
New Perspectives on the Complexity of
Computational Learning, and Other
Problems in Theoretical Computer

Science

David Xiao

A Dissertation
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of

Computer Science
Advisers: Boaz Barak and

Avi Wigderson

September 2009

ii

c⃝ Copyright by David Xiao, 2009.
All Rights Reserved

iv

Abstract
In this thesis we present the following results.

• Learning theory, and in particular PAC learning, was introduced by Valiant
[CACM 1984] and has since become a major area of research in theoretical and
applied computer science. One natural question that was posed at the very
inception of the field is whether there are classes of functions that are hard to
learn.
PAC learning is hard under widely held conjectures such as the existence of
one-way functions, and on the other hand it is known that if PAC learning is
hard then P ̸= NP. We further study sufficient and necessary conditions for
PAC learning to be hard, and we prove that:

1. ZK ̸= BPP implies that PAC learning is hard.
2. It is unlikely using standard techniques that one can prove that PAC learn-

ing is hard implies that ZK ̸= BPP.
3. It is unlikely using standard techniques that one can prove that P ̸= NP

implies that ZK ̸= BPP.

Here, “standard techniques” refers to various classes of efficient reductions. To-
gether, these results imply that the hardness of PAC learning lies between the
non-triviality of ZK on the one hand and the hardness of NP on the other
hand. Furthermore, the hardness of PAC learning lies “strictly” between the
two, in the sense that most standard techniques cannot prove equivalence with
either ZK ̸= BPP or NP ̸= P.
In proving these results, we show new connections between PAC learning and
auxiliary-input one-way functions, which were defined by Ostrovsky and Wigder-
son [ISTCS 1993] to better understand ZK. We also define new problems related
to PAC learning that we believe of are independent interest, and may be useful
in future studies of the complexity of PAC learning.

• A secure failure-localization (FL) protocol allows a sender to localize faulty links
on a single path through a network to a receiver, even when intermediate nodes
on the path behave adversarially. Such protocols were proposed as tools that
enable Internet service providers to select high-performance paths through the
Internet, or to enforce contractual obligations. We give the first formal defi-
nitions of security for FL protocols and prove that for such protocols, security
requires each intermediate node on the path to have some shared secret in-
formation (e.g. keys), and that every black-box construction of a secure FL
protocol from a random oracle requires each intermediate node to invoke the
random oracle. This suggests that achieving this kind of security is unrealistic
as intermediate nodes have little incentive to participate in the real world.

v

• Ahlswede and Winter [IEEE Trans. Inf. Th. 2002] introduced a Chernoff bound
for matrix-valued random variables, which is a non-trivial generalization of the
usual Chernoff bound for real-valued random variables. We present an efficient
derandomization of their bound using the method of pessimistic estimators (see
Raghavan [JCSS 1988]). As a consequence, we derandomize a construction of
Alon and Roichman [RSA 1994] to efficiently construct an expanding Cayley
graph of logarithmic degree on any (possibly non-abelian) group. This gives an
optimal solution to the homomorphism testing problem of Shpilka and Wigder-
son [STOC 2004]. We also apply these pessimistic estimators to the problem of
solving semi-definite covering problems, thus giving a deterministic algorithm
for the quantum hypergraph cover problem of Ahslwede and Winter.

vi

Acknowledgements
Throughout the course of my Ph D I’ve had the privilege of working with some of the
most outstanding and wonderful researchers in theoretical computer science. I feel
most grateful for the honor of being advised by Boaz Barak and Avi Wigderson. One
of the first things Boaz taught me was that the best way to learn about an area is to
try and solve the open problems in that area, and I am indebted for the pro-active
attitude towards research that he has imparted on me. He certainly led by example,
and would not hesitate to spend 8 hours straight working on a problem if that was
necessary (luckily it was only necessary once!).
Conversations with Avi were always a pleasure and sometimes we would arrive at
the end of a meeting and realize that we hadn’t even started talking about research!
Fortunately that only happened once in a while, otherwise I would have missed out on
all the things that he taught me about complexity, about research, and about being
a scientist. There were days when I would arrive at meetings discouraged about not
making any progress, but his enthusiasm for research and the excitement he brought
to each discussion was infectious, and I would walk away with new ideas and new
optimism. By not only advancing the state of the art in our field but also taking the
time to explain our area to other mathematicians, other scientists, or even laypeople,
Avi has also taught me that effectively communicating great ideas is just as important
as discovering them.
The list of people who have helped and encouraged me throughout these last few
years is long and unfortunately I will surely leave some out inadvertently in these
acknowledgements. Salil Vadhan, who guided my undergraduate research, has re-
mained a valuable colleague who has always had insightful comments and suggestions
for the research questions I’ve asked him. I was fortunate that Benny Applebaum was
a postdoc at Princeton during my Ph D, and our research together not only directly
produced several of the results in this thesis, but also inspired the questions that led
to other results in this work. Sharon Goldberg and I left Princeton to move to New
York at the same time, and this led to many long hours sitting together at Columbia’s
libraries, where luckily once in a while we found a few minutes to take a break from
gossiping and actually do some work. I greatly enjoyed the time spent brainstorming
with Mohammad Mahmoody-Ghidary, and apologize to the other theory students
that we might have annoyed with our heated discussions. Thanks to Barbara Terhal
and IBM Research for one lovely summer, and to Andrej Bogdanov and Tsinghua
University for another lovely summer. Thanks to Hoeteck Wee and Luca Trevisan,
you guys made conferences and workshops much more fun. Thanks to my committee,
Sanjeev Arora, Russell Impagliazzo, and Rob Schapire. And, in no particular, thanks
to Ronen Shaltiel, Tal Malkin, Eran Tromer, Jennifer Rexford, and Iftach Haitner for
many insightful discussions and the pleasure of working with them.
I was supported in my research by an NSF Graduate Research Fellowship, an NDSEG
Fellowship, a Princeton University Upton Fellowship, and in part by NSF grants CNS-

vii

0627526, CCF-0426582 and CCF-0832797, and a grant from the Packard foundation
Thanks to Damian Carrieri, Patrick Bradley, and Eve Schneider for letting me crash
on their couch more times than is socially acceptable. Thanks to Nathan Ha for
navigating the dark corners of New York with me. And much love to my urban family
in New York, Tacara Soones and Jiajia Ye, life here for the last three years would
have been impossible without you. I’ll miss our cooking sessions and our evenings
spent over-analyzing each others’ lives, but I know our commitment to friendship will
endure even though our time in New York is over. Best of luck on the West Coast
and wherever the currents take you.
爸爸妈妈，最需要感谢的是你们。我从小到大所作成的一切都是由于你们的支持、
爱情、关心。你们一直培养了我的好奇心，不管什么书都愿意买，一本不够就买两
本，两本不够就买三本，想学中文就送我到中文学校，想学计算机就买最新最快的
一台。

小时候说弹钢琴是为了学本事，上学念书也是的，这样才可以创造更美好的未来。
这么多年的书现在念完了，下来也没有书好念了。上课读书确实学到了不少东西，
可是一个人生活中最难学的不是弹钢琴，也不是计算机，而是如何作一个好人。这
一个最难学的本事我是从你们学来的。世界上没有很多像你们这样的父母亲，有了
你们我非常感激。

viii

Contents

Abstract . v
Acknowledgements . vii

1 Introduction and Preliminaries 1
1.1 Basic notation . 3
1.2 Complexity . 3
1.3 Reductions: black-box, relativizing, and otherwise 5

2 Computational learning through new lenses 9
2.1 Introduction . 9
2.2 Definitions of computational learning 14
2.3 One-way functions . 17
2.4 Zero knowledge . 19
2.5 Usage of diagrams . 21

3 Learning and one-way functions 23
3.1 A decisional version of learning . 24
3.2 AIOWF implies testing PAC learnability is hard 27
3.3 An oracle separating learning and AIOWF 28
3.4 CircCons and CircLearn: efficient example oracles 41
3.5 CircLearn and AIOWF . 42
3.6 Summary . 46

4 Learning and ZK 49
4.1 ZK ̸= BPP implies hardness of learning 50
4.2 Can ZK ̸= BPP be based on hardness of learning? 50
4.3 CircCons ∈ ZK . 57

ix

4.4 Summary . 61

5 Learning and NP 63
5.1 Karp reductions . 65
5.2 Black-box reductions . 69
5.3 Strongly black-box reductions . 77
5.4 Summary . 83

6 Lower-bounds for failure localization 85
6.1 Overview of results . 86
6.2 Definition of Secure Failure Localization 88
6.3 Security requires keys required at each node 91
6.4 Security requires crypto at each node 91
6.5 Open problems . 104

7 Derandomizing Chernoff bounds for matrix-valued random variables105
7.1 Introduction . 105
7.2 Matrix-valued random variables and Ahlswede-Winter’s Chernoff Bound106
7.3 Method of pessimistic estimators . 111
7.4 Applying pessimistic estimators . 113
7.5 O(logn) expanding generators for any group 116
7.6 Covering SDP’s . 120
7.7 Generalization to abstract vector spaces 126

A Appendix 141
A.1 PSPACE and oracles . 141
A.2 Chernoff bounds for smooth distributions 142
A.3 Protocols for set sizes . 143
A.4 SD ∈ AM ∩ coAM . 144

x

Chapter 1

Introduction and Preliminaries

Theoretical computer science is a young but incredibly broad field. Despite the di-
versity of topics studied under this umbrella, there are several unifying concepts and
techniques that underlie much of the science. One such recurring theme is the use of
reductions, perhaps the central proof technique in theoretical computer science. The
intuitive notion of a reduction is something even a child could understand (e.g. in
order to save the princess, it suffices to slay the dragon). In computational complexity
we always require that the reduction be efficient, namely it must run in polynomial
time. In principle, besides this sole efficiency requirement the reduction can be as
creative or as bizarre as it likes.
In practice however, most of the reductions that we build are much more constrained,
i.e. they are relativizing, or black-box, or some variant thereof. Starting with work
by Baker et al. [BGS75], computer scientists have studied whether such constrained
reductions can resolve open questions, for example P vs NP. In their groundbreaking
work, [BGS75] proved that relativizing techniques are insufficient to resolve the P vs
NP question, thereby ruling out techniques such as diagonalization, which people had
previously hoped to apply to the problem. By showing that relativizing techniques
are insufficient to address the P vs NP problem, [BGS75] provides insight into the
difficulty of these questions, as well as indications of the obstacles that need to be
overcome in order to answer them.
In this thesis, we continue to explore the limits of various kinds of reductions, and in
particular we apply this methodology to the complexity of computational learning.
Computational learning was introduced by Valiant [Val84] to model algorithms that
are supposed to efficiently learn from labeled distributions. Since then, it has been one
of the most important and widely studied areas within theoretical computer science,
and therefore understanding its complexity is invaluable.
In Chapter 2 through Chapter 5, we explore the complexity of PAC learning and
relate it to the non-triviality of zero knowledge and the hardness of NP. We refine
the known sufficient and necessary conditions for PAC learning to be hard by showing

1

that not only does the existence of one-way functions imply that PAC learning is hard,
but so does the weaker assumption that ZK ̸= BPP. We then explore what kinds
of reductions may be useful to prove equivalence of NP-hardness and the hardness
of PAC learning, or equivalence of the non-triviality of ZK and the hardness of PAC
learning. A more detailed overview of these results may be found in Chapter 2.
In Chapter 6 we also apply the methodology of studying reductions to a security
problem in network routing called failure localization. In this setting, messages from
a sender to a receiver must be sent through a series of intermediate, untrusted nodes.
We show that security in this setting requires that all the intermediate nodes must
actively participate in the protocol by both maintaining a key infrastructure, as well
as performing cryptographic computations. Our result is proven by showing that a
black-box reduction that constructs such a scheme from a random oracle (or a one-
way function) cannot be secure unless the intermediate nodes actively participate in
the scheme.
A second major recurring theme in theoretical computer science is the use of random-
ness as a valuable computational resource. There are examples of problems where
random coin flips enabled us to efficiently perform tasks that otherwise seem in-
tractable (e.g. polynomial identity testing), or whose deterministic polynomial-time
algorithms are impractical (e.g. primality testing, [Mil75, SS77, Rab80]). However,
in a series of breakthrough works [Yao82, BM84, NW88, IW97, IW98], it was shown
that if plausible hardness assumptions hold, then in fact randomness does not give
any superpolynomial speedup over deterministic computation. Thus, the field of de-
randomization was born, which is concerned with reducing or eliminating the need for
random coins from algorithms. Although we have no hope using current techniques
of unconditionally proving that P = BPP, nevertheless we can unconditionally de-
randomize certain specific algorithms, and this has led to breakthrough works (e.g.
in primality testing, [AKS02]).
In Chapter 7 we will show how to unconditionally derandomize a probabilistic in-
equality due to Ahlswede and Winter [AW02] that generalizes the classical Chernoff
bound to the case of random variables that take values in the space of positive semi-
definite matrices. This leads to several applications in computer science, most notably
in giving an efficient deterministic construction of O(logn)-degree Cayley expanders
for arbitrary groups, as well as to a way to derandomize the rounding procedures for
semi-definite programs solving quantum hypergraph covering problems.
More detailed introductions into each of these topics can be found in their respective
chapters. In the remainder of this chapter, we present some basic notation and
definitions that will be used throughout this thesis, as well as some background results
that will be useful to us.

2

1.1 Basic notation
We say a function ε(n) is negligible (with respect to n) if for all c > 0, it holds that
ε(n) < n−c for all n large enough. Similarly, ε is non-negligible if there exists a c > 0
such that ε(n) ≥ n−c for all n large enough.
We will typically let Un denote the uniform distribution over {0, 1}n. For two dis-
tributions X, Y over a common universe S, we let ∆(X,Y) denote their statistical
distance:

∆(X, Y) =
1

2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|

Equivalently, if we look at a distribution X as a vector in R|S| with non-negative
coordinates and whose entries sum to 1, then ∆(X,Y) = 1

2
|X − Y |1 the ℓ1 norm.

From this definition, it is clear that statistical distance obeys the triangle inequality,
i.e. for all distributions Z,

∆(X,Y) ≤ ∆(X,Z) + ∆(Y, Z)

It is well-known that this is equivalent to the maximal distinguishing probability
between the distributions over all statistical tests, namely:

∆(X, Y) = max
T⊆S
|Pr[X ∈ T]− Pr[Y ∈ T]|

We say that two families of distributions {Xn}, {Yn} over a family of universes {Sn}
are statistically indistinguishable if ∆(Xn, Yn) ≤ ε(n) where ε is negligible in n.
We say that two families of distributions {Xn}, {Yn} over a family of universes {Sn}
are computationally indistinguishable if for all families of circuits Cn : Sn → {0, 1}
of size poly(n), it holds that |Pr[Cn(Xn) = 1]− Pr[Cn(Yn) = 1]| ≤ ε(n) where ε is a
negligible function of n.
For a function f : {0, 1}n → {0, 1}m and any y ∈ {0, 1}m, let f−1(y) = {x | f(x) = y}.
For a distribution X, let f(X) denote the induced output distribution, namely where
the probability of y is Pr[f(X) = y].
We say that a circuit C : {0, 1}n → {0, 1}m samples a distributionX if the distribution
C(Un) is identical to X. We say that a distribution X over {0, 1}m is efficiently
samplable if there exists a circuit C of size poly(m) such that C(Un) = X. The
number of circuits of size s is bounded by 2O(s log s), and the same holds for circuits
allowed oracle gates.

1.2 Complexity
Throughout this thesis, “efficient” or “efficiency” will always refer to running in poly-
nomial time. The term “algorithm” refers to uniform computation unless explicitly

3

noted otherwise, while the terms “circuit” and “family of circuits” refer to non-uniform
computation. Unless otherwise specified, “algorithm” and “circuit” usually refer to
efficient computations. We use “procedure” to refer to algorithms or circuits that
are possibly computationally unbounded. Our theorems and lemmas will often specify
whether they hold with respect to uniform or non-uniform models of computation; no
mention of uniformity means that the result holds for both uniform and non-uniform
models.
For a size function s(n), we let SIZE(s(n)) denote the class of functions computable
by a non-uniform family of circuits of size s(n). We let SIZEO(s(n)) denote the class
of oracle circuits that are also allowed O gates.
An algorithm or circuit is randomized if, in addition to its input, it gets as additional
input a random string ω of polynomial length that is drawn uniformly at random.
We assume the reader is familiar with the following standard complexity classes:

1. P: the class of languages accepted by deterministic Turing machines running
in polynomial time.

2. P/poly: the class of languages accepted by deterministic Turing machine run-
ning in polynomial time with poly(n) bits of advice. Equivalently, the class of
languages accepted by families of polynomial-size circuits.

3. NP: the class of languages accepted by non-deterministic Turing machines
running in polynomial time.

4. coNP: the class of languages whose complements are in NP.

5. BPP: the class of languages accepted by randomized Turing machines with
two-sided error.

6. AM: the class of languages accepted by 2-message public-coin interactive
proofs. Equivalently, the class of languages accepted by O(1)-message public-
coin interactive proofs.

7. coAM: the class of languages whose complements are in AM.

8. PH: the class of languages accepted by alternating machines running in poly-
nomial times, but with only a constant number of alternations.

9. PSPACE: the class of languages accepted by deterministic Turing machines
running in polynomial space.

The reader is invited to refer to [AB09] for more detailed definitions. Here we recall
some of the standard results and conjectures about these classes.

Conjecture 1.2.1. PH does not collapse. In particular, P ̸= NP.

4

Theorem 1.2.2 ([BHZ87]). If coNP ⊆ AM, then the PH collapses to the second
level.

We will use a relativized version of the PSPACE-complete problem “Quantified
Boolean Formula” (QBF), so we recall some standard results about the standard
(unrelativized) problem.

Definition 1.2.3. QBF is the language of all formulas of the form

∃x1,∀x2,∃x3, . . . , Qn−1xn−1, Qnxn, φ(x1, . . . , xn)

where xi are boolean variables and φ is a polynomial-size boolean circuit on n vari-
ables.

Theorem 1.2.4. QBF is complete for PSPACE. Furthermore, any QBF formula
can be decided in space O(n2) (and hence time 2O(n2)).

We will frequently work with promise problems [ESY84] instead of languages when
they are more convenient. A promise problem Π is a pair of disjoint sets ΠY ,ΠN ⊆
{0, 1}∗ (known as the YES instances and NO instances, respectively). Of course,
a language is just a special case of a promise problem where ΠY = L and ΠN =
{0, 1}∗ \ L.

1.3 Reductions: black-box, relativizing, and oth-
erwise

Reductions are a central technique in complexity and cryptography. At a high level,
reductions are a systematic way of using a method that solves one problem in order
to solve another problem. Perhaps the most familiar kind of reductions are Karp
(also called many-to-one) reductions, which were used in the celebrated early results
on NP-hardness [Kar72].

Definition 1.3.1. A Karp reduction from a promise problem Π1 to another promise
problem Π2 is an efficient algorithm that maps an instance x of Π1 into an instance
y in Π2. The reduction should satisfy the following correctness condition: x ∈ Π1

Y if
and only if y ∈ Π2

Y , and similarly x ∈ Π1
N if and only if y ∈ Π2

N .
A Karp reduction may also be randomized, in which case we require that if x ∈ Π1

Y

then y ∈ Π2
Y with probability at least 2/3 and if x ∈ Π1

N then y ∈ Π2
N .

Classifying reduction techniques is a valuable way to understand how to attack long-
standing questions in theoretical computer science. Starting with the work of Baker
et al. in complexity theory [BGS75] and Impagliazzo and Rudich in cryptography

5

[IR89], studying various subclasses of reductions has provided valuable knowledge
and understanding about the hardness of various problems.
A reduction is relativizing if it remains valid in the presence of any oracle: the reduc-
tion holds even if one augments the model of computation with a function O that all
parties are allowed to call for unit cost. What this means precisely can vary with the
context and the problems we are reducing between, so after each main definition (e.g.
PAC learning, zero knowledge, etc.) we will specify later exactly what relativizing
means for that context.
An algorithm A accesses another algorithm B in a black-box manner if A only feeds
B inputs and then uses its outputs. In particular, if A accesses B in a black-box way
then A does not care how B is implemented and does not see the code of B.
Notice that a Karp reduction is black-box in one sense: it can use any oracle O that
solves Π2 in order to to solve Π1. How O is implemented is immaterial, as long as for
each input y the oracle outputs correctly O(y) = 1 if y ∈ Π2

Y and outputs O(y) = 0
if y ∈ Π2

N .
We formalize this notion of “black-box” and will study its limits with regard to
learning. This class of reductions includes reductions from a promise problem to a
more general computational task. Given a formal definition of some task T (such as
PAC learning Definition 2.2.2) one can consider reductions that use an oracle solving
T in order to decide a promise problem Π. Viewed from the contrapositive (which
is how we will typically interpret such reductions), this means that such a reduction
bases the hardness of T on the hardness of deciding Π.

Definition 1.3.2. A black-box reduction R that bases the hardness of a compu-
tational task T on the hardness of deciding a promise problem Π is an efficient
randomized oracle algorithm that, given any oracle O that solves the task T , satisfies
Pr[RO(x) = 1] ≥ 1− 2−n for all x ∈ ΠY and Pr[RO(x) = 1] ≤ 2−n for all x ∈ ΠN .

Cryptographic reductions typically consist of two components: a construction and a
security analysis, which are both efficient algorithms. Let us take as an example the
task of constructing pseudorandom generators from one-way functions [HILL89]. The
construction of the pseudorandom function is an efficient algorithm that evaluates the
pseudorandom generator given access to a one-way function. The security analysis is
an efficient algorithm that inverts the underlying one-way function given access to a
distinguisher that can distinguish the pseudorandom function from a truly random
function.
For the sake of readability, we will be slightly informal in defining cryptographic
notions of reducibility; the reader is encouraged to refer to the excellent work of
Reingold et al. [RTV04] that carefully considers different notions of reducibility. A
cryptographic primitive P is a pair of constraints that define correctness and security:
correctness is typically a syntactic guarantee (for example, a pseudorandom generator
must be length-increasing), while security is a typically guarantee that no efficient

6

algorithm or circuit can break some property of a function (for example, no efficient
algorithm or circuit can distinguish the output of a pseudorandom generator from
truly random).
A cryptographic reduction that uses a primitive P to build a primitive Q takes any
function f (we consider only primitives that are functions in this work) that satisfies
the correctness condition of P and produces a function g that satisfies the correctness
condition of Q. Furthermore, the reduction guarantees that if there exists an adver-
sary breaking the security of g, then there exists an adversary breaking the security
of f .

Definition 1.3.3. 1. There exists a relativizing reduction that uses a primitive P
to build a primitive Q if for every oracle O, if there P exists relative to O then
Q also exists relative to O.

2. There exists a fully-black-box reduction that uses a primitive P to build a
primitive Q if there exists an efficient construction algorithm Rcons and efficient
security analysis algorithm Rsec such that if f satisfies the correctness condition
of P then Rf

cons satisfies the correctness condition of Q, and for any adversary
A that breaks the security of Rf

cons, the algorithm RA
sec breaks the security of f .

3. There exists a construction-black-box reduction that uses a primitive P to build
a primitive Q if there exists an efficient construction algorithm Rcons such that
if f satisfies the correctness condition of P then Rf

cons satisfies the correctness
condition of Q, and if there exists an efficient oracle adversary Af that breaks
the security of Rf

cons, then there exists an efficient oracle algorithm Sf that
breaks the security of f .

4. There exists a ∀∃ construction-black-box that uses a primitive P to build a
primitive Q if for every f that satisfies the correctness condition of P , there
exists an oracle algorithm Rcons such that Rf

cons satisfies the correctness condi-
tion of Q, and if there exists an efficient oracle adversary Af that breaks the
security of Rf

cons, then there exists an efficient oracle algorithm Sf that breaks
the security of f .

The following relationships between the different kinds of reductions is straight-
forward from the definition.

Proposition 1.3.4. 1. If a reduction is fully-black-box then it also relativizing.

2. If a reduction is construction-black-box then it is also ∀∃ construction-black-box.

3. If a reduction is relativizing then it is also ∀∃ construction-black-box.

7

Efficient-oracle reductions

Efficient-oracle reductions are not black-box per se, but only make very limited use
of the code of the algorithm implementing the oracle. Namely, such a reduction uses
input-output access to the algorithm, but the correctness of the reduction only holds
when the oracle can be implemented by a polynomial-time algorithm (or circuit);
that is, the reduction is not guaranteed to be correct if given access to an oracle that
solves the desired problem but runs in super-polynomial time. As a concrete example,
see the section on the Ostrovsky-Wigderson theorem Section 4.2.1. Cryptographic
reductions can be efficient-oracle in the construction or the security analysis.

Adaptivity

Black-box or efficient-oracle reductions can use the oracle in creative ways; one way
they may take advantage of the oracle is to use the oracle’s answers to generate new
queries. This is characterized by the adaptivity of the reduction.

Definition 1.3.5. A black-box or efficient-oracle reduction R that uses an oracle O
solving task T to solve another task T ′ is c-adaptive if it can be put in the following
form. R consists of algorithms R1, . . . , Rc,M such that:

1. Upon input z for the task T ′ and random coins ω, R1 generates oracle queries
q1
1, . . . , q

1
k (for k = poly(n)) for task T using z, ω and obtains answers a1

1, . . . , a
1
k.

2. For i ≥ 2, Ri generates queries qi
1, . . . , q

i
k based on z, ω, and all the aj

1, . . . , a
j
k

for j < i that it received from the oracle. It queries qi
1, . . . , q

i
k to the oracle and

obtains ai
1, . . . , a

i
k.

3. After obtaining all the queries and responses in round 1, . . . , c, M uses z, ω and
aj

k for 1 ≤ j ≤ c, 1 ≤ i ≤ k, and solves the task T ′.

We also call a reduction non-adaptive if it is 1-adaptive.

In particular, the constructions and security analyses of cryptographic reductions can
be adaptive. Most reductions in theoretical computer science are non-adaptive, and
therefore understanding non-adaptive reductions goes a long way towards understand-
ing how standard techniques might be used to solve a problem. There are however a
few notable exceptions of important adaptive reductions. A (non-exhaustive) list of
such exceptions include the uniform security reduction of the construction that uses
one-way functions to build pseudorandom generators [HILL89], lattice-based cryp-
tography [Ajt96, MR04], and boosting [Sch89, Fre90, FS97].

8

Chapter 2

Computational learning through
new lenses

2.1 Introduction

In terms of real-world impact as well as providing inspiration for new techniques and
problems, two of the most successful areas of theoretical computer science are cryp-
tography and computational learning theory. Cryptography, literally “secret writing”
in Greek, originally addressed how to encode messages sent via an insecure channel so
that no eavesdropper can learn anything about the message. Although long treated
as an art, modern cryptography is a rigorous science and gives us a way to formally
prove the security of cryptosystems. Its systematic study has allowed us to extend
the cryptographic methodology of rigorous proofs of security in previously unimagin-
able ways, developing such notions as zero-knowledge proofs [GMR85]. Scientifically,
techniques and ideas first developed in cryptography have successfully contributed
back to other areas of theoretical computer science, especially in complexity theory.
Computational learning theory has a much more recent but nonetheless illustrious
history. Although related to and drawing from predecessors in statistics such as
Bayesian inference, it has been studied systematically only since the 1980’s start-
ing with a seminal paper of Valiant [Val84], where he proposed the Probabilistically
Approximately Correct (PAC) model of learning. In this and most subsequent learn-
ing models, the learning algorithm is given examples labeled either “yes” or “no”
according to some hidden labeling function (often called a concept), and the algo-
rithm should use these examples to learn how to label future, unlabeled examples
the same way as the hidden function would. Learning theory has seen many suc-
cesses, such as the Boosting technique of Schapire and Freund [Sch89, Fre90, FS97],
which allows us to convert algorithms that “weakly learn” into algorithms that learn
almost perfectly. These techniques have been applied successfully in various areas
such as natural language processing [CK05], medical diagnosis [MFLS01], and optical

9

character recognition [DSS93], and boosting-based algorithms are deployed in many
automated systems.
For a long time computer scientists have recognized that cryptography and learning
are intuitively “inverses” of each other, as was discussed in a survey of Rivest [Riv93],
which highlights connections known at the time. Roughly, sending messages secretly
implies that no (computationally bounded) adversary can “learn” anything about the
messages, and conversely if there are concepts that are hard to learn then perhaps
one can use them as building blocks in a provably secure cryptosystem.
The main relationship between cryptography and learning explored in the literature
was how hard cryptographic problems imply hard learning problems. For example,
even in the paper defining the PAC model, Valiant observed that the existence of
pseudorandom functions imply that polynomial-size circuits are hard to learn [Val84].
This connection has been refined over the years, as specific cryptographic assumptions
have shown that specific (and often very simple) classes of concepts are hard to learn
[KV89, PW90].
There were also efforts in the opposite direction, which used hard learning problems
to build cryptographic primitives [BFKL93, IL90]. However, these works required
that the model of PAC learning be modified so that hard instances of the learning
problem be efficiently samplable. Unfortunately, no such connections are known
when working in the standard model, where hard instances may exist but may not
be efficiently samplable.
In the next few chapters (Chapter 2 through Chapter 5) we further investigate cryp-
tography and computational learning theory by looking at their relationship through
two new lenses: zero knowledge and black-box reductions. We will show that the
hardness of learning is closely related to the existence of non-trivial zero knowledge
proofs, which is a weaker form of cryptographic hardness than the existence of pseu-
dorandom functions or one-way functions. We will also use the notion of black-box
reductions, widely studied in complexity and especially in cryptography, to better
understand how certain statements about learning may be proved. In Chapter 6, we
will also look at an application of the inverse relationship: using learning algorithms
to break cryptographic protocols in order to demonstrate that it is impossible to
simultaneously achieve certain security and efficiency criteria.

2.1.1 Zero knowledge and learning

Zero knowledge is a notion of “learning nothing” that is modelled by the simulation
paradigm: in an interactive protocol, a party learns nothing if it can produce a
transcript of the protocol by itself that is indistinguishable from what it gets by
interacting with other parties. This fundamental idea was first proposed in the work
of Goldwasser, Micali, and Rackoff [GMR85], and soon afterward it was proven by
Goldreich, Micali, and Wigderson [GMW86] that assuming the existence of one-way

10

functions, all languages in NP have a proof with this remarkable property.
More precisely, [GMW86] proved that for every language L ∈ NP, one can use one-
way functions to construct a protocol such that an all-powerful prover can convince
a probabilistic polynomial-time verifier that an instance x ∈ L without revealing any
information other than the fact that x ∈ L. This zero knowledge guarantee holds be-
cause the verifier can efficiently simulate the entire interaction with the prover himself
and produce a transcript of the interaction that is computationally indistinguishable
from the transcript he would receive from an honest prover.
The class of languages with zero knowledge argument systems (which we call ZK) has
since been studied in depth. Under the widely held conjecture that one-way functions
exist, it is known that ZK = PSPACE and hence since one-way functions imply
NP ̸= BPP, this in turn implies ZK ̸= BPP [BOGG+88]. Furthermore, in a long
line of work [For87, AH91, OW93, Dam93, DGOW95, Oka96, SV97, GSV98, GV99,
Vad04, OV07], we also know unconditional facts about ZK. For example, Ostrovsky
and Wigderson [OW93] showed that if ZK ̸= BPP, then there exist auxiliary-input
one-way functions (AIOWF), which is a weak form of cryptographic hardness (see
Definition 2.3.6). We will compare the complexity of PAC learning to the complexity
of zero knowledge, and show that they are intimately connected.

2.1.2 Black box techniques

As many of the central questions in theoretical computer science seem out of reach
of current techniques, one approach to better understand these questions is to bet-
ter understand whether various standard proof techniques might be able to resolve
them. This approach was introduced from logic into computer science by Baker et al.
[BGS75], where they proved that the P vs. NP question cannot be resolved via rel-
ativizing techniques. Since then, the technique has been taken to heart by computer
scientists. Of special note to the cryptography community is the work of Impagliazzo
and Rudich [IR89], who proved that relativizing techniques cannot possibly use the
existence of one-way functions to construct key agreement.
In this work, we apply this philosophy to questions about the complexity of learning.
We show that relativizing and black-box techniques are unable to resolve several
central questions about learning. In particular, we show that one of the first questions
raised by Valiant, namely whether learning in the PAC model is NP-hard, is unlikely
to be proven by a large class of standard black-box techniques.

2.1.3 Overview of results and techniques

Our first main result is to prove that zero knowledge is “strictly” easier than PAC
learning:

11

Theorem 2.1.1 (ZK is easier than PAC learning, informal). If ZK ̸= BPP, then
learning in the PAC model is hard. However, it is unlikely that standard techniques
can use an oracle deciding any L ∈ ZK to successfully learn in the PAC model.

This theorem is formalized in Theorem 3.2.1 and Theorem 4.2.1.
The first implication is proven by observing that Valiant’s observation that pseu-
dorandom functions (and equivalently one-way functions) imply learning is hard is
actually “too strong” in the sense that the existence of pseudorandom functions im-
plies that it is possible to efficiently sample hard-to-learn concepts. This is too strong
in some sense because learning is hard even if hard-to-learn concepts exist but are not
efficiently samplable. By considering auxiliary-input one-way functions (AIOWF), we
are still able to carry through Valiant’s argument that learning is hard, although the
hard-to-learn concepts may no longer be efficiently samplable. Using the Ostrovsky-
Wigderson theorem that ZK ̸= BPP implies the existence of AIOWF, this gives the
implication.
The second implication is proven by showing an oracle relative to which ZK = BPP
yet PAC learning is hard. Actually, the oracle proves the even stronger statement
that AIOWF do not exist, yet PAC learning is hard. This oracle takes advantage of
the fact that the inverter for an AIOWF knows the code that computes the AIOWF,
while the learning algorithm in the PAC model does not know how the distribution of
labeled examples are sampled (and indeed the distribution of labeled examples may
not even be efficiently samplable). This rules out relativizing reductions. Next, we
consider “GMW-style reductions”, which build zero knowledge proofs for NP based
on hardness of learning. In such a reduction, the prover, verifier, and simulator
all have black-box access to a concept class, and the proof system should be zero
knowledge provided that the concept class is hard to learn. We prove that such
“GMW-style reductions” proving NP ⊆ ZK cannot exist, unless NP ⊆ SZK and
the polynomial hierarchy collapses.
The second main result is to prove that PAC learning is “strictly” easier than NP

Theorem 2.1.2 (PAC learning is easier than NP, informal). If PAC learning is hard,
then P ̸= NP. However, it is unlikely that standard techniques can use an oracle that
learns in the PAC model in order to decide an NP-complete language.

In fact, we will prove this theorem not only for PAC learning but for the stronger no-
tion of agnostic learning [KSS92]. The first claim of the theorem is standard folklore,
while the second is formalized in Theorem 5.2.3 and Theorem 5.3.4.
The proof relies on two main observations. First, reductions that use a learning oracle
to decide an NP-complete language must be efficient, and therefore the distributions
of labeled examples that the reduction queries to its learning oracle must be efficiently
samplable. Second, using an AIOWF inverter it is possible to learn any efficiently
samplable distribution. This means that a reduction that uses a learning oracle to

12

decide NP can be transformed into a reduction that uses an AIOWF inverter and
decides NP. Such a reduction would lead to a surprising consequence, namely a proof
that the average-case hardness of NP implies the existence of one-way functions,
which collapses “Pessiland” and “Minicrypt” in Impagliazzo’s taxonomy of worlds. If
the reduction is further constrained to be non-adaptive and “strongly-black-box”, such
a reduction would in fact collapse the polynomial hierachy, and so such a reduction is
considered implausible since the polynomial hierarchy is conjectured not to collapse.
Alternative notions of learning: in order to prove the above results, we explore
notions of learning that are inpired by and related to the PAC model. We modify
the PAC model in two ways: first consider the restricted case of learning where the
distribution of labeled examples is efficiently samplable, i.e. there is an efficient
circuit that samples from the distribution of labeled examples. We will give this
sampling circuit to the learner as an additional input, thereby possibly making its
task easier. We call this problem “circuit learning” or CircLearn for short. Next,
we relax the model by changing the search problem to a decision problem. Instead
of requiring the algorithm to find a hypothesis that labels similarly to the labeled
examples, we only ask that the algorithm decide whether or not a good hypothesis
exists. The relaxation along both these dimensions (requiring the distribution of
labeled examples be efficiently samplable and requiring the learning algorithm only
to decide whether or not a good hypothesis exists) is called “circuit consistency” or
CircCons for short.
The relationship between CircCons, CircLearn and AIOWF will underpin the proofs
of our two main results above. In particular, we prove the following about these
problems:

Theorem 2.1.3 (Informal). CircCons ∈ ZK.

This is formalized in Theorem 4.3.7. Notice this implies that if CircCons is hard, then
ZK ̸= BPP. This stands in sharp contrast to Theorem 2.1.1, since we said that
the hardness of the standard notion of PAC learning cannot imply ZK ̸= BPP via
standard techniques.
Similarly,

Theorem 2.1.4 (Informal). If CircLearn is hard, then AIOWF exist.

This is formalized in Corollary 3.5.2. Again this stands in contrast to the standard
notion of PAC learning, where such an implication does not hold and cannot be
proven via standard techniques.
Although CircCons,CircLearn are not “natural” learning problems since rarely in the
real world does one know how the distribution of labeled examples is generated,
nevertheless our results suggest that they are valuable notions to study as they shed
light on the standard notion of learning.

13

2.1.4 Historical notes

The results of Chapter 2 through Chapter 5 are based on the works in [ABX08, Xia09].
[ABX08] focused on the relationship between learning and NP, while [Xia09] focused
on the relationship between learning and ZK.

2.2 Definitions of computational learning

Let F be a collection of functions from {0, 1}n → {0, 1}, often called a concept class.
An example oracle for (X, Y) where X, Y are distributions over {0, 1}n and {0, 1}
respectively is a randomized function that takes input 1n and outputs a random
sample (x, y) from the joint distribution X, Y . The notion of an example oracle
models the intuitive notion of a “teacher”: the teacher gives us labeled examples
from which we should try to extract the underlying hidden labeling function. Of
course, giving the learning algorithm access to an example oracle model is entirely
equivalent to giving the learning algorithm an explicit (suitably large) set of labeled
examples drawn independently from (X, Y).
First define the following notation to denote the error that a function f incurs labeling
the joint distribution (X,Y):

Definition 2.2.1. For a joint distribution (X,Y) over {0, 1}n × {0, 1}, the error of
f : {0, 1}n → {0, 1} with respect to (X, Y) is

err((X,Y), f) = Pr
X,Y

[f(X) ̸= Y]

For a class of functions F , define

err((X,Y), F) = min
f∈F

err((X,Y), f)

Now we are prepared to define PAC learning:

Definition 2.2.2 (PAC Learning). A procedure A ε-learns the concept class F if the
following holds for every f ∈ F and every distribution X over {0, 1}n. Given access
to an example oracle for (X, f(X)), A produces with success probability ≥ 1 − 2−n

an ε-good hypothesis h (represented as a circuit), namely err((X, f(X)), h) ≤ ε.
Equivalently, PrX [h(X) = f(X)] ≥ 1− ε.

Notice that we have not required that h be related to F in any way; even if F is a
simple class of functions (say linear functions), the hypothesis h could be much more
complex. If we require in addition that h ∈ F then this gives us the notion of proper
PAC learning:

14

Definition 2.2.3 (Proper PAC Learning). A procedure A ε-learns the concept class
F properly if it ε-learns F and in addition it always outputs a hypothesis h ∈ F .

We say that learning F is hard (resp. non-uniformly hard) if there exists some
ε = 1/poly(n) such that no efficient algorithm (resp. non-uniform algorithm) A that
ε-learns F in time poly(n). We say that F is hard almost everywhere (resp. non-
uniformly hard) to learn if there exists some ε = 1/poly(n) such that every efficient
algorithm fails to ε-learn F for all but finitely many n.
We say that PAC learning is hard (without specifying F) if learning F = SIZE(n2)
is hard. Define PAC learning to be almost always hard similarly. By a standard
padding argument, learning SIZE(n2) is hard (or hard almost everywhere) if and only
if learning SIZE(nc) for every constant c > 0.
Our motivation for defining PAC learning to be hard iff PAC learning SIZE(n2) is hard
is two-fold: first polynomial-size circuits are very powerful and so it is believable that
they are hard to learn. Second, they are “unstructured” because they are universal,
and therefore results about the hardness of learning SIZE(n2) shed light about the
model of PAC learning. If we had decided to study more structured concept classes
(such as DNF or halfspaces) then the results we would have obtained would most
likely have been based on the structure of those particular classes, not about the
PAC learning model itself.
The model of learning can be relaxed to allow the learning algorithm to query the
hidden labeling functions at points of its choosing. We say in such a case that the
learning algorithm has access to a membership oracle or is allowed to make membership
queries.

Definition 2.2.4. We say that a PAC learning algorithm A gets access to a mem-
bership oracle if, when given access to an example oracle for (X, f(X)), the oracle is
also allowed to query f(x) on x of its own choosing.

Theorem 2.2.5 ([Val84, HILL89, GGM86]). If one-way functions exist, then PAC
learning is hard.

This follows from the transformation of OWF’s into PRF’s via [HILL89, GGM86],
and then it is clear from the definition of PRF’s that {fk} form a concept class that
is hard to learn.

Agnostic learning

Kearns et al. [KSS92] considered the agnostic model, where the example oracle (X, Y)
may not correspond exactly to labeling by a function in F , namely there is no f ∈ F
such that Y = f(X). In this setting, the best we can hope for is that a learner
outputs a hypothesis that labels X almost as well as the best function in F .

15

Definition 2.2.6 (Agnostic learning). A procedure A ε-agnostic learns a concept
class F if given access to any example oracle (X, Y), A outputs with success prob-
ability ≥ 1 − 2−n an ε-good hypothesis h, namely one satisfying err((X, Y), h) ≤
err((X, Y), F) + ε.

Notice that in the particular case that (X, Y) is an example oracle of the form
(X, f(X)) for some f ∈ F , agnostic learning is identical to PAC learning.
Efficiency and hardness are defined exactly as with PAC learning. As before, we say
that agnostic learning is hard (or hard almost everywhere) if learning SIZE(n2) is
hard.
The following proposition follows from the definitions.

