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Abstract

We present a constant-round public-coin protocol between an efficient verifier and an all-powerful (but possibly
cheating) prover that achieves the following. Both parties take as input an efficiently verifiable set S, an approxima-
tion s ≈ |S|, and an efficiently computable partition f : S → {0, 1}∗ where f(x) = f(x′) if and only if x, x′ belong to
the same set of the partition. The verifier is guaranteed to output with high probability a uniformly random x←R S

along with a number sx that approximates the size of the set |f−1(f(x))|.
Our main application is to rule out certain black-box reductions from the worst-case hardness of SAT to the task

of breaking the binding of a constant-round statistically hiding commitment scheme. We show that the existence of
a k-adaptive randomized reduction for the above task implies that co-NP has a O(k)-round public-coin interactive
protocol, namely co-NP ⊆ AM[k]. As corollaries, we derive the following:

1. A O(1)-adaptive reduction implies that the Polynomial Hierarchy collapses to the second level (Boppana et al.,
Inf. Proc. Letters 1987).

2. A polylog(n)-adaptive reduction implies the Exponential Hierarchy collapses to its third level (Pavan et al.,
Theor. Comp. Sci. 2007).

3. A o(n)-adaptive reduction improves the round-complexity of the best known interactive proof for UNSAT (the
language of unsatisfiable formulas).

Our impossibility result holds even if the hiding property of the commitment scheme is only guaranteed to hold
against honest receivers. Naturally, our result extends to any primitive that implies constant-round statistically
hiding commitment via a black-box proof of security. Most notably, this includes collision resistant hash functions, as
well as constant-round protocols for single-server private information retrieval and oblivious transfer with statistical
security for one of the parties.

1 Introduction

Much of modern cryptography relies on computational intractability assumptions; starting with seminal works of Diffie
and Hellman [DH76] and Goldwasser and Micali [GM84], the security of many if not most modern cryptosystems
rests on the assumption that some underlying computational problem is hard to solve efficiently. Often the underlying
problem is a concrete number-theoretic or algebraic problems [RSA78, ElG84, Rab79]; unfortunately the existence of
sub-exponential algorithms for factoring [BLZ94] and of efficient quantum factoring algorithms [Sho97] have thrown
into question whether many of these underlying assumptions are viable, and indeed faster factoring algorithms often
translate into better attacks on the cryptosystems based on factoring. In light of this, there has been a search for more
robust underlying intractability assumptions.

Besides searching for more robust concrete problems, one way to make the foundations of cryptography more secure
is to construct systems based on abstract primitives. This way, cryptosystems can be built via any “instantiation”
of the primitive, removing the dependence on any specific intractability assumption. The prime example is one-way
functions, which are known to be equivalent to many cryptographic primitives [IL89]. Other examples of such abstract
primitives include collision resistant hash functions or public-key cryptosystems, which we believe are strictly more
powerful than one-way functions (at least in a black-box fashion [IR89, Sim98]).
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The holy grail of the project of securing the foundations of cryptography would be to base cryptography on this
minimal assumption: namely to show that P 6= NP implies the existence of one-way functions, or, even more desirably,
the existence of stronger cryptographic primitives such as collision-resistant hash functions or public-key cryptosystems.
Other than the fact that P 6= NP is necessary for the existence of one-way functions (and all other cryptographic
primitives), the former is a “worst-case” assumption while the latter is of “average-case” nature, hence making the first
assumption more desirable. In fact, this goal dates back to the seminal paper by Diffie and Hellman [DH76].

The current paper continues the line of research investigating the relation between the existence of cryptographic
primitives and NP-hardness. As with many previous works, we study whether black-box reductions are useful for
proving that NP-hardness implies the existence of certain cryptographic primitives.

A black-box reduction from NP-hardness to the security of a cryptographic primitive is an efficient randomized
oracle algorithm R such that the following holds: given any oracle A that breaks the security of the cryptographic
primitive, the algorithm RA solves SAT, the language of satisfiable formulas. More precisely, for any x it holds that
Pr[RA(x) 6= 1SAT(x)] ≤ 2−n over the random coins of R, where 1SAT(x) = 1 iff x ∈ SAT. We say that R is k-adaptive
if R makes k adaptive rounds of queries to its oracle; each round may consist of many queries, but all of the queries in
one round can be computed without looking at the oracle responses to any of the other queries in the same round. We
say R is non-adaptive if k = 1.

As most constructions and proofs in cryptographic literature are black-box, it is worthwhile to understand whether
they can show NP-hardness implies one-way functions. As with previous works regarding the existence of black-box
reductions from NP-hardness to various cryptographic primitives, our results will rule out certain kinds of reductions
by showing that their existence implies some implausible consequence, such as NP = co-NP or that the polynomial
hierarchy collapses.

In previous work, Brassard [Bra79] observed that if there exists a deterministic black-box reduction from NP-
hardness to inverting a one-way permutation, then NP = co-NP. Bogdanov and Trevisan [BT06], building on earlier
work of Feigenbaum and Fortnow [FF93], showed that if there exists a non-adaptive randomized black-box reduction
from NP-hardness to inverting a one-way function, then NP ⊆ AM ∩ co-AM/poly. Here, AM is a randomized
analogue of NP (see Section 2 for definitions), and it is known that if NP ⊆ co-AM/poly, then the polynomial
hierarchy to collapse to the third level [Yap83]. Akavia et al. [AGGM06] improved this result to show that the same
hypothesis implies the uniform conclusion NP ⊆ AM∩co-AM (which implies that the polynomial hierarchy collapses
to the second level [BHZ87]). [AGGM06] also showed that if there exists an arbitrarily adaptive black-box reduction
from NP-hardness to inverting one-way functions with efficiently decidable range and efficiently computable preimage
size, then co-NP ⊆ AM ∩ co-AM. They point out, however, the latter type of one-way functions is “significantly
different” than general one-way functions.1 Finally, Pass [Pas06] takes a different route and showed that if a specific
type of witness-hiding protocol exists, then an arbitrarily adaptive reduction from NP-hardness to the existence of
one-way functions implies that co-NP ⊆ AM∩ co-AM. As recently point out by Haitner et al. [HRS09], however, it
is unlikely that known witness-hiding protocols are of the type required by [Pas06].

Besides the work of [Pas06], common to all these works is a tradeoff between allowing for the most general kind
of reduction (ideally highly adaptive ones) while ruling out the weakest kind of primitives (ideally one-way functions).
Ruling out (general) one-way functions is clearly a worthwhile goal, but what about adaptivity? It turns out that while
most cryptographic reductions we know of are non-adaptive, there are a few notable exceptions, in particular security
reductions for building interactive protocols [NOVY98], pseudorandom number generators [HILL99], and certain lattice-
based cryptosystems [Ajt03, MR04]. One may hope in particular that lattice problems might someday be used to prove
that P 6= NP implies one-way functions, since they already exhibit a worst-case to average-case hardness reduction.2

[BT06, AGGM06] do not rule out the possibility that any of these techniques (or some other adaptive technique)
In order to speak about such adaptive reductions, we need to remove the non-adaptivity restriction from the results

of [BT06, AGGM06]. Besides Brassard’s observation [Bra79] for the case of one-way permutations, our current results
are the first ruling out k-adaptive black-box reductions from NP-hardness to many standard abstract cryptographic
primitives (although, unfortunately, not one-way functions) for the case k > 1.3

1The proof of [AGGM06] also rules out reductions from worst-case problems in NP to the worst-case hardness of one-way functions
with efficiently computable preimage size. In contrast, observe that (general) worst case hard one-way functions can be based on worst-case
problems in NP via a black-box reduction.

2In particular, the adaptivity of the lattice-based schemes seems essential for giving the best known approximation-ratio required in the
worst-case hard lattice problem. Unfortunately, even in the best known reductions the starting worst-case hard problem in the NP∩co-NP.

3Notice that [IR89, Sim98] separating public-key encryption and collision-resistance from one-way functions does not say anything about
how these primitives relate to NP-hardness. This is because their reductions are in an even stronger model called fully-black-box (see for
example [RTV04]).
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1.1 Statistically Hiding Commitments

Our main result shows that the existence of “moderately adaptive” black-box reductions from NP-hardness to constant-
round statistically hiding commitments (and, by extension, collision-resistant hash functions) would imply unlikely
consequences such as co-NP ⊆ AM ∩ co-AM.

A commitment scheme is the cryptographic analogue of a safe. It is a 2-party protocol between a Sender algorithm
and a Receiver algorithm that consists of two stages. The commit stage corresponds to putting an object in a safe and
locking it, “committing” the sender to a private message; throughout this work we assume w.l.o.g. that the message is
a single bit b. The commit stage may be interactive and we measure the round complexity of a commitment scheme by
the round complexity of the commit stage.4 The reveal stage corresponds to unlocking and opening the safe, “revealing”
the message b to the receiver and “proving” that it was the value committed to in the commit stage. Without loss of
generality the reveal phase is non-interactive and the sender simply sends to the receiver the committed message b and
the coin tosses it used to generate the transcript of the commit stage.

Commitment schemes have two security properties. The hiding property informally says that at the end of the
commit stage, an adversarial receiver has learned nothing about the message b, except with negligible probability. The
binding property says that after the commit stage, an adversarial sender cannot produce valid openings for both b and
1 − b, except with negligible probability. Both of these security properties come in two flavors — statistical, where
we require security even against a computationally unbounded adversary, and computational, where we only require
security against feasible (e.g., polynomial-time) adversaries.

Statistical security is preferable to computational security, but it is impossible to have commitment schemes that
are both statistically hiding and statistically binding, so we have to settle for one of the two properties being statistical
and the other being computational. Statistically hiding (and therefore computationally binding) commitments can be
built from one-way functions but only with polynomial round complexity [HR07, HHRS07]. In this paper we focus on
constant-round statistically hiding commitment (SHC) schemes, which can be based (via constant-adaptive black-box
reductions) on specific number-theoretic assumptions [BKK90, BCC88], or, more generally, on any collection of claw-
free permutations with an efficiently-recognizable index set [GK96], collision-resistant hash functions [DPP98, NY89],
and constant-round protocols for oblivious-transfer and private information retrieval schemes where the security of one
of the parties holds information theoretically [HHRS07].

