∞t=1, and if

∞∑
t=1

αt =∞ and
∞∑
t=1

(αt)
2 <∞

then Q converges to Qπ∗ with probability 1 [143]. Note that the policy which generates

the experience trajectory {(st, rt, at)}∞t=1, called the exploration policy, need not be

an optimal policy; this makes Q-learning an off-policy method. Other model-free

algorithms, such as SARSA [111], are on-policy methods. They work by estimating

the state-action value function Qπ of the exploration policy π, and then slowly modify

that policy until it is optimal.

Polynomial-Time Methods

Although the methods described in the previous subsubsection do not require an

explicit description of the environment, they are only guaranteed to converge to an

optimal policy after a finite, but possibly very large, number of time steps. The E3

algorithm [56] (which stands for “Explicit Explore or Exploit”) was the first rein-

forcement learning algorithm with a polynomial -bound on its convergence time. The

more recent R-MAX algorithm [13] can be viewed as a simpler and more intuitive

version of E3, so we review its operation here.

As the R-MAX algorithm interacts with the environment, it maintains a model of

the environment based on its experience so far, and always follows an optimal policy

91

in that model. Among the states the algorithm has visited, it keeps track of which

are “known” (i.e., have been visited a sufficient number of times), and which are not.

If a state is not known, its reward in the model is set to Rmax, the maximum reward

of any state (hence the name of the algorithm). This encourages the algorithm to

visit states it has not visited very often, and yields the following measure of progress:

At every time step, either the R-MAX algorithm is following a near-optimal policy,

or it is efficiently learning a better model of the environment.

Every reinforcement learning algorithm which is not given a description of its

environment is faced with the “exploration vs. exploitation” dilemma: At every time

step, the algorithm must decide whether to take an action which leads to large reward

in its current understanding of the environment, or to take an action which improves

its understanding of the environment. Many reinforcement learning algorithms resolve

this dilemma in fundamentally the same way that the R-MAX algorithm does, by

maintaining “optimism in the face of uncertainty”.

Both E3 and R-MAX are model-based algorithms, as are most reinforcement learn-

ing algorithms with polynomial bounds on their convergence time. But a model-based

approach is not strictly necessary; the Delayed Q-learning algorithm [123] is a variant

of Q-learning which provably converges to an optimal policy in a polynomial number

of time steps.

Approximate Methods

All of the reinforcement learning algorithms we have discussed so far assume that the

state space is finite. In practice, this can be a very limiting assumption. For example,

many real-world domains are most naturally modeled by a state space that is a subset

of Rn. However, when the state space is infinite, no algorithm can be guaranteed

to compute an optimal policy unless further assumptions are made. Nonetheless,

the most active research area in traditional reinforcement learning is in developing

92

algorithms that work well in very large or infinite state spaces. We note that nearly all

of the apprenticeship learning algorithms that we present in later sections are really

meta-algorithms that can use any of these methods as a subroutine, and therefore

inherit any desirable properties or guarantees they may possess.

A comprehensive review of these methods is well outside the scope of this thesis.

Both Sutton and Barto [125] and Powell [96] offer excellent surveys; here we will just

touch upon some of the basic ideas. The most common approach is function ap-

proximation, where the goal is to learn an approximation Vθ or Qθ of the true value

functions V or Q, parameterized by some low-dimensional vector θ. Instead of updat-

ing Vθ or Qθ at individual points in their domain, function approximation methods

update the components of θ until they converge to a parameter θ∗ corresponding

to an (approximately) optimal value function. Another approach is to assume that

a near-optimal policy can be expressed in parameterized form πθ. Policy iteration

methods follow the gradient of the value function with respect to θ until they reach

an (approximately) optimal policy πθ∗ .

4.2.2 Computing Value of a Policy

In the course of computing an optimal policy, many reinforcement learning algorithms

require the ability to compute the value function of a particular policy (policy iteration

is one such algorithm). This step is called policy evaluation. For any policy π, its

value function V π must satisfy

V π(s) = R(s) + γ
∑

a∈A,s′∈S

π(s, a)θ(s, a, s′)V π(s′) (4.4)

93

for all s ∈ S. This is easy to prove by simply “unrolling” the definition of V π, as

follows:

V π(s) = E

[
∞∑
t=0

γtR(st)
∣∣∣ s0 = s, at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

= R(s) + E

[
∞∑
t=0

γt+1R(st+1)
∣∣∣ s0 = s, at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

= R(s) + γE

[
∞∑
t=0

γtR(st+1)
∣∣∣ s0 = s, at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

= R(s) + γ
∑

a∈A,s′∈S

π(s, a)θ(s, a, s′)E

[
∞∑
t=0

γtR(st)
∣∣∣ s0 = s′, at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

= R(s) + γ
∑

a∈A,s′∈S

π(s, a)θ(s, a, s′)V π(s′)

Note that (4.4) closely resembles the Bellman equation in (4.3), and in fact (4.4) is

also sometimes called the Bellman equation. If we regard each V π(s) as an unknown

variable, then (4.4) defines a system of |S| linear equations in |S| unknowns, which

can be solved using a wide variety of techniques.

Alternatively, we can compute V π by using repeated application of a contraction

mapping, just like we did in the value iteration algorithm. Define an operator T π :

V → V which, given a function V ∈ V , returns a new function T π(V) that is obtained

by plugging V into the right-hand side of (4.4) and returning the left-hand side. T π

is a contraction, and repeated application of T π converges to its unique fixed point

V π.

When a description of the environment is unavailable, the model-free TD(λ) al-

gorithm [124] can be used to compute the value function of a policy. The SARSA

algorithm is based on TD(λ).

The methods described above compute the value function V π of a policy π, but

most of the apprenticeship learning algorithms we describe in later sections only

require the value of a policy V (π) (recall that V (π) is the expected value of V π(s)

94

when the state s is drawn from the initial state distribution). Computing an estimate

of V (π) is as easy as estimating the value of random variable from independent

samples: Simply execute the policy π in the environment for several trials, starting

from the initial state distribution in each trial, and calculate the average cumulative

discounted reward collected over all trials. Of course, the quality of this estimate

will depend on both the number and duration of the trials. We will have more to

say about this method of estimating V (π) in Section 5.3. In Section 5.6, we describe

another way to compute the value of a policy V (π), which is based on the dual of the

linear program that can be used to compute an optimal policy.

4.3 Apprenticeship Learning Framework

As we illustrated in Section 4.1, despite the centrality of rewards to the reinforcement

learning framework, specifying the true reward function can be a difficult task. Abbeel

and Ng [1]’s development of apprenticeship learning was motivated by the observation

that, although the reward function may be difficult to specify, demonstrations of good

behavior by a mentor are often plentiful. Therefore, by observing such a mentor, one

can infer information about the true reward function without needing to specify it.

The apprenticeship framework is nearly identical to an MDP, except that the true

reward function R is unknown. A mentor policy πE can be observed executing in

the environment, and the observations are in the form of m independent trajectories.

A trajectory is just a sequence of states visited by the mentor during an interaction

with the environment. We are now in a position to state the goal of apprenticeship

learning.

Goal of Apprenticeship Learning: Find a policy πA, called the ap-

95

prentice policy, such that

V (πA) ≥ V (πE)− ε

in poly(|S|, |A|, k, 1/ε, Rmax/(1−γ)) time and using poly(k, 1/ε, Rmax/(1−

γ)) trajectories from the mentor, where the value of a policy is calculated

with respect to the unknown reward function.

So apprenticeship learning is both easier and more difficult than traditional re-

inforcement learning. It is easier in the sense that the learned policy must only be

nearly as good as the mentor policy, but not necessarily as good as an optimal policy.

It is more difficult because the true reward function is unknown.

In the rest of this chapter and Chapter 5, we describe various algorithms for ap-

prenticeship learning, each of which rely on different assumptions about the problem.

In Section 4.4 and Chapter 5, we assume that the true reward function belongs to

a restricted class — namely, it can be expressed as a linear combination of a set of

known features. In Section 4.5, we assume we have access to a good classification

algorithm, which we use to solve the apprenticeship learning problem.

4.4 Feature-Matching Algorithms

In this section, we present apprenticeship learning algorithms that are based on the

idea of “feature-matching”. The original apprenticeship learning algorithms due to

Abbeel and Ng [1] are also based on this idea.

The idea is the following: Even when a reward function is difficult to describe

exactly, it is usually easy to specify what the reward function must depend on. For

example, when a person drives a car, the rewards that she is maximizing depend on

just a few key factors: the speed of the car, the position of other cars, the underlying

terrain, etc. What is unclear, however, is how the rewards encode the trade-offs

96

among these various factors. For example, exactly how much more should the driver

prefer traveling fast over avoiding other cars?

With these observations in mind, in this section the unknown reward function R

is assumed to have the form

R(s) = w∗ · φφφ(s)

Here the feature function φφφ : S → [0, 1]k is known, but the weight vector w∗ ∈ Rk,

where ‖w∗‖1 ≤ 1, is unknown. The bounds on the magnitude of the features and

weight vector are needed in order to derive meaningful performance guarantees for

apprenticeship learning algorithms. Clearly Rmax ≤ 1 under these assumptions.

In the rest of this section, we will describe apprenticeship learning algorithms

that are based on matching the behavior of the mentor with respect to the features.

Before presenting these algorithms, we describe some additional components of the

apprenticeship learning framework.

Feature Expectations

An object which plays a key role in our analysis is the feature expectations function:

µ(π) , E

[
∞∑
t=0

γtφφφ(st)
∣∣∣ s0 ∼ α(·), at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]

From its definition, it should be clear that “feature expectations” is a (somewhat

misleading) abbreviation for “expected, cumulative, discounted feature values.” Im-

portantly, since R(s) = w∗ · φφφ(s), we have

V (π) = w∗ · µ(π) (4.5)

97

by linearity of expectation. We will repeatedly make use of the following fact about

feature expectations: For any policy π, we have

µ(π) ∈
[

1

1− γ
min
i

min
s∈S

φi(s),
1

1− γ
max
i

max
s∈S

φi(s)

]k
(4.6)

by the convergence of the geometric series in the definition of µ(π). Finally, let

µE = µ(πE) denote the mentor’s feature expectations.

Mixed Policies

To ease the apprenticeship learning task, in this section we will not require that

the apprentice policy be a simple stationary policy, but instead allow it to be a

mixed policy. A mixed policy ψ is described by a distribution over ΠD, the set of

all deterministic stationary policies. Because ΠD is finite (though extremely large,

since |ΠD| = |A||S|), we can fix a numbering of the policies in ΠD, which we denote

π1, . . . , π|ΠD|. This allows us to treat ψ as a vector, where ψ(i) is the probability

assigned to πi. A mixed policy ψ is executed by randomly selecting the policy πi ∈ ΠD

at time 0 with probability ψ(i), and exclusively following πi thereafter.

The value of a mixed policy is equal to the expected value of the stationary policies

that constitute it:

V (ψ) = Ei∼ψ
[
V (πi)

]
=

|ΠD|∑
i=1

ψ(i)V (πi) (4.7)

The feature expectations of a mixed policy can be computed in the same way:

µ(ψ) = Ei∼ψ
[
µ(πi)

]
=

|ΠD|∑
i=1

ψ(i)µ(πi) (4.8)

Both (4.7) and (4.8) are easy consequences of the linearity of expectation, as is the

following analogue of (4.5):

V (ψ) = w∗ · µ(ψ) (4.9)

98

Also note that mixed policies do not have any advantage over stationary policies

in terms of value: if π∗ is an optimal stationary policy, and ψ∗ is an optimal mixed

policy, then V (ψ∗) = V (π∗). Again, this is due to the linearity of expectation.

4.4.1 Projection Algorithm

We now review one of the original algorithms for apprenticeship learning, due to

Abbeel and Ng [1]. We will provide a fairly detailed description and analysis, to

ease the comparison with the new algorithms we present in later sections and chap-

ters. Abbeel and Ng [1] actually described two apprenticeship learning algorithms.

Both have the same theoretical guarantees, but the so-called Projection algorithm is

simpler, and is also slightly faster in experimental studies, so we focus on it here.

The Projection algorithm is given in Algorithm 4.1, and a schematic depiction of

the operation of the algorithm is given in Figure 4.2. In each iteration t, the Projection

algorithm computes an optimal policy πt for a reward function Rt = wt ·φφφ, where wt

is a weight vector updated each round by the algorithm. As Figure 4.2 illustrates,

when the Projection algorithm ends, the point µE is close to the convex hull of

µ(π1), . . . ,µ(πT). Moreover, µ(ψ̃T) is the closest point in that convex hull to µE,

where ψ̃T is the mixed policy output by the algorithm. Consequently, Abbeel and

Ng [1] are able to obtain the following result.

Theorem 4.1 ([1]). Let ψ̃T be the mixed policy output by the Projection algorithm.

Then ∥∥∥µ(ψ̃T)− µE
∥∥∥

2
≤ O

(√
k log k

T (1− γ)2

)
Theorem 4.1 can be used to prove that the mixed policy output by the Projection

algorithm satisfies the goal of apprenticeship learning.

Corollary 4.2 ([1]). Let ψ̃T be the mixed policy output by the Projection algorithm.

99

Algorithm 4.1 Projection Algorithm [1]

1: Given: MDP without a reward function, feature function φφφ, mentor’s feature
expectations µE, parameter T .

2: Choose any w1 such that ‖w1‖1 ≤ 1.
3: for t = 1, . . . , T do
4: Let πt = arg maxπ∈ΠD wt · µ(π).
5: if t = 1 then
6: Let µ′t = µ(πt)
7: else
8: Let µ′t = µ′t−1 +

(µ(πt)−µ′t−1)·(µE−µ′t−1)

(µ(πt)−µ′t−1)·(µ(πt)−µ′t−1)
(µ(πt)− µ′t−1)

9: (This is the projection of µE onto the line through µ′t−1 and µ(πt).)
10: end if
11: Let wt+1 = µE − µ′t.
12: end for
13: Find a solution λ̃1, . . . , λ̃T to this quadratic program:

min
λ1,...,λT

‖µE − µ‖2 such that µ =
T∑
t=1

λtµ(πt),
T∑
t=1

λt = 1, λt ≥ 0

(The point
∑T

t=1 λ̃tµ(πt) is the projection of µE onto the convex hull of
µ(π1), . . . ,µ(πT).)

14: Return: The mixed policy ψ̃T which assigns probability λ̃t to each policy πt.

100

Figure 4.2: First several iterations of the Projection algorithm.

Then ∣∣∣V (ψ̃T)− V (πE)
∣∣∣ ≤ O

(√
k log k

T (1− γ)2

)
(4.10)

Proof. We have

∣∣∣V (ψ̃T)− V (πE)
∣∣∣ =

∣∣∣w∗ · µ(ψ̃T)−w∗ · µE
∣∣∣ ((4.9) and (4.5))

≤ ‖w∗‖2

∥∥∥µ(ψ̃T)− µE
∥∥∥

2
(Cauchy-Schwarz)

≤
∥∥∥µ(ψ̃T)− µE

∥∥∥
2

(‖w∗‖2 ≤ ‖w
∗‖1 ≤ 1)

≤ O

(√
k log k

T (1− γ)2

)
(Theorem 4.1)

The guarantee in (4.10) implies that the values of the mentor’s policy and the

mixed policy output by the Projection algorithm differ by at most O
(√

k log k
T (1−γ)2

)
.

4.4.2 Blackwell Algorithm

One of the main drawbacks of the Projection algorithm is that it requires a quadratic

program (QP) solver [12], which is used in a post-processing step to find the pro-

jection of a point onto a convex set. Generally, solving a QP is an expensive and

complicated procedure. In this section, we will describe a modification to the Projec-

101

tion algorithm that makes this post-processing step unnecessary, and also makes the

algorithm simpler and faster as part of the bargain. We call this new algorithm the

Blackwell algorithm, because it is based on the well-known Blackwell approachability

theorem [10].

Blackwell’s theorem is a statement about vector-payoff repeated games, which

are generalizations of zero-sum repeated games. In a zero-sum repeated game, as we

explained in Section 2.1, the scalar payoff in each round is determined by the players’

choice of strategies in that round, and the row player’s goal is to minimize the average

payoff over all rounds, while the column player’s goal is to maximize it. In a vector-

payoff repeated game, the payoff of the game is a vector instead of a scalar. The game

is defined by a set S, and the row player’s goal is to have the average payoff vector over

all rounds be inside S, while the column player’s goal is for it to be outside S. A set

S is approachable in a vector-payoff repeated game if there exists a strategy-choosing

algorithm for the row player which forces (asymptotically) the average payoff vector

to be inside S, no matter what the column player does. Blackwell’s approachability

theorem states that a closed, convex set S is approachable if and only if every half-

space containing S is approachable.

The proof of Blackwell’s theorem is constructive; it actually describes the algo-

rithm that ensures that the average payoff vector is asymptotically inside S. Algo-

rithm 4.2 is essentially this algorithm applied to a vector-payoff repeated game in

which the set S = {µE}. A schematic depiction of the operation of the algorithm is

given in Figure 4.3. Just as in the Projection algorithm, in each iteration t, the Black-

well algorithm computes an optimal policy πt for the reward function Rt = wt · φφφ,

although the weight vector wt is updated differently. Figure 4.3 illustrates that,

when the Blackwell algorithm ends, the point µE is close to the uniform average of

µ(π1), . . . ,µ(πT). The next theorem proves this fact. Its proof is based on Blackwell’s

approachability theorem, although our proof more closely follows the presentation by

102

Cesa-Bianchi and Lugosi [16].

Algorithm 4.2 Blackwell Algorithm

1: Given: MDP without a reward function, feature function φφφ, mentor’s feature
expectations µE, parameter T .

2: Choose any w1 such that ‖w1‖1 ≤ 1.
3: for t = 1, . . . , T do
4: Let πt = arg maxπ∈ΠD wt · µ(π).
5: Let µt = 1

t

∑t
t′=1µ(πt′).

6: Let wt+1 = µE − µt.
7: end for
8: Return: The mixed policy ψT given by the uniform distribution on π1, . . . , πT .

Figure 4.3: First several iterations of the Blackwell algorithm.

Theorem 4.3. Let ψT be the mixed policy output by the Blackwell algorithm. Then

∥∥µ(ψT)− µE
∥∥

2
≤

√
k

T (1− γ)2
(4.11)

Proof. For convenience, let µt = µ(πt), so that µt = 1
t

∑t
t′=1µt′ , and also let µ0 = µ1.

Since φφφ(s) ∈ [0, 1]k, we have that µ(π) ∈ [0, 1
1−γ]k for any policy π, by (4.6).

Therefore ‖µt − µE‖∞ ≤
1

1−γ , which means that

‖µt − µE‖2 ≤

√
k

(1− γ)2
(4.12)

103

for all t ∈ {1, . . . , T}. Now consider

‖µt − µE‖
2
2 =

∥∥∥∥t− 1

t
µt−1 +

1

t
µt − µE

∥∥∥∥2

2

=

∥∥∥∥t− 1

t

(
µt−1 − µE

)
+

1

t
(µt − µE)

∥∥∥∥2

2

=

(
t− 1

t

)2 ∥∥µt−1 − µE
∥∥2

2
+ 2

t− 1

t2
(
µt−1 − µE

)
· (µt − µE) +

1

t2
‖µt − µE‖

2
2

Applying the inequality in (4.12), multiplying both sides by t2, and rearranging yields

t2 ‖µt − µE‖
2
2 − (t− 1)2

∥∥µt−1 − µE
∥∥2

2
≤ 2(t− 1)

(
µt−1 − µE

)
· (µt − µE) +

k

(1− γ)2

Now sum both sides over t = 1, . . . , T . The left-hand side telescopes, yielding

T 2 ‖µT − µE‖
2
2 ≤ 2

T∑
t=1

(t− 1)
(
µt−1 − µE

)
· (µt − µE) +

Tk

(1− γ)2

Dividing both sides by T 2 yields

‖µT − µE‖
2
2 ≤ −

2

T 2

T∑
t=1

(t− 1)wt · (µt − µE) +
k

T (1− γ)2

where we used the fact that wt = µE − µt−1 for t > 1. The choice of πt implies

that wt · µt ≥ wt · µE, which means each term in the sum on the right-hand side

is nonnegative, and the entire sum can be dropped. Taking square roots and noting

that µT = µ(ψT) by (4.8) implies the theorem.

We can use Theorem 4.3 to prove that the value of the mixed policy output by

the Blackwell algorithm is close to the value of the mentor’s policy.

Corollary 4.4. Let ψT be the mixed policy output by the Blackwell algorithm. Then

∣∣V (ψT)− V (πE)
∣∣ ≤√ k

T (1− γ)2
(4.13)

104

Proof. The proof is identical to the proof of Corollary 4.2, except in the last line we

use Theorem 4.3 instead of Theorem 4.1.

Comparing Corollary 4.4 to Corollary 4.2, we see that the Blackwell algorithm,

in addition to being substantially simpler, enjoys a rate of convergence that is log k

times faster than the Projection algorithm.

Completing the Algorithm Description and Analysis

The alert reader will note that both the Projection and Blackwell algorithms, as

currently presented, are underspecified. By examining the descriptions given in Al-

gorithms 4.1 and 4.2, it is evident that both algorithms require access to subroutines

that can compute the following:

• The optimal policy for a given reward function.

• The feature expectations of a given policy.

• The feature expectations µE of the mentor’s policy πE.

Importantly, these quantities can all be efficiently estimated. In Section 4.2.1 we

reviewed several classical algorithms for computing the optimal policy in an MDP.

Also, note that computing the feature expectations of a policy is equivalent to comput-

ing the value of a policy with respect to several different reward functions (regarding

each feature as a separate “reward function”), and in Section 4.2.2 we described al-

gorithms for computing the value of a policy. Finally, although we do not have direct

access to the mentor’s policy πE, we can compute a good estimate of µE when the

number of trajectories demonstrated by the mentor is large.

None of the methods described above produces an exact result, so to complete the

analysis, we must explain how the approximation errors introduced by these methods

will affect the performance guarantees in Corollaries 4.2 and 4.4. However, to simplify

105

our presentation, we defer these issues until Section 5.3. In that section, we provide a

unified analysis of the MWAL algorithm — an apprenticeship learning algorithm that

is the main topic of Chapter 5 — that takes these approximation errors into account.

In that section, we prove that the performance of the MWAL algorithm degrades

gracefully as the approximation error increases. That unified analysis applies, with

only minor changes, to both the Projection algorithm and the Blackwell algorithm.

4.5 Reduction to Classification

The apprenticeship learning algorithms described in the previous section assume that

the true reward function can be written as a linear combination of a set of known

features. However, there may be cases where the apprentice is unwilling or unable

to assume that the rewards have this structure. In such a scenario, is there any way

for the apprentice to take advantage of demonstrations provided by the mentor? In

this section, we show how apprenticeship learning can be reduced to classification.

In other words, we explain how an apprentice can use a classification algorithm to

mimic the mentor’s behavior, and how the error of the learned classifier bounds the

difference between the value of the apprentice’s policy and the value of the mentor’s

policy. The idea of reducing one learning problem to another was first proposed by

Zadrozny et al. [147].

The assumptions made in this section are slightly different than in the previous

section, and we explain these differences in Section 4.5.1. We provide the details of

the reduction in Section 4.5.2, and in Section 4.5.3 we prove our first guarantee about

this reduction: The difference between the value of the apprentice’s policy and the

mentor’s policy is O(
√
ε), where ε ∈ [0, 1] is the error of the learned classifier. In

Section 4.5.4, we prove that this difference is only O(ε) when the mentor’s policy is

close to optimal.

106

4.5.1 Preliminaries

In this section, we will allow the state space S to be infinite, but will continue to

assume that the action space A is finite. Thus the initial state distribution α(·)

specifies a distribution on a possibly infinite set of states, as does the transition

function θ(s, a, ·) for each state s ∈ S and action a ∈ A. Further, the only assumptions

we make about the reward function R is that 0 ≤ R(s) ≤ Rmax for all states s ∈ S,

where Rmax is a finite upper bound on the reward of any state.