Proposition 2.2.7. If PAC learning is hard, then agnostic learning is hard.

Notice that in our definitions of learning we require error to be ≤ ε for some ε =
1/poly(n), while we ask that the success probability (i.e. the probability with which
the algorithm A outputs a good hypothesis) to be 1 − 2−n. This is because the
success probability can be amplified from any 1/poly(n) to 1 − 2−n in polynomial
time, simply by repeating the the learning algorithm many times independently to
obtain several candidate hypotheses, then testing the accuracy of these candidates,
and outputting the one that is most accurate. The analysis of this amplification
follows by a straight-forward application of the Chernoff bound.

Proposition 2.2.8. Suppose A outputs an ε-good hypothesis with probability δ > 0
in either the PAC or agnostic model. Then for any polynomial p(n) there exists an
efficient A′ using oracle calls to A that outputs an 2ε-good hypothesis with probability
1− 2−p(n) running in time poly(p(n), 1/δ).

On the other hand, boosting the accuracy of the learning procedure is highly non-
trivial. This technique is known as boosting [Sch89, Fre90, FS97] and can reduce the
error from any 1

2
− γ to any ε in time poly(n, 1/γ, 1/ε). We will not require boosting

to prove any of our results.

2.2.1 Oracles, black-boxes, and learning

We say that learning is hard relative to an oracle O if SIZEO(n2) (or any subset
thereof) is hard to learn for algorithms with oracle access to O.
We say that an algorithm A uses black-box access to a concept class F if it satisfies
the following. Let |F | = 2s, and suppose each f ∈ F maps {0, 1}n → {0, 1}. Let
O : {0, 1}s×{0, 1}n → {0, 1} be any oracle such that each f ∈ F corresponds to some
O(z, ·), namely for each f ∈ F there exists unique z ∈ {0, 1}s such that f(x) = O(z, x)
for all x ∈ {0, 1}n. Then A accomplishes some task using only black-box access to F
if A accomplishes that task given access to any such an oracle O.

16

2.3 One-way functions
The most basic object studied in cryptoraphy is a one-way function (OWF), which is
a function that is easy to compute but hard to invert.

Definition 2.3.1 (One-way functions). A function f : {0, 1}n → {0, 1}m is a one-way
function against uniform inverters (resp. non-uniform inverters) if f is efficiently com-
putable by a uniform algorithm and for every efficient uniform (resp. non-uniform)
algorithm I,

Pr
x

R←Un

[I(y) ∈ f−1(y) | y = f(x)] < n−ω(1)

holds for all but finitely many input lengths n.

We will sometimes call this definition of OWF standard for emphasis and to distin-
guish from the other variants of OWF that we will encounter.
It is known that OWF are equivalent to many other notions of cryptography such
as secret-key encryption and digital signatures [IL89, Rom90]. Here, we will use the
following cryptographic primitives and the fact that their existence is equivalent to
the existence of OWF.

Definition 2.3.2 (Pseudo-random functions (PRF)). A function f : {0, 1}n×{0, 1}n →
{0, 1} is a pseudorandom function against uniform (resp. non-uniform) distinguish-
ers if f is efficiently computable and for every efficient uniform (resp. non-uniform)
oracle algorithm D, we have∣∣∣∣ Pr

k←RUn

[Dfk(1n) = 1]− Pr
ϕ

[Dϕ(1n) = 1]

∣∣∣∣ ≤ n−ω(1)

where fk = f(k, ·) and ϕ is a truly random function from {0, 1}n → {0, 1}.

In general PRF’s can be defined with multi-bit outputs, but we will only encounter
single-bit output PRF’s.

Definition 2.3.3 (Distributional OWF (DOWF)). A function f : {0, 1}n → {0, 1}m
is a distributional OWF against uniform (resp. non-uniform) inverters if f is efficiently
computable and there exists a polynomial p(n) such that for every efficient uniform
(resp. non-uniform) algorithm I, it holds that

∆((x, f(x)), (I(y), y | y = f(x))) > 1/p(n)

over the random choice of x←R Un and the random coins of I.

It was proven by H̊astad et al. [HILL89] and Goldreich et al. [GGM86] that PRF
exist if and only if OWF exist.

17

Theorem 2.3.4 ([HILL89, GGM86]). OWF exist if and only if PRF exist.

Clearly, a distributional OWF is also a standard OWF, and Impagliazzo and Luby
[IL89] showed that the converse holds as well.

Theorem 2.3.5 ([IL89]). Distributional OWF exist if and only if (standard) OWF
exist. Furthermore, the security analysis of the reduction that uses a OWF to build a
distributional OWF is non-adaptive.

2.3.1 Auxiliary-input one-way functions:

One-way functions are uniformly computable: there is a single Turing machine that
computes f on all input lengths. This makes sense if we want to use them to build
cryptographic systems since one wants to be able to compute f on all input lengths.
From a complexity-theoretic point of view, however, one can relax this definition so
that the function is non-uniformly computable: there exists a non-uniform family of
circuits {Cn} such that Cn computes f on inputs of length n. One can then relax
this even further so that the particular family of circuits depends on the inverter it
is trying to fool: this leads us to so-called auxiliary-input one-way functions, which
were introduced in the work of Ostrovsky and Wigderson [OW93].

Definition 2.3.6. Auxiliary-input one-way functions (AIOWF) against uniform (resp.
non-uniform) inverters exist if for every uniform (resp. non-uniform) inverter I, there
exists an infinite collection W of functions such that for every function f ∈ W map-
ping {0, 1}n → {0, 1}m, f is computable by a circuit of size s(n) = poly(n), and it
holds that

Pr
x←RUn

[I(f, y) ∈ f−1(y) | y = f(x)] < s−ω(1)

Whereas with standard one-way functions the hard-to-invert function is fixed, here
the family of hard functions W may depend on the inverter I. Because of this, notice
above that the inverter also takes a description of the function (as a circuit) as an
auxiliary input.
Similarly, we can define auxiliary-input variants of the PRF and DOWF.

Definition 2.3.7. Auxiliary-input pseudorandom-functions (AIPRF) against uni-
form (resp. non-uniform) distinguishers exist if for every uniform (resp. non-uniform)
oracle distinguisher D, there exists an infinite collection W of functions where for ev-
ery f ∈ W , f : {0, 1}n × {0, 1}n → {0, 1}, f is computable by a circuit of size
s(n) = poly(n) and it holds that∣∣∣∣∣ Pr

k
R←Un

[Dfk(f, 1s) = 1]− Pr
ϕ

[Dϕ(f, 1s) = 1]

∣∣∣∣∣ ≤ s−ω(1)

where fk = f(k, ·) and ϕ is a truly random function from {0, 1}n → {0, 1}.

18

Definition 2.3.8. Auxiliary-input distributional OWF (AIDOWF) against uniform
(resp. non-uniform) inverters exist if for every uniform (resp. non-uniform) inverter I,
there exists a polynomial p(s) and an infinite collection W of functions where for every
f ∈ W , f : {0, 1}n → {0, 1}m, f is computable by a circuit of size s(n) = poly(n)
and it holds that

∆((x, f(x)), (I(f, y), y | y = f(x))) > 1/p(s)

over random choie ofx←R Un and the random coins of I.

Remark 2.3.9. Theorem 2.3.4 and Theorem 2.3.5 both extend in a straight-forward
way to show that AIOWF exist if and only if AIPRF exist if and only if AIDOWF
exist.
Furthermore, these equivalences are constructive. To illustrate what we mean by
constructive in the particular the case of building AIOWF from AIDOWF, we mean
that there exists a pair of efficient oracle algorithms R(·)

cons, R
(·)
sec (the construction and

security reduction, respectively; see Section 1.3 for background on constructions and
security reductions) such that the following holds. For every algorithm A (which is
supposed to invert the AIOWF), let RA

sec be the security reduction applied to A (RA
sec

is supposed to invert AIDOWF). If AIDOWF exist, then there exists a set of functions
W that is distributionally hard to invert for RA

sec. Let Rcons(W) = {RC
cons | C ∈ W},

which denotes set of circuits obtained by applying the construction applied to each
circuit in W . Then Rcons(W) is a family of functions that is hard to invert (in the
sense of AIOWF) for A.

2.4 Zero knowledge

2.4.1 Definitions

Let ⟨P, V ⟩(x) denote the verifier’s view of the transcript of an interactive protocol
between a prover P and a verifier V on common input x. This consists of all messages
sent by the prover and verifier, as well as the verifier’s random coins.

Definition 2.4.1. We say that L ∈ ZK if there exists an efficient (randomized)
verifier strategy such that the following hold:

• Completeness: ∀x ∈ L, there is a prover strategy such that V accepts the
transcript ⟨P, V ⟩(x) with probability 1− 2−n.

• Soundness: ∀x /∈ L, for any efficient prover strategy P ∗, V accepts the transcript
⟨P ∗, V ⟩(x) with probability at most 2−n.

• Zero knowledge: there exists an efficient simulator S such that ∀x ∈ L , the
distribution ⟨P, V ⟩(x) is computationally indistinguishable from S(x).

19

Notice that we only define zero knowledge with respect to an honest verifier strategy,
i.e. the verifier does not deviate from the protocol. It is known [GSV98, Vad04,
OV07] that honest-verifier protocols can be compiled into protocols that are also zero
knowledge with respect to cheating verifiers. For this paper we will simply work with
the honest-verifier versions of zero knowledge.
The definition of zero knowledge can be tailored in several ways. We say that a pro-
tocol satisfies statistical zero knowledge if the zero knowledge property holds against
unbounded distinguishers, namely

∆(S(x), ⟨P, V ⟩(x)) ≤ ε(n)

where ε is a negligible function. We say that a protocol is a proof if soundness must
hold against unbounded prover strategies. This leads to the four following variants
of zero knowledge:

1. SZKP: statistical zero knowledge proofs

2. CZKP: computational zero knowledge proofs

3. SZKA: statistical zero knowledge arguments

4. CZKA: computational zero knowledge arguments

By definition it holds that SZKP ⊆ CZKP, SZKP ⊆ SZKA, CZKP ⊆ CZKA,
and SZKA ⊆ CZKA.

Remark 2.4.2. Unless otherwise specified, throughout this thesis we let SZK denote
SZKP and ZK denote CZKA.

2.4.2 Previous results

Zero knowledge has been deeply studied in the literature, and we will take advantage
of these previous results to aid in our own study of zero knowledge as it relates to
learning. The following theorems will be important tools used in this paper.

Theorem 2.4.3 ([For87, AH91]). SZK ⊆ AM ∩ coAM

Theorem 2.4.4 ([Ost91, OW93]). ZK ̸= BPP implies that there exist AIOWF
against uniform algorithms.

Definition 2.4.5 ([SV97]). Statistical Difference with parameters α, β (denoted SDα,β)
is the following promise problem: A YES instance is a pair of circuits sampling two
independent distributions X, Y such that ∆(X, Y) > α. A NO instance is a pair of
circuits sampling two independent distributions X,Y such that ∆(X,Y) < β.

20

Theorem 2.4.6 ([SV97, Vad04]). SDα,β for any constants α2 > β is SZK-complete.

Theorem 2.4.7 ([Vad04, OV07]). A promise problem Π = (ΠY ,ΠN) ∈ ZK if and
only if there exists an efficient reduction Red, a set W ⊆ ΠY ∪ΠN , and an efficiently
computable function f mapping W to circuits such that the following hold.

1. The reduction Red reduces the promise problem Π′ = (ΠY \ W,ΠN \ W) to
SDα,β (for some constants α2 > β).

2. Let fz denote the function computed by the circuit f(z) for z ∈ W . Then the
family of functions {fz | z ∈ W} is hard to invert for all non-uniform inverters.

Furthermore, if W = ∅ then Π ∈ SZKP, if W ⊆ ΠY then Π ∈ CZKP, and if
W ⊆ ΠN then Π ∈ SZKA.

2.4.3 Relativizing definitions of zero knowledge

Since we will study black-box constructions of zero-knowledge protocols, we will work
with relativized versions of ZK. We say L ∈ ZKO if it satisfies the definition of ZK as
defined above except the prover, verifier, simulator, and distinguisher are all allowed
access to the oracle O. Also, SDOα,β is like SDα,β except circuits are allowed O gates.

Remark 2.4.8. Examining the proofs of the above Theorem 2.4.4 and Theorem 2.4.6,
we observe that they all relativize.
Furthermore, one direction of Theorem 2.4.7 is relativizing: for any oracle O, if a
problem Π ∈ ZKO, then there exist a reduction Red, W , and f as stated in the
theorem, where Red reduces Π′ = Π \ W to SDOα,β and f maps W to a family of
circuits containing O gates. Letting fOz denote the function computed by the circuit
f(z) with oracle gates, the family of functions {fOz | z ∈ W} is hard to invert against
all non-uniform inverters, even those containing O gates.

On the other hand, the other direction of Theorem 2.4.7, which shows that any
language satisfying the characterization is in CZKP, uses non-relativizing techniques.
This is because this direction uses the non-relativizing proof that 3-COL is in ZK
assuming some form of commitment scheme [GMW86].

2.5 Usage of diagrams
We will often employ diagrams to show the relationship between different forms of
hardness. See Figure 2.5 for an example. Each box represents some form of computa-
tional hardness, and an arrow from box A to box B with a circle means that A implies
B; an open circle indicates that the reduction holds, and a crossed out circle indicates

21

OWF exist

Theorem 2.2.5ONMLHIJKFB
��

PAC learning is hard

ONMLHIJKFB
��

Agnostic learning is hard

ONMLHIJKFB
��

P ̸= NP

Figure 2.1: Previously known relationships

that such reductions do not exist or their existence would imply consequences that
are surprising or contradict standard conjectures. The reduction types are:

1. “FB” indicates fully-black-box reductions.

2. “CB” indicates construction-black-box reductions.

3. “Rel” indicates relativizing reductions.

4. “∀∃” indicates ∀∃-construction-black-box reductions.

5. “A” implies arbitrary reductions (not falling into any of the above categories).

6. An asterisk “∗” means that further restrictions apply, and the reader is asked
to refer to the listed theorem for the precise statement.

The arrows are annotated with the theorem that proves that implication; arrows
lacking annotations either follow immediately from the definitions, or are considered
folklore.
For example, Figure 2.5 says that if one-way functions exist then learning is hard,
this implication can be proven using a black-box reduction, and is stated in Theo-
rem 2.2.5.

22

Chapter 3

Learning and one-way functions

One of the earliest connections between learning and other areas of computer science
was Theorem 2.2.5, which states that the existence of one-way functions, using the
transformation of one-way functions into pseudo-random functions [HILL89, GGM86],
imply that learning polynomial-size circuits is hard. Further work by Kearns and
Valiant [KV89] showed that if certain concrete cryptographic assumptions such as
the RSA assumption or the hardness of factoring hold, then learning even very weak
classes such as Boolean formulae and constant-depth threshold circuits is hard.
In this chapter we continue the inquiry into connections between learning and one-
way functions, and show that learning is related not just to one-way functions but
also to auxiliary-input one-way functions. In order to obtain a finer understanding
we introduce several notions of learning related to the PAC model, and we show how
these notions of learning relate to AIOWF.
The chapter is organized as follows. In Section 3.1 we define a decisional version
of the PAC learning problem, and in Section 3.2 we observe that if AIOWF exist
then this decisional version of PAC learning is hard. In Section 3.3 we show that the
converse implication cannot be proven by standard techniques by exhibiting an oracle
such that learning is hard but AIOWF do not exist.
Then in Section 3.4 we define some new problems (CircCons and CircLearn) that
are related to the PAC learning problem. Essentially these problems require that
the distribution of labeled examples that the learning algorithm sees be efficiently
samplable, and furthermore the learning algorithm gets the circuit sampling the the
distribution as an additional input. In Section 3.5 we show that if CircLearn is hard,
then AIOWF exist. This stands in contrast to the results of Section 3.3, which rules
out such implications for the standard definitions using standard techniques.
The new notions CircCons and CircLearn introduced in this chapter along with the the-
orems relating them to AIOWF will serve as tools to prove results relating (standard)
PAC learning to ZK and NP in subsequent chapters.

23

A more detailed summary outlining the results proven in this chapter is included at
the end of the chapter.

3.1 A decisional version of learning
To better understand the PAC model, we develop several related notions of learning.
In defining our new notions, there are two main features of the PAC model that we
will modify: the search nature of the model and the oracle nature of the model. Here
we first consider the search nature of the problem, and we consider the oracle nature
of the problem in Section 3.4.
PAC learning is inherently a search problem: given an example oracle that generates
examples labeled according to some hidden function, find a hypothesis that labels
almost all examples the same way as the hidden function does. Specifically, the
learning algorithm must produce such a hypothesis and not simply claim that it
exists.
It is well-known that many search problems reduce to their decisional version. The
most famous example is SAT: given an algorithm that can decides whether or not
a given Boolean formula is satisfiable, one can also efficiently find a satisfying as-
signment of that formula. This phenomenon is called downward self-reducibility and
appears throughout computational complexity, but it is by no means shared by all
computational problems, e.g. deciding primality is easy, but integer factorization is
believed to be hard.
One can therefore ask about a decisional version of learning: given an example ora-
cle, does there exist a function in some target concept class F that labels examples
the same way as examples generated by the oracle? In this section we formalize this
decisional model, and we will see that Goldreich et al. showed that under certain
assumptions, the decision problem may be easier than the search problem (Theo-
rem 3.1.4).
We begin with the following definition, which is called “general property testing” by
Goldreich et al. [GGR98].

Definition 3.1.1 (Testing proper PAC β-consistency). A tests for proper PAC β-
consistency of a concept class F if given access to any distribution of labeled examples
(X, Y) the following holds.

• YES instance: if there exists f ∈ F such that Y = f(X), then A outputs 1
with probability 1− 2−n.

• NO instance: if err((X, Y), F) > β, then A outputs 0 with probability 1− 2−n.

Notice this is a promise problem: there are example oracles which satisfy neither the
YES nor NO conditions, in which case we do not care what A outputs. We first

24

explore the intuition behind this definition and why we call it proper. We want the
definition to classify example oracles into those for which the task of learning (with
respect to the target concept class F) is possible and those for which the task is
impossible.
Looking at Definition 3.1.1 again, the definition of YES instances is the obvious one.
The definition of NO instances is also what we would expect, namely the labeling given
by (X,Y) to be very different from any labeling in F . Why then do we emphasize
that this corresponds to the notion of proper learning?
One property we want from the definition is for it to be related to the standard PAC
learning definition in the following way: if there exists a PAC learning algorithm for
learning F in the standard sense, then the following reduction PACtoTesting should
be a good tester for the PAC consistency of F : to test the consistency of (X,Y), run
the PAC learning algorithm on (X, Y) to obtain a hypothesis h. Then sample more
examples (x, y) from the example oracle and check if h(x) = y; if a 1− β/2 fraction
of these examples are labeled correctly output 1, otherwise output 0.
If we had an algorithm A that learned F properly, then clearly the above reduction
would also give an algorithm for testing proper PAC consistency. However, sup-
pose now that A learns F , but is not necessarily proper. We argue that this does
not necessarily give us an algorithm to test proper PAC consistency: in particular
suppose we are given an example oracle (X, g(X)) where g is very far from F , i.e.
err((X, g(X)), F) > 1/2, but g is still computable by a circuit of size n3. Then it is
possible that A will output a circuit computing g even though g is far from F , in
which case using PACtoTesting would give us the wrong answer. Therefore we propose
the following definition of testing (not necessarily proper) PAC consistency:

Definition 3.1.2 (Testing PAC β-consistency). A tests for the PAC β-consistency
of a concept class F if given access to any distribution of labeled examples (X, Y) the
following holds.

• YES instance: if there exists f ∈ F such that Y = f(X), then A outputs 1
with probability 1− 2−n.

• NO instance: if err((X, Y), SIZE(nlog log n)) > β, then with probability 1 − 2−n

A outputs 0.

The term nlog log n can be replaced by any super-polynomial function without affecting
any of our results. The definition of testing consistency can also be augmented to
give the tester access to a membership oracle (i.e. A can query f(x) for x of its
choosing), or restricted to so that the tester only needs to succeed over specific classes
of distributions X (e.g. X = Un the uniform distribution).
Testing PAC consistency of F is hard against uniform (resp. non-uniform) algorithms
if there exists some β = 1/poly(n) such that no uniform (resp. non-uniform) algorithm

25

can test PAC β-consistency of F in time poly(n), and we say that testing PAC
consistency is hard if testing PAC consistency of SIZE(n2) is hard.
Testing PAC 1/2-consistency is clearly trivial (always output 1, since every (X, Y)
fails the NO condition) but the problem gets harder as β gets smaller. The following
proposition follows immediately from the definitions.

Proposition 3.1.3. If testing PAC consistency is hard, then PAC learning is hard.

It was shown by [GGR98] that under certain cryptographic assumptions, there exists
concept classes for which it is easy to test PAC consistency but hard to PAC learn.

Theorem 3.1.4 ([GGR98]). Assuming the existence of weak trapdoor one-way per-
mutations with dense domains, there exists a concept class F such that testing PAC
consistency for F is easy but PAC learning F is hard.

Relationship to property testing

We named the decisional model “testing consistency” expressly to highlight the con-
nection between it and the notion of property testing, which has been widely studied
in the computer science literature [BLR90, RS96, GGR98]. In the property testing
framework, one often wishes to test whether a Boolean function f satisfies a prop-
erty P , where P is just a subset of all functions (for example, P can be the set of
linear functions). One wants to distinguish between YES instances, which are func-
tions f ∈ P , and NO instances, which are functions f that are ε-far from P , i.e.
err((Un, f(Un)), P) ≥ ε. One has only black-box access to f and wants to minimize
the number of queries made.
As observed by [GGR98], this is remarkably similar to the problem of testing β-
consistency. In fact, testing for a property P is completely equivalent to testing
proper PAC consistency of P where the input is restricted to distributions of the
form (Un, ϕ(Un)) for some function ϕ. [GGR98] explores more relationships between
testing proper PAC consistency and PAC learning.
In testing (not necessarily proper) PAC consistency, the role of the property P is
identical to the role of the concept class F , and the YES and NO conditions are very
similar. There are however several important differences:

1. In testing PAC consistency, the NO instance is much more severe: the function
must be far from any efficiently computable function and not just far from any
function in F .

2. In the property testing setting an instance is just a function f and the NO
condition applies to functions that are far from P with respect to inputs drawn
from the uniform distribution. In testing PAC consistency an instance is an
oracle (X, Y) and therefore the labeling Y may not even be a deterministic

26

function of X, and furthermore the NO condition applies to labelings that are
far from efficiently computable functions with respect to inputs drawn from the
distribution X, not necessarily with respect to the uniform distribution.

3.2 AIOWF implies testing PAC learnability is hard

Theorem 2.2.5, which states that the existence of one-way functions implies learning is
hard, gives “more than is necessary”: not only is learning hard, but one can efficiently
sample a function that is hard to learn: sample a key k for the pseudo-random function
and let fk be the function to be learned. This speaks to the difference between worst-
case and average-case hardness: the existence of one-way functions is an average-case
notion of hardness because it requires that one can efficiently sample hard instances
of a hard problem. Learning on the other hand can (and we believe should) be viewed
as a worst-case notion of hardness because it requires that there exist hard functions
computable by polynomial-size circuits that are hard to learn, but it does not require
those hard instances to be efficiently samplable. In fact, which instances are hard
may even depend on which learning algorithm is being considered.
Already Blum et al. explicitly pointed out this discrepancy when trying to build cryp-
tographic primitives from hard learning problems [BFKL93]. Malkin asked whether
one can base the hardness of learning on weaker notions that better reflect the worst-
case nature of hardness of learning [Mal08], and in this section we observe that
AIOWF constitute one such notion. The proof that the existence of AIOWF im-
ply that learning is hard is essentially the same as the proof of Theorem 2.2.5, one
simply needs to observe as in Remark 2.3.9 that AIPRF can be built from AIOWF.
We reproduce the proof that AIPRF implies testing PAC consistency is hard in full
detail for the sake of completeness.

Theorem 3.2.1. If there exist AIOWF’s against uniform (resp. non-uniform) dis-
tinguishers, then testing PAC (1−ε

2
)-consistency is hard against uniform (resp. non-

uniform) algorithms, where ε = 2−n/4.

Proof. We say that the AIPRF are computable in size n2 if for every distinguisher
D, there exists an infinite collection W of functions such that each f ∈ W is com-
putable in size n2 and D cannot distinguish fk from a truly random function (as in
Definition 2.3.7). A standard padding argument shows that the existence of AIPRF
implies that there exist AIPRF computable in size n2.
Suppose for the sake of contradiction thst testing PAC consistency were not hard.
Then there exists an efficient A such that for every circuit f computable in size n2,
given access to the example oracle (Un, f(Un)), A outputs 1 with probability 1− 2−n,
and given oracle access to (Un, g(Un)) where err((Un, g(Un)), SIZE(nlog log n)) > 1−ε

2
it

outputs 0 with probability 1− 2−n.

27

We prove this contradicts the existence of AIPRF. Use A to construct B that, given
access to an oracle O, runs A on the example distribution (Un,O(Un)) and outputs
what A outputs. By the hypothesis that AIPRF exist, there exists a collection W of
functions f : {0, 1}n × {0, 1}n → {0, 1} each computable in size n2 such that∣∣∣∣ Pr

B,k←RUn

[Bfk(f, 1n) = 1]− Pr
B,ϕ

[Bϕ(f, 1n) = 1]

∣∣∣∣ ≤ n−ω(1) (3.2.1)

where ϕ is a truly random function. Pad f so that it is computable by a size n2

circuit; this implies that for every k, fk is computable by a n2 size circuit as well.
By the construction ofB, for any oracleO, BO(f, 1n) = 1 if and only ifA(Un,O(Un))(1n) =
1. Because fk is computable in size n2 for every k, it holds that Prk[B

fk(1n) = 1] ≥
1− 2−n by our assumption that A tests PAC consistency with size n2 circuits.
On the other hand, since ϕ is a random function, with overwhelming probability
ϕ is far from any function in SIZE(s) where we let s = nlog log n. More precisely,
because the probability that a random function ϕ agrees with f is bounded by
Prϕ[err((Un, ϕ(Un)), f) ≤ 1−ε

2
] ≤ 2−ε22n/8 because of a Chernoff bound, we can write:

Pr
ϕ

[∃f ∈ SIZE(s), err((Un, ϕ(Un)), f) ≤ 1−ε
2

]

≤ 2O(s log s) Pr
ϕ

[err((Un, ϕ(Un)), f) ≤ 1−ε
2

]

≤ 2O(s log s)−ε22n/8 (By Chernoff bound)
≪ 2−n (Using ε = 2−n/4)

For such ϕ, we have that Bϕ(1n) = 1 with probability at most 2−n by our assumption
that A tests PAC consistency. Therefore, Prϕ[B

ϕ(1n) = 1] ≤ 2−n+1. Putting these
together, it holds that

Pr
B,k

[Bfk(1n) = 1]− Pr
B,ϕ

[Bϕ(1n) = 1] ≥ 1− 3 · 2−n

which contradicts Inequality 3.2.1.

3.3 An oracle separating learning and AIOWF
Given Theorem 3.2.1, it is tempting to think that one might be able to show that
the existence of AIOWF is equivalent to the hardness of testing PAC consistency.
In this section we show that this is probably not the case, and that relativizing
techniques cannot use the hardness of testing PAC consistency to construct AIOWF.
This immediately implies a separation of hardness of PAC learning and AIOWF.

Theorem 3.3.1. There exists an oracle O for which testing PAC consistency with a
membership oracle is hard, but AIOWF do not exist.

28

Intuition behind Theorem 3.3.1: the intuitive difference between PAC learning
and inverting AIOWF we exploit is that in PAC learning, the learner knows nothing
about how the labeled examples (X,Y) are produced, whereas with AIOWF, the
inverting algorithm does know a description of the function f it is trying to invert.
Our oracle will be defined using a distribution over functionsR(n) : {0, 1}n×{0, 1}n →
{0, 1}. This defines the collection of functions {Rz} where for z ∈ {0, 1}n, we define
Rz = R(n)(z, ·). For each z ∈ {0, 1}n, with probability 2−n/2 the distribution sets z
to be a “hard instance”, i.e. it sets Rz to be a uniformly random function, and with
probability 1− 2−n/2 it sets Rz to be the all zero function Rz ≡ 0.
We show (in Lemma 3.3.5) that almost surely over the choice of R, the concept class
F = {Rz}z∈{0,1}∗ is hard to learn for non-uniform algorithms with R gates. The
intuition is that there are roughly 2n/2 hard instances z on inputs of length n, and
they are chosen at random, so no polynomial-size circuit can find all of them, and
no circuit can learn hard instances it cannot find because hard instances are random
functions. Notice that we must choose many hard instances because a circuit’s non-
uniformity can be specified after the oracle is chosen, and so the advice may reveal
where some of the hard instances are hidden; by choosing 2n/2 hard instances, no
polynomial amount of advice can specify all of the hard instances, and so for any
polynomial-size circuit some hard instances remain random-looking.
The second condition is to check that AIOWF do not exist. One idea to assure this
is to define another oracle I that inverts circuits with R gates. It is straight-forward
to show that no non-uniform circuit family can learn F even given access to I, but
since I can invert all circuits with R gates, AIOWF do not exist. This type of
proof technique is common in the cryptographic literature (e.g. [HHRS07]) and rules
out fully black-box reductions building AIOWF from hardness of learning. However,
it does not rule out relativizing reductions, which allow the circuit computing the
AIOWF to also use I gates: it is not at all obvious how or even if I can invert
circuits that contain I gates. This distinction is not merely cosmetic: in particular,
the Ostrovsky-Wigderson theorem (Theorem 2.4.4) is not fully black-box but it is
relativizing (see Section 4.2.1 for a discussion of this distinction). Later we will
combine Theorem 2.4.4 with Theorem 3.3.1 to conclude that there is an oracle that
separates hardness of learning and ZK ̸= BPP (see Theorem 4.2.1). For this purpose,
it is essential that we rule out relativizing reductions and not just fully black-box
reductions. This requires a more powerful oracle, which we describe now.
Definition 3.3.2. A language L is in PSPACER∗ if there exists a pair (M1,M2)
where M1 is a polynomial-time Turing machine and M2 is a polynomial-space oracle
Turing machine such that x ∈ L if and only if M1(x) outputs z1, . . . , zm ∈ {0, 1}∗ and
M2(x) using only oracle gates Rz1 , . . . ,Rzm outputs 1.

There is a natural complete language QBFR∗ for this class. QBFR∗ is the language of
satisfiable QBF where the final propositional formula is allowed Rz = R(n)(z, ·) gates,
but only for fixed z (for example, “∃z,Rz(x)” is not a valid formula for QBFR∗). It

29

follows immediately from the proof that QBF is complete for PSPACE that QBFR∗
is complete for PSPACER∗ (see Proposition A.1.1 for a proof).
Our separating oracle will decide QBFR∗ .
Definition 3.3.3. O is drawn from the following the distribution. First, for each n
select a function R(n) : {0, 1}n × {0, 1}n → {0, 1} by letting each z ∈ {0, 1}n be a
hard instance with probability 2−n/2, where we set Rz = R(n)(z, ·) to be a random
function, and letting z be an easy instance with probability 1− 2−n/2, where Rz ≡ 0.
Let O decide QBFR∗ , which is PSPACER∗ -complete.

Learning is still hard relative to O: even with access to O, the learner can only “see”
Rz for polynomially many z because a QBFR∗ formula can only contain Rz gates for
fixed z, and so can contain Rz gates for at most polynomially many z. Since O does
not help the learner find additional hard instances, the hard instances Rz that remain
hidden also remain random-looking, and therefore hard to learn.
On the other hand, we can use O to build an inverter that inverts any AIOWF.
Given any f as a circuit with O gates, we show that it is possible to use O to find
“heavy queries”, i.e. z such that the computation of f(x) queries Rz with probability
≥ 1/poly(n) over the choice of random x. Notice this means there can be at most
poly(n) many heavy z. We show that if f only ever queried O on either easy or heavy
z, then one can efficiently invert f using oracle queries only for the poly(n) heavy
instances. Of course f may actually query O on “bad z” that are hard and yet not
heavy, but we show that on a typical y = f(x) where x is chosen at random, the
computation of f(x) is unlikely to call O on any bad z. Our inverter finds the heavy
queries and then inverts pretending that f only calls O on good z, and we prove that
this inverter succeeds with noticeable probability over random y = f(x).
Theorem 3.3.1 follows immediately from the following even stronger statement.
Theorem 3.3.4. With probability 1 over the choice of oracle O as in Definition 3.3.3,
testing PAC (1−ε

2
)-consistency for F = {Rz}z∈{0,1}∗ over the uniform distribution and

with membership queries is hard for any ε ≥ 1/2log2 n, but no AIOWF against uniform
inverters exists.

Proof. The theorem immediately follows from the following two lemmas, which we
prove in the next two subsections.
Lemma 3.3.5. With probability 1 over the choice of O, testing PAC (1−ε

2
)-consistency

for the concept class F = {Rz}z∈{0,1}∗ over the uniform distribution with membership
queries is hard even if the tester has access to O.
Lemma 3.3.6. There is an efficient oracle algorithm I(·) that, with probability 1 over
choice of O as in Definition 3.3.3, given any function f : {0, 1}n → {0, 1}m described
as a circuit of size s with O gates, satisfies:

Pr
x←R{0,1}n

[IO(fO, y) ∈ (fO)−1(y) | fO(x) = y] > 1/2

30

Since testing PAC consistency is harder than PAC learning (Proposition 3.1.3), it
follows that:

Corollary 3.3.7. With probability 1 over the choice of oracle O, PAC learning F =
{Rz}z∈{0,1}∗ over the uniform distribution and with membership queries is hard, but
no AIOWF against uniform inverters exists.

In fact, this argument already rules out a more general class of proofs, namely ∀∃-
construction-black-box reductions. We defer this discussion to Section 3.3.3.

3.3.1 Testing consistency is hard relative to O

Proof of Lemma 3.3.5. To prove this lemma, we show that any oracle circuit CO has
probability 2−2Ω(n) of correctly testing PAC learnability for all functions on inputs
of length n satisfying the YES or NO conditions. The proof follows from a case
analysis: first we show that if given examples drawn from Rz the testing algorithm
queries z with low probability, then with overwhelming probability CO will classify
some functions incorrectly. Then, we show that it is extremely unlikely that CO can
query z with noticeable probability, because the function Rz is random and therefore
the labeled examples that CO sees contain no information about z.
Fix n and any oracle learning circuit C(·) of size s(n) = poly(n), and let p(n) = poly(n)
be an upper bound on the number of labeled examples that C(·) sees. Define

S(Rz) = {(x1,Rz(x1)), . . . , (xp(n),Rz(xp(n)))}

where the xi ←R Un. Let CO(S(Rz)) = hO be the hypothesis that CO outputs given
labeled examples S(Rz). Define

F ε,O
far = {ϕ : {0, 1}n → {0, 1} | err((Un, ϕ(Un), SIZEO(nlog n)) > ε}

i.e. the class of all functions that are far from being efficiently computable (even if
circuits are allowed O gates). We write simply F ε

far when the oracle O is clear from
context.
Claim 3.3.8. For ε = 2− log2 n.

Pr
O

 ∧
z∈{0,1}n

{
CO accepts Rz w.h.p.

}
∧

∧
ϕ∈Fε,O

far

{
CO rejects ϕ w.h.p.

} ≤ 2−2Ω(n)

This claim implies the lemma, since taking a union bound over all 2O(s log(s)) circuits
of size s(n) = poly(n) shows that the probability of there existing any circuit that

31

correctly tests consistency is still 2−2Ω(n) . By the Borel-Cantelli lemma, this means
that with probability 1, no family of circuits tests PAC ε-consistency for F on infinitely
many input lengths.
We now prove this claim. Define the following terminology. We say that CO queries
Rz if it asks O a formula φ that contains a Rz gate. Explaining the approach of
the proof in some more detail, first we will show that the probability CO correctly
tests PAC ε-consistency without querying Rz is small because the functions Rz look
random. Therefore, if CO were to accept many Rz without querying z, then it is
accepting a random-looking function. But this means it will most likely also accept
many random-looking functions, and some of these functions will not be efficiently
computable with O gates, which means it makes a mistake and accepts a function that
is far from being efficiently computable. Second, we will show that the probability
that CO queries z given only p(n) queries to the oracle is small because the output
of Rz contains essentially no information about z itself. Define the following events:

• Gε: event over the choice of O that CO correctly tests PAC ε-consistency of F .

• Az: event over the choice of O that PrS(Rz)[C
O(S(Rz)) accepts Rz] ≥ 1− 2−n.

• Bz: event over the choice of O that PrS(Rz)[C
O(S(Rz)) queries Rz)] > 1/2

Notice that for all z, Az ⊆ Gε. We develop the LHS of Claim 3.3.8

Pr
O

[Gε] = Pr
O

Gε ∧
∧

z∈{0,1}n
Az

 (3.3.1)

≤ Pr
O

[
Gε ∧

∧
z hard

Az

]
(3.3.2)

≤ Pr
O

[
Gε ∧

∧
z hard

(Az ∨Bz)

]
(3.3.3)

≤ Pr
O

[
Gε ∧

{
∃z hard s.t. Az ∧Bz

}]
+ Pr
O

[∧
z hard

Bz

]
(3.3.4)

This formalizes our above intuition, since the first term is the probability that CO
tests PAC ε-consistency for F correctly given that for some z ∈ {0, 1}n, CO accepts
Rz without querying z, and the second term is the probability that CO(S(Rz)) queries
Rz with noticeable probability on every the hard z.
Bounding the first term of Inequality 3.3.4. By taking a union bound, it suffices
to bound ∑

z hard
Pr
O

[Gε ∧ Az ∧Bz] =
∑

z hard
ER′ Pr

Rz

[Gε ∧ Az ∧Bz | R′] (3.3.5)

32

where R′ is a fixing of the entire oracle R except for the function Rz, which remains
random.
For any function f : {0, 1}n → {0, 1}, let Of denote the oracle O as defined in
Definition 3.3.3 except with the oracle R fixed as follows: Rz = f and Rz′ = R′z′ for
all z′ ̸= z. To bound Inequality 3.3.5, we prove the following:
Lemma 3.3.9. For any oracle Of parameterized by a function f : {0, 1}n → {0, 1},
if Gε ∧ Az ∧Bz holds for the oracle Of , then

Pr
ϕ

[Gε ∧ Az ∧Bz holds for Oϕ] ≤ 2−2Ω(n)

where ϕ is a random function chosen from all functions mapping {0, 1}n → {0, 1}.

First we assume this lemma to conclude the bound on the first term of Inequality 3.3.4.
Suppose PrRz [G

ε ∧ Az ∧Bz | R′] is non-zero (otherwise we are done), and let f be a
function such that Of satisfies Gε ∧ Az ∧Bz. Then applying Lemma 3.3.9 says that

Pr
Rz

[Gε ∧ Az ∧Bz | R′] ≤ 2−2Ω(n)

and thus bounds first term of Inequality 3.3.4 by 2−2Ω(n) .

Proof of Lemma 3.3.9. By hypothesis, Of satisfies:

1. Az holds, so PrS(Rz)[C
Of (S(Rz)) accepts f] > 1− 2−n.

2. Bz holds, so PrS(Rz)[C
Of (S(Rz)) queries z] ≤ 1/2.

3. Gε holds, so for all ϕ ∈ F ε,Of

far , PrS(Rz)[C
Of (S(Rz)) accepts ϕ] ≤ 2−n.

The high-level argument is as follows: first, a random function ϕ is unlikely to be
close to any efficiently computable function. Next, because we want Bz to hold, the
circuit C fails to distinguish between Of and Oϕ with probability roughly 1/2. But
COf is supposed to reject ϕ while COϕ is supposed to accept ϕ, and therefore this is
a contradiction.
More formally, the number of oracle circuits of size nlog log n is bounded by

|SIZEOf (nlog log n)| ≤ 2O(nlog log n log log n log n) = 22o(n) (3.3.6)

For any function ϕ, a Chernoff bound tells us that the number of functions close to
ϕ, i.e. functions ψ satisfying err((Un, ϕ(Un)), ψ) ≤ ε, is at most 22n−ε22n/8. Therefore,
combined with Inequality 3.3.6, this implies that

|F ε,Of

far |
22n ≥ 1− |SIZEOf (nlog log n)| · 2−ε22n/8 = 1− 2−2Ω(n) (3.3.7)

where the last estimate follows from our choice of ε = 2− log2 n. This implies that the
probability that a random function lands in F ε,Of

far is at least 1− 2−2Ω(n) .

33

Claim 3.3.10. ∀ϕ ∈ F ε,Of

far the event Gε ∧ Az ∧Bz does not hold for the oracle Oϕ.

