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Figure 1: Feature descriptors based on surface normal characteristics can capture a variety of physical characteristics such asbrush strokes,
string impressions, and erosion, that are used by archaeologists when assembling fresco fragments. Combining these with more traditional
color-based features and 3D features using classification trees yields significantly improved matching performance.

Abstract

We present a multiple-feature approach for determining matches
between small fragments of archaeological artifacts such as
Bronze-Age and Roman frescoes. In contrast with traditional 2D
and 3D shape matching approaches, we introduce a set of feature
descriptors that are based on not only color and shape, but also
normal maps. These are easy to acquire and combine high data
quality with discriminability and robustness to some typesof
deterioration. Our feature descriptors range from general-purpose
to domain-specific, and are quick to compute and match. We
have tested our system on three datasets of fresco fragments,
demonstrating that multi-cue matching using different subsets
of features leads to different tradeoffs between efficiencyand
effectiveness. In particular, we show that normal-based features
are more effective than color-based ones at similar computational
complexity, and that 3D features are more discriminative than ones
based on 2D or normals, but at higher computational cost. Our
results show good retrieval performance, significantly improving
upon the match prediction rate of state-of-the-art 3D matching
algorithms, and are expected to extend to general matching
problems in applications such as texture synthesis and forensics.

1 Introduction

Advancements in low-cost, high-volume acquisition systems have
made computer-assisted reconstruction of artifacts from small frag-
ments practical. This problem is of particular interest to the field
of archaeology, in which the reconstruction of artifacts such as
shattered wall paintings reveals information about the history and
culture of ancient civilizations. Historically, the process of recon-
structing these wall paintings has been manual, occupying amajor
proportion of the human effort at excavation sites. As a result,
wall painting reassembly is not even attempted at countlesssites
around the world, leading to a significant opportunity to advance
our knowledge of ancient societies by improving the practicality of
reconstruction.
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Several 2D and 3D computer-aided matching approaches have
been explored and have proven successful in some domains. How-
ever, current matching algorithms have difficulty when matching
artifacts that have deteriorated over many years. For example, they
may consider features such as color, which frequently have changed
over time even among neighboring fragments. Alternatively, they
may operate exclusively on 3D geometry, which may not only have
deteriorated, but is also challenging to acquire with the same fidelity
and resolution as color images.

We address the problem of reconstruction by considering multi-
ple cues based on color, shape, and — most interestingly — normal
maps. The latter is a new source of information that has not been
used for matching in previous work, and we argue that it combines
high data quality and resolution with high discriminability and ro-
bustness with respect to certain types of deterioration. Ashas been
recently demonstrated [Brown et al. 2008; Pintus et al. 2009], it is
practical to use flatbed scanners to obtain normal maps of mostly-
flat objects with 600 or 1200 dpi resolution. These normal maps
reveal salient surface characteristics including string impressions,
brush strokes, surface roughness, and fine cracks.

Our system begins with scanned images and normals of a col-
lection of fragments, and computes a set offeature descriptors.
Each descriptor may be computed over an entire fragment or over
small patches sampled around the outer contour of the fragment: the
tradeoff of sampling patches is greater discriminability for greater
computation time. The feature descriptors range from general-
purpose (such as variance in the normal map) to ones designed
specifically for the domain of fresco fragment matching, andmo-
tivated by the visual cues used by archaeologists for reassembly
(such as brush stroke direction). They are designed to capture char-
acteristics including shape, surface decoration, surfacetexture, and
deterioration (Figure 1).

We use similarity of these descriptors to suggest matches, and
evaluate their performance on three different wall-paintings. The
first is a geometric scene containing spirals and large areasof con-
stant color, from a late-bronze-age Aegean civilization atAkrotiri,
on the island of Thera (Santorini). The second is from a Roman
villa at Kerkrade, The Netherlands, and is especially distinctive be-
cause of the strong brush marks visible both in the color and the
surface relief. The third is a synthetic fresco, professionally created
and shattered, for which a ground-truth reconstruction is available.

We perform a cross-validation analysis on databases of dozens
to hundreds of fragments, drawn from the three different wall-
paintings. Our results demonstrate the discriminative power of our
collection of features, and suggest that matching performance is
improved by the use of normal maps, in addition to features based
on more conventional data sources such as color, thickness,and



exterior contour shape. Moreover, we observe that the performance
of individual features varies from dataset to dataset, suggesting a
future extension to online learning.

Overall, the paper makes the following contributions:

• The introduction of a new type of input,normal maps, for
matching small fragments of artifacts. We argue that normal
maps are easy to acquire with higher resolution than 3D mod-
els, and are more robust to deterioration and discolorationthan
color.

• A set of easily computable descriptors, of both general purpose
and domain specific types, that are effective for matching.

• Analysis and evaluation methods that demonstrate how well our
features perform over state-of-the-art 3D match algorithms.

• A matching framework that is easily extendable to more gener-
alized matching problems used in applications such as texture
synthesis and forensics.

2 Previous Work

2D Matching: Traditional matching algorithms use 2D con-
tours [Kong and Kimia 2001; Leitão and Stolfi 2002; Papaodysseus
et al. 2002] as well as image-space features including colorand tex-
ture [Fornasier and Toniolo 2005; Sağiroğlu and Erçil 2006]. How-
ever, these solutions are often sensitive to erosion and discoloration,
a significant issue for fragments that have spent thousands of years
exposed to natural elements. Moreover, they do not considerthe
wealth of 3D information available in geometric representations.
Such cues are particularly important in our domain where impres-
sions on the fragment surface provide strong matching cues.

3D Matching: Other approaches for assembling fractured objects
incorporate full 3D descriptions. For example, Huang et al.[2006]
reassemble solid objects by first identifying fractured regions, then
generating clusters of feature patches for alignment-based match-
ing. Although these feature clusters effectively describethe local
geometry of the fracture surface, the algorithm does not consider
other physical attributes of the dataset, and is burdened bythe
complexity of a full 3D matcher. Brown et al. [2008] exploits
the orientation constraints of flat fragments to achieve a simple,
fast matcher based on edge geometry. This matcher resamplesthe
fragments edges in a regular grid structure, then exhaustively tests
every possible alignment of a pair of fragments in a few seconds,
in a correlation-like manner. This approach takes advantage of
high resolution geometry to find precise alignments, and mirrors
the common technique of finding matching fragments by testing
for pairs that physically “lock” together. On the other hand, frag-
ment edges are subject to erosion, and the brute-force nature of the
algorithm means there is no early rejection for non-matching pairs.

