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Abstract

Topic models like latent Dirichlet allocation (LDA) provide a framework for analyzing
large datasets where observations are collected into groups. Although topic modeling
has been fruitfully applied to problems social science, biology, and computer vision,
it has been most widely used to model datasets where documents are modeled as
exchangeable groups of words. In this context, topic models discover topics, distribu-
tions over words that express a coherent theme like “business” or “politics.” While
one of the strengths of topic models is that they make few assumptions about the
underlying data, such a general approach sometimes limits the type of problems topic
models can solve.

When we restrict our focus to natural language datasets, we can use insights from
linguistics to create models that understand and discover richer language patterns. In
this thesis, we extend LDA in three different ways: adding knowledge of word mean-
ing, modeling multiple languages, and incorporating local syntactic context. These
extensions apply topic models to new problems, such as discovering the meaning of
ambiguous words, extend topic models for new datasets, such as unaligned multi-
lingual corpora, and combine topic models with other sources of information about
documents’ context.

In Chapter 2, we present latent Dirichlet allocation with WORDNET (LDAWN),
an unsupervised probabilistic topic model that includes word sense as a hidden vari-
able. LDAWN replaces the multinomial topics of LDA with Abney and Light’s distri-
bution over meanings. Thus, posterior inference in this model discovers not only the
topical domains of each token, as in LDA, but also the meaning associated with each
token. We show that considering more topics improves the problem of word sense
disambiguation.

LDAWN allows us to separate the representation of meaning from how that mean-

ing is expressed as word forms. In Chapter 3, we extend LDAWN to allow meanings
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to be expressed using different word forms in different languages. In addition to the
disambiguation provided by LDAWN; this offers a new method of using topic models
on corpora with multiple languages.

In Chapter 4, we relax the assumptions of multilingual LDAWN. We present the
multilingual topic model for unaligned text (MuTo). Like multilingual LDAWN; it
is a probabilistic model of text that is designed to analyze corpora composed of
documents in multiple languages. Unlike multilingual LDAWN, which requires the
correspondence between languages to be painstakingly annotated, MuTo also uses
stochastic EM to simultaneously discover both a matching between the languages
while it simultaneously learns multilingual topics. We demonstrate that MuTo allows
the meaning of similar documents to to be recovered across languages.

In Chapter 5, we address a recurring problem that hindered the performance of the
models presented in the previous chapters: the lack of a local context. We develop the
syntactic topic model (STM), a non-parametric Bayesian model of parsed documents.
The STM generates words that are both thematically and syntactically constrained,
which combines the semantic insights of topic models with the syntactic information
available from parse trees. Each word of a sentence is generated by a distribution that
combines document-specific topic weights and parse-tree-specific syntactic transitions.
Words are assumed to be generated in an order that respects the parse tree. We
derive an approximate posterior inference method based on variational methods for
hierarchical Dirichlet processes, and we report qualitative and quantitative results on
both synthetic data and hand-parsed documents.

In Chapter 6, we conclude with a discussion of how the models presented in this
thesis can be applied in real world applications such as sentiment analysis and how

the models can be extended to capture even richer linguistic information from text.
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Chapter 1

Patterns of Word Usage: Topic

Models in Context

Most people are familiar with patterns of word usage. Patterns of how words are
written dictate how crossword puzzles and games of scrabble fit together. Patterns
of how words sound engage us through song and poetry, and the interplay between
meaning and sound both annoy and delight us through the creation of puns.

These intriguing patterns are not just the subject of lighthearted leisure; they also
are the foundation of serious academic study. Lexicographers investigate patterns of
words’ meaning in order to compose dictionaries. Morphologists’ understanding of
the internal structure of words helps uncover the history and structure of the world’s
languages. Syntax, how words are put together into sentences, allows computers to
correct your grammar and automatically answer questions like “what is the capital of
Botswana?”

Another way of looking at how words are used is at the document level. A document
presents a discrete unit of meaning that is relevant to how we often interact with text;
we usually think of text at the level of a book, a webpage, or a newspaper article

rather than at the word, sentence, or paragraph level. Because the Internet can be



considered a large collection of documents, finding the documents that are relevant to
your interests is an important (and profitable) problem in search and advertising.

The question that this thesis asks is if the patterns studied in syntax, morphology,
and semantics are influenced by the document. For instance, can we discover that
the sentence structure in Faulkner’s Absalom, Absalom is somehow different from
the sentence structure in Hemingway’s The Old Man and the Sea? Can we discover
if similarly spelled words often appear in same documents? Can we discover that a
document talks about “disease” even if it never mentions that word?

This thesis attempts to answer questions like these by combining linguistic insights
with models that are aware of documents. This chapter introduces the field of
topic modeling, which provides a formalism for capturing document context. After
introducing topic modeling, this chapter gives a cursory overview of the linguistic
formalisms and techniques we will combine with topic modeling to create models that
are linguistically relevant and also aware of the context of a document. These models
are presented in the following chapters and seek to answer questions like the above

contrast between Faulkner and Hemingway.

1.1 Topic Models

A topic model is a model that, given a corpus of documents, discovers the topics that
permeate the corpus and assigns documents to these topics. Thus, at a high level, one
can think of a topic model as a black box with two outputs: the assignment of words

to topics and the assignment of topics to documents.! The first output, the topics, are

"'We will refine this view later. Other communities might take a different approach to this black
box view. For instance, the psychology literature would object to actual inspection of the outputs of
latent semantic analysis (LSA) (Landauer and Dumais, 1997). LSA is a matrix factorization-based
technique that is the forerunner of probabilistic topic models (Hofmann, 1999). In the psychological
community, the outputs of LSA are almost exclusively used as tools to make associations between
words and documents, documents and documents, or words and words. However, mathematically,
the outputs of both LSA models and topic models are identical: assignments of words to topics and
assignments of documents to topics (Griffiths and Steyvers, 2006).



distributions over words; in this thesis (as in most work dealing with topic models) we
normally present topics as lists of words, as in Figure 1.2(a), which shows three topics
discovered from articles in the New York Times. Each word has a probability given a
topic; to create the lists in Figure 1.2(a), we sort the words in descending probability
and show the top handful of words. In practice, this is usually enough to get a rough
understanding of the topic.

The other primary output of a topic model is an assignment of documents to topics.
The bag of words representation of each document (see Figure 1.1 for a simple example)
is modeled as a mixture of topics. Returning the the New York Times corpus, we can
see how documents are associated with a few of the topics. For example, the story
entitled “Red Light, Green Light: A 2-Tone L.E.D. to Simplify Screens” uses words
mostly from the technology topic, while the story entitled “The three big Internet
portals begin to distinguish among themselves as shopping malls” also requires the
business topic to cover all the words in the text, and the story “Forget the bootleg,

just download the movie legally” adds the arts topic.

Original Document Bag of Words
one fish, two fish fish: 8 | new: 1
red fish, blue fish blue: 2 | one: 1

black fish, blue fish black: 1| red: 1
old fish, new fish

Figure 1.1: The first lines of Dr. Seuss’s One Fish, Two Fish, Red Fish, Blue, Fish
turned into a bag of words representation. From the bag of words representation it’s
clear that the document is about fish. However, important information is lost. For
instance, every word that isn’t “fish” modifies a noun (in this case, “fish”) and there
are clear classes of adjectives that appear often (e.g. cardinal numbers, colors, etc.).

There are a wide variety of methods of finding these topics and the assignment of
topics to documents. In this work, we focus on latent Dirichlet allocation (LDA) (Blei
et al., 2003). In the literature, LDA is called a probabilistic, generative model. It is

generative because it tells the story of how our data came to be, and it is probabilistic



TOPIC 1 computer,

technology,
system,

service, site,
phone,
internet,
machine

The three big Internet
portals begin to distinguish
among as
shopping malls

TO P | C 2 sell, sale,
store, product,
business,

advertising, TO P | C 1 TOP |C 2

market,
Multiplex Heralded As
Linchpin To Growth

consumer

TOPIC 3

TOPIC 3

(a) Topics (b) Document Assignments to Topics

Figure 1.2: The latent space of a topic model consists of topics, which are distributions
over words, and a distribution over these topics for each document. On the left are
three topics from a fifty topic LDA model trained on articles from the New York
Times. On the right is a simplex depicting the distribution over topics associated with
seven documents. The line from each document’s title shows the document’s position
in the topic space.
because it tells this story using the language of probability. Not all of the details of
the story are known in advance, however; some of the pieces are missing. We call
these missing pieces latent variables. We use the mathematical technique of statistical
inference to discover the the latent variables that statistically best explain our observed
data.? We stress that the latent topics are not observed or annotated in any way; LDA
is an unsupervised technique for finding these topics from raw documents. That they
correspond to human notions of topics is a product of how language is used (Griffiths
and Steyvers, 2006; Chang et al., 2009).

LDA serves as the starting point for the models discussed in all of the subsequent

chapters. Each chapter presents a model that augments the modeling assumptions of

LDA with linguistic assumptions.

2More precisely, we discover the posterior distribution over the latent variables. There are many
possible settings of the latent variables that explain our data, but some are better than others. The
detail that we discover a distribution over the latent variables should become clear in later chapters
that deal with inference; for now, we focus on the intuitions of the models.
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Figure 1.3: Draws of a multinomial distribution of with five components from three
different settings of the parameter of a Dirichlet distribution. When the parameter
is substantially less than one (top), very sparse distributions are favored. When the
parameter is one (middle), all multinomial distributions are equally likely. Finally, if
the magnitude of the parameter is large, draws from the Dirichlet are constrained to
be close to the distribution defined by the normalized parameter.

1.1.1 Latent Dirichlet Allocation

Before we can formally define LDA, we will first cover some statistical formalities.
Readers familiar with the Dirichlet distribution, the multinomial distribution, and

how the two distributions are conjugate should feel free to skip to section 1.1.3.

1.1.2 The Dirichlet Distribution

A Dirichlet distribution is a distribution over finite discrete probability distributions.

A Dirichlet distribution of dimension K gives a distribution over vectors {6, ...,0k}

such that ), 0 = 1 and miny, 6 > 0. It is parameterized by a vector {a, ..., ax} of
. . . 1

non-negative real numbers, and its expected value is m{al, co QKT



A Dirichlet distributed random variable is distributed according to

r (Zk ) =1

Dir(0|ay,...,ag) = ==~—— 7

o LT ()
normalization

The draw 6 is a distribution over discrete observations. Draws from a Dirichlet
distribution for various settings of the parameter a are presented in Figure 1.3. When
a is relatively small, the Dirichlet distribution favors sparse multinomial distributions
where only a small number of components have weight. This corresponds to our
intuition that a document should have a handful of topics rather than gradations of
hundreds. When « is all ones, the distribution is uniform; when « is larger, it favors
a more peaked distribution around the normalized o parameter, %'

The draws from a Dirichlet distribution are multinomial distributions. Multinomial
distributions have parameter 6 and are distributions over counts {ni,...,ng} over K

discrete events distributed according to

(D g m)! 0

Mult(n|6y,...,0k) = ~=:250 TT o,

(n]6 i) T, e [ 19
——

normalization
Suggestively, we used the same symbol, 6, for the random variable of the Dirichlet
distribution and the parameter for the multinomial distribution. Often, multinomials
are modeled as coming from a Dirichlet distribution (later on, we will see that this
is also the case in LDA). When we then use Bayes’ rule to determine the posterior

distribution of a multinomial # given a set of observed counts n
p(@|n,a) x HGZ’“ HO;"“_I = HGZ’“J’O"“_l, (1.1)
k k k

we discover that it has the same form as a Dirichlet distribution parameterized by

n + «. Thus, the posterior distribution of a multinomial given counts has the same



form as the prior. When such a relationship holds, the prior is said to be conjugate.
This relationship allows for easier inference in models based on LDA, as we see in
Sections 2.2 and 5.3.2.

For both the Dirichlet and the multinomial, we must specify the desired dimension
K before we learn our models, which can be difficult especially when we are dealing
with unsupervised models. In section 5.2.2, we present techniques that don’t require a

fixed dimension to model the data.

1.1.3 Defining LDA

Now that we're done with the statistical formalities, we can define LDA more rigorously.
LDA assumes the following generative process to create a corpus of M documents

with Ny words in document d using K topics {31, ... OBk }:

1. For each document d € {1,... M }:

(a) Choose the document’s topic weights 8, ~ Dir(c)
(b) For each word n € {1,... N4}:

i. Choose topic assignment zg,, ~ Mult(6,)

ii. Choose word wg, ~ Mult(3.,,)

In this process, Dir() represents a Dirichlet distribution (its properties and relationship
to the multinomial are discussed in Section 1.1.2), and Mult() is a multinomial
distribution. a and 3 are parameters.

The topic weights, 8, are vectors of length K, the number of topics in the model,
and there is a topic weight distribution for each document d. This distribution
corresponds to the simplex shown in Figure 1.2(b). The distribution 6 is used to
choose the topic assignment z, for each of the n words in document d. This is a
selector variable that chooses which topic B; the observed token w, comes from.

The k™ topic B is a vector of length V; each component corresponds to a word’s



(-,

Figure 1.4: The graphical model for latent Dirichlet allocation. Each line represents
a possible statistical dependence, shaded nodes are observed, and plates denote
replication.

probability in that topic. (We use boldface in equations to denote when symbols are
being used as vectors.) In our cartoon picture of topics and documents, 3, is one of
the sorted word lists in Figure 1.2(b) and 6, is a position in the simplex depicted in
Figure 1.2. For example, “stock” would have a high weight in the finance topic but
a low weight in the entertainment topic, and the opposite would be true of “movie.”
Again, we stress that these topics are unobserved in real data; the topics we learn are
the statistical signatures of how terms appear together in data and do not reflect any
human annotation.

Another tool that we’ll often use for describing generative processes is the plate
diagram. An example of a plate diagram is Figure 1.4, which represents the generative
process for LDA. Each latent variable, observed piece of data, and parameter is
represented by a node in a graph. Each possible statistical dependence is represented
by a line between the nodes. Observations are represented by shaded nodes, and
replication is denoted by rectangular plates; the symbol in the bottom right corner
represents how many times the variables inside the plate are repeated. For example,
each document d has Ny words, denoted by the inner plate. Inside the inner plate are
two nodes, z, and w,, representing the topic assignment and the token observed for
the n'* word, respectively. Because these words are observed, the node corresponding

to each word is shaded. Because these words are drawn from the z/* topic 3., , arrows

go from both z and 3 to w,.



Because we only observe words collected into documents, discovering the topics
B1.x, topic assignments zq.p, and per-document topic distributions 01.p is a problem
of statistical inference. We want to find the random variables that maximize the

likelihood

pwla,® =TT [ 0041 o) TT S otz 00t 8,6,

n o zn

However, directly maximizing the likelihood is not tractable because of the coupling
between 3 and 0. Therefore, in LDA and other models that use LDA as a foundation,

we must appeal to approximate inference methods.

1.1.4 Approximate Posterior Inference

Approximate inference allows us to uncover a distribution of the values of the latent
variables that best explain our observed data even when the posterior, as in the case
of LDA, is intractable. In this work, we expand on inference techniques originally
developed for LDA, particularly Markov chain Monte Carlo (MCMC) techniques and
variational inference.

We delay discussing inference in depth to preserve the focus here on issues of
modeling and to couple explanation of inference techniques with examples specific
to the models we develop. MCMC techniques are introduced in Section 2.2, and

variational techniques are introduced in Section 5.3.2.

1.1.5 Applications and Related Work

The first topic models were developed in the psychology and text retrieval communities,
where they were called latent semantic analysis (LSA) (Deerwester et al., 1990) and
probabilistic latent semantic analysis (pLSA) (Hofmann, 1999). Like LDA, the

represent documents as a combination of topics, but unlike LDA, LSA and pLSA do



not embody fully generative probabilistic processes. By adopting a fully generative
model, LDA exhibits better generalization performance and is more easily used as a
module in more complicated models. (Blei et al., 2003; Blei and Lafferty, 2009).

This flexibility has allowed LDA to be used for a wide variety of applications. In
a traditional information retrieval setting, Wei and Croft (2006) interpolated LDA
with a standard language model to better determine which documents were relevant
to a query. Also in the information retrieval domain, Rexa (Information Extraction
and Synthesis Laboratory, 2009) is a document browser that exposes the topics of
a collection to a user to help guide her to relevant documents using models built on
LDA (Rosen-Zvi et al., 2004).

In addition to discovering individual documents, LDA has also served as a tool for
finding trends and patterns within the entire corpus. Hall et al (2008) used the topics
created by LDA to explore how the field of computational linguistics has changed over
time. This is similar to dynamic topic models (Blei and Lafferty, 2006) and continuous
time dynamic topic models (Wang et al., 2008), which explicitly model the evolution
of topics over time.

Researchers have also extended LDA to model other facets of text corpora such as
the words particular authors use (Rosen-Zvi et al., 2004), patterns of citations that
appear in documents (Mimno and McCallum, 2007), the latent emotions expressed in
product reviews (Blei and McAuliffe, 2007; Titov and McDonald, 2008), part-of-speech
labeling (Toutanova and Johnson, 2008), discourse segmentation (Purver et al., 2006),
and word sense induction (Brody and Lapata, 2009).

LDA has applications outside text as well; it has been used in understanding
images (Li Fei-Fei and Perona, 2005; Blei and Jordan, 2003; Wang et al., 2009; Fergus
et al., 2005), computer source code (Maskeri et al., 2008), biology (Pritchard et al.,
2000), and music (Hu and Saul, 2009). There are many exciting applications of topic

models to many domains; for more information, we suggest one of the reviews of topic
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modeling and related literature (Blei and Lafferty, 2009; Griffiths et al., 2007).

1.1.6 Assumptions

LDA’s limited assumptions provide the flexibility that allows it to be applied in so
many diverse fields. However, LDA’s view of text is simplistic and ignores much of the
structure that is present in natural language. Because the topic assignments of words
are independent given the per-document topic distribution, the order of the words in a
document doesn’t matter; the order of words is exchangeable. For many applications,
such as information retrieval, this so-called “bag of words” assumption is reasonable.

Consider the bag of words representation of Dr. Seuss in Figure 1.1. The bag of
words representation does an excellent job of showing that the document is about fish,
and LDA would be able find other fish-related documents that it would share topics
with. However, the bag of words representation loses much of the relationship that is
clear from the original text.

Observe that the text is a sequence of noun phrases modified with “fish” as the
head and every word that is not “fish” modifies “fish.” Another document with this
construction would not be deemed as similar by LDA unless it used the same words,
as this regularity is lost in the bag of words representation.

