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Figure 1. Feature descriptors based on surface normal charactesstan capture a variety of physical characteristics suchrash strokes,
string impressions, and erosion, that are used by archagsi® when assembling fresco fragments. Combining theékemare traditional
color-based features and 3D features using classificatieestyields significantly improved matching performance.

Abstract Several 2D and 3D computer-aided matching approaches have
. . been explored and have proven successful in some domaing. Ho
We present a multiple-feature approach for determiningchrext ever, current matching algorithms have difficulty when rhatg
between small fragments of archaeological artifacts sush a gyitacts that have deteriorated over many years. For ekartiey
Bronze-Age and Roman frescoes. In contrast with traditi@a may consider features such as color, which frequently hasaged

and 3D shape matching approaches, we introduce a set ofdeatu . a: time even among neighboring fragments. Alternativdigy
descriptors that are based on not only color and shape, bat al may operate exclusively on 3D geometry, which may not onieha

normal maps These are easy to acquire and combine high data yeeriorated, butis also challenging to acquire with theestidelity
quality with discriminability and robustness to some typefs and resolution as color images.

?Oetéa (;I;:tr:?ghezzgfeaart]lérzr(ée;ﬁ?cpktiros éir;?;uigor;\ngemose we We address the problem of reconstruction by consideringimul
! : ple cues based on color, shape, and — most interestingly +ralor

have tested our system on three datasets of fresco fragments h . .

demonstrating that multi-cue matching using different saib ma%s].c The Ia:]tler IS a new sourcekof m(fjormatlon thﬂt has nef be
: . used for matching in previous work, and we argue that it coredi

of features leads to different tradeoffs between efficieacy! high data quality and resolution with high discriminalyiland ro-

effectiveness. In particular, we show that normal-basedufes ; . o

are more effective than color-based ones at similar contiputz bustness with respect to certain types of detgnoratlorhasbeen

complexity, and that 3D features are more discriminatiantbnes recently demonstrated [Brown et al. 2008; Pintus et al. 200
our practical to use flatbed scanners to obtain normal maps ofiynos

based on 2D or normals, but at higher computational cost. . ; . :
results show good retrieval performance, significantly rioving flat ObjeCt.S with 600 or 1200 dp.' r.esollutlon.. Thege nprmgl snap
reveal salient surface characteristics including strimgriessions,

upon the match prediction rate of state-of-the-art 3D miatch brush strokes. surface rouahness. and fine cracks

aIgorithm;, and_ are expected to extend to general_ matching ’ bea k? ’d' d. Is of |

problems in applications such as texture synthesis andsars. Our system begins with scanned images and normals of a col-
lection of fragments, and computes a setfehture descriptors

Each descriptor may be computed over an entire fragmenteanr ov
small patches sampled around the outer contour of the fragrtiee
Advancements in low-cost, high-volume acquisition systérave tradeoff of sampling patches is greater discriminabiliy greater

1 Introduction

made computer-assisted reconstruction of artifacts frorallsfrag- computation time. The feature descriptors range from gener
ments practical. This problem is of particular interesthe field purpose (such as variance in the normal map) to ones designed
of archaeology, in which the reconstruction of artifactelsuas specifically for the domain of fresco fragment matching, amak
shattered wall paintings reveals information about théohysand tivated by the visual cues used by archaeologists for reaslye
culture of ancient civilizations. Historically, the prazsof recon- (such as brush stroke direction). They are designed to aphar-
structing these wall paintings has been manual, occupyimgjar acteristics including shape, surface decoration, surtiexterre, and
proportion of the human effort at excavation sites. As altesu deterioration (Figure 1).
wall painting reassembly is not even attempted at countéss We use similarity of these descriptors to suggest matchmes, a
around the world, leading to a significant opportunity to abhe evaluate their performance on three different wall-paigsi The
our knowledge of ancient societies by improving the pradity of first is a geometric scene containing spirals and large areesn-
reconstruction. stant color, from a late-bronze-age Aegean civilizatioAlatotiri,
— — ) on the island of Thera (Santorini). The second is from a Roman
Princeton University. {ctoler, smr, funk}@cs. princetadu villa at Kerkrade, The Netherlands, and is especially niive be-
 Katholieke Universiteit Leuven. bjrown@esat kuleutien. cause of the strong brush marks visible both in the color &ed t
University College London. t.weyrich@cs.ucl.ac.uk surface relief. The third is a synthetic fresco, profesallycreated

and shattered, for which a ground-truth reconstructiorvislable.

We perform a cross-validation analysis on databases ofrdoze
to hundreds of fragments, drawn from the three differentlwal
paintings. Our results demonstrate the discriminativegyasé our
collection of features, and suggest that matching perfooads
improved by the use of normal maps, in addition to featureseta
on more conventional data sources such as color, thickress,



exterior contour shape. Moreover, we observe that the pagoce ties of fresco fragments to obtain an effective, efficientahar,

of individual features varies from dataset to dataset, sstigg a these algorithms rely on finding the axis of rotation and |ofi
future extension to online learning. curve common to pottery.

Overall, the paper makes the following contributions: Our approach improves upon these examples because we inter-
e The introduction of a new type of inputormal maps for pret observed qualities of our domain as a set of functioasare

matching small fragments of artifacts. We argue that normal €aSY to compute, optimizing our system to use a combinafitireo
maps are easy to acquire with higher resolution than 3D mod- Most discriminative criteria for matching. Although we @mporate

els, and are more robust to deterioration and discoloratian some 3D quantities, such as thickness, we maintain the emse a
color. simplicity of a 2D system by only computing information inage
e A set of easily computable descriptors, of both general psep space.
and domain specific types, that are effective for matching. .
3 Overview

e Analysis and evaluation methods that demonstrate how well o
features perform over state-of-the-art 3D match algorgthm In this paper, we focus on obtaining feature descriptorsfra
e A matching framework that is easily extendable to more gener database of scanned patches of objects, focusing on amkigha
alized matching problems used in applications such asrextu ical fragment matching scenario. We describe our featuserie

synthesis and forensics. tors, match classification strategies, and the datasetshiwhwve
operate. We use three forms of datalor mapsacquired using a
2  Previous Work high-resolution (600 dpi) 2D scannemrmal mapsobtained from

_ N _ ) multiple scans using a variant of shape from shading [Brotail.e
2D Matching: Traditional matching algorithms use 2D con-  2008], and3D meshefrom a laser-triangulation range scanner. We
tours [Kong and Kimia 2001, Leitdo and Stolfi 2002; Papaoelyss  work with these data types because they can be obtainedijrasit

etal. 2002] as well as image-space features including eoldrtex- an archaeological excavation or in the context of some attugti-
ture [Fornasier and Toniolo 2005; eoglu and Ergil 2006]. How-  zation effort, with high fidelity, low cost, and consideralgase of
ever, these solutions are often sensitive to erosion amgldistion, acquisition.

a significant issue for fragments that have spent thousangkaos
exposed to natural elements. Moreover, they do not congsiger 3.1 Feature Descriptor Generation
wealth of 3D information available in geometric represéntss.
Such cues are particularly important in our domain whereréap
sions on the fragment surface provide strong matching cues.

