
Low-Entropy
Computational Geometry

Wolfgang Johann Heinrich Mulzer

A Dissertation

Presented to the Faculty

of Princeton University
in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

Advisor: Bernard Chazelle

June 2010

c© Copyright by Wolfgang Johann Heinrich Mulzer, 2010. All rights reserved.

Abstract

The worst-case model for algorithm design does not always reflect the real world:
inputs may have additional structure to be exploited, and sometimes data can be
imprecise or become available only gradually. To better understand these situations,
we examine several scenarios where additional information can affect the design and
analysis of geometric algorithms.

First, we consider hereditary convex hulls: given a three-dimensional convex
polytope and a two-coloring of its vertices, we can find the individual monochromatic
polytopes in linear expected time. This can be generalized in many ways, eg, to more
than two colors, and to the offline-problem where we wish to preprocess a polytope
so that any large enough subpolytope can be found quickly. Our techniques can
also be used to give a simple analysis of the self-improving algorithm for planar
Delaunay triangulations by Clarkson and Seshadhri [58].

Next, we assume that the point coordinates have a bounded number of bits,
and that we can do standard bit manipulations in constant time. Then Delaunay
triangulations can be found in expected time O(n

√
log log n). Our result is based on

a new connection between quadtrees and Delaunay triangulations, which also lets
us generalize a recent result by Löffler and Snoeyink about Delaunay triangulations
for imprecise points [110].

Finally, we consider randomized incremental constructions when the input per-
mutation is generated by a bounded-degree Markov chain, and show that the re-
sulting running time is almost optimal for chains with a constant eigenvalue gap.

iii

Acknowledgments

Without an advisor, there cannot be a thesis, and therefore I would like to kick
off this acknowledgments section with a big shout-out to Bernard Chazelle, with-
out whose perseverance, curiosity, guidance and never-wavering support this thesis
would not have been possible.

I would also like to thank the other members of my thesis committee for providing
valuable feedback and helping improve the quality of this thesis: Sanjeev Arora,
Boaz Barack, Moses Charikar, David Dobkin, and Bob Tarjan.

I am also grateful for the wonderful time I spent with the theory group at Freie
Universität Berlin, and would especially like to thank my advisors there, Christian
Knauer and Günter Rote.

Science never happens in a vacuum, and I would like to thank my co-authors,
with whom it has been (and still is) a pleasure to work: Nir Ailon, Tetsuo Asano,
Kevin Buchin, Bernard Chazelle, Kenneth L. Clarkson, Esther Ezra, Christian
Knauer, Ding Liu, Maarten Löffler, Pat Morin, Günter Rote, C. Seshadhri, and
Yajun Wang.

I wish to thank David Eppstein, Jeff Erickson, and Mikkel Thorup for their
stimulating and insightful advice concerning the problems presented in Chapter 5,
and Alistair Sinclair for helpful discussions related to the material in Chapter 7. I
would also like to thank the anonymous referees of the various preliminary versions
of the results in this thesis, for their helpful comments and pointers to the literature.

I would like to thank the Computer Science department at Princeton University,
and especially Melissa Lawson, whose handling of all the administrative work made
my PhD studies flow smoothly and seamlessly.

I gratefully acknowledge a Wallace Memorial Fellowship in Engineering, as well
as NSF grants CCR-0306283, CCF-0634958, and CCF-0832797 for providing finan-
cial support for my studies at Princeton University.

Finally, I would like to thank my family for their love and support, my parents
Johann and Ingeborg Mulzer, my brother Michael and my sister Johanna, and my
aunt Gudrun Thormann for providing me with a postcard collection that has become
the envy of the department.

iv

Contents

Abstract . iii
List of Figures . vii
List of Algorithms . viii

1 Introduction 1
1.1 The utility of additional structure 3
1.2 Imperfect randomness . 4
1.3 Previous publications . 4

2 Preliminaries and Background 6
2.1 Definitions and notation . 6
2.2 Geometric sampling: the toolbox by Clarkson and Shor 9
2.3 On computational models . 15

I The Utility of Additional Structure 18

3 Hereditary Structure 19
3.1 Splitting polytopes . 21
3.2 Handling multiple colors . 25

3.2.1 Random colorings . 26
3.2.2 Arbitrary colorings . 29

3.3 Data structure version . 34
3.3.1 The basic structure . 35
3.3.2 Bootstrapping the tree construction 37

3.4 Points in halfspaces . 42
3.5 Few connected components . 47

4 Interlude: Self-Improving Algorithms 51
4.1 Algorithm . 52
4.2 Analysis . 53

v

5 Transdichotomous Delaunay Triangulations 57
5.1 From nearest-neighbor graphs to Delaunay triangulations 60
5.2 Delaunay triangulations . 67
5.3 Shuffle-sorting on a word RAM . 71

5.3.1 Packed sorting for large words 71
5.3.2 Range reduction . 72
5.3.3 Putting it together . 73

6 Restricted Inputs 75
6.1 Disks of varying sizes: quadtree-approach 77
6.2 Overlapping disks: deflated quadtrees 79
6.3 Computing compressed quadtrees in O(n log n) time 83
6.4 From quadtrees to Delaunay triangulations 84

II The Role of Randomness 87

7 Markov Incremental Constructions 88
7.1 Background . 89

7.1.1 Markov chains . 90
7.1.2 Facts about matrices . 90
7.1.3 Configuration spaces . 91

7.2 A simple example: treaps . 93
7.3 Θ-series for Markov sources . 98
7.4 Extensions . 105

8 Conclusions 109

vi

List of Figures

2.1 Delaunay triangulations and Voronoi diagrams 7
2.2 Delaunay triangulations and convex hulls. 8
2.3 Convex hulls and conflicts . 8
2.4 Duality between halfspace intersection and convex hull computation. 9
2.5 Defining a facet of TS. 14
2.6 A pointer machine. 16

3.1 Splitting a convex hull. 21
3.2 Hereditary trapezoidal decompositions are hard. 21
3.3 An edge is created by at most two points. 24
3.4 Finding a monochromatic diagonal. 25
3.5 Splitting random colorings. 27
3.6 Proof of Claim 3.2.4 . 27
3.7 The pruning step. 31
3.8 The halfspace range reporting algorithm. 43
3.9 The lower bound for the union of convex hulls. 48

5.1 The shuffle operation. 60
5.2 The steps of BrioDC. 61
5.3 Illustration of the sampling process. 62
5.4 Shuffle order and quadtrees. 67
5.5 From shuffle-sorting to Delaunay triangulations. 69

6.1 Illustration of a quadtree. 78
6.2 Bounding the number of disk-cell incidences. 79
6.3 Deflated quadtrees. 81
6.4 Aligning the bounding box. 83

7.1 Defining trapezoidal decompositions as a configuration space. 92
7.2 When are two elements in a treap compared to each other? 94
7.3 A µ-thread. 102

vii

List of Algorithms

3.1 Splitting a bichromatic convex hull. 22
3.2 Splitting random colorings. 26
3.3 Determining the conflict facets in a subset. 28
3.4 Pruning the conflict facets. 31
3.5 Splitting arbitrary colorings. 33
3.6 Building the basic scaffold tree. 35
3.7 Querying the simple scaffold tree. 36
3.8 Bootstrapping the scaffold tree. 39
3.9 Querying the bootstrapped scaffold tree. 40
3.10 Computing the subgraphs. 45
5.1 Reducing Delaunay triangulations to nearest-neighbor graphs. . . . 60
5.2 Building a compressed quadtree. 68
5.3 Comparing many points simultaneously. 73
6.1 Turning a quadtree into a λ-deflated quadtree. 81
6.2 Finding a well-separated pair decomposition. 86

viii

Chapter 1

Introduction

In the past thirty years, computational geometry has come a long way in under-
standing the fundamental problems of geometric computing, and many simple, ef-
ficient, and optimal algorithms have been discovered [23,31,122,128]. With a solid
foundation and a well-developed toolbox in place, we can now venture beyond the
basics and explore the additional structure behind these problems: What are the
assumptions behind the classic results? Are these assumptions justified? What if
they do not hold? What makes a problem hard? How can additional structure
help? What is the role of randomness? What other notions of optimality besides
worst-case performance can be used fruitfully? A better understanding of these
issues can lead to deeper insight into the underlying problems and help us design
improved algorithms for cases where old lower bounds do not apply.

Traditional algorithms assume worst-case inputs, that are known exactly, with
infinite precision; they also often require perfect randomness. Take the example of
sorting, one of the best-studied problems in theoretical computer science [61, 102,
136]. All undergraduates learn about the basic sorting algorithms, and they are
taught that sorting needs Ω(n log n) steps in the binary decision tree model. They
also learn about the popular quicksort algorithm, and that it yields an optimal
expected running time when the input array is permuted randomly. However, the
Ω(n log n) lower bound is deceptive, and there are many ways in which additional
structure in the inputs can help to get around it:

• If the elements come from a totally ordered universe U , we can build a data
structure to sort any subset S ⊆ U in time O(|S| log log |U |) [71, 72,114]. We
call this an hereditary result, because S inherits enough structure from U that
S can be sorted faster.

• Suppose we want to sort n w-bit numbers, for some w ≥ log n, and that our
computational model supports standard bit operations (and, or, xor, etc) in
constant time. Then it is possible to sort in expected time O(n

√
log log n),

1

irrespective of w [88]. This line of research was advocated by Fredman and
Willard [80,81], who called it the study of transdichotomous algorithms.

• The inputs could be restricted. For example, suppose we are given a set R of
n intervals such that every number is contained in at most k of them. Then
R can be preprocessed into a linear space data structure such that given a set
S with exactly one point from each interval, we can sort S in time O(n log k).

Similarly, the assumption that quicksort has access to perfect randomness often
does not hold. However, it can be shown that an O(1)-wise independent random
permutation suffices to achieve optimal expected performance [123].

In computational geometry, there are many problems for which a reduction
from sorting yields an Ω(n log n) lower bound. This makes it natural to ask how
the three kinds of structure—hereditary, transdichotomous, and restricted inputs—
affect the difficulty of these problems. Furthermore, many geometric algorithms
are randomized, and we would like to know in what way imperfect randomness
can influence the running time. We call this whole body of questions the study
of low-entropy computational geometry. Here, low entropy can have two different
meanings:

1. Low entropy in the inputs. Through the additional structure in the in-
puts, we derive less information from any specific problem instance, and the
information theoretic lower bounds from the decision tree model do not apply
any longer.

2. Low entropy in the algorithm. When using an imperfect random source,
the algorithm has less entropy at its disposal, with potentially adverse effects
on the expected running time.

These two kinds of low entropy are wide-spread. Of course, complexity the-
ory [14] has spent a lot of effort studying the limitations (or lack thereof) of al-
gorithms with an imperfect source of randomness, and our concern here will be
to understand specific problems with specific kinds of randomness, rather than to
develop a general theory. Furthermore, there are many situations in which an algo-
rithm is confronted with inputs that have low entropy. For example, hidden Markov
models [131], which stipulate a strong local coherence between individual inputs,
are often used to model real life data such as speech, web-surfing, or robot motion;
and also when processing videos or image data, we often need to deal with inputs
which are locally very similar.

The dual nature of low entropy will be the theme that connects the different
results to be presented. In the next few sections, we will describe these results in
more detail and give an outline of what the reader can expect from the coming
chapters.

2

1.1 The utility of additional structure

As mentioned above, we will consider three different kinds of additional structure
in the inputs that can lead to faster algorithms: hereditary structure, transdichoto-
mous models, and restricted inputs.

Hereditary structure and convex hulls in R3. Let P be a convex polytope in
R3 and S a subset of its vertices. How much information does P give away about
the convex hull of S, that is, how much structure does the convex hull of S inherit
from P? In Chapter 3, we will see that the hull of S can be found in O(|P|) time.
Hence, if S is large enough, P tells us everything we need to know. This extends
previous work about Delaunay triangulations (DTs) by Chazelle et al. [47], and
algorithms for similar settings were also obtained by van Kreveld et al. [106] and
Chan [38].

There are many interesting ways to extend our result, for example, we give
algorithms for splitting a 3D polytope into more than two parts and for completing
a partial Delaunay triangulation in almost optimal time, providing a Delaunay
analogue to a result by Bar-Yehuda and Chazelle [19].

Transdichotomous Delaunay triangulations. As we already said, transdi-
chotomous algorithms offer a way to go beyond the classic decision tree model.
Ever since Fredman and Willard [80, 81] advocated this model in 1990, there has
been a series of increasingly faster integer sorting algorithms, culminating in Han
and Thorup’s result from 2002 which gives an algorithm to sort n integers in ex-
pected time O(n

√
log log n) [88]. In computational geometry general transdichoto-

mous results have long remained elusive, since it was not clear how to generalize the
one-dimensional sorting algorithms to higher dimensions. Therefore, authors would
focus on problems of an orthogonal flavor, where lines and line segments can have
only a bounded number of different slopes and where one-dimensional techniques
can be applied. This situation changed when Chan and Pǎtraşcu [40,41] first showed
how to overcome these limitations. In particular, they achieved expected running
time n2O(

√
log logn) for planar DTs. In Chapter 5, we describe how to improve this

bound to O(n
√

log log n), using Han and Thorup’s result [88]. We show that given
a quadtree for a planar point set, its DT can be found in O(n) time, so ultimately,
Delaunay computation reduces to sorting. For this, we need well-known tools, like
the Morton-curve [118] and well-separated pair decompositions [35], as well as a
new variant of geometric sampling with dependencies, inspired by work of Amenta
et al. [9].

Restricted inputs. Suppose we want to find a planar DT, but the input is re-
stricted : we know a set of planar regions R such that each point comes from exactly

3

one region of R. Can we preprocess R for faster Delaunay computation? This ques-
tion has received some attention in the study of imprecise input models [89,106,110],
and Löffler and Snoeyink [110] showed that the DT can be found in linear time if
R consists of disjoint unit disks.

In Chapter 6, we will rederive this result with a much simpler (but randomized)
algorithm, and show how to extend it to more general classes of input regions R,
with optimal parameters. For example, if R consists of (not necessarily unit) disks,
such that each point in the plane is covered by at most k disks, the DT can be
found in time O(n log k) after preprocessing, which is optimal. The proof is again
based on the connection between quadtrees and Delaunay triangulations, as well as
guarding sets [24] and a carefully balanced data structure to obtain linear space.

1.2 Imperfect randomness

Randomized incremental construction (RIC) is a classic tool in computational ge-
ometry [31,59,122]: to compute a certain geometric structure we randomly permute
its constituent parts and insert them one by one. The resulting algorithm is op-
timal, and Mulmuley [123] showed that this even holds for O(1)-wise independent
random permutations.

Thus, RICs need high local entropy: every k-subset should be completely ran-
dom. However, there is a very common and natural type of random sources without
this property: Markov chains. These model time-dependent natural processes, such
as speech, web-surfing, robot movement, etc. A permutation obtained by a random
walk on a labeled graph only generates a tiny amount of randomness per step, and
therefore the basic needs of the RIC paradigm seem to be violated. However, Chap-
ter 7 shows that even in this case RICs are almost optimal, up to poly-logarithmic
factors. We employ spectral techniques to give new bounds on the first-passage
time of Markov chains, and also a new Clarkson-Shor type bound that supports
dependent sampling.

1.3 Previous publications

The results covered in this thesis, or preliminary versions thereof, have appeared
previously in the following publications (listed in chronological order):

• B. Chazelle and W. Mulzer. Markov Incremental Constructions. In Discrete
and Computational Geometry (DCG) 42(3), pp. 399–420, 2009. Preliminary
version in SoCG 2008.

4

• B. Chazelle and W. Mulzer. Computing Hereditary Convex Structures. In Pro-
ceedings of the 25th Annual ACM Symposium on Computational Geometry
(SoCG), pp. 61–70, 2009.

• K. Buchin, M. Löffler, P. Morin, and W. Mulzer. Delaunay Triangulation of
Imprecise Points Simplified and Extended. Proceedings of the 11th Algorithms
and Data Structures Symposium (WADS), pp. 131–143, 2009.

• K. Buchin and W. Mulzer. Delaunay Triangulations in O(sort(n)) Time and
More. Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 139–148, 2009.

• N. Ailon, B. Chazelle, K. L. Clarkson, D. Liu, W. Mulzer, and C. Seshadhri.
Self-Improving Algorithms. arXiv:0907.0884, 2009.

5

Chapter 2

Preliminaries and Background

Before going in medias res, let us take a moment to review some basic notions
from computational geometry [23,31,122,128] such as Delaunay triangulations and
convex hulls, and to recall some facts from geometric sampling theory [59,122] and
about different computational models [14].

2.1 Definitions and notation

Throughout, we will use the Vinogradov notation, f � g for f(n) = O(g(n)) and
f � g for f(n) = Ω(g(n)). In the following paragraphs, we will review some basic
concepts from computational geometry.

Delaunay triangulations, Voronoi diagrams, and convex hulls Let P ⊆
R2 be a finite point set. A geometric graph with vertex set P is a planar graph
G = (V,E) that is embedded in the plane such that the vertices in V correspond
bijectively to the points in P , and such that the edges in E are represented by line
segments. A triangulation of P is a maximal geometric graph with vertex set P .
All internal faces of a triangulation are triangles. A Delaunay triangulation of P ,
denoted by DT(P), is a triangulation of P which has the empty circle property : for
any triangle f in DT(P), the (open) circumcircle of f does not contain any points
in P . If P is in general position, ie, if P contains no three points on a common line
and no four points on a common circle, then DT(P) is uniquely determined.

A related structure is the Voronoi diagram of P , V(P). This is a subdivision of
the plane into cells Cp, p ∈ P , where the cell Cp contains all points q ∈ R2 such that
there exists no point r ∈ P \ p with ‖q − r‖2 < ‖q − p‖2. The points contained in
at least two cells Cp constitute the edges of V(P), and the points in at least three
cells form its vertices. If P is in general position, then V(P) is the graph theoretic
dual of DT(P), ie, the vertices of V(P) correspond to the facets in DT(P), and the

6

(a) (b) (c) (d)

Figure 2.1: (a) A planar point set P ; (b) a triangulation of P ; (c) the Delaunay
triangulation of P ; and (d) (part of) the Voronoi diagram for P .

facets of V(P) correspond to the vertices of DT(P). Please see Figure 2.1 for an
example of a Delaunay triangulation and a Voronoi diagram.

Finally, for a finite point set P ⊆ R3, the convex hull of P , convP , is the
minimum convex set containing P .1 The boundary of convP consists of vertices (a
subset of P), edges, and facets. We denote the edges of convP by E[P] and the
facets by F [P]. For a point p ∈ P , let degP p be the number of edges in E[P] incident
to p, the degree of p (with respect to P). Throughout, we will assume that convex
hulls are given in a standard planar graph representation, eg, a DCEL [23, Chapter
2.2]. Our point sets will usually be in general convex position (gcp), ie, every three
points in P are linearly independent and p 6∈ conv (P \ p) for every p ∈ P . In
particular, convP is simplicial2, and all the points in P are vertices of convP .

There is a well-known connection between planar Delaunay triangulations and
convex hulls in R3. Namely, let P ∈ R2 be a planar point set, and let P̂ be
obtained by projecting P onto the three-dimensional unit paraboloid, ie, by mapping
p = (px, py) ∈ P to p̂ = (px, py, p

2
x + p2

y). Then DT(P) can be found by computing

the part of conv P̂ visible from the negative z-axis and by projecting the result back
onto the plane z = 0. See Figure 2.2 for a two-dimensional illustration.

Halfspaces and conflicts We will need some results from classic geometric ran-
dom sampling theory [59, 122]; see Section 2.2. For this, we quickly review the
notion of conflict sets. Given a point set P ⊆ R3, an edge e ∈ E[P], and a point
p 6∈ convP , we say that p can see e in convP or that e is visible from p, if the
triangle spanned by e and p intersects convP only in e. All the planes we consider
are oriented, that is, one of the two halfspaces defined by a plane h is designated the
left halfspace of h, h+, and the other one is designated the right halfspace of h, h−.
We use the convention that every supporting plane of convP is oriented such that

1A set A ⊆ R3 is convex, if for any λ ∈ [0, 1], we have that p, q ∈ A implies λp+ (1− λ)q ∈ A.
2That is, all facets of convP are triangles.

7

Figure 2.2: We can find DTP by projecting P onto the unit paraboloid in three
dimensions, computing the lower convex hull, and projecting the result back down.

p

e1

e2
e3

q

Figure 2.3: The point p is in conflict with e1, and e2, but not with e3. The point q
only conflicts with e3.

P lies in the right halfspace h−. Let Q ⊆ P , f ∈ F [Q], and hf be the supporting
plane for f . A point p ∈ P is in conflict with f if p lies in h+

f , see Figure 2.3. Let
Bf ⊆ P denote the points in conflict with f , and bf the size of Bf . Conversely, for
a point p ∈ P , we let Dp ⊆ F [Q] denote the set of facets in conflict with p, and let
dp be its size. The sets Bf and Dp are the conflict sets of f and p, and bf and dp
are the conflict sizes. By double counting,∑

f∈F [Q]

bf =
∑
p∈P

dp. (2.1)

Duality We will also need the notion of geometric duality. Given a point

p = (px, py, pz) ∈ R3 \~0,

8

Figure 2.4: The problems of computing the convex hull of a point set and computing
the intersection of a set of halfspaces are dual to each other.

the dual plane to p, p∗, is the plane defined by p∗ : 1 = pxx+pyy+pzz. And similarly,
if h : 1 = ax + by + cz is a plane in R3 that does not pass through the origin, the
dual point to h, denoted by h∗, is (a, b, c). This duality establishes an equivalence
between convex hulls and halfspace intersection. Namely, let P = {p1, . . . , pn} ⊆ R3

such that convP contains the origin in its interior, and let H = {h1, . . . , hn} be
a set of halfspaces such that hi is bounded by p∗i and contains the origin. Then
the facets, edges, and vertices of convP are in one-to-one correspondence with the
vertices, edges, and facets of

⋂n
i=1 hi, and this correspondence can be found in linear

time. Therefore, convex hull computation and halfspace intersection are equivalent
problems. See Figure 2.4 for a two-dimensional example.

2.2 Geometric sampling: the toolbox by Clark-

son and Shor

We review a few tools from geometric random sampling theory [59, 122]. Our pre-
sentation follows Ramos [130]. Let P ⊆ R3 with |P | = n and K ⊆ P with |K| = k.
Given a triple u = (p1, p2, p3) ∈ P 3, let hu be the plane spanned by u, oriented such
that the set of vectors {u2−u1, u3−u1, p−u1} has positive determinant for p ∈ h+

u .
A point p ∈ P conflicts with u if p lies in h+

u . Let Bu denote the set of all points in
P that conflict with u, and bu = |Bu|.

Lemma 2.2.1. Fix p ∈ (0, 1] and t ≥ 1. Let S ⊆ P \ K be a random subset of
size p(n− k) and let S ′ ⊆ P \K be a random subset of size p′(n− k) for p′ = p/t.

9

Suppose that p′(n− k) ≥ 4. Fix u = (p1, p2, p2) ∈ P 3, and let fu be the facet defined
by u. Then

Pr[fu ∈ F [S ∪K]]� t3 exp

(
−(t− 1)pbu

t

)
Pr[fu ∈ F [S ′ ∪K]]. (2.2)

Proof. Let σ = Pr[fu ∈ F [S ∪ K]] and σ′ = Pr[fu ∈ F [S ′ ∪ K]]. Note that fu
appears in F [S ∪K] precisely if u ⊆ S ∪K and Bu ∩ (S ∪K) = ∅. If K ∩Bu 6= ∅,
then σ = σ′ = 0, and the lemma holds. Thus, we may assume that K and Bu are
disjoint. Let m = n − k and let du denote 3 − |K ∩ u|, the number of points in u
not in K. Since there are

(
m−bu−du
pm−du

)
ways of choosing a pm-subset from P \K that

avoids all elements in Bu and contains all the relevant points of u, we have

σ =

(
m− bu − du
pm− du

)/(
m

pm

)
=

∏pm−du−1
j=0 (m− bu − du − j)∏pm−du−1
j=0 (pm− du − j)

/ ∏pm−1
j=0 (m− j)∏pm−1
j=0 (pm− j)

=
du−1∏
j=0

pm− j
m− j ·

pm−du−1∏
j=0

m− bu − du − j
m− du − j

≤ pdu
pm−du−1∏

j=0

(
1− bu

m− du − j

)
.

Similarly, we get

σ′ =
du−1∏
j=0

p′m− j
m− j

p′m−du−1∏
j=0

(
1− bu

m− du − j

)
,

and since p′m ≥ 4 and j ≤ 2 (in the first product), it follows that

σ′ ≥
(
p′

2

)du p′m−du−1∏
j=0

(
1− bu

m− du − j

)
.

Therefore, since p′ = p/t,

σ

σ′
≤ 8

(
p

p′

)du pm−du−1∏
j=p′m−du

(
1− bu

m− du − j

)

≤ 8t3
(

1− bu
m

)(t−1)pm/t

≤ 8t3 exp

(
−(t− 1)pbu

t

)
,

as desired.

10

The lemma implies a Chernoff-type bound for the conflict size of a random sample.

Lemma 2.2.2. Fix p ∈ (0, 1] and let S ⊆ P be a random subset of size pn. Fix
t ≥ 1 such that t ≤ pn/4 and let F≥t = {f ∈ F [S] | bf ≥ t/p}. Then

E [|F≥t|]� t2e−tpn.

Proof. Let S ′ ⊆ P be a random subset of size pn/t. Since pn/t ≥ 4, we have

E [|F≥t|] =
∑
u∈P 3

bu≥t/p

Pr [fu ∈ F [S]]

�
∑
u∈P 3

bu≥t/p

t3 exp

(
−(t− 1)pbu

t

)
Pr [fu ∈ F [S ′]] (by (2.2))

� t3e−tE [|F [S ′]|]� t2e−tpn,

because E [|F [S ′]|]� pn/t.

Next, we want to bound the average conflict size. For this, we first determine
the average for a particular function, from which we then deduce bounds for a large
class of well-behaved functions.

Lemma 2.2.3. Fix p ∈ (0, 1] and let S ⊆ P \K be a random subset of size p(n−k).
Then

E

 ∑
f∈F [S∪K]

exp

(
pbf
2

)� p(n− k) + k. (2.3)

Proof. We may assume that p(n−k)/2 ≥ 4, because otherwise pbf = O(1) for every
f ∈ F [S ∪K] (as all these f have bf ≤ n− k and conv(S ∪K) has O(p(n− k) + k)
facets) and the lemma would hold trivially. Let S ′ ⊆ P \K be a random subset of
size p(n− k)/2. We have

E

 ∑
f∈F [S∪K]

exp

(
pbf
2

) =
∑
u∈P 3

Pr[fu ∈ F [S ∪K]] exp

(
pbu
2

)
�
∑
u∈P 3

Pr[fu ∈ F [S ′ ∪K]] (by (2.2))

= E [|F [S ′ ∪K]|]� p(n− k) + k.

11

Using this bound, we can show that the sum of every well-behaved function
over the conflict sizes of a random sample gives the value one would expect. This
remains true if a few points from P are always included in the sample.

Lemma 2.2.4. Fix p ∈ (0, 1] and let S ⊆ P \K be a random subset of size p(n−k).
Let g be a function such that g(tn)� etg(n) for all t ≥ 0. Then

E

 ∑
f∈F [S∪K]

g(bf)

� (p(n− k) + k) · g (1/p) .

In particular, choosing k = 0 and g : n 7→ nγ for γ ≥ 0, we have

E

 ∑
f∈F [S]

bγf

� np1−γ, (2.4)

and choosing g : n 7→ n log n, we get

E

 ∑
f∈F [S∪K]

bf log bf

� (
n− k +

k

p

)
log

1

p
. (2.5)

Proof. We have

E

 ∑
f∈F [S∪K]

g(bf)

 = E

 ∑
f∈F [S∪K]

g

(
pbf
2
· 2

p

)
� exp(2)g

(
1

p

)
· E

 ∑
f∈F [S∪K]

exp

(
pbf
2

)
� (p(n− k) + k) · g (1/p) . (by (2.3))

The following lemma is a standard application of the geometric divide-and-
conquer technique [46,55,59] and asserts that a convex hull can be computed faster
if a random partial hull and the corresponding conflict information are known.

Lemma 2.2.5. Fix p ∈ (0, 1] and let S ⊆ P \K be a subset of size p(n−k). Suppose
that conv (S ∪K) and the conflict sets Bf ⊆ P for f ∈ F [S ∪ K] are available.
Then we can find convP in expected time

∑
f∈F [S∪K] bf log bf . In particular, if S is

a random subset, the running time is O ((n− k + k/p) log (1/p)).

12

Proof. Let S̃ = S ∪K. Without loss of generality, we assume that conv S̃ contains
the origin. Instead of convP we compute (P ∗)∩, the intersection of the halfspaces

dual to the points in P . For this, we first obtain (S̃∗)∩, which takes linear time,

since conv S̃ is known. The vertices of (S̃∗)∩ correspond to the facets of conv S̃. In

particular, each vertex f of (S̃∗)∩ has a conflict list B∗f of size bf . We compute a

tetrahedralization T of (S̃∗)∩ as follows: for each facet g of (S̃∗)∩, determine the
vertex fg incident to g with minimum bfg .

3 The vertex fg is called the apex of
g. Triangulate g by adding line segments from the apex to all other vertices of g.
Finally, extend this triangulation to a tetrahedralization by lifting it to the origin.
This takes linear time.

The conflict set of a simplex s is precisely B∗s = B∗f1 ∪ B∗f2 ∪ B∗f3 , where f1, f2,
f3 are the vertices of s other than the origin. Let bs = |Bs|. We determine the
intersection of the halfspaces in B∗s and clip it to s. Then we glue the parts together
to obtain (P ∗)∩, and hence convP . This takes time O

(∑
s∈T bs log bs

)
. Consider

a simplex s ∈ T and let fs, f1, f2 be its vertices other than the origin. Here fs
denotes the apex of the facet of (S̃∗)∩ that contains a facet of s, and we call fs also
the apex of s. By definition, we have bs = fs + f1 + f2 ≤ 2(f1 + f2), and hence

bs log bs � f1 log f1 +f2 log f2. By general position, every vertex of (S̃∗)∩ has degree
3 and thus appears in only constantly many simplices of T as a non-apex. Hence,∑

s∈T bs log bs �
∑

f∈F [S̃] bf log bf , as claimed. Now, if S is a random sample, this

sum is proportional to (n− k + k/p) log (1/p) , by Lemma 2.2.4(2.5).

Finally, we would like to investigate the expected conflict size in a given cell of
a lower envelope.4 Let H = {h1, . . . , hn} be a set of planes in R3, and let ` be a
fixed vertical line. Let p ∈ (0, 1], and let S ⊆ H be a random sample which contains
every hi with probability p. Let TS be the canonical triangulation5 of the lower
envelope of S, and ∆` be the downward vertical prism defined by the facet f` of
TS that is intersected by `. We want to bound b`, the number of planes in H that
intersect ∆`.

Lemma 2.2.6. We have E [b`]� 1/p.

Proof. First, note that every possible facet of TS is defined by 4, 5, or 6 planes in
H, see Figure 2.5. Fix d ∈ {4, 5, 6}, and Ad be the event that f` is defined by d
planes. We will show that E [b` | Ad] � 1/p, from which the result follows by the
law of total probability. For k = 0, . . . , n, let rk denote the number of d-tuples in

3Take the lexicographically smallest if there is more than one such vertex.
4The lower envelope of a set of planes H in R3 is the two-dimensional surface obtained from

H by taking the lowest intersection of the planes in H with every possible vertical line.
5In the canonical triangulation, all vertices of a facet are connected to the lexicographically

smallest vertex in that facet.

13

f f f

Figure 2.5: Every possible facet f of TS is defined by 4, 5, or 6 planes.

Hd that define a facet that contains ` and whose corresponding downward vertical
prism is intersected by exactly k planes in H, and set r≤k =

∑k
j=0 rj.

Claim 2.2.7. We have r≤k � (k + 2)d.

Proof. Take a sample S ′ ⊆ H by including every plane with probability 1/(k+ 2).6

Clearly, ` intersects only one facet of TS′ , the canonical triangulation of the lower
envelope of S ′. Now let u be a d-tuple defining a facet intersected by `, and let Bu be
the planes intersecting the corresponding downward prism. Define bu = |Bu|. Since
the probability that u defines the facet containing ` is (k + 2)−d(1 − 1/(k + 2))bu ,
we can write the expected number of those facets as

1 ≥
∑
u

(
1

k + 2

)d(
1− 1

k + 2

)bu
≥
∑
u

bu≤k

(
1

k + 2

)d(
1− 1

k + 2

)k
� (k + 2)−dr≤k,

since (1− 1/(k + 2))k ≥ 1/e. It follows that r≤k � (k + 2)d, as claimed.

