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ABSTRACT
Ideally, enterprise administrators could specify fine-grain poli-
cies that drive how the underlying switches forward, drop,
and measure traffic. However, existing techniques for flow-
based networking rely too heavily on centralized controller
software that installs rules reactively, based on the first packet
of each flow. In this paper, we propose DIFANE, a scalable
and efficient solution that keeps all traffic in the data planeby
selectively directing packets through intermediate switches
that store the necessary rules. DIFANE relegates the con-
troller to the simpler task of partitioning these rules overthe
switches. DIFANE can be readily implemented with com-
modity switch hardware, since all data-plane functions can
be expressed in terms of wildcard rules that perform simple
actions on matching packets. Experiments with our proto-
type on Click-based OpenFlow switches show that DIFANE
scales to larger networks with richer policies.

1. INTRODUCTION
The emergence of flow-based switches [1, 2] has en-

abled enterprise networks that support flexible policies.
These switches perform simple actions, such as drop-
ping or forwarding packets, based on rules that match
on bits in the packet header. Installing all of the rules
in advance is not attractive, because the rules change
over time (due to policy changes and host mobility) and
the switches have relatively limited high-speed mem-
ory (such as TCAMs). Instead, current solutions rely
on directing the first packet of each “microflow” to a
centralized controller that reactively installs the appro-
priate rules in the switches [3, 4]. In this paper, we
argue that the switches themselves should collectively
perform this function, both to avoid a bottleneck at the
controller and to keep all traffic in the data plane for
better performance and scalability.

1.1 DIFANE: Doing It Fast ANd Easy
Our key challenge, then, is to determine the appro-

priate “division of labor” between the controller and the
underlying switches, to support high-level policies in a
scalable way. Previous work has demonstrated that a
logically-centralized controller can track changes in user
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Figure 1: DIFANE flow management architecture.
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locations/addresses and compute rules the switches can
apply to enforce a high-level policy [4, 5, 6]. For exam-
ple, an access-control policy may deny the engineering
group access to the human-resources database, leading
to low-level rules based on the MAC or IP addresses of
the current members of the engineering team, the IP ad-
dresses of the HR servers, and the TCP port number of
the database service. Similar policies could direct pack-
ets on customized paths, or collect detailed traffic statis-
tics. The controller can generate the appropriate switch
rules simply by substituting high-level names with net-
work addresses. The policies are represented with 30K -
8M rules in the four different networks we studied. This
separation of concerns between rules (in the switches)
and policies (in the controller) is the basis of several
promising new approaches to network management [3,
7, 8, 9, 10].

While we agree the controller should generate the
rules, we do not think the controller should (or needs
to) be involved in the real-time handling of data pack-
ets. Our DIFANE (DIstributed Flow Architecture for
Networked Enterprises) architecture, illustrated in Fig-
ure 1, has the following two main ideas:

• The controller distributes the rules across (a
subset of) the switches, called “authority switches,”
to scale to large topologies with many rules. The
controller runs a partitioning algorithm that di-



vides the rules evenly and minimizes fragmenta-
tion of the rules across multiple authority switches.

• The switches handle all packets in the data
plane (i.e., TCAM), diverting packets through
authority switches as needed to access the appro-
priate rules. The “rules” for diverting packets are
themselves naturally expressed as TCAM entries.

All data-plane functionality in DIFANE is expressible
in terms of wildcard rules with simple actions, exactly
the capabilities of commodity flow switches. As such,
a DIFANE implementation requires only modifications
to the control-plane software of the authority switches,
and no data-plane changes in any of the switches. Ex-
periments with our prototype, built on top of the Click-
based OpenFlow switch [11], illustrate that distributed
rule management in the data plane provides lower delay,
higher throughput, and better scalability than directing
packets through a separate controller.

Section 2 presents our main design decisions, followed
by our DIFANE architecture in Section 3. Next, Sec-
tion 4 describes how we handle network dynamics, and
Section 5 presents our algorithms for caching and par-
titioning wildcard rules. Section 6 presents our switch
implementation, followed by the performance evalua-
tion in Section 7. Section 8 describes different deploy-
ment scenarios of DIFANE. Section 9 discusses the sup-
port for flow management tasks. The paper concludes
in Section 10.

1.2 Comparison to Related Work
Recent work shows how to support policy-based man-

agement using flow switches [1, 2] and centralized con-
trollers [4, 5, 6, 3]. The most closely related work
is the Ethane controller that reactively installs flow-
level rules based on the first packet of each TCP/UDP
flow [3]. The Ethane controller can be duplicated [3]
or distributed [12] to improve its performance. In con-
trast, DIFANE distributes wildcard rules amongst the
switches, and handles all data packets in the data plane.
Other recent work capitalizes on OpenFlow to rethink
network management in enterprises and data centers [7,
8, 9, 10]; these systems could easily run as applications
on top of DIFANE.

These research efforts, and ours, depart from tra-
ditional enterprise designs that use IP routers to in-
terconnect smaller layer-two subnets, and rely heav-
ily on inflexible mechanisms like VLANs. Today, net-
work operators must configure Virtual LANs (VLANs)
to scope broadcast traffic and direct traffic on longer
paths through routers that perform access control on
IP and TCP/UDP header fields. In addition, an indi-
vidual MAC address or wall jack is typically associated
with just one VLAN, making it difficult to support more
fine-grained policies that treat different traffic from the
same user or office differently.

Other research designs more scalable networks by se-
lectively directing traffic through intermediate nodes to
reduce routing-table size [13, 14, 15]. However, hash-
based redirection techniques [13, 14], while useful for
flat keys like IP or MAC addresses, are not appropri-
ate for look-ups on rules with wildcards in arbitrary bit
positions. ViAggre [15] subdivides the IP prefix space,
and forces some traffic to always traverse an interme-
diate node, and does not consider on-demand cache or
multi-dimensional, overlapping rules.

2. DIFANE DESIGN DECISIONS
On the surface, the simplest approach to flow-based

management is to install all of the low-level rules in the
switches in advance. However, preinstalling the rules
does not scale well in networks with mobile hosts, since
the same rules would need to be installed in multiple lo-
cations (e.g., any place a user might plug in his laptop).
In addition, the controller would need to update many
switches whenever rules change. Even in the absence of
mobile devices, a network with many rules might not
have enough table space in the switches to store all the
rules, particularly as the network grows or its policies
become more complex. Instead, the system should in-
stall rules on demand [3].

To build a flow-processing system that has high per-
formance and scales to large networks, DIFANE makes
four high-level design decisions that reduce the over-
head of handling cache misses and allow the system to
scale to a large number of hosts, rules, and switches.

2.1 Reducing Overhead of Cache Misses
Reactively caching rules in the switches could easily

cause problems such as packet delay, larger buffers, and
switch complexity when cache misses happen. More
importantly, misbehaving hosts could easily trigger ex-
cessive cache misses simply by scanning a wide range of
addresses or port numbers — overloading TCAM and
introducing extra packet-processing overhead. DIFANE
handles “miss” packets efficiently by keeping them in
the data plane and reduces the number of “miss” pack-
ets by caching wildcard rules.