Figure 2 presents a conceptual overview of our feature gescr
tor pipeline. Because practical datasets may contain #mulss
of fragments, we focus on designing a matching pipeline loigpa
3D Matching: Other approaches for assembling fractured objects of scaling to these data sizes. Indeed, a brute-force salutiat

incorporate full 3D descriptions. For example, Huang ef2006] tested every possible alignment of every possible pairagfrirents
reassemble solid objects by first identifying fracturedaag, then would quickly become infeasible, requiring perhaps®@ 10+
generating clusters of feature patches for alignmentéasatch- comparisons (a few thousand fragments times a few hundred-or
ing. Although these feature clusters effectively descthee local tations, squared). To overcome this growth we employ a semue
geometry of the fracture surface, the algorithm does nosicien of matching stages, ranging from ones that can quickly tejéarge

other physical attributes of the dataset, and is burdenethéy number of implausible candidates to ones that preciselglcire
complexity of a full 3D matcher. Brown et al. [2008] exploits dividual matches. A key observation is that the early statpesild

the orientation constraints of flat fragments to achievenapk, require computation that growmearly with the number of frag-
fast matcher based on edge geometry. This matcher resathples ments, rather than quadratically.
fragments edges in a regular grid structure, then exhalgttests We thus consider three possible classes of features. The firs

every possible alignment of a pair of fragments in a few sdspn  includesper-fragment features: those that are computed (once)
in a correlation-like manner. This approach takes advantafy for each fragment in our database. Fragments that diffestiyre

high resolution geometry to find precise alignments, andarsr in the computed descriptors are assumed to have a low ptebabi
the common technique of finding matching fragments by tgstin ity of matching, hence generation of plausible matchingspaf
for pairs that physically “lock” together. On the other haffichg- fragments could be accelerated with a fast clustering oeximd
ment edges are subject to erosion, and the brute-forceenatuine
algorithm means there is no early rejection for non-matglwairs. Color Acauisiton Patch Candidate
Our approach retains the efficiency of a special-purposemaat Normal Acauisiton == Generation }—’ Alignment
for flat objects, but focuses on fine surface details rathan th 3D Acauistion
edge information. It is complementary to existing geoméixged N N N

matchers in two important ways. First, it matches featureshe
externalsurface of fragments rather than fitting fractured faces to
each other. Second, it relies on high resolution normalsuca@
with a flatbed scanner that could not be acquired reliably witr-
rent stereo-based scanners or fed into an alignment aigurit |

Per-Fragment

Features Features Features

Per-Patch Per-Match

Increasing Discriminability, Computation Time >

Reassembling Artifacts: Several computer-aided systems have ) . . L
been designed specifically for reassembling broken objeBise Figure 2: An overview of feature generation. Beginning with high-

notable example is the Forma Urbis Romae project [Kollerlet a resolution color scans, normal maps, and 3D models, we exéra
2006], where analysis of incision points and markings isiuse variety of feature descriptors from each fragment. Degorpmay

match sparse data. While some aspects of these heuristics ar P€ extracted at the fragment level, for small sampled paicbe

of broader applicability (for example, in lining up fragnterwith for a specific candidate match. Although we are able to mateh u
string impressions), they are largely tuned to the specéfieds of ~ ing all features simultaneously using machine learningitegques
the Forma Urbis Romae. Another common application in thelfiel (Section 7), itis advantageous to first select possible mestevith
of archaeology is the reassembly of broken pottery [Will292; per-fragment and per-patch features, then compute the eqren-

Karasik and Smilansky 2007]. Just as we take advantage pépro  Sive per-match features only for these possibilities.



technique (although in this paper we focus on demonstrdtieg
matching accuracy of the descriptors, rather than on etiatytheir
efficiency).

The second class of features we considemparepatch features.
These are computed not over entire fragments, but over seall
gions sampled around the boundary. Because these features c
sider more localized properties, we expect that they wilhimre
discriminative of true matches. On the other hand, they e¢so
quire more computation than the per-fragment featuresesiney
must be evaluated at dozens to hundreds of locations ardwnd t
perimeter of a fragment. Nevertheless, the descriptorp@eom-
puted and cached, once per fragment, adding only a few second
to the preprocessing time. The patches we use are circutbar@n
sampled from the original 600 dpi images, every 5 mm along the
perimeter of the fragment. For most features, we use patdheasnm
in diameter, and offset them 8 mm inward from the outside @ont
This ensures that the resulting features are not corruptéadowvery
edges of the fragments, which are frequently broken offdedo or

shadowed. For a few features we also use larger patches — 20 mm

in diameter —to estimate properties more accurately andsthp
and for the area-based curvature descriptor the patchesatered
on the contour instead of being offset inward. These vasian¢
discussed below, in the descriptions of individual feature

Finally, we employper-match features, which evaluate the plau-
sibility of a candidate pair of fragments in a particulargalinent.
This stage is the most expensive, since it involves comguta-
tures perpair of fragments, and precludes the use of fast clustering
or indexing methods. On the other hand, such descriptays, @u-
erage distance between the fragments) can be more disetingn

3.2 Match Classification

There are many types of machine learning tasks that cartigéc
use vectors of features: indexing, match scoring, classifin, etc.
As mentioned above, in the context of a large-scale fragmeich-
ing application we anticipate two main uses. First, in thdyea
stages of matching the goal is ¢uickly determine large sets of
potentially-matching pairs of fragments. In the ideal ¢élsis stage
would run inO(n) time for n fragments, in contrast to the naive
O(r?) strategy of checking every potential pair. Therefore, we an
ticipate that indexing and clustering methods are relevanglying
that we would like to determine which feature vectors areafaart,
and which are nearby.