Now we can bound E [b` | Ad], using summation by parts,∑
u

bup
d(1− p)bu

= pd ·
n∑
k=0

krk(1− p)k (group by bu)

= pd

(
n−1∑
k=0

r≤k
(
k(1− p)k − (k + 1)(1− p)k+1

)
+ r≤nn(1− p)n

)
(sum by parts)

� pd

(
n−1∑
k=0

(k + 2)d(1− p)k(pk − (1− p)) + (n+ 2)d+1(1− p)n
)

(Claim 2.2.7)

� pd+1

n−1∑
k=0

kd+1(1− p)k + pdnd+1(1− p)n,

6We sample with probability 1/(k+2) instead of 1/k in order to avoid problems with the corner
cases k = 0, 1.

14

since p ≤ 1. Now, by forming groups of 1/p consecutive summands and upper-
bounding the t-th group by p−1(t/p)d+1(1− p)(t−1)/p, we get

∑
u

bup
d(1− p)bu ≤ pd

∞∑
t=1

(t/p)d+1(1− p)(t−1)/p + pdnd+1(1− p)n

≤ p−1

∞∑
t=1

td+1e−t+1 + pdnd+1(1− p)n � p−1,

since a simple calculation shows that pd+1nd+1(1 − p)n � 1 for p ∈ (0, 1]. This
completes the proof.

2.3 On computational models

In the following chapters, we will encounter results for a variety of computational
models, so let us take a moment to look at them in more detail. We will deal with
the real RAM, the word RAM, the pointer machine, and algebraic computation
trees.

Real RAM. The standard machine model in computational geometry is the real
RAM. Here, data is represented as an infinite sequence of storage cells. These
cells can be of two different types: they can store real numbers or integers. The
model supports standard operations on these numbers in constant time, including
addition, multiplication, and elementary functions like square-root, sine or cosine.
Furthermore, the integers can be used as indices to memory locations. Integers can
be converted to real numbers in constant time, but we need to be careful about
the reverse direction. The floor function can be used to truncate a real number to
an integer, but if we were allowed to use it arbitrarily, the real RAM could solve
PSPACE-complete problems in polynomial time [132]. Therefore, we usually have
only a restricted floor function at our disposal, and in this thesis it will be banned
altogether.

Word RAM. The word RAM is essentially a real RAM without support for real
numbers. However, on a real RAM, the integers are usually treated as atomic,
whereas the word RAM allows for powerful bit-manipulation tricks. More precisely,
the word RAM represents the data as a sequence of w-bit words, where w = Ω(log n).
Data can be accessed arbitrarily, and standard operations, such as Boolean oper-
ations (and, xor, shl, . . .), addition, or multiplication take constant time. There
are many variants of the word RAM, depending on precisely which instructions are
supported in constant time. The general consensus seems to be that any function

15

u1 u2 u3 u4 u5 u6 u7

p4p1 p2 p3

U

P

Figure 2.6: Representing a subset P of a universe U on a pointer machine.

in AC0 is acceptable [12, 145].7 However, it is always preferable to rely on a set
of operations as small, and as non-exotic, as possible. Note that multiplication is
not in AC0 [82], but nevertheless is usually included in the word RAM instruction
set [12, 80].

Pointer Machine. The pointer machine model [101, 103, 133, 143] disallows the
use of constant time table lookup, and is therefore a restriction of the (real) RAM
model. The data structure is modeled as a directed graph G with bounded out-
degree. Each node in G represents a record, with a bounded number of pointers to
other records and a bounded number of (real or integer) data items. The algorithm
can access data only by following pointers from the inputs (and a bounded number
of global entry records); random access is not possible. The data can be manipulated
through the usual real RAM operations, but without support for the floor function,
for reasons mentioned above.

In Chapter 3, we will consider pointer machine algorithms for subsets of a uni-
verse U of points that is known in advance. This is represented as follows: for each
point in U there is a record storing its coordinates, and the input subsets are pro-
vided as a linked list of records, each pointing to the record for the corresponding
input. This gives the elements in the input data a certain identity which can be
exploited, see Figure 2.6. The output (a convex hull or a Delaunay triangulation)
is provided as a DCEL [23, Chapter 2.2].

Algebraic Computation Tree. Algebraic computation trees (ACTs) [14,22] are
the computational geometry analogue of binary decision trees, and like these they
are mainly used for proving lower bounds. Let x1, . . . , xn ∈ R be the inputs. An
ACT is a binary tree with two different kinds of nodes: computation nodes and

7AC0 is the class of all functions f : {0, 1}∗ → {0, 1}∗ that can be computed by a family of
circuits (Cn)n∈N with the following properties: (i) each Cn has n inputs; (ii) there exist constants
a, b, such that Cn has at most anb gates, for n ∈ N; (iii) there is a constant d such that for all n
the length of the longest path from an input to an output in Cn is at most d (ie, the circuit family
has bounded depth); (iv) each gate has an arbitrary number of incoming edges (ie, the fan-in is
unbounded).

16

branch nodes. A computation node v has one child and is labeled with an expression
of the type yv = yu ⊕ yw, where ⊕ ∈ {+,−, ∗, /,√·} is a operation and yu, yw is
either an input variable x1, . . . , xn or corresponds to a computation node that is an
ancestor of v. A branch node has degree 2 and is labeled by yu = 0 or yu > 0,
where again yu is either an input or a variable corresponding to an ancestor. A
family of algebraic computation trees (Tn)n∈N solves a computational problem (like
Delaunay triangulation or convex hulls computation), if for each n ∈ N, the tree
Tn accepts inputs of size n, and if for any such input x1, . . . , xn the corresponding
path in Tn (where the children of the branch nodes are determined according the
conditions they represent) constitutes a computation which represents the answer
in the variables yv encountered during the path.

17

Part I

The Utility of Additional
Structure

18

Chapter 3

Hereditary Structure

We begin by exploring how hereditary structure in the inputs can lead to faster
algorithms. Suppose we are given a planar n-point set and its Delaunay triangula-
tion (DT). Then we can find the DT of any given subset in linear time1, as shown
by Chazelle et al. [47]. Since planar Delaunay triangulations are a special case of
three-dimensional convex hulls (see Section 2.1), it is natural to ask whether a sim-
ilar result can be proven for the convex hull of an arbitrary subset of the vertices
of a convex 3-polytope, and we will soon see that the answer is affirmative. We
formulate the problem in a hereditary setting by assuming that the vertices of a
convex polytope P in R3 are colored red and blue. The problem is then to “split” P
and compute both monochromatic convex hulls. We show how to do this in linear
time, which answers the main open question of Chazelle et al. [47]. This result can
also be interpreted as saying that the convex hull problem in R3 loses its Ω(n log n)-
hardness if it is embedded in a larger polytope. In other words, computationally
speaking, a convex polytope “gives away” the convex hull of any of its subsets. We
will also discuss how to extend our result in several interesting ways:

• Multiple colors. If the vertices of P are colored with χ colors, we are able
to compute the convex hulls of all the color classes in O(n(log log n)2) time.
If the coloring is random, we can do it in linear time. We emphasize that the
result holds for any χ ∈ {1, . . . , n}. Note that a straightforward application
of binary splitting yields an O(n logχ) time algorithm.

• Data structure version. The splitting algorithm needs time linear in the
size of P , but suppose we want to find the convex hulls for many different
subsets of the vertices of P . In this case, we can preprocess P so that the
convex hull of any vertex set S can be found in time O(|S|(log log |P|)2).

1All our algorithms are randomized, so the complexity is to be understood in the expected
sense. Note that the expectation is only over the randomness used by the algorithm and that the
complexity bounds hold for every input.

19

• Colorings induced by halfspaces. Consider the coloring induced by halfs-
pace range queries: given a query plane, compute the convex hull of the points
on one side. We describe how to do so in time O(k + log n), where k is the
output size; the data structure requires O(n log n) storage.

• Colorings with few connected components. Suppose the blue vertices
form k connected components in the skeleton graph of P . Then we can find
their convex hull in time O(n log∗ n + k log k), where n now is the size of the
subset. Our result has this intriguing corollary: given a DT T , the DT of any
set S of n vertices and edges in T can be computed in time O(n log∗ n+k log k),
where k is the number of connected components formed by S within T . We
actually prove a slightly more general result. It is well known that the convex
hull of two convex polytopes can be stitched together in linear time [45]. We
consider the case of k disjoint convex polytopes with a total of n vertices. If
the vertices of each polytope form a connected component in the convex hull of
their union, we can compute their common convex hull in O(n log∗ n+k log k)
time. This assumption is motivated by a lower bound of Ω(n log k) for the
general case.

Previous Work. The study of hereditary structure is part of a broader attempt
to understand what makes what hard. To compute the DT of n points in the plane
requires Ω(n log n) time, but knowing that the points are the vertices of a convex
polygon cuts down the complexity to linear [2, 49]. Given a spanning subgraph
of degree at most d, the DT can be completed in time O(nd log∗ n) [63]. In fact,
at the cost of a more complicated algorithm, it can be done in linear time [52,
100]. Furthermore, Djidjev and Lingas have proven linearity for any set of points
forming a monotone chain in both x and y directions [67]. This might suggest
that the hardness of DT is really confined to sorting. Of course, we know this is
not true: in the general Euclidean case, sorting does not help (though it does in
`∞ [50]). Ranking the points in any one direction still leaves us with a Θ(n log n)
complexity [67]. The simplicity of a polygon is known to “linearize” many problems
that otherwise exhibit Ω(n log n) lower bounds, eg, polygon triangulation [7,44,138],
medial axis [51], or constrained Delaunay triangulation [52,100].

Hereditary algorithms are nothing new. Given a subset of a simple polygon,
Chan [38] has shown how to compute its convex hull in linear time2 and how to
triangulate it in O(n log∗ n) time. Van Kreveld, Löffler, and Mitchell [106] improved
the latter result by proving that any subset of a given triangulation can in fact be
triangulated in linear time. To appreciate the difficulty of obtaining general hered-
itary algorithms, let us mention the example of hereditary trapezoidal decomposi-
tions [38, 99]. Kirkpatrick, Klawe, and Tarjan [99] gave an algorithm for removing

2Here, linear time means linear in the size of the whole structure, not just the subset.

20

Figure 3.1: Given their joint convex hull, we can find the red and blue hulls in linear
time.

b1

b2

b3

b4

Figure 3.2: General hereditary trapezoidal decompositions are hard.

a hole-free subset of line segments in a trapezoidal decomposition in linear time,
where hole-freeness is a property that is necessary to ensure that the subset does not
obscure too much information. They also give an example that for general heredi-
tary trapezoidal decompositions no improvement is possible (see also [38]). Consider
the line segments in Figure 3.2, and their trapezoidal decomposition. Suppose we
would like to find the trapezoidal decomposition of b1, b2, b3, b4. To achieve this, we
essentially have no choice but to sort their endpoints from scratch, since the long
line segments obscure all information. This means that sometimes trapezoidal de-
compositions do not give away anything about some of their subsets, unlike convex
hulls. There are many other situations in which additional “hereditary” informa-
tion brings no benefits: if P is a point set in R3, sorting P in a bounded number of
directions does not help in computing its convex hull [137]; nor does knowing the
convex hull of P help in finding its diameter [76].

3.1 Splitting polytopes

We are given an n-point set P ⊆ R3 in gcp. Let B ⊆ P and let R = P \ B. The
points in B are called blue, the points in R are called red. Given the convex hull

21

Algorithm 3.1 Splitting a bichromatic convex hull.

SplitHull(convP)

1. If P contains no red points, return convP .

2. If there exists a red point r in P with degP r ≤ d0 (with a suitable constant
d0), then return SplitHull(conv (P \ r)).

3. Take random blue points b ∈ B until (i) degP b ≤ 6; and (ii) there exists a
blue edge e in conv (P \ b) that is visible from b.

4. Call SplitHull(conv (P \ b)) to compute conv (B \ b).

5. Using e as a starting edge, insert b into conv (B \ b) and return convB.

convP , we show that it is possible to obtain the individual hulls convB and convR
in linear time.

Theorem 3.1.1. Let P ⊆ R3 be a set of n points in gcp, colored red and blue.
Given convP , the convex hull of the blue points can be computed in O(n) expected
time.

An edge of convP is called blue if both of its endpoints are blue, and red if both of
its endpoints are red, otherwise it is bichromatic. Blue, red, and bichromatic facets
are defined similarly. The splitting is performed by a recursive algorithm SplitHull

that receives the convex hull and a two-coloring of P . Please refer to Algorithm 3.1.
SplitHull can be seen as a generalization of Chew’s algorithm for Voronoi diagrams
of convex polygons [49], and it is also reminiscent of Dobkin and Kirkpatrick’s
hierarchy [68, 69]. It first tries to delete a red point of small degree. If this is not
possible, it removes blue points until there is a red point of small degree again.
Later, these blue points must be reinserted into the recursively computed blue hull.
In order to do this efficiently, we must be careful about which blue points we delete,
so that we have a landmark from where to start the conflict location. SplitHull is
easily shown to be correct.

Lemma 3.1.2. SplitHull(convP) computes convB.

Proof. The proof is by straightforward induction on |P |. We only comment on
Step 5. Let B− = B \b and P− = P \b. If e is a blue edge visible from b in convP−,
then the same holds in convB−: since e has both endpoints in B−, a supporting
plane for e in convP− supports e also in convB−, and since convB− ⊆ convP−,
the triangle spanned by b and e intersects convB− only in e. Thus, we can walk
from e to determine b’s conflict set Db and replace Db by new facets incident to

22

b. This takes time O(|Db|) [23, Chapter 11.2]. When implementing the algorithm,
care must be taken that the pointer to e obtained in Step 3 is not invalidated by
the recursive call in Step 4. We can easily do it as follows: when deleting a blue
edge in Step 4, retain the corresponding record in memory and reuse it when the
edge is recreated in Step 5.

The bulk of the analysis lies in bounding the running time.

Lemma 3.1.3. The expected time needed for one invocation of SplitHull is con-
stant, not counting the time for the recursive calls.

Proof. We argue that each step takes constant expected time. This clearly holds
for Step 1: just use a counter for the number of red points. Step 2 is also easy:
keep a linked list L for the red points with degree at most d0. During preprocessing,
determine the degrees and initialize L accordingly. When the hull is altered in
Steps 2 and 4, update the degrees and L. Since all relevant vertices have bounded
degree, this takes constant time. The most interesting part lies in the analysis of
Step 3. We show that there is a good chance of sampling a point with the required
properties.

Lemma 3.1.4. Let B̃ be the subset of the blue points b with the following properties:
(i) degP b ≤ 6; and (ii) b is a vertex of a blue facet of convP or E[P \ b] \ E[P]
contains at least one blue edge.3 There exists a constant d0 such that if all red points
have degree at least d0, then |B̃| ≥ |P |/5.

Proof. Call a blue point pleasant if it satisfies the properties in the lemma, and
ghastly otherwise. By Euler’s formula, a large fraction of blue points has degree at
most 6. If a blue point b is ghastly and has degree at most 6, then either (a) b is
incident to a facet with a red edge; or (b) b’s neighborhood has only bichromatic
edges and to delete b from convP creates no blue edge. We bound the number of
points satisfying (a) and (b) separately and then finish the analysis with a union
bound.

In the following, we will assume that d0 is a large enough constant. By gcp, we
have |E[P]| = 3n − 6.4 Let B′ be the set of blue points b with degP b ≤ 6. Since
convP is three-connected [112, Theorem 5.3.3], and since all red nodes have degree
at least d0 ≥ 7, we get

6n− 12 =
∑
p∈B′

deg p+
∑

p∈P\B′
deg p ≥ 3|B′|+ 7(n− |B′|).

3Recall that E[P], F [P] denote the edges and facets of convP (see Section 2.1).
4Since all the points are on the hull, Euler’s formula [31, Theorem 7.2.1] yields n − |E[P]| +

|F [P]| = 2, and since all facets are triangles, we have 2|[E[P]| = 3|F [P]|.

23

Thus
|B′| > n/4. (3.1)

Similarly,

6n− 12 =
∑
p∈R

deg p+
∑
p∈P\R

deg p ≥ d0|R|+ 3(n− |R|) = (d0 − 3)|R|+ 3n.

so |R| < 4n/d0 (for d0 ≥ 12). Let ER denote the set of red edges in convP . Since
every red edge of convP is an edge of convR,

|ER| ≤ |E[R]| = 3|R| − 6 < 12n/d0. (3.2)

For b ∈ B′, let Γb be the simple polygon formed by b’s neighbors in convP , and let
C be the set of points b ∈ B′ such that Γb contains a red edge (this corresponds to
the property (a) mentioned at the beginning of the proof). Since an edge is incident
to two facets, for each e ∈ ER there are at most two points p, q ∈ C such that e is
in Γp and Γq. Hence, by (3.2),

|C| ≤ 2|ER| < 24n/d0. (3.3)

Now, let D ⊆ B′ be the set of points b such that Γb has no monochromatic
edge. For any such b, degP b is even and red and blue points alternate along Γb. Let
Eb = E[P \b]\E[P]. We say that b creates Eb. Note that Eb contains only diagonals
of Γb. Any edge e is created by at most two points in D: if e is occluded in convP
by exactly one edge, it is created by the endpoints of this edge; if e is occluded
by two or more edges, it can only be created by a point incident to all of them;
see Figure 3.3. Furthermore, every b ∈ D creates at least one monochromatic

(a) (b)

e1
u v

e2
w

Figure 3.3: (a) The edge e1 is occluded by exactly one edge and is created by u and
v; (b) the edge e2 is occluded by two edges and is created only by w.

edge, since every triangulation of a two-colored simple polygon contains at least
one monochromatic diagonal5; see Figure 3.4. Let D′ be the set of points in D that
do not create a blue edge (these are the points with property (b)). By the previous
discussion and (3.2),

|D′| ≤ 2|E[R]| < 24n/d0. (3.4)

5Since the dual graph of this triangulation is a tree [23, Section 3.1], and every tree contains
at least one leaf, corresponding to a triangle between two adjacent edges.

24

Figure 3.4: Every triangulation of a two-colored simple polygon contains at least
one monochromatic diagonal (shown in dashed).

To conclude, we observe that all the points in the set B′ \ (C ∪D′) are pleasant and
that by (3.1, 3.3, 3.4) it contains at least (1/4− 48/d0)n > n/5 points, for d0 large
enough.

By Lemma 3.1.4 we expect at most five iterations in Step 3, each taking constant
time, since all points under consideration have bounded degree. The same holds for
Step 4 without the recursive call, as degP b ≤ 6. Finally, we use backwards analysis

to handle Step 5. Take B̃ as in Lemma 3.1.4. Because |B̃| > |B|/5, the average

degree of a point in B̃ is less than 30, by Euler’s formula. Hence, to delete a random
point b ∈ B̃ from convB takes constant expected time, and this is exactly the cost
of inserting b into conv (B \ b) [23, Chapter 11.2].

Theorem 3.1.1 follows from Lemmas 3.1.2 and 3.1.3, since the number of recursive
calls is O(n).

3.2 Handling multiple colors

Now, we extend SplitHull to handle more than two colors: for a point set P ⊆ R3,
let c : P → {1, . . . , χ} be a coloring of P . For i ∈ {1, . . . , χ}, we let Ci = c−1(i)
denote the points that are colored i, the ith color class. First, we note an easy
consequence of SplitHull:

Proposition 3.2.1. Let P ⊆ R3 be an n-point set in gcp, and let c : P → {1, . . . , χ}
be a coloring of P . Given convP , we can find the convex hulls convC1, . . . , convCχ
in expected time O(n logχ).

Proof. If χ = 1, there is nothing to do, and if χ = 2, we can just use SplitHull.
Otherwise, let t = bχ/2c, and let Ca =

⋃t
i=1Ci and Cb =

⋃χ
i=t+1Ci. Use SplitHull

to obtain convCa and convCb, and then recurse. Since the total work in each round
is O(n) and the number of colors halves in each step, the result follows.

25

In the following sections we shall see how to improve upon Proposition 3.2.1. We
will first consider random colorings, where the coloring c is called random, if each
point p is colored uniformly and independently with a color in {1, . . . , χ}. For such
colorings, we can split the convex hull in expected linear time, no matter the value
of χ. After that, we will look at the harder case of arbitrary colorings. For these,
we will see a splitting algorithm with O(n

√
log n) running time, which will later be

improved to O(n(log log n)2), as an application of the data structure version of the
splitting theorem presented in Section 3.3.

3.2.1 Random colorings

The goal of this section is to prove the following theorem.

Theorem 3.2.2. Let P ⊆ R3 be a set of n points in gcp, and let c : P →
{1, . . . , χ} be a random coloring of P . Given convP , we can compute the con-
vex hulls convC1, . . . , convCχ in O(n) expected time (the expectation is over the
coloring and the random choices of the algorithm).

The algorithm for Theorem 3.2.2 is called RandMultiSplit. See Algorithm 3.2.
It receives the convex hull and a coloring of P as input, and it computes the convex
hull of a random sample S ⊆ P into which the points of each color class are then
inserted separately. As we will see below, this can be done quickly because c is
random. Finally, it uses SplitHull to remove the points from S.

Algorithm 3.2 Splitting random colorings.

RandMultiSplit(convP) (* see Figure 3.5 *)

1. Pick a random sample S ⊆ P of size n/χ and compute convS.

2. For each p ∈ P , determine a facet fp ∈ F [S] in conflict with p.

3. For each color i:

(a) Insert all points of Ci into convS.

(b) Extract convCi from conv (Ci ∪ S).

Clearly, the algorithm correctly computes the convCi. We bound the running
time of each step. Using SplitHull, Step 1 requires O(n) time. The analysis of
Step 2 needs more work.

Lemma 3.2.3. Step 2 takes O(n) expected time.

26

(α) (β) (γ)

Figure 3.5: Splitting random colorings: the algorithm (α) computes convS and
conflict facets for Ci, (β) inserts Ci into conv S, and (γ) extracts convCi. The
points in Ci are shown as boxes, S as circles.

p

ΓP (p)

ΓQ(p)

Figure 3.6: Claim 3.2.4: the facets F [Q] are shown dashed, F [P] solid. Merge ΓP (p)
with ΓQ(p) to determine its conflict facets.

Proof. For Q ⊆ P and p ∈ Q, let ΓQ(p) denote the neighbors of p in convQ. First,
we show how to compute the conflict facets for points that are neighbors in convP
of a point in Q.

Claim 3.2.4. Let Q ⊆ P and p ∈ Q. Assume that both convQ and convP are
available. In O(degQ p + degP p) time, we can compute a conflict facet fq ∈ F [Q]
for every neighbor q ∈ ΓP (p) of p.

Proof. Consider an overlay of convQ and convP , ie, a central projection of their
vertices and edges onto the unit sphere centered at a point O ∈ convQ. Let
q ∈ ΓP (p) and let f ∈ F [Q] be the facet incident to p that is intersected by the line
segment pq in the overlay. Then q is in conflict with f . To see this, let hf be the
plane supporting f . If q did not conflict with f , then q would lie in h−f and at least
part of the line segment pq would be strictly inside convQ. But then pq could not
be an edge of convP , as convQ ⊆ convP . Thus, conflict facets for ΓP (p) can be
computed by merging the cyclically ordered lists ΓP (p) and ΓQ(p) with respect to
some overlay of the hulls; see Figure 3.6. This takes time O(degQ p+ degP p).

27

Algorithm 3.3 Determining the conflict facets in a subset.

SubsetConflictWalk(convS, convP)

1. Let queue be a queue with the elements in S.

2. While queue 6= ∅.

(a) Let p be the next point in queue.

(b) If p 6∈ S, insert p into convS, using a previously computed conflict facet
fp for p as a starting point.

(c) For each neighbor q ∈ ΓP (p), find a conflict facet f̃q in conv (S ∪ p), using
Claim 3.2.4.

(d) Using the f̃q’s, find conflict facets fq ∈ F [S] for all q ∈ ΓP (p). If q ∈
ΓP (p) has not been encountered yet, insert it into queue.

The conflict facets for P can now be found by breadth-first search, using the al-
gorithm SubsetConflictWalk. Please refer to Algorithm 3.3. Step 2 of the al-
gorithm maintains the invariant that a conflict facet fp ∈ F [S] is known for each
p ∈ queue \ S. Using standard techniques, Step 2b takes O(dp) time, where dp is
the conflict size of p in convS [23, Chapter 11.2].6 Furthermore, by Claim 3.2.4, the
conflict facets of ΓP (p) can be found in O(degS∪p p+ degP p) time. Finally, Step 2d

takes time O(degP p): every facet f̃ ∈ F [S ∪ p] shares at least one edge e with an
f ∈ F [S], and if q can see e in convS, it conflicts with at least one facet adjacent
to e. Thus, fq can be computed from f̃q in constant time. It follows that the total
running time of SubsetConflictWalk is proportional to

E

[∑
p∈P

(
dp + degS∪p p+ degP p

)]
.

Now, since7 degS∪p p� dp for p 6∈ S, this is proportional to

E

∑
p∈S

degS p+
∑
p∈P\S

dp +
∑
p∈P

degP p

� E

n
χ

+
∑
f∈F [S]

bf + n

 ,
by (2.1) in Appendix 2.1. The lemma follows, since E

[∑
f∈F [S] bf

]
� n by

Lemma 2.2.4(2.4) (bf is the conflict size of f).

6dp = 0 if p ∈ S.
7Recall that we use the Vinogradov notation f � g for f = O(g) and f � g for f = Ω(g).

28

Now we consider Step 3 of RandMultiSplit. Fix a color i, and for each f ∈ F [S],
let af = |Ci ∩ Bf |. Since the coloring is random, conditioned on bf , the size af is
distributed like a sum of independent Bernoulli random variables with mean bf/χ.
By standard moment bounds [46, Lemma A.1], E c[a

2
f]� (bf/χ)2. By Lemma 2.2.5,

Step 3a takes time E S,c

[∑
f∈F [S] af log af

]
, and by Lemma 2.2.4(2.4), we get

E S,c

 ∑
f∈F [S]

af log af

� E S

 ∑
f∈F [S]

E c

[
a2
f

]� E S

 1

χ2

∑
f∈F [S]

b2
f

� χn

χ2
=
n

χ
.

Using SplitHull in Step 3b, convCi can now be computed in time O(|Ci|+ n/χ).
There are χ colors, so Step 3 takes total time proportional to

∑
i |Ci|+χ·(n/χ)� n,

and Theorem 3.2.2 follows.

3.2.2 Arbitrary colorings

We now consider arbitrary colorings. For the random colorings in the previous
section, we could exploit the fact that each color is spread uniformly over the poly-
tope in order to design a simple divide and conquer algorithm that decomposes
each color class into subsets of expected constant size. This is no longer possible
for arbitrary colorings, because now the distribution of color classes can be highly
irregular. Therefore, we need a more sophisticated scheme to partition the color
classes.

Here, we will prove the following theorem, which serves as a basis to the data
structure version in Section 3.3. There, we will see how Theorem 3.2.5 can be
improved through a more complicated bootstrapping scheme.

Theorem 3.2.5. Let P ⊆ R3 be a set of n points in gcp, and let c : P → {1, . . . , χ}
be an arbitrary coloring of P . Given convP , we can compute convC1, . . . , convCχ
in O

(
n
√

log n
)

expected time.

We begin with a useful sampling lemma.

Lemma 3.2.6. Let Q ⊆ R3 be an m-point set in gcp, and let µ ∈ (0, 1) be a constant.
There exists a constant α0 such that the following holds: let α ∈ {α0, . . . , µm}.
Given convQ, in O(m) time we can compute subsets S,R ⊆ Q and a partition
R1, . . . , Rβ of R such that

1. |S| = α, |R| � m, and maxi |Ri| � m(logα)/α.

2. For each Ri, there exists a facet fi ∈ F [S] such that all points in Ri are in
conflict with fi.

29

3. Every point in R conflicts with constantly many facets of convS.

4. The conflict sets for two points p ∈ Ri, q ∈ Rj, i 6= j, are disjoint and no
conflict facet of p shares an edge with a conflict facet of q.

Furthermore, the convex hulls convS, convR1, . . . , convRβ, conv (Q \ (R ∪ S)) can
be computed in expected O(m) time.

Proof. We call a subset S ⊆ Q decent if it has two properties: (i)
∑

f∈F [S] bf � m;

and (ii) maxf∈F [S] bf � m(logα)/α, where bf denotes the conflict size of f .

Claim 3.2.7. A decent subset S ⊆ Q of size α together with convS and the conflict
sets Bf , f ∈ F [S], can be found in expected time O(m).

Proof. Let S be a random α-subset of Q. We claim that S is decent with probability
at least 1/2. To see this, we first use Lemma 2.2.4(2.4) with γ = 1 to obtain
E
[∑

f∈F [S] bf
]
� m. By Markov’s inequality, it follows that

∑
f∈F [S] bf � m

with probability at least 3/4. Furthermore, using Lemma 2.2.2 with pn = α and
t = 2 logα, we get8 E [|F≥2 logα|] � (log2 α)/α, and if α0 is large enough, this
expected value is less than 1/4. Hence, by Markov’s inequality, the probability
that there exists a facet with conflict size at least 2m(logα)/α is at most 1/4. So,
we have maxf∈F [S] bf � m(logα)/α with probability at least 3/4, and the claimed
probability follows from a union bound.

Furthermore, a decent sample can be verified in O(m) time: by the proof of

Lemma 3.2.3, we can find the conflict sets Bf and Dp in time O
(
m+

∑
f∈F [S] bf

)
.

Hence, we can run the algorithm of Lemma 3.2.3 on the sample S. If the number of
steps exceeds cm, for a certain constant c that comes from the proof of Lemma 3.2.3,
we abort the computation and reject the sample, since it cannot be decent. Oth-
erwise, we can check in O(m) time that maxf∈F [S] bf � m(logα)/α, as required.
Consequently, since a sample is decent with constant probability, repeated sampling
yields the desired result.

Now let S be a decent sample, and let Bf , f ∈ F [S], denote its conflict sets. By
(2.1) and Property (i) of a decent sample, we have

∑
p∈Q dp � m, and hence there

exists a constant λ such that the set X = {p ∈ Q | dp > λ} has cardinality at most
(1− µ)m/2. Let R′ = Q \ (S ∪X), B′f = Bf ∩ R′ and b′f = |B′f | for f ∈ F [S]. By
definition, all points in R′ conflict with at most λ facets. We now prune F [S] to
obtain a subset F of facets whose conflict sets constitute the desired partition. For
f, g ∈ F [S], let δ(f, g) denote the BFS-distance between f and g in the dual graph
of convS;9 see Figure 3.7. The pruning is done by a greedy algorithm PruneFS,

8Note that by choosing α0 large enough, we can ensure that t = 2 logα ≤ α/4 = pn/4.
9More precisely, the BFS-distance (BFS = Breadth First Search) between f and g is the length

of a shortest path between f and g in the graph with vertex set F [S] in which two vertices are
adjacent precisely if the corresponding facets share an edge in convS.

30

f
g

Figure 3.7: The pruning step: remove all facets at distance at most 2λ from a facet
with maximum conflict size. The points in B′f , B

′
g conflict only with the darker

facets at distance at most λ = 1.

Algorithm 3.4 Pruning the conflict facets.
PruneFS

1. Let F = ∅ and let queue be a priority queue containing the facets in F [S].

2. While queue 6= ∅:

(a) Let f be a facet in queue with maximum b′f , and let Nf = {f ′ ∈ F [S] |
δ(f, f ′) ≤ 2λ} ∩ queue.

(b) Let queue = queue \Nf and F = F ∪ {f}.

which iteratively takes the facet with the largest conflict size and discards all of its
neighbors. For details see Algorithm 3.4. Clearly, PruneFS takes O(m) time. Let
f1, . . . , fβ be the facets in F as computed by PruneFS, and let R1, . . . , Rβ be the

corresponding conflict sets with respect to R′. Set R =
⋃β
i=1Ri.

Claim 3.2.8. We have |R| � m, the Ri constitute a partition of R, and for p ∈
Ri, q ∈ Rj, i 6= j, we have Dp ∩ Dq = ∅ and no facet in Dp shares an edge with a
facet in Dq.