There are contexts, however, where this regulation is important. Suppose you
wanted to know what kind of fish appear in a document. There are computational
methods to discover that “one,” “two,” “red,” “blue,” etc. all change the kind or
number of fish being mentioned (how this can be more rigorously codified is discussed
in Section 1.2.1). Question answering systems are another example of a context
where local syntax is crucially important. Imagine you learned that “A, in its recent
acquisition of B,” is a good signal that A bought B (Banko et al., 2007). You wouldn’t
want to throw that information away, and you might want to combine that analysis

with the insight offered by topic models.
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Relationships between the words that are implicit in a human’s reading of the text
are also lost. A human realizes that that “red,” “blue,” and “black” are all colors, but
LDA has no reason to correlate “red” with “blue” instead of “marzipan.” Similarly,
LDA would be unable to associate this document with a German translation, even
though the German translation would be half composed of the word “Fisch” and a
reader can see that these words are likely related. To LDA “fish” is no more similar
to “Fisch” than it is to “marzipan.”

Again, there are applications where retaining this information would be of value;
imagine searching a database for articles about “fish;” if the person searching also
spoke German, you might also want to give them documents that also feature the

word “Fisch” prominently.

1.2 Sources for Capturing More Nuanced Patterns
from Text

In our efforts to allow LDA-based models to capture these patterns, we draw upon
formalisms developed in multiple subfields of linguistics: syntax, semantics, and
cross-language investigations of semantics and morphology. We briefly introduce the

resources that we use from each of these subfields.

1.2.1 Syntax

When we discussed the Dr. Seuss example, we were able to talk about classes of words
like “nouns” because of a shared understanding of language. Syntax provides formal
definitions to such terms and has been applied to language in a formal, statistical
manner.

One such formalism was developed in the early fifties (Chomsky, 1956; Chomsky

and Miller, 1958). The analysis that would eventually become known as a context
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free grammar formalized the ideas of syntactic category and part of speech that had
been the domain of descriptive grammars. A context free grammar consists of a
set of non-terminals (e.g. phrase or part of speech markers), a set of terminals (e.g.
the words in a language), production rules (a function giving rules for replacing a
non-terminal symbol with other non-terminals or terminals), and a start state (which
gives the non-terminal that generates all productions).

For example, a simple context free grammar might be

Non-terminal Productions Terminal Productions
S — NPVP V. —  (“swim”, “sleep”)
VP — V (NP) (Adv) (PP) P — (“on”, “over”, “with”)
NP — (Det) (Adj) N (PP) Det — (“a”, “the”)
PP — PNP Adj — (“blue”, “green”, “red”)
Adv — (“fast”, “lazily”)
N —  (“rock”, “fish”, “wink”),

where non-terminals are in quotes and parentheses denote optional productions (e.g.
the nonterminal VP can produce either VNP or V NP Adv). The start state is S.
Non-terminals can be any arbitrary symbol, so long as they lead to productions
that can generate the language. However, they are typically chosen in a way that is
consistent with intuition about language and linguistic theory. 3
This grammar allows the following analysis for the sentence “The red fish swam

over a fish with a wink.”

3Tt’s not important to understand the exact meaning of the non-terminals in this example, but
they roughly correspond to common sense intuitions of the grammatical categories of words. Nouns
(N) are the foundation of noun phrases (NP), which are the cluster of words that modify a particular
noun (e.g. the noun phrase “the green fish with a rock”). Prepositions (P) can be form prepositional
phrases with a noun phrase (e.g. “with a rock”), and verbs can form verb phrases. The important
intuition is that this is a framework for encoding the grammatical structure of a sentences.
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in addition to a parse where the red fish swims over a fish who has the property of
winking.

In contrast, the dependency grammar formalism places observed symbols (terminals
in the language of a CFG) within the tree structure (Hays, 1964; Nivre, 2005). In
such models, internal states are a tuple of terminal symbols and nonterminal states.
A dependency grammar gives rules for the possible children of each of the internal

nodes and vocabularies for each of the symbols. For example, a dependency grammar

might be
Allowed Dependencies Terminal Productions
— (N *N Adv) V. —  (“swim”, “sleep”)
V. — (N*N) P — (“on”, “over”, “with”)
V. —- (N*NP) Det — (“a”, “the”)
N — (Det Adj *) Adj — (“blue”, “green”, “red”)
N — (Det*) Adv — (“fast”, “lazily”)
N — (Adj*) N —  (“rock”, “fish”, “wink”),
N — (Det *P)
N — (Adj*P)
P = (*N)

4The grammar presented here is not representative of the breadth of the grammars allowed by
the dependency formalism and is meant as a minimal introduction to the representation needed for
understanding later chapters. Other formalisms include the Prague school and Mel’chuk’s dependency
syntax, which are discussed in the excellent overview (Kiibler et al., 2009).
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which would offer as one possible interpretation of the sentence as

ROOTgpoor Theprr r@ iQI}swavaerpgm;}ishN withp a%ink]v

Dependency parses of a sentence offer an alternative to the phrase structure of
context free grammars. Both of these formalisms have been used as the foundation for
probabilistic models of language (Charniak, 1997; Eisner, 1996) that can be learned
from real-world datasets (Marcus et al., 1994). In practice, dependency grammars are
more appropriate for languages where word order is more fluid, such as Czech (Hajic,
1998) and where defining constituency grammars becomes more difficult.’

The formalism of syntax allows us to discover patterns of word usage that describe
function at a very local level. In contrast to topic models, syntactic models offer a
view of local context that allows us to address some of the problems of a bag of words

model.

1.2.2 Semantics

A fundamental component of linguistics is the lexicon, which encompasses a speaker’s
understanding of the vocabulary of a language. Allan (2001) argues that a lexicon
must not only posses organization by its surface form, as in a typical dictionary, and
syntax, as expressed in the terminal rules in the grammars above; a lexicon must also
include organization by meaning.

One such attempt to create a computer-readable lexicon that incorporates meaning
into its organization is WORDNET (Kilgarriff, 2000). WORDNET puts words with the
same meaning together into clusters of words called synonym sets (synset). For example,

WORDNET considers [’car’, ’auto’, ’automobile’, ’machine’, ’motorcar’]

5The example presented above, which is context free, does not offer this flexibility. However, the
formalisms discussed in Footnote * do.
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to be a single synset.
These synsets are connected by a network of relationships. For example, the car

synset has the following links encoded in WORDNET:

hyponym is a specific instance of the concept, for example, [1imo, limousine, sedan,
saloon], [stock car], [SUV, sport utility, sport utility vehicle], and

[convertible].

hypernym is less specific instance of the concept, e.g. a child is an example of a parent
(thus, it is sometimes called an “is a” relationship). The car synset’s hypernym

is [motor vehicle, automotive vehicle].

meronym is a part of the parent. Some of the car synset’s meronyms include [horn,
hooter, car horn, automobile horn] and [cowl, hood]. Conversely, the

opposite relationship is that the car synset is a holonym of [cowl, hood].

The network of WORDNET is based on psychological experiments that suggest that
the human lexicon is based on properties of inheritance (Miller, 1990). For example,
when asked if a canary is yellow, has feathers, has a spine, or has skin, each question
takes longer to answer than the last because it asks about properties of more distant
hyperyms (bird, chordate, animal).

WORDNET is the de facto resource for annotating the sense of ambiguous words
in a text.5 For example, “cowl” has two meanings in WordNet: the hood of a
car and the garment worn by a monk. Determining whether an appearance of the
string “cowl” is talking about a piece of clothing or a car part is called word sense
disambiguation (WSD). In Chapter 2, we develop an algorithm for this important

NLP problem that builds upon topic models.

6Kilagrriff (2000) notes that “not using [WORDNET] requires explanation and justification.”
Almost all word sense disambiguation bakeoffs use WORDNET as the sense inventory (Kilgarriff and
Rosenzweig, 2000), and the first sense-disambiguated corpora were constructed using WORDNET
as a sense inventory (Miller et al., 1993). While there are alternative resources, none have been as
widely embraced as WORDNET.
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1.2.3 Linguistic Representation of Multiple Languages

The formalism of WORDNET has been applied to many languages from different
language families, e.g. Japanese (Isahara et al., 2008), Hebrew (Ordan and Wintner,
2007), and German (Hamp and Feldweg, 1997), using both manual and automatic
methods (Sagot and Fiser, 2008). Thus, the representation of meaning has been made
independent of the actual lexical realization of those meanings.

In addition to explicit connections being drawn between languages, there are
deep connections that implicitly exist between languages. These implicit connections
are so thoroughly studied that eighty years ago, Sapir’s assessment of the state of
linguistics (1929) declared that there was little left to be done in describing the
processes that change a language over time or change one language into another.

Despite the field being well studied even at the start of the twentieth century,
understanding the common foundations of the worlds’ languages is the focus of an active
branch of linguistics called typology (Ramat, 1987; McMahon and McMahon, 2005).
There are deep and subtle connections across languages (which we will not discuss
here), but some other commonalities between languages are obvious to even casual
observers. Many common terms (called “cognates”) appear across languages with
similar meaning, sound, and representation (Carroll, 1992). In addition to common
words that appear in multiple language because of borrowing or a shared history,
proper names are often direct transliterations (Knight and Graehl, 1997; Sproat et al.,
2006). In sum, we can often discover simple, consistent relationships that algorithms

like LDA can use to examine documents in multiple languages simultaneously.
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1.2.4 Roadmap for Subsequent Chapters: Adding Linguistic

Intuitions

In the next chapters, we will use these tools to enhance LDA’s ability to represent of
text. In Chapter 2, we combine LDA’s automatic discovery of implicit meaning with
the human-generated meaning expressed through WORDNET. We imbue WORDNET’s
explicit representation of meaning into a topic model to create a model called LDAWN
(LDA with WORDNET). By modeling the meaning of each word as a latent variable,
we allow LDA to perform word sense disambiguation.

The next two chapters discuss how to use non-parallel multilingual data with topic
models, which allow the many applications developed using topic models (as discussed
in Section 1.1.5) to be applied to a broader range of corpora. In Chapter 3, we extend
LDAWN to use WORDNET to provide a way of modeling topics and meaning that is
independent of language. Multilingual LDAWN uses WORDNET as a common bridge
to express the meaning of a topic, allowing the discovery of topics that are consistent
across languages.

Although many languages have a WORDNET, not every language does, and for
many languages a nascent WORDNET might be insufficient or licensing restrictions
might preclude its use. In Chapter 4, we demonstrate a model that allows the discovery
of multilingual topics without a prespecified WORDNET across languages. It does so
by learning correspondences across languages as it simultaneously discovers the latent
topics in a document.

Finally, in Chapter Chapter 5, we present a new method for moving beyond the
bag of words representation of topic models by explicitly modeling the patterns of
dependency representations of sentences discussed in Section 1.2.1. Such models give
the “best of both worlds,” allowing the semantic properties captured by topic models
to complement the syntactic information captured by the syntactic representations of

language discussed in Section 1.2.1.
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Chapter 2

LDAWN: Adding a Semantic

Ontology to Topic Models

Latent Dirichlet Allocation (LDA), as we discussed in the previous chapter, does not
model any inherent connection between words. While LDA can discover that words
are used in similar context, it has no way of knowing that a “collie” and a “spaniel”
are both dogs or that “burn” is a specific type of “injury.” But it’s clear that humans
share common notions of how words are connected semantically (Miller and Charles,
1991; Boyd-Graber et al., 2006); if you ask different people how similar “dog” and
“collie” are, you will get similar answers.

If a topic model could model meaning directly, rather than working through the
intermediate representation of words, we could explicitly model the meaning of a
document. As a side effect, explicitly modeling the sense of a word also allows us to
apply topic models to new applications.

One such application is word sense disambiguation (WSD), the task of determining
the meaning of an ambiguous word in its context. It is an important problem in
natural language processing (NLP) because effective WSD can improve systems for

tasks such as information retrieval, machine translation, and summarization. In
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this chapter, we develop latent Dirichlet allocation with WORDNET (LDAWN), a
generative probabilistic topic model for WSD where the sense of the word is a hidden
random variable that is inferred from data.

There are two central advantages to this approach. First, with LDAWN we
automatically learn the context in which a word is disambiguated. Rather than
disambiguating at the sentence-level or the document-level, our model uses the other
words that share the same hidden topic across many documents.

Second, LDAWN is a fully-fledged generative model. Generative models are
modular and can be easily combined and composed to form more complicated models.
(As a canonical example, the ubiquitous hidden Markov model is a series of mixture
models chained together.) Thus, developing a generative model for WSD gives other
generative NLP algorithms a natural way to take advantage of the hidden senses of
words.

While topic models capture the polysemous use of words (Griffiths and Steyvers,
2006), they do not carry the explicit notion of sense that is necessary for WSD.
LDAWN extends the topic modeling framework to include a hidden meaning in the
word generation process. In this case, posterior inference discovers both the topics of
the corpus and the meanings assigned to each of its words.

We begin by introducing a disambiguation scheme based on probabilistic walks over
the WORDNET hierarchy (Section 2.1), and we then embed the WORDNET-WALK
in a topic model, where each topic is associated with walks that prefer different
neighborhoods of WORDNET (Section 2.1.1). Next, we derive a Gibbs sampling
algorithm for approximate posterior inference that learns the senses and topics that
best explain a corpus (Section 2.2). Finally, we evaluate our system on real-world
WSD data, discuss the properties of the topics and disambiguation accuracy results,

and draw connections to other WSD algorithms from the research literature.
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2.1 Probabilistic Approaches that Use WordNet

The WORDNET-WALK is a probabilistic process of word generation that is based on
the hyponomy relationship in WORDNET (Miller, 1990). WORDNET, a lexical resource
designed by psychologists and lexicographers to mimic the semantic organization in
the human mind, links “synsets” (short for synonym sets) with myriad connections.
The specific relation we’re interested in, hyponomy, points from general concepts to
more specific ones and is sometimes called the “is-a” relationship.

As first described by Abney and Light (1999), we imagine an agent who starts
at synset [entity], which points to every noun in WORDNET by some sequence of
hyponomy relations, and then chooses the next node in its random walk from the
hyponyms of its current position. The agent repeats this process until it reaches a
leaf node, which corresponds to a single word (each of the synset’s words are unique
leaves of a synset in our construction). For an example of all the paths that might
generate the word “colt” see Figure 2.1. The WORDNET-WALK is parameterized by

a set of distributions over children for each synset s in WORDNET, (3,.

2.1.1 A topic model for WSD

The WORDNET-WALK has two important properties. First, it describes a random
process for word generation. Thus, it is a distribution over words and thus can be
integrated into any generative model of text, such as topic models. Second, the synset
that produces each word is a hidden random variable. Given a word assumed to be
generated by a WORDNET-WALK, we can use posterior inference to predict which
synset produced the word.

These properties allow us to develop LDAWN, which is a fusion of these WORDNET-
WALKs and latent Dirichlet allocation (LDA) (Blei et al., 2003). LDA assumes that

there are K “topics,” multinomial distributions over words, which describe a document
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Figure 2.1: The possible paths to reach the word “colt” in WORDNET. Dashed lines
represent omitted links. All words in the synset containing “revolver” are shown, but
only one word from other synsets is shown.

collection. Each document exhibits multiple topics, and each word in each document
is associated with one of them.

Although the term “topic” evokes a collection of ideas that share a common theme
and although the topics derived by LDA seem to possess semantic coherence (for
examples, see Figure 1.2(a)), there is no reason to believe this would be true of the
most likely multinomial distributions that could have created the corpus given the
assumed generative model. That semantically similar words are likely to occur together
is a byproduct of how language is actually used.

In LDAWN, we replace the multinomial topic distributions with a WORDNET-
WALK, as described above. LDAWN assumes a corpus is generated by the following

process (for an overview of the notation used in this paper, see Table 2.1).

1. For each topic, k € {1,...,K}
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Symbol Meaning

K number of topics
Br,h multinomial probability vector over the successors of synset h in topic k

S scalar that, when multiplied by 7, gives the prior for g 5

T normalized vector whose i** entry, when multiplied by S, gives the prior

probability for going from synset h to its i** child

04 multinomial distribution over the topics that generate document d

« prior for 6
Zdn assignment for word n in document d to a topic

Agn assignment for word n in document d to a path through a
WORDNET ending at a word.

i j one link in a path A going from synset i to synset j.

t;? The number of words in document d that have been assigned topic ¢
(ignoring word u).

b,;;j’ . | The number of transitions in the WORDNET-WALK for topic & that

have been observed going from synset p to its child synset ¢ (not
counting the path assignment of word u).

Table 2.1: A summary of the notation used in this chapter. Bold vectors correspond
to collections of variables (i.e. z, refers to a topic of a single word, but z;.p are the
topics assignments of words in document 1 through D).

(a) For each synset h € {1,...,H} in the hierarchy, randomly choose transition
probabilities B 5, ~ Dir(S73).
2. For each document d € {1,...,D}
(a) Select a topic distribution 64 ~ Dir(7)
(b) For each word n € {1,..., N4}
i. Select a topic zq, ~ Mult(6y)
ii. Create a path A4, starting with the root node hy.
iii. Given the current node h, choose a new node in the path:

A. Choose the next node in the walk h' ~ Mult(ﬂzd’mh); add the step Ap, p/
to the path Ag,,.
B. If 1/ is a leaf node, generate the associated word w,,. Otherwise, repeat

with A’ as the current node.

Only the the words of a document is observed; everything else is hidden. Thus,

given a collection of documents, our goal is to perform posterior inference, which is
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Figure 2.2: The graphical model for LDAWN. Some indices have been suppressed for
clarity.

the task of determining the conditional distribution of the hidden variables given the
observations. In the case of LDAWN, the hidden variables are the parameters of the
K WORDNET-WALKs, the topic assignments of each word in the collection, and the
synset path of each word. In a sense, posterior inference reverses the process described
above.

Specifically, given a document collection w;.p, the full posterior is

p(ﬂlzK,hH, z1:p,01.0,A1.p | W1:p, &, ST)

(S8 (H Hp(,@k,h | STh))
<H p(@d ’ a) Hp(Ad,n ‘ IBI:K)p(wd,n | Ad,ﬂ)) ) (2'1)

where the constant of proportionality is the marginal likelihood of the observed data.
Note that by encoding the synset paths as a hidden variable, we have posed the
WSD problem as a question of posterior probabilistic inference. Further note that we
have developed an unsupervised model. No labeled data is needed to disambiguate a
corpus. Learning the posterior distribution amounts to simultaneously decomposing a
corpus into topics and its words into their synsets.
The intuition behind LDAWN is that the words in a topic will have similar meanings

and thus share paths within WORDNET. For example, WORDNET has two senses
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for the word “colt;” one referring to a young male horse and the other to a type of
handgun (see Figure 2.1).

Although we have no a priori way of knowing which of the two paths to fa-
vor for a document, we assume that similar concepts will also appear in the docu-
ment. Documents with unambiguous nouns such as “six-shooter” and “smoothbore”
would make paths that pass through the synset [firearm, piece, small-arm]
more likely than those going through [animal, animate being, beast, brute,
creature, fauna]. In practice, we hope to see a WORDNET-WALK that looks like
Figure 2.4, which points to the right sense of cancer for a medical context.