Process all packets in the data plane: Some
flow management architectures direct the first packet
(or first packet header) of each microflow to the con-
troller and have the switch buffer the packet awaiting
further instructions [3].1 In a network with many short
flows , a controller that handles “miss” packets can eas-
ily become a bottleneck. In addition, UDP flows intro-
duce extra overhead, since multiple (potentially large)
packets in the same flow may be in flight (and need

1Another solution to handle cache miss is for the switch to
encapsulate and forward the entire packet to the controller.
This is also problematic because it significantly increases
controller load.
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to visit the controller) at the same time. The switches
need a more complex and expensive buffering mecha-
nism, because they must temporarily store the “miss”
packets while continuing to serve other traffic, and then
retrieve them upon receiving the rule. Instead, DIFANE
makes it cheap and easy for switches to forward all
data packets in the data plane (i.e., hardware), by di-
recting “miss” packets through an intermediate switch.
Transferring packets in the data plane through a slightly
longer path is much faster than handling packets in the
control plane.

Efficient rule caching with wildcards: Caching
a separate low-level rule for each TCP or UDP mi-
croflow [3], while conceptually simple, has several dis-
advantages compared to wildcard rules. For example, a
wildcard rule that matches on all destinations in the
123.132.8.0/22 subnet would require up to 1024 mi-
croflow rules. In addition to consuming more data-
plane memory on the switches, fine-grained rules re-
quire special handling for more packets (i.e., the first
packet of each microflow), leading to longer delays and
higher overhead, and more vulnerability to misbehav-
ing hosts. Instead, DIFANE supports wildcard rules, to
have fewer rules (and fewer cache “misses”) and capital-
ize on TCAMs in the switches. Caching wildcard rules
introduces several interesting technical challenges that
we address in our design and implementation.

2.2 Scaling to Large Networks and Many Rules
To scale to large networks with richer policies, DI-

FANE divides the rules across the switches and handles
them in a distributed fashion. We also keep consis-
tent topology information among switches by leveraging
link-state protocols.

Partition and distribute the flow rules: Repli-
cating the controller seems like a natural way to scale
the system and avoid a single point of failure. How-
ever, this requires each controller to maintain all the
rules, and coordinate with the other replicas to main-
tain consistency when rules change. (Rules may change
relatively often, not only because the policy changes,
but also because host mobility triggers changes in the
mapping of policies to rules.) Instead, we partition the
space of rules to reduce the number of rules each com-
ponent must handle and enable simpler techniques for
maintaining consistency. As such, DIFANE has one pri-
mary controller (perhaps with backups) that manages
policies, computes the corresponding rules, and divides
these rules across the switches; each switch handles a
portion of the rule space and receives updates only when
those rules change. That is, while the switches reac-
tively cache rules in response to the data traffic, the DI-
FANE controller proactively partitions the rules across
different switches.

Consistent topology information distribution with
the link-state protocol: Flow-based management
relies on the switches having a way to communicate with
the controller and adapt to topology changes. Rely-
ing on rules for this communication introduces circular-
ity, where the controller cannot communicate with the
switches until the appropriate rules have been installed.
Rather than bootstrapping communication by having
the switches construct a spanning tree [3], we advo-
cate running a link-state protocol amongst the switches.
Link-state routing enables the switches to compute paths
and learn about topology changes and host location
changes without involving the controller, reducing over-
head and also removing the controller from the critical
path of failure recovery. In addition, link-state rout-
ing scales to large networks, enables switches to direct
packets through intermediate nodes, and reacts quickly
to switch failure [13]. As such, DIFANE runs a link-
state routing protocol amongst the switches, while also
supporting flow rules that allow customized forwarding
of traffic between end hosts. The controller also par-
ticipates in link-state routing to reach the switches and
learn of network topology changes.2

3. DIFANE ARCHITECTURE
The DIFANE architecture consists of a controller that

generates the rules and allocates them to the authority
switches, as shown in Figure 1. Authority switches can
be a subset of existing switches in the network (includ-
ing ingress/egress switches), or dedicated switches that
have larger memory and processing capability.

Upon receiving traffic that does not match the cached
rules, the ingress switch encapsulates and redirects the
packet to the appropriate authority switch based on the
partition information. The authority switch handles
the packet in the data plane and sends feedback to the
ingress switch to cache the relevant rule(s) locally. Sub-
sequent packets matching the cached rules can be en-
capsulated and forwarded directly to the egress switch.

In this section, we first discuss how the controller
partitions the rules and distributes the authority and
partition rules to the switches. Next, we describe how
a switch directs packets through the authority switch
and caches the necessary rules, using link-state routing
to compute the path to the authority switch. Finally, we
show that the data-plane functionality of DIFANE can
be easily implemented on today’s flow-based switches
using wildcard rules.

3.1 Rule Partition and Allocation
As shown in Figure 2, we use the controller to pre-

compute the low-level rules, generate partition rules that

2The links between the controller and switches are set with
high link-weights so that traffic between switches do not go
through the controller.
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(b) Wildcard rules in the TCAM of Switch A

Figure 3: Wildcard rules in DIFANE (A-D are authority switches).
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Figure 2: Rule operations in the controller.

describe which low-level rules are stored in which au-
thority switches, and then distribute the partition rules
to all the switches. The partition rules are represented
by coarse-grained wildcard rules on the switches.

Precompute low-level rules: The controller pre-
computes the low-level rules based on the high-level
policies by simply substituting high-level names with
network addresses. Since low-level rules are pre-computed
and installed in the TCAM of switches, we can always
process packets in the fast path. Most kinds of poli-
cies can be translated to the low-level rules in advance
because the controller knows the addresses of the hosts
when the hosts first connect to the ingress switch, and
thus can substitute the high-level names with addresses.
However, precomputation is not an effective solution for
policies (like traffic engineering) that depend on dynam-
ically changing network state.

Use partitioning to subdivide the space of all
rules: Hashing is an appealing way to subdivide the
rules and direct packets to the appropriate authority
switch. While useful for flat keys like an IP or MAC
address [13, 14], hashing is not effective when the keys
can have wildcards in arbitrary bit positions. In par-
ticular, packets matching the same wildcard rule would
have different hash values, leading them to different au-

thority switches; as a result, multiple authority switches
would need to store the same wildcard rule. Instead of
relying on hashing, DIFANE partitions the rule space,
and assigns each portion of rule space to one or more
authority switches. Each authority switch stores the
rules falling in its part of the partition.

Run the partitioning algorithm on the controller:
Running the partitioning algorithm on the switches them-
selves would introduce a large overhead, because they
would need to learn the rules from the controller, run
the partitioning algorithm, and distribute the results.
In contrast, the controller is a more natural place to
run the partitioning algorithm. The controller is al-
ready responsible for translating policies into rules and
can easily run the partitioning algorithm periodically, as
the distribution of low-level rules changes. We expect
the controller would recompute the partition relatively
infrequently, as most rule changes would not require re-
balancing the division of rule space. Section 4 discusses
how DIFANE handles changes to rules with minimal
interruption to the data traffic.

Represent the partition as a small collection of
partition rules: Low-level rules are defined as ac-
tions on a flow space. The flow space usually has seven
dimensions (source/destination IP addresses, MAC ad-
dresses, ports, the protocol) or more. Figure 3(a) shows
a two-dimensional flow space (F1, F2) and the rules on
it. The bit range of each field is from 0 to 15 (i.e.,
F1 = F2 = [0..15]). For example, F1, F2 can be viewed
as the source/destination fields of a packet respectively.
Rule R2 denotes that all packets which are from source
1 (F1 = 1) and forwarded to a destination in [0..7]
(F2 =[0..7]) should be dropped.