Suppose for the sake of contradiction that it did hold: Az means that COϕ accepts ϕ
with probability at least 1− 2−n and Bz means that COϕ queries z with probability
at most 1/2 over the choice of examples. Unless C queries z, the two oracles Of and
Oϕ are identical, therefore COf also accepts ϕ with probability > 1/2− 2−n. But ϕ is
a NO instance for the oracle Of because ϕ ∈ F ε,Of

far , so COf should reject ϕ ∈ F ε,Of

far
with probability 1− 2−n. This is a contradiction, therefore Gε ∧Az ∧Bz never holds
for Oϕ for any ϕ ∈ F ε,Of

far .
Finally, combining Inequality 3.3.7 with Claim 3.3.10, we conclude that over the
random choice of Rz the event Gε ∧ Az ∧Bz does not hold, namely

Pr
ϕ

[Gε ∧ Az ∧Bz holds for Of] ≤ 2−2Ω(n)

Bounding the second term of Inequality 3.3.4. We will show that if the learner
C can query Rz with noticeable probability given a random set of labeled examples
S(Rz), it can be used to “invert” R in the following sense: view R as a function
{0, 1}n → {0, 1}2n where each input z is mapped to the truth table of Rz. We say
that a (computationally unbounded) procedure AR inverts R using q queries if for
every y in the image of R, we have AR(y) = R−1(y) (R is almost surely injective so
we assume it to be the case) and A makes at most q queries to R.
To apply this to our setting, we will show that if CO(S(Rz)) is able to query Rz with
probability ≥ 1/2 over S(Rz), then it can be used to build an inverter for R making
only O(p(n)n) queries. Then we show that with high probability this is impossible.
Lemma 3.3.11. For every oracle circuit CO, there exists a procedure AR such that

Pr
R

[∧
z hard

Bz

]
(1− 2−n) ≤ Pr

R
[AR inverts R using O(p(n)n) queries]

Proof. We first describe a randomized procedure A′ for inverting R. A′ is defined
using the learning circuit C as follows: on every non-zero input y ∈ {0, 1}2n which is
the truth table of some function, emulate C O(n) times using independent random-
ness, answering C’s queries to the example oracle and membership oracle using y as
the truth table of the hidden labeling function. To answer queries φ that C makes
to O, let Z be the set of z such that Rz appears in φ. For each z ∈ Z of length n,
A′ will query R to get the truth table Rz. Furthermore, A′ checks whether Rz = y,
and if so it halts and outputs z. For every z′ ∈ Z where |z′| = n′ ̸= n, A′ uses
independent coin tosses to set Rz′ ≡ 02n′

with probability 1− 2−n′/2, and Rz′ to be a
random function mapping {0, 1}n′ → {0, 1} with probability 2−n′/2. Then A′ decides
the QBF formula φ using these truth tables (A′ can do this since it is unbounded). All

34

these independent runs together query the oracle at most O(p(n)n) times. Because
Bz holds for every z, i.e. for each z, when trying to learn Rz the circuit C queries Rz

with probability at least 1/2, this means with probability 1− (1/2)O(n) ≥ 1− 2−2n at
least one of the emulations will query z = R−1(y), and so A′ will find z. Now take a
union bound over all possible non-zero inputs y = Rz of which there are at most 2n,
still with probability 1− 2−n the random bits used are simultaneously good for all y.
This means for any R where

∧
z hard Bz holds, A′ inverts R with probability 1− 2−n.

This implies

EA′,R|
V

z hard Bz Pr[A′ inverts R using O(p(n)n) queries] ≥ 1− 2−n

By averaging, this means there exists a fixing of the random coins of A′ (call A′ with
these fixed coins A) such that for a 1− 2−n fraction of the R where

∧
z hard Bz holds,

A inverts R. The lemma follows.

The following lemma concludes the proof of the bound on the second term of Inequal-
ity 3.3.4.

Lemma 3.3.12. For any AR, PrR[AR inverts R using O(p(n)n) queries] ≤ 2−2Ω(n)

Proof. The proof is a straightforward generalization of Gennaro and Trevisan’s proof
[GT00] that a random permutation is hard to invert for circuits, extended to the case
where the function is not a permutation but is still injective. The idea is that given
A, any function that A can invert can be “succinctly described”, and therefore there
cannot be too many of them.
Fix any oracle procedure AR making at most O(p(n)n) to R. Let N = |{x | R(x)←R

U2n}| denote the number of hard outputs of R; by Chernoff the probability that
N /∈ [2n/2−1, 2n/2+1] is bounded by 2−Ω(2n/2), so in the following we condition on this
event not happening:

Pr
R

[A inverts R] ≤ 2−Ω(2n/2) + EN∈[2n/2−1,2n/2+1]

[
Pr
R

[A inverts R | N hard outputs]
]

We will further throw out the oracles R that are not injective (this occurs with
probability at most ≤

(
N
2

)
2−2n). We call R where neither of these conditions hold

“good”. Therefore our bound is now:

Pr
R

[A inverts R] ≤ 2−2Ω(n)

+ EN∈[2n/2−1,2n/2+1]

[
Pr
R good

[A inverts R | N hard outputs]
]

Notice that with this conditioning, R is uniform in the set of good R.
To bound the probability on the RHS, we show that A is only capable of inverting
very few functions. Here, we follow the argument of [GT00] proving that one-way
permutations are hard against circuits.

35

We give a procedure for describing all possible injective functions R with N hard
outputs as follows: we will keep track of a set Y ⊆ {0, 1}2n of “easily describable
outputs” y for which we will be able to compute the preimage x = R−1(y) with very
little information using A. For the “hard-to-describe outputs” outside Y we will just
explicitly record the function. We show that this is sufficient for reconstructing any
R that A is able to invert. We then prove that the number of functions describable
this way is small compared to all possible functions, which gives us the desired bound.
For a fixed R, define Y constructively as follows. Initialize Y = ∅ and the set
T ⊆ {0, 1}2n to be the image of the hard instances of R, namely t ∈ T iff t = R(z)
for some hard instance z. Since we are conditioning on good R, we have that initially
|T | = N .
Repeatedly perform the following until T is empty: remove the lexicographically first
element t ∈ T and add it to Y . Execute AR(t) and record the queries x1, . . . , xm (in
the order that A makes them) that A makes to R, where m = O(p(n)n). If none
of the xi satisfy R(xi) = t, then remove all of the x1, . . . , xm from T . If some xi

satisfies R(xi) = y, then remove x1, . . . , xi−1 from T . Repeat by removing the next
lexicographically first element of T , adding it to Y , etc.
Clearly we have that |Y | ≥ N/m. We claim that given the set of hard instances
Z = R−1(T) ⊆ {0, 1}n (which is of size N), the set Y , the preimage of Y which we
call X = R−1(Y) ⊆ Z, and the explicit values of R on all inputs x ∈ Z \X, we can
completely reconstructR as follows. For each x /∈ Z, R(x) = 02n . For each x ∈ Z\X,
output the explicitly recorded value. It only remains to match the elements of Y with
their correct preimage in X. For each y ∈ Y in lexicographic order, run AR(y). The
queries AR(y) makes to R will all either be for x /∈ X in which case we know the
answer explicitly, for x ∈ X such that R(x) is lexicographically smaller than y and so
we already computed the answer previously, or for some x ∈ X we have not seen in
a previous computation, which by construction must mean x = R−1(y). Either way,
we obtain the value R−1(y).
The number of functions describable in this way is exactly

(
2n

N

)(
N

|Y |

)(
22n

|Y |

)
· (2

2n − |Y |)!
(22n −N)!

where the first factor is the number of ways of choosing N hard instances, the second
is the choice of X, the third is the choice of Y , and the final is the number of ways of
explicitly defining the function on Z \X assuming the function is injective. Therefore,
the probability over R that A inverts R is exactly the above quantity divided by the

36

total number of good R, namely
(
2n

N

) (22n
)!

(22n−N)!
. So we can calculate that:

Pr
R injective

[A inverts R everywhere | N hard instances] ≤
(
2n

N

)(
N
|Y |

)(
22n

|Y |

)
· (22n−|Y |)!

(22n−N)!(
2n

N

)
(22n

)!

(22n−N)!

(3.3.8)

=

(
N
|Y |

)
|Y |!

(3.3.9)

≤
(
N3e

|Y |2

)|Y |
(3.3.10)

which is 2−2Ω(n) for N ≤ 2n/2+1 and |Y | > N/m = 2(1−o(1))n/2.

This concludes the proof of Lemma 3.3.5.

3.3.2 AIOWF do not exist relative to O

Proof of Lemma 3.3.6. The inverter I works as follows: it finds all the z such that
fO(x) queries Rz with noticeable probability over choice of random input x; call this
set H the “heavy” queries. We show that by finding H, I knows most of the hard
instances z such that fO queries Rz. Let O′ be the oracle defined exactly as O except
that all queries to Rz′ for instances z′ /∈ H are answered with 0. With knowledge of
H and access to O the inverter I can simulate a O′ oracle. It follows from standard
results (for example Proposition A.1.2) that because |H| = poly(n), the O′ oracle can
be used to invert O′ computations.
We could try to use this to invert fO, but the computation of fO(x) may query hard
instances outside H, and so fO(x) ̸= fO

′
(x) for some x. However, we argue that,

by the definition of heavy and because hard instances are scattered at random, the
probability over a random x that the computation fO(x) queries a hard instance
outside H cannot be too high. Therefore, the distributions (x, fO(x)) and (x, fO

′
(x))

for x←R Un are statistically close, and so the inverter using O′ to invert fO′ can also
invert fO with almost as good probability. That is, if I inverts y pretending that it
is the output of fO′ , then with high probability over random y the inverter produces
x ∈ (fO)−1(y).
We proceed now formally. We describe and analyze an algorithm I that with proba-
bility 2−s over the choice of oracle, inverts all f of computable by a circuit of size s.
This proves the lemma, since by the Borel-Cantelli lemma this means IO inverts all
except finitely many circuits with probability 1 over O.
Let f be any function computable by an circuit CO with O gates of size s, where
f takes inputs of length n. Let g1, . . . , gs be the oracle gates of CO in topologically

37

sorted order. Let D be the (efficient) circuit taking inputs φ a QBFR∗ formula and
z ∈ {0, 1}∗ and outputting 1 if φ contains a Rz gate, and outputs 0 otherwise.
Set the heaviness threshold to be α = 100s8. In sorted order, I finds all z such that
CO(Un) queries O with a formula containing a Rz gate with probability larger than
1/α using the following procedure.
First, I initializes the set Z0 = {z | |z| ≤ 8 log s}. Then, to construct Zi, the set of
heavy queries up till the i’th query, using Zi−1, I does the following. Let the circuit
Q′i be the sub-circuit of C that computes queries for gi. We transform Q′i into a
related circuit Qi by replacing each oracle gate gj, j < i that appears in Q′i (these
are the only oracle gates that gi depends on since we work in sorted order) with the
following modification: on input φ, replace each Rz gate inside φ where z /∈ Zj by
a constant 0 gate, and then call O with this modified formula. This transformation
forces all the hard instances that φ queries to be in Zj.
Note that Qi(x) = φ is exactly saying that C(x) queries φ at gi, conditioned on
each previous oracle gate gj only being queried on heavy instances (z ∈ Zj) or
easy instances (Rz ≡ 0). Since Qi only makes oracle queries containing Rz gates
for z ∈ Zi−1, this means Qi is computable using only a PSPACER′

i−1 oracle (i.e.
it does not need a PSPACER∗ oracle), where R′i−1(z, x) = R(z, x) for z ∈ Zi−1

and is zero otherwise. Since I knows Zi−1, it can simulate a PSPACER′
i−1 oracle.

PSPACE oracles are able to compute the probabilities in the output distribution
of PSPACE computations and this relativizes, for example as stated in Proposi-
tion A.1.3. We invoke the algorithm given by this proposition on input (Qi, D, 1

α) to
get {z | Pr[Qi(x) = φ ∧D(φ, z) = 1] > 1/α}, which we add to Zi−1 to obtain Zi.
Proposition A.1.3 guarantees Zs is the collection of all z such that there exists i such
that Qi queries z with probability > 1/α over the choice of random input x. This set
Zs is our set of heavy elements.
We now show that with high probability over O, if I knows Zs then it knows most
of the hard instances that fO might have queried, and so it can invert fO almost
everywhere. Formally, let B(x) be the bad event that fO(x) queries some hard z
outside Zs.

Claim 3.3.13.

Pr
R

[
Pr

x←RUn

[B(x)] > 1
s

]
≤ 2−s2

First we use this claim to prove the lemma: by a union bound over all f computable
by size s circuits, of which there are at most 2O(s log s), this means that for a 1 −
2−s2+O(s log s) ≥ 1− 2−s fraction of the R that with probability 1− 1/s over x, fO(x)
never queries hard z /∈ Zs. But in this case we can give f oracle access to PSPACER′

s

instead of O and get the same output, whereR′s is justR′i as defined above with i = s.
This implies ∆

(
(x, fO(x)), (x, fPSPACER′

s (x))
)
≤ 1/s.

38

Furthermore, PSPACE oracle can invert PSPACE computations and this rela-
tivizes, for example in Proposition A.1.2. (Note that this does not imply that
PSPACER∗ can invert PSPACER∗ because the polynomial-space machine in the
definition of PSPACER∗ does not have unhindered access to its oracle.)
I knows Zs so it can use Zs and O to simulate PSPACER′

s , so it can use Proposi-
tion A.1.2 to compute uniformly random preimages of fPSPACER′

s with failure prob-
ability 2−m, giving us

∆
(
(x, fPSPACER′

s
(x)), (IO(y), y | y = fPSPACER′

s
(x))

)
≤ 2−m

Putting these together by the triangle inequality, we have

∆((x, fO(x)), (IO(y), y | y = fO(x))) ≤ 2/s+ 2−m

which proves the lemma modulo Claim 3.3.13. In fact, we prove something much
better: IO actually gives an almost uniformly random preimage of y.
It remains to prove Claim 3.3.13. Define inductively Bi(x) as the event that fO(x)
queries a hard z /∈ Zi in the i’th query but all prior queries j are either easy or in Zj.
Since Zi ⊆ Zi+1, we have that B(x) ⊆

∪s
i=1Bi(x). By averaging:

Pr
R

[
Pr
x

[B(x)] > 1
s

]
≤ Pr
R

[
Pr
x

[
s∪

i=1

Bi(x)

]
> 1

s

]
≤ Pr
R

[
∃i, Pr

x
[Bi(x)] >

1
s2

]
≤

s∑
i=1

Pr
R

[
Pr
x

[Bi(x)] >
1
s2

]
We claim that for each i, PrR[Prx[Bi(x)] > 1/s2] ≤ 2−2s2 , which we prove using a
case analysis. Showing this concludes the proof of the lemma since s2−2s2 ≤ 2−s2 .
The case analysis roughly goes as follows: either the probability that fO makes a light
i’th query (i.e. a query not in Zi) is small, in which case the probability it makes a
light and hard query is also small, or the probability that fO makes a light i’th query
is large, in which case there are many distinct light queries, and since each light query
is hard independently with probability ≤ 1/s4, we can show that it is unlikely over
the choice of oracle that a 1/s2 fraction of these light queries are hard.
Formally, let NotInZi(x) be the event that fO’s i’th query is not in Zi conditioned on
all queries j < i being either in Zj or easy. (The only difference between NotInZi and
Bi is that in Bi we also demand the i’th query be hard.) We have that

Pr
R

[Pr
x

[Bi(x)] > 1/s2] = Pr
R

[{
Pr
x

[Bi(x)] > 1/s2
}
∧

{
Pr
x

[NotInZi(x)] ≥ 1/s2
}]

+ Pr
R

[{
Pr
x

[Bi(x)] > 1/s2
}
∧

{
Pr
x

[NotInZi(x)] < 1/s2
}]

39

Clearly the second term is 0 because Bi(x) ⊆ NotInZi(x).
To bound the first term, we inductively fix R up until the i’th query as follows: let
R0 be a fixing of all Rz with z ∈ Z0. Let Zi be the set of heavy queries conditioned
on Ri−1 and the event that fO(x)’s first i− 1 queries are either easy or in Zi−1, and
let Ri be a fixing of Rz with z ∈ Zi conditioned on Ri−1. Thus, we can write:

Pr
R

[{
Pr
x

[Bi(x)] > 1/s2
}
∧

{
Pr
x

[NotInZi(x)] ≥ 1/s2
}]

= ERi−1
Pr
R

[{
Pr
x

[Bi(x)] > 1/s2
}
∧

{
Pr
x

[NotInZi(x)] ≥ 1/s2
}
| Ri−1

]
≤ ERi−1

Pr
R

[{
Pr
x

[Bi(x) | NotInZi(x)] > 1/s2
}
|
{

Pr
x

[NotInZi(x)] ≥ 1/s2
}
∧Ri−1

]
where in the last line we used the fact that Bi(x) ⊆ NotInZi(x). For each such
fixing of Ri−1, since the probability that the i’th query is light is at least 1/s2, the
probability that a specific light z is asked as the i’th query conditioned on NotInZi(x)
is at most s2/α = 1/(100s6). Each i’th query is hard independently with probability
at most 1/s4 over the choice of oracle (because Z0 contains all queries of length up
to 8 log s, the oracle is random only on longer inputs). If each light query were asked
with probability exactly 1/(100s6) then we could apply a Chernoff bound, which says
that the probability that more than 1/s2 of the light queries are hard given that each
light query is hard with probability 1/s4 is at most 2−100s6/(4s4)) ≤ 2−2s2 . By a simple
generalization of the Chernoff bound stated in Lemma A.2.1, we can show that the
same bound holds even though we are guaranteed that each light query is asked with
probability at most 1/(100s6), so this concludes the proof of the lemma.

3.3.3 ∀∃-construction-black-box reductions

As we defined in Definition 1.3.3, one can consider a broader notion of reducibility
called ∀∃-construction-black-box reductions. The proof of Theorem 3.3.1 actually is
strong enough to rule out such reductions as well.
Theorem 3.3.14. There exists no ∀∃-construction-black-box reduction such that,
given a concept class F such that testing PAC consistency of F over the uniform
distribution with a membership oracle is hard, constructs AIOWF.

Proof. The proof of Theorem 3.3.1 in fact already rules out ∀∃-construction-black-
box reductions. To rule out relativizing reductions that uses a primitive P to build a
primitive Q, it sufficed to construct an oracle relative to which P exists but Q does
not. This is what we did in the proof of Theorem 3.3.1: we showed that relative to the
oracle O that decides QBFR∗ , it is hard to test PAC consistency of F = {Rz}z∈{0,1}n

over the uniform distribution with a membership oracle, but AIOWF do not exist.
To rule out ∀∃ construction-black-box reductions, we must exhibit a concept class
(given as an oracle) for which testing PAC consistency is hard, such that no mat-
ter how one tries to build an AIOWF using this concept class, there is an efficient

40

adversary (also given the same concept class as an oracle) that inverts the AIOWF.
We cannot use simply F = {Rz}z∈{0,1}n because oracle access to F is not sufficient
to invert AIOWF. However, observe that it is also hard to test PAC consistency of
the class of functions computable by QBFR∗ formulas (since in particular it contains
{Rz}), and these functions are efficiently computable given the oracle O. Also, access
to a QBFR∗ oracle is sufficient to invert AIOWF. This implies the theorem.

3.4 CircCons and CircLearn: efficient example oracles
The PAC model gives only oracle access to the distribution of labeled examples. In
particular, the learning algorithm has no idea how the distribution is generated, and
it is conceivable that the distribution is not even efficiently samplable. In order to
better highlight this distinction, which will be useful later on, we formalize here the
problem of learning when the distribution of labeled examples is efficiently samplable,
and where the learning algorithm gets to see the circuit that samples this distribution.
We emphasize that this problem is not trivial: just because the learning algorithm
can see the circuit C that generates the distribution (X, Y), it only knows how to
sample (X,Y) together and does not necessarily know how to efficiently compute the
label Y given just X as input. In fact in general C may sample a distribution where
X,Y are independent and such a labeling does not exist.
Definition 3.4.1 (CircConsF

α,β). (α, β)-circuit consistency for F , denoted CircConsF
α,β,

is a promise problem where an input is a circuit C of size s sampling a joint distri-
bution (X, Y) where X is over {0, 1}n and Y is over {0, 1} and n >

√
s.

• YES instance: err((X, Y), F) < α

• NO instance: err((X,Y), SIZE(nlog log n)) > β

The condition n >
√
s is simply to assure that n is polynomially related to s and can

replaced with the condition n > sε for any ε > 0 without qualitatively affecting any
of our results.
We say that CircCons is hard if there exist any 0 ≤ α < β ≤ 1 satisfying β − α ≥
1/poly(n) such that CircConsSIZE(n2)

α,β /∈ BPP.

Definition 3.4.2. A procedureA circuit-learns a concept class F , orA solves CircLearnF
ε ,

if on input circuit C of size s computing a distribution (X, Y) over {0, 1}n+1 where
n >
√
s and an accuracy parameter ε, A outputs a hypothesis h such that

err((X,Y), h) ≤ err((X, Y), F) + ε

As with CircCons (Definition 3.4.1), the condition n >
√
s is simply to assure that n

is polynomially related to s and can replaced with the condition n > sε for any ε > 0
without qualitatively affecting any of our results.

41

We say that CircLearnF is hard against uniform (resp. non-uniform) algorithms if
there exists some ε = 1/poly(n) such that no uniform (resp. non-uniform) A running
in time poly(n) solves CircLearnF

ε . We say that CircLearn is hard if CircLearnSIZE(n2) is
hard.
The following propositions follows easily from the definitions:

Proposition 3.4.3. If CircCons0,β is hard for any β ≥ 1/poly(n) then testing PAC
consistency is hard.

Proposition 3.4.4. If CircCons is hard, then CircLearn is hard.

3.5 CircLearn and AIOWF

In Section 3.3 and Section 3.3.3, we showed that a wide class of techniques cannot
prove that the ability to invert AIOWF implies the ability to test PAC consistency.
The main observation we used was that in testing PAC consistency the tester only
gets to observe the labeled examples and does not know how they were generated. It
turns out that by changing the model so that the tester knows how the examples are
generated (namely, looking at the problem CircCons or CircLearn instead of testing
PAC consistency or standard PAC learning), we can prove that that the ability to
invert AIOWF implies the ability to solve say CircLearn.
Given a circuit C sampling a distribution (X, Y), let C1 be the subcircuit of C that
outputs only the first n bits of the output of C (corresponding to X), and let C2

be the subcircuit that outputs the last bit of C (corresponding to Y). Intuitively,
the following lemma says that there is an efficient algorithm that, given input C and
access to an inverter I for C1, constructs a hypothesis h that labels (X, Y) almost as
good as information-theoretically possible.

Lemma 3.5.1 (Agnostically learning circuits). There exists an algorithm A that takes
input C a circuit of size s sampling a distribution (X,Y), an accuracy parameter ε,
and oracle access to I satisfying the following. Suppose I distributionally inverts C1,
namely

∆((r, C1(r)), (I(x), x | x = C1(r))) ≤ O(ε6/s) (3.5.1)

where r is uniformly random. Then A outputs with probability 1− 2−s a hypothesis h
that uses oracle access to I such that

err((X,Y), h) ≤ err((X, Y),Fall) + ε

where Fall is the set of all (possibly inefficient) functions. Furthermore, both A and
h make at most poly(s/ε) non-adaptive queries to I and run in time poly(s/ε).

42

Proof of Lemma 3.5.1. Consider the function g(x) = b where Pr[b = Y | X = x] ≥
1/2 (breaking any ties arbitrarily). Define the certainty cert(x) = Pr[g(x) = Y |
X = x] (for example, cert(x) = 1 if the x completely determines Y , and cert(x) = 1/2
if Y is completely random given x). The function g maximizes agreement with (X, Y)
because for any function f and any x, we have that

Pr[f(x) ̸= Y | X = x] ≥ 1− cert(x) = Pr[g(x) ̸= Y | X = x]

and so therefore for all f ∈ Fall,
err((X, Y), f) = Pr[f(X) ̸= Y]

= Ex←RX Pr[f(x) ̸= Y | X = x]

≥ Ex(1− cert(x)) = Pr[g(X) ̸= Y]

= err((X,Y), g)

Thus, we call g the optimal labeling since it satisfies err((X,Y), g) = err((X,Y),Fall),
and our goal will be to show that if AIOWF do not exist, then we can label efficiently
as well as g does plus some additional error ε.
We start by exhibiting a randomized hypothesis that performs well, and then show
it can be derandomized.
Randomized hypothesis: let h(ω, x) be the randomized hypothesis that takes
random bits ω = (ω1, . . . , ωm) where m = Θ(s/ε4) and each ωi can be used to run
the inverter I. On input x, h does the following:

1. Obtain ri = I(x;ωi) with accuracy parameter ε2

2m
= O(ε6

s
) for i = 1 to m, each

time using independent coins ωi.

2. Compute yi = Y (ri) for all the i.

3. Output Majority(y1, . . . , ym).

Clearly h runs in time poly(s/ε) as long as I also does.
Analyzing randomized hypothesis: to analyze h, we first show that an “ideal”
hypothesis would do well and then show that h is close to being ideal. An ideal
hypothesis h0 is defined as h, except that it calls an ideal inverter I0, which satisfies:

(r, C1(r)) = (I0(x), x | x = C1(r)) (3.5.2)
where the randomness is over uniform r and the internal randomness of I0. That
is, the ideal inverter I0 computes exactly the conditional distribution on preimages r
given an output x = C1(r). In particular, this means that for every x and for every
yi that h0 generates, it holds that PrI0 [g(x) = yi | yi = Y (I0(x))] = cert(x). We claim
that the majority of the yi is rarely wrong, namely for every x in the support of X,

Pr
h0

[h0(x) = Majority(y1, . . . , ym) ̸= Y | X = x] ≤ max
b∈{0,1}

Pr[b = Y | X = x] + ε2/2

(3.5.3)
We prove Inequality 3.5.3 by a case analysis:

43

1. cert(x) > 1
2
+ε2/4: in this case the function g(x) clearly gives the “right answer”

so we want to show that h0(x) = g(x) with high probability. Let Zi denote
the random variable that is 1 if g(x) = yi and 0 otherwise. By definition,
Pr[Zi = 1] = Pr[g(x) = yi] = cert(x) and therefore

Pr[h0(x) = Majority(y1, . . . , yi) ̸= g(x)] = Pr
[

1
m

m∑
i=1

Zi <
1
2

]
≤ 2−ε4m/32

where the last inequality follows from a Chernoff bound. Since m = Θ(s/ε4),
this means that Pr[h0(x) ̸= g(x)] ≤ 2−s. Finally, we obtain:

Pr[h0(x) ̸= Y | X = x] ≤ Pr[g(x) ̸= Y | X = x]

+ Pr[h0(x) ̸= g(x)] Pr[g(x) = Y | X = x]

≤ max
b∈{0,1}

Pr[b ̸= Y | X = x] + 2−s

where the last line holds because g(x) = b the bit minimizing Pr[b ̸= Y |
X = x].

2. cert(x) ≤ 1
2

+ ε2/4: in this case there is little certainty given x what Y should
be, and even the “optimal” function g is frequently wrong. This means that
although h0 may disagree with g frequently, still it is almost as good, namely
Pr[h0(x) = Y | X = x] ≤ 1

2
+ ε2/4 and for both b ∈ {0, 1}, it holds that

Pr[b = Y | X = x] ≥ 1
2
− ε2/4. Therefore

Pr[h0(x) = Y | X = x] ≤ 1
2

+ ε2/4

≤ max
b∈{0,1}

Pr[b = Y | X = x] + ε2/2

Since Inequality 3.5.3 holds for all x, we clearly have for random X that
Pr
X,Y

[h0(X) ̸= Y] ≤ Pr[g(X) ̸= Y] + ε2/2

Inequality 3.5.1 and Equation 3.5.2 imply that I and I0 behave almost the same:
∆((I(X), X), (I0(X), X)) ≤ ε2

2m

Since the randomized hypothesis h and ideal hypothesis h0 differ only in the fact that
the former calls I while the latter calls I0, and because there are only m calls to the
inverters, we can apply the triangle inequality to see that

∆((X, h0(X)), (X, h(X))) ≤ ε2/2

Since Pr[h0(X) ̸= Y] = ∆((X, Y), (X, h0(X))) (and similarly for h), this implies that
err((X, Y), h) = Pr

h,X,Y
[h(X) ̸= Y] (3.5.4)

≤ Pr[h0(X) ̸= Y] + ε2/2 (3.5.5)
≤ Pr[g(X) ̸= Y] + ε2 (3.5.6)
= err((X,Y),Fall) + ε2 (3.5.7)

44

Deterministic hypothesis: Inequality 3.5.7 proves that h is a good randomized hy-
pothesis. To derandomize pick the random coins ω for h and output the deterministic
hypothesis hω = h(ω, ·). We say that hω is good if Pr[hω(X) ̸= Y] ≤ Pr[g(X) ̸= Y]+ε
and it is bad otherwise. We claim that Prω[hω is bad] ≤ ε, since otherwise

Pr
h,X,Y

[h(X) ̸= Y] = Pr
ω,X,Y

[hω(X) ̸= Y]

= (1− Pr
ω

[hω is bad]) Pr
X,Y

[hω(X) ̸= Y | hω is good]

+ Pr
ω

[hω is bad] Pr
X,Y

[hω(X) ̸= Y | hω is bad]

> (1− Pr
ω

[hω is bad]) Pr
X,Y

[g(X) ̸= Y]

+ Pr
ω

[hω is bad](Pr
X,Y

[g(X) ̸= Y] + ε)

> Pr[g(X) ̸= Y] + ε2

which is a contradiction. Here, in the penultimate inequality we used the fact that g
is optimal, i.e. that PrX,Y [hω(X) ̸= Y] ≥ Pr[g(X) ̸= Y] regardless of whether hω is
good or bad.
Therefore, we have that

Pr
ω

[{
Pr
X,Y

[hω(X) ̸= Y] ≤ Pr
X,Y

[g(X) ̸= Y] + ε

}]
> 1− ε (3.5.8)

Using Proposition 2.2.8 this can be repeated many times in order to increase the
success probability of obtaining a good hypothesis from 1− ε to 1− 2−s.
Finally, observe that the queries h makes are non-adaptive since they are all computed
before seeing any responses from I.

We obtain the following corollary:

Corollary 3.5.2. There is a non-adaptive efficient-oracle reduction that uses an
AIOWF inverter and solves CircLearn.

Proof. One can use non-adaptive access to a AIOWF inverter and construct a AID-
OWF inverter (Theorem 2.3.5, Remark 2.3.9). Therefore, suppose that we have
instead an oracle I such that for every circuit C1 of size s, it holds that

((r, C1(r)), (I(C1, x;ω), x | x = C1(r))) ≤ O(ε6/s)

where r and ω are independent uniform strings. Furthermore, I runs in time poly(s/ε).
Let A be the algorithm given by Lemma 3.5.1. Let A′ perform the following: on
input a circuit C sampling (X, Y), execute A and respond to queries to invert y using

45

random coins ω by computing x = I(C, y;ω). This results with probability 1 − 2−s

in a hypothesis h satisfying

err((X, Y), h) ≤ err((X, Y),Fall) + ε ≤ err((X, Y), SIZE(n2)) + ε

This solves CircLearnSIZE(n2)
ε in time poly(s/ε) and only uses non-adaptive access to

I. It is efficient-oracle because the code of the hypothesis h contains the code of the
inverter I.

Relationship to Universal Extrapolation [IL90]

Lemma 3.5.1 is related in spirit to the work of Impagliazzo and Levin [IL90] on uni-
versal extrapolation. One can interpret their work as similarly computing the label
of an efficiently samplable distribution. The main difference between our setting and
theirs is that we are concerned with the non-uniform setting of distributions sam-
pled by non-uniform circuits, while they studied distributions samplable by efficient
uniform Turing machines.

3.6 Summary
Figure 3.6 depicts the relationships we have established in this chapter. Notice that
several of the implications given by following the arrows multiple hops can also be
proven via trivial reductions; for example the fact that CircLearn is hard implies that
agnostic learning is hard can be proven via the chain of reductions in Figure 3.6, but
it can also be proven trivially since any agnostic learning algorithm can be used to
solve CircLearn by using the sampling circuit given as an instance of CircLearn in order
to generate labeled examples to pass to the agnostic learning algorithm.
The two messages to take away from this chapter are:

1. Learning or even testing consistency in the standard oracle model is “harder”
than inverting AIOWF, at least if one is restricted to standard techniques.

2. Learning or testing consistency when the example oracle is given as a circuit is
“easier” than inverting AIOWF.

Open questions: is the hardness of CircCons or CircLearn equivalent to the existence
of AIOWF? Or can one prove a separation between them?

46

CircCons hard

ONMLHIJKFB
��

CircLearn hard

Corollary 3.5.2ONMLHIJKFB
��

AIOWF exist

Theorem 3.2.1ONMLHIJKFB
��

Testing PAC consistency is hard

ONMLHIJKFB
��

Theorem 3.3.14 GFED@ABC
��ZZ∀∃

OO

PAC learning is hard

ONMLHIJKFB
��

Agnostic learning is hard

ONMLHIJKFB
��

P ̸= NP

Figure 3.1: Relationship of AIOWF and learning

47

48

Chapter 4

Learning and ZK

Zero knowledge proofs were introduced by Goldwasser et al. [GMR85] to intuitively
capture the notion of “learning nothing about a statement except that it is true”.
As defined in Section 2.4, they introduce the notion of simulating the view of the
verifier, and require that for all efficient verifiers, there exists an efficient simulator
such that the “view” generated by the verifier interacting with the prover and the
“view” generated by the simulator are indistinguishable. This naturally implies some
kind of hardness, and one can ask whether or not this hardness suffices to construct
concepts that are hard to learn not in the simulation sense but in the PAC model.
In this chapter we address these questions and show that in some sense non-trivial zero
knowledge proofs are inherently “harder” than hard PAC learning problems in the
standard model. On the other hand, it turns out that hardness of learning problems
in the circuit model (i.e. CircCons, see Definition 3.4.1) are “as hard” as non-trivial
zero knowledge proofs.
This mirrors the situation we saw in the previous chapter: AIOWF are “harder”
than the standard notion of learning, but the circuit notion of learning is just as
hard as AIOWF. Indeed, to connect the learning and zero knowledge, we will use the
Ostrovsky-Wigderson theorem Theorem 2.4.4 and the theorems proven in Chapter 3
regarding the relationship between learning and AIOWF.
This chapter is structured as follows. In Section 4.1 we observe that ZK ̸= BPP
implies that PAC learning is hard using Theorem 3.2.1. In Section 4.2.1 we prove
that basing ZK ̸= BPP on the hardness of learning is unlikely via relativizing proofs.
In Section 4.2.2 and Section 4.2.3 we extend this to show that black-box GMW-style
constructions of zero-knowledge proofs for NP based on hardness of learning are
unlikely to exist. In contrast, in Section 4.3 we show that if CircConsα,β ∈ SZKA for
appropriate values of α, β, and therefore if CircConsα,β is hard then ZK ̸= BPP.

49

4.1 ZK ̸= BPP implies hardness of learning
Using the Ostrovsky-Wigderson theorem Theorem 2.4.4, combined with Theorem 3.2.1,
it follows easily that

Corollary 4.1.1. If ZK ̸= BPP, then testing PAC (1−ε
2

)-consistency is hard against
uniform (resp. non-uniform) algorithms, where ε = 2−n/4.

In particular, this means ZK ̸= BPP implies that PAC learning is hard. In the next
section, we ask the reverse question: does hardness in the PAC model suffice to build
zero knowledge proofs for non-trivial languages (i.e. languages outside BPP)?

4.2 Can ZK ̸= BPP be based on hardness of learn-
ing?

4.2.1 Relativizing techniques

We already saw in Theorem 3.3.1 that there is an oracle relative to which testing
PAC learnability is hard and yet AIOWF do not exist. Combining Corollary 3.3.7
with the Ostrovsky-Wigerson theorem (Theorem 2.4.4) (whose proof is relativizing),
we obtain our main theorem about relativizing proofs for zero knowledge.

Theorem 4.2.1. There exists an oracle O relative to which testing PAC consistency
is hard over the uniform distribution with membership queries, but ZKO = BPPO.

The Ostrovsky-Wigderson theorem

As mentioned earlier, the Ostrovsky-Wigderson theorem (Theorem 2.4.4) is relativiz-
ing and efficient-oracle, but not fully black-box. We sketch the proof in order to
point out the precise argument that is non-black-box: supposing that there exist
no AIOWF, we show that ZK = BPP. Fix any L ∈ ZK with simulator S. It
suffices to show that the “simulation-based prover” is efficiently computable: the
simulation-based prover is defined by the conditional distribution of the simulator.
Given a prefix of messages m1, . . . ,mi (say mi is a verifier message), the simulated
prover samples a message mi+1 according to the distribution S(x, Ur) conditioned on
the first i messages being m1, . . . ,mi. If one could efficiently compute the simulated
prover distribution (or approximate it) then this would give an algorithm for L: run
the honest verifier and interact it with the simulated prover. By the zero-knowledge
property the verifier will accept x ∈ L, and by soundness the verifier will reject x /∈ L.
We show how to approximate the simulated prover assuming AIOWF do not exist.
Let Si(x, ω) be the function that takes random coins ω outputs the first i messages

50

of the simulator. Suppose that the i’th message is sent by the receiver, then one way
to sample the simulated prover’s i+ 1’th message in response to a partial transcript
τi = (m1, . . . ,mi) is to first invert Si(x, ·) on τi to obtain random coins ω such that
Si(x, ω) = τi, and then compute Si+1(x, r) and output the i+ 1’th message.
Assuming that AIOWF do not exist and using the equivalence with AIDOWF (Re-
mark 2.3.9), there is an efficient distributional inverter Ii such that the following two
distributions are computationally indistinguishable:

DSim = (τi, Ii(τi)) and DHonest = (τ ′i , Ii(τ
′
i)) (4.2.1)

Here, τi is generated using the simulated prover and τ ′i is generated using the honest
prover. The fact that the inversion procedure is efficient is critical because we only
have the guarantee that the output of the simulator is computationally indistinguish-
able from the honest transcript. If Ii were inefficient, then DSim and DHonest may
be distinguishable since it is conceivable that the honest transcript and the simu-
lator transcript are computationally indistinguishable but have disjoint support, in
which case inverting an honest transcript as if it were output by the simulator is
information-theoretically impossible. Inductively using this observation for τ1, . . . , τc
where c is the number of rounds in the protocol establishes the theorem, since at the
end the honest transcript is computationally indistinguishable from the transcript
obtained by interacting the verifier with the simulated prover.
It is clear this proof is not black-box since, as noted above, the proof uses the fact
that the inverter is efficient in a critical way. However, it is efficient-oracle black-box
since the assumption that the inverter is efficient is the only way in which we “use the
code” of the oracle. Furthermore, it is relativizing: if the prover, verifier, simulator,
and distinguisher are given access to an oracle and the AIOWF inverter is also allowed
access to the oracle, the same reasoning goes through.

4.2.2 Black-box ZK proofs based on hardness of learning

Unfortunately, in this setting ruling out relativizing proofs is not very convincing
because we have non-relativizing proofs that base ZK ̸= BPP on various complexity
assumptions. In particular the celebrated result of Goldreich, Micali, and Wigderson
[GMW86], which proves that NP has a zero knowledge protocol based on the existence
of one-way functions, does not relativize because they work directly with the explicit
NP-complete problem Three Coloring (3-COL).
Black-box proofs: [GMW86] does not relativize, but it is black-box: they require
only black-box access to a one-way function to construct a zero-knowledge protocol for
3-COL. Our next result rules out black-box proofs that zero knowledge is non-trivial
based on the hardness of learning. Our result applies to construction-black-box proofs
as well as fully-black-box proofs, although the proof for the construction-black-box
case is more involved.

51

Unlike for the case of AIOWF (Theorem 3.3.1), our results do not show that GMW-
style black-box proofs are impossible because there are zero knowledge protocols
whose security is unconditional (e.g. for Graph Isomorphism, Quadratic Residuosity).
It is conceivable that even 3-COL has such a protocol (i.e. NP ⊆ SZK), in which
case its security proof would use no complexity assumptions and hence would be
trivially black-box. This is considered unlikely since by the fact that SZK ⊆ AM ∩
coAM (Theorem 2.4.3) this would imply that the polynomial hierarchy collapses and
contradict Conjecture 1.2.1. We prove that this is the only possibility:

Theorem 4.2.2. If there exists a construction-black-box proof that constructs a ZK
protocol for a language L assuming PAC learning is hard, then in fact L ∈ SZK.

Under the standard conjecture that NP ̸⊆ SZK (a consequence of Conjecture 1.2.1),
Theorem 4.2.2 says that such proofs for an NP-complete language L cannot exist.
We first prove the result for fully-black-box reductions, then explain how to extend
the proof to construction-black-box reductions.

Proof of fully-black-box case. A fully-black-box proof is relativizing, so both the con-
struction and analysis must hold relative to any oracle. We will use the same oracle
from Definition 3.3.3. We recall the definition here:

Definition 3.3.3 (Restated). O is drawn from the following the distribution. First,
for each n select a functionR(n) : {0, 1}n×{0, 1}n → {0, 1} by letting each z ∈ {0, 1}n
be a hard instance with probability 2−n/2, where we setRz = R(n)(z, ·) to be a random
function, and letting z be an easy instance with probability 1− 2−n/2, where Rz ≡ 0.
Let O decide QBFR∗ , which is PSPACER∗ -complete.

Recall that Lemma 3.3.5 says with probability 1 over the choice ofR, F = {Rz}z∈{0,1}∗

is hard to learn. By our hypothesis, this implies L ∈ ZKO, and furthermore in the
zero-knowledge protocol for L, the prover, verifier, and simulator all use access only
to the hard concept class F , which can be implemented using just R (and not O)
gates.
Next, we claim that not only is the protocol computationally zero knowledge, it
is statistically zero knowledge. Formally, applying the relativized version of the
SZK/AIOWF characterization (Theorem 2.4.7) we know that if L ∈ ZKO then (a)
there is an efficient reduction Red reducing L to SDO, or (b) there exists AIOWF
against non-uniform inverters relative toO. Case (b) never occurs because Lemma 3.3.6
tells us that AIOWF do not exist relative to O, so we must be in case (a).
In fact, the proof of Theorem 2.4.7 actually proves not only that Red reduces L to
SDO but the circuits that Red produce are defined simply in terms of the (code of the)
simulator of the original ZKO protocol. But the simulator of the original protocol
needed access only to R. Therefore, we actually can conclude that with probability
1 over the choice of R, Red reduces every x ∈ L to a YES instance of SDR and every

52

x /∈ L to a NO instance of SDR. (Observe that reducing to SDR is crucial: reducing
L to SDO instead would be meaningless, since SDO is complete for SZKO. SZKO
contains PSPACE since O can decide QBF, so proving L ⊆ SZKO does not lead to
any implausible conclusions. In fact, this is why one cannot use say Theorem 2.4.4 to
conclude that the non-existence of AIOWF implies that L ∈ BPP; applying it would
only show L ∈ BPPO, which is meaningless since PSPACE ⊆ BPPO.)
We can now deduce that with high probability over R, the reduction Red is good for
all long enough instances. Let us say that “Red succeeds on Ln” if for all x of length
n, Red(x) maps each x ∈ L to a YES instance of SDR and each x /∈ L reduction to a
NO instance of SDR (i.e. they satisfy the promise of SDR).