Later in the pipeline, the relevant task becomes separating
matches from non-matches as effectively as possible. Thig m
operate either via classification — predicting whether gopsed
pair is likely to be a match or nonmatch — or via probabiligée
gression — ordering proposed pairs from most to least likélther
way, the most likely matches will, in the end, be presentethéo
user for ground-truth verification, meaning that all of theoee
strategies are amenable to incorporation in an “onlinenieaf’ sys-
tem that incrementally adjusts the importance of diffefeatures
to adapt to the particular characteristics of each new dab

We therefore have four tasks —indexing, match classificatio
regression, and online adaptation to per-database feahper-
tance —that all stem from the same set of features. In thisipap
present results for match classification experimentsesiris likely
that good performance on this task will lead directly to gqea-
formance on the others. We adopt an existing technique dideci
trees) for producing trained classifiers, and explore diaation
performance using a cross-validation methodology. In roases,
the trees are simply trained on the absolute value of therdifice
between feature descriptor values for a pair, but a few caspsre
a more complex computation to convert the values of featere d
scriptors into a value likely to be predictive ofraatch We also
examine the typical variation in the different features.

3.3 Datasets

We evaluate our features using scanned frescoes from ailoigae
cal excavations at Akrotiri and Kerkrade, as well as a modtay
“synthetic” fresco data set.

Akrotiri: ~ The Theran frescos were discovered on the island of
Thera (modern-day Santorini), at the site of Akrotiri. Anal1650
B.C. the late-Bronze-Age Aegean civilization that occdpiilee is-
land was destroyed by a volcanic eruption. The most impbrtan
finds at Akrotiri are the extensive wall paintings, whichthalugh
broken into small fragments, have been well preserved bydhe
cano’s ash. In fact, the completeness of these wall pamtisag
unique in the ancient Mediterranean. However, the Therah wa
paintings are known for their large fields of white or othelico
colors, making manual reassembly especially difficult. #eo
distinguishing feature is the presence of surface impoessieft

by strings that were used as guides and placed in the weeplast
by artists. In this paper, we work with a dataset of 1200 fragts
taken from a fresco with spiral motifs.

Kerkrade: The Kerkrade frescoes originate from a second-
century Roman villa in Kerkrade, The Netherlands, nearges
day Heerlen and Maastricht. They belong to the larger setality
paintings from the Roman period found in the Netherlandd,ae
also a part of a select few that depict large-scale humaneigur
The Kerkrade fragments differ from those at Akrotri in twopor-
tant ways: they are more eroded, and have visible brushesrok
and texture resulting from the smoothing out of the plasiéle
therefore, expect a different subset of the features to Ipoitant

for matching. Our test set consists of 100 fragments.

Synthetic: This synthetic fresco, previously described by
Brown et al. [2008], was created by conservators in a styfelar

to the one used at Akrotiri. The finished fresco was then broke
into pieces to create fragments similar to the fragmentsidoat
that site. This fresco is characterized by large areas ofenkith
smaller regions of color. Both string impressions and bistsbkes
are present on the fragment surfaces. Our ground truth seiste

of 127 fragments.

4 Feature Descriptors

As mentioned above, our feature descriptors may be clagsifie
cording to their type (per-fragment, per-patch, per-mptoid the
data from which they are computed (colors, normals, 3D).yThe
range from “generic” descriptors that are frequent comptsef
fragment-matching or puzzle-assembly systems, to deecsithat,
while still general, were inspired by cues used today by eorss
tors and archaeologists to perform manual matching.

In the below descriptions, we focus greatest attention emab
based features: it is one of the claims of this paper that $emh
tures combine high classification performance with low &sitjon
cost and high matching efficiency (i.e., the features agelstrper-
fragment and per-patch, rather than per-match). Thesmsluiill
be evaluated in the subsequent sections. Neverthelessofior
pleteness, we also describe the more “usual” features usedrm
system.

Average Color, Saturation, and Variance
Type: Per-Fragment and Per-Patch Data: Color

We begin with features traditionally used in image-basedchia
ing systems, such as the mean color (computed separatedadcor
color channel) and color variance, both of which may be cdegbu
both per-fragment and per-patch. In addition, we use ther at-
uration as a feature. This was inspired by the observatianttio
adjacent fragments will often exhibit a similar amount ofet®-
ration in their pigments: either they are both faded, or lretiain
their original colors. Though an imperfect descriptor, weluide



this in the hope that it may combine with other features tosboo
classification performance.

Contour Curvature
Type: Per-Patch Data: Color

The curvature of the fragment’s outline, or contour, pregdper-
patchdescriptor that can group fragments of similar externapsha
and has been frequently used for (2D) puzzle reconstrucf®im-

ilar patches will, of course, have curvature of similar miaggte but
oppositesign.) We have experimented with two alternative descrip-
tors for 2D curvature along the fragment contour. Ama-based
descriptor finds the fraction of the fragment covered by autar
patch centered on the contour:

Area(Fragment) B
Area(Patch)
As shown by Manay et al. [2004], this quantity is just a fuoeti

of curvature, in the limit of small patch size: values of-@, and 1
correspond to curvatures efeo, 0, and—oo, respectively.

The second curvature descriptor only looks locally at tlaéja-
cent pointsA, B, andC on the contour:
Z(C—-B)—-«(B-A)

[C—Bl+[B-Al "’

CurvatureArea=

CurvatureContour= 2

)

where the numerator is the angle between the segnf&Btand

BC, and the denominator is their total length. This discrete ap
proximation to curvature is accurate for low-curvatureioeg, as

is generally the case in practice. The poiAfB, andC are picked

at multiple scales: 2.5 mm, 5 mm, 8 mm, 10 mm, and 15 mm. Each
one yields a separate descriptor, providing even more rimdion
about the contour shape to be used in matching.

Average Normal and Variance
Type: Per-Fragment and Per-Patch Data: Normal

Many of the datasets we have examined exhibit significanavar
tion in surface roughness from location to location: songgars
are smooth while others are rough because of visible brmoitest,
weathering, or the use of a different type of plaster. In otdehar-
acterize this, we look at the distribution of normals on ttagfent
or patch. However, we cannot simply consider the normalarsct
themselves: one of their components is not known, in globat-c
dinates, since the final orientation of the fragment is umkmoFor
this reason, we form a rotation-invariant quantity: f@mponent
of the normals (i.e., the component perpendicular to thgnfient’s
“flat” surface). We use the mean and variance of ttzssmponents
as features.