The controller partitions the flow space into M ranges,
and assigns each range to an authority switch. The re-
sulting partition can be expressed concisely as a small
number of coarse-grain partition rules, where M is pro-
portional to the number of authority switches rather
than the number of low-level rules. For example, in Fig-
ure 3(a), the flow space is partitioned into four parts by
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the straight lines, which are represented by the parti-
tion rules in Figure 3(b). Section 5 discusses how the
controller computes a partition of overlapping wildcard
rules that reduces TCAM usage.

Duplicate authority rules to reduce stretch and
failure-recovery time: The first packet covered by
an authority rule traverses a longer path through an au-
thority switch. To reduce the extra distance the traffic
must travel (i.e., “stretch”), the controller can assign
each of the M ranges to multiple authority switches.
For example, if each range is handled by two authority
switches, the controller can generate two partition rules
for each range, and assign each switch the rule that
would minimize stretch. That way, on a cache miss3,
a switch directs packets to the closest authority switch
responsible for that range of rules. The placement of
multiple authority switches is discussed in Section 5.

Assigning multiple authority switches to the same
range can also reduce failure-recovery time. By push-
ing backup partition rules to every switch, a switch can
quickly fail over to the backup authority switch when
the primary one fails (see Section 4). This requires each
switch to store more partition rules (e.g., 2M instead
of M), in exchange for faster failure recovery. For ex-
ample, in Figure 3(b), switch A has a primary partition
rule that directs packets to B and a backup one that
directs packets to B′.

3.2 Packet Redirection and Rule Caching
The authority switch stores the authority rules. The

ingress switch encapsulates the first packet covered by
an authority switch and redirects it to the authority
switch.4 The authority switch processes the packet and
also caches rules in the ingress switch so that the fol-
lowing packets can be processed at the ingress switch.

Packet redirection: In the ingress switch, the first
packet of a wildcard flow matches a partition rule. The
partition rule indicates which authority switch main-
tains the authority rules that are related to the packet.
For example, in Figure 3 a packet with (F1 =9, F2 =7)
hits the primary partition rule for authority switch B
and should be redirected to B. The ingress switch en-
capsulates the packet and forwards it to the authority
switch. The authority switch decapsulates the packet,
processes it, re-encapsulates it, and forwards it to the
egress switch.

Rule Caching: To avoid redirecting all the data traf-
fic to the authority switch, the authority switch caches

3In DIFANE, every packet matches some rule in the switch.
“Cache miss” in DIFANE means a packet does not match
any cache rules, but matches a partition rule instead.
4With encapsulation, the authority switch knows the ad-
dress of the ingress switch from the packet header and sends
the cache rules to the ingress switch.

the rules in the ingress switch.5 Packets that match
the cache rules are encapsulated and forwarded directly
to the egress switch (e.g., packets matching R3 in Fig-
ure 3(b) are encapsulated and forwarded to D). In DI-
FANE “miss” packets do not wait for rule caching, be-
cause they are sent through the authority switch rather
than buffered at the ingress switch. Therefore, we can
run a simple caching function in the control plane of
the authority switch to generate and install cache rules
in the ingress switch. The caching function is triggered
whenever a packet matches the authority rules in the
authority switch. The cache rule has an idle timeout so
that it can be removed by the switch automatically due
to inactivity.

3.3 Implement DIFANE with Wildcard Rules
All the data plane functions required in DIFANE can

be expressed with three sets of wildcard rules of vari-
ous granularity with simple actions, as shown in Fig-
ure 3(b).

Cache rules: The ingress switches cache rules so that
most of the data traffic hits in the cache and is processed
by the ingress switch. The cache rules are installed by
the authority switches in the network.

Authority rules: Authority rules are only stored in
authority switches. The controller installs and updates
the authority rules for all the authority switches. When
a packet matches an authority rule, it triggers a control-
plane function to install rules in the ingress switch.

Partition rules: The controller installs partition
rules in each switch. The partition rules are a set of
coarse-grained rules. With these partition rules, we en-
sure a packet will always match at least one rule in the
switch and thus always stay in the data plane.

The three sets of rules can be easily expressed as a
single list of wildcard rules with different priorities. Pri-
orities are naturally supported by TCAM. If a packet
matches multiple rules, the packet is processed based on
the rule that has the highest priority. The cached rules
have highest priority because packets matching cache
rules do not need to be directed to authority switches.
In authority switches, authority rules have higher prior-
ity than partition rules, because packets matching au-
thority rules should be processed based on these rules.
The primary partition rules have higher priority than
backup partition rules.

Since all functionalities in DIFANE are expressed with
wildcard rules, DIFANE does not require any data-
plane modifications to the switches and only needs mi-
nor software extensions in the control plane of the au-
thority switches.

5Here we assume that we cache flow rules only at the ingress
switch. Section 9 discusses the design choices of where to
cache flow rules.
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4. HANDLING NETWORK DYNAMICS
In this section, we describe how DIFANE handles dy-

namics in different parts of the network: To handle rule
changes at the controller, we need to update the au-
thority rules in the authority switches and occasionally
repartition the rules. To handle topology changes at the
switches, we leverage link-state routing and focus on re-
ducing the interruptions of authority switch failure and
recovery. To handle host mobility, we dynamically up-
date the rules for the host, and use redirection to handle
changes in the routing rules.

4.1 Changes to the Rules
The rules change when administrators modify the

policies, or network events (e.g., topology changes) af-
fect the mapping between policies and rules. The re-
lated authority rules, cache rules, and partition rules in
the switches should be modified correspondingly.

Authority rules are modified by the controller
directly: The controller changes the authority rules
in the related authority switches. The controller can
easily identify the related authority switches based on
the partition it generates.

Cache rules expire automatically: Cached copies
of the old rules may still exist in some ingress switches.
These cache rules will expire after the timeout time.
For critical changes (e.g., preventing DoS attacks), the
authority switches can get the list of all the ingress
switches from the link-state routing and send them a
message to evict the related TCAM entries.

Partition rules are recomputed occasionally: When
the rules change, the number of authority rules in the
authority switches may become unbalanced. If the dif-
ference in the number of rules among the authority
switches exceeds a threshold, the controller recomputes
the partition of the flow space. Once the new partition
rules are generated, the controller notifies the switches
of the new partition rules, and updates the authority
rules in the authority switches.

The controller cannot update all the switches at ex-
actly the same time, so the switches may not have a con-
sistent view of the partition during the update, which
may cause transient loops and packet loss in the net-
work. To avoid packet loss, the controller simply up-
dates the switches in a specific order. Assume the con-
troller decides to move some authority rules from au-
thority switch A to B. The controller first sends the
authority rules to authority switch B, before sending
the new partition rules for A and B to all the switches
in the network. Meanwhile, switches can redirect the
packets to either A or B for the authority rules. Finally,
the controller deletes the authority rules in switch A. In
this way, we can prevent packet loss during the change.
The same staged update mechanism also applies to the

partition change among multiple authority switches.

4.2 Topology Dynamics
Link-state routing enables the switches to learn about

topology changes and adapt routing quickly. When au-
thority switches fail or recover, DIFANE adapts the
rules to reduce traffic interruption.

Authority switch failure: When an authority switch
fails, packets directed through it are dropped. To min-
imize packet loss, we must react quickly to author-
ity switch failures. We design a distributed authority
switch takeover mechanism. As discussed in Section 3.1,
the controller assigns the same group of authority rules
to multiple authority switches to reduce stretch and
failure-recovery time. Each ingress switch has primary
partition rules directing traffic to their closest author-
ity switch and backup partition rules with lower priority
that directing traffic to another authority switch when
the primary one fails.

