Decentralized Server Selection Through
Joint Proximity and Load Optimization

Patrick Wendell, Joe Wenjie Jiang, Jennifer Rexford, and Michael J. Freedman
Princeton University

ABSTRACT

With the advent of “cloud computing” and the growth of
popular Web services, many networked services are repli-
cated at multiple geographic locations. Such distributed ser-
vices face the challenge of server selection — that is, direct-
ing an incoming client request to the appropriate server or
data center, in the hope of reducing network latency or care-
fully tuning server loads. To meet these potentially conflict-
ing goals, existing approaches use heuristics or rely on cen-
tral coordination to perform server selection. In this work,
we apply optimization theory to derive a simple, provably
optimal, fully distributed solution to the server-selection
problem. Our approach defines a global objective for a map-
ping service, and shows that decentralized mapping nodes
performing small amounts of local computation and sharing
limited information, can achieve the global objective. We
also perform experiments, based on a 24-hour trace of a real
operational CDN, that show that the distributed solution
converges very quickly in practice.

1. INTRODUCTION

Many Internet services are replicated across multiple lo-
cations, to handle a high rate of requests while also min-
imizing network latency in reaching clients. Akamai [1]
and other CDNs [14, 7] direct Web clients to HTTP prox-
ies distributed across hundreds or even thousands of van-
tage points. Web search engines and other Web services
offered by companies such as Google, Yahoo, Microsoft, and
Amazon typically run at dozens of data centers spread all
over the world. This trend of geographically-diverse server
placement will only continue, especially with the growth of
highly-interactive services such as the move of office appli-
cations into the cloud. These systems all face the challenge
of replica selection—directing client requests to the appro-
priate service instance—based on both the location of the
clients and the target load on the servers.

Today’s services employ various techniques to direct each
client to a specific service instance—whether an individ-
ual server or cluster of co-located servers. In DNS-based
redirection, a DNS query to resolve a site’s name (e.g.,
www.example.com) returns the IP address of a particular
service instance; DNS queries from clients in different loca-
tions may return different responses. In HTTP-based redi-
rection, Web servers return a special HI'TP response mes-
sage that directs the client to a different service instance
(say, with a different server name). Some services apply
other techniques, such as HTML rewriting, to present differ-
ent clients with different URLs. Still, all of these techniques

face a common underlying problem: how to match an incom-
ing request—whether a DNS query from the client’s local
DNS server or an HTTP request from the client itself—to
the appropriate service instance. In addition, these map-
ping decisions are often made by multiple nodes that are
themselves distributed across multiple locations. As such,
any practical server-selection solution should operate in a
distributed fashion, preferably requiring only limited coor-
dination amongst the nodes.

Various applications may have different notions of what
constitutes a “good” choice of service instances, but the de-
cision is usually a combination of two important factors:

Client proximity: Low network latency is especially
important for small Web transfers or interactive applica-
tions (where network round-trip times can dominate perfor-
mance), as well as large transfers (since TCP throughput
is inversely proportional to round-trip time). Services com-
monly estimate latency between a client and potential repli-
cas either using IP geolocation databases [11] or through
network measurements [1, 15, 8, 9].

Server load: Server load also has a significant influence
on user-perceived performance. Yet, cost may be an even
more important reason for considering server load. Han-
dling highly variable request loads requires excessive over-
provisioning and runs afoul of common billing practices; for
example, network providers often charge based on the 95th-
percentile bandwidth usage over (say) all 30-minute peri-
ods in a month. In some sense, then, network costs can be
considered in terms of server load. In any server-selection
scheme, both request capacity and bandwidth cost will in-
fluence the preferred amount of load to imposed on a given
replica. The value of both factors are likely to be heteroge-
neous from one replica to the next.

Thus, modern distributed services often apply heuristics
that strike a balance between directing clients to the clos-
est replica and achieving a target distribution of requests
over the service instances. One common technique consid-
ers load as a binary metric, such that locality is first used
to sort “non-overloaded” replicas, after which “overloaded”
replicas are ordered by locality [8]. Other approaches rely
on the DNS layer to direct each client to the nearest server,
allowing the servers to shed excess load through HTTP-
Redirection [5]. While certainly an improvement over simple
round-robin techniques, these heuristics can be suboptimal
and inefficient, and may lead to undesirable swings in server
load or constant redirection of requests.