Unlike Section 4.2, in this section we will study nonstationary policies in a finite-

horizon MDP, with horizon length H. Let Π be the set of all stationary policies. A

policy π is nonstationary if it belongs to the set ΠH = Π× · · · (H times) · · · ×Π . In

this case, πt(s, a) denotes the probability of taking action a in state s at time t. Also,

if π is nonstationary, then πt refers to the stationary policy that is equal to the tth

component of π.

A (stationary or nonstationary) policy π is deterministic if each one of its action

distributions is concentrated on a single action. If a deterministic policy π is station-

ary, then π(s) is the action taken in state s, and if π is nonstationary, the πt(s) is the

action taken in state s at time t.

Much as we did for stationary policies in an infinite-horizon MDP, we define the

value function V π
t (s) for a nonstationary policy π at time t as follows:

V π
t (s) , E

[
H∑
t′=t

R(st′)
∣∣∣ st = s, at′ ∼ πt′(st′ , ·), st′+1 ∼ θ(st′ , at′ , ·)

]

So V π
t (s) is the expected cumulative reward for following policy π when starting at

state s and time step t. Note that, unlike stationary policies, there are several value

functions per nonstationary policy, one for each time step t. The value of a policy is

defined to be

V (π) , E[V π
1 (s) | s ∼ α(·)]

107

and an optimal policy π∗ is one that satisfies π∗ , arg maxπ V (π). The existence of

this maximum is a consequence of the compactness of ∆|A| (the set of distributions

on |A| elements) and the continuity of V (π).

We write πE to denote the mentor’s policy,4 and V E
t (s) as an abbreviation for

V πE

t (s).

Let Dπ
t be the distribution on state-action pairs at time t under policy π. In other

words, a sample (s, a) is drawn from Dπ
t by first drawing s1 ∼ α(·), then following

policy π for time steps 0 through t, which generates a trajectory (s1, a1, . . . , st, at),

and then letting (s, a) = (st, at). We write DE
t as an abbreviation for DπE

t . In a minor

abuse of notation, we write s ∼ Dπ
t to mean: draw state-action pair (s, a) ∼ Dπ

t , and

discard a.

4.5.2 Details of the Reduction

Our goal is to reduce apprenticeship learning to classification, so let us describe exactly

how this reduction is defined.

In a classification problem, a learning algorithm is given a training set (x1, y1, . . . , xm, ym),

where each labeled example (xi, yi) ∈ X × Y is drawn independently from a distri-

bution D on X × Y . Here X is the example space and Y is the finite set of labels.

The learning algorithm is also given the definition of a hypothesis class H, which is

a set of functions mapping X to Y . The objective of the learning algorithm is to find

a hypothesis h ∈ H such that the error Pr(x,y)∼D(h(x) 6= y) is small.

The hypothesis class H is said to be PAC-learnable (where “PAC” stands for

“Probably Approximately Correct”) if there exists a learning algorithm A such that,

whenever A is given a training set of size m = poly(1
δ
, 1
ε
), the algorithm runs for

poly(1
δ
, 1
ε
) steps and outputs a hypothesis ĥ ∈ H such that, with probability at least

4Note that, in constrast to Section 4.3, we have moved the ‘E’ in πE from the subscript to the
superscript, to make room for a time index

108

1− δ

Pr(x,y)∼D

(
ĥ(x) 6= y

)
≤ ε∗H,D + ε

Here ε∗H,D = infh∈H Pr(x,y)∼D(h(x) 6= y) is the error of the best hypothesis in H.

The expression poly(1
δ
, 1
ε
) will typically also depend on other quantities, such as the

number of labels |Y| and the VC-dimension of H [135], but this dependence is not

germane to our discussion. PAC learnability is one of the oldest and most well-studied

frameworks for machine learning, and PAC learning algorithms have been developed

for many hypothesis classes [57].5

The existence of PAC-learnable hypothesis classes will allow us to reduce the ap-

prenticeship learning problem to classification. Suppose that the apprentice observes

m independent trajectories from the mentor’s policy πE, where the ith trajectory is

a sequence (si1, a
i
1, . . . , s

i
H , a

i
H). The key is to note that each (sit, a

i
t) can be viewed

as an independent sample from the distribution DE
t . Now consider a PAC-learnable

hypothesis class H, where H contains a set of functions mapping the state space S to

the finite action space A. If m = poly(1
Hδ
, 1
ε
), then for each time step t, the apprentice

can use a PAC learning algorithm for H to learn a hypothesis ĥt ∈ H such that, with

probability at least 1− 1
Hδ

Pr(s,a)∼DEt

(
ĥt(s) 6= a

)
≤ ε∗H,DEt

+ ε

And by the union bound, this inequality holds for all t with probability at least 1−δ.

If each ε∗H,DEt
+ ε is small, then a natural choice for the apprentice’s policy πA is to

set πAt = ĥt for all t. This policy uses the learned classifiers to mimic the behavior of

the mentor.

In light of the preceding discussion, throughout the remainder of this section we

make the following assumption about the apprentice’s policy.

5Technically, the definition given here is for agnostic PAC-learnability [45, 58], a somewhat more
advanced concept that the original definition of PAC-learnability.

109

Assumption 4.5. The apprentice policy πA is a deterministic policy that satisfies

Pr(s,a)∼DEt (πAt (s) 6= a) ≤ ε

for some ε > 0 and all time steps t.

As we have shown, an apprentice policy satisfying Assumption 4.5 with small ε can

be found with high probability, provided that mentor’s policy is well-approximated

by a PAC-learnable hypothesis class and that the apprentice is given enough trajec-

tories from the mentor. A reasonable intuition is that the value of the policy πA in

Assumption 4.5 is nearly as high as the value of the policy πE; the remainder of this

section is devoted to confirming this intuition.

4.5.3 Guarantee for Any Mentor

If the error rate ε in Assumption 4.5 is small, then the apprentice’s policy πA closely

mimics the mentor’s policy πE, and we might hope that this implies that V (πA) is

not much less than V (πE). This is indeed the case, as the next theorem shows.

Theorem 4.6. If Assumption 4.5 holds, then

V (πA) ≥ V (πE)− 2
√
εH2Rmax

In a typical classification problem, it is assumed that the training and test exam-

ples are drawn from the same distribution. The main challenge in proving Theorem

4.6 is that this assumption does not hold for the classification problems to which we

have reduced the apprenticeship learning problem. This is because, although each

state-action pair (sit, a
i
t) appearing in a mentor trajectory is distributed according to

DE
t , a state-action pair (st, at) visited by the apprentice’s policy may not follow this

distribution, since the behavior of the apprentice prior to time step t may not exactly

110

match the mentor’s behavior. So our strategy for proving Theorem 4.6 will be to

show that these differences do not cause the value of the apprentice policy to degrade

too much relative to the value of the mentor’s policy.

Before proceeding, we will show that Assumption 4.5 implies a condition that is,

for our purposes, more convenient.

Lemma 4.7. Let π̂ be a deterministic nonstationary policy. If

Pr(s,a)∼DEt (π̂t(s) 6= a) ≤ ε

then for all ε1 ∈ [0, 1]

Prs∼DEt
(
πEt (s, π̂t(s)) ≥ 1− ε1

)
≥ 1− ε

ε1

Proof. Fix any ε1 ∈ [0, 1], and suppose for contradiction that

Prs∼DEt
(
πEt (s, π̂t(s)) ≥ 1− ε1

)
< 1− ε

ε1

Say that a state s is good if πEt (s, π̂t(s)) ≥ 1− ε1, and that s is bad otherwise. Then

Pr(s,a)∼DEt (π̂t(s) = a) = Prs∼DEt (s is good) · Pr(s,a)∼DEt (π̂t(s) = a | s is good)

+ Prs∼DEt (s is bad) · Pr(s,a)∼DEt (π̂t(s) = a | s is bad)

< Prs∼DEt (s is good) · 1 + (1− Prs∼DEt (s is good)) · (1− ε1)

= 1− ε1(1− Prs∼DEt (s is good))

< 1− ε

where the first inequality holds because Pr(s,a)∼DEt (π̂t(s) = a | s is bad) < 1 − ε1,

and the second inequality holds because Prs∼DEt (s is good) < 1 − ε
ε1

. This chain of

inequalities clearly contradicts the assumption of the lemma.

111

The next two lemmas are the main tools used to prove Theorem 4.6. In the proofs

of these lemmas, we write sa to denote a trajectory, where sa = (s̄1, ā1, . . . , s̄H , āH) ∈

(S × A)H . Also, let dPπ denote the probabilty measure induced on trajectories by

following policy π, and let R(sa) =
∑H

t=1R(s̄t) denote the sum of the rewards of the

states in trajectory sa. Importantly, using these definitions we have

V (π) =

∫
sa

R(sa)dPπ

The next lemma proves that if a deterministic policy “almost” agrees with the men-

tor’s policy πE in every state and time step, then its value is not much worse the the

value of πE.

Lemma 4.8. Let π̂ be a deterministic nonstationary policy. If for all states s and

time steps t

πEt (s, π̂t(s)) ≥ 1− ε

then

V (π̂) ≥ V (πE)− εH2Rmax

Proof. Say a trajectory sa is good if it is “consistent” with π̂ — that is, π̂(s̄t) = āt

112

for all time steps t — and that sa is bad otherwise. We have

V (πE) = E

[
H∑
t=1

R(st)
∣∣∣ s1 ∼ α(·), at ∼ πEt (st, ·), st+1 ∼ θ(st, at, ·)

]

=

∫
sa

R(sa)dPπE

=

∫
sa good

R(sa)dPπE +

∫
sa bad

R(sa)dPπE

≤
∫
sa good

R(sa)dPπE + εH2Rmax

≤
∫
sa good

R(sa)dPπ̂ + εH2Rmax

= V (π̂) + εH2Rmax

where the first inequality holds because, by the union bound, PπE assigns at most an

εH fraction of its measure to bad trajectories, and the maximum reward of a trajectory

is HRmax. The second inequality holds because good trajectories are assigned at least

as much measure by Pπ̂ as by PπE , because π̂ is deterministic.

The next lemma proves a slightly different statement than Lemma 4.8: If a policy

exactly agrees with the mentor’s policy πE in “almost” every state and time step,

then its value is not much worse the the value of πE.

Lemma 4.9. Let π̂ be a nonstationary policy. If for all time steps t

Prs∼DEt
(
π̂t(s, ·) = πEt (s, ·)

)
≥ 1− ε

then

V (π̂) ≥ V (πE)− εH2Rmax

Proof. Say a trajectory sa is good if πEt (s̄t, ·) = π̂t(s̄t, ·) for all time steps t, and that

113

sa is bad otherwise. We have

V (π̂) = E

[
H∑
t=1

R(st)
∣∣∣ s1 ∼ α(·), at ∼ π̂t(st, ·), st+1 ∼ θ(st, at, ·)

]

=

∫
sa

R(sa)dPπ̂

=

∫
sa good

R(sa)dPπ̂ +

∫
sa bad

R(sa)dPπ̂

=

∫
sa good

R(sa)dPπE +

∫
sa bad

R(sa)dPπ̂

=

∫
sa

R(sa)dPπE −
∫
sa bad

R(sa)dPπE +

∫
sa bad

R(sa)dPπ̂

≥ V (πE)− εH2Rmax +

∫
sa bad

R(sa)dPπ̂

≥ V (πE)− εH2Rmax

The first inequality holds because, by the union bound, PπE assigns at most an εH

fraction of its measure to bad trajectories, and the maximum reward of a trajec-

tory is HRmax. The second inequality holds by our assumption that all rewards are

nonnegative.

We are now ready to combine the previous lemmas and prove Theorem 4.6.

Proof of Theorem 4.6. Since the apprentice’s policy πA satisfies Assumption 4.5, by

Lemma 4.7 we can chose any ε1 ∈ [0, 1] and have

Prs∼DEt
(
πEt (s, πAt (s)) ≥ 1− ε1

)
≥ 1− ε

ε1

Now construct a “dummy” policy π̂ as follows: For all time steps t, let π̂t(s, ·) =

πEt (s, ·) for any state s where πEt (s, πAt (s)) ≥ 1−ε1. On all other states, let π̂t(s, π
A
t (s)) =

1. By Lemma 4.8

V (πA) ≥ V (π̂)− ε1H2Rmax

114

and by Lemma 4.9

V (π̂) ≥ V (πE)− ε

ε1
H2Rmax

Combining these inequalities yields

V (πA) ≥ V (πE)−
(
ε1 +

ε

ε1

)
H2Rmax

Since ε1 was chosen arbitrarily, we set ε1 =
√
ε, which maximizes this lower bound.

4.5.4 Guarantee for Good Mentor

Theorem 4.6 makes no assumptions about the value of the mentor’s policy. However,

in many cases it may be reasonable to assume that the mentor is following a near-

optimal policy (indeed, if she is not, then we should question the decision to select

her as mentor). The next theorem shows that the dependence of V (πA) on the

classification error ε is significantly better when the mentor is following a near-optimal

policy.

Theorem 4.10. If Assumption 4.5 holds, then

V (πA) ≥ V (πE)−
(
4εH3Rmax + ∆πE

)
where ∆πE , V (π∗)− V (πE) is the suboptimality of the mentor’s policy πE.

Note that, when ∆πE ≤ O (εH3Rmax), the bound in Theorem 4.10 varies with ε

and not with
√
ε. To see why a near-optimal mentor policy should yield a weaker

dependence on ε for our reduction, consider a mentor policy πE that is an optimal

policy, but in every state s ∈ S selects one of two actions as1 and as2 uniformly at

random. A deterministic apprentice policy πA that closely mimics the mentor will

either set πA(s) = as1 or πA(s) = as2, but in either case the classification error will not

115

be less than 1
2
. However, since πE is optimal, both actions as1 and as2 must be optimal

actions for state s, and so the apprentice policy πA will be optimal as well.

Our strategy for proving Theorem 4.10 is to replace Lemma 4.8 with a different

result — namely, Lemma 4.13 below — that has a much weaker dependence on the

classification error ε when ∆πE is small.

To help us prove Lemma 4.13, we will first need to define several useful policies.

The next several definitions will be with respect to an arbitrary nonstationary base

policy πB; in the proof of Theorem 4.10, we will make a particular choice for the base

policy.

Fix a deterministic nonstationary policy πB,ε that satisfies

πBt (s, πB,εt (s)) ≥ 1− ε

for some ε ∈ [0, 1] and all states s and time steps t. Such a policy always exists by

letting ε = 1, but if ε is close to zero, then πB,ε is a deterministic policy that “almost”

agrees with πB in every state and time step. Of course, depending on the choice of

πB, a policy πB,ε may not exist for small ε, but let us set aside that concern for the

moment; in the proof of Theorem 4.10, the base policy πB will chosen so that ε can

be as small as we like.

Having thusly defined πB,ε, we define πB\ε as follows: For all states s ∈ S and

time steps t, if πBt (s, πB,ε(s)) < 1, then let

π
B\ε
t (s, a) =


0 if πB,εt (s) = a

πBt (s, a)∑
a′ 6=πB,εt (s) π

B
t (s, a′)

otherwise

for all actions a ∈ A, and otherwise let π
B\ε
t (s, a) = 1

|A| for all a ∈ A. In other words,

in each state s and time step t, the distribution π
B\ε
t (s, ·) is obtained by proportionally

116

redistributing the probability assigned to action πB,εt (s) by the distribution πBt (s, ·)

to all other actions. The case where πBt (s, ·) assigns all probability to action πB,εt (s)

is treated specially, but as will be clear from the proof of Lemma 4.11, it is actually

immaterial how the distribution π
B\ε
t (s, ·) is defined in these cases; we choose the

uniform distribution for definiteness.

Let πB+ be a deterministic policy defined by

πB+
t (s) = arg max

a
E
[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, a, ·)

]

for all states s ∈ S and time steps t. In other words, πB+
t (s) is the best action in

state s at time t, assuming that the policy πB is followed thereafter.

The next definition requires the use of mixed policies. Fundamentally, our defi-

nition of a mixed policy in this section will be the same as it was in Section 4.3: A

mixed policy consists of a finite set of deterministic policies, along with a distribution

over those policies; the mixed policy is followed by drawing a single policy accord-

ing to the distribution in the initial time step, and following that policy exclusively

thereafter. However, our formal definition will require somewhat different notational

syntax, since in this section the set of all deterministic policies may not be finite, or

even countable, so we cannot assign a unique index to every deterministic policy.

Formally, a mixed policy is defined by a set of ordered pairs {(πi, λ(i))}Ni=1 for

some finite N , where each component policy πi is a deterministic nonstationary policy,∑N
i=1 λ(i) = 1 and λ(i) ≥ 0 for all i ∈ [N].

Let π̃B,ε,+ be a mixed policy consisting of N = 2|H| component policies. It is

easiest to describe the distribution assigned by π̃B,ε,+ to these component policies

in terms of a generative procedure. Each component policy πi is drawn from the

117

distribution as follows:

πit =

 πB,εt with probability (1− ε)

πB+
t with probability ε

for all time steps t. So the probability λ(i) assigned to each component policy πi in

the mixed policy is λ(i) = (1 − ε)k(i)εH−k(i), where k(i) is the number of times steps

t for which πit = πB,εt .

Having established these definitions, we are now ready to prove several lemmas

that will help us prove Theorem 4.10.

Lemma 4.11. V (π̃B,ε,+) ≥ V (πB)

Proof. The proof will be by induction. Clearly V π̃B,ε,+

H (s) = V πB

H (s) for all states s,

since the value function V π
H for any policy π depends only on the reward function

R. Now suppose for induction that V π̃B,ε,+

t+1 (s) ≥ V πB

t+1(s) for all states s. Then for all

states s

V π̃B,ε,+

t (s) = R(s) + E
[
V π̃B,ε,+

t+1 (s′)
∣∣∣ a′ ∼ π̃B,ε,+t (s, ·), s′ ∼ θ(s, a′, ·)

]
≥ R(s) + E

[
V πB

t+1(s′)
∣∣∣ a′ ∼ π̃B,ε,+t (s, ·), s′ ∼ θ(s, a′, ·)

]
= R(s) + (1− ε)E

[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, πB,εt (s), ·)

]
+ εE

[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, πB+

t (s), ·)
]

≥ R(s) + πBt (s, πB,εt (s)) · E
[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, πB,εt (s), ·)

]
+
(

1− πBt (s, πB,εt (s))
)
· E
[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, πB+

t (s), ·)
]

≥ R(s) + πBt (s, πB,εt (s)) · E
[
V πB

t+1(s′)
∣∣∣ s′ ∼ θ(s, πB,εt (s), ·)

]
+
(

1− πBt (s, πB,εt (s))
)
· E
[
V πB

t+1(s′)
∣∣∣ a′ ∼ π

B\ε
t (s, ·), s′ ∼ θ(s, a′, ·)

]
= R(s) + E

[
V πB

t+1(s′)
∣∣∣ a′ ∼ πBt (s), s′ ∼ θ(s, a′, ·)

]
= V πB

t (s)

118

The first equality holds for all policies π, and follows straightforwardly from the

definition of V π
t . The rest of the derivation uses, in order: the inductive hypothesis;

the definition of π̃B,ε,+; property of πB,ε and fact that πB+
t (s) is the best action with

respect to V πB

t+1; the fact that πB+
t (s) is the best action with respect to V πB

t+1; the

definition of πB\ε; the definition of V πB

t (s).

Lemma 4.12. V (π̃B,ε,+) ≤ (1− εH)V (πB,ε) + εHV (π∗)

Proof. Since π̃B,ε,+ is a mixed policy, by the linearity of expectation we have

V (π̃B,ε,+) =
N∑
i=1

λ(i)V (πi)

where each πi is a component policy of π̃B,ε,+ and λ(i) is its associated probability.

Therefore

V (π̃B,ε,+) =
∑
i

λ(i)V (πi)

≤ (1− ε)HV (πB,ε) + (1− (1− ε)H)V (π∗)

≤ (1− εH)V (πB,ε) + εHV (π∗)

Here we used the fact that probability (1− ε)H ≥ 1− εH is assigned to a component

policy that is identical to πB,ε, and the value of any component policy is at most

V (π∗).

Lemma 4.13. If ε < 1
H

, then V (πB,ε) ≥ V (πB)− εH
1−εH∆πB

Proof. Combining Lemmas 4.11 and 4.12 yields

(1− εH)V (πB,ε) + εHV (π∗) ≥ V (πB)

119

And via algebraic manipulation we have

(1− εH)V (πB,ε) + εHV (π∗) ≥ V (πB)

⇒ (1− εH)V (πB,ε) ≥ (1− εH)V (πB) + εHV (πB)− εHV (π∗)

⇒ (1− εH)V (πB,ε) ≥ (1− εH)V (πB)− εH∆πB

⇒ V (πB,ε) ≥ V (πB)− εH

1− εH
∆πB

In the last line, we were able to divide by (1− εH) without changing the direction of

the inequality because of our assumption that ε < 1
H

.

We are now ready to combine the previous lemmas and prove Theorem 4.10.

Proof of Theorem 4.10. Since the apprentice’s policy πA satisfies Assumption 4.5, by

Lemma 4.7 we can chose any ε1 ∈ [0, 1
H

) and have

Prs∼DEt
(
πEt (s, πAt (s)) ≥ 1− ε1

)
≥ 1− ε

ε1

As in the proof of Theorem 4.6, let us construct a “dummy” policy π̂ as follows: For

all time steps t, let π̂t(s, ·) = πEt (s, ·) for any state s where πEt (s, πAt (s)) ≥ 1− ε1. On

all other states, let π̂t(s, π
A
t (s)) = 1. By Lemma 4.9 we have

V (π̂) ≥ V (πE)− ε

ε1
H2Rmax (4.14)

Substituting V (πE) = V (π∗)−∆πE and V (π̂) = V (π∗)−∆π̂ and rearranging yields

∆π̂ ≤ ∆πE +
ε

ε1
H2Rmax (4.15)

Now observe that, if we set the base policy πB = π̂, then by definition πA is a valid

120

choice for πB,ε1 . And since ε1 <
1
H

we have

V (πA) ≥ V (π̂)− ε1H

1− ε1H
∆π̂

≥ V (π̂)− ε1H

1− ε1H

(
∆πE +

ε

ε1
H2Rmax

)
≥ V (πE)− ε

ε1
H2Rmax − ε1H

1− ε1H

(
∆πE +

ε

ε1
H2Rmax

)
(4.16)

where we used Lemma 4.13, (4.15) and (4.14), in that order. Letting ε1 = 1
2H

proves

the theorem.

4.6 Other Related Work

Learning behavior from a mentor has a long history in machine learning. Some of

the earliest and most influential work was by Sammut et al. [112], who studied the

problem of learning to pilot a flight simulator. However, the idea of mimicking mentor

behavior via a reward function was relatively unexplored prior to the introduction of

the apprenticeship learning framework by Abbeel and Ng [1]. However Atkeson and

Schaal [4], who considered the problem of having a robot arm follow a demonstrated

trajectory, represent a notable exception. Their algorithm used a reward function to

penalize deviations from the trajectory.

The apprenticeship learning framework is closely related to inverse reinforcement

learning, first proposed by Ng and Russell [89]. In the inverse reinforcement learning

problem, the objective is to learn a reward function for which an observed policy is

optimal. Note that recovering the reward function is the explicit goal of this approach,

unlike apprenticeship learning, where the true reward function need not be learned.

In some cases, attempting to recover the true reward function is an effective

method for learning a good apprentice policy, particularly when one makes the ad-

ditional assumption that the mentor policy is optimal. For example, the goal of

121

Neu and Szepesvari [88] was to learn a reward function for which an approximately

optimal policy with respect to that reward function approximately mimics the men-

tor. They formulated their problem as nondifferentiable optimization, and solved the

optimization via a subgradient method.

Similarly, in max margin planning [105, 104], the goal is to learn a reward function

so that, with respect to this reward funciton, the demonstrated policy is nearly better

than all other policies. The magnitude of this advantage over each comparison policy,

also known as the margin, scales with the loss of the policy, which is usually defined as

a measure of how different it is from the demonstrated policy. The idea of maximizing

a margin over a set of complex objects, such as policies, is the basis of structured

prediction, first introduced by Taskar et al. [130]; see also Tsochantaridis et al. [132].