1.2 Our Results

We prove the following:

Theorem 1.1. If there exists a k-adaptive black-box reduction from NP-hardness to breaking the binding of a constant-
round statically-hiding commitment, then co-NP ⊆ AM[k].

Here, AM[k] is a public-coin interactive proof system between an unbounded prover and an efficient verifier with
O(k) rounds of interaction, and AM = AM[O(1)] (see Section 2 for formal definitions). Our result immediately extends
to any cryptographic primitive that implies via black-box constant-adaptive reduction the existence of constant-round
SHC, such as collision-resistant hash functions and the other primitives mentioned above.

We can use known results about interactive proofs for co-NP to conclude that:

Corollary 1.2. If there exists an efficient k-adaptive black-box reduction from NP-hardness to breaking the binding of
a constant-round statically-hiding commitment, then:

1. If k = O(1), then the Polynomial Hierarchy collapses to the second level. [BHZ87]

2. If k = polylog(1), then the Exponential Hierarchy collapses to the third level. [PSSV07]

3. If k = o(n), then this improves on the best-known round complexity for an interactive proof for UNSAT.5

As before, the corollary also holds for collision-resistant hash functions and any of the primitives above implying
constant-round SHC. It is widely believed that the Polynomial Hierarchy does not collapse, especially not to a low
level. The Exponential Hierarchy is less well understood, but it is reasonable to conjecture that it does not collapse to a
low level. Whether or not UNSAT has sublinear-round interactive proofs is open, but such a result would be surprising

4The round complexity is arguably the most important efficiency measure of the protocol and protocols whose number of rounds is not
dependent on the security parameter (i.e. constant rounds) are specially interesting.

5This statement is sensitive to the particular problem encoding; for a statement that is insensitive to the problem encoding, it suffices to
consider k = no(1).
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as there has been no improvement on the round complexity of UNSAT since the original arithmetization protocol of
Lund et al. [LFKN90]. Thus we interpret Corollary 1.2 as saying that such moderately adaptive reductions are either
unlikely to exist or at least very difficult to prove, depending on how much adaptivity is allowed.

Public-coin size-estimating protocols. Our main technical contribution is a new constant-round public-coin size-
estimating protocol, which we believe to be of independent interest. Our protocol performs the following sampling
task: given an efficiently verifiable set S and an efficient function f , the verifier outputs an almost-uniform sample x
from S and a number sx approximating the number of colliding elements x′ ∈ S such that f(x) = f(x′).

We could lower-bound sx using the Goldwasser-Sipser (GS) public-coin protocol [GS89] (described in Section 2), and
we could conceivably upper-bound sx using the private-coin protocol of Aiello-H̊astad [AH91], but the Aiello-H̊astad
protocol requires the verifier to be able to efficiently sample a random x′ colliding with x. In general, even if S is
efficiently decidable, it may be hard to sample a colliding x′, and so applying the Aiello-H̊astad protocol is impossible.
Our protocol gives a way to upper-bound set sizes in a context where the Aiello-H̊astad protocol cannot be used. Note,
however, that rather than estimating the number of collisions for any given x ∈ S, our protocol only guarantees a good
estimate for a randomly chosen x ∈ S. Our result can be stated as follows:

Theorem 1.3. (informal) There exists a constant-round public-coin protocol SampleWithSize whose parties get, as a
common input, an efficiently verifiable set S ⊂ {0, 1}n, an efficiently computable function f : {0, 1}n → {0, 1}∗ and
a good approximation (i.e., within (1 ± 1

poly(n)) factor) of |S| and has the following guarantee: given that V does not

abort, then V outputs a pair (x, sx), such that x is distributed (1/poly(n))-close to the uniform distribution over S, and
sx is a good approximation for |f−1(f(x)) ∩ S|].

In our application, we apply the SampleWithSize protocol recursively. We start with S1 = {0, 1}n and a function
f1 : {0, 1}n → {0, 1}∗, to get a random sample x1 ∈ {0, 1}n and an approximation sx1

for
∣

∣f−1
1 (f1(x1)) ∩ S

∣

∣. We

then use the approximation sx1
to apply the protocol on S2 = f−1

1 (f1(x1)) ∩ S1 and a function f2, and so on. When
considering the exact statement of Theorem 1.3 (see Theorem 4.1), it follows that we can only repeat the above process
for constant number of times before the accumulated error becomes too large.

1.3 Our Technique

Let us first review the paradigm used for proving the impossibility results of [FF93, BT06, AGGM06]. Assume that
we are given a reduction R from deciding SAT to (say) inverting a one-way function f .6 Note that such a reduction
immediately yields a reduction R from deciding UNSAT to inverting f (simply emulate R, then flip the output bit).
We use R to design the following AM protocol for UNSAT, which implies SAT ∈ AM ∩ co-AM. In order to decide

x, the verifier emulates a random execution of R
A
(x), where the prover plays the role of the oracle A. When the

emulation ends, the verifier outputs the same output that R
A
(x) does. That the honest prover causes the verifier to

accept x ∈ UNSAT is straight-forward. Proving that no cheating prover can trick the verifier into accepting x /∈ UNSAT,
however, is more involved — the prover might deviate arbitrarily from the way any fixed inverter A would act, making

R
A

(and thus the verifier) mistakenly accept.
The previous impossibility results mentioned above take essentially two different approaches for catching cheating

provers. The first approach is to equip the verifier with an efficient procedure for checking whether A (played by the
prover) returns the right answer or not. Clearly this approach is only applicable in settings where such a procedure
exists, for example in the efficiently computable preimage size one-way functions case (second result of [AGGM06]),
and under the assumption that a specific type of witness-hiding protocol exists ([Pas06]).

A different approach is needed when the verifier cannot perform such a check. Assume for the sake of simplicity in this
discussion that the oracle A responds with single bits (for example a hard-core bit) instead of many-bit strings. [FF93]

considered the case where the distribution of R
A
(x)’s queries (induced by its random coins) is uniformly distributed

and independent of x. The verifier emulates the execution R
A
(x) as above, where in addition it checks that the fraction

of times the prover answers 1 is approximately the probability ρ = Prx←R{0,1}n [A(x) = 1], where the verifier gets ρ as
a single non-uniform advice for all x of length n. More accurately, the verifier emulates in parallel many executions

of R
A

(each time with fresh random coins), checks that overall the prover answers 1 approximately a ρ fraction of the
time, and if so then the verifier picks one of these executions at random and outputs its answer.

6We note that the results of [FF93, BT06] are given in the (more general) settings of worst-case to average-case hardness reductions. Yet,
both result can be cast as a worst-case to one-way functions reduction.
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This approach was generalized by [BT06] for arbitrary query distributions possibly depending on x (and [AGGM06]
gave a version of it without needing advice). Their basic idea is to first learn statistics about the query distribution

of R
A
(x) using statistics about uniform queries. In order to learn this query distribution, the verifier chooses many

random queries, and for each query q it invokes an AM size-estimating protocol for learning the weight of q (i.e., the

number of random-coins for the reduction R that result in R
A

asking q). This size-estimating protocol is implemented
using the two protocols we saw above: the GS lower-bound protocol (Lemma 2.1), and the AH upper-bound protocol .

While the lower bound protocol is public-coin, the AH upper bound protocol is private-coin: in order to guarantee
soundness, the verifier needs to know private random-coins leading to q. Such private coins are available to the verifier
in the first adaptive round of the reduction, but if the reduction has a second adaptive round the verifier can no longer
sample such private coins. This is because the queries in the second round depend on the answers the reduction received
for the first round, and since the verifier needs the prover to provide the answers for the queries of the first round,
this might give the prover some information about the second round queries. In fact, all the second round queries
might be completely determined by the first round queries. Thus, the results of [BT06, AGGM06] (for general one-way
functions), hold only for non-adaptive reductions, and there is no known extension to even two rounds of adaptivity.

Using Theorem 1.3 to achieve our main result. We have two advantages in the setting of constant-round SHC

that allow us to use SampleWithSize of Theorem 1.3 to bypass the difficulties in [BT06, AGGM06]. First, by the
statistically hiding property, we know that given any arbitrary receiver strategy, the honest sender will produce a
transcript that can be decommitted to both b = 0 and b = 1. Second, any two revealings suffice to break the binding;
there is no additional structure imposed on the binding (for example, the revealings do not have to be related to the
receiver’s messages in any way except that it should be consistent with the transcript). These two conditions enable us
to use SampleWithSize fruitfully in our setting, but unfortunately they do not hold in the case of one-way functions.7

More formally, let Com = (Sender, Receiver) be a c-round statistically hiding commitment for c = O(1). Let R be a
black-box reduction that given an oracle A breaking the binding of Com decides UNSAT. As in previous works, we first

describe a “canonical adversary”, which we call Sam, that breaks Com, which by the correctness of R implies that R
Sam

decides SAT. We then construct AM protocol for UNSAT by having the verifier emulate R and using the prover to
answer the reduction’s queries. In order to prevent cheating, we describe an AM sub-protocol (using SampleWithSize)
that forces the prover to respond as Sam would or else get caught cheating.

The canonical adversary Sam responds to queries as an honest sender committing to 0 would respond. The following
interpretation of an honest sender’s behavior will be useful: given a history of messages τ = (q1, a1, . . . , qi, ai) (where qj

are receiver messages and aj are sender messages), and given a new receiver message qi+1, the honest receiver responds
by sampling sender random coins ω consistent with τ (namely they would produce the same sender responses as those
in τ) and responding with a next message ai+1 computed using the history τ and qi+1 with random coins ω and secret
bit b = 0. This is “backwards” from the way things really happen (the honest sender first samples ω once for the entire
transcript) but it is not hard to see the distribution over transcripts defined is identical. In the reveal phase, Sam is
given a full transcript τ = (q1, a1, . . . , qc, ac), and responds by sampling one set of random coins ω0 that reveals τ to 0
and another ω1 that reveals τ to 1.