The link-state routing protocol propagates a message
about the switch failure throughout the network. Upon
receiving this message, the switches invalidate their par-
tition rules that direct traffic to the failed authority
switch. As a result, the backup partition rule takes
effect and automatically directs packets through the
backup authority switch. For the switches that have not
yet received the failure information, the packets may get
sent towards the failed authority switch, but will finally
get dropped by a switch who has updated its switch
forwarding table.6

Authority switch addition/recovery: We use the
controller to handle switches joining in the network, be-
cause it does not require fast reaction compared to au-
thority switch failures. To minimize the change of the
partition rules and authority rules, the controller ran-
domly picks an authority switch, divides its flow range
evenly into two parts. The controller then moves one
part of the flow range to the new switch, and installs
the authority rules in the new switch. Finally the con-
troller updates the partition rules correspondingly in all
the switches.

4.3 Host Mobility
In DIFANE, when a host moves, its MAC and per-

haps IP address stays the same. The rules in the con-
troller are defined based on these addresses, and thus
do not change as hosts move. As a result, the parti-
tion rules and the authority rules also stay the same.7

Therefore we only need to consider the changes of cache

6If the switch can decapsulate the packet and encapsulate
it with the backup authority switch as the destination, we
can avoid such packet loss.
7In some enterprises, a host changes its identifier when it
moves. The rules also change correspondingly. We can use
the techniques in Section 4.1 to handle the rule changes.
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rules.

Installing rules at the new ingress switch on de-
mand: When a host connects to a new ingress switch,
the switch may not have the cache rules for the pack-
ets sent by the hosts. So the packets are redirected to
the responsible authority switch. The authority switch
then caches rules at the new ingress switch.

Removing rules from old ingress switch by time-
out: Today’s flow-based switches usually have a time-
out for removing the inactive rules. Since the host’s
old ingress switch no longer receives packets from the
moved host, the cache rules at the switch are automat-
ically removed once the timeout time expires.

Redirecting traffic from old ingress switch to the
new one: The rules for routing packets to the host
change when the host moves. When a host connects
to a new switch, the controller gets notified through
the link-state routing and constructs new routing rules
that map the address of the host to the corresponding
egress switch. The new routing rules are then installed
in the authority switches.

The cached routing rules in some switches may be
outdated. Suppose a host H moves from ingress switch
Sold to Snew. The controller first gets notified about
the host movement. It then installs new routing rules
in the authority switch, and also installs a rule in Sold

redirecting packets to Snew. If an ingress switch A re-
ceives a packet whose destination is H , A may still send
the packet to the old egress point Sold if the cache rule
has not expired. Sold then redirects packets to Snew.
After the cache rule expires in switch A, A directs the
packets to the authority switch for the correct egress
point Snew and caches the new routing rule.

5. HANDLING WILDCARD RULES
Most flow-management systems simply use microflow

rules [3] or transform overlapping wildcard rules into a
set of non-overlapping wildcard rules. However these
methods significantly increase the number of rules in
switches, as shown in our evaluation in Section 7. To
the best of our knowledge, there is no systematic and ef-
ficient solution for handling overlapping wildcard rules
in network-wide flow-management systems. In this sec-
tion, we first propose a simple and efficient solution
for multiple authority switches to independently insert
cache rules in ingress switches. We then discuss the key
ideas of partitioning overlapping wildcard rules, defer-
ring the description of our algorithm to the Appendix.

5.1 Caching Wildcard Rules
Wildcard rules complicate dynamic caching at ingress

switches. In the context of access control, for example
in Figure 4, the packet (F1 =7, F2 =0) matches an “ac-
cept” rule R3 that overlaps with “deny” rule R2 which

Rule F1 F2 Action

R1 4 0-15 Accept
R2 0-7 5-6 Drop
R3 6-7 0-15 Accept
R4 14-15 0-15 Accept

(a) Wildcard rules listed in the decreasing

order of priority. (R1 > R2 > R3 > R4)

Cut A

F1

F2

R3 R4
Cut B

A1 A2

B1

B2

R1

R2

(b) Graphical view and two partition solutions.

Figure 4: An illustration of wildcard rules.

has higher priority. Simply caching R3 is not safe. If
we just cache R3 in the ingress switch, another packet
(F1 = 7, F2 = 5) could incorrectly pass the cached rule
R3, because the ingress switch is not aware of the rule
R2. Thus, because rules can overlap with each other,
the authority switch cannot solely cache the rule that a
packet matches. This problem exists in all the flow man-
agement systems that cache wildcard rules and there-
fore it is not trivial to extend Ethane controllers [3] to
support wildcards.

To address this problem, DIFANE constructs one or
more new wildcard rules that cover the largest flow range
(i.e., a hypercube in a flow space) in which all packets
take the same action. We use Figure 4 to illustrate the
solution. Although the rules overlap, which means a
packet may match multiple rules, the packet only takes
the action of the rule with the highest priority. That is,
each point in the flow space has a unique action (which
is denoted by the shading in each spot in Figure 4(b)).
As long as we cache a rule that covers packets with
the same action (i.e., spots with the same shading),
we ensure that the caching preserves semantic correct-
ness. For example, we cannot cache rule R3 because the
spots it covers have different shading. In contrast, we
can safely cache R1 because all the spots it covers has
the same shading. For the packet (F1 = 7, F2 = 0), we
construct and cache a new rule: F1 =[6..7], F2=[0..3].

The problem of constructing new wildcard rules for
caching at a single switch was studied in [16]. Our
contribution lies in extending this approach to multi-
ple authority switches, each of which can independently
install cache rules at ingress switches. Given such a set-
ting, we must prevent authority switches from installing

7



conflicting cache rules. To guarantee this, DIFANE en-
sures that the caching rules installed by different au-
thority switches do not overlap. This is achieved by
allocating non-overlapping flow ranges to the author-
ity switches, and only allowing the authority switch to
install caching rules in its own flow range. We later
evaluate our caching scheme in Section 7.

5.2 Partitioning Wildcard Rules
Overlapping wildcard rules also introduce challenges

in partitioning. We first formulate the partition prob-
lem: The controller needs to partition rules into M
parts to minimize the total number of TCAM entries
across all M authority switches with the constraint that
the rules should not take more TCAM entries than are
available in the switches. There are three key ideas in
the partition algorithm:

Allocating non-overlapping flow ranges to au-
thority switches: As discussed in the caching solu-
tion, we must ensure that the flow ranges of authority
switches do not overlap with each other. To achieve
this goal, DIFANE first partitions the entire flow space
into M flow ranges and then stores rules in each flow
range in an authority switch. For example, the “Cut
A” shown in Figure 4(b) partitions the flow space on
field F1 into two equal flow ranges A1 and A2. We then
assign R1, R2 and R3 in A1 to one authority switch,
and R4 to another.

DIFANE splits the rules so that each rule only
belongs to one authority switch. With the above
partitioning approach, one rule may span multiple par-
titions. For example, “Cut B” partitions the flow space
on field F2, which results in the rules R1, R3, and R4

spanning the two flow ranges B1 and B2. We split each
rule into two independent rules by intersecting it with
the two flow ranges. For example, the two new rules
generated from rule R4 are F1 = [14..15], F2 = [0..7]
→ Accept and F1 = [14..15], F2 = [8..15] → Accept.
These two independent rules can then be stored in dif-
ferent authority switches. Splitting rules thus avoids
the overlapping of rules among authority switches, but
at the cost of increased TCAM usage.