Claim 4.2.3. If Red reduces L to SDR with probability 1 over R, then

Pr
R

[Red succeeds on Ln]→ 1 as n→∞

To prove the claim, let An be the event that Red succeeds on L≥n, i.e. Red succeeds
on all inputs of length at least n (rather than exactly n). Notice that it suffices to show
Pr[An]→ 1 as n→∞. We know by hypothesis that 1 = PrR[Red reduces L to SDR] ≤
PrR[

∪∞
i=1Ai]. Since An ⊆ An+1, we have that:

Pr
[
∞∪
i=1

Ai

]
=
∞∑
i=1

Pr[Ai ∧ Ai−1]

But since Pr[An] =
∑n

i=1 Pr[Ai ∧ Ai−1], the claim follows.

Lemma 4.2.4. If for sufficiently large n, PrR[Red succeeds on Ln] > 99/100, then
L ∈ SZK.

Claim 4.2.3 means that the hypothesis of this lemma is satisfied, and so the lemma
implies fully-black-box case of Theorem 4.2.2.

Proof of Lemma 4.2.4. We have by hypothesis that Red efficiently maps each input
x to an instance of SDRα,β, say with α = 99/100 and β = 1/100. By padding, we can
assume without loss of generality that the input and output length of XRi is n, and
|Xi| ≤ p(n) = poly(n) for i = 0, 1.
By hypothesis, with probability 99/100 over the choice of R, for every x of length n,
x ∈ L reduces to (XR0 , X

R
1) such that ∆(XR0 , X

R
1) > 99/100 while x /∈ L reduces to

(XR0 , X
R
1) such that ∆(XR0 , X

R
1) < 1/100.

Claim 4.2.5. There is an efficient deterministic reduction Red′ such that for all
x ∈ L, Red′(x) = (X ′0, X

′
1) satisfies ∆(X ′0, X

′
1) > 24/25 and for all x /∈ L, Red′(x) =

(X ′0, X
′
1) satisfies ∆(X ′0, X

′
1) < 1/25.

53

Since (24/25)2 > 1/25, this is still in SZK and so the claim shows that Red′ puts
L ∈ SZK.
To prove the claim, let Red′ work by first running Red to produce (XR0 , X

R
1), and

then transforming those circuits the following way. Let Q be a circuit that takes
some random bits and generates a “fake” oracle RQ whose distribution on inputs of
up to length 2 log 108p(n) is identical to the real distribution R, and for inputs longer
than 2 log 108p always returns 0. It is clear RQ can be described and evaluated in
polynomial time, and there is a circuit Q of size poly(p) that constructs RQ using
m = poly(p) random bits.
Red′(x) = (X ′0, X

′
1) where X ′0 is the circuit that takes m+ n random bits and uses m

bits (call these m bits ω) for Q to generate a fake random oracle RQ, and uses n bits
to sample a random x←R X

RQ

0 and then outputs (ω, x). X ′1 is the circuit that takes
m+ n random bits just as above except it outputs (ω, x) where x←R X

RQ

1 .
We prove that Red′ satisfies the claim. Let X be either X0 or X1 (the same argument
applies to both). For r ∈ {0, 1}n, let B(r) be the bad event over the choice of R that
XR(r) queries a hard instance z of length > 2 log 108p, and Bi(r) be the event that
the i’th oracle query of XR(r) (for some arbitrary ordering of the queries) is a hard
instance z of length > 2 log 108p. Recall from the definition of R that z of length ℓ
are hard with probability 2−ℓ/2. It holds that:

Pr
R,r←RUn

[B(r)] = Er Pr
R

[B(r)] ≤ Er

p∑
i=1

Pr
R

[Bi(r)] ≤ 1/108

since over the randomness of R, the probability that any query of length > 2 log 108p
is hard is at most 1/(108p).
Now by Markov, we have that

Pr
R

[Pr
r←RUn

[B(r)] > 1/104] < 1/104

Notice that for good R where B(r) occurs with probability ≤ 1/104, we have that
∆(XR, XRQ) ≤ 1/104. Therefore, with probability > 99/100 − 2/104 we get a good
fixing of ω used by Q to generate RQ, where by good we mean that

x ∈ L⇒ ∆(X
RQ

0 , X
RQ

1) > 99/100− 2/104

x /∈ L⇒ ∆(X
RQ

0 , X
RQ

1) < 1/100 + 2/104

Therefore, the claim follows by averaging over all ω and using the fact that a 99
100
− 2

104

fraction of the ω are good, so that

x ∈ L⇒ ∆(X ′0, X
′
1) > (99

100
− 2

104)(
99
100
− 2

104) >
24
25

x /∈ L⇒ ∆(X ′0, X
′
1) <

1
100

+ 2
104 + 1

100
+ 2

104 <
1
25

This concludes the proof of the lemma.

54

4.2.3 Construction-black-box ZK proofs

The proof above fails to rule out construction-black-box reductions because we use
Lemma 3.3.6, which says any efficiently computable function can be inverted by
an adversary with access to O. In contrast, in a construction-black-box reduction
the adversary is allowed access only to the hard concept class, which in the above
proof is F = {Rz}. To rule out construction-black-box reductions we will “embed”
PSPACER∗ inside the hard concept class itself (an idea of Simon [Sim98], see also
[RTV04]), but this must be done carefully.
We cannot simply use the observation used in Theorem 3.3.14 that the set of all QBFR∗
formulas are hard-to-learn given access to an oracle O that decides QBFR∗ . With such
an oracle, the inverter for the AIOWF is indeed able to invert all AIOWF, but the
verifier in the zero knowledge protocol is also able to access O, which means that
the verifier can trivially decide PSPACE-complete problems on its own without
the prover’s help. From this we can only conclude that L ∈ PSPACE, which is
uninteresting.
To achieve a meaningful result, we must carefully balance the power of the oracle to
satisfy three requirements:

1. The oracle constitutes a collection of hard-to-learn functions.

2. Using the oracle, it is possible to invert all circuits, thus breaking all AIOWF.

3. The verifier in the zero knowledge proof is unable to use the oracle to decide
hard languages.

The key to achieve these two conflicting goals simultaneously is that the SZK/AIOWF
characterization (Theorem 2.4.7) allows the AIOWF inverter to be non-uniform, while
the verifier in the zero knowledge proof is uniform. Our oracle will be as follows:

Definition 4.2.6. Let R : {0, 1}n×{0, 1}n → {0, 1} be chosen as in Definition 3.3.3.
Pick a random z0 ∈ {0, 1}n, we call such z0 “powerful” instances. Let O : {0, 1}n+1×
{0, 1}n → {0, 1} be defined as:

O(z, b, x) =

Rz(x) b = 0

QBFR∗ (φ) b = 1, z = z0, x = 0n−
√

nφ

0 else

where φ is interpreted as a QBFR∗ formula.

Testing PAC consistency is hard relative to O

As with the oracle of Definition 3.3.3, we will prove that relative to the oracle
above there exists a hard-to-learn concept class but AIOWF do not exist. Let

55

Oz,b : {0, 1}n → {0, 1} be the function O(z, b, ·). The new hard-to-learn concept
class will be F = {Oz,b}; notice F contains a QBFR∗ oracle (namely the functions
Oz0,1), and it is insufficient to take {Rz} since it does not contain a QBFR∗ oracle.

Lemma 4.2.7. For any ε ≥ 2− log2 n, with probability 1 over O, testing PAC (1−ε
2

)
-consistency with a membership oracle is hard for the class F = {Oz,b} relative to O.

Proof. Any efficient circuit that can correctly test PAC consistency of F = {Oz,b}
must necessarily correctly test PAC consistency of {Oz,0}. Furthermore, Oz,0 = Rz,
so it suffices to bound the probability that CO correctly tests PAC (1−ε

2
)-consistency

of {Rz}.
Abusing notation slightly, let QBFR∗ denote an oracle deciding the language QBFR∗ .
We observe that given any circuit C with O gates, we can emulate C with a circuit
C ′ with QBFR∗ gates. Suppose |C| ≤ s(n), then C ′ will be of size poly(s(n)). C ′ will
include a hard-wiring of all the powerful instances z0 up to length s(n). C ′ emulates
C in a straightforward way: whenever C queries O(z, 0, x), C ′ queries its QBFR∗ gate
with Rz(x), and whenever C queries O(z, 1, 0|z|−

√
|z|φ), C ′ checks if z is the powerful

instance of length |z| and if so it queries QBFR∗ (φ).
Therefore, if CO is a polynomial size circuit that tests PAC consistency of F , so is
(C ′)QBFR

∗ . But in Lemma 3.3.5 we already bounded the probability that such (C ′)QBFR
∗

could test PAC consistency of {Rz} by 2−2Ω(n) ! Therefore the probability that CO
can test PAC consistency is also bounded by 2−2Ω(n) .

Inverting AIOWF is easy

Second, we show that AIOWF do not exist relative to O.

Lemma 4.2.8. With probability 1 over O, there exist no AIOWF against non-uniform
adversaries relative to O.

Proof. Suppose f is a circuit with O gates of size at most s(n). Then clearly f can
be emulated by a circuit f ′ with QBFR∗ gates of size poly(s(n)) that has hardwired
all the powerful instances z0 of length up to s(n) and f ′ emulates f in the same way
as C ′ emulates C in the proof of Lemma 4.2.7.
But now f ′ is just a function with QBFR∗ gates, and therefore Lemma 3.3.6 tells us
that there is an efficient inverter I that uses a QBFR∗ oracle and inverts f ′. But
we have only a O oracle, not a QBFR∗ oracle. To simulate a QBFR∗ oracle, let p(n)
be an upper bound on the size of queries that I makes to QBFR∗ given an input of
length n. Let z0 be a powerful instance of length O(p(n)2), and let Iz0 denote a
circuit that emulates I except that whenever I queries φ to QBFR∗ , Iz0 sends the
query to O(z0, 1, 0

p(n)2−p(n)φ). Since O(z0, 1, 0
p(n)2−p(n)φ) = QBFR∗ (φ), it follows that

56

Iz0 successfully inverts if and only if I does, and therefore the lemma follows from
Lemma 3.3.6.

Ruling out construction-black-box GMW-style constructions

Proof of Theorem 4.2.2, construction-black-box case. Let O be drawn from the dis-
tribution given by Definition 4.2.6. Lemma 4.2.7 and the hypothetical construction-
black-box reduction implies that L ∈ ZKO.
Using Theorem 2.4.7 and the fact that AIOWF do not exist (Lemma 4.2.8), we
deduce that there is an efficient reduction Red such that with probability 1 over O,
Red reduces L to SDO. As before, we claim that if Red reduces L to SDO with
probability 1 over O, then PrO[Red succeeds on Ln] → 1 as n → ∞. The proof is
identical to the proof of Claim 4.2.3.
Since for large enough n, Red succeeds on Ln with probability 99/100 over the choice
of O, and we can then hardwire O to place L ∈ SZK:
Claim 4.2.9. If for all large enough n the reduction Red succeeds on Ln with proba-
bility 99/100 over the choice of O, then L ∈ SZK.

Proof. The claim is proven by reducing L to SD using the same argument as in the
proof of Lemma 4.2.4 modulo two differences: first, the bad events Bi(r) are redefined
to be the event that the i’th unique z that XO(r) queries is either hard or powerful,
which means that we get a slightly worse bound that Pr[B(r)] ≤ 1/108 +1/1016. The
rest of the calculations lose a small but unimportant factor because of this.
Second, in order for the circuit Q to sample the fake oracle OQ identically distributed
to O on all inputs up to length 2 log 108p = O(logn) and 0 on longer inputs, Q must
be able to decide QBFR∗ formulas of size up to

√
2 log 108p = O(

√
logn). It suffices

to note that Q can do this in polynomial size simply by brute force, because QBFR∗
can be decided in time 2O(n2

) (using say Proposition A.1.1) and the inputs here are
of size O(

√
logn).

This concludes the proof of Theorem 4.2.2.

4.3 CircCons ∈ ZK
Already Corollary 3.5.2 and Proposition 3.4.4 imply the following

Corollary 4.3.1. If CircCons is hard against uniform (resp. non-uniform) algorithms,
then there exist AIOWF against uniform (resp. non-uniform) inverters.

We will show an even tighter relationship: CircConsα,β ∈ SZKA for any α, β where
(1− 2α)2 > 1− 2β.

57

4.3.1 StatCircCons

We first show that a statistical version of CircCons, which we call StatCircCons, is
actually in SZKP, and then we use the characterization of SZKA given in Theo-
rem 2.4.7 to extend the result to CircCons. The difference between StatCircCons and
CircCons is that for StatCircCons we only care whether or not a good deterministic
labeling for (X, Y) exists; we do not care whether that labeling is efficient.

Definition 4.3.2. StatCircConsα,β is the promise problem with input a circuit C
sampling a joint distribution (X, Y) such that:

• YES instance: err((X, Y),Fall) < α

• NO instance: err((X,Y),Fall) > β

Lemma 4.3.3. There is an efficient Karp reduction from StatCircConsα,β to SDα′,β′

where α′ = (1− 2α)(1− 2−n) and β′ = (1− 2β)(1− 2−n).

Proof. Let C be an instance of StatCircConsα,β and let (X,Y) be the distribution that
C samples. We can assume without loss of generality that the marginal distribution of
Y is unbiased; otherwise, modify C to output the distribution (X ◦b, Y ⊕b) where b is
an unbiased coin flip. It is easy to check that err((X◦b, Y ⊕b),Fall) = err((X,Y),Fall).
We construct an instance (X0, X1) of SD from (X,Y) as follows. Xb samples n times
from (X, Y) to obtain (x1, y1), . . . , (xn, yn) and outputs a random xi such that yi = b.
If none of the yi = b, then it outputs a special failure symbol ⊥. We claim that

∆(X0, X1) = (1− 2−n)(1− 2err((X,Y),Fall)) (4.3.1)

To prove this, first observe that

∆(X0, X1) = (1− 2−n)∆((X | Y = 0), (X | Y = 1)) (4.3.2)

since conditioned on not outputting ⊥, it holds that Xb is distributed identically to
X | Y = b. Next, by the definition of statistical distance, we have that

∆((X | Y = 0), (X | Y =1)) = max
T
{Pr[T (X) = 1 | Y = 1]− Pr[T (X) = 1 | Y = 0]}

= max
T
{1− Pr[T (X) = 0 | Y = 1]− Pr[T (X) = 1 | Y = 0]}

Observe that because Y is balanced, it holds that

Pr[T (X) = 0 | Y = 1] + Pr[T (X) = 1 | Y = 0] = 2 Pr[T (X) ̸= Y]

58

Therefore we may write

∆((X | Y = 0), (X | Y = 1)) = max
T
{1− 2 Pr[T (X) ̸= Y]} (4.3.3)

= 1− 2 min
T

Pr[T (X) ̸= Y] (4.3.4)

= 1− 2 err((X, Y),Fall) (4.3.5)

Combining Equation 4.3.2 with Equation 4.3.5 we obtain Equation 4.3.1.

In fact, one can show the converse as well:

Lemma 4.3.4. SDα,β efficiently reduces to StatCircCons1−α
2

,
1−β

2

.

Proof. We can run the proof of Lemma 4.3.3 “in reverse”. Given an instance (X0, X1)
of SDα,β, construct the circuit C that samples from the following distribution: sample
b←R {0, 1}, then sample a random x←R Xb, and output (x, b). Let this distribution
be denoted (X,Y). Then we can write:

err((X, Y),Fall) = min
T

Pr[T (X) ̸= Y]

= min
T

{
Pr[T (X) = 0 | Y = 1] + Pr[T (X) = 1 | Y = 0]

2

}
= min

T

{
1− Pr[T (X) = 1 | Y = 1] + Pr[T (X) = 1 | Y = 0]

2

}
=

1−maxT {Pr[T (X) = 1 | Y = 1]− Pr[T (X) = 1 | Y = 0]}
2

=
1−∆(X0, X1)

2

As an immediate corollary, we have the following.

Theorem 4.3.5. StatCircConsα,β is SZKP-complete for any constants α, β such that
(1− 2α)2 > (1− 2β).

Proof. By Lemma 4.3.3 we can reduce StatCircConsα,β to SDα′,β′ . Since α′ = (1 −
2−n)(1− 2α), β′ = (1− 2−n)(1− 2β) and α, β are constants, this means that for large
enough n, it holds that (α′)2 > β′, and therefore StatCircConsα,β ∈ SZKP. On the
other hand, we know that SD1−2α,1−2β for (1 − 2α)2 > 1 − 2β is complete for SZK
and it reduces to StatCircConsα,β, therefore StatCircConsα,β is also SZK-hard.

Corollary 4.3.6. StatCircConsα,β ∈ coAM for any α, β such that there exists a
polynomial p(n) such that β − α > 1/p(n).

59

Proof. First apply Lemma 4.3.3 which reduces StatCircConsα,β to SDα′,β′ for α′ = (1−
2−n)(1−2α) and β′ = (1−2−n)(1−2β), then apply the fact that for α′−β′ > 1/p(n)
it holds that SDα′,β′ ∈ coAM. For completeness we include a proof of this fact in
Lemma A.4.1.

4.3.2 CircCons

We now use Lemma 4.3.3 to show that CircConsα,β ∈ SZKA for α, β satisfying
(1 − 2α)2 > (1 − 2β). The idea is to use the SZK/AIOWF characterization of
Theorem 2.4.7, which says that a problem is in SZKA if and only if it can be
decomposed into a part that is in SZKP and a part from which we can build AIOWF.
We will decompose CircConsα,β into a part that is in StatCircConsα,β and a part that
cannot be labeled correctly by polynomial-size circuits but can be labeled by an
inefficient circuit, and we will show how to build AIOWF on this part.

Theorem 4.3.7. For any efficiently computable class of functions F and any con-
stants α, β satisfying (1− 2α)2 > (1− 2β), it holds that CircConsF

α,β ∈ SZKA.

Proof. Let γ = (1 − 2α)2 − (1 − 2β). Let Π = CircConsF
α,β and let ΠY be the YES

instances and ΠN be the NO instances. We use the Theorem 2.4.7, which says that
in order to prove CircCons ∈ SZKA it suffices to prove that there exists a subset
W ⊆ ΠN and an efficiently computable function f mapping W to circuits such that

1. Π′ = (ΠY ,ΠN \W) ∈ SZKP

2. For every efficient non-uniform algorithm A, it holds for all C ∈ W that the
circuit fC , which takes m input bits, satisfies

Pr
x←RUm

[A(fC , y) ∈ f−1
C (y) | y = fC(x)] ≤ n−ω(1)

We will show that the following set satisfies the above:

W = {C ∈ ΠN | C samples (X, Y) s.t. err((X, Y),Fall) ≤ β − γ/2}

Proof of Item 1: C ∈ ΠN \ W if and only if C samples a distribution (X, Y)
such that err((X,Y),Fall) > β − γ/2. Therefore Π′ ∈ StatCircConsα,β−γ/2 and since
(1− 2α)2 > (1− 2(β − γ/2)), it holds by Lemma 4.3.3 that Π′ ∈ SZKP.
Proof of Item 2 for a circuit C sampling (X,Y), let C1 be the subcircuit that
samples X (i.e. the first n output bits of C). We claim that for all C ∈ W and all
efficient non-uniform inverters I, it holds that

∆((r, C1(r)), (I(C1, x), x | x = C1(r))) > Ω(γ6/s)

60

where r is uniformly random. We prove this by contradiction: suppose not, then we
could use Lemma 3.5.1 to build from I a hypothesis h of size poly(s/γ) such that
err((X, Y), h) ≤ err((X, Y),Fall)+γ/2. Since C ∈ W , this implies that err((X,Y),Fall) ≤
β − γ/2, and therefore err((X,Y), h) ≤ β. But h is of polynomial size poly(s/γ), so
because C is a NO instance such h should not exist, a contradiction.
This implies that there exists AIDOWF, namely the family of functions computed by
{C1 | C ∈ W} are hard to distributionally invert. By Remark 2.3.9 this means there
exists AIOWF.

We remark that this proof of non-relativizing because we use the non-relativizing
direction of Theorem 2.4.7. The non-relativizing nature stems from the use of the
GMW protocol in Theorem 2.4.7.

Regarding the restriction (1− 2α)2 > (1− 2β)

We do not know whether our results that StatCircConsα,β ∈ SZKP and CircConsα,β ∈
SZKA generalize to the case where the condition (1−2α)2 ≤ (1−2β). The bottleneck
is that it is unknown whether SDα,β ∈ SZKP when α2 ≤ β, and since we saw from
Theorem 4.3.5 that StatCircConsα,β is basically equivalent to SD(1−2α),(1−2β), proving
this fact for StatCircCons would resolve long-standing open problem about SD.

4.4 Summary
Figure 4.4 summarizes the relationship between zero knowledge, AIOWF, and learn-
ing.
As with the case of AIOWF, the main message here is that learning in the standard
model is “harder” than zero knowledge, but learning in the CircCons or CircLearn
model is not.
Open questions: we saw in Theorem 4.3.5 that StatCircCons is complete for SZK.
Can one show that CircCons characterizes SZKA in any meaningful way?

61

CircConsα,β hard for (1− 2α)2 > (1− 2β)

Theorem 4.3.7GFED@ABCA
��

ONMLHIJKFB // CircCons hard

BC

ONMLHIJKFB

Corollary 4.3.1
oo

ZK ̸= BPP

Theorem 2.4.4ONMLHIJKRel
��

AIOWF exist

Theorem 3.2.1ONMLHIJKFB
��

Testing PAC consistency hard

Theorem 3.3.1 GFED@ABC
��ZZ∀∃

OO

@A

GF

Theorem 4.2.2ONMLHIJK��HHCB

//

Figure 4.1: ZK, AIOWF and learning

62

Chapter 5

Learning and NP

Computational learning theory has provided many strong algorithmic tools and showed
that non-trivial concept classes are efficiently learnable. But despite these successes
it seems that some (even simple) concept classes are hard to learn. It is considered all
the more unlikely that every efficiently computable function can be learned efficiently.
Ideally one could prove that PAC learning is hard, but this seems unattainable since
it would imply that P ̸= NP.
The next best thing would be to prove that PAC learning is NP-hard. In fact, one of
the first questions Valiant asked after defining the PAC learning model was whether
or not PAC learning is NP-hard, i.e. whether it is possible to prove that P ̸= NP
implies that PAC learning is hard. Shortly afterwards, Pitt and Valiant [PV88] proved
that indeed PAC learning the class of k-term DNF functions is NP-hard, but only if
the learning algorithm is required to be proper, i.e. only if the learning algorithm is
forced to output a k-term DNF. In fact, Valiant showed in his original paper [Val84]
how to learn k-term DNF using k-CNF (CNF formulas where each clause has at most
k literals) and therefore this problem is not hard in the general PAC model.
There have since been a long line of results showing that various problems are hard to
learn if the output of the learning algorithm is proper or “almost proper” (where the
hypothesis class is not polynomial-size circuits but is larger than the concept class)
[BR92, HJLT96, BDEL03, ABF+04, Fel06a, Fel06b, GR06, GKS07]. One may hope
to use these results as a starting point for proving NP-hardness in the general (i.e.
improper) setting. Indeed, although some of the aforementioned hardness results
seem useless for this purpose (as they apply to concept classes which are known to be
improperly learnable), others might still be relevant. In particular, [ABF+04] show
that it is NP-hard to learn the intersection of two halfspaces even in a semi-proper
setting where the learner is allowed to use an intersection of any (constant) number
of halfspaces. Similarly, [GKS07] show that learning parity in the agnostic model,
where the data is noisy, is NP-hard even if the learner is allowed to use a low degree
polynomial. These concept classes are not known to be efficiently learnable. Also,

63

both works rely on highly non-trivial PCP machinery. This may give some hope that
similar techniques will eventually prove that (improper) learning is NP-hard.
In this chapter we show that such hope is most likely unfounded, and that there
are inherent limitations to proving that PAC learning (or even agnostic learning) is
NP-hard when there is no restriction on the learning algorithm except that it be
efficient. We will use the results of Chapter 3 to show that this question is closely
related to the questions of basing cryptography on NP-hardness, which is a well-
studied problem [FF93, BT06, AGGM06, Pas06]. Our results will focus on various
kinds of reductions from NP-hardness to the hardness of learning, and will show that
in many cases, standard techniques are insufficient to prove that PAC (or agnostic)
learning is NP-hard.
First, we prove that if there exists a Karp reduction from NP-hardness to learn-
ing, then one can use an AIOWF inverter to decide NP-complete problems. As a
corollary, Minicrypt collapses to Pessiland in Impagliazzo’s hierarchy, or in other
words the existence of a hard-on-average problem in NP implies that one-way func-
tions exist. This suggests that such a reduction would have surprising consequences
in cryptography. Under certain additional conditions, such a reduction also implies
that NP ⊆ SZKA or even that NP ⊆ SZKP. This last implication is consid-
ered unlikely as it would imply that the polynomial hierarchy collapses, contradicting
Conjecture 1.2.1.
Second, we extend the techniques from Karp reductions to prove that if there exists a
black-box reduction from NP-hardness to learning using constant rounds of adaptiv-
ity, then there exists an efficient-oracle reduction from NP-hardness to the existence
of AIOWF using constant rounds of adaptivity. Such a reduction thus also implies
that Pessiland and Minicrypt collapse.
Third, we study strongly black-box reduction from NP-hardness to learning, where
the reduction accesses the hypothesis returned by the learning oracle only as a black-
box. We show that if there exists a strongly black-box reduction from NP-hardness
to learning, then there exists a black-box reduction from NP-hardness to inverting
AIOWF (without restrictions on the adaptivity of the reduction). Then, we prove
that if there exists a strongly black-box non-adaptive reduction from NP-hardness to
learning, then NP ⊆ coAM and therefore the polynomial hierarcy collapses to the
second level [BHZ87], contradicting Conjecture 1.2.1.

Strategy

Consider a reduction R from NP-hardness to learning. R gets access to a learning
oracle, and in order to use the learning oracle in a meaningful way, R must produce
a distribution of labelled examples which it feeds to the learning oracle. However,
since R must be efficient, this means that the distribution of labelled examples must
be efficiently samplable.

64

The key observation we will use is that because the distribution of labelled examples is
efficiently samplable, one can convert R into a reduction R′ that uses an oracle solving
CircCons and CircLearn (defined in Definition 3.4.1, Definition 3.4.2) rather than an
oracle that successfully tests PAC consistency or successfully PAC learns. Then we
can use the facts we have learned from previous chapters to show that reducing an
NP-complete language to CircCons or CircLearn implies that one can also reduce an
NP-complete language to inverting AIOWF. Finally, we use standard results about
zero knowledge and OWF (extended to the setting of AIOWF) to attain the surprising
and/or implausible conclusions stated above.

5.1 Karp reductions

We first prove our results for the simple case of Karp reductions (Definition 1.3.1).
In our setting, a Karp reduction R takes the instance of L and produces a single
efficiently samplable distribution of labelled examples (X,Y). The reduction should
guarantee that if z ∈ L, then (X,Y) is efficiently learnable, namely there exists a
function f ∈ SIZE(n2) such that Y = f(X). On the other hand, if z /∈ L then
the labelling (X, Y) should be far from all efficiently computable functions, namely
err((X, Y), SIZE(nlog n)) should be large, say larger than some β ≥ 1/poly(n).
Notice this is exactly the notion of testing PAC β-consistency defined in Defini-
tion 3.1.2. Indeed, since Karp reductions are supposed to reduce one decision problem
to another decision problem (not a search problem), by “Karp reduction to learning”
we actually mean a Karp reduction to testing PAC consistency. All of the known
NP-hardness results for proper PAC learning are of this type [PV88, BR92, HJLT96,
BDEL03, ABF+04, Fel06a, Fel06b, GR06, GKS07]. Although it is conceivable that
one could Karp-reduce a language to a different decision problem associated with
learning, testing consistency seems the most natural and is the only one that has
been previously studied in the literature.
To make our results more general, we will consider an agnostic version of testing
consistency.

Definition 5.1.1 (Testing agnostic (α, β) consistency). A tests for agnostic (α, β)-
consistency of a concept class F if given access to any distribution of labelled examples
(X, Y) the following holds.

• YES instance: if err((X, Y), F) ≤ α then A outputs 1 with probability 1− 2−n.

• NO instance: if err((X,Y), SIZE(nlog log n)) > β, then A outputs 0 with proba-
bility 1− 2−n.

Clearly, testing PAC β-consistency is the same as testing agnostic (0, β) consistency.

65

Definition 5.1.2. A reduction R is a Karp reduction from L to testing agnostic
(α, β)-consistency if given any instance z and random coins ω, R(z;ω) generates a
set of labelled examples sampled from a distribution (X,Y) such that:

• If z ∈ L, then (X, Y) is a YES instance of agnostic (α, β)-consistency

• If z /∈ L, then (X, Y) is a NO instance of agnostic (α, β)-consistency.

Furthermore, R runs in time poly(n).

The main observation is that because R is efficient, the distribution (X, Y) must be
efficiently samplable. Therefore we can write without loss of generality that R(x)
outputs a circuit C sampling a distribution (X, Y) satisfying the above constraints.
But this is exactly the notion of CircConsα,β that we defined earlier in Definition 3.4.1!

Lemma 5.1.3. Suppose there exists a Karp reduction R from L to testing agnostic
(α, β)-consistency. Then there exists a Karp reduction R′ from L to CircConsα,β.

Proof. R′ outputs the circuit Cz that computes Cz(ω) = R(z;ω). By definition,
Cz(ω) outputs a set of labeled examples that satisfy the promise of CircConsα,β, and
|Cz| ≤ poly(n) because R is efficient.

Therefore, we can deduce the following theorem.

Theorem 5.1.4. Suppose there is a Karp reduction R from L to testing agnostic
(α, β)-consistency. Then:

1. If α < β − 1/poly(n), then there is a non-adaptive efficient-oracle reduction
from L to inverting AIOWF.

2. If (1− 2α)2 > (1− 2β), then L ∈ SZKA.

3. If (1− 2α)2 > (1− 2β), and furthermore R maps z /∈ L to distributions (X, Y)
such that err((X, Y),Fall) > β, then L ∈ SZKP.

Proof. First apply Lemma 5.1.3 to get a reduction from L to CircConsα,β. Let C =
R′(z), where C samples a distribution (X, Y).
Item 1 follows from the fact that an AIOWF inverter can be used to decide CircConsα,β

(Corollary 3.5.2, Proposition 3.4.4).
Item 2 follows from the fact that CircConsα,β ∈ SZKA for (1 − 2α)2 > (1 − 2β)
(Theorem 4.3.7).
Item 3 follows from the fact that this stronger NO condition actually satisfies the
definition for StatCircConsα,β, which we know is in SZKP (Lemma 4.3.3).

66

5.1.1 Extensions and corollaries

We can extend Item 1 of Theorem 5.1.4 to show that a Karp reduction from L to
testing (α, β)-consistency would lead to surprising consequences.
Corollary 5.1.5. Suppose there exists a Karp reduction from L to testing agnostic
(α, β)-consistency. Then if L is hard on average, then there exists OWF.

This corollary is proven by combining Item 1 with Lemma 5.2.6, which says that
a reduction from (the worst-case hardness of) L to inverting AIOWF also gives a
reduction that uses the average-case hardness of L to construct one-way functions.
We prove this lemma later in Section 5.2.2 in the general, adaptive case.
Consider Corollary 5.1.5 in the case when L = SAT. It is currently unknown how
to build a reduction that uses average-case hardness of SAT to construct one-way
functions, and in fact this is known as the “Pessiland vs. Minicrypt” problem in
Impagliazzo’s hierarchy of cryptographic hardness [Imp95]. Therefore Corollary 5.1.5
says that a Karp reduction from SAT to testing agnostic (α, β)-consistency would
solve a long-standing open problem in cryptography. We will see in the next section
that this is a more general phenomenon that also happens with black-box reductions
with limited adaptivity.
Item 2 of Theorem 5.1.4 says that if furthermore (1 − 2α)2 > (1 − 2β) then NP ⊆
SZKA, which we know holds assuming the existence of one-way functions [NOV06,
HR07] but we do not know how to prove unconditionally.
Item 3 of Theorem 5.1.4 implies:
Corollary 5.1.6. There is no Karp reduction from an NP-complete language L to
testing agnostic consistency where the NO condition is statistical unless NP ⊆ SZKP
(and thus Conjecture 1.2.1 is false).

This is because Item 3 would then imply that NP ⊆ SZKP ⊆ AM ∩ coAM,
which by Theorem 1.2.2 implies that the polynomial hierarchy collapses, contradicting
Conjecture 1.2.1. We will see in Section 5.3 that the hierarchy also collapses for
strongly-black-box non-adaptive black-box reductions.

5.1.2 Truth table reductions

In fact, the results above can be strengthened to encompass not only Karp reductions
but also monotone-NC1 reductions, which we define here. Consider variables taking
value in {0, 1, ⋆}. We extend standard boolean algebra so that ¬⋆ = ⋆, ⋆∧1 = ⋆∧⋆ =
⋆, ⋆ ∧ 0 = 0, ⋆ ∨ 1 = 1, ⋆ ∨ 0 = ⋆ ∨ ⋆ = ⋆. For a promise problem Π, let

χΠ(x) =

1 x ∈ ΠY

0 x ∈ ΠN

⋆ else

67

Definition 5.1.7. A promise problem Π reduces to a promise problem Γ via a
(polynomial-time) truth-table reduction if there exists an efficient (possibly random-
ized) algorithm R taking an instance x of Π and some random bits and outputting a
polynomial-size circuit C and instances y1, . . . , yk of Γ such that over the probability
of the reduction R:

x ∈ Π⇔ Pr[C(χΓ(y1), . . . , χΓ(yk)) = 1] ≥ 2/3

x /∈ Π⇔ Pr[C(χΓ(y1), . . . , χΓ(yk)) = 1] ≤ 1/3

If the circuit C thatR outputs is always an NC1 circuit (resp. monotone NC1 circuit),
then the reduction is called NC1 (rep. monotone NC1) truth-table reduction.

Although the above definition is for promise problems, it extends in the obvious way
to reductions from a promise problem Π to testing agnostic consistency (i.e. instead
of generating instances yi of a promise problem Γ, the reduction R generates instances
(i.e. distributions of labeled examples) (Xi, Yi) of agnostic consistency, and the rest
of the definition is identical).
Theorem 5.1.4 can be extended to the case of monotone NC1 reductions:
Theorem 5.1.8. Suppose there is a monotone NC1 truth-table reduction R from L
to testing agnostic (α, β)-consistency. Then:

1. If α < β − 1/poly(n), then there is a non-adaptive efficient-oracle reduction
from L to inverting AIOWF.

2. If (1− 2α)2 > (1− 2β), then L ∈ SZKA.

3. If (1− 2α)2 > (1− 2β), and furthermore R maps z /∈ L to distributions (X, Y)
such that err((X, Y),Fall) > β, then L ∈ SZKP.

Proof. First, for the same reason as Lemma 5.1.3, there exists a monotone NC1

truth-table reduction R′ from L to CircConsα,β.
Item 1 follows because again from the fact that an AIOWF inverter can be used to
decide CircConsα,β (Corollary 3.5.2, Proposition 3.4.4).
Item 2 follows from the fact that CircConsα,β ∈ SZKA for (1 − 2α)2 > (1 − 2β)
(Theorem 4.3.7), and also the fact that SZKA is closed under monotone NC1 truth-
table reductions [Vad04, OV07].
Item 3 follows from the fact that this stronger NO condition actually satisfies the
definition for StatCircConsα,β, which we know is in SZKP, and also from the fact that
SZKP is closed under monotone NC1 truth-table reductions [DSDCPY98, SV97].

The analogous extensions and corollaries Corollary 5.1.5 and Corollary 5.1.6 also hold
for such truth-table reductions.

68

5.2 Black-box reductions
While Karp reductions cover the previously known NP-hardness results for proper
learning, they still form a very restricted class of reductions. Phrased in terms of
oracles, a Karp reduction takes an instance of L, produces from it a single distribution
(X, Y), and asks the learning oracle to learn on this single instance. Even this query is
only used to test consistency and does not use the actual hypothesis that the learning
oracle returns in any meaningful way. Here we consider more powerful classes of
reductions that can make many queries, as well as use the hypotheses that the oracle
returns in a more meaningful way.
As defined in Section 1.3, a black-box reduction is allowed to generate many queries for
its learning oracle and may examine the hypotheses that the learning oracle returns.
It may even adaptively generate new queries depending on answers the oracle gave
to previous queries.

Definition 5.2.1. A reduction R that decides L using an agnostic learning oracle if
R makes queries of the following form. For each query, R constructs a distribution
(X, Y), samples a set S = {(xi, yi)}i≤poly(n) of independent labeled examples according
to (X, Y), and passes S to the oracle. The distribution (X, Y) can depend on the
instance z to be decided, the random coins ω, and the hypotheses that R received
from the oracle in response to queries from previous adaptive rounds. Given access
to any oracle O that agnostically learns SIZE(n2) circuits, with probability 1 − 2−n

the reduction RO(z) outputs 1 if z ∈ L and outputs 0 if z /∈ L.

Since R is efficient, each query (X,Y) must be efficiently samplable. This suggests
the following lemma.

Lemma 5.2.2. For any c = poly(n), if there exists a c-adaptive black-box reduction
R from L to agnostic learning, then there exists a c-adaptive black-box reduction R′

from L to CircLearn.

Proof. R′ samples random coins ω and emulates the execution of R(z;ω) as follows.
R′ constructs and evaluates the Cook-Levin tableau of the execution of R(z;ω) until
it hits a round of oracle queries. When R makes a query (X,Y) to the agnostic
learning oracle, R′ takes the subcircuit of the tableau that samples labeled examples
according to (X, Y), call this circuit C, and queries its CircLearn oracle with C. R′
then writes the hypothesis that it receives back into the tableau and continues the
execution of R, still keeping track of the tableau so that it may be used for the next
oracle query.
It follows that for every query (X, Y) that R makes, since R′ makes a query for a
circuit C sampling (X,Y), R′ gets back from its CircLearn oracle with high probability
a hypothesis h such that

err((X,Y), h) ≤ err((X, Y), SIZE(n2)) + ε

69

Namely, if R′ is given access to an oracle O that solves CircLearn, then when R′

emulates the execution of R, from R’s point of view it gets access to an oracle O′
that agnostically learns SIZE(n2). Therefore:

Pr[(R′)O(z;ω) = L(z)] = Pr[RO′
(z;ω) = L(z)] ≥ 1− 2−n

where the last inequality follows from the correctness of R. Furthermore, from the
construction of R′ above it follows that the adaptivity of R′ is identical to the adap-
tivity of R.

5.2.1 Constant-adaptive reductions

Combining Lemma 5.2.2 with Corollary 3.5.2, we obtain the following theorem. Notice
that we can only handle c = O(1) adaptive rounds.

Theorem 5.2.3. For any c = O(1), if there is a c-adaptive black-box reduction R
from L to agnostic learning, then there exists a c-adaptive efficient-oracle reduction
R′ from L to inverting AIOWF.

Proof. Let R = (R1, . . . , Rc,M) be the decomposition of R into its c adaptive rounds,
as described in Definition 1.3.5. Let A be the non-adaptive black-box reduction from
CircLearn to inverting AIOWF that we obtain from Corollary 3.5.2.
Let I be an AIOWF inverting oracle. Naively we could try to simply compose R
with A, but this does not work. Notice that R needs to write down the hypothesis
that it obtains from its learning oracle, but the hypothesis that A returns contains
embedded calls to I. Therefore, if I is inefficient, there is no way that R could write
down the hypothesis that it got back from A.
This necessitates the assumption that I be efficient. If I is efficient, then even
though the hypothesis h contains embedded calls to I, it can still be represented
as a polynomial-size circuit, and so R could write this hypothesis into the tableau in
polynomial time and continue execution.
Suppose that Rj makes at most m(n, q) = poly(n, q) queries in the j’th round of
queries, assuming that the largest hypothesis received from the CircLearn oracle in
rounds 1, . . . , j − 1 has size at most q(n). For each j ∈ [c], let Cω

j,1, . . . , C
ω
j,m be the

queries that Rj generates. Let Dj be the circuit computing Dj(ω, i, r) = (ω, i, Cω
j,i(r)).

The circuit Dj can depend on the input z, and the hypotheses hj′,i′ for j′ < j and
i′ ∈ [m] that Rj got in response to queries from previous rounds. Let p(n, q) =
poly(n, q) bound the size of Dj, where q is an upper bound on the size of hypotheses
hj′,i′ returned by the oracle in previous rounds.
By Remark 2.3.9, the existence of an efficient AIOWF inverter implies the existence of
an efficient I satisfying for all circuits D of size |D| ≤ s such that D(ω, i, r) = (ω, i, x)

∆((ω, i, r, x), (I(D,ω, i, x), x)) ≤ O(ε6/(scmn))

70

where ω, i, r are uniformly random.
In the reduction, we will use the inverting oracle I along with the procedure A from
Lemma 3.5.1 that given a circuit sampling a distribution of labeled examples, produces
from I a hypothesis for that circuit.
The reduction: our reduction R′ does the following:

1. Sample random coins ω, and use the input z and the random coins ω to construct
the query circuit D1 that corresponds to the first round.

2. Use the distributional inverter I along with the learning procedure A on the
sampling circuit D1(ω, i, ·) (i.e. for fixed ω and i but random r) for each i ∈ [m]
in order to get hypotheses hω

1,i in the first round.

3. Inductively, use ω, z and the hypotheses received in previous rounds 1, . . . , j−1
to construct Dj and use the inverting oracle I and the procedure A on the
circuit Dj(ω, i, ·) to get hypotheses hω

j,i for all i ∈ [m] in the j’th round.