Most apprenticeship learning algorithms assume that it is easy for a mentor to

provide complete trajectories demonstrating the desired behavior. However, Kolter

et al. [64] studied a setting where it is only feasible for a mentor to provide partial

trajectories. In particular, they studied a quadraped locomotion task, in which a

mentor is only able to provide advice at two hierarchical levels (an overall plan for

moving through an obstacle course, and how to navigate around individual obstacles).

These partial trajectories are used to learn policies at each hierarchical level, which

are then combined into a single policy.

The Blackwell algorithm, presented in Section 4.4.2, has some similarity to the

algorithm introduced by Mannor and Shimkin [75]. The main differences are that

Mannor and Shimkin [75] did not specifically study the apprenticeship learning prob-

lem, and, more significantly, their algorithm is designed for a setting where the agent

is maximizing expected average reward, not expected cumulative discounted reward.

Several authors have reduced reinforcement learning to a simpler problem, much

as we reduced apprenticeship learning to classification in Section 4.5. Bagnell et al. [5]

described an algorithm for constructing a good nonstationary policy from a sequence

122

of good “one-step” policies. These policies are only concerned with maximizing reward

collected in a single time step, and are learned with the help of observations from

a mentor. Langford and Zadrozny [66] reduced reinforcement learning to sequence

of classification problems (see also Blatt and Hero [11]), but these problems have

an unusual structure, and Langford and Zadrozny [66] provide no guidance as to

how data for these problems can be collected. Kakade and Langford [52] reduced

reinforcement learning to regression, but required additional assumptions about how

easily a learning algorithm can access the entire state space. All this work assumes

that the true rewards are known.

Other authors have focused on empirical evaluations of using classifiers in re-

inforcement learning problems, such as Rexakis and Lagoudakis [106]. Relatedly,

Lagoudakis and Parr [65] describe a method for using a classifier in the policy evalu-

ation step of a policy iteration algorithm.

4.7 Conclusion

In this chapter, we reviewed both the reinforcement learning and apprenticeship learn-

ing frameworks, and described the most widely-used algorithm for apprenticeship

learning. We presented two new apprenticeship learning algorithms, one of which is

both simpler and faster than previous methods, and another which requires much less

information about the true rewards.

123

Chapter 5

Game-Theoretic Approach to

Apprenticeship Learning

The apprenticeship learning algorithms in Chapter 4 are all based on mimicking the

mentor. In this chapter, we describe algorithms that take a very different approach.

We reformulate the apprenticeship learning framework as a two-player zero-sum game.

The apprentice is a player in this game, and her strategies are all the possible policies.

The other player represents an adversary whose strategies are all possible choices of

reward functions. The goal of the apprentice is to choose a policy that has maximum

value relative to the mentor, assuming that the reward function will be adversarially

selected with respect to this goal. Since the true reward function is unknown, we

argue that this kind of worst-case assumption is appropriate.

We provide a detailed overview of our game-theoretic framework in Section 5.1.

In our formulation, the apprentice has an extremely large number of strategies in the

game, far too many to explicitly enumerate. As we explained in Chapters 2 and 3,

no-regret algorithms such as the MW algorithm are especially well-suited to solving

zero-sum games in which one player has a large number of strategies, provided that

one has access to an efficient best-response oracle for that player. Fortunately, the

124

required best-response oracles can be efficiently implemented using the classical solu-

tion methods for reinforcement learning problems that we reviewed in Section 4.2.1.

Thus, we can adapt the MW algorithm to find a good apprentice policy by using one

of these methods as a subroutine. A strength of our approach is its modularity; since

the MW algorithm can use essentially any existing reinforcement learning algorithm

as a best-response oracle, it inherits all the advantages of modern algorithms, such as

the ability to handle large environments. We present the Multiplicative Weights for

Apprenticeship Learning (MWAL) algorithm in Section 5.2.

In practice, the MWAL algorithm must rely on reinforcement learning algorithms

that output only approximately optimal policies. Section 5.3 provides a unified anal-

ysis that takes this and related approximation errors into account. We prove that the

performance of the MWAL algorithm degrades gracefully as the approximation error

increases.

As in Section 4.4, our game-theoretic framework assumes that the true reward

function can be described in terms of a set of known features. Section 5.4 explains

that the choice of these features is critical, in the sense that changing them can

strongly affect the policy learned by the apprentice. Our analysis also reveals that

apprentice policies corresponding to lexicographic optimal strategies (see Chapter 3)

are more robust to changes to the features.

A peculiar property of many algorithms for apprenticeship learning, including the

MWAL algorithm, is that the policy learned by the apprentice has a complex and

unnatural structure. Section 5.5 describes several techniques for converting these poli-

cies into equivalent simpler polices. One of the techniques leverages the lexicographic

analysis from Chapter 3, while another is based on linear programming. In Section

5.6, we use linear programming in a slightly different way to derive a simple and

direct apprenticeship learning algorithm that enjoys the same theoretical guarantees

as the MWAL algorithm.

125

Section 5.7 describes experiments which compare the performance of several ap-

prenticeship learning algorithms, both in terms of the quality of the policy learned by

the apprentice, and the time required to learn it. These experiments reveal that our

game-theoretic approach often produces better apprentice policies than algorithms

that mimic the mentor, especially when the mentor is following a bad policy. Also,

our lexicographic analysis from Chapter 3 provides an explanation for several of our

experimental results that cannot be explained using existing analyses.

5.1 Modified Apprenticeship Learning Framework

In Chapter 4 we explained that the goal of apprenticeship learning is to find a mixed

policy πA such that V (πA) ≥ V (πE)− ε, even though the true reward function is un-

known. In Section 4.4, we described algorithms that accomplish this goal by assuming

that the true reward function is a linear combination of a set of known features, and

then finding a (possibly mixed) apprentice policy that mimics the mentor by matching

the feature expectations of the mentor’s policy.

Nearly all aspects of the “feature-matching” framework of Section 4.4 will carry

over to this chapter. We will continue to assume that the true reward function is a

linear combination of the features, and that an apprenticeship learning algorithm is

allowed to output a mixed policy. Also, all the algorithms we develop in this chapter

will require access to subroutines that can perform standard reinforcement learning

tasks, like computing an optimal policy for a given reward function.

However, some aspects of the framework from Section 4.4 will need to be modified

to fit the game-theoretic approach of this chapter. First, we make a minor change to

our assumptions about how the true reward function depends on the features. Second,

and more significantly, the apprentice policy that we seek will not be one that mimics

the mentor, but rather one that satisfies a certain game-theoretic objective. We

126

provide more details about these modifications in the rest of this section.

5.1.1 Feature Assumptions

Recall that in Section 4.4 we assumed that the true reward function R can be written

R(s) = w∗ · φφφ(s)

where the feature function φφφ : S → [0, 1]k is known, but the weight vector w∗ ∈ Rk,

where ‖w∗‖1 ≤ 1, is unknown. Our game-theoretic framework requires a change in

our assumptions about φφφ and w∗. Specifically, we assume that φφφ(s) ∈ [−1,+1]k and

w∗ ∈ ∆k, where ∆k denotes the set of distributions on k elements.

In other words, under the original set of assumptions, the weight vector carries the

sign of each feature, while under the new set of assumptions the features themselves

carry the sign. These seemingly superficial differences actually have important con-

sequences for the policies output by the algorithms, which we will discuss in Section

5.4.1. But in one sense, the assumptions are equivalent: The same class of reward

functions can be expressed under either set of assumptions. Concretely, consider a

reward function R(s) = w · φφφ(s) such that φφφ(s) ∈ [0, 1]k and ‖w‖1 ≤ 1. If we let

φφφ′(s) = (φ1(s), . . . , φk(s),−φ1(s), . . . ,−φk(s), 0)

then φφφ′(s) ∈ [−1,+1] and there clearly exists a weight vector w′ ∈ ∆2k+1 such that

R(s) = w′ · φφφ′(s). So any reward function expressible under one set of assumptions

is expressible under the other, at the expensive of roughly doubling the number of

features.

127

5.1.2 Game-Theoretic Objective

Let Ψ be the set of all mixed policies. Now consider the optimization

max
ψ∈Ψ

min
w∈∆k

[w · µ(ψ)−w · µE] . (5.1)

Our goal will be to find (actually, to approximate) the mixed policy ψA that realizes

this maximum. Since V (ψ) = w∗ · µ(ψ) for all ψ, we have that ψA is the mixed

policy in Ψ that maximizes V (ψ)− V (πE) with respect to the worst-case possibility

for w∗. Since w∗ is unknown, maximizing for the worst-case is appropriate.

We want to put (5.1) in the form of a two-person zero-sum game. First, we shift

and rescale (5.1) as follows:

max
ψ∈Ψ

min
w∈∆k

((1− γ)(w · µ(ψ)−w · µE) + 2)/4 (5.2)

This formulation is equivalent in the sense that any mixed policy ψA which realizes

the maximum in (5.2) also realizes the maximum in (5.1), and vice-versa. It follows

from (4.6) that the value of (5.2) is in the interval [0, 1]. Next we define a k × |ΠD|

matrix

M(i, j) , ((1− γ)(µj(i)− µE(i)) + 2)/4 (5.3)

where µ(i) is the ith component of µ and we have let µj = µ(πj) be the vector of

feature expectations for the jth deterministic policy πj. Now (5.2) can be rewritten

using (5.3) as

v∗ , max
ψ∈Ψ

min
w∈∆k

wMψ. (5.4)

Because w and ψ are both distributions, and because the entries of M are in the

interval [0, 1], we have that (5.4) is in the form of a two-person zero-sum game, and

thus v∗ is the value of the game. In this game, the row player strategies and column

player strategies correspond to reward functions and mixed policies, respectively. The

128

row player specifies a reward function by choosing w, and the column player chooses

a mixed policy ψ. The goal of the row player is to cause the column player’s policy

to perform as poorly as possible relative to the mentor, and the column player’s goal

is just the opposite. Note that ψA is a maximin strategy in this game.

Finding the maximin strategy ψA will not be useful unless we can establish that

v∗ ≥ 0, i.e. that ψA will do at least as well as the mentor’s policy with respect to

the worst-case possibility for w∗. This fact is not immediately clear, since we are

restricting ourselves to mixtures of deterministic policies, while we do not assume

that the mentor’s policy is deterministic.1

Theorem 5.1. The quantity v∗ in (5.4) is nonnegative.

Proof. We know from the minimax theorem (Theorem 2.7) that we can swap the min

and max operators in (5.4) without affecting the game value. In other words,

v∗ = max
ψ∈Ψ

min
w∈∆k

wMψ = min
w∈∆k

max
ψ∈Ψ

wMψ. (5.5)

Note that in the rightmost expression in Eq. (5.5), the maximization over Ψ is done

after w has been fixed. By examining (5.2), we see that the maximum is achieved by

the policy in ψ∗ ∈ Ψ which maximizes w · µ(ψ). Because V (ψ) = w · µ(ψ) is the

value of mixed policy ψ with respect to reward function R = w ·φφφ, and because there

always exists a deterministic optimal policy for any reward function (see discussion

in Section 4.2.1, we have that w · µ(ψ∗) will be at least as large as w · µE. Hence

v∗ ≥ 0.

In fact, we may have v∗ > 0. Let µA = µ(ψA), and suppose it happens that

µA(i) > µE(i) for all i. Then ψA strictly dominates πE, i.e. ψA will have higher

1We could avoid this technical problem by allowing the apprenticeship learning algorithm to
output a mixture of randomized policies. But that would require that the matrix defined in (5.3)
have uncountably many columns. And that would, in turn, require a measure-theoretic foundation
for our analysis which, while possible, would introduce significantly more complications than it would
avoid.

129

value than πE regardless of the actual value of w∗, because we assumed that w∗(i)

is nonnegative for all i. Essentially, by assuming that each component of the true

weight vector is nonnegative, we are assuming that we have correctly specified the

“sign” of each feature. This means that, other things being equal, a larger value for

each feature implies a larger reward. So when v∗ > 0, the mixed policy ψA to some

extent ignores the mentor, and instead exploits prior knowledge about the true reward

function encoded by the features. We discuss issues related to features in more detail

in Section 5.4, and we present experimental results that explore this aspect of our

approach in Section 5.7.

5.2 MWAL Algorithm

We can apply any of the game-solving techniques from Chapter 2 to compute the

maximin strategy ψA that realizes (5.4). For example, we could find ψA by solving

a linear program. However, the size of this linear program will scale with the size

of the game matrix. In our case, the game matrix M is huge, since it has as many

columns as the number of deterministic policies, |ΠD| = |A||S|.

As we described in Section 2.4.3, no-regret algorithms, such as the multiplicative

weights (MW) algorithm due to Freund and Schapire [32], can be used to compute

approximately optimal strategies in games with large game matrices. Applying MW

to the game matrix M results in Algorithm 5.1, which we call MWAL (Multiplicative

Weights for Apprenticeship Learning) 2 [127]. We immediately have the following

guarantee.

Theorem 5.2. Let ψT be the mixed policy output by the MWAL algorithm in Algo-

2There is one minor difference between the MWAL algorithm in Algorithm 5.1 and the description
of MW in Section 2.4.3. In Algorithm 5.1, the weight vector wt is renormalized in every iteration,
while in Section 2.4.3, we used pt to denote the renormalized version of wt. This difference is entirely
cosmetic.

130

rithm 5.1. Then

min
w∈∆k

wMψT ≥ v∗ −∆T,w1,β (5.6)

Proof. Recall that column player strategies in the game defined by M correspond

to mixed policies. A direct application of Theorem 2.8 proves the statement of the

theorem.

Algorithm 5.1 MWAL Algorithm

1: Given: MDP without a reward function, feature function φφφ, mentor’s feature
expectations µE, parameters w1, β, and T .

2: for t = 1, . . . , T do
3: Normalize wt to sum to 1.
4: Let ψt = arg maxψ∈Ψ wtMψ.
5: Let wt+1(i) = wt(i)β

M(i,ψt) for each i = 1, . . . , k.
6: end for
7: Return: ψT = 1

T

∑T
t=1ψt.

We can re-write the MWAL algorithm in a clearer way by observing that the

maximum in Line 4 is attained by a single deterministic policy, and also observing

that this maximum is unaffected by the mentor’s policy. By “compiling out” the

matrix M, and also tuning the parameters β and w1 according to Lemma 2.5, we are

left with Algorithm 5.2, which is an equivalent version of the MWAL algorithm. We

also have the following more interpretable version of its guarantee.

Corollary 5.3. Let ψT be the mixed policy output by the MWAL algorithm in Algo-

rithm 5.2. Then

V (ψT)− V (πE) ≥ v∗ −O

(√
log k

T (1− γ)2

)
(5.7)

131

Proof. Consider

V (ψT)− V (πE) = w∗ · µ(ψT)−w∗ · µE ((4.9) and (4.5))

≥ min
w∈∆k

[
w · µ(ψT)−w · µE

]
(w∗ ∈ ∆k)

≥ v∗ −∆T,w1,β/(1− γ) (definition of M and Theorem 5.2)

≥ v∗ −O

(√
log k

T (1− γ)2

)
(choice of β and w1 and Lemma 2.5)

Algorithm 5.2 MWAL Algorithm (equivalent version)

1: Given: MDP without a reward function, feature function φφφ, mentor’s feature
expectations µE, parameter T .

2: Let β =
(

1 +
√

2 ln k
T

)−1

.

3: Let w1(i) = 1 for each i = 1, . . . , k.
4: for t = 1, . . . , T do
5: Normalize wt to sum to 1.
6: Let πt = arg maxπ∈ΠD wt · µ(π).
7: Let µt = µ(πt).
8: Let xt(i) = ((1− γ)(µt(i)− µE(i)) + 2)/4 for each i = 1, . . . , k.
9: Let wt+1(i) = wt(i)β

xt(i) for each i = 1, . . . , k.
10: end for
11: Return: The mixed policy ψT given by the uniform distribution on π1, . . . , πT .

5.2.1 Comparison to Feature-Matching Algorithms

The version of MWAL presented in Algorithm 5.2 is the easier version to compare di-

rectly to the Projection and Blackwell algorithms — the so-called “feature-matching”

algorithms — from Section 4.4. By examining them, it is clear that all the algorithms

have the same computational complexity per iteration, since they all perform the

same tasks in each iteration: computing an optimal policy, and computing the fea-

ture expectations of that policy. Also, each algorithm requires the mentor’s feature

expectations µE.

132

However, by comparing the guarantees for the feature-matching and MWAL al-

gorithms — see (4.10), (4.13) and (5.7) — we see that the MWAL algorithm requires

many fewer iterations than the feature-matching algorithms to achieve the same er-

ror: O(log k) versus O(k log k) or O(k) iterations, where k is the number of features.

This represents a tremendous savings when the number of features is very large.

Also, the guarantee for the MWAL algorithm is a “one-sided” bound, while for

the feature-matching algorithms it is a “two-sided” bound. In other words, while

the performance of the mixed policies output by the MWAL and feature-matching

algorithms are all guaranteed not to be much worse than the mentor’s policy — which

satisfies the goal of apprenticeship learning — the feature-matching algorithms’ mixed

policies are also guaranteed not to be much better than the mentor’s policy. This is

because the feature-matching algorithms essentially mimic the mentor. We present

experimental results that demonstrate this advantage of the MWAL algorithm in

Section 5.7.

Finally, like the Blackwell algorithm, the post-processing step for the MWAL

algorithm is trivial, since the final mixed policy is just the uniform average of the

policies computed over all T rounds, and unlike the Projection algorithm, no QP

solver is required.

5.2.2 Absence of a Mentor

Unlike the feature-matching apprenticeship learning algorithms, the MWAL algo-

rithm can be very naturally and easily extended to the case where we do not have

observations from the mentor. Instead of finding a policy that maximizes the original

apprenticeship learning objective in (5.1), we find a mixed policy ψA that maximizes

max
ψ∈Ψ

min
w∈∆k

w · µ(ψ). (5.8)

133

Here ψA is the best policy for the worst-case possibility for w∗. In this sense, ψA is

the “maximally conservative” policy. We describe experiments that compute such a

policy in Section 5.7.

The MWAL algorithm can be trivially adapted to find the mixed policy ψA that

realizes (5.8) just by setting µE = 0 (compare (5.8) to (5.1)). The following corollary

follows immediately from the proof of Corollary 5.3.

Corollary 5.4. Let ψT be the mixed policy output by the MWAL algorithm in Algo-

rithm 5.2, and suppose µE = 0. Then

V (ψT) ≥ v∗ −O

(√
log k

T (1− γ)2

)
(5.9)

5.3 Complete Analysis of MWAL

Our presentation of the MWAL algorithm has thus far assumed that the algorithm

can exactly compute an optimal policy for any fixed reward function, as well as the

feature expectations of that policy, and also has access to the feature expectations

of the mentor’s policy. In practice, all these quantities must be approximated. In

this section, we complete the analysis of the MWAL algorithm by describing a version

that uses only approximations, and show that the performance of this version degrades

gracefully as the quality of these approximations decreases.

5.3.1 Approximation Version of MWAL

An “approximation” version of the MWAL algorithm — i.e. a version that uses only

approximations of optimal policies, feature expectations, etc. — is given in Algorithm

5.3. In this section we review the differences between the approximation version of

the MWAL algorithm and the “exact” version given in Algorithm 5.2.

In Step 2, the algorithm forms an estimate µ̂E of the mentor’s feature expec-

134

tations µE by averaging the observed feature values from the mentor’s trajectories.

More precisely, let (si0, s
i
1, . . . , s

i
H) denote the ith sample trajectory (for simplicity,

we assume that all sample trajectories are truncated to the same length H). The

estimate µ̂E of µE is

µ̂E =
1

m

m∑
i=0

H∑
t=0

γtφφφ(sit). (5.10)

Of course, both m and H will affect the quality of the estimate µ̂E. However, instead

of working directly with H, it will be more convenient for us to let εH be a constant

such that H = (1/(1− γ)) ln(1/(εH(1− γ))).

In Step 7, the algorithm computes an ε-optimal policy. An ε-optimal policy π̂ sat-

isfies V (π̂) ≥ V (π∗)− ε. In Section 4.2.1 we described several methods for computing

such a policy in an MDP.

In Step 8, the algorithm computes an ε-good estimate of the feature expectations

of a given policy. An ε-good estimate µ̂ of µ(π) satisfies ‖µ̂− µ(π)‖∞ ≤ ε. In Section

4.2.2 we described several methods for computing estimates of the value of a policy,

and these methods can be trivially extended to compute an estimate of the feature

expectations.

Let εR = minw∈∆k maxs |R(s)−w·φφφ(s)| be the representation error of the features.

We have thus far assumed that the representation error is zero, but our analysis in

the next section will show that even this requirement can be relaxed.

5.3.2 Guarantee for Approximation Version

This section is devoted to proving the following guarantee about Algorithm 5.3.

Theorem 5.5. Let ψ be the mixed policy output by the MWAL algorithm in Algorithm

5.3. Then in order for

V (ψ) ≥ V (πE) + v∗ − ε (5.11)

135

Algorithm 5.3 MWAL Algorithm (approximation version)

1: Given: MDP without a reward function, feature function φφφ, a set of m indepen-
dent trajectories from mentor’s policy πE, parameters T , εP , εF .

2: Form estimate µ̂E of the mentor’s feature expectations as in (5.10).

3: Let β =
(

1 +
√

2 ln k
T

)−1

.

4: Let w1(i) = 1 for each i = 1, . . . , k.
5: for t = 1, . . . , T do
6: Normalize wt to sum to 1.
7: Let π̂t be an εP -optimal policy for reward function Rt(s) = wt · φφφ(s).
8: Let µ̂t be an εF -good estimate of feature expectations µ(π̂t).
9: Let xt(i) = ((1− γ)(µ̂t(i)− µ̂E(i)) + 2)/4 for each i = 1, . . . , k.

10: Let wt+1(i) = wt(i)β
xt(i) for each i = 1, . . . , k.

11: end for
12: Return: The mixed policy ψT given by the uniform distribution on π̂1, . . . , π̂T .

to hold with probability at least 1− δ, it suffices that

T ≥ 9 ln k

2(ε′(1− γ))2
(5.12)

m ≥ 2

(ε′(1− γ))2
ln

2k

δ
(5.13)

(5.14)

where

ε′ ≤ ε− (2εF + εP + 2εH + 2εR/(1− γ))

3
. (5.15)

The heart of the proof of Theorem 5.5 is the following corollary.

Corollary 5.6. At the end of Algorithm 5.3

1

T

T∑
t=1

[wt · µ̂t −wt · µ̂E] ≤ 1

T
min
w∈∆k

T∑
t=1

[w · µ̂t −w · µ̂E] + ∆T,w1,β/(1− γ)

Proof. For each possible policy πj ∈ ΠD, fix an εF -good estimate µ̂j of µ(πj), and

assume without loss of generality that this is the estimate found by the algorithm.

We are free to assume that µ̂j ∈ [0, 1
1−γ]k, because we can always trim µ̂j so that

it falls within the desired range without increasing the error in the estimate. Now

136

consider the matrix M̂, where

M̂(i, j) = ((1− γ)(µ̂j(i)− µ̂E(i)) + 2)/4

Note that M̂(i, j) ∈ [0, 1], and that the weights wt in Algorithm 5.3 are updated

according to the MW algorithm (see Section 2.4.3) when run on the matrix M̂. A

direct application of Corollary 2.4 establishes the desired inequality.

To complete the proof of Theorem 5.5, we will need to prove several auxiliary

results. The next lemma bounds the number of trajectories needed to make µ̂E close

to µE.