To reduce TCAM usage, we prefer the cuts to
align with rule boundaries. For example, “Cut A”
is better than “Cut B” because “Cut A” does not break
any rules. We also observe that cut on field F1 is better
than F2 since we have more rule boundaries to choose.
Based on these observations, we design a decision-tree
based partition algorithm which is described in [17].

In summary, DIFANE partitions the entire rule space
into M independent portions, and thus each author-
ity switch is assigned a non-overlapping portion. How-
ever, within the portion managed by a single author-
ity switch, DIFANE allows overlapping or nested rules.

This substantially reduces the TCAM usage of author-
ity switches (see Section 7).

Duplicating authority rules to reduce stretch:
We can duplicate the rules in each partition on mul-
tiple authority switches to reduce stretch and to react
quickly to authority switch failures. Due to host mobil-
ity, we cannot pre-locate authority switches to minimize
stretch. Instead, we assume traffic that is related to one
rule may come from any ingress switches and place repli-
cated authority switches to reduce the average stretch.
One simple method is to randomly place the replicated
switches to reduce stretch. Alternatively, by leveraging
an approximation algorithm for the “k-median prob-
lem” [18], we can place the replicated authority switches
so that they have minimal average stretch to any pair
of switches. Both schemes are evaluated in Section 7.

6. DESIGN AND IMPLEMENTATION
In this section, we present our design and implemen-

tation of DIFANE. First, we describe how our prototype
handles multiple sets of rules from different kinds of
high-level policies for different management functions.
Second, we describe the prototype architecture, which
just add a few control-plane functions for authority switches
to today’s flow-based switches.

6.1 Managing Multiple Sets of Rules
Different management functions such as access con-

trol, measurement and routing may have totally differ-
ent kinds of policies. To make our prototype efficient
and easy to implement, we generate different sets of
rules for different policies, partition them using a single
partition algorithm, and process them sequentially in
the switch.

Generate multiple sets of low-level rules: Trans-
lating and combining different kinds of high-level poli-
cies into one set of rules is complicated and significantly
increases TCAM usage. For example, if the policies are
to monitor web traffic, and perform destination based
routing, we have to provide rules for (dst, port 80) and
(dst, other ports) for each destination dst. If the admin-
istrator changes the policy of monitoring port 21 rather
than port 80, we must change the rules for every des-
tination. In contrast, if we have different sets of rules,
we only need one routing rule for each destination and
a single measurement rule for port 80 traffic which is
easy to change.

To distribute multiple sets of rules, the controller first
partitions the flow space to minimize the total TCAM
usage. It then assigns all the rules (of different man-
agement modules) in one flow range to one authority
switch. We choose to use the same partition for differ-
ent sets of low-level rules so that packets only need to
be redirected to one authority switch to match all sets
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Figure 5: Rules for various management modules.

of authority rules.8

Processing packets through multiple sets of rules
in switches: In switches we have one set of rules for
each management module.9 We process the flow rules
sequentially through the rules for different modules as
shown in Figure 5. We put access control rules first to
block malicious traffic. Routing rules are placed later to
identify the egress switch for the packets. Finally, the
link-state routing constructs a set of switch connection
rules to direct the packets to their egress switches.

To implement sequential processing in the switch where
all the rules share the same TCAM, the controller sets
a “module identifier” in the rules to indicate the mod-
ule they belong to. The switch first initializes a module
identifier in the packet. It then matches the packet
with the rules that have the same module identifier.
Next, the switch increments the module identifier in the
packet and matches to the next set of rules. By process-
ing the packet several times through the memory, the
switch matches the packet to the rules for different mod-
ules sequentially. The administrator specifies the order
of the modules by giving different module identifiers for
the high-level policies in the controller.

A packet may be redirected to the authority switch
when it is in the middle of the sequential processing
(e.g., while being processed in the measurement mod-
ule). After redirection, the packet will be processed
through the following modules in the authority switch
based the module identifier in the packet.

6.2 DIFANE Switch Prototype
Figure 6 shows both the control and data plane of

our DIFANE switch prototype.

Control plane: We use XORP [19] to run the link-
state routing protocol to maintain the switch-level con-
nectivity, and keep track of topology changes. XORP
also sends updates of the switch connection rules in the
data plane.

The authority switch also runs a cache manager which
installs cache rules in the ingress switch. If a packet
misses the cache, and matches the authority rule in the
authority switch, the cache manager is triggered to send

8One can also choose to provide a different partition of the
flow space for different sets of low-level rules, but packets
may be redirected to multiple authority switches to match
the authority rules of different management modules.
9To make the rule processing simple, we duplicate the same
set of partition rules in the management modules.
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Figure 6: DIFANE prototype implementation. (Cache

manager and authority rules (shaded boxes) only exist

in authority switches.)

a cache update to the ingress switch of the packet. The
cache manager is implemented in software in the control
plane because packets are not buffered and waiting for
the cache rule in the ingress switch. The ingress switch
continues to forward packets to the authority switch
if the cache rules are not installed. The cache man-
ager sends an update for every packet that matches the
authority rule. This is because we can infer that the
ingress switch does not have any related rules cached,
otherwise it would forward the packets directly rather
than sending them to the authority switch.10

Data plane: We run Click-based OpenFlow switch [11]
in the kernel as the data plane of DIFANE. Click man-
ages the rules for different management modules and
encapsulates and forwards packets based on the switch
connection rules. We implement the packet encapsu-
lation function to enable tunneling in the Click Open-
Flow element. We also modify the Click OpenFlow ele-
ment to support the flow rule action “trigger the cache
manager”. If a packet matches the authority rules,
Click generates a message to the cache manager through
the kernel-level socket “netlink”. Today’s flow-based
switches already support actions of sending messages
to a local controller in order to communicate with the
centralized controller [4]. We just add a new message
type of “matching authority rules”. In addition, today’s
flow-based switches already have interfaces for the cen-
tralized controller to install new rules. The cache man-

10For UDP flows, they may be a few packets sent to the
authority switch. The authority switch sends one feedback
for each UDP flow, because it takes very low overhead to
send a cache update message (just one UDP packet). In
addition, we do not need to store the existing cached flow
rules in the authority switch or fetch them from the ingress
switch.
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ager then just leverages the same interfaces to install
cache rules in the ingress switches.

7. EVALUATION
Ideally we would like to evaluate DIFANE based on

policies, topology data, and user-mobility traces from
real networks. Unfortunately, most networks today are
still configured with rules that are tightly bound to
their network configurations (e.g., IP address assign-
ment, routing, and VLANs). Therefore, we evaluated
DIFANE’s approach against the topology and access-
control rules of a variety of different networks toex-
plore DIFANE’s benefit across various settings. We
also perform latency, throughput, and scalability micro-
benchmarks of our DIFANE prototype and a trace-driven
evaluation of our partition and caching algorithms.

To verify the design decisions in Section 2, we eval-
uate two central questions in this section: (1) How ef-
ficient and scalable is DIFANE? (2) How well do our
partition and caching algorithms work in handling large
sets of wildcard rules?

7.1 Performance of the DIFANE Prototype
We implemented the DIFANE prototype using a kernel-

level Click-based OpenFlow switch and compared the
delay and throughput of DIFANE with NOX [4], which
is a centralized solution for flow management. For a fair
comparison, we first evaluated DIFANE using only one
authority switch. Then we evaluated the throughput of
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Figure 8: Delay comparison of DIFANE and NOX.

DIFANE with multiple authority switches. Finally we
investigated how fast DIFANE reacts to the authority
switch failures.