4. At the last round, apply M to ω, z and all the previously the obtained hypothe-
ses to decide whether z ∈ L.

Correctness: We first prove the following lemma, which says that if one can dis-
tributionally invert a circuit D(ω, i, r) well enough, where ω ∈ {0, 1}poly(n), i ∈
[poly(n)], r ∈ {0, 1}poly(n), then with high probability over ω, one can distributionally
invert D(ω, i, ·) simultaneously for all i.
Lemma 5.2.4. For any m, c, s = poly(n), suppose for all circuits D of size at most
s taking inputs ω ∈ {0, 1}poly(n), i ∈ [m], r ∈ {0, 1}poly(n) and outputting D(ω, i, r) =
(ω, i, x) where x ∈ {0, 1}n that the inverter I satisfies the following:

∆((ω, i, r, x), (I(D,ω, i, x), x)) ≤ O(ε6/(scmn))

where the randomness is over uniform ω, i, r and the random coins of I.
Then for all D, with probability 1 − 1

cn
we get a good ω, namely ω satisfies that for

all i ∈ [m],
∆((ω, i, r, x), (I(D,ω, i, x), x)) ≤ O(ε6/s)

where the randomness is only over the choice of r and the random coins of I.

Proof. The lemma is proven by an averaging argument. With probability at least
1− 1

cn
we get a “good” ω, where it holds that

∆((ω, i, r, x), (I(D, i, x), x)) ≤ O(ε6/(sm))

where now ω is fixed and the randomness is over r, i and the random coins of I. By
averaging we have that for good ω and for all i ∈ [m],

∆((ω, i, r, x), (I(D,ω, i, x), x)) ≤ O(ε6/s)

71

where now both ω, i are fixed, and the randomness is only over r and the coin tosses
of I.

Consider the first round queries of the reduction generated by D1. It holds that
|D1| ≤ s1(n) for some polynomial s1(n) (since the first round of queries does not
depend on any oracle responses). Say that s1(n) ≤ na.
Applying Lemma 5.2.4 to D1, we get with probability 1− 1

cn
a good ω. In this case,

we have for all i ∈ [m] that

∆((ω, i, r, x), (I(D1, ω, i, x), x) ≤ O(ε6/s1)

Therefore, since |Cω
1,i| ≤ |D1|, we are in the setting of Lemma 3.5.1, which says that

given a sufficiently good inverter we can learn any circuit. We may therefore apply
the reduction A in that lemma, giving it oracle access to I, in order to get with
probability 1− 2−n hypotheses hω

1,i that satisfy

err((Xω
1,i, Y

ω
1,i), h

ω
1,i) ≤ err((Xω

1,i, Y
ω
1,i),Fall) + ε ≤ err((Xω

1,i, Y
ω
1,i), SIZE(n2)) + ε

where (Xω
1,i, Y

ω
1,i) is the distribution sampled by Cω

1,i. Let q(s1) be an upper bound on
the size of the hypotheses thus obtained using A, i.e. for all i, |hω

1,i| ≤ q(s1).
Going from Dj−1 to Dj: repeat this procedure inductively: for each j ∈ [c], we
have that the previous rounds gave us hypotheses of size at most q(sj−1), therefore
|Dj| ≤ p(n, q(sj−1)). Set sj(n) = p(n, q(sj−1(n))). Again we have by Lemma 5.2.4
an inverter I that inverts the i’th query in round j, so we can again run the learning
algorithm A of Lemma 3.5.1 with this inverter in order to get back ε-hypotheses hω

j,i

of size at most q(sj(n)).
Correctness of this reduction follows from the fact that ω is good for each round
with probability 1 − 1

cn
, and therefore it is good for all rounds simultaneously with

probability 1− 1
n
. Given a good ω, the learning procedure A with oracle access to I

correctly solves CircLearn for all rounds and all queries, and so by the correctness of
R, the reduction R′ outputs the correct answer with 1 − 2−n. Therefore, the overall
error probability of R′ is 1− 1

n
− 2−n, which can be amplified by repetition.

Efficiency: it remains to check that R′ is efficient if c = O(1). Suppose p(n, q) ≤
(nq)a (we assumed also that s1(n) ≤ na, but this is fine since we could just take the
minimal a that satisfies both). Suppose that q(s) ≤ nb (since q(s) is the size of the
hypothesis returned and contains the code of I, b is constant if and only if the oracle
I is efficient). We claim that:

si ≤ naibi+a(ai−1bi−1−1)/(ab−1)

72

This holds trivially for i = 1, and we check inductively for i ≥ 2 that

si(n) = p(n, q(si−1))

≤ (nsb
i−1)

a

≤ na+ab(ai−1bi−1+a(ai−2bi−2−1)/(ab−1))

≤ naibi+a(ai−1bi−1−ab)/(ab−1)+a

≤ naibi+a(ai−1bi−1−1)/(ab−1)

Therefore, as long as R runs for a total of c = O(1) adaptive rounds, the largest
circuits that R′ ever sees have size at most sc(n), and the largest hypotheses it sees
have size at most q(sc(n)), so overall R′ still runs in time poly(q(sc(n))) = poly(n)
time.

Definition of reduction to learning

As with Definition 5.1.2 of Karp reductions from a decision problem to learning, one
could argue that our notion of black-box reduction (Definition 5.2.1) is not sufficiently
general. Our definition requires a query to a learning oracle to be a set of labeled
examples drawn independently from a distribution (X, Y). One could consider a
more general notion, where the reduction does not explicitly construct a distribution
(X, Y) but instead generates directly a set of labeled examples. Clearly our notion
also satisfies this second notion, although the converse may not hold.
However, we argue (informally) that reductions under the second notion cannot be
more powerful than reduction under our notion. If the set of labeled examples are not
drawn independently from some distribution (X,Y), then the input does not satisfy
the promise that the learning oracle requires, so there is no reason that the learning
oracle should produce a useful hypothesis in response. In particular, different learning
oracles could respond with different arbitrary hypotheses to such inputs violating the
promise. In such a case, if the reduction were to always succeed given a learning
oracle, it must in some sense be solving the problem without using the power of the
learning oracle.

5.2.2 Collapsing Pessiland and Minicrypt

Theorem 5.2.3 gives as a corollary a reduction from average-case hardness of L to
the existence of standard one-way functions. In Impagliazzo’s taxonomy of worlds
[Imp95], a world where average-case hardness of NP exists is called “Pessiland” and
a world in which one-way functions exist is called “Minicrypt”. It is not known
whether the two are in fact the same, or whether NP can be hard on average and
yet one-way functions do not exist.

73

Corollary 5.2.5. Suppose there is a constant-adaptive black-box reduction R from L
to agnostic learning. Then if L is hard on average, then there exists OWF.

This corollary follows from Theorem 5.2.3 and the following lemma, which says that
a reduction from (the worst-case hardness of) L to inverting AIOWF also gives a
reduction that uses the average-case hardness of L to build OWF.

Lemma 5.2.6. Suppose there exists a c-adaptive efficient-oracle reduction R that
decides L given access to an AIOWF inverter for some c = poly(n). Then if there
exists a hard-on-average distribution Z for L, then there exists OWF.

Proof. Recall that if Z is hard on average for L, this means Z is samplable by a
uniform family of polynomial-size circuits (which for simplicity we also call Z), and
there exists δ0(n) ≥ 1/poly(n) such that for all efficient algorithms A,

Pr
z←RZ,A

[A(z) = L(z)] ≤ 1− δ0(n)

Let z = Z(ζ) denote the sample drawn from Z using random coins ζ.
Let R = (R1, . . . , Rc,M) be the decomposition of R into its adaptive rounds. Let
1−δR(n) denote the success probability that R requires of its inverting oracle in order
to guarantee that it decides L correctly with probability 1− 2−n.
Let Dj(z, ω, i, r, a⃗) be the circuit that outputs (z, ω, i, Cz,ω

j,i (r)) where z is an instance
of L, ω are random coins for R, i ∈ [m], and r are random coins for sampling Cz,ω

j,i ,
where Cz,ω

j,1 , . . . C
z,ω
j,m are the circuits that Rj queries its inverting oracle in the j’th

round given z, ω, and a⃗, which are answers to all queries from previous rounds. Notice
that each Dj is uniformly computable, i.e. it is completely defined by R1, . . . , Rj.
We will now prove by induction on (a slight modification of) the Dj that DOWF exist
(and therefore by Theorem 2.3.5 OWF also exist).
Define D′1(ζ, ω, i, r) = D1(Z(ζ), ω, i, r). If D′1 is a DOWF then we are done. So
suppose not, set δmin = min(δR(n), δ0(n)), and set δ′(n) = (δmin

2mc
)2/m. Since D′1 is not

a DOWF, then there exists an efficient I1 satisfying

∆((ζ, ω, i, r), I1(D
′
1(ζ, ω, i, r); ρ1)) ≤ δ′(n) (5.2.1)

where the randomness is over ζ, ω, i, r and ρ1, which is the coin tosses of I1.
Inductively, let D′j be the circuit that computes D′j(ζ, ω, i, r, ρ⃗) = Dj(Z(ζ), ω, i, r, a⃗),
i.e. D′j computes a random query from the j’th round of queries. Here ρ⃗ = (ρ1, . . . , ρj−1)
are random coins such that for each j′ ∈ [j − 1], ρj′ contains enough random coins to
invoke Ij′ m independent times, and a⃗ are the inverses for rounds 1, . . . , j − 1 that
are obtained using ρ⃗ as random coins. Since I1, . . . , Ij−1 are efficient by the inductive
assumption, therefore D′j is efficient. If D′j is a DOWF then we are done, otherwise
there exists an inverter Ij such that

∆((ζ, ω, i, r), Ij(D
′
j(ζ, ω, i, r; ρ⃗); ρj)) ≤ δ′(n)

74

But at least one of the D′j for j ∈ [c] must be a DOWF, since otherwise D′c could
be used to decide L correctly with high probability. Namely, if D′c is not a DOWF,
then there exists Ic satisfying Inequality 5.2.1 for the c’th round. We will show that
this implies an efficient method, using the efficient inverters I1, . . . , Ic, that decides
whether or not z ∈ L.
To prove this, define (ζ, ω, ρ⃗) to be δ-good for Ij if for all i ∈ [m],

∆((ζ, ω, i, r), Ij(D
′
j(ζ, ω, i, r, ρ⃗); ρj)) ≤ δ

where the randomness is only over r and the random coins ρj of I.
We will apply the following averaging argument:
Claim 5.2.7. For any D and any δ(n) ≥ 1/poly(n), suppose there exists an efficient
I such that

∆((ζ, ω, i, r), I(D(ζ, ω, i, r, ρ⃗); ρ)) ≤ δ2

m

over random ζ, ω, i, r, ρ⃗, ρ. Then, with probability 1− δ, (ζ, ω, ρ⃗) is δ-good for I.

Proof. The claim is proven by an averaging argument. Given the hypothesis:

∆((ζ, ω, i, r), I(D(ζ, ω, i, r, ρ⃗); ρ)) < δ2

m

where the randomness is over ζ, ω, i, r, ρ⃗, ρ. Applying Markov’s inequality shows that
with probability 1− δ over (ζ, ω, ρ⃗)

∆((ζ, ω, i, r), I(D(ζ, ω, i, r, ρ⃗); ρ)) < δ
m

for fixed ζ, ω, ρ⃗ and random r, ρ. By averaging, for each i it holds that

∆((ζ, ω, i, r), I(D(ζ, ω, i, r, ρ⃗); ρ)) < δ

which implies that ζ, ω, ρ⃗ is δ-good for I.

Applying this claim to our setting, suppose that none of the D′j are DOWF, namely
for each j ∈ [m], there exists an inverter Ij such that

∆((ζ, ω, i, r), Ij(D
′
j(ζ, ω, i, r; ρ⃗); ρj)) ≤ δ′(n)

where as we defined previously δ′(n) = (δmin
2mc

)2/m and δmin = min(δ0(n), δR(n)). We
deduce from Claim 5.2.7 that for each j ∈ [m] with probability 1− δmin

2mc
it holds that

(ζ, ω, ρ⃗) is δmin
2mc

-good for Ij, and so therefore by a union bound, with probability 1− δmin
2m

it holds that (ζ, ω, ρ⃗) is δmin
2mc

-good for all Ij simultaneously.
Define the distribution Qj = (z, ω, a⃗j) where z ←R Z, ω is uniform and a⃗j is a
vector of inverses to all of the queries that Dj asks in rounds 1, . . . , j. In Qj, these
inverses a⃗ are generated using the inverters I1, . . . , Ij with random coins ρ⃗. Define
Qideal

j = (z, ω, a⃗j) identically, except the answers a⃗j are generated by an ideal inverter
I ideal that samples from the exact conditional distribution of preimages.

75

Claim 5.2.8. For any δ > 0, conditioned on (ζ, ω, ρ⃗) being δ-good for I1, . . . , Ij, it
holds that ∆(Qj, Q

ideal
j) ≤ jmδ.

Proof. • For j = 1, it holds from the triangle inequality because there are at most
m queries in the first round and each one deviates by at most δ.

• Assume it holds for j−1, then since the queries for the j’th round are computed
from Qj−1, this means by the inductive hypothesis that the distribution of
queries is at most (j − 1)mδ-far in Qj versus Qideal

j . Since (ζ, ω, ρ⃗) is good for
Ij and there are at most m queries in the j’th round, it therefore follows that
this introduces at most an additional mδ to the statistical difference.

This implies that conditioned on (ζ, ω, ρ⃗) being δmin
2mc

-good, it holds that ∆(Qc, Q
ideal
c) ≤

δmin
2

. But Qc completely determines an execution of R on a random input z ←R Z,
since Qc contains (1) ζ which describes the input z = Z(ζ), (2) ω which determines
the random tape of the reduction, (3) all the oracle responses for all rounds.
Let M be the efficient verification procedure from the reduction R that takes such a
complete execution and decides whether to accept or reject. Let G be the event that
(ζ, ω, ρ⃗) are good, then

∆((Qc,M(Qc)),(Q
ideal
c ,M(Qideal

c)))

= Pr[G] ·∆((Qc,M(Qc) | G), (Qideal
c ,M(Qideal

c) | G))

+ Pr[G] ·∆((Qc,M(Qc) | G), (Qideal
c ,M(Qideal

c) | G))

≤ δmin
2m

+ ∆((Qc,M(Qc) | G), (Qideal
c ,M(Qideal

c) | G))

<δmin(
1
2

+ 1
2m

)

<3
4
δmin

Running M on Qc is identical to running the reduction R on z ←R Z using the
inverting oracle Ij in the j’th round. This is efficient, since we assumed all the Ij are
efficient. From the above fact that (Qc,M(Qc)) and (Qideal

c ,M(Qideal
c)) are 3

4
δmin-close

Pr[RI1,...,Ic(z) = L(z)] = Pr
Qc

[M(Qc) = L(z)] > Pr
Qideal

c

[M(Qideal
c) = L(z)]− 3

4
δmin

Since Qideal
c is generated using a perfect distributional inverting oracle, by the cor-

rectness of R it follows that M decides correctly given Qideal
c with probability 1−2−n,

which allows us to conclude that

Pr[RI1,...,Ic(z) = L(z)] ≥ 1− 3
4
δmin − 2−n ≥ 1− δ0(n)

But this contradicts the average-case hardness of L, so therefore at least one of the
D′j must be a DOWF.

76

Interpretation: if L is NP-complete, then such a reduction from the average-case
hardness of L to inverting OWF would collapse two worlds in Impagliazzo’s hierar-
chy, “Minicrypt” and “Pessiland”. Our result highlights this connection between the
hardness of learning with a well-studied question in complexity and cryptography.
Our result does not say that proving such a reduction is impossible or implausible, but
rather it would, in the process, solve a longstanding open problem in cryptography.
Without giving much idea as to whether or not such a reduction exists, it nevertheless
indicates the difficulty of proving such a reduction.

5.3 Strongly black-box reductions
Collapsing “Minicrypt” and “Pessiland” would be a great breakthrough, but it is not
implausible. Indeed, common wisdom in complexity and cryptography says that not
only does cryptography exist, but stronger forms of cryptography such as public-
key encryption and oblivious transfer exist (which correspond to the “Cryptomania”
world in Impagliazzo’s hierarchy).
In this section we further restrict the reduction in the way it accesses the hypothesis
returned by the learning oracle by requiring that the reduction access the returned
hypotheses as black boxes and should decide L correctly regardless of how the hy-
potheses are implemented.
Definition 5.3.1. A reduction R is a strongly black-box reduction from L has the
following form. R takes access to an O taking a set of labeled examples S and an
additional unlabeled x. Each query R makes is of the following form: R constructs
a distribution (X, Y), and generates S = {(xi, yi)}i≤poly(n) consisting of polynomially
many independent labeled examples drawn from (X,Y). Given O such that with
probability 1− 2−n over the choice of examples S, O satisfies

err((X, Y),O(S, ·)) ≤ err((X,Y), SIZE(n2)) + ε

then with probability 1− 2−n RO(z) outputs 1 if z ∈ L and outputs 0 if z /∈ L.

One can think of this is as an “information-theoretic” version of learning, since the
learning oracle does not return a hypothesis to the reduction as a circuit but instead
gives the reduction oracle access to a good hypothesis. Thus, it is possible for the
learning oracle to give access to inefficient hypotheses.
We will show that the existence of a strongly-black-box reduction of arbitrary poly-
nomial adaptivity from NP-hardness to agnostic learning implies a black-box re-
duction from NP-hardness to inverting AIOWF, bypassing the constant-adaptivity
restriction of Theorem 5.2.3. Furthermore, we show that the existence of a strongly-
black-box non-adaptive reduction from NP-hardness to agnostic learning implies that
NP ⊆ coAM, which contradicts Conjecture 1.2.1 and thus is considered not only
surprising, but in fact implausible.

77

5.3.1 Strongly-black-box adaptive reductions

In the case of adaptive reductions, we can lift the limitation that c = O(1) in Theo-
rem 5.2.3.

Theorem 5.3.2. For any c = poly(n), suppose there exists a strongly-black-box
c-adaptive reduction R from deciding L to agnostic learning. Then there exists a
black-box c-adaptive reduction R′ from deciding L to inverting AIOWF.

Proof. The proof is essentially identical to the proof of Theorem 5.2.3. We construct
D1, . . . , Dc as there, except that Dj does not depend on the code of hypotheses
returned in previous rounds, it only depends on the input-output behavior of the
hypotheses from previous rounds. Because of this, the complexity of R′ does not
depend on the complexity of the inverter I, and so the complexity of R′ does not
blow up in each round. This means that R′ can successfully emulate the execution of
R for c = poly(n) rounds in polynomial time. Furthermore, because R′ only uses the
input-output behavior of the hypotheses in turn only depends on the input-output
behavior of I, it holds that R′ is black-box.

Since a black-box reduction is also efficient-oracle (but not necessarily vice versa), we
can apply Lemma 5.2.6, which says that a reduction from deciding L in the worst
case to inverting AIOWF also gives a reduction that uses the average-case hardness
of L to build OWF. We can conclude that

Corollary 5.3.3. For any c = poly(n), suppose there exists a strongly-black-box c-
adaptive reduction R from deciding L to agnostic learning. Then if L is hard on
average, then there exists OWF.

5.3.2 Strongly-black-box non-adaptive reductions

The following result says that non-adaptive strongly black-box reductions from NP-
hardness to learning do not exist unless NP ⊆ coAM.

Theorem 5.3.4. Suppose there exists a non-adaptive strongly-black-box reduction
from L to learning. Then L ∈ coAM.

This theorem is proved in two steps. First, we show that a non-adaptive strongly-
black-box reduction from L to learning implies a special kind of non-adaptive reduc-
tion from L to inverting AIOWF. Then we adapt a result of [BT06, AGGM06] to
show that such a special non-adaptive reduction from L to inverting AIOWF implies
that L ∈ coAM.
The special kind of reduction we use guarantees that for each input z, the reduction
only queries the AIOWF to invert a single circuit and not multiple circuits.

78

Definition 5.3.5. A reductionR from L to inverting AIOWF is called fixed-auxiliary-
input if for each z, there exists some circuit C such that all queries R(z) makes to
the inverter I are for the same circuit C, namely R(z) never makes two queries of the
form I(C, y), I(C ′, y′) for C ̸= C ′.

Of course, which circuit C the reduction queries can vary depending on the input z.

Proof of Theorem 5.3.4. The proof of Theorem 5.3.4 follows from two lemmas:
Lemma 5.3.6. Suppose there exists a non-adaptive strongly-black-box reduction R
from L to learning. Then there exists a fixed-auxiliary-input non-adaptive black-box
reduction R′ from L to inverting AIOWF.

Proof of Lemma 5.3.6. One simply needs to inspect the proof of Theorem 5.2.3 for
the case that R is non-adaptive. Since the reduction R is non-adaptive, the querying
circuit D1 is the only circuit that R queries to the oracle, and so the reduction is fixed-
auxiliary-input. Furthermore, as observed in Theorem 5.3.2, because R is strongly-
black-box, the reduction R′ obtained from Theorem 5.2.3 is black-box because R only
uses the input-output behavior of the returned hypotheses.

The second step is to prove that a fixed-auxiliary-input non-adaptive black-box re-
duction from L to inverting AIOWF implies that L ∈ coAM.
Lemma 5.3.7. Suppose there exists a fixed-auxiliary-input non-adaptive black-box
reduction from L to inverting AIOWF. Then L ∈ coAM.

Proof of Lemma 5.3.7. We apply the main idea of [FF93, BT06, AGGM06], which is
to construct an AM protocol for the complementary language L. Let R denote the
reduction that is identical to R except it flips the answer, i.e. if R outputs the bit b,
R outputs 1 − b. Let C be the fixed auxiliary input for the reduction. The verifier
in the protocol for L will execute the reduction R, which is efficient except for the
inverter queries. To obtain answers to these inverter queries, the verifier sends the
queries to the all-powerful prover.
By the correctness of R, whenever x ∈ L the prover can respond to all queries with
honest inverses, causing the verifier to accept. However, when x /∈ L the prover could
conceivably cheat by answering queries maliciously; for example, it could lie and say
that a query y is not invertible even when it is, or it could adaptively choose the
inverses in a way that adversely affects R’s execution. To prevent such cheating,
[AGGM06] uses techniques from [FF93, BT06] to force the prover to behave honestly.
We can in fact apply [AGGM06]’s proof verbatim to our setting except replacing their
use of a OWF with our AIOWF and replacing calls to their OWF-inverting oracle to
our AIOWF-inverting oracle (with fixed auxiliary input).
Because the proof of [AGGM06] is complex and outside the scope of this paper, we
illustrate the reason [AGGM06] can be adapted to the setting of fixed-auxiliary-input

79

reductions by discussing a special case. Let us assume that R is a non-adaptive fixed-
auxiliary-input reduction from NP-hardness to inverting AIOWF where R’s auxiliary
input is a circuit for an injective function.
Namely, we assume that R makes one round of queries (C, x1), . . . , (C, xk) where
C is the fixed auxiliary input mapping {0, 1}p → {0, 1}r in a one-to-one way (in
particular, r ≥ p). We will describe the protocol in this case and informally argue
its correctness, referring the reader to [AGGM06] for full details as well as the proof
of the general case. We will use the Goldwasser-Sipser lower-bound protocol [GS89]
as well as the Fortnow upper-bound protocol [For87] (see also [AH91]), for which we
include a reference in Appendix A.1.
Assume that all the xi in R’s single round of queries are identically (but not neces-
sarily independently) distributed. This is without loss of generality because we can
randomly permute the queries of R to achieve this kind of query distribution. Let D
denote the circuit mapping {0, 1}q → {0, 1}r that takes q random coins and samples
from R’s query distribution.
Heavy queries protocol: for an appropriate polynomial α(n), the verifier engages
in a protocol with the prover to compute the probability that the reduction asks a
heavy query. A heavy query y is one such that Pr[D(Uq) = y] ≥ α(n)2−p, i.e. it
occurs with much larger probability under D(Uq) than it does under C(Up). The
heavy queries protocol computes pheavy = Pr[D(Uq) heavy] by doing the following.

1. The verifier samples polynomially many ri ←R Uq and computes yi = D(ri) and
sends the yi to the prover. The prover responds with claimed sizes si.

2. The verifier asks the prover to use the Goldwasser-Sipser lower-bound protocol
to prove that |D−1(yi)| ≥ si.

3. Using the hidden sample ri, the verifier asks the prover to use the Fortnow
upper-bound protocol to prove that |D−1(yi)| ≤ si.

The verifier observes the fraction of the yi that satisfy si2
−q ≥ α(n)2−p and uses it

as his estimate for pheavy.
This protocol either gives a good approximation for pheavy or aborts: if the prover tries
to cheat in too many instances of the lower/upper bound protocols, the soundness
guarantees of the lower/upper bound protocols ensure that with high probability, at
least one of the upper or lower bound protocols will abort and cause the verifier to
abort.
Hiding protocol: let D′ denote the following distribution: sample a random element
from y ←R D conditioned on y not being heavy. The hiding protocol computes
pimage = Pry←RD′ [∃x, C(x) = y]. The protocol is as follows:

1. The verifier samples poly(n) many ri ←R Uq and computes yi = D(ri). The
verifier also samples poly(n) many xi ←R Up and computes y′i = C(xi). The

80

number of y′i sampled according to C should be much larger than the number
of yi sampled according to D.

2. The verifier randomly permutes the set of yi, y
′
i and call the set of queries

z1, . . . , zk. Let S ⊆ [k] be the subset of {zi} that are drawn according to
D.

3. The prover replies for each zi with one of the following. First, if zi is a heavy
query, then the prover claims it is heavy and engages the verifier in a proof
of heaviness (using the Goldwasser-Sipser lower-bound protocol). Let H ⊆ [k]
denote the set of queries that the prover claims is heavy. Second, if zi is not
heavy and there exists x such that C(x) = zi, the prover sends x to the verifier.
Finally, if zi is not heavy and zi is not in the image of C, the prover replies that
zi is not in the image of C.

4. The verifier checks that all the heavy queries are indeed heavy (i.e. the proofs
of heaviness pass), and if not aborts. The verifier checks that |H∩S|

|S| is roughly
equal to pheavy; if it is too different, then the verifier aborts.

5. Next the verifier checks that for every i ∈ [k] \ S, the prover responded with a
correct preimage of zi (which the verifier knows because it sampled preimages
along with the queries for i ∈ [k] \ S), and if not it aborts.

6. The verifier checks that for every i ∈ S each preimage xi that the prover sent is
valid by checking C(xi) = yi for the corresponding yi. Let d be the number of
queries in S \H that have a (valid) preimage under C. Let d

|S\H| be the verifier’s
estimate for pimage.

The challenge is to prevent the prover from claiming that a query y drawn from D
does not have a preimage under C when in fact it does. The idea is that by mixing
queries drawn from D among many queries drawn from C, the verifier can “hide” the
queries from D among the queries for C. For y drawn from C, the verifier can make
sure the prover is behaving honestly since it knows that these queries have preimages,
and in fact it can sample the preimage along with y.
This hiding works as long as the queries fromD do not occur with too high probability,
which is why it needs to exclude the heavy queries from its calculations. For the
queries that are not heavy, the prover cannot tell whether they were drawn from C
or for D. Since the prover cannot cheat on queries drawn from C and it cannot tell
which queries are drawn from C and which from D, the prover has no choice but to
answer (almost) all of the queries honestly.
Emulation: in this phase the verifier emulates the execution of the reduction R many
times in parallel, using the prover to answer oracle queries. Let y⃗ denote the vector
of queries that a single execution of the reduction queries, and let y⃗1, . . . , y⃗ℓ denote
the vectors of queries from the ℓ = poly(n) parallel executions of R that the verifier

81

emulates. The verifier asks the prover to answer these queries along with additional
checks as follows:

1. The verifier sends y⃗1, . . . , y⃗ℓ to the prover.

2. The prover responds for each query whether or not it is heavy. Let Q be the
set of all queries. Let H denote the set of queries the prover claims are heavy.
The prover engages the verifier in a lower-bound protocol to prove that each
query in H is heavy. The verifier aborts and rejects if any of these lower-bound
protocols fail. The verifier checks that |Q∩H|

|Q| is roughly pheavy; if it is too far,
the verifier aborts.

3. The prover responds for each query whether or not it is in the image, and if so
it also includes the preimage. Let I denote the set of queries that are in the
image; the verifier checks that for every query in I, the corresponding preimage
the prover provides indeed maps to that query. The verifier checks that |I\H||Q\H|
is roughly pimage. If any of these checks fail, the verifier aborts and rejects.

4. The verifier selects a random i ∈ [ℓ] and outputs the result of emulating the
reduction using y⃗i. It responds to the reduction’s queries as follows: if the query
is heavy, then the verifier responds that the query is not in the image, and if the
query is not heavy, then the verifier responds with the corresponding inverse it
obtained from the prover.

The reason this strategy succeeds is because the prover cannot cheat on many of the
queries: first, the prover cannot claim a query is in the image when it is not, since
there exists no valid preimage it could send to the verifier as a witness. Therefore, the
prover can only cheat by saying that a query is not in the image when it actually is,
therefore biasing pimage to be smaller than it actually is. He cannot bias it by much,
since otherwise the verifier would reject. If he cannot bias it by much, then when
the verifier picks a random execute to use in the last step, with high probability the
verifier will pick an execution where the prover has given completely correct answers
with the exception of the heavy queries. But since the reduction should work even if
its inverting oracle makes mistakes, the reduction should be able to tolerate mistakes
on the heavy queries, of which there cannot be too many. Therefore by the correctness
of the reduction the verifier obtains the correct answer with high probability.
General case: to generalize this proof, it is necessary to use more clever protocols
to prevent the prover from cheating not only by falsely claiming that queries are
outside the image, but also to prevent the prover from adversarially picking the “worst
possible preimage” based on the queries it has seen so far (since in the general case
there may be many preimages). This might make the verifier’s emulation of the
reduction output the incorrect answer, since the reduction assumes that its oracle
is not malicious and its responses should not depend on the queries seen so far.

82

[AGGM06] solves this by using a hashing mechanism to force the prover to provide
an almost-random preimage, and their technique applies in our setting as well.

This concludes the proof of Lemma 5.3.7 and therefore also of Theorem 5.3.4

Remark 5.3.8. With a fixed-auxiliary-input reduction, the above protocol needs only
to compute pheavy and pimage with respect to the fixed auxiliary input. If the reduction
queried multiple auxiliary inputs, then the above protocol would need to compute
pheavy and pimage with respect to each auxiliary input. This is because the inverting
oracle promises to successfully invert with high probability for every auxiliary input,
and therefore the verifier must be able to prevent the prover from cheating on every
auxiliary input.
This becomes problematic if the fixed-auxiliary-input condition is removed, since the
auxiliary inputs and inverter queries could be sampled dependently. Namely, the
reduction R could sample jointly a circuit Cω and a query yω and ask (Cω, yω) to the
inverter. This means that the query distribution of Cω is the conditional distribution
on y given that the auxiliary input is Cω, and this conditional distribution could be
unsamplable by efficient algorithms
To see a concrete (albeit contrived) example of why the technique of [BT06, AGGM06]
breaks down, consider a reduction R that queries its inverting oracle as follows: first
sample a uniformly random y, then apply a one-way function f to get C = f(y),
interpret C as a circuit, and query (C, y). In order to compute pheavy and pimage, the
verifier would need to sample more y from the query distribution corresponding to
auxiliary input C. But this conditional distribution is f−1(C), which by assumption
is hard to sample because f is one-way. Therefore the above proof breaks down when
we remove the fixed-auxiliary-input condition.

5.4 Summary
In summary, we have shown that the hardness of learning lies between ZK and NP.
Furthermore, if we consider standard techniques, it is unlikely that we can prove that
the hardness of learning is equivalent to either the hardness of NP or the non-triviality
of ZK. These relationships are depicted in Figure 5.4.
Open questions: what can one say about (not necessarily strongly) black-box reduc-
tions from NP-hardness to learning that have super-constant rounds of adaptivity?
Can one use highly adaptive or non-black-box techniques to prove that P ̸= NP
implies learning is hard?

83

ZK ̸= BPP

Theorem 2.4.4ONMLHIJKRel
��

AIOWF exist

Corollary 4.1.1ONMLHIJKFB
��

PAC learning is hard

Theorem 4.2.1 GFED@ABC
��ZZ∀∃

OO

@A

GF

Theorem 4.2.2 ONMLHIJK��HHCB

//

ONMLHIJKFB
��

Agnostic learning is hard

ONMLHIJKFB
��

P ̸= NP

Corollary 5.2.5, Corollary 5.3.3,
Theorem 5.3.4

ONMLHIJK��HHFB∗

OO

Figure 5.1: Summary of results about learning

84

Chapter 6

Lower-bounds for failure
localization

The Internet is an indispensable part of our society, and yet its basic foundations re-
main vulnerable to attack. Secure routing protocols seek to remedy this by not only
providing guarantees on the correct setup of paths from sender to receiver through
a network (e.g. secure BGP [KLS00]), but also by verifying that data packets are
actually delivered correctly along these paths. Packet delivery is surprisingly sus-
ceptible to simple attacks; in the current Internet, packets are typically sent along
a single path from sender to receiver, and so a malicious node along the data path
can easily drop or modify packets before they reach their destination. To detect and
respond to such attacks, the networking community has recently been studying mon-
itoring and measurement protocols that are used to obtain information about packet
loss events on a data path (e.g. [CK06, DG01, MSWA03, SRS+04, PS03, AHNRR02,
AKWK04, MCMS05, AMCS04]). The motivation for such protocols is twofold. First,
they provide the sender with information that he can use during path setup to se-
lect a single, high-performance path to the receiver from the multiple available paths
through the network [HR08]. Second, since Internet service is a contractual business,
where senders pay nodes along the data path to carry their packets, information from
Internet measurement protocols is highly valuable for enforcing contractual obliga-
tions between nodes. In fact, Laskowski and Chuang [LC06] recently argued that
this information is not only valuable, but also necessary to counter the Internet in-
dustry’s growing trend towards degraded path performance. Note that if Internet
measurement protocols are used to enforce contractual obligations, nodes may have
an economic incentive to bias the information obtained from these protocols.
In this chapter we provide a rigorous cryptographic examination of secure monitoring
protocols that are robust even in the presence of malicious nodes on the data path.
In particular, we study techniques that allow a sender to localize the specific links
along the data path where packets were dropped or modified.

85

6.1 Overview of results
We make the following contributions to the study of secure failure-localization path-
quality monitoring protocols (in the rest of the chapter we call these simply failure
localization or FL protocols). Throughout the chapter, we use the word “packet” to
denote data that the sender wishes to transmit, and “message” to refer to both data
packets and FL-protocol-related messages.

Definition. In Section 6.2, we give the first formal definition of security for failure
localization protocols. An important feature of our definition is that it accounts
for the fact that messages can be dropped in the Internet for benign reasons like
congestion.

Lower bounds. We prove lower bounds that highlight the kind of care necessary
to design protocols that are simultaneously secure against adversarial behaviour in
an environment where benign congestion occurs. Specifically, in Section 6.3 we prove
that all nodes on the path must participate in the failure localization protocol by
sharing keys and performing cryptographic operations. We do so in three steps:

1. Proving that every secure FL protocol requires a key infrastructure, or more
precisely, that intermediate nodes and Alice and Bob must all share some secret
information between each other.

2. Proving that a one-way function can be constructed from any secure FL proto-
col.

3. Giving evidence that any practical secure FL protocol must use these keys
in a cryptographic way at every node (e.g. , it does not suffice to use the
secret information with some simple, non-cryptographic, hash functions as in
[DG01]). We show that in every black-box construction of such a protocol
from a random oracle, where at most O(logn) protocol messages are added per
packet, then every intermediate node must query the random oracle. We note
that known protocols designed for Internet routers currently avoid using public-
key operations, non-black-box constructions, or adding more than a constant
number of protocol messages per packet.

Implications of our results. Our lower bounds raise questions about the practi-
cality of deploying FL protocols. In small highly-secure networks or for certain classes
of traffic, the high key-management and cryptographic overhead required for FL pro-
tocols may be tolerable. However, FL protocols may be impractical for widespread
deployment in the Internet; first because intermediate nodes are owned by competing
business entities that may have little incentive to set up a key infrastructure and agree
on cryptographic protocols, and second because cryptographic computations are ex-
pensive in the core of the Internet, where packets must be processed at extremely

86

high speeds (about 2 ns per packet). Thus, our work can be seen as a motivation for
finding security functionalities for the Internet that are more practical than failure
localization.

Impact of our methodology. We believe that our methodology can be more
widely applied to problems in security. Although efficiency of black-box construc-
tions has been widely studied in theoretical cryptography (e.g. [KST99, GT00,
GGK03, HHRS07]), we believe that it can be leveraged even more to deepen our
understanding of problems in areas of cryptography or security closer to practice.
That is, in order to understand the extent to which a particular security require-
ment is achievable, one should first define a formal model of security and then see
to what extent black-box techniques can be used to build secure protocols realizing
the security requirement. Black-box techniques roughly capture the limit of “prac-
tical” cryptography, and therefore if one can prove lower-bounds on the efficiency
of black-box constructions realizing the security requirement (as in the case of our
work on failure localization), this would imply that the security requirement is too
stringent and should be relaxed or modified so that the black-box lower-bounds may
be circumvented.

6.1.1 Related work

This work is related to [GXB+08], which gives formal definitions and lower bounds for
the simpler task of path-quality monitoring (PQM). In a PQM protocol the sender only
wishes to detect if a failure occurred, rather than localize the specific faulty link along
the path, and our lower bounds do not apply in this simpler setting. We construct
highly efficient schemes that are secure for this simpler problem, where intermediate
nodes do not need to actively participate in the protocol. This suggests that path-
quality monitoring is a more reasonable security goal than failure localization.
In addition to the FL protocols from the networking literature [AKWK04, AHNRR02,
PS03, MCMS05, AMCS04, WBA+07], our work is also related to the work on se-
cure message transmission (SMT) begun by Dolev, Dwork, Waart, and Yung in
[DDWY93]. In SMT, a sender and receiver are connected by a multiple parallel
wires, any of which can be corrupted by an adversary. Here, we consider a single
path with a series of nodes that can be corrupted by an adversary, instead of mul-
tiple parallel paths. Furthermore, while multiple parallel paths allow SMT protocols
to prevent failures, in our single path setting, an adversarial intermediate node can
always block the communication between sender and receiver. As such, here we only
consider techniques for detecting and localizing failures.

6.1.2 Historical notes

The work in this chapter was first presented in the paper [BGX08].

87

RA (Alice) � R1 � R2 � . . . � RK � RB (Bob)

Figure 6.1: A path from Alice to Bob via K intermediate nodes.

6.2 Definition of Secure Failure Localization

In a failure localization (FL) protocol, a sender Alice wants to know whether the
packets she sends to receiver Bob arrive unmodified, and if not, to find the link
along the path where the failure occurred (see Figure 6.1). We say a failure or fault
occurs when a data packet that was sent by Alice fails to arrive unmodified at Bob.
Following the literature, we assume that Alice knows the identities of all the nodes
of the data path. We work in the setting where all traffic travels on symmetric paths
(i.e. intermediate nodes have bi-directional communication links with their neighbors,
and messages that sender Alice sends to receiver Bob traverse the same path as the
messages that Bob sends back to Alice). We say that messages travelling towards
Alice are going upstream, and messages travelling towards Bob are going downstream.
An adversary Eve can occupy any set of nodes on the path between Alice and Bob,
and can add, drop, or modify messages sent on the links adjacent to any of the nodes
she controls. She can also use timing information to attack the protocol.

Localizing links, not nodes. It is well known that an FL protocol can only
pinpoint a link where a failure occurred, rather than the node responsible for the
failure. To see why, refer to Figure 6.1, and suppose that (a) Eve controlling node
R2 becomes unresponsive by ignoring all the messages she receives from R1. Now
suppose that (b) Eve controls node R1 and pretends that R2 is unresponsive by
dropping all communication to and from R2. Because cases (a) and (b) are completely
indistinguishable from Alice’s point of view, at best Alice can localize the failure to
link (1, 2).

Congestion. Congestion-related packet loss is widespread on the current Internet,
caused by protocols like TCP [Jac88] that naturally drive the network into a state of
congestion. Our definition accounts for congestion by assuming links can drop each
message independently with some probability. One could come up with other mod-
els for congestion (e.g. allowing Eve to specify the distribution of congestion-related
packet loss), however, we use independent drops for the sake of simplicity. Further-
more, assuming that congestion is not controlled by the adversary only strengthens
our negative results and makes our model more realistic.

6.2.1 Security definition

Let n be the security parameter. A failure localization protocol consists of an efficient
initialization algorithm Init taking n uniformly random bits and generating keys for

88

each node, and efficient node algorithms Alice,Bob, R1, . . . , RK which take in a key
and communicate with each other as in Figure 6.1. The Alice algorithm takes in a
packet that she wants to send to Bob. If communication is successful, then the Bob
algorithm outputs the packet that Alice sent. Our security definitions are game-based:

Definition 6.2.1 (Security game for FL). The game begins when Eve chooses a
subset of nodes E ⊆ {1, . . . , K} that she will occupy for the duration of the game.
The Init algorithm is then used to generate keys for each node, and Eve is given the
keys for the nodes i ∈ E that she controls. We define an oracle Source that generates
data packets d for the Alice algorithm to send. We allow Eve to choose the packets
that the Source oracle generates, subject to the condition that she may not choose
the same packet more than once during the game. We make this assumption because
there is natural entropy in packet contents, due to TCP sequence numbers and IP
ID fields [DG01]. To enforce this assumption in practice, protocol messages can be
timestamped with with an expiry time, such that with high probability (over the
entropy in the packet contents), no repeated packets are sent for the duration of the
time interval for which the protocol messages are valid. We allow Eve to add, drop, or
modify any of the messages sent on the links adjacent to the nodes she occupies. We
include congestion in our model by requiring that, for each message sent on each link
on the path, the link goes down or drops the message with some constant probability
ρ > 0. Notice that this means that a failure can happen at links not adjacent to a
node occupied by Eve.
We introduce the notion of time into our model by assuming that the game proceeds
in discrete timesteps; in each timestep, a node can take in an input and produce an
output, and each link can transmit a single message. (Thus, each timestep represents
an event occurring on the network.) Because it is expensive to have securely syn-
chronized clocks in a distributed system like the Internet we do not allow the honest
algorithms to take timing information as an input. However, to model timing attacks,
we assume that Eve knows which timestep that the game is in.