In this paper, we apply optimization theory to “de-
rive” a provably-optimal, distributed solution to the server-
selection problem. Given a target proportion of requests

Figure 1: Partitioning client space onto servers

N The set of mapping nodes
C: The set of clients
7: The set of server instances

Ryci : The proportion of traffic load that is mapped
to server 4 from client ¢ by node n

Qen © Proportion of node n’s traffic load from client ¢
Sn : The proportion of total traffic load on node n
P! The desired proportion of overall traffic

delivered to instance

Table 1: Summary of key notations

to direct to each service instance, each node computes how
to direct its share of the clients to the appropriate service
instances. As an example, Figure 1 provides a hypotheti-
cal partitioning of requests from different geographic loca-
tions to four replica instances, visualized in two-dimensional
space, to achieve a target 40/30/20/10 splitting ratio. The
desired ratio may be influenced by server capacity, band-
with cost, or other factors. The areas around each service
instance represent the clients which are directed to it. Our
distributed solution is highly efficient, requiring only min-
imal exchange of information between the mapping nodes.
We prove that our algorithm converges to an optimal so-
lution and experimentally verify that the system converges
quickly—often in just a few iterations.

The remainder of this paper is organized as follows: Sec-
tion 2 quantifies “good” server selection as a global opti-
mization problem involving both client proximity and server
loads. Section 3 introduces a decentralized algorithm for
finding this optimum, whereby separate mapping nodes
communicate with one another to achieve globally optimal
behavior. Section 4 describes encouraging simulation re-
sults based on an initial implementation of this algorithm,
and Section 5 describes how our method relates to existing
approaches. Finally, Section 6 concludes.

2. SERVER-SELECTION PROBLEM

This section characterizes the server-selection problem in
terms of a global optimization. We present a network model
to describe a distributed service and introduce a method
which strikes an optimal balance between locality and tar-
geted server load distribution. We also introduce some no-
tation used in this paper, summarized in Table 1.

2.1 Network Model and Mapping Service

Consider a network that provides a server mapping ser-
vice. Denote C as the set of clients that require mapping, Z
as the set of server instances, and N as the set of mapping
nodes. Each replica ¢ € Z may represent a single server or
a cluster of servers such as a large datacenter. We use the

(]l 17 "t Sl B
/' mapping Gﬂ -
' @ instances

&\ 5

[Ty “

Figure 2: Server selection with mapping nodes

terms instance, server, and replica interchangeably through-
out the remainder of this paper.

Figure 2 illustrates the stages of a mapping service. A
mapping node n € N receives the request from a client ¢
(step 1). The node maps the client to a content instance
t € T and returns the result to the client (step 2). In prac-
tice, each client ¢ € C can represent a group of aggregated
end hosts, e.g., according to their zip codes. Therefore, it is
possible to direct the load from one client to one or multiple
server instances (step 3). Let Rnei € [0, 1] denote the pro-
portion of traffic load that is mapped to server ¢ from client
¢ by node n, i.e., 3, Rnei = 1, for V(c,n).

Each node n observes its total traffic load, i.e., the number
of requests, from its clients. We normalize the workload as
the proportion of total load over all service nodes and denote
it as as sp. Let aen € [0,1] denote the proportion of n’s
traffic load from client ¢, i.e., ZC Qen = 1, VYn; in particular,
aen = 0 when client ¢ is not served by n.

The decision variable for each mapping node n is Rpci,
Ve € C, Vi € Z, i.e., how much of client ¢’s traffic, should
node n direct to service instance i. Other information, such
as sn, and acn, are assumed as constant problem parameters.
We will revisit this assumption and discuss the application
context in practice. All the above information is local, main-
tained by node n individually.

2.2 Locality-Aware Server Selection

One of the server selection goals is to minimize network
latency. To quantify the distance between a client and an
instance, we define a distance function dist(c,i) € [0,1].
This function measures the latency cost of pairing client
¢ with instance i, which can be defined using geographical
proximity, network coordinates, or other distance estimation
methods. The dist(c,) information is calculated locally by
node n for all clients under its service, and it remains a
constant in our problem.