In the experiments, each sender sends the packets to
a receiver through a single ingress switch, which is con-
nected directly to either NOX or a DIFANE authority
switch as shown in Figure 7. (In this way, the net-
work delay from the ingress switch to NOX and the
DIFANE authority switch is minimized. We evaluate
the extra delay caused by redirecting through author-
ity switches in Section 7.2.) With NOX, when a packet
does not match a cached rule, the packet is buffered in
the ingress switch before NOX controller installs a rule
at the ingress switch. In contrast, in DIFANE the au-
thority switch redirects the packet to the receiver in the
data plane and installs a rule in the ingress switch at
the same time. We generate flows with different port
numbers, and use a separate rule for each flow. Since
the difference between NOX and DIFANE lies in the
processing of the first packet, we generate each flow
as a single 64 Byte UDP packet. Based on the mea-
surements, we also calculate the performance difference
between NOX and DIFANE for flows of normal sizes.
Switches, NOX, and traffic generators (“clients”) run on
separate 3.0 GHz 64-bit Intel Xeon machines to avoid
interference between them.

(1) DIFANE achieves small delay for the first
packet of a flow by always keeping packets in
the fast path. In Figure 8, we send traffic at 100
single-packet flows/s and measure the round-trip time
(RTT) of the each packet being sent through a switch
to the receiver and an ACK packet being sent back.
Although we put NOX near the switch, the packets still
experience a RTT of 10 ms on average, which is not
acceptable for those networks that have tight latency
requirement such as data centers. In DIFANE, since
the packets stay in the fast path (forwarded through
an authority switch), the packets only experience 0.4
ms RTT on average. Since all the following packets
take 0.3 ms RTT for both DIFANE and NOX, we can
easily calculate that to transfer a flow of a normal size
35 packets, which is based on the measurement in the
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paper [20]), the average packet transfer time is 0.3 ms
(=(0.3*34+0.4)/35) transferring time for DIFANE but
0.58 ms (=(0.3*34+10)/35) for NOX. People also tested
NOX with commercial OpenFlow switches and observe
similar delay [21].
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Figure 9: Throughput comparison of DIFANE and

NOX.

(2) DIFANE achieves significantly higher through-
put than NOX. We then increase the number of
switches (p) to measure the throughput of NOX and
DIFANE. In Figure 9, we show the maximum through-
put of flow setup for one client using one switch. In
DIFANE, the switch was able to achieve the client’s
maximum flow setup rate, 75K flows/s, while the NOX
architecture was only able to achieve 20K flows/s. This
is because, while all packets remain in the fast path (the
software kernel) in DIFANE, the OpenFlow switch’s
local controller (implemented in user-space) becomes
a bottleneck before NOX does. Today’s commercial
OpenFlow switches can only send 60-330 flows/s to the
controller due to the limited CPU resources in the con-
troller [22]. Section 8 discusses how to run DIFANE on
today’s commercial switches.

As we increase the number of ingress switches—each
additional data-point represents an additional switch
and client as shown in the upper x-axis—we see that
the NOX controller soon becomes a bottleneck: With
four switches, a single NOX controller achieves a peak
throughput of 50K single-packet flows/s. Suppose a net-
work has 1K switches, a single NOX controller can only
support 50 new flows per second for each switch simul-
taneously. In comparison, the peak throughput of DI-
FANE with one authority switch is 800K single-packet
flows/s.

Admittedly, this large difference exists because DI-
FANE handles packets in the kernel while NOX oper-
ates in user space. However, while it is possible to move
NOX to the kernel, it would not be feasible to imple-
ment the entire NOX in today’s switch hardware be-
cause the online rule generation too complex for hard-
ware implementation. In contract, DIFANE is meant
for precisely that — designed to install a set of rules in
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Network # switches/routers # Rules

Campus ∼1700 30K
VPN ∼1500 59K
IPTV ∼3000 5M

IP ∼2000 8M

Table 1: Network characteristics.

the data plane.11

We then evaluate the performance of the cache man-
ager in authority switches. When there are 10 author-
ity rules, the cache manager can handle 30K packets/s
and generate one rule for each packet. When there are
9K authority rules, the cache manager can handle 12K
packets/s. The CPU is the bottleneck of the cache man-
ager.

(3) DIFANE scales with the number of author-
ity switches. Our experiments show that DIFANE’s
throughput increases linearly with the number of au-
thority switches. With four authority switches, the
throughput of DIFANE reaches over 3M flows/s. Ad-
ministrators can determine the number of authority switches
according to the size and the throughput requirements
of their networks.

(4) DIFANE recovers quickly from authority switch
failure. Figure 10 shows the effect of an authority
switch failure. We construct a diamond topology with
two authority switches, both connecting to the ingress
and the egress switches. We set the OSPF hello interval
to 1 s, and the dead interval to 3 s. After the authority
switch fails, OSPF notifies the ingress switch. It takes
less than 10 ms for the ingress switch to change to an-
other authority switch after the dead interval, at which
time the ingress switch sets the backup partition rule
as the primary one, and thus connectivity is restored.

7.2 Evaluation of Partitioning and Caching
We now evaluate DIFANE’s partitioning algorithm

using the topologies and access-control rules from sev-
eral sizable networks (as of Sept. 10, 2009) including a
large-scale campus network [24] and three large back-

11Today’s TCAM with pipelined processing only takes 3–
4 ns per lookup [23], which is more than three orders of
magnitude faster than in software.
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overlapping rules.

bone networks that are operated by a tier-1 ISP for its
enterprise VPN, IPTV, and traditional IP services. The
basic characteristics of these networks are shown in Ta-
ble 1. In these networks, each access control rule has
six fields: ingress interface, source IP/port, destination
IP/port, and protocol. Access control rules are config-
ured on the ingress switches/routers. It is highly likely
that different sets of rules are configured at different
switches and routers, hence one packet may be permit-
ted in one ingress switch but denied at another. In
addition, as Table 1 shows, there are a large number of
access control rules configured in these networks. This
is due to the large number of ingress routers that need
to have access control rules configured and the poten-
tially large number rules that need to be configured on
even a single router. For example, ISPs often configure
a set of rules on each ingress switch to protect their in-
frastructures and important servers from unauthorized
customers. This would easily result in a large number
of rules on an ingress switch if there are a large number
of customers connected to the switch and/or these cus-
tomers make use of a large amount of non-aggregatable
address space.

In the rest of this section, we evaluate the effect of
overlapping rules, the number of authority switches needed
for different networks, the number of extra rules needed
after the partitioning, the miss rate of caching wildcard
rules, and the stretch experienced by packets that travel
through an authority switch.

(1) Installing overlapping rules in an author-
ity switch significantly reduces the memory re-
quirement of switches: In our set of access control
rules, the use of wildcard rules can result in overlapping
rules. One straight forward way to handle these over-
lapping rules is to translate them into non-overlapping
rules which represent the same semantics. However, this
is not a good solution because Figure 11 shows that the
resulting non-overlapping rules require one or two or-
ders of magnitude more TCAM space than the original
overlapping rules. This suggests that the use of overlap-
ping wildcard rules can significantly reduce the number
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of TCAM entries.

(2) A small number of authority switches are
needed for the large networks we evaluated. Fig-
ure 12 shows the number of authority switches needed
under varying TCAM capacities. The number of au-
thority switches needed decreases almost linearly with
the increase of the switch memory. For networks with
relatively few rules, such as the campus and VPN net-
works, we would require 5–6 authority switches with
10K TCAM in each (assuming we need 16B to store the
six fields and action for a TCAM entry, we need about
160KB of TCAM in each authority switch). To handle
networks with many rules, such as the IP and IPTV
networks, we would need approximately 100 author-
ity switches with 100K TCAM entries (1.6MB TCAM)
each.12 The number of the authority switches is still
relatively small compared to the network size (2K - 3K
switches).