To emulate Sam, our AM protocol will emulate the “backwards sampling” described above using the SampleWithSize

protocol. In order to keep the notation simple, we describe the case where the reduction does not rewind Sam. Given
a history of receiver messages Qi = (q1, . . . , qi) and random coins ω, let fQi(ω) = (a1, . . . , ai) be the sender’s responses

on q1, . . . , qi using random coins ω and secret bit b = 0. When R
Sam

(x) makes a query qi+1 to Sam given history

(q1, a1, . . . , qi, ai), the verifier invokes the SampleWithSize protocol with S
def
= f−1

Qi
(a1, . . . , ai) and f

def
= fQi+1

. The
approximation s for |S| is obtained from the previous invocation of SampleWithSize for the query qi, which output ωi

and s̃ approximating |f−1
Qi

(a1, . . . , ai)|. SampleWithSize outputs ωi+1 and an approximation for |f−1
Qi+1

(a1, . . . , ai+1)|,

which can be used for the next query qi+2. The verifier outputs fQi+1
(ωi+1) as the output of the simulated Sam. A

similar sampling procedure allows the verifier to sample ω0, ω1 breaking binding for a complete commit-stage transcript.
Theorem 1.3 guarantees that as long as i = O(1) (which is always the case since Com is constant round), the above

emulation is accurate enough. It follows that the above is a constant-round public-coin protocol for emulating Sam,
and so if the verifier simulates R and uses the above protocol to answer oracle queries, this gives an AM[k] protocol
for UNSAT.

7Specifically, the first condition does not hold with OWF because given a query y in the image of a OWF f , the prover could fallaciously
claim that there exists no x such that f(x) = y and the verifier would not be able to check this claim. The second condition also does not
hold for OWF, but to see it one needs to speak of universal one-way hash functions (which are equivalent to OWF [Rom90]), and we defer
this discussion to the appendix.
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Proving Theorem 1.3. Since we want our protocol to be public coin, we cannot simply approximate
∣

∣f−1(f(x)) ∩ S
∣

∣

using the GS public-coin lower-bound protocol (Lemma 2.1) together with the AH private-coin upper-bound protocol
(as done in [BT06, AGGM06]). Rather, our approach for the public-coin sampling is somewhat more “holistic” than
the above. We do not prove a public-coin protocol to upper-bound

∣

∣f−1(f(x)) ∩ S)
∣

∣ for every x; rather, we show that

for an almost-random x drawn from S, we can upper-bound
∣

∣f−1(f(x)) ∩ S)
∣

∣. Sampling an almost-uniformly random
(in statistical distance) x ∈ S using an approximation of |S| can be done using poly(n)-wise independent hash functions
(as shown by Goldreich et al. [GVW01]). Hence, the challenge is to obtain an estimate of

∣

∣f−1(f(x)) ∩ S
∣

∣.
The reason we can bypass the need for private coins in our setting is because an upper bound on many preimage

sets in the domain of f translates into a lower bound on the image of f . As a simple example, consider the task of
computing k when given a function f : {0, 1}n → {0, 1}n that is promised to be k-to-1 but for an unknown k (for
simplicity let us work over the entire domain, i.e. S = {0, 1}n). Given a claimed regularity k′, we can be convinced that
k′ ≤ k by taking any x and using the GS lower bound protocol to prove k′ ≤ |f−1(f(x))|. On the other hand, notice
that the image of a k-to-1 function has size 2n/k, therefore to show k′ ≥ k we can use the GS lower-bound protocol to
prove that 2n/k′ ≤ |f({0, 1}n)|.

This idea can be generalized to non-regular f , where we compute a more refined description of the regularity
structure of f . Namely, our protocol will learn the histogram of f with respect to the uniform distribution over S. The

histogram is a set of numbers bz for each z ∈ [0, 1] (appropriately discretized), where bz = Prx←S

[ |f−1(f(x))∩S|
|S| = z

]

.

Notice that a histogram satisfies
∑

z bz = 1, and also implicitly says the size of the image of f is
∑

z
bz

z . We will
obtain (an approximation of) the histogram using the prover’s help, using the same idea as above: to lower-bound a
set |f−1(f(x))∩S| we can directly apply the GS lower-bound protocol, while to upper-bound sets will lower-bound the
image of f . The argument showing how to use the lower-bound on the image to give upper-bounds on the pre-image
sets is delicate, but essentially the above intuition above can be formalized to show that some invocation of the GS
lower-bound protocols will abort if the prover cheats too much in either direction and gives us a bad approximation of
the histogram of f . Once we have a good histogram, it is straightforward to sample a random x←R S and obtain an
estimate of |f−1(f(x)) ∩ S|.

Note that previous works have also used histograms to estimate set sizes, and a related protocol appears in [GVW01].
We emphasize that their protocol accomplishes a different task that is incomparable to ours.8 To the best of our
knowledge, our protocol SampleWithSize has not appeared before in the cryptographic literature.

1.4 Organization

2 Preliminaries

For a random variable X taking values in a finite set U , we write x← U to indicate that x is selected according to the
uniform distribution over U . Given two probability distributions X, Y over a common universe U , let ∆(X, Y ) denote
their statistical distance, where ∆(X, Y ) = maxT⊆U |Pr[T (X) = 1]− Pr[T (Y ) = 1]|. Two ensembles of distributions
{Xn} , {Yn} are statistically indistinguishable if ∆(Xn, Yn) ≤ n−ω(1) for sufficiently large n. Let [t] = {1, . . . , t}. A
family of functions Fn,t = {f : {0, 1}n 7→ [t]} is d-wise independent if for any x1, . . . , xd ∈ {0, 1}n and y1, . . . , yd ∈ [t],
Prf←Fn,t [f(x1) = y1, . . . , f(xd) = yd] = t−d. It is possible to efficiently sample d-wise independent functions for any
d = poly(n), for example by using a random univariate degree d− 1 polynomial (for better parameters see for example
[ABI86]).

2.1 AM protocols

A language L is in AM[k] if there exists an interactive protocol between an efficient verifier V and an unbounded
prover P such that the following hold: for every x ∈ L it holds that Pr[〈P, V 〉(x) = 1] ≥ 2/3 and for every x /∈ L and
any possibly cheating prover P ∗ it holds that Pr[〈P ∗, V 〉(x) = 1] ≤ 1/3. Furthermore, the prover and verifier exchange
at most O(k) messages and the verifier’s messages are sampled uniformly at random (namely its random coins are
“public” to the prover). If k = O(1), then we simply write L ∈ AM. In general, we will say a protocol (possibly not
for a decision problem) is an AM protocol if it has constant rounds and public coins.

8In [GVW01], the protocol lower-bounds the size of a set S that is efficiently verifiable via a low-communication interactive protocol but
not efficiently decidable. To do so, they recursively refining the histogram such that, if the prover lies about |S| and gives an over-estimate,
then at the base of the recursion the verifier catches the cheating by noticing that some parts of the histogram are empty while the prover
must claim they are non-empty in order to be consistent with previous answers.
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2.1.1 Set estimation and sampling protocols.

Lemma 2.1 (Lower-bound protocol [GS89]). Let S ⊂ {0, 1}n be a set whose membership can be verified in poly(n)
time. Then there exists an AM protocol with verifier V that gets as input a security parameter 1n, δ (as the soundness
parameter), ǫ (as the approximation parameter), and s (as size of S) running in time poly(n, 1/ǫ, log 1/δ) such that:

• If |S| ≥ s, then there is a prover that makes V accept with probability at least 1− δ.

• If (1 + ǫ)|S| ≤ s, then for any (unbounded) prover, V rejects with probability at least 1− δ.

The statement of the lemma holds even if the membership in S can be verified only through an AM protocol itself. We
call the latter case the “extended” version of the lemma.

Lemma 2.2 (Uniform sampling protocol [GVW01, AGGM06]). Let S ⊂ {0, 1}n be a set whose membership can be
verified in poly(n) time. Then there exists an AM protocol with (an efficient) verifier V that gets as input a security
parameter 1n, δ = 1/poly(n) (as the approximation and soundness parameter), s ∈ N (as size of S) such that assuming
s ∈ [(1± δ/5)|S|], then:

1. For any (unbounded) prover P either V aborts or outputs some x ∈ S. Moreover, either:

• V aborts with probability at least 1− δ, or

• Conditioned on not aborting: x is distributed δ-close to uniform over S.

2. There is a prover strategy (the honest prover) such that V aborts with probability at most δ.

2.2 Statistically Hiding Commitments

A commitment protocol is given by a pair of randomized algorithms Sender, Receiver. The Sender is given an input bit
b and both parties are given 1n where n is the security parameter. The interaction is divided into two stages: a commit
stage and a reveal stage. We say the CSHC protocol is c-round if in the commit stage there are at most 2c messages
exchanged, and say without lost of generality that the first message is sent by the receiver and the last message is sent by
the prover. Sender(q1, . . . , qi, ω, b) outputs sender messages (a1, . . . , ai), where i ≤ c, q1, . . . , qi are receiver messages, ω is
a choice of random coin tosses, and b is the committed bit, and likewise Receiver(a1, . . . , ai, ω

′) outputs (q1, . . . , qi+1).
9

Without loss of generality we assume the reveal stage consists simply of the sender sending his random coin tosses
ω, b to the receiver. For notational convenience let us define Transcript(q1, . . . , qi, ω, 0) = (q1, a1, . . . , qi, ai) where
(a1, . . . , ai) = Sender(q1, . . . , qi, ω, 0). Let 〈Sender, Receiver〉(b) denote the distribution of the commit-stage transcript
obtained when Sender commits to b with Receiver.

Definition 2.3. A commitment protocol is statistically hiding if it satisfies the following:

1. Hiding: let Receiver∗ be any (possibly computationally unbounded) receiver strategy. Then the two distributions
〈Sender, Receiver∗〉(0) and 〈Sender, Receiver∗〉(1) are statistically indistinguishable.

2. Binding: let Sender∗ be any computationally efficient sender strategy. Then the probability that Sender∗ can
decommit 〈Sender∗, Receiver〉(b) to the opposite bit 1− b is negligible.