Color/Normal Variation
Type: Per-Fragment and Per-Patch Data: Color and Normal

This descriptor captures the effect @drrelatedvariation in color
and normals, as frequently occurs when there are visiblehbru
strokes or string impressions that were used as guides fotipg
We begin by stacking the colors and normabmponents for pixels
in a fragment or patch into amx 4 matrix, then perform a Singular
Value Decomposition:

Cir Cig Crp M oo 0 0 O
_ 0 (%] 0 0 T
: =U 0 0 o O V. (3)
Chr Chg Cnb Nz 0 O O oa

We use the sum of the; as a descriptor, yielding a compact,
rotation-invariant, yet discriminative description ofetmature of
color and normal variation on the surface.

Normal Discontinuity—>
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Figure 3: (a) Fragment with a visible string impression, for which
we visualize the normal-discontinuity and dominant-ciation de-
scriptors. (b) The dominant-orientation descriptor detects the ori-
entation of the string impression, allowing it to be matctiedn
impression on an adjoining fragment. Visualized are thenmrezan-
ponent of the normal, the power spectrum, and the detected do
inant orientation. (c-€) Normal-z histograms used by the normal-
discontinuity descriptors. Note that the histogram in (a¥la long
tail, while the smooth patch in (e) results in a histogramstéwed
around the origin. We are careful to inset patches away from t
edge to avoid incorrect long-tailed distributions, as webuésult
from sampling patches directly on the edge (d). We also have e
perimented with using larger patch sizes, as shown in (a).

Normal Discontinuity
Type: Per-Fragment and Per-Patch Data: Normal

Many frescoes contain distinctive shapes on the front sarfé&or
example, artists occasionally pressed a guide string sg#ia wet
plaster during fresco construction, in order to provide alioe
for straight bands of color. We posit that a strong matching c
is the presence of such features, and we design descriptats t
distinguish between relatively smooth patches (possililly some
noise in the normals due to deterioration) and those cantalarge
discontinuities in the surface orientation.

Our analysis begins by computing a histogram of the diffeesn
{Dij} = {llmz — nj,||} between neighboring normals in a patch.
(We use only the components of the normal vectors because they
are invariant to rotation in the plane.) We then compute abam
of statistical measures on this distribution, to deterntireedegree
to which it either is strongly peaked around zero or contomg)
“tails” of high curvature. We have experimented with fourasares
to characterize the degree to which the normal differensaridu-
tion exhibits long tails:

1. The ratio between the normal differences’ 80th and 50th pe
centiles: D
80% . 4)
Dsog

. The fraction of discontinuity values greater than a thods
(0.46), determined experimentally by looking at fragmerds-
taining string impressions;

The third moment of the distribution; and

The fourth moment of the distribution.

Figure 3, (c) and (e), shows the normal discontinuity distri
tions for patches that both do and do not contain string isgoms.

3.
4.



whereo ande are image-morphological open and close operators
andk is a structuring element.

Unlike previous applications, we achieve improved diserim
inability by combining color and normal values in the anay#\s
shown in Figure 5, for patch-level erosion detection, weettie
intersection of peaks in the threshholded black top-hatsfam of

i L ; the color map and the threshholded white top-hat transfdrtheo
Normal Map Qn = argmax,zo ||Fa(w)|) Qo normal map:

Figure 4: Detecting brush-stroke amplitude and orientation. This

illustration depicts the results of the dominant oriendatidetector Erosion(le. 1o k) = T/ (1o k) AT (1 K 7
on a sample taken from a fragment in the Kerkrade dataset. The Mle, I, ) pck{le: ) O Turice(In, ) ™
first two images show the normal map and power spectrum image,

respectively. We determine the strength, and directioh@btush- wherel. is a grayscale version of the color bufféy,is thez com-
strokes by examining the frequency, amplitude and orimmtabf ponent of the surface normal, afid are the thresholded top-hat
the dominant frequency (not including the dc) in the powescsp  transforms. We found that an intensity threshold of 0.3 wawlell.
trum. The red lines in the image at right visualize the ordgiain of For the structuring elemenrt, we use a circle (with a 3 pixel radius)
this dominant peak. to ensure our results are rotation invariant across fragsneWe
record two scores: the total number of pixels over all peais-(
Note that the presence of the string causes the distribttidrave malized by the number of visible pixels) and the average rerrob
significantly more large values. pixels per connected component. The first value recordsehsity

while the latter suggests the average size of each element.
Dominant Orientation

Type: Per-Fragment and Per-Patch Data: Normal At the fragment level, we use a multi-scale approach. In this

This feature detects regular patterns in the surface, ssitttesbrush case, we use a structuring element with ten different diaraestnd

strokes found on some fragments. We were inspired by exam- {ake the color black-top transform to be the sum of the tamsf
ples such as the ones in Figure 9, which illustrates the tiania taken across the ten scales. Similarly, the white top-hasform is

in strokes left by both paintbrushes and tools for smoothiuigthe the sum of the white top-hat transform for the normal map ¢ver
underlying plaster. We expect that the amplitude and fraquef ten scales. Figure 6 shows an example of fragment levelarosi
these brushstrokes, as extracted from normal maps, withgty We chose this approach over a single large scale becauseefeat
group them according to local variation in their charastiécs. In are less likely to expand beyond their boundaries. Multitsenor-
addition, the orientation of these brush strokes must bérmeous phological scale spaces work locally, are good at separéeatures
across fractures, leading to another strong matching @teefsen-  ffom uneven backgrounds and do not exhibit the blurring s&ro
tially eliminates the search over orientation in possiblatching features characteristic of Gaussian kemels.

fragments.

We begin by smoothing thenormal image of the fragment or

patch, applying a Hanning window, then finding its 2D Fourier _’._}.
transformF,(w). We then search for the frequency at which the = ;
energy is greatest. Because the patches are smooth, theshigh ™ BlackTop-hat  Threshold 5 %
energy peak is usually the DC component, and low frequercies

generally stronger than high frequencies. For this reaserapply TR _Cﬂ!.i
a threshold to the frequency: $ 3 o
NormalDominantFrequency: arg max ||Fo(w)[|?.  (5) < : RSN Kormals

W> Gin en Dilate

White Top-hat ~ Threshold

Op

In addition to using the frequency and amplitude of this peakea-

tures, we also use its orientation. In order to make thisriawato Figyre 5: Erosion d.ete.ction using a circular structuring element
rotation, we compute the difference between the angle ofltme- to find cracks and pits in the surface. The black top-hat tiams
inant peak and the normal to the fragment contour. In othedsyo 1S 9enerated by applying a closing operation to the colorgema
we store the angle between the dominant directional varidg.g. and subtracting the result from the original color image €Mahite

brush strokes) and the fragment edge —this quantity is eéggeo top-hat transform is generated by applying an opening opena
be the same for a matching fragment. Figure 4 demonstrages th to the normal map and then subtracting it from the originatmal

results of this process on a fragment from the Kerkrade dafase map. The final erosion map is the intersection of the blackhaip
Section 3.3) containing strong brush strokes. transform of the color map and the white top-hat transfornthef

normal map, and thresholding to reduce noise.