The choice of dist(c, i) function implies our preference over
different notions of the global proximity. For instance, if
we want to minimize the average network latency, the dist
functions can simply be RTTs or Euclidean distances. Al-
ternatively, if we want to avoid long-delay connections, e.g.,
minimizing the maximum latency or percentile-based laten-
cies, we can choose dist with increasing marginal penalty as
distance grows. For example, in our experiments, we chose a
translated logistic function as shown in Figure 3, which im-
plies that a range of latencies below a certain threshold are
acceptable, yet very large latencies are not. The flexibility
in defining dist(c, i) allows us to adhere to a single frame-

1

_ 0.8 -
g 0.6 -
ﬂ_g 04 —
0.2 _
0
0 max

Euclidian distance or RTT between cand i

Figure 3: dist(c, i) per Euclidean distance/RTT

work while being open to different notions of “optimality”
in network latency.

To achieve locality-aware server selection, we define a
global system goal, i.e., the global proximity function that
reflects the overall user latency:

proz? = z Sn z Qen z Ryci - dist(c, 1) (1)

neN ceC i€
by summing across the distance between all client-instance
pairings. By minimizing proz?, we map clients to closer
server instances and reduce end-user latencies.

2.3 Load-Aware Server Selection

The second consideration in server selection is to direct re-
quests to different server instances, such that each instance
operates at a targeted workload. Denote P/ € [0,1] as the
desired proportion of traffic assigned to instance i, which
can be configured by the service provider to reflect its pref-
erences. Also let P; be the true proportion of traffic assigned
to instance i, which is realized by a given set of R,.i’s as:

P, = Z Sn Z Qen - Rnei (2)

neN ceC

‘We hope each server operates under the desired workload
so that the server is not overloaded or under-utilized, e.g.,
|P; — P/| < e. To achieve this, we introduce a penalty func-
tion cost(P; — P]) that measures the cost of deviating from
the desired server load. We use the square of the deviation
from desired server load in order to penalize both over and
under-provisioned servers.

cost(P| — P,) = (P! — P;)? (3)
Summing up all instances gives the global load deviation
cost, cost?:
cost? = Z cost(P} — P;) (4)
ieT
2.4 Jointly Optimizing Proximity and Load

We formulate the locality-and-load aware server selection
problem as the following optimization problem SS9:

minimize prox? + 3 - cost? (5)
subject to ZRnci =1V(n,c)
ieT
variables Rnci > 0, V(n,c,1)

where (3 reflects the weight of the service provider’s prefer-
ence to load-awareness. Smaller values of 8 lead to better
locality, at the expense of poorer load balancing.

The server-selection problem (5) accepts a unique solution
under assumptions that cost(-) is convex [4]. In this work,

we choose the quadratic cost function in Eq. (3). Since the
prox function is linear in R.n;, we can efficiently solve the
problem using quadratic programming.

However, solving the problem in a centralized way would
require the coordination of all mapping nodes and the shar-
ing of per-client, per-node information. A central authority
is needed to perform all the computation and pass the solu-
tion to each node. The total amount of message passing is
proportional to |N| x |C| X |Z|, and the computation repeats
for every change in the problem inputs. Such a centralized
approach could be unacceptably expensive and suffer from
a single point of failure. This motivates us to look for a dis-
tributed solution, such that each mapping node only needs
to know its local information.

3. DECENTRALIZED SELECTION

In this section, we propose a decentralized solution to the
locality-and-load aware server selection problem. We first
propose an optimization decomposition to solve the global
problem in a distributed manner. We then translate the
mathematical solution to an iterative algorithm and discuss
its protocol implementation.

3.1 Decomposing the Optimization Problem

We next show how to decompose the global server-
selection problem into multiple local server-selection prob-
lems while guaranteeing that the solution converges to the
global optimum. The distributed solution does not re-
quire sharing of information proportional to the entire client
space. Instead, each node performs a smaller local optimiza-
tion based on its own view of the client space.