2.2.1 The canonical adversary Sam ([HHRS07])

For any fixed statistical hiding commitment (SHC) protocol (Sender, Receiver) (with arbitrary number of rounds), there
exists the following (inefficient) canonical adversary Sam (similar in spirit to that of Haitner et al. [HHRS07]).10 For

any partial transcript τ = (q1, a1, . . . , qi, ai) of SHC (where 1 ≤ i ≤ c) and b ∈ {0, 1}, let Sib(τ, b)
def
= {ω ∈ {0, 1}r |

Sender(q1, . . . , qi, ω, b) = (a1, . . . , ai)}, where Sib(⊥, b)
def
= {0, 1}r. In words, Sib(τ, b) is the set of random coins ω for

which the sender responses generated using ω on secret bit b are consistent with τ .
In the commit stage Sam behaves as follows. Given a query qi, Sam samples uniformly at random ω ∈ Sib(τ =

(q1, a1, . . . , ai−1, qi−1, 0), assuming that Sam was previously asked on q1, . . . , qi−1 answering a1, . . . , ai−1. Sam returns

9We often find it convenient to think of the behavior of the sender in a stateful way: the sender samples a random ω once for the entire
commit stage, and then responds to a query qi by remembering the previous queries q1 . . . qi−1 and computing its response ai according to
ω and its secret bit.

10Since the following Sam breaks a specific SHC (Sender, Receiver), it will actually be considerably simpler than the oracle of [HHRS07].
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ai from the response (a1, . . . , ai) = Sender(q1, . . . , qi, ω, 0) back to Receiver. If i = c, Sam also samples uniformly at
random ω′ ∈ Sib((τ, qi, ai), 1), and includes (ω, ω′) in the output.

As [HHRS07] showed, the statistically hiding property of the SHC yields that Sam breaks the binding of Com with
save but negligible probability.

2.3 Black-box Reductions

A black-box reduction from deciding a language L to breaking the binding of a SHC is an oracle-aided algorithm R
with the following guarantee: given as oracle a deterministic and stateless adversary O that breaks the binding of a
statistically hiding commitment SHC, RO decides L (i.e., Pr[RO(x) = 1L(x)] ≥ 1− 2−n). We say that R is k-adaptive
if it makes k adaptive rounds of queries to its oracle; each round may consist of many queries, but all of the queries
in one round can be computed without looking at the oracle responses to any of the other queries in the same round.
Notice that if we have such R, then we also have a reduction R deciding L using O, which simply emulates R and then
flips the output bit.

3 Basing Statically Hiding Commitment on NP-Hardness

In this Section we prove our main result.

Theorem 3.1. Suppose there exists an efficient k-adaptive black-box reduction R using an adversary breaking the
binding property of a constant-round SHC in order to decide L. Then L ∈ AM[k].

Proof of Theorem 3.1. Fix the constant-round SHC = (Sender, Receiver) and reduction R. It follows that there us also
a reduction R for L. We construct an AM protocol for L by making the verifier emulate R and forcing the prover to
emulate the canonical adversary Sam. We show that the prover cannot deviate far from Sam without getting caught,
an therefore the resulting protocol is an AM[k] protocol for L by the correctness of the reduction R. The verifier is
able to emulate R by himself except for the oracle queries. Thus it suffices to exhibit a constant-round public-coin
protocol such that an honest prover produces a response similar to Sam’s response, and a cheating prover is caught
with high probability. Of course, queries that the reduction makes in parallel are also run in parallel in the emulation.
We call the sub-protocol AM-Sam, as it emulates exactly the behavior of Sam except the sampling is done using the
SampleWithSize protocol of Theorem 4.1.

Moving to the formal proof, one should first take care of the fact that while R (and thus R) expects a stateless
deterministic oracle, Sam is statefull and randomized. Consider the following variant of Sam (which is in the spirit of
the Goldreich-Krawczyk [GK92] cheating verifier’s strategy): rather then flipping its random coin uniformly at random,
each time Sam needs fresh random coins it draws them from π(q1, . . . , qi), where π is a random function (chosen by
Sam before the interaction starts), and q1, . . . , qi is the query history (including the current one). It is clear that also
this version of Sam breaks the binding of Com with save but negligible probability.

An average argument yields that by fixing of π (used by the above Sam) to all but negligible fraction of possible

values, we get a deterministic algorithm that breaks the binding of Com. In particular, for any x it holds that R
Samπ

decides x correctly for most fixing of π. It follows that R
Sam

decides x with save but negligible probability, also when
we implement Sam as follows: on a query qi, Sam checks if it was already asked on qi with the same query history
(i.e., same value of q1, . . . , qi−1). If the answer is positive, Sam answers exactly the same answer it gave on reply to
this previous call. Otherwise Sam acts normally, but where each time it needs fresh random coins, it samples them
uniformly at random. In the following we address the latter randomized variant of Sam.

It left to give a stateless version of Sam. Following [HHRS07], there exists a stateless variant of Sam such that the
following hold. This stateless Sam breaks the binding of Com with save but negligible probability, and the “interaction”
of any efficient algorithm with the stateless Sam, can be simulated (with at most negligible statistical difference) given

oracle to the statefull Sam. Having the above, we consider an execution of R
Sam

where Sam is statefull and randomized
(in the above meaning — on each query history Sam chooses fresh random coins).

On input x, the verifier emulates an execution of R
Sam

(x) as follows: the verifier keeps track of a table Prefix (initially
empty). During the course of emulating R, each time the reduction makes a query qi and the query history to Sam is
q1, . . . , qi−1, the verifier and the receiver interact in AM-Sam(q1, . . . , qi−1, qi) below. If i < c and the verifier’s output
in AM-Sam is ((a1, . . . , ai), s), then the verifier returns ai to R. Where if i = c and the verifier’s output is (ai, ω

0, ω1),
then the verifier returns (ai, ω

0, ω1) to R. (Note that R can rewind Sam, and in particular make more than c queries).
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The protocol AM-Sam below invokes SampleWithSize as a sub-protocol. In the following let γi = ( δ
100n )9(c+1−i) for

δ = 1/poly(n) to be determined later. Note that it holds tha ( λi

100n )8 ≤ γi+1.

Protocol 3.2. AM-Sam = (P, V ).

Input: q1, . . . , qi.

Operation:

1. If Prefix(q1, . . . , qi) is not empty, V outputs Prefix(q1, . . . , qi), and halts.

2. Let (τi−1, si−1) = Prefix(q1, . . . , qi−1) and define f(ω) = a, where a is such that Sender(q1, . . . , qi, ω, 0) = (a1, . . . , ai−1, a).
V and P interact in SampleWithSize, on inputs S = Sib(τi−1, 0), approximate set size si−1, function f and ap-
proximation factor λi, to obtain a sample ω ∈ S and an approximate size si for |f−1(f(ω)) ∩ S|.

Let ai = f(ω), and τi = (τi−1, qi, ai).

3. If i < c, V sets Prefix(q1, . . . , qi) = (τi, si), output ai and halts.

Otherwise, V and P interact in SampleWithSize, on inputs S = Sib(τi, 1), approximation set size si, the trivial
function f(ω) = 0, and approximation factor λi+1 to obtain a sample ω′ ∈ S. V sets Prefix(q1, . . . , qi) = (ai, w, w′)
and outputs (ai, w, w′).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If AM-Sam aborts, then the verifier rejects. We call (τi, s̃i) a good pair if s̃i ∈ [(1 ± γi)|Sib(τi, 0)|]. The following
lemma immediately follows from Theorem 4.1.

Lemma 3.3. For every query q1, . . . , qi, if (τi−1, s̃i−1) = Prefix(q1, . . . , qi−1) form a good pair, then the following hold.

1. When V interacts in AM-Sam with the honest prover, it aborts with probability at most 2δ.

2. When V interacts in AM-Sam with an arbitrary prover, either V rejects with probability ≥ 1− 2δ, or conditioned
on not aborting, V finds (in Step 2) a good pair (τi, s̃i) with probability ≥ 1− δ, and (a1, . . . , ai) is γi-close to the
output distribution of Sam (for the same query history, over its random coins). If i = c, then (a1, . . . , ac, ωc, ω

′
c)

is 2δ-close to the output distribution of Sam.

Suppose that R makes at most a polynomial p(n) number of queries. By setting δ ≤ 1/(10np(n)), all the verifier in
all the executions of AM-Sam done through the emulation runs in polynomial time. Lemma Lemma 3.3 yields that the
honest prover makes the verifier abort with probability ≤ 2δp(n) = 1/(5n). On the other hand, for any prover either
we reject with probability > 1 − 2δ in some invocation of AM-Sam, or conditioned on not rejecting in any invocation
of AM-Sam the probability that we ever produce a bad pair (τi, s̃i) is at most p(n)2δ = 1/(5n). Lemma Lemma 3.3,
yields that conditioned on not having any bad pairs, it holds that all the outputs of AM-Sam are distributed 2δ-close to
the distribution of Sam’s responses (induced by its random coins). Notice that the above conditioning is only over the
randomness used in AM-Sam, and not the random coins of R. Therefore, by the triangle inequality we have that the
output distribution of the protocol differs from the output distribution of the reduction given an oracle Sam by at most
p(n)2δ = 1/(5n). Hence, the completeness and soundness errors of the protocol are bounded by 1/n plus the error of
R.

4 The Size-estimating Protocol

In this section we prove our main technical lemma.

Theorem 4.1 (restating Theorem 1.3). There exists a AM protocol (SampleWithSize) that gets as input a security
parameter 1n, δ ≥ 1/poly(n), an efficiently verifiable set S ⊂ {0, 1}n, s ∈ N (as size of S) and an efficiently computable
function f : {0, 1}n → {0, 1}∗,11 such that the following holds. If s ∈ [(1 ± ( δ

100n )8) · |S|], then:

1. For any (unbounded) prover P either V aborts or outputs a pair (x, sx). Moreover, either:

• V aborts with probability at least 1− δ, or

11S, f both given as circuits.
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• conditioned on not aborting, x is distributed δ-close to uniform over S and with probability at least 1 − δ,
sx ∈ [(1± δ)|f−1(f(x)) ∩ S|].