Proof. To see that |R| � m, note that |Nf | � 1 and b′f ′ ≤ b′f for every f ′ ∈ Nf .
Thus, we have b′f �

∑
f ′∈Nf b

′
f ′ , and therefore

|R| =
∑
f∈F

b′f �
∑
f∈F

∑
f ′∈Nf

b′f ′ ≥ |R′| � m.

To see that (Ri)1≤i≤β is a partition, consider two sets Ri, Rj with i 6= j, and
let fi, fj be the corresponding facets. Any point p ∈ R has |Dp| ≤ λ, and Dp is
connected in the dual graph of convS. By construction, we have δ(fi, fj) > λ, so

31

there cannot be a point in conflict with both fi and fj. It follows that Ri ∩Rj = ∅,
since Ri and Rj are the conflict sets of fi and fj. Similarly, we see that Dp, Dq are
disjoint for p ∈ Ri, q ∈ Rj, and no facet in Dp is adjacent to a facet in Dq, because
δ(fi, fj) > 2λ and Dp, Dq are connected with size at most λ.

Furthermore, to see that |R| � m, note that |Nf | � 1 and b′f ′ ≤ b′f for every
f ′ ∈ Nf . Thus, we have b′f �

∑
f ′∈Nf b

′
f ′ , and therefore

|R| =
∑
f∈F

b′f �
∑
f∈F

∑
f ′∈Nf

b′f ′ ≥ |R′| ≥ m− α− (1− µ)m/2 ≥

m− µm− (1− µ)m/2 = (1− µ)m/2� m.

By now, we have established statements 1–4 of Lemma 3.2.6. It remains to show
how to find all the convex hulls quickly. First, using SplitHull, we can compute
convS, conv (R ∪ S) and conv (Q \ (R ∪ S)) in time O(m). It remains to consider
the Ri’s.

Claim 3.2.9. For i = 1, . . . , β, the convex hull convRi can be computed in O(|Ri|)
time.

Proof. Consider an Ri, and let fi be the corresponding facet in convS. First, note
that the subgraph of conv (R ∪ S) induced by Ri is connected, because Ri = R∩h+

fi
.

Let Γ denote the points in (R∪ S) \Ri that are adjacent in conv(R∪ S) to a point
in Ri. We have Γ ⊆ S: if there were two points p ∈ Ri, q ∈ Rj, i 6= j, such that pq
is an edge of conv (R ∪ S) then pq would also be an edge of conv (S ∪ {p, q}). This
implies that either Dp ∩Dq 6= ∅ or that there are facets f ′ ∈ Dp, f

′′ ∈ Dq such that
f ′ and f ′′ share an edge. Both are impossible by Claim 3.2.8.

Next, we claim that |Γ| = O(1): if p ∈ Ri is adjacent to a point q ∈ S, then
it follows that pq is also an edge of conv (S ∪ {p}), and hence Dp contains a facet
incident to q. Since |⋃p∈Ri Dp| = O(1) and since each facet is incident to three
points, the claim follows.

Now we compute conv (Ri ∪ Γ) in O(|Ri|) time as follows: let F1 be the set
of facets in F [R ∪ S] incident to Ri and let F2 be the set of facets in F [Ri ∪ Γ]
incident to Ri. We have F1 = F2. Clearly, F1 ⊆ F2 by the definition of Γ and since
Ri ∪ Γ ⊆ R ∪ S. If there were a facet f ∈ F2 \ F1, the half-space spanned by f
would contain only points in (R ∪ S) \ (Ri ∪ Γ). However, this would mean that
in conv(R ∪ S) all the vertices of f are adjacent to a point in (R ∪ S) \ (Ri ∪ Γ),
contradicting the choice of Γ. The facets in F1 can be extracted from conv (R ∪ S)
in time O(|Ri ∪ Γ|), and the convex hull of Ri ∪ Γ can be completed in the same
time, since the remaining facets involve only points in Γ, which has constant size.
Now convRi can be extracted from conv (Ri ∪ Γ) in linear time, either by using
SplitHull or by naively removing the points in Γ one by one.

32

Algorithm 3.5 Splitting arbitrary colorings.

MultiSplit(convP)

1. For all colors i with |Ci| ≤ 2
√

logn, find convCi directly. Let K denote the
remaining colors and Q =

⋃
i∈K Ci. Use SplitHull to determine convQ.

2. Use Lemma 3.2.6 with α = 2
√

logn to obtain S,R ⊆ Q, a partition ofR1, . . . , Rβ

of R, and their convex hulls.

3. Call MultiSplit(conv(Q\ (S∪R))) to find the hulls conv(Ci∩ (Q\ (S∪R))).

4. For j = 1, . . . , β, call MultiSplit(convRj) to find the hulls conv(Ci ∩Rj).

5. For i ∈ K do

(a) For j = 1, . . . , β, merge conv(Ci∩Rj) into conv(S). This yields conv(S∪
(Ci ∩R)).

(b) Use SplitHull to extract conv(Ci ∩ (S ∪R)).

(c) Compute the union of conv(Ci ∩ (S ∪ R)) and conv(Ci ∩ (Q \ (S ∪ R)))
to obtain convCi.

This concludes the proof of Lemma 3.2.6.

Now, the splitting is performed by the algorithm MultiSplit. Please refer to
Algorithm 3.5. For the recursion to work, we need to avoid small color classes. Thus,
the algorithm first computes the convex hull of every Ci with |Ci| ≤ 2

√
logn in time

O(|Ci| log |Ci|) [23, Chapter 11]. Let K denote the remaining colors, and let Q =⋃
i∈K Ci, n1 = |Q| and n2 = n−n1. For Step 5a, we can use an algorithm to combine

3-polytopes separated by a plane [31, Chapter 9.3] to merge each conv(Ci∩Rj) with
conv(S). For j ∈ {1, . . . , β}, this takes time O(1+ |Ci∩Rj|), since all new edges are
incident to constantly many points in S by properties 3 and 4 of Lemma 3.2.6 and
since the conflict sets of the Rj do not interact. By Theorem 3.1.1, Step 5b takes
expected time O(|S| + |Ci ∩ R|), and as Chazelle [45] showed, Step 5c needs time
O(|Ci|). Hence, the total expected time for Step 5 is O(|K| · |S|+∑i∈K |Ci|). Recall

that |Ci| > 2
√

logn for all i ∈ K. Hence, |K| < n/2
√

logn and |K| · |S| < n. Therefore,
the total running time of the algorithm isO(n2

√
log n+n), not counting the recursive

calls. The first term represents the time for the convex hull computation in Step 1,
and the second term counts the remaining steps.

33

We get the following recursion for the running time:

T (n) ≤ T (|Q \ (S ∪R)|) +

β∑
j=1

T (|Rj|) + c(n2

√
log n+ n),

for some constant c > 0. We know that |R| ≥ αn1 and we also know that
max1≤j≤β |Rj| ≤ cn1

√
log n/2

√
logn, where α ∈ (0, 1] and we reuse c (making it

larger if necessary). A simple induction shows that T (n)� n
√

log n.
Let us do the calculation. Recalling that |Q| = n1 and plugging in the inductive

hypothesis T (m) ≤ γm
√

logm for m < n and some constant γ > 0, we get

T (n)

≤ γ(n1 − |R|)
√

log n+ γ|R|
√

log n+ log(c
√

log n)−
√

log n+ cn2

√
log n+ cn

≤ γ(n1 − |R|)
√

log n+ γ|R|
√

log n− 0.5
√

log n+ cn2

√
log n+ cn,

for n large enough. Since
√

log n− 0.5
√

log n ≤ √log n− 1/4, it follows that

T (n) ≤ γ(n1 − |R|)
√

log n+ γ|R|
√

log n− γ|R|/4 + cn2

√
log n+ cn

≤ γn1

√
log n+ 2cn2

√
log n+ (c− γα/4)n1,

which is bounded by γn
√

log n for γ large enough.

3.3 Data structure version

One drawback of Theorem 3.1.1 is that it requires time linear in the size of the
polytope P . Therefore, if the blue set has cardinality smaller than |P|/ log |P|, we
do not gain any advantage over traditional convex hull algorithms. To obtain a
better running time, we change the model: given a point set U in gcp, we want
to preprocess U such that the convex hull of any large enough subset P ⊆ U can
be found faster. Such a query is called a convex hull query. In the following, we
will have u = |U | and n = |P |. Our description starts with a simple structure
building directly on the techniques of Section 3.2.2. It handles convex hull queries
in time O(n

√
log u log log u). Then, we bootstrap this structure so that convex hull

queries take O(n(log log u)2) time. We call our data structure the scaffold tree.
Using scaffold trees, we can also improve Theorem 3.2.5 to O(n(log log n)2) running
time. Later, in Theorem 5.2.6, we will prove that for the special case of Delaunay
triangulations a query time of O(n log log u) is possible.

34

3.3.1 The basic structure

The basic data structure is described in the following theorem.

Theorem 3.3.1. Let U ⊆ R3 be a u-point set in gcp. In O(u log u) time, we
can construct a data structure of size O(u

√
log u) such that for any n-point set

P ⊆ U we can compute convP in time O(n
√

log u log log u). If convU is known,
the preprocessing time is O(u

√
log u).

Proof. We describe the preprocessing phase. If necessary, we construct convU in
time O(u log u). The scaffold tree is computed through the recursive procedure
BuildTree(U). Please consider Algorithm 3.6. By Lemma 3.2.6, the sizes of the

Algorithm 3.6 Building the basic scaffold tree.

BuildTree(U)

1. If |U | = O(1), store U and return, otherwise, let U1 = U and i = 1

2. While |Ui| > u/2
√

log u.

(a) Apply Lemma 3.2.6 to Ui with α = 2
√

log |Ui| to obtain subsets Si, Ri ⊆ Ui,

as well as a partition R
(1)
i , . . . , R

(β)
i of Ri, and the hulls convSi, convR

(j)
i

described in the lemma.

(b) Call BuildTree
(
R

(j)
i

)
for j = 1, . . . , β.

(c) Let Ui+1 = Ui \ (Si ∪ Ri). Use SplitHull to compute convUi+1, and
increment i.

3. Let ` = i and call BuildTree(U`).

sets Ui decrease geometrically, so ` = O(
√

log u) and

∑̀
i=1

|Si| = O
(

2
√

log u
√

log u
)
. (3.5)

By Lemma 3.2.6 and Theorem 3.1.1, the total time for Steps 2a and 2c is O(u).
Since the sets for the recursive calls in Steps 2b and 3 have size O(u

√
log u/2

√
log u),

the expected running time T (u) of BuildTree obeys the recursion

T (u) = O(u) +
∑
i

T (mi),

35

where the mi are such that∑
i

mi < u and max
i
mi = O(u

√
log u/2

√
log u).

Thus, the work in each level of the recursion is O(u), and the number of levels L(u)
has

L(u) ≤ 1 + L
(
uσ
√

log u/2
√

log u
)
,

for some constant σ. To see that L(u)� √log u, we use induction to prove

L(u) ≤ 1 + c

√
log u+ log σ + (1/2) log log u−

√
log u

≤ 1 + c
√

log u

√
1− 1/(2

√
log u) ≤ c

√
log u,

since for c large enough c
√

log u
√

1− 1/2(
√

log u) ≤ c
√

log u−1. Therefore, we get
T (u) � u

√
log u. Queries are answered by a recursive procedure called Query(P).

Refer to Algorithm 3.7. Step 1 takes O
(
n
√

log u
)

time [23, 31, 122, 128]. With

Algorithm 3.7 Querying the simple scaffold tree.

Query(P)

1. If n ≤ 2
√

log u
√

log u, use a traditional algorithm to find convP and return.

2. For i = 1, . . . , `− 1

(a) Let Pi = P ∩ Ri and determine the intersections Pij of Pi with the sets

R
(j)
i .

(b) For all non-empty Pij, call Query(Pij) to compute convPij.

(c) Merge convPij into convSi.

(d) Use SplitHull to extract convPi from the convex hull conv (Pi ∪ Si).

3. Let P` = U` ∩ P . If P` 6= ∅, call Query(P`) for convP`.

4. Compute convP as the union of convP1, . . ., convP`.

an appropriate pointer structure that provides links for the points in U to the
corresponding subsets (as in the pointer-based implementation of van Emde Boas
trees [114]), the total time for Step 2a is O(n). The next claim handles Step 2c.

Claim 3.3.2. Step 2c takes O(|Pi|) time.

36

Proof. Fix j with Pij 6= ∅. We show how to insert Pij into convSi in time O(|Pij|).
This implies the claim, since by the definition of the R

(j)
i there can be no edge

between two points p ∈ Pij and q ∈ Pij′ , for j 6= j′. Furthermore, the only facets
in convSi that are destroyed are facets in ∆ =

⋃
p∈Pij Dp by definition of Dp. By

Lemma 3.2.6(2,3), the size of ∆ is constant, because all the Dp have constant size,
form connected components in the dual of convSi (a 3-regular graph), and have one
facet in common. Thus, all we need to do is insert the constantly many points in
Si incident to a facet in ∆ into convPij, which takes time O(|Pij|), as claimed.

By Theorem 3.1.1, Step 2d needs O(|Pi|+|Si|) time. Using an algorithm for merging
convex hulls [45], Step 4 can be done in time O(n log `) = O(n log log u). Thus, the
total time for Steps 2 to 4 is O(n log log u +

∑`
i=1 |Si|) = O(n log log u), by (3.5)

and Step 1. Since there are O(
√

log u) levels and since the computation in Step 1
is executed only once for each point in P , the result follows.

3.3.2 Bootstrapping the tree construction

We now describe the bootstrapping step. The main idea is to increase the degree in
each node of the scaffold tree and to use a more basic tree to combine the results from
the recursive calls quickly. However, if we are not careful, we could lose a constant
factor in each bootstrapping step, which would not give the desired running time.
To avoid this, we need the following result, which uses the dependent sampling
technique which we will encounter again in Chapter 5.

Theorem 3.3.3. Let U ⊆ R3 be in gcp, and let S =
⋃k
i=1 Si ⊆ U with |S| = m,

such that |Si| ≤ c, for some constant c, and such that the subgraphs convU |Si
are connected and available. Furthermore, let S ′ ⊆ S be such that S ′ contains
exactly one point from each Si, chosen uniformly at random, and suppose convS ′

is available, and that we have a van Emde Boas structure for the neighbors of each
vertex in convU . Then we can find convS in expected time O(m log log u).

Proof. To obtain convS from convS ′, we walk along the edges of the subgraphs
convU |Si and insert the points one by one. More precisely, we proceed as follows:
let Q be a queue which we initialize with the points from S ′. While Q is not
empty, let p be the next point in Q. Using the van Emde Boas structure for p,
sort the neighbors of p in the convU |Si according to clockwise order. Then insert
the neighbors in that order, using the edges of the convU |Si for conflict location.
Add all the neighbors that have not been encountered before to Q. The time taken
is O(m log log u) for the sorting and the traversal of the queue, plus the number
of facets of the convex hull that were created (and possibly destroyed) during the
construction.

37

Let f be a facet with conflict set Bf . The facet f is created only if S ′ ∩Bf = ∅.
The probability of this event is at most

k∏
i=1

(
1− |Si ∩Bf |

|Si|

)
≤ exp

(
−

k∑
i=1

|Si ∩Bf |
c

)
= exp(−|Bf |/c).

Now, since it is well known [59] that there are at most O(ms2) facets with conflict
size s, the expected number of created facets is O

(
m
∑∞

s=0 s
2/es/c

)
= O(m), and

the result follows.

Theorem 3.3.4. Let k > 1 and U ⊆ R3 be a u-point set in gcp, and let convU
be given. Set lk = (log u)1/k. There is a constant β with the following prop-
erty: if Dk(U) is a data structure for convex hull queries with preprocessing time
Pk(u) � uklk and query time Qk(n, u) ≤ βnklk log log u, then there is a data
structure Dk+1(U) with preprocessing time Pk+1(u) � u(k + 1)lk+1 and query time
Qk+1(n, u) ≤ βn(k+1)lk+1 log log u. The constants in the asymptotic bounds do not
depend on k.

Proof. Since the function x 7→ x log1/x u reaches its minimum for x = ln 2 log log u,
we may assume that k < 0.7 log log u, because otherwise the theorem holds by
assumption. The preprocessing is very similar to Algorithm 3.6 with a few changes:
(i) we iterate the loop in Step 2 while |Ui| > u/2l

k
k+1 ; (ii) we apply Lemma 3.2.6 with

α = 2(log |Ui|)k/(k+1)
; and (iii) for each sample Si we compute a data structure Dk(Si)

for convex hull queries, which exists by assumption, for details see Algorithm 3.8.
Since the sizes of the Ui decrease geometrically, we have ` = O

(
lkk+1

)
and the

total time for Step 2a is O(u). Since k ∈ {2, . . . , 0.7 log log u− 1}, we have

20.7 ≤ lk+1 ≤ lk ≤
√

log u, (3.6)

and therefore the total time to construct the data structures Dk(Si) in Step 2b is
proportional to

lkk+1Pk
(
2l
k
k+1

)
� lkk+1klk+12l

k
k+1 � 2log u/lk+1 log u log log u

≤ u1/20.7 log u log log u = o(u).

Similarly, the total time for the construction of the vEB trees in Step 2c can be
bounded by O

(
lkk+12l

k
k+1 log log u) = o(u). Since the sets R

(j)
i all have size at most

O
(
ulkk+1/2

lkk+1

)
, the number of levels Lk+1(u) has

Lk+1(u) ≤ 1 + Lk+1

(
uσ(log u)/2l

k
k+1

)
,

for some constant σ. To prove that Lk+1(u)� (k + 1)lk+1, we use induction to get

Lk+1(u) ≤ 1 + c(k + 1)
(
log u+ log σ + log log u− lkk+1

)1/(k+1)
.

38

Algorithm 3.8 Bootstrapping the scaffold tree.

BuildTreek+1(U)

1. Let U1 = U and i = 1

2. While |Ui| > u/2l
k
k+1 .

(a) Apply Lemma 3.2.6 to Ui, where we set α = 2(log |Ui|)k/(k+1)
. This yields

subsets Si, Ri ⊆ Ui, a partition R
(1)
i , . . . , R

(β)
i of Ri, and the convex hulls

convSi, convR
(j)
i with the properties of Lemma 3.2.6.

(b) Execute BuildTreek+1

(
R

(j)
i

)
for j = 1, . . . , β and compute a data struc-

ture Dk(Si) for Si.

(c) Let Ui+1 = Ui \ (Si ∪ Ri). Compute convUi+1 using SplitHull, and
for each vertex, create a van Emde Boas structure for its neighbors.
Increment i.

3. Let ` = i and call BuildTreek+1(U`).

By (3.6), lkk+1 ≥
√

log u, so log σ + log log u − lkk+1 < −0.9lkk+1, for u large enough,
and

Lk+1(u) ≤ 1 + c(k + 1)lk+1

(
1− 0.9

lk+1

)1/(k+1)

.

Now, since(
1− 0.9

lk+1

)1/(k+1)

≤ exp

(
− 0.9

(k + 1)lk+1

)
≤ 1− 1

3(k + 1)lk+1

, (3.7)

we get
Lk+1(u) ≤ 1 + c(k + 1)lk+1 − c/3 ≤ c(k + 1)lk+1,

for c large enough. The work at each level is O(u), therefore the total preprocessing
time is Pk+1(u) � u(k + 1)lk+1. Queries are answered by Queryk+1, please look at
Algorithm 3.9.
In the following, let c denote a large enough constant. As before, Step 1a takes time

T1a ≤ cn, (3.8)

using an appropriate pointer structure. In Step 1b, let n1 denote the total number
of points for which we compute the convex hull directly, and let n2 = n− n1. Then
this step takes time

T1b ≤ cn1 log log u+ cn1 log β +Qk+1

(
n2, cul

k
k+1/2

lkk+1

)
, (3.9)

39

Algorithm 3.9 Querying the bootstrapped scaffold tree.

Queryk+1(P)

1. For i = 1, . . . , `− 1

(a) Let Pi = P ∩ Ri and determine the intersections Pij of Pi with the sets

R
(j)
i .

(b) For each non-empty Pij, if |Pij| ≤ βklk+1, compute convPij directly,
otherwise call Queryk+1(Pij).

(c) For each nonempty Pij, determine the set Sij of points adjacent to a
conflict facet of Pij. Compute conv (Pij ∪ Sij).

(d) Let S ′i be a set that contains one random point from each Sij. Use Dk(Si)
to find convS ′i.

(e) Use Theorem 3.3.3 to compute conv (Pi ∪
⋃
j Sij).

(f) Use SplitHull to extract convPi from conv (Pi ∪
⋃
j Sij).

2. Recursively compute convP`, where P` = U` ∩ P .

3. Compute convP as the union of convP1, . . . , convP`.

assuming that Qk+1 is linear in the first and monotonic in the second component
(which holds by induction on the second component). Since the conflict size of each
Pij is constant, Step 1c takes time

T1c ≤ cn, (3.10)

if we just insert the points in each Sij into convPij one by one. Furthermore, since
we select one point per conflict set, the total size of the sets S ′i in Step 1d is at most
n1 + n2/(βklk+1), so computing the convex hulls convS ′1, . . . , convS ′` takes time

T1d ≤ Qk

(
n1 +

n2

βklk+1

, 2l
k
k+1

)
≤ βk

(
n1 +

n2

βklk+1

)
lk+1 log log u

= (βn1klk+1 + n2) log log u. (3.11)

In Step 1e, we use Theorem 3.3.3 to find conv
(⋃

j Sij
)
, from which we can find

conv
(
Pi ∪

⋃
j Sij

)
easily by the independence of the R

(j)
i . By Theorems 3.3.3

and 3.1.1, Steps 1e and 1f take time

T1e,1f = O(n log log u+ n+
∑
i

|S ′i| log log u) ≤ cn log log u. (3.12)

40

Step 2 is already accounted for by T1b. Finally, Step 3 requires

T3 ≤ cn log log u (3.13)

steps. By summing (3.8–3.13) we get the following recurrence for Qk+1(n, u):

Qk+1(n, u) ≤ 5cn log log u+ cn1 log β+

βn1klk+1 log log u+Qk+1

(
n2, cul

k
k+1/2

lkk+1

)
. (3.14)

By induction, we get

Qk+1

(
n2, cu

lkk+1

2l
k
k+1

)
≤ βn2(k + 1)

(
log u+

k log(c log u)

k + 1
− lkk+1

)1/(k+1)

log log u.

By (3.6), we have lkk+1 ≥
√

log u, and hence k
k+1

log(c log u)− lkk+1 ≤ −0.9lkk+1, for u
large enough. Using (3.7), it follows that

Qk+1

(
n2, cu

lkk+1

2l
k
k+1

)
≤ βn2(k + 1)lk+1

(
1− 0.9

lk+1

)1/(k+1)

log log u

≤ βn2(k + 1)

(
lk+1 −

1

3(k + 1)

)
log log u

= βn2(k + 1)lk+1 log log u− β

3
n2 log log u.

Plugging this bound into (3.14), and choosing β large enough, we conclude that
Qk+1(n, u) ≤ βn(k + 1)lk+1 log log u, as claimed.

Now we can finally prove the main result of this section.

Corollary 3.3.5. Let U ⊆ R3 be a u-point set in gcp. In O(u log u) time, we
can construct a data structure for convex hull queries with expected query time
O(n(log log u)2). The space needed is O(u(log log u)2), and if convU is available,
the preprocessing time reduces to O(u(log log u)2).

Proof. For k = 1
2

log log u, we have (log u)1/k � 1, and the result follows from
Theorem 3.3.1 and a repeated application of Theorem 3.3.4.

This immediately yields the improvement over Theorem 3.2.5 that we promised
at the beginning.

Corollary 3.3.6. Let P ⊆ R3 be an n-point set in gcp and c : P → {1, . . . , χ} a
coloring of P . Given convP , we can find conv c−1(1), . . . , conv c−1(χ) in expected
time O(n(log log n)2).

Proof. Given convP , build the structure from Corollary 3.3.5 in O(n(log log n)2)
time. Then perform a query for each color class. Since the color classes are disjoint,
the total time is O(n(log log n)2).

41

3.4 Points in halfspaces

We continue the investigation of the data structure problem by considering a special
case: colorings induced by halfspaces. Specifically, we would like to preprocess a
point set in gcp to report the convex hull of all the points inside a query halfspace.
In this case, the convex hull can be found in linear time, as long as the query set
contains Ω(log n) points. We base our approach on a data structure by Chan [36]
that uses filtering search [43]: first, it obtains a superset of the result with compa-
rable size (the candidate set), and then examines each point individually to find the
result. By storing not only the candidate sets, but also their convex hulls, we obtain
a data structure that reports the convex hull of the points in a query halfspace by
using SplitHull. We also show how to improve the preprocessing time over the
straightforward O(n log2 n).

Theorem 3.4.1. Let P ⊆ R3 be an n-point set in gcp. In O(n log n) time we
can build a randomized data structure of O(n log n) size to answer queries of the
following kind: given an oriented plane h, compute the convex hull of P ∩h+, where
h+ denotes the left halfspace of h. The expected query time is O(log n + k), where
k = |P ∩ h+| denotes the output size.

The main obstacle in improving the preprocessing time is this: given a sample
S ⊆ P , compute the convex hulls of the conflict sets Bf for f ∈ F [S]. In Sections 3.2
and 3.3, we modified the conflict sets to obtain a simple algorithm for this problem.
This is no longer possible, and we need a more sophisticated approach. Given a
plane h, let G(h) denote the induced subgraph of convP with vertex set P ∩h+ (ie,
G(h) has vertex set P ∩h+ and contains all edges of convP with both endpoints in
h+). Here are some simple facts about G(h) (eg, [45]); see Figure 3.8a.

Lemma 3.4.2. Let E be the set of edges in G(h) incident to a facet of convP
that intersects h. There exists a closed walk10 L along the edges in E such that L
separates G(h) from the rest of convP . Every edge e ∈ E occurs in L once or twice,
depending on whether e is incident to one or two such facets. It follows that G(h)
is connected. Given G(h), L can be found in time O(|V [G(h)]|).

Proof. Consider the intersection A of h and convP (interpreted as a subset of R3).
The set A is a two-dimensional convex polygon whose edges correspond to the facets
of convP that intersect h. Let F = f1, f2, . . . , fk be those facets in counterclockwise
order along A, and let F ′ = f ′1, f

′
2, . . . , f

′
k ⊆ F be the subsequence of facets that are

incident to an edge in E. Since consecutive facets in F ′ share an incident vertex in
P ∩ h+, the sequence F ′ induces a closed walk L along the edges in E. Every path

10In our terminology, a walk is an arbitrary sequence of adjacent vertices, whereas a path consists
of distinct vertices (except possibly the first and the last).

42

from a point in P ∩ h+ to a point in P ∩ h− has to cross a point incident to a facet
in F ′. Hence, L separates G(h) from the rest of convP . Furthermore, every edge in
E appears once in L for each incident facet in F ′. Finally, since consecutive edges
in L are consecutive in the cyclic order of edges around their common endpoint in
G(h), L can be computed in time linear in the size of G(h).

The walk L is called the lace of G(h); see Figure 3.8a. Knowing G(h) is enough
to compute conv (P ∩ h+) quickly.

Corollary 3.4.3. Given convP and G(h), we can compute conv (P ∩ h+) in time
O(|P ∩ h+|).

h
L

p q
Dp

Dq

(a) (b) (c)

Figure 3.8: The halfspace range reporting algorithm: (a) A lace: h+ corresponds
to the inside of the circle. The lace L is shown as a dashed line. (b) The three
stages of Corollary 3.4.3: Given G(h), find an intermediate polytope that contains
the result, and split it. (c) Finding the conflict facets for an edge. D{p,q} is darkest,
while Dp, Dq are lighter. Dp is bounded by dashed line segments, Dq by dotted line
segments.

Proof. The idea is to find an intermediate polytope P of complexity O(|P ∩ h+|)
whose vertices contain P ∩h+. This is done by computing (part of) the intersection
of convP with h+ and adding a few edges to ensure general position; see Figure 3.8b.
Using SplitHull, we extract conv (P ∩ h+) from P in the desired time.

Let L be the lace of G(h). By Lemma 3.4.2, L can be found in time O(|P ∩h+|)
from G(h). Let F = f1, . . . , fk be the sequence of facets in F [P] that are incident to
L and intersect h, where the ordering is according to L. The sequence F induces in
the plane h a sequence E of line segments whose endpoints are in convex position.
As the order of E corresponds to the convex hull order, we can compute the convex
hull C of E in linear time. Let V [C] and E[C] denote the vertices and edges of C.

We are now ready to construct the convex polytope P . The set of P ’s facets
consists of three disjoint parts, F1,F2, and F3: (i) F1 contains the facets of G(h);

43

(ii) for each line segment e ∈ E, F2 contains a quadrilateral facet spanned by e and
its corresponding edge ẽ in L.11 Furthermore, for each e ∈ E[C] \ E, F2 contains
a triangular facet fe spanned by e and the point in P ∩ h+ incident to the edges
whose intersections with h determine e; (iii) let Z be the unbounded prism with
base C that extends into h−. Pick a point q ∈ Z ∩ convP infinitesimally close to h.
F3 contains all facets spanned by q and an edge in E[C]. It is easily seen that the
facets in F1 ∪ F2 ∪ F3 are in convex position and bound a convex polytope P with
O(|P ∩ h+|) vertices. Since all the facets of P have bounded complexity, and since
all vertices in V [C] have bounded degree, we can perform a local perturbation of
V [C] to obtain a polytope P ′ in general position. Now we compute conv (P ∩ h+)
in time O(|V [P ′]|) = O(|P ∩ h+|) using SplitHull.

For Corollary 3.4.3, we need to compute all the graphs G(hf) for f ∈ F [S] (recall
that hf denotes the plane supporting f in convS).

Lemma 3.4.4. Let S ⊆ P be a random subset. Then the graphs G(hf) for f ∈ F [S]
can be computed in O(n) expected time.

Proof. By Lemma 2.2.4 the total size of the sets P ∩ h+
f and hence the total com-

plexity of the graphs G(hf) is O(n). Let e = (p, q) ∈ E[P], and let De = Dp ∩Dq

be the facets in conflict with both p and q. Note that e ∈ G(hf) precisely if f ∈ De.
We will compute the sets De for e ∈ E[P] and then use them to construct the
graphs G(hf). Let Te denote the graph on vertex set De where two vertices f1, f2

are adjacent if f1, f2 share an edge in convS that is destroyed in conv (S ∪ {p, q}).
Since Te is connected12, it suffices to compute one facet fe ∈ De (if it exists). The
remaining facets can be found by traversing Te.

We extend SubsetConflictWalk to find conflict facets of edges by changing
Step 2d as follows: when considering a neighbor q ∈ ΓP (p), we not only compute
the conflict facet fq, but also a conflict facet fe for the edge e = {p, q}, if it exists. To
do this, let Γp denote the simple polygon in convS that bounds the conflict region
of p. The facet f̃q ∈ F [S ∪ p] is adjacent to an edge eq on Γp, and q conflicts with
at least one facet in convS incident to eq. Let f1, f2 ∈ F [S] be the facets incident
to eq, where f1 conflicts with p while f2 does not. Now, if q conflicts with f1, we
set fq = fe = f1, otherwise, we set fq = f2 and fe = ⊥.13 This takes constant time,
and therefore the running time of the algorithm remains linear, as in the proof of
Lemma 3.2.3.

To prove correctness, we claim that if De 6= ∅, then f1 ∈ De. Indeed, let T
be the graph on vertex set Dp ∪ Dq, where two vertices g1, g2 of T are adjacent if

11That is, ẽ is the edge incident to the facet whose intersections with h create e.
12We define the empty graph to be connected.
13As is often done in the study of programming languages, we use ⊥ as a symbol for an undefined

value.

44

g1, g2 share an edge in E[S] that is destroyed in conv (S ∪ {p, q}). We have that
Te is a subgraph of T and that T is a tree (by convex position). Observe that eq
corresponds to the edge e∗q = {f1, f2} of T . Let T1 be the connected component of
T \ e∗q, with f1 ∈ T1. Note that Dp ⊆ V [T1]. Furthermore, at least one of f1, f2

is in conflict with q, hence Dq ∩ {f1, f2} 6= ∅. Since the induced subgraph of T on
vertex set Dq is connected, it follows that if V [T1] ∩ Dq 6= ∅, then Dq contains f1,
and hence f1 ∈ Dp ∩Dq = De, as desired.

Using the sets De, we can now compute a DCEL representation of the graphs
G(hf) in O(n) time through careful pointer manipulation (Algorithm 3.10).