Our security definition uses the the game defined in Definition 6.2.1:

Definition 6.2.2 (Security for FL). In the security game, Eve gets to interact with
the Source oracle and the “honest” node algorithms as in Definition 6.2.1, until she
decides to stop. For each packet sent, Alice must output either

√
(i.e. not raise an

alarm) or a link ℓ (i.e. raise an alarm and localize a failure to ℓ). We assume that the
game is sequential: Alice must output a decision for each data packet before starting
to transmit the next data packet (see remarks below). We say that an FL protocol
is secure if the following hold:

1. (Secure localization). For every packet d sent by the Source oracle that is not
successfully output by Bob, then Alice outputs a link ℓ such that either (a)
link ℓ is adjacent to a node occupied by Eve, or (b) link ℓ went down due to

89

congestion for one of the messages (including FL protocol messages) associated
with sending packet d from Alice to Bob.

2. (No false positives). For every packet d sent by the Source oracle that is suc-
cessfully output by Bob, for which there was no congestion, and for which Eve
does not deviate from the protocol, Alice outputs

√
.

We now discuss some properties of our security definition.

Benign and malicious failures. Our security definitions require Alice to accu-
rately localize failures, but these failures may be caused by Eve, or may be the result
of benign causes, such as congestion. We do not require Alice to distinguish between
benign or malicious (i.e. due to Eve) failures, because Eve can always drop packets
in a way that “looks like” congestion.

Sequential games. For simplicity, in our security game we required Alice to make
FL decisions before she sends a new data packet. This is to capture the fact that
such protocols should provide “real-time” information about the quality of the paths
she uses, and so we did not allow Alice to make decisions only after sending many
packets. We emphasize that the sequential assumption does not prevent Alice from
keeping state and using information from past packets in order to make FL decisions.

Movements of the adversary. Our model does not allow Eve to move from node
to node in a single security game. This assumption makes sense when Eve models
a Internet service provider that tries, for business reasons, to bias the results of FL
protocol. Furthermore, when Eve is an external attacker or virus that compromises
a router, “leaving” a router means that the legitimate owner of the router removed
the attacker from the router, e.g. by refreshing its keys. We model this key refresh
process as a re-start of the security game. Furthermore, in practice “movements” to a
new router happen infrequently, since an external attacker typically needs a different
strategy each time it compromises a router owned by a different business entity.

Generalizations. All our results generalize to the setting where congestion
rates, false alarm thresholds, and detection thresholds are different per link; we set
them all equal here for simplicity. Our negative results also hold for the weaker
adversary model where Eve can occupy only one node and the Source oracle generates
independent (efficiently-samplable) packets from a distribution that is not controlled
by Eve. In [BGX08] we also study statistical notions of security, where Alice is
not required to discover the location of individual failures but should discover if an
adversary is disrupting a particular link consistently over many packets.

90

6.3 Security requires keys required at each node
We now argue that in any secure FL scheme Alice requires shared keys with Bob and
the intermediate nodes, and Alice, Bob and each intermediate node must perform
cryptographic operations. We only argue for intermediate nodes R2, . . . , RK ; R1 is a
border case which requires neither keys nor crypto because we assume Alice is always
honest.
Since FL provides strictly stronger security guarantees than path-quality monitoring,
it follows from the results in [GXB+08] that in any secure FL protocol, Alice and Bob
must have shared keys. We also have the following theorem that proves that in any
secure FL protocol, each intermediate node must share keys with some Alice:

Theorem 6.3.1. Suppose Init generates some auxiliary information auxi for each
node Ri for i = 1, ..., K,Alice,Bob. A FL protocol cannot be secure if there is any
node i ∈ {2, . . . , K} such that (auxAlice, aux1, . . . , auxi−1) and auxi are independent.

Proof. Suppose Ri has auxi that is independent of (auxAlice, . . . , auxi−1). Then, the
following two cases are indistinguishable from Alice’s view: (a) Node Ri+1is malicious
and blocks communication on link (i, i+1), and (b) Eve occupies node Ri−1, and drops
packets while simulating case (a) by picking an independent aux′i and running Ri(aux′i)
while pretending as if (i, i+1) is down. These two cases are indistinguishable because
auxi is independent of (auxAlice, . . . , auxi−1), and so Alice will localize the failure to
the same link in both case (a) and (b). But this breaks security, since Ri+1, Ri−1 do
not share a common link.

6.4 Security requires crypto at each node
[GXB+08] proves the following:

Theorem 6.4.1 ([GXB+08]). The existence of a secure PQM protocol implies the
existence of an infinitely-often one-way function (i.o.-OWF).

Since one-way functions are equivalent to many cryptographic primitives (in the sense
that these primitives exist if and only if one-way functions exist [IL89]), this result
can be interpreted to mean that nodes participating in any secure PQM protocol
must perform cryptographic computations. Since FL gives a strictly stronger security
guarantee than PQM, we also have that in any FL protocol, some node on the data
path must perform cryptography. However, Theorem 6.4.1 only implies that the entire
system performs cryptography. We want to prove that any secure FL protocol requires
each intermediate node R1, . . . , RK to perform cryptography. Because it is not clear
even how to formalize this in full generality, we instead apply the methodology of
Impagliazzo and Rudich [IR89] to do this for black-box constructions of FL protocols

91

from a random oracle RO. We model “performing cryptography” as querying the
random oracle, and show that in such a secure FL protocol each node must query
the RO. In the language of Definition 1.3.3, we will prove there exists no relativizing
reduction that uses OWF to construct a black-box FL protocol where one node never
queries the OWF can be broken. We do this by showing that for every such protocol,
relative to the oracle (RO,PSPACE) there exists OWF but the protocol can be
broken.
Before stating the theorem and proof, we set up some terminology. We will use the
notion of an exchange to denote a data packet and all the FL-protocol-related mes-
sages associated with that packet. Because our game is sequential (see Section 6.2),
Alice’s must decide to localize a link ℓ or output

√
before the next exchange begins.

Let ⟨Ri−1, Ri⟩ denote the distribution of transcripts (i.e. all messages sent and re-
ceived) on link (i− 1, i). Because we allow the nodes to keep state, this distribution
may depend on what happened in all previous exchanges; therefore ⟨Ri−1, Ri⟩ denotes
the distribution of the next exchange concatenated with the transcript of all previous
exchanges that have occurred so far in the security game. We assume without loss of
generality that the number of messages per exchange is even, and that odd messages
go from Ri−1 to Ri and even messages go from Ri to Ri−1. We let r denote the number
of rounds in an exchange, where one round consists of a message from Ri−1 to Ri and
a response from Ri to Ri−1. Protocols where the number of messages per exchange
grows quickly with n are impractical and so we restrict our attention to “practical”
protocols where each exchange contains at most r = O(logn) rounds.

Theorem 6.4.2. There is no relativizing reduction that uses OWF to construct a FL
protocol such that at least one node Ri for i ∈ {2, . . . , I} never calls the OWF, and
where the maximum number of messages per exchange is O(logn).

In fact, we prove something stronger, namely the following:

Theorem 6.4.3. Fix a fully-black-box reduction that uses a random oracle to build a
secure FL protocol such that at least one node Ri for i ∈ {2, . . . , I} never calls the RO
and where the maximum number of messages per exchange is O(logn). Then there
exists an efficient algorithm relative to (PSPACE,RO) that breaks the security of the
scheme with non-negligible probability over the choice of random oracle RO and the
internal randomness of the algorithm.

Theorem 6.4.2 follows from Theorem 6.4.3 by observing that relative to (RO,PSPACE),
one-way functions exist.
Proof overview: We construct an adversary, which we call Eve, that controls
node Ri−1 and whose goal is to impersonate Ri. Eve is allowed oracle access to
(RO,PSPACE). The attack is similar in spirit to the attack in Theorem 6.3.1, but
now auxi is secret, so Eve must first learn auxi. Eve’s overall strategy consists of two
phases:

92

1. Learning to impersonate. Sitting at Ri−1, Eve observes at most t exchanges (t is
polynomial in n) on the link (i−1, i), where in each exchange Eve asks Source to
transmit a uniformly random data packet. She then uses the learning algorithm
of Naor and Rothblum [NR06] to obtain a pair of impersonator algorithms
A′, B′, whose interaction generates a distribution over transcripts for the t+1’th
exchange. A′ impersonates nodes Alice, R1, . . . , Ri−1 and B′ impersonates nodes
Ri, . . . , RK ,Bob.

2. Dropping and impersonating. On the t+ 1’th exchange, for each message going
from Ri−1 to Ri, Eve replies with a response she computes herself using a mod-
ified version of B′; she does not send any messages to Ri. (See Definition 6.4.6
for what this modified version of B′ means).

Now, Eve at Ri−1 will break security if she manages to use B′ to impersonate an
honest exchange during which link (i, i + 1) is down. (This breaks security since
link (i, i + 1) is not adjacent to Ri−1.) The crucial observation is that here, Eve
need only impersonate node Ri since Ri is disconnected from Ri+1, and that Ri does
not “protect” its secret keys by calling the RO. Intuitively, Eve should be able to
impersonate Ri since any computations that Ri does are easy to invert relative to
(PSPACE,RO).
To prove the theorem, we shall show that with non-negligible probability > (10/ρ)r =
1/poly(n) where r = O(logn) is the number of rounds in an exchange, the following
are 1/100-indistinguishable: (a) Alice’s view when link (i, i + 1) is down and (b)
Alice’s view when Ri−1 drops a packet but impersonates link (i, i + 1) being down
using B′.

The learning algorithm

Recall (Section 6.2) that Alice is allowed to use information from past exchanges to
help her decide how to send messages in new exchanges. Fortunately, the algorithm of
Naor and Rothblum [NR06] is specifically designed to deal with this, and guarantees
the following:

Lemma 6.4.4 (Based on [NR06]). Relative to a (PSPACE,RO)-oracle, there exists an
efficient algorithm that observes at most t = O(n

ε4) honest exchanges ⟨Ri−1, Ri⟩1,...,t and
then, with probability > 1−ε, outputs efficient impersonator algorithms R′0, . . . , R′K+1

such that an impersonated transcript ⟨R′i−1, R
′
i⟩t+1 (given by simulating the interac-

tion of all the impersonator algorithms) for the exchange t + 1 is distributed ε-close
in statistical distance to the honest transcript ⟨Ri−1, Ri⟩t+1 for exchange t+ 1.

Let A′ denote the algorithm that emulates the interaction of R′0, . . . , R′i−1 and B′

denote the algorithm that emulates the interaction R′i, . . . , R
′
K+1 that satisfy the

guarantee above. The transcript ⟨A′, B′⟩ is therefore exactly the transcript ⟨R′i−1, R
′
i⟩.

93

To prove the theorem we have to overcome several challenges.

1. Naor-Rothblum algorithm only guarantees that ⟨A′, B′⟩ and ⟨Ri−1, Ri⟩ are sta-
tistically close, but does not guarantee that ⟨A′, B′⟩ ◦RO is statistically close to
the “honest” transcript ⟨Ri−1, Ri⟩ ◦ RO, i.e. if the value of RO is also known.
Fortunately, we will be able to exploit the fact that with probability ρr all the
messages sent from Ri to Ri−1 are computed independent of RO. This happens
when congestion causes link (i, i+1) to go down for the duration of an exchange
(so that Ri, who never calls the RO, has to compute all his upstream messages
on his own).

2. Eve has no control, or even knowledge, of when congestion causes this event to
occur. Indeed, the fact that ⟨A′, B′⟩ is close to ⟨Ri−1, Ri⟩ does not guarantee
that the same holds if we condition on congestion occurring (i, i + 1). For this
reason, Eve cannot simply use R′i (instead of R′i, ..., R′K ,Bob′) to impersonate
the honest Ri conditioned on link (i, i+1) being down. Fortunately, we can show
that with probability ρr, A′, B′ will generate a “useful” impersonated transcript
that is ε/ρr-statistically close to the honest transcripts conditioned on the event
that link (i, i+1) is down. Eve does not necessarily know when she impersonates
a useful transcript; she simply has to hope that she is lucky enough for this to
happen.

3. Even when Eve is lucky enough to obtain a useful transcript, what we really
want to prove is that (a) ⟨Ri−1, B

′⟩ conditioned on getting a useful transcript is
statistically close to (b) ⟨Ri−1, Ri⟩ conditioned on congestion occuring on link
(i, i + 1). That is, we care not about ⟨A′, B′⟩ which is the transcript of the
interaction of a pair of impersonated algorithms, but rather ⟨Ri−1, B

′⟩ which is
the interaction of honest algorithms R0, . . . , Ri−1 and impersonated algorithms
R′i, . . . , R

′
K+1. We prove that, with probability at least (ρ/2)r, the impersonator

algorithmB′ interacting with honestR0, ...Ri−1 still generates a useful transcript
such that the statistical distance between (a) and (b) is at most 1/100.

The Interaction Lemma

We address these challenges in the next lemma. We state a general version of the
lemma here, for which we first need a few definitions. Let A,B and A′, B′ be two
(different) pairs of algorithms such that the statistical difference between the tran-
scripts ⟨A,B⟩ and ⟨A′, B′⟩ is bounded by ε. The parties are randomized, i.e. A can
use random coins ωA, B can use random coins ωB and furthermore we allow A,B to
use shared random coins, which we call ωAB. The same holds for A′, B′.
We need to define A’s point of view in an interaction. Even though A is “supposed”
to talk to B, this view can be defined for any partner, not just B.

94

Definition 6.4.5 (View of A, viewA). viewA(A,C) is a distribution over (τ, ωA, ωAB)
where τ is a transcript of the interaction between A,C and ωA, ωAB are the private
and shared random coins of A. viewA(A,C) is obtained by first sampling uniform
coins ωA, ωAB, and then generating τ by interacting with C using these random coins.
When C = B, we allow B to use the shared random coins ωAB, otherwise we assume
C generates its messages independently of ωA, ωAB.

In the sequel, we will use a modified B′ that samples its messages by “reverse sam-
pling”.

Definition 6.4.6 (Reverse sampling for B′). Given a prefix of messages τ2j−1 =
(m1, . . . ,m2j−1), B′ samples the 2j’th message by sampling from the conditional dis-
tribution ⟨A′, B′⟩2j | ⟨A′, B′⟩2j−1 = τ2j−1. Here, ⟨A′, B′⟩2j denotes the 2j’th message
of ⟨A′, B′⟩, while ⟨A′, B′⟩2j−1 denotes the concatenation of the first 2j − 1 messages
of ⟨A′, B′⟩.

In general this “reverse sampling” is not efficient, but it is efficient relative to a
PSPACE oracle. Furthermore, it is clear from the definition that if one generates
the prefix τ2j−1 according to ⟨A′, B′⟩2j−1, then the transcript τ2j−1 ◦m2j is generated
from the same distribution ⟨A′, B′⟩2j regardless of whether we think of m2j as being
computed in the normal way by B′’s next message function, or as being computed
using the reverse sampling procedure.
We are finally ready for the statement of the Interaction Lemma.

Lemma 6.4.7 (Interaction Lemma). Let (A,B), (A′, B′) be two pairs of algorithms
that interact for at most r rounds to produce a transcript. Suppose that

∆(⟨A,B⟩, ⟨A′, B′⟩) ≤ (ρ/10)4r

Suppose there exist events E1, . . . , Er over the internal randomness of A,B such that
both the following hold:

1. ∀j ∈ [r], conditioned on Ej, the first j messages from B to A are independent
of A’s coins ωA, ωAB.

2. Pr[Ej | Ej−1] ≥ ρ.

Then there exist η ≥ (ρ/2)r, and distributions over the transcripts Y, Z such that the
distribution viewA(A,B′) is a convex combination ηY + (1− η)Z of two distributions
Y and Z such that Y satisfies:

∆(Y, (viewA(A,B) | Er)) ≤ 1/100

95

Proof of Theorem 6.4.3

Proof of Theorem 6.4.3. Lemma 6.4.7 tells us that, with probability η, ⟨A,B′⟩ will
generate a “useful” transcript Y that is 1/100-statistically close to the honest tran-
script ⟨A,B⟩ conditioned on event Er occurring. (Z is the “not useful” transcript
that is generated with probability 1 − η.) We can now apply Lemma 6.4.7 to our
setting:

• A to be honest algorithms R0, R1, . . . , Ri−1.

• B to be honest algorithms Ri, . . . , RK+1.

• A′ to be the impersonator algorithms R′0, . . . , R′i−1 given by Lemma 6.4.7.

• B′ to be the impersonator algorithms R′i . . . , R′K+1 given by Lemma 6.4.7.

• Ej to be the event that link (i, i+1) is congested for the messages 1, . . . , j that
are sent downstream from B to A. (Then, Er is the event that link (i, i + 1)
drops all messages from B to A in the exchange).

Now, notice that since Ri does not query the random oracle, conditioned on Ej the
first j messages of B are independent of A because they are computed by Ri only.
Next, note that Pr[Ej | Ej−1] = ρ because each message is lost to congestion at
random independently.
To combine everything, Eve sets ε = (ρ/10)4r and applies the learning algorithm of
Lemma 6.4.4 to obtain with probability at least ≥ (1− ε) a pair of algorithms A′, B′
that is ε-close to ⟨A,B⟩ (notice that Eve is efficient since ε = 1/poly(n)).
Conditioned on getting such A′, B′, then Eve uses B′ to interact with A by gener-
ating a transcript according to the distribution ⟨A,B′⟩ using reverse sampling, as in
Definition 6.4.6. This reverse sampling is efficient since Eve has a PSPACE oracle.
Applying the Interaction Lemma (Lemma 6.4.7) we get that with probability η =
(ρ/2)r = 1/poly(n), Eve is lucky enough to generate a useful transcript such that the
view of Alice when Eve drops a packet at Ri−1 and impersonates using R′i, . . . , R′K+1

is 1/100-indistinguishable from the situation where link (i, i+ 1) is completely down
for the duration of an exchange. Alice localizes the same link in both cases with
probability 99/100 because her output depends solely on her view, so this breaks
security since link (i, i+ 1) is not adjacent to Eve at Ri−1.

6.4.1 Proof of Lemma 6.4.4

First a word about random oracles, which we treat as a function RO : {0, 1}∗ → {0, 1}.
We look at the RO using the “lazy evaluation” methodology: points in RO are not
fixed until they have been queried. When an efficient algorithm executes with a

96

random oracle, it can make only an efficient number of queries. This means that
RO can be viewed as a polynomially long string representing the responses to the
algorithm, rather than as an infinitely large function, and replacing RO by a different
string RO′ (of equal length) amounts to replacing the real random oracle with a “fake
random oracle”. Thus, in the following, when we say that an oracle outputs a fake
random oracle consistent with the output h of an algorithm A, we mean it outputs
a string RO′ ∈ {0, 1}poly(n) such that running A with the responses encoded in RO′
generates h.
We apply Naor and Rothblum’s [NR06] learning algorithm for adaptively changing
distributions (ACD). The ACD we work with is defined as a pair (Init, D) of random
processes, where Init is a key generation process that takes a uniform string s and
generates secrets −→aux = Init(s), and D is a process that takes the initial state −→aux and
a history Hi−1 and uses them to generate a sample τi of an exchange. The history
Hi−1 consists of tuples (rj, τj) for all j ≤ i− 1, where rj was the random string used
to generate the transcript τj. Notice that the τj are the outputs of the ACD, while
the initial state s and the rj remain secret.

Theorem 6.4.8 ([NR06]). There exists a PSPACE algorithm that, for any ACD
(Init, D), observes at most t = O(n/ε4) samples from D and generates with probability
> 1−ε a fake secret state −→aux′ and fake history H ′t such that simulating D with −→aux′, H ′t
generates a sample tau′t+1 that is distributed ε-statistically close to an honest sample
generated by D using −→aux, Ht.

Proof of Lemma 6.4.4. Apply Theorem 6.4.8 where the Init function is our key gener-
ation function, and D is the algorithm that simulates the interaction of all algorithms
R0, . . . , RK+1 given a uniformly random data packet to be sent, including simulat-
ing all the congestion along links between the nodes, and outputs the transcript
along link (i − 1, i). To generate the transcript of the i’th exchange, D takes input
−→aux, Hi−1,ROi, ri where ROi are responses to new queries to the random oracle that
D makes in generating the transcript, ri is the fresh internal randomness used to
generate the i+ 1’th transcript, and Hi−1 = (τj,ROj, rj)j≤i−1 is a history of previous
transcripts, responses of the random oracle, and internal randomness. Notice that
because D simulates all the nodes, there is no distinction between how the learning
algorithm treats ROi and ri.
After observing t = O(n/ε4) exchanges, using the learning algorithm of Theorem 6.4.8,
we get with probability > 1 − ε fake secrets −→aux′, H ′t consistent with the transcripts
and such that generating the t + 1’th transcript using the fake secrets is ε-close to
generating the t+ 1’th transcript using the honest secrets. Set R′i to be Ri but with
the secrets in −→aux′, H ′t hardwired into the algorithm.
Efficiency is clear because we allow a PSPACE oracle and because the number of
samples is O(n/ε4).

97

6.4.2 Proof of Lemma 6.4.7

We will usually let τ refer to a fixed transcript, and σ to refer to distributions over
transcripts. Define σj = ⟨A,B⟩j, the random variable for the first j messages in the
partial transcript of ⟨A,B⟩. Similarly define σ′j = ⟨A′, B′⟩j and σalt

j = ⟨A,B′⟩j. We
will decompose A,B,A′, B′ into next-message functions Aj, Bj, A

′
j, B

′
j for 1 ≤ j ≤

r, where we assume that the parties alternate turns communicating, and 2r is the
maximum number of messages transmitted. Recall from Definition 6.4.6 that the
next message function B′j(τ) on input τ2j−1, which is a prefix of 2j − 1 messages, is
defined by “reverse sampling” the distribution (⟨A′, B′⟩2j | ⟨A′, B′⟩2j−1 = τ).

Understanding A’s view

Definition 6.4.9 (Conditional and alternating views). We define two different views
of a transcript that are related to viewA, which we call condviewA and altviewA.

1. Conditional view: condviewA(τj) for a partial transcript τj of the first j messages
is the distribution over strings (τ, ωA, ωAB) obtained by sampling uniformly ran-
dom ωA, ωAB, ωB such that when A,B interact using these coins, they produce
⟨A,B⟩j = τj. If there are no such ωA, ωAB, ωB, set ωA = ωAB = ⊥.

2. Alternating view: condviewA(τj) for a partial transcript τj = (m1, . . . ,mj) of
the first j messages is the distribution over strings (τ, ωA, ωAB) obtained by
sampling uniformly random ωA, ωAB such that when using these random coins
and the responses m2,m4, . . . contained in τj, A produces m1,m3, . . . consistent
with τj. If there are no such ωA, ωAB, set ωA = ωAB = ⊥.

Let condviewA(A,C) = condviewA(⟨A,C⟩) and altviewA(A,C) = altviewA(⟨A,C⟩). We
next observe some properties about viewA, condviewA, altviewA.
Proposition 6.4.10. Properties of condview, altview, view:

1. condviewA(A,B) = viewA(A,B)

2. altviewA(A,B′) = viewA(A,B′)

3. Conditioned on Ej, condviewA(⟨A,B⟩2j) = altviewA(⟨A,B⟩2j).

Proof. 1. This holds because sampling ωA, ωAB, ωB and then generating the tran-
script is identical to first sampling a transcript ⟨A,B⟩ and then generating
random coins consistent with the transcript.

2. This holds because B′ is independent of A, therefore the transcript generated
by sampling ωA, ωAB and then having A use these random coins to interact
with B′ is identical to first generating the transcript ⟨A,B′⟩ and then reverse
sampling consistent coins ωA, ωAB.

98

3. Conditioned on Ej, B’s messages are independent of A’s, and therefore reverse
sampling (ωA, ωAB) consistent with A’s messages in the transcript is identical
to sampling consistent (ωA, ωAB, ωB) consistent with the transcript, then out-
putting (ωA, ωAB).

We will prove the following by induction:

Claim 6.4.11. Set ε = (ρ/10)4r, and suppose for each i, 0 ≤ i ≤ r, there exist
ηi ≥ ρ/2 and random variables Yi, Zi such that σalt

2i =
∏i

j=1 ηjYi +(1−
∏i

j=1 ηj)Zi and
∆((condviewA(σ2i) | Ei), altviewA(Yi)) ≤ δi, where δi =

√
ε(10/ρ)i.

Proof of Lemma 6.4.7

Proof of Lemma 6.4.7. Apply this claim for the case of σ2r = ⟨A,B⟩ and σalt
2r =

⟨A,B′⟩ to obtain Yr, Zr, η =
∏r

j=1 ηj ≥ (ρ/2)r such that both the following hold:

σalt
2r = ηYr + (1− η)Zr (6.4.1)

∆(altviewA(Yr), (condviewA(σ2r) | Er)) ≤
√
ε(10/ρ)r < 1/100 (6.4.2)

By setting Y = altviewA(Yr), Z = altviewA(Zr) and using the observation from Propo-
sition 6.4.10 (Item 2) that altviewA(σalt

2r) = altviewA(A,B′) = viewA(A,B′), we get
from Equation 6.4.1 the convex decomposition viewA(A,B′) = ηY + (1 − η)Z. Fi-
nally, by using the observation from Proposition 6.4.10 (Item 1) that conditioned on
Er it holds that condviewA(σ2r) = condviewA(A,B) = viewA(A,B), we obtain from
Inequality 6.4.2 that

∆(Y, (viewA(A,B) | Er)) < 1/100

This completes the proof of Lemma 6.4.7 modulo the proof of the Claim 6.4.11 to
which we now proceed.

Proof of Claim 6.4.11

We use the following technical lemmas. The first lemma says that if X,X ′ are sta-
tistically close and X can be decomposed as X = ηY + (1 − η)Z, then X ′ can be
decomposed similarly such that corresponding parts of X and X ′’s decomposition are
statistically close.

Lemma 6.4.12. For any random variables X,Y, Z,X ′ satisfying X = ηY +(1− η)Z
and ∆(X,X ′) ≤ ε, there exists random variables Y ′, Z ′ and η′ ∈ [η ± ε] such that
X ′ = η′Y ′ + (1− η′)Z ′ and ∆(Y, Y ′) ≤ 3ε

2η
.

99

Proof. Define a randomized process F acting on the support of X, where for each x ∈
supp(X), F (x) = 1 with probability p(x) = η Pr[Y =x]

Pr[X=x]
and F (x) = 0 with probability

1− p(x), and say F (x) = 0 for all x /∈ supp(X). We can check that

Pr[F (X) = 1] = E[F (X)] =
∑

x∈supp(X)

Pr[X = x]η Pr[Y =x]
Pr[X=x]

=
∑

x∈supp(X)

η Pr[Y = x] = η

and similarly F (X) = 0 with probability 1−η. Furthermore, we claim that Y = (X |
F (X) = 1) since for every x,

Pr[X = x | F (X) = 1] = Pr[F (X)=1∧X=x]
Pr[F (X)=1]

= Pr[F (x)=1] Pr[X=x]
η

= Pr[Y = x]

and similarly Z = (X | F (X) = 0).
Since ∆(X,X ′) ≤ ε, this means that Pr[F (X ′) = 1] = η′ ∈ [η ± ε], and also
∆((F (X), X), (F (X ′), X ′)) ≤ ε. Define Y ′ = (X ′ | F (X ′) = 1) and Z ′ = (X ′ |
F (X ′) = 0). We may derive:

ε ≥ ∆((F (X), X), (F (X ′), X ′))

= ∆(η(1, Y) + (1− η)(0, Z), η′(1, Y ′) + (1− η′)(0, Z ′))

Viewing the random variables as the characteristic vectors of their distributions, and
using the ℓ1 formulation of statistical distance, we have:

= 1
2
∥η(1, Y) + (1− η)(0, Z)− η′(1, Y ′)− (1− η′)(0, Z ′)∥1

Since coordinates of the form (1, Y) are disjoint from coordinates of the form (0, Z),
we have the equality:

= 1
2
∥η(1, Y)− η′(1, Y ′)∥1 + 1

2
∥(1− η)(0, Z)− (1− η′)(0, Z ′)∥1

≥ 1
2
∥η(1, Y)− η′(1, Y ′)∥1

= 1
2
∥ηY − ηY ′ + (η′ − η)Y ′∥1

≥ 1
2
η∥Y − Y ′∥1 − 1

2
|η′ − η|

≥ η∆(Y, Y ′)− ε/2

which, rearranged, gives us that ∆(Y, Y ′) ≤ 3ε
2η

.

For notational convenience, we will let both XY and (X,Y) denote the random vari-
able that takes a sample from the random variable X concatenated with a sample
from Y . We will also let Y (x) denote the conditional distribution Y | X = x and
likewise Y ′(x) denotes Y ′ | X ′ = x. The following lemma says that if two pairs of vari-
ables XY and X ′Y ′ are statistically close, then for most values of x, the conditional
distribution Y | X = x and Y ′ | X ′ = x are also close.

100

Lemma 6.4.13. Let X, Y,X ′, Y ′ be such that ∆(XY,X ′Y ′) ≤ ε. Say that x ∈
supp(X) ∩ supp(X ′) is δ-bad if ∆(Y (x), Y ′(x)) > δ. Then Pr[X is bad] ≤ 2ε/δ

Proof. Suppose not, then we can derive by the triangle inequality that

∆(XY,X ′Y ′) ≥ ∆(XY, (X,Y ′(X)))−∆((X, Y ′(X)), X ′Y ′)

The second term is bounded ∆(X,X ′) which in turn is at most ε by hypothesis, so

≥ ∆(XY, (X,Y ′(X)))− ε
≥ Pr[X bad]∆(XY | X bad, (X,Y ′(X)) | X bad)− ε
> 2ε− ε ≥ ε

a contradiction.

The next lemma says that if two variables X,X ′ are close, and with high probability
two dependent variables Y, Y ′ are also close, then the joint distributions XY,X ′Y ′
are close.

Lemma 6.4.14. Let X,Y,X ′, Y ′ be random variables where ∆(X,X ′) ≤ ε1. We
say that x ∈ supp(X) ∩ supp(X ′) is ε2-bad if ∆(Y (x), Y ′(x)) ≥ ε2, and suppose
Pr[X ε2-bad] ≤ ε3. Then ∆(XY,X ′Y ′)) ≤ ε1 + ε2 + ε3.

Proof. This follows from the triangle inequality:

∆(XY,X ′Y ′) ≤ ∆((X, Y), (X, Y ′(X))) + ∆((X, Y ′(X)), (X ′, Y ′))

≤ ∆(XY, (X, Y ′(X)) + ε

≤ Pr[X ε2-bad] ∆((XY | bad), (X, Y ′(X) | bad))

+ (1− Pr[X ε2-bad])ε2 + ε1

≤ ε3 + ε2 + ε1

We are now ready to prove Claim 6.4.11.

Proof of Claim 6.4.11. The base case i = 0 is trivial. Now assume the inductive
hypothesis for i− 1, namely that there exists ηi−1, Yi−1, Zi−1 such that

∆((condviewA(σ2i−2) | Ei−1), altviewA(Yi−1)) ≤ δi−1 (6.4.3)

and

σalt
2i−2 =

i−1∏
j=1

ηjYi−1 + (1−
i−1∏
j=1

ηj)Zi−1 (6.4.4)

101

Apply the i’th next message function Ai to both terms in Inequality 6.4.3 to get
(because this process is identical in both cases):

∆((condviewA(σ2i−1) | Ei−1), altviewA(ζ2i−1)) ≤ δi−1 (6.4.5)

where for compactness we have set ζ2i−1 = Yi−1Ai(altviewA(Yi−1)).
Overview of remainder of proof: since ⟨A,B⟩, ⟨A′, B′⟩ are statistically close, applying
Lemma 6.4.13 and Lemma 6.4.14 means that there is little chance that, on the next
message (generated by B′), the statistical distance increases by much. This allows us
to apply Lemma 6.4.12, which allows us to extend the decomposition of σ2i into the
part where Ei occurs and Ei does not occur into a decomposition of σalt

2i into parts
such that the corresponding parts are also statistically close.

Applying Lemma 6.4.13: Roughly, we want to say that given ⟨A,B⟩, ⟨A′, B′⟩ that
are close, it is extremely unlikely that at any point that we get a partial transcript
σ2i−1 that will cause the next message to have large statistical distance.
We know by hypothesis that ∀i,

∆((condviewA(σ2i)), (condviewA(σ′2i))) ≤ ∆(σ2i, σ
′
2i) ≤ ∆(⟨A,B⟩, ⟨A′, B′⟩) ≤ ε

To apply Lemma 6.4.13, set

X = condviewA(σ2i−1), Y = Bi(condviewA(σ2i−1))

X ′ = condviewA(σ′2i−1), Y ′ = B′i(σ
′
2i−1)

noticing that condviewA(σ2i) = XY and condviewA(σ′2i) = X ′Y ′. We say for a fixed
τ2i−1 that condviewA(τ2i−1) is bad if ∆(Bi(condviewA(τ2i−1)), B

′
i(τ2i−1)) > 2

√
ε, and

from Lemma 6.4.13 we know that, for each i, the probability that condviewA(σ2i−1)
is bad is at most

√
ε. Furthermore, by hypothesis Pr[Ei−1] ≥ ρi−1 so therefore

Pr[condviewA(σ2i−1) bad | Ei−1] ≤
√
ε/ρi−1 (6.4.6)

Applying Lemma 6.4.14: Next, we want to say that because (σ2i−1 | Ei−1)
and ζ2i−1 along with their views are close, and because (condviewA(σ2i−1) | Ei−1) is
rarely bad (Inequality 6.4.6) therefore applying the next message function B′i will not
increase the distance by much. Formally, set

X = (condviewA(σ2i−1) | Ei−1), Y = (Bi(condviewA(σ2i−1)) | Ei−1)

X ′ = altviewA(ζ2i−1), Y ′ = B′i(ζ2i−1)

Applying Lemma 6.4.14 gives us that

∆(XY,X ′Y ′) ≤
√
ε/ρi−1 + 2

√
ε+ δi−1

102

In particular, by truncating XY and X ′Y ′ to remove the random coins and only
keeping the transcript, it follows that

∆((σ2i | Ei−1), ζ2i) ≤
√
ε/ρi−1 + 2

√
ε+ δi−1

where we have set ζ2i = ζ2i−1B
′
i(ζ2i−1).

Applying Lemma 6.4.12: Finally, because (σ2i | Ei−1) and ζ2i are close, and
because (Ei | Ei−1) happens often, we can decompose ζ2i so that part of it is close to
(σ2i | Ei). Set X = (σ2i | Ei−1) and let Y, Z be the conditional distributions when Ei

occurs or not. By hypothesis the conditional event (Ei | Ei−1) occurs with probability
ρ. By Lemma 6.4.12, this means there exists ηi ≥ ρ − (

√
ε/ρi−1 + 2

√
ε + δi−1) and

random variables Yi, Zi such that ζ2i = ηiYi + (1− ηi)Zi such that

∆((σ2i | Ei), Yi) ≤ 3
√

ε
2ρi + 3

√
ε

ρ
+ 3

2ρ
δi−1 (6.4.7)

Setting δi−1 =
√
ε(10/ρ)i−1 and assuming ε = (ρ/10)4r, implies that ηi ≥ ρ/2, and

so the RHS of Inequality 6.4.7 is bounded by δi =
√
ε(10/ρ)i. Applying altviewA

to both terms in Inequality 6.4.7 and then applying the fact that condviewA(σ2i) =
altviewA(σ2i) conditioned on Ei (Proposition 6.4.10, Item 3) gives us our desired
statement:

∆((condviewA(σ2i) | Ei), altviewA(Yi)) ≤
√
ε(10/ρ)i

Finally, notice that using Equation 6.4.4, we get

σalt
2i = σalt

2i−2Ai−1(σ
alt
2i−2)B

′
i−1(σ

alt
2i−2Ai−1(σ

alt
2i−2))

=
i−1∏
j=1

ηjYi−1Ai(Yi−1)B
′
i(Yi−1Ai(Yi−1)) + (1−

i−1∏
j=1

ηj) . . .

=
i−1∏
j=1

ηjζ2i + (1−
i−1∏
j=1

ηj) . . .

=
i∏

j=1

ηjYi +
i−1∏
j=1

ηj(1− ηi)Zi + (1−
i−1∏
j=1

ηj) . . .

=
i∏

j=1

ηjYi + (1−
i∏

j=1

ηj) . . .

where “. . .” is a convex combination of the Yj, Zj’s that we do not care about. Setting
ε = (ρ/10)4r we are guaranteed that ηi ≥ ρ/2 for all i, so we have that

∏i
j=1 ηi ≥

(ρ/2)i = 1/poly(n).

103

6.5 Open problems
We gave lower bounds on the key-management and cryptographic overhead of secure
FL protocols. The problem of bounding the storage requirements in an FL protocol
is also still open. Furthermore, our results here only apply to FL on single symmetric
paths between a single sender-receiver pair. An interesting question would be to
consider FL for asymmetric paths, where the packets Bob sends back to Alice may
take a different path than the packets that Alice sends to Bob. Another interesting
direction is to consider FL in networks where packets can travel simultaneously on
multiple paths, as in the SMT framework [DDWY93].

104

Chapter 7

Derandomizing Chernoff bounds
for matrix-valued random variables

7.1 Introduction

Chernoff bounds are extremely useful throughout theoretical computer science. Intu-
itively, they say that a random sample approximates the average, with a probability of
deviation that goes down exponentially with the number of samples. Typically we are
concerned with real-valued random variables, but recently several applications have
called for large-deviation bounds for matrix-valued random variables. Such a bound
was given by Ahlswede and Winter [AW02] (see Theorem 7.2.6 and Theorem 7.2.8
for a precise statement of their bounds).
In particular, the matrix-valued bound seems useful in giving new proofs of proba-
bilistic constructions of expander graphs [AR94] and also in the randomized rounding
of semi-definite covering problems, with further applications in quantum information
theory [AW02].
In this chapter we use the method of pessimistic estimators, originally formulated in
[Rag88], to derandomize the Chernoff bound of [AW02], and in the process deran-
domize the Alon-Roichman theorem and the randomized rounding of covering SDP’s.
Pessimistic estimators succeeded earlier work on the method of conditional probabili-
ties, which was already described in the first edition of [Spe94]. Ideas similar to those
of [Rag88] also appeared in [BS84].
Arora and Kale [AK07] independently reached results similar to the ones presented
in this chapter that imply the applications to constructing expanding Cayley graphs
and semi-definite covering programs.
The chapter is organized as follows. In Section 7.2 we define the linear algebra
notation we use and prove the Chernoff bounds of Ahlswede-Winter, given in The-
orem 7.2.6 and Theorem 7.2.8. In Section 7.3 we review the method of pessimistic

105

estimators and how it is used to derandomize algorithms. In Section 7.4 we construct
pessimistic estimators for the Ahlswede-Winter Chernoff bounds. We apply these
estimators to derandomize the construction of Cayley expanders in Section 7.5 and
to derandomize the rounding of integer covering SDP’s in Section 7.6. We then state
a generalization of our main theorem to the abstract setting of finite-dimensional
Hilbert spaces.

7.1.1 Historical notes

The results in this chapter were originally published in [WX08].

7.2 Matrix-valued random variables and Ahlswede-
Winter’s Chernoff Bound

We will work with real symmetric d× d matrices, which we will denote Md. We let
Id denote the identity matrix in Md, and will write simply I when the dimension
is clear. For any A ∈ Md we let λ1(A) ≥ . . . ≥ λd(A) denote the eigenvalues of A
in non-increasing order. Recall that every matrix A ∈ Md is diagonalizable in an
orthonormal basis.
We will measure distance between matrices using the matrix norm ∥A∥ = maxv ∥Av∥/∥v∥ =
maxi |λi(A)|. We will also frequently use the trace, Tr(A) =

∑d
i=1 λi(A). It is

well-known that for any orthonormal basis v1, . . . , vd ∈ Rd we have that Tr(A) =∑d
i=1⟨vi, Avi⟩, where ⟨·, ·⟩ denotes the usual inner product over Rd.

We say that a matrix A ∈ Md is positive semi-definite (p.s.d.) if all its eigenvalues
are non-negative. We will use the fact that A is p.s.d. iff for all v ∈ Rd, ⟨v, Av⟩ ≥ 0.
We let A ≥ 0 denote that A is p.s.d. We use the ordering of symmetric matrices given
by this definition, namely A ≤ B iff B −A ≥ 0. For two matrices A ≤ B, we will let
[A,B] denote the set of all symmetric matrices C such that A ≤ C and C ≤ B.
We will work with the matrix exponential, which is defined by

exp(A) =
∞∑

ℓ=0

Aℓ

ℓ!

Recall that the matrix exponential is convergent for all matrices. Furthermore, it is
not hard to see for A ∈ Md that exp(A) is diagonalizable in the same basis as A,
and that λi(exp(A)) = eλi(A) for all 1 ≤ i ≤ d. Also, for all A ∈ Md, it holds that
exp(A) ≥ 0.
We will consider matrix-valued random variables of the following form. We let
f : [n] → [−Id, Id], where [n] = {1, . . . , n}. Let X be a distribution (not neces-
sarily uniform) over [n], and consider the variable f(X). This is a natural extension

106

of bounded discrete random variables over the reals, which may be thought of as
functions f : [n]→ [−1, 1]. We will let the expectation of f(X) be the obvious thing:
E[f(X)] =

∑n
i=1 Pr[X = i]f(i). Note that because Tr is linear, E and Tr commute:

E[Tr(f(X))] = Tr(E[f(X)]). We let supp(X) denote the set of all values of X that
occur with non-zero probability. When we say that something holds for a random
variable X always, we mean that it holds for every element in supp(X).
We will use the following useful facts several times:

Fact 7.2.1. If A,B ∈Md and B ≥ 0, then Tr(AB) ≤ ∥A∥Tr(B).