LDAWN is a Bayesian framework, as each variable has a prior distribution. In
particular, the Dirichlet prior for 3, ;, specified by a scaling factor S and a normalized
vector 7, fulfills two functions. First, as the overall strength of S increases, we place a
greater emphasis on the prior. This is equivalent to the need for balancing as noted
by Abney and Light (1999).

The other function that the Dirichlet prior serves is to enable us to encode any
information we have about how we suspect the transitions to children nodes will be
distributed. For instance, we might expect that the words associated with a synset
will be produced in a way roughly similar to the token probability in a corpus. For
example, even though “meal” might refer to both ground cereals or food eaten at a
single sitting and “repast” exclusively to the latter, the synset [meal, repast, food
eaten at a single sitting] still prefers to transition to “meal” over “repast” given
the overall corpus counts (see Figure 2.1, which shows prior transition probabilities
for “revolver”).

By setting 7,;, the prior probability of transitioning from synset s to node ¢,
proportional to the total number of observed tokens in the children of i, we introduce
a Bayesian variation on information content (Resnik, 1995). As in Resnik’s definition,

this value for non-word nodes is equal to the sum of all the frequencies of hyponym
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words. Unlike Resnik, we do not divide frequency among all senses of a word; each
sense of a word contributes its full frequency to 7.

Because we initially thought that path length might bias our selection of paths, we
experimented with dividing by the path length during the sampling procedure. Better

results were achieved, however, by using the unweighted probability.

2.2 Posterior Inference with Gibbs Sampling

As described above, the problem of WSD corresponds to posterior inference: determin-
ing the probability distribution of the hidden variables given observed words and then
selecting the synsets of the most likely paths as the correct sense. Directly computing
this posterior distribution, however, is not tractable.

To approximate the posterior, we use Gibbs sampling, which has proven to be a
successful approximate inference technique for LDA (Griffiths and Steyvers, 2004). In
Gibbs sampling, like all Markov chain Monte Carlo methods, we repeatedly sample
from a Markov chain whose stationary distribution is the posterior of interest (Robert
and Casella, 2004). Even though we don’t know the full posterior, the samples can be
used to form an empirical estimate of the target distribution (Neal, 1993).

Gibbs sampling reproduces the posterior distribution by repeatedly sampling each
hidden variable conditioned on the current state of the other hidden variables and
the observations. In LDAWN;, for every word in every document we sample the topic
assignments zq, and a path through a topic Aq,. For both of these variables, we must
compute a conditional distribution over the possible values for these latent variables.
In this model, we integrate over 6, the document-specific distribution over topics and
3, the transition distribution over children of a synset. !

In LDAWN, the state of the chain is given by a set of assignments where each word

LAn alternative sampling scheme would be to also sample § and 3. This would yield (slightly)
simpler conditional distributions for the topic and paths, but would force us to sample multivariate,
continuous variables. In many models, it is simpler to integrate out such variables when possible.
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is assigned to a path through one of K WORDNET-WALK topics: u!* word w, has a
topic assignment z, and a path assignment A,. We use z7* and A" to represent the
topic and path assignments of all words except for u, respectively.

We sample the topic assignment and path jointly, conditioned on the assignments
of all other words. Compared to sampling the path and topic separately, this approach
is faster to converge, is similar to Gibbs sampling techniques for LDA is easier to
implement, and is intuitively appealing. For instance, suppose our model were trying
to understand what a “colt” was. Not sampling the path simultaneously would force
the word to keep a gun interpretation in every putative topic; moving the word into a
bucolic topic with a horse interpretation would require either forcing the word to take
a gun meaning in a bucolic topic or a horse meaning in a gunslinger topic.

The conditional distribution of a topic assignment and path is

p(zd,u = y>Ad,u =T | zd_ua Aiua Sa T, a)

:?(Adm =7 2au =1y, A", S, T)l?(zdm =1]z,", a)l. (2.2)

path topic

To expand these conditional terms, it is convenient to have terms that count the
number words that take each topic in a document and the number of transitions with
in a topic’'s WORDNET-WALK . We use tiu’j to denote the number of words other
than u assigned topic j in the document d that word u is in and b* up.e b0 denote the

number of transitions in the topic walk for the £ topic that go from a synset p to its

child ¢, not including the counts of the path associated with word wu.
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First, we consider the topic term of Equation 2.2:

p(zg'la) _ Jyp(z p(f|a)do
plzg"le) — fyp ZJ“IQ (6] )b

the posterior has Dirichlet distribution form (as in Equation 1.1)

J; (Hk#y th+a—1> gtvtay Jg
- fe [, 0% Fe—tdo

p(zd,u =Y | Zgu, a) =

these integrals are the inverse of Dirichlet normalizer (Equation 1.1)

B F(ty+ay+1)f‘(zktk+ozk)
F(ty—FOéy)F(Zktk—FOék—Fl)

and the gamma function can be reduced using I' (z + 1) = 2I'(2)
ty + oy

= —Zk (b + an) (2.3)

Similarly, the path term of Equation 2.2 is expanded using the same techniques but

taking the product over all of the transitions in the path 7. The final expansion,

p(A*= ”]ﬁy, )P(By,i | 7:)dBy s

p(Ad’u:ﬂ'|Zu:y,A_u,S, UJUEW]
’ )\]171' o | ﬁy, ) (6?4,2‘ | Ti)dﬁy,i
+ S;7;
o Suta 55 ) 1y, ¢ ) (2.4)
E Zk byzk + S

only allows paths words that end in the u!* word. As mentioned in Section 2.1.1,
we parameterize the prior for synset ¢ as a vector 7;, which sums to one, and a scale
parameter S. Putting equations 2.3 and 2.4 together, we have a joint probability
of a topic assignment and path assignment conditioned on all the topic and path

assignments of the other words in the corpus
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The Gibbs sampler is essentially a randomized hill climbing algorithm on the
posterior likelihood as a function of the configuration of hidden variables. The
numerator of Equation 2.1 is proportional to that posterior and thus allows us to
track the sampler’s progress. We assess convergence to a local mode of the posterior

by monitoring this quantity.

2.3 Experiments

In this section, we test the efficacy of using hyponomy links for WSD, describe the
properties of the topics induced by running the previously described Gibbs sampling
method on corpora, and how these topics improve WSD accuracy.

This setup begs the question of whether the structure of WORDNET is actually
useful for WSD as a probabilistic hierarchy. To test this, we created partial permuta-
tions of WORDNET by taking a proportion of the synsets in WORDNET and randomly
choosing a new parent for the node (this moves the entire subtree rooted at that
synset; we disallowed moves that would introduce a cycle).

The accuracy (Figure 2.3) steadily decreases as the fraction of synsets permuted
increases. Note, however, that even permuting all synsets in WORDNET does not do
as poorly as the random baseline. We believe that this is because information is still
available inside synsets (the word constituents of synsets are never permuted).

Of the two data sets used during the course of our evaluation, the primary dataset
was SEMCOR (Miller et al., 1993), which is a subset of the Brown corpus with
many nouns manually labeled with the correct WORDNET sense. The words in this
dataset are lemmatized, and multi-word expressions that are present in WORDNET are
identified. Only the words in SEMCOR were used in the Gibbs sampling procedure; the
synset assignments were only used for assessing the accuracy of the final predictions.

We also used the British National Corpus, which is not lemmatized and which does

29



0.37- \

0.36 -

w
a
1

Topics
5
— 25

Accura@/

0.34-
0.33-

0.32-

1 1 1 1 1 1
0.0 0.2 0.8 1.0

0.4 0.6
Percent of WordNet Permuted

Figure 2.3: Permuting the structure of WORDNET results in decreased disambiguation
accuracy, showing that the structure of WORDNET is helpful in creating improved
disambiguation.

not have multi-word expressions. The text was first run through a lemmatizer, and
then sequences of words which matched a multi-word expression in WORDNET were
joined together into a single word. We took nouns that appeared in SEMCOR twice or
in the BNC at least 25 times and used the BNC to compute the information-content

analog 7 for individual nouns.

2.3.1 Topics

Like the topics created by structures such as LDA, the topics in Table 2.2 coalesce
around reasonable themes. The word list was compiled by summing over all of the
possible leaves that could have generated each of the words and sorting the words by
decreasing probability. In the vast majority of cases, a single synset’s high probability
is responsible for the words’ positions on the list.

Reassuringly, many of the top senses for the present words correspond to the most
frequent sense in SEMCOR. For example, in Topic 4, the senses for “space” and

“function” correspond to the top senses in SEMCOR, and while the top sense for “set”
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Figure 2.4: The possible paths to reach the word “cancer” in WORDNET along with
transition probabilities from the medically-themed Topic 2 in Table 2.2, with the most
probable path highlighted. The dashed lines represent multiple links that have been
consolidated. Some words for immediate hypernyms have also been included to give
context. In all other topics, the person, animal, or constellation sense was preferred.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
president growth material point water plant music
party age object number house change film

city treatment color value road month work
election feed form function area worker life
administration day subject set city report time
official period part square land mercer world
office head self space home | requirement group
bill portion picture polynomial farm bank audience
yesterday length artist operator spring farmer play
court level art component | bridge | production thing
meet foot patient corner pool medium style
police maturity | communication direction site petitioner year
service center movement curve interest | relationship show

Table 2.2: The most probable words from six randomly chosen WORDNET-walks from
a thirty-two topic model trained on the words in SEMCOR. These are summed over
all of the possible synsets that generate the words. However, the vast majority of the
contributions come from a single synset.
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corresponds to “an abstract collection of numbers or symbols” rather than “a group
of the same kind that belong together and are so used,” it makes sense given the
math-based words in the topic. “Point,” however, corresponds to the sense used in
the phrase “I got to the point of boiling the water,” which is neither the top SEMCOR
sense nor a sense which makes sense given the other words in the topic.

While the topics presented in Table 2.2 resemble the topics one would obtain
through models like LDA (Blei et al., 2003), they are not identical. Because of the
lengthy process of Gibbs sampling, we initially thought that using LDA assignments
as an initial state would converge faster than a random initial assignment. While
this was the case, it converged to a state that was less probable than the randomly
initialized state and did no better at sense disambiguation (and sometimes worse).
The topics presented in 2.2 represent words both that co-occur together in a corpus
and co-occur on paths through WORDNET. Because topics created through LDA only
have the first property, they usually do worse in terms of both total probability and
disambiguation accuracy (see Figure 2.5).

Another interesting property of topics in LDAWN is that, with higher levels of
smoothing, words that don’t appear in a corpus (or appear rarely) but are in similar
parts of WORDNET might have relatively high probability in a topic. For example,
“maturity” in topic two in Table 2.2 is sandwiched between “foot” and “center,” both

of which occur about five times more than “maturity.”

2.3.2 Topics and the Weight of the Prior

Because the Dirichlet smoothing factor in part determines the topics, it also affects
the disambiguation. Figure 2.6 shows the modal disambiguation achieved for each of
the settings of S = {0.1,1,5,10,15,20}. Each line is one setting of K and each point
on the line is a setting of S. Each data point is a run for the Gibbs sampler for 10,000

iterations. The disambiguation, taken at the mode, improved with moderate settings
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Figure 2.5: Topics seeded with LDA initially have a higher disambiguation accuracy,
but are quickly matched by unseeded topics. The probability for the seeded topics
starts lower and remains lower.

of S, which suggests that the data are still sparse for many of the walks, although
the improvement vanishes if S is very large. This makes sense, as each walk has over
100,000 parameters, there are fewer than 100,000 words in SEMCOR, and each word
only serves as evidence to at most 19 parameters (the length of the longest path in
WORDNET).

Generally, a greater number of topics increased the accuracy of the mode, but after
around sixteen topics, gains became much smaller. The effect of 7 is also related to the
number of topics, as a value of S for a very large number of topics might overwhelm
the observed data, while the same value of .S might be the perfect balance for a smaller
number of topics. For comparison, the method of using a WORDNET-WALK applied
to smaller contexts such as sentences or documents achieves an accuracy of between

26% and 30%, depending on the level of smoothing.

2.3.3 Evaluation on Senseval

Using the best model as evaluated on SEMCOR, a model with 32 topics and S = 1, we

applied the model to Senseval2 and Senseval3 English all-words task. The model gave
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Figure 2.6: Each line represents experiments with a set number of topics and variable
amounts of smoothing on the SEMCOR corpus. The random baseline is at the bottom
of the graph, and adding topics improves accuracy. As smoothing increases, the prior
(based on token frequency) becomes stronger. Accuracy is the percentage of correctly
disambiguated polysemous words in SEMCOR at the mode.

an accuracy of 40.5% and 30.3%, respectively, outperforming some of the domain-aware

algorithms in the Senseval3 contest evaluation (Mihalcea et al., 2004).

2.4 Error Analysis

This method works well in cases where the delineation can be readily determined from

7« »” o«

the overall topic of the document. Words such as “kid,” “may,” “shear,” “coach,”
“Incident,” “fence,” “bee,” and (previously used as an example) “colt” were all perfectly
disambiguated by this method. Figure 2.4 shows the WORDNET-WALK corresponding
to a medical topic that correctly disambiguates “cancer.”

Problems arose, however, with highly frequent words, such as “man” and “time”

that have many senses and can occur in many types of documents. For example, “man”

can be associated with many possible meanings,
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1. man, adult male

2. serviceman, military man, man, military personnel

3. homo, man, human being, human

4. man (male subordinate)

5. man (virile and courageous person, worthy of respect)

6. man (husband or lover or boyfriend)

7. valet, valet de chambre, gentleman, gentleman’s gentleman, man
8. Man, Isle of Man

9. man, piece

10. world, human race, humanity, humankind, human beings, humans, mankind, man

Although we know that the “adult male” sense should be preferred, the alternative
meanings will also be likely if they can be assigned to a topic that shares common
paths in WORDNET; the documents contain, however, many other places, jobs, and
animals which are reasonable explanations (to LDAWN) of how “man” was generated.
Unfortunately, “man” is such a ubiquitous term that topics, which are derived from
the frequency of words within an entire document, are ultimately uninformative about
its usage.

Even changing the size of the document would not help us disambiguate “man,”
however, as we would have no reason to suspect that we would then see “man” oc-

bRENAA

curring more frequently with sibling terms like “chap,” “fellow,” “sirrah,” or “boy

7

wonder.” This reveals that our underlying disambiguation method requires signifi-

cant co-occurrence of words from the same semantic class. In order to successfully

)

disambiguate words like “man,” our method would have to be aware of syntagmatic
relationships.
While mistakes on these highly frequent terms significantly hurt our accuracy,

errors associated with less frequent terms reveal that WORDINET’s structure is not

easily transformed into a probabilistic graph. For instance, there are two senses of
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the word “quarterback,” a player in American football. One is position itself and
the other is a person playing that position. While one would expect co-occurrence
in sentences such as “quarterback is a well-paid position and is protected by burly
linemen, so our quarterback is happy,” the paths to both terms share only the root
node, thus making it highly unlikely a topic would cover both senses.

Although WORDNET is often criticized for its breadth and fine-grained senses,
and this too impacts our accuracy, an extraneous sense causes us no problem so long
as it is tucked away in an unvisited corner of WORDNET. However, rare senses do
present problems when they are placed next to more frequent terms in WORDNET.

Because of WORDNET’s breadth, rare senses also impact disambiguation. For
example, the metonymical use of “door” to represent a whole building as in the phrase
“girl next door” is under the same parent as sixty other synsets containing “bridge,”
“balcony,” “body,” “arch,” “floor,” and “corner.” Surrounded by such common terms
that are also likely to co-occur with the more conventional meanings of door, this very

rare sense becomes the preferred disambiguation of “door.”

2.5 Related Work

Abney and Light’s initial probabilistic WSD approach (1999) was further developed
into a Bayesian network model by Ciaramita and Johnson (2000), who likewise used
the appearance of unambiguous terms close to ambiguous ones to “explain away”
the usage of ambiguous terms in selectional restrictions. We have adapted these
approaches and put them into the context of a topic model.

Recently, other approaches have created ad hoc connections between synsets in
WORDNET and then considered walks through the newly created graph. Given the
difficulties of using existing connections in WORDNET, Mihalcea (2005) proposed

creating links between adjacent synsets that might comprise a sentence, initially
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setting weights to be equal to the Lesk overlap between the pairs, and then using the

PageRank algorithm to determine the stationary distribution over synsets.

2.5.1 Topics and Domains

Yarowsky was one of the first to contend that “there is one sense for discourse” (1995).
This has lead to the approaches like that of Magnini (Magnini et al., 2001) which
assign one of a fixed set of categories to a text and then deterministically use the
domain annotation attached to WORDNET to assign a single synset.

LDAWN is different in that the categories are not an a priori concept that
must be painstakingly annotated within WORDNET and require no augmentation of
WORDNET. This technique could indeed be used with any hierarchy. The concepts
discovered by our model are the ones that, via the assumed generative process, best
describe the observed documents and hierarchy.

Recently, the use of unsupervised topics have gained popularity as a means for
improving WSD. Cai et al. (2007) used topic distributions as a feature in a standard
discriminative WSD algorithm. This means that the flow of information is entirely one
way; while topics can influence the sense distinction, the topics remain static. Other
work (Brody and Lapata, 2009) has used tools from topic modeling on smaller contexts
(at most a dozen words) to induce word senses (rather than using a precompiled

dictionary).

2.5.2 Similarity Measures

Our approach gives a probabilistic method of using information content (Resnik, 1995)
as a starting point that can be adjusted to cluster words in a given topic together;
this is similar to the Jiang-Conrath similarity measure (1997), which has been used in
many applications in addition to disambiguation. Patwardhan (2003) offers a broad

evaluation of similarity measures for WSD.
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Our technique for combining the cues of topics and distance in WORDNET is
adjusted in a way similar in spirit to Buitelaar and Sacaleanu (2001), but we consider
the appearance of a single term to be evidence for not just that sense and its immediate
neighbors in the hyponomy tree but for all of the sense’s children and ancestors.

Like McCarthy (2004), our unsupervised system acquires a single predominant
sense for a domain based on a synthesis of information derived from a textual corpus,
topics, and WORDNET-derived similarity, a probabilistic information content measure.
By adding syntactic information from a thesaurus derived from syntactic features
(taken from Lin’s automatically generated thesaurus (1998)), McCarthy achieved
48% accuracy in a similar evaluation on SEMCOR; LDAWN is thus substantially
less effective in disambiguation compared to state-of-the-art methods (c.f. results in
Figure 2.6). This suggests, however, that other methods might be improved by adding
topics and that our method might be improved by using more information than word

counts.