Algorithm 3.10 Computing the subgraphs.
ComputeSubgraphs

1. For every e ∈ E[P], if fe 6= ⊥, use fe to compute De. For each f ∈ De create
records for the two half edges corresponding to e in G(hf).

2. For every point p ∈ P , use fp to find Dp. For each f ∈ Dp, create a record pf
corresponding to p in G(hf). Every facet in Dp has a pointer p which we set
to pf . For each incident edge e of p in cyclic order, iterate through all facets
f ∈ De. Use the pointer p of f to find the record pf corresponding to p in
G(hf) and add the appropriate half edge to the edge list of pf .

Proof of Theorem 3.4.1. We rely on a variant of Chan’s data structure [36] due to
Ramos [130]. The candidate sets are the conflict sets of an appropriate gradation
of P . By Corollary 3.4.3 and Lemma 3.4.4, we can find their convex hulls in time
O(n log n). To process a query, we extend the original query algorithm to use
SplitHull on the candidate set after coloring the points in h+ blue.

The details are as follows: take a gradation ∅ = P−1 ⊆ P0 ⊆ · · · ⊆ Plogn =
P , where Pi−1 is derived from Pi by sampling every point with probability 1/2.
We compute the convex hulls convPi in time O(n log n). Using Lemma 3.4.4 and
Corollary 3.4.3, we then find the convex hulls convBf for all the conflict sets Bf ,
f ∈ F [Pi], i = 0, . . . , log n. Since this takes O(n) time for each i, the total time is
O(n log n). Now we switch into dual space. For this, we use duality with respect
to the unit paraboloid which turns upper convex hulls into upper envelopes and
lower convex hulls into lower envelopes [122, Chapter 2.4.1]. We compute two data
structures, one for the upper envelope and one for the lower envelope, focusing
the discussion on the lower envelope. For each i = 0, . . . , log n, we find the set of
planes Hi dual to Pi and a canonical triangulation Ti of the lower envelope of Hi

(this takes linear time since we know convPi). Then we construct a point location
structure for the xy-projection of Ti. Every facet ∆ of Ti is incident to at most three

45

points of the lower envelope of Hi, corresponding to at most three facets f1, f2, f3

of convPi. Let B∆ = Bf1 ∪Bf2 ∪Bf3 . We compute convB∆ in linear time [45] and
store it with ∆. By the properties of canonical triangulations and the arguments
given by Chan [36], the preprocessing phase takes expected time O(n log n) and uses
expected space O(n log n). Then we repeat the process to obtain two independent
data structures D1, D2.

Now suppose that we are given a query plane h. We need to find all the planes
in H below h∗, the point dual to h. Let ` be the vertical line through h∗. Perform
the following procedure simultaneously on D1 and D2, until one of them yields
the answer: For i = log(n/ log n), log(n/ log n) − 1, . . . , 0, locate the facet ∆i of Ti
intersected by ` in O(log n) time with the point location structure. Stop when the
dual point h∗ lies below the lower envelope of Hi. Now find the planes in H below
h∗ by inspecting the conflict set B∆i

, and use SplitHull to compute conv (P ∩ h+)
in O(|B∆i

|) time. As was argued by Ramos [130, Section 2.2.1] such a query takes
expected time O(log n+ |P ∩ h+|), as claimed.

For completeness, we repeat the calculation here. Let Ei denote the event that
i is the largest index for which h∗ lies below the lower envelope of hi in either D1

or D2. The expected running time is

logn−log logn∑
i=0

((log n− log log n− i) log n+ E [|B∆i
| | Ei]) · Pr[Ei]. (3.15)

Let k = |P ∩ h+|. Note that E [|B∆i
| | Ei] = O(k+ n/2i), since by Lemma 2.2.6, we

have E [|B∆i
|] = O(n/2i), and the random choices for the points in P \ (P ∩h+) are

independent of Ei. Thus,

(3.15)�
log(n/ logn)∑

i=0

((
log

(
n

log n

)
− i
)

log n+ k +
n

2i

)
Pr[Ei]

� k +

log(n/ logn)∑
i=log(n/k)

((
log

(
n

log n

)
− i
)

log n+
n

2i

)
Pr[Ei]

+

log(n/k)−1∑
i=0

((
log

(
n

log n

)
− i
)

log n+
n

2i

)
Pr[Ei].

If k < log n, the first sum is zero. Otherwise, we get

log(n/ logn)∑
i=log(n/k)

((
log

(
n

log n

)
− i
)

log n+
n

2i

)
Pr[Ei]

≤ (log n) log

(
k

log n

)
+

∑
i≥log(n/k)

n

2i
� k.

46

(To see that log n · log(k/ log n) ≤ k, write k = α log n). To bound the second
sum, we observe that Pr[Ei] ≤ (k2i+1/n)2, because if Ei holds, then Pi+1 in both
data structures D1 and D2 must necessarily contain one of the at most k points in
P ∩ h+. We get

log(n/k)−1∑
i=0

((
log

(
n

log n

)
− i
)

log n+
n

2i

)
Pr[Ei]

≤ (log n) log

(
k

log n

)
+

log(n/k)−1∑
i=0

((
log
(n
k

)
− i
)

log n+
n

2i

)(k2i+1

n

)2

� k +

log(n/k)∑
j=1

(
j log n+ 2jk

)
2−2(j−1) � log n+ k,

as desired.

3.5 Few connected components

Finally, we consider colorings where the set of blue points has few connected com-
ponents in convP , and we will see that for this case we can get an algorithm which
almost runs in linear time, without any preprocessing. For this, we look at the prob-
lem DisjUnion, where the task is the following: given point sets P1, . . . , Pk ⊆ R3

and their convex hulls convP1,. . ., convPk such that convPi∩ convPj = ∅ for i 6= j

and such that P =
⋃k
i=1 Pi is in convex position, we would like to compute convP .

In general, we cannot do better than to repeatedly merge pairs of the hulls.

Theorem 3.5.1. Any algorithm that solves DisjUnion requires Ω(|P | log k) com-
parisons.

Proof. We use an old lower bound [45, Section 4A] and combine it with Seidel’s
method of including the index as a coordinate [137]. We reduce from the list merging
problem, in which k sorted lists of numbers need to be merged into one. We lift the
lists onto the unit paraboloid y = x2, using the z-coordinate to represent the index
of the list. Clearly, the lifting and the individual convex hulls, which are pairwise
disjoint, can be found in time O(n). A simple geometric argument now shows that
the merged list can be derived from the convex hull of the union in linear time; see
Figure 3.9.

More precisely, consider the problem ListMerge: given k sorted integer se-
quences L1, . . . , Lk, compute the sorted list L =

⋃k
i=1 Li. A straightforward count-

ing argument shows that any algorithm for ListMerge requires Ω(|L| log k) com-
parisons. We describe a linear time reduction from ListMerge to DisjUnion:

47

x

y

z

0

5

10

15

10

5

0
2
4

Figure 3.9: An illustration of the reduction from ListMerge to DisjUnion for
the 3 lists (5, 9, 12, 14), (1, 8), (2, 4, 6, 7, 10, 13), and (3, 11). The path marked by
the bold edges represents the merged list.

let Li = (r1, . . . , rj). We map Li to a point set Pi ⊆ R3 by mapping each rz to
p (rz) = (rz, r

2
z , i). All the points lie on the parabolic surface y = x2, and hence

P =
⋃k
i=1 Pi is in convex position. Furthermore, each Pi is contained in the plane

z = i, and hence convPi ∩ convPj = ∅ for i 6= j. The convPi can be computed in
linear time, since the lists Li are sorted.

If r, s are consecutive in the sorted list L, then p(r)p(s) is an edge of convP .
To see this, let p̂(r), p̂(s) denote the projections of p(r), p(s) onto the xy-plane, and
let h denote the plane orthogonal to the xy-plane that contains the line segment
p̂(r)p̂(s). By definition, h contains p(r) and p(s), and hence also the line segment
p(r)p(s). Furthermore, all other points of P are on the same side of h. For this, fix
i ∈ {1, . . . , k}, and consider the parabola Zi = x 7→ (x, x2, i). Clearly, h intersects
Zi in the points (r, r2, i) and (s, s2, i), cutting off the part of Zi between r and s.
Since r and s are consecutive in L, this part contains no points in Pi. It follows that
h supports the line segment p(r)p(s), making it an edge of convP . Consequently,
it takes Ω(|P | log k) time to compute convP , since otherwise we could recover the
sorted list L by examining the O(|P |) edges of convP .

Intuitively, what makes our lower bound instance hard is the fact that when merging
convPi, we need to switch often between the individual hulls in an unpredictable
way. We can avoid this by imposing additional constraints on the input, and thus
obtain a better result.

Theorem 3.5.2. Let Q ⊆ R3 be in gcp. Let P =
⋃k
i=1 Pi ⊆ Q with |P | = n such

that the Pi are pairwise disjoint and the subgraphs convQ|Pi are connected. Then,
given spanning trees T1, . . . , Tk for convQ|Pi, we can compute convP in expected
time O(n log∗ n+ k log k).

48

Proof. We use Seidel’s tracing technique [138]: pick a subset K ⊆ P that meets each
Ti in exactly one point, and an appropriate gradation S0 ⊆ · · · ⊆ Sβ = P \K with
β � log∗ n. Then compute conv (S0 ∪K) in time O(n + k log k) and successively
each conv (Si ∪K) in O(n). Here, the bottleneck is to locate the conflict facets for
Si+1 in conv(Si ∪K). This is done using the spanning trees Ti and an appropriate
variant of SubsetConflictWalk.

We may assume that k < n/2, since otherwise the theorem is easy. Let K ⊆
P such that K contains exactly one point of each Pi, and let m = n − k. Let
z = max{k,m/ logm} and choose 1 ≤ α ≤ log∗m such that m/ log(α−1)m <
z ≤ m/ log(α) m, where log(i) m denotes the i-th iterated logarithm14 of m. Let
β = log∗m−α+1. Compute a gradation of subsets S0 ⊆ · · · ⊆ Sβ = P \K, such that

Si is a random subset of Si+1 with |S0| = z and |Si+1| = |Si| log(α+i) m/ log(α+i+1) m
for 0 ≤ i < β. By induction, it follows that |Si| ≤ m/ log(α+i). For i = 0, . . . , β,

let S̃i = Si ∪ K. We will show how to compute conv S̃i+1 from conv S̃i in time
O(n) for each i. Furthermore, conv S̃0 can be computed in time O(n+ k log k) with
a regular convex hull algorithm, as |S0 ∪ K| = O(n/ log n + k). Hence, it takes

O(n log∗ n+ k log k) steps to compute convQ = conv S̃β.

To derive conv S̃i+1 from conv S̃i we proceed in two steps: first, we determine
the conflict sets Bf for f ∈ F [S̃i]. Below, we will argue that this can be done in

linear time. Then, we use the algorithm from Lemma 2.2.5 to compute conv S̃i+1.
This takes time proportional to

(
|Si+1|+ k

|Si+1|
|Si|

)
log
|Si+1|
|Si|

≤ 2|Si+1| log

(
log(α+i) m

log(α+i+1) m

)

� m

log(α+i+1)m
log

(
log(α+i)m

log(α+i+1) m

)
,

since k ≤ |S0| ≤ |Si|. The last term is O(n), as claimed.
It remains to show how to find the conflict sets Bf in time O(n). For each

j = 1, . . . , k, we determine conflict facets for Pj as follows: let rj = Pj ∩K. We use

a variant of SubsetConflictWalk: merge the neighbors of rj in conv S̃i with the
neighbors ΓTj(rj) of rj in Tj in order to find a conflict facet fp for each p ∈ ΓTj(rj).
Then continue in a BFS-manner along Tj, inserting in turn each p ∈ ΓTj(rj) into

conv S̃i, and so on. As in Section 3.2, we see that the total time is proportional to

∑
p∈S̃i

degS̃i p+
k∑
j=1

∑
p∈Tj

degTj p+
∑

p∈P\Si

dp � |S̃i|+|P |+
∑

f∈F [S̃i]

bf � |P |+n−k+k
|Si+1|
|Si|

,

14Defined by log(0)m = m and log(k)m = max{1, log(log(k−1)m)} for k ≥ 1.

49

by Lemma 2.2.4. Since k ≤ |Si| and |Si+i| ≤ n, the last term is linear. This finishes
the proof.

For our original question, this means that we can quickly compute the blue hull
without considering the whole polytope, as long as the number of induced blue
components is small.

Corollary 3.5.3. Let P ⊆ R3 be a finite point set in gcp, and let B be a subgraph
of convP with n vertices. Then conv V [B] can be computed in time O(n log∗ n +
k log k), where k denotes the number of connected components of B.

Proof. This follows immediately from Theorem 3.5.2. GivenB, we can find spanning
trees for its components in O(n) time, using, say, depth-first search [61].

In particular, we get the following nice fact about Delaunay triangulations, which
proved a Delaunay analogue to an old result by Bar-Yehuda and Chazelle [19].

Corollary 3.5.4. Let T = (V,E) be a Delaunay triangulation and let S ⊆ T be a
set of n vertices and edges of T with k connected components. Then the Delaunay
triangulation of S can be computed in time O(n log∗ n+ k log k).

Proof. Use Corollary 3.5.3 and the connection between planar Delaunay triangula-
tions and three-dimensional convex hulls.

50

Chapter 4

Interlude: Self-Improving
Algorithms

Next, we shall explore how the methods developed in Chapter 3 can be used to
simplify the analysis of a self-improving algorithm for Delaunay triangulations by
Clarkson and Seshadhri [58]. Before we begin, let us explain what self-improving
algorithms are and what is known about them.

Self-improving algorithms. The notion of self-improving algorithms was first
introduced by Ailon et al. [4] in order to address shortcomings of the traditional
average-case analysis of algorithms. Suppose we want to process a sequence of
instances I1, I2, . . . of a certain computational problem, and we know that the in-
stances Ij are drawn independently according to some distribution D. The goal is
to design an algorithm that somehow takes advantage of the structure offered by
D in order to achieve improved performance. If we knew D, we could try to tailor
a special algorithm to D and to prove better bounds for its running time. This is
what usually happens in average case analysis. But what should we do if D is not
known? The self-improving paradigm offers a solution: for the first few instances,
the algorithm runs in its vanilla version and gives only the usual worst-case perfor-
mance. But over time, it becomes acquainted with D and adapts itself accordingly,
until eventually the algorithm becomes optimal for D. Ailon et al. [4] designed such
an algorithm for the sorting problem: suppose D =

∏n
i=1Di,1 where each Di is a

distribution on R, and let ε ∈ (0, 1] be any constant. Then there is an algorithm
for sorting instances drawn from D that needs O(n log n) steps for the first nε in-
stances, and after that runs in optimal time O(ε−1(n+H(D))), where H(D) is the
entropy of the distribution that D induces on the set of permutations of {1, . . . n}.
The space requirement is O(n1+ε), and surprisingly this trade-off between space and

1D is a product distribution, which means the elements of each input are drawn independently
of each other.

51

running time is best possible. Subsequently, Clarkson and Seshadhri [58] general-
ized this result to planar Delaunay triangulations. We shall give a brief description
of their algorithm below and show a quick way to analyze it using the techniques
we developed in Chapter 3.

4.1 Algorithm

Let D =
∏n

i=1Di, where each Di is a (not necessarily discrete) distribution on R2.
Consider a sequence I1, I2, . . . of instances, where each Ij is drawn independently
according to D. That is, each Ij is a sequence of n points in the plane, and the
i-th point in Ij is sampled independently according to Di. The goal is to compute
the Delaunay triangulations DT(I1),DT(I2), . . . in an optimal way. Namely, let
H(D) denote the entropy of the distribution on labeled graphs that is induced by
DT(I), I ∈D (R2)n. Fix a constant ε ∈ (0, 1]. Clarkson and Seshadhri [58] showed
that there exists an algorithm that after nε rounds achieves an optimal expected
running time of O(ε−1(n+H(D))), using space O(n1+ε).

The algorithm operates in two phases: during the learning phase, DT(I) is
computed in O(n log n) time, using a standard method [23]. At the same time,
the algorithm records useful information and builds appropriate data structures to
prepare for the limiting phase, in which the inputs are processed in a way that is
optimally tailored to D.

Learning Phase. After the first log n instances I1, . . . , Ilogn, the algorithm de-

termines Î =
⋃logn
j=1 Ij. Then it finds a (1/ log n)-net V ⊆ Î for Î with respect to

open disks [60]. Specifically, V is a subset of Î with the following properties: (i)
|V | = O(n); and (ii) for every planar open disk D with |D ∩ Î| ≥ log n, we have
D ∩ V 6= ∅. Next, the algorithm computes DT(V) and stores it. Then it uses
the following nε rounds to learn approximately the distributions D1, . . . ,Dn, and to
build approximate entropy-optimal point location structures T1, . . . , Tn for DT(V),
where Tj is optimal with respect to Dj. Each of these structures needs O(nε) space
and ensures that a point xi ∈Di R2 can be located in DT(V) in expected time
O(ε−1HV (Di)), where HV (Di) denotes the entropy of the distribution on the trian-
gles of DT(V) induced by Di [15,16]. By distributing the work over the nε rounds,
we can ensure that each of them needs O(n log n) steps, as desired.

Limiting Phase. Let I = (x1, . . . , xn) be a problem instance in the limiting
phase. We handle I as follows: for each xi, we use Ti to find the triangle of DT(V)
containing xi. Then we walk along Ti to find the set of triangles Di that have
xi in their (open) circumcircle. Having done this for all points, we determine for
each triangle f in DT(V) the set Bf ⊆ I of points inside its circumcircle, its

52

conflict set. Using the connection between planar DTs and convex hulls in R3, and
Lemma 2.2.5, we can find DT(V ∪ S) in time O

(∑
f∈F [V] bf log bf

)
, where F [V]

denotes the triangles of DT(V) and bf = |Bf |.2 Finally, we use Theorem 3.1.1 (or
the previous algorithm by Chazelle et al. [47]) to obtain DT(I) in O(n) time. All
in all, this takes expected time O

(
ε−1
∑n

i=1H
V (Di) +

∑
f∈F [V] bf log bf + n

)
, where

the first term bounds the expected point-location time. In the next section we shall
show that this is indeed optimal.

4.2 Analysis

To begin, we need to show that DT(V) in fact represents a “typical” problem
instance. For this, we prove that with high probability over V , the expected conflict
size for each triangle in DT(V) is constant [58, Claim 2.1].

Claim 4.2.1. With probability at least 1 − 1/n3 over V , we have E [bf] � 1 and
E [b2

f]� 1 for all triangles f in DT(V).

Proof. Write Î = s1, . . . , sn logn, the concatenation of I1, . . . , Ilogn. Let f be the
triangle given by s1, s2, s3, and let Cf be f ’s circumcircle. For j ∈ {4, . . . , n log n},
denote by Y

(f)
j the indicator random variable for the event sj ∈ Cf . Note that all

the Y
(f)
j are independent of each other. Let Y (f) =

∑n
j=4 Y

(f)
j , the conflict size of

f . By independence and the Chernoff bound [119, Theorem 4.2], for any β ∈ [0, 1],

Pr
[
Y (f) < (1− β)E

[
Y (f)

]]
≤ exp

(
−β2E

[
Y (f)

]
/2
)
.

Setting β = 13/14, we see that if E [Y (f)] > 14 log n, then Y (f) > log n with
probability at least 1 − n−6. By applying the above argument to any triangle fu
generated by some triple u of distinct points in Î3, and taking a union bound, it
follows that with probability at least 1 − n−3, for any triangle f generated by a
triple of distinct points in Î, we have that

if Y (f) ≤ log n, then E [Y (f)] ≤ 14 log n. (4.1)

From now on, we assume that this event happens.
Now let f be a triangle in DT(V), and Cf be its circumcircle. Since V is a (1/n)-

net for Î with respect to open disks, Cf contains less than log n points of Î, ie, Y (f) <
log n. Thus, (4.1) implies E [Y (f)]� log n. Now, since E [Y (f)] ≥ (log n− 3)E [bf],
we get E [bf]� 1, as claimed. To get the bound on E [b2

f], note that bf is a sum of
independent nonnegative random variables, and apply the following claim:

2Specifically, the parameters for Lemma 2.2.5 are as follows: P = V ∪ I, p = n/(|V |+ n)� 1,
S = V , and K = ∅.

53

Claim 4.2.2. Let Z =
∑

i Zi be a sum of independent nonnegative random variables
with Zi � 1 for all i and E [Z]� 1. Then E [Z2]� 1.

Proof. By linearity of expectation,

E [Z2] = E
[(∑

i

Zi
)2]

=
∑
i

E [Z2
i] + 2

∑
i<j

E [Zi]E [Zj]

�
∑
i

E [Zi] +
(∑

i

E [Zi]
)2 � 1,

as desired.

This finishes the proof of Claim 4.2.1.

Using Claim 4.2.1, we can immediately bound the term
∑

f∈F [V] bf log bf .

Lemma 4.2.3. We have E
[∑

f∈F [V] bf log bf
]
� n.

Proof. Since bf log bf � b2
f ,

E

 ∑
f∈F [V]

bf log bf

� ∑
f∈F [V]

E
[
b2
f

]
� |F [V]| � n,

by Claim 4.2.1 and because |V | � n.

It remains to bound the sum
∑n

i=1 H
V (Di). More specifically, we would like

to show that this entropy is upperbounded by H(D), which is the entropy of the
distribution that DT(I), I ∈D (R2)n, induces on the set of labeled graphs with n
vertices. For this, we need to find a way to relate these two entropies. First, let
F = (f1, . . . , fn) be the random variable that assigns to each input xi ∈ I the facet
fi that contains it. The next claim, which is a standard fact about the joint entropy
of independent random variables, shows that H(F) =

∑n
i=1 H

V (Di).
Claim 4.2.4. Let H(Z1, . . . , Zn) be the joint entropy of independent random vari-
ables Z1, . . . , Zn. Then H(Z1, . . . , Zn) =

∑
iH(Zi).

Proof. This follows by an inductive application of the binary chain rule H(X, Y) =
H(X | Y) + H(Y), and the fact that H(X | Y) = H(X) for independent random
variables X and Y . Here, H(X | Y) is the conditional entropy defined as H(X |
Y) =

∑
y Pr[Y = y]H(X | Y = y).

Hence, we need to bound H(F) in terms of H(D). The next claim, which
is implicit in Clarkson and Seshadhri [58] and was stated formally in a follow-
up version of their paper [3], demonstrates that we can do this by designing an
appropriate algorithm.

54

Claim 4.2.5. Let D be a distribution on a universe U , and let X : U → X and
Y : U → Y be two random variables. Suppose that the function f : U ×X(U)→ Y
defined by f : (I,X(I)) 7→ Y (I) can be computed with O(n) expected comparisons
(where the expectation is over D). Then H(Y) = O(n + H(X)), where all the
entropies are with respect to D.

Proof. By a classic result from information theory (eg, [62, Theorem 5.4.1]), any
unique encoding s : X(U) → {0, 1}∗ of X(U) has an expected code length of
ED[|s(X(I))|] ≥ H(X), and there exists an encoding s∗ that has expected code
length O(H(X)). Using f , this can be converted into an encoding t of Y (U). Indeed,
for every I, Y (I) can be uniquely identified using s∗(X(I)) and additional bits that
represent the outcomes of the comparisons for the computation of f(I,X(I)). By
taking a shortest such string for each element of Y (U), we obtain a unique encoding
t for Y (U) with excepted code length ED[|t(Y (I))|] = O(n + ED[|s(X(I))|]) =
O(n+H(X)). Since any encoding of Y (U) has expected code length at least H(Y),
the claim follows.

Hence, in order to achieve the desired entropy bound, we only need to design an
algorithm that given DT(I) computes F = (f1, . . . , fn) by determining for each
xi ∈ I the triangle fi of DT(V) that contains it. Clarkson and Seshadhri do
this by giving a delicate multistage algorithm with a subtle analysis, but using
SubsetConflictWalk from Chapter 3, the result becomes almost immediate.

Claim 4.2.6. There exists an algorithm that given DT(V) and DT(I) finds for each
xi ∈ I the triangle of DT(V) that contains it, with a total expected number of O(n)
comparisons.

Proof. First, find DT(V ∪I) in O(n) time, using an algorithm by Chazelle [45]. Then
use the connection between planar DTs and convex hulls in R3 and the algorithm
SubsetConflictWalk (Algorithm 3.3) to find for each xi ∈ I the triangle containing
it. By the proof of Lemma 3.2.3, SubsetConflictWalk takes time proportional to∑

f∈F [V] bf � n, by Claim 4.2.1. This finishes the proof.

Now we have all the ingredients for the desired entropy bound.

Lemma 4.2.7. We have
∑

iH
V (Di)� n+H(D).

Proof. As defined above, let F = (f1, . . . , fn) be the random variable that assigns
to xi ∈ I the triangle fi ∈ F [V] that contains it. By Clam 4.2.4,

∑
iH

V (Di) =
H(F). Next, consider the function f : (I,DT(I)) 7→ F (I). By Claim 4.2.6, f
can be computed with O(n) expected comparisons. So, by Claim 4.2.5, we have
H(F)� n+H(D), as desired.

Hence, we have shown that the algorithm from Section 4.1 is indeed an optimal
self-improving algorithm for Delaunay triangulations.

55

Theorem 4.2.8. After a learning phase of nε rounds and using space n1+ε, the
algorithm from Section 4.1 achieves the following guarantee: with probability at least
1− n−3 over the learning phase, the expected running time per instance I ∈D (R2)n

is O(ε−1(n+H(D))).

Proof. The bounds on the length of the learning phase and on the space usage
where already justified in Section 4.1. There, we also saw that the expected running
time in the limiting phase is O

(
ε−1
∑n

i=1H
V (Di) +

∑
f∈F [V] bf log bf +n

)
, which by

Lemmas 4.2.3 and 4.2.7 is O(ε−1(n+H(D))) with probability at least 1− n−3 over
the learning phase.

56

Chapter 5

Transdichotomous Delaunay
Triangulations

We now turn to the structure offered by transdichotomous models, a term coined by
Fredman and Willard [80,81]. Sorting n numbers takes Ω(n log n) time—and yet, as
we already discussed in Chapter 1, this lower bound can often be broken by going
beyond the comparison based model. In that model, each step can distinguish only
between two different outcomes: either a predicate holds, or it does not hold; the
model is therefore dichotomous.1 By using methods such as table lookup or bit-
level operations, however, we can implement decisions with more than two possible
outcomes; therefore, models that use these operations are transdichotomous.2 Under
the right assumptions, radix sort and bucket sort run in linear time [61]. Using
van Emde Boas (vEB) trees [71, 72], we can sort n elements from a universe U
in O(n log log |U |) time on a pointer machine. In a transdichotomous model, we
can surpass the sorting lower bound with fusion trees, achieving O(n

√
log n) time.

Fusion trees were introduced in 1990 by Fredman and Willard [80] and triggered
off a development (see, for example, [11, 87, 88, 129, 144]) that culminated in the
O(n
√

log log n) time integer sorting algorithm by Han and Thorup [88]. For small
and large word sizes (that is, for word size w � log n or w � log2+ε n), we can even
sort in linear time (via radix sort [61], resp. signature sort [11]).

In computational geometry, there have been many results that use vEB trees
or similar structures to overcome traditional lower bounds (eg, [10,25,50,92,96,97,
126]). However, these results assume that the input is rectilinear or can be efficiently
approximated by a rectilinear structure, such as, for example, a quadtree. In this
sense, the above results are all orthogonal. Similarly, Willard [149] applied fusion

1The Oxford English Dictionary (OED) defines dichotomy as the “division of a whole into two
parts”.

2According to the OED, the prefix trans– can mean “across, through, over, to or on the other
side of, beyond, outside of”.

57

trees to achieve better bounds for orthogonal range searching, axis-parallel rectangle
intersection, and others. Again, his results are all orthogonal, and he asked whether
improved bounds can be attained for Voronoi diagrams. The breakthrough came
in 2006, when Chan and Pǎtraşcu [40] discovered transdichotomous algorithms for
point location in non-orthogonal planar subdivisions. This led to better bounds
for many classic computational geometry problems. In a follow-up paper [41], they
considered off-line planar point location and thereby improved the running time for
Delaunay triangulations, three-dimensional convex hulls, and other problems. The
running time is a rather unusual n2O(

√
log logn), which raises the question whether

the result is optimal. More generally, Chan and Pǎtraşcu asked if the approach via
point location is inherent, or if there are more direct algorithms for convex hulls or
Delaunay triangulations.

One of the main results of this chapter will be that for Delaunay triangulations
(DTs), we can indeed do better. For this, we will describe a randomized reduction
from DTs to nearest-neighbor graphs (NNGs).3 Our method uses a new variant
of the classic randomized incremental construction (RIC) paradigm [9,59,122] that
relies on dependent sampling for faster conflict location. If NNGs can be computed
in linear time, the running time of our reduction is proportional to the structural
change of a standard RIC, which is always linear for planar point sets and also
in many other cases, eg, point sets suitably sampled from a (d − 1)-dimensional
polyhedron in Rd [8, 17].4 The algorithm is relatively simple and works in any
dimension, but the analysis turns out to be rather subtle. It is a well-known fact
that given a quadtree for a point set, its nearest-neighbor graph can be computed
in linear time [35, 39, 54]. This leads to the main take-away message from this
chapter: Given a quadtree for a point set P ⊆ Rd, we can compute the Delaunay
triangulation of P , DT(P), in time proportional to the expected structural change of
a RIC. This constitutes an improvement over classic RICs whenever the expected
structural change is low (ie, o(n log n)), because in that case a classic RIC would
incur an Ω(n log n) overhead to maintain the conflict lists, which we now avoid.
This connection between quadtrees and DTs may be surprising, since even though
DTs appear to be inherently non-orthogonal, we actually need only the information
encoded in quadtrees, a highly orthogonal structure. We use this idea to obtain
several results.

• DTs on a word RAM. We answer Willard’s seventeen-year-old open ques-
tion by showing that planar DTs, and hence planar Voronoi diagrams and

3Given a point set P ⊆ Rd, the nearest-neighbor graph of P , NN(P), it the undirected graph
with vertex set P that contains an edge between every point p ∈ P and its nearest neighbor in
P \ p, ie, the point q ∈ P \ p that minimizes ‖p− q‖2 (by general position, we may assume that q
is unique).

4The bound in the references is only proved for the complexity of the final DT, but we believe
that it can be extended to the structural change of a RIC.

58

related structures like Euclidean minimum spanning trees, can be computed
in time O(sort(n)) on a word RAM.5 As given, our algorithm requires one
non-standard, but AC0, operation, the shuffle. However, in Section 5.3 we
show how to remove this assumption by giving a slightly weaker O(n log log n)
time algorithm for transdichotomous planar DTs. This is done by adapting
the (comparatively simple) O(n log log n) sorting algorithm by Andersson et
al. [11].

• DTs from a fixed universe. We can preprocess a point set U ⊆ Rd such
that for any subset P ⊆ U , it takes O(|P | log log |U | + C(P)) time to find
DT(P). Here, C(P) denotes the expected structural change of a RIC on P .

• DTs for presorted point sets. Since a planar quadtree can be computed
by an algebraic computation tree (ACT) [14] of linear depth once the points
are sorted according to the x- and y-direction, we find that after presorting
in two orthogonal directions, a planar DT can be computed by an ACT of
expected linear depth. This should be compared with the fact that there is
an Ω(n log n) lower bound when the points are sorted in one direction [67],
and also for convex hulls in R3 when the points are sorted in any constant
number of directions [137]. This problem has appeared in the literature for
at least twenty years [1, 50, 67]. Our result seems to mark the first non-
trivial progress on this question, and it shows that unlike for convex hulls
and point sets sorted in one direction, a Ben-Or style lower bound in the
algebraic decision tree model [22] does not exist. However, we do not know if
a quadtree for presorted points can indeed be constructed in linear time, since
the algorithms we know still need an Ω(n log n) overhead for data handling. It
would be interesting to see if there is a connection to the notorious Sorting
X + Y problem [79], which seems to exhibit a similar behavior.

In the next chapter, we will see another application of your reduction, namely for
restricted point sets.

The shuffle operation. In the following sections, we will consider several differ-
ent computational models, and we refer the reader to Section 2.3 for more back-
ground. In particular, for our transdichotomous result, we will extend the stan-
dard word RAM from Section 2.3 by one nonstandard operation: given a point
p ∈ Rd with w-bit coordinates p1w . . . p12p11, p2w . . . p21, . . ., pdw . . . pd1, the result of
shuffle(p) is the dw-bit word p1wp2w . . . pdw . . . p12 . . . pd2p11 . . . pd1, see Figure 5.1.
Clearly, shuffle is in AC0, and we assume that it takes constant time on our RAM.
In Section 5.3, we shall explain how this assumption can be dropped.