Consider the global proximity function proz? (1), consist-
ing of the local proximity contributed by each node:

g _ 1
prox? = E prox,,

neN
where
prozh, = s Z Qlen Z Ryei - dist(c, 1) (6)
ceC i€l

Also consider the global cost function cost? given in Eq. (4).
The true proportion of traffic assigned to instance i can be
rewritten as

Pi:zpmzpm-!- z

neN n’eN\{n}

where Pn; = sn ZCEC Qen - Rnei denotes the traffic load con-
tributed by node n on instance i. We also use P_,; for
the traffic load contributed by nodes other than n, which is
independent of node n’s decisions.

The local version of server selection for node n can be
defined as the following optimization problem S.SY,:

F%% =Pui + P

min promil + 3 Z cost(Pi' — Ppi — P_y;) (7)
i€l
s.t. ZR"” =1, Ve
i€l

var Ruci >0, V(e,1)

In this problem, each node only needs to know its local info
($n, @en), and the aggregated info P—_,; from other nodes.
The following theorem shows that nodes performing local
server selections, provided information is exchanged in an
appropriate order, leads to the global optimum.

Initialization. For each node n:
(1) Initializes an arbitrary solution {Rne; }eec,iez-
(2) Computes its {Py;}icz.
(3) Passes {Py;}icz to all other nodes n’.

Iteration. For each node n:

(1) Receives the latest {P,;}icz from other n’.

(2) Waits until node 1,2,...,n — 1 finishes
optimizing their local server selection.
Computes P_,; based on received information.
Solves S, and computes {Pni}iez.

Passes {Py;}icz to all other nodes n’.
Stops if {Py; }icz from other n’ do not change.

Table 2: Decentralized server selection

Theorem 1. Fach node iteratively optimizing the local
server selection SS% (7), forn = 1,2,..., N, based on the
updated information P_,; from other nodes, i.e.,

R = argmin SSL (..., RV Rues, RS i)

nci n—1lci)’

leads to a global optimum of server selection, SS9 (5).

Proof: Our distributed solution implements the nonlinear
Gauss-Seidel algorithm, which guarantees convergence if the
following conditions are satisfied (per [3, Ch. 3, Prop. 3.9],
[2, Prop. 2.7.1]): First, the global objective function must
be continuously differentiable and convex on the entire set of
variables. Our global function SS9 (5) fulfills the condition
on its variables {Rnci}eec,icz,n € N. Second, each step of
the local optimization must minimize the global objective
with respect to a subset of the global variables, assuming
others are held constant. Our local problem, SS!, (6), is a
minimization of the global objective SS? (5), with respect to
the local variables {Ry.ci}cec,icz, given fixed decisions from
other nodes. Third, the optimal solution of each local prob-
lem must be uniquely attained. Since SS is strictly convex
on the local variable {Rnci}eec,icz, this third condition is
met. The three conditions together ensure the convergence
property of our distributed solution, i.e., the limit point of
the sequence {Rnci}(vt()c’i), n=1,2,...,|N|, minimizes SS9
over the entire variable space. [|

3.2 Distributed Algorithm

After showing the convergence property of the decen-
tralized server selection, we next formally present the dis-
tributed server selection algorithm in Table 2.

The algorithm shown in Table 2 updates each node’s deci-
sion in a sequential manner. At the initialization stage, each
node picks an arbitrary solution, e.g., one that minimizes lo-
cal proximity only. It must choose a solution which is locally
attainable, since no communication has taken place. Each
node computes and passes the aggregated load information
{Ppi}icz to other nodes. At the iteration stage, one node
solves its local server selection, based on the latest infor-
mation received from other nodes. After finishing its lo-
cal optimization, each node passes the updated information
{Pri}iez to other nodes.

The decentralized server selection reduces both the
amount of data shared between the nodes and the computa-
tional complexity of each calculation. The local problem is
of size |C| X |Z|, which is much smaller than the global prob-
lem. The decrease in message passing is discussed next.

3.3 System Architecture

Any implementation of our server-selection algorithm
must address certain pragmatic design issues. Here we dis-
cuss two major considerations: (1) the choice of techniques
for message passing and (2) assumptions about the degree
to which system inputs change.

3.3.1 Inter-Node Communication

Our algorithm requires communication between nodes to
share updated local decisions. Here, we briefly discuss three
popular methods for sharing server state and their implica-
tions for distributed server selection.