2. There is a prover strategy (the honest prover) such that V aborts with probability at most δ.

We first explain the high level ideas behind the protocol of Theorem 4.1, then we will give the formal protocol/proof
for a simplified case which carries the main technical ideas of the general case, and finally we will show how to extend
the proof of the simplified case to the general case.

4.1 Intuition behind the proof: Using the histogram

We give the formal definition of the histogram of f . For some ǫ = 1/poly(n), let the ith “bin” be the set Bi = {y |
Prx←RS [f(x) = y] ∈ ((1 + ǫ)−i, (1 + ǫ)1−i]}, namely all y such that the probability that f(x) = y is roughly (1 + ǫ)−i.
Then, the i’th entry of the histogram is bi = Prx[f(x) ∈ Bi]. Let bin(x) = i whenever f(x) ∈ Bi. Notice that the small
bins (i.e. small i) are “heavier”, namely for smaller i, the elements y ∈ Bi occur with greater probability. By definition,
f(x) ∈ Bi yields that |f−1(f(x)) ∩ S| ∈ (|S|(1 + ǫ)−i, |S|(1 + ǫ)1−i]. Also note that

∑

j bj = 1, that
∑

j bj(1 + ǫ)j is an
approximation of the size of the image of f , and that (1 + ǫ)m > |S| yields that Bj = ∅ (i.e., bj = 0) for j > m.

The vector b = (b1, . . . , bm) defined above is called the ǫ-histogram of the function f over S, and it encodes the
(approximate) regularity structure of the function f over the domain S. For example if ǫ = 1 and |S| = 2m−1, then a 1-
to-1 function’s histogram has one non-zero entry bm = 1, a 2-to-1 function’s histogram has one non-zero entry bm−1 = 1,
while a constant function’s histogram has one non-zero entry b1 = 1. Functions with more complex regularity structures
would have more complex histograms. If (1 + ǫ1)

t = (1 + ǫ2) for t ∈ N, the ǫ2-histogram of f can be retrieved from the
ǫ1-histogram of f by simply merging the adjacent bins: (b1 + · · ·+ bt, . . . , bm−t+1 + · · ·+ bm). We call this “scaling up”
the histogram.

Given an approximation of |S|, we can use the GVW protocol (Lemma 2.2) to sample an almost uniform x ∈ S.
The challenge, however, is to obtain also an estimate for

∣

∣f−1(f(x)) ∩ S
∣

∣. In the following we show that a good
approximation of the histogram, can be used to sample (x, sx) as promised by Theorem 4.1. First, we want the verifier
in SampleWithSize to obtain a good approximation of the histogram of f using the prover’s help, but we must prevent
the cheating prover from giving us a bad histogram. Intuitively, there are two main ways the prover can cheat: he
can move weight in the histogram from smaller bins to larger ones or vice versa. We will employ the GS public-coin
lower-bound protocol in two different ways to prevent both kinds of cheating.

Our Image Test prevents shifting weight from larger bins to the smaller ones. The verifier use the GS protocol
to lower-bound the size of the image of f : if the prover shifted too much weight from larger bins to smaller ones, this
means he claims there are too many y ∈ f(S) that have a small number of pre-images. Recall that the histogram gives
a claim about the size of the image of f . Thus, claiming that too many y ∈ f(S) have a small number of pre-images,
yields a claim that the image of f(S) is much larger than it actually is. In this case, the verifier can falsify such a claim
by running the GS protocol on f(S).

Our Preimage Test prevents shifting weight from smaller bins to larger ones. The verifier samples many instances
x1, . . . , xℓ (for ℓ = poly(n)) from S almost uniformly at random (using the approximation s ≈ |S| and the GVW
protocol (Lemma 2.2)), and asks the prover for their bin numbers bin(xi). The fraction of the times that the prover
answers i should converge to b′i (and the verifier checks that). In addition, the verifier prevents the prover from giving
bin numbers that are higher than the true values (i.e., bin

′(x) > bin(x)), by using the GS lower-bound protocol (Lemma
2.1) over f−1(f(xi)) ∩ S.

These two tests together force the prover to tell the true value bin′(x) = bin(x) for almost all x ∈ {x1, . . . , xℓ}. If
the prover passes both tests, the verifier chooses uniformly at random x ∈ {x1, . . . , xℓ} (where {x1, . . . , xℓ} is the set
generated in the Preimage Test), and outputs (x, s(1 + ǫ)1−bin

′(x)). It follows that with high probability, x is a uniform
sample and |f−1(f(x)) ∩ S| ≈ s(1 + ǫ)1−bin

′(x).
Actually proving that these two tests guarantee soundness is more involved, as we need to argue that these two tests

suffice to catch the entire range of cheating prover strategies between the two simple extremes of shifting smaller bins
to larger ones and vice versa. It turns out that the above verifier cannot ensure that b′ is a good approximation of the
histogram. We will show, however, that if b′ is not a good approximation, either the verifier catches this cheating and
aborts, or else the bad ǫ-histogram b′ scales up to a good tǫ-histogram b′t = (b′1 + · · ·+ b′t, . . . , b

′
m−t+1 + · · ·+ b′m) that

is a good approximation for the true tǫ-histogram bt = (b1 + · · · + bt, . . . , bm−t+1 + · · ·+ bm). By taking ǫ′ = tǫ small
enough, we can use the ǫ′-histogram (the way explained above) to do the sampling task of Theorem 4.1.
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4.2 The Case of “Exact Regularities”

In this section we consider a simplified case with the following properties.

(1) Exact Regularities: For all y ∈ f({0, 1}n) it holds that Prx[f(x) = y] = (1 + ǫ)−j for some j ∈ Z.

(2) Examples Set: For ℓ = poly(n) the verifier has access to a “well-distributed” set X = {x1, . . . , xℓ} where each xi

is distributed uniformly over S for all 1 ≤ i ≤ ℓ, and in addition
|X∩f−1(Bj)|

ℓ = bj holds for all 1 ≤ j ≤ m. (Note
xi’s are not necessarily independent.)

(3) Exact Size: s = |S|.

For the above simplified case, we give the following implementation of SampleWithSize.

Protocol 4.2 (protocol for exact regularities).
SampleWithSize = (P, V ).

Parameters: 1n, δ = 1/poly(n), granularity parameter m = 100n2/δ2 and ǫ > such that (1 + ǫ)m−1 = 2n.

Common input: S ⊆ {0, 1}n, a function f : {0, 1}n → {0, 1}∗, size estimate s and an example set {x1, . . . , xℓ}.

Description:

1. V asks P for bin(xi) ∈ [m] for each 1 ≤ i ≤ ℓ. Let bin′(xi) be P ’s responses.

2. Preimage Test. For all 1 ≤ i ≤ ℓ, V and P interact (in parallel) the GS lower-bound protocol (Lemma 2.1)
over the set f−1(f(xi)) and set size s(1 + ǫ)1−bin

′(i) with ǫ/3 and δ
100ℓ as the approximation and the soundness

parameters. Let b′i =
|{j|bin

′(xj)=i}|
ℓ be V ’s estimate of bi it obtained in the above interaction.

3. Image Test. Let B≤i = B1 ∪ . . . ∪ Bi. V and P interact in (the extended version of) the GS lower-bound
protocol (Lemma 2.1) over the set B≤i, with

∑

1≤i≤j b′i(1 + ǫ)i−1 as V ’s estimate for |B≤i| and ǫ/3, δ
100m as the

approximation and soundness parameters.12

4. V picks uniformly at random i ∈ [ℓ], and outputs (x = xi, sx = s(1 + ǫ)1−bin
′(xi)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that in step 3, the claim membership in B≤i is verifiable using an AM protocol, and the reason is as follows.
The exact regularities condition yields that for every i it holds that |Bi| =

bi

(1+ǫ)1−i , and for every y ∈ B≤i and any

y′ ∈ f({0, 1}n) \B≤i, it holds that (1 + ǫ)|f−1(y′) ∩ S| ≤ s(1 + ǫ)1−i ≤ |f−1(y) ∩ S|. Hence, the lower-bound protocol
(Lemma 2.1) used over the set f−1(y)∩S, set size (1 + ǫ)1−i, and approximation and soundness parameters ǫ and 2−n,
gives an AM protocol for deciding membership in B≤i.

In the rest of this section we prove that Protocol 4.2 has the properties needed for Theorem 4.1 for the simple case
of exact regularities. It is clear from the protocol that if the prover is honest, the verifier rejects with probability at
most ℓ δ

100ℓ + m δ
100m < δ, and otherwise the output of the protocol is (x, sx) where x is a uniform member of S and sx

is equal to |f−1(f(x)) ∩ S|.

Claim 4.3. Either the verifier rejects with probability at least 1− δ/50 or both of the following holds:

• One Directional Shifts: For all 1 ≤ i ≤ ℓ, bin(xi) ≤ bin′(xi).

• Exponential Sum (ES) Inequalities: For all 1 ≤ j ≤ m,
∑

1≤i≤j b′i(1 + ǫ)i ≤ (1 + ǫ/3)
∑

1≤i≤j bi(1 + ǫ)i.

Proof. Assuming that the prover gives bin′(xi) < bin(xi) for any i, then the exact regularities condition yields that
(1 + ǫ)|f−1(f(xi)) ∩ S| ≤ s(1 + ǫ)1−bin

′(xi), and therefore the verifier aborts in some execution of the GS lower-
bound protocol in the Preimage Test (Step 2) with probability at least 1 − δ

100ℓ . Similarly, if for any j, it holds that
(1 + ǫ/3)|B≤i| ≤

∑

1≤i≤j b′i(1 + ǫ)i−1, then the verifier rejects in some execution of the GS lower-bound protocol in the

Image Test (Step 3) with probability at least 1− δ
100ℓ .

By the union bound, either the verifier rejects with probability at least 1−ℓ δ
100ℓ−m δ

100m = 1−δ/50 or the conclusion
of the lemma holds.