5sort(n) is the time needed to sort n words. The currently best known bound depends on the
word size w of the word RAM, but is never more than O(n

√
log log n) [88].

59

p13 p11p12p14p15

p23 p21

p22p24p25 p31p32p33p34p35

p13 p11p12p14p15

p23 p21

p22p24p25 p31p32p33p34p35

Figure 5.1: The shuffle-operation for a 3-dimensional point with 5-bit coordinates.

5.1 From nearest-neighbor graphs to Delaunay

triangulations

We now describe our reduction from nearest-neighbor graphs (NNGs) to Delaunay
triangulations (DTs). This is done by a randomized algorithm which we call BrioDC,
which stands for Biased Random Insertion Order with Dependent Choices. Please
consider Algorithm 5.1.

Algorithm 5.1 Reducing Delaunay triangulations to nearest-neighbor graphs.

BrioDC(P)

1. If |P | = O(1), compute DT(P) directly and return.

2. Compute NN(P), the nearest-neighbor graph for P .

3. Let S ⊆ P be a random sample such that (i) S meets every connected com-
ponent of NN(P) and (ii) Pr[p ∈ S] = 1/2, for all p ∈ P .

4. Call BrioDC(S) to compute DT(S).

5. Compute DT(P) by inserting the points in P \ S into DT(S), using NN(P)
as a guide.

The algorithm is similar to the one described in Theorem 3.3.3 from Chapter 3.
To find S in Step 3, we define a partial matching M(P) on P by pairing up two
arbitrary points in each component of NN(P), the nearest-neighbor graph of P .
Then, S is obtained by picking one random point from each pair in M(P) and
sampling the points in P \ M(P) independently with probability 1/2 (although
they could also be paired up). In Step 5, we successively insert the points from
P \ S as follows: pick a point p ∈ P \ S that has not been inserted yet and is
adjacent in NN(P) to a point q in the current DT. Such a point always exists by the

60

definition of S. Walk along the edge qp to locate p in the current DT, and insert it.
Repeat until all of P has been processed. The algorithm is illustrated in Figure 5.2.

NN(P) the sample S DT(S) DT(P)

Figure 5.2: The algorithm BrioDC: the edges of M(P) are shown dashed, the re-
maining edges of NN(P) are solid.

Theorem 5.1.1. Suppose the nearest-neighbor graph of an m-point set can be found
in f(m) time, where f(m)/m is increasing. Let P ⊆ Rd be an n-point set. The
expected running time of BrioDC is O(C(P) + f(n)), where C(P) is the expected
structural change of a RIC on P . The constant in the O-notation depends exponen-
tially on d.

Let P = S0 ⊇ · · · ⊇ S` be the sequence of samples taken by BrioDC. Fix a set u
of d+ 1 distinct points in P . Let ∆ be the simplex spanned by u, and let Bu ⊆ P
denote the points inside ∆’s circumsphere. We call u the trigger set and Bu the
conflict set for ∆. The elements of Bu are called stoppers. Consider the event
Aα that ∆ occurs during the construction of DT(Sα) from DT(Sα+1), for some α.
Clearly, Aα can only happen if u ⊆ Sα and Bu∩Sα+1 = ∅. To prove Theorem 5.1.1,
we bound Pr[Aα].

Lemma 5.1.2. We have

Pr[Aα] ≤ e2d+2 2−(d+1)α
(
1− 2−α−1

)|Bu|
.

We visualize the sampling process as follows [119, Chapter 1.4]: imagine a parti-
cle that moves at discrete time steps on the nonnegative x-axis and always occupies
integer points. Please refer to Figure 5.3. The particle starts at position |Bu|, and
after β steps, it is at position |Sβ ∩ Bu|, the number of stoppers in the current
sample. The goal is to upperbound the probability of reaching 0 in α + 1 steps
while retaining all triggers. However, the random choices in a step not only depend
on the current position, but also on the matching M(S). Even worse, the prob-
ability distribution in the current position may depend on the previous positions
of the particle. We avoid these issues through appropriate conditioning and show
that the random walk essentially behaves like a Markov process that in each round
eliminates d + 1 stoppers and samples the remaining stoppers independently. The
elimination is due to trigger-stopper pairs in M(S), since we want all triggers to

61

survive. The remaining stoppers are not necessarily independent, but dependencies
can only help, because in each stopper-stopper pair one stopper is guaranteed to
survive. Eliminating d + 1 stoppers in the ith step has a similar effect as starting
with about (d + 1)2i fewer stoppers: though a given trigger can be matched with
only one stopper per round, these pairings can vary for different instances of the
walk, and since a given stopper survives a round with probability roughly 1/2, the
“amount” of stoppers eliminated by one trigger in all instances roughly doubles per
round.

0 1 |Bu||Bu ∩ S1||Bu ∩ S2| s

ps,k

(a) (b)
0

Figure 5.3: (a) We visualize the sampling process as a particle moving on the
positive x-axis from |Lu| towards 0; (b) ps,k roughly corresponds to the probability
of reaching 0 from s in k steps, while retaining all the triggers. We use appropriate
conditioning in order to deal with the dependencies between the different events.

Proof of Lemma 5.1.2. For S ⊆ P , let the matching profile for S be the triple
(a, b, c) ∈ N3

0 that counts the number of trigger-stopper, stopper-stopper, and
trigger-trigger pairs in M(S). We consider

ps,k = max
Pk

Pr[Aα | Xs,k,Pk], (5.1)

where Xs,k = {u ⊆ Sα−k} ∩ {|Bu ∩ Sα−k| = s} is the event that the sample Sα−k
contains all triggers and exactly s stoppers. The maximum in (5.1) is taken over all
possible sequences Pk = m0, . . ., mα−k−1, Y0, . . ., Yα−k−1 of matching profiles mi for
Si and events Yi of the form Xti,α−i for some ti. Since Pr[Aα] = p|Bu|,α, it suffices to
upperbound ps,k. We describe a recursion for ps,k. For that, let Tk = {u ⊆ Sα−k}
be the event that Sα−k contains all the triggers, and let Uk,i = {|Bu ∩ Sα−k| = i}
denote the event that Sα−k contains exactly i stoppers.

Proposition 5.1.3. We have

ps,k ≤ max
m

Pr[Tk−1 | Xs,k,m] ·
s∑
i=0

pi,k−1 Pr[Uk−1,i | Tk−1, Xs,k,m],

where the maximum is over all possible matching profiles m = (a, b, c) for Sα−k.

62

Proof. Fix a sequence Pk as in (5.1). Then, by distinguishing how many stoppers
are present in Sα−k+1,

Pr[Aα | Xs,k,Pk] =
s∑
i=0

Pr[Xi,k−1 | Xs,k,Pk] Pr[Aα | Xi,k−1, Xs,k,Pk].

Now if we condition on a matching profile m for Sα−k, we get

Pr[Xi,k−1 | Xs,k,Pk,m] = Pr[Tk−1 | Xs,k,m] Pr[Uk−1,i | Tk−1, Xs,k,m],

since the distribution of triggers and stoppers in Sα−k+1 becomes independent of
Pk once we know the matching profile and the number of triggers and stoppers in
Sα−k. Furthermore,

Pr[Aα | Xi,k−1,m, Xs,k,Pk] ≤ max
Pk+1

Pr[Aα | Xi,k−1,Pk+1] = pi,k−1.

The claim follows by taking the maximum over m.

We use Proposition 5.1.3 to bound ps,k: if m = (a, b, c) pairs up two triggers,
we get u 6⊆ Sα−k+1 and Pr[Tk−1 | Xs,k,m] = 0. Hence we can assume c = 0 and
therefore Pr[Tk−1 | Xs,k,m] = 1/2d+1, since all triggers are sampled independently.
Furthermore, none of the a stoppers paired with a trigger and half of the 2b stoppers
paired with a stopper end up in Sα−k+1, while the remaining tm = s−a−2b stoppers
are sampled independently. Thus, Proposition 5.1.3 gives

ps,k ≤ max
m
c=0

s−a−b∑
i=b

pi,k−1

2d+1
Pr
[
Btm

1/2 = i− b
]
, (5.2)

where Btm
1/2 denotes a binomial distribution with tm trials and success probability

1/2.

Proposition 5.1.4. We have

ps,k ≤ 2−(d+1)k
(
1− 2−k−1

)s k∏
j=1

(
1− 2−j

)−d−1
.

Proof. The proof is by induction on k. For k = 0, we have ps,0 ≤ (1− 1/2)s , since
we require that none of the s stoppers in Sα be present in Sα+1, and this can only
happen if they are sampled independently of each other. Furthermore, by (5.2),

ps,k+1 ≤ max
m
c=0

s−a−b∑
i=b

pi,k
2d+1

Pr
[
Btm

1/2 = i− b
]

= max
m
c=0

1

2d+1+tm

tm∑
i=0

(
tm
i

)
pi+b,k. (5.3)

63

Using the inductive hypothesis and the binomial theorem, we bound the sum as

tm∑
i=0

(
tm
i

)
pi+b,k ≤

∑tm
i=0

(
tm
i

) (
1− 2−k−1

)i+b
2(d+1)k

k∏
j=1

(
1− 2−j

)−d−1

=

(
2− 2−k−1

)tm
2(d+1)k

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1

=

(
1− 2−k−2

)tm
2(d+1)k−tm

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1
.

Now, since tm = s− a− 2b ≥ s− d− 1− 2b and since(
1− 2−k−1

)b
(1− 2−k−2)2b

=

(
1− 2−k−1

1− 2−k−1 + 2−2k−4

)b
≤ 1,

it follows that

tm∑
i=0

(
tm
i

)
pi+b,k ≤

(
1− 2−k−2

)s
2(d+1)k−tm

k+1∏
j=1

(
1− 2−j

)−d−1
,

and hence (5.3) gives

ps,k+1 ≤
(
1− 2−k−2

)s
2(d+1)(k+1)

k+1∏
j=1

(
1− 2−j

)−d−1
,

which finishes the induction.

Now, since 1− x ≥ exp(x/(x− 1)) for x < 1 we have

k∏
j=1

(1− 2−j)−d−1 ≤ exp

(
2(d+ 1)

∞∑
j=1

2−j

)
= e2(d+1),

so we get
Pr[Aα] ≤ p|Bu|,α ≤ e2d+22−(d+1)α(1− 2−α−1)|Bu|,

which proves Lemma 5.1.2.

Proof of Theorem 5.1.1. Since f(m)/m increases, the expected cost to compute the
NNGs for all the samples is O(n). Furthermore, the cost of tracing an edge pq of
NN(P), where p is in the current DT and q will be inserted next consists of (a)
the cost of finding the starting simplex at p and (b) the cost of walking through
the DT. Part (a) can be bounded by the degree of p in the current DT. In total,

64

any simplex appears at most as often as the total degree of its vertices in NN(P),
which is constant [116, Corollary 3.2.3]. Hence, (a) is proportional to the structural
change. The same holds for (b), since every traversed simplex will be destroyed
when the next point is inserted.

It is now sufficient to show that the probability that the simplex spanned by
u ⊆ P occurs in BrioDC is asymptotically upperbounded by the corresponding prob-
ability in a RIC. In the case of BrioDC, this probability is bounded by

∑∞
α=0 Pr[Aα].

Performing an analysis similar to Buchin [34, Theorem 3.8], and writing bu = |Bu|,
we have by Lemma 5.1.2,

∞∑
α=0

Pr[Aα]�
∞∑
α=0

2−(d+1)α
(
1− 2−α−1

)bu
�

∞∑
α=0

2−(d+1)α−(log e)bu/2α+1

.

Using elementary calculus, we see that the function α 7→ −(d+1)α− (log e)bu/2
α+1

reaches its maximum for α∗ = log(bu/(d+ 1))− 1. Therefore,

α∑
α=0

Pr[Aα]�
α∗∑
α=0

2−(d+1)(α∗−α)−(log e)bu/2α∗+1−α
+
∞∑
α=1

2−(d+1)(α∗+α)−(log e)bu/2α∗+α+1

.

Now,

α∗∑
α=0

2−(d+1)(α∗−α)−(log e)bu/2α∗+1−α
=

α∗∑
α=0

2−(d+1) log(bu/(d+1))+(d+1)(1+α)−(log e)(d+1)2α

≤ 2d+1

(
d+ 1

bu

)d+1

·
∞∑
α=0

(
2d+1

)α−(log e)2α

� b−(d+1)
u ,

and

∞∑
α=1

2−(d+1)(α∗+α)−(log e)bu/2α∗+α ≤
∞∑
α=1

2−(d+1)(log(bu/(d+1)))−(d+1)(α−1)

=

(
d+ 1

bu

)d+1 ∞∑
α=0

2−(d+1)α

� b−(d+1)
u .

It follows that the probability that the simplex spanned by u appears in BrioDC is
O(1/bd+1

u). In a standard RIC, the analogous probability is the probability for the

65

event that in a random permutation of u∪Bu all the triggers appear before all the
stoppers. This is bounded by

(d+ 1)!bu!

(d+ 1 + bu)!
=

d+1∏
k=1

k

bu + k
≥
(

1

bu + 1

)d+1

� 1/bd+1
u .

Hence, it follows that the probability that the simplex spanned by u appears during
BrioDC is asymptotically upperbounded by the analogous probability in a standard
RIC, as needed.

Remark. The reduction also shows that it takes Ω(n log n) time to compute NNGs
and well-separated pair decompositions, even if the input is sorted along one direc-
tion [67].
Remark. The dependent sampling has more advantages than just allowing for
fast point location. For instance, if P samples a region, eg, a surface [17], in the
sense that for any point in the region there is a point in P at distance at most
ε, then similar guarantees with increasing ε still hold for S = S1, S2, Further-
more, Lemma 5.1.2 directly extends to the more general setting of configuration
spaces [122] by replacing d + 1 by the degree bound, ie, the maximum number
of triggers.6 Thus, our dependent sampling scheme can be used in the incremental
construction of a wide range of structures, and may be useful in further applications.
Remark. Finally, we note that if P is planar, the proof of Theorem 5.1.1 can be
simplified considerably:

A simple proof of Theorem 5.1.1 for d = 2. As we argued at the beginning of the
proof of Theorem 5.1.1, it suffices to bound the structural change. For this, we use
induction to show that there exists a constant c such that the expected structural
change is at most cn. This clearly holds for n � 1. Now we suppose that DT(S)
can be found with expected structural change at most c|S|, and we examine what
happens in Step 5 of BrioDC. Let ps be the probability that a given triangle f with
conflict size s appears in Step 5. Clearly, we have ps ≤ 1/2s: if the stoppers of t are
sampled independently of each other, we directly get this bound, and otherwise S
includes a stopper and f cannot be created at all. By the well known Clarkson-Shor
bound [59], the number of triangles with conflict size at most s is O(ns2), so the
expected number of triangles created in Step 5 is O (

∑∞
s=0 ns

2/2s) ≤ dn, for some
constant d. Since the expected size of S is n/2, the total expected structural change
is therefore cn/2+dn ≤ cn, for c large enough, which completes the induction. Note
that this argument does not help in higher dimensions, because there the Clarkson-
Shor bound gives O(nb(d+1)/2csd(d+1)/2e) simplices with conflict size at most s, which
might yield a bound that is much larger than the expected structural change of a
RIC.

6See Section 7.1.3 for more information about configuration spaces.

66

5.2 Delaunay triangulations

Let P ⊆ Rd be an n-point set whose coordinates are w-bit words. The shuffle-
order of P is obtained by taking shuffle(p) for every p ∈ P , as described above,
and sorting the resulting numbers in the usual order. The shuffle order is also
known as the Morton-order [118] or the Z-order, and it is intimately related to
quadtrees [27,39], see Figure 5.4.

Figure 5.4: The shuffle-order corresponds to the inorder traversal of a quadtree.

Lemma 5.2.1. Suppose our computational model is a word RAM. Suppose that
P ⊆ {0, . . . , 2w − 1}d is given in shuffle-order. Then, a compressed quadtree for P
can be computed in O(|P |) time.

Proof. Our argument mostly follows Chan’s presentation [39, Step 2]. We define
a hierarchy H of quadtree-boxes, by taking the hypercube {0, . . . , 2w − 1}d as the
root box and by letting the children of a box b be the hypercubes that divide b
into 2d equal axis-parallel parts. For two points p, q, let box(p, q) be the smallest
quadtree box that contains p and q, and let |box(p, q)| be the side-length of this box.
Both can be found by examining the most significant bits in which the coordinates
of p and q differ. A compressed quadtree for a point set P is the subtree of H
induced by the leaves in H that correspond to P . The crucial observation that
connects compressed quadtrees with the shuffle order is that if the children of each
node in H are ordered lexicographically, then the leaves of H are sorted according
to the shuffle order. The quadtree is constructed by BuildQuadTree. Please see
Algorithm 5.2. The algorithm is similar to the construction of Cartesian trees [83].
Assuming our model supports the msb (most significant bit) operation7 in constant
time, the algorithm runs in linear time: the total number of iterations in Step 2a is

7The operation msb returns the index of the first nonzero bit in a given word, and −1 if the
word is 0.

67

Algorithm 5.2 Building a compressed quadtree.
BuildQuadTree

1. q0.box = {0, . . . , 2w − 1}d, q0.children = (p1), k = 0

2. for i = 2, . . . , n

(a) while |box(pi−1, pi)| > |qk.box| do k = k − 1

(b) if |qk.box| = |box(pi−1, pi)|, let pi be the next child of qk; otherwise, create
qk+1 with qk+1.box = box(pi−1, pi), and move the last child of qk to the
first child of qk+1, make pi the second child of qk+1, and qk+1 the last
child of qk. Set k = k + 1.

bounded by the number of times k is decremented, which is clearly at most n, and
the box sizes can be computed in constant time.

With some more effort, we can avoid the msb-operation. First, as observed by
Chan [37], note that box-sizes can be compared without the need for msb, because
for two binary numbers x, y, we have

msb(x) < msb(y) ⇐⇒ (x ≤ y) ∧ (x < x⊕ y), (5.4)

where x ⊕ y denotes the bitwise xor-operation. Thus, BuildQuadTree can find
the combinatorial structure of the compressed quadtree T for P in linear time.
Using a postorder traversal of T , we can find for each node b in T a minimum
bounding box for the points under b, again in linear time. This information suffices
to apply Lemma 5.2.2, as we can see by inspecting the proof of Callahan and
Kosaraju [35].

Via well-separated pair decompositions, we can go from quadtrees to NNGs in linear
time as was shown by Callahan and Kosaraju [35] and by Clarkson [54] (see also
Chan [39]). Their result is stated as follows:

Lemma 5.2.2. Let P ⊆ Rd. Given a compressed quadtree for P , we can find
NN(P) in O(|P |) time in a traditional model (and also on a word RAM).

Combining Theorem 5.1.1 with Lemma 5.2.2, we establish a connection between
quadtrees and Delaunay triangulations.

Theorem 5.2.3. Let P ⊆ Rd. Given a quadtree for P , we can find DT(P) in
expected time O(n+C(P)), where C(P) denotes the structural change of a RIC on
P .

68

Proof. BrioDC from Theorem 5.1.1 generates a sequence of samples

P = S0 ⊇ S1 ⊇ · · · ⊇ S`,

and we need to find the nearest-neighbor graphs NN(S0), . . . ,NN(S`) in total O(n)
time. By Lemma 5.2.2, and the fact that E

[∑
i |Si|

]
� n, it suffices to have

quadtrees for S0, . . . , S`. This can be achieved in total linear time as follows: start
with the quadtree for P = S0 and in each round i remove the points from Si−1 \ Si
and prune the tree.

Theorem 5.2.3 immediately gives us an improved transdichotomous algorithm for
Delaunay triangulations.

Theorem 5.2.4. Suppose our computational model is a word RAM with a constant-
time shuffle operation. Let P ⊆ {0, . . . , 2w−1}d be an n-point set. Then DT(P) can
be computed in expected time O(sort(n) +C(P)), where C(P) denotes the expected
structural change of a RIC on P and sort(n) denotes the time needed for sorting
n numbers.

Proof. First use Lemma 5.2.1 to build a compressed quadtree for P in O(sort(n))
time, and then apply Theorem 5.2.3, see Figure 5.5.

WSPD

shuffle order of P quadtree for P NN(P) DT(P)

Figure 5.5: An illustration of Theorem 5.2.4: from shuffle sorting to quadtree to well-
separated pair decomposition to nearest-neighbor graph to Delaunay triangulation.

Remark. For planar point sets, C(P) is always linear, and this also often holds in
higher dimensions. Furthermore, in the plane there is another approach to Theo-
rem 5.2.4, which we sketch here: we sort P in shuffle order and compute a quadtree
for P using Lemma 5.2.1. Then we use the techniques of Bern et al. [26,27] to find
a point set P ′ ⊇ P and DT(P ′) in O(n) time, where |P ′| � n. Finally, we extract
DT(P) using Theorem 3.1.1.

Our reduction has a curious consequence about presorted point sets, since we
can find quadtrees for such point sets by an algebraic computation tree [14, Chapter
14] of linear depth.

69

Theorem 5.2.5. Let P ⊆ Rd be an n-point set, such that the order of P along each
coordinate axis is known. Then DT(P) can be computed by an algebraic computation
tree with expected depth O(n + C(P)), where C(P) denotes the expected structural
change of a RIC on P .

Proof. Build the quadtree in the standard way (as described, eg, in [26,35], and also
in Section 6.3) but use simultaneous exponential searches from both sides when
partitioning the points in each box. In each step of the search, we compare a
coordinate of an input point with the average of the corresponding coordinates of
two other input points. Then, we see that the number of such comparisons obeys a
recursion of the type T (n) = O(log(min(n1, n2))+T (n1)+T (n2), with n1, n2 ≤ n−1
and n1 + n2 = n, which solves to T (n)� n. This recursion holds only for nodes in
which we are making progress in splitting the point set, but in all other nodes we
perform only constantly many comparisons and there are linearly many of them.
Nonetheless, the algorithm still needs Ω(n log n) time, since we must split both the
x- and the y-lists while building the tree.

As mentioned in Chapter 1, van Emde Boas trees [71,72] give us a way to preprocess
a large universe so that its subsets can be sorted more quickly, and in Section 3.3,
we saw that an analogous result for convex hulls is possible. We will now derive an
improved result for the special case of planar Delaunay triangulations.

Theorem 5.2.6. Let U ⊆ Rd be a u-point set. In O(u log u) time we can preprocess
U into a data structure for the following kind of queries: given P ⊆ U with n
points, compute DT(P). The time to answer a query is O(n log log u + C(P)). As
in Section 3.3, the algorithm runs on a traditional pointer machine.

Proof. Compute a compressed quadtree T for U in time O(u log u), as described in
Section 6.3. We use T in order to find NNGs quickly. Let S ⊆ U be a subset of size
m. The induced subtree for S, TS, is the union of all paths from the root of T to a
leaf in S. It can be found in time O(m log log u).

Claim 5.2.7. We can preprocess T into a data structure of size O(u log log u) such
that for any subset S ⊆ U of m points we can compute the induced subtree TS in
time O(m log log u).

Proof. Build a vEB tree [72, 114] A for U , and preprocess T into a pointer-based
data structure for least-common-ancestor (lca) queries8 [109]. Furthermore, for each
node of T compute its depth, and build a vEB priority queue B for the depths in T .
These data structures need O(u log log u) space. Given S, use the vEB tree A to sort
S according to the order of T . Then use the lca-structure to compute TS as follows:

8Given a rooted tree T and two nodes u, v ∈ T , the least common ancestor of u and v is the
last node that appears both on the path from the root to u and on the path from the root to v.

70

initialize a linked list Q with S in sorted order. Insert the elements in S into vEB
tree B, using the depth of the corresponding leaves as the key. Remove from B an
element v with maximum depth, use Q to find v’s two neighbors, and perform two
lca-queries, one on v and its left neighbor, one on v and its right neighbor. Replace
v in Q and B by the lower of the two ancestors (or delete v, if the ancestor is already
present). Since there are O(m) queries to the vEB trees, and O(m) queries to the
lca-structure, the whole process takes time O(m log log u), as claimed.

In order to find NN(S), use Claim 5.2.7 to compute TS and then use Theo-
rem 5.2.3. This takes O(m log log u) time, and now the claim follows from Theo-
rem 5.1.1.

Remark. As is well known [23, 31, 122, 128], once we have computed the DT,
we can find many other important geometric structures in O(n) time, for example
the Voronoi diagram, the Euclidean minimum spanning tree, or the Gabriel graph.
Given the Voronoi diagram of a planar point set P , we can also find the largest
empty circle inside convP in linear time [128].

5.3 Shuffle-sorting on a word RAM

Finally, we will consider how to sort a point set P = {p1, . . . , pn} ⊆ Rd according to
the shuffle order in expected time O(n log log n) on a standard word RAM, without
using the shuffle operation. For this, we adapt a classic sorting algorithm by An-
dersson et al. [11]. This algorithm consists of two parts: (i) range reduction, which
reduces the number of bits needed to represent the coordinates; and (ii) packed sort-
ing, which packs many points into one word to speed up sorting. We describe how
to adapt each of these steps and how to obtain the sorting algorithm from them.
Let w ≥ log n be the word size and b the number of bits required to represent the
coordinates of the pi (ie, the coordinates of the pi are in the range {0, . . . , 2b − 1}).
We assume that w and b are known.

5.3.1 Packed sorting for large words

The following theorem is a simple extension of a result by Albers and Hagerup [5]
and shows that we can sort in linear time if many points fit into one word.

Theorem 5.3.1. Suppose that b ≤ dw/(d log n log log n)e−1. Then P can be sorted
according to the shuffle order in O(n) time.

Proof. By assumption, we can store 2k = w/(db + 1) ≥ log n log log n fields in one
word, where each field consists of a point preceded by a testbit. Given a word a,
we let a[1], . . . , a[2k] denote the 2k fields in a, and a[i].t, a[i].d represent the test

71

bit and data stored in field i. The main ingredient is a procedure for merging two
sorted words in logarithmic time [5, Section 3].

Claim 5.3.2. Given two words w1, w2 containing two sorted sequences (pi), (qi) of
k points each, we can compute a word w′ containing the merged sequence (zi) in
time O(log k).

Proof. The proof relies on a parallel implementation of a bitonic sorting network by
Batcher [21]. We need to solve the following problem: given two words a and b, each
containing a sequence of k points, compute in constant time a word z such that9

z[i].t = [a[i].d <σ b[i].d] for i = 1, . . . , k, ie, the testbit z[i].t indicates whether the
point in a[i] precedes the point in b[i] in the shuffle order.10 We solve this problem
with an algorithm BatchCompare that is based on a technique by Chan [37]. Refer
to Algorithm 5.3. For each i = 1, . . . , k, BatchCompare identifies the smallest
coordinate h[i] that has maximum msb(ch[i][i]). Then, it determines whether pi <σ

qi by comparing their coordinate h[i]. Correctness follows immediately from the
definition of the shuffle order. Again, for an efficient implementation we use (5.4) to
compare the positions of the most significant bits. BatchCompare runs in constant
time, assuming that the constants (1, . . . , 1), . . ., (d, . . . , d) have been precomputed,
which can be done in O(log k) time. In particular, note that Step 6 takes constant
time since there are only constantly many possible indices h[i].

Given Claim 5.3.2, the theorem now follows by an application of merge sort, see
Albers and Hagerup [5] for details.

5.3.2 Range reduction

In order to pack several points into a word, we need to adapt a range reduction
technique due to Kirkpatrick and Reisch [98].

Theorem 5.3.3. With expected O(n) time overhead, the problem of shuffle-sorting
n points with b-bit coordinates can be reduced to the problem of sorting n points with
b/2-bit coordinates. The space needed for the reduction is O(n).

Proof. The proof follows the paper by Kirkpatrick and Reisch [98, Section 4]: we
bucket the points according to the upper b/2 bits of their coordinates. Using uni-
versal hashing, this can be done in O(n) expected time with O(n) space. From each
nonempty bucket b, we select the maximum element it contains, mb. We truncate
the coordinates of each mb to the upper b/2 bits, and store a flag isMaximum in
the satellite data for mb. The coordinates of the remaining points are truncated to
the lower b/2 bits, and the number of their corresponding bucket is stored in the

9We use Iverson’s notation: [X] = 1 if X is true and [X] = 0, otherwise.
10We denote the shuffle order by <σ.

72

Algorithm 5.3 Comparing many points simultaneously.
BatchCompare

1. Create d copies a1, . . . , ad and b1, . . . , bd of a and b.

2. Shift and mask the words aj, bj so that aj[i].d = pij and bj[i].d = qij for
i = 1, . . . , k, where pij and qij denote the jth coordinates of pi and qi.

3. Create d words c1, . . . , cd with cj[i].d = aj[i].d⊕ bj[i].d for i = 1, . . . , k, where
⊕ denotes bitwise xor.

4. Create words g, h such that g = c1 and h = (1, . . . , 1), ie, the word with a 1
in the data item in each of its k fields.

5. For j = 2, . . . , d:

(a) Set the testbits in cj such that cj[i].t = [g[i].d ≤ cj[i].d] and compute a
mask M for the fields i with cj[i].t = 1.

(b) Let cj = cj ⊕ (g and M).

(c) Set the testbits in cj so that cj[i].t = [g[i].d < cj[i].d] and compute a
mask M ′ for the fields i with cj[i].t = 1. Let M = M and M ′.

(d) Set
g = (g and M) or ((aj ⊕ bj) and M),

where M is the bitwise negation of M . Furthermore, set

h = (h and M) or ((j, . . . , j) and M).

6. Create a word z with z[i].t = [ah[i][i] < bh[i][i]].

satellite data. After the resulting point set has been sorted, we use the satellite
data to establish (i) the ordering of the buckets, by using the sorted maxima, and
(ii) the ordering within each bucket. The crucial fact needed for correctness is that
for any two points p, q, we have p <σ q precisely if (p′ <σ q

′) ∨ (p′ = q′ ∧ p′′ <σ q
′′),

where (p′, p′′), (q′, q′′) are derived from p, q by splitting each of their coordinates
into two blocks of b/2 bits.

5.3.3 Putting it together

Following Andersson et al. [11], we combine the algorithms in Sections 5.3.1 and
5.3.2 to obtain a simple randomized O(n log log n) sorting algorithm.

73

Theorem 5.3.4. Given a set P of n points with b-bit integer coordinates, we can
sort P in expected time O(n log log n) with O(n) space.

Proof. Iterate Theorem 5.3.3 O(log log n) times until O(log n log log n) points fit
into one word. Then apply Theorem 5.3.1. The total space for the range reduction
is O(n) because in each step the number of bits for the satellite data is halved.

74

Chapter 6

Restricted Inputs

The third and last kind of structural information we consider are restricted inputs.
Suppose we are given a set R of planar regions, and we want to preprocess R such
that we can answer queries of the following kind: given a point set P with exactly
one point from each region inR, find DT(P). We call such queries Delaunay queries.
Löffler and Snoeyink [110] showed that ifR consists of disjoint unit disks, then there
is a linear-size data structure that can answer Delaunay queries in time O(n).

The algorithm by Löffler and Snoeyink is deterministic and optimal, but it is
based on linear-time polygon triangulation [44] which would make an actual imple-
mentation quite challenging. Furthermore, it does not adapt well to more general
input regions R, and scales badly when the disks in R can overlap or are not of the
same size. We will show that these shortcomings can be fixed as long as we are sat-
isfied with randomized algorithms: (i) the algorithm by Löffler and Snoeyink [110]
can be simplified considerably using randomization; (ii) the same result can be ob-
tained for disjoint disks of different sizes; and (iii) we get a better dependence on the
realism parameters. In particular, let k be the depth of the arrangement of R. We
can preprocess R in O(n log n) time into a data structure of O(n) size that handles
imprecise Delaunay queries in O(n log k) time. For comparison, the previous bound
is O(nk) [110].

Our approach is this: given R, we find a quadtree T such that every cell of
T meets a bounded number of regions in R. To answer a query P , we locate the
points of P in the cells of T , turn T into a quadtree T ′ for P , and use T ′ to compute
DT(P) quickly. For that, we need the connection between quadtrees and Delaunay
triangulations established in Theorem 5.2.3 in Chapter 5. In fact, owing to technical
reasons we will need a slight generalization of Theorem 5.2.3, and we will say more
about it in Section 6.4.