2.6 Extensions

The model presented here serves as a bridge between the work in both topic modeling
and WSD. From the perspective of the topic modeling community, the model here
demonstrates a means for explicitly adding a notion of semantic coherence to the
discovered topics and encouraging correlation between vocabulary terms in topics.
From the perspective of the WSD community, this model demonstrates that, at least
for a simple WSD model, introducing automatically discovered topics can improve
accuracy.

In the next chapter, we further explore another consequence of this model. Because
this model separates meaning (the structure of the ontology) from lexicalization (the

leaves in the ontology), it enables us to create topic models for multilingual corpora.

38



Chapter 3

Bridging the Gap Between

Languages

Latent Dirichlet Allocation (LDA) is a technique of discovering coherent topics in
the documents in a corpus. LDA can capture coherence in a single language because
semantically similar words tend to be used in similar contexts. This is not the
case in multilingual corpora. For example, even though “Hund” and “hound” are
orthographically similar and have nearly identical meanings in German and English (i.e.,
“dog”), they will likely not appear in similar contexts because almost all documents
are written in a single language. Consequently, a topic model fit on a bilingual corpus
reveals coherent topics but bifurcates the topic space between the two languages
(Table 3.1). In order to build coherent topics across languages, there must be some
connection to tie the languages together.

A topic model on unaligned text in multiple languages would allow the many
applications developed for monolingual topic models (for an overview, see Section 1.1.5)
to be applied to a broader class of corpora and would help monolingual users to explore
and understand multilingual corpora. In this chapter, we develop multilingual LDAWN;

an extension of the model presented in the previous chapter. This model discovers
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topics that are consistent across multiple languages.

Previous multilingual topic models connect the languages by assuming parallelism
at either the sentence level (Zhao and Xing, 2006) or document level (Kim and
Khudanpur, 2004; Tam and Schultz, 2007; Ni et al., 2009; Mimno et al., 2009). Many
parallel corpora are available, but they represent a small fraction of corpora. They
also tend to be relatively well annotated and understood, making them less suited for
unsupervised methods like LDA.

In contrast, we connect the languages by assuming a shared semantic space. In
Chapter 2 we created an explicit semantic space for English. However, the semantic
space created is not English specific. Since WORDNET was first created, a number
of other languages have used WORDNET’s internal structure as a guide to attach
other languages to WORDNET internal structure. After reviewing what a multilingual
WORDNET looks like, we expand the model from the previous chapter to accommodate
multiple languages and evaluate the model on a WSD task and a task inspired by

information retrieval.

Topic 0 Topic 1 Topic 2 Topic 3
market group bericht praesident
policy vote fraktion menschenrecht
service member abstimmung jahr
sector committee kollege regierung
competition report ausschuss parlament
system matter frage mensch
employment debate antrag hilfe
company time punkt volk
union resolution | abgeordnete region

Table 3.1: Four topics from a ten topic LDA model run on the German and English
sections of Europarl. Without any connection between the two languages, the topics
learned are language-specific.
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3.1 Assembling a Multilingual Semantic Hierarchy

Linguists have also created WORDNET- like networks for languages besides English.
In this work, we focus on German, one of the first successors to the English WORD-
NET (Hamp and Feldweg, 1997). However, we stress that there is nothing specific in
our approach to German; this approach is applicable to any languages that have been
been organized in a manner similar to WORDNET’s hyponomy relationship.

Many concepts are shared across languages. For instance, the German synset
[Umleitung, Umgehung] is equivalent to the English synset [detour, roundabout way].
Some concepts are lexicalized in one language but not the other. For instance, the
German synset [Beinbruch], a leg fracture, doesn’t have a fixed expression in English,
but it still can be considered a hyponym of the English synset [break, fracture].

The different level of equivalences are formalized in the interlingual index (ILI),
which is used by the EuroWordNet project (Vossen, 1998). For German (Kunze and
Lemnitzer, 2002), it explicitly links synsets across languages; in this work, we focus on

” W«

the “synonym,” “near synonym,” and “hypernym” relationships. If an English synset
is listed as a hypernym, synonym, or near synonym of a German synset, the German
words in that synset are added to the English synset.

Because this WORDNET, by construction, is much more complete for English than

German, we attempted to reduce this imbalance using the following methods:
Balanced Only retain English words in a synset if there were also German words.

Dictionary Using a dictionary (Richter, 2008), if there is an English word with an unam-
biguous translation (the entry for the English word only points to one German
word, and the entry for the German word only points to the same English word),

add that German word to the synset.

Table 3.2 shows the relative sizes of the resulting multilingual WORDNET when created

IFor a review of this process for European languages, see (Vossen, 1998).
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Raw Bal Raw + Dict Bal + Dict
Eng Ger Eng Ger Eng Ger Eng Ger

Words 146347 13970 23481 13970 146347 17795 29942 17795
Synsets 82115 11198 11198 11198 82115 14524 14524 14524
Words per synset  1.78 1.25 2.10 1.25 1.78 1.23 2.06 1.23

Table 3.2: The size and coverage of a combined German-English WORDNET. “Raw”
includes all words in both languages, “Balanced” only includes synsets that have a
representative from German, and “Dictionary” uses a dictionary to add translations
to unambiguous words.

with these strategies.

Initial experiments showed that ensuring a balance between each WORDNET
was critical and that including more words leads to more comprehensive coverage of
vocabulary (especially for technical terms), so for the rest of the experiments in this
chapter, we focus on using the multilingual WORDNET with balanced words expanded
by using the dictionary.

With this new WORDNET that has multiple means of expressing many synsets,

we now need to adjust our generative model to account for multiple languages.

3.2 A Language Agnostic Generative Process

In Section 2.1, we described a monolingual process for drawing from a distribution
over words specified by WORDNET. In this section, we extend this process to handle
a WORDNET with multiple languages.

It is helpful to separate the generative process process for producing a word in
language [ in topic walk k£ into two stages: choosing a synset and choosing a word
given that synset. Only the second step is language dependent; the first step can be
the same for all languages. The generative process we outline below is different from
the generative process in Section 2.1 in that we explicitly differentiate between synsets
and words in the generative process. In the monolingual case in Chapter 2, topology

was sufficient to differentiate words from synsets (in that model, by construction, all
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leaf nodes were words).

We must choose both a synset and a word. When we reach a synset, we flip a
biased coin to choose whether we continue to another synset or we stop at the synset
and emit a word. The stopping probability is wy, p, specific to each topic and synset
(but shared for all languages). If we choose not to stop, we continue on to one of the
children of the current synset. The multinomial distribution [ gives a probability
over each of the node’s children.

If we did choose to stop and emit a word rather than continuing to a a child, we now
must emit a word from synset s. Here, it becomes important that we already know the
language of the document, /;. While each synset in each topic has a language-specific
distribution over the words, we only use the distribution over words that is consistent

with the document’s language, ¢y, 5;, to choose the word.

3.2.1 Multilingual Priors

As in the case of a monolingual walk over the concept hierarchy, we want to provide
guidance to the multilingual model as to which parts of the hierarchy it should favor.
We do this by defining a prior distributions over the variables w, (3, and ¢ discussed
above. This is more difficult than with LDAWN because we are dealing with multiple
languages; we shouldn’t allow one language to overwhelm the other because of quirks
of the corpus or WordNet.

To define the priors 7, «, and 70, we will define frequency counts, specific to to
a word and language, and hyponym counts, specific to synsets but independent of
language.

As before, we take our frequency counts from a balanced corpus and derived a

count f;(w) for every token w in language [. We now create a normalizer F; for each
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language,

Fr= )Y fw).

weW N,
Note that we are not summing over all of the tokens in the language, only the tokens
which appear in the language’s WORDNET. This prevents the coverage of a WORDNET
from affecting the relative strength of a language. which gives us a raw normalized

count for each token w,

filw) = : (3.1)

These counts are at the token level, but we need counts at the synset level. We
define hypo,(s) to be the multiset all of the tokens in language [ that are a part of
a synset that is a hyponym of synset s, and we define s[l] to be all of the words in

language [ that are in synset s. This allows us to define a hyponym count for a synset s

W) =33 fw)+ Y A (3.2)

wes|l] tehypo,(s)

~~ -~

words in synset  descendant synsets

Note that the synset counts are independent of language and reflect the preferences of
all languages.

We now have all of the counts needed to define our priors: the prior for transitions
(synset to synset), the prior for emission (synset to word), and the prior for stopping

(moving from choosing synset to choosing a word).

Transition The transition prior for transitioning from synset s to synset t is inde-
pendent of language, is proportional to the hyponym count of each synset, and is

defined as
h(t)
Z’UEC(S) h('U) ,

where ¢(s) is the set of all the direct hyponyms of s.

Bst = (3.3)
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Emission The emission prior is not language independent. For a synset s, its
emission probability over its words in language [ is proportional to the normalized
frequency.

77l,w == )
Zues[l]

where s[l] is the set of all the words in synset s from language .

Stop The prior probability for whether to stop at a node and emit a word or continue
by transitioning to a child combines the counts used in the previous two definitions.
The probability of stopping is proportional to the total counts of all tokens in the
synset in all languages, and the probability of continuing is proportional to the total

of all hyponym counts. Thus, the prior probability of stopping is

o. = Zl ZwES[l] fl(w)
T Zl Zwa[l} filw) + Ztec(s) h@).

(3.5)

For these experiments, we used the British National Corpus (BNC) (University
of Oxford, 2006) as our English balanced corpus and the Digitales Worterbuch der
deutschen Sprache (DWDS) (Geyken, 2007)

3.2.2 Specifying the Generative Process

We introduced the new aspects of this model in the previous section: the language
of documents, a per-language distribution over words for each synset and a separate
stopping probability for each synset (these are depicted as a generative model in
Figure 3.1). The generative process for multilingual LDAWN is as follows (differences
from LDAWN are highlighted in italics):

1. For each topic, k € {1,..., K}

(a) For each synset h € {1,..., H} in the hierarchy

i. Choose transition probabilities G, ~ Dir(STy).
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Figure 3.1: The graphical model for ML-LDAWN. The bottom plate is similar to LDA,
but with the addition of a known language for each document. The top plate replaces
the multinomial distribution of LDA with a hierarchical distribution over words from
an ontology with known information content (the shaded hyperparameters).

ii. Choose stopping probabilities wy j, ~ Beta(So, S(1 —0),).

ili. For each language [, choose emission probabilities ¢y 1 ~ Dir(np ).
2. For each document d € {1,..., D} with language [

(a) Select a topic distribution 64 ~ Dir(7)
(b) For each word n € {1,...,Ng}
i. Select a topic zq, ~ Mult(6y)
ii. Create a path Ay, starting with the root node hy.
iii. Given the current node h:
A. Choose whether to emit a word with probability wy,.
B. If we chose to emit a word, choose wy, ~ Mult(¢., . .1)-
C. Otherwise, choose the next node in the walk b’ ~ Mult(8.,,,n); add

the step Ap s to the path Ag,. Repeat with h' as the current node.
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3.3 Inference

We use posterior inference to discover the transition probabilities, stopping probabili-
ties, and emission probabilities of the multilingual distributions over the synsets and
words in WORDNET in addition to the per-document topic distributions and topic
assignments of each word. We are given the language and words in each document
and the information content information as described in section 3.2.1.

Inference in ML-LDAWN proceeds in much the same way as for LDAWN. The
probability of a word in position u having topic y and path 7 in document d with
language [ given the transition, stopping, and emission distributions for the multilingual

WORDNET walks is

p(zd’u =Y Adv“ =7 ’ 04, B, w, ¢) = (36)
ed k H 1 - wz ﬁ)\,l,]] w)\end (b)‘endyldywu . (37)
E,J)G)\ R )

topic continue, pick child stop, emit word

As in Section 2.2, we use Gibbs sampling to sample the current topic and path of each
word, conditioning on the topic and paths of all of the other words.

As before, we integrate out all of the multinomial random variables

P(2iw =Y, Nau =7 |2, A", S, T, a0, 0)

////ad (Zaw = Y, Mg | 04, B, w, , 274 A7)

tdy—FOéy H |:<Ok7¢,T+SO') ( y,i,j—FSTi,j)]
td -+ Zk Qy Cki, T S bk,i,- +S
%,_/

(i,5)em

J/

topic ~

continue, pick child
(Oﬂ-enva- + S(l B Uﬂend)) ( fldvﬂ-endeu + nldvﬂ-endeu ) (3 8)
Oﬂendv' + S fldvﬂ'endv' + Zk nld77'rend7k

(.

stop, emit word
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
president member bericht volk kommission
praesident matglied mr group commission
gentleman  community report gruppe union

herr menge fact people union
land measure tatsache member council
country markt amendment matglied rat
european market direktive menschheit house
woman volk directive world parlament
frau people bedingung place year
gebiet relation member time jahr
area beziehung mitglied item frage
europaeer region agreement country proposal
development level thema conflict question
entwicklung fund iformation  widerstreit  parliament
citizen schritt information man bundestag

Table 3.3: Topics discovered by a MLDA on the Europarl dataset. Observe that topics
have consistency across languages. For instance, in topic 4, “menschheit” (humanity),
“widerstreit” (conflict), and “mitglied” (member) are clustered together with the
English words “people,” “conflict,” and “member.”

3.4 Experiments

In this section we show evidence that this model can discover consistent topics on
multilingual datasets. We use a dataset called the Europarl corpus (Koehn, 2005),
which is a collection of the proceedings of the European parliament translated into
many of the languages of the countries in the European Union. We use the English and
German versions and create documents based on the chapter breaks in the proceedings
(a chapter is debate / discussion on a single topic). Note that even though these are
parallel texts, we ignore the parallel component of these data (in the next chapter,
we show how unaligned algorithms like these can recover the connections between

documents).
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3.5 Discussion

ML-LDAWN relies on having complete and accurate translations of WORDNET in
multiple languages. German has one of the more complete WORDNET mappings, but
is still relatively incomplete. Most other languages are even more sparse, and the
model has no way to overcome a lack of connections, even if there are strong cues
from the data that concepts should be related. Even worse, if a language lacks a
WORDNET, we cannot apply the method of this chapter at all.

In the next chapter, we propose a method that overcomes this limitation by learning
and adapting a mapping across languages as it learns multilingual topics. It does so
in a way that can adapt to relatively small amounts of interlingual annotation, in

contrast to the method outlined here.
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Chapter 4

Learning a Shared Semantic Space

In the previous chapter, we developed a multilingual topic model that required
WORDNETsS to be available in the languages of interest. In this chapter, we develop a
model that does not require such a labor-intensive investment to create a topic model
that is consistent across languages. Like the model of the previous chapter, we do not
assume that we have text that is parallel at the sentence or paragraph level.

We propose the MUItilingual TOpic model for unaligned text (MuTo0). MuTo
does not assume that it is given any explicit parallelism but instead discovers a
parallelism at the vocabulary level. To find this parallelism, the model assumes that
similar themes and ideas appear in both languages. For example, if the word “Hund”
appears in the German side of the corpus, “hound” or “dog” should appear somewhere

on the English side.

4.1 Learning Dictionaries with Text Alone

The assumption that similar terms will appear in similar contexts has also been used
to build lexicons from non-parallel but comparable corpora. What makes contexts
similar can be evaluated through such measures as co-occurrence (Rapp, 1995; Tanaka

and Iwasaki, 1996) or tf-idf (Fung and Yee, 1998). Although the emphasis of our work
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is on building consistent topic spaces and not the task of building dictionaries per se,
good translations are required to find consistent topics. However, we can build on
successful techniques at building lexicons across languages.

This paper is organized as follows. We detail the model and its assumptions in
Section 4.2, develop a stochastic expectation maximization (EM) inference procedure
in Section 4.3, discuss the corpora and other linguistic resources necessary to evaluate

the model in Section 4.4, and evaluate the performance of the model in Section 4.5.

4.2 Model

We assume that, given a bilingual corpus, similar themes will be expressed in both
languages. If “dog,” “bark,” “hound,” and “leash” are associated with a pet-related
topic in English, we can find a set of pet-related words in German without having
translated all the terms. If we can guess or we are told that “Hund” corresponds to
one of these words, we can discover that words like “Leinen,” “Halsband,” and “Bellen”
(“leash,” “collar,” and “bark,” respectively) also appear with “Hund” in German,
making it reasonable to guess that these words are part of the pet topic as expressed
in German.

These steps—Ilearning which words comprise topics within a language and learning
word translations across languages—are both part of our model. In this section,
we describe MUTO’s generative model, first describing how a matching connects

vocabulary terms across languages and then describing the process for using those

matchings to create a multilingual topic model.

4.2.1 Matching across Vocabularies

We posit the following generative process to produce a bilingual corpus in a source

language S and a target language T'. First, we select a matching m over terms in both
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languages. The matching consists of edges (v;, v;) linking a term v; in the vocabulary
of the first language Vs to a term v; in the vocabulary of the second language Vp. A
matching can be viewed as a bipartite graph with the words in one language Vg on
one side and V7 on the other. A word is either unpaired or linked to a single node in
the opposite language.

The use of a matching as a latent parameter is inspired by the matching canonical
correlation analysis (MCCA) model (Haghighi et al., 2008), another method that
induces a dictionary from arbitrary text. MCCA uses a matching to tie together
words with similar meanings (where similarity is based on feature vectors representing
context and morphology). We have a slightly looser assumption; we only require
words with similar document level contexts to be matched. Another distinction is
that instead of assuming a uniform prior over matchings, as in MCCA, we consider
the matching to have a regularization term 7; ; for each edge from source word v; to
target word v;. We prefer larger values of m; ; in the matching.

This parameterization allows us to incorporate prior knowledge derived from
morphological features, existing dictionaries, or dictionaries induced from non-parallel
text. We can also use the knowledge gleaned from parallel corpora to understand
the non-parallel corpus of interest. Sources for the matching prior 7 are discussed in

Section 4.4.

4.2.2 From Matchings to Topics

In MuToO, documents are generated conditioned on the matching. As in LDA,
documents are endowed with a distribution over topics. Instead of being distributions
over terms, topics in MUTO are distributions over pairs in the matching m. Going
back to our intuition, one such pair might be (“hund”, “hound”), and it might have
high probability in a pet-related topic. Another difference from LDA is that unmatched

terms don’t come from a topic but instead come from a unigram distribution specific to

52



each language. The full generative process of the matching and both corpora follows:

1. Choose a matching m across languages where the probability of an edge m; ;
being included is proportional to m; ;

2. Choose multinomial term distributions:

(a) For languages L € {S,T}, choose background distributions p;, ~ Dir(7y)
over the words not in m.
(b) For topic index i = {1,..., K}, choose topic 3; ~ Dir(\) over the pairs

(vs,vr) in M.
3. For each document d = {1,... D} with language l4:

(a) Choose topic weights 8,4 ~ Dir(«).
(b) For each n = {1,..., M} :
i. Choose topic assignment z, ~ Mult(1,0,).
ii. Choose ¢, from {matched, unmatched} uniformly at random.
iii. If ¢, matched, choose a pair ~ Mult(1, 3, (m)) and select the member
of the pair consistent with /g4, the language of the document, for w,,.

iv. If ¢, is unmatched, choose w, ~ Mult(1, p;,).