In the following we assume that the inequalities of Claim 4.3 hold.

12Note that membership in B≤j is verifiable using an AM protocol
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Definition 4.4. For any two vectors b = (b1, . . . , bm) and b′ = (b′1, . . . , b
′
m) let ∆(b, b′) be a vector of the same dimension

m such that its jth component is ∆(b, b′)j =
∑

1≤i≤j(bi − b′i).

When b, b′ are two histograms, ∆(b, b′)j is exactly the amount of weight must be pushed from bins ≤ j to bins > j
in order to transform b into b′. Since by Claim 4.3 bin(xi) ≤ bin′(xi) holds for all 1 ≤ i ≤ ℓ, therefore for all 1 ≤ j ≤ m,

∆(b, b′)j =
∑

1≤i≤j

(bi − b′i) =
{k ∈ [ℓ] | bin(xk) ≤ j, bin′(xk) > j}

ℓ
≥ 0

If we sum up over all j, we get

ℓ
∑

1≤j≤m

∆(b, b′)j =
∑

1≤j≤m

|{i | bin(xi) ≤ j, bin′(xi) > j}| =
∑

1≤i≤ℓ

bin′(xi)− bin(xi) , (4.1)

where the last inequality holds since each xi contributes bin′(xi)− bin(xi) to the summation.
Intuitively,

∑

j ∆(b, b′)j captures the total “work” that must be done to transform b into b′. Namely, thinking of
each item xi as having unit mass, ℓ∆(b, b′) sums up the distance that each of these unit masses must travel in order
to get from its bin in b to its bin in b′. Of course, if b = b′ then no work is necessary. If we could upper bound the
amount of work done by the cheating prover to shift b to b′, we could also bound how different b, b′ are. It turns out
that if the amount of work done is sufficiently small, then b′ is a good approximation (at least when scaled up) of b for
our purposes. This intuition is formalized in the following lemma.

Lemma 4.5. Let b = (b1, . . . , bm) and b′ = (b′1, . . . , b
′
m) be probability distributions (i.e., nonnegative entries and sum

equal to one). Assuming that the following hold for 100 ≤ 1/ǫ ≤ m:

1. ∆(b, b′)j ≥ 0 for all 1 ≤ j ≤ m and

2. ES inequalities:
∑

1≤i≤j b′i(1 + ǫ)i ≤ (1 + λ)
∑

1≤i≤j bi(1 + ǫ)i for all 1 ≤ j ≤ m,

then
∑

j ∆(b, b′)j ≤ 8mλ.

Before proving Lemma 4.5, let see how it can be used to prove the correctness of the protocol. Claim 4.3 implies
the hypotheses of Lemma 4.5 for λ = ǫ/3 < 2ǫ, by which we get

∑

j ∆(b, b′)j ≤ 16mǫ < 16n.13

Let qt = |{i | bin′(xi) − bin(xi) ≥ t}|/ℓ denote the fraction of instances that the prover cheated on their bin
number by at least t bin differences. Since

∑

1≤i≤ℓ bin′(xi)− bin(xi) ≥ ℓtqt, Lemma 4.5 and Equation 4.1 imply that

16n ≥
∑

1≤j≤2m ∆(b, b′)j ≥ tqt. Therefore, qt ≤
16n

t . If t = 16n/δ, then for at least 1− qt > 1 − δ fraction of xi’s (for
1 ≤ i ≤ ℓ), the prover has not cheated on their bin number by more than t bin differences. By choosing uniformly at
random i ∈ [ℓ], with probability at least 1− δ the verifier gets xi such that the prover has given her |f−1(f(xi)) ∩ S|

with approximation factor (1 + ǫ)t (which is (1 + ǫ)t < (1 + δ) for any ǫ < δ
2t = δ2

32n ). Since we set the parameters as

(1 + ǫ)m−1 ≤ 2n, it follows that ǫm < 2n, and so ǫ < n
m <= δ2

100n < δ2

32n .

Proof of Lemma 4.5. We artificially increase the dimension of b, b′ to 2m by padding m zero coordinates to all of them
(e.g. b = (b1, . . . , bm, 0, . . . , 0) ∈ R

2m). Let us denote aj = ∆(b, b′)j and a = (a1, . . . , a2m).
Elaborating on our interpretation of a = ∆(b, b′) as measuring how to transform b into b′, notice that the following

procedure incrementally performs such a transformation in 2m− 1 steps:

• b1 = b.

• For 1 ≤ j < 2m, bj+1 is the same vector as bj , with the only difference that it takes the amount of aj from its jth

coordinate, and adds it to its (j + 1)th coordinate: bj+1
j = bj

j − aj, b
j+1
j+1 = bj

j+1 + aj .

At the end we would get b2m = b′. In other words, in the jth step the amount of aj =
∑

1≤i≤j bi− b′i is pushed out from

the first j coordinates. Also, for any k ≥ j + 1, the exponential sum
∑

1≤i≤k bj+1
i (1 + ǫ)i for the vector bj+1 is bigger

than the exponential sum
∑

1≤i≤k bj
i (1 + ǫ)i for the vector bj by the amount of aj(1 + ǫ)j+1 − aj(1 + ǫ)j = ǫaj(1 + ǫ)j .

Now for 1 ≤ j ≤ 2m, let Aj =
∑

1≤i≤j−1 aiǫ(1+ǫ)i be the net effect of the first j−1 steps of the above transformation
on the Exponential Sums of length at least j (and in particular A1 = 0). The next lemma compares the exponential
sums of b and b′ in terms of Aj .

13We can use the smaller value of λ = ǫ/3 at this moment, but as we will see in Section 4.3, in the general case we can only get the ES
inequalities for λ > (1 + Ω(1))ǫ.
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Claim 4.6. It holds that
∑

1≤i≤j(b
′
i − bi)(1 + ǫ)i = Aj − aj(1 + ǫ)j.

Proof. Note that

Aj − aj(1 + ǫ)j =
∑

1≤i≤j−1

aiǫ(1 + ǫ)i − aj(1 + ǫ)j

=
∑

1≤i≤j−1

ǫ(1 + ǫ)i
∑

1≤k≤i

(bk − b′k)− (1 + ǫ)j
∑

1≤k≤j

(bk − b′k)

= (b′j − bj)(1 + e)j +
∑

1≤i≤j−1

((b′i − bi)((1 + ǫ)j − (ǫ
∑

i≤k≤j−1

(1 + ǫ)k))) .

On the other hand
∑

i≤k≤j−1(1 + ǫ)k = (1+ǫ)j−(1+ǫ)i

ǫ implies that:

Aj − aj(1 + ǫ)j = (b′j − bj)(1 + e)j +
∑

1≤i≤j−1

(b′i − bi)(1 + ǫ)i =
∑

1≤i≤j

(b′i − bi)(1 + ǫ)i .

The next claim shows that the normalized
Aj

(1+ǫ)j is always at most 2λ. This matches our intuition, since, as Claim 4.6

showed, Aj(1 + ǫ)−j is an approximation of the gap between the j-length exponential sums of b and b′, and the ES
inequalities say that this gap should be roughly bounded by O(λ). We will then use this bound later to get a bound
on

∑

j aj .

Claim 4.7. For every 1 ≤ j ≤ 2m we have Aj < 2λ(1 + ǫ)j.

Proof. Let pj =
Aj

(1+ǫ)j . For 1 ≤ j ≤ 2m, let cj =
P

1≤i≤j bi(1+ǫ)i

(1+ǫ)j be the normalized form of the exponential sum
∑

1≤i≤j bi(1 + ǫ)i. Notice that cj ≤ 1 for all j.
We first show that for every 1 ≤ j ≤ 2m:

1. aj ≥ pj − λcj .

2. pj+1 ≥ pj −
λǫcj

1+ǫ .

The idea is that on the one hand we know that aj = 0 for all j > m which, by the definition of pj and Aj , implies that
p2m must be small. On the other hand, pj+1 − pj cannot be too large, since otherwise this would open up a large gap
between the j-length and j +1-length Exponential Sums, contradicting the ES inequalities. These two facts imply that
pj must be small for all j.

More formally, the ES inequalities immediately imply
∑

1≤i≤j(b
′
i − bi)(1 + ǫ)i ≤ λ

∑

1≤i≤j bi(1 + ǫ)i = λcj(1 + ǫ)j .

On the other hand, Claim 4.6 yields that
∑

1≤i≤j(b
′
i− bi)(1 + ǫ)i = Aj − aj(1 + ǫ)j. Therefore, pj(1 + ǫ)j − aj(1 + ǫ)j ≤

λcj(1 + ǫ)j and thus aj ≥ pj − λcj . In addition, since

pj+1(1 + ǫ)j+1 = Aj+1 = Aj + ajǫ(1 + ǫ)j

≥ pj(1 + ǫ)j + (pj − λcj)ǫ(1 + ǫ)j

= pj(1 + ǫ)j(1 + ǫ)− λcjǫ(1 + ǫ)j ,

it follows that pj+1 ≥ pj −
λǫcj

1+ǫ . Using induction one concludes that pk ≥ pj −
λǫ
1+ǫ

∑

j≤i<k cj . Using a2m = 0 and
c2m ≤ 1 we get:

0 ≥ p2m − λc2m ≥ (pj −
λǫ

1 + ǫ

∑

j≤i<2m

cj)− λ . (4.2)

Notice that
∑

1≤j≤2m cj < 1+ǫ
ǫ , which follows by simply re-ordering of summations:

∑

1≤j≤2m

cj =
∑

1≤j≤2m

∑

1≤i≤j bi(1 + ǫ)i

(1 + ǫ)j
=

∑

1≤i≤2m

∑

i≤j≤2m

bi(1+ǫ)i−j =
∑

1≤i≤2m

bi

∑

0≤k≤2m−i

(1+ǫ)−k <
∑

1≤i≤2m

bi

∑

0≤k≤∞

(1+ǫ)−k.
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Applying the geometric sum formula
∑

0≤k≤∞(1 + ǫ)−k = 1+ǫ
ǫ , yields that

∑

1≤j≤2m cj < 1+ǫ
ǫ

∑

j bj = 1+ǫ
ǫ . Hence, by

Inequality 4.2 we have that

0 ≥ pj −
λǫ

1 + ǫ

∑

j≤i<2m

cj − λ ≥ pj −
λǫ

1 + ǫ
(
1 + ǫ

ǫ
)− λ = pj − 2λ ,

and therefore pj ≤ 2λ.