Proof. Let v1, . . . , vd be the orthonormal diagonal basis of A, with corresponding
eigenvalues λi = λi(A). Then we may write

Tr(AB) =
d∑

i=1

⟨vi, ABvi⟩

=
d∑

i=1

λi⟨vi, Bvi⟩

Since B ≥ 0 we know that ⟨vi, Bvi⟩ ≥ 0, so we get

≤
d∑

i=1

max
j
λj⟨vi, Bvi⟩

≤ ∥A∥Tr(B)

Theorem 7.2.2 (Golden-Thompson inequality, [Gol65, Tho65]). For A,B ∈ Md,
we have

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B))

The proof of this is outside the scope of this chapter.
Ahlswede and Winter introduce a generalization of Markov’s inequality for matrix-
valued random variables.

Theorem 7.2.3 (Markov’s inequality [AW02]). For any γ > 0, any function g :
[n] → Md such that g(x) ≥ 0 for all x ∈ [n], and for any random variable X over
[n], we have

Pr[g(X) ̸≤ γI] ≤ 1
γ
Tr(E[g(X)])

Proof.

Pr[g(X) ̸≤ γI] = Pr[∥g(X)∥ > γ]

≤ 1
γ
E[∥g(X)∥]

107

Since g(X) ≥ 0 always, we have ∥g(X)∥ ≤ Tr(g(X)) always, so we get:

≤ 1
γ
E[Tr(g(X))]

= 1
γ
Tr(E[g(X)])

The following Theorem 7.2.4 is the main theorem proving [AW02]’s Chernoff-type
bound. We will use Theorem 7.2.4, which holds for all distributions, to derive two
corollaries (Theorem 7.2.6 and Theorem 7.2.8), which hold for more specific kinds
of distributions. In addition, the proof of Theorem 7.2.4 will give us the pessimistic
estimators corresponding to the two corollaries.

Theorem 7.2.4 ([AW02]). Suppose f : [n]→ [−Id, Id] and let X1, . . . , Xk be arbitrary
independent random variables distributed over [n]. Then for all γ ∈ R:

Pr[1
k

k∑
j=1

f(Xj) ̸≤ γI] ≤ de−tγk

k∏
j=1

∥E[exp(tf(Xj))]∥

Proof. The proof begins analogously to the real-valued case, generalizing the classical
Bernstein trick. We first multiply by an optimization constant t > 0 and exponentiate
to obtain

Pr[1
k

k∑
j=1

f(Xj) ̸≤ γI] = Pr[exp(t
k∑

j=1

f(Xj)) ̸≤ etγkI]

The equality holds because for any A ∈ Md, α ∈ R, the statement A ̸≤ αI is
equivalent to saying some eigenvalue of A is larger than α, which is the same as
saying that some eigenvalue of exp(A) is larger than eα, which in turn is equivalent to
exp(A) ̸≤ eαI. Then the following inequality is a direct consequence of Theorem 7.2.3
since exp(A) ≥ 0 for all A ∈Md.

Pr[1
k

k∑
j=1

f(Xj) ̸≤ γI] ≤ e−tγkTr(E[exp(t
k∑

j=1

f(Xj))]) (7.2.1)

Then we apply Fact 7.2.1 and the Golden-Thompson Inequality Theorem 7.2.2 to
bound the expression in a manageable form. This step will be expressed in the
following lemma.

Lemma 7.2.5. For any matrix A ∈Md, any f : [n]→Md and any random variable
X over [n], we have

Tr(EX [exp(A+ f(X))]) ≤ ∥E[exp(f(X))]∥ · Tr(exp(A))

108

To obtain Theorem 7.2.4, we simply apply Lemma 7.2.5 to Inequality 7.2.1 repeatedly:

Pr[1
k

∑k
j=1 f(Xj) ̸≤ γI] ≤ e−tγkTr(E[exp(t

∑k
j=1 f(Xj))])

= e−tγkEX1,...,Xk−1

[
Tr(EXk

[exp(t
∑k−1

j=1 f(Xj) + tf(Xk))])
]

(Independence)

≤ e−tγkEX1,...,Xk−1

[
∥E[exp(tf(Xk))]∥ · Tr(exp(t

∑k−1
j=1 f(Xj)))

]
(Lemma 7.2.5)

= e−tγk∥E[exp(tf(Xk))]∥ · Tr(EX1,...,Xk−1
[exp(t

∑k−1
j=1 f(Xj))]) (E, Tr commute)

≤ e−tγk
∏k

j=1 ∥E[exp(tf(Xj))]∥Tr(I) (Repeat k times)

= de−tγk
∏k

j=1 ∥E[exp(tf(Xj))]∥
(7.2.2)

This completes the proof modulo Lemma 7.2.5.

Proof of Lemma 7.2.5.

Tr(E[exp(A+ f(X))]) = E[Tr(exp(A+ f(X)))] (E, Tr commute)

≤ E[Tr(exp(f(X)) exp(A))] (Golden-Thompson)

≤ Tr(E[exp(f(X))] exp(A)) (E, Tr commute)

≤ ∥E[exp(tf(X))]∥ · Tr(exp(A)) (Fact 7.2.1)

Now we will draw two corollaries from this main theorem. These two corollaries are
useful in different settings; the first guarantees that the probability of an additive
deviation is small, while the second that of a multiplicative deviation.

Theorem 7.2.6 ([AW02]). Let f : [n]→ [−Id, Id]. Let X be distributed over [n] with
EX [f(X)] = 0, and let X1, . . . , Xk be i.i.d. copies of X. Then for all 1 > γ > 0:1

Pr[1
k

k∑
i=1

f(Xi) ̸≤ γI] ≤ de−γ2k/4

Note that the other direction 1
k

∑k
i=1 f(Xi) ̸≥ −γI holds with the same bound by

considering −f .
1For the sake of simplicity, no attempt was made to optimize the constant in the exponent of the

bound in this analysis. To get a tighter bound, we can apply the analysis of [AW02] to get a bound
of de−kD(

1+γ
2 ∥1

2). Here D(p∥q) = p(log p − log q) + (1 − p)(log(1 − p) − log(1 − q)) is the relative
entropy function, and using the approximation D(1+γ

2 ∥
1
2) ≥ γ2/(2 ln 2), which can be shown by

looking at the Taylor expansion of D(·∥·), we have the improved bound of de−kγ2/(2 ln 2)

109

Proof. We require only Theorem 7.2.4 and a simple claim. Because all the Xi are
i.i.d. Theorem 7.2.4 gives us

Pr[1
k

k∑
i=1

f(Xi) ̸≤ γI] ≤ de−tγk∥E[exp(tf(X))]∥k

We use the following claim to bound the RHS.

Claim 7.2.7. ∥E[exp(tf(X))]∥ ≤ 1 + t2 for t ≤ 1/2.

Proof. This follows from the Taylor expansion of exp:

∥E[exp(tf(X))∥ = ∥E[I + tf(X) + (tf(X))2

2
+ . . .]∥

= ∥I + tE[f(X)] + E[(tf(X))2/2 + . . .]∥

Since E[f(X)] = 0, applying the triangle inequality, and using ∥f(X)∥ ≤ 1 always,
we have

≤ 1 +
∞∑

ℓ=2

tℓ/ℓ!

Since t = γ/2 ≤ 1/2 this gives

≤ 1 + t2

We will choose t = γ/2 ≤ 1/2, so we may apply Claim 7.2.7 to Theorem 7.2.4 to get

Pr[1
k

∑k
i=1 f(Xi) ̸≤ γI] ≤ de−tγk(1 + t2)k

≤ de−tγk+t2k (Using 1 + x ≤ ex for all x ∈ R)

≤ de−γ2k/4 (Choosing t = γ/2)

Theorem 7.2.8 ([AW02]). Let f : [n] → [0, Id]. Let X be distributed over [n], with
M = EX [f(X)] ≥ µI for some µ ∈ (0, 1). Let X1, . . . , Xk be i.i.d. copies of X. Then
we have, for all γ ∈ [0, 1/2],

Pr[1
k

k∑
i=1

f(Xi) ̸≥ (1− γ)µI] ≤ de−γ2µk/(2 ln 2)

110

Proof. We can assume without loss of generality that M = µI, for if not, we could
work with g(x) = µM−1/2f(x)M−1/2 instead. Because the direction of this bound is
the opposite of what we proved in Theorem 7.2.4, we will work with I − f to get:

Pr[1
k

k∑
i=1

f(Xi) ̸≥ (1− γ)µI] = Pr[1
k

k∑
i=1

(I − f(Xi)) ̸≤ (1− (1− γ)µ)I] (7.2.3)

Applying Theorem 7.2.4

≤ de−t(1−(1−γ)µ)k∥E[exp(t(I − f(X)))]∥k (7.2.4)
= d∥E[exp(−tf(X))et(1−γ)µ]∥k (7.2.5)

This last quantity was analyzed in the proof of Theorem 19 of [AW02], with the
following conclusion which we state without proof:
Claim 7.2.9 ([AW02]). For t = log(1−(1−γ)µ

1−µ
1

(1−γ)
), we have

∥E[exp(−tf(X))]et(1−γ)µ∥ ≤ e−γ2µ/(2 ln 2)

Applying this claim to Inequality 7.2.5 gives us the theorem.

7.3 Method of pessimistic estimators
First we review the method of pessimistic estimators, due to Raghavan [Rag88].
The setting is the following: we have a random variable X and we know that with
some non-zero probability an event σ(X) occurs, i.e. Pr[σ(X) = 1] > 0, where
σ : supp(X) → {0, 1}, σ(x) = 1 iff x is in the event. We wish to efficiently and
deterministically find a particular x ∈ supp(X) such that σ(x) = 1.
Our application of pessimistic estimators is to derandomizing probabilistic algorithms.
In particular, suppose we have a randomized algorithm that constructs an object, and
with some non-zero probability that object satisfies some property. Thus, our event σ
is the event that the object satisfies the property, and our goal is to deterministically
and efficiently find the object. In this chapter our two main applications are to
deterministically and efficiently find a small generating set of a group that satisfies
expansion, and to find an integer solution to a SDP covering problem that satisfies
feasibility and some approximation guarantee. Both problems were previously known
to have randomized algorithms, and we use our pessimistic estimators to derandomize
these algorithms.
We will only be concerned with random variables with finite state space with a product
structure, and we will sub-divide the variable into many parts. Thus we use the
notation X⃗ to denote a random variable where w.l.o.g. supp(X⃗) ⊆ [n]k for some

111

k, n ∈ N (these will be chosen according to the application). Let X⃗ = (X1, . . . , Xk),
where each Xi ∈ [n]. To find a “good” setting of X⃗, we will iteratively find settings
of X1, then X2, and so forth until we have a complete setting of X⃗.
By the definition of expectation

Pr
X⃗

[σ(X⃗) = 0] = EX1 [Pr[σ(X⃗) = 0 | X1]]

Now by averaging there must exist at least one setting x1 ∈ [n] of X1 such that

Pr[σ(X⃗) = 0 | X1 = x1] ≤ EX1 [Pr[σ(X⃗) = 0 | X1]]

We set X1 = x1, and then repeat the same reasoning for X2, . . . Xk. Let us denote the
resulting setting of X⃗ by x⃗. Thus at the end we have Pr[σ(x⃗) = 0] ≤ Pr[σ(X⃗) = 0].
But note that we supposed that Pr[σ(X⃗) = 0] < 1, and since x⃗ is a fixed vector, it
must be that Pr[σ(x⃗) = 0] = 0 and therefore σ(x⃗) = 1.
The difficulty with turning this into an algorithm is in calculating the probabilities,
for each 1 ≤ i ≤ k and, ∀x1, . . . , xi ∈ [n]

Pr
Xi+1,...,Xk

[σ(X⃗) = 0 | X1 = x1, . . . , Xi = xi]

since they may not be efficiently computable. The following definition circumvents
this problem.
Definition 7.3.1. Let σ : [n]k → {0, 1} be an event on a random variable X⃗

distributed over [n]k and suppose Pr[σ(X⃗) = 1] > 0. We say that ϕ0, . . . , ϕk,
ϕi : [n]i → [0, 1] (here ϕ0 is just a number in [0, 1]), are pessimistic estimators for σ if
the following hold.

1. For any i and any fixed x1, . . . , xi ∈ [n], we have that

Pr
Xi+1,...,Xk

[σ(x1, . . . , xi, Xi+1, . . . , Xk) = 0] ≤ ϕi(x1, . . . , xi)

2. For any i and any fixed x1, . . . , xi ∈ [n]:

EXi+1
ϕi+1(x1, . . . , xi, Xi+1) ≤ ϕi(x1, . . . , xi)

Our definition is stronger than the standard definition of pessimistic estimators, in
that in the second condition usually all that is required is for all x1, . . . , xi ∈ [n],
there exists xi+1 ∈ [n] such that ϕi+1(x1, . . . , xi+1) ≤ ϕi(x1, . . . , xi). Our estimators
satisfy this stronger definition and we will find it useful, especially when composing
estimators (see Lemma 7.3.3).
We will also want the pessimistic estimators to be efficient, namely each ϕi is effi-
ciently computable, and useful, which means ϕ0 < 1. This last condition is because
ϕ0 is a bound on the initial probability of failure, which we need to be strictly less
than 1.

112

Theorem 7.3.2 ([Rag88]). If there exist efficient and useful pessimistic estimators
(ϕ0, . . . , ϕk) for an event σ, then one can efficiently compute a fixed x⃗ ∈ [n]k such
that σ(x⃗) = 1.

Proof. We pick x1, . . . , xk one by one. At step 0 we have ϕ0 < 1 since the estimators
are useful.
At step i, we have x1, . . . , xi already fixed. Enumerate over xi+1 ∈ [n] and choose the
value such that ϕi+1(x1, . . . , xi+1) ≤ ϕi(x1, . . . , xi) < 1. We are guaranteed that

EXi+1
[ϕi+1(x1, . . . xi, Xi+1)] ≤ ϕi(x1, . . . , xi)

by property 2 of Definition 7.3.1, and so by averaging there must exist a fixed xi+1 ∈
[n] that is at most the expectation on the LHS of the above inequality. We can
compute the value of the estimator efficiently by hypothesis.
Finally, we have after k steps that ϕk(x⃗) < 1 and by property 1 we have that Pr[σ(x⃗) =
0] ≤ ϕk(x⃗) < 1, and therefore σ(x⃗) = 1.
The algorithm runs through k steps, and each step is efficient, so the overall algorithm
is efficient.

We will find it useful to compose estimators, which is possible from the following
lemma.

Lemma 7.3.3. Suppose σ, τ : [n]k → {0, 1} are events on X⃗, which is distributed
over [n]k. Suppose that (ϕ0, . . . , ϕk), (ψ0, . . . , ψk) are pessimistic estimators for σ, τ
respectively. Then (ϕ0+ψ0, . . . , ϕk +ψk) are pessimistic estimators for the event σ∩τ .

Proof. We need to verify the properties of Definition 7.3.1.

1. This is verified by a union bound:

Pr[(σ ∩ τ)(x1, . . . , xi, Xi+1, . . . , Xk) = 0]

≤ Pr[σ(x1, . . . , xi, Xi+1, . . . , Xk) = 0]

+ Pr[τ(x1, . . . , xi, Xi+1, . . . , Xk) = 0]

≤ (ϕi + ψi)(x1, . . . , xi)

2. This is immediate from linearity of expectation.

7.4 Applying pessimistic estimators
The method of pessimistic estimators extends to the AW Chernoff bound. We will
first describe pessimistic estimators for Theorem 7.2.6 and then for Theorem 7.2.8.

113

They are essentially identical except for the difference in distributions in the two
settings, and the proofs that the pessimistic estimators satisfy Definition 7.3.1 rely
mainly on Lemma 7.2.5. In both cases, they allow us to efficiently and determinis-
tically find settings x1, . . . , xk such that bad event bounded by Theorem 7.2.6 (resp.
Theorem 7.2.8) does not occur.

Theorem 7.4.1. Let f : [n]→ [−Id, Id]. Let X be distributed over [n] with EX [f(X)] =
0, and let X1, . . . , Xk be i.i.d. copies of X. Fix 1 > γ > 0. Let t = γ/2. Suppose that
E[exp(tf(X))] is efficiently computable.
Combining the notation of Section 7.2 and Section 7.3, we let X⃗ = (X1, . . . , Xk) with
Xi ∈ [n] and we let σ : [n]k → {0, 1} be the event σ(x⃗) = 1 if 1

k

∑k
i=1 f(xi) ≤ γI

and σ(x⃗) = 0 otherwise. Then the following (ϕ0, . . . , ϕk), ϕi : [n]i → [0, 1] are efficient
pessimistic estimators for σ.

ϕ0 =de−tγk∥E[exp(tf(X))]∥k (which is at most de−γ2k/4)

ϕi(x1, . . . , xi) =de−tγkTr(exp(t
i∑

j=1

f(xj))) · ∥E[exp(tf(X))]∥k−i

Proof. We verify the properties of Definition 7.3.1.

1. From Inequality 7.2.1:

Pr[1
k

k∑
i=1

f(Xi) ̸≤ γI] ≤ de−tγkTr(E[exp(t
k∑

j=1

f(Xj))])

≤ de−tγkTr(E[exp(t
i∑

j=1

f(Xj))])
k∏

j=i+1

∥E[exp(tf(Xj))]∥

By fixing Xj = xj for all j ≤ i, we derive that

Pr[1
k

k∑
i=1

f(Xi) ̸≤ γI | X1 = x1, . . . , Xi = xi]

≤ de−tγkTr(exp(t
i∑

j=1

f(xj))) · ∥E[exp(tf(X))]∥k−i

= ϕi(x1, . . . , xi)

114

2. We use the following derivation, where the inequality follows from Lemma 7.2.5:

EXi+1
[ϕi+1(x1, . . . , xi, Xi+1)]

= de−tγkTr(EXi+1
[exp(t

i∑
j=1

f(xi) + tf(Xi+1))]) · ∥E(exp(tf(X)))∥k−i−1

≤ de−tγkTr(exp(t
i∑

j=1

f(xi))) · ∥E(exp(tf(X)))∥k−i

= ϕi(x1, . . . , xi)

To see that the ϕi are efficiently computable, we will specify the input to the algorithm
as a function f (which we assume is given as a list of d× d matrices f(1), . . . , f(n))
and 1k. Thus we desire the algorithm to be computable in time poly(n, d, k). We
require multiplication, addition, trace, matrix exponential, and norm computations.
The first three are obviously efficient; the last two are efficient because eigenvalues of
a d× d matrix can be computed (and hence it can be diagonalized thus making the
exponential and norm computations trivial) in O(d3) numerical operations [GL89].
On a machine with finite precision, we can truncate the estimators to a sufficiently
fine resolution so that the truncated estimators behave essentially as the real-valued
estimators do.

Theorem 7.4.1 gives us pessimistic estimators (ϕ0, . . . , ϕk) for σ, and the same proof
gives efficient pessimistic estimators (ψ0, . . . , ψk) for the event τ(x⃗) = 1 iff 1

k

∑k
i=1 f(xi) ≥

−γI by applying Theorem 7.2.6 to −f . Combining these with the ϕi gives us the
following.

Corollary 7.4.2. Let f : [n] → [−Id, Id]. Let X be distributed over [n] with
EX [f(X)] = 0, and let X1, . . . , Xk be i.i.d. copies of X. Fix 1 > γ > 0 and fix
t = γ/2. Suppose that E[exp(tf(X))] and E[exp(−tf(X))] are efficiently computable.
Let η : [n]k → {0, 1} be the event η(x⃗) = 1 if ∥ 1

k

∑k
i=1 f(xi)∥ ≤ γ and η(x⃗) = 0

otherwise. Then (ϕ0 + ψ0, . . . , ϕk + ψk) are efficient pessimistic estimators for η.

Proof. Note that η = σ ∩ τ . Efficiency is clear. We can apply Lemma 7.3.3 to get
that (ϕ0 + ψ0, . . . , ϕk + ψk) is a pessimistic estimator for the event η = σ ∩ τ .

This allows us to derandomize Theorem 7.2.6 efficiently. Notice that in general
the only property of X that we need is to be able to compute E[exp(tf(X))] and
E[exp(−tf(X))].This is of course true when X is uniform, or when we can efficiently
compute Pr[X = x] for each x ∈ [n]. The actual distribution is irrelevant, since we
exhaustively search through the entire space for the choice of each Xi.

115

Theorem 7.4.3. Let f : [n] → [−Id, Id] be such that there exists a distribution X
over [n] such that E[f(X)] = 0. Then for k = O(1

γ2 log d), we can efficiently and
deterministically find x⃗ ∈ [n]k such that ∥ 1

k

∑k
i=1 f(xi)∥ ≤ γ.

Proof. Use the efficient pessimistic estimators of Corollary 7.4.2. Pick k = O(1
γ2 log d)

such that ϕ0 + ψ0 < 1 and so that the estimators are useful. We may then apply
Theorem 7.3.2 to get the result.

We can construct pessimistic estimators for Theorem 7.2.8 in the same way.

Theorem 7.4.4. Let f : [n] → [0, Id]. Let X be distributed over [n], with M =
EX [f(X)] ≥ µI for some µ ∈ (0, 1). Let X1, . . . , Xk be i.i.d. copies of X. Fix
t = log(1−(1−γ)µ

1−µ
1

(1−γ)
).

Let X⃗ = (X1, . . . , Xk) with Xi ∈ [n] and we let σ : [n]k → {0, 1} be the event
σ(x⃗) = 1 if 1

k

∑k
i=1 f(xi) ≥ (1 − γ)µI and σ(x⃗) = 0 otherwise. Then the following

(ϕ0, . . . , ϕk), ϕi : [n]i → [0, 1] are efficient pessimistic estimators for σ.

ϕ0 =detk(1−γ)µ∥E[exp(−tf(X))]∥k (which is at most de−γ2µk/(2 ln2))

ϕi(x1, . . . , xi) =detk(1−γ)µTr(exp(−t
i∑

j=1

f(xj))) · ∥E[exp(−tf(X))]∥k−i

Proof. The proof follows exactly along the lines of Theorem 7.4.1.

Theorem 7.4.5. Let f : [n]→ [0, Id] be such that there exists a distribution X over
[n] and a number µ ∈ (0, 1) such that E[f(X)] ≥ µI. Then for k = O(1

γ2µ
log d), we

can efficiently and deterministically find x⃗ ∈ [n]k such that 1
k

∑k
i=1 f(xi) ≥ (1−γ)µI.

Proof. Use the efficient pessimistic estimators of Theorem 7.4.4, and notice for our
choice of k that ϕ0 < 1 so they are useful. Then apply Theorem 7.3.2.

7.5 O(logn) expanding generators for any group

Our main application is a complete derandomization of the Alon-Roichman [AR94]
theorem, which states that a certain kind of expander graph may be constructed by
random sampling (details below). Expander graphs have a central role in theoretical
computer science, especially in but not limited to the study of derandomization.
Indeed, they have found a large number of applications in a variety of areas such
as deterministic amplification [CW89, IZ89], security amplification in cryptography
[GIL+90], hardness of approximation [ALM+98, AFWZ95], extractor construction
(e.g. see surveys [NT99, Gol97, Sha02]), construction of efficient error-correcting

116

codes [Spi95, BH04], construction of ε-biased spaces [NN93] and much more. See
[HLW06] for a comprehensive survey.
We derandomize the proof of the Alon-Roichman theorem given by [LR04] (see also
[LS04]) to give a deterministic and efficient construction of the expanding generat-
ing set. We show how it implies an optimal solution to a problem of Shpilka and
Wigderson [SW04] (see also [GS02]), significantly improving their results.

7.5.1 Definitions

Given a connected undirected d-regular graph G = (V,E) on n vertices, we define its
normalized adjacency matrix A, Aij = eij/d where eij is the number of edges between
vertices i and j (we allow self-loops and multiple edges). It is easy to see that A is
real and symmetric.
It is well-known that the set of eigenvalues of A is of the form 1 = λ1(A) > λ2(A) ≥
. . . ≥ λn(A). Note the strict separation between λ1(A) and λ2(A), which follows from
connectivity. The eigenvalues of G are the eigenvalues of A. Note that 1 is an eigen-
value of multiplicity 1, and with corresponding eigenvector u = [1/

√
n, . . . , 1/

√
n]T ,

which we call the uniform vector. Alternatively, the eigenvalue 1 also corresponds to
the uniform eigenspace, given by the matrix J/n, where J is the all 1’s matrix, which
is the orthogonal projection onto the space spanned by the eigenvector u.
The Cayley graph Cay(H;S) on a group H with respect to the generating multi-set
S ⊂ H is the graph whose vertex set is H, and where h and h′ are connected by an
edge if there exists s ∈ S such that h′ = hs (allowing for multiple edges for multiple
elements in S). We require S to be symmetric, namely for each s ∈ S, we also
have s−1 ∈ S (this is to make the graph undirected). Let λ(Cay(H;S)) denote the
second-largest eigenvalue (in absolute value) of the normalized adjacency matrix of
the Cayley graph.
Our goal is to construct an algorithm that, for a fixed γ < 1, takes as input the
multiplication table of a group H of size n and efficiently constructs a small generating
set S such that λ(Cay(H;S)) < γ. This is given by the following theorem.

Theorem 7.5.1. Fix γ < 1. Then there exists an algorithm running in time poly(n)
that, given H, a group of size n, constructs a symmetric set S ⊆ H of size |S| =
O(log n

γ2) such that λ(Cay(H;S)) ≤ γ.

We prove this after presenting the randomized algorithm.

7.5.2 A randomized algorithm

Theorem 7.5.2 ([AR94, LR04, LS04]). Fix 0 < γ < 1, and let H be a group of size
n. Identify H with [n]. Let X1, . . . , Xk be chosen randomly in H, where k = O(log n

γ2).

117

We let the multi-set S be (X1, . . . , Xk), and we have

Pr
S⊆H

[λ(Cay(H;S ⊔ S−1)) > γ] < 1

where S ⊔S−1 denotes the symmetric closure of S, namely the number of occurrences
of s and s−1 in S ⊔ S−1 equals the number of occurrences of s in S, .

To identify the notation in the following proof precisely with that used in Section 7.4,
we have that S corresponds to X⃗, |S| = k, and it will become clear that in this setting
n = d = |H|.

Proof. Consider the n × n matrices Ph for h ∈ H, where each Ph is the n × n
permutation matrix of the action of h by right multiplication. Consider now 1

2
(Ph +

Ph−1). It is not hard to see that the normalized adjacency matrix A of Cay(H;S⊔S−1)
is given by

A = 1
k

k∑
i=1

1
2
(PXi

+ PX−1
i

)

We wish to bound λ(A). We know that the largest eigenvalue is 1 and corresponds
to J/n where J is the all 1 matrix. Since we want to analyze the second-largest
eigenvalue, we consider

(I − J/n)A = 1
k

k∑
i=1

(I − J/n)1
2
(PXi

+ PX−1
i

)

We let our matrix-valued function be f(h) = (I − J/n)1
2
(Ph + Ph−1), so that

λ(A) = ∥(I − J/n)A∥ = ∥ 1
k

k∑
i=1

f(Xi)∥

It is straightforward to verify that f(h) ∈Mn, ∥f(h)∥ ≤ 1 and Eh∈H [f(h)] = 0.
Thus we may apply Theorem 7.2.6 to get that

Pr[λ(A) > γ] = Pr[∥ 1
k

k∑
i=1

f(Xi)∥ > γ] (7.5.1)

≤ 2ne−γ2|S|/4 (7.5.2)

so picking k = O(log n
γ2) suffices to make this probability less than 1.

118

7.5.3 Derandomizing

Proof of Theorem 7.5.1. To derandomize and obtain Theorem 7.5.1, we apply Corol-
lary 7.4.2 to obtain efficient pessimistic estimators for the event σ(S) = 1, which
holds iff ∥ 1

k

∑k
i=1 f(Xi)∥ ≤ γ. We fix k = O(1

γ2 logn) large enough such that the
probability of this event is non-zero (i.e. the estimators we got are useful). We then
apply Theorem 7.3.2 to greedily choose successive elements of H to be put in S in
order to make an expander.

7.5.4 Derandomized Homomorphism Testing

Theorem 7.5.1 answers a question about the derandomization of homomorphism
testers posed by Shpilka and Wigderson [SW04]. In this section we will use The-
orem 7.5.1 to prove Corollary 7.5.4.
An affine homomorphism between two groups H,H ′ is a map f : H → H ′ such
that f−1(0)f is a homomorphism. An (δ, η)-test for affine homomorphisms is a tester
that accepts any affine homomorphism surely and rejects with probability 1− δ any
f : H → H ′ which is η far from being an affine homomorphism. Here distance is
measured by the normalized Hamming distance: d(f, g) = Pr[f(x) ̸= g(x)], where
the probability is over x chosen uniformly from H.
[SW04] showed how to efficiently construct a tester TH×S using an expander Cay(H;S)

where λ(Cay(H;S)) < λ: simply pick a random element x R← H and a random el-
ement of y R← S and check to see that f(0)f(x)−1f(xy) = f(y). It is clear this
accepts f surely if f is an affine homomorphism. [SW04] shows that if 12δ < 1 − λ
then this rejects with probability 1 − δ any f that is 4δ

1−λ
-far from being an affine

homomorphism.

Theorem 7.5.3 ([SW04]). For all groups H,H ′ and S ⊆ H an expanding generating
set such that λ(Cay(H;S)) < λ, we can construct a tester TH×S that surely accepts
any affine homomorphism f : H → H ′ and rejects with probability at least 1− δ any
f : H → H ′ which is 4δ/(1− λ) far from being an affine homomorphism, given that
12δ
1−λ

< 1. That is, TH×S is a (δ, 4δ
1−λ

)-test for affine homomorphisms.

In [SW04] the deterministic construction of S gave a set of size |H|ε for arbitrary ε > 0.
The explicit construction given in [SW04] requires that TH×S use (1 + ε) log |H| ran-
dom bits and asks whether it is possible to improve this dependency on randomness.
Theorem 7.5.1 allows us indeed to improve this dependency to the following.

Corollary 7.5.4. Given an arbitrary group H, one can construct in time |H|O(1) a
homomorphism tester for functions on H which uses only log |H|+ log log |H|+O(1)
random bits.

119

Proof of Corollary 7.5.4. Theorem 7.5.3 says we can construct a homomorphism tester
that only uses randomness to pick an element of H and an element of an expanding
generating set of H. Theorem 7.5.1 implies this only requires log |H| + log log |H| +
O(1) random bits since we can deterministically construct an expanding generating
set of size log |H| in polynomial time.

7.6 Covering SDP’s

Linear programming (LP) was one of the first tools computer scientists used to ap-
proximate NP-hard problems. As a natural relaxation of integer programming (IP),
linear programs give fractional solutions to an IP, which may then be rounded to give
provably good solutions to the original IP.
More recently, a more general class of relaxations, semi-definite programs (SDP’s),
have been used by computer scientists (e.g. [GW95, ARV04]) to give better approx-
imation guarantees to NP-hard problems. SDP’s may be solved in polynomial time
(using e.g. the ellipsoid method or interior-point methods, see [Sho77, Sho87, YN77,
VB96]), and again the solution may be rounded to give a solution to the original IP.
In this section we will define a restricted class of integer SDP’s and show that our
pessimistic estimators will give a good approximation guarantee.

7.6.1 Definition

We define the notion of integer covering SDP’s, which are generalizations of integer
covering linear programs (see e.g. [KY05]). These programs take the following form:
given c ∈ [0, 1]n and f : [n]→ [0, Id],2 find y ∈ Nn where

minimize cTy (7.6.1)
with feasibility constraint y1f(1) + . . . ynf(n) ≥ I (7.6.2)

where the feasibility inequality uses the p.s.d. ordering. The vector c may be inter-
preted as a cost vector, and we wish to minimize the cost of a solution y ∈ Nn. This is
relaxed into a covering SDP by allowing y ∈ Rn

+ where R+ denotes the non-negative
reals, which we would then like to round y to a solution ŷ ∈ Nn that is not too much
more costly. We will let OPT denote the optimal value of the relaxed covering SDP.
Our main theorem is as follows:

Theorem 7.6.1. Suppose we have a program as in Equation 7.6.1 and suppose we
have a feasible relaxed solution vector y ∈ Rn

+. Then we can find in time poly(n, d) a
2We restrict ourself to this scale for simplicity. Our results apply to any bounded function with

a constant loss in efficiency.

120

feasible integer solution ŷ such that
cT ŷ ≤ O(log d) · cTy

Corollary 7.6.2. Given an integer covering SDP with optimum OPT, we can effi-
ciently find an integer solution with cost at most O(log d) ·OPT.

This is done by using a randomized rounding algorithm given implicitly in [AW02],
and then derandomizing using pessimistic estimators.
Also, note that this is a natural generalization of integer covering linear programs of
the following form: for a cost vector c ∈ Rn

+, a matrix A ∈ Rd×n
+

minimize cTy
subject to feasibility constraints that for all i ∈ [d]: (Ay)i ≥ 1

This may be viewed as the special case of integer covering SDP’s where all the matrices
are diagonal; each f(i) is just the diagonal matrix with i’th column of A along the
diagonal. Integer covering LP’s, in turn, are a generalization of the very familiar set
cover problem, which are exactly the programs where the columns of A are either 0
or 1. In the language of set cover, the universe is [n] and the columns of A are the
indicator vectors for the sets we may use to cover [n].
Our approximation for integer covering SDP’s will imply a new approximation algo-
rithm for all these covering problems with a logarithmic approximation guarantee.
Thus in a sense our algorithm gives optimal approximation factors (up to constants),
since a logarithmic approximation factor is optimal (up to constant factors) assuming
that P ̸= NP, as shown by [Fei98]. This connection is discussed in more detail in
Section 7.6.4.

7.6.2 A randomized rounding algorithm

First suppose we have a solution to the SDP given by a vector y ∈ Rn
+, and let us

define Q =
∑n

j= yj. In the case where Q ≥ n, we can get a trivial deterministic
rounding scheme with approximation factor 2 by always rounding up, since this will
increase the value of the program at most by an additive n. Thus in the following we
consider only programs where Q ≤ n.
Suppose we have a program as in Equation 7.6.1 and we have solved it efficiently
to obtain a solution y, where cTy = OPT. Let X be distributed according to the
distribution over [n] given by normalizing y, i.e.

Pr[X = i] = yi/Q

Note that, because y is a feasible solution, we have EX [f(X)] ≥ 1
Q
I. It was implicitly

shown in [AW02] that sampling k = Q · O(log d) elements from [n] according to
the distribution X and taking f(Xi) (1 ≤ i ≤ k) gives us a feasible solution with
approximation factor O(log d). We state this formally:

121

Theorem 7.6.3. [[AW02]] Suppose we sample k = Q ·8 ln 2d times from [n] according
to X in order to get X1, . . . , Xk. Furthermore, for each 1 ≤ j ≤ n, we define the
random variables

Ŷj = |{i | Xi = j}|

the number of times that j is sampled, and let Ŷ = (Ŷ1, . . . , Ŷn). Notice that∑k
i=1 f(Xi) =

∑n
j=1 Ŷjf(j). Then, with non-zero probability, we have that

f(X1) + f(X2) + . . .+ f(Xk) ≥ I and cT Ŷ ≤ cTy · 16 ln 2d

Proof. We will use a union bound to show that the probability that either
∑

j f(Xj) ̸≥
I or cT Ŷ > cTy · 16 ln 2d occurs is strictly less than 1.
All expectations below are over the Xi (since the Ŷj are totally determined by the
Xi).

Pr[
k∑

j=1

f(Xj) ̸≥ I] = Pr[1
k

k∑
j=1

f(Xj) ̸≥ 1
k
I] (7.6.3)

We know from the fact that y is feasible that E[f(X)] ≥ 1
Q
I, and so for k > 2Q we

get:

Pr[
k∑

j=1

f(Xj) ̸≥ I] ≤ Pr[1
k

k∑
j=1

f(Xj) ̸≥ 1
2

1
Q
I] (7.6.4)

Invoking Theorem 7.2.8, we obtain

Pr[
k∑

j=1

f(Xj) ̸≥ I] ≤ de
−k

(8Q) (7.6.5)

Therefore if we take k = Q·8 ln 2d with probability greater than 1
2

we have
∑

j f(Xj) ≥
I.
For the second event it is easy to see that cT Ŷ =

∑k
j=1 cXj

. Furthermore, a simple
calculation shows that for each j, E[cXj

] = cTy/Q. Thus, by Markov we have:

Pr[cT Ŷ > cTy · 16 ln 2d] = Pr
[

k∑
j=1

cXj
> cTy · 16 ln 2d

]
(7.6.6)

<
E

[∑k
j=1 cXj

]
cTy · 16 ln 2d

(7.6.7)

=
k · cTy/Q

cTy · 16 ln 2d
(7.6.8)

122

Expanding k = Q · 8 ln 2d shows that this last expression is at most 1/2.
Thus each bad event happens with probability less than 1/2, and so the probability
that either bad event happens is strictly less than 1.

7.6.3 Derandomizing

Derandomizing is a simple proposition. Given a program, first solve it using a stan-
dard efficient technique ([Sho77, Sho87, YN77], for a survey see [VB96]), with so-
lution y and Q =

∑n
j=1 yj. Let k = Q · 8 ln 2d. In the proof of Theorem 7.6.3 at

Inequality 7.6.3, we can apply Theorem 7.4.4 to get pessimistic estimators ϕi for the
event

∑k
j=1 f(Xj) ≥ I, which we call σ. We only need now a pessimistic estimator

(ψ0, . . . , ψk) for the event of the solution not being too costly, which we call τ .
We define ψi : [n]i → [0, 1] as follows:

ψi(x1, . . . , xi) =

∑i
j=1 cxj

+ (k − i)E[cX]

cTy · 16 ln 2d

It is clear that the ψi are efficiently computable. They satisfy the properties of
Definition 7.3.1. This is easy to see, since the ψi are exactly the expressions given by
a Markov bound on the event τ , and such expressions always satisfy Definition 7.3.1.
We write this out explicitly here fore completeness.

1. By an application of Markov (this is the same as in Inequality 7.6.7), we see:

Pr
[

k∑
j=1

cXj
> cTy · 16 ln 2d | X1 = x1, . . . , Xi = xi

]
≤

∑i
j=1 cxj

+ (k − i)E[cX]

cTy · 16 ln 2d

= ψ(x1, . . . , xi)

2. For estimators based on Markov, we actually have equality for this property.

EXi+1
[ψi+1(x1, . . . , xi, Xi+1)] = EXi+1

[∑i
j=1 cxj

+ cXi+1
+ (k − i− 1)E[cX]

cTy · 16 ln 2d

]

=

∑i
j=1 cxj

+ (k − i)E[cXj
]

cTy · 16 ln 2d

= ψi(x1, . . . , xi)

Theorem 7.6.4. Since ϕ0 + ψ0 < 1 because of the choice of k = Q · 8 ln 2d, we
may invoke Lemma 7.3.3 to get that (ϕ0 + ψ0, . . . , ϕk + ψk) are efficient and useful
pessimistic estimators for the event in Theorem 7.6.3.

Finally we may prove Theorem 7.6.1.

123

Proof of Theorem 7.6.1. By Theorem 7.6.4 we have pessimistic estimators for the
event in Theorem 7.6.3, and so we may apply Theorem 7.3.2, which says we can
efficiently and deterministically find a suitable integer vector ŷ that satisfies Theo-
rem 7.6.1. The algorithm runs in time poly(n, k, d), but since k = Q · 8 ln 2d and we
only consider Q ≤ n, this is poly(n, d).

7.6.4 Quantum Hypergraph Covers

In this section we define hypergraphs and quantum hypergraphs and discuss the
cover problem for both. The hypergraph cover problem is just the classical set cover
problem, and the quantum hypergraph cover problem is a non-commutative gener-
alization arising in quantum information theory [AW02]. Our efficient and useful
pessimistic estimators for the integer covering SDP problem immediately give an ef-
ficient deterministic algorithm to find a quantum hypergraph cover that is optimal
up to logarithmic factors.

Hypergraphs

Here we will describe the hypergraph cover problem, which is just another name for
the classical set cover. A hypergraph is a pair (V,E) where E ⊆ 2V , i.e. E is a
collection of subsets of V . Say |V | = d. One often views an edge e as a vector in
{0, 1}d, where the i’th entry is 1 if vertex i is in the edge and 0 otherwise.
It will actually be convenient for us to view e ∈ E as d × d diagonal matrix with
1 or 0 at each diagonal entry to signify whether that vertex is in the edge. In this
section we will denote the matrix associated with e as f(e). This representation will
naturally generalize to quantum hypergraphs.
A cover of a hypergraph Γ = (V,E) is a set of edges C such that

∪
e∈C e = V , i.e.

each vertex is in at least one edge. Note that this definition of cover coincides exactly
with the definition of set cover. The size of the smallest cover is called the cover
number and dentoted c(Γ).
Using the matrix representation of E, one sees that∪

e∈C

e = V ⇔
∑
e∈C

f(e) ≥ I

where the second expression uses our usual ordering of matrices.
A fractional cover is a set of non-negative weights w overE such that

∑
e∈E w(e)f(e) ≥

I. Likewise, we say that the fractional cover number

c̃(Γ) = min
w

{∑
e∈E

w(e)

∣∣∣∣∣∑
e∈E

w(e)f(e) ≥ I

}

124

We know that the hypergraph cover problem is hard to approximate up to a lnn
factor [Fei98]. From the definitions, it is clear that this problem is a special case of
our integer covering SDP’s. In the next section we generalize to the non-commutative
case.

Quantum Hypergraphs

[AW02] defines quantum hypergraphs as generalizations of hypergraphs. Recall that
we represented an edge of a hypergraph as a d × d diagonal matrix with 1, 0 along
the diagonal. So a hypergraph is equivalent to (V , E) where V = Cd and each e ∈ E
is identified with a diagonal matrix whose diagonal entries are either 0 or 1, which
we will call f(e). We generalize this to non-commutative “edges” by allowing E
to contain other operators, i.e. f(e) can be any Hermitian operator (i.e. matrix)
in [0, I]. Here we are using the fact that all our previous results for real symmetric
matrices generalize to complex Hermitian matrices. A complex matrix A is Hermitian
if A = A∗ where ∗ denotes the conjugate transpose. See Section 7.7 for a statement
of our results in this (and a slightly more general) setting.

Definition 7.6.5. Γ = (V, E) is a quantum hypergraph where V is a d-dimensional
Hilbert space and E is a finite set such that each e ∈ E is identified with a Hermitian
operator f(e) ∈ [0, Id].

One can extend the definition of a cover of a quantum hypergraph Γ = (V , E) to be
a finite subset C ⊆ E such that

∑
e∈C f(e) ≥ I. The cover number c(Γ) is the size of

the smallest cover of Γ.
Likewise, we define a fractional cover to be a non-negative combination w of e ∈ E
such that

∑
e∈E w(e)f(e) ≥ I, and the fractional cover number as

c̃(Γ) = min
w

{∑
e∈E

w(e)

∣∣∣∣∣∑
e∈E

w(e)f(e) ≥ I

}
Note that this corresponds exactly with our previous definitions for hypergraphs.
The problem of finding the fractional cover has equivalent forms that are natural and
interesting, which are discussed at the end of this section.
It is important to note that the notion of “vertex” is lost because the matrices f(e) ∈
Md are not necessarily diagonal in a common basis. However, it is again clear from
the definitions that a quantum hypergraph cover problem is just a special case of
integer covering SDP’s (extended to complex matrices), so we may use Theorem 7.6.1
to give an efficient deterministic approximation. Thus the theorem below follows.

Theorem 7.6.6. Suppose we are given Γ = (V , E) a quantum hypergraph with frac-
tional cover number c̃(Γ), with |V| = d and |E| = n. Then we can find an integer
cover of Γ of size k = c̃(Γ) ·O(log d) in time poly(n, d).

125

7.6.5 Other Applications

Our integer covering SDP (and its extension to complex matrices) also encompasses
two other natural problems from quantum information theory. Given a function
f : [n]→ [0, Id], one may want to find a probability distribution X over [n] one may
want to solve either of the following

1. minX λ1(EX [f(X)]) = minX ∥EX [f(X)]∥

2. maxX λd(EX [f(X)])

The former minimizes the norm of the expected value of the distribution, which is
also its largest eigenvalue, while the latter may be viewed as maximizing the lowest
energy state of a quantum system, which is also its smallest eigenvalue. The second
can be formulated as a covering SDP by using the cost vector c = 1 the all 1’s vector,
and then normalizing the solution vector y to be a probability distribution. The first
can be formulated as the second by considering the function I − f .
In both cases, our pessimistic estimators give an “integral solution” that is worse by
at most O(log d). In this case, an integral solution is actually a distribution with
sparse support; we sample from the solution distribution X to get a distribution X̂
with support of size O(1

γ2 log d) such that the corresponding objective is worse by at
most a factor of O(log d).

7.7 Generalization to abstract vector spaces

Here we state the generalization of all of our results to the setting of self-adjoint
operators over Hilbert space.
All our theorems from Section 7.4 hold in the setting of abstract finite-dimensional
Hilbert spaces as stated, with the linear-algebra terminology translated to the ter-
minology of finite-dimensional Hilbert spaces. Table 7.1 gives this translation. The
proofs of the generalizations are identical to the proofs of the real symmetric case
with the appropriate change in terminology.
Using these correspondences, the definitions of trace, positive semi-definiteness, the
p.s.d. ordering, and the exponential on L(V) carry over from the real matrix case
(given in Section 7.2) in the natural way. For example, the notation [−I, I] indicates
all self-adjoint operators A ∈ L(V) such that the eigenvalues of A+ I and I −A are
non-negative.
Ahlswede and Winter [AW02] already stated all their results in this setting an abstract
Hilbert spaces, and so Theorem 7.2.4, Theorem 7.2.6, and Theorem 7.2.8 are all valid
withMd replaced by SV . Notice that we have set the dimension of V to the same as

126

Real symmetric matrices Abstract Hilbert space
Rd V Hilbert space of finite dimension d
Inner product ⟨·, ·⟩ over Rd Inner product ⟨·, ·⟩ over V
Norm ∥ · ∥ over Rd ∥v∥ = ⟨v, v⟩1/2
d× d matrices L(V) = linear operators from V to itself
Md = symmetric d× d matrices SV = self-adjoint operators in L(V): A ∈

L(V) satisfying for all v, w ∈ V the iden-
tity ⟨v, Aw⟩ = ⟨Av,w⟩.

Matrix norm ∥A∥ = maxv ∥Av∥/∥v∥ Operator norm ∥A∥ = maxv ∥Av∥/∥v∥

Table 7.1: Translation of terminology to abstract Hilbert space setting.

the dimension of Rd, which is why the same bounds hold verbatim in both the real
symmetric and abstract Hilbert space cases.
Similarly, all of our results from Section 7.4 hold withMd replaced by SV , i.e. con-
sidering functions f with image in SV instead of inMd. The sole caveat here is that
in order for the estimators to be efficient, we need addition, multiplication, trace,
exponential, and norm all to be efficiently computable for the operators in SV .

127

128

Bibliography

[AKS02] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. of Math,
2:781–793, 2002.

[AW02] R. Ahlswede and A. Winter. Strong Converse for Identification via
Quantum Channels. IEEE Trans. Inf. The., 48(3):569–579, 2002.

[AH91] W. Aiello and J. Hastad. Statistical Zero-Knowledge Languages can
be Recognized in Two Rounds. JCSS, 42:327–345, 1991.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended
abstract). In Proc. 28th STOC, pages 99–108, New York, NY, USA,
1996. ACM.

[AGGM06] A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On bas-
ing one-way functions on NP-hardness. In Proc. 38th STOC, pages
701–710, New York, NY, USA, 2006. ACM.

[ABF+04] M. Alekhnovich, M. Braverman, V. Feldman, A. R. Klivans, and
T. Pitassi. Learnability and Automatizability. In FOCS ’04, pages
621–630, 2004.

[AFWZ95] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized
Graph Products. Computational Complexity, 5(1):60–75, 1995.

[AR94] N. Alon and Y. Roichman. Random Cayley Graphs and Expanders.
RSA: Random Structures & Algorithms, 5, 1994.

[ABX08] B. Applebaum, B. Barak, and D. Xiao. On Basing Lower-Bounds
for Learning on Worst-Case Assumptions. In Proc. FOCS ’08, pages
211–220, 2008.

[AMCS04] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing
Packet Obituaries. ACM HotNets-III, 2004.

[AB09] S. Arora and B. Barak. Complexity Theory: A Modern Approach.
Cambridge University Press, 2009.

129

[AK07] S. Arora and S. Kale. A combinatorial, primal-dual approach to
semidefinite programs. In Proc. 39th STOC, pages 227–236, New York,
NY, USA, 2007. ACM.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
Verification and the Hardness of Approximation Problems. Journal of
the ACM, 45(3):501–555, May 1998.

[ARV04] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embed-
dings, and graph partitionings. In Proc. 36th STOC, pages 222–231.
ACM, 2004.

[AKWK04] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy.
Highly secure and efficient routing. INFOCOM 2004, 1:208, 7-11 March
2004.

[AHNRR02] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An secure
routing protocol resilient to byzantine failures. In WiSE ’02, pages
21–30. ACM, 2002.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =?NP
Question. SIAM Journal on Computing, 4(4):431–442, 1975.

[BGX08] B. Barak, S. Goldberg, and D. Xiao. Protocols and Lower Bounds for
Secure Failure Localization on the Internet. In Proc. EUROCRYPT
’08, pages 341–360, 2008.

[BS84] J. Beck and J. Spencer. Integral Approximatino Sequences. Mathe-
matical Programming, 30(1):88–98, 1984.

[BDEL03] S. Ben-David, N. Eiron, and P. M. Long. On the difficulty of approxi-
mately maximizing agreements. J. Comput. Syst. Sci., 66(3):496–514,
2003.

[BOGG+88] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali,
and P. Rogaway. Everything Provable is Provable in Zero-Knowledge.
In Proc. 8th CRYPTO, pages 37–56, London, UK, 1988. Springer-
Verlag.

[BH04] Y. Bilu and S. Hoory. Hypergraph Codes. European Journal of Com-
binatorics, 25(3):339–354, 2004.

[BFKL93] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic
Primitives Based on Hard Learning Problems. In CRYPTO ’93, pages
278–291, 1993.

130

[BR92] A. L. Blum and R. L. Rivest. Training a 3-node neural network is
NP-complete. Neural Netw., 5(1):117–127, 1992.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with
Applications to Numerical Problems. Journal of Computer and System
Sciences, 47:549–595, 1990.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864,
1984.

[BT06] A. Bogdanov and L. Trevisan. On Worst-Case to Average-Case Reduc-
tions for NP Problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[BHZ87] R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short
interactive proofs? Inf. Process. Lett., 25(2):127–132, 1987.

[CW89] A. Cohen and A. Wigderson. Dispersers, Deterministic Amplification,
and Weak Random Sources. In Proc. 30th FOCS, pages 14–19. IEEE,
1989.

[CK05] M. Collins and T. Koo. Discriminative Reranking for Natural Language
Parsing. Comput. Linguist., 31(1):25–70, 2005.

[CK06] M. Crovella and B. Krishnamurthy. Internet Measurement. Wiley,
2006.

[Dam93] I. Damg̊ard. Interactive Hashing can Simplify Zero-Knowledge Protocol
Design Without Computational Assumptions (Extended Abstract). In
Proc. 13th CRYPTO, pages 100–109, London, UK, 1993. Springer-
Verlag.

[DGOW95] I. Damg̊ard, O. Goldreich, T. Okamoto, and A. Wigderson. Honest
Verifier vs Dishonest Verifier in Public Cain Zero-Knowledge Proofs.
In Proc. 15th CRYPTO, pages 325–338, London, UK, 1995. Springer-
Verlag.

[DSDCPY98] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. Image
Density is Complete for Non-Interactive-SZK (Extended Abstract). In
Proc. 25th ICALP, pages 784–795, London, UK, 1998. Springer-Verlag.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message
transmission. J. ACM, 40(1):17–47, 1993.

[DSS93] H. Drucker, R. E. Schapire, and P. Simard. Boosting Performance in
Neural Networks. IJPRAI, 7(4):705–719, 1993.

131

[DG01] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct
traffic observation. IEEE/ACM Trans. Netw., 9(3):280–292, 2001.

[ESY84] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise
problems with applications to public-key cryptography. Inf. Control,
61(2):159–173, 1984.

[Fei98] U. Feige. A Threshold of lnn for Approximating Set Cover. Journal
of the ACM, 45(4):634–652, 1998.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete
sets. SIAM J. Comput., 22(5):994–1005, 1993.

[Fel06a] V. Feldman. Hardness of approximate two-level logic minimization and
PAC learning with membership queries. In STOC ’06, pages 363–372,
2006.

[Fel06b] V. Feldman. Optimal Hardness Results for Maximizing Agreements
with Monomials. CCC ’06, pages 226–236, 2006.

[For87] L. Fortnow. The complexity of perfect zero-knowledge. In STOC ’87,
pages 204–209, 1987.

[Fre90] Y. Freund. Boosting a weak learning algorithm by majority. In Proc.
COLT ’90, pages 202–216, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc.

[FS97] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting,. Journal of Comp.
and Sys. Sci., 55(1):119–139, 1997.

[GGK03] R. Gennaro, Y. Gertner, and J. Katz. Lower bounds on the efficiency of
encryption and digital signature schemes. In Proc. 35th STOC, pages
417–425, New York, NY, USA, 2003. ACM.

[GT00] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proc. 41st FOCS, pages 305–313.
IEEE, 2000.

[GW95] M. X. Goemans and D. P. Williams. Improved approximation algo-
rithms for Max-Cut and Satisfiability Problems using Semidefinite Pro-
gramming. J. of the ACM, 42:1115–1145, 1995.

[GXB+08] S. Goldberg, D. Xiao, B. Barak, J. Rexford, and E. Tromer. Path-
Quality Monitoring in the Presence of Adversaries. In ACM SIGMET-
RICS, 2008.

132

[Gol65] S. Golden. Lower Bounds for the Helmholtz Function. Physical Review,
137B(4):B1127–1128, 1965.

[Gol97] O. Goldreich. A Sample of Samplers - A Computational Perspective
on Sampling (survey). Electronic Colloquium on Computational Com-
plexity (ECCC), 4(020), 1997.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct ran-
dom functions. Journal of the ACM, 33(4):792–807, 1986. Preliminary
version in FOCS’ 84.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its
connection to learning and approximation. J. ACM, 45(4):653–750,
1998.

[GIL+90] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuck-
erman. Security Preserving Amplification of Hardness. In Proc. 31st
FOCS, pages 318–326. IEEE, 1990.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing
But Their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM, 38(3):691–729, July 1991. Preliminary
version in FOCS’ 86.

[GSV98] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proc. STOC
’98, pages 399–408, New York, NY, USA, 1998. ACM.

[GS02] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-
linear length. In Proc. 43rd FOCS, pages 13–22. IEEE Computer So-
ciety Press, 2002.

[GV99] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero
Knowledge with Applications to the Structure of SZK. In COCO ’99,
pages 54–73, 1999.

[GVW01] O. Goldreich, S. Vadhan, and A. Wigderson. On Interactive Proofs
with a Laconic Prover. In Proc. 28th ICALP, 2001.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. of Com., 18(1):186–208, 1989.
Preliminary version in STOC’ 85.

[GS89] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in
Interactive Proof Systems. Advances in Computing Research: Ran-
domness and Computation, 5:73–90, 1989.

133

[GL89] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins
University Press, 1989.

[GKS07] P. Gopalan, S. Khot, and R. Saket. Hardness of Reconstructing Mul-
tivariate Polynomials over Finite Fields. In FOCS ’07, pages 349–359,
2007.

[GR06] V. Guruswami and P. Raghavendra. Hardness of Learning Halfspaces
with Noise. In FOCS ’06, pages 543–552, 2006.

[HHRS07] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in
interactive protocols - A tight lower bound on the round complexity of
statistically-hiding commitments. In Proc. FOCS ’07, pages 669–679,
2007.

[HR07] I. Haitner and O. Reingold. Statistically-hiding commitment from any
one-way function. In STOC, pages 1–10, 2007.

[HJLT96] T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bounds on learning
decision lists and trees. Inf. Comput., 126(2):114–122, 1996.

[HILL89] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudo-
random generator from any one-way function. SIAM J. of Com.,
28(4):1364–1396, 1999. Preliminary versions appeared in STOC’ 89
and STOC’ 90.

[HR08] J. He and J. Rexford. Towards Internet-wide Multipath Routing. IEEE
Network Magazine Special Issue on Scalablity, March 2008.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their
Applications. Bull. Amer. Math. Soc., 43:439–561, 2006.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In SCT
’95, page 134, 1995.

[IL90] R. Impagliazzo and L. A. Levin. No Better Ways to Generate Hard
NP Instances than Picking Uniformly at Random. In FOCS ’90, pages
812–821, 1990.

[IL89] R. Impagliazzo and M. Luby. One-way Functions are Essential for
Complexity Based Cryptography (Extended Abstract). In Proc. 30th
FOCS, pages 230–235, 1989.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In STOC ’89, pages 44–61. ACM, 1989.

134

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E Requires Exponen-
tial Circuits: Derandomizing the XOR Lemma. In Proc. 29th STOC,
pages 220–229. ACM, 1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-
Randomization under a Uniform Assumption. In FOCS, pages 734–743,
1998.

[IZ89] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In
Proc. 30th FOCS, pages 248–253. IEEE, 1989.

[Jac88] V. Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM
’88, pages 314–329, Stanford, CA, Aug. 1988.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Compu-
tations, pages 85–103. Plenum Press, 1972.

[KV89] M. Kearns and L. Valiant. Cryptographic limitations on learning
Boolean formulae and finite automata. In Proc. STOC ’89, pages
433–444, New York, NY, USA, 1989. ACM.

[KSS92] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic
learning. In COLT ’92, pages 341–352, 1992.

[KLS00] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (S-
BGP). IEEE Jour. Sel. Areas in Comm., 18(4):582–592, April 2000.

[KST99] J. H. Kim, D. R. Simon, and P. Tetali. Limits on the Efficiency of
One-Way Permutation-Based Hash Functions. In Proc. 40th FOCS,
page 535, Washington, DC, USA, 1999. IEEE Computer Society.

[KY05] S. G. Kolliopoulos and N. E. Young. Approximation algorithms for cov-
ering/packing integer programs. J. Comput. Syst. Sci., 71(4):495–505,
2005.

[LR04] Z. Landau and A. Russell. Random Cayley graphs are expanders: a
simplified proof of the Alon-Roichman theorem. The Electronic Journal
of Combinatorics, 11(2), 2004.

[LC06] P. Laskowski and J. Chuang. Network monitors and contracting sys-
tems: competition and innovation. In SIGCOMM ’06, pages 183–194.
ACM, 2006.

[LS04] P.-S. Loh and L. J. Schulman. Improved Expansion of Random Cay-
ley Graphs. Discrete Mathematics and Theoretical Computer Science,
6(2):523–528, 2004.

135

[MSWA03] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
internet path diagnosis. SIGOPS Oper. Syst. Rev., 37(5):106–119, 2003.

[Mal08] T. Malkin. Personal communication., 2008.

[MFLS01] S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Tuning Cost-
Sensitive Boosting and Its Application to Melanoma Diagnosis. In
Proc. MCS ’01, pages 32–42, London, UK, 2001. Springer-Verlag.

[MR04] D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions
Based on Gaussian Measures. In FOCS ’04, pages 372–381, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[Mil75] G. L. Miller. Riemann’s Hypothesis and tests for primality. In Proc.
7’th STOC, pages 234–239, New York, NY, USA, 1975. ACM.

[MCMS05] A. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih: detecting
and isolating malicious routers. DSN 2005, pages 538–547, 28 June-1
July 2005.

[NN93] J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Con-
structions and Applications. SIAM J. of Com., 22(4):838–856, Aug.
1993.

[NR06] M. Naor and G. N. Rothblum. Learning to impersonate. In ICML
2006, pages 649–656. ACM, 2006.

[NOV06] M.-H. Nguyen, S.-J. Ong, and S. Vadhan. Statistical Zero-Knowledge
Arguments for NP from Any One-Way Function. In FOCS ’06, pages
3–14, 2006.

[NT99] N. Nisan and A. Ta-Shma. Extracting Randomness: A Survey and
New Constructions. J. Comput. Syst. Sci., 58(1):148–173, 1999.

[NW88] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput.
Syst. Sci., 49(2):149–167, Oct. 1994. Preliminary version in FOCS’ 88.

[Oka96] T. Okamoto. On relationships between statistical zero-knowledge
proofs. In Proc. 28th STOC, pages 649–658, New York, NY, USA,
1996. ACM.

[OV07] S. J. Ong and S. P. Vadhan. Zero Knowledge and Soundness Are
Symmetric. In EUROCRYPT ’07, pages 187–209, 2007.

[Ost91] R. Ostrovsky. One-way functions, hard on average problems, and sta-
tistical zeroknowledge proofs. In In Proc. 6th Annual Structure in
Complexity Theory Conf., pages 133–138, 1991.

136

[OW93] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for
Non-Trivial Zero-Knowledge. In ISTCS ’93, pages 3–17, 1993.

[PS03] V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect
faulty or malicious routing. SIGCOMM Comput. Commun. Rev.,
33(1):77–82, 2003.

[Pas06] R. Pass. Parallel Repetition of Zero-Knowledge Proofs and the Pos-
sibility of Basing Cryptography on NP-Hardness. In Proc. 21st CCC,
pages 96–110, 2006.

[PV88] L. Pitt and L. G. Valiant. Computational limitations on learning from
examples. J. ACM, 35(4):965–984, 1988.

[PW90] L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. J.
Comput. Syst. Sci., 41(3):430–467, 1990.

[Rab80] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12(1):128–138, 1980.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms:
approximating packing integer programs. J. Comput. Syst. Sci.,
37(2):130–143, 1988.

[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility
Between Cryptographic Primitives. In Proc. 1st TCC, pages 1–20,
2004.

[Riv93] R. L. Rivest. Cryptography and machine learning. In Proc. ASI-
ACRYPT ’91, pages 427–439. Springer, 1993.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proc. STOC ’90, pages 387–394, New York, NY, USA,
1990. ACM.

[RS96] R. Rubinfeld and M. Sudan. Robust Characterizations of Poly-
nomials withApplications to Program Testing. SIAM J. Comput.,
25(2):252–271, 1996.

[SV97] A. Sahai and S. P. Vadhan. A Complete Promise Problem for Statistical
Zero-Knowledge. In Proc. FOCS ’97, pages 448–457, 1997.

[Sch89] R. Schapire. The strength of weak learnability. Proc. FOCS ’89, pages
28–33, 1989.

[Sha02] R. Shaltiel. Recent developments in extractors. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 2002. Available
from http://www.wisodm.weizmann.ac.il/~ronens.

137

http://www.wisodm.weizmann.ac.il/~ronens

[Sho77] N. Z. Shor. Cut-off method with space extension in convex program-
ming problems. Cybernetics, 13:94–96, 1977.

[Sho87] N. Z. Shor. Quadratic optimization problems. Soviet Journal of Cir-
cuits and Systems Sciences, 25:1–11, 1987.

[SW04] A. Shpilka and A. Wigderson. Derandomizing homomorphism testing
in general groups. In Proc. 36th STOC, pages 427–435. ACM, 2004.

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Proc. EUROCRYPT
’98, volume 1403, pages 334–345, 1998.

[SS77] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality.
SIAM Journal on Computing, 6(1):84–85, 1977.

[Spe94] J. Spencer. Ten Lectures on the Probabilistic Method, 2nd Edition.
SIAM, 1994.

[Spi95] D. Spielman. Computationally Efficient Error-Correcting Codes and
Holographic Proofs. PhD thesis, M.I.T., 1995.

[SRS+04] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz. Listen
and whisper: security for BGP. In USENIX NSDI 2004, pages 10–10,
2004.

[Tho65] C. J. Thompson. Inequality with Applications in Statistical Mechanics.
Journal of Mathematical Physics, 6(11):1812–1823, 1965.

[Vad04] S. P. Vadhan. An Unconditional Study of Computational Zero Knowl-
edge. FOCS ’04, pages 176–185, 2004.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM,
27(11):1134–1142, 1984.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM
Review, 38:49–95, March 1996.

[WX08] A. Wigderson and D. Xiao. Derandomizing the Ahlswede-Winter
matrix-valued Chernoff bound using pessimistic estimators, and ap-
plications. Theory of Computing, 4(3):53–76, 2008.

[WBA+07] E. L. Wong, P. Balasubramanian, L. Alvisi, M. G. Gouda, and
V. Shmatikov. Truth In Advertising: Lightweight Verification of Route
Integrity. In PODC, 2007.

[Xia09] D. Xiao. On basing ZK ̸= BPP on the hardness of PAC learning. In
In Proc. CCC ’09, pages 304–315, 2009.

138

[Yao82] A. C. Yao. Theory and Applications of Trapdoor Functions. In Proc.
23rd FOCS, pages 80–91. IEEE, 1982.

[YN77] D. B. Yudin and A. S. Nemirovski. Informational complexity and
efficient methos for solving complex extremal problems. Matekon,
13:25–45, 1977.

139

140

Appendix A

Appendix

A.1 PSPACE and oracles

Proposition A.1.1. QBFR∗ is PSPACER∗ -complete.

Proof. QBFR∗ ∈ PSPACER∗ : this immediate because the proof that QBF ∈ PSPACE
relativizes. On input φ, M1 takes φ and outputs all the z such that φ contains a Rz

gate to obtain z1, . . . , zm. M2 then simply decides φ using access to the Rzi
gates.

This runs in space O(n2) and therefore time 2O(n2), see e.g. the analysis in [AB09].
All L ∈ PSPACER∗ reduce to QBFR∗ : recall the proof that QBF is complete for
PSPACE (see e.g. [AB09]). For a PSPACE machine M with space bound p(n)
and an input x, we look at the configuration graph of M on input x. A state of the
configuration graph is describable by a string of size O(p(n)). Furthermore, there is
a O(p(n)) size formula ϕM,x that describes edges in the configuration graph: namely,
given S, S ′ ∈ {0, 1}p(n), ϕM,x(S, S

′) = 1 iff S ′ follows from one step of the computation
of M starting with configuration S. The QBF formula is constructed recursively by
contracting paths in the configuration graph: we initialize ψ1 = ϕ and define

ψi(S, S
′) = ∃S ′′, ∀T1, T2, (T1 = S ∧ T2 = S ′′) ∨ (T1 = S ′′ ∧ T2 = S ′)⇒ ψi−1(T1, T2)

and the final output formula is ψp(n)(S0, Sa) where S0 is the initial configuration and
Sa is an accepting final configuration. One can check that |ψp(n)(S0, Sa)| = O(p(n)2).
To generalize this reduction to PSPACER∗ , on input x our reduction first uses M1

to obtain z1, . . . , zm. Now, it produces the formula ϕM,x, which contains only (say)
NAND gates and gates of the form Rzi

. Then, run the same reduction as in the
PSPACE case, which gives us the final formula ψp(n)(S0, Sa) which contains only Rz

gates with explicit z (i.e. those obtained from M1).

141

We use the fact that for any PSPACEO relation R, a PSPACEO oracle can count
the number of satisfying pairs {(x, y) | R(x, y) = 1} simply by enumerating over all
pairs and checking the relation. We use this to show the following two facts. First,
PSPACEO is able to invert itself:

Proposition A.1.2. There is an efficient oracle algorithm A that, for every O,
APSPACEO takes input a circuit C : {0, 1}ℓ → {0, 1}m with oracle gates and a string
y ∈ {0, 1}m, and outputs a uniform element of the set {x | CPSPACEO

(x) = y} with
probability at least 1−2−|y|, and outputs a special failure symbol ⊥ with the remaining
probability.

Proof. The computation of C on inputs of length ℓ can be expressed as a polynomial-
size QBFO, and so we can use a PSPACEO oracle to compute s = |(CPSPACEO

)−1(y)|.
Now pick a random number i ←R [s] and use the PSPACEO oracle to output the
i’th lexicographically ordered string in f−1(y). There is some probability of failure
because sampling a number in [s] may have a probability of failure if s is not a power
of 2, but this can be made to be smaller than 2−|y| by repeating the procedure.

Second, PSPACEO is able to find “heavy” outputs of a PSPACEO computation,
say over the uniform distribution of inputs (in the following, think of D as being the
equality predicate; we will state it more generally because of how we use it in our
proofs):

Proposition A.1.3. There is an efficient oracle algorithm A that, for every O,
APSPACEO takes input two oracle circuits C : {0, 1}ℓ → {0, 1}m and circuit D :
{0, 1}m × {0, 1}n → {0, 1} computing a predicate, and a unary string 1p and outputs
a set

S =

{
y

∣∣∣∣ Pr
x←RUℓ

[
DPSPACEO

(CPSPACEO
(x), y) = 1

]
≥ 1/p

}

Proof. Since PSPACEO is capable of counting PSPACEO relations, A simply it-
erates over all x ∈ {0, 1}m, y ∈ {0, 1}n and outputs all y such that the number of
x such that DPSPACEO

(CPSPACEO
(x), y) = 1 is larger than 2n/p. There can be at

most p such y, so the procedure runs in polynomial space.

A.2 Chernoff bounds for smooth distributions

The standard Chernoff shows that the empirical average of many samples drawn from
a distribution deviates from the mean of the distribution with exponentially small
probability. We use the fact that this also holds for weighted empirical averages, as
long as the weights are relatively smooth.

142

Lemma A.2.1 (Generalized Chernoff bound). Let D be a distribution over a finite
universe U such that maxu∈U Pr[D = u] ≤ 1/k (equivalently, it has min-entropy
H∞(D) ≥ log k). Let F be a distribution on functions f : U → {0, 1}. Let µ =
ED,F [F (D)] and let µu = EF [F (u)]. Then

Pr
F

[ED[F (D)] > µ+ γ] < e−γ2k/2

Proof. We derive that for any positive constant t:

Pr
F

[ED[F (D)] > µ+ γ] = Pr
F

[
et(kED[F (D)]−kµ) > etkγ

]
≤ e−tkγEF

[
et(kED[F (D)]−kµ)

]
≤ e−tkγEF

[
et(kED[F (D)−µD])

]
≤ e−tkγEF

[
et(

P

u∈supp(D) F (u)−µu)
]

(using Pr[D = u] ≤ 1/k)

= e−tkγ
∏

u∈supp(D)

EF

[
et(F (u)−µu)

]
≤ e−tkγ+t2k (using |supp(D)| ≥ k plus Taylor expansion)
= e−γ2k/2

where the last line follows from setting t = γ/2.

A.3 Protocols for set sizes

In this section, we present constant-round protocols for lower- and upper-bounding
set sizes.

Lemma A.3.1 (Lower-bound protocol [GS89]). Let S ⊂ {0, 1}n be a set whose
membership can be verified in poly(n) time. Then for every δ, ε ≥ 1/poly(n), there
exists an AM protocol where the efficient verifier V is given an integer s such that:

• If |S| ≥ s, then there is an honest prover that makes V accept with probability
at least 1− δ.

• If |S| ≤ (1 − ε)s, then for any (possibly malicious and unbounded) prover, V
accepts with probability at most δ.

Lemma A.3.2 (Upper-bound protocol [For87, AH91]). Let S ⊂ {0, 1}n be a set
whose membership can be verified in poly(n) time. Then for every δ, ε ≥ 1/poly(n),
there exists an AM protocol where the efficient verifier V is given an integer s and
a random x←R S unknown to the prover such that:

143

• If |S| ≤ s, then there is an honest prover that makes V accept with probability
at least 1− δ.

• If |S| ≥ (1 + ε)s, then for any (possibly malicious and unbounded) prover, V
accepts with probability at most 1− δ − ε.

Observe that the gap between between the honest and malicious case is small (only ε).
This is not a problem for our applications since we will usually run o(1/δ) such lower-
bound protocols in parallel, which means that if the prover is honest then none of the
parallel executions rejects, while if the prover is malicious then he can cheat on at most
a O(1/ε) fraction of the executions without getting caught. This soundness suffices
for our applications; see the application in the proof of the following Lemma A.4.1 or
the papers [BT06, AGGM06] for more details.

A.4 SD ∈ AM ∩ coAM
The following lemma shows that SDα,β ∈ AM∩coAM even when β−α = 1/poly(n),
i.e. the gap between β, α is small. This can be derived from known results, for
example from [GVW01], since SDα,β can be decided with constant completeness and
soundness error by a 2-message protocol where the prover sends O(logn) bits (simply
repeat the SZK protocol for SDα,β for O(logn) times in parallel), which by definition
means SDα,β ∈ AM, and then applying Theorem 3.7 of [GVW01] implies that SDα,β ∈
coAM. However, here we present a direct and self-contained protocol.

Lemma A.4.1. For any polynomial p(n) and for any α, β satisfying α−β ≥ 1/p(n),
it holds that SDα,β ∈ AM ∩ coAM.

Proof. We will show that it is possible to approximate the statistical distance ∆(X0, X1)
up to accuracy α−β

2
using an AM protocol.

Lemma A.4.2. There exists a protocol SDapprox where P, V get as input a pair of
polynomial-size circuits X0, X1 mapping {0, 1}m → {0, 1}n, a number γ, and a con-
fidence parameter 1/2 > η > 0 such that V runs in time poly(n, 1/η), and it holds
that:

1. If SD(X0, X1) = γ, then the honest prover P convinces the verifier V to accept
with probability 1− η.

2. If |SD(X0, X1)−γ| > η, then for all (possibly malicious and unbounded) provers
P ∗, the verifier accepts with probability at most η.

This lemma implies that SDα,β ∈ AM ∩ coAM, since the verifier could first use the
protocol to approximate the statistical distance and then decide (X0, X1) based on
this approximation.

144

Proof of Lemma A.4.2. We begin with some notation. Let Xb be the distribution
obtained by first sampling b ←R {0, 1} and then sampling x ←R Xb. Notice Xb can
be efficiently sampled using m+ 1 bits. Define

(X0)
−1(x) = {r | x = X0(r)}

(X1)
−1(x) = {r | x = X1(r)}

(Xb)
−1(x) = {(b, r) | x = Xb(r)}

Observe that for all x ∈ supp(Xb), it holds that |(Xb)
−1(x)| = |(X0)

−1(x)|+|(X1)
−1(x)|.

The protocol satisfying the lemma is specified as follows. Let t = 8
η2 log(2/η):

1. V samples x1, . . . , xt from the distribution Xb. V sends x1, . . . , xt to P .

2. P responds with integers (s0,1, . . . , s0,t), (s1,1, . . . , s1,t), (r1, . . . , rt).

3. V checks that for all i ∈ [t], it holds that ri = s0,i + s1,i, if not V rejects.

4. In parallel, P, V engages in the following upper/lower bound protocols (Lemma A.3.1
and Lemma A.3.2) for each i ∈ [t] with parameters δ = η

8tn
and ε = η

16
:

(a) A lower-bound protocol that |(X0)
−1(xi)| ≥ s0,i.

(b) A lower-bound protocol that |(X1)
−1(xi)| ≥ s1,i.

(c) A lower-bound protocol that |(Xb)
−1(xi)| ≥ ri.

(d) An upper-bound protocol that |(Xb)
−1(xi)| ≤ ri.

Observe that for the upper bound protocol the verifier V has a secret random
sample in the preimage, namely the preimage it used to sample xi.

5. If none of the upper/lower bound protocols reject, then V checks whether∣∣∣∣∣1t
t∑

i=1

|s0,i − s1,i|
ri

− γ

∣∣∣∣∣ ≤ η

2

If so V accepts, otherwise it rejects.

We observe first that if s0,i = |(X0)
−1(xi)|, s1,i = |(X1)

−1(xi)|, ri = |(Xb)
−1(xi)|, then

it holds that
|s0,i − s1,i|

ri

=
1
2
|s0,i − s1,i|

1
2
(s0,i + s1,i)

=
1
2
|Pr[X0 = xi]− Pr[Xb = xi]|

1
2

Pr[X0 = xi] + 1
2

Pr[X1 = xi]

=
1

2

|Pr[X0 = xi]− Pr[Xb = xi]|
Pr[Xb = xi]

145

Furthermore, we observe that

∆(X0, X1) =
1

2

∑
x∈supp(X0)∪supp(X1)

|Pr[X0 = x]− Pr[X1 = x]|

=
∑

x∈supp(X0)∪supp(X1)

1

2
Pr[Xb = x]

|Pr[X0 = x]− Pr[X1 = x]|
Pr[Xb = x]

= Ex←RXb

[
1

2

|Pr[X0 = x]− Pr[X1 = x]|
Pr[Xb = x]

]
Therefore, it follows that:

Exi←RXb

[
|s0,i − s1,i|

ri

]
= Exi←RXb

[
1

2

|Pr[X0 = xi]− Pr[X1 = xi]|
Pr[Xb = xi]

]
= ∆(X0, X1)

(D.1)
Completeness: in this case, the prover gives the honest sizes s0,i = |(X0)

−1(xi)|, s1,i =
|(X1)

−1(xi)|, ri = |(Xb)
−1(xi)|. Because the sizes are honest, this means by the com-

pleteness conditions of Lemma A.3.1 and Lemma A.3.2 that the probability that any
of these protocols rejects is at most δt = η

8n
< η/2. Furthermore, since each sample

xi is drawn from Xb and from Equation D.1 we have E[
|s0,i−s1,i|

ri
] = ∆(X0, X1) = γ, it

follows by a Chernoff bound that

Pr
x1,...,xt

[∣∣∣∣∣1t
t∑

i=1

|s0,i − s1,i|
ri

− γ

∣∣∣∣∣ > η

2

]
≤ 2−η2t/8

which, by our choice of t = 8
η2 log(2/η), is bounded by η/2. Therefore, the probability

that V rejects is at most η.
Soundness: by a Chernoff bound, we have that

Pr
x1,...,xt

[∣∣∣∣∣1t
t∑

i=1

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

−∆(X0, X1)

∣∣∣∣∣ > η

2

]
≤ 2−η2t/8

which is bounded by η/2, so condition on the event that this does not hold, i.e. the
event that ∣∣∣∣∣1t

t∑
i=1

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

−∆(X0, X1)

∣∣∣∣∣ ≤ η

2
(D.2)

Cheating lower bounds: if there exists i such that

|(X0)
−1(xi)| < (1− ε)s0,i, |(X1)

−1(xi)| < (1− ε)s1,i, |(Xb)
−1(xi)| < (1− ε)ri

then one of the lower bound protocols will reject with probability 1 − δ > 1 − η/2.
So suppose not, and that for all i ∈ [t] that

|(X0)
−1(xi)| ≥ (1−ε)s0,i, |(X1)

−1(xi)| ≥ (1−ε)s1,i, |(Xb)
−1(xi)| ≥ (1−ε)ri (D.3)

146

Cheating upper bounds: now consider if the prover tries to cheat in some of the upper
bounds. Let S denote the set of i such that |(Xb)

−1(xi)| > (1 + ε)ri. We claim
that if |S| > 8

ε
log 2

η
, then the verifier accepts all these cheating executions is ≤ η/2.

The probability that one execution of the upper bound protocol accepts is at most
(1− ε− δ), and since the parallel executions are independent and because δ ≪ ε, it
follows that the probability that they all accept is at most

(1− ε− δ)|S| ≤ (1− ε− δ)
8
ε

log 2
η ≤ 2

log 2
η ≤ η/2

Therefore, we may assume that

|S| ≤ 8
ε

log 2
η

(D.4)

Notice that this means that |S|/t ≤ ε/2.
Finally in order for V to accept it must be the case that

∣∣∣∣∣1t
t∑

i=1

|s0,i − s1,i|
ri

− γ

∣∣∣∣∣ ≤ η

2
(D.5)

But since we assumed that Inequality D.2 holds, namely that the honest preimage
sizes give a good estimation of the statistical distance, and because γ is far from the
true statistical distance, in order for P to make V accpt it must be that P ’s claims
must be far from the honest preimage sizes. That is, applying the triangle inequality
to Inequality D.2 and Inequality D.5, P must give s0,i, s1,i, ri satisfying

∣∣∣∣∣1t
t∑

i=1

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

− 1

t

t∑
i=1

|s0,i − s1,i|
ri

∣∣∣∣∣ > η

2
(D.6)

We will show that this contradicts Inequality D.3 and Inequality D.4. First, because
|(X0)

−1(xi)| + |(X1)
−1(xi)| = |(Xb)

−1(xi)| and s0,i + s1,i = ri, we have that for all
i ∈ [t] \ S

|(X0)
−1(xi)| = |(Xb)

−1(xi)| − |(X1)
−1(xi)| ≤ (1 + ε)ri − (1− ε)s1,i = s0,i + ε(ri + s1,i)

(D.7)
|(X1)

−1(xi)| = |(Xb)
−1(xi)| − |(X0)

−1(xi)| ≤ (1 + ε)ri − (1− ε)s0,i = s1,i + ε(ri + s0,i)
(D.8)

147

For each i ∈ [t] \ S, it holds that

|(X0)
−1(xi)| − |(X1)

−1(xi)|
|(Xb)−1(xi)|

≤ s0,i + ε(ri + s1,i)− (1− ε)s1,i

(1− ε)ri

=
s0,i − s1,i + ε(ri + 2s1,i)

(1− ε)ri

≤ |s0,i − s1,i|+ 3εri

(1− ε)ri

(Since s1,i ≤ ri)

< (1 + 2ε)
|s0,i − s1,i|

ri

+ 3 ε
1−ε

<
|s0,i − s1,i|

ri

+ 6ε (Since |s0,i − s1,i| ≤ ri)

Here we have used the fact that ε = η/16 < 1/32 (since η < 1/2), which implies that
1

1−ε
≤ 1 + 2ε. We can repeat the above derivation with 0, 1 interchanged, so we may

deduce that for all i ∈ [t] \ S it holds that∣∣∣∣ ||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

− |s0,i − s1,i|
ri

∣∣∣∣ ≤ 6ε

Finally, we can derive that∣∣∣∣∣1t
t∑

i=1

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

− 1

t

t∑
i=1

|s0,i − s1,i|
ri

∣∣∣∣∣
≤

∣∣∣∣∣1t ∑
i∈S

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

− 1

t

t∑
i∈S

|s0,i − s1,i|
ri

∣∣∣∣∣
+

∣∣∣∣∣∣1t
∑

i∈[t]\S

||(X0)
−1(xi)| − |(X1)

−1(xi)||
|(Xb)−1(xi)|

− 1

t

t∑
i∈[t]\S

|s0,i − s1,i|
ri

∣∣∣∣∣∣
≤ |S|

t
+

1

t

∑
i∈[t]\S

6ε

≤ 6.5ε

< η/2

which contradicts Inequality D.6. Therefore the protocol is sound, since either he
cheats too much in the upper or lower bound protocols in which case he is caught
with probability 1− η, or the verifier rejects in step 5 of the protocol.

148

	Abstract
	Acknowledgements
	Introduction and Preliminaries
	Basic notation
	Complexity
	Reductions: black-box, relativizing, and otherwise

	Computational learning through new lenses
	Introduction
	Definitions of computational learning
	One-way functions
	Zero knowledge
	Usage of diagrams

	Learning and one-way functions
	A decisional version of learning
	AIOWF implies testing PAC learnability is hard
	An oracle separating learning and AIOWF
	CircCons and CircLearn: efficient example oracles
	CircLearn and AIOWF
	Summary

	Learning and ZK
	ZK=BPP implies hardness of learning
	Can ZK=BPP be based on hardness of learning?
	CircConsZK
	Summary

	Learning and NP
	Karp reductions
	Black-box reductions
	Strongly black-box reductions
	Summary

	Lower-bounds for failure localization
	Overview of results
	Definition of Secure Failure Localization
	Security requires keys required at each node
	Security requires crypto at each node
	Open problems

	Derandomizing Chernoff bounds for matrix-valued random variables
	Introduction
	Matrix-valued random variables and Ahlswede-Winter's Chernoff Bound
	Method of pessimistic estimators
	Applying pessimistic estimators
	O(logn) expanding generators for any group
	Covering SDP's
	Generalization to abstract vector spaces

	Appendix
	PSPACE and oracles
	Chernoff bounds for smooth distributions
	Protocols for set sizes
	SDAMcoAM