Both p and 3 are distributions over words. The background distribution pg is a
distribution over the (|Vs| — |m|) words not in m, pr similarly for the other language,
and [ is a distribution over the word pairs in m. Because a term is either part of a
matching or not, these distributions partition the vocabulary.

The background distribution is the same for all documents. We choose not to have
topic-specific distributions over unmatched words for two reasons. The first reason is
to prevent topics from having divergent themes in different languages. For example,
even if a topic had the matched pair (“Turkei”, “Turkey”), distinct language topic
multinomials over words could have “Istanbul,” “Atatiirk,” and “NATO” in German

but “stuffing,” “gravy,” and “cranberry” in English. The second reason is to encourage
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Figure 4.1: Graphical model for MuTo0. The matching over vocabulary terms m
determines whether an observed word w,, is drawn from a topic-specific distribution (3
over matched pairs or from a language-specific background distribution p over terms
in a language.

very frequent nouns that can be well explained by a language-specific distribution

(and thus likely not to be topical) to remain unmatched.

4.3 Inference

Given two corpora, our goal is to infer the matching m, topics (3, per-document topic
distributions 6, and topic assignments z. We solve this posterior inference problem
with a stochastic EM algorithm (Diebolt and Ip, 1996). There are two components of
our inference procedure: finding the maximum a posteriori matching and sampling
topic assignments given the matching.

We first discuss estimating the latent topic space given the matching. We use a
collapsed Gibbs sampler (Griffiths and Steyvers, 2004) to sample the topic assignment
of the n'* word of the d"* document conditioned on all other topic assignments and the
matching, integrating over topic distributions § and the document topic distribution
0. Dg; is the number of words assigned to topic ¢ in document d and C;; is the

number of times either of the terms in pair ¢ has been assigned topic 7. For example,
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if t = (hund, hound), “hund” has been assigned topic three five times, and “hound”
has been assigned topic three twice, then Cs; = 7.

The conditional distribution for the topic assignment of matched words is

P(zan = i|z_;, m) x
Da,i+% Cz}m(ﬂ’n)"‘ﬁ
Dd,,+01 C¢’4+)\ )

and unmatched words are assigned a topic based on the document topic assignments

alone.

Now, we choose the maximum a posteriori matching given the topic assignments
using the Hungarian algorithm (Lawler, 1976), a general method for finding a maximal
bipartite matching given two vertex sets and edge weights. We first consider how
adding a single edge to the matching impacts the likelihood. Adding an edge (4, 7)
means that the the occurrences of term 7 in language S and term j in language T
come from the topic distributions instead of two different background distributions.
So we must add the likelihood contribution of these new topic-specific occurrences to
the likelihood and subtract the global language-multinomial contributions from the
likelihood.

Using our posterior estimates of topics 4 and p from the Markov chain, the number
of times word 7 appears in language [, N;;, and the combined topic count for the

putative pair C} (; j), the resulting weight between term i and term j is

Pij = ZCk,(i,j) log Br,(i,5) (4.1)
k

—Ng;log ps; — Nrpjlog prj +logm; ;.

Maximizing the sum of the weights included in our matching also maximizes the

posterior probability of the matching.!

'Note that adding a term to the matching also potentially changes the support of 3 and p. Thus,
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Intuitively, the matching encourages words to be paired together if they appear
in similar topics, are not explained by the background language model, and are
compatible with the preferences expressed by the matching prior ; ;. The words that
appear only in specialized contexts will be better modeled by topics rather than the
background distribution.

MuToO requires an initial matching which can subsequently be improved. In all
our experiments, the initial matching contained all words of length greater than five
characters that appear in both languages. For languages that share similar orthography;,
this produces a high precision initial matching (Koehn and Knight, 2002).

This model suffers from overfitting; running stochastic EM to convergence results
in matchings between words that are unrelated. We correct for overfitting by stopping
inference after three M steps (each stochastic E step used 250 Gibbs sampling iterations)
and gradually increasing the size of the allowed matching after each iteration, as
in (Haghighi et al., 2008). Correcting for overfitting in a more principled way, such
as by explicitly controlling the number of matchings or employing a more expressive

prior over the matchings, is left for future work.

4.4 Data

We studied MUTO on two corpora with four sources for the matching prior. We use a
matching prior term 7 in order to incorporate prior information about which matches
the model should prefer. Which source is used depends on how much information is
available for the language pair of interest. The following prior sources are listed in

order of decreasing availability of precompiled bilingual resources.

the counts associated with terms ¢ and j appear in the estimate for both 3 (corresponding to the log
likelihood contribution if the match is included) and p (corresponding to the log likelihood if the
match is not added); this is handled by the Gibbs sampler across M-step updates because the topic
assignments alone represent the state.
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Pointwise Mutual Information from Parallel Text Even if our dataset of
interest is not parallel, we can exploit information from available parallel corpora in
order to formulate 7. For one construction of m, we computed the pointwise mutual
information (PMI) for terms appearing in the translation of aligned sentences in a
small German-English news corpus (Koehn, 2000). Specifically, we use

SL'
PMIZ‘J' = IOg S-—SJ-’
1.9,

)

where s; j is the number of sentences that feature the word ¢ in the source language
and j in the translated version of the sentence in the target language; where s;. is
the number of sentences in the source language with the word ¢; and where s. ; is the

number of sentences in the target language with the word j.

Dictionary If a machine readable dictionary is available, we can use the existence of
a link in the dictionary as our matching prior. We used the Ding dictionary (Richter,
2008); terms with N translations were given weight % with all of the possible transla-
tions given in the dictionary (connections which the dictionary did not admit were

effectively disallowed). This gives extra weight to unambiguous translations.

MCCA For a bilingual corpus, matching canonical correlation analysis finds a
mapping from latent points z;, z; € R™ to the observed feature vector f(v;) for a term
v; in one language and f(v;) for a term v; in the second language. We run the MCCA

algorithm on our bilingual corpus to learn this mapping and use
logm;; = —||zi — 7.

This distance between preimages of feature vectors in the latent space is proportional

to the weight used in MCCA algorithm to construct matchings. We used the same
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method for selecting an initial matching for MCCA as for MuTo0. Thus, identical
pairs were used as the initial seed matching rather than randomly selected pairs from
a dictionary. When we used MCCA as a prior, we ran MCCA on the same dataset as

a first step to compute the prior weights.

Edit Distance If there are no reliable resources for our language pair but we assume
there is significant borrowing or morphological similarity between the languages, we

can use string similarity to formulate 7. We used

1
’NiJ o 01 + ED(Ui, Uj) '

Although deeper morphological knowledge could be encoded using a specially derived
substitution penalty, all substitutions and deletions were penalized equally in our

experiments.

4.4.1 Corpora

Although MUTo0 is designed with non-parallel corpora in mind, we use parallel corpora
in our experiments for the purposes of evaluation. We emphasize that the model does
not use the parallel structure of the corpus. Using parallel corpora also guarantees
that similar themes will be discussed, one of our key assumptions.

First, we analyzed the German and English proceedings of the European Parlia-
ment (Koehn, 2005), where each chapter is considered to be a distinct document. Each
document on the English side of the corpus has a direct translation on the German
side; we used a sample of 2796 documents.

Another corpus with more variation between languages is Wikipedia. A bilin-
gual corpus with explicit mappings between documents can be assembled by taking
Wikipedia articles that have cross-language links between the German and English

versions. The documents in this corpus have similar themes but can vary considerably.
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Documents often address different aspects of the same topic (e.g. the English article
will usually have more content relevant to British or American readers) and thus are
not generally direct translations as in the case of the Europarl corpus. We used a
sample of 2038 titles marked as German-English equivalents by Wikipedia metadata.

We used a part of speech tagger (Schmid, 1994) to remove all non-noun words.
Because nouns are more likely to be constituents of topics (Griffiths et al., 2005)
than other parts of speech, this ensures that terms relevant to our topics will still be
included. It also prevents uninformative but frequent terms, such as highly inflected
verbs, from being included in the matching.? The 2500 most frequent terms were
used as our vocabulary. Larger vocabulary sizes make computing the matching more
difficult as the full weight matrix scales as V2, although this could be addressed by

filtering unlikely weights.

4.5 Experiments

We examine the performance of MUTO on three criteria. First, we examine the
qualitative coherence of learned topics, which provides intuition about the workings
of the model. Second, we assess the accuracy of the learned matchings, which ensures
that the topics that we discover are not built on unreasonable linguistic assumptions.
Last, we investigate the extent to which MUTO can recover the parallel structure of
the corpus, which emulates a document retrieval task: given a query document in the
source language, how well can MUTO find the corresponding document in the target
language?

In order to distinguish the effect of the learned matching from the information
already available through the matching prior 7, for each model we also considered a

“prior only” version where the matching weights are held fixed and the matching uses

2Although we used a part of speech tagger for filtering, a stop word filter would yield a similar
result if a tagger or part of speech dictionary were unavailable.
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
apple:apple nbsp:nbsp bell:bell lincoln:lincoln quot:quot
code:code pair:jahr nobel:nobel abraham:abraham time:schatten
anime:anime exposure:kategorie alfred:alfred union:union world:kontakt
computer:computer space:sprache claim:ampere united:nationale history:roemisch
style:style bind:bild alexander:alexander president:praesident number:nummer
character:charakter price:thumb proton:graham party:partei math:with
ascii:ascii belt:zeit telephone:behandlung states:status term:zero
line:linie decade:bernstein experiment:experiment state:statue axiom:axiom
program:programm deal:teil invention:groesse republican:mondlandung system:system
software:software name:name acoustics:strom illinois:illinois theory:theorie

Table 4.1: Five topics from a twenty topic MUTO model trained on Wikipedia using
edit distance as the matching prior 7. Each topic is a distribution over pairs; the top
pairs from each topic are shown. Topics display a semantic coherence consistent with
both languages. Correctly matched word pairs are in bold.

only the prior weights (i.e., only m; ; is used in Equation 4.2).

4.5.1 Learned Topics

To better illustrate the latent structure used by MuTo0 and build insight into the
workings of the model, Table 4.1 shows topics learned from German and English
articles in Wikipedia. Each topic is a distribution over pairs of terms from both
languages, and the topics seem to demonstrate a thematic coherence. For example,
Topic 0 is about computers, Topic 2 concerns science, etc.

Using edit distance as a matching prior allowed us to find identical terms that
have similar topic profiles in both languages such as “computer,” “lovelace,” and

W

“software.” It also has allowed us to find terms like “objekt,” “astronom,” “programm,”
and “werk” that are similar both in terms of orthography and topic usage.

Mistakes in the matching can have different consequences. For instance, “earth”
is matched with “stickstoff” (nitrogen) in Topic 2. Although the meanings of the
words are different, they appear in sufficiently similar science-oriented contexts that it
doesn’t harm the coherence of the topic.

In contrast, poor matches can dilute topics. For example, Topic 4 in Table 4.1
seems to be split between both math and Roman history. This encourages matches

between terms like “rome” in English and “romer” in German. While “romer” can

refer to inhabitants of Rome, it can also refer to the historically important Danish
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Topic 0

Topic 1

wikipedia:agatha
degree:christie
month:miss
director:hercule
alphabet:poirot
issue:marple
ocean:modern
atlantic:allgemein

alexander:temperatur
country:organisation
city:leistung
province:mcewan
empire:auftreten
asia:factory
afghanistan:status
roman:auseinandersetzung

murder:harz
military:murder

government:verband
century:fremde

Table 4.2: Two topics from a twenty topic MUT0 model trained on Wikipedia with
no prior on the matching. Each topic is a distribution over pairs; the top pairs from
each topic are shown. Without appropriate guidance from the matching prior, poor
translations accumulate and topics show no thematic coherence.

mathematician and astronomer of the same name. This combination of different
topics is further reinforced in subsequent iterations with more Roman / mathematical
pairings.

Spurious matches accumulate over time, especially in the version of MUTO with
no prior. Table 4.2 shows how poor matches lead to a lack of correspondence between
topics across languages. Instead of developing independent, internally coherent topics
in both languages (as was observed in the naive LDA model in Table 3.1), the arbitrary

matches pull the topics in many directions, creating incoherent topics and incorrect

matches.

4.5.2 Matching Translation Accuracy

Given a learned matching, we can ask what percentage of the pairs are consistent with
a dictionary (Richter, 2008). This gives an idea of the consistency of topics at the
vocabulary level.

These results further demonstrate the need to influence the choice of matching
pairs. Figure 4.2 shows the accuracy of multiple choices for computing the matching
prior. If no matching prior is used, essentially no correct matches are chosen.

Models trained on Wikipedia have lower vocabulary accuracies than models trained
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on Europarl. This reflects a broader vocabulary, a less parallel structure, and the
limited coverage of the dictionary. For both corpora, and for all prior weights, the
accuracy of the matchings found by MuTo is nearly indistinguishable from matchings
induced by using the prior weights alone. Adding the topic structure neither hurts

nor helps the translation accuracy.

4.5.3 Matching Documents

While translation accuracy measures the quality of the matching learned by the
algorithm, how well we recover the parallel document structure of the corpora measures
the quality of the latent topic space MUT O uncovers. Both of our corpora have explicit
matches between documents across languages, so an effective multilingual topic model
should associate the same topics with each document pair regardless of the language.

We compare MUTO against models on bilingual corpora that do not have a
matching across languages: LDA applied to a multilingual corpus using a union and
intersection vocabulary. For the union vocabulary, all words from both languages are
retained and the language of documents is ignored. Posterior inference in this setup
effectively partitions the topics into topics for each language, as in Table 3.1. For the
intersection vocabulary, the language of the document is ignored, but all terms in one
language which don’t have an identical counterpart in the other are removed.

If ML-LDAWN finds a consistent latent topic space, then the distribution of topics
0 for matched document pairs should be similar. For each document d, we computed
the the Hellinger distance between its # and all other documents’ # and ranked them.
The proportion of documents less similar to d than its designated match measures
how consistent our topics are across languages.

These results are presented in Figure 4.3. For a truly parallel corpus like Europarl,
the baseline of using the intersection vocabulary did very well (because it essentially

matched infrequent nouns). On the less parallel Wikipedia corpus, the intersection
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baseline did worse than all of the MUTO methods. On both corpora, the union
baseline did little better than random guessing.

Although morphological cues were effective for finding high-accuracy matchings,
this information doesn’t necessarily match documents well. The edit weight prior on
Wikipedia worked well because the vocabulary of pages varies substantially depending
on the subject, but methods that use morphological features (edit distance and MCCA)
were not effective on the more homogeneous Europarl corpus, performing little better
than chance.

Even by themselves, our matching priors do a good job of connecting words across
the languages’ vocabularies. On the Wikipedia corpus, all did better than the LDA
baselines and MuUTo0O without a prior. This suggests that an end-user interested
in obtaining a multilingual topic model could obtain acceptable results by simply
constructing a matching using one of the schemes outlined in Section 4.4 and running
MUuUTo0 using this static matching.

However, MUTO can perform better if the matchings are allowed to adjust to
reflect the data. For many conditions, MUTo0O with the matchings updated using the
weights in Equation 4.2 performs better on the document matching task than using

the matching prior alone.

4.6 Discussion

In this work, we presented MUTO0, a model that simultaneously finds topic spaces and
matchings in multiple languages. In evaluations on real-world data, MUTO recovers
matched documents better than the prior alone. This suggests that MUTO can be
used as a foundation for multilingual applications using the topic modeling formalism
and as an aid in corpus exploration.

Corpus exploration is especially important for multilingual corpora, as users are
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often more comfortable with one language in a corpus than the other. Using a
more widely used language such as English or French to provide readable signposts,
multilingual topic models could help uncertain readers find relevant documents in the
language of interest.

MuTo makes no linguistic assumptions about the input data that precludes finding
relationships and semantic equivalences on symbols from other discrete vocabularies.
Data are often presented in multiple forms; models that can explicitly learn the
relationships between different modalities could help better explain and annotate
pairings of words and images, words and sound, genes in different organisms, or
metadata and text.

With models like MUTO, we can remove the assumption of monolingual corpora
from topic models. Exploring this new latent topic space also offers new opportunities
for researchers interested in multilingual corpora for machine translation, linguistic
phylogeny, and semantics.

Conversely, adding more linguistic assumptions such as incorporating local syntax
in the form of feature vectors is an effective way to find translations without using
parallel corpora. Using such local information within MuUTo0O, rather than just as a
prior over the matching, would allow the quality of translations to improve.

The lack of local context was also the major lacuna that prevented the model
discussed in Chapter 2 from being competitive with state of the art methods. In the
next chapter, we present a model that incorporates local context by integrating a

topic model with local context as described by a dependency parse tree.
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Figure 4.2: Each group corresponds to a method for computing the weights used to
select a matching; each group has values for 5, 10, 25, and 50 topics. The x-axis
is the percentage of terms where a translation was found in a dictionary. Where
applicable, for each matching prior source, we compare the matching found using
MuTo with a matching found using only the prior. Because this evaluation used the
Ding dictionary (Richter, 2008), the matching prior derived from the dictionary is not

shown.
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Figure 4.3: Each group corresponds to a method for creating a matching prior 7; each
group has values for 5, 10, 25, and 50 topics. The full MUT0O model is also compared
to the model that uses the matching prior alone to select the matching. The x-axis is
the proportion of documents whose topics were less similar than the correct match
across languages (higher values, denoting fewer misranked documents, are better).
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Chapter 5

Syntactic Topic Models

In the previous chapters, a recurring theme during error analysis was that the models
we considered treated words as exchangeable observations. As we saw in Chapter 2,
which meaning a word takes depends upon the local context (e.g. “After I withdrew
some money from the bank, I ran down to the river’s bank and fed the ducks.”).
Similarly, we might want to consider different translations of a word depending on the
local context.

Although we do not fully integrate local context into this thesis, in the following
chapter we provide a way of looking at syntax that is compatible with both the
statistical formalisms that we use for modeling the semantic information provided by

topic models and the linguistic representations of the structure of a sentence’s syntax.

5.1 Combining Semantics and Syntax

When we read a sentence, we use two kinds of reasoning: one for understanding its
syntactic structure and another for integrating its meaning into the wider context of
other sentences, other paragraphs, and other documents. Both mental processes are
crucial, and psychologists have found that they are distinct. A syntactically correct

sentence that is semantically implausible takes longer for people to understand than
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its semantically plausible counterpart (Rayner et al., 1983). Furthermore, recent
brain imaging experiments have localized these processes in different parts of the
brain (Dapretto and Bookheimer, 1999). Both of these types of reasoning should be
accounted for in a probabilistic model of language.

To see how these mental processes interact, consider the following sentence from a

travel brochure,
Next weekend, you could be relaxing in ____.