Our approach retains the efficiency of a special-purpose matcher
for flat objects, but focuses on fine surface details rather than
edge information. It is complementary to existing geometrybased
matchers in two important ways. First, it matches features on the
externalsurface of fragments rather than fitting fractured faces to
each other. Second, it relies on high resolution normals captured
with a flatbed scanner that could not be acquired reliably with cur-
rent stereo-based scanners or fed into an alignment algorithm.

Reassembling Artifacts: Several computer-aided systems have
been designed specifically for reassembling broken objects. One
notable example is the Forma Urbis Romae project [Koller et al.
2006], where analysis of incision points and markings is used to
match sparse data. While some aspects of these heuristics are
of broader applicability (for example, in lining up fragments with
string impressions), they are largely tuned to the specific needs of
the Forma Urbis Romae. Another common application in the field
of archaeology is the reassembly of broken pottery [Willis 2004;
Karasik and Smilansky 2007]. Just as we take advantage of proper-

ties of fresco fragments to obtain an effective, efficient matcher,
these algorithms rely on finding the axis of rotation and profile
curve common to pottery.

Our approach improves upon these examples because we inter-
pret observed qualities of our domain as a set of functions that are
easy to compute, optimizing our system to use a combination of the
most discriminative criteria for matching. Although we incorporate
some 3D quantities, such as thickness, we maintain the ease and
simplicity of a 2D system by only computing information in image
space.

3 Overview

In this paper, we focus on obtaining feature descriptors from a
database of scanned patches of objects, focusing on an archaolog-
ical fragment matching scenario. We describe our feature descrip-
tors, match classification strategies, and the datasets on which we
operate. We use three forms of data:color mapsacquired using a
high-resolution (600 dpi) 2D scanner,normal mapsobtained from
multiple scans using a variant of shape from shading [Brown et al.
2008], and3D meshesfrom a laser-triangulation range scanner. We
work with these data types because they can be obtained in situ, at
an archaeological excavation or in the context of some otherdigiti-
zation effort, with high fidelity, low cost, and considerable ease of
acquisition.

3.1 Feature Descriptor Generation

Figure 2 presents a conceptual overview of our feature descrip-
tor pipeline. Because practical datasets may contain thousands
of fragments, we focus on designing a matching pipeline capable
of scaling to these data sizes. Indeed, a brute-force solution that
tested every possible alignment of every possible pair of fragments
would quickly become infeasible, requiring perhaps 1010 to 1012

comparisons (a few thousand fragments times a few hundred orien-
tations, squared). To overcome this growth we employ a sequence
of matching stages, ranging from ones that can quickly reject a large
number of implausible candidates to ones that precisely check in-
dividual matches. A key observation is that the early stagesshould
require computation that growslinearly with the number of frag-
ments, rather than quadratically.

We thus consider three possible classes of features. The first
includesper-fragment features: those that are computed (once)
for each fragment in our database. Fragments that differ greatly
in the computed descriptors are assumed to have a low probabil-
ity of matching, hence generation of plausible matching pairs of
fragments could be accelerated with a fast clustering or indexing
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Figure 2: An overview of feature generation. Beginning with high-
resolution color scans, normal maps, and 3D models, we extract a
variety of feature descriptors from each fragment. Descriptors may
be extracted at the fragment level, for small sampled patches, or
for a specific candidate match. Although we are able to match us-
ing all features simultaneously using machine learning techniques
(Section 7), it is advantageous to first select possible matches with
per-fragment and per-patch features, then compute the moreexpen-
sive per-match features only for these possibilities.



technique (although in this paper we focus on demonstratingthe
matching accuracy of the descriptors, rather than on evaluating their
efficiency).

The second class of features we consider areper-patch features.
These are computed not over entire fragments, but over smallre-
gions sampled around the boundary. Because these features con-
sider more localized properties, we expect that they will bemore
discriminative of true matches. On the other hand, they alsore-
quire more computation than the per-fragment features, since they
must be evaluated at dozens to hundreds of locations around the
perimeter of a fragment. Nevertheless, the descriptors areprecom-
puted and cached, once per fragment, adding only a few seconds
to the preprocessing time. The patches we use are circular and are
sampled from the original 600 dpi images, every 5 mm along the
perimeter of the fragment. For most features, we use patches10 mm
in diameter, and offset them 8 mm inward from the outside contour.
This ensures that the resulting features are not corrupted by the very
edges of the fragments, which are frequently broken off, eroded, or
shadowed. For a few features we also use larger patches — 20 mm
in diameter — to estimate properties more accurately and robustly,
and for the area-based curvature descriptor the patches arecentered
on the contour instead of being offset inward. These variants are
discussed below, in the descriptions of individual features.

Finally, we employper-match features, which evaluate the plau-
sibility of a candidate pair of fragments in a particular alignment.
This stage is the most expensive, since it involves computing fea-
tures perpair of fragments, and precludes the use of fast clustering
or indexing methods. On the other hand, such descriptors (e.g., av-
erage distance between the fragments) can be more discriminative.

3.2 Match Classification

There are many types of machine learning tasks that can effectively
use vectors of features: indexing, match scoring, classification, etc.
As mentioned above, in the context of a large-scale fragmentmatch-
ing application we anticipate two main uses. First, in the early
stages of matching the goal is toquickly determine large sets of
potentially-matching pairs of fragments. In the ideal case, this stage
would run in O(n) time for n fragments, in contrast to the naive
O(n2) strategy of checking every potential pair. Therefore, we an-
ticipate that indexing and clustering methods are relevant, implying
that we would like to determine which feature vectors are farapart,
and which are nearby.

Later in the pipeline, the relevant task becomes separating
matches from non-matches as effectively as possible. This may
operate either via classification — predicting whether a proposed
pair is likely to be a match or nonmatch — or via probabilisticre-
gression — ordering proposed pairs from most to least likely. Either
way, the most likely matches will, in the end, be presented tothe
user for ground-truth verification, meaning that all of the above
strategies are amenable to incorporation in an “online learning” sys-
tem that incrementally adjusts the importance of differentfeatures
to adapt to the particular characteristics of each new database.