Ring: Nodes are arranged in a ring (as in consistent hash-
ing), and each node transmits O(]Z]) information to its suc-
cessor node. This method has the merit of reducing the
amount of message passing, i.e., the {P,;}icz information
can be incrementally updated, without the need to broad-
cast local P,; information to all nodes. Thus, the total com-
munication complexity is O(|N||Z]). On the other hand, in-
formation is slow to propagate—linear in |N|—and failures
can further interrupt propagation.

Broadcast: Each node broadcasts the local {Pn;}vier
message to all other nodes asynchronously. The P; is recon-
structed using the latest information received from other
nodes. Nodes update their decisions in a parallel fashion,
which does not require any coordination and responds more
quickly. The total communication complexity is O(|N|?|Z|).
While such parallel update does not guarantee the conver-
gence to the global optimum, in practice, the resulting so-
lution is often close to the optimum. However, such asyn-
chronous update would result in higher fluctuations of the
objective value during the transient period.

Gossiping: Each node propagates its local information to
a subset of nodes using a gossip protocol, and local server se-
lection happens in an asynchronous manner. The gossiping
method is potentially applicable to a large number of nodes,
by achieving less message passing than broadcast methods,
yet still propagating in a logarithmic (in |[A]) number of
transmission rounds.

3.3.2 System Dynamics

Our optimization framework solves a joint locality-and-
load optimization assuming the problem is static. In prac-
tice, the system is dynamic in many ways. First, the client
request rates (Sn, aen) can vary from time to time. Second,
the preferred server load P] can change due to server capac-
ity re-planning or reservation for other purposes. Third, a
mapping node or server may go up and down. Any change
defines a new problem and a new optimal solution.

Our distributed algorithm is tolerant to such system dy-
namics by migrating from one set of solutions to another.
Since the computation is done locally, system changes can
propagate through inter-node communications. Though
the server-selection decisions, hence the locality and server
loads, are non-optimal during the transient period, they
eventually converge to the new optimum.

For example, when a new instance is added, the P; will be
initially set zero, and updated to all mapping nodes. The
distributed algorithm directs the client requests to the new
server. After several iterations, the new server would end
up receiving the optimal amount of traffic. As long as any
major change is relatively infrequent compared to the con-
vergence speed (which will be shown in the next section),

our system operates in a stable region, and can quickly re-
act and converge to its optimum point.

4. EXPERIMENTAL RESULTS

In this section, we use trace data to test the assumptions
required for convergence. We also measure the performance
of the algorithm in simulated topologies.

4.1 Analysis of Typical Server Workload

To fully understand the workload experienced by a dis-
tributed mapping service, we analyzed DNS log files from
CoralCDN, a popular content distribution network which
uses DNS to perform server selection [7]. Our dataset con-
sisted of 9,918,780 requests over a randomly-selected 24-hour
period (July 28, 2009). On that day, CoralCDN’s infrastruc-
ture consisted of 76 DNS servers which dispatched clients to
any of 308 HTTP proxies distributed world-wide. Local-
ity information was obtained through Quova’s commercial
geolocation database [11].

Stability of Request Rate: Our problem definition
does not specify the time interval for calculating request
rates. For load balancing purposes, a finer granularity is
preferred, as request volume can be guaranteed within very
short time periods. However, under very fine granularities
client request rate becomes increasingly unpredictable. We
select an interval of 10 minutes and show that client request
rates are quite predictable under this interval.

To test the regularity of request rate, we chose four ag-
gregation mechanisms, IP prefix, U.S. Zip Code, U.S. Area
Code, and U.S. State.! U.S. requests accounted for 32.4%
of overall traffic during this time. We predict request vol-
ume in a given 10-minute interval based on an exponentially
weighted average of the previous intervals. We then record
the percentage by which the true data deviates from our
prediction. Figure 4 (top) plots the relative difference be-
tween our estimated rate and the true rate for each client
group, i.e., a value of zero indicates a perfect prediction of
request volume. Each data point is the averaged difference
over a 2-hour interval for one client. Figure 4 (bottom) is a
CDF of all traffic from these same clients. Fortunately, the
vast majority of incoming traffic belongs to groups whose
traffic is very stable. The high variation in request rate of
the last 50% of groups accounts for only 6% of total traf-
fic. Coarser-grained client aggregation, such as state, leads
to even better request stability, but at the cost of locality
precision. A tradeoff emerges between precisely identifying
client locale and ensuring that request rates per client group
are predictably stable.

