Design and Implementation of

Secure Trusted Overlay Networks

Matthias Jacob

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

Adviser: Edward W. Felten

September 2009



(©2009 by Matthias Jacob

This thesis has been generated using the ITC Stone™ font.



To my parents






Abstract

Denial-of-service attacks, malicious routing updates, and online identity theft are
clearly on the rise on the Internet, costing the US industry billions of dollars. In
reaction, there is a large effort to design new technologies such as Trusted Computing
that solve many of these problems efficiently. However, state-of-the-art systems for
anonymous communication have various weaknesses against traffic analysis and are
often designed for one specific purpose. So far, Trusted Computing has not been con-
sidered for improving the efficiency of Internet anonymity and privacy and building
a general-purpose architecture to solve the problem.

In this thesis we describe the design and implementation of Secure Trusted Overlay
Networks (STONe). STONe is the first system for general-purpose anonymous commu-
nication that is entirely based on Trusted Computing. STONe significantly improves
anonymous communication on the Internet and makes three main contributions.
First, STONe uses Trusted Computing to protect against Byzantine Failures on the
network stack to provide an overlay network for scalable, efficient secure routing, and
end-to-end communication. This prevents many active denial-of-service attacks on
an anonymity network and provides a foundation for more robust protection against
traffic analysis. Second, STONe is the first system to provide anonymous routing
through load-balancing by random routing previously used for local cluster networks.
This turns out to better protect against most existing traffic analysis attacks. Such
attacks have yet been difficult to come by, namely the Predecessor Attack and the
Intersection Attack. Third, on the application-level, STONe provides application-level
anonymity through trusted anonymous sockets and a trusted name service, an in-
expensive trusted certification mechanism with one-way per-session authentication.
We implemented and evaluated a prototype of STONe on PlanetLab and show that it
significantly outperforms state-of-the-art systems for anonymous communication at
the expense of additional Trusted Computing hardware.






Acknowledgements

I was very glad to have Ed Felten as my advisor. He gave me the freedom to work
on anything I enjoyed and helped me finally succeed in my research. Dan Boneh,
Vivek Pai, Kai Li, and Jennifer Rexford as my thesis committee members provided
me with valuable feedback and guidance in laying out the research and writing my
thesis. In addition, I would like to thank especially Dina Katabi, and also Mariusz
Jakubowski and Ramarathnam Venkatesan for successful collaborations during my
graduate school career. And of course, I am gratetul to have had many nice friends
at different universities and research institutions I have had the chance to work at. It
has always been a good time.

iii






Table of Contents

1 Introduction
1.1 Anonymous Communication . .. ... ...................

2 Trusted Overlay Networks
2.1 Distributed Applications on Trusted Overlay Networks . . . . . . ... ..

3 Model and Definitions
3.1 Communication Model . . . . ... ... ... o L.
3.2 SystemsModel . . . ... L
3.3 SecurityModel . . . . ... L
3.4 Privacy Model . .. ... . ...
3.5 AnonymityModel . . . . . ... o
3.6 Notations . . . . . . . . . . e e

4 STONe Design
4.1 System Architecture . . . . .. .. ... Lo
4.2 Secure Communication . . . . ... ... . oL o o
4.3 RandomRouting . . . . . . ... . ..o
4.4 SynchronizationinSTONe . . . .. ... ... ... ... ..........
4.5 Anonymous Communication . .. ... .. ... ... ... ... ..
4.6 Compromised Trusted Computing Hardware . . ... ... ... .....

5 STONe Implementation
5.1 Trusted ComputingBase . . ... ... ... ... .. ... . . ...,
5.2 Implementing Trusted Overlay Networks . . . . .. .. .. ... ... ...
5.3 STONe Implementation. . . . . .. ... ... ... ... ... ...
5.4 Applications . . . .. .. e

6 STONe Evaluation
6.1 Security . . . . . . . e
6.2 Performance . . . . . . . i e e e e e e e e e e e



vi TABLE OF CONTENTS

7 Related Work 101
7.1 Trusted Computing and Trusted Operating Systems . . . . ... ... .. 101
7.2 Secure Communication . . . .. .. .. L o 0oL 105
7.3 Anonymous Communication . .. ... .. ... ... ... .. 0.0, 107
7.4 Overlay Networks and Internet Architectures . . . . . .. ... ... ... 112
7.5 Instant Messaging . . . . . . . . ... e 113
7.6 Filesystems and File Sharing Networks . . . .. ... .. .......... 114

8 Conclusion and Future Work 115



Chapter 1

Introduction

Privacy is becoming increasingly important on the Internet. Sophisticated surveillance
tools that can reconstruct anyone’s HI'TP and EMail traffic are now commercially
available. These tools are becoming extremely powerful, even causing the FBI to
deploy them as a replacement for their in-house surveillance system, Carnivore [6,
13, 145]. Consequently, Internet users increasingly need systems that ensure the
privacy of user identity and communication, unless the user voluntarily discloses this
information.

Even though encryption keeps the content of the messages secret, IP addresses not
only provide routing information but unfortunately also reveal the identity of users.
Specitic tratfic properties such as inter-packet timing give an adversary further clues
about the communicating parties and the type of traffic. Therefore, a network that
provides private communication requires transparent protection against these types
of traffic analysis attacks. Tratfic analysis is a long-standing and hard problem.

In addition to anonymous routing, end-to-end anonymity is a neglected problem
as well. Name server requests are a vital information source for a privacy-intruding
adversary. Credentials in the system are rarely anonymous, and it often becomes easy
to fake identities. Application endpoints like web servers are often able to distinguish
between messages they receive from inside and outside the anonymity network. The
receiver may not have an incentive to accept messages from inside the anonymity
network and may just drop these messages, thereby forcing the sender to reveal its
identity. These are all significant shortcomings, and an anonymity system with in-
tegrated end-to-end support has stronger security and anonymity properties than a
proxy network that has a peer-to-peer-based system such as Gnutella running on top
of it. Gnutella is known to have privacy problems [43].

In this thesis we present STONe, Secure Trusted Overlay Networks, to address the
aforementioned problems. STONe decouples message forwarding from traffic analysis
protection and integrates end-to-end anonymity with anonymous routing. It achieves sig-

1



2 Chapter 1. Introduction

nificantly better leverage on performance, resilience, and anonymity than previous
systems for anonymous communication. But as a trade-off STONe requires a Trusted
Computing infrastructure which is only available in new CPUs [99, 28].

1.1 Anonymous Communication

The Internet by itself does not provide any protection for anonymity. Every IP packet
clearly reveals the source and destination address of the endpoints, and, unfortunately,
the routers require this information to ensure optimal routing in the network. An
adversary with access to the network or routers is able to carry out tratfic analysis
attacks, and in addition the endpoints are able to see the peer’s identity.

So far there exist a variety of systems for anonymous communication, from sending
anonymous email [58] to anonymous web browsing [131, 204]. But building an
efficient system for general-purpose anonymous communication that is robust against
a wide range of attacks becomes a very challenging task. Often these state-of-the-art
techniques are based on a variation of intermediate proxies or broadcast techniques.
They either do not provide full protection against traffic analysis [131, 204], have high
latencies [62], are limited to small-scale networks [148, 59], or are not resilient against
tailures [58]. In addition, they are prone to some dangerous traffic analysis attacks,
most importantly the predecessor attack [198, 171], in which an adversary analyzes
packet header information to find the sender. They are also vulnerable to intersection
attacks [131], in which the adversary measures traffic properties like volume and
timing to find a subset of nodes that comprise the possible communication path. The
dilemma is that protocols protecting against the latter attack use random walks to blur
the path between the sender and the receiver and hide the associating IP addresses.
However, when the route is changing frequently an adversary needs to compromise
considerably fewer nodes to catch the desired packet header information. To our
knowledge there is no satisfactory solution that solves this problem efficiently.

Figure 1.1: Single proxy network for anonymous communication. The sender forwards messages
to the Anonymizer proxy, which then propagates them to the receiver, replacing the original sender
address with its own address.

The simplest solution for providing Internet anonymity is to use a trusted proxy
such as Anonymizer [2]. Figure 1.1 shows the scenario: The sender forwards its
messages to the proxy, and the proxy then propagates the messages to the receiver.



1.1. Anonymous Communication 3

The receiver only sees the proxy’s IP address and returns messages to the sender using
that address.