Cracking and Erosion i o o

4 N

Type: Per-Fragment and Per-Patch Data: Color and Normal % St

v

Erosion of a plaster fresco frequently results in small pitshe Ugn
(b) () (d)

surface, while the destruction of the original wall-pangtiproduces (a)
an irregular pattern of cracks. The erosion descriptor uses Figure 6: Comparing erosion detection on 2D normal maps and

phological operators to quantify the degree of deterioratn the  3p geometry. Note: We only show the z component of the narmals
surface. Specifically, we extend versions of the black andevh  (a) The 2D normal map acquired with a flat-bed scanner has more

top-hat transforms [Serra 1983]: detail than the smoother normals in (b) acquired with a 3Drster.
Tunite( f, k) = f — fok (c) Areas of erosion, highlighted in grey, are detected o 2D
(6) normal map, but no erosion is detected on the 3D geometry (d).

Tolack(f, k) = fek — f,



Thickness
Type: Per-Fragment and Per-Patch Data: 3D

In some datasets, the thickness of fragments varies coabigie
from location to location. Therefore, we use the 3D scan terde
mine the fragment’s thickness at every point. We use theageer
thickness, per fragment or per patch, as a descriptor. Nhateit
this case it is especially critical that we offset each patwhy from
the edge of the fragment, since the estimated thickneskeily lio
be unreliable near the edges.

Ribbonmatcher Error and Volume Intersection
Type: Per-Match Data: 3D

To compare the performance of our per-fragment and pehpge
scriptors to more descriptive per-match features, we lookva
values computed via the brute force “ribbon-matching” apich
of [Brown et al. 2008]. For both values, the optimal alignineh
the two fragments at the patch locations is computed usiagilth
bon matcher with a 12.5 mm strip width. The first value (“ribbo
error”) we consider is the mean-squared distance betwesg fr
ments along this strip, as computed by the ribbon matchee Th
second value (“volume intersection”) measures the amatinter-
penetration between fragments. A vertical plane is origreieng
the matching edge, and the interpenetration of the two feagm
is sampled on this plane. We compute the average of all square
lengths that exceed 1 mm. The intuition behind this desarifst
that correctly matching fragments may have some slightpetse-
tration due to sampling error, erosion (which affects thgrahent),
and accretions on the fragment edge when it was scanned.vudgwe
correctly matching fragments should not have anpstantiainter-
penetration. Considering only interpenetrations gretitan 1 mm
accounts for “explainable” interpenetration, and squtime dis-
tances penalizes deep intersections more than shallow diws
also that the volume descriptor considers the entire fragspaot
just selected patches or ribbonmatcher strips.

5 Case Studies of New Features

Several of the features we consider are motivated spedyfibgl
the fresco-matching application, rather than being “gefidea-
tures applicable to a variety of shape matching problemse e
consider a few of these, and present anecdotal evidencédor t
performance.

Normal-based Features: While we have found that color cues
are meaningful for some datasets and perform no better theame
on others, we have uniformly observed that normal-baseilfes
provide reasonable performance. For example, Figure 7 shiogv
best match found between a pair of fragments from the Keekrad
fresco using only color cues (center) and using normaldése-
tures (right); only the latter is correct. We hypothesizatteven

in datasets that exhibit considerable color variation uigfmut the
fresco, the variation within a single fragment is usuallsuifficient

to yield the correct alignment.

Thus, we suggest that normal-based features combine the com &

putational efficiency and ease of use of conventional 2Dufeat
while improving upon classification performance in manyesas

Erosion:
ber of fragments exhibiting strong cracking, strong colariation
without erosion, and mild erosion (Figure 8). In each casehav
the results of running our top-hat operators on the colods reor-
mals, as well as their intersection. We found that the iet&tien of
top-hat transforms applied to both the colors and normale gaod
sensitivity to detection of cracking and erosion. At topg ttormals
detected all of the cracks, while the color served to limitssgvity

to additional normal variation. At center, the lack of véiga in

the normals successfully suppressed the detector in afeason

We analyzed our erosion detection features on a num-

%3

Figure 7: Left: ground-truth match between two fragments of the
Kerkrade frescoCenter: best match, only considering this pair of
fragments (at all orientations) and color-based featureRight:
best match, considering normal-based features — notice ttrea
correct match was found.
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Figure 8: When computing erosion, we take the intersection of the
top-hat transforms of the color and normal maps to avoid aapt
sharp variations in color due to dirt or stains, and high frecy
noise in the normal maps. (a - c) Black top-hat transformsobéic
maps for three fragments (color and cracking, color and stinoo
white and smooth). (d - f) The white top-hat transforms ofcitre
responding normal maps. (g - i) Intersection of black andtevhi
top-hat transformsTop: Erosion is detected when there are cracks
and pits in both the color and normal maps as shown by the yel-
low pixels in (g). Middle: No erosion is detected on the smooth
fragment with color. There are no green or yellow pixels inight
several red pixels, representing the lines of color detddtge the

black top-hat operatoiBottom: Only a few pits are detected on the
smooth white fragment.
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Figure 9: Normal maps illustrating the wide variation in brush
strokes on the Kerkrade fresco, including strokes left bya@mtp
brush (left) and strokes left when smoothing out the undegly
plaster (center and right). Not only is the direction of teesrokes
(measured as the angle between their dominant orientatiahtlae
fragment contour) a strong cue for matching, but the amgétand
frequency help distinguish between these three typesakestras
well.



Table 1: Statistics of correspondence values (typically absolataas of differences of feature descriptor values) for mmdnatches and
non-matches in the “Synthetic,” “Akrotiri,” and “Kerkradedatasets.