How do we reason about filling in the blank? First, because the missing word is the
object of a preposition, it should act like a noun, perhaps a location like “bed,” “school,”
or “church.” Second, because the document is about travel, we expect travel-related
terms. This further restricts the space of possible terms, leaving alternatives like
“Nepal,” “Paris,” or “Bermuda” as likely possibilities. Each type of reasoning restricts
the likely solution to a subset of words, but the best candidates for the missing word
are in their intersection.

In this chapter we develop a probabilistic model of language that mirrors this
process. Current models, however, tend to focus on finding and exploiting either
syntactic or thematic regularities. On one hand, probabilistic syntax models capture
how different words are used in different parts of speech and how those parts of speech
are organized into sentences (Charniak, 1997; Collins, 2003; Klein and Manning,
2002). On the other hand, probabilistic topic models find patterns of words that are
thematically related in a large collection of documents, which we review in Chapter 1.

Each type of model captures one kind of regularity in language, but ignores the
other kind of regularity. Returning to the example, suppose that the correct answer is
the noun “Bermuda.” A syntax model would fill in the missing word with a noun,

but would ignore the semantic distinction between words like “bed” and “Bermuda.”!

LA proponent of lexicalized parsers might argue that conditioning on the word might be enough
to answer this question completely. However, many of the most frequently used words have such
broad meanings (e.g. “go”) that knowledge of the broader context is necessary.
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A topic model would consider travel words to be more likely than others, but would
ignore functional differences between words like “sailed” and “Bermuda.” To arrive at
“Bermuda” with higher probability requires a model that simultaneously accounts for
both syntax and theme.

Thus, our model assumes that language arises from an interaction between syntactic
regularities at the sentence level and thematic regularities at the document level. The
syntactic component examines the sentence at hand and restricts attention to nouns;
the thematic component examines the rest of the document and restricts attention to
travel words. Our model makes its ultimate prediction from the intersection of these
two restrictions. As we will see, these modeling assumptions lead to a more predictive
model of language.

Both topic models and syntax models assume that each word of the data is drawn
from a mixture component, a distribution over a vocabulary that represents recurring
patterns of words. The central difference between topic models and syntax models is
how the component weights are shared: topic models are bag-of-words models where
component weights are shared within a document; syntax models share components
within a functional category (e.g. the production rules for non-terminals). Components
learned from these assumptions reflect either document-level patterns of co-occurrence,
which look like themes, or tree-level patterns of co-occurrence, which look like syntactic
elements. In both topic models and syntax models, Bayesian non-parametric methods
are used to embed the choice of the number of components into the model (Teh et al.,
2006; Finkel et al., 2007). These methods further allow for new components to appear
with new data.

In the syntactic topic model (STM), the subject of this chapter, the components
arise from both document-level and sentence-level distributions and therefore reflect
both syntactic and thematic patterns in the texts. This captures the two types of

understanding described above: the document-level distribution over components
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restricts attention to those that are thematically relevant; the tree-level distribution
over components restricts attention to those that are syntactically appropriate. We
emphasize that rather than choose between a thematic component or syntactic com-
ponent from its appropriate context, as is done in the model of Griffiths et al (2005),
components are drawn that are consistent with both sets of weights.

This complicates posterior inference algorithms and requires developing new
methodology in hierarchical Bayesian modeling of language. However, it leads to
a more expressive and predictive model. In Section 5.2 we review latent variable
models for syntax and Bayesian non-parametric methods. In Section 5.3, building on
these formalisms, we present the STM. In Section 5.3.2 we derive a fast approximate
posterior inference algorithm based on variational methods. Finally, in Section 5.4
we present qualitative and quantitative results on both synthetic text and a large

collection of parsed documents.

5.2 Background: Topics and Syntax

The approach of this chapter develops the ideas behind the topic models introduced in
Chapter 1. As we saw in Chapter 2, topic models can be viewed as learning meaning
in a corpus, representing the semantic space of a document. For convenience, we
reproduce the graphical model for LDA in Figure 5.1(a). In addition to LDA, this
model builds on probabilistic syntax models and Bayesian non-parametrics, which we

describe in this section.

5.2.1 Probabilistic Syntax Models

LDA is effective at capturing semantic correlations between words, but it ignores
syntactic correlations and connections. The finite tree with independent children

model (FTIC) can be seen as the syntactic complement to LDA (Finkel et al., 2007).
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Figure 5.1: For LDA (left), topic distributions B3 are drawn for each of the K topics,
topic proportions 8; are drawn for each of each of the M documents, and topic
assignments 2,4, and words wg, are drawn for each of the N; words in a document.
For FTIC (right), each state has a distribution over words, 3, and a distribution over
successors, 7. Each word is associated with a hidden state z,, which is chosen from
the distribution 7, . the transition distribution based on the parent node’s state.

As in LDA, this model assumes that observed words are generated by latent states.
However, rather than considering words in the context of their shared document, the
FTIC considers each word in the context of its sentence as determined by its location
in a dependency parse (we introduce the dependency representation in Section 1.2.1).

The FTIC embodies a generative process over a collection of sentences with given
parses. It is parameterized by a set of “syntactic states,” where each state is associated
with three parameters: a distribution over terms, a set of transition probabilities to
other states, and a probability of being chosen as the root state. Each sentence is
generated by traversing the structure of the parse tree. For each node, draw a syntactic
state from the transition probabilities of its parent (or root probabilities) and draw
the word from the corresponding distribution over terms. A parse of a sentence with
three words is depicted as a graphical model in Figure 5.1.

While LDA is constructed to analyze a collection of documents, the FTIC is

constructed to analyze a collection of parsed sentences. The states discovered through
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posterior inference correlate with part of speech labels (Finkel et al., 2007). For
LDA the components respect the way words co-occur in documents. For FTIC the

components respect the way words occur within parse trees.

5.2.2 Random Distributions and Bayesian non-parametric

methods

Many recently developed probabilistic models of language, including those described
above, employ distributions as random variables. These random distributions are
sometimes a prior over a parameter, as in traditional Bayesian statistics, or a latent
variable within the model. For example, in LDA the topic proportions and topics are
random distributions (this is discussed in greater detail in Section 1.1.2), where we
also introduce the Dirichlet distribution); in the FTIC, the transition probabilities
and term generating distributions are random.

Both the FTIC and LDA assume that the number of latent components, i.e.,
topics or syntactic states, is fixed. Choosing this number a priori can be difficult.
Recent research has extended Bayesian non-parametric methods to build more flexible
models where the number of latent components is unbounded and is determined by the
data (Teh et al., 2006; Liang and Klein, 2007). The STM will use this methodology.

We first describe the stick breaking distribution, a distribution over the infinite
simplex. The idea behind this distribution is to draw an infinite number of Tau random
variables, i.e., values between zero and one, and then combine them to form a vector
whose infinite sum is one. This can be understood with a stick-breaking metaphor.
Consider a unit length stick that is infinitely broken into smaller and smaller pieces.
The length of each successive piece is determined by taking a random proportion of

the remaining stick. The random proportions are drawn from a Tau distribution,

i ~ Tau(l, «),
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and the resulting stick lengths are defined from these breaking points,

k1
T = #kH (1— ).
=1

With this process, the vector 7 is a point on the infinite simplex (Sethuraman, 1994).
This distribution is notated 7 ~ GEM(«).2

The stick breaking distribution is a size-biased distribution—the probability tends
to concentrate around the initial components. The Tau parameter o determines how
many components of the probability vector will have high probability. Smaller values
of o result in a peakier distributions; larger values result in distributions that are
more spread out. Regardless of «, for large enough k, the value of 7, still goes to
zero because the vector must sum to one. Figure 5.2 illustrates draws from the stick
breaking distribution for several values of a.

The stick-breaking distribution provides a constructive definition of the Dirichlet
process, which is a distribution over arbitrary distributions (Ferguson, 1973). Consider
a base distribution Gy, which can be any type of distribution, and the following

random variables

7, ~ GEM(a) i€{1,2,3,...}

Mg~ Go 26{1,2,3,}
Now define the random distribution

G=) 7du()
i=1

which places mass 7; on the point p;. This is a random distribution because its

components are random variables, and note that it is a discrete distribution even if G

2GEM stands for Griffiths, Engen and McCloskey (Pitman, 2002).
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Figure 5.2: Draws for three settings of the parameter « of a stick-breaking distribution
(enough indices are shown to account for 0.95 of the probability). When the parameter
is substantially less than one (top row), very low indices are favored. When the
parameter is one (middle row), the weight tapers off more slowly. Finally, if the
magnitude of the parameter is larger (bottom row), weights are nearer a uniform
distribution.

is defined on a continuous space. Marginalizing out 7; and p;, the distribution of G is
called a Dirichlet process (DP). It is parameterized by the base distribution Gy and
a scaling parameter p. The scaling parameter, as for the finite Dirichlet, determines
how close the resulting random distribution is to Gy. Smaller p yields distributions
that are further from Gy; larger p yields distributions that are closer to Go.3 The base
distribution is also called the mean of the DP because E[G | Gy, p] = G. The Dirichlet

process is a commonly used prior in Bayesian non-parametric statistics, where we seek

a prior over arbitrary distributions (Antoniak, 1974; Escobar and West, 1995; Neal,

3The formal connection between the DP and the finite dimensional Dirichlet is that the finite
dimensional distributions of the DP are finite Dirichlet, and the DP was originally defined via
the Kolmogorov consistency theorem(Ferguson, 1973). The infinite stick breaking distribution was
developed for a more constructive definition (Sethuraman, 1994). We will not be needing these
mathematical details here.
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2000).

In a hierarchical model, the DP can be used to define a topic model with an
unbounded number of topics. In such a model, unlike LDA, the data determine the
number of topics through the posterior and new documents can ignite previously
unseen topics. This extension is an application of a hierarchical Dirichlet process
(HDP), a model of grouped data where each group arises from a DP whose base
measure is itself a draw from a DP (Teh et al., 2006). In the HDP for topic modeling,
the finite dimensional Dirichlet distribution over per-document topic proportions is
replaced with a draw from a DP, and the base measure of that DP is drawn once
per-corpus from a stick-breaking distribution. The stick-breaking random variable
describes the overall prominence of topics in a collection; the draws from the Dirichlet
process describe how each document exhibits those topics.

Similarly, applying the HDP to the FTIC model of Section 5.2.1 results in a model
where the mean of the Dirichlet process represents the overall prominence of syntactic
states. This extension is described as the infinite tree with independent children
(ITIC) (Finkel et al., 2007). For each syntactic state, the transition distributions
drawn from the Dirichlet process allow each state to prefer certain children states in the
parse tree. Other work has applied this non-parametric framework to create language
models (Teh, 2006), full parsers for Chomsky normal form grammars (Liang et al.,
2007), models of lexical acquisition (Goldwater, 2007), synchronous grammars (Blun-
som et al., 2008), and adaptor grammars for morphological segmentation (Johnson

et al., 2006).

5.3 The Syntactic Topic Model

Topic models like LDA and syntactic models like FTIC find different decompositions

of language. Syntactic models ignore document boundaries but account for the order
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of words within each sentence-thus the components of syntactic models reflect how
words are used in sentences. Topic models respect document boundaries but ignore
the order of words within a document—thus the components of topic models reflect
how words are used in documents. We now develop the syntactic topic model (STM),
a hierarchical probabilistic model of language that finds components which reflect
both the syntax of the language and the topics of the documents.

For the STM, our observed data are documents, each of which is a collection of
dependency parse trees. (Note that in LDA, the documents are simply collections
of words.) The main idea is that words arise from topics, and that topic occurrence
depends on both a document-level variable and parse tree-level variable. We emphasize
that, unlike a parser, the STM does not model the tree structure itself and nor does
it use any syntactic labeling. Only the words as observed in the tree structure are
modeled.

The document-level and parse tree-level variables are both distributions over topics,
which we call topic weights. These distributions are never drawn from directly. Rather,
they are convolved—that is, they are multiplied and renormalized—and the topic
assignment for a word is drawn from the convolution. The parse-tree level topic
weight enforces syntactic consistency and the document-level topic weight enforces
thematic consistency. The resulting set of topics—the distributions over words that
the topic weights refer to—will be those that thus reflect both thematic and syntactic
constraints. Our model is a Bayesian non-parametric model, so the number of such
topics is determined by the data.

We describe this model in more mathematical detail. The STM contains topics (3),
transition distributions (7), per-document topic weights (), and top level weights (7)
as hidden random variables.* In the STM, topics are multinomial distributions over

a fixed vocabulary (0). Each topic maintains a transition vector which governs the

4Note that 7 in this chapter is a draw from a stick breaking distribution. In previous chapters it
was the prior distribution over path probabilities in WORDNET.
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topics assigned to children of parents assigned a given topic (7). Document weights
model how much a document is about specific topics. Finally, each word has a topic
assignment (z4,) that decides from which topic the word is drawn. The STM posits
a joint distribution using these building blocks and, from the posterior conditioned on
the observed documents, we find transitions, per-document topic distributions, and
topics.

As mentioned, we use Bayesian non-parametric methods to avoid having to set
the number of topics. We assume that there is a vector 7 of infinite length which tells
us which topics are actually in use (as discussed in Section 5.2.2). These top-level
weights are a random probability distribution drawn from a stick-breaking distribution.

Putting this all together, the generative process for the data is as follows:
1. Choose global weights 7 ~ GEM(«)
2. For each topic index k = {1,... }:

(a) Choose topic B ~ Dir(op,)

(b) Choose transition distribution 7y, ~ DP(a7)
3. For each document d = {1,... M }:

(a) Choose document weights 8, ~ DP(apT)
(b) For each sentence root node with index (d,r) € SENTENCE-ROOTS;:

i. Choose topic assignment zg, o< @37 siar

ii. Choose root word wg, ~ mult(1,3,,)
(c) For each additional child with index (d, ¢) and parent with index (d, p):

i. Choose topic assignment

Zde X 04T, (5.1)

ii. Choose word wg, ~ mult(1, 3., )
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This process is illustrated as a probabilistic graphical model in Figure 5.3.

As with the models described in previous chapters, data analysis with this model
amounts to “reversing” this process to determine the posterior distribution of the
latent variables. The posterior distribution is conditioned on observed words organized
into parse trees and documents. It provides a distribution over all of the hidden
structure—the topics, the syntactic transition probabilities, the per-document topic
weights, and the corpus-wide topic weights.

Because both documents and local syntax shape the choice of possible topics for
a word, the posterior distribution over topics favors topics that are consistent with
both contexts. For example, placing all nouns in a single topic would respect the
syntactic constraints but not the thematic, document-level properties, as not all nouns
are equally likely to appear in a given document. Instead, the posterior prefers topics
which would divide syntactically similar words into different categories based on how
frequently they co-occur in documents.

In addition to determining what the topics are, i.e., which words appear in a topic
with high probability, the posterior also defines a distribution over how those topics are
used. It encourages topics to appear in similar documents based on the per-document
topic distributions € and encourages topics to appear in similar similar local syntactic
contexts based on the transition distribution 7. For each word, two different views of
its generation are at play. On one hand, a word is part of a document and reflects that
document’s themes. On the other hand, a word is part of a local syntactic structure
and reflects the likely type of word that is associated with a child of its parent. The
posterior balances both these views to determine which topic is associated with each
word.

Finally, through the stick-breaking and DP machinery, the posterior selects the
number of topics that are used. This strikes a balance between explaining the data

well (e.g. reflecting syntax and document-level properties) and not using too many
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Figure 5.3: In this graphical model depiction of the syntactic topic model, the
dependency parse representation of FTIC in Figure 5.1(b) are grouped into documents,
as in LDA in 5.1(a). For each of the words in the sentence, the topics weights of a
document 6 and the parent’s topic transition 7r together choose the topic. (For clarity,
some of the sentence node dependencies have been grayed out.) An example of the
structure of a sentence is on the right, as demonstrated by an automatic parse of the
sentence “Some phrases laid in his mind for years.” The STM assumes that the tree
structure and words are given, but the latent topics z are not.

topics, as governed by the hyperparameter « (see Section 5.2.2).

As we will see below, combining document-level properties and syntax (Equa-
tion 5.1) complicates posterior inference (compared to HDP or ITIC) but allows us to
simultaneously capture both syntactic and semantic patterns. Under certain limiting
assumptions, the STM reduces to the models discussed in Section 5.2 . The STM
reduces to the HDP if we fix 7w to be a vector of ones, thus removing the influence of

the tree structure. The STM reduces to the ITIC if we fix @ to be a vector of ones,

removing the influence of the documents.

5.3.1 Relationships to Other Work

The STM attempts to discover patterns of syntax and semantics simultaneously. In
this section, we review previous methods to model syntax and semantics simultaneously

and the statistical tools that we use to combine syntax and semantics. We also discuss
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other methodologies from word sense disambiguation, word clustering, and parsers
that are similar to the STM.

While the STM combines topics and syntax using a single distribution (Equa-
tion 5.1), an alternative is, for each word, to choose one of the two distributions. In
such a model, the topic assignment comes from either the parent’s topic transition
T2, OF document weights 64, based on a binary selector variable (instead of being
drawn from a product of the two distributions). Griffiths et al. (2005)’s topics and
syntax model (2005) did this on the linear order of words in a sentence. A mixture of
topics and syntax in a similar manner over parse trees would create different types
of topics, individually modeling either topics or syntax. It would not, however, en-
force consistency with parent nodes and a document’s themes. A word need only be
consistent with either view.

Rather, the STM draws on the idea behind the product of experts (Hinton, 1999),
multiplying two vectors and renormalizing to obtain a new distribution. Taking the
point-wise product can be thought of as viewing one distribution through the “lens” of
another, effectively choosing only words whose appearance can be explained by both.

Instead of applying the lens to the selection of the latent classes, the topics, once
selected, could be altered based on syntactic features of the text. This is the approach
taken by TagLDA (Zhu et al., 2006), where each word is associated with a single
tag (such as a part of speech), and the model learns a weighting over the vocabulary
terms for each tag. This weighting is combined with the per-topic weighting to emit
the words. Unlike the STM, this model does not learn relationships between different
syntactic classes and, because the tags are fixed, cannot adjust its understanding of
syntax to better reflect the data.

There has also been other work that does not seek to model syntax explicitly but
nevertheless seeks to use local context to influence topic selection. One example is the

hidden topic Markov model (Gruber et al., 2007), which finds chains of homogeneous
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topics within a document. Like the STM and Griffiths et al, the HTMM sacrifices the
exchangibility of a topic model to incorporate local structure. Similarly, Wallach’s
bigram topic model (Wallach, 2006) assumes a generative model that chooses topics
in a fashion identical to LDA but instead chooses words from a distribution based on
per-topic bigram probabilities, thus partitioning bigram probabilities across topics.