(3) Our partition algorithm is efficient in re-
ducing the TCAM usage in switches. As shown
in Figure 4, depending on the rules, partitioning wild-
card rules can increase the total number of rules and
the TCAM usage for representing the rules. With the
6-tuple access-control rules in the IP network, the to-
tal number of TCAM entries increases only by 0.01%
if we distribute the rules over 100 authority switches.
This is because most of the cuts are on the ingress di-
mension and, in the data set, most rules differ between

12Today’s commercial switches are commonly equipped with
2 MB TCAM.
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ingresses. To evaluate how the partition algorithm han-
dles highly overlapping rules, we use our algorithm to
partition the 1.6K rules in one ingress router in the IP
network. Figure 13 shows that we only increase the
number of TCAM entries by 10% with 10 splits (100–
200 TCAM entries per split).

(4) Our wildcard caching solution is efficient in
reducing cache misses and cache memory size.
We evaluate our cache algorithm with packet-level traces
of 10M packets collected in December 2008 and the cor-
responding access-control lists (9K rules) in a router
in the IP network. Figure 14 shows that if we only
cache micro-flow rules, the miss rate is 10% with 1K
cache entries. In contrast, with wildcard rule caching
in DIFANE, the cache miss rate is only 0.1% with 100
cache entries: 99.9% of packets are forwarded directly
to the destination, while only 0.1% of the packets take a
slightly longer path through an authority switch. Those
ingress switches which are not authority switches only
need to have 1K TCAM entries for cache rules (Fig-
ure 14) and 10 - 1000 TCAM entries for partition rules
(Figure 12).

(5) The stretch caused by packet redirection is
small. We evaluated the stretch of two authority
switch placement schemes (random and k-median) dis-
cussed in Section 5. Figure 15 shows the distribution of
stretch (delay normalized by that of the shortest path)

among all source-destination pairs in the campus net-
work. With only one authority switch for each set of
authority rules, the average stretch is twice the delay of
the shortest path length in the random scheme. Though
some packets experience 10 times the delay of the short-
est path, this usually happens to those pairs of nodes
that are one or two hops away from each other; so the
absolute delay of these paths is not large. If we store
one set of rules at three random places, we can reduce
stretch (the stretch is 1.8 on average). With 10 copies
of rules, the stretch is reduced to 1.5. By placing the
authority switches with the k-median scheme, we can
further reduce the stretch (e.g., with 10 copies of rules,
the stretch is reduced to 1.07).

8. DIFANE DEPLOYMENT SCENARIOS
DIFANE proposes to use authority switches to always

keep packets in the data plane. However, today’s com-
mercial OpenFlow switches have resource constraints in
the control plane. In this section, we describe how DI-
FANE can be deployed in today’s switches with resource
constraints and in future switches as a clean-slate solu-
tion. We provide three types of design choices: imple-
menting tunneling with packet encapsulation or VLAN
tags; performing rule caching in the authority switches
or in the controller; choosing normal switches or dedi-
cated switches as authority switches.

Deployment with today’s switches: Today’s com-
mercial OpenFlow switches have resource constraints
in the control plane. For example, they do not have
enough CPU resources to generate caching rules or have
hardware to encapsulate packets quickly. Therefore we
use VLAN tags to implement tunneling and move the
wildcard rule caching to the DIFANE controller. The
ingress switch tags the “miss” packet and sends it to
the authority switch. The authority switch tags the
packet with a different VLAN tag and sends the packet
to the corresponding egress switch. The ingress switch
also sends the packet header to the controller, and the
controller installs the cache rules in the ingress switch.

Performing rule caching in the controller resolves the
limitations of today’s commercial OpenFlow switches
for two reasons: (i) Authority switches do not need
to run caching functions;(ii) The authority switches do
not need to know the addresses of the ingress switch.
We can use VLAN tagging instead of packet encapsula-
tion, which can be implemented in hardware in today’s
switches.

This deployment scenario is similar to Ethane [3] in
that it also has the overhead of the ingress switch send-
ing packets to the controller and the controller installing
caching rules. However, the difference is that DIFANE
always keeps the packet in the fast path. Since we need
one VLAN tag for each authority switch (10 - 100 au-
thority switches) and each egress switch (at most a few
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thousand switches), we have enough VLAN tags to sup-
port tunneling in DIFANE in today’s networks.

Clean slate deployment with future switches: Fu-
ture switches can have more CPU resources and hardware-
based packet encapsulation techniques. In this case, we
can have a clean slate design. The ingress switch en-
capsulates the “miss” packet with its address as the
source address. The authority switch decapsulates the
packet, gets the address of the ingress switch and re-
encapsulates the packet with the egress switch address
as the packet’s destination address. The authority switch
also installs cache rules to the ingress switch based on
the address it gets from the packet header. In this sce-
nario, we can avoid the overhead and single point of
failure of the controller. Future switches should also
have high bandwidth channel between the data plane
and the control plane to improve the caching perfor-
mance.

Deployment of authority switches: There are two
deployment scenarios for authority switches: (i) The au-
thority switches are just normal switches in the network
that can be taken over by other switches when they
fail; (ii) The authority switches are dedicated switches
that have larger TCAM to store more authority rules
and serve essentially as a distributed data plane of the
centralized controller. All the other switches just need
a small TCAM to store a few partition rules and the
cache rules. In the second scenario, even when DIFANE
has only one authority switch that serves as the data
plane of the controller, DIFANE and Ethane [3] are still
fundamentally different in that DIFANE pre-installs au-
thority rules in TCAM and thus always keeps the packet
in the fast path.

9. FLEXIBLE MANAGEMENT SUPPORT
Recently proposed flow-based management solutions [3,

7, 8, 9, 10] can easily run on top of DIFANE, by defining
their own policies and translating them into rules, while
capitalizing on our support for distributed rule process-
ing for better scalability and performance. In addition,
DIFANE is also flexible to support some other pro-
posed techniques and management functions for man-
aging how rules are handled.

Support scalable routing with packet redirec-
tion: SEATTLE [13] performs packet redirection based
on the hash of a packet’s destination MAC address, and
reactively caching information about the host’s current
location. SEATTLE can be easily implemented within
our architecture even when the flow-based switches do
not support hashing. In particular, the DIFANE con-
troller could generate routing rules that map a desti-
nation MAC address to the switch where the host is
located. The partitioning algorithm could divide the
space of rules by cutting along the destination address

dimension to generate partition rules, with wildcards in
some bit positions of the destination address, and with
wildcards in all other header fields. When an ingress
switch does not have a cached rule that matches an
incoming packet, the partition rule directs the packet
through the appropriate authority switch. This trig-
gers the authority switch to install the rules for the
destination address at the ingress switch.

Similarly, DIFANE could support ViAggre [15] by
creating partition rules based on the destination IP ad-
dress space (rather than MAC addresses), so ingress
switches forward packets to authority switches with more-
specific forwarding-table entries.

Handle measurement rules in both authority and
ingress switches. In DIFANE packets may be pro-
cessed in the ingress switch or in the authority switch.
If we have a measurement rule that accumulates the
statistics of a flow, we need to install it in both the
ingress and the authority switch. The controller installs
these measurement flow rules in the authority switches,
which then installs the rules in the ingress switches. A
packet matches one of the cached rule is counted at the
ingress switch. Otherwise, it is redirected to an author-
ity switch and counted there.