We therefore have four tasks — indexing, match classification,
regression, and online adaptation to per-database featureimpor-
tance — that all stem from the same set of features. In this paper we
present results for match classification experiments, since it is likely
that good performance on this task will lead directly to goodper-
formance on the others. We adopt an existing technique (decision
trees) for producing trained classifiers, and explore classification
performance using a cross-validation methodology. In mostcases,
the trees are simply trained on the absolute value of the difference
between feature descriptor values for a pair, but a few casesrequire
a more complex computation to convert the values of feature de-
scriptors into a value likely to be predictive of amatch. We also
examine the typical variation in the different features.

3.3 Datasets

We evaluate our features using scanned frescoes from archaeologi-
cal excavations at Akrotiri and Kerkrade, as well as a modern-day
“synthetic” fresco data set.

Akrotiri: The Theran frescos were discovered on the island of
Thera (modern-day Santorini), at the site of Akrotiri. Around 1650
B.C. the late-Bronze-Age Aegean civilization that occupied the is-
land was destroyed by a volcanic eruption. The most important
finds at Akrotiri are the extensive wall paintings, which, although
broken into small fragments, have been well preserved by thevol-
cano’s ash. In fact, the completeness of these wall paintings is
unique in the ancient Mediterranean. However, the Theran wall
paintings are known for their large fields of white or other solid
colors, making manual reassembly especially difficult. Another
distinguishing feature is the presence of surface impressions left
by strings that were used as guides and placed in the wet plaster
by artists. In this paper, we work with a dataset of 1200 fragments
taken from a fresco with spiral motifs.

Kerkrade: The Kerkrade frescoes originate from a second-
century Roman villa in Kerkrade, The Netherlands, near present-
day Heerlen and Maastricht. They belong to the larger set of quality
paintings from the Roman period found in the Netherlands, and are
also a part of a select few that depict large-scale human figures.
The Kerkrade fragments differ from those at Akrotri in two impor-
tant ways: they are more eroded, and have visible brush strokes
and texture resulting from the smoothing out of the plaster.We
therefore, expect a different subset of the features to be important
for matching. Our test set consists of 100 fragments.

Synthetic: This synthetic fresco, previously described by
Brown et al. [2008], was created by conservators in a style similar
to the one used at Akrotiri. The finished fresco was then broken
into pieces to create fragments similar to the fragments found at
that site. This fresco is characterized by large areas of white with
smaller regions of color. Both string impressions and brushstrokes
are present on the fragment surfaces. Our ground truth set consists
of 127 fragments.

4 Feature Descriptors

As mentioned above, our feature descriptors may be classified ac-
cording to their type (per-fragment, per-patch, per-match) and the
data from which they are computed (colors, normals, 3D). They
range from “generic” descriptors that are frequent components of
fragment-matching or puzzle-assembly systems, to descriptors that,
while still general, were inspired by cues used today by conserva-
tors and archaeologists to perform manual matching.

In the below descriptions, we focus greatest attention on normal-
based features: it is one of the claims of this paper that suchfea-
tures combine high classification performance with low acquisition
cost and high matching efficiency (i.e., the features are largely per-
fragment and per-patch, rather than per-match). These claims will
be evaluated in the subsequent sections. Nevertheless, forcom-
pleteness, we also describe the more “usual” features used by our
system.

Average Color, Saturation, and Variance

Type: Per-Fragment and Per-Patch Data: Color

We begin with features traditionally used in image-based match-
ing systems, such as the mean color (computed separately foreach
color channel) and color variance, both of which may be computed
both per-fragment and per-patch. In addition, we use the color sat-
uration as a feature. This was inspired by the observation that two
adjacent fragments will often exhibit a similar amount of deterio-
ration in their pigments: either they are both faded, or bothretain
their original colors. Though an imperfect descriptor, we include



this in the hope that it may combine with other features to boost
classification performance.

Contour Curvature

Type: Per-Patch Data: Color

The curvature of the fragment’s outline, or contour, provides aper-
patchdescriptor that can group fragments of similar external shape,
and has been frequently used for (2D) puzzle reconstruction. (Sim-
ilar patches will, of course, have curvature of similar magnitude but
oppositesign.) We have experimented with two alternative descrip-
tors for 2D curvature along the fragment contour. Anarea-based
descriptor finds the fraction of the fragment covered by a circular
patch centered on the contour:

CurvatureArea=
Area(Fragment)

Area(Patch)
. (1)

As shown by Manay et al. [2004], this quantity is just a function
of curvature, in the limit of small patch size: values of 0,1/2, and 1
correspond to curvatures of+∞, 0, and−∞, respectively.

The second curvature descriptor only looks locally at threeadja-
cent pointsA, B, andC on the contour:

CurvatureContour= 2
∠(C− B) − ∠(B− A)

‖C − B‖ + ‖B− A‖
, (2)

where the numerator is the angle between the segmentsAB and
BC, and the denominator is their total length. This discrete ap-
proximation to curvature is accurate for low-curvature regions, as
is generally the case in practice. The pointsA, B, andC are picked
at multiple scales: 2.5 mm, 5 mm, 8 mm, 10 mm, and 15 mm. Each
one yields a separate descriptor, providing even more information
about the contour shape to be used in matching.

Average Normal and Variance

Type: Per-Fragment and Per-Patch Data: Normal

Many of the datasets we have examined exhibit significant varia-
tion in surface roughness from location to location: some regions
are smooth while others are rough because of visible brushstrokes,
weathering, or the use of a different type of plaster. In order to char-
acterize this, we look at the distribution of normals on the fragment
or patch. However, we cannot simply consider the normal vectors
themselves: one of their components is not known, in global coor-
dinates, since the final orientation of the fragment is unknown. For
this reason, we form a rotation-invariant quantity: thez component
of the normals (i.e., the component perpendicular to the fragment’s
“flat” surface). We use the mean and variance of thesezcomponents
as features.

Color/Normal Variation

Type: Per-Fragment and Per-Patch Data: Color and Normal

This descriptor captures the effect ofcorrelatedvariation in color
and normals, as frequently occurs when there are visible brush
strokes or string impressions that were used as guides for painting.
We begin by stacking the colors and normalzcomponents for pixels
in a fragment or patch into ann× 4 matrix, then perform a Singular
Value Decomposition:






c1,r c1,g c1,,b n1,z

...
cn,r cn,g cn,b nn,z






= U







σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4






VT . (3)

We use the sum of theσi as a descriptor, yielding a compact,
rotation-invariant, yet discriminative description of the nature of
color and normal variation on the surface.