A similar vein of research is discourse-based WSD methods. The Yarowsky
algorithm, for instance, uses clusters of similar contexts to disambiguate the sense of
a word in a given context (Yarowsky, 1995; Abney, 2004). While the result does not
explicitly model syntax, it does have a notion of both document theme (as all senses
in a document must have the same sense) and the local context of words (the feature
vectors used for clustering mentions). However, the algorithm is only defined on a
word-by-word basis and does not build a consistent picture of the corpus for all the
words in a document.

Local context is better captured by explicitly syntactic models. Work such as
Lin similarity (Lin, 1998) and semantic space models (Pad6 and Lapata, 2007) build
sets of related terms that appear in similar syntactic contexts. However, they cannot
distinguish between uses that always appear in different kinds of documents. For
instance, the string “fly” is associated with both terms from baseball and entomology.

These syntactic models use the output of parsers as input. Some parsing for-
malisms, such as adaptor grammars (Johnson et al., 2006; Johnson, 2009), are broad
and expressive enough to also describe topic models. However, there has been no
systematic attempt to combine syntax and semantic in such a unified framework. The
development of statistical parsers has increasingly turned to methods to refine the
latent classes that generate the words and transitions present in a parser. Whether
through subcategorization (Klein and Manning, 2003) or lexicalization (Collins, 2003;
Charniak, 2000), broad categories are constrained to better model idiosyncrasies of

the text. After this work appeared, other latent variable models of grammar have suc-

81



cessfully used product of expert models to improve the performance of parsers (Petrov,
2010). While the STM is not a full parser, it offers an alternate way of constraining

the latent classes of terms to be consistent across similar documents.

5.3.2 Posterior inference with variational methods

We have described the modeling assumptions behind the STM. As detailed, the STM
assumes a decomposition of the parsed corpus by a hidden semantic and syntactic
structure encoded with latent variables. Given a data set, the central computational
challenge for the STM is to compute the posterior distribution of that hidden struc-
ture given the observed documents, and data analysis proceeds by examining this
distribution. Computing the posterior is “learning from data” from the perspective of
Bayesian statistics.

Markov Chain Monte Carlo (MCMC), which we used for approximate inference
in previous chapters, is a powerful methodology, but it has drawbacks. Convergence
of the sampler to its stationary distribution is difficult to diagnose, and sampling
algorithms can be slow to converge in high dimensional models (Robert and Casella,
2004). An alternative to MCMC is variational inference. Variational methods, which
are based on related techniques from statistical physics, use optimization to find a
distribution over the latent variables that is close to the posterior of interest (Jordan
et al., 1999; Wainwright and Jordan, 2008). Variational methods provide effective
approximations in topic models and non-parametric Bayesian models (Blei et al., 2003;
Blei and Jordan, 2005; Teh et al., 2006; Liang et al., 2007; Kurihara et al., 2007).

Variational methods enjoy a clear convergence criterion and tend to be faster
than MCMC in high-dimensional problems.® Variational methods provide particular
advantages over sampling when latent variable pairs are not conjugate. Gibbs sampling

requires conjugacy, and other forms of sampling that can handle non-conjugacy, such

5Understanding the general trade-offs between variational methods and Gibbs sampling is an
open research question.
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as Metropolis-Hastings, are much slower than variational methods. Non-conjugate
pairs appear in the dynamic topic model (Blei and Lafferty, 2006; Wang et al., 2008),
correlated topic model (Blei et al., 2007), and in the STM considered here. Specifically,
in the STM the topic assignment is drawn from a renormalized product of two Dirichlet-
distributed vectors (Equation 5.1). The distribution for each word’s topic does not
form a conjugate pair with the document or transition topic distributions. In this
section, we develop an approximate posterior inference algorithm for the STM that is
based on variational methods.

Our goal is to compute the posterior of topics B3, topic transitions 7r, per-document
weights 0, per-word topic assignments z, top-level weights 7 given a collection of
documents and the model described in Section 5.3. The difficulty around this posterior
is that the hidden variables are connected through a complex dependency pattern.
With a variational method, we begin by positing a family of distributions of the same
variables with a simpler dependency pattern. This distribution is called the variational

distribution. Here we use the fully-factorized variational distribution,

q(r, 2,0, 87", ¢,7,v) = q(r|7") [ [ a(melv) [ | [4(Balva) ] [ 9(zanl an)
k n

d

Note that the latent variables are independent and each is governed by its own
parameter. The idea behind variational methods is to adjust these parameters to find
the member of this family that is close to the true distribution.

Following Liang (2007), ¢(7|7*) is not a full distribution but is a degenerate
point estimate truncated so that all weights with index greater than K are zero in
the variational distribution. The variational parameters 74 and v, index Dirichlet
distributions, and ¢, is a topic multinomial for the n'* word.

With this variational family in hand, we optimize the evidence lower bound (ELBO),
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Figure 5.4: The truncated variational distribution removes constraints that are imposed
because of the interactions of the full model and also truncates the possible number
of topics (c.f. the full model in Figure 5.3). This family of distributions is used to
approximate the log likelihood of the data and uncover the model’s true parameters.

a lower bound on the marginal probability of the observed data,

L(’Y? V? QS?T?H?T(’ﬁ) =
E, [log p(r|a)] + E, [log p(Bap, T)] + Eq [log p(m|ap, T)] + E, [log p(2]0, )]

+E, [log p(w|z, B)] + E, [log p(B|o)] — E, [log ¢(0) + log g(m) + log q(2)] .(5.2)

Variational inference amounts to fitting the variational parameters to tighten this lower
bound. This is equivalent to minimizing the KL divergence between the variational
distribution and the posterior. Once fit, the variational distribution is used as an
approximation to the posterior.

Optimization of Equation 5.2 proceeds by coordinate ascent, optimizing each
variational parameter while holding the others fixed. Each pass through the variational
parameters increases the ELBO, and we iterate this process until reaching a local
optimum. When possible, we find the per-parameter maximum value in closed form.
When such updates are not possible, we employ gradient-based optimization (Galassi
et al., 2003).

One can divide the ELBO into document terms and global terms. The document
terms reflect the variational parameters of a single document and the global terms

reflect variational parameters which are shared across all documents. This can be seen
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in the plate notion in Figure 5.4; the variational parameters on the right hand side
are specific to individual documents. We expand Equation 5.2 and divide it into a
document component (Equation 7.9) and a global component (Equation 7.11), which
contains a sum of all the document contributions, in the appendix.

In coordinate ascent, the global parameters are fixed as we optimize the document
level parameters. Thus, we can optimize a single document’s contribution to the
ELBO ignoring all other documents. This allows us to parallelize our implementation
at the document level; each parallel document-level optimization is followed by an
optimization step for the global variational parameters. We iterate these steps until
we find a local optimum. In practice, several random starting points are used and we
select the variational parameters that reach the best local optimum.

In the next sections, we outline the variational updates for the word-specific
terms, document-specific terms, and corpus-wide terms. This exposition preserves the
parallelization in our implementation and highlights the separate influences of topic

modeling and syntactic models.

Document-specific Terms

We begin with ¢g4,, the variational parameter that corresponds to the nth observed
word’s assignment to a topic. We can explicitly solve for the value of ¢, which

maximizes document d’s contribution to the ELBO:

On,i X €Xp {\I’ (vi) =¥ (ZJK:l ’yj) + XK: Gp(n).j (\Il (vji) — (Zk ik >>
j=1
_C; _1 Z Zk;yljyi:jk Vik
+ Z Z¢w< (Vi) <ZkK:1 Vzk)) +10g Biwy, ¢ - (5.3)
cec(n) j=1

(Note that we have suppressed the document index d on ¢ and +.)
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This update reveals the influences on our estimate of the posterior of a single
word’s topic assignment. In the first line, the first two terms with the Dirichlet
parameter v show the influence of the document’s distribution over topics; the term
with multinomial parameter ¢,,) and Dirichlet parameter v reflects the interaction
between the topic of the parent and transition probabilities. In the second line, the
interaction between the document and transitions forces the document and syntax to
be consistent (this is mediated by an additional variational parameter w, discussed in
Appendix 7.2.2). In the final line, the influence of the children’s’ topic on the current
word’s topic is expressed in the first term, and the probability of a word given a topic
in the second.

The other document-specific term is the per-document variational Dirichlet over
topic proportions 4. Intuitively, topic proportions should reflect the expected number
of words assigned to each topic in a document (the first two terms of equation 5.4),
with the constraint that v must be consistent with the syntactic transitions in the
document, which is reflected by the v term (the final term of Equation 5.4). This
interaction prevents us from performing the update directly, so we use the gradient

(derived in Appendix 5.3.2)

aﬁ K N
8/-}/ = (fyz) (CYD 7,7— + Z ¢n i 71) ( j=1 7]) Z [Oé ,jT* + Z (bmj -
7 n=1

N N N

1 Vi Zkyéj Ve — Zk;éj Vi kVk 5.4

- Zw Pp(n).j N 2 _ N (5.4)
n=1 j=1 (Zk:l 'Vk> D k=1 Vik

to optimize a document’s ELBO contribution using numerical methods.

Now we turn to updates which require input from all documents and cannot be
parallelized. Each document optimization, however, produces expected counts which
are summed together; this is similar to the how the the E-step of EM algorithms can

be parallelized and summed as input to the M-step (Wolfe et al., 2008).
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Global Variational Terms

In this section, we consider optimizing the variational parameters for the transitions
between topics and the top-level topic weights. Note that these variational parameters,
in contrast with the previous section, are more concerned with the overall syntax,
which is shared across all documents. Instead of optimizing a single ELBO term for
each document, we now seek to maximize the entirety of Equation 7.7, expanded in
Equation 7.11 in the appendix.

The non-parametric models in Section 5.2.2 use a random variable 7 drawn from a
stick-breaking distribution to control how many components the model uses. The prior
for 7 attempts use as few topics as possible; the ELBO balances this desire against
using more topics to better explain the data. We use numerical methods to optimize
7 with respect to the gradient of the global ELBO, which is given in Equation 7.12 in
the appendix.

Finally, we optimize the variational distribution v;. If there were no interaction
between 6 and 7, the update for v; ; would be proportional to the expected number
of transitions from parents of topic i to children of topic j (this will set the first two
terms of Equation 5.5 to zero). However, the objective function also encourages v
to be consistent with v (the final term of Equation 5.5); thus, if v excludes topics
from being observed in a document, the optimization will not allow transitions to

those topics. Again, this optimization is done using numerical optimization using the
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gradient of the ELBO,

oL al
9 = W (vy) | ap;+ Z Z Pn,iPe,j — Vi
Virg n=1 cec(n)
K N
—v (Zli{:l Vi,k> Z apk + Z Z ¢n,i¢c,k — Vik
k=1 n=1 cec(n)

N N 5 :N
Z Vi Dokt Vik = Dk Vik Yk
n cec(n) (E :kzl Vj,k> Zk:l Tk

5.4 Experiments

We demonstrate how the STM works on data sets of increasing complexity. First,
we show that the STM captures properties of a simple synthetic dataset that elude
both topic and syntactic models individually. Next, we use a larger real-word dataset
of hand-parsed sentences to show that both thematic and syntactic information is

captured by the STM.

5.4.1 Topics Learned from Synthetic Data

We demonstrate the STM on synthetic data that resemble natural language. The data
were generated using the grammar specified in Table 5.1 (for a review of the context
free formalism, see Section 1.2.1). Each of the parts of speech except for prepositions
and determiners was divided into themes, and a document contains a single theme

for each part of speech. For example, a document can only contain nouns from a

7 W Y

single “economic,” “academic,” or “livestock” theme, verbs from a possibly different
theme, etc. Documents had between twenty and fifty sentences. An example of two
documents is shown in Figure 5.5.

Using a truncation level of 16, we fit three different non-parametric Bayesian
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Fixed Syntax

S — VP
VP — NPV (PP) (NP)
NP — (Det) (Adj) N (PP)
PP — PNP
P — (“about”, “on”, “over”, “with”)
Det — (“a”, “that”, “the”, “this”)
Document-specific Vocabulary
V. —  (“alls”, “runs”, “sits”) or
(“bucks”, “climbs”, “falls”, “surges”)
N — (“COW”, “PONY”, “SHEEP”) or
(“MUTUAL_FUND”, “SHARE”, “STOCK")
Adj — (“American”, “German”, “Russian”) or
(“blue”, “purple”, “red”, “white”)

Table 5.1: The procedure for generating synthetic data. Syntax is shared across all
documents, but each document chooses one of the thematic terminal distribution for
verbs, nouns, and adjectives. This simulates how all documents share syntax and
subsets of documents share topical themes. All expansion rules are chosen uniformly
at random.

language models to the synthetic data (Figure 5.6).° Because the infinite tree model
is aware of the tree structure but not documents, it is able to separate all parts of
speech successfully except for adjectives and determiners (Figure 5.6¢). However, it
ignores the thematic distinctions that actually divided the terms between documents.
The HDP is aware of document groupings and treats the words exchangeably within
them and is thus able to recover the thematic topics, but it misses the connections
between the parts of speech, and has conflated multiple parts of speech (Figure 5.6b).

The STM is able to capture the the topical themes and recover parts of speech
(with the exception of prepositions placed in the same topic as nouns with a self loop).
Moreover, it was able to identify the same interconnections between latent classes that

were apparent from the infinite tree. Nouns are dominated by verbs and prepositions,

6In Figure 5.6 and Figure 5.7, we mark topics which represent a single part of speech and
are essentially the lone representative of that part of speech in the model. This is a subjective
determination of the authors, does not reflect any specialization or special treatment of topics by the
model, and is done merely for didactic purposes.
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Figure 5.5: Two synthetic documents with multiple sentences. Nouns are shown in
upper case. Each document chooses a theme for each part of speech independently;
for example, the document on the left uses motion verbs, academic nouns, and color
adjectives. Various models are applied to these data in Figure 5.6.

and verbs are the root (head) of sentences. Figure 5.6d shows the two divisions as
separate axes; going form left to right, the thematic divisions that the HDP was able
to uncover are clear. Going from top to bottom, the syntactic distinctions made by

the infinite tree are revealed.

5.4.2 Qualitative Description of Topics learned by the STM

from Hand-annotated Data

The same general properties, but with greater variation, are exhibited in real data.
We converted the Penn Treebank (Marcus et al., 1994), a corpus of manually curated
parse trees, into a dependency parse (Johansson and Nugues, 2007). The vocabulary
was pruned to terms that appeared in at least ten documents.

Figure 5.7 shows a subset of topics learned by the STM with truncation level 32.
Many of the resulting topics illustrate both syntactic and thematic consistency. A
few non-specific function topics emerged (pronoun, possessive pronoun, general verbs,
etc.). Many of the noun categories were more specialized. For instance, Figure 5.7

shows clusters of nouns relating to media, individuals associated with companies
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”

(“mr,” “president,” “chairman”), and abstract nouns related to stock prices (“shares,”

% s

“quarter,” “earnings,” “interest”), all of which feed into a topic that modifies nouns
(“his,” “their,” “other,” “last”).

Griffiths et al (Griffiths et al., 2005) observed that nouns, more than other parts
of speech, tend to specialize into distinct topics, and this is also evident here. In
Figure 5.7, the unspecialized syntactic categories (shaded and with rounded edges) serve
to connect many different specialized thematic categories, which are predominantly
nouns (although the adjectives also showed bifurcation). For example, verbs are
mostly found in a single topic, but then have a large number of outgoing transitions
to many noun topics. Because of this relationship, verbs look like a syntactic “source”
in Figure 5.7. Many of these noun topics then point to thematically unified topics
such as “personal pronouns,” which look like syntactic “sinks.”

It is important to note that Figure 5.7 only presents half of the process of choosing a
topic for a word. While the transition distribution of verb topics allows many different
noun topics as possible dependents, because the topic is chosen from a product of @
and 7, O can filter out the noun topics that are inconsistent with a document’s theme.

This division between functional and topical uses for the latent classes can also
been seen in the values for the per-document multinomial over topics. A number of
topics in Figure 5.7(b), such as 17, 15, 10, and 3, appear to some degree in nearly every
document, while other topics are used more sparingly to denote specialized content.
With a = 0.1, this plot also shows that the non-parametric Bayesian framework is

ignoring many later topics.

5.4.3 Quantitative Results on Synthetic and Hand-annotated

Data

To study the performance of the STM on new data, we estimated the held out

probability of previously unseen documents with an STM trained on a portion of
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the dataset. For each position in the parse trees, we estimate the probability of the
observed word. We compute the perplexity as the exponent of the inverse of the
per-word average log probability. The lower the perplexity, the better the model has
captured the patterns in the data. We also computed perplexity for individual parts
of speech to study the differences in predictive power between content words, such
as nouns and verbs, and function words, such as prepositions and determiners. This
illustrates how different algorithms better capture aspects of context. We expect
function words to be dominated by local context and content words to be determined
more by the themes of the document.

This trend is seen not only in the synthetic data (Figure 5.8(a)), where syntactic
models better predict functional categories like prepositions, and document-only
models fail to account for patterns of verbs and determiners, but also in real data.
Figure 5.8(b) shows that HDP and STM both perform better than syntactic models
in capturing the patterns behind nouns, while both STM and the infinite tree have
lower perplexity for verbs. Like syntactic models, our model was better able to predict
the appearance of prepositions but also remained competitive with HDP on content

words. On the whole, STM had lower perplexity than HDP and the infinite tree.

5.5 Conclusion

In this chapter, we explored the common threads that link syntactic and topic models
and created a model that is simultaneously aware of both thematic and syntactic
influences in a document. These models are aware of more structure than either model
individually.

More generally, the STM serves as an example of how a mixture model can support
two different, simultaneous explanations for how the latent class is chosen. Although

this model used discrete observations, the variational inference setup is flexible enough
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to support other distributions over the output.

While the STM’s primary goal was to demonstrate how these two views of context
could be simultaneously learned, there are a number of extensions that could lead
to more accurate parsers. First, this model could be further extended by integrating
a richer syntactic model that does not just model the words that appear in a given
structure but one that also models the parse structure itself. This would allow the
model to use large, diverse corpora without relying upon an external parser to provide
the tree structure.

Removing the independence restriction between children also would allow for this
model to closer approximate the state of the art syntactic models and to be better
distinguish the children of parent nodes (this is especially the problem for head verbs,
which often have many children). Finally, this model could also make use of labeled
dependency relations and lexicalization.