We derive Lemma 4.5 from the above Claim 4.7 as follows. Note that

2m ·2λ ≥
∑

1≤j≤2m

Aj

(1 + ǫ)j
=

∑

1≤j≤2m

∑

1≤i<j

ǫai(1+ǫ)i−j = ǫ
∑

1≤i<2m

ai

∑

i<j≤2m

(1+ǫ)i−j = ǫ
∑

1≤i<2m

ai

∑

1≤k≤2m−i

(1+ǫ)−k .

For i > m it holds that ai = 0. On the other hand since 100 ≤ 1/ǫ ≤ m, then (1 + ǫ)−m < 1/2 and therefore for i ≤ m
it holds that

∑

1≤k≤2m−i

(1 + ǫ)−k ≥
∑

1≤k≤m

(1 + ǫ)−k =
1− (1 + ǫ)−m

ǫ
>

1

2ǫ
.

Since ai ≥ 0, it follows that ai

∑

1≤k≤2m−i(1 + ǫ)−k > ai

2ǫ and so 4mλ ≥ ǫ
2ǫ

∑

j aj , which means
∑

j aj ≤ 8λm.

4.3 The General Case

In this section we extend the protocol for the special case of exact regularities to the general conditions stated in
Theorem 4.1 by the following steps.

Exact regularity to a regularity gap condition. First we weaken the regularity condition to just keep a multi-
plicative gap between the probabilities in different bins: for every i and every y ∈ Bi, it holds that Prx[f(x) = y] ∈
[(1 + ǫ)1/2−i, (1 + ǫ)1−i] (where Bi = {y ∈ f(S) | Prx←S [f(x) = y] ∈ ((1 + ǫ)−i, (1 + ǫ)1−i]}). The gap condition yields
that the verifier can still use the lower-bound protocol to make sure that bin′(xi) ≥ bin(xi) for 1 ≤ i ≤ ℓ. The problem
is that the verifier can no longer conclude the ES inequalities of Claim 4.3. The reason being that the size of Bi is not
determined by bi exactly, but rather describes it approximately: bi

(1+ǫ)1−i ≤ |Bi| ≤
bi

(1+ǫ)1/2−i . Using the gaps between

the probabilities in different bins, the verifier can still verify membership in B≤i through an AM protocol. So it can
still use the (extended version of the) lower-bound protocol on the size of Bi using her minimum estimate for it. The
inequalities the verifier concludes after running the protocol (in case of not rejecting with probability at least 1 − δ)
are:

∑

1≤i≤j b′i(1 + ǫ)i−1 ≤ (1 + ǫ/3)
∑

1≤i≤j bi(1 + ǫ)i−1/2 for all j. The reason is that, the prover will be caught (with
high probability), if the minimum estimate of B≤i (that the verifier concludes from prover’s claims) is (1 + ǫ/3)-larger
than the maximum possible value of B≤i. Therefore:

∑

1≤i≤j

b′i(1 + ǫ)i ≤ (1 + ǫ/3)(1 + ǫ)1/2
∑

1≤i≤j

bi(1 + ǫ)i < (1 + 2ǫ)
∑

1≤i≤j

bi(1 + ǫ)i

for all 1 ≤ j ≤ 2m. In other words, the verifier still gets the ES inequalities of Lemma 4.5 for λ = 2ǫ, and the conclusions
we had before still hold.

Sampling examples set. In this step, instead of having the set of examples X , we only assume that there is an
efficient algorithm to sample uniformly from S. In this case, the verifier asks the prover to give her the vector b.
Let b′ be the prover’s claim about b. In addition, the verifier samples x1, . . . , xℓ for ℓ = m2 log(100m

δ ) uniformly and
independently at random from S, and asks the prover to give her the bin numbers of xi’s. Let bin′(xi) be the prover’s
claim for bin(xi). The verifier uses x1, . . . , xℓ and b′ as before and runs the protocol.

If we had aj = ∆(b, b′)j ≥ 0 for 1 ≤ j ≤ 2m, then Lemma 4.5 would still hold. While the latter is not necessarily
true, we do know that for large enough ℓ, the fraction of times that the verifier samples from bin i should be near b′i (as
otherwise the verifier can safely reject). As we will see this makes aj ’s to behave good enough for our purpose. More

formally let u = (u1, . . . u2m) be such that uj = |{i|bin(xi)=j}|
ℓ and u′ = (u′1, . . . , u

′
2m) be such that u′j = |{i|bin

′(xi)=j}|
ℓ .

For large enough ℓ, the vector u converges to the vector b. In particular, for any fixed j, using Hoeffding’s inequality
we have Pr[|∆(b, u)j| ≥ 1/m] < 2e−ℓ/m2

< δ
100m , and so by the union bound, |∆(b, u)j | < 1/m holds for all 1 ≤ j ≤ 2m
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with probability at least 1 − δ/50. This means that the verifier can safely check that |∆(b′, u′)j | < 1/m holds for all
1 ≤ j ≤ 2m, and otherwise reject. (If the prover is honest, the verifier rejects at this point only with probability at
most δ/50.)

Now note that (a1, . . . , a2m) = ∆(b, b′) = ∆(b, u) + ∆(u, u′) + ∆(u′, b′). What we really need to prove (rather than
the conclusion of Lemma 4.5) is to show that

∑

j ∆(u, u′) ≤ O(n), where the latter can be used (similarly to the way
Lemma 4.5 was used) for bounding the prover’s ability to cheat on the bin numbers.

Since the verifier runs the lower-bound protocol on the sets f−1(f(xi)) ∩ S, it holds that ∆(u, u′)j ≥ 0 for all
1 ≤ j ≤ 2m. In addition we just showed that |∆(b, u)j +∆(u′, b′)j | ≤ |∆(b, u)j|+ |∆(u′, b′)j | ≤ 2/m for all 1 ≤ j ≤ 2m.
The last line of the proof of Lemma 4.5 was the only place that we used aj ≥ 0. There we showed that:

2m · 2λ ≥ ǫ
∑

1≤i<2m

ai

∑

1≤k≤2m−i

(1 + ǫ)−k = ǫ
∑

1≤i<2m

(∆(u, u′)j + ∆(b, u)j + ∆(u′, b′)j)
∑

1≤k≤2m−i

(1 + ǫ)−k .

Since ǫ
∑

1≤i<2m ∆(u, u′)j

∑

1≤k≤2m−i(1+ǫ)−k ≥ ǫ
2ǫ

∑

j ∆(u, u′)j and ǫ
∑

1≤i<2m(∆(b, u)j +∆(u′, b′)j)
∑

1≤k≤2m−i(1+

ǫ)−k > ǫ(2m)(−2
m )(1

ǫ ), it follows that 4mλ ≥ ǫ
2ǫ

∑

j ∆(u, u′)j − 4. Hence,
∑

j ∆(u, u′)j < 8(mλ + 1) which for λ < 2ǫ is
still O(n).

Using approximation for |S|. In this step, we remove the assumption that we know s = |S| exactly, but we assume
that we know s ∈ [(1 ± ǫ/20)|S|]. Let x and y be such that f(x) ∈ bin(i) and f(y) ∈ bin(j) for i < j. Before this step
we had |f−1(f(y))∩ S| ≤ s(1 + ǫ)1−j and s(1 + ǫ)1/2−i ≤ |f−1(f(x)) ∩ S|, Therefore if the prover claims bin(x) = j, he
would be caught with high probability if the verifier runs the lower-bound protocol with s(1 + ǫ)1/2−i as the minimum
possible size of |f−1(f(x)) ∩ S| because (1 + ǫ/3)|f−1(f(y))∩ S| ≤ s(1 + ǫ)1/2−i. Now s is not exactly equal to |S|, but
rather s ∈ [(1 ± ǫ/20)|S|] which implies that (1 − ǫ/20)s(1 + ǫ)1/2−i ≤ |f−1(f(x)) ∩ S|, and therefore the verifier can
use (1 − ǫ/20)s(1 + ǫ)1/2−i as her minimum estimate for |f−1(f(x)) ∩ S| to run the lower-bound protocol. As we will
see in a moment this minimum estimate is still bigger than the maximum possible value of |f−1(f(y)) ∩ S| by a factor
of (1+ ǫ) and the lower-bound protocols can be used as before. The reason is that now, because of s ∈ [(1± ǫ/20)|S|] it
holds that |f−1(f(y))∩S| ≤ (1 + ǫ/20)s(1+ ǫ)1−j , but we have (1 + ǫ/3)(1+ e/20)s(1+ ǫ)1−j < (1− ǫ/20)s(1+ ǫ)1/2−i

because i + 1 ≤ j.
Therefore by using the lower-bound protocols using the new minimum estimate sizes for the preimage sizes, the

verifier can still make sure that bin(xi) ≤ bin
′(xi) for all i.

Using a similar argument the verifier can also use the lower-bound protocol over the size of B≤i for 1 ≤ i ≤ m, and
get all the inequalities of Claim 4.3 (in case she does not reject with probability at least 1− δ).