Feat Synthetic Akrotiri Kerkrade
eature (min / mean / max / stdev) (min / mean / max / stdev) (min / meaax frstdev)
ColorAvgR 0.000/0.054/0.978/0.157 0.000/0.170/0.613.80 0.000/0.135/0.505/0.097
. ColorAvgG 0.000/0.071/0.977/0.186 0.000/0.158/0.581.26 0.000/0.077/0.277 /0.058
& ColorAvgB 0.000/0.092/0.968/0.199 0.000/0.122/0.584.08 0.000/0.040/0.174/0.034
©  ColorVariance 0.000/0.040/0.628/0.083 0.000/0.02660/10.022 0.000/0.008/0.085/0.009
ColorSaturation 0.000/0.074/0.883/0.160 0.000/0.13539/ 0.096 0.000/0.084/0.410/0.078
% CurvatureContour 0.000/0.032/0.382/0.033 0.000/0.a2872 / 0.085 0000/0.089/0.513/0.076
O CurvatureArea 0.000/0.069/0.414 / 0.059 0.000/0.0691®/0.058 0.000/0.074/0.445/0.061
ColorNormalVariance 0.000/0.051/0.896/0.098 0.000 36.00.227 / 0.029 0.000/0.036/0.242/0.035
NormalMeanZ 0.000/0.038/1.155/0.067 0.000/0.143/0/68418 0.000/0.074/0.383/0.064
NormalVariance 0.000/0.056/0.483/0.073 0.000/0.0671D/0.064 0.000/0.059/0.301/0.049
NormalDiscont8050Ratio 0.000/0.704/8.000/1.198 0.00@06 / 2.000/ 0.361 0.000/0.590/4.000/0.606
_ NormalDiscontThresholded 0.000/0.053/0.833/0.109 ®/0n201/0.893/0.149 0.000/1.086/0.584 /0.098
€ NormalDiscontThirdMoment 0.001/1.665/9.649/1.504 0.00.389/5.085/0.575 0.000/1.171/3.926/1.029
S NormalDiscontFourthMoment  0.004 / 15.647 / 147.952/18.46  0.000/1.746 /50.572 / 4.222 0.001/3.546/61.146/ 4.760
NormalDominantFrequency 0.000/0.111/1.394/0.227 0/@011/8.314/0.914 0.000/0.301/2.798/0.358
NormalDominantOrientation 0.000/0.727/2.931/0.549 0Q.00.826 / 3.028 / 0.649 0.002/0.767 /3.033/0.593
NormalDominantAmplitude 0.000/0.007 /0.096 / 0.001 0.00M15/0.083/0.012 0.000/0.012/0.007 /0.010
ColorNormalErosionDensity 0.000/0.01/0.211/0.023 0.00.007 /0.089/0.007 0.000/0.004/0.087/0.010
ColorNormalErosionShape 0.000/0.006/0.211/0.016 0/@036 / 0.24 /0.037 0.000/0.002/0.065/0.005
Thickness 0.001/1.392/8.432/1.399 0.002/2.953/12.@2221 0.000/4.700/22.199 / 4.022
a RibbonError 0.003/8.412/282.209 / 16.806 0.000/11.7086/4966 / 14.536 0.082/15.742/112.204 / 16.765
RibbonVolintersection 0.000 / 253.265 /5681.626 /648.32400 / 293.093 / 14545.190 / 804.263 0.000/151.188 / 3083.308.539
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Figure 10: Comparing the distribution of feature correspondenceossmultiple datasets. The histogram plots show the pexgendf
correspondences with the specified feature correspondemgees for the Synthetic, Akrotiri and Kerkrade frescosthis example 2,274
correspondences, consisting of both matches and non-smiehre taken from each dataset. (a) There is more variati@oirespondences
for ColorSaturation for the Akrotiri and Kerkrade datasetsan the Synthetic dataset which is primarily composed dfenfragments.
(b) The RibbonErr correspondences are similar across attéhdatasets. (c) The shape of the curves show that Colordlgamance
correspondences are more similar for Akrotiri and Kerkratian the Synthetic dataset. The variation of corresponeleanges across
the different datasets suggests that re-weighting theribarion of individual features based on observed statstf the dataset would
adaptively improve match retrieval for a specific dataset.

detail. At bottom, this white-colored fragment had only & famall observe that the importance of different features for dlisicrat-
pits, which were successfully detected in both colors amthats. ing matches from non-matches is different for each of theehr

o databases, motivating the classifier-based evaluatiohadetogy
Brush Strokes: One of our frescoes —Kerkrade —exhibited  presented in Section 7.

strong variation in the types of brush strokes that weregmes\e

observed a number of phenomena, including small stroke®yef Table 1 shows statistics for the feature correspondences co
the artist’s brush (Figure 9, left) and broader, deepeikssdeft in puted on each fresco. In this analysis, we use 2,274 pairwise
the underlying plaster when smoothing it out (center ankityig\Ve feature correspondences from each dataset, includinggrotmd-
also observed situations in which brushstrokes at diffeoeienta- truth matches and randomly sampled non-matches. All patche
tions were simultaneously visible. Though our current rodttioes have a 10mm diameter and each patch center is offset 8mm from
not detect these, returning only the strongest brushstigketion the boundary contour (except for curvature descriptorsciviare
present in a fragment or patch, we believe that it would beiptes sampled along the boundary contour). The values shown in the
to extend the descriptor to handle these cases. In casesi¢h wh table are the minimum, mean, maximum, and standard demiafio
brushstrokes are present, we informally observe the aimmt of “correspondence” values for each feature. For most fegftinés is
these strokes to be one of the strongest matching cueslaleaila just the absolute value of the difference between the feataiues
computed on both fragments: these are expected to be nedorer
6 Summary of Features correct matches. For a few features, however, the correspme

value is the absolute value of the sum for the two fragmenktds T
In this section, we analyze the distributions of featureigalacross is necessary for features such as curvature, which are ®péx
the three databases of frescoes introduced in Section 3.8. W have opposite signs on corresponding fragments.
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Figure 11: Feature discriminability. Feature correspondences for
equal numbers of matches and non-matches for the SyntRgtied(
samples) and Akrotiri datasets (206 samples). (a) - (b) C3dtu-
ration is more descriminating on the Akrotiri dataset. Thenber
of matches with correspondences near zero are greater than t
number of non-matches. Conversely, there is little disitncbe-
tween the two curves for the Synthetic dataset. (c) - (d) dRiBbr
correspondences greater than 50 belong to non-matchesdibr b
datasets. (d) - (e) ColorNormalVariance values greatemtBa05
on the Akrotiri dataset are more likely to be non-matcheslués
greater than 0.10 are more likely to be non-matches, howdver
distinction is less obvious.