Figure 3: (a) Fragment with a visible string impression, for which
we visualize the normal-discontinuity and dominant-orientation de-
scriptors. (b) The dominant-orientation descriptor detects the ori-
entation of the string impression, allowing it to be matchedto an
impression on an adjoining fragment. Visualized are the mean com-
ponent of the normal, the power spectrum, and the detected dom-
inant orientation. (c-e) Normal-z histograms used by the normal-
discontinuity descriptors. Note that the histogram in (c) has a long
tail, while the smooth patch in (e) results in a histogram clustered
around the origin. We are careful to inset patches away from the
edge to avoid incorrect long-tailed distributions, as would result
from sampling patches directly on the edge (d). We also have ex-
perimented with using larger patch sizes, as shown in (a).

Normal Discontinuity

Type: Per-Fragment and Per-Patch Data: Normal

Many frescoes contain distinctive shapes on the front surface. For
example, artists occasionally pressed a guide string against the wet
plaster during fresco construction, in order to provide an outline
for straight bands of color. We posit that a strong matching cue
is the presence of such features, and we design descriptors that
distinguish between relatively smooth patches (possibly with some
noise in the normals due to deterioration) and those containing large
discontinuities in the surface orientation.

Our analysis begins by computing a histogram of the differences
{Di j} = {‖ni,z − nj ,z‖} between neighboring normals in a patch.
(We use only thez components of the normal vectors because they
are invariant to rotation in the plane.) We then compute a number
of statistical measures on this distribution, to determinethe degree
to which it either is strongly peaked around zero or containslong
“tails” of high curvature. We have experimented with four measures
to characterize the degree to which the normal difference distribu-
tion exhibits long tails:
1. The ratio between the normal differences’ 80th and 50th per-

centiles: D80%

D50%
; (4)

2. The fraction of discontinuity values greater than a threshold
(0.46), determined experimentally by looking at fragmentscon-
taining string impressions;

3. The third moment of the distribution; and
4. The fourth moment of the distribution.

Figure 3, (c) and (e), shows the normal discontinuity distribu-
tions for patches that both do and do not contain string impressions.



Normal Map Ωn = arg maxω 6=0 ‖Fn(ω)‖2 Ωθ

Figure 4: Detecting brush-stroke amplitude and orientation. This
illustration depicts the results of the dominant orientation detector
on a sample taken from a fragment in the Kerkrade dataset. The
first two images show the normal map and power spectrum image,
respectively. We determine the strength, and direction of the brush-
strokes by examining the frequency, amplitude and orientation, of
the dominant frequency (not including the dc) in the power spec-
trum. The red lines in the image at right visualize the orientation of
this dominant peak.

Note that the presence of the string causes the distributionto have
significantly more large values.

Dominant Orientation

Type: Per-Fragment and Per-Patch Data: Normal

This feature detects regular patterns in the surface, such as the brush
strokes found on some fragments. We were inspired by exam-
ples such as the ones in Figure 9, which illustrates the variation
in strokes left by both paintbrushes and tools for smoothingout the
underlying plaster. We expect that the amplitude and frequency of
these brushstrokes, as extracted from normal maps, will strongly
group them according to local variation in their characteristics. In
addition, the orientation of these brush strokes must be continuous
across fractures, leading to another strong matching cue that essen-
tially eliminates the search over orientation in possible matching
fragments.

We begin by smoothing thez-normal image of the fragment or
patch, applying a Hanning window, then finding its 2D Fourier
transformFn(ω). We then search for the frequency at which the
energy is greatest. Because the patches are smooth, the highest-
energy peak is usually the DC component, and low frequenciesare
generally stronger than high frequencies. For this reason,we apply
a threshold to the frequency:

NormalDominantFrequency= arg max
ω>ωmin

‖Fn(ω)‖2 . (5)

In addition to using the frequency and amplitude of this peakas fea-
tures, we also use its orientation. In order to make this invariant to
rotation, we compute the difference between the angle of thedom-
inant peak and the normal to the fragment contour. In other words,
we store the angle between the dominant directional variation (e.g.
brush strokes) and the fragment edge — this quantity is expected to
be the same for a matching fragment. Figure 4 demonstrates the
results of this process on a fragment from the Kerkrade dataset (see
Section 3.3) containing strong brush strokes.

Cracking and Erosion

Type: Per-Fragment and Per-Patch Data: Color and Normal

Erosion of a plaster fresco frequently results in small pitsin the
surface, while the destruction of the original wall-painting produces
an irregular pattern of cracks. The erosion descriptor usesmor-
phological operators to quantify the degree of deterioration on the
surface. Specifically, we extend versions of the black and white
top-hat transforms [Serra 1983]:

Twhite( f , κ) = f − f ◦ κ

Tblack( f , κ) = f • κ − f ,
(6)

where◦ and• are image-morphological open and close operators
andκ is a structuring element.

Unlike previous applications, we achieve improved discrim-
inability by combining color and normal values in the analysis. As
shown in Figure 5, for patch-level erosion detection, we take the
intersection of peaks in the threshholded black top-hat transform of
the color map and the threshholded white top-hat transform of the
normal map:

Erosion(Ic, In, κ) = T ′
black(Ic, κ) ∩ T ′

white(In, κ) (7)

whereIc is a grayscale version of the color buffer,In is thez com-
ponent of the surface normal, andT ′ are the thresholded top-hat
transforms. We found that an intensity threshold of 0.3 works well.
For the structuring elementκ, we use a circle (with a 3 pixel radius)
to ensure our results are rotation invariant across fragments. We
record two scores: the total number of pixels over all peaks (nor-
malized by the number of visible pixels) and the average number of
pixels per connected component. The first value records the density
while the latter suggests the average size of each element.

At the fragment level, we use a multi-scale approach. In this
case, we use a structuring element with ten different diameters and
take the color black-top transform to be the sum of the transform
taken across the ten scales. Similarly, the white top-hat transform is
the sum of the white top-hat transform for the normal map overthe
ten scales. Figure 6 shows an example of fragment level erosion.
We chose this approach over a single large scale because features
are less likely to expand beyond their boundaries. Multi-scale mor-
phological scale spaces work locally, are good at separating features
from uneven backgrounds and do not exhibit the blurring across
features characteristic of Gaussian kernels.

Figure 5: Erosion detection using a circular structuring element
to find cracks and pits in the surface. The black top-hat transform
is generated by applying a closing operation to the color image
and subtracting the result from the original color image. The white
top-hat transform is generated by applying an opening operation
to the normal map and then subtracting it from the original normal
map. The final erosion map is the intersection of the black top-hat
transform of the color map and the white top-hat transform ofthe
normal map, and thresholding to reduce noise.