Previous work and relation to data imprecision. The original motivation for
the restricted inputs comes from the investigation of imprecise input models. What

75

are these all about? Typically, the input to a computational geometry problem is
a point set P in the plane, or more generally Rd. Traditionally, one assumes that
P is known exactly, and indeed, in the 1980s and 1990s this was often justified,
as much of the input data was hand-constructed for computer graphics or simula-
tions. Nowadays, however, the input is often sensed from the real world, and thus
inherently imprecise.

An early model for imprecise geometric data, motivated by finite precision of
coordinates, is ε-geometry [85]. Here, the input is a traditional point set P and
a parameter ε. The true point set is unknown, but each point is guaranteed to
lie in a disk of radius ε. Even though this model has proven fruitful and remains
popular due to its simplicity [18, 86], it may often be too restrictive: imprecision
regions could be more complicated than disks, and their shapes and sizes may
even differ from point to point, eg, to model imprecision from different sources,
independent imprecision in different input dimensions, etc. In these settings, the
extra freedom in modeling leads to more involved algorithms, but still many results
are known [105,107,124,125].

The above results assume that the imprecise input is given once and simply has
to be dealt with. While this holds in many applications, it is also often possible to
get (more) precise estimates of the points, but they will only become available later
when there is less time, or they come at a higher cost. For example, in the update
complexity model [33,78], each data point is given imprecisely at the beginning but
can always be found precisely at a certain price.

This leads us to the restricted input model: the input regions R represent an
imprecise point set which we want to preprocess so that some structure can be
computed faster when the exact points become available later.

As mentioned above, this model was considered by Löffler and Snoeyink [110]
who obtained a data structure that supports linear-time Delaunay queries for dis-
joint unit disks. A weaker result is due to Held and Mitchell [89] who could prepro-
cess a set of disjoint unit disks so that it takes linear time to find a (not necessarily
Delaunay) triangulation of a point set with one point from each disk. This was
extended by van Kreveld, Löffler and Mitchell [106], who supposed that R consists
of n disjoint polygons with a total of m vertices and then obtained an O(m)-space
data structure with O(m logm) preprocessing time and O(m) time for finding a
(not necessarily Delaunay) triangulation of the query. There is no restriction on
the shapes and sizes of the individual regions (they do not even strictly have to be
polygonal), only on the overlap. All the above algorithms are deterministic, and,
with the exception of Löffler and Snoeyink’s result, relatively simple.

76

6.1 Disks of varying sizes: quadtree-approach

Firstly, we will extend the theorem by Löffler and Snoeyink to disks of varying sizes
by using quadtrees. The main idea is to find a quadtree T such that each cell of T
meets a bounded number of regions of R. To answer a Delaunay query P we locate
the points of P in T , compute a quadtree T ′ for P , and then apply Theorem 5.2.3.
With the additional structure of the quadtree we can handle disks of varying sizes.

Let us first define a free quadtree T . It is an ordered rooted tree that corresponds
to a hierarchical decomposition of the plane into axis-aligned square boxes. Each
node v of T has a square box Bv associated to it, according to the following rules:

1. If w is a descendant of v in T , then Bw ⊆ Bv.

2. If v and w are not related, then Bv ∩Bw = ∅.

The boxes Bv constitute a laminar family of squares in R2. We say the size of a
node is the side length of its box. With each node v, we associate the cell Cv that
consists of the part of Bv that is not covered by the children of v.1 Any two distinct
cells Cv and Cw are disjoint, and the union of the cells of all nodes of T covers the
root square.

A standard quadtree [75] is a special case of a free quadtree, and in particular
has only two types of nodes: internal nodes v with exactly four children half the size
of v, and leaf nodes without any children. In this section we define a (compressed)
quadtree as a standard quadtree, but with the addition of a third type of node, which
we call cluster node: a node v with just one child w, whose size is smaller than its
parent by at least a large constant factor 2c. We require that the horizontal and
vertical distances between the boundary Bw and the boundary of Bv are either zero
or at least the size of Bw. Figure 6.1a shows an example of a quadtree of this type.
Cluster nodes ensure that the complexity of T can be kept linear [26, Section 3.2].
Given a planar point set P , we say that T is a quadtree for P if the following
properties hold:

1. For each leaf v ∈ T , we have |P ∩ Cv| ≤ 1, ie, Cv has at most one point of P
inside it.

2. For all non-leaves v ∈ T , we have P ∩ Cv = ∅.

3. The root box of T contains all of P .

4. The total number of nodes in T is O(|P |).
1Note that Cv could be disconnected or empty.

77

(b)(a)

Figure 6.1: (a) A quadtree. The lower left box contains a cluster node. (b) The
quadtree is a valid quadtree for this set of points.

Figure 6.1b shows a point set P and a valid quadtree for it. To apply Theorem 5.2.3
we need to preprocess R into a quadtree T such that any cell Cv in T intersects
only constantly many disks. While we could consider the disks directly, we will
instead use a quadtree T for a point set Q representing the disks. For each disk we
include in Q its center and top-, bottom-, left- and rightmost point. Then, T can
be constructed in O(n log n) time, see Section 6.3.

Lemma 6.1.1. Every cell Cv of T is intersected by O(1) disks in R.

Proof. There are three types of nodes to consider. First, if v is an internal node
with four children, then Cv is empty so the condition holds trivially. Next, suppose
that v is a leaf node, so Cv = Bv. If a disk D intersects Bv and does not contain
a corner of Bv, then Bv must either contain D’s center or one of its four extreme
points [24]. Thus, Bv intersects at most 5 disks, one for each corner and one for the
point of Q it contains. See Figure 6.2a for an example.

Now suppose v is a cluster node, with child w. Then Cv = Bv \ Bw. We know
there are no points of Q in Cv, and there are at most four disks that have all their
representative points outside Bv. So it remains to count the disks that intersect
Bv, do not cover a corner of Bv, and have an extreme point or their center in Bw.
For this, consider the at most four orthogonal neighbors of Bw in Bv (i.e., copies of
Bw directly to the left, to the right, above and below Bw) that lie inside Bv. Using
the same argument as above, each of these neighbors meets at most four disks, and
every disk D with an extreme point or center in Bw that intersects Cv also meets one
of the orthogonal neighbors (if D has no extreme point or center in an orthogonal
neighbor and does not cover any of its corners, it has to cover its center), which
implies the claim, because by our assumption about cluster nodes all the orthogonal
neighbors are completely contained in Bv. Figure 6.2b shows an example involving
a cluster node.

78

(a) (b)

Figure 6.2: (a) At most 4 disjoint disks can intersect any given box B belonging to
a leaf of the quadtree, without one of their points being inside B. (b) For a box B
belonging to a parent of a cluster node with box C, slightly more disks can intersect
the interior of B \ C, but not more than 4 can cover any of the four neighboring
boxes, so a crude upper bound is 20.

Theorem 6.1.2. Let R = 〈R1, . . . , Rn〉 be a sequence of disjoint planar disks (of
possibly different size). In O(n log n) time and using O(n) space we can preprocess
R into a data structure that can answer imprecise Delaunay queries in O(n) expected
time.

Proof. We construct Q and the quadtree T for Q as described above. For each Ri

we store a list with the leaves in T that intersect it. By Lemma 6.1.1, the total
size of these lists, and hence the complexity of the data structure, is linear. Now
we describe how queries are handled: let P = 〈p1, . . . , pn〉 be the input sequence.
For each pi, we find the node v of T such that pi ∈ Cv by traversing the list for Ri.
This takes linear time. Since each leaf of T contains constantly many input points,
we can turn T into a quadtree for P in linear time. We now compute DT(P) via
Theorem 5.2.3.2

6.2 Overlapping disks: deflated quadtrees

We extend the approach to disks with limited overlap. Now R contains n planar
disks such that no point is covered by more than k disks. The parameter k is called
the depth of R, and Aronov and Har-Peled [13] showed that k can be approximated
up to a constant factor in O(n log n) time. It is easily seen that imprecise Delaunay
queries take Ω(n log k) time in the worst case, and we show that this bound can be
achieved.

2We are ignoring some technical details here, because when turning T into a quadtree for P we
need to be careful about handling cluster nodes that contain an input point. We will explain this
in the next section, where we consider a more general setting.

79

Proposition 6.2.1. For k ∈ {1, . . . , n}, there exists a set R of n planar unit disks
with depth k such that Delaunay queries for R need Ω(n log k) time in the algebraic
decision tree model.

Proof. Consider the problem k-(1/k)-Closeness: we are given n/k sequences
x1, . . . ,xn/k, each with k real numbers in (−1, 1), and we would like to decide
whether any xi contains two numbers with difference at most 1/k. To see that any
algebraic decision tree for k-(1/k)-Closeness has depth Ω(n log k), let W ′ ⊆ Rn

be defined as

W ′ =
{

(x1, . . . ,xn/k) | |xij − xil| > 1/k for 1 ≤ i ≤ n/k; 1 ≤ j < l ≤ k
}
,

where xij is the jth coordinate of xi, and let W = W ′ ∩ (−1, 1)n. Since W has at
least (k!)n/k connected components, Ben-Or’s lower bound [22, Theorem 5] implies
the claim.

Now let R consist of the unit disks with centers (3i, 9i2), for i = 1, . . . , n/k, each
copied k times.3 Let x1, . . . ,xn/k be an instance of k-(1/k)-Closeness. Create a
point set P by mapping the input xij to (3i+ xij/12i, (3i+ (xij/12i))2). Note that
P can be found in O(n) time, and that it contains exactly one point from each
circle in R. Now, if we know DT(P), we can in linear time find the sorted order
of each xi, and hence solve k-(1/k)-Closeness. Thus, we have a reduction from
k-(1/k)-Closeness to Delaunay queries with regions of depth k, and the lower
bound follows.

The general strategy for the upper bound is the same as in Section 6.1. Let Q
be the 5n representative points for R, and let T be a quadtree for Q. As before,
T can be found in time O(n log n) and has complexity O(n). However, the cells
of T can now be intersected by O(k) regions, rather than O(1). Since our data
structure stores all the cell-disk incidences, this means that the space requirement
would become O(nk), which is too large. However, we can avoid this by reducing
the complexity of T until it only has O(n/k) cells, while maintaining the intersection
property. Then, we share the more detailed structures between the regions in R,
thus saving space. For this we introduce the notion of λ-deflated quadtrees.

For a positive integer λ ∈ N, a λ-deflated quadtree T ′ for a point set Q has the
same general structure as the quadtrees from the previous section, but it has lower
complexity: each node of T ′ can contain up to λ points of Q in its cell and there
are only O(n/λ) nodes. We distinguish four different types of nodes: (i) leaves are
nodes v without children, with up to λ points in Cv; (ii) internal nodes v have four
children of half their size covering their parent, and Cv = ∅; (iii) cluster nodes are,
as before, nodes v with a single—much smaller—child, and with no points in Cv;
(iv) finally, a deflated node v has only one child w—possibly much smaller than its

3We can perturb the centers of the copies slightly if we don’t like R to be a multiset.

80

(a) (b)

Figure 6.3: (a) A set of points and a quadtree for it. (b) A 3-deflated version of the
quadtree.

Algorithm 6.1 Turning a quadtree into a λ-deflated quadtree.

Algorithm DeflateTree(v)

1. If nv ≤ λ, return the tree consisting of v.

2. Let Tv be the subtree rooted in v, and let z be a node in Tv with the smallest
value nz such that nz > nv − λ. Note that z could be v.

3. For all children w of z, let T ′w = DeflateTree(w).

4. Build a tree T ′v by picking v as the root, z as the only child of v, and linking
the trees T ′w to z. If v 6= z, then v is a deflated node. Return T ′v as the result.

parent—and additionally Cv may contain up to λ points. Cluster nodes and deflated
nodes are very similar, but they play slightly different roles in the Delaunay query
algorithm. An example of a quadtree and a 3-deflated version of it is shown in
Figure 6.3.

Given a quadtree T for Q, a λ-deflated quadtree T ′ can be found in linear time:
for every node v in T , compute nv = |Bv∩Q|. This takes O(n) time with a postorder
traversal. Then, T ′ is obtained by applying DeflateTree to the root of T . Please
see Algorithm 6.1. Since DeflateTree performs a simple top-down traversal of T ,
it takes O(n) time.

Lemma 6.2.2. A λ-deflated quadtree T ′ produced by Algorithm 6.1 has O(n/λ)
nodes.

Proof. Let T ′′ be the subtree of T ′ that contains all nodes v with nv > λ, and
suppose that every cluster node in T ′′ has been contracted with its child. We will

81

show that T ′′ has O(n/λ) nodes, which implies the claim, since no two cluster nodes
are adjacent, and because all the non-cluster nodes in T ′ which are not in T ′′ must
be leaves. We count the nodes in T ′′ as follows: (i) since the leaves of T ′′ correspond
to disjoint subsets of Q of size at least λ, there are at most n/λ of them; (ii) the
bound on the leaves also implies that T ′′ contains at most n/λ nodes with at least
2 children; (iii) the number of nodes in T ′′ with a single child that has at least 2
children is likewise bounded; (iv) when an internal node v has a single child w that
also has only a single child, then by construction v and w together must contain at
least λ points in their cells, otherwise they would not have been two separate nodes.
Thus, we can charge λ/2 points from Q to v, and the total number of such nodes is
2n/λ.

Lemma 6.2.3. Let T ′ be a k-deflated quadtree for Q. Every cell Cv of T ′ is inter-
sected by O(k) disks of R.

Proof. Treat deflated nodes like cluster nodes and note that the center and corners
of every box of T ′ can be covered by at most k disks. Now the lemma follows from
the same arguments as we used in the proof of Lemma 6.1.1.

Theorem 6.2.4. Let R = 〈R1, . . . , Rn〉 be a sequence of planar disks such that no
point is covered by more than k disks. In O(n log n) time and using O(n) space we
can preprocess R into a data structure that can answer imprecise Delaunay queries
in O(n log k) expected time.

Proof. It remains to show how to preprocess T ′ to handle the imprecise Delaunay
queries in time O(n log k). By Lemmas 6.2.2 and 6.2.3, the total number of disk-cell
incidences in T ′ is O(n). Thus, in O(n) total time we can find for each R ∈ R the
list of nodes in T ′ whose cells it intersects. Next, we determine for each node v in
T ′ the portion Xv of the original quadtree T inside the cell Cv and build a point
location data structure for Xv. Since Xv is a partial quadtree for at most k points,
it has complexity O(k), and since the Xv are disjoint, the total space requirement
and construction time are linear. This finishes the preprocessing.

To handle an imprecise Delaunay query, we first locate the input points P in the
cells of T ′ just as in Theorem 6.1.2. This takes O(n) time. Then we use the point
location structures for the Xv to locate P in T in total time O(n log k). Now we
turn T into a quadtree for P in time O(n log k), and find the Delaunay triangulation
in time O(n), as before.

We now explain how T is turned into a quadtree for P : for cells correspond-
ing to leaf nodes, we can just use a standard algorithm for computing quadtrees,
which takes O(α log k) time for a cell that contains α points, since α = O(k) by
Lemma 6.2.3. For cells that correspond to cluster nodes, we must work harder in

82

Bv

Bw

`′

Figure 6.4: We align four boxes of side length `′ with Bw to obtain a bounding box
for P ′ and Bw. Note that this box may intersect the boundary of Bv.

order to avoid the need for the floor function4: suppose v is a cluster node with
child w, such that Cv contains α points P ′ from P . We sort P ′ according to x- and
y-coordinates, and then determine a bounding box for Bw and P ′. Let ` be the side
length of this bounding box. Now we find in O(log k) time an integer 0 ≤ γ ≤ α,
such that |Bw| ≤ 2−cγ` and either γ = α or |Bw| ≥ 2−cγ−1`, where |Bw| denotes the
size of Bw. Then, we set `′ = 2cγ+1|Bw| if γ 6= α, and `′ = ` otherwise. Align four
boxes of side length `′ with Bw (see Figure 6.4) and use the result as the bounding
box for the quadtree T ′′ that contains Bw and P ′. This ensures that no edge of
T ′′ intersects Bw, because all non-cluster nodes of T ′′ have size at least 2−cα`′. If
during the construction of T ′′ the cell Cw is again contained in a cluster node, we
repeat the procedure (without the sorting step), which takes another O(log k) time.
However, this cluster node will contain strictly less than α points from P ′ (because
it is significantly smaller than the bounding box of T ′′), so the total cost for the
bounding box computations cannot exceed O(α log k). There is one subtlety: the
bounding box of T ′′ might intersect the boundary of Bv. If this happens, we clip T ′′

to Bv. The resulting quadtree is skewed, which means that its cells can be shifted
relative to their parent, and some of them may even be clipped. In Section 6.4 we
argue that Theorem 5.2.3 still holds in this case.

6.3 Computing compressed quadtrees in O(n log n)

time

It is well known that given a planar n-point set P , we can compute a compressed
quadtree T for P in O(n log n) time. However, the details of the construction are
a bit involved [73], and for the reader’s convenience we describe here a possible
implementation that achieves the claimed running time on a pointer machine. The

4In Section 2.3 we explain why it is worthwhile to spend so much effort to avoid the floor
function.

83

basic algorithm is as follows: sort the points in x- and y-direction, find a bounding
box for P , and repeatedly split the boxes in the obvious way. If after c splits of
the current box the size of the point set P ′ inside it has not decreased, we find a
bounding box for P ′, create a cluster node and recursively compute a quadtree for
P ′.

In order to perform the splitting efficiently, we need to maintain the x- and y-
orderings of the points contained in the current box. To do this, we do the splitting
in two steps: first in x-direction, then in y-direction. To split in x-direction, we
traverse the x-list simultaneously from both ends to find the split sets in time
proportional to the size of the smaller set. Let P1 and P2 be the two resulting sets,
and let n1 and n2 be their sizes, with n1 ≤ n2. Using appropriate pointers, we find
the points of P1 in the y-list and remove them. Now we need to create the sorted
y-list for P1: if n1 ≤ n

1/3
2 , we just sort P1 according to y-coordinate in O(n1 log n1)

time. Otherwise, we use a pointer-based radix sort for P1 that takes O(n1) time.
For this, we need to maintain an appropriate data structure with each of the y-lists.5

This data structure is created when a y-list is split off and updated every time the
size of a y-list halves, which leads to a linear time overhead. The total time needed
for the splitting in x-direction obeys the recursion

T (n) =

{
T (n1) + T (n2) +O(n1 log n1), if n1 ≤ n

1/3
2 ,

T (n1) + T (n2) +O(n1), if n
1/3
2 ≤ n1 ≤ n2.

This solves to T (n) � n log n. The splitting in y-direction is done in the same
way, and the total time needed for the construction of the quadtree is O(n log n),
as claimed.

6.4 From quadtrees to Delaunay triangulations

For technical reasons described in Section 6.2, we need a slightly more general
version of Theorem 5.2.3. Recall that the proof of Theorem 5.2.3 is based on a
chain of reductions from Delaunay triangulations to nearest-neighbor graphs to
well-separated pair decompositions to quadtrees: in Chapter 5, we saw that to
compute DT(P), it suffices to find the nearest neighbor graphs NN(P1), . . . ,NN(Pt)
for each level of an appropriate gradation ∅ = P0 ⊆ P1 ⊆ · · · ⊆ Pt = P with∑t

i=0 |Pi| = O(n). By a classic reduction [35], NN(P1), . . . ,NN(Pt) can be found
in linear time, once we know ε-well-separated pair decompositions (ε-WSPDs) for
P1, . . . , Pt of linear size and for appropriate ε. These ε-WSPDs can in turn be derived
from compressed quadtrees for these sets. By assumption, we have a quadtree T

5We need a pointer structure that allows us to associate three-digit integers with the points
according to their position in the y-list.

84

for P = Pt, and by successively pruning T , we can get quadtrees for P1, . . . , Pt−1 in
linear time.

Now we come to the adaptation of the proof. In Section 6.2, we defined a skewed
quadtree as a standard compressed quadtree, but one where clusters can be shifted
relative to their parents and parts of the cluster cells might be clipped. We need
to prove that Theorem 5.2.3 still holds in the case where we are given a skewed
quadtree for P , rather than a regular quadtree. Note that all steps outlined above
can go through unchanged, except that now we need to go from skewed quadtrees to
ε-WSPDs. For this, we take the algorithm that can compute an ε-WSPD based on
a standard compressed quadtree [35,39] and check that it still works if the quadtree
is skewed. We make a key observation about skewed quadtrees first.

Observation 6.4.1. Let v be a node of a skewed quadtree T , and let d be the size
its box would have without clipping. Then there is a cell Bw adjacent to Bv (possibly
diagonally) such that the volume of Bw is at least cd2 for some constant c.

Also, recall the definition of an ε-WSPD for a point set P . It is a collection
of pairs {(P1, Q1), . . . , (Pm, Qm)} with Pi, Qi ⊆ P such that each pair (Pi, Qi) is
ε-well-separated, which means that the diameters of Pi and Qi are both at most
ε times the minimum distance between Pi and Qi. Furthermore, we require that
every pair (p, q) ∈ P × P of distinct points is in Pi ×Qi or Qi × Pi for exactly one
i. We call m the size of the ε-WSPD.

Now we are ready to follow the argument. Let T be a skewed quadtree for P ,
and let us see how to find a well-separated pair decomposition for P of linear size in
time O(|P |), given T . Our presentation follows Chan [39], with some small changes
to adapt the argument to skewed quadtrees. The WSPD is computed by performing
the function wspd(v) on the root v of T . Refer to Algorithm 6.2.

Here, Pv denotes the points contained in Bv, the box corresponding to v, and
|Bv| is the size of Bv. Clearly, wspd computes an ε-WSPD for P . We need to argue
that it has linear size and that the computation takes linear time. For this, it suffices
to count the number of calls to wspd(v1, v2) such that Bv1 and Bv2 are not ε-well-
separated. By induction, we see that whenever wspd(v1, v2) is called, the size of the
box corresponding to the parent of v1 is at least |Bv2| and the size of the parent box
for v2 is at least |Bv1 |. Without loss of generality, we assume |Bv1| ≤ |Bv2|, and let
r be the parent of v1. As we noted above, we have |Br| ≥ |Bq2 |, and by successively
subdividing Br in a quadtree fashion (and shifting if necessary), we obtain a box B
such that Bv1 ⊆ B ⊆ Br, and such that |Bv2|/2 ≤ |B| ≤ |Bv2|. Since B and Bv2

are not ε-well-separated, B must be within distance O(|B|/ε) of Bv2 . To see that
there are only constantly many such boxes, we can use a volume argument, but we
need to be careful about boxes which are clipped because they are contained in a
cluster that is shifted relative to its parent. However, by Observation 6.4.1, every
clipped cell has an adjacent cell which is only cut by a constant fraction c (if at all).

85

Algorithm 6.2 Finding a well-separated pair decomposition.

wspd(v)

1. If v is a leaf, return ∅.

2. Return the union of wspd(r) and wspd(r1, r2) for all children r and pairs of
distinct children r1, r2 of v.

wspd(v1, v2)

1. If Bv1 and Bv2 are ε-well-separated, return (Pv1 , Pv2).

2. Otherwise, if |Bv1| ≤ |Bv2|, return the union of wspd(v1, r) for all children r
of v2.

3. Otherwise, return the union of wspd(r, v2) for all children r of v1.

Therefore, the number of cells that are clipped too much can be at most 8 times
the number of cells that are clipped by at most c, so the total number of nearby
cells is still constant. Hence, the total size of the WSPD is linear.

86

Part II

The Role of Randomness

87

Chapter 7

Markov Incremental
Constructions

So far, we have considered the effects of low entropy in the inputs. However, there
is also another kind of entropy that plays a role in algorithm design, namely, the
entropy of the randomness the algorithm uses for itself. In the previous chapters,
we have already encountered several times the randomized incremental construction
(RIC) paradigm, and we have seen the key features that make it so popular with
computational geometers: (i) it is versatile; (ii) it is simple; and (iii) it often yields
optimal randomized algorithms [23, 28–31, 48, 49, 56, 59, 64, 66, 84, 113, 115, 120–122,
135,138–140,148]. But what if the algorithm has no access to perfect randomness?
In the worst case, the running time typically increases a factor of n. However, Mul-
muley [123] proved that O(1)-wise independence is in fact sufficient. Furthermore,
Amenta et al. [9], in their work on RICs with biased random insertion order which
we already encountered in Chapter 5, showed that the entropy may slowly decay
during the RIC without penalty; in other words, the insertion sequence can afford
to be less and less random as the construction progresses. Devillers and Guigue [65]
introduced the shuffling buffer which randomly permutes contiguous subsequences
of the input sequence of a certain length k, and they provided trade-offs between
the length k and the running time of the RIC. What these results demonstrate is
that standard RIC analysis still works as long as there is sufficient local randomness
early enough. Unfortunately, these two features are precisely what is lacking in
Markov sources.

What are those? A Markov source is a probabilistic model of input data that
serializes the production of data over time by means of a random walk in a graph.
It is widely used in queuing theory, speech recognition, gesture modeling, protein
homology, computer graphics, robotics, web searching, etc. It captures the statisti-
cal correlations created by time coherence. In speech, for example, the randomness
of the next utterance is heavily dependent on the previous ones; hence the use of

88

hidden Markov models. In geometric applications, Markov sources have been used
in ray tracing [93,146], computer games [111], robotics [77], terrain generation [147],
etc. In computer science, one of the main motivations has been locality of refer-
ence; in particular, there exists a vast body of research in online algorithms for
Markov sources [42,91,94,95,104,108,127,134,142]. The work of Amenta et al. [9]
on RICs is also motivated by the desire for local access. Therefore, it is natural
to ask what happens to a general algorithmic paradigm (RIC) when one assumes a
Markov source.1

Here, our model consists of an event graph G = (V,E) which is connected and
undirected. This means that G defines a Markov chain that is irreducible and
reversible but not necessarily ergodic. Each node v is associated with an item xv
in a universe U . Requests are specified by following a random walk, beginning at
a random start node of G and hopping from node to node, each time choosing an
adjacent node v uniformly at random. Upon reaching v, item xv is inserted into the
current structure. The structure in question depends, of course, on the application.
Below, we will consider convex hulls, trapezoidal maps, and segment intersections.
The structure is the corresponding conflict graph. Actually, we can use a data
structure called influence graph [28–31,66,70] or history graph [122], which has the
advantage of supporting queries and allowing for online (semi)dynamic algorithms.
This means that we do not even need to know the graph G ahead of time. Our
analysis, in fact, supports all known variants of RICs.

To obtain our result, we will need to extend Mulmuley’s theory of Θ-series [122]
to Markov chains2; and we will see a generalization of the classic Clarkson-Shor
counting technique for Markov sampling as well as a new bound on the expected
first passage time in a Markov chain with bounded spectral gap.

More concretely, we can bound the expected complexity of RIC for convex hulls
in d dimensions by O(γ−d nbd/2c(log n)dd/2e) for d > 3, and O(n(γ−1 log n)d) for
d ≤ 3, where γ is the spectral gap of the random walk, ie, the difference between
the first and second largest eigenvalues of the transition matrix—note that γ is a
positive constant in the case of a random graph or an expander. For trapezoidal
maps of nonintersecting segments and segment intersections, the complexity is re-
spectively O(n(γ−1 log n)4) and O((n+m)(γ−1 log n)6), where m is the number of
intersections.

7.1 Background

Before we begin, let us review some background on Markov chains [117,119], spectral
techniques [90] and configuration spaces [23,122].

1See Section 7.1.1 for technical background on Markov Chains and our terminology.
2See Section 7.1.3 for more on configuration spaces and Θ-series

89

7.1.1 Markov chains

A Markov chain M over a finite state space Q is an infinite sequence of random
variables X0, X1, . . . with the following properties: (i) Xt ∈ Q for t ≥ 0; (ii) X0 is
drawn from a given initial distribution π0 over Q; and (iii) there are pqr ∈ [0, 1],
q, r ∈ Q, such that Pr[Xt+1 = qt+1|X0 = q0, X1 = q1, . . . , Xt = qt] = pqtqt+1 for t ≥ 0,
ie, the distribution of Xt+1 depends only on Xt. The variable Xt is called the state
at time t. The |Q|×|Q| matrix P formed by the pqr is called the transition matrix of
M . The distribution of Xt can be computed as πT0 P

t. We say that M is irreducible
if for any two states q, r ∈ Q there exists t ≥ 0 such that Pr[Xt = r | X0 = q] > 0, ie,
every state can reach all other states with positive probability after a finite number
of steps. A state q ∈ Q is periodic if there exists an integer ∆ > 0 such that
Pr[Xt = q | X0 = q] = 0, unless t is a multiple of ∆. Furthermore, q is non-null
persistent if

Pr[∃t > 0 : Xt = q | X0 = q] = 1

and ∑
t>0

tPr[Xt = q | X0 = q,X1, . . . , Xt−1 6= q] <∞,

ie, if every state is revisited with probability 1 after a finite number of steps. The
chain is aperiodic if none of its states is periodic. It is ergodic if it is aperiodic and if
all its states are non-null persistent. Any finite, irreducible, aperiodic Markov chain
is ergodic. This implies that it has a unique stationary distribution π, ie, there
exists a unique distribution π with πT = πTP . Finally, M is reversible if there is a
distribution π such that for any q, r ∈ Q we have πqpqr = πrprq.

Given an undirected graph G = (V,E) and an initial distribution π0 on V , a
random walk on G is a sequence of vertices v0, v1, . . ., where v0 is chosen according
to π0 and vt+1 is found by following a random edge out of vt. A random walk
induces a Markov chain with state space V . This chain is always reversible. It
is irreducible if and only if G is connected, and aperiodic if and only if G has
no bipartite components. Thus, any connected, non-bipartite graph induces an
ergodic Markov chain. In this case, any random walk converges to the stationary
distribution given by πv = deg(v)/2|E| for v ∈ V . In particular, π is uniform if all
vertices have the same degree.

7.1.2 Facts about matrices

We recall some basic facts from matrix theory [90]. Let A ∈ Rn×n. We say that A is
symmetric if AT = A. A symmetric matrix is positive semidefinite if ~vTA~v ≥ 0 for
every ~v ∈ Rn. We call ~v ∈ Rn \ ~0 an eigenvector of A if there exists an eigenvalue
λ ∈ R with A~v = λ~v. Every symmetric matrix has n real eigenvalues λ1, . . . , λn

90

and a corresponding orthonormal basis ~v1, . . . , ~vn of eigenvectors. They can be
characterized as follows [90, Theorem 4.2.11]:

Theorem 7.1.1 (Courant-Fischer). Let A ∈ Rn×n be symmetric with eigenvalues
λ1 ≥ · · · ≥ λn and corresponding eigenvectors ~v1, . . . , ~vn. Then, for k = 1, . . . , n,

λk = max
~v∈Rn\~0

~v⊥~v1,...,~vk−1

~vTA~v

~vT~v
.

The Courant-Fischer theorem allows us to relate the eigenvalues of any principal
submatrix of A to those of A [90, Theorem 4.3.15].

Theorem 7.1.2 (Interlacing Theorem). Let A ∈ Rn×n be symmetric with eigenval-
ues λ1 ≥ · · · ≥ λn, and let Ar be obtained from A by deleting n − r rows and the
corresponding columns from A. Let µ1 ≥ · · · ≥ µr be Ar’s eigenvalues. Then, for
1 ≤ k ≤ r,

λk ≥ µk ≥ λn−r+k.

For A ∈ Rn×n, let GA be the directed graph on {1, . . . , n} which contains an edge
from i to j precisely if Aij 6= 0. We call A irreducible if GA is strongly connected.
If all entries of A are nonnegative, we can say more about its principal eigenvalue
and eigenvector [90, Theorem 8.4.4].

Theorem 7.1.3 (Perron-Frobenius). Let A ∈ Rn×n be nonnegative, irreducible,
and symmetric with eigenvalues λ1 ≥ · · · ≥ λn. Then λ1 > λ2, and λ1 has an
eigenvector with all positive entries.

7.1.3 Configuration spaces

A configuration space of degree d over a universe U is a set C of configurations.
A configuration σ ∈ C is a pair (Dσ, Sσ), where Dσ, Sσ ⊆ U are disjoint with
|Dσ| ≤ d. Dσ are the triggers and Sσ the stoppers of σ. Given a subset U ⊆ U , we
say σ is active in U if Dσ ⊆ U and Sσ ∩U = ∅. The configuration space framework
is powerful enough to capture many geometric construction problems, as we will
explain below.