4.2 Simulating the Distributed Algorithm

To demonstrate the convergence of our algorithm under
realistic conditions, we ran simulations using the Coral CDN
trace data. Our simulation consisted of 10 randomly placed
mapping nodes and four service instances. Each client com-
municates with the nearest mapping node. We use a desired
split of 40/30/20/10 (as in Figure 1).

The optimization at each node is performed using
IPOPT [13], a software library capable of solving nonlinear
optimization problems in polynomial time.? Our mapping

! These mechanisms allow us to study the exact same set of clients
under different levels of aggregation. In practice, an algorithm
would use similar regional clustering for other countries.

2IPOPT applies to general convex cost functions. We can scale

450 T T T T T T T T T

150 -

Relative Difference (%)

0 10 20 30 40 50 60 70 80 90 100
Area Code in Decreasing Order of Popularity (Percentile)

0.75 E
05 E
0.25 E

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Area Code in Decreasing Order of Popularity (Percentile)

Cumulative Traffic

Figure 4: Stability of area code request rates

Q) 15 T . B T T .

> Distributed Solution

i3] 1 Optimum ------- i
Q2

el

© o5} .
[

g ol -
) 1 1 1 1 1

0 10 20 30 40 50 60
Iteration

Figure 5: Convergence towards global optimum

nodes aggregate clients by area code, and the runtime of
each local optimization was around 200 milliseconds, run-
ning on a 1.8 GHz dual core machine.

Convergence Speed: Figure 5 demonstrates the con-
vergence speed of our distributed algorithm towards the op-
timal objective (5). Each iteration represents a local opti-
mization by a single node. Convergence is achieved after the
first ten iterations, i.e., all nodes have completed one pass
of their local optimizations, which is around 1.87 seconds in
this experiment. In practice, the computation time plus the
communication time for each iteration should take less than
a handful of seconds, thus, achieving the global convergence
in tens of seconds.

Server Load Distribution: To see how well our algo-
rithm distributes load, we chose large 3 to give more weight
on load distribution over locality. We also introduce changes
in various inputs to observe behavior in a dynamic setting.
Figure 6 shows that server loads quickly converge to the
desired levels both initially and after the problem input
changes. Phase A shows servers converging from a random
initial point to a requested split of 40/30/20/10. In phase
B, we adjust the requested split to 70/15/10/5, holding re-
quest rate constant. In phase C, we randomly adjust the
volume of traffic per client by up to 100%. Finally, in phase
D we change the requested split to 25/25/25/25 and alter
client request behavior as in phase C. In every phase, the re-
quest loads converge to (and remain) within 3% of requested
proportions by the phase’s 10th iteration. In phase C, each
server deviates less than 15% from requested proportions
during the re-convergence. The consistent speed of conver-
gence offers a major benefit to service providers, as no server

to a very large number of clients and server instances, e.g., tens
of thousands of variables, if the cost function is quadratic and
applying a quadratic programming solver.

1 T T T T T T T
. A ' B . C)
ES 0.8 o R R fro B
g : : :
- | — 1
= 0.8 5 e T e 3 —————— B
I | | |
_5 0.4 - R - 5 B 3 —————— -
5 i i
3 I | ..
g o \ N -
1 w Nl
0 1 | 1 | 1 1
0 50 100 150 200 250 300 350 400
Iteration

Figure 6: Convergence of server load under input changes

instance remains over or under loaded for very long, despite
fluctuations in client behavior or desired server load.
Improved Local Proximity: While we selected high 3
to favor server load, mapping nodes achieved low local prox-
imity as well. We define an “ideal” proximity measurement
for each node as the lowest attainable proximity, i.e., each
client is always mapped to the server with the least distance
cost. This value acts as a baseline from which to compare.
Nodes averaged 7% (stdev 3.3%) above optimal proximity.
Larger Scale Simulations: To test the algorithm’s ef-
fectiveness of balancing load across many servers, we created
a topology with 100 servers, each demanding 1% of traffic.
Convergence remained fast, with all servers falling within
10% of desired traffic load after ten iterations. After 50 it-
erations, the average server had 1.000% of load with a stan-
dard deviation of .001766.% Local proximity as measured by
mapping nodes was 4% above optimal (stdev 2.4%).