Figure 6: Comparing erosion detection on 2D normal maps and
3D geometry. Note: We only show the z component of the normals.
(a) The 2D normal map acquired with a flat-bed scanner has more
detail than the smoother normals in (b) acquired with a 3D scanner.
(c) Areas of erosion, highlighted in grey, are detected on the 2D
normal map, but no erosion is detected on the 3D geometry (d).



Thickness

Type: Per-Fragment and Per-Patch Data: 3D

In some datasets, the thickness of fragments varies considerably
from location to location. Therefore, we use the 3D scan to deter-
mine the fragment’s thickness at every point. We use the average
thickness, per fragment or per patch, as a descriptor. Note that in
this case it is especially critical that we offset each patchaway from
the edge of the fragment, since the estimated thickness is likely to
be unreliable near the edges.

Ribbonmatcher Error and Volume Intersection

Type: Per-Match Data: 3D

To compare the performance of our per-fragment and per-patch de-
scriptors to more descriptive per-match features, we look at two
values computed via the brute force “ribbon-matching” approach
of [Brown et al. 2008]. For both values, the optimal alignment of
the two fragments at the patch locations is computed using the rib-
bon matcher with a 12.5 mm strip width. The first value (“ribbon
error”) we consider is the mean-squared distance between frag-
ments along this strip, as computed by the ribbon matcher. The
second value (“volume intersection”) measures the amount of inter-
penetration between fragments. A vertical plane is oriented along
the matching edge, and the interpenetration of the two fragments
is sampled on this plane. We compute the average of all squared
lengths that exceed 1 mm. The intuition behind this descriptor is
that correctly matching fragments may have some slight interpene-
tration due to sampling error, erosion (which affects the alignment),
and accretions on the fragment edge when it was scanned. However,
correctly matching fragments should not have anysubstantialinter-
penetration. Considering only interpenetrations greaterthan 1 mm
accounts for “explainable” interpenetration, and squaring the dis-
tances penalizes deep intersections more than shallow ones. Note
also that the volume descriptor considers the entire fragments, not
just selected patches or ribbonmatcher strips.

5 Case Studies of New Features

Several of the features we consider are motivated specifically by
the fresco-matching application, rather than being “generic” fea-
tures applicable to a variety of shape matching problems. Here we
consider a few of these, and present anecdotal evidence for their
performance.

Normal-based Features: While we have found that color cues
are meaningful for some datasets and perform no better than chance
on others, we have uniformly observed that normal-based features
provide reasonable performance. For example, Figure 7 shows the
best match found between a pair of fragments from the Kerkrade
fresco using only color cues (center) and using normal-based fea-
tures (right); only the latter is correct. We hypothesize that even
in datasets that exhibit considerable color variation throughout the
fresco, the variation within a single fragment is usually insufficient
to yield the correct alignment.

Thus, we suggest that normal-based features combine the com-
putational efficiency and ease of use of conventional 2D features
while improving upon classification performance in many cases.

Erosion: We analyzed our erosion detection features on a num-
ber of fragments exhibiting strong cracking, strong color variation
without erosion, and mild erosion (Figure 8). In each case weshow
the results of running our top-hat operators on the colors and nor-
mals, as well as their intersection. We found that the intersection of
top-hat transforms applied to both the colors and normals gave good
sensitivity to detection of cracking and erosion. At top, the normals
detected all of the cracks, while the color served to limit sensitivity
to additional normal variation. At center, the lack of variation in
the normals successfully suppressed the detector in areas of color

Figure 7: Left: ground-truth match between two fragments of the
Kerkrade fresco.Center: best match, only considering this pair of
fragments (at all orientations) and color-based features.Right:
best match, considering normal-based features — notice that the
correct match was found.

Figure 8: When computing erosion, we take the intersection of the
top-hat transforms of the color and normal maps to avoid capturing
sharp variations in color due to dirt or stains, and high frequency
noise in the normal maps. (a - c) Black top-hat transforms of color
maps for three fragments (color and cracking, color and smooth,
white and smooth). (d - f) The white top-hat transforms of thecor-
responding normal maps. (g - i) Intersection of black and white
top-hat transforms.Top: Erosion is detected when there are cracks
and pits in both the color and normal maps as shown by the yel-
low pixels in (g). Middle: No erosion is detected on the smooth
fragment with color. There are no green or yellow pixels in (h) but
several red pixels, representing the lines of color detected by the
black top-hat operator.Bottom: Only a few pits are detected on the
smooth white fragment.

Figure 9: Normal maps illustrating the wide variation in brush
strokes on the Kerkrade fresco, including strokes left by a paint-
brush (left) and strokes left when smoothing out the underlying
plaster (center and right). Not only is the direction of these strokes
(measured as the angle between their dominant orientation and the
fragment contour) a strong cue for matching, but the amplitude and
frequency help distinguish between these three types of strokes as
well.



Table 1: Statistics of correspondence values (typically absolute values of differences of feature descriptor values) for random matches and
non-matches in the “Synthetic,” “Akrotiri,” and “Kerkrade” datasets.

Synthetic Akrotiri Kerkrade
Feature

(min / mean / max / stdev) (min / mean / max / stdev) (min / mean / max / stdev)

ColorAvgR 0.000 / 0.054 / 0.978 / 0.157 0.000 / 0.170 / 0.613 / 0.131 0.000 / 0.135 / 0.505 / 0.097
ColorAvgG 0.000 / 0.071 / 0.977 / 0.186 0.000 / 0.158 / 0.581 / 0.126 0.000 / 0.077 / 0.277 / 0.058
ColorAvgB 0.000 / 0.092 / 0.968 / 0.199 0.000 / 0.122 / 0.589 / 0.103 0.000 / 0.040 / 0.174 / 0.034
ColorVariance 0.000 / 0.040 / 0.628 / 0.083 0.000 / 0.026 / 0.167 / 0.022 0.000 / 0.008 / 0.085 / 0.009C

ol
or

ColorSaturation 0.000 / 0.074 / 0.883 / 0.160 0.000 / 0.131 / 0.589 / 0.096 0.000 / 0.084 / 0.410 / 0.078

CurvatureContour 0.000 / 0.032 / 0.382 / 0.033 0.000 / 0.098 /0.572 / 0.085 0 000 / 0.089 / 0.513 / 0.076