The generic construction problem can be phrased as follows: given U ⊆ U ,
find all active configurations in U . The randomized incremental construction (RIC)
paradigm solves this problem by picking a random permutation of U and inserting
the elements one by one, creating and destroying configurations according to which
trigger and stopper sets contain the newly inserted element. In order to locate the
conflicting configurations for the new element quickly, the RIC maintains a conflict
graph C, ie, a bipartite graph representing the conflicts between the currently active

91

(b) (c)

σ

(a)

τ

e

e

τ

Figure 7.1: (a) A trapezoid is defined by 2, 3 or 4 line segments. (b) The handle e of
a racquet (τ, e) is defined by 1 or 2 segments. (c) In an opaque representation, the
trapezoid σ is incident to 4 vertices, in a planar graph representation, it is incident
to 10 vertices.

configurations and the elements in U that still need to be processed. The graph C
is updated after each insertion, and in our examples this takes time linear in the
number of edges in C that are modified. Algorithms that rely on C are static, since
all objects in U need to be known in advance. The influence or history graph [31,122]
keeps track of all the configurations that have been active in the construction so far
and stores information about their adjacencies that makes it possible to postpone
the conflict updates for an element until it is inserted, with the same asymptotic
cost. Thus, algorithms that use this structure are online, ie, they do not need to
know the input beforehand. Using any of the above data structures, the expected
running time of RIC for our examples is proportional to

Θ =
∑
σ∈C

|Sσ|Pr[σ becomes active during the construction].

We call this sum the Θ-series of the RIC. In this chapter, we will use the following
configuration spaces:

• Convex hulls in Rd and Voronoi diagrams in Rd−1 [122, Example 3.4.2].
Let P ⊆ Rd be in general position. The set C consists of all open half-spaces
σ whose bounding hyperplane is spanned by a d-tuple Dσ of distinct points in
P . The stopper set Sσ contains all points in P ∩ σ. Clearly, the active config-
urations in a subset U ⊆ P correspond to the facets of the convex hull of U .
Note that a d-tuple Dσ defines two half-spaces, but this can be disambiguated
using the ordering of Dσ. By a standard reduction this configuration space
also handles Voronoi diagrams in Rd−1.

• Trapezoidal maps [122, Example 3.4.1]. Let L be a set of nonintersecting
planar line segments in general position. To avoid unbounded trapezoids,

92

we assume a large bounding box that contains L. The set C consists of all
trapezoids σ that can be defined by a set Dσ of line segments in L (and parts
of the bounding box). It is easily seen that |Dσ| ∈ {2, 3, 4} (see Figure 7.1a).
The stopper set Sσ contains the line segments in L that cross the interior of σ.
Again, a tuple Dσ may define more than one trapezoid, which we disambiguate
with the ordering information of Dσ. Note that this configuration space gives
an opaque representation of the map: each trapezoid is incident to at most 6
vertices, even though its bounding segments may be subdivided by trapezoids
on the other side (see Figure 7.1c). Since L is nonintersecting, this is sufficient
to capture the running time of the RIC, because newly inserted segments cross
only vertical boundaries of trapezoids that are destroyed.

• Segment Intersections [122, Example 3.4.4]. Let L be a set of planar line
segments in general position. Again, we assume a large bounding box for L.
Since now a newly inserted segment can cross other line segments, we need
a planar graph representation of the trapezoidal map. This is achieved using
racquets, ie, pairs σ = (τ, e), where τ is a trapezoid and e a vertical attachment.
The endpoint of e is defined by 1 or 2 segments, while τ is defined by 2, 3, 4
segments (see Figure 7.1ab). Thus, |Dσ| ∈ {3, 4, 5, 6}. The stopper set Sσ of
a racquet σ = (τ, e) contains all segments in L that intersect τ or e.

7.2 A simple example: treaps

We begin with a toy example that avoids some of the complications of the general
case: suppose that each node v of G is labeled with an element xv from a totally
ordered universe and that all the labels are distinct. The structure to be maintained
is a binary search tree T . Start with an empty tree and perform a random walk
on G. When the walk reaches v for the first time, insert xv into T . Our goal is
to bound the expected time for the construction of T . For convenience, we assume
that G is connected and r-regular3, for some constant r. The complexity of the
algorithm is tightly coupled to the spectral gap γ, which is the difference between
the first and second largest eigenvalues of the (stochastic) transition matrix. We
will prove the following result.

Theorem 7.2.1. The expected time to construct the binary search tree is O
(
n logn
γ

)
.

For example, if G is the complete graph with self-loops, γ = 1 and we get the
original theorem about treap construction [119, 141]. More interestingly, if G is a
random r-regular graph or an expander, we have γ = Θ(1), and the running time

3A graph is r-regular if all its nodes have degree r.

93

T ∗

xv

xu xv

T ∗

xu

xwxu

xv

T ∗

(a) (b) (c)

Figure 7.2: All elements xz, z ∈ S, are stored in a subtree rooted at xw. (a) If
w = u, then Iuv = 0; (b) if w = v, then Iuv = 1; and (c) if w ∈ Suv, we have Iuv = 0.

is still optimal. A cycle, on the other hand, has γ = Θ(1/n2), and Theorem 7.2.1
predicts a running time of O(n3 log n).

For distinct u, v ∈ V , let Suv denote the set of nodes z ∈ V such that xz lies
in the open interval bounded by xu and xv. Furthermore, let Iuv be the indicator
random variable for the event that xu is compared to xv when xu is inserted into T ,
ie, the event that xv is an ancestor of xu in the binary search tree. Clearly, the time
to insert xu into T is proportional to

∑
v∈V \u Iuv. We claim that Iuv = 1 precisely

if the random walk encounters v before any other node in S = Suv ∪ {u, v} [141,
Lemma 4.3]: let w be the first node in S that is encountered during the random
walk, and let T ∗ be the tree just before the insertion of xw. Since the labels of the
nodes in S constitute an interval, for every element x in T ∗ the comparison of x
with any xz, z ∈ S, yields the same result, irrespective of which z ∈ S is chosen.
Therefore, the search paths in T ∗ for all xz, z ∈ S, are identical. It follows that all
those elements will be stored in a subtree rooted at xw. We can now cover all the
cases (see Figure 7.2): if w = u, then Iuv = 0, and if w = v, then Iuv = 1. Finally,
if w ∈ Suv, then xu and xv will be stored in different subtrees of xw, and hence they
will never be compared to each other, ie, Iuv = 0. Thus, the expected time to build
the binary search tree is proportional to

Θ =
∑
u,v∈V
u6=v

E [Iuv] =

∑
u,v∈V
u6=v

Pr[the random walk meets v before any node in Suv ∪ {u}]. (7.1)

To get a handle on this sum, we need some random walk theory. Recall that the
transition matrix of a Markov process with n states is the n× n matrix P in which
entry Pij is the probability of a transition from state i to state j. The transition
matrix of a random walk on a graph G is its adjacency matrix, normalized so that
each row sums to one. Furthermore, for any initial probability distribution πT0 ∈ Rn,
the distribution after t steps equals πT0 P

t.

94

For technical reasons, we assume a lazy walk with P = 1
2
(I +M/r), where M is

the adjacency matrix of G. This is only for analytical convenience, and an actual
implementation could assume a random walk in the original graph G. For the cost
of a constant-factor slowdown, the lazy walk brings with it well-known analytical
benefits. For example, P is positive semidefinite and the walk is ergodic. Fix a
node u0 ∈ V . Given any nonempty set S ⊂ V and u ∈ V \S, let Pr[u0

u→ S] be the
probability that an infinite walk from u0 reaches u before any node in S, and let
t0 = bc(1−λ)−1 log nc be an upper bound on the mixing time, where λ is the second
largest eigenvalue of P and c is a large enough constant [53]. Note that λ = 1−γ/2
(the factor 1/2 comes from the lazy walk) and that

λt0 ≤ 1/n, (7.2)

for appropriate c, since λ = 1 − (1 − λ) ≤ exp (λ− 1). We begin with a technical
result of independent interest.4

Lemma 7.2.2. For any given u0 ∈ V , nonempty S ⊂ V , u ∈ V \ S,

Pr[u0
u→ S]�

∑
0≤t<3t0

(P t)u0u +
1

(1− λ)|S| .

Proof. We may assume that u0 6= u, since otherwise the sum on the right-hand
side is at least 1 and the lemma holds trivially. Similarly, we assume u0 6∈ S, since
otherwise Pr[u0

u→ S] = 0. Let Q be the matrix derived from P by zeroing out any
entry Pvw with either v or w (or both) in S ∪ {u}. (We index matrix elements and
vector coordinates by their corresponding nodes in G.) Being positive semidefinite,
Q has a (real) spectral decomposition

∑
i µi~zi~z

T
i such that µ1 ≥ · · · ≥ µn = 0 and

the ~zi constitute an orthonormal basis of eigenvectors. By the Perron-Frobenius
theorem (Theorem 7.1.3 in Section 7.1.2), λ < 1. We also have µ1 < 1. To see why,
note that the components of G \ (S ∪ {u}) induce a decomposition of Q into block
matrices. If µ1 = 1, one of these block matrices Q′ would have principal eigenvalue
1 and Perron-Frobenius would yield a corresponding eigenvector with all positive
entries. But this is impossible, since Q′ has a row whose entries sum to less than
1 (and all other rows sum to at most 1).5 By the eigenvalue interlacing lemma

4Recall that we use the Vinogradov notation � and � for O(·) and Ω(·), respectively.
5Let ~v be this eigenvector, and suppose that the ith row of Q′ sums to less than 1. Since µ1 = 1,

there must be an index j such that Q′ij > 0 and vj > vi, where vi, vj denote the corresponding
components of ~v. The jth row sums to at most 1, and by symmetry Q′ji > 0. Hence there must
be a j′ with Q′jj′ > 0 and vj′ > vj . Repeating this argument yields an arbitrarily long strictly
increasing sequence of components of ~v, which is impossible since ~v has finite dimension.

95

(Theorem 7.1.2), µ2 ≤ λ, so for any v, w ∈ V \ (S ∪ {u})
(Qt)vw = z1vz1w µ

t
1 +

∑
i>1

zivziw µ
t
i (spectral decomposition)

≤ z1vz1w µ
t
1 + µt2

√∑
i>1

z2
iv

∑
i>1

z2
iw (Cauchy-Schwarz and µi ≤ µ2) (7.3)

≤ z1vz1w µ
t
1 + λt. (orthonormality of the ~zi and µ2 ≤ λ)

Since ~1/
√
n is the principal unit eigenvector of P for the eigenvalue 1, an analogous

calculation for P yields for any v, w ∈ V :

(P t)vw ≤
1

n
+ λt. (7.4)

To bound Pr[u0
u→ S], we proceed as follows: first, we distinguish between short

paths (with less than 3t0 steps) and long paths (with at least 3t0 steps). The
contribution of the short paths constitutes the first summand in the bound of
Lemma 7.2.2. To analyze the contribution of the long paths, we break down every
long path from u0 to u into a pre-mixing part, a mixed portion, and the premixed
part of the reverse path. We then assess the contribution of each piece. Let Nu

denote the set of nodes in V \ S adjacent to u via a nonloop edge. Since G is
r-regular, |Nu| ≤ r. Note that (Qt)u0v is the probability that a t-step random walk
from u0 ends in v while avoiding S ∪ {u}. Therefore,

Pr[u0
u→ S] =

1

r

∞∑
t=0

∑
v∈Nu

(Qt)u0v ≤
∑
t<3t0

(P t)u0u +
1

r

∑
t≥3t0

∑
v∈Nu

(Qt)u0v . (7.5)

We now break down the long paths. The last summand in (7.5) is bounded by

1

r

∑
v∈Nu

∑
t≥t0

∑
a,b∈V

(P t0)u0a(Q
t)ab(P

t0)bv (break-up and (Qt0)uv ≤ (P t0)uv)

≤
(1

n
+ λt0

)2∑
t≥t0

∑
a,b∈V

(Qt)ab (by (7.4) and |Nu| ≤ r) (7.6)

≤ 4

n2

∑
t≥t0

∑
a,b∈V

(Qt)ab . (by (7.2))

Since ‖~z1‖2 = 1 and since at least |S| + 1 of its coordinates are zero (an easy
consequence of being an eigenvector for Q), Cauchy-Schwarz yields ‖~z1‖2

1 ≤ n −
|S|−1. By applying Perron-Frobenius to the parts of the block decomposition of Q
induced by the components of G \ (S ∪{u}), we can assume that ~z1 is nonnegative,
and so ∑

a,b∈V

z1az1b = ‖~z1‖2
1 ≤ n− |S| − 1. (7.7)

96

We have

Pr[u0
u→ S]−

∑
t<3t0

(P t)u0u ≤
1

r

∑
t≥3t0

∑
v∈Nu

(Qt)u0v (by (7.5))

≤ 4

n2

∑
a,b∈V

∑
t≥t0

(z1az1b µ
t
1 + λt) (by (7.3,7.6)) (7.8)

≤ 4

n(1− µ1)
+

4λt0

1− λ . (geom. sum and (7.7))

We already noted µ1 < 1. However, to bound (7.8), we need a better estimate
on 1 − µ1. This can be done using an argument similar to one given by Broder
and Karlin [32]: since ~z1 is nonnegative, n~z1 − ‖~z1‖1

~1 is normal to the principal
eigenvector ~1 of P , and since P is symmetric, by Courant-Fischer (Theorem 7.1.1),

λ ≥ (n~z1 − ‖~z1‖1
~1)TP (n~z1 − ‖~z1‖1

~1)

‖n~z1 − ‖~z1‖1
~1‖2

2

=
n2~zT1 P~z1 − n‖~z1‖1(~zT1 P~1 +~1TP~z1) + ‖~z1‖2

1
~1TP~1

n2‖~z1‖2
2 − n‖~z1‖1(~zT1 ~1 +~1T~z1) + ‖~z1‖2

1
~1T~1

.

Now, since ~1 is a left and right eigenvector of P , ~1TP = ~1T and P~1 = ~1. Further-
more, ~1T~1 = n, ~zT1 ~1 = ~1T~z1 = ‖~z1‖1, and ‖~z1‖2 = 1. Hence,

λ ≥ n~zT1 P~z1 − ‖~z1‖2
1

n− ‖~z1‖2
1

≥ nµ1 − ‖~z1‖2
1

n− ‖~z1‖2
1

,

because ~zT1 P~z1 ≥ ~zT1 Q~z1 = µ1. It follows that nµ1 ≤ nλ + (1 − λ)‖~z1‖2
1, and

using (7.7) we get µ1 ≤ 1 − (1 − λ)(|S| + 1)/n. Plugging this bound into (7.8)
completes the proof, as λto ≤ 1/n ≤ 1/|S| by (7.2).

Proof of Theorem 7.2.1. By (7.1), the expected running time is

Θ =
∑
u,v∈V
u6=v

1

n

∑
u0∈V

Pr[u0
v→ Suv ∪ {u}],

where u0 is the random start node of the walk. By Lemma 7.2.2,

Θ�
∑
u,v∈V
u6=v

1

n

∑
u0∈V

(
3t0−1∑
t=0

(P t)u0v +
1

(1− λ)(|Suv|+ 1)

)

=
∑
u,v∈V
u6=v

(
3t0
n

+
1

(1− λ)(|Suv|+ 1)

)
,

97

since
∑

u0∈V (P t)u0v = 1, as (P t)u0v is the probability that a t-step random walk
ending in v started out at u0. Hence,

Θ� nt0 + (1− λ)−1

n∑
i,j=1
i 6=j

1

|i− j|+ 1
� γ−1n log n.

7.3 Θ-series for Markov sources

We use the classic notion of configuration spaces (see [122] or Section 7.1.3 for a
primer) and adapt it to the Markov model. This is done as follows: fix a natural
number d, the degree of the configuration space. Each node v of G is assigned an
object xv chosen from a geometric universe (eg, points, hyperplanes, segments), and
to each d-tuple u = (u1, . . . , ud) of distinct ui ∈ V we assign a (possibly empty)
Su ⊆ V disjoint from u. We denote by fk the number of u’s such that |Su| = k
and by f≤k the prefix sum f0 + · · ·+ fk. We write fk(n) and f≤k(n) to refer to the
maximum such values over all subsets of the universe of size n. The coordinates
of a d-tuple u play the role of the triggers and the sets Su that of the stoppers.
Naturally, fk counts the k-sets of the underlying range space.

The apparent simplifications of our model do not, in fact, restrict the generality
of the results in any way. Indeed, our framework can just as easily handle cases
where u is not a sequence but a multiset, where it maps to several stopper sets, or
where the degree d is not unique. Given a random ordered u = (u1, . . . , ud) with
distinct elements, perform an infinite random walk from a random node in G. If the
walk first reaches u1, . . . , ud in that order before hitting any node in Su, then set
Φ = nd|Su|; else set Φ = 0. Standard Θ-series theory shows that the expectation
of Φ determines the expected amortized complexity of RIC [122]. As before, we
assume that the graph is connected and r-regular, and we let γ denote the spectral
gap. We postpone the proof of this result:

Theorem 7.3.1 (Master Theorem). If there is a constant α > 0 with f0(n) =
O(nα), then E [Φ] � γ−d nα (log n)d−α for α > 1 and E [Φ] � γ−d n(log n)d for
α ≤ 1.

We apply the theorem to three problems: convex hulls (and hence Voronoi
diagrams); trapezoidal maps of disjoint segments; and line segment intersections.
For simplicity, we assume that the input is in general position. The algorithms
themselves operate in standard incremental fashion by inserting objects online with
the help of the history graph. The algorithms do not require knowledge of the
Markov chain (which is why we do not use conflict graphs).

98

• Convex hulls in Rd. The convex hull of n points in Rd has O
(
nbd/2c

)
faces,

which implies that α = bd/2c. The algorithm runs in O
(
γ−d nbd/2c(log n)dd/2e

)
time for d > 3, and O

(
n(γ−1 log n)d

)
for d ≤ 3.

• Trapezoidal maps. At each node, the trapezoidal map formed by a set of
(nonintersecting) segments is maintained. The relevant configuration space
is made of three subconfiguration spaces of respective degrees 2, 3, and 4.
Hence, the time required by the algorithm is O(n(γ−1 log n)4).

• Segment intersections. The m intersections among n segments are com-
puted in O ((n+m)(γ−1 log n)6) steps. The proof depends on an extension of
the Master Theorem discussed in Section 7.4.

To bound the expectation of Φ, we need to understand a certain stochastic
process, which we proceed to describe. A random thread refers either to a single
node w1 chosen uniformly at random (thread size of 1) or to a sequence w1, . . . , wl
(thread size of l > 1), where w1 is random and, for each i > 0, wi+1 is the end node
of a random walk from wi of length ti > 0. The time sequence θ = (t1, . . . , tl−1)
parametrizes the thread. Given 1 ≤ µ ≤ d, a random µ-thread is a sequence of µ
threads whose sizes add up to d: each thread is drawn independently and has its
own size and time sequence. Its time sequence θ refers now to the collection of its
constituent threads’ time sequences. A µ-thread forms a d-tuple u and is therefore
associated with a stopper set6 Su. Let g

(µ)
k be the probability that a random µ-

thread (with a given time sequence) produces u such that |Su| = k.

g
(µ)
k = Pr [µ-thread ↪→ u : |Su| = k], (7.9)

and let g
(µ)
≤k =

∑
0≤i≤k g

(µ)
i .

Lemma 7.3.2. Let f0 be monotonically increasing. For any µ-thread and any cor-
responding time sequence θ1, . . . , θµ, we have g

(µ)
≤k � (k/n)µf0(n/k), for k > 0.

Proof. We use a Clarkson-Shor type counting argument [59] tailored for Markov

chains.7 As usual, the idea is to use sampling in order to bound g
(µ)
≤k in terms of f0.

More precisely, we sample a set Rv ⊆ V of size about n/k. Then, for a configuration
u ⊆ Rv with |Su| ≤ k, we argue that with constant probability u is active in Rv, ie,
Su∩Rv = ∅. Together with a bound on the probability that a given configuration u
appears in Rv, this yields the desired result. We may assume that k ≤ n/2d, since

for larger k the bound becomes constant and g
(µ)
≤k ≤ g

(µ)
≤n ≤ 1.

6This is not true if u contains less than d distinct nodes. Since Lemma 7.3.2 deals only with
finite stopper sets, we can invalidate this case by setting Su = R, or any other infinite set.

7See the proof of Claim 2.2.7 for a basic application of the Clarkson-Shor method.

99

All µ-threads in this proof share the given time sequence θ1, . . . , θµ. Let s ≤ n be
an integer to be determined later. For each i = 1, . . . , µ, pick s random threads of
type θi, and define R as the set of u’s formed by taking all possible sµ combinations
of the resulting threads, one of each type. Given a fixed (nonrandom) u ∈ V d,
let pu denote the probability that u is chosen by a random µ-thread. Since each
starting node is chosen independently, pu is of the form

∏
1≤i≤µ

pu,i
n

, where pu,i is
the probability that the i-th thread visits the relevant nodes of u in the correct
order, given that the first node of the i-th thread equals the corresponding node in
u. Therefore, u ends up in R with probability at least

∏
1≤i≤µ(1 − (1 − pu,i/n)s).

Now, since pu,is/n ≤ 1, we have(
1− pu,i

n

)s
≤ 1−

(
s

1

)
pu,i
n

+

(
s

2

)(pu,i
n

)2

≤ 1− pu,is

n
+

1

2

(pu,is
n

)2

≤ 1− pu,is

2n
;

(7.10)
hence,

Pr[u ∈ R] ≥
µ∏
i=1

pu,is

2n
� pu s

µ. (7.11)

Let Rv be the collection of nodes appearing among the d-tuples of R. Given a fixed u
with |Su| ≤ n/2d, conditioned upon u ∈ R, what is the probability that Rv∩Su = ∅,
ie, that configuration u is active in Rv? Being in R, u itself is a µ-thread formed
by picking exactly one thread per type out the s available ones in R. The d nodes
of u lie outside Su, so the only possibility for Rv to intersect Su is for any of the
(s− 1)µ other threads to pass through Su. Take one of them: it is a random walk
w1 . . . wl. The starting node w1 is random, so its distribution forms an eigenvector
for the thread’s transition matrix with eigenvalue 1 (also true if l = 1). This means
that each wi lies in Su with probability |Su|/n. These events are not independent,
so we use a union bound to argue that the thread w1 . . . wl remains outside Su

with probability at least 1 − l|Su|/n ≥ 1 − d|Su|/n. The (s − 1)µ threads that
are candidates for passing through Su are independent, however, and thus refrain
from doing so with probability at least (1− d|Su|/n)(s−1)µ. For any x ∈ [0, 1/2] we
have (1− x)−1 ≤ (1 + x)2 ≤ exp(2x). Thus, (1− d|Su|/n) ≥ exp(−2d|Su|/n), since
|Su| ≤ n/2d. It follows that

Pr[Rv ∩ Su = ∅ |u ∈ R] ≥
(

1− d|Su|
n

)(s−1)µ

≥ e−2d(s−1)µ|Su|/n.

If ru denotes the probability that both u ∈ R and Su ∩ Rv = ∅ then, by (7.11),
setting s = n

dk
yields

ru = Pr[u ∈ R]× Pr[Rv ∩ Su = ∅ |u ∈ R]�
(n
dk

)µ
pu e

−2µ|Su|/k ;

100

therefore, since µ ≤ d and k ≤ n/2d,∑
u: |Su|≤n/2d

ru �
∑

u: |Su|≤n/2d

(n
dk

)µ
pue

−2d|Su|/k �
∑

u: |Su|≤k

(n
dk

)µ
pu �

(n
k

)µ
g

(µ)
≤k ,

as g
(µ)
≤k =

∑
u:|Su|≤k pu. Since |Rv| ≤ ds, by definition and by the monotonicity of

f0, |{u ∈ R : |Su ∩Rv| = 0}| ≤ f0(ds); therefore,∑
u: |Su|≤n/2d

ru ≤ f0(n/k).

Note that this holds uniformly over all time sequences for the µ-thread.

Proof of Theorem 7.3.1. Recall that our goal is to bound the expectation of a ran-
dom variable Φ defined as follows: pick a random d-tuple u = (u1, u2, . . . , ud) of
distinct ui ∈ V and perform an infinite random walk in G starting at a random
node u0. If the walk encounters all the nodes in u in that order before any node in
Su, let Φ = nd|Su|, otherwise, let Φ = 0. The expectation of Φ is given by

E [Φ] =
ndd!(
n
d

) ∑
u

1

n

∑
u0∈V

|Su|
d−1∏
i=0

Pr
[
ui

ui+1→ Su ∪ {ui+2, . . . , ud}
]
,

where
∑

u ranges over all ordered subsets of d distinct nodes: obviously, we may re-

strict the sum to {u : |Su| > 0}. The sum d!
(
n
d

)−1∑
u represents the random choice

of u, the sum n−1
∑

u0∈V accounts for the random starting vertex. The product
denotes the probability that a random walk from u0 visits the nodes u1, . . . , ud in
that order before it encounters any node in Su. Note that removing elements from

S cannot decrease Pr
[
u0

u→ S
]
; therefore,

E [Φ]�
∑
u

Au

n
|Su|

d−1∏
i=1

Pr
[
ui

ui+1→ Su

]
,

where

Au =
∑
u0∈V

Pr
[
u0

u1→ Su

]
�
∑
u0∈V

(∑
0≤t<3t0

(P t)u0u1 +
1

(1− λ)|Su|

)
(Lemma 7.2.2)

= 3t0 +
n

(1− λ)|Su|
(by

∑
u0

(P t)u0u1 = 1)

� n

1− λ

(
1

|Su|
+

log n

n

)
. (by t0 � (1− λ)−1 log n)

101

1
4 6

7

9

Su

Figure 7.3: The index set L = {1, 2, 4, 7, 9, 10} defines a 5-thread.

Thus, using Lemma 7.2.2 once more,

E [Φ]� 1

1− λ
∑
u

(
1 +
|Su| log n

n

) d−1∏
i=1

{ ∑
0≤t<3t0

(P t)uiui+1
+

1

(1− λ)|Su|

}
.

(7.12)
Writing (7.12) as E [Φ] � (1 − λ)−1

∑
u(1 + |Su|(log n)/n)Bu, we begin with the

sum
∑

uBu. Expanding the (d − 1)-fold product Bu produces 2d−1 terms of the
form(1

1− λ
)j 1

|Su|j
∏
i∈L

∑
0≤t<3t0

(P t)uiui+1
=

∑
θ=(ti)i∈L
0≤ti<3t0

(
1

1− λ

)j
1

|Su|j
∏
i∈L

(P ti)uiui+1

(7.13)
where L ⊆ {1, . . . , d− 1} and j + |L| = d− 1. Let

CL,θ
u =

(
1

1− λ

)j
1

|Su|j
∏
i∈L

(P ti)uiui+1
,

so
∑

uBu =
∑

u

∑
L

∑
θ C

L,θ
u . The index set L specifies the parameters of a µ-

thread (except for its time sequence). Indeed, break 1, . . . , d into µ = j+1 intervals
by applying the rule that i and i + 1 are in the same interval precisely if i ∈
L. In Figure 7.3, d = 11, µ = 5, j = 4, L = {1, 2, 4, 7, 9, 10}, and the threads
are [1, 2, 3], [4, 5], [6], [7, 8], [9, 10, 11]. All we can say about the time sequences is
that their total number of elements t1, t2, . . . is exactly |L| = d − µ. We use the

102

superscripts L, θ in the sums to indicate a fixed L and/or a fixed time sequence θ.∑
u

Bu =
∑
L

∑
θ

∑
u

CL,θ
u =

∑
L

∑
θ

(
1

1− λ

)j L,θ∑
u

nµ

|Su|j
Pr[µ-thread ↪→ u] .

(7.14)
Note the presence of the factor nµ to make up for the fact that in a µ-thread each
thread starts from a random vertex, whereas in CL,θ

u each thread starts from the
corresponding ui. Assume that j > 0. Now, the sum

∑L,θ
u |Su|−j Pr[µ-thread ↪→

u] can be upper-bounded using summation by parts:

L,θ∑
u

Pr[µ-thread ↪→ u]

|Su|j
=

n∑
k=1

g
(µ)
k

kj
(group by |Su|)

=
g

(µ)
≤n

nj
− g(µ)

0 +
n−1∑
k=1

g
(µ)
≤k

(1

kj
− 1

(k + 1)j

)
(sum by parts)

� 1

nj
+

n−1∑
k=1

g
(µ)
≤k

kj+1
(g

(µ)
≤n ≤ 1)

(7.15)

� 1

nj
+

1

nµ

n−1∑
k=1

f0(n/k)

kj+1−µ . (Lemma 7.3.2)

Let
∑L

u Bu denote the sum obtained by collecting all summands in
∑

uBu with a
fixed L. By (7.14) and using the identity µ = j + 1,

L∑
u

Bu �
L∑
θ

(
1

1− λ

)j
nµ

L,θ∑
u

|Su|−j Pr[µ-thread ↪→ u] (by (7.14))

� (3t0)d−µ
(

1

1− λ

)j (
n+

n−1∑
k=1

f0(n/k)
)

((7.15), µ = j + 1,

and |θ| = d− µ)

� (log n)d−µ
(1

1− λ
)d−1

(
n+

n−1∑
k=1

(n
k

)α)
. (since f0(n) = nα)

(7.16)

We can now easily cover all cases:

(I) j > 0 and α ≤ 1:
∑

k(n/k)α � n log n; hence, using µ = j + 1,

L∑
u

Bu � (1− λ)1−d n(log n)d−j � (1− λ)1−d n(log n)d−1.

103

(II) j > 0 and µ ≥ α > 1:
∑

k(n/k)α � nα; hence

L∑
u

Bu � (1− λ)1−d nα (log n)d−µ � (1− λ)1−d nα (log n)d−α.

(III) α > µ or j = 0: by (7.14),

L∑
u

Bu � (1− λ)1−d nµ (log n)d−1−j.

If α > µ, then
∑L

u Bu = o((1 − λ)1−dnα). If j = 0, then
∑L

u Bu � (1 −
λ)1−d n(log n)d−1.

Since the bounds are independent of L for which there are only constantly many
choices, we conclude that∑

u

Bu � (1− λ)1−d max
{
n(log n)d−1, nα (log n)d−α

}
.

Going back to (7.12), recall that

E [Φ]� (1− λ)−1
∑
u

(
1 +
|Su| log n

n

)
Bu.

To handle D = logn
n

∑
uBu|Su|, first note that since |Su| ≤ n, we never lose more

than a factor of log n. However, in Case (II) we can do better. Assume j > 0
and µ ≥ α > 1. We revisit the above calculation. With the additional factor of
|Su|(log n)/n, (7.14) becomes

D =
∑
L

∑
θ

log n
(1

1− λ
)j L,θ∑

u

nµ−1

|Su|j−1
Pr[µ-thread ↪→ u] . (7.17)

First, if j = 1, then µ = 2 and
∑L,θ

u nµ−1|Su|1−j Pr[µ-thread ↪→ u] ≤ n. Therefore
in this case DL � (1 − λ)1−dn(log n)d−1, where DL denotes the sum obtained by
collecting all the terms of D with a fixed L.
Next, we consider the case j ≥ 2. Similarly to (7.15),

L,θ∑
u

|Su|1−j Pr[µ-thread ↪→ u]� 1

nj−1
+

1

nµ

n∑
k=1

f0(n/k)

kj−µ
. (7.18)

104

Hence, (7.16) becomes

log n

n

L∑
u

Bu|Su|

�
L∑
θ

log n

(
1

1− λ

)j
nµ−1

L,θ∑
u

|Su|1−j Pr[µ-thread ↪→ u] (by (7.17))

� (log n)d+1−µ
(1

1− λ
)d−1

(
n+

k

n

n∑
k=1

(n
k

)α)
(by (7.18))

= (log n)d+1−µ
(1

1− λ
)d−1

(
n+

n∑
k=1

(n
k

)α−1
)
,

and since α > 1, DL = o((1− λ)1−dnα).
Thus, accounting for the extra log n-factor in Cases (I) and (III),

E [Φ]� (1− λ)−d max
{
n(log n)d, nα (log n)d−α

}
.

This completes the proof of the Master Theorem.

7.4 Extensions

Segment intersections. The Master Theorem cannot be used for the trapezoidal
map of intersecting segments. The reason is that the complexity of an arrangement
of n segments depends on both n and the number m of intersections. We show how
to extend the Master Theorem to handle this case. The problem can be described
by a configuration space that is made of subconfiguration spaces of degrees 3, 4, 5, 6
with f0(n,m)� n+m. We need to strengthen Lemma 7.3.2:

Lemma 7.4.1. Let g
(µ)
≤k be as defined in Lemma 7.3.2; for any µ-thread, any corre-

sponding time sequence and any k > 0,

g
(µ)
≤k � (k/n)µ(n+m)/k.