S. RELATED WORK

The previous section demonstrates that a distributed
mapping system can jointly optimize for proximity and load
by leveraging the stability of aggregate request rates. Gen-
erally, there are two categories of approaches with sim-
ilar goals: (1) distributed techniques that provide real-
time relief to overloaded replicas [6, 5] based on heuristics
that adaptively react to server feedback (but at the risk of
sub-optimality and instability) and (2) centralized mecha-
nisms [10] that do not scale well and require complex repli-
cation for reliability. In this sense, our work is a major im-
provement: a solution both provably optimal and capable of
running in a completely decentralized manner.

Feedback-based approaches do address certain gaps in our
model. First, there is the possibility of bursty requests
within our chosen interval, potentially overloading servers.
Second, request volume may not directly translate to CPU
load. DNS-based techniques further muddle this transla-
tion by assuming uniform client load behind each resolver.
These issues are more pronounced when the mapping service
runs on a large number of small servers. Yet, the growing
trend of deploying services across a handful of large data
centers, can potentially alleviate these problems. The abil-
ity of larger datacenters to absorb bursty requests and better
tolerate load variability makes our approach more amenable
to these increasingly popular infrastructures.

6. SUMMARY AND FUTURE WORK

31t should be noted that the uncertainty in client request rate
under a more dynamic model will cause this variance to increase.

This paper motivates the need for optimization-based
server selection in replicated Web services. We show that,
under the assumption of a stable request rates per ge-
ographic region, one can construct an optimal mapping
service by solving a joint proximity-and-load optimization
problem. We introduce a decentralized algorithm for ar-
riving at this optimum, without requiring global sharing of
information about client request rates.

In future work, we plan to study further dynamic scenar-
ios, including both sudden changes of client distributions
(flash crowds) and desired server loads. We also seek to
quantify the performance gap, both theoretically and experi-
mentally, between various heuristic approaches and our solu-
tion. Finally, we are developing a prototype implementation
of this algorithm in a new distributed DNS service [12].

[’1] &amal E‘Nogles http://www.akamai.com/, 2009.

[2] D. P. Bertsekas. Nonlinear Programming. Athena Scientific,
1999.

(3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods. Prentice
Hall, 1989.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

(5] V. Cardellini, M. Colajanni, and P. S. Yu. Geographic load
balancing for scalable distributed web systems. In
MASCOTS, Aug. 2000.

[6] M. Colajanni, P. S. Yu, and D. M. Dias. Scheduling
algorithms for distributed web servers. In International
Conference on Distributed Computing Systems (ICDCS),
page 169, 1997.

[7] M. J. Freedman, E. Freudenthal, and D. Maziéres.
Democratizing content publication with Coral. In NSDI,
Mar. 2004.

[8] M. J. Freedman, K. Lakshminarayanan, and D. Maziéres.
OASIS: Anycast for any service. In NSDI, May 2006.

[9] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,

T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iPlane: An information plane for distributed services. In
OSDI, Nov. 2006.

[10] M. Pathan, C. Vecchiola, and R. Buyya. Load and
proximity aware request-redirection for dynamic load
distribution in peering CDNs. In OTM, Nov. 2008.

[11] Quova. http://www.quova.com/, 2009.

[12] A. Schran, J. Rexford, and M. J. Freedman. Namecast: A
reliable, flexible, scalable DNS hosting system. Technical
Report TR-850-09, Princeton University, Apr. 2009.

[13] A. Wachter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming,
106:25-57, 2006.

[14] L. Wang, V. Pai, and L. Peterson. The effectiveness of
request redirection on CDN robustness. In OSDI, Dec 2002.

[15] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
lightweight network location service without virtual
coordinates. In SIGCOMM, Aug. 2005.