As shown in Figure 10, the distribution feature correspags
is different for each fresco. For example, almost all CotfBation
correspondences (a) for the Synthetic fresco are near zbile w
only 8% of the samples are clustered near zero for AkrotinisTs
not surprising, as most Synthetic fragments are white. Téteifol-
tion of the RibbonError feature (b) is similar for each datashile
the range of the ColorNormalVariance feature (c) is mostilaim
for Akrotiri and Kerkrade but different for the Synthetieico.

We also observe that different features are mdiscriminat-
ing on different datasets. Figure 11 compares histogram plots o
selected features for ground-truth matches (blue) vs.matches
(red) for the Synthetic and Akrotiri datasets. There areaéqum-
bers of matches in each example, with 2,274 total samplethéor
Synthetic dataset and 206 total samples for the Akrotiaskit The
match and non-match curves for ColorSaturation are alnutest-i
tical on the Synthetic dataset, suggesting there is litflermation
available to distinguish between a match from a non-matamgus
this feature. Conversely, the number of matches whose sjore
dence lies near zero is significantly greater than non-neatdbr
Akrotiri. We expect this behavior, since this dataset cmstazon-
siderable pigmentation and hence color is a good matchiaglou
addition, we observe that there is a clear threshold abovehwh
correspondence values are more likely to apply to non-neatch
than matches. In many cases, 100% of correspondences digove t
threshold are non-matches.

Our analysis suggests that color and 3D features work best fo
the Akrotiri and Kerkrade databases and that, in generatmab

based features will work well on all databases. Some noreel f
tures are significantly stronger than others, however, nidipg on
the surface features of the database. For example, we @okserv
that dominant-orientation features are especially imgarfor the
Kerkrade dataset, with color-based features performindpetter
than chance. Curvature features are the least reliable.

We also compared classification results for each featurigidd
ually and in combination with other features. Individuahtieres
do not perform as well as combinations of features. We fotnadl t
Patch level features are more robust than fragment levéliries
One exception to this rule is erosion, which was more effecti
when computed over the entire fragment. We anticipate thiat t
feature is good at separating smooth fragments from eroded o
at the fragment level, but is too noisy at the patch level. e f
ther discuss our classification approach, results from ¢oimdp
features, and comparisons of patch level vs. fragment featlires
in Section 7.

7 Classification Results

Classifiers and Evaluation Methodology: In order to evaluate
the performance of our features for matching, we work witmma
ually labeled sets of matching fragments, and randomly $&oinp
non-matches. Except where stated otherwise, we use 1@otg-
validation, with manually separated training and test dateach of
these sets, we ensure that epalr of fragments, whether matching
or not, is placed entirely within either the training or test. This
is done because a single matching pair of fragments maytriesul
multiple matchingpatches so we wish to ensure that the classifica-
tion algorithms do not gain advantage from training andrigsbn
patches from the same pair of fragments. Using various $slloge
the color, normal, and geometric features described alvevérain
classifiers to distinguish between matches and non-matches

We have explored four different classification algorithmas,im-
plemented by the “Weka” open-source data mining packaghe
algorithms are:

e J48 decision trees which implement the C4.5 algorithm of
Quinlan [1993]. This algorithm hierarchically subdividése
training set, at each node partitioning using the featua¢ -
sults in the greatest difference in entropy among the sabset

e Random forests which train decision trees on multiple sub-
sets of features, combining the results into a single pridibtab
classifier.

e Support vector machines which compute a high-dimensional
separating plane between the two categories.

e Logistic regression which fits the data with a generalized lin-
ear model consisting of the logistic functign= 1/(1 + e %)
applied to a linear combination of the input feature values.

To determine which classifier would generalize well to albaf
datasets, we evaluated robustness to overfitting, conipuightef-
ficiency, and the availability of a real-valued probabilibtgtead of
merely a binary yes/no classification. The latter is imputrter
our application, since it allows us to create a rank-ordeistdof
hypothesized matches, which is then presented to a humaerer
fication. Since it will typically be impractical for a persém check
all predicted matches, the availability of a ranking is ¢alic

Table 2 shows the performance of each classifier, using as inp
all of our per-fragment, per-patch and per-match featuoes fset
of 2,274 ground truth samples (including equal numbers dthes
and non-matches). The J48 decision trees had good matceing p
formance, but we found them to be most prone to over-fittirgg th
data. In addition, they provide only a binary decision, npraba-
bility. Random forests were less prone to over-fitting anjated
probabilities, but the probability values (resulting frammbining

L http://www.cs.waikato.ac.nz/ml/weka/



Table 22 Comparison of machine learning algorithmns: We eval-
uate the performance of each algorithm using manual crodis va
dation on 2,274 groundtruth samples containing an equal lrem
of matches and non-matches. In this example, we combinenrll p
patch, per-fragment and per-match features.

Ground-truth Matches  Ground-truth Nonmatches

Classifier
Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)
J48 66% 34% 84% 16%
RandomForest 79% 21% 71% 29%
SVM 67% 33% 78% 22%
LogisticRegressior ~ 84% 16% 49% 51%

Table 3: Classification performance on synthetic fresco, on a test

set of 220 samples using logistic regression. There are Htbhas

(one pairwise match per matching fragment pair) and 110 non-
matches (also unique and randomly sampled. We apply the best

model from our manual cross validation training session.

Ground-truth Matches  Ground-truth Nonmatches

Features
Correct (TP) Incorrect (FN) Correct (TN) Incorrect (FP)

AliColor 79% 21% 31% 69%
AllCurvature 54% 46% 62% 38%
AliNormal 80% 20% 48% 52%
Thickness 80% 20% 37% 63%
RibbonError 86% 14% 68% 32%
RibbonVolintersec ~ 94% 6% 35% 65%
AllCombined 90% 10% 78% 22%

multiple trees) were still strongly clustered. Support tdedMa-
chines worked well and gave meaningful probabilities, bdtile-

ited time, space and algorithmic complexities that makerbthod
impractical for large datasets. In addition, they were #imasto

the choice of parameters, which were frequently difficulséd be-
cause of the different range of meaningful values for eaalufe.
Logistic regression produces robust results and yieldsningéul

rankings, and this is the method used for the remaining tegul
this section.