However, being a single point of failure, the proxy has to be fully trusted, similar
to a certification authority that certifies public keys for Internet identities. Whenever
an anonymity proxy leaks information about a forwarded packet it compromises the
whole system. In addition, trusted backup servers have to be ready in case of a failure
to avoid disruption of the anonymity service in case of a failure or overload situation.
The proxy hides the IP addresses, but end-to-end timing still depends on the round-
trip time of the individual connection and is not random, thus, giving clues to an
adversary about the IP addresses.

This is particularly dangerous when a government wants to seize communication
data for tracking a dissident. With a single proxy it is fairly easy to do, because the
information may be stored in a central database.

Figure 1.2: Distributed proxy network for anonymous communication. The sender forwards
messages to an entry node in the Tor network. The sender’s entry node propagates the message
to an exit node, which then sends the message to the receiver. Tor resets the path after some time
interval. The entry and exit nodes know who the sender and the receiver is.

Instead of a single proxy that has these shortcomings, distributed proxies that
eliminate the single point of trust can be used for anonymous communication. In
the virtual world systems like Tor [75], as shown in Figure 1.2, have become the state-
of-the art technology for anonymous communication using this scheme. The sender
picks a random set of proxies and uses them for message forwarding. The sender
encrypts the stacked IP headers in layers, and every proxy strips off layer after layer,
such that every proxy can only see the previous and next hop. The endpoints do
not have to trust the proxies anymore and all messages go through an arbitrary set
of untrusted nodes. When a node fails, the sender picks a different set of proxies for
message forwarding.



4 Chapter 1. Introduction

A distributed proxy that contains untrusted nodes is prone to traffic analysis attacks
- the predecessor attack significantly degrades almost every anonymity protocol in
distributed environments when paths are changing frequently [198]. The predecessor
attack exploits the fact that every node knows its predecessor on the Internet, but
the sender and receiver never change during a communication session. When a path
changes frequently an adversary can detect whether its predecessor is the sender or
not. However, when the path remains static for too long the system is prone to
intersection and timing attacks [131, 41]. End-to-end timing as well as the load on every
node tells an adversary where packets traverse the system, and it is easily possible to
reconstruct the sender and receiver’s IP address on the communication path [131].
Unfortunately, one of the two attack methods always seems to be applicable, so that
it is very difficult to achieve good protection against traffic analysis.

Similar to the single proxy, most distributed proxies used for anonymous commu-
nication have a scalability problem. A sender has to discover all proxies in the network
and learn the public keys to construct the anonymous message before sending it off
to the first proxy. Doing this discovery efficiently would require some underlying
structure that reduces the number of key exchanges. Without encryption the mes-
sage’s receiver is revealed [148]. Furthermore, without admission control the senders
are responsible for route selection and need to play fair, otherwise they could congest
a proxy and slow down performance of the distributed proxy network.

A general problem that atfects single and distributed proxies on the Internet is
the limited 32-bit IP address space. An adversary can always try to guess the correct
node, and she is always right with probability p = 2732. For example, if an adversary
wants to find out where a data stream is sent from, she can attack arbitrary nodes with
Denial of Service attacks and then wait until the stream becomes weaker. Because of
the number of legacy routers and applications in the Internet a global move to IPv6
with a 128-bit address space in the near future seems unlikely. On the other hand,
NATs do not really solve this problem, because they generate a non-uniform address
space in which many nodes have the same network address and can therefore not be
used as proxies for anonymization.

Summarized, there are two goals in anonymous communication systems:

Anonymous Identities and Credentials When parties communicate on the Inter-
net it is their goal to hide their identities, such as IP address or DNS name, from
an external adversary as well as from other parties participating in the com-
munication. But they still want to be able to verity some credentials to a peer
node.

Protection against Traffic Analysis The parties want to protect their asynchronous
Internet traffic against an external eavesdropper whose goal it is to analyze traffic



1.1. Anonymous Communication 5

to determine which parties are participating in communication.

Trusted Computing already provides support for security in distributed systems [87],
and STONe relies on the same three features of Trusted Computing in its anonym-
ity protocol — Strong Process Isolation, Remote Attestation, and Sealed Storage — to
enhance privacy in network communication. First, remote attestation [S1, 21] allows
nodes to anonymously authenticate themselves to their peers, establish trust, and
torm a trusted overlay network. Second, strong process isolation shields memory from
spyware and attackers on the same host by isolating memory pages [133, 99, 28].
Third, sealed storage provides secure storage for keys and ensures safety of remote
attestation [21].

Our Secure Trusted Overlay Network (STONe) consists of multiple building blocks:
(1) Efficient Protection Against Traffic Analysis: STONe protects against traffic
analysis using self-mixing by applying random routing to a regular network topology
such as a hypercube. This ensures uniform traffic patterns with minimal network
congestion. This design provides mixing of network packets without explicitly using
a high-latency mix network that is not useful for low-latency anonymous commu-
nication [187]. STONe further quickly isolates compromised nodes to minimize the
impact of the predecessor attack by using Trusted Computing to detect Byzantine failures
such as software bugs.

(2) Scalable and Robust Anonymous Routing: STONe improves scalability of anony-
mous routing because it encrypts packet headers hop-by-hop instead of using a circuit-
based approach like in onion-routing [75]. The structured overlay network in STONe
ensures that nodes can enter and leave the network quickly without interrupting com-
munication of other nodes, thus eliminating single points of failure and congested
network nodes. In addition, STONe also protects the network against active attacks,
such as Denial-of-Service from external nodes, which would harm service and thus
anonyimity at a given time.

(3) Anonymous Sockets and Name Servers: STONe implements anonymous TCP
and UDP socket endpoints tor an application. Only truly random IP addresses are
visible outside STONe. Such an anonymous IP address hides identity and location
and is different for every new session the socket uses. In STONe, anonymous IP
addresses are not only network addresses but also anonymous authenticators to ensure
that the anonymous IP address is indeed correct. Further, STONe contains TNS, the
Trusted Name Service that maintains and verifies self-certifying anonymous credentials. It
anonymizes name server queries and maps names to anonymous pseudonyms that
certity themselves with self-containing public keys.

Our evaluation shows that STONe’s performance impact is much less compared to
existing anonymity systems that do not use Trusted Computing. STONe’s throughput



6 Chapter 1. Introduction

approximates expected TCP throughput and exceeds state-of-the-art system Tor by
30% [75]. Also, our experiments verify that STONe scales up to a significant number
of nodes on PlanetLab with random arrivals and departures, while maintaining routing
stability and low overhead. Thus, STONe can optimize anonymity for locality and
avoid congestion situations, and as a result its average latency is only about half of
Tor’s latency. Finally, our results confirm the expected benefit of random routing: it
significantly improves the system’s robustness against traffic analysis by maintaining
scalability and resilience at the same time. We summarize our contributions as follows:

e We have designed, implemented, and evaluated STONe, a distributed infrastruc-
ture for certified and anonymous communication that is robust against sub-
stantially more traffic analysis attacks, more resilient, and more efficient than
previous systems for anonymous communication such as Onion Routing, Mix
Networks, or Crowds [185, 58, 148].

e We are the first to apply random routing over a regular network topology on the
heterogeneous Internet to achieve load balancing and self-mixing of network
packets, and thus anonymous communication without explicit mixes that ham-
per low-latency communication. Previous approaches use less secure random
walks instead [185, 58, 148].

e STONe is the first system that combines these three important properties for
anonymous communication: Resistance against the Predecessor Attack [148],
uniform tratfic patterns and indistinguishable communication paths [131], and
scalability [S9]. Further, it provides protection for tratfic anonymity to disguise
the type of content, e.g. media stream vs. email traffic. In particular, to provide
the latter it is usually necessary to send expensive cover traffic to disguise the
type of traffic [121].

e Further, we demonstrate that STONe is indeed a general-purpose system de-
signed for both low-latency and high-throughput communication: We build
two applications, Anonymous Instant Messenger and Anonymous File System. Both
applications have privacy issues that are hard to solve. Using a PlanetLab im-
plementation, we demonstrate that our system achieves reasonable performance
while preserving privacy.



Chapter 2

Trusted Overlay Networks

Byzantine failures are one of the most general problems in distributed systems. For
anonymous communication they pose a particularly significant threat that requires
protocol designers to downsize performance and scalability to work around these
problems. Compared to a fail-stop tailure that causes a machine to crash, Byzantine
failures like software bugs cause a machine’s behavior to become unpredictable. If the
Byzantine failure is even an intended malicious attack, an adversary takes control over
the whole machine and uses it to launch further attacks. This threat is real — adversaries
can easily get access to tens of thousands of compromised computers in so-called
BotNets and use them to launch DDoS attacks on web servers or networks [103]. When
the adversary controls the machine, she is also able to monitor all communication
channels traversing through that machine, and therefore, BotNets are also a threat to
anonyimity.

Untrusted Untrusted Trusted Trusted
Process Process Process Process

Untrusted Kernel

Trusted Kernel

Memory Disk Network

Figure 2.1: Trusted Computing: Trusted versus untrusted processes on a Trusted Computing
node



8 Chapter 2. Trusted Overlay Networks

Trusted Computing, as proposed by several manufacturers [99, 28, 21, 79], provides
improved proactive protection against Byzantine failures on a local platform using two
distinctive primitives: Strong Process Isolation and Remote Attestation. In addition to
virtual memory Strong Process Isolation protects trusted processes against attacks from
a compromised OS through virtualization [87], and thus isolates Byzantine failures
from the rest of the machine that would otherwise make the platform vulnerable. A
process becomes trusted, and thus part of the Trusted Computing Base (TCB) only when
it completes attestation locally. To complete attestation the process verifies to the TCB
by signing a nonce that all software from the application to the BIOS is trusted, i.e.
the nonce is on the list of trusted software. Otherwise the process remains untrusted.
This separation is shown figure 2.1.

Remote attestation is an application-based mutual protocol between two TCBs that
verifies to the peer TCB that the platform is trusted. Similar to local attestation on the
TCB itself, it verifies to the peer node that all software from the BIOS to the application
is trusted. Remote Attestation is built into the TCB and can be implemented in various
tashions [165, 51, 114, 87]. It either exploits hardware properties such as hardware-
specific clock skew or relies on cryptographic primitives such as group signatures
that rely on keys built into hardware. Group signatures are a signature scheme that
preserves identity from others. The signing node signs a nonce n;, of the binary using
its private signing key, and every other node in the group is then able to use the
global verification key to verity the group signature. Every TCB has a list of valid
nonces n; that are trusted, and without forging or breaking the hardware it is not
possible to get the system to succeed in remote attestation. This significantly raises
the bar for adversaries to compromise a node — for example, it would not be possible
to compromise a set of nodes by spreading a worm across the network.

A group of interconnected TCBs forms a Trusted Overlay Network, the platform for
STONe. The Trusted Overlay Network isolates processes from Byzantine Failures and
reduces the likelihood of security bugs, because software is trusted. In such a closed
distributed system a software-based compromise atfects either all nodes or none of the
nodes, which is similar to fail-stop behavior.

In addition to the benetits in robustness against Byzantine failures, unfortunately,
there are also some controversial issues in Trusted Computing that need to be dis-
cussed. This is mainly because it enforces policies and lets an outside server take
control:

(i) It is hard for a user to verity that Trusted Computing has been implemented
correctly and does not leak any information through hidden backdoors.

(ii) Trusted Computing can pursue anti-competitive behavior by implementing restric-
tive policies in TCBs that lock out certain software from the platform under the
premise that the software is insecure.



(iii) Systems maintenance becomes hard when operating systems have to be updated
trequently, since on every update old nonces for attestation have to be removed
trom the list of trusted software.

(iv) A local administrator can be restricted because Trusted Computing adds another
privilege ring around the operating system. Only a global remote administrator
who might not even be known to the owner of the platform could have all
administrative permissions.

(v) When an adversary compromises a Trusted Computing system, it is usually a total
break-in, and the adversary is able to learn everything including the TCB’s secret
key used for attestation. However, the probability that such a break-in occurs is
assumed to be very small.

There are several mechanisms in place to overcome these problems. Regarding
genuity of the Trusted Computing implementation the hardware manufacturer itself
has to be trusted. The manufacturer’s damage from bad publicity needs to outweigh
the benefit from the backdoor.

Owner override addresses some of the issues related to access rights [162]. In
owner override the owner can modify configurations or even remote attestation as
long as it is proven that the owner is making the changes and not a virus or malicious
application. The problem with owner override is that it undermines the security of
Trusted Computing and allows cheating in online games, illegal copying of protected
content, etc.

To make the attestation process more transparent the TCB can use techniques such
as semantic attestation [93]. In semantic attestation the signature is not computed
by a hash function but by applying a function that captures the properties of the
program like in proof-carrying code [134]. In this case no additional list of trusted
software needs to be distributed, since attestation only checks the program for given
functionality and not what kind of software it is.

When an adversary breaks into the Trusted Computing hardware she is able to learn
almost everything on the compromised machine. Deniable cryptography against the
“rubberhose attack” could potentially shield such compromises but has been fairly
inefficient to implement [125, 53]. In deniable cryptography a plaintext P is encrypted
such that the corresponding ciphertext C decrypts to P under key k;, and under key
ko C decrypts to a different meaningful plaintext different from P. When an adversary
knows key k, she thinks that she has found the correct key.



10 Chapter 2. Trusted Overlay Networks

2.1 Distributed Applications on Trusted Overlay Networks

Trusted Overlay Networks are the base for STONe. Numerous distributed applications
can benefit from Trusted Overlay Networks that would otherwise have to cope with
Byzantine failures. Algorithms that protect against Byzantine failures are often costly,
since they require replication [57, 19]. Trusted Overlay Networks provide a flexible
infrastructure that strengthens any distributed systems. Here we give a few examples
of distributed applications that potentially benefit from the Trusted Overlay Network
architecture:

Ad-Hoc Networks
Ad-Hoc networks are untrusted because the owner of a node on the ad-hoc
network has access to all submitted data and can eavesdrop on data or manipulate
and drop data. TON protects transmitted data against tampering and traffic
analysis. TON also eliminates the problem of free-riders who use the network
infrastructure without forwarding any data.

Distributed File Systems
As mentioned in the last section, any distributed peer-to-peer file sharing appli-
cation or distributed filesystem has benefits on TON, because an adversary would
not be able to compromise or inject nodes with malicious content. Normally,
distributed file systems have to implement replication in order to protect against
maliciously modified files [S7].

Global Computing
Global Computing such as SETI@Home is another application for Trusted Overlay
Networks [19]. When an adversary tampers with the particular result of some
nodes the global result is bogus. To protect against this attack computation has
to be replicated, which is expensive. In Trusted Overlay Networks replication is
unnecessary, since the nodes are protected by Trusted Computing hardware.

Electronic Voting or Consensus Systems
Any system for consensus or in particular electronic voting has to be robust
against Byzantine failures. In particular, the policies have to be enforced, such
that entities do not cast a vote twice or jam the consensus process, as, for exam-
ple, in Dining Cryptographers.

Instant Messaging
Instant Messaging is a distributed system that relies on a trusted central server
tor directory lookup and message forwarding. This one single trusted entity can
tail or get compromised. With Trusted Overlay Networks we can distribute the
tunctionality of this one single trusted entity across the whole network.



Chapter 3

Model and Definitions

Before we get into the design of STONe in this chapter we explain the underlying
models for security and networks used in this thesis as well as potential attacks and
attack goals considered in STONe’s design. A reader who is only interested in the
systems design and implementation can skip this chapter and go directly to chapter 4.

3.1 Communication Model

A network is a set of nodes and links that maps to a graph G = (V, E) of vertices and edges.
Nodes are connected with bidirectional links and communicate by sending data over
these links. We distinguish between synchronous and asynchronous communication.
Synchronous communication always depends on a global clock, whereas nodes are
allowed to send data at any time in asynchronous communication. We always assume
that nodes are able to separate real data from noise in asynchronous communication.

Our model assumes asynchronous Internet communication that uses a standard
TCP/IP stack, as in commodity operating systems. Links are bidirectional point-to-
point connections, and messages are forwarded hop-by-hop. Routing table informa-
tion gets updated using some standard link-state protocol like OSPF. Single routers in
the network are untrusted and can be administered by different authorities.

An application sends traffic at any time through a communication channel, whenever
data is available from the user. This channel can either be connection-oriented or
connection-less. A forwarding node butfers received packets when a potentially high
system load does not allow forwarding more packets. Otherwise the node immediately
sends a packet off to the next hop. We assume that communication channels last over
an extended time period and that participating nodes repeatedly exchange messages
over the same communication channel. Every communication channel has a path
through the network. This path is not necessarily static and may change over time.
In the beginning this path gets initialized, but the network may do multiple path

11



12 Chapter 3. Model and Definitions

reformations during the duration of the communication channel for multiple purposes.

Users initiate sessions to exchange traffic with other nodes in the network, and
they do this arbitrarily. A session depends on some application and can for example
consist of web browsing, peer-to-peer communication or instant messaging. Studies
have shown that session arrival is best modeled according to a Poisson distribution,
but packet arrival times are usually distributed according to heavy-tailed distribu-
tions [141].

Especially user sessions are important for anonymity, and we need to distinguish
between interactive sessions and non-interactive sessions. In an interactive session two
nodes send request and reply messages back and forth. The requesting user waits for
the answer or retransmits the request before she sends out the next message. Inter-
active sessions can have distinctive patterns that give an adversary extra information.
For example, when a user opens a browser, and the browser always points to the same
user-specific homepage, it gives an attacker some extra information. Identifying a
web page - given the number and lengths of encrypted packets — is not hard [183]. In
contrast, a non-interactive session always consists of a steady unidirectional stream
of messages. We use the term packet for session-layer data and the term message for
network-layer data. For example, an HTTP request would be a message and IP data
would be a packet. Data units in STONe’s network layer are called a fragments.

A communication network is characterized by its diameter and its bisection width.
The diameter defines the maximum distance between any pair of processes, and the
bisection width the minimum number of edges that have to be removed in order to
disconnect the network into two halves with identical number of processors [120].
The diameter defines the maximum latency in the network. The bisection width is
a critical performance factor in a network, since it describes the network bottleneck
under congestion. A ring with n nodes, for example, has a relatively poor performance,
since its bisection width is 2 and the diameter is 3. In contrast, a 2-dimensional
mesh with n nodes has a bisection width of \/n and a diameter of 2,/n, whereas the
maintenance cost per node is almost the same. Furthermore, a matching of a graph or
network is a set of edges, such that no two of them have a vertex in common. The
largest possible matching on a graph is a set of % nodes, and this is called a perfect
matching. A graph with a perfect matching has a bisection width of %

The congestion of a link is the expected queue length of messages over this link at
any given time. A congestion of 1 means that there is no congestion, and the network
can always work efficiently. When a link has m messages queued up the m-th message
has to wait for (m-1) steps until it gets forwarded.



3.2. Systems Model 13

3.2 Systems Model

In this work we assume an asynchronous distributed system model. The network
consists of N nodes that are fully connected through the Internet. Every node in the
distributed system can have a different administrator and also run different versions
of the application.

Applications communicate whenever data is available to send. Asynchronous
distributed systems have communication uncertainty, because nodes may crash and
remain undetected. In addition, our model allows Byzantine failures, such that an
adversary can compromise nodes and tamper with communication channels.

Protection against Byzantine failures is achieved by sandboxing and black-boxing
from Trusted Computing hardware. Chapter 2 contains explanations about Trusted
Computing and Trusted Overlay Networks.

3.3 Security Model

In our security model we tolerate an adversary that can launch any type of software-
based attack. We model the adversary as a Dolev-Yao attacker. A Dolev-Yao attacker
is a non-deterministic process that has complete control over the communication
network [76]. The attacker can introduce packets into the network when she has access
to the untrusted operating system on a node ; these packets may have fake identities,
mount a DDoS attack or try to introduce Trojans into the overlay nodes. Also, an
attacker might pose as a honeypot to intercept all communication between a sender
and a receiver, which is called a man-in-the-middle attack. Sybil attacks are possible,
when an adversary tries to compromise the network with her own compromised
nodes [56]. We distinguish between an adversary with physical access to the machine
and the adversary with only virtual access. The adversary with physical access can
eavesdrop on network-layer packets. The other may not be able to.

A second type of adversary is an external attacker with access to the network. This
adversary can listen to network communication or tamper with traffic. Usually, this
kind of adversary needs to have significant power equivalent to an Internet Service
Provider (ISP).

STONe is a communication infrastructure that protects against most common
network attacks. Specifically, it protects against the following attacks:

Denial-of-Service Attacks
An adversary can launch DDoS attacks on other nodes in the network, either
tfrom within the network or as an outsider. These DDoS attacks have multiple
layers: First, the adversary can flood the network with packets to saturate the
network bandwidth. It is typically quite hard to protect against this type of



14

Chapter 3. Model and Definitions

attack, so the goal is to achieve an improvement over a normal TCP/IP-based
network communication channel. Second, the adversary can do protocol-level
attacks like SYN floods [20]. And furthermore, it can launch application-level
attacks like HTTP floods [103]. In these cases either the network infrastructure is
obstructed or application-level services do not work anymore.

Routing Attacks

Sabotaging the network as well by deliberately (i) rerouting messages, (ii) re-
ordering messages, (iii) dropping messages, (iv) launching DDoS attacks against
servers, or (v) manipulating NodelDs is another possible attack. Standard rout-
ing protocols such as BGP [150] have these problems. For example, an adversary
can tamper with the protocol that updates the routing tables and pretends link
tailures. The adversary thus decreases the performance of the network.

Traffic Analysis

An adversary is able to carry out Traffic Analysis in two different ways: Because
software has bugs an adversary could either compromise the OS kernel or another
process to measure network packet data, or she could probe nodes remotely. When
nodes are compromised it is straightforward to eavesdrop on traffic to either find
specific targets in the network or to locate and track communication to violate
privacy. An adversary investigates communication patterns over multiple nodes
to find out which parties are communicating. On the other hand she is also
able to analyze traffic characteristics to see whether, for example, some party is
running peer-to-peer traffic or browsing the web. By remotely probing nodes
only a limited set of attacks is possible. In this attack an adversary determines
the load of the individual nodes or measures the timing for encryption [131].

3.4 Privacy Model

According to Merriam-Webster, Privacy is “the quality or state of being apart from

company or observation”. For example, any unauthorized intrusion is a breach of pri-

vacy. On the Internet, breach of privacy is often associated with stealing confidential

information such as credit card numbers. In common peer-to-peer protocols, private

information leaks at ditferent places [43]. In this thesis we consider the following

attacks on privacy:

Passive Logging Attack

Logging and intersecting information on the Internet is a large threat. An ad-
versary who logs any type of information on the Internet is considered a passive
logging adversary. Logging information that is freely available is nothing illegal,
but the amount of available information may not be authorized by the logged



3.4. Privacy Model 15

entity, because people are unaware of technical options they have available to
hide this information. On the Internet, for example, several anonymous routing
systems are available to protect information about an IP address leaking to a
website (e.g. [75, 148, 2]).

Phishing Attack

In a Phishing attack an adversary uses social engineering to fool somebody into
a fake network site. Phishing attacks set up forged websites of real companies
on which an adversary wants to obtain any confidential information such as
credit card or social security numbers. The forged websites pretend to be major
companies such as PayPal, Citibank, or EBay. Often, Phishing adversaries send
official-looking emails to their victims that point them to their forged website.
The main vulnerability Phishing adversaries exploit is people’s superficial trust
in companies’ logos and letterheads. These scams are sometimes even so hard to
distinguish that there are Phishing IQ tests [16]. Electronic certificates solve this
problem, since they clearly identity the company the website belongs to [22].
Phishing does not require that many people get tricked into the scam, but the
number of circulating email messages is so large that even a few hundred users
are sufficient to cause a significant amount of damage [111].

Pharming Attack
In a Pharming attack an adversary compromises the Internet name server di-
rectly [111]. Whenever a client contacts the name server it gets redirected to
the adversary’s website. Pharming attacks require the adversary to exploit some
actual technical vulnerabilities, whereas a Phishing adversary exploits human
weakness.

Censorship Attack

In contrast to the previous passive attacks that try to gather information from
an individual, the censorship attack is an active privacy intrusion attack. When
someone publishes legitimate information and an adversary suppresses or deletes
this piece of information it is also an unauthorized intrusion. On the Internet
censorship attacks are generally hard because only ISPs can censor information
globally by disconnecting servers. In a local environment firewalls are usually
being used to shut off information from the Internet. Censorship is not only
intrusion into the author’s privacy, but also into the reader’s privacy, because
someone else decides which information people are able to obtain. Of course,
there have to be methods for blocking illegal content.

Impersonation Attack
Another type of a privacy breach occurs when an adversary impersonates some-
one’s identity after stealing significant identification (aka identity theft). This



16 Chapter 3. Model and Definitions

causes massive privacy intrusion because the adversary can impersonate another
person online and cause serious damage. Like the censorship attack imperson-
ation is also an active intrusion attack.

Traffic Analysis
Traffic Analysis by itself is also a breach of privacy. When an adversary analyzes
traffic to uncover the identities of the sender and the receiver she violates privacy.
We discuss the underlying anonymity model of Traffic Analysis in the following
paragraph.

3.5 Anonymity Model

Anonymity is defined as “the state of not being identifiable within a set of subjects,
the anonymity set” [143]. An anonymity set is therefore the set of all distinguishable
subjects in the system. Anonymity helps to protect privacy but falls short of real
privacy.

Someone could say that cryptography provides anonymity because it provides op-
erations to randomize messages [174]. In particular, secure multiparty computa-
tion [89, 146] and secret sharing [167, 45] are related to anonymous communication.
However, this is only one part of anonymity. Messages have multiple properties — for
example, a network message has a certain timing behavior that cryptography cannot
hide, and only synchronous communication, as in secure multiparty computation,
can solve this problem. If the anonymity set is a pool of messages it can be identified
based on the timing behavior. Furthermore, if the anonymity set is the set of all nodes
in the network, cryptography alone does not help.

On the other hand steganography can solve some of these problems, but this is only
partially true. Steganography hides messages without using cryptography by embed-
ding messages, for example, in digital images or TCP protocol headers [172, 106]. How-
ever, it is hard to prove security, and often steganography can be broken. Steganogra-
phy not only disguises message content but also hides the actual message transmission.
Therefore, protection against traffic analysis is in some sense steganography.

In our anonymity model for communication networks we define an adversary’s
goals for traffic analysis. In a network of N nodes an adversary himself can be the
sender, the receiver or a third party. This adversary controls any type of nodes within
the network - senders, receivers or internal idle nodes — and pursues the following
goals [148]:

Sender Anonymity
The sender of a communication channel wants to protect her anonymity against
a Traffic Analysis adversary. The adversary could either be the receiver or any
limited set of nodes in the network.



3.5. Anonymity Model 17

Receiver Anonymity
Similarly, the adversary’s incentive is to find out the correct receiver. Any node
along the path from the sender to the receiver has to know how to forward the
packet, but there exist techniques that provide this message forwarding without
revealing the receiver’s identity.

Unlinkability of Sender and Receiver or internal nodes
When the adversary already knows the possible candidates for senders and re-
ceivers of a particular communication channel in the network, her goal is to link
them together. She may also know the sender or receiver already but wants to
uncover the other party.

Locality of Nodes
In some cases the adversary wants to find out where a certain node is located,
either in its logical position in the network defined by its neighbors, or in its ab-
solute geographical position. This attack goal is independent from the previous
ones where the adversary’s only goal is to detect senders and receivers.

Traffic Characteristics
In addition to the sender and receiver identity of a communication channel the
actual tratfic characteristics provide important information to the adversary. She
can then explicitly state that some node downloaded files from certain sites, and
she may even be able to reconstruct the content.

Activity Monitoring
In this case the adversary wants to determine which node is active or online
at a given time. This is also some form of anonymity and furthermore helps
to break unlinkability, since nodes have to be active when they participate in a
communication channel.

Furthermore, an adversary with external resources has an advantage against an ad-
versary without external resources. The adversary with external resources can com-
municate with compromised nodes through her own communication network. She
can use the network to reroute messages and has additional computational power to
analyze tratfic logs she collects.

We also distinguish between internal and external adversaries. An external adversary
can only observe traffic and send packets on the links, but an internal adversary has
tull control over the nodes.

Specifically, in STONe we are considering the following popular traffic analysis
attacks that are weaknesses of existing systems for anonymous communication:

e Predecessor Attack
The predecessor attack is a common way to compromise sender/receiver ano-



18

Chapter 3. Model and Definitions

nymity. In this attack an adversary exploits the fact that many systems against
tratfic analysis use frequent path reformations to simulate a random walk over
a graph (e.g. [75, 148]). However, sender and receiver never change and are
therefore clearly distinguishable from other nodes. When an adversary observes
predecessors of network packets over time on a limited set of nodes, and the
network packets always come from the same node, an adversary can conclude
that this node must be a sender. This attack only works when the adversary is
able to clearly identity the end-to-end connection related to the current message
as well as its predecessor [198, 171].

Intersection Attack

In an intersection attack an adversary monitors properties at nodes and corre-
lates the collected information. For example, in a partially connected network,
when the adversary discovers the sender’s neighbors in the network, she is able
to reduce the sets of nodes that belong to the communication path. Or, in
an unsynchronized network an adversary can analyze traffic volumes to corre-
late possible communication endpoints [67]. Alternatively, an adversary might
match the length and content of messages along different links and use this
information to reconstruct the communication path [34, 138]. This information
can also be used to confirm some hypotheses about the traffic pattern [68].

Passive Logging Attack

Network sites are logging network addresses of clients that have accessed the
system for maintenance reasons, and an adversary can abuse this information
and collect an access log of users connecting to the site, such as a web server
access log. A public Internet client by itself cannot exchange or hide its network
address [197].

Timing Analysis

In a Timing Analysis attack an adversary measures the message inter-arrival times
on the set of nodes she controls. She then correlates the measured information
from different nodes and when the information matches she concludes that they
must have forwarded the same messages with high probability. This requires that
the adversary is able to distinguish and identity messages on the network [121].

Membership List Attack

By collecting information about the time when nodes enter and leave the net-
work, an adversary is able to narrow down the anonymity set from the set of all
nodes in the network [9, 41].



3.6. Notations 19

Anonymity Measure The common measure for anonymity is the entropy of the ano-
nymity set. Entropy is a measure for randomness that has the following three assump-
tions [168]:

e A small change in the probability of membership p(i) in the anonymity set
should only change the entropy by a small amount.

e When all occurrences i are equally likely then increasing one set of occurrences
always increases entropy.

e The entropy of two sets of occurrences is the weighted sum of the entropies of
the two sets.

The entropy function is then defined by
H(z) =~ p(i)log, p(i).
=1

In our anonymity model we require randomness of the anonymity set. It should
be hard for an adversary to reduce the anonymity set to the nodes he is interested in.
Then, as a logical consequence, anonymity is the entropy H(.A) of the anonymity set
A divided by the maximum entropy Hy, [163, 72]:

H(A) =30 pilogy(pi)
Hy, logy(N)

d(A) =

d is also called the degree of anonymity [72]. The degree of anonymity describes the
amount of information about the anonymity set the system is leaking. When d — 1 all
nodes appear to be a solution to the anonymity attack. If, however, d — 0 the attacker
is successful and can isolate an element from the anonymity set. This definition of
anonymity as the entropy follows the randomness measure of other disciplines, such
as cryptography and steganography.

3.6 Notations

3.6.1 General Notations

This thesis uses most standard conventions for mathematical notations. When we
use log it always means log, unless it has an explicit base b as in log;,. In refers to the
natural logarithm with base e.

Table 3.1 shows the standard terms used in this thesis. These terms describe keys
and identifiers in Trusted Computing or STONe, or describe some properties of the
network.



20

Chapter 3. Model and Definitions

| Symbol | Description |

N max Maximum number of nodes in STONe; this value depends
only on the length of STONe addresses (n= log N;,q= 64)

T j-th n-bit random number in the internal pseudo-random
number generator of Trusted Computing

NsTONe Number of nodes in STONe

SsTONe 128-bit secret shared by all STONe nodes

hro(:) Hash function of the Trusted Computing platform

hstone(-) | Hash function of STONe; hsrone(m) = hrc(Ssrone | m)

PKrc, 1024-bit RSA public key built into the Trusted Computing
platform of node i

SKrc, 1024-bit RSA secret key built into the Trusted Computing
platform of node ¢

Krc, 128-bit AES secret key built into the Trusted Computing plat-
form of node ¢

K¥4rone, 128-bit secret key for stream cipher between STONe nodes
iand j

DHroye, | Diffie-Hellman key share of node i for setting up stream
ciphers at the t-th insert operation; DHgsron., =
hstone(Krc, | SsTone)

CSToNe; Opaque 96-bit capability used for STONe Socket communi-
cation to address service s on node 4

IDg%ONei 64-bit identifier for the j-th virtual hypercube address (0 <
j <k —1) of node 3; ID(S?%ONBZ, = hf;floNe(DHSTONei)

PKiyg, Public key in TNS for destination d and service s

SKins, Private key in TNS for destination d and service s

ID7} s, Name identifier in TNS for destination d and service s

Table 3.1: Definitions of terms used in the thesis.



3.6. Notations 21

| Distribution | Symbol | PDF/PMF | Entropy ‘
Binomial Dist.! B(n,k,p) | P(X =k) = (})p"(1 — p)(=k) In(/2menp(1 — p))
T
. . oy il @ <k<b _
Uniform Dist. Ul(a,b) P(X =k) { 0 otherwise In(b—a+1)
Exponential Dist. | Exzp(\) | f(z) = e ™™ 1 —In()\)
(@—p)®
Normal Dist. N(m, o) flx) = 0—1%6_ 207 In(ov/2me)

Table 3.2: Definitions of probability distributions used in this thesis.

'The entropy for the binomial distribution assumes the central limit theorem. [173]

3.6.2 Probability Theory

Table 3.6.2 shows the probability distributions we use in this thesis. The entropy
H(X) corresponds to Shannon'’s original formula [168]: For a discrete distribution
with p; = P(X = i) we have H(X) = Zij\iopi logp;. In the continuous case it is
H(X) = [,° f(x)log f(x)dx where f(z) is the probability density function. We say the
random variable X follows distribution D when X ~ D. To approximate the Binomial
Distribution with the Normal Distribution we use Central Limit Theorem [173]: When
n is large B(n,p) ~ N(np,np(1 — p)).

3.6.3 Cryptography

In this thesis we use public key encryption, signature schemes, and hash functions. As
in our communication model a message m is a bit string of arbitrary length, and this
message for the cryptography operating can be any type of data, within a session or
on the network-layer. In m = mj|ma|...|m; we compose a message m from k messages
my...mp. We denote a message m signed with the corresponding private signing key
of node i’s public key k; by <m>,. The hash of a message m is h(m). The k-times
iteration of h on a message m is written as h*(m). o,k;) denotes the verification of
signature ¢ using public key k;. Furthermore, we denote Ej(m) the encryption of
message m under key k, and Di(c) is the decryption of ciphertext ¢ under key k.






Chapter 4

STONe Design

In the previous chapters we introduced Trusted Overlay Networks as a distributed
computing architecture that establishes trust between participating nodes. STONe’s
design is based on a Trusted Overlay Network that consists of distributed trusted
proxies. STONe’s main design goals are: scalability, resilience and resistance against
traffic analysis.

To ensure scalability and resilience STONe has to support short node insertion
times, which requires fast neighbor discovery and key exchanges. In contrast, an
anonymity network that relies on a static set of proxies, such as Tor [75], does not
need to be scalable.

Therefore, we designed STONe as a structured overlay network that is based on a
topology similar to a hypercube (see e.g.[147]). Such a topology is more advantageous
than a tree or ring structure since it minimizes the number of key exchanges and the
average path length at the same time, thus optimizing the network for high churn.

These are the design goals in STONe:

Decentralized Control
STONe is distributed across different administrative domains. In Trusted Over-
lay Networks nodes can be administered by different people, but security and
anonymity during communication are still guaranteed across the network.

No Central Membership List
STONe does not have a central membership list of nodes in the system. Each
node recognizes only the addresses of its immediate neighbors and any infor-
mation that should be protected is hidden within the trusted process. A central
membership list is a potential threat to anonymity, because an adversary can
identity all nodes of the network and shut them down.

Secure Communication
STONe provides application-level endpoints for a secure communication infras-

23



24 Chapter 4. STONe Design

tructure. When two parties communicate, an adversary should not have the
chance to launch any common attacks unless she breaks into the Trusted Com-
puting hardware.

Transparent Anonymous Communication
STONe Sockets are application-level endpoints for anonymous communication.
When an application uses STONe Sockets, it is hard for an adversary to compro-
mise anonymity of the nodes participating in communication.

Large Address Space to Protect against DDoS attacks
STONe’s overlay network provides a 96-bit address space that contains nodes
that are behind different NATs and firewalls. In STONe an attacker is not able to
scan the 96-bit address space in a brute-force manner to locate nodes she wants
to attack.

Self-Certifying Peer Addresses
STONe provides a Trusted Name Services (TNS) that maps names to anonymous
addresses and self-certifies these addresses in the overlay without revealing iden-
tities to anyone. The application has full control over any information that goes
public in the overlay.

Secure and Anonymous Routing
STONe is tunctional despite common attacks on the overlay. For example, a
denial-of-service attack on the overlay should not weaken the system signifi-
cantly, since an adversary could use this attack to sabotage the anonymity ser-
vice.

Scalable and Resilient Routing

STONe provides a scalable and resilient routing infrastructure layer to maintain
security and anonymity in the network across firewalls and NATs. In STONe,
every node must be able reach every other node with high probability. Further-
more, STONe routers are not always available. Nodes that forward messages in
STONe frequently leave and enter the network. Therefore, STONe has to pro-
vide a stealthy scheme to keep routing tables up-to-date. This an important
teature in a system that provides an infrastructure with different services. For
example, in some applications. such as Instant Messaging or Internet telephone,
clients have an incentive to stay online for longer time intervals, whereas a sim-
ple file-download client may log off after a download finishes. Trusted Overlay
Networks’ ability to protect against Byzantine faults without using expensive
replication techniques provides a strong basis for tolerating high churn in the
network.



4.1. System Architecture 25

Simple Programming Interface and Robust Name Service
STONe provides a simple application socket interface. This interface is similar
to normal Internet sockets. Further, STONe requires a robust and trusted name
service that maps names to opaque network addresses. It is important that this
name service is robust against common attacks.

4.1 System Architecture

App App App | _ Attestation_ | App App App
SSocket SSocket SSocket SSocket SSocket SSocket
STONe Router STONe Router

__ _Attestation _ _ _ |
STONe Proxy STONe Proxy
)y )} ) ) A A

[CETN TCB

eenreenreenneneaannaenaen e e e nneaans H TCP connections

Figure 4.1: STONe Architecture: A single STONe node consists of the Proxy and Router that
are located in the Trusted Computing Base of the PC. The STONe Socket library is directly
linked to the application. Applications can be inside and outside the TCB.

Figure 4.1 shows the architecture of STONe. STONe does not require any trusted
third parties for establishing secure routing, and it also does not require costly tratfic
analysis protection to ensure anonymity and improve security.

Each STONe node consists of three components: STONe Proxy, STONe Router, and
the STONe Socket library, as shown in figure 4.1. The STONe Proxy and the Router
are two individual processes located in the TCB. When a node connects to STONe it
proves by remote attestation to its neighbors in the overlay that the contents of the
TCB - STONe Proxy and Router - are trusted, and that neighbors in the overlay can
trust future transmissions from this node. Applications are completely independent
from STONe. If they run inside the TCB, a STONe node can use remote attestation
as well to verity trustworthiness of the application to its peers. Instead of linking
a standard OS socket library, applications have to use the STONe socket library to
communicate with other applications in the overlay.



26 Chapter 4. STONe Design

Network Topology STONe is a structured routing overlay network derived from a
hypercube topology that not only provides scalability but also availability across fire-
walls or NATs. This is a fundamental difference to content-distribution overlays such
as Gnutella [7], where the the total amount of data in transit in the overlay network
is much less, because it only serves lookup requests and no data transfers. STONe is
also different from web caching overlay networks [1], because nodes may enter and
leave the network, and participating nodes are not necessarily located in the public
Internet but in private networks behind NATs.

In general, STONe works on any structured overlay. However, STONe has to opti-
mize the overlay structure for scalability and resilience. STONe’s topology is equivalent
to a CAN network with diameter d = log IV, but as pointed out earlier, the main dif-
terence to many existing structured peer-to-peer networks is that every STONe node
itself is the key and vice versa. Hence, STONe does not require leat nodes that replicate
objects, as for example in Pastry [154]. But it requires redundant routing paths, since
nodes may frequently leave and enter the overlay. Furthermore, latency has to be as
short as possible, and the overlays’s goal is to minimize the number of hops on the
routes and the routing table size should be minimal.

A node joins STONe by authenticating itself to an existing bootstrap node on
the overlay using remote attestation, and from there it finds its existing neigh-
bors on the hypercube. The node’s hypercube address in the overlay network is
a cryptographically-secure keyed hash of its Ditfie-Hellman key share: I Dg?%o Ne, =
hstone(DHsrone,;)- DHsrone, is derived from the Trusted Computing secret K éTo Ne;:
Assigning addresses in this fashion randomizes the overlay topology and makes the
system more robust against traftic analysis. The built-in secret Trusted Computing key
K¢, is secured in hardware making it hard for an adversary to forge a valid identity.

STONe Proxy: Similar to proxies in other anonymity networks, the STONe Proxy is
responsible for relaying packets between adjacent STONe nodes. The Proxy maintains
tor each of its neighbors a connection state and a shared stream cipher with the shared
keys K1, Ne, Detween nodes i and j.

Whenever the STONe Proxy connects to another node in the network, it first
does a TCP handshake, then executes the remote attestation protocol, and finally
runs a simple Diffie-Hellman key exchange to set up a shared key. STONe keys are
automatically certified by remote attestation.

The STONe Proxy protects STONe against attacks from the underlying network. An
attacker can launch attacks on STONe from outside the overlay by injecting packets
into the TCP streams or dropping packets in some streams. The STONe Proxy acts as
a rudimentary firewall; packets arriving at wrong ports, or with invalid TCP sequence
numbers are silently dropped. When the STONe Proxy identifies too many corrupt



4.1. System Architecture 27

packets on one stream, it quickly establishes a ditferent TCP connection with its peers.

If an attacker overloads a STONe Proxy by flooding it with packets, the router
would normally drop TCP connections. Yet, when these packets only initiate new
connections it would still prevent the router from processing other packets without
additional delay. In STONe we separate Proxy and Router, and therefore the Router is
able to start a ditferent STONe Proxy and reconstruct the connection state using the
information from the routing tables in the STONe Router. This is not the only advan-
tage of the separation between the STONe Proxy and Router. It also allows encryption
and routing of packets to happen in parallel. In particular, future commodity PCs will
have symmetric multiprocessing capabilities, and therefore encryption and routing
can take place in parallel.

4.1.1 STONe Router

The STONe Router is the main part of the system. It maintains the routing tables,
routes STONe packets in the overlay, and provides STONe sockets to the application.
The Router also handles the initial handshake for new nodes entering the system.
A node that wants to join STONe connects to the Router, after it has successfully
completed remote attestation. To protect against attacks from the network, the Router
does not accept any messages from nodes that did not succeed in remote attestation.
After the new node has connected, the Router hands off the connection to the STONe
Proxy. When application data arrives from the STONe Socket Library, the Router
creates a STONe packet and forwards it to the STONe Proxy. When STONe packets
arrive from the network via the STONe Proxy, the Router looks up the next hop in its
routing table, and forwards the packet to the STONe Proxy.

The STONe Router provides two service abstractions to the applications through
the STONe Socket library— a connection-oriented trusted stream service (TSS) and a
trusted datagram service (TDS). The internal protocol in TSS is identical to TCP, but
it implements only flow control, because congestion control would interfere with the
underlying connection. Instead, TSS relies on the congestion avoidance mechanism
that is inherent in our anonymous routing technique, as we will see in the next
sections. In contrast, TDS provides a connection-less datagram service similar to UDP.
There is no extra protocol header overhead. TDS and TSS use the fields in the STONe
fragment that we describe now.

4.1.2 STONe Packets and Fragments

STONe packets — the communication unit for datagram sockets on the trusted data-
gram service (TDS) — consist of multiple STONe fragments. Fragments and packets have
the same format, with packets being the application-level unit. Figure 4.2 shows the



28 Chapter 4. STONe Design

Source Address

Destination Address

Final Address

Source Service Destination Service
Sequence Number Acknowledgement Number
Packet ID TTL
Flags Fragment Number
Window Size Message Length
Checksum

«—— 32bit 32 bit ——»

A\ 4
A

Figure 4.2: STONe fragment header: This 68-byte header is mostly self-explanatory. STONe
addresses are generally 64 bits long. Flags describes special fragment types such as echo frag-
ments, that are used for end-to-end delay measurements.The Packet IDs are listed in Table 4.1.

STONe fragment header. It contains three 64-bit STONe addresses, the source, desti-
nation and final addresses, and the corresponding 32-bit service-port numbers. First
we explain routing that does not make use of the final field, which does not protect
against Traffic Analysis. The STONe node sending the fragment places the destination
address in the destination field. The final field is reserved for the use of an intermediate
relay when STONe protects against Traffic Analysis. Other fields are self-explanatory
and similar to TCP/IP. For example, the STONe Packet ID marks the content of the
packet as either a control packet or a user-data packet. And the source and destination
services are used for multiplexing different socket endpoints similar to TCP/UDP ports.
The size of a STONe fragment can be variable and does not depend on IP packet size
constraints because STONe is based on TCP, which is a stream protocol without fixed
packet sizes.

When the Router receives a fragment from the Proxy, it computes the checksum
over the whole fragment. Then the Router determines the TTL of the fragment.
When the TTL of the fragment is O the fragment is dropped - otherwise the Router
decrements TTL and uses STONe’s routing algorithm to look up the next hop. Finally,
the fragment with the updated checksum gets forwarded to this new hop.

Message Types Table 4.1 shows the different message types for the Packet ID field in
the STONe header. Most of them are self-explanatory and relate to TCP’s packets. A
joining node sends an T-INSERT-KEY message into the network. When the T-INSERT-
KEY arrives at the destination node it returns a T-START message. Data packets have a



4.2. Secure Communication 29

| Type | Description |
T-SYN initiates handshake with another node
T-SYNACK acknowledges T-SYN packet
T-ACK acknowledges message packets other than T-SYN
T-INSERT-KEY | sends an insert key message into the network
T-START confirms when insert key message arrives at correct node
T-DATA sends STONe data messages
TSS-CONNECT | initiate a TSS connection
TSS-FIN terminate a TSS connection

Table 4.1: Packet Types in STONe: Types starting with a T are for low-level communication in
STONe, and TSS packet types are for high-level communication in the TSS abstraction.

T-DATA identifier. STONe does not require a T-FIN packet, because FINs are implicit
through TCP. Whenever the TCP connection with another node terminates, STONe
also terminates the connection automatically.

4.1.3 STONe Socket Library

The STONe Socket Library is a wrapper that exports a standard socket interface for
backward compatibility with existing applications and ease-of-use. Internally, each
socket file-descriptor is mapped onto a 96-bit opaque capability. The socket system
calls are trapped by the library and mapped onto messages over UNIX sockets to
the local STONe router. The library also implements a pseudonym look-up service,
i.e., a client for the Trusted Name Service (TNS) that maps names to self-certifying
capabilities. STONe is hardened against attacks on the socket library. Even if an
attacker were to modify the library, she would not be able to access confidential
STONe information or compromise the anonymity of communication.

4.2 Secure Communication

Ideally, secure communication would be provided by the Internet protocol, but un-
fortunately, there are some common problems. Even though security protocols
like IPsec, TLS, OpenSSL or OpenSSH provide network-layer and end-to-end secu-
rity [108, 100, 73, 15, 14], secure routing is still an unsolved problem. Routing
protocols like OSPF distribute link-state on the Internet [130], but in environments
that are prone to Byzantine failures these routing update messages are still subject to
attacks [142]. On the other hand routers can be malicious [128].

Furthermore, network address distribution must be secure. An adversary who is
able to obtain large number of network addresses is able to compromise the network.
This is especially a problem in modern network configurations where addresses are
obtained dynamically. For example, in a peer-to-peer network an adversary can often



30 Chapter 4. STONe Design

obtain as many nodelDs as she wants and launch a so-called 'Sybil attack’ [S6].

STONe also has to secure the overlay network and make it resilient for random
routing. Random routing is designed to work in a homogeneous, fast, and reliable
environment such as workstation clusters, and in STONe random routing is used to
work over a heterogeneous and unreliable Internet.

4.2.1 Securely Assigning Network Addresses

Assignment of network addresses is a common security problem, because an adversary
can imitate other nodes to compromise the network. On the Internet, IP addresses
are usually allocated by the network provider — often dynamically — and they cost
money. In contrast, in peer-to-peer networks, an adversary running a large number
of router instances can also obtain a separate address or NodelD for every node in the
network and compromise the network. In the Sybil or Eclipse attack malicious nodes
compromise the peer-to-peer network and imitate other nodes to intercept commu-
nication [78]. Certificates are always an option to ensure the validity of NodelDs,
but they require a central trusted certificate authority, which is not compliant with
STONe’s scalability requirements. In STONe it is important for routing to use multiple
NodelD and have redundancy, but on the other hand we want to bind the number
of NodelDs to the number of available nodes in the system. For example, an adver-
sary could degrade performance of the system by adding a slow machine and assign
this machine a vast amount of addresses. Using IP addresses as NodelDs is also not
desirable because they are not unique across NATs and firewalls.

Trusted Overlay Networks already have built-in secret keys K¢, that are unique
and certified on every platform. Initially, STONe sets up the Diffie-Hellman key share
DHYroye, from the built-in AES key Kr¢, using a secure hash function hyc. The key
share DH'syo ., is used on this node to set up an encrypted tunnel between i and its
neighbor j that uses key Kgpq .-

STONe computes the first NodelD 1 D(SO%O Ne; = hrc(DHsrone,;) from the hash of
this key share. Computing the NodelD from DH srone, has multiple advantages:

(i) Any of i’s neighbors can verify that i really has the key share, otherwise it would
not be able to decrypt the data on the secure channel. Therefore, a neighbor can
verify that node ¢ indeed uses the correct NodelD.

(ii) STONe arranges nodes randomly and independent of their location on the underlying
Internet topology. This makes it hard for an adversary to insert nodes close to a
specific node in order to eavesdrop on communications or DDoS the node.

(iii) STONe limits the number of NodelDs per Trusted Computing platform (i.e. for every
secret key) because STONe generates the key share from the internal secret AES



4.2. Secure Communication 31

key K7¢, and some randomness. The only way for obtaining more NodelDs is
to buy more hardware or break existing hardware outside of the current STONe
network. A second router on the same platform would only be able to acquire
the same set of NodelDs. Nevertheless, one router per platform does not restrict
the number of socket applications because the STONe address uses 32 bits for
multiplexing different applications.

4.2.2 Secure Routing

The optimal routing geometry for STONe would be a fully connected network in which
every node can reach every other node within a single overlay hop that is the shortest
distance between the two nodes on the Internet. This approach, however, is not
scalable because a node joining the network needs to obtain identities and keys from
all other nodes in the network. This causes a large time overhead, especially because
key changes are expensive. Furthermore, it uses too many ports on the machine — this
is a common problem when it is located behind a firewall. Therefore, STONe uses a
structured routing overlay for scalability and reliability. However, STONe as a routing
overlay differs from DHT-style routing in many ways:

(i) STONe's unique node addresses are the only keys. No additional or replicated keys
exist.

(ii) STONe has to minimize latency in the network and not only maximize throughput
as in content distribution.

(iii) STONe requires alternate routes for fault-tolerance instead of replicas.

Because STONe is based on Trusted Overlay Networks it has a Fail-Stop failure
model, compared to the Byzantine model of other comparable overlay networks. A
STONe node that fails or crashes does not turn malicious unless the Trusted Computing
hardware gets compromised. Adjacent nodes will detect the crash because the kernel
network stack sends a FIN packet in most cases, unless the machine suddenly gets
disconnected from the network for some reason. To cope with this situation and
check whether a connection is still alive STONe has to send probes over the connection
regularly if it doesn’t expect any real data [30, 159].

Therefore, STONe can be self-organizing and self-maintaining and does not need to
protect against traitors as compared to systems that have Byzantine failures. Since
nodes are trusted in Trusted Overlay Networks and do not suffer from such Byzantine
tailures, STONe uses oblivious routing (i.e. the next hop is determined by the destination
and the current hop only) and also dynamic routing (i.e. it selects the next hop from
the set of possible next hops based on lowest cost). STONe uses a hypercube-similar
topology because hypercube routing is efficient and requires only O(log N) routing table



32 Chapter 4. STONe Design

entries for an overlay path length of O(log N). STONe needs to take into consideration
routing table size in addition to path length because nodes have to connect to their
neighbors when they join the network. Also, hypercubes are symmetric and balanced.
This is important for providing anonymous communication that protects against
Traffic Analysis. Traffic Analysis in an asymmetric topology can be significantly easier
because traffic on bottleneck links between two network partitions gives clues about
the communication patterns.

However, STONe does not use the Internet address space but creates its own for
several reasons: First, nodes behind different NATs may have the same private IP
addresses. Furthermore, in a 32-bit IP address space it is easy to launch DDoS or
probing attacks on nodes by random guessing, even if routing is anonymous [42].
Therefore, STONe has to use an extended uniform address space. Internally, STONe
addresses are 64 bit long with a 32 bit service ID. But externally, they appear to STONe
applications as 96 bit opaque capabilities.

STONe uses static routing tables that only depend on the geometry of the virtual
network topology. But they also allow dynamic routing decisions based on cost metrics
within the static structure. Internet routing protocols such as OSPF [130] update
dynamic routing tables periodically to optimize routes and propagate link failures.
But secure dynamic routing is a hard problem because (i) routing updates have to
be trusted for correctness and not only for performance, (ii) an adversary can simulate
link congestion to be able to receive more traffic for routing than the other nodes, and
(iii) it is hard to maintain a balanced routing topology when routing tables get updated
dynamically, which is bad for anonymity. For example, BGP is prone to attacks, since
it does not fulfill any of the three issues mentioned [97].

Static routing tables, in contrast, have stronger security because routing tables
only depend on NodelDs and the routing geometry, but performance may not be
optimal. STONe balances the static topology by determining NodelDs independently
from their geographic location. If an adversary wants to inject a node close to another
specific node, she has to obtain lots of NodelDs and therefore purchase lots of Trusted
Computing hardware. Static routing tables also give guarantees for path lengths or
routing table sizes. However, static routing tables doe not optimize for performance
and scalability inherently and needs to be reorganized in case of link failures. STONe’s
static routing tables are derived from an approximation of a hypercube that we discuss
next.

Hypercube Properties A typical hypercube is a graph G = (V, E) with vertices V' and
edges E. It is the generalization of a three-dimensional cube to d dimensions. Ev-
ery vertex of such a hypercube has d edges, and in total a hypercube has N := 2¢
vertices. Addresses on hypercube vertices are bitstrings, and adjacent vertices always



4.2. Secure Communication 33

have Hamming distance 1. A hypercube is a recursive structure. By connecting two
(d — 1)-dimensional hypercubes we can build a d-dimensional hypercube. In this new
d-dimensional hypercube the vertices’ addresses of the two (d — 1)-dimensional hyper-
cubes are extended by 1-bit prefix 0 or 1, depending on the hypercube the vertex is
tfrom. The Hamming distance between two arbitrary nodes defines the distance in the
network.

We call a matching of a graph a set of edges without common vertices. A matching
is perfect when the matching covers all vertices. A hypercube has a perfect matching,
and this means that we can split the hypercube in two halves.

Figure 4.3: Projections of 2- to 7-dimensional Hypercubes from left to right (Source: MathWorld)

Figure 4.3 shows projections of multi-dimensional hypercubes onto the two-dimensional
space. One big advantage of a hypercube is its large bisection width of % in a network
of N nodes compared to other topologies. This eliminates many congestion bottle-
necks and makes it highly scalable. Furthermore, hypercubes have short path lengths.
The diameter is only log N [120].

Standard hypercube addresses consist of bit strings, and on every edge a different bit
is flipped such that two adjacent node addresses have Hamming distance 1. Routing
is then similar to class-less routing in CIDR [85]: The node compares the bit string
of the destination address with the one of the current address from left to right and
forwards the message to the node with the first ditference.

When we pick two random nodes from anywhere in the hypercube and com-
pute the Hamming distance between the random nodes, this distance has a Binomial
distribution that depends on the number of nodes in the network: A hypercube’s
address length is d = log N bits, and every bit is 0 or 1 with probability 3. This is a
Bernoulli experiment with log N trials and probability p = 1. Accordingly, we derive
the probability Py (N, k) that the path length between sender and the receiver over
a hypercube of N nodes is k as follows:

1 (log N
Pyist(N, k) = N( i >
The expected distance is pg;s¢ = IO%N , and the maximum distance is Mg;s(n) =

log N.
STONe uses hypercube-based routing, since hypercube routing is highly scalable,



34 Chapter 4. STONe Design

00 000
1 001

1 01 110ﬂ 010

10 100

Figure 4.4: Ring versus Hypercube Routing for 2 dimensions (left