With the ability to adjust to specific document or corpus-based contexts, a parser
built using this framework could adapt to handle different domains while still sharing
information between them. The classification and clustering implicitly provided by
the topic components would allow the parser to specialize its parsing model when
necessary, allowing both sentence-level and document-level information to shape the

model’s understanding of a document.
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Figure 5.6: We contrast the different views of data that are available by using syntactic
and semantic topics based on our synthetic data. Three models were fit to the synthetic
data described in Section 5.4. Each box illustrates the top five words of a topic; boxes
that represent homogeneous parts of speech have rounded edges and are shaded; and
nouns are in upper case. Edges between topics are labeled with estimates of their
transition weight 7. If we have neither syntactic nor semantic topics, we have a
unigram (a) model that views words as coming from a single distribution over words.
Adding syntactic topics allows us to recover the parts of speech (c), but this lumps
all topics together. Although the HDP (b) can discover themes of recurring words, it
cannot determine the interactions between topics or separate out ubiquitous words
that occur in all documents. The STM (d) is able to recover both the syntax and the
themes.

94



START

0.95

sales his says
— - market her could
garden, visit, policy, . .
SEVS, having, aid, gorbachev, junk their can
0.1 could, rime mikhail fund other did
can, did. 0.37 prime, i bond: d
do. ’ma ! despite, leader, soviet, onas one o
does s! minister, restructuring,
 say especially software
057 o = ___= -
shares, —— = — == = - =
who, his, their, quarter, GC) — = O
he, there, other, us, market, sales, | 0.22 — - = En
we, - its, last, 0- earnings, g = =
also, if one, all interest, (5] —_— = =
months, yield o] = = _ =
o = = = -
0.28 o 0.06 0:31 =_:% = =
0:25 = = s = =
television, mr inc. o europe, =. = = - —
public, r’esidémo’ eastern, [TTTTTTTITT T T T I TITITITTTIT T
0.34 | australia, nos p o, P protection, | 0.52
cable, host, g chairrﬁ;an g corp, poland, 1357 9 12 15 18 21 24 27 30
franchise, . . hungary, .
service vice, analyst, chapter, aid TOpIC
(a) learned topics (b) topic prevalence

Figure 5.7: Topics discovered from fitting the syntactic topic model on the Treebank
corpus. As in Figure 5.6, parts of speech that aren’t subdivided across themes are
indicated and edges between topics are labeled with estimates of the the transition
probability 7. Head words (verbs) are shared across many documents and allow many
different types of nouns as possible dependents. These dependents, in turn, share
topics that look like pronouns as common dependents. The specialization of topics is
also visible in plots of the estimates for the per-document topic distribution 6 for the
first 300 documents of the Treebank (right), where three topics columns have been
identified. Many topics are used to some extent in every document, showing that they
are performing a functional role, while others are used more sparingly for semantic
content.
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Figure 5.8: After fitting three models on synthetic data, the syntactic topic model has
better (lower) perplexity on all word classes except for adjectives. HDP is better able to
capture document-level patterns of adjectives. The infinite tree captures prepositions
best, which have no cross-document variation. On real data 5.8(b), the syntactic topic
model was able to combine the strengths of the infinite tree on functional categories
like prepositions with the strengths of the HDP on content categories like nouns to
attain lower overall perplexity.
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Chapter 6

Conclusion and Future Work

Latent Dirichlet allocation (LDA) is a ubiquitous technique for the unsupervised
discovery of structure in data. However, despite its popularity, its assumptions about
the nature of the data are linguistically uninformed, even though it is usually applied
to text.

It assumes that documents are a bag of words, assumes that related words are
no more likely to appear together than unrelated words, and cannot understand
multilingual corpora. In the preceding chapters, we showed extensions that extend
LDA to overcome these limitations using tools and resources from the linguistics

community.

6.1 Building on Linguistic Data

One of the recurring themes in this thesis is the use of linguistic resources. These
resources are used as a starting point and as a tool to guide our statistical approaches
to find explanatory patterns that are consistent with both the foundational linguistic
resources and the data we observe in the real world.

In Chapter 2, we proposed latent Dirichlet allocation with WORDNET, LDAWN,

a model that uses an ontology to encourage words with similar meanings to have
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correlated probabilities within an individual topic. This creates topics that are
consistent with the initial ontology, but it only creates topics that are also consistent
with the documents that we observe in a corpus. In Chapter 3, we extended LDAWN
to handle multiple languages.

In Chapter 4, we took the idea of combining information from curated linguistic
resources a step further. The multilingual topic model for unaligned text (MuToO)
uses resources like dictionaries to form an initial bridge between languages and then
iteratively improves the connections between languages to build topics that make
sense across languages.

Finally, in Chapter 5, we developed a technique that combined two views of text
data: the view provided by syntactic models and the view provided by probabilistic
topic models. Again, we use curated linguistic data as a starting point; our data are a
collection of dependency trees split into documents. Using these data, we discover
patterns of words that are consistent with both local syntactic context and global
semantic patterns based on document co-occurrence.

As we discussed in Chapter 1, the field of linguistics is deep and productive. A
number of these theories have been embodied in machine readable datasets or annotated
corpora. While these resources are not without their flaws (e.g. Section 2.4), the
intuitions and insight in such resources can guide statistical models to discover patterns

that are consistent with data and human understanding.

6.2 Deeper Linguistic Models and New Applica-
tions

We were able to combine the insights provided by linguistic resources with the statistical
formalism of topic models by first specifying a statistical model consistent with the

linguistic information. For LDAWN;, it was a probabilistic walk through a tree; for
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MuTo , it was a matching over terms across languages; for the STM, it was the Infinite
Tree with Independent Children (Finkel et al., 2007). In each case, we combined this
statistical model of the linguistic information with the basic skeleton of LDA.

The ability to combine models so seamlessly is one of the strengths of statistical
models. Statistical models speak the same language — probability — so combining
them requires only specifying a composite model and then deriving inference for the
new model.

While these models are the product of combination, they could themselves serve
as components in a larger model. For example: the syntax modeling of the STM in
Chapter 5 could be combined with the ontologies of LDAWN 2 to create context-
specific disambiguations; the matching of MUTO could be combined with LDAWN
to create an ad hoc alignment over paths in unaligned WORDNETS; or the syntax
modeling of the STM could be combined with MUTO to learn translations that also
depend on local context but still not requiring an explicit parallelism at the local
syntax level.

While the models discussed in this thesis highlight that it is possible to extend
LDA in ways that draw upon linguistic insights, there are many other possible
applications for the models presented here that go deeper in building linguistically
sound applications and also applications that use the insights presented here to explore

applications beyond text.

6.2.1 Capturing Other Knowledge Sources

In Chapter 2, we demonstrated a method that allowed knowledge about word meanings
encoded in an ontology to be incorporated into a probabilistic model in such a way
that if concepts had similar meanings in an ontology, the words that express those
concepts would have correlated probabilities. Other knowledge resources are organized

in hierarchies similar to WORDNET: elements are organized in a tree, elements can
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appear in ambiguous ways, and identifying the path in the hierarchy for a mention of

an element disambiguates the mention:

locations Gazetteers organize locations in hierarchies such as borough, city, county, state,
and nation. These locations are mentioned in documents, but which location

corresponds to which reference is uncertain.

genes Genes have been organized into hierarchies where subtrees share common local-
ization (Ashburner, 2000). Treating pathways as documents could help determine

where in a cell a particular interaction happens.

named entities Wikipedia categorizes named entities into (roughly) hierarchical categories. For
example, Albert Einstein is categorized as a “Jewish Scientist,” an “American
Jewish Scientist,” and as a “Jewish Scientist.” However, the string “Finstein”
could refer to the person, a medical school, or a bagel company. Organizing

mentions into this hierarchy could discover correlations between categories that

appear in documents.

6.2.2 Integrating Models into Applications

The models developed here focused on the representation and modeling challenges
more than actual applications. However, because of the flexibility of probabilistic
models, it is relatively simple to use the models in this thesis for the same applications
that have been developed for other topic models.

For instance, supervised topic models (Blei and McAuliffe, 2007) and relational
topic models (Chang and Blei, 2009) use the per-document topic distribution to make
predictions a document’s sentiment or connection to other documents. The models
presented in Chapter 4 would allow these predictions to be made on multilingual
corpora. For instance, instead of just making predictions based on reviews on Ama-

zon.com’s English website, predictions could be also share information gleaned from
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reviews on Amazon.com’s Japanese and German language sites.

6.2.3 Learning Deeper Structures and Testing Cognitive Plau-
sibility

The most exciting extensions of these models come from the ability to use the insights

from linguistic information while not relying exclusively on the limited amount of data

available from a single set of trained expert annotations from linguists. In Chapter 5,

we relied on a corpus meticulously turned into machine readable parses by human

annotators. Discovering this structure using unlabeled or partially labeled data would

help increase the applicability of the methods discussed here.

Understanding how humans produce and understand language is the central
question in linguistics. Allowing computers to reach the same level of understanding
requires the synthesis of many of the insights and resources created by the linguistics
community. Expressing these insights and resources in the language of probabilistic
models makes them understandable to computers, makes them easier to test and
combine with other methodologies, and makes them able to react and grow as more
data are presented.

This thesis takes linguistic notions of semantics and syntax and casts them in a
probabilistic framework to understand data through the framework of topic models.
This is a step in building models that can process large amounts of data, a strength
of probabilistic models, but can also retain the lessons learned from the knowledge
and experience of linguists.

All models make assumptions, but doing so in a linguistically-grounded way means

that as we explore and use these models more and more, how our models perform gives
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us greater insight into not just the mechanics of how we engineered our particular

models but also into the rich cognitive and and philosophical assumptions they inherit.
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Chapter 7

Appendix: Variational Inference

for Syntactic Topic Models

This appendix explains the derivation of the updates for variational inference for the
Syntactic Topic Model (STM). After some mathematical preliminaries, we expand
the expectations in the variational likelihood bound and then, having expanded the

objective function, derive the updates which optimize the bound.

7.1 Dirichlet in the Exponential Family

A probability distribution is a member of the exponential family of distributions if it

can be expressed using the exponential family form

p(zln) = h(z)exp {g(n)"u(z) — a(n)}, (7.1)

where g(n) is the natural parameter vector, u(x) is the natural statistic vector, h(z) is
the measure of the space, and a(n) is the normalization. We can express the Dirichlet

distribution (first discussed in Section 1.1) as an exponential family distribution,
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rewriting the conventional density function,

Dir(0T (), , ..., aK) = Zk ) H oot

\_v_’% k
normalization
as an exponential family distribution
T
a1 — 1 IOg 91 X
Dir(]a) =exp : | 4 logD (zl 1%) S (@) p. (7:2)
i=1
ag — 1 log Ok

One property of the exponential family of distributions that we state without proof (Winn,
2003) is that the expectation of the natural statistic vector is the derivative of the log

normalizer, with respect to the natural parameter. For a Dirichlet distribution,

Ey [log6;] = U (o) — W (Eﬁ; aj) . (7.3)

Thus, if we take the expectation of a Dirichlet distribution p(f|«) with respect to

a variational Dirichlet distribution parameterized by ~, we have

E, [logp(f|a)] =E, |log

Only 6 is governed by ¢, and log 6; is the natural statistic of the Dirichlet distribution

when it as written as an exponential family distribution. In the variational distribution,
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0 comes from a Dirichlet parameterized by ~, so using Equation 7.3, we have

K

E, [log p(8]a)] = 1ogr( 104,) Zlogf DEDCESY <x1/ () — ¥ (zj; yj)) .
- (7.5)
7.2 Expanding the Likelihood Bound for Document-
Specific Terms
Recall that the objective function for the STM is
L(v,v,d;7,0,m, ) =

E, [log p(T|a)] + E, [log p(8|avp, T)] + E, [log p(7|ap, T)] + E, [log p(2]6, )]

+E, [log p(w|z, B)] + E, [log p(B|o)] — E, [log ¢(0) + log q(m) + log q(z)] .(7.6)

In this section, we expand the terms in the £ needed to perform document-specific
expectations. This will provide the information needed to optimize document-specific
variational parameters in the next section. We save the expansion of the remaining

terms from £ until Section 7.4.

7.2.1 LDA-like terms

The terms of equation 7.7 specific to a single document are

Ly =E, [log p(6,4]ap, T)] + E, [log p(24|604, 7)]

+ E, [log p(w|z4, B)] — E, [log ¢(04) + log q(24)] - (7.7)

We now expand each of these using the formula given in Equation 7.5. First, if we
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consider the expectation over the distribution over latent topics,

K
E, [log p(8alap, 7)] =log T (zj; X aD,jT*) — 3 logT (apm)+
=1

3w - 1) (00— (25)).

=1

we can treat the truncated Dirichlet process as a Dirichlet distribution with a parameter
that has been scaled by ap. We postpone expanding the expectation over topic
assignments z; until the next section. For the expectation over the words, we
note that the probability of the n'* word in document d taking topic k& under the
variational distribution is ¢q, x or (suppressing the document index) ¢, and given
that assignment, the probability of the corresponding token wg,, being produced by
topic k is By w,,,. Thus,

N K

E, [logp(wl|z,8)] = Y > 60i108 Bi,,.

n=1 i=1

We are left with the entropy terms. First, the entropy for the per-document topic

distribution is

—E,[log(8)] = —log I' (15, 75) + Y log ' (3)—

=1

i(% - 1) (‘If (i) — ¥ (Zle %)) ,

i=1

which follows by the same reasoning used in equation 7.5. The entropy of a multinomial

distribution is straightforward

N K
]Eq [lOg Q(z)] = Z Z ¢n,i 10g ¢n7i-

n=1 i=1
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7.2.2 The Interaction of Syntax and Semantics

We now move on to expanding E, [logp(z|0,7)| from Equation 7.7. Rather than
drawing the topic of a word directly from a multinomial, the topic is chosen from the
renormalized point-wise product of two multinomial distributions. In order to handle
the expectation of the log sum introduced by the renormalization, we introduce an
additional variational parameter w, for each word via a Taylor approximation of the

logarithm to find that E, [logp(z|0, )] =

N N K
Z 10802, )20 — Z log Z OiT 2, i
n=1 n=1 i=1
K

—1
Wn Z 0iT 2 0.
i—1

Zn7TZ n)s
1OgH p(n):*
Z 9 71—2 (n)>» )

N N
< DB 1080y n |~ D E,
n=1 n=1

+logw, — 1

ii@”( 1)_\1/( j= 173))"‘%%%@”@)(71 < (V) — (Zk 1ng)>

n=1 =1 n=1 i=1 j=1

N
Z - Z Z Pp(n).j ek +lo - 1)
p(n),j <K K &Wn :
< —1 i=1 j=1 D ket Yk Qe Vik

Combining this with the other expansions for a document gives us an individual
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document’s contribution to the objective function

Lq

n=1 i=1 n=1 i=1 j=1

N
. -1 o) YiVj.i 1 1
(zwn 2 DN UL )

n=1 =1 j=1

Z ¢n,i IOg ﬂi,wdm

n=1 i=1

logT ( 1%) Zlogf‘ Vi) Z(% 1) <‘I’ (i) — ¥ (ZJK=1 'YJ'))

N
> Z Bni 108 B (7.9)

n=1 i=1

M

Apart from the terms derived in Equation 7.8, the other terms here are very similar to

the objective function for LDA. The expectation of the log of p(0), ¢(0), p(2), q(=2),

and p(w) all appear in the LDA likelihood bound.

7.3 Document-specific Variational Updates

In this section, we derive the updates for all document-specific variational parameters

other than ¢,,, which is updated according to Equation 5.3.

Because we cannot assume that the point-wise product of of 7, and 63 sums to

one, we introduced a slack term w, in Equation 7.8; its update is

33 2
pn),J K K .
Zk:l Tk Zk:l Vik

i=1 j=1

Because we couple 7 and 6, the interaction between these terms in the normalizer

prevents us from solving the optimization for v and v explicitly. Instead, for each
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~4 we compute the partial derivative with respect to 74; for each component of the
vector. We then maximize the likelihood bound for each 4,. In deriving the gradient,

the following derivative is useful:

flz) = Z%‘Zii

=7
N N
of Dini i = D QT (7.10)

= o (Zﬁi 1 xi>2

This allows us to more easily compute the partial derivative of Equation 7.9 with

respect to y; to be

oL K N
= v (’71) (aD 17— + Z gbn i 71) < j=1 79) Z [avaT* + Z gbn,j —
n=1

i g

N N
- -1 S Vi Zk;ﬁj Tk — Zk;éj VikVk
=W D | Gnm
=t =1 (Zk 1%) >t Vik

7.4 Global Updates

In this section, we expand the terms of Equation 7.7 that were not expanded in Equa-
tion 7.9. First, we note that E, [log GEM(7; a)], because the variational distribution
only puts weight on 7*, is just log GEM(7*; a).

We can return to the stick-breaking weights by dividing each 7} by the sum of all

of the indices greater than z (recalling that 7 sums to one), T, = 1 — 3.7 7;. Using
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this reformulation, the total likelihood bound, including Equation 7.9 as L4, is then!

L = > Ly
’ K-1

+ (a—1)logTk — Z log T,

+ logl (Z QT ) - ilogr (r;m) + i (ar;7" —1) (‘I’ (vi) =¥ <ZJK:1 Vj))

Mx

_ logI’<Z] 11@) +Zlogf v;)

i=1 1:1

( () — W (zflyj)) . (711)

Variational Dirichlet for Parent-child Transitions

Like the update for =, the interaction between 7 and 6 in the normalizer prevents us
from solving the optimization for each of the v; explicitly. Differentiating the global

likelihood bound, keeping in mind Equation 7.10, gives

oL = V() O‘Pj—i_z Z Onifei = Vi

ov;
bJ n=1 cec(n)

K
_\D, (Zle Vi,k) Z apk + Z Z ¢n 1¢ck
k=1

n=1 cec(n)

N N N
. . VA — . V,
B Z ¢n7i Z ool s Zk;ég i,k Zk;ég i,k Tk

c

2
N N
cec(n) (Zk:l VJ'Jf) D k1 Yk

Each of the v; are then maximized individually using conjugate gradient optimization

after transforming the vector to assure non-negativity.

'For simplicity, we present inference with the per-topic distribution 3 as a parameter. Inference
for the complete model with § from a Dirichlet distribution requires adding an additional variational
parameter. This is straightforward, but would further complicate the exposition.
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Variational Top-level Weights

The last variational parameter is 7*, which is the variational estimate of the top-level

weights 7. Because 7} is implicitly defined as (1 — ZZKOl T; ), T/ appears in the

partial derivative of 7* with respect to 7 for £ < K. Similarly, we must also use
implicit differentiation with respect to the stick breaking proportions 7T, defined above.
Taking the derivative and implicitly differentiating 7 gives us

0L, Ki 1\ a-1
oy T, Tx

z=k+1

+ OéDZ( (Va,k) (Zf:ﬂd,j)) ap
+ aTZ( (Vak) (Zszll/Z])) ar

- K [OéT\If (aTTk) — CYT\IJ (OéT’TI*{)]

(¥ ) =¥ (070,))

>
S (TERT )

z

— M[OéD\I’ (CYDT,:) — OéD‘If (CKDT;()] (712)

which we use with conjugate gradient optimization after appropriately transforming

the variables to ensure non-negativity.
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