Removing gap condition. In this step we remove the gap condition. Interestingly, the protocol remains exactly the
same, where only the analysis gets a bit more involved. The problem is with elements in f(S) whose probabilities lie
very close to the borders of the bins. For such element, if the prover claims bin′(xi) for bin(xi), and the verifier runs
the lower-bound protocol (on |f−1(f(xi)) ∩ S|) with any approximation factor λ < ǫ, the only guarantee that it gets is
that bin′(xi) ≥ bin(xi) − 1. Also, when the verifier runs the lower-bound protocol on |B≥j |, the prover might use the
elements in bin j + 1 (which are very close to the border with bin j), and the inequalities that the verifier gets are:
∑

1≤i≤j b′i(1 + ǫ)i ≤ (1 + 2ǫ)
∑

1≤i≤j+1 bi(1 + ǫ)i for all j.
Let b′′ = (b′′1 , . . . , b′′2m) be such that b′′1 = 0 and b′′j = b′j−1 for 2 ≤ j ≤ 2m, and similarly let u′′ = (u′′1 , . . . , u′′2m) be

such that u′′1 = 0 and u′′j = u′j−1 for 2 ≤ j ≤ 2m. One point is that using b′′ (instead of b′) we get the ES inequalities
of Lemma 4.5:

∑

1≤i≤j+1

b′′i (1 + ǫ)i = 0 +
∑

1≤i≤j

b′i(1 + ǫ)i ≤ (1 + 2ǫ)
∑

1≤i≤j+1

bi(1 + ǫ)i .

Note that ∆(u, u′′)j ≥ 0 holds for all j — If one uses bin′′(xi) = bin′(xi)+1 instead of bin′(xi)’s, it would get the vector
u′′ instead of u′, and it holds that that bin′′(xi) = bin′(xi) + 1 ≥ bin(xi).

It also holds that ∆(b, b′′) = ∆(b, u) + ∆(u, u′′) + ∆(u′′, b′′). Since u′ is supposed to converge to b′ in the limit, u′′

also should converges to b′′ with the same statistical bounds. The analysis will remain as before with b′′ instead of b′ and
u′′ instead of u′, and we get

∑

j ∆(u, u′′)j = O(n). The only difference is that now there is a potential approximation

error of (1 + ǫ)−1 for the size of the sampled point (as opposed to the previous cases). But this amount of error in the
approximation factor is still acceptable.
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Using |S| to sample from S. Finally, instead of being given an efficient algorithm to sample from S, we show how to
sample from it using the prover’s help and a good approximation for |S|. Knowing the size of |S| with approximation γ,
the verifier can use the Uniform Sampling protocol (Lemma 2.2) to sample xi’s from S (with the help of the prover) with
statistical distance at most 5γ from the uniform. Therefore, if the verifier use γ < δ/(100ℓ), then the statistical distance
of (x1, . . . , xℓ) from the case that they were all sampled uniformly from S is at most δ/20. So all the statistical checks
(about entries of ∆(u′′, b′′)) that the verifier performs on the sequence (x1, . . . , xℓ) (i.e. checking that |∆(u′′, b′′)j | < 1/m

for all j) should still hold with probability at least 1− δ/20. Since m = 100n2

δ2 and ℓ = m2 log(100m
δ ), hence the value

of γ used in the protocol γ = ( δ
100n )8 is small enough:

(
δ

100n
)8 <

δ2

1002(100n2

δ2 )3
=

δ

100m2(100m
δ )

<
δ

100m2 log(100m
δ )

=
δ

100ℓ
.
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A The case for CRHF

For the case of CRHF, it is convenient to use the following upper-bound protocol instead of using the more complex
SampleWithSize protocol.

Lemma A.1 (Upper-bound protocol [AH91]). Let S ⊂ {0, 1}n be a set whose membership can be verified in poly(n)
time. Then there exist an AM protocol with (an efficient) verifier V that gets as input a security parameter 1n,
δ = 1/poly(n) (as the soundness parameter), ǫ = 1/poly(n) (as the approximation parameter), s (as size of S), and a
secret random sample x←R S (which the prover does not have access to) such that:

• If |S| ≤ s, then there is a prover that makes V accept with probability at least 1− δ.

• If |S| ≥ s(1 + ǫ), then for any (unbounded) prover, V rejects with probability at least ǫ/5− δ.

Definition A.2. A collision resistant hash function (CRHF) is (a sequence of) families of functions Hn (for n ∈ N)
such that each h ∈ Hn is a compressing function f : {0, 1}n → {0, 1}n−1 and we have:

• Sampling. There is a PPT sampler S which S(1n) samples some h ∈ Hn.

• Evaluation. There is a PPT evaluator A such that given h and x ∈ {0, 1}n computes h(x) in poly(n) time.

• Collision Resistance (CR). For any PPT adversary B we have Pr[h(x) = h(y) | h = S(1n), B(h) = (x, y)] ≤
n−ω(1).

For simplicity, in the subsequent we drop the index n when the context is clear.
Suppose that H has the Sampling and Evaluation properties and we want to reduce its CR property to NP 6⊂ BPP.

The following definition captures the black-box type of reductions (which ignore the code of the adversary B).

Definition A.3. A reduction from CR of H to SAT is an PPT R which for any oracle O that Prh=S(1n)[O(h) =
(x, y), x 6= y, h(x) = h(y)] ≥ 1/2 we have Pr[RO(φ) = SAT(φ)] ≥ 2/3 for any |φ| = n where the last probability is only
over the randomness of R.

The actual reduction should solve SAT even if the oracle provides collisions for 1/poly(n) of the queries, but since
our result is of negative form this definition only makes the result stronger.

Theorem A.4. If there exist a reduction R from CR of H to SAT with k rounds of adaptivity, then co-SAT ∈ AM[k].

The result of [PSSV07] shows that the existence of such a reduction for k = polylog(n) implies that the exponential
hierarchy collapses to the third level, and the reduction with k = o(n) improves the number of rounds over the best
known interactive proof protocol for co-SAT.

Proof Sketch of Theorem A.4: The proof of Theorem A.4 is by forcing the prover to provide a random answer to
each of the queries the reduction makes to its oracle. Since the oracle answers are independent of the randomness of
the reduction, the verifier gets to result of simulating one running of the reduction and therefore can decided whether
φ ∈ SAT or not.
The oracle that the prover is forced to behave similar to is an oracle that given h, chooses a random x and then picks a
random y satisfying h(x) = h(y) as follows. To force the prover to mimic this behavior, the verifier samples x ∈ {0, 1}n
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at random and sends h(x) to the prover and asks the prover for |Sib(x)| = |f−1(x)| and receives s. Using the lower-
bound protocol (Lemma 2.1), the verifier can make sure that s(1− ǫ) ≤ |Sib(x)| for arbitrary small ǫ = 1/poly(n). Since
the verifier has a secret sample from the set Sib(x) (i.e., x), it can use the upper-bound protocol (Lemma 2.1) to make
sure s(1 + ǫ) ≥ |Sib(x)| as well. One point to notice is that the soundness of the upper-bound protocol is small (but
not too small), and in order to handle this issue the verifier does what we mentioned for many x instances in parallel,
and chooses one of them after running to lower-bound protocol for all of them. (To see why doing it in parallel is not a
problem, note that we can pretend that the random x conditioned on the revealed h(x) is chosen at random after the
prover commits to Sib(x).
After being convinced of the size of Sib(x) for arbitrarily good enough precision, the verifier, with the help of the prover,
samples a random member of the set Sib(x) (by using polynomially-independent hash functions — Lemma 2.2). Since
there are many collisions, i.e.|Sib(x)| > 1 often, if the verifier gets enough number of (x, y) pairs such that h(x) = h(y)
as above, then with high probability she gets x 6= y for at least one of the pairs. Therefore each query (or rather each
adaptivity round) will be substituted by a constant round protocol between the verifier and the prover and forcing the
prover to give us a random answer. That results in a AM[O(k)] for co-SAT. Using the result of [] one can reduce the
number of rounds to k.

Lemma A.5. Let h : {0, 1}n → {0, 1}n−1 be a hash function. Then Prx,y←R{0,1}n [x 6= y | h(x) = h(y)] ≥ 1/2.

Proof. We show Prx,y←R{0,1}n [x = y | h(x) = h(y)] ≤ 1/2. Let S1, . . . , Sr be the partition of {0, 1}n according to the

equivalence relation that x ≈ y iff h(x) = h(y). Then Prx,y←R{0,1}n [x = y | h(x) = h(y)] =
∑

i
|Si|
2n . 1

|Si|
= r

2n ≤
2n−1

2n =
1
2 .

Let t be the number of queries that the reductions asks (k was the number of adaptivity rounds). The final AM
protocol for the co-SAT problem is as follows. The parameters m, ǫ, δ will be determined later. For each query h, the
verifier samples m many x ←R {0, 1}n at random and for each of them asks the prover to give a 1 ± ǫ good estimate
on the size of Sib(x) by running the upper-bound and lower-bound protocols. Then she chooses n distinct instances
x1, . . . , xn out of all those m instances and runs the sampling protocol for all of them to get y1, . . . , yn. If for any
1 ≤ i ≤ n she gets xi 6= yi, she will use that pair as the oracle answer.

Assuming yi’s are random samples of Sib(xi)’s, by Lemma A.5 with probability at least 1 − 2−n one of them is a
distinct pair. So we ignore this exponentially small error. In order to keep the statistical distance of all samples small
from uniform samples, we want 10tnǫ ≤ O(1/n). So we can take ǫ = 1

n2t . Let p be the fraction of m instances on which
the prover cheats in the upper-bound protocol. If mp = n/ǫ, then the probability that the prover is not caught in any
of those interactions (only for simulating the query h) is at most (1 − 10ǫ)n/ǫ = exp(−n), so we can safely ignore this
probability as well. The probability that any of those n chosen instances are among these mp “bad” instances is at
most np which we want it to be at most 1

tn . So we will take p = 1
tn2 , and hence m = n

pǫ = tn5. Finally we want δ to

be small enough such that the sum of all the soundness errors for the lower-bound protocols be at most O(1/n) (This
makes the sum of completeness errors of all the upper-bound and lower-bound protocols to be O(1/n) as well). So we
want mδt ≤ O(1/n). So, we take δ = 1

mtn = 1
t2n6 . By setting the parameters this way, either the verifier rejects, or

gets a running of the reduction with an oracle which is at most O(1/n) far from an oracle which is independent of the
reduction’s randomness and answer all the queries14 of the reduction. So, it can decide the membership in SAT with
probability at least 2/3−O(1/n)≫ 1/2.

14Therefore what we prove in Theorem A.4 is that the task of breaking collision resistance of a hash function can not be NP-hard (through
randomized Cook reductions) even in the worst case.
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