C
ur

v

CurvatureArea 0.000 / 0.069 / 0.414 / 0.059 0.000 / 0.069 / 0.410 / 0.058 0.000 / 0.074 / 0.445 / 0.061

ColorNormalVariance 0.000 / 0.051 / 0.896 / 0.098 0.000 / 0.036 / 0.227 / 0.029 0.000 / 0.036 / 0.242 / 0.035
NormalMeanZ 0.000 / 0.038 / 1.155 / 0.067 0.000 / 0.143 / 0.634/ 0.118 0.000 / 0.074 / 0.383 / 0.064
NormalVariance 0.000 / 0.056 / 0.483 / 0.073 0.000 / 0.064 / 0.712 / 0.064 0.000 / 0.059 / 0.301 / 0.049
NormalDiscont8050Ratio 0.000 / 0.704 / 8.000 / 1.198 0.000 /0.406 / 2.000/ 0.361 0.000 / 0.590 / 4.000 / 0.606
NormalDiscontThresholded 0.000 / 0.053 / 0.833 / 0.109 0.000 / 0.201 / 0.893 / 0.149 0.000 / 1.086 / 0.584 / 0.098
NormalDiscontThirdMoment 0.001 / 1.665 / 9.649 / 1.504 0.001 / 0.389 / 5.085 / 0.575 0.000 / 1.171 / 3.926 / 1.029
NormalDiscontFourthMoment 0.004 / 15.647 / 147.952 / 18.466 0.000 / 1.746 / 50.572 / 4.222 0.001 / 3.546 / 61.146 / 4.760
NormalDominantFrequency 0.000 / 0.111/ 1.394/ 0.227 0.000/ 0.711 / 8.314 / 0.914 0.000 / 0.301 / 2.798 / 0.358
NormalDominantOrientation 0.000 / 0.727 / 2.931 / 0.549 0.002 / 0.826 / 3.028 / 0.649 0.002 / 0.767 / 3.033 / 0.593
NormalDominantAmplitude 0.000 / 0.007 / 0.096 / 0.001 0.000/ 0.015 / 0.083 / 0.012 0.000 / 0.012 / 0.007 / 0.010
ColorNormalErosionDensity 0.000 / 0.01 / 0.211 / 0.023 0.000 / 0.007 / 0.089 / 0.007 0.000 / 0.004 / 0.087 / 0.010

N
or

m
a

l

ColorNormalErosionShape 0.000 / 0.006 / 0.211 / 0.016 0.000/ 0.036 / 0.24 / 0.037 0.000 / 0.002 / 0.065 / 0.005

Thickness 0.001 / 1.392 / 8.432 / 1.399 0.002 / 2.953 / 12.821 /2.221 0.000 / 4.700 / 22.199 / 4.022
RibbonError 0.003 / 8.412 / 282.209 / 16.806 0.000 / 11.701 / 136.566 / 14.536 0.082 / 15.742 / 112.204 / 16.7653D

RibbonVolIntersection 0.000 / 253.265 /5681.626 /648.3240.000 / 293.093 / 14545.190 / 804.263 0.000 / 151.188 / 3183.708 / 308.539

Figure 10: Comparing the distribution of feature correspondences across multiple datasets. The histogram plots show the percentage of
correspondences with the specified feature correspondenceranges for the Synthetic, Akrotiri and Kerkrade frescos. Inthis example 2,274
correspondences, consisting of both matches and non-matches were taken from each dataset. (a) There is more variation in correspondences
for ColorSaturation for the Akrotiri and Kerkrade datasetsthan the Synthetic dataset which is primarily composed of white fragments.
(b) The RibbonErr correspondences are similar across all three datasets. (c) The shape of the curves show that ColorNormalVariance
correspondences are more similar for Akrotiri and Kerkradethan the Synthetic dataset. The variation of correspondence ranges across
the different datasets suggests that re-weighting the contribution of individual features based on observed statistics of the dataset would
adaptively improve match retrieval for a specific dataset.

detail. At bottom, this white-colored fragment had only a few small
pits, which were successfully detected in both colors and normals.

Brush Strokes: One of our frescoes — Kerkrade — exhibited
strong variation in the types of brush strokes that were present. We
observed a number of phenomena, including small strokes left by
the artist’s brush (Figure 9, left) and broader, deeper strokes left in
the underlying plaster when smoothing it out (center and right). We
also observed situations in which brushstrokes at different orienta-
tions were simultaneously visible. Though our current method does
not detect these, returning only the strongest brushstrokedirection
present in a fragment or patch, we believe that it would be possible
to extend the descriptor to handle these cases. In cases in which
brushstrokes are present, we informally observe the orientation of
these strokes to be one of the strongest matching cues available.

6 Summary of Features

In this section, we analyze the distributions of feature values across
the three databases of frescoes introduced in Section 3.3. We

observe that the importance of different features for discriminat-
ing matches from non-matches is different for each of the three
databases, motivating the classifier-based evaluation methodology
presented in Section 7.

Table 1 shows statistics for the feature correspondences com-
puted on each fresco. In this analysis, we use 2,274 pairwise
feature correspondences from each dataset, including bothground-
truth matches and randomly sampled non-matches. All patches
have a 10mm diameter and each patch center is offset 8mm from
the boundary contour (except for curvature descriptors, which are
sampled along the boundary contour). The values shown in the
table are the minimum, mean, maximum, and standard deviation of
“correspondence” values for each feature. For most features, this is
just the absolute value of the difference between the feature values
computed on both fragments: these are expected to be near zero for
correct matches. For a few features, however, the correspondence
value is the absolute value of the sum for the two fragments. This
is necessary for features such as curvature, which are expected to
have opposite signs on corresponding fragments.



Figure 11: Feature discriminability. Feature correspondences for
equal numbers of matches and non-matches for the Synthetic (2,274
samples) and Akrotiri datasets (206 samples). (a) - (b) ColorSatu-
ration is more descriminating on the Akrotiri dataset. The number
of matches with correspondences near zero are greater than the
number of non-matches. Conversely, there is little distinction be-
tween the two curves for the Synthetic dataset. (c) - (d) RibbonErr
correspondences greater than 50 belong to non-matches for both
datasets. (d) - (e) ColorNormalVariance values greater than 0.05
on the Akrotiri dataset are more likely to be non-matches. Values
greater than 0.10 are more likely to be non-matches, however, the
distinction is less obvious.