Lemma 5.7. For ‖µ̂E − µE‖∞ ≤ ε + εH to hold with probability at least 1 − δ, it

suffices that

m ≥ 2

(ε(1− γ))2
ln

(
2k

δ

)
Proof. This is a standard proof using Hoeffding’s inequality. However, care must be

taken in one respect: µ̂E is not an unbiased estimate of µE, because the trajectories

are truncated at H. So define

µHE , E

[
H∑
t=0

γtφφφ(st)
∣∣∣ s0 ∼ α(·), at ∼ πE(s, ·), st+1 ∼ θ(st, at, ·)

]

Then we have,

∀i ∈ {1, . . . , k} Pr(|µ̂E(i)− µHE (i)| ≥ ε) ≤ 2 exp(−m(ε(1− γ))2/2)

⇒ Pr(∃i ∈ {1, . . . , k} s.t. |µ̂E(i)− µHE (i)| ≥ ε) ≤ 2k exp(−m(ε(1− γ))2/2)

⇒ Pr(∀i ∈ {1, . . . , k}, |µ̂E(i)− µHE (i)| ≤ ε) ≥ 1− 2k exp(−m(ε(1− γ))2/2)

⇒ Pr(
∥∥µ̂E − µHE∥∥∞ ≤ ε) ≥ 1− 2k exp(−m(ε(1− γ))2/2)

We used in order: Hoeffding’s inequality and µHE ∈ [0, 1
1−γ]k; the union bound; the

137

probability of disjoint events; the definition of L∞ norm.

It is not hard to show that
∥∥µHE − µE∥∥∞ ≤ εH (see Kearns and Singh [56]). Hence

if m ≥ 2
(ε(1−γ))2

ln(2k
δ

), then with probabilty at least 1− δ we have

‖µ̂E − µE‖∞ ≤
∥∥µ̂E − µHE∥∥∞ +

∥∥µHE − µE∥∥∞ ≤ ε+ εH

The next lemma bounds the impact of representation error: It says that if R(s)

and w∗ · φφφ(s) are not very different, then neither are V (ψ) and w∗ · µ(ψ).

Lemma 5.8. |V (ψ)−w∗ · µ(ψ)| ≤ εR
1−γ for every mixed policy ψ ∈ Ψ.

Proof.

|V (ψ)−w∗ · µ(ψ)|

=

∣∣∣∣∣E
[
∞∑
t=0

γtR(st)

]
− E

[
∞∑
t=0

γtw∗ · φφφ(st)

]∣∣∣∣∣
=

∣∣∣∣∣ lim
H→∞

E

[
H∑
t=0

γtR(st)

]
− lim

H→∞
E

[
H∑
t=0

γtw∗ · φφφ(st)

]∣∣∣∣∣
=

∣∣∣∣∣ lim
H→∞

E

[
H∑
t=0

γt(R(st)−w∗ · φφφ(st))

]∣∣∣∣∣
≤ lim

H→∞
E

[
H∑
t=0

γt|R(st)−w∗ · φφφ(st)|

]
≤ εR

1− γ

We are now ready to prove Theorem 5.5.

138

Proof of Theorem 5.5. Let w = 1
T

∑T
t=1 wt. Then we have

v∗ = max
ψ∈Ψ

min
w∈∆k

[w · µ(ψ)−w · µE]

= min
w∈∆k

max
ψ∈Ψ

[w · µ(ψ)−w · µE] (5.16)

≤ min
w∈∆k

max
ψ∈Ψ

[w · µ(ψ)−w · µ̂E] + ε′ + εH (5.17)

≤ max
ψ∈Ψ

[w · µ(ψ)−w · µ̂E] + ε′ + εH

= max
ψ∈Ψ

1

T

T∑
t=1

[wt · µ(ψ)−wt · µ̂E] + ε′ + εH (5.18)

≤ 1

T

T∑
t=1

max
ψ∈Ψ

[wt · µ(ψ)−wt · µ̂E] + ε′ + εH

≤ 1

T

T∑
t=1

[wt · µ(π̂t)−wt · µ̂E] + εP + ε′ + εH (5.19)

≤ 1

T

T∑
t=1

[wt · µ̂t −wt · µ̂E] + εF + εP + ε′ + εH (5.20)

≤ 1

T
min
w∈∆k

T∑
t=1

[w · µ̂t −w · µ̂E] +
∆T,w1,β

(1− γ)
+ εF + εP + ε′ + εH (5.21)

≤ 1

T
min
w∈∆k

T∑
t=1

[w · µ(π̂t)−w · µ̂E] +
∆T,w1,β

(1− γ)
+ 2εF + εP + ε′ + εH (5.22)

= min
w∈∆k

[
w · µ(ψ)−w · µ̂E

]
+

∆T,w1,β

(1− γ)
+ 2εF + εP + ε′ + εH (5.23)

≤ min
w∈∆k

[
w · µ(ψ)−w · µE

]
+

∆T,w1,β

(1− γ)
+ 2εF + εP + 2ε′ + 2εH (5.24)

≤ w∗ · µ(ψ)−w∗ · µE +
∆T,w1,β

(1− γ)
+ 2εF + εP + 2ε′ + 2εH (5.25)

≤ V (ψ)− V (πE) +
∆T,w1,β

(1− γ)
+ 2εF + εP + 2ε′ + 2εH +

2εR
(1− γ)

(5.26)

In (5.16), we used von Neumann’s minmax theorem. In (5.17), Lemma 5.7. In

(5.18), the definition of w. In (5.19), the fact that π̂t is εP -optimal with respect

to R(s) = wt · φ(s). In (5.20), the fact that µ̂t is an εF -good estimate of µ(π̂t).

In (5.21), Corollary 5.6. In (5.22), again the fact that µ̂t is an εF -good estimate

of µ(π̂t). In (5.23), the definition of ψ. In (5.24), Lemma 5.7. In (5.25), we let

139

w∗ = arg minw∈∆k maxs |R(s)− (w · φφφ(s))|. In (5.26), Lemma 5.8.

Plugging in the choice for T , w1 and β into ∆T,w1,β and rearranging implies the

theorem.

5.4 Issues Related to Features

In our game-theoretic formulation of the apprenticeship learning problem, we have

assumed that the true reward function can be described in terms of a set of known

features. In this section, we explain that the choice of these features is critical, in the

sense that changing them can strongly affect the policy learned by the apprentice.

5.4.1 Prior Knowledge

Though it may not be immediately obvious, the assumption that the true weight

vector w∗ contains only positive weights (i.e. that w∗ ∈ ∆k) has non-trivial conse-

quences. Let

φφφ(s) = (φ1(s), . . . , φk(s))

be the features at state s. If φi(s) ≥ φi(s
′) for all features i, then R(s) ≥ R(s′),

regardless of the value of the true weight vector w∗. Put differently, the positive

weight assumption implies that all features are positively correlated with reward. If

a feature is not positively correlated with reward — for example, in the car driving

simulator, this might be a feature whose value increases with the number of crashes

— then it should be negated before it is used by the MWAL algorithm.

There will be occasions, of course, when the correct “sign” of the relationship

between a feature and the reward function is not known, and we wish to abstain from

having to specify it. Our framework can easily accommodate this requirement. Let

φi1 , . . . , φi` be the indices of all features whose correct sign is unknown. Then we can

140

define a new feature function

φφφ′(s) = (φ1(s), . . . , φk,−φi1(s), . . . ,−φi`(s))

The effect of adding these extra features is equivalent to allowing the weights assigned

to features φi1 , . . . , φi` to be positive or negative. Also note that this modification at

most doubles the number of features.

Another effect of adding negated versions of features is that it forces the apprentice

policy to mimic the behavior of the mentor with respect to those features, much like

the Projection algorithm of Abbeel and Ng [1]. The next theorem proves this.

Theorem 5.9. Let ψA be a mixed policy that achieves v∗ in (5.4). Let µA = µ(ψA)

be the feature expectations of ψA. If there exist features φi and φj such that φi(s) =

−φj(s) for all states s, then µA(i) = µE(i) and µA(j) = µE(j).

Proof. By the linearity of expectation we have µA(i) = −µA(j) and µE(i) = −µE(j).

Thus, if the theorem does not hold, then either

µA(i) > µE(i) and µA(j) < µE(j) (5.27)

or

µA(i) < µE(i) and µA(j) > µE(j) (5.28)

Suppose for contradiction that (5.27) is the case, and let wj be a weight vector that

places all weight on feature j. Then v∗ < 0, because wj · µA − wj · µE < 0. But

this contradicts Theorem 5.1, which proved that v∗ ≥ 0. By a symmetric argument,

(5.28) also contradicts Theorem 5.1.

Theorem 5.9 tells us that, if we wish to find an apprentice policy that performs

better than the mentor, then we must specify some features which are positively

correlated with reward.

141

The number of features k can also be viewed as a measure of how much the appren-

tice knows about the true reward function. If k = 1, the (only) feature expectation

of a policy is equal to its value, and thus the problem of finding a good apprentice

policy reduces to finding an optimal policy in a standard MDP.

At the other extreme, consider a set of 2|S| features defined by

φφφ(s) =
(
I(s = s1), . . . , I(s = s|S|),−I(s = s1), . . . ,−I(s = s|S|)

)
, (5.29)

where I is the indicator function. Note that for any reward function R, there exists

a w∗ ∈ ∆2|S| such that R(s) ∝ w∗ · φφφ(s). In this situation, the apprentice knows

essentially nothing about the true reward function, and will be compelled to mimic

the mentor.

5.4.2 Rescaling Units

In the apprenticeship learning framework, the features φφφ encode what the reward

function depends on, while the (unknown) weight vector w∗ encodes how the features

relate to each other, i.e., how the one should trade-off among them. The purpose

of dividing the reward function in this manner is to cleanly separate what is easy to

specify about the reward function from what is not. However, is this division actually

as successful as it appears to be? Specifically, what impact does the choice of “units”

for the features have on the maximin strategy in the apprenticeship learning game?

For example, in the car driving example, suppose the feature for speed is measured

in k.p.h. instead of m.p.h. While seemingly inconsequential, this change will shift all

the values for the speed feature into a higher range. Will the mixed policy ψA, which

is a maximin strategy, drive faster as a result?

To make our discussion precise, suppose each feature φi is passed through a linear

transformation Li, which represents a change in “units”. Consider a game matrix ML,

142

which is defined in the same way as the apprenticeship learning game matrix M in

(5.3), except with respect to the new features Li(φi). By the linearity of expectation,

we have

ML(i, j) = Li(M(i, j)) (5.30)

So ML can be derived directly from M by applying the function Li to each element of

the ith row of M. For the sake of generality, in the rest of this section we will suspend

the apprenticeship learning motivation, and simply ask the following question about

zero-sum games: If a different linear transformation is applied to each row of a game

matrix M, as in (5.30), under what conditions are the maximin strategies preserved?

Arbitrary linear transformations can, in fact, substantially affect the maximin

strategies. Consider the following 3×4 game matrix, taken from the proof of Theorem

3.7:

M =


a+ ε a− ε a+ 2ε a− 2ε

a− ε a+ ε a− 2ε a+ 2ε

2a 2a a a


where a ∈ (0, 1

2
] and ε ∈ (0, a

4
). It is straightforward to verify that a is the value of the

game defined by the matrix M, and therefore the column strategy q∗ =
[
0, 0, 1

2
, 1

2

]T
is a maximin strategy, since

Mq∗ =


a

a

a


Now consider the linear functions L1(x) = L2(x) = cx and L3(x) = x, where c > 1,

and define the matrix ML as in (5.30). By linearity, we have

MLq∗ =


ca

ca

a



143

However, the value of the game defined by the matrix ML is min{ca, 2a}, since by

letting q∗L =
[

1
2
, 1

2
, 0, 0

]T
we have

MLq∗L =


ca

ca

2a


Thus q∗ is not a maximin strategy for ML, while q∗L is. Note that q∗L is also a

lexicographic maximin strategy for the original game matrix M. So in this case, the

lexicographic maximin strategy appears to be a better choice for the column player,

since it is insensitive to the perturbations L1, . . . , L3 described above. In this rest of

this section, we will prove that this fact about lexicographic maximin strategies holds

more generally: Such strategies are provably more robust to certain changes in the

game matrix. This further validates the goal of computing a lexicographic maximin

strategy.

For any game matrix M, recall from Chapter 3 the definition

v∗ , lexmaxq∈Q θ(Mq) (5.31)

As we did in Chapter 3, we assume without loss of generality that the rows of M are

ordered so that

v∗ = Mqlex ∗ (5.32)

where qlex ∗ is a lexicographic maximin strategy that achieves the objective in (5.31).

By definition, v∗(1) ≤ · · · ≤ v∗(n). As in Section 3.7.1, let ı̃ be the largest

row index such that v∗(̃ı) = v∗(1). This implies that v∗(1) = · · · = v∗(̃ı) < v∗(̃ı +

1) ≤ · · · ≤ v∗(n). The next theorem shows, essentially, that any linear functions

L1, . . . , Ln which preserve this relationship among the components of v∗ will not

affect the optimality of a lexicographic maximin strategy.

144

Theorem 5.10. Let M be an n×m game matrix, and let L1, . . . , Ln be linear func-

tions mapping R to R. Define the matrix ML as in (5.30). Let qlex ∗ be a lexicographic

maximin strategy for the matrix M, and let q∗L be a maximin strategy for the matrix

ML.

If L1 = · · · = Lı̃ and Lj(v
∗(j)) > Lı̃(v

∗(̃ı)) for all j > ı̃, then

min
p∈P

pMLqlex ∗ ≥ min
p∈P

pMLq∗L

Proof. We have

Lı̃(v
∗(̃ı)) = min

i
Li(v

∗(i)) = min
i
Li(M(i,qlex ∗)) = min

i
ML(i,qlex ∗) (5.33)

where the first equality uses the assumptions about L1, . . . , Ln, and the second and

third equality use (5.32) and (5.30), respectively. Now suppose for contradiction that

min
p∈P

pMLqlex ∗ < min
p∈P

pMLq∗L

which implies that

min
i

ML(i,qlex ∗) < min
i

ML(i,q∗L) = min
i
Li(M(i,q∗L)) (5.34)

Combining (5.33) and (5.34) yields Lı̃(v
∗(̃ı)) < mini Li(M(i,q∗L)). In particular,

we have Lı̃(v
∗(̃ı)) < Li(M(i,q∗L)) for all i ∈ {1, . . . , ı̃}. And by our assumption

about L1, . . . , Lı̃ and the definition of ı̃, this implies that v∗(i) < M(i,q∗L) for all

i ∈ {1, . . . , ı̃}.

We will now show that there exists a λ ∈ [0, 1] such that qλ = λq∗L + (1− λ)qlex ∗

and minp∈P pMqλ > v∗(̃ı), which is a contradiction, since in that case qλ would

guarantee a higher payoff to the column player than any maximin strategy.

145

Recall that v∗(i) = M(i,qlex ∗) for all i. We proved above that v∗(i) < M(i,q∗L)

for all {1, . . . , ı̃}. Therefore, if λ > 0, we have v∗(i) < λM(i,q∗L)+(1−λ)M(i,qlex ∗) =

M(j,qλ) for all i ∈ {1, . . . , ı̃}. Moreover, as λ → 0, the value of M(i,qλ) becomes

arbitrarily close to v∗(i) for all i. And since v∗(i) > v∗(̃ı) for all i > ı̃ (by definition

of ı̃), we can choose a value for λ such that minp∈P pMqλ > v∗(̃ı).

5.5 Outputting Stationary Policies

In Sections 4.4.2 and 5.2 we explained that both the Blackwell and MWAL algorithms

output a mixed policyψT , which is defined in terms of the set of the stationary policies

{π1, . . . , πT} generated during the course of the algorithm. In particular, ψT assigns

weight 1
T

to the policy πt output by in round t of the algorithm. In Section 4.4.1

we explained that the Projection algorithm due to Abbeel and Ng [1] also outputs a

policy of this type, although the mixture weights are not necessarily uniform.

Mixed policies are not commonly output by standard reinforcement learning algo-

rithms, and in some sense are quite unnatural. Consider how an agent would follow

a mixed policy in practice: At time 0, the agent must perform a “lottery”, randomly

choosing a single stationary policy from the set {π1, . . . , πT}. The performance guar-

antees for mixed policies that we have presented thus far only hold in expectation

over the outcome of this lottery. And if the policies in the set are very different from

each other, the behavior of the mixed policy will be difficult to understand, or even

to describe. On the other hand, stationary policies have the simplest form one can

expect: In each state, they prescribe a single action or distribution over actions.

In Section 5.5.1, we prove that, under certain technical conditions, one can use the

last stationary policy πT generated by the MWAL algorithm, instead of all of them,

thereby circumventing the drawbacks of a mixed policies entirely. The proof follows

directly from our results on the MW algorithm and lexicographic optimality from

146

Chapter 3. In Section 5.5.2, we show how the MWAL algorithm can be modified so

that it outputs a single stationary policy in all circumstances. This stationary policy

is essentially a per-state average of all the policies generated by the MWAL algorithm.

The main technical difficulty is determining the contribution of each individual policy

to the average at each state.

5.5.1 Strict Case

In Section 3.6, we defined the following quantity for any game matrix M

δM , min
i 6=j
|v∗(i)− v∗(j)| (5.35)

and proved that the MW algorithm converges to a lexicographic maximin strategy

whenever δM > 0. Moreover, our proof applied to the last strategy output by the MW

algorithm. Since every lexicographic maximin strategy is also a maximin strategy,

and since the MWAL algorithm is just the MW algorithm applied to a particular

game matrix, our results on lexicographic optimality imply the following corollary.

Corollary 5.11. Suppose that Algorithm 5.1 is run for T rounds, and define δM as

in (5.35). If δM > 0 then for all sufficiently large T

V (πT)− V (πE) ≥ v∗ (5.36)

Proof. This follows immediately from Theorem 3.9 and the definition of Algorithm

5.1.

5.5.2 Dual Methods

As we explained in Section 5.2, the MWAL algorithm requires a subroutine that can

compute an optimal policy in an MDP. A classic iterative technique such as value

147

iteration or policy iteration, which were described in Section 4.2.1, will typically be

used in this role. In this section, we show that if one uses a certain linear program to

find an MDP’s optimal policy (one that is the dual of the linear program described in

Section 4.2.1), then the MWAL algorithm can be modified so that it outputs a single

stationary policy instead of a mixed policy. This technique preserves the performance

guarantees of the MWAL algorithm, and can be applied even when the strictness

condition used in the previous section does not hold. Moreover, the technique can be

straightforwardly applied to any mixed policy — such as one output by the Projection

algorithm or Blackwell algorithm — to convert it to a single stationary policy that

has the same value. Importantly, no information about the true reward function is

required. The material in the remainder of this section and the next section was first

described by Syed and Schapire [128].

Dual Policy Representation

Recall that a policy π specifies the probability of taking each action in each state.

In this section, we will introduce an equivalent representation for policies called the

occupancy measure. This alternate representation will guide our development of a

modified version of the MWAL algorithm that always outputs a stationary policy.

A policy π has occupancy measure xπ if3

xπ(s, a) = E

[
∞∑
t=0

γt1(st=s∧at=a)

∣∣∣ s0 ∼ α(·), at ∼ π(st, ·), st+1 ∼ θ(st, at, ·)

]
(5.37)

for all states s ∈ S and actions a ∈ A. In other words, xπ(s, a) is the expected

discounted number of visits to state-action pair (s, a) when following policy π.

3Here xπ is a vector whose (s, a)th component is denoted xπ(s, a).

148

Now consider the following linear program:

max
x

∑
s,a

R(s)x(s, a) (5.38)

such that∑
a

x(s, a) = α(s) + γ
∑
s′,a

x(s′, a)θ(s′, a, s) ∀s ∈ S (5.39)

x(s, a) ≥ 0 ∀s ∈ S, ∀a ∈ A (5.40)

We will prove shortly that if x∗ is a solution to (5.38) - (5.40) then

π∗(s, a) =
x∗(s, a)∑
a x
∗(s, a)

is an optimal policy, and x∗ is the occupancy measure of π∗. This result is well-known,

and can be found in most standard references on MDPs [100]. Often (5.39) - (5.40)

are called the Bellman flow constraints.

The linear program in (5.38) - (5.40) is actually the dual of the linear program

described in Section 4.2.1. Accordingly, solving (5.38) - (5.40) is often called the Dual

LP method of solving MDPs .

Having found an optimal policy by the Dual LP method, computing its value and

feature expectations is straightforward.

Lemma 5.12. If policy π has occupancy measure xπ, then V (π) =
∑

s,aR(s)xπ(s, a)

and µ(π) =
∑

s,aφφφ(s)xπ(s, a).

Proof. This is immediate from the definitions of the occupancy measure, feature ex-

pectations, and the value of a policy, plus the linearity of expectation.

In fact, all x that satisfy the Bellman flow constraints (5.39) - (5.40) are the occu-

pancy measure of some stationary policy, as the next theorem shows. Together with

149

Lemma 5.12, this theorem also proves that the solution to (5.38) - (5.40) corresponds

to an optimal policy.

Theorem 5.13. A vector x is the occupancy measure of a stationary policy π if and

only if for all states s ∈ S and actions a ∈ A

π(s, a) =
x(s, a)∑
a x(s, a)

and x satisfies the Bellman flow constraints (5.39) - (5.40).

An equivalent result as Theorem 5.13 is given by Feinberg and Schwartz [25], but

our proof below is much simpler and more direct. Interestingly, Lemma 5.12 and

Theorem 5.13 prove the correctness of the Dual LP method of finding an optimal

policy in an MDP, yet neither result requires the application of LP duality.

Before proceeding with the proof of Theorem 5.13, we introduce another linear

system. For any stationary policy π, the π-specific Bellman flow constraints are

given by the following linear system in which the variable x(s, a) is unknown for all

(s, a) ∈ S ×A:

x(s, a) = π(s, a)α(s) + π(s, a)γ
∑
s′,a′

x(s′, a′)θ(s′, a′, s) (5.41)

x(s, a) ≥ 0 (5.42)

The next lemma shows that π-specific Bellman flow constraints have a solution.

Lemma 5.14. For any stationary policy π, the occupancy measure xπ of π satisfies

the π-specific Bellman flow constraints (5.41) - (5.42).

Proof. Clearly, xπ(s, a) is non-negative for all s, a, and so (5.42) is satisfied. As for

(5.41), we simply plug in the definition of xπ(s, a) from (5.37). In the following

derivation, all the expectations and probabilities are implicitly with respect to α, θ,

150

and π.

xπ(s, a) = E

[
∞∑
t=0

γt1(st=s∧at=a)

]

=
∞∑
t=0

γt Pr(st = s, at = a)

= π(s, a)α(s) +
∞∑
t=0

γt+1 Pr(st+1 = s, at+1 = a)

= π(s, a)α(s) +
∞∑
t=0

γt+1
∑
s′,a′

Pr(st = s′, at = a′, st+1 = s, at+1 = a)

= π(s, a)α(s) +
∞∑
t=0

γt+1
∑
s′,a′

Pr(st = s′, at = a′) · θ(s′, a′, s)π(s, a)

= π(s, a)α(s) + π(s, a)γ
∑
s′,a′

E

[
∞∑
t=0

γt1(st=s′∧at=a′)

]
θ(s′, a′, s)

= π(s, a)α(s) + π(s, a)γ
∑
s′,a′

xπs′a′θ(s
′, a′, s)

Now we show that the solution to the π-specific Bellman flow constraints given

by Lemma 5.14 is unique.

Lemma 5.15. For any stationary policy π, the π-specific Bellman flow constraints

(5.41) - (5.42) have at most one solution.

Proof. Define the matrix A and vector b as follows.4 Let

A((s, a), (s′, a′)) ,

 1− γθ(s′, a′, s)π(s, a) if (s, a) = (s′, a′)

− γθ(s′, a′, s)π(s, a) otherwise.

4Here A and b are indexed by state-action pairs, following the same indexing convention as x.