The controller can use either pull or push method to
collect flow information from the authority switches and
ingress switches. The cache rules in the ingress switch
may be swapped out if the cache rule is not used for
the timeout time or there is not enough memory. In
this case, the ingress switch notifies the controller and
sends the data of the cache rule to the controller, which
is already supported by flow-based switches today.

Most network management functions can be achieved
by caching rules only at the ingress switch. We
choose to cache rules only at the ingress switch for lower
overhead. One alternative is to cache rules at every
switch on the path a packet transfers. The authority
switch would have to determine all the switches on the
packet’s path and install the rule in them.

In fact, caching rules only at the ingress can meet
most of the requirements of management modules. For
example, access control rules are checked at the ingress
switch to block the malicious traffic before they enter
the network. Measurement rules are usually applied at
the ingress switch to count the number of packets or the
amount of traffic. Routing rules are used at the ingress
switch to select the egress point for the packets. Pack-
ets are then encapsulated and forwarded directly to the
egress switch without matching routing rules at other
switches. Customized routing can also be supported by
tagging the packets and selecting pre-computed paths
at the ingress switch.

10. CONCLUSION
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We design and implement DIFANE, a distributed flow
management architecture that distributes rules to au-
thority switches and handles all data traffic in the fast
path. DIFANE can handle wildcard rules efficiently
and react quickly to network dynamics such as pol-
icy changes, topology changes and host mobility. DI-
FANE can be easily implemented with today’s flow-
based switches. Our evaluation of the DIFANE proto-
type, various networks, and large sets of wildcard rules
show that DIFANE is scalable with networks with a
large number of hosts, flows and rules.
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APPENDIX

A. PARTITION ALGORITHM
We formulate the rule partition problem as follows:

Assume that there are M candidate authority switches,
each of which can store up to S TCAM entries. For
a given set of N low-level rules of K dimensions, we
would like to partition the flow space into n hypercubes
(n ≤ M), because hypercubes are easy to represent as
wildcard partition rules. Each of the hypercubes is rep-
resented by a K-tuple of ranges, [l1..r1], . . . , [lK ..rK ],
and is stored in an authority switch. The optimization
objective is to minimize the total number of TCAM
entries in all n authority switches. The flow partition
problem is NP-hard for K ≥ 2.13 Therefore, we instead
design a heuristic algorithm for partitioning rules.

Rule \ Field F1 F2 F3 F4 F5 Action

R1 0-1 14-15 2 0-3 0 accept
R2 0-1 14-15 1 2 0 accept
R3 0-1 8-11 0-3 2 1 deny
R4 0-1 8-11 2 3 1 deny
R5 0-15 0-7 0-3 1 0 accept
R6 0-15 14-15 2 1 0 accept
R7 0-15 14-15 2 2 0 accept
R8 0-15 0-15 0-3 0-3 0-1 deny

(a) A group of wildcard rules

[0,7] [8,11] [12,15]

Cut on

Field 2

Root

R5

R8^{F2=[0,7]}
R8^{F2=[8,11]}

[0,1] [2,3]

R2

R8^{F2=[12,15]}

     ^{F3=[0,1]}

R1, R6, R7

R8^{F2=[12,15]}

     ^{F3=[2,3]}

Cut on Field 3

(b) The decision tree for the rules

Figure 16: Construct decision tree for a group of rules.

The complete algorithm is shown in Algorithm 1,
which consists of two key ideas:

Use a decision tree to represent the partition:

13The proof of the NP-hardness of the partition problems is
omitted due to lack of space.
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Algorithm 1 Heuristic partition algorithm using decision tree

Initialization:

Step 1 k = 0. T0 is the tree node which represents the entire
flow range.

Split the flow range:

Step 2 Incrementk. Pick up a tree node Tk to split.
Tk is a leaf node in the decision tree that contain more
than S TCAM entries to represent its hypercube Ck.
If we cannot find such a node, stop.

Step 3 Select a flow dimension i that have maximum number of
unique components ui.

Step 4 Pick w boundaries of the unique components that mini-
mizes (

P

1≤t≤w
f(Ct

k
) − f(Ck))/w.

Step 5 Put all the child node of Ti in the tree.
Step 6 Goto Step 2.

The root node of the decision tree denotes the hyper-
cube of the entire flow space. Similarly, each node in
the decision tree denotes a hypercube of flow range and
maintains all the rules intersecting with the hypercube.
We start with the root node (Step 1). In each round
of the splitting process, we pick a node in the decision
tree which has more than S authority rules, and split
it into a group of child nodes, each of which a subset
flow range of its parent node (Step 2). The splitting
process terminates when each leaf node has fewer than
S authority rules. In the end, the authority rules in
each leaf node will be assigned to an authority switch.

Cut based on rule boundaries: We first choose the
dimension i that has the maximum number of unique
components (i.e., non-overlapping ranges) as the di-
mension to split (Step 3). This gives us a better chance
to be able to split the flow range into balanced pieces.
For example, in Figure 16, field F2 has four unique com-
ponents [0..7], [8..11], [12..13], [14..15].

The next challenge is to split the hypercube in the
selected dimension. As we discussed earlier, partition-
ing the flow range equally may not be the best choice.
It leads to many rules that span across multiple parti-
tions, and hence yields more authority rules. Instead,
we partition the flow space based on the boundaries of
the unique components (Step 4). Let function f(C) be
the number of required TCAM entries for hypercube C.
Assume that Ck is the hypercube we want to split in the
k-th round of our algorithm. We select w boundaries
of the unique components in dimension i (b1 . . . bw) and
the resulting sub-hypercubes C1

k
. . . Cw

k
such that the

average increase of authority rules per cut is minimized:
U = (

∑
1≤t≤w

f(Ct

k
)−f(Ck))/w. We enumerate all the

boundary selections and choose the one with minimal
U .

Figure 16 illustrates an example of rule partitioning.
Assume that we have S = 4 in each authority switch.
Using our partition algorithm, we can construct a deci-
sion tree as shown in Figure 16(b) for the rules shown in
Figure 16(a). In the first round, we choose the dimen-
sion on field F2 to partition the root node, because it

has the maximum number of unique ranges. We then di-
vided the root node into three children nodes on field F2:
[0..7], [8..11], [12..15]. This yields U = 0 because rules
R3, R4, R8 that fall in the second child of F2 =[8..11] all
take the deny actions. In the second round, since the
third child node requires 5 authority rules, we further
split it into two children nodes on field F3.

Note that, although our partition algorithm is moti-
vated by both HiCuts [25] and HyperCuts [26], which
explored the efficient software processing of packet clas-
sification rules in one switch with the help of a decision
tree, we differ in our optimization goals. Both HiCuts
and HyperCuts sought to speed up software process-
ing of the rules, while DIFANE aims at minimizing the
TCAM usage in switches, because the partition and au-
thority rules are all processed in hardware. This leads
to two key design differences in our algorithm: (i) We
choose to cut the selected dimension based on the rule
boundaries, while HiCuts and HyperCuts cut the se-
lected dimension equally for c cuts. (ii) We choose the
cuts so that the number of TCAM entries per cut is
minimized. In HiCuts and HyperCuts, they optimize
on the number of cuts, in order to minimize the size of
the tree (and especially its depth). DIFANE allows a
slightly deeper decision tree if it reduces TCAM usage.
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