Proof. We use the same notation as in Lemma 7.3.2. We only need a better upper
bound on

∑
u ru, the expected complexity of the trapezoidal map for the sample

Rv. To do this, we bound the expected number of intersections among the line
segments xz, z ∈ Rv. Let I be an intersection and let xu be one of its defining
segments: I can only be present in the trapezoidal map for Rv if u ∈ Rv. This
happens with probability at most 1 − (1 − d/n)s: we have s independent samples
of d nodes, each of which could be u with probability 1/n. Since d/n ≤ 1, we

105

have 1 − (1 − d/n)s ≤ ds/n = 1/k. By linearity of expectation, it follows that the
expected number of intersections is O(m/k), which gives the desired upper bound of
O((n+m)/k) on the expected complexity of the trapezoidal map for Rv. Together
with the lower bound from the proof of Lemma 7.3.2, this completes the proof.

The desired result follows now by repeating the proof of the Master Theorem
with the bound g

(µ)
≤k � (n+m)/k in (7.15). Then, (7.16) becomes

L∑
u

Bu � (log n)d−µ
(

1

1− λ

)d−1
(
n+

n−1∑
k=1

n+m

k

)
,

and as in Cases (I) and (III) we find
∑

uBu � (1 − λ)1−d(n + m)(log n)d−1.
Accounting for the additional log n-factor (and the factor (1 − λ)−1), this yields
E [Φ] � (1 − λ)−d(n + m)(log n)d. To summarize, the m intersections among n
segments are computed in time O ((n+m)(γ−1 log n)6), as we claimed earlier.

Revisiting the Clarkson-Shor bound. While proving the Master Theorem,
we obtained a variant of the Clarkson-Shor bound suited for our Markov model
(Lemma 7.3.2). We believe that this lemma is of independent interest and could
lead to new bounds on the number of k-sets when certain restrictions on the defining
elements are imposed. Here is a toy example: let P ⊆ R3 be a set of n points in
general position. Let H be the set of planes in R3 spanned by triplets of the
form (x, y, n(x)) for x, y ∈ P , where n(x) denotes a neighbor of x in the Euclidean
minimum spanning tree (EMST) of P . A plane h ∈ H conflicts with a point p ∈ P
if p lies below h. Let f≤k denote the number of planes in H that conflict with at
most k points.

Corollary 7.4.2. f≤k � nk.

Let H ′ denote the planes spanned by triplets of the form (x, y, nn(x)), x, y ∈ P ,
where nn(x) denotes the nearest neighbor of x in P . Let f ′≤k count the planes in H ′

with at most k conflicts. Since the EMST contains the nearest neighbor graph [74],
we also have

Corollary 7.4.3. f ′≤k � nk.

Compare this with the well-known Clarkson-Shor bound of O(nk2) for the unre-
stricted case.

Proof of Corollary 7.4.2. As our event graph G we take the EMST of P . It is
connected and has bounded degree [6, Lemma 4]. Let m be the number of edges in

106

G. We choose d = 3 and µ = 2. The first thread has size two with time sequence
(1), the second thread has size one. For each thread the probability of picking v ∈ V
as the initial vertex is deg(v)/2m. In other words, the sampling is defined as follows:
pick v ∈ V with probability deg(v)/2m and take one random step in G. Then pick
another random node v according to the same distribution. This yields a triplet of
points spanning a plane in H, and each triplet appears with probability Θ(1/n2).
We have f0(n) � n, since every plane that is spanned by a triplet in P 3 and has
no conflicts supports a facet of the lower convex hull of P , and since the number
of such facets is O(n) and each facet is supported by exactly one plane. Thus, by
Lemma 7.3.2, the probability of sampling a plane in conflict with at most k points is
O((n/k)(k/n)2) = O(k/n). Since every plane is sampled with probability Ω(1/n2),
the claim follows.

Technically, Lemma 7.3.2 applies only to regular graphs, while G has bounded,
but possibly varying, degree. However, our discussion easily generalizes to the non-
regular case—at a loss of only a constant factor. We will show this in Lemma 7.4.4
below.

Lemma 7.4.4. Let G be a connected graph with n nodes, m edges, and degree
bounded by r, and let f0 be monotonically increasing. We define µ-threads as in
Lemma 7.3.2, the only difference being that the initial node of each thread is sampled
according to the distribution π with πv = deg(v)/2m. For k > 0, any µ-thread, and

any corresponding time sequence, we have g
(µ)
≤k � (k/n)µf0(n/k).

Proof. Consider the proof of Lemma 7.3.2. We may assume that k ≤ n/2dr. Set s =
n/dkr. Then Equation (7.11) still holds, since for a given u ∈ V d, the probability

pu that u is chosen by a random µ-thread is now of the form
∏

1≤i≤µ
dipu,i

2m
, where di

is the degree of the node in u corresponding to the initial vertex of the i-th thread,
and since by our choice of s we have dipu,is/2m ≤ rpu,is/2(n− 1) ≤ 1.

Next, we need to bound the probability that a configuration u with |Su| ≤ n/2dr
is active, given that u ∈ R. Since we sample according to the stationary distribution
ofG, each node of a µ-thread lies in Su with probability at most r|Su|/2m ≤ r|Su|/n.
Proceeding as before, we now get

Pr[Rv ∩ Su = ∅ |u ∈ R] ≥ exp(−2d(s− 1)µr|Su|/n).

and
ru �

(n

dkr

)µ
pu exp(−2d|Su|/k).

Thus, as before, ∑
u: |Su|≤n/2dr

ru �
(n
k

)µ
g

(µ)
≤k

107

and ∑
u: |Su|≤n/2dr

ru ≤ f0(ds) = f0(n/rk) ≤ f0(n/k),

since f0 is monotone. This finishes the extension of Lemma 7.3.2 to the bounded
degree case.

108

Chapter 8

Conclusions

In the preceding chapters we have seen many different ways how low entropy can
impact the design and analysis of geometric algorithms. However, we believe that
these results only constitute a few first steps in this direction, and that there remain
many interesting questions to be explored. Let us mention some examples.

Hereditary algorithms. First, note that all the algorithms that appear in Chap-
ter 3 are randomized. It remains an intriguing open problem to find deterministic
analogues for them. In fact, any o(n log n) time deterministic algorithm for hered-
itary Delaunay triangulations would already be interesting. The problem with de-
randomizing the splitting algorithm lies in our use of backwards analysis: we know
that when we delete a random blue point from the bichromatic hull, it takes con-
stant expected time to reinsert it into the recursively computed blue hull. However,
if a deterministic algorithm chooses an arbitrary blue point, the reinsertion time
might be as bad as linear, and such a strategy could result in a quadratic running
time. Thus, if we want to derandomize the algorithm in Chapter 3, we need to be
able to identify blue points that can be reinserted efficiently, or we need to find a
quick way to delete and reinsert the blue points in batches. Timothy Chan [38]
gave an algorithm for splitting (arbitrary) triangulations that uses planar separa-
tors, and it would be nice to see whether it can be adapted to the Delaunay case.
The approach is based on the algorithm by Bar-Yehuda and Chazelle [19] that we
generalized to Delaunay triangulations in Section 3.5. By Chan’s method, if we
could find a deterministic version of the algorithm in Section 3.5, this would also
lead to an improved deterministic Delaunay splitting algorithm.

Another interesting problem is splitting a convex polytope into more than two
parts. In Corollary 3.3.6, we saw an algorithm that runs in O(n(log log n)2) time,
irrespective of the number of desired parts. The (log log n)2-factor comes from
the recursion and the bootstrapping, and there is little reason to believe that this
running time is best possible. Therefore, it would be interesting to know whether a

109

different approach could lead to a linear-time algorithm, or whether any superlinear
lower bound for the problem can be established.

Self-improving algorithms. Although we now have self-improving algorithms
for several interesting problems, it still remains wide open how far the self-improving
paradigm can be pushed. For simple problems, like sorting and DTs, we have a
general scheme which may extend to similar problems, with the caveat that we need
many advanced tools like entropy-optimal data structures and hereditary algorithms
for our approach to work. In joint work with Clarkson and Seshadhri [57] we also
managed to obtain an optimal self-improving algorithm for planar convex hulls. The
main new issue here is output-sensitivity : in a self-improving algorithm for convex
hulls, not all points are equal. Some points lie deep inside the convex hull, while
others are close to the boundary. The algorithm needs a way to detect this and
focus on the points which are likely to be extremal (ie, on the hull). This intuition
can be implemented using some quite elaborate conceptual work and sophisticated
data structures, overall resulting in a quite complicated algorithm. It seems highly
desirable to have a simpler algorithm that obtains the same (or a slightly weaker)
result. Furthermore, so far our algorithm is confined to the plane. Can it be
extended to three dimensions?

This result also raises a more philosophical question: usually, when we evaluate
the performance of an output-sensitive algorithm for convex hulls, we focus on the
number of points that appear on the resulting hull. However, in our context it turns
out that this notion is not enough, because points inside the hull, but close to the
boundary, matter almost as much as the extremal points. This forces us to consider
a different notion of output-sensitivity, and it might be interesting to explore this
concept further.

And, of course, it remains a big open-ended question to explore what other
problems can be solved in the self-improving regime.

Transdichotomous algorithms. We saw that planar Delaunay triangulations
can be found in time O(n sort(n)) on a word RAM by using a specialized algorithm
that exploits the specific properties of Delaunay triangulations. However, for the
more general problem of finding convex hulls in R3, we do not know anything better
than Chan and Pǎtraşcu’s algorithm, which takes n2O(

√
log logn) time. Does this

mean that the transdichotomous model offers a finer distinction between these two
problems, giving a justification for the feeling that three-dimensional convex hulls
are harder than planar DTs, even though both have Θ(n log n) complexity in the
algebraic decision tree model? Such a result would be very intriguing, especially
considering that the same intuition also suggests that there should be a complexity
gap between sorting and planar DTs, which is disproved by the results in Chapter 5.
Is this just a coincidence? Why should there be a difference between DTs and convex

110

hulls, but not between DTs and sorting? So is it more likely that a faster convex
hull algorithm exists? How should it look like?

Finally, despite the recent progress, we still have only very few transdichotomous
algorithms for general (non-orthogonal) geometric problems. Can we identify any
other problems that can benefit from the word RAM model? The method by Chan
and Pǎtraşcu is based on planar point location, but our work suggests that this
avenue might not always be optimal. Can we make this rigorous by proving non-
trivial lower bounds for the planar point location problem (either offline of online)?
Such a result seems out of reach for current techniques for data structure lower
bounds.

Restricted input models. As we saw in Chapter 6, the problem of preprocessing
a restricted point set for faster Delaunay triangulation is essentially solved, with rel-
atively simple and optimal algorithms for a wide range of input regions. However, it
would still be nice to have a deterministic—possibly more complicated—algorithm
for general input regions (which takes us back to the problem of finding a determin-
istic algorithm for hereditary planar DTs).

Furthermore, the general concept of preprocessing restricted point sets in order
to find a certain structure more efficiently later on seems to have potential, and there
are several candidate problems that merit further investigation. For example, we can
ask whether we can handle planar convex hulls for more general input regions than
the ones given by the algorithm for restricted DTs, because in this case the lower
bounds do not apply any longer. In that setting, can we get better trade-offs for
regions that are not fat? Other problems to consider in this context would be again
three-dimensional convex hulls convex hulls, or planar trapezoidal decompositions.
For example, can we preprocess a set of disjoint unit spheres in 3-space such that
the convex hull of a point set with exactly one point from each sphere can be
found in o(n log n) time? What would be the right notion for restricted trapezoidal
decompositions?

Finally, there are some similarities between restricted input models and kinetic
data structures [20]. Can we leverage kinetic techniques for designing algorithms
for restricted input models? And conversely, can some of the methods we have
developed help with designing better kinetic data structures?

Markov incremental constructions. Although our result in Chapter 7 needs
sophisticated machinery and reveals some non-obvious properties of randomized
incremental constructions and random sources with low local entropy, it still falls
short of giving an optimal result. Therefore, the most pressing open question in
Markov incremental constructions is to remove the additional log n factors in the
running time: can this be done, or is there an inherent price we need to pay for
the lack of perfect randomness? Would it help to require additional properties of

111

the event graph (for example, high girth)? For this, it seems we would need a
much better understanding of the short term behavior of random walks and of the
kinds of geometric configurations that could occur. And what about backwards
analysis? Is it irretrievably lost, or is there an analogous concept in the Markov
setting, hopefully leading to a simplified analysis?

Furthermore, in Chapter 7 we have only considered the semi-dynamic setting in
which points are inserted, but not deleted. Can we say anything interesting about
a model that allows both insertions and deletions? It appears that to answer that
question we need to be much more careful in analyzing the active subsets that can
occur in a given node of the event graph.

112

Bibliography

[1] A. Aggarwal. Lecture notes in computational geometry. MIT Research Sem-
inar Series MIT/LCS/RSS, 3, August 1988.

[2] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm
for computing the Voronoi diagram of a convex polygon. Discrete Comput.
Geom., 4(6):591–604, 1989.

[3] N. Ailon, B. Chazelle, K. L. Clarkson, D. Liu, W. Mulzer, and C. Seshadhri.
Self-improving algorithms. Manuscript at arXiv:0907.0884, 2009.

[4] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Self-improving algorithms.
In Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
261–270, 2006.

[5] S. Albers and T. Hagerup. Improved parallel integer sorting without concur-
rent writing. Inform. and Comput., 136(1):25–51, 1997.

[6] D. Aldous and J. M. Steele. Asymptotics for Euclidean minimal spanning
trees on random points. Probab. Theory Related Fields, 92(2):247–258, 1992.

[7] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Linear-time triangulation
of a simple polygon made easier via randomization. In Proc. 16th Annu. ACM
Sympos. Comput. Geom. (SoCG), pages 201–212, 2000.

[8] N. Amenta, D. Attali, and O. Devillers. Complexity of Delaunay triangulation
for points on lower-dimensional polyhedra. In Proc. 18th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages 1106–1113, 2007.

[9] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO.
In Proc. 19th Annu. ACM Sympos. Comput. Geom. (SoCG), pages 211–219,
2003.

[10] A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient regular data structures
and algorithms for dilation, location, and proximity problems. Algorithmica,
30(2):164–187, 2001.

113

[11] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time?
J. Comput. System Sci., 57(1):74–93, 1998.

[12] A. Andersson, P. B. Miltersen, and M. Thorup. Fusion trees can be imple-
mented with AC0 instructions only. Theoret. Comput. Sci., 215(1–2):337–344,
1999.

[13] B. Aronov and S. Har-Peled. On approximating the depth and related prob-
lems. SIAM J. Comput., 38(3):899–921, 2008.

[14] S. Arora and B. Barak. Computational complexity: A Modern Approach.
Cambridge University Press, 2009.

[15] S. Arya, T. Malamatos, and D. M. Mount. A simple entropy-based algorithm
for planar point location. ACM Trans. Algorithms, 3(2):Art. 17, 17 pp., 2007.

[16] S. Arya, T. Malamatos, D. M. Mount, and K. C. Wong. Optimal expected-case
planar point location. SIAM J. Comput., 37(2):584–610 (electronic), 2007.

[17] D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the
Delaunay triangulation of points on polyhedral surfaces. Discrete Comput.
Geom., 31(3):369–384, 2004.

[18] D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices: Nearest
neighbor relations for imprecise points. In Proc. 15th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages 403–412, 2004.

[19] R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. Inter-
nat. J. Comput. Geom. Appl., 4(4):475–481, 1994.

[20] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data.
J. Algorithms, 31(1):1–28, 1999.

[21] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS
Spring Joint Computer Conferences, pages 307–314, 1968.

[22] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 16th
Annu. ACM Sympos. Theory Comput. (STOC), pages 80–86, 1983.

[23] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
geometry: Algorithms and Applications. Springer-Verlag, Berlin, third edition,
2008.

[24] M. de Berg, H. David, M. J. Katz, M. H. Overmars, A. F. van der Stappen,
and J. Vleugels. Guarding scenes against invasive hypercubes. Comput. Geom.
Theory Appl., 26(2):99–117, 2003.

114

[25] M. de Berg, M. van Kreveld, and J. Snoeyink. Two- and three-dimensional
point location in rectangular subdivisions. J. Algorithms, 18(2):256–277, 1995.

[26] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J.
Comput. System Sci., 48(3):384–409, 1994.

[27] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and
quality triangulations. Internat. J. Comput. Geom. Appl., 9(6):517–532, 1999.

[28] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli-
cations of random sampling to on-line algorithms in computational geometry.
Discrete Comput. Geom., 8(1):51–71, 1992.

[29] J.-D. Boissonnat and M. Teillaud. The hierarchical representation of ob-
jects: the Delaunay tree. In Proc. 2nd Annu. ACM Sympos. Comput. Geom.
(SoCG), pages 260–268, 1986.

[30] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the
Delaunay tree. Theoret. Comput. Sci., 112(2):339–354, 1993.

[31] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge Univer-
sity Press, 1998.

[32] A. Z. Broder and A. R. Karlin. Bounds on the cover time. J. Theoret. Probab.,
2(1):101–120, 1989.

[33] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update
strategies for geometric computing with uncertainty. Theory Comput. Syst.,
38(4):411–423, 2005.

[34] K. Buchin. Organizing Point Sets: Space-Filling Curves, Delaunay Tes-
sellations of Random Point Sets, and Flow Complexes. PhD thesis, Freie
Universität Berlin, 2007. http://www.diss.fu-berlin.de/diss/receive/

FUDISS thesis 000000003494.

[35] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J.
ACM, 42(1):67–90, 1995.

[36] T. M. Chan. Random sampling, halfspace range reporting, and construction
of (≤ k)-levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000.

[37] T. M. Chan. Closest-point problems simplified on the RAM. In Proc. 13th
Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 472–473,
2002.

115

[38] T. M. Chan. Three problems about simple polygons. Comput. Geom. Theory
Appl., 35(3):209–217, 2006.

[39] T. M. Chan. Well-separated pair decomposition in linear time? Inform.
Process. Lett., 107(5):138–141, 2008.

[40] T. M. Chan and M. Pǎtraşcu. Transdichotomous results in computational
geometry, I: Point location in sublogarithmic time. SIAM J. Comput.,
39(2):703–729, 2009.

[41] T. M. Chan and M. Pǎtraşcu. Voronoi diagrams in n2O(
√

lg lgn) time. In Proc.
39th Annu. ACM Sympos. Theory Comput. (STOC), pages 31–39, 2007.

[42] P. Chassaing. Optimality of move-to-front for self-organizing data structures
with locality of references. Ann. Appl. Probab., 3(4):1219–1240, 1993.

[43] B. Chazelle. Filtering search: a new approach to query-answering. SIAM J.
Comput., 15(3):703–724, 1986.

[44] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6(5):485–524, 1991.

[45] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex
polyhedra. SIAM J. Comput., 21(4):671–696, 1992.

[46] B. Chazelle. The discrepancy method: randomness and complexity. Cambridge
University Press, New York, NY, USA, 2000.

[47] B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristán, and M. Teillaud.
Splitting a Delaunay triangulation in linear time. Algorithmica, 34(1):39–46,
2002.

[48] O. Cheong, K. Mulmuley, and E. A. Ramos. Randomization and derandom-
ization. In J. E. Goodman and J. O’Rourke, editors, Handbook of discrete and
computational geometry, chapter 40, pages 895–926. CRC Press, Inc., Boca
Raton, FL, USA, 2nd edition, 2004.

[49] L. P. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Ex-
pected Time. Technical Report PCS-TR90-147, Dartmouth College, Com-
puter Science, Hanover, NH, 1990.

[50] L. P. Chew and S. Fortune. Sorting helps for Voronoi diagrams. Algorithmica,
18(2):217–228, 1997.

[51] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple
polygon in linear time. Discrete Comput. Geom., 21(3):405–420, 1999.

116

[52] F. Chin and C. A. Wang. Finding the constrained Delaunay triangulation
and constrained Voronoi diagram of a simple polygon in linear time. SIAM
J. Comput., 28(2):471–486, 1998.

[53] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series
in Mathematics, No. 92). American Mathematical Society, Providence, RI,
USA, 1997.

[54] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. In
Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 226–
232, 1983.

[55] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM J.
Comput., 17(4):830–847, 1988.

[56] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized
incremental constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.

[57] K. L. Clarkson, W. Mulzer, and C. Seshadhri. Self-improving algorithms for
convex hulls. In Proc. 21st Annu. ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 1546–1565, 2010.

[58] K. L. Clarkson and C. Seshadhri. Self-improving algorithms for Delaunay
triangulations. In Proc. 24th Annu. ACM Sympos. Comput. Geom. (SoCG),
pages 148–155, 2008.

[59] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-
tational geometry. II. Discrete Comput. Geom., 4(5):387–421, 1989.

[60] K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete Comput. Geom., 37(1):43–58, 2007.

[61] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, third edition, 2009.

[62] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2006.

[63] O. Devillers. Randomization yields simple O(n log∗ n) algorithms for difficult
Ω(n) problems. Internat. J. Comput. Geom. Appl., 2(1):97–111, 1992.

[64] O. Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci.,
13:163–180, 2002.

[65] O. Devillers and P. Guigue. The shuffling buffer. Internat. J. Comput. Geom.
Appl., 11(5):555–572, 2001.

117

[66] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangu-
lation in logarithmic expected time per operation. Comput. Geom. Theory
Appl., 2(2):55–80, 1992.

[67] H. N. Djidjev and A. Lingas. On computing Voronoi diagrams for sorted point
sets. Internat. J. Comput. Geom. Appl., 5(3):327–337, 1995.

[68] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoret. Comput. Sci., 27(3):241–253, 1983.

[69] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the
separation of convex polyhedra. J. Algorithms, 6(3):381–392, 1985.

[70] K. Dobrindt and M. Yvinec. Remembering conflicts in history yields dy-
namic algorithms. In Proc. 4th Annu. Internat. Sympos. Algorithms Comput.
(ISAAC), pages 21–30, 1993.

[71] P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Inform. Process. Lett., 6(3):80–82, 1977.

[72] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of
an efficient priority queue. Math. Systems Theory, 10(2):99–127, 1976/77.

[73] D. Eppstein. Approximating the minimum weight Steiner triangulation. Dis-
crete Comput. Geom., 11(2):163–191, 1994.

[74] D. Eppstein, M. S. Paterson, and F. F. Yao. On nearest-neighbor graphs.
Discrete Comput. Geom., 17(3):263–282, 1997.

[75] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9, 1974.

[76] H. Fournier and A. Vigneron. A tight lower bound for computing the diameter
of a 3D convex polytope. Algorithmica, 49(3):245–257, 2007.

[77] D. Fox, W. Burgard, and S. Thrun. Markov localization for reliable robot
navigation and people detection. In Selected Papers from the International
Workshop on Sensor Based Intelligent Robots, pages 1–20, London, UK, 1999.
Springer-Verlag.

[78] P. G. Franciosa, C. Gaibisso, G. Gambosi, and M. Talamo. A convex hull al-
gorithm for points with approximately known positions. Internat. J. Comput.
Geom. Appl., 4(2):153–163, 1994.

[79] M. L. Fredman. How good is the information theory bound in sorting? The-
oret. Comput. Sci., 1(4):355–361, 1975/76.

118

[80] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. System Sci., 47(3):424–436, 1993.

[81] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths. J. Comput. System Sci., 48(3):533–
551, 1994.

[82] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Systems Theory, 17(1):13–27, 1984.

[83] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In Proc. 16th Annu. ACM Sympos. Theory Comput.
(STOC), pages 135–143, 1984.

[84] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construc-
tion of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381–413, 1992.

[85] L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust
algorithms from imprecise computations. In Proc. 5th Annu. ACM Sympos.
Comput. Geom. (SoCG), pages 208–217, 1989.

[86] L. J. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approx-
imate hulls with inaccurate primitives. Algorithmica, 9:534–560, 1993.

[87] Y. Han. Deterministic sorting in O(n log log n) time and linear space. J.
Algorithms, 50(1):96–105, 2004.

[88] Y. Han and M. Thorup. Integer sorting in O(n
√

log log n) expected time
and linear space. In Proc. 43rd Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS), pages 135–144, 2002.

[89] M. Held and J. S. B. Mitchell. Triangulating input-constrained planar point
sets. Inform. Process. Lett., 109(1):54–56, 2008.

[90] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, 1990.

[91] G. Hotz. Search trees and search graphs for Markov sources. Elektronische
Informationsverarbeitung und Kybernetik, 29(5):283–292, 1993.

[92] J. Iacono and S. Langerman. Dynamic point location in fat hyperrectan-
gles with integer coordinates. In Proc. 12th Canad. Conf. Comput. Geom.
(CCCG), pages 181–186, 2000.

[93] H. W. Jensen. Realistic image synthesis using photon mapping. A K Peters
Ltd., Natick, MA, 2001.

119

[94] S. Kapoor and E. M. Reingold. Stochastic rearrangement rules for self-
organizing data structures. Algorithmica, 6(2):278–291, 1991.

[95] A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov paging. SIAM J.
Comput., 30(3):906–922, 2000.

[96] R. G. Karlsson. Algorithms in a restricted universe. PhD thesis, University
of Waterloo, 1985.

[97] R. G. Karlsson and M. H. Overmars. Scanline algorithms on a grid. BIT,
28(2):227–241, 1988.

[98] D. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random
access machines. Theoret. Comput. Sci., 28(3):263–276, 1984.

[99] D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan. Polygon triangulation
in O(n log log n) time with simple data structures. Discrete Comput. Geom.,
7(4):329–346, 1992.

[100] R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded
Voronoi diagram of a simple polygon. Internat. J. Comput. Geom. Appl.,
6(3):263–278, 1996.

[101] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 3rd edition, 1997.

[102] D. E. Knuth. The art of computer programming: sorting and searching, vol-
ume 3. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 2nd edition, 1998.

[103] A. N. Kolmogorov. On the notion of algorithm. Uspekhi Mat. Nauk., 8:175–
176, 1953.

[104] L. K. Konneker and Y. L. Varol. A note on heuristics for dynamic organization
of data structures. Inform. Process. Lett., 12(5):213–216, 1981.

[105] M. van Kreveld and M. Löffler. Largest bounding box, smallest diameter, and
related problems on imprecise points. In Proc. 10thWorkshop on Algorithms
and Data Structures (WADS), pages 447–458, 2007.

[106] M. J. van Kreveld, M. Löffler, and J. S. B. Mitchell. Preprocessing imprecise
points and splitting triangulations. In Proc. 19th Annu. Internat. Sympos.
Algorithms Comput. (ISAAC), pages 544–555, 2008.

120

[107] H. Kruger. Basic measures for imprecise point sets in Rd. Master’s thesis,
Utrecht University, 2008.

[108] K. Lam, M. Y. Leung, and M. K. Siu. Self-organizing files with dependent
accesses. J. Appl. Probab., 21(2):343–359, 1984.

[109] J. van Leeuwen and A. Tsakalides. An optimal pointer machine algorithm for
finding nearest common ancestors. Technical Report RUU-CS-88-17, Depart-
ment of Information and Computing Sciences, Utrecht University, 1988.

[110] M. Löffler and J. Snoeyink. Delaunay triangulation of imprecise points in
linear time after preprocessing. Comput. Geom. Theory Appl., 43(3):234–242,
2010.

[111] P. Lu, X. Zeng, X. Huang, and Y. Wang. Navigation in 3D game by Markov
model based head pose estimating. In Proc. Third International Conference
on Image and Graphics (ICIG), pages 493–496, 2004.

[112] J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2002.

[113] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. Comput. Geom. Theory Appl., 16(4-5):498–516, 1996.

[114] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching,
volume 1 of Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 1984.

[115] K. Mehlhorn, M. Sharir, and E. Welzl. Tail estimates for the efficiency of
randomized incremental algorithms for line segment intersection. Comput.
Geom. Theory Appl., 3:235–246, 1993.

[116] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for
sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, 1997.

[117] M. Mitzenmacher and E. Upfal. Probability and computing. Cambridge Uni-
versity Press, Cambridge, 2005.

[118] G. Morton. A computer oriented geodetic data base and a new technique in
file sequencing. Technical report, IBM Ltd., Ottawa, Canada, 1966.

[119] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, Cambridge, 1995.

[120] K. Mulmuley. A fast planar partition algorithm. I. J. Symbolic Comput.,
10(3-4):253–280, 1990.

121

[121] K. Mulmuley. A fast planar partition algorithm. II. J. ACM, 38(1):74–103,
1991.

[122] K. Mulmuley. Computational Geometry: An Introduction through Randomized
Algorithms. Prentice-Hall, Englewood Cliffs, 1994.

[123] K. Mulmuley. Randomized geometric algorithms and pseudorandom genera-
tors. Algorithmica, 16(4-5):450–463, 1996.

[124] T. Nagai and N. Tokura. Tight error bounds of geometric problems on convex
objects with imprecise coordinates. In Jap. Conf. on Discrete and Comput.
Geom., pages 252–263, 2000.

[125] Y. Ostrovsky-Berman and L. Joskowicz. Uncertainty envelopes. In Proc. 21st
European Workshop Comput. Geom. (EWCG), pages 175–178, 2005.

[126] M. H. Overmars. Computational geometry on a grid: An overview. Technical
Report RUU-CS-87-04, Rijksuniversiteit Utrecht, 1987.

[127] R. M. Phatarfod, A. J. Pryde, and D. Dyte. On the move-to-front scheme
with Markov dependent requests. J. Appl. Probab., 34(3):790–794, 1997.

[128] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Texts and Monographs in Computer Science. Springer-Verlag, 1985.

[129] R. Raman. Priority queues: Small, monotone and trans-dichotomous. In
Proc. 4th Annu. European Sympos. Algorithms (ESA), pages 121–137, 1996.

[130] E. A. Ramos. On range reporting, ray shooting and k-level construction.
In Proc. 15th Annu. ACM Sympos. Comput. Geom. (SoCG), pages 390–399,
1999.

[131] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 3rd edition, 2009.

[132] A. Schönhage. On the power of random access machines. In Proc. 6th Internat.
Colloq. Automata Lang. Program. (ICALP), pages 520–529, 1979.

[133] A. Schönhage. Storage modification machines. SIAM J. Comput., 9(3):490–
508, 1980.

[134] F. Schulz and E. Schömer. Self-organizing data structures with dependent
accesses. In Proc. 23rd Internat. Colloq. Automata Lang. Program. (ICALP),
pages 526–537, 1996.

122

[135] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In
Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 197–
206, 1991.

[136] R. Sedgewick and M. Schidlowsky. Algorithms in Java, Third Edition, Parts 1-
4: Fundamentals, Data Structures, Sorting, Searching. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1998.

[137] R. Seidel. A method for proving lower bounds for certain geometric problems.
Technical Report TR84-592, Cornell University, Ithaca, NY, USA, 1984.

[138] R. Seidel. A simple and fast incremental randomized algorithm for computing
trapezoidal decompositions and for triangulating polygons. Comput. Geom.
Theory Appl., 1:51–64, 1991.

[139] R. Seidel. Small-dimensional linear programming and convex hulls made easy.
Discrete Comput. Geom., 6(5):423–434, 1991.

[140] R. Seidel. Backwards analysis of randomized geometric algorithms. In New
trends in discrete and computational geometry, volume 10 of Algorithms Com-
bin., pages 37–67. Springer, Berlin, 1993.

[141] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4–
5):464–497, 1996.

[142] G. S. Shedler and C. Tung. Locality in page reference strings. SIAM J.
Comput., 1(3):218–241, 1972.

[143] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. J. Comput. System Sci., 18(2):110–127, 1979.

[144] M. Thorup. Faster deterministic sorting and priority queues in linear space.
In Proc. 9th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
550–555, 1998.

[145] M. Thorup. On AC0 implementations of fusion trees and atomic heaps. In
Proc. 14th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
699–707, 2003.

[146] E. Veach and L. J. Guibas. Metropolis light transport. In Proc. 24th annual
conference on Computer graphics and interactive techniques (SIGGRPAH),
pages 65–76, 1997.

[147] C. Wellington, A. Courville, and A. T. Stentz. A generative model of terrain
for autonomous navigation in vegetation. Int. J. Rob. Res., 25(12):1287–1304,
2006.

123

[148] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and
new trends in computer science (Graz, 1991), volume 555 of Lecture Notes in
Comput. Sci., pages 359–370. Springer, Berlin, 1991.

[149] D. E. Willard. Examining computational geometry, van Emde Boas trees, and
hashing from the perspective of the fusion tree. SIAM J. Comput., 29(3):1030–
1049, 2000.

124