151

and the vector b(s, a) , π(s, a)α(s). We can re-write (5.41) - (5.42) equivalently as

Ax = b (5.43)

x ≥ 0 (5.44)

where the inequality should be interpreted component-wise. We claim that the ma-

trix A is column-wise strictly diagonally dominant. Note that
∑

s′ θ(s, a, s
′) = 1,∑

a π(s, a) = 1 and γ < 1, so for all s′ ∈ S and a′ ∈ A

∑
s,a

γθ(s′, a′, s)π(s, a) = γ < 1

Rearranging this inequality yields

1− γθ(s′, a′, s′)π(s′, a′) >
∑

(s,a)6=(s′,a′)

γθ(s′, a′, s)π(s, a)

And substituting the definition of A we have

|A((s′, a′), (s′, a′))| >
∑

(s,a)6=(s′,a′)

|A((s, a), (s′, a′))|

The last inequality is the definition of column-wise strict diagonal dominance. This

implies that A is non-singular [49], so (5.43) - (5.44) has at most one solution.

We are now ready to prove Theorem 5.13.

Proof of Theorem 5.13. For one direction of the theorem, we assume that x satisfies

the Bellman flow constraints (5.39) - (5.40), and that π(s, a) =
x(s, a)∑
a′ x(s, a′)

. There-

fore,

π(s, a) =
x(s, a)

α(s) + γ
∑

s′,a′ x(s′, a′)θ(s′, a′, s)
. (5.45)

Clearly x is a solution to the π-specific Bellman flow constraints (5.41) - (5.42), and

152

Lemmas 5.14 and 5.15 imply that x is the occupancy measure of π.

For the other direction of the theorem, we assume that x is the occupancy measure

of a stationary policy π. Lemmas 5.14 and 5.15 imply that x is the unique solution

to the π-specific Bellman flow constraints (5.41) - (5.42). Therefore, π is given by

(5.45). And since
∑

a π(s, a) = 1, we have

1 =

∑
a x(s, a)

α(s) + γ
∑

s′,a′ x(s′, a′)θ(s′, a′, s)

which can be rearranged to show that x satisfies the Bellman flow constraints (5.41)

- (5.42), and also combined with (5.45) to show that π(s, a) =
x(s, a)∑
a′ x(s, a′)

.

Recall that a mixed policy ψ is a distribution on the set of deterministic stationary

policies ΠD, where ψ(i) is the weight assigned to policy πi ∈ ΠD. The Bellman flow

constraints make it very easy to show that, for every mixed policy, there is a stationary

policy that has the same value.

Theorem 5.16. Let ψ be a mixed policy. For each i ∈ {1, . . . , |ΠD|}, let xi be the

occupancy measure of πi ∈ ΠD. Let π̃ be a stationary policy where

π̃(s, a) =

∑
i ψ(i)xi(s, a)∑

a′
∑

i ψ(i)xi(s, a′)
.

Then V (π̃) = V (ψ).

Proof. By Theorem 5.13, for all i, we have that xi satisfies the Bellman flow con-

straints (5.39) - (5.40). Let x̃(s, a) =
∑

i ψ(i)xi(s, a). By linearity, x̃ also satisfies the

Bellman flow constraints. Hence, by Theorem 5.13, the stationary policy π̃ defined

by π̃(s, a) =
x̃(s, a)∑
a′ x̃(s, a′)

has occupancy measure x̃. Therefore,

V (π̃) =
∑
s,a

R(s)x̃(s, a) =
∑
i

ψ(i)
∑
s,a

R(s)xi(s, a) =
∑
i

ψ(i)V (πi) = V (ψ)

153

where these equalities use, in order: Lemma 5.12; the definition of x̃; Lemma 5.12;

and (4.7).

MWAL-Dual Algorithm

In this section, we make a minor modification to the MWAL algorithm so that it out-

puts a stationary policy instead of a mixed policy. Recall that the MWAL algorithm

requires a subroutine that can compute an optimal policy in an MDP, and another

subroutine that can compute that policy’s feature expectations (see Lines 6 and 7 of

Algorithm 5.2). Our proposal is to use the Dual LP method to find the occupancy

measure xπt of the optimal policy πt that maximizes the function wt · µ(π). Then,

following Lemma 5.12, we compute the feature expectations µt = µ(πt) by letting

µt =
∑

s,aφφφ(s)xπt(s, a).

Now we can apply Theorem 5.16 to combine all the policies computed during the

MWAL algorithm into a single stationary policy. This amounts to changing the last

step of the MWAL algorithm (Line 11 in Algorithm 5.2) to the following:

Return: The stationary policy πA given by

πA(s, a) =
1
T

∑
t x

πt(s, a)∑
a′

1
T

∑
t x

πt(s, a′)

We call this modified algorithm the MWAL-Dual algorithm, after the method it

uses to compute optimal policies. It is straightforward to show that these changes to

the MWAL algorithm do not affect its performance guarantee.

Theorem 5.17. Let πA be the stationary policy returned by the MWAL-Dual algo-

rithm. Then

V (πA)− V (πE) ≥ v∗ −O

(√
log k

T (1− γ)2

)
(5.46)

154

Proof. By Theorem 5.16, the stationary policy returned by the MWAL-Dual algo-

rithm has the same value as the mixed policy returned by the original MWAL algo-

rithm. Hence the guarantee in (5.7) applies to the MWAL-Dual algorithm as well.

Of course, the trick used here to convert a mixed policy to a stationary one is

completely general, provided that the occupancy measures of the component policies

can be computed. For example, this technique could be applied to the mixed policy

output by either the Projection or Blackwell algorithm.

A significant drawback of MWAL-Dual algorithm is that it requires knowledge of

the transition function θ in order to form the Dual LP. However, Wang et al. [141]

describe algorithms for finding the optimal policy in an MDP that work with dual

representation of policies, but are not based on linear programming. Instead, their

dual reinforcement learning algorithms algorithms closely resembles standard rein-

forcement learning algorithms like value iteration, policy iteration, and Q-learning,

but operate exclusively on occupancy measure. For example, in Dual Value Iteration,

the occupancy measure variables are updated in each iteration according to rules that

resemble the Bellman flow constraints, and convergence is proved via a contraction

property. Just like the Dual LP method, the output of Dual Value Iteration is the

occupancy measure x∗ of an optimal policy π∗. Clearly, this method can be substi-

tuted for the Dual LP method in the MWAL-Dual algorithm. Importantly, some of

the other algorithms due to Wang et al. [141], like the dual Q-learning, do not require

any knowledge of the transition function θ.

5.6 Algorithm Based on Linear Programming

We now describe a way to use the Bellman flow constraints to find a good apprentice

policy in a much more direct fashion than the MWAL algorithm. Recall the original

155

game-theoretic objective for apprenticeship learning:

max
ψ∈Ψ

min
w∈∆k

[w · µ(ψ)−w · µE]

As we have said, the use of mixed policies in this objective is largely for algorithmic

convenience. A more natural objective is to find a stationary policy that realizes

v∗ , max
π∈Π

min
w∈∆k

[w · µ(π)−w · µE] (5.47)

where Π is the set of all stationary policies. Note that the value of v∗ in (5.47) is

not exactly the same as in (5.4), since here the objective has not been shifted and

rescaled (as such manipulation is unnecessary for the approach used in this section).

In this section, we describe a linear program that solves (5.47). In Section 5.7,

we describe experiments that show that, at least empirically, this approach is much

faster than the MWAL algorithm, although it does have disadvantages, which we also

illustrate in Section 5.7.

Our LPAL (Linear Programming Apprenticeship Learning) algorithm is given in

Algorithm 5.4. The basic idea is to use the Bellman flow constraints (5.39) - (5.40) to

define a feasible set containing all (occupancy measures of) stationary policies, and

then find the best policy in that set with respect to the objective in (5.47).

Theorem 5.18. Let πA be the stationary policy returned by the LPAL algorithm.

Then

V (πA)− V (πE) ≥ v∗ − ε

Proof. Since x̂ satisfies the Bellman flow constraints (5.39) - (5.40), by Theorem 5.13

156

Algorithm 5.4 LPAL algorithm

1: Given: MDP without a reward function, feature function φφφ, mentor’s feature
expectations µE.

2: Write φφφ(s) = (φ1(s), . . . , φk(s)).
3: Find an ε-approximate solution (x̂, ŷ) to this linear program:

max
x,y

y

such that

y ≤
∑
s,a

φi(s)x(s, a)− µE(i) for all i ∈ {1, . . . , k}

x satisfies the Bellman flow constraints (5.39) - (5.40).

4: Return: Apprentice policy πA defined by πA(s, a) =
x̂(s, a)∑
a′ x̂(s, a′)

.

we have that x̂ is the occupancy measure of policy πA. Now consider

V (πA)− V (πE) = w∗ · µ(πA)−w∗ · µE (by (4.5))

= w∗ ·
∑
s,a

φφφ(s)x̂(s, a)−w∗ · µE (Lemma 5.12)

≥ min
w∈∆k

[
w ·
∑
s,a

φφφ(s)x̂(s, a)−w · µE

]
(w∗ ∈ ∆k)

= min
i∈{1,...,k}

[∑
s,a

φi(s)x̂(s, a)− µE(i)

]

≥ ŷ ((x̂, ŷ) is feasible)

It remains to show that ŷ ≥ v∗ − ε. Since (x̂, ŷ) is an ε-approximate solution to the

linear program, it suffices to show that v∗ is the value of the linear program at its

optimum. Let B = {x : x satisfies Bellman flow constraints}. It is easy to see that

the linear program in the LPAL algorithm is equivalent to

max
x∈B

min
i∈{1,...,k}

[∑
s,a

φi(s)x(s, a)− µE(i)

]
(5.48)

157

We now show that v∗ is equal to (5.48). Indeed

v∗ = max
π∈Π

min
w∈∆k

[w · µ(π)−w · µE] (by (5.47))

= max
x∈B

min
w∈∆k

[
w ·
∑
s,a

φφφ(s)x(s, a)−w · µE

]
(Lemma 5.12 and Theorem 5.13)

= max
x∈B

min
i∈{1,...,k}

[∑
s,a

φi(s)x(s, a)− µE(i)

]

Theorem 5.18 does not actually provide a bound on the running time of the

algorithm, since it does not bound the time required to produce an ε-approximate

solution to a linear program. For a typical LP solver, the running time for a linear

program with O(n) variables and constraints is O(n3.5 log n log(1/ε)) [24]. For the

linear program in the LPAL algorithm n = O(|S||A|+ k).

5.7 Experiments

Our experiments in this section are designed to highlight the advantages of the algo-

rithms we developed in this chapter, as well as illustrate the consequences of some

of our theoretical findings. In Section 5.7.1, we give examples where the MWAL

algorithm learns an apprentice policy that outperforms the mentor, unlike earlier al-

gorithms that mimic the mentor. In Section 5.7.2, we show that the LPAL algorithm

often learns an apprentice policy in significantly less time than the MWAL algorithm.

In Section 5.7.2, we explain that this improvement in running time comes at a price:

For many suboptimal mentor policies, the policy learned by LPAL is much worse

than the policy learned by MWAL, even though they both have the same theoretical

guarantee. This phenomenon may be at least partly explained by our results about

lexicographic optimality.

158

5.7.1 MWAL Policy Better Than Mentor Policy

Recall our discussion in Section 5.2.1, where we observed that the bounds for ap-

prenticeship learning that mimic the mentor are “two-sided”, while the bound for

the MWAL algorithm is “one-sided”. In this section, we present experiments that

illustrate the consequences of this difference.

We tested the MWAL algorithm and the projection algorithm on the small car

driving simulator described in Section 4.1. A similar simulator was used by Abbeel

and Ng [1]. In this simulator, the apprentice must navigate a car through randomly-

generated traffic on a three-lane highway. We define three features for this envi-

ronment: a collision feature (0 if contact with another car, and 1/2 otherwise), an

off-road feature (0 if off-road, and 1/2 otherwise), and a speed feature (1/2, 3/4 and

1 for each of the three possible speeds, with higher values corresponding to higher

speeds). Note that the features encode that, other things being equal, speed is good,

and collisions and off-roads are bad.

Fast Mentor Proj MWAL Bad Mentor Proj. MWAL No Mentor MWAL
Speed Fast Fast Fast Slow Slow Medium - Medium

Collisions (per sec) 1.1 1.1 0.5 2.23 2.23 0 - 0
Off-roads (per sec) 0 0 0 8.0 8.0 0 - 0

Table 5.1: MWAL vs. Projection algorithm.

Table 5.1 displays the results of using the MWAL and projection algorithms to

learn a driving policy by observing two kinds of mentors: a “fast” mentor and a “bad”

mentor.

The “fast” mentor’s policy is to drive at the top speed, while being indifferent to

colliding with other cars or going off-rood. As expected, the projection algorithm’s

policy mimics this behavior. The MWAL algorithm’s policy also matches the speed

of the mentor, but subject to this constraint stays on the road and avoids collisons

as best as possible. The MWAL algorithm’s policy does not slow down to avoid all

collisions because, in the worst-case, the true weight vector w∗ may be adversarially

159

set to assign all weight to the speed feature, in which case any policy that does not

drive at the fastest speed would underperform the mentor.

The “bad” mentor’s policy illustrates another situation in which the MWAL al-

gorithm produces a significantly better policy than the projection algorithm. In this

experiment, the mentor’s policy is to drive at the slowest speed, and to delibrately hit

other cars and veer off-road. This is essentially the worst possible policy, regardless

of the value of the actual weight vector w∗. And while the projection algorithm im-

itates this behavior, the MWAL algorithm instead follows a conservative policy that

effectively ignores the mentor, since it is able to conclude that the conservative policy

dominates the behavior exhibited by the mentor.

We also applied the MWAL algorithm in a setting in which there is no mentor at

all (see Section 5.2.2). The resulting policy is one in which the apprentice drives as

fast as possible without hitting any other cars or veering off-road. This is the best

policy for the worst-case possibility for w∗. Indeed, if the apprentice were to drive

any faster, it would be impossible to avoid every other car with certainty, and then

w∗ could be adversarially set to assign all weight to the collision feature, resulting in

a lower value for the apprentice’s policy.

5.7.2 LPAL Converges Faster Than MWAL

To compare the running time of the MWAL, MWAL-Dual, and LPAL algorithms,

we tested each algorithm in several gridworld environments. Each gridworld was

an N × N square of states. Movement was possible in the four compass directions,

and each action had a 30% chance of causing a transition to a random state. Each

gridworld was partitioned into several square regions, each of size M×M . We always

chose M so that it evenly divided N , so that each gridworld had k = (N
M

)2 regions.

Each gridworld also had k features, represented by the feature vector φφφ, where the ith

feature was a 0-1 indicator function for the ith region. Similar gridworld environments

160

were used by Abbeel and Ng [1].

For each gridworld, in each trial, we randomly chose a sparse weight vector w∗.

Recall that the true reward function has the form R(s) = w∗ · φφφ(s), so in these

experiments the true reward function encoded that some regions are more desirable

than others. In each trial, we let the mentor policy πE be the optimal policy with

respect to R, and then supplied the feature expectations vector µ(πE) to the MWAL,

MWAL-Dual and LPAL algorithms.5

Our experiments were run on an ordinary desktop computer. We used the Matlab-

based cvx package [40] for our LP solver. Each of the values in the tables below is

the time, in seconds, that the algorithm took to find an apprentice policy πA such

that V (πA) ≥ 0.95V (πE). Each running time is the average of 10 trials.

Table 5.2: Time (sec) to find πA s. t. V (πA) ≥ 0.95V (πE)

Gridworld MWAL MWAL-Dual LPAL
Size (sec) (sec) (sec)

16× 16 6.43 46.99 1.46
24× 24 14.45 90.16 1.55
32× 32 27.23 247.38 2.76
48× 48 61.37 791.61 8.62
64× 64 114.12 3651.70 30.52

128× 128 406.24 4952.74 80.21
256× 256 1873.93 29988.85 588.60

Table 5.3: Time (sec) to find πA s. t. V (πA) ≥ 0.95V (πE)

Gridworld Number of MWAL MWAL-Dual LPAL
Size Regions (sec) (sec) (sec)

64 14.45 90.16 1.55
24× 24 144 32.33 97.58 2.64

576 129.87 120.82 1.86
64 27.23 247.38 2.76

32× 32 256 107.11 270.71 8.43
1024 440.64 361.36 4.75
64 61.37 791.61 8.62
144 135.83 800.23 11.42

48× 48 256 244.46 815.66 16.89
576 575.34 847.38 16.33
2304 2320.71 1128.32 11.14

5In practice, πE will be unknown, and so the feature expectations would need to be estimated
from a data set of mentor sample trajectories. However, since we are primarily concerned with
computational complexity in this section, and not sample complexity, we sidestep this issue and just
compute each µ(πE) directly.

161

In the first set of experiments (Table 5.2), we tested the algorithms in gridworlds

of varying sizes, while keeping the number of regions in each gridworld fixed (64

regions). Recall that the number of regions is equal to the number of features. In the

next set of experiments (Table 5.3), we varied the number of regions while keeping

the size of the gridworld fixed.

Several remarks about these results are in order. For every gridworld size and

every number of regions, the LPAL algorithm is substantially faster than the other

algorithms — in some cases two orders of magnitude faster. As we previously noted,

LP solvers are often much more efficient than their theoretical guarantees. Interest-

ingly, in Table 5.3, the running time for LPAL eventually decreases as the number

of regions increases. This may be because the number of constraints in the linear

program increases with the number of regions, and more constraints often make a

linear program problem easier to solve.

Also, the MWAL-Dual algorithm is much slower than the other algorithms. We

suspect this is only because the MWAL-Dual algorithm calls the LP solver in each

iteration (unlike the LPAL algorithm, which calls it just once), and there is substantial

overhead to doing this. Modifying MWAL-Dual so that it uses the LP solver as less

of a blackbox may be a way to alleviate this problem.

5.7.3 Suboptimal Mentors

In light of the results from the previous section, one might reasonably wonder whether

there is any argument for using an algorithm other than LPAL. Recall that, in those

experiments, the mentor’s policy was an optimal policy for the unknown reward

function. In this section we explore the behavior of each algorithm when this is not

the case, and find that MWAL produces better apprentice policies than LPAL. Our

experiments were run on the car driving simulator from Section 4.1.

We designed three mentors for these experiments, described in Table 5.4. Each

162

mentor is optimal for one of the features, and mediocre for the other two. Therefore

each mentor policy πE is an optimal policy if w∗ = wE, where wE is the weight vector

that places all weight on the feature for which πE is optimal. At the same time, each

πE is very likely to be suboptimal for a randomly chosen w∗.

We used the MWAL and LPAL algorithms to learn apprentice policies from each

of these mentors. The results are presented in Table 5.5. We let γ = 0.9, so the

maximum value of the feature corresponding to speed was 10, and for the others it

was 5. Each of the reported policy values for randomly chosen w∗ was averaged over

10,000 uniformly sampled w∗’s.

Table 5.4: Mentor types

Speed Collisions Off-roads
(per sec) (per sec)

“Fast” Mentor Fast 1.1 10
“Avoid” Mentor Slow 0 10
“Road” Mentor Slow 1.1 0

Table 5.5: Driving simulator experiments.

Mentor Algorithm w∗ = wE w∗ chosen randomly
type used

V (πA) V (πE) V (πA) V (πE)
“Fast” MWAL 10 10 9.83 8.25

LPAL 10 10 8.84 8.25
“Avoid” MWAL 5 5 8.76 6.32

LPAL 5 5 7.26 6.32
“Road” MWAL 5 5 9.74 7.49

LPAL 5 5 8.12 7.49

Notice that for each mentor, when w∗ is chosen randomly, MWAL outputs better

apprentice policies than LPAL. That is, although the theoretical performance guar-

antees of both the MWAL and LPAL algorithm are identical, the results in Table 5.5

suggest that the two algorithms are not equally effective. Only the MWAL algorithm

enjoys the lexicographic properties that we discussed in Chapter 3, and we speculate

that this accounts for the difference.

163

5.8 Other Related Work

One way to view apprenticeship learning is as a generalization of reinforcement learn-

ing, where the goal is to find an optimal policy with respect to several reward functions

(i.e., the features), instead of a single reward function. This is essentially the goal

of multicriteria MDPs, also known as multiobjective MDPs or constrained MDPs.

Frid (1972) and Kallenberg (1981) were among the first to study multicriteria MDPs,

and more recent work has focused on proving the existence of optimal policies, char-

acterizing their structure, and describing algorithms for computing them. Feinberg

and Shwartz [26], Feinberg and Shwartz [27], Dolgov and Durfee [21] and Wiering

and de Jong [144] offer typical examples. More generally, Barrett and Narayanan [6]

described an algorithm that computes the set of all policies that are optimal for at

least one of the reward functions. However, their algorithm has a running time that

is exponential in the number of reward functions.

Unlike the algorithms in this chapter, nearly all existing algorithms for multicrite-

ria MDPs and its variants assume that the transition function is given. One exception

is the algorithm given by Gábor et al. [33], who described an approach in which there

is a fixed preference order on the reward functions (see also Natarajan and Tadepalli

[87], who allowed the relative importance of the various reward functions to change

over time).

Several authors have previously studied reinforcement learning in settings where

the reward function is selected by an adversary. Perhaps the earliest work that can be

placed in this category is minimax Q-learning [72] (see also a proof of its convergence

due to Littman and Szepesvri [73]).

Even-Dar et al. [23] studied a reinforcement learning problem where the adver-

sarially chosen reward function is allowed to vary every time step. They derived

an efficient algorithm that uses the MW algorithm as a subroutine, and that earns

nearly as much average reward as the best stationary policy. However, unlike in

164

apprenticeship learning, the reward function is revealed to the algorithm after every

time step.

McMahan et al. [77] took a very similar approach as we have done in this chapter:

a single unknown reward function is selected by an adversary from a finite set of

possible reward functions. They also formulated the problem as two-player zero-sum

game, and their double oracle algorithm resembles a hybrid of the linear programming

and fictitious play approaches to solving a game. In each round of the algorithm, each

player selects a best response to an optimal strategy from the subset of the strategies

previously chosen by the other player. Theoretically, the weakness of this algorithm

it is only guaranteed to converge in time proportional to the number of policies, i.e.,

exponential time. Moreover, the algorithm does not enjoy any of the lexicographic

convergence properties of the MWAL algorithm. Incidentally, Zinkevich et al. [151]

have observed that the double oracle algorithm is closely related to earlier work by

Dantzig and Wolfe [18], Gilmore and Gomory [37] and Lemke and J. T. Howson [68].

5.9 Conclusion

In this chapter, we posed the problem of apprenticeship learning as a two-person

zero-sum game, in which the apprentice chooses a policy, and the environment adver-

sarially chooses a reward function. We derived a multiplicative weights algorithm for

this formulation, with the key property that it can leverage prior beliefs about the

relationship between the features and the reward function. As a result, the algorithm

can produce a policy that is significantly better than the mentor’s policy with respect

to the unknown reward function, while at the same time is guaranteed to be no worse.

The simplest version of the algorithm outputs a mixed policy, a type of policy that

has an unnatural structure. We presented several algorithms that output stationary

policies instead, one of which is based on linear programming and is experimentallly

165

much faster.

166

Chapter 6

Imitation Learning with a

Value-Based Prior

In Chapters 4 and 5, we argued that specifying a reward function in a reinforcement

learning problem can sometimes be difficult, and we dealt with that problem by

assuming that the rewards are unknown, and possibly even chosen by an adversary.

Our algorithms in Chapters 4 and 5 were designed within the apprenticeship learning

framework, where all information about the unknown rewards is obtained indirectly

from demonstrations by a mentor.

In this chapter, we will take a different approach to the problem of dealing with a

hard-to-specify reward function. Instead of assuming that the rewards are unknown,

we assume that the we are given a complete reward function that encodes prior

knowledge about the mentor’s behavior. And instead of learning a behavior that

maximizes rewards, our goal will be to imitate the mentor, and the rewards are only

used to bias the estimation of her behavior. Since this goal is quite different than

the goal in previous chapters, we call the learning agent in this scenario the imitator

instead of the apprentice.

In a way, our approach in this chapter is the reverse of the approach used in

167

Chapters 4 and 5. In those chapters, the correct behavior was defined in terms of

rewards, and the mentor’s demonstrations were used as a “hint” about what the cor-

rect behavior was. In this chapter, the goal will be to imitate the mentor’s behavior,

and the rewards will be used a “hint”.