Performance on Synthetic Fresco: We evaluate the performance
of classifiers trained on different categories of featucgsa set of
ground-truth matches and non-matches from the Synthed8cér.
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Figure 12: Left: Precision-recall for a classification experiment
on the Synthetic fresco including the same classes of E=aag in
Table 3.Right: A re-weighting experiment, in which 203 locations
of potential matches, predicted by the ribbon matcher, areked
according to a trained classifier. Averages over 10-foldssroali-
dation are presented.

e A combination of all features listed in Table 1.

The table demonstrates that each type of feature has itgyttise
and weaknesses when it comes to both finding matches and re-
jecting non-matches. Curvature and color features, cerisig
both true-positive and true-negative numbers, are baretfopm-
ing above chance. The normal-based features perform hmiter
non-matches, confirming our hypothesis that such featuvbge
remaining easy to acquire, easy to compute, and easy tqioicie
into a fast pruning stage based on per-fragment and peh-jpaftr-
mation, incorporate substantially more information abmatching
fragments than does color.

Turning to 3D information, thickness performs moderateBliw
but not as well as normal-based features. The two ribborcineat
features have substantially better performance, but ratethese
also have substantially higher computational cost: they mar-
matchfeatures, not per-fragment or per-patch.

Finally, the combination of all features has the best oVl
formance, demonstrating that the classifier is succegstaking
advantage of the best performance of each.

Precision-recall: Because the logistic regression classifier out-
puts not only a prediction but also a probability, we are able
evaluate our results on a “ranking” task that provides mosight
than is available with simple confusion matrices. We presem
results using precision-recall curves, in which pointsesgnt pre-
dicted matches in probability-ranked order, with theoordinate

Because this is the dataset with the greatest number of known (recall) representing the fraction of total matches foundbs while

matches, we expect to learn the most meaningful resultstdbau
ture performance by observing classification results anftieisco.

they axis (precision) indicates the fraction of all predictistsfar
that have corresponded to true matches. Higher curvesftinere

This test was conducted on 110 known matches and 110 knownrepresent better results.

non-matches from this fresco. For maximum fairness, thi®sky
includes one pair of matching or non-matching patches fehea
pair of fragments.
incorrectly classified instances among the matches (trgéiypes
and false negatives, respectively) and among the non-es{tiue
negatives and false positives). The rows of the table reptedas-
sifiers trained on:

e All the “color” features listed in Table 1. These and the airv
tures are the features considered by many traditional 2p-on
matching algorithms.

e All of the “curvature” features listed in Table 1, evaluatsdall
different scales.

e All the “normal” features listed in Table 1. These are the new
per-fragment and per-patch features we propose.

e The fragment thickness.
e The RibbonError and RibbonVolintersection features, \whic

Figure 12, left, shows results on an experiment similar éocthe
in Table 3, using the same sets of features. At right, we shdif a

Table 3 shows the number of correctly and ferent way of using classifiers, namely a re-weighting eixpent

in which 203 locations of matches predicted by the existiilgdon
matcher” are ranked according to a classifier trained oreudfit
subsets of features. Average results for 10-fold crosslatibn are
presented. In both cases, the results show that combinatgrés
leads to better precision than most individual featurgseeially at
higher recall.

Per-Fragment vs. Per-Patch Features: To further examine the
potential performance of the pipeline in Figure 2, we inigeged
the performance of per-fragment and per-patch featuregir&il3
shows precision-recall curves in which dashed lines ireladly
per-fragment features, while solid lines include both fragment
and per-patch features. We see that for color-based featboth
sets perform relatively poorly, but for normal and thickedsa-
tures, there is indeed more information available from pestich

represent two outputs computed by the ribbon-matching-algo features. In these cases, however, per-fragment featlows are

rithm of [Brown et al. 2008] on the 3D models.

still performing some degree of classification, suggestirag the
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Figure 13: Comparison of per-fragment features (dashed lines)
with a combination of per-fragment and per-patch featurssid
lines). In all cases, the addition of per-patch features ronps
classification performance, at the expense of additionahmata-
tion time.

pipeline of Figure 2 may, with appropriate thresholds, jmewoth
efficiency and accuracy.

Generalization across Datasets: To examine the extent to which
classifier performance generalizes across different detasve
trained a classifier on the Synthetic fresco, using the tlieae

There is some danger to relying on surface-based featurbde W
matching fragments often erode in similar ways, that is heags
the case. When only one fragment has eroded or discolored, we
may not identify the match. This is of course inherent inirajyon
any kind of cue: edge- and contour-based matchers will ffada
much of the side (as opposed to the front) has eroded or brafken
whereas matching on surface properties might still succesd
believe the best bet is to support many different cues so we ca
identify as many matches as possible.

Although we have presented our work in the context of fresco
fragments, we believe the ideas translate to many otherhimagtc
problems such as distinguishing the brush strokes of diffeartists
on oil paintings, classifying chisel marks on sculpturesiatch-
ing textured objects to their impressions for forensic tifeation.
Different types of objects will naturally require differefeatures,
but we expect the normal-based descriptors we have presetite
be valuable for many types of material with an exterior stefaon-
taining relief or erosion.

For this reason, we anticipate that classifiers trained o on
dataset will still perform well on another, but that impravper-
formance could be achieved with an online learning approach
pre-trained classifier is used to generate an initial diassion,

tures of Figure 11. We then compared the performance of the with re-training occurring as instances are confirmed to iteee

classifier on the original Synthetic fresco, as well as theofik
fresco (Figure 14). We observe that the performance is reaso
able, with the classifier sometimes performing slightlytéeand
sometimes slightly worse. In general, we expect betteoperdnce
with custom-trained classifiers for each dataset, but tieskmi-
nary results suggest that adapting classifiers from onesefata
another may still lead to reasonable results. In particuls re-
sults are usually sufficient to perform a “bootstrappinghding
enough ground-truth matches to enable a new, custom ctadsifi
be trained. In the future, we expect to use the results oftlaéyais
of variance of each feature across each dataset to be abiiapd a
classifiers even more directly, by re-weighting the conitn of
each feature to the classification without a full re-traingtep.

o
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Figure 14: Evaluating classifiers across multiple datasets. In this
example a model was trained on the Synthetic dataset usingia c
bination of features: ColorSaturation, RibbonError andI@dNor-
malVariance (the same features as in Figure 11). We showtsesu
of the trained classifier on the original (Synthetic) datase well

as the results of the same classifier on the Akrotiri dataset.

8 Discussion and Conclusion

correctly or incorrectly classified. We leave this approastuture
work, and present classification performance results fer gyn-
thetic dataset.
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