As shown in Figure 10, the distribution feature correspondences
is different for each fresco. For example, almost all ColorSaturation
correspondences (a) for the Synthetic fresco are near zero while
only 8% of the samples are clustered near zero for Akrotiri. This is
not surprising, as most Synthetic fragments are white. The distribu-
tion of the RibbonError feature (b) is similar for each dataset while
the range of the ColorNormalVariance feature (c) is most similar
for Akrotiri and Kerkrade but different for the Synthetic fresco.

We also observe that different features are morediscriminat-
ing on different datasets. Figure 11 compares histogram plots of
selected features for ground-truth matches (blue) vs. non-matches
(red) for the Synthetic and Akrotiri datasets. There are equal num-
bers of matches in each example, with 2,274 total samples forthe
Synthetic dataset and 206 total samples for the Akrotiri dataset. The
match and non-match curves for ColorSaturation are almost iden-
tical on the Synthetic dataset, suggesting there is little information
available to distinguish between a match from a non-match using
this feature. Conversely, the number of matches whose correspon-
dence lies near zero is significantly greater than non-matches for
Akrotiri. We expect this behavior, since this dataset contains con-
siderable pigmentation and hence color is a good matching cue. In
addition, we observe that there is a clear threshold above which
correspondence values are more likely to apply to non-matches
than matches. In many cases, 100% of correspondences above the
threshold are non-matches.

Our analysis suggests that color and 3D features work best for
the Akrotiri and Kerkrade databases and that, in general, normal-

based features will work well on all databases. Some normal fea-
tures are significantly stronger than others, however, depending on
the surface features of the database. For example, we observed
that dominant-orientation features are especially important for the
Kerkrade dataset, with color-based features performing nobetter
than chance. Curvature features are the least reliable.

We also compared classification results for each feature individ-
ually and in combination with other features. Individual features
do not perform as well as combinations of features. We found that
Patch level features are more robust than fragment level features.
One exception to this rule is erosion, which was more effective
when computed over the entire fragment. We anticipate that this
feature is good at separating smooth fragments from eroded ones
at the fragment level, but is too noisy at the patch level. We fur-
ther discuss our classification approach, results from combining
features, and comparisons of patch level vs. fragment levelfeatures
in Section 7.

7 Classification Results

Classifiers and Evaluation Methodology: In order to evaluate
the performance of our features for matching, we work with man-
ually labeled sets of matching fragments, and randomly sampled
non-matches. Except where stated otherwise, we use 10-foldcross-
validation, with manually separated training and test sets. In each of
these sets, we ensure that eachpair of fragments, whether matching
or not, is placed entirely within either the training or testset. This
is done because a single matching pair of fragments may result in
multiple matchingpatches, so we wish to ensure that the classifica-
tion algorithms do not gain advantage from training and testing on
patches from the same pair of fragments. Using various subsets of
the color, normal, and geometric features described above,we train
classifiers to distinguish between matches and non-matches.

We have explored four different classification algorithms,as im-
plemented by the “Weka” open-source data mining package.1 The
algorithms are:
• J48 decision trees, which implement the C4.5 algorithm of

Quinlan [1993]. This algorithm hierarchically subdividesthe
training set, at each node partitioning using the feature that re-
sults in the greatest difference in entropy among the subsets.

• Random forests, which train decision trees on multiple sub-
sets of features, combining the results into a single probabilistic
classifier.

• Support vector machines, which compute a high-dimensional
separating plane between the two categories.

• Logistic regression, which fits the data with a generalized lin-
ear model consisting of the logistic functionp = 1/(1 + e−z)
applied to a linear combination of the input feature values.

To determine which classifier would generalize well to all ofour
datasets, we evaluated robustness to overfitting, computational ef-
ficiency, and the availability of a real-valued probabilityinstead of
merely a binary yes/no classification. The latter is important for
our application, since it allows us to create a rank-orderedlist of
hypothesized matches, which is then presented to a human forveri-
fication. Since it will typically be impractical for a personto check
all predicted matches, the availability of a ranking is crucial.

Table 2 shows the performance of each classifier, using as input
all of our per-fragment, per-patch and per-match features for a set
of 2,274 ground truth samples (including equal numbers of matches
and non-matches). The J48 decision trees had good matching per-
formance, but we found them to be most prone to over-fitting the
data. In addition, they provide only a binary decision, not aproba-
bility. Random forests were less prone to over-fitting and provided
probabilities, but the probability values (resulting fromcombining

1 http://www.cs.waikato.ac.nz/ml/weka/



Table 2: Comparison of machine learning algorithmns: We eval-
uate the performance of each algorithm using manual cross vali-
dation on 2,274 groundtruth samples containing an equal number
of matches and non-matches. In this example, we combine all per-
patch, per-fragment and per-match features.

Classifier
Ground-truth Matches Ground-truth Nonmatches

Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)

J48 66% 34% 84% 16%
RandomForest 79% 21% 71% 29%

SVM 67% 33% 78% 22%
LogisticRegression 84% 16% 49% 51%

Table 3: Classification performance on synthetic fresco, on a test
set of 220 samples using logistic regression. There are 110 matches
(one pairwise match per matching fragment pair) and 110 non-
matches (also unique and randomly sampled. We apply the best
model from our manual cross validation training session.

Features
Ground-truth Matches Ground-truth Nonmatches

Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)

AllColor 79% 21% 31% 69%
AllCurvature 54% 46% 62% 38%
AllNormal 80% 20% 48% 52%
Thickness 80% 20% 37% 63%

RibbonError 86% 14% 68% 32%
RibbonVolIntersect 94% 6% 35% 65%

AllCombined 90% 10% 78% 22%

multiple trees) were still strongly clustered. Support Vector Ma-
chines worked well and gave meaningful probabilities, but exhib-
ited time, space and algorithmic complexities that make themethod
impractical for large datasets. In addition, they were sensitive to
the choice of parameters, which were frequently difficult toset be-
cause of the different range of meaningful values for each feature.
Logistic regression produces robust results and yields meaningful
rankings, and this is the method used for the remaining results in
this section.

Performance on Synthetic Fresco: We evaluate the performance
of classifiers trained on different categories of features,on a set of
ground-truth matches and non-matches from the Synthetic fresco.
Because this is the dataset with the greatest number of known
matches, we expect to learn the most meaningful results about fea-
ture performance by observing classification results on this fresco.

This test was conducted on 110 known matches and 110 known
non-matches from this fresco. For maximum fairness, this set only
includes one pair of matching or non-matching patches for each
pair of fragments. Table 3 shows the number of correctly and
incorrectly classified instances among the matches (true positives
and false negatives, respectively) and among the non-matches (true
negatives and false positives). The rows of the table represent clas-
sifiers trained on:

• All the “color” features listed in Table 1. These and the curva-
tures are the features considered by many traditional 2D-only
matching algorithms.

• All of the “curvature” features listed in Table 1, evaluatedat all
different scales.

• All the “normal” features listed in Table 1. These are the new
per-fragment and per-patch features we propose.

• The fragment thickness.

• The RibbonError and RibbonVolIntersection features, which
represent two outputs computed by the ribbon-matching algo-
rithm of [Brown et al. 2008] on the 3D models.

Figure 12: Left: Precision-recall for a classification experiment
on the Synthetic fresco including the same classes of features as in
Table 3.Right: A re-weighting experiment, in which 203 locations
of potential matches, predicted by the ribbon matcher, are ranked
according to a trained classifier. Averages over 10-fold cross vali-
dation are presented.

• A combination of all features listed in Table 1.

The table demonstrates that each type of feature has its strengths
and weaknesses when it comes to both finding matches and re-
jecting non-matches. Curvature and color features, considering
both true-positive and true-negative numbers, are barely perform-
ing above chance. The normal-based features perform betteron
non-matches, confirming our hypothesis that such features,while
remaining easy to acquire, easy to compute, and easy to incorporate
into a fast pruning stage based on per-fragment and per-patch infor-
mation, incorporate substantially more information aboutmatching
fragments than does color.

Turning to 3D information, thickness performs moderately well,
but not as well as normal-based features. The two ribbon-matcher
features have substantially better performance, but note that these
also have substantially higher computational cost: they are per-
matchfeatures, not per-fragment or per-patch.

Finally, the combination of all features has the best overall per-
formance, demonstrating that the classifier is successfully taking
advantage of the best performance of each.

Precision-recall: Because the logistic regression classifier out-
puts not only a prediction but also a probability, we are ableto
evaluate our results on a “ranking” task that provides more insight
than is available with simple confusion matrices. We present our
results using precision-recall curves, in which points represent pre-
dicted matches in probability-ranked order, with thex coordinate
(recall) representing the fraction of total matches found so far while
they axis (precision) indicates the fraction of all predictionsso far
that have corresponded to true matches. Higher curves therefore
represent better results.

Figure 12, left, shows results on an experiment similar to the one
in Table 3, using the same sets of features. At right, we show adif-
ferent way of using classifiers, namely a re-weighting experiment
in which 203 locations of matches predicted by the existing “ribbon
matcher” are ranked according to a classifier trained on different
subsets of features. Average results for 10-fold cross validation are
presented. In both cases, the results show that combining features
leads to better precision than most individual features, especially at
higher recall.

Per-Fragment vs. Per-Patch Features: To further examine the
potential performance of the pipeline in Figure 2, we investigated
the performance of per-fragment and per-patch features. Figure 13
shows precision-recall curves in which dashed lines include only
per-fragment features, while solid lines include both per-fragment
and per-patch features. We see that for color-based features, both
sets perform relatively poorly, but for normal and thickness fea-
tures, there is indeed more information available from per-patch
features. In these cases, however, per-fragment features alone are
still performing some degree of classification, suggestingthat the



Figure 13: Comparison of per-fragment features (dashed lines)
with a combination of per-fragment and per-patch features (solid
lines). In all cases, the addition of per-patch features improves
classification performance, at the expense of additional computa-
tion time.

pipeline of Figure 2 may, with appropriate thresholds, provide both
efficiency and accuracy.

Generalization across Datasets: To examine the extent to which
classifier performance generalizes across different datasets, we
trained a classifier on the Synthetic fresco, using the threefea-
tures of Figure 11. We then compared the performance of the
classifier on the original Synthetic fresco, as well as the Akrotiri
fresco (Figure 14). We observe that the performance is reason-
able, with the classifier sometimes performing slightly better and
sometimes slightly worse. In general, we expect better performance
with custom-trained classifiers for each dataset, but theseprelimi-
nary results suggest that adapting classifiers from one dataset to
another may still lead to reasonable results. In particular, the re-
sults are usually sufficient to perform a “bootstrapping”: finding
enough ground-truth matches to enable a new, custom classifier to
be trained. In the future, we expect to use the results of the analysis
of variance of each feature across each dataset to be able to adapt
classifiers even more directly, by re-weighting the contribution of
each feature to the classification without a full re-training step.

Figure 14: Evaluating classifiers across multiple datasets. In this
example a model was trained on the Synthetic dataset using a com-
bination of features: ColorSaturation, RibbonError and ColorNor-
malVariance (the same features as in Figure 11). We show results
of the trained classifier on the original (Synthetic) dataset, as well
as the results of the same classifier on the Akrotiri dataset.

8 Discussion and Conclusion

Manual fragment assembly rarely occurs based on a single cue.
Even where there is an obvious and essential cue, such as the edge
geometry of fresco fragments, a good assembler relies on judi-
ciously combining every available cue. Working in the context
of fresco fragments, we have introduced several new featurede-
scriptors based on normals and color that encapsulate cues such as
fragment erosion and surface impressions. We have also shown how
to use machine-learning techniques to combine descriptorswithin
a multi-cue framework, including using our new per-fragment and
per-patch descriptors to complement existing per-match features.

There is some danger to relying on surface-based features. While
matching fragments often erode in similar ways, that is not always
the case. When only one fragment has eroded or discolored, we
may not identify the match. This is of course inherent in relying on
any kind of cue: edge- and contour-based matchers will fail if too
much of the side (as opposed to the front) has eroded or brokenoff,
whereas matching on surface properties might still succeed. We
believe the best bet is to support many different cues so we can
identify as many matches as possible.

Although we have presented our work in the context of fresco
fragments, we believe the ideas translate to many other matching
problems such as distinguishing the brush strokes of different artists
on oil paintings, classifying chisel marks on sculptures, or match-
ing textured objects to their impressions for forensic identification.
Different types of objects will naturally require different features,
but we expect the normal-based descriptors we have presented will
be valuable for many types of material with an exterior surface con-
taining relief or erosion.

For this reason, we anticipate that classifiers trained on one
dataset will still perform well on another, but that improved per-
formance could be achieved with an online learning approach: a
pre-trained classifier is used to generate an initial classification,
with re-training occurring as instances are confirmed to be either
correctly or incorrectly classified. We leave this approachas future
work, and present classification performance results for the syn-
thetic dataset.
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