More precisely, our approach in this chapter can be viewed as using a value-based

prior to learn a mentor’s policy, meaning that we use the reward function in an

MDP to encode the imitator’s prior belief about the mentor’s policy. We assume

that the prior probability of any policy being the mentor’s increases with the value

of that policy in the MDP. In this way, instead of relying solely on rewards or soley

on evidence, the imitator smoothly integrates both prior knowledge and observed

information about the mentor’s policy.

This approach is motivated by the problem of dialog management in human-

computer spoken dialog systems. In Section 6.1 we review this problem in greater

detail, and explain why the use of a value-based prior is a suitable approach to solving

it. In Sections 6.2 and 6.3 we describe how a value-based prior can be expressed com-

pactly using Bellman’s equations, and in Section 6.4 we present an efficient algorithm

for maximizing the resulting posterior distribution.

Section 6.5 presents experimental results on a synthetic domain that show that,

compared to existing methods, a value-based prior substantially speeds the estimation

of the mentor’s policy. Beginning in Section 6.6.5, we apply our algorithm to a

spoken dialog system currently in use in a large corporation. This application has an

additional complication: The observations of the mentor’s behavior are corrupted by

noise. To handle this noise, we show how our algorithm can be used as the “M-step”

of a variant of the well-known EM algorithm [19]. The material in this chapter was

described by Syed and Schapire [126] and Syed and Williams [129].

168

6.1 Motivation

A dialog manager is a program that controls the actions of an automated telephone

agent, also known as a spoken dialog system, such as the kind one encounters when

calling a company’s customer service number. Instead of asking the caller to navigate

menus by pressing buttons, these agents encourage customers to speak freely, and

attempt to offer an experience comparable to that of speaking to a live operator.

The dialog manager makes decisions about which questions to ask, how to deal with

unexpected responses, what to do when the customer is misunderstood (ask them

to clarify? make a best guess and move on?), and when to give up and transfer the

customer to a human operator.

Reinforcement learning algorithms have been used to train dialog managers by

interacting with users [69, 120]. However, this approach requires the assertion of a

reward function that is based largely on intuition, since customers rarely give a clear

indication about whether they are satisfied with a dialog. Indeed, Walker et al. [140]

showed that evaluating the performance of a dialog manager is itself a challenging

task, which calls into question whether reinforcement learning is sufficient to solve

this problem, and suggests that some form of imitation may be needed.

Another challenge is the scarcity of suitable training opportunities, since new

dialog management strategies cannot be tested on a static corpus. They have to

be tried in real dialogs with actual users, which is, needless to say, an expensive

proposition. As a result, there has been much interest in building user models, i.e.,

simulators that imitate the behavior of customers; Schatzmann et al. [114] provide

a survey and comparison of some attempts at learning user models from data. A

common theme in this work has been to leverage prior knowledge, and restrict the

space of models to those that encode realistic user behavior, in the hope that less

data will be needed for training.

The value-based prior presented in this chapter has been developed with these

169

issues in mind. At the same time, the framework and algorithms presented here are

intended to be completely general, and not specific to dialog management. We assume

that an imitator is observing a mentor acting in a stochastic environment, and that

the imitator wants to estimate a model of the mentor’s behavior. We further assume

that the mentor is behaving in a roughly reward-seeking manner. The imitator uses

the value function of an MDP to help guide its estimate towards the correct policy.

For example, in the domain of dialog management, we can assign higher rewards in

the MDP to states that are closer to the end of the conversation. In this way, we

can leverage our knowledge that customers and operators are both trying to complete

their conversations as soon as possible, without needing to specify exactly how they

are trying to accomplish that goal.

6.2 Problem Formulation

We assume that the imitator is given a finite-horizon MDP, which we call the modeling

MDP. We chose a finite horizon because spoken dialogs typically occur in episodes.

Recall from Section 4.5 that a finite-horizon MDP consists of a finite set of states

S, a finite set of actions A, a horizon H, a reward function R : S → R, an initial

state distribution α, and a transition function θ (the assumption that the transition

function is given can be relaxed; see Section 6.4.3). It is important to note that it

is not the imitator’s objective to compute an optimal policy for the modeling MDP.

Rather, the goal is to estimate the mentor’s policy, and the modeling MDP is used

to encode the imitator’s prior beliefs about that policy.

We further assume that we are given a data set X of state-action trajectories of

the mentor acting in this environment. Each trajectory is a sequence of H state-

action pairs, i.e., (si1, a
i
1), . . . (siH , a

i
H). Our objective is to estimate the policy π that

governs the mentor’s behavior, where πtsa is the probability the mentor takes action

170

a in state s at time t. The maximum a posteriori (MAP) estimate for the mentor’s

policy is given by

π̂ = arg max
π

logP (X | π) + logP (π)

= arg max
π

∑
s,a,t

Ksat log πtsa + logP (π),

where Ksat is the number of times in X that action a is taken in state s at time t.

If the prior distribution P (π) is uniform, then π̂ can be calculated analytically; the

solution is just π̂tsa =
Ksat∑
a′ Ksa′t

.

In this chapter, we show how to assert a prior distribution P (π) that gives greater

weight to policies that have greater value in the modeling MDP. As usual, the value

of policy π is defined

V (π) = E

[
H∑
t=1

R(st)
∣∣∣ π,θ,α]

If we let P (π) = exp(κV (π)), then the MAP estimate is now given by

π̂ = arg max
π

∑
s,a,t

Ksat log πtsa + κV (π) (6.1)

, arg max
π

L(π).

Here, κ can be viewed as a trade-off parameter that determines how much relative

weight P (π) assigns to high-value policies. Also note that P (π) in this case is an

unnormalized prior, as it does not necessarily intergrate to 1, and so (6.1) is perhaps

more appropriately termed the estimate which maximizes a penalized likelihood [41].

171

6.3 Representing the Value-Based Prior

The trouble with finding the maximum of L(π) directly is that it is inefficient to

represent the expression for V (π) directly. This is because

V (π)

=
∑
s

αsV
1
s

=
∑
s

αs(Rs +
∑
a,s′

π1
saθsas′V

2
s′)

=
∑
s

αs(Rs +
∑
a,s′

π1
saθsas′(Rs′ +

∑
a,s′′

π2
s′aθs′as′′V

3
s′′))

= . . .

It is easy to see that this quickly gets out of hand. If we fully expand the definition of

V (π), the final expression will contain NH terms, which is far too many to explicitly

represent. We can express V (π) more compactly by using Bellman’s equations (see

Section 4.2.1), which yields the following optimization problem:

max
π,V

∑
s,a,t

Ksat log πtsa + κ
∑
s

αsV
1
s

subject to:

∀s, ∀ t < H V t
s = R(s) +

∑
a,s′

πtsaθ
t
sas′V

t+1
s′ (6.2)

∀s V H
s = R(s)

∀s, t
∑
a

πtsa = 1

∀s, a, t πtsa ≥ 0

where V t
s is the value of the policy in state s at time t, and V is the vector of all these

values. This problem is still difficult, however, since it involves nonconvex constraints

— note that Bellman’s equations (6.2) are bilinear in π and V. To circumvent this,

172

we will perform an alternating maximization instead. Our algorithm is described in

the next section.

6.4 Algorithm and Analysis

In this section, we present an iterative algorithm that converges to a stationary point

L(π), the function in Equation (6.1). In Section 6.4.1 we provide a detailed de-

scription of each iteration of the algorithm, and in Section 6.4.2 we give a proof of

its convergence. In Section 6.4.3 we show how the algorithm can be extended to a

setting where both the mentor policy and the transition function are unknown.

Our iterative algorithm for maximizing L(π) will optimize certain groups of the

variables at a time, while leaving the other variables fixed. Let π =
(
π1, . . . ,πH

)
and V =

(
V1, . . . ,VH

)
. We will maximize L(π) over just π1, then π1, and so

on until πH , and then repeat the cycle until convergence (see Algorithm 6.1). In

the iteration for πτ , the values for π1, . . . ,πτ−1,πτ+1, . . . ,πH are carried over from

previous iterations and are held fixed while πτ is optimized. Taking this alternating

approach has the effect of linearizing the constraints in (6.2), since Vτ+1, Vτ+2, . . . ,

VH are not affected by changes to πτ , and therefore can also be held fixed without

impacting the maximization over πτ .

Due to the linearization of the constraints in (6.2), each iteration of Algorithm 6.1

is just a convex optimization problem, and hence can be solved by any of a number

of standard techniques, such as interior point methods. However, general-purpose

methods are quite complex; fortunately they turn out to be unnecessary in this case.

In Section 6.4.1, we describe a relatively simple procedure that solves this particular

optimization problem in O(|S|2|A|H + |S||A|(log |A|+ log |X |)) time.

173

Algorithm 6.1 Find a stationary point of the log posterior.

Let π =
(
π1, . . . ,πH

)
.

Let L(π) =
∑

s,a,tKsat log πtsa + κV (π).
Initialize π̃ to any point in the interior of the set of all policies Π.
τ ← 1.
repeat
π ← π̃
π̃τ = arg max

πτ
L(π)

π̃ =
(
π1, . . . ,πτ−1, π̃τ ,πτ+1, . . . ,πH

)
if τ = H then
τ ← 1

else
τ ← τ + 1

end if
until convergence

6.4.1 Optimization Procedure

In each iteration of Algorithm 6.1, we maximize L(π) over πτ , for some τ ∈ {1, . . . , H}.

When τ 6= H, the corresponding convex optimization (after dropping constant terms)

is1

max
πτ ,V1,...,Vτ

∑
s,a

Ksaτ log πτsa + κ
∑
s

αsV
1
s

subject to:

∀s, ∀ t ≤ τ V t
s = R(s) +

∑
a,s′

πtsaθ
t
sas′V

t+1
s′

∀s
∑
a

πτsa = 1

∀s, a πτsa ≥ 0.

Recall that π1, . . . ,πτ−1,πτ+1, . . . ,πH and Vτ+1, . . . ,VH are constants in this

problem; their values are carried over from previous iterations.

To solve the optimization, we need to find a solution to the KKT conditions [12],

1The solution for the τ = H case is similar to the procedure described in this section, except it
is even simpler, so we omit its discussion.

174

i.e., a solution (πτ ,V1, . . . ,Vτ ,λ) that is both feasible and also satifies

∇L
(
πτ ,V1, . . . ,Vτ ,λ

)
= 0

∀s, a λπsa ≥ 0

∀s, a λπsa · πτsa = 0

where λ = {λVst, λπs , λπsa | s ∈ S, a ∈ A, t ≤ τ}, the Lagrangian L (πτ ,V1, . . . ,Vτ ,λ)

is given by

L
(
πτ ,V1, . . . ,Vτ ,λ

)
=
∑
s,a

Ksaτ log πτsa + κ
∑
s

αsV
1
s

+
∑
s
t≤τ

λVst

[
Rs +

∑
a,s′

πtsaθ
t
sas′V

t+1
s′ − V

t
s

]

+
∑
s

λπs

[
1−

∑
a

πτsa

]
+
∑
s,a

λπsa · πτsa

and the gradient of L is taken with respect to (πτ ,V1, . . . ,Vτ).

Below we outline a three-step procedure for finding (πτ ,V1, . . . ,Vτ ,λ) that sat-

isfies the KKT conditions.

Step 1: Find the λVst’s

From the KKT conditions, we must have that

∂L
∂V t

s

= 0 ∀s, ∀t ≤ τ.

This yields

175

λVs1 = καs

λVst =
∑
s′,a

λVs′t−1π
t−1
s′a θ

t
s′as for 1 < t ≤ τ

which allows us to inductively compute all the λVst’s. We can see from this expres-

sion that

λVst = κPr[st = s | π,θ,α]

i.e., λVst is equal to the occupancy measure of state s at time t under policy π, but

scaled by κ.

Step 2: Find the λπs ’s, λ
π
sa’s and πτsa’s

To simplify notation, define

Bsaτ , λVsτ
∑
s′

θτsas′V
τ+1
s′

A0
s , {a ∈ A | Ksaτ = 0}

A¬0
s , A \ A0

s.

Let us focus on a particular state s. We know that
∑

a π
τ
sa = 1 and πτsa ≥ 0 for all

a. Suppose we can find a value of λπs such that

∑
a∈A¬0s

Ksaτ

λπs −Bsaτ

= 1 (6.3)

Ksaτ

λπs −Bsaτ

≥ 0 ∀a ∈ A¬0
s . (6.4)

If it happens that λπs ≥ maxa∈A Bsaτ , then we can satisfy all the relevant KKT

176

conditions by setting

λπsa = 0 ∀a ∈ A¬0
s

λπsa = λπs −Bsaτ ∀a ∈ A0
s

πτsa =
Ksaτ

λπs −Bsaτ

∀a ∈ A¬0
s

πτsa = 0 ∀a ∈ A0
s.

On the other hand, if λπs < maxa∈A Bsaτ for the value of λπs that solves (6.3) and (6.4),

then we can satisfy the relevant KKT conditions by first letting λπs = maxa∈A Bsaτ ,

and then setting

λπsa = 0 ∀a ∈ A¬0
s

λπsa = λπs −Bsaτ ∀a ∈ A0
s

πτsa =
Ksaτ

λπs −Bsaτ

∀a ∈ A¬0
s

πτsa = 0 ∀a ∈ A0
s \ {a∗}

πτsa∗ = 1−
∑

a∈A¬0s
πτsa.

where a∗ = arg maxa∈A Bsaτ .

So it remains to show that we can easily find a λπs that solves (6.3) and (6.4).

Define

Bmax , max
a∈A¬0s

Bsaτ

Kmax , max
a∈A¬0s

Ksaτ

Kmin , min
a∈A¬0s

Ksaτ

177

and observe that

λπs = Kmin +Bmax

⇒
∑
a

Ksaτ

λπs −Bsaτ

≥ 1

and

λπs = |A| ·Kmax +Bmax

⇒
∑
a

Ksaτ

λπs −Bsaτ

≤ 1.

Moreover, the left-hand side of (6.3) is strictly monotone in λπs , and λπs ∈ [Kmin +

Bmax, |A| · Kmax + Bmax] satisfies (6.4). Putting all this together with the Inter-

mediate Value Theorem [110], we conclude that there exists a unique λπs ∈ [Kmin +

Bmax, |A| ·Kmax + Bmax] that satisfies (6.3) and (6.4), so we can use a simple root-

finding algorithm such as the bisection method to approximate it within a constant

ε.

Step 3: Find the V t
s ’s

Since we know the πτsa’s now, all the V 1
s , . . . , V

τ
s ’s can be computed inductively.

V t
s = R(s) +

∑
a,s′

πtsaθ
t
sas′V

t+1
s′ ∀s ∈ S, ∀ t ≤ τ.

Running time

Recall that S and A are state and action spaces, respectively, X is the data set of

state-action trajectories, H is the length of the horizon, and ε is the approximation

error of the root-finding algorithm used in Step 2.

Steps 1 and 3 both take O(|S|2|A|H) time, and step 2 takes O(|S||A|(log |A| +

178

log |X | + log 1
ε
)) time (the log factors are from the root-finding algorithm, e.g. the

bisection method, for which the running time is logarithmic in the size of the interval

being searched). This yields a total running time of O(|S|2|A|H + |S||A|(log |A| +

log |X |+log 1
ε
) for each iteration of Algorithm 6.1. In practice, we have observed that

only a handful of iterations are required for convergence. By comparison, determining

the optimal policy takes O(|S|2|A|H) time.

6.4.2 Analysis

In this section, we provide a proof that the sequence of estimates produced by Al-

gorithm 6.1 converges to a limit that is a stationary point of L(π), the function in

Equation (6.1). This guarantee is similar to the one typically cited for the EM algo-

rithm [19]; in fact, the convergence theorem used in the proof below is the same tool

used by Wu [146] in his analysis of EM.

Theorem 6.1. Algorithm 6.1 converges to a stationary point of L(π).

Proof. Let Ω be the set of all policies. We will need to assume that each maximization

in Algorithm 6.1 finds a point in the interior of Ω (a similar assumption is made in

Wu’s proof of the convergence of the EM algorithm [146]). We can view Algorithm

6.1 as defining H distinct point-to-set maps {Mτ}Hτ=1 on Ω, each corresponding to

an optimization over a different πτ . In other words, π̃ ∈ Mτ (π) if π̃ is a solution

to the problem of maximizing L(π) over just the variables in πτ (recall that π =(
π1, . . . ,πH

)
). Let MA = MH ◦ MH−1 · · · ◦ M1, i.e., MA is the point-to-set map

defined by one complete cycle of optimizations.

By Convergence Theorem A from Zangwill [148], Algorithm 6.1 converges to a

stationary point of L if: (a) Ω is compact, (b) for all π̃ ∈ MA(π), L(π̃) ≥ L(π),

(c) whenever π is not a stationary point of L, then for all π̃ ∈ MA(π), we have

L(π̃) > L(π), and (d) MA is a closed map.

179

Conditions (a), (b) and (c) are fairly straightforward to establish. The last con-

dition (d) is more difficult, but this can be proved by observing that L is continuous,

and then applying Proposition 7 and Theorem 8 from Hogan [48].

6.4.3 Unknown Transition Function

So far, we have assumed that the transition probabilities θ of the modeling MDP are

given. Removing this assumption presents no special difficulty, since it is possible for

our algorithm to jointly estimate θ and π within the framework already presented.

The idea will be to define new state and action spaces S̃ and Ã, and a new set

of transition probabilities θ̃, in such a way that each parameter in the new set of

unknowns π̃ corresponds either to a parameter in π or a parameter in θ. Essentially,

we fold the transition probabilities into the policy, and then replace them with a set

of “dummy” transition probabilities. This reduction allows us to assume without loss

of generality in our algorithm that θ is known, and that everything unknown about

the MDP is embodied in the policy π.

Concretely, let S̃ = S ∪ (S ×A) and Ã = A ∪ S. We define θ̃ as

θ̃ts̃ãs̃′ =


1 if s̃ ∈ S, ã ∈ A, and s̃′ = (s̃, ã); or

if s̃ ∈ (S ×A), ã ∈ S, and s̃′ = ã

0 otherwise.

Put differently, when we are in state s̃ = s and take action ã = a, the environment

deterministically transitions to “state” s̃′ = (s, a). And when we are in “state”

s̃ = (s, a) and take “action” ã = s′, the environment deterministically transitions to

state s̃′ = s′.

One last modification is needed: we define a new state s̃∗, with R(s̃∗) = −∞, and

set θ̃ts̃ãs̃∗ = 1 whenever s̃ and ã do not make sense together, i.e., when s̃ ∈ S and

180

ã ∈ S, or when s̃ ∈ (S ×A) and ã ∈ A. This will force π̃ts̃ã = 0 in these cases.

So we have the following equivalences between the old and new parameters:

π̃ts̃ã ⇔ πtsa if s̃ = s and ã = a

π̃ts̃ã ⇔ θtsas′ if s̃ = (s, a) and ã = s′

Note that, when applying this reduction, the prior P (π̃) = P (π,θ) assigns greater

weight to policies and transition probabilities that jointly have high value.

6.5 Synthetic Experiments

Using synthetic environments, we compared the value-based prior to two existing

algorithms for imitation learning. We also investigated our algorithm’s sensitivity to

the value of the mentor’s policy. We review the other methods below, the synthetic

environments in Section 6.5.1, and our experiments in Sections 6.5.2 and 6.5.3.

A number of authors have suggested methods to incorporate prior knowledge of

the mentor’s behavior into imitation learning. Price and Boutilier [99] described an

approach based on the Dirichlet distribution. In their scheme, the policy at each state

is assigned a prior distribution Ps(a;β) = Dir(β), where β is a |A|-length vector of

positive reals. Let Aos be the set of optimal actions at state s. We define each Ps(a;β)

so that βa =
κ

|Aos|
. This amounts to asserting a prior belief that the mentor’s policy is

an optimal policy. Note that κ plays a similar role here as it does in Equation (6.1),

in that it reflects the degree to which the prior is concentrated on high-value policies.

Henderson et al. [47] developed a modified temporal difference learning algorithm

in which the usual Q values are adjusted so that the resulting optimal policy is forced

to more closely match the mentor’s behavior. Although it is difficult to describe

succinctly, their algorithm employs a tunable parameter κ, which controls the trade-

off between optimality and imitation, just as it does in our algorithm. Since TD

181

techniques do not assume that transition probabilities are given, we use the reduction

described in Section 6.4.3 when comparing with our method.

6.5.1 Maze Environments

We used maze environments for all of our synthetic experiments. Each maze was a

30-by-30 grid, with the start state in one corner and the goal state, containing a large

positive reward, in the opposite corner. Movement in a maze was in the four compass

directions, but taking a move action risked a 30% chance of landing in a random

adjacent cell. Also, obstacles (negative rewards) were randomly placed in 15% of the

cells in each maze, with each having a magnitude that was, on average, 2/3 as large

as the goal state’s positive reward. Finally, the time horizon was set to 90, which was

sufficient to allow even meandering policies to eventually reach the goal state.

Our environments had one additional feature that was introduced to make the

comparison between the various algorithms more interesting. We found that the

optimal action in each state typically had substantially larger value than any other

action. So a prior that assigned greatest weight to the highest value policies essentially

assigned greatest weight to a single policy, i.e., the policy that takes the optimal action

in every state. In such circumstances, we did not expect to observe an advantage to

using a value-based prior over a Dirichlet prior. To simulate a scenario where there

are many diverse high-value policies, we introduced a “twin” action for every original

action, i.e., a separate action that has exactly the same effect on the environment.

6.5.2 Comparison to Other Methods

For each maze environment, we generated data sets of state-action trajectories from

an optimal policy for the maze.2 However, when estimating that policy from data,

2Since there were always at least two optimal actions in each state, per Section 6.5.1, we randomly
chose one of them to always take.

182

we supplied each algorithm with just the location and size of the goal reward, and

not the locations or sizes of the obstacles. Effectively, each algorithm assigned the

highest prior probability to a policy that moved directly towards the goal, ignoring

obstacles altogether. So, from the perspective of each algorithm, the mentor’s policy

had high value, but was suboptimal.

Figure 6.1 compares the value-based prior to the Dirichlet prior suggested by Price

and Boutilier [99]. First, note that our algorithm is much more robust to the value

of the trade-off parameter κ; we varied κ over three orders of magnitude, and the

value-based prior improved the accuracy of estimated policy throughout that range.

This is important, as we are not proposing a principled way to set the value of κ,

except to point out that it should generally increase with the value of the mentor’s

policy. Second, although the Dirichlet prior provided a more accurate estimate for

smaller data sets for certain values of κ, that advantage soon became a disadvantage

as the amount of data was increased. To understand why, recall that in our maze

environment, there are many diverse policies that each have high value. The value-

based prior assigns the same weight to every policy that has the same value, even if

the policies themselves are quite different. But a Dirichlet prior is forced to encode

the belief that a particular policy is most probable. If this policy differs from the

mentor’s policy, then it will skew the estimation, even if both are high value polices.

Figure 6.2 compares the value-based prior to the hybrid reinforcement/supervised

learning algorithm proposed by Henderson et al. [47]. For the value-based prior, the

reduction described in Section 6.4.3 was applied, since the hybrid algorithm does

not assume that the transition probabilities given. Note that the value-based prior

initially provides an inferior estimate than the naive method that uses no prior; this

is because the algorithm at that stage is using poor approximations of the transition

probabilities to compute value function in the modeling MDP. Nevertheless, as the

number of samples increases, the value-based prior eventually provides an advantage.

183

Figure 6.1: Left: Performance of the value-based prior. Right: Performance of the
Dirichlet prior. The x-axis indicates the number of state-action trajectories in the
data set, and the y-axis indicates the RMS error of the estimated policy with respect
to the mentor’s policy. Each line in each graph is the average estimation error for 50
mazes. κ is a trade-off parameter; κ = 0 corresponds to not using any prior at all.

Figure 6.2: Left: Performance of the value-based prior. Right: Performance of the
hybrid reinforcement/supervised learning algorithm. Details are the same as for Fig-
ure 6.1, except that for the value-based prior, the reduction described in Section 6.4.3
has been applied, and in the case of the hybrid algorithm, κ = −∞ corresponds to
ignoring rewards and simply imitating the behavior in the data.

6.5.3 Sensitivity to Policy Value

We also investigated how sensitive our algorithm is to the value of the mentor’s policy.

To create policies with a variety of values, we used the following procedure. In

each maze environment, we computed an optimal policy π∗. We then randomly

selected δ fraction of the states, and in each state swapped the optimal action in π∗

with a randomly chosen action. We also added a small Gaussian perturbation (mean

184

0.5, variance σ2) to each state-action probability, and renormalized appropriately.

By carefully varying δ and σ2, we were able to produce policies whose values were

distributed in a range of 70% to 100% of the optimal value.

Figure 6.3 depicts the performance of our method for estimating policies with

various values. As one might expect, performance degraded as the mentor’s policy’s

value decreased. Nonetheless, we found that the value-based prior improves estima-

tion even when the mentor’s policy’s value is reasonably far from optimal — as low

as 80% of the optimal value.

Figure 6.3: Performance of the value-based prior for policies with values approxi-
mately 70-90% of the optimal value. Axes and legend are the same as for Figure 6.1.
Each line in each graph is the average estimation error for 50 policies (10 policies
each from 5 maze environments). Top Left: Policies that have average value 89.6% of
the optimal value, with std dev 1.3%. Bottom Left: Policies that have average value
80.9% of the optimal value, with std dev 3.2%. Top Right: Policies that have average
value 72.9% of the optimal value, with std dev 1.1%.

185

6.6 Application to Dialog Modeling

When designing a dialog manager for a spoken dialog system, one would ideally like

to try different dialog management strategies on the actual user population that will

be using the system, and select the one that works best. However, users are typically

unwilling to endure this kind of experimentation. Another approach is to build a

model of user behavior, so that the designer can experiment exclusively with the

model, without having to interact with (and potentially annoy) real users. Learning

an accurate user model is the goal of this section.

When learning a user model, the value-based prior presented in Sections 6.2-6.4

can be used to encode the belief that users prefer to finish their dialogs as soon

as possible. The main obstacle to directly applying such a prior to learning user

models is that we typically do not observe human-computer dialogs themselves, but

instead view noisy and incomplete versions of them. As an illustration, here is a short

fragment of a dialog transcript from a voice-controlled telephone directory that is the

subject of our experiments in Section 6.6.5:

s̃1 = First and last name?

ã1 = Jane Roe

s̃2 = Jane Roe. Office or cell?

ã2 = No, no, John Doe.

s̃3 = First and last name?

. . .

Here s̃t is the system prompt at time t, and ãt is the observed response by the

user. This notation has been deliberately chosen to coincide with the notation for

“state” and “action” in MDPs. However, s̃t is not the true state of the dialog, since

the behavior of the user depends on more than just the last system prompt. Nor is

186

ãt the true action, since the user’s utterances will typically be corrupted by errors

made by the automatic speech recognition (ASR) engine. Below is complete version

of this dialog transcript, in which each observed s̃t and ãt has been annotated with

their true values st and at:

s̃1 = First and last name?

s1 = First and last name?; Misunderstood = False

a1 = “John Doe”

ã1 = Jane Roe

s̃2 = Jane Roe. Office or cell?

s2 = Jane Roe. Office or cell?; Misunderstood = True

a2 = “No, no, John Doe”

ã2 = No

s̃3 = First and last name?

. . .

Thus the state-action sequence (s̃1, ã1, s̃2, ã2, . . .) is a noisy version of the state-

action sequence (s1, a1, s2, a2, . . .). In Section 6.6.1 we present a probabilistic graphical

model for generating noisy dialog transcripts, and in Section 6.6.2 we explain how

the well-known EM algorithm [19] can be used to estimate the unknown parameters

of this model. These parameters specify a model of user behavior. In Section 6.6.3

we show how this approach can be extended to use a value-based prior, by using a

version of EM called the ECM algorithm [78].

6.6.1 Graphical Model

We adopt a probabilistic graphical model of dialogs (similar to Williams and Young

[145]), depicted schematically in Figure 6.4. Following the convention for graphical

187

models, we use directed edges to denote conditional dependencies among the variables.

In our dialog model, a dialog transcript x consists of an alternating sequence of

observed dialog states and observed user actions: x = (s̃0, ã0, s̃1, ã1, . . .).

A dialog transcript x is generated by our model as follows: At each time t, the

observed state is s̃t and the true state is st. The true state includes information about

the user’s hidden goal and relevant dialog history which, due to ASR confusions,

is known with certainty only to the user. Conditioned on st, the user draws an

unobserved action at from a distribution Pr(at | st;π) parameterized by an unknown

parameter π. This distribution is the user model.

For each user action at, the ASR engine produces a hypothesis ãt of what the user

said, drawn from a distribution Pr(ãt | at), called the ASR confusion model. The true

state st is updated to st+1 according to a distribution Pr(st+1 | s̃t+1, st, at, ãt). Then

the next observed state s̃t+1 is selected according to the dialog management policy.

Concretely, the values of s̃t, st, at and ãt are all assumed to belong to finite sets,

and so all the conditional distributions in our model are multinomials. Hence πt is a

vector that parameterizes the user model according to Pr(at = a | st = s;π) = πtsa.

The problem we are interested in is estimating π given the set of dialog transcripts

X , Pr(ãt | at) and Pr(st+1 | s̃t+1, st, at, ãt). Here, we assume that Pr(ãt | at) is

relatively straightforward to estimate: For example, ASR models that rely a simple

confusion rate and uniform substitutions (which can be estimated from small number

of transcriptions) have been used to train dialog systems which outperform traditional

systems [131]. Further, Pr(st+1 | s̃t+1, st, at, ãt) is often deterministic and tracks dialog

history relevant to action selection — for example, whether the system correctly or

incorrectly confirms a slot value. Here we assume that it can be easily hand-crafted.

Notice that π has the form of a policy in a finite-horizon MDP.

We consider two definitions of a policy π̂ that best models user behavior. One is

188

ãt

GFED@ABCat

GFED@ABCst ONMLHIJKst+1

s̃t s̃t+1

OO

OO

OO

""EEEEEEEEEEEEEEEE

((QQQQQQQQQQQQ

//
OO

Figure 6.4: A probabilistic graphical model of a human-computer dialog. The boxed
variables are observed; the circled variables are unobserved.

the maximum likelihood estimate:

π̂ = arg max
π

log Pr(X | π) (6.5)

and the other is the MAP estimate with respect to a value-based prior:

π̂ = arg max
π

log Pr(X | π) + κV (π) (6.6)

Computing either estimate is complicated by the fact that X contains only the ob-

served states and actions, and not the true states and actions. The next two sections

describe algorithms for computing (6.5) and (6.6), respectively.

6.6.2 EM Algorithm

In general, computing the maximum likelihood estimate π̂ in (6.5) exactly is in-

tractable. However, we can efficiently approximate π̂ via an expectation-maximization

(EM) procedure [19]. The EM algorithm is really a meta-algorithm that must be tai-

lored to the particular probabilistic model to which it is applied. In this section, we

derive the EM algorithm for the model in Figure 6.4.

For a dialog transcript x, let y be the corresponding sequence of unobserved

values: y = (s1, a1, s2, a2, . . .). Let Y be the set of all sequences of unobserved values

189

corresponding to the data set X .

In each iteration i of the EM algorithm, we compute the expectation of the un-

observed data log-likelihood with respect to the estimate of πi−1 from the previous

iteration (called the E-step). Then we maximize this expectation over π to obtain

the new estimate πi (the M-step). More concretely

πi = arg max
π

E
[
log Pr(Y | π)

∣∣∣ X ,πi−1
]

, arg max
π

Q(π,πi−1)

Recall that Pr(X | π) is the likelihood of the observed data. It can be shown that

the following are all true [146]:

1. Q(π,πi−1) ≤ Pr(X | π) for all π.

2. Q(πi−1,πi−1) = Pr(X | πi−1).

3.
∂Q(π,πi−1)

∂π

∣∣∣∣∣
π=πi−1

=
∂ log Pr(X | π)

∂π

∣∣∣∣∣
π=πi−1

These properties together imply that the EM algorithm monotonically increases

Pr(X | π), and that if the algorithm ever converges, then it converges to the set of

stationary points of Pr(X | π).

It remains to argue that the algorithm actually does converge; Wu [146] described

a set of fairly mild conditions that ensure that it does.

Of course, EM is not guaranteed to converge to the global maximum of the like-

lihood. However, it usually converges to a local maximum (though in certain patho-

logical cases, it can converge to a saddle point, or even a local minimum).

E-Step and M-Step Derivation

Recall that the E-step of the EM algorithm involves computing the expression for

Q(π,πi−1), while the M-step is to maximize Q(π,πi−1) with respect to π. For our

190

model, the E-step reduces to being able to compute, for any state s, action a, dialog

x, and parameters π, the probability

Pr(st = s, at = a | x,π)

We will do this efficiently by using the forward-backward algorithm, originally derived

for Hidden Markov Models [102]. If we define a forward variable Ft(s, a) and a

backward variable Bt(s, a) as

Ft(s, a) , Pr(x1:t, st = s, at = a | π)

Bt(s, a) , Pr(xt+1:T | st = s, at = a,π)

Then we have

Pr(st = s, at = a | x,π) =
Ft(s, a)Bt(s, a)∑

s′,a′ Ft(s
′, a′)Bt(s′, a′)

It can be shown that the forward variable can be computed inductively

F1(s, a) = αs · π1
sa · Pr(ã1 | a)

Ft(s, a) =
∑
s′,a′

Ft−1(s′, a′) · θs′a′s · πtsa · Pr(ã1 | a)

and so can the backward variable

BT (s, a) = 1

Bt(s, a) =
∑
s′,a′

θsas′ · πt+1
s′a′ · Pr(ãt+1 | a′) ·Bt+1(s′, a′)

191

Now we can give an expression for Q(π,πi−1). Let

Ci−1
sat ,

∑
d

Pr(sdt = s, adt = a | xd,πi−1)

where xd is the dth dialog in the set X , and (sdt , a
d
t) is the state-action pair in the tth

time step of that dialog. Then we have

Q(π,πi−1) =
∑
s,a,t

Ci−1
sat log πtsa

and this is the quantity we want to maximize over π in the M-step of the EM algo-

rithm, subject to the stochastic constraints
∑

a π
t
sa = 1 and πtsa ≥ 0. Therefore the

solution to the M-step is given by the simple computation

πtsa =
Ci−1
sat∑

a′ C
i−1
sa′t

6.6.3 ECM Algorithm

We use a variant of the EM algorithm to compute the MAP estimate π̂ in (6.6).

If we repeat the derivation of the E-step and M-step from the previous section for

the objective in (6.6), we find that the E-step is unchanged, and the M-step is to

maximize

Q(π,πi−1) =
∑
s,a,t

Ci−1
sat log πtsa + κV (π) (6.7)

over π. Notice that here Q is identical to the objective from Section 6.2. That is,

the policy that maximizes Q is the MAP estimate with respect to the value-based

prior, except that the observations Ksat have been replaced by the “expected” ob-

servations Ci−1
sat . Recall that Algorithm 6.1, the alternating maximization algorithm,

was designed to find this estimate.

So, at least at a high-level, we can use Algorithm 6.1 for the M-step. However,

192

there is a technical complications with this approach: Recall that Algorithm 6.1 is

only guaranteed to converge asymptotically to a stationary point of the objective in

(6.7). This is a substantially weaker than maximizing the objective, which is what

the analysis of the EM algorithm requires.

One solution to this complication is to simply ignore it. Since Algorithm 6.1

is an alternating maximization, it might be reasonable to execute one cycle of these

maximizations (i.e., a total of H iterations) in each M-step, and hope for convergence.

In fact, it is possible to prove that the approach described above is theoretically

sound. We will do so by directly applying the analysis of the ECM algorithm [78],

a variant of the EM algorithm designed for problems in which the M-step of the

EM algorithm involves a difficult maximization. The idea of the ECM algorithm

is to replace the difficult maximization with a sequence of simpler maximizations.

The most basic version of the ECM approach partitions the variables in the problem

into several subsets, and then maximizes over each subset, in turn, while holding

the remaining variables fixed (these simpler maximizations are called “conditional

maximizations”, hence the name “ECM”, though it might be more fitting to call

them “constrained maximizations”). It was shown by Meng and Rubin [78] that the

ECM algorithm converges to the set of stationary points of the likelihood, under

essentially the same conditions that the EM algorithm does.

We can apply the ECM algorithm to our problem by partitioning π into H subsets

πt = {πtsa | s ∈ S, a ∈ A},

for each t = 1, . . . , H. In other words, the M step is replaced by H conditional

maximization steps (CM-steps), and in the tth CM-step, we will maximize over just

the policy at time t. Here is an outline of one E-step and the corresponding cycle of

CM-steps of the ECM algorithm:

193

E-step: Compute constants Csat using the

forward-backward algorithm.

CM-step (H): maxQ(πH) + κV (πH)

CM-step (H − 1): maxQ(πH−1) + κV (πH−1)

...

CM-step (1): maxQ(π1) + κV (π1)

Here we are using the arguments to Q and V to denote what the free variables

are in each maximization. In each CM-step, the maximizing values from the previous

CM-step are used as the values for the fixed variables. Importantly, observe that this

algorithm is identical to the procedure that we informally justified above.

6.6.4 Target Application

We will apply the algorithms described in Sections 6.6.2-6.6.3 to a voice-controlled

telephone directory. This system is currently in use in a large company with many

thousands of employees. Users call the directory system and provide the name of a

callee they wish to be connected to. The system then requests additional information

from the user, such as the callee’s location and type of phone (office or cell). A

fragment from a dialog with the system was given at the beginning of Section 6.6.

Because the telephone directory has many names, the number of possible values for

user actions at and dialog states st is potentially very large. To control the size of the

model, we first assumed that the user’s intended callee does not change during the

call, which allows us to group many user actions together into generic placeholders

e.g. at = FirstNameLastName. After doing this, there were a total of 13 possible

values for at and 112 values for st. We also fixed the maximum length of any dialog

(i.e., the horizon length) to 10 turns.

194

In addition to the system prompt, the dialog state consists of three bits: one

bit indicating whether the system has correctly recognized the callee’s name, one

bit indicating whether the system has correctly recognized the callee’s “phone type”

(office or cell), and one bit indicating whether the user has said the callee’s geographic

location (needed for disambiguation when several different people share the same

name). The deterministic distribution Pr(st+1 | s̃t+1, st, at, ãt) simply updates the

user state after each dialog turn in the obvious way. For example, the “name is

correct” bit of st+1 is set to 0 whenever the system prompt is a confirmation of a

name which doesn’t match at.

Recall that the user model is a multinomial distribution Pr(at | st;π) parame-

terized by a vector π. Based on the number user actions, dialog states, and the

maximum length of a dialog, π is a vector of 1344 unknown parameters for our target

application.

6.6.5 Experiments

We conducted two sets of experiments on the telephone directory application, one

using simulated data, and the other using dialogs collected from actual users. Both

sets of experiments assumed that all the distributions in Figure 6.4, except the user

model, are known. The ASR confusion model was estimated by transcribing 50

randomly chosen dialogs from the training set in Section 6.6.5 and calculating the

frequency with which the ASR engine recognized ãt such that ãt 6= at. The probabili-

ties Pr(ãt | at) were then constructed by assuming that, when the ASR engine makes

an error recognizing a user action, it substitutes another randomly chosen action.

Simulated Data

Recall that, in our parameterization, the user model is Pr(at = a | st = s;π) = πtsa.

So in this set of experiments, we chose a reasonable, hand-crafted value for π, and

195

then generated synthetic dialogs by following the probabilistic process depicted in

Figure 6.4. In this way, we were able to create synthetic training sets of varying

sizes, as well as a test set of 1000 dialogs. Each generated dialog d = (x,y) in each

training/test set consisted of the values for all the observed and unobserved variables.

For a training/test set D, let KDsat be the number of times, in all the dialogs in D,

that at = a and st = s. Similarly, let K̃Dsat be the number of times that ãt = a and

s̃t = s.

For each training set D, we estimated π using the following three methods:

1. Manual : Let π be the maximum likelihood estimate using manually transcribed

dialogs, i.e., πtsa =
KDsat∑
a′ K

D
sa′t

.

2. Automatic: Let θ be the maximum likelihood estimate using dialogs that were

automatically transcribed by the ASR engine, i.e., πtsa =
K̃Dsat∑
a′ K̃

D
sa′t

. This ap-

proach ignores ASR transcription errors, and also assumes that user behavior

depends only on the observed data.

3. EM : Let π be the estimate produced by the EM algorithm described in Section

6.6.2.

Now let D′ be the test set. We evaluated each user model by calculating the

normalized log-likelihood of the model with respect to the true user actions in D′:

`(π) =

∑
s,a,tK

D′
sat log πtsat
|D′|

`(π) is essentially a measure of how well the user model parameterized by π replicates

the distribution of user actions in the test set. The normalization is to allow for easier

comparison across data sets of differing sizes.

We repeated this entire process (generating training and test sets, estimating and

evaluating user models) 50 times. The results presented in Figure 6.5 are the average

196

of those 50 runs. They are also compared to the normalized log-likelihood of the

“Truth”, which is the actual parameter π used to generated the data.

The EM method has to estimate a larger number of parameters than the Au-

tomatic method (1344 vs. 168). But as Figure 6.5 shows, after observing enough

dialogs, the EM method is able to leverage the hidden user state to learn a bet-

ter model of user behavior, with an average normalized log-likelihood that falls about

halfway between that of the models produced by the Automatic and Manual methods.

Figure 6.5: Normalized log-likelihood of each model type with respect to
the test set vs. size of training set. Each data point is the average of 50 runs.
For the largest training set, the EM models had higher normalized log-likelihood than
the Automatic models in 48 out of 50 runs.

Real Data

We tested the three estimation methods from the previous section on a data set of

461 real dialogs, which we split into a training set of 315 dialogs and a test set of 146

dialogs. All the dialogs were both manually and automatically transcribed, so that

each of the three methods was applicable. We also tested a fourth method:

4. EM+Prior : Let π be the estimate produced by the ECM algorithm described

197

in Section 6.6.3. For the value-based prior, we used a simple reward function

that penalizes the length of a dialog, thereby encoding our belief that users

generally prefer shorter dialogs.

The normalized log-likelihood of each user model, with respect to both the training

and test set, is given in Table 6.1. Since the output of the EM and EM+Prior methods

depend on a random choice of starting point π(0), those results were averaged over

50 runs. Although the EM+Prior method (unsurprisingly) achieved slightly lower

likelihood on the training set than the EM method, it achieved higher likelihood on

the test set, indicating that the value-based prior helped bias the estimation towards

a better model.

Training Set `(θ) Test Set `(θ)
Manual -2.87 -3.73

EM -3.90 -4.33
EM+Prior -3.95 -4.15
Automatic -4.60 -5.80

Table 6.1: Normalized log-likelihood of each model type with respect to the
training set and the test set. The EM values are the average of 50 runs. Both the
EM and EM+Prior models had higher normalized log-likelihood than the Automatic
model in 50 out of 50 runs.

6.7 Other Related Work

Imitation learning has been studied extensively in robotics, where it is usually called

learning from demonstration; an excellent survey is given by Argall et al. [3].

In Section 6.5, we reviewed a Bayesian approach to imitation learning due to Price

and Boutilier [99]; earlier work by the same authors used observations from a mentor

to supplement exploration in reinforcement learning [97], including scenarios where

the mentor and imitator do not share the same set of actions [98].

The hybrid imitation/reinforcement learning algorithm of Henderson et al. [47],

which we described in Section 6.5, is essentially a modified Q-learning algorithm.

198

Recently, Fern et al. [28] proposed a similar yet simpler method that uses a Boltzmann

distribution to assign greater prior probability to mentor actions that have higher Q

values.

In Section 6.6.1 we described a probabilistic graphical model for imitating users

in a spoken dialog system; Shon et al. [119] and Verma and Rao [136] also studied

using graphical models for imitation learning.

The idea of learning a user model in a spoken dialog system from transcribed

dialogs has been studied by many authors [36, 69, 94, 115]. However, prior to the

work described in this chapter, only Schatzmann et al. [115] had applied the EM

algorithm to this problem, and even then assumed that the transcriptions were error-

free.

6.8 Conclusion

In this chapter, we described an approach to imitation learning in which the imita-

tor uses the value function of an MDP to assert a prior belief on a mentor’s policy.

We proved the convergence of an efficient algorithm to a stationary point of an ap-

propriately defined posterior distribution. Synthetic experiments indicated that a

value-based prior is robust in at least two senses: it is effective over a wide range

of values for the trade-off parameter, and it is effective even when the mentor’s pol-

icy is suboptimal. Finally, experiments on a spoken dialog system showed that a

value-based prior can accelerate the accurate imitation of a goal-directed mentor.

199

Chapter 7

Conclusion

We now briefly review the main contributions of this thesis, and also suggest avenues

for future work.

In Chapter 2, we explained that any no-regret algorithm can be used to compute

minimax/maximin strategies in a two-player zero-sum game, and also that any algo-

rithm that suffers no internal (or swap) regret can be used to compute a correlated

equilibrium in an n-player game. In Chapter 3, we were able to deepen these well-

known connections between no-regret algorithms and game theory, by showing that

the MW algorithm converges to a lexicographic maximin strategy in a two-player

zero-sum game whenever the game satisfies a certain technical condition. Further, we

described a set of properties that, if satisfied by any no-regret algorithm, guarantee

convergence to a lexicographic maximin strategy.

In Chapter 4, we introduced the apprenticeship learning framework, and presented

two new apprenticeship learning algorithms that are based on mimicking the mentor,

which is the most common approach to apprenticeship learning. Most apprenticeship

learning algorithms reduce the problem to reinforcement learning, and consequently

they suffer from the same challenges of large state spaces, exploration vs. exploitation

trade-offs, etc. This fact is somewhat contrary to the intuition that demonstrations

200

from a mentor — especially a good mentor — should make the problem easier, not

harder. So we described a method of reducing apprenticeship learning to classification,

which is a much better studied problem for which there exist algorithms with strong

performance guarantees.

In Chapter 5, we showed that the apprenticeship learning problem can be natu-

rally formulated as a two-player zero-sum game, and observed that the MW algorithm

is especially appropriate for solving this game, because the time it requires to solve

the game does not depend on the exponential number of strategies available to one

of the players. One of the major advantages of our game-theoretic formulation was

that it freed us from having to mimic the mentor, which we showed can result in a

much better apprentice policy when the mentor is behaving poorly and the appren-

tice can exploit prior knowledge about the true rewards contained in the features.

Furthermore, our algorithm and analysis leveraged our results from Chapter 3 about

lexicographic optimality. In particular, the connection between the MW algorithm

and lexicographic optimality allowed us to compute a much simpler apprentice policy

in certain cases, provided a robustness to changes in the scales of the features, and

explained some of our experimental observations.

In the preceding chapters, we described algorithms for maximizing reward when

the reward function is only partially known. In Chapter 6, instead of maximizing

reward, our goal was to use the reward function to bias the imitation of an observed

mentor, by asserting an a priori belief that the mentor is reward-seeking. This is

an unorthodox use of a reward function, and we saw that it is especially appropriate

for learning a user model in a spoken dialog system, because users is that setting are

aptly described as being reward-seeking.

There are many opportunities for extending the results described in this thesis,

and we now highlight some of the more promising directions.

Our results about the convergence of no-regret algorithms to a lexicographic max-

201

imin strategy in a zero-sum game only apply in special cases — either when the

game satisfies certain conditions, or the no-regret algorithm does. This is in marked

contrast to existing results that prove that all no-regret algorithms converge to min-

imax/maximin strategies in any zero-sum game. So a natural opportunity for future

work is to generalize these results, or to show that they cannot be generalized.

One of the drawbacks of many of our apprenticeship learning algorithms is that

they output mixed policies, which have a complicated and unnatural structure. We

described a few solutions to this problem, but the most general solution, based on

linear programming, only applied when the state space is finite and the transition

function is known. It is still an open problem whether there is an efficient algorithm

that solves the game-theoretic formulation of the apprenticeship learning problem and

outputs a single stationary policy, even when the state space is infinite (our reduction

of apprenticeship learning to classification is a candidate for such an algorithm, except

it does not apply to the game-theoretic formulation).

Most of our apprenticeship learning algorithms use a reinforcement learning algo-

rithm as a subroutine, and the only difference between calls to the subroutine is a

change in the reward function. Moreover, consecutive calls typically do not change

the reward function very much. Further, most reinforcement learning algorithms,

such as value iteration and policy iteration, perform better when they are initialized

with a policy that is “close” (in some sense) to the optimal policy. This discussion is

obviously suggestive, and one should be able to obtain better performance guarantees

by exploiting these properties.

Finally, the apprenticeship learning framework is based on observing a single men-

tor. But in many cases, there may be a committee of mentors that an apprentice can

observe. It is unclear what the goal of the apprentice should be in this scenario —

should she aim to perform as well as the best mentor, the worst mentor, or the aver-

age mentor — nor is it obvious how the apprentice can most efficiently achieve any

202

of these goals.

203

Bibliography

[1] Pieter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforce-

ment learning. In Proceedings of the Twenty-First International Conference on

Machine Learning, pages 1–8, 2004.

[2] David Andre and Astro Teller. Evolving team Darwin United. In RoboCup-98:

Robot Soccer World Cup II, pages 346–351, 1998.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A

survey of robot learning from demonstration. Robotics Autonomous Systems,

57(5):469–483, 2009.

[4] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration.

In Proceedings of the Fourteenth International Conference on Machine Learning,

pages 12–20, 1997.

[5] J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, and Jeff Schneider. Policy

search by dynamic programming. In Advances in Neural Information Processing

Systems 17, 2003.

[6] Leon Barrett and Srini Narayanan. Learning all optimal policies with multi-

ple criteria. In Proceedings of the Twenty-Fifth International Conference on

Machine Learning, pages 41–47, 2008.

[7] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

204

[8] Dimitri P. Bertsekas. Distributed asynchronous computation of fixed points.

Mathematical Programming, 27(1):107–120, 1983.

[9] Navin A. R. Bhat and Kevin Leyton-Brown. Computing Nash equilibria of

action-graph games. In Proceedings of the Twentieth Conference on Uncertainty

in Artificial Intelligence, pages 35–42, 2004.

[10] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific

Journal of Mathematics, 6(1):1–8, 1956.

[11] Doron Blatt and Alfred Hero. From weighted classification to policy search. In

Advances in Neural Information Processing Systems 20, pages 139–146, 2006.

[12] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, March 2004.

[13] Ronen I. Brafman and Moshe Tennenholtz. R-MAX — A general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine

Learning Research, 3:213–231, 2001.

[14] Leo Breiman. Prediction games and arcing classifiers. Neural Computation, 11

(7):1493–1517, 1999.

[15] George Brown. Some notes on computation of games solutions. Technical

Report RAND Report P-78, The RAND Corporation, 1949.

[16] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cam-

bridge University Press, 2006.

[17] George Dantzig. Maximization of a linear function of variables subject to linear

inequalities. In Activity Analysis of Production and Allocation, pages 339–347,

1951.

205

[18] George B. Dantzig and Philip Wolfe. Decomposition principle for linear pro-

grams. Operations Research, 8(1):101–111, 1960.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society

Series B, 39(1):1–38, 1977.

[20] F. d’Epenoux. A probabilistic production and inventory problem. Management

Science, 10(1):98–108, 1963.

[21] Dmitri Dolgov and Edmund Durfee. Stationary deterministic policies for con-

strained MDPs with multiple rewards, costs, and discount factors. In Proceed-

ings of the Nineteenth International Joint Conference on Artificial Intelligence,

pages 1326–1331, 2005.

[22] Melvin Dresher. Games of strategy. Prentice Hall, 1961.

[23] Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Experts in a Markov

decision process. In Advances in Neural Information Processing Systems 19,

pages 401–408, 2005.

[24] Shu-Cherng Fang and Sarat Puthenpura. Linear Optimization and Extensions:

Theory and Algorithms. Prentice Hall, 1993.

[25] Eugene A. Feinberg and Adam Schwartz. Handbook of Markov Decision Pro-

cesses: Methods and Applications. Springer, 2002.

[26] Eugene A. Feinberg and Adam Shwartz. Constrained Markov decision models

with weighted discounted rewards. Mathematics of Operations Research, 20(2):

302–320, 1995.

[27] Eugene A. Feinberg and Adam Shwartz. Constrained discounted dynamic pro-

gramming. Mathematics of Operations Research, 21(4):922–945, 1996.

206

[28] Alan Fern, Sriraam Natarajan, Kshitij Judah, and Prasad Tadepalli. A decision-

theoretic model of assistance. In Proceedings of the Twentieth International

Joint Conference on Artificial Intelligence, pages 1879–1884, 2007.

[29] Dean Foster and Rakesh Vohra. Asymptotic calibration. Biometrika, 85(2):

379–390, 1996.

[30] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and

boosting. In Proceedings of the Ninth Annual Conference on Computational

Learning Theory, pages 325–332, 1996.

[31] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

[32] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplica-

tive weights. Games and Economic Behavior, 29(1-2):79–103, 1999.

[33] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-criteria reinforce-

ment learning. In Proceedings of the Fifteenth International Conference on

Machine Learning, pages 197–205, 1998.

[34] Ashutosh Garg and Dan Roth. Margin distribution and learning algorithms. In

Proceedings of the Twentieth International Conference on Machine Learning,

volume 20, 2003.

[35] Ashutosh Garg, Sariel Har-Peled, and Dan Roth. On generalization bounds,

projection profile, and margin distribution. In Proceedings of the Nineteenth

International Conference on Machine Learning, pages 171–178, 2002.

[36] Kallirroi Georgila, James Henderson, and Oliver Lemon. User simulation for

207

spoken dialogue systems: Learning and evaluation. In Proceedings of the Inter-

national Conference on Spoken Language Processing, 2006.

[37] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem — Part II. Operations Research, 11(6):863–888, 1963.

[38] Geoff Gordon. Approximate Solutions to Markov Decison Processes. PhD thesis,

Carnegie Mellon University, 1999.

[39] Geoffrey J. Gordon, Amy R. Greenwald, and Casey Marks. No-regret learning

in convex games. In Proceedings of the Twenty-Fifth International Conference

on Machine Learning, pages 360–367, 2008.

[40] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-

ming (web page and software), 2008. http://stanford.edu/∼boyd/cvx.

[41] Peter J. Green. Penalized likelihood. In Encyclopedia of Statistical Sciences,

Update Volume 2, pages 578–586. 1996.

[42] Amy Greenwald and Amir Jafari. A general class of no-regret learning algo-

rithms and game-theoretic equilibria. pages 1–11, 2003.

[43] James Hannan. Approximation to Bayes risk in repeated play. In Contributions

to the Theory of Games, Volume III, pages 97–139. 1957.

[44] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to

correlated equilibrium. Econometrica, 68(5):1127–1150, 2000.

[45] David Haussler. Decision theoretic generalizations of the PAC model for neural

net and other learning applications. Information and Computation, 100(1):

78–150, 1992.

208

[46] Elad Hazan and Satyen Kale. Computational equivalence of fixed points and

no regret algorithms, and convergence to equilibria. In Advances in Neural

Information Processing Systems 21, pages 625–632, 2007.

[47] James Henderson, Oliver Lemon, and Kallirroi Georgila. Hybrid reinforce-

ment/supervised learning for dialogue policies from Communicator data. In

Proceedings of the Workshop on Knowledge and Reasoning in Practical Dia-

logue Systems, International Joint Conference on Artificial Intelligence, pages

68–75, 2005.

[48] William W. Hogan. Point-to-set maps in mathematical programming. SIAM

Review, 15(3):591–603, 1973.

[49] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University

Press, 1985.

[50] Ronald A. Howard. Dynamic Programming and Markov Process. MIT Press,

1960.

[51] Michael Johanson, Martin Zinkevich, and Michael H. Bowling. Computing ro-

bust counter-strategies. In Advances in Neural Information Processing Systems

21, pages 721–728, 2007.

[52] Sham Kakade and John Langford. Approximately optimal approximate rein-

forcement learning. In Proceedings of the Nineteenth International Conference

on Machine Learning, pages 267–274, 2002.

[53] Shizuo Kakutani. A generalization of Brouwer’s fixed point theorem. Duke

Mathematical Journal, 8(3):416–427, 1941.

[54] Adam Kalai and Santosh Vempala. Geometric algorithms for online optimiza-

209

tion. Technical Report MIT-LCS-TR-861, Massachusettes Institute of Technol-

ogy, 2002.

[55] Narendra Karmarkar. A new polynomial time algorithm for linear program-

ming. Combinatorica, 4(4):373–395, 1984.

[56] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in

polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[57] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational

Learning Theory. MIT Press, 1994.

[58] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient

agnostic learning. In Proceedings of the Fifth Annual ACM Workshop on Com-

putational Learning Theory, pages 341–352, 1992.

[59] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical mod-

els for game theory. In Proceedings of the Seventeenth Conference on Uncer-

tainty in Artificial Intelligence, pages 253–260, 2001.

[60] Leonid Khachiyan. A polynomial algorithm in linear programming. Doklady

Akademii Nauk SSSR, 244(5):1093–1096, 1979.

[61] Victor Klee and George Minty. How good is the simplex algorithm? In Inequal-

ities III, pages 159–175. 1972.

[62] Daphne Koller and Avi Pfeffer. Representations and solutions for game-

theoretic problems. Artificial Intelligence, 94(1-2):167–215, 1997.

[63] Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Fast algorithms

for finding randomized strategies in game trees. In Proceedings of the Twenty-

Sixth Annual ACM Symposium on the Theory of Computing, pages 750–759,

1994.

210

[64] J. Zico Kolter, Pieter Abbeel, and Andrew Ng. Hierarchical apprenticeship

learning with application to quadruped locomotion. In Advances in Neural

Information Processing Systems 22, pages 769–776, 2008.

[65] Michail G. Lagoudakis and Ronald Parr. Reinforcement learning as classifica-

tion: Leveraging modern classifiers. In Proceedings of the Twentieth Interna-

tional Conference on Machine Learning, pages 424–431, 2003.

[66] John Langford and Bianca Zadrozny. Relating reinforcement learning perfor-

mance to classification performance. In Proceedings of the Twenty-Second In-

ternational Conference on Machine Learning, pages 473–480, 2005.

[67] Emanuel Laskar. The Brooklyn Daily Eagle, page 53, June 1902.

[68] C. E. Lemke and Jr. J. T. Howson. Equilibrium points of bimatrix games.

SIAM Journal on Applied Mathematics, 12(2):413–423, 1964.

[69] Esther Levin, Roberto Pieraccini, and Wieland Eckert. A stochastic model of

human-machine interaction for learning dialogue strategies. IEEE Transactions

on Speech and Audio Processing, 8(1):11–23, 2000.

[70] Kevin Leyton-Brown and Moshe Tennenholtz. Local-effect games. In Proceed-

ings of the Eighteenth International Joint Conference on Artificial Intelligence,

pages 772–780, 2003.

[71] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.

Information and Computation, 108(2):212–261, 1994.

[72] Michael L. Littman. Markov games as a framework for multi-agent reinforce-

ment learning. In Proceedings of the Eleventh International Conference on Ma-

chine Learning, pages 157–163, 1994.

211

[73] Michael L. Littman and Csaba Szepesvri. A generalized reinforcement-learning

model: Convergence and applications. In Proceedings of the Thirteenth Inter-

national Conference on Machine Learning, pages 310–318, 1996.

[74] Michael L. Littman, Richard S. Sutton, and Satinder Singh. Predictive repre-

sentations of state. In Advances in Neural Information Processing Systems 16,

pages 1555–1561, 2002.

[75] Shie Mannor and Nahum Shimkin. A geometric approach to multi-criterion

reinforcement learning. Journal of Machine Learning Research, 5:325–360, 2004.

[76] Peter McCracken and Michael Bowling. Safe strategies for agent modelling

in games. In AAAI Fall Symposium on Artificial Multi-agent Learning, pages

103–110, 2004.

[77] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in

the presence of cost functions controlled by an adversary. In Proceedings of

the Twentieth International Conference on Machine Learning, pages 536–543,

2003.

[78] Xiao-Li Meng and Donald B. Rubin. Maximum likelihood estimation via the

ECM algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

[79] Peter Miltersen and Troels Sorensen. Computing proper equilibria of zero-sum

games. In Proceedings of the Fifth International Conference on Computers and

Games, pages 200–211, 2006.

[80] Peter Miltersen and Troels Sorensen. Fast algorithms for finding proper strate-

gies in game trees. In Proceedings of the Nineteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 874–883, 2008.

212

[81] John E. Mitchell, Panos M. Pardalos, and Mauricio G. C. Resende. Interior

point methods for combinatorial optimization. In Handbook of Combinatorial

Optimization, pages 189–297. 1998.

[82] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Rein-

forcement learning with less data and less real time. volume 13, pages 103–130,

1993.

[83] Roger Myerson. Refinements of the Nash equilibrium concept. International

Journal of Game Theory, 7(2):73–80, 1978.

[84] Roger Myerson. Game Theory: Analysis of Conflict. Harvard University Press,

1991.

[85] Sylvia Nasar. A Beautiful Mind. Simon & Schuster, 1998.

[86] John F. Nash. Equilibrium points in n-person games. In Proceedings of the

National Academy of Sciences of the United States of America, pages 48–49,

1950.

[87] Sriraam Natarajan and Prasad Tadepalli. Dynamic preferences in multi-criteria

reinforcement learning. In Proceedings of the Twenty-Second International Con-

ference on Machine Learning, pages 601–608, 2005.

[88] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse rein-

forcement learning and gradient methods. In Proceedings of the Twenty-Third

Conference on Uncertainty in Artificial Intelligence, 2007.

[89] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learn-

ing. In Proceedings of the Seventeenth International Conference on Machine

Learning, pages 663–670, 2000.

213

[90] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under

reward transformations: Theory and application to reward shaping. In Pro-

ceedings of the Sixteenth International Conference on Machine Learning, pages

278–287, 1999.

[91] Wlodzimierz Ogryczak and Tomasz Sliwinski. On direct methods for lexico-

graphic min-max optimization. In Proceedings of the International Conference

on Computational Science and its Applications, pages 802–811, 2006.

[92] Guillermo Owen. Game Theory. Academic Press, 1995.

[93] Jing Peng and Ronald J. Williams. Efficient learning and planning within the

Dyna framework. Adaptive Behavior, 1(4):437–454, 1993.

[94] Olivier Pietquin. A framework for unsupervised learning of dialogue strategies.

PhD thesis, Faculty of Engineering, Mons (TCTS Lab), Belgium, 2004.

[95] Jos A. M. Potters and Stef H. Tijs. The nucleolus of a matrix game and other

nucleoli. Mathematics of Operations Research, 17(1):164–174, 1992.

[96] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of

Dimensionality (Wiley Series in Probability and Statistics). Wiley-Interscience,

2007.

[97] Bob Price and Craig Boutilier. Implicit imitation in multiagent reinforcement

learning. In Proceedings of the Sixteenth International Conference on Machine

Learning, pages 325–334, 1999.

[98] Bob Price and Craig Boutilier. Imitation and reinforcement learning in agents

with heterogeneous actions. In Proceedings of the Fourteenth Biennial Confer-

ence of the Canadian Society on Computational Studies of Intelligence, pages

111–120, 2001.

214

[99] Bob Price and Craig Boutilier. A Bayesian approach to imitation in reinforce-

ment learning. In Proceedings of the Eighteenth International Joint Conference

on Artificial Intelligence, pages 712–717, 2003.

[100] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley and Sons, 1994.

[101] Martin L. Puterman and Moon Chirl Shin. Modified policy iteration algorithms

for discounted Markov decision problems. Management Science, 24(11):1127–

1137, 1978.

[102] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-

cations in speech recognition. In Readings in speech recognition, pages 267–296.

1990.

[103] Jette Randlov and Preben Alstrom. Learning to drive a bicycle using rein-

forcement learning and shaping. In Proceedings of the Fifteenth International

Conference on Machine Learning, pages 463–471, 1998.

[104] Nathan Ratliff, David Bradley, J. Andrew Bagnell, and Joel Chestnutt. Boost-

ing structured prediction for imitation learning. In Advances in Neural Infor-

mation Processing Systems 21, pages 1153–1160, 2007.

[105] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum

margin planning. In Proceedings of the Twenty-Third International Conference

on Machine Learning, pages 729–736, 2006.

[106] Ioannis Rexakis and Michail G. Lagoudakis. Classifier-based policy represen-

tation. In Proceedings of the Seventh International Conference on Machine

Learning and Applications, pages 91–98, 2008.

215

[107] Lev Reyzin and Robert E. Schapire. How boosting the margin can also boost

classifier complexity. In Proceedings of the Twenty-Third International Confer-

ence on Machine Learning, pages 753–760, 2006.

[108] Julia Robinson. An iterative method of solving a game. The Annals of Mathe-

matics, 54(2):296–301, 1951.

[109] John Roycroft. Test tube chess: A comprehensive introduction to the chess

endgame study. Stackpole Books, 1972.

[110] Walter Rudin. Principle of Mathematical Analysis. McGraw-Hill, 1976.

[111] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist sys-

tems. Technical report, Cambridge University Engineering Department, 1994.

[112] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to

fly. In Proceedings of the Ninth International Conference on Machine Learning,

pages 385–393, 1992.

[113] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting

the margin: A new explanation for the effectiveness of voting methods. The

Annals of Statistics, 26(5):1651–1686, 1998.

[114] Jost Schatzmann, Kallirroi Georgila, and Steve J. Young. Quantitative evalua-

tion of user simulation techniques for spoken dialogue systems. In Proceedings

of the Sixth SIGdial Workshop on Discourse and Dialogue, pages 178–181, 2005.

[115] Jost Schatzmann, Blaise Thomson, and Steve J. Young. Statistical user simu-

lation with a hidden agenda. In Proceedings of the Eighth SIGdial Workshop

on Discourse and Dialogue, pages 273–282, 2007.

[116] Ulrich Schwalbe and Paul Walker. Zermelo and the early history of game theory.

Games and Economic Behavior, 34(1):123–137, 2001.

216

[117] John Shawe-Taylor and Nello Cristianini. Margin distribution bounds on gener-

alization. In Proceedings of the Fourth European Conference on Computational

Learning Theory, pages 263–273, 1999.

[118] John Shawe-Taylor and Nello Cristianini. Further results on the margin dis-

tribution. In Proceedings of the Twelfth Annual Conference on Computational

Learning Theory, pages 278–285, 1999.

[119] Aaron Shon, David Grimes, Chris Baker, and Rajesh Rao. A probabilistic

framework for model-based imitation learning. In Proceedings of the Twenty-

Sixth Annual Conference of the Cognitive Science Society, pages 1237–1242,

2004.

[120] Satinder Singh, Michael Kearns, Diane Litman, and Marilyn Walker. Reinforce-

ment learning for spoken dialogue systems. In Advances in Neural Information

Processing Systems 14, pages 956–962, 2000.

[121] Joe Smith. Georgia Chess, page 37, January 2008.

[122] Gilles Stoltz and Gabor Lugosi. Learning correlated equilibria in games with

compact sets of strategies. Games and Economic Behavior, 59(1):187–208, 2007.

[123] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.

Littman. PAC model-free reinforcement learning. In Proceedings of the Twenty-

Third International Conference on Machine Learning, pages 881–888, 2006.

[124] Richard S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3(1):9–44, 1988.

[125] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, 1998.

217

[126] Umar Syed and Robert E. Schapire. Imitation learning with a value-based prior.

In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial In-

telligence, pages 384–391, 2008.

[127] Umar Syed and Robert E. Schapire. A game-theoretic approach to apprentice-

ship learning. In Advances in Neural Information Processing Systems 22, pages

1449–1456, 2008.

[128] Umar Syed and Robert E. Schapire. Apprenticeship learning using linear pro-

gramming. In Proceedings of the Twenty-Fifth International Conference on

Machine Learning, pages 1032–1039, 2008.

[129] Umar Syed and Jason D. Williams. Using automatically transcribed dialogs

to learn user models in a spoken dialog system. In Proceedings of the Forty-

Sixth Annual Meeting of the Association for Computational Linguistics, pages

121–124, 2008.

[130] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov net-

works. In Advances in Neural Information Processing Systems 18, pages 25–32,

2004.

[131] Blaise Thomson, Jost Schatzmann, Karl Welhammer, Hui Ye, and Steve J.

Young. Training a real-world POMDP-based dialog system. In Proceedings of

the Workshop on Bridging the Gap: Academic and Industrial Research in Dialog

Technologies, Annual Meeting of the Association for Computational Linguistics,

pages 9–17, 2007.

[132] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin

Altun. Support vector machine learning for interdependent and structured

output spaces. In Proceedings of the Twenty-First International Conference on

Machine Learning, page 104, 2004.

218

[133] Eric van Damme. Refinements of the Nash equilibrium concept. Lecture notes

in economics and mathematical systems 219. Springer-Verlag, 1983.

[134] Eric van Damme. Stability and perfection of Nash equilibria. Lecture notes in

economics and mathematical systems 219. Springer-Verlag, 1991.

[135] Vladimir N. Vapnik and Alexey Chervonenkis. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability and

Its Applications, 16(2):264–280, 1971.

[136] Deepak Verma and Rajesh Rao. Imitation learning using graphical models. In

Proceedings of the Eighteenth European Conference on Machine Learning, pages

757–764, 2007.

[137] John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische An-

nalen, 100(1):295–320, 1928.

[138] John von Neumann and Oskar Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

[139] Vladimir Vovk. Aggregating strategies. In Proceedings of the Third Annual

Workshop on Computational Learning Theory, pages 371–383, 1990.

[140] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella.

Evaluating spoken dialogue agents with PARADISE: Two case studies. Com-

puter Speech and Language, 12(4):317–341, 1998.

[141] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Stable dual

dynamic programming. In Advances in Neural Information Processing Systems

22, pages 1569–1576, 2008.

[142] Chris Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Uni-

versity, 1989.

219

[143] Christopher J. C. H. Watkins and Peter Dayan. Technical note: Q-learning.

Machine Learning, 8(3-4):279–292, 1992.

[144] Marco A. Wiering and Edwin D. de Jong. Computing optimal stationary poli-

cies for multi-objective Markov decision processes. In Proceedings of IEEE

International Symposium on Approximate Dynamic Programming and Rein-

forcement Learning, pages 158–165, 2007.

[145] Jason D. Williams and Steve J. Young. Partially observable Markov decision

processes for spoken dialog systems. Computer Speech and Language, 21(2):

393–422, 2007.

[146] C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals

of Statistics, 11(1):95–103, 1983.

[147] Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by

cost-proportionate example weighting. In Proceedings of the Third IEEE Inter-

national Conference on Data Mining, pages 435–442, 2003.

[148] Willard Zangwill. Nonlinear Programming: A Unified Approach. Prentice Hall,

Inc., 1969.

[149] Ernst Zermelo. Über eine anwendung der mengenlehre auf die theorie des

schachspiels. In Proceedings of the Fifth Congress of Mathematicians, pages

501–504, 1913.

[150] Martin Zinkevich. Online convex programming and generalized infinitesimal

gradient descent. In Proceedings of the Twentieth International Conference on

Machine Learning, pages 928–936, 2003.

[151] Martin Zinkevich, Michael Bowling, and Neil Burch. A new algorithm for gener-

220

ating equilibria in massive zero-sum games. In Proceedings of the Twenty-Second

Conference on Artificial Intelligence, pages 788–793, 2007.

[152] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.

Regret minimization in games with incomplete information. In Advances in

Neural Information Processing Systems 22, pages 1729–1736, 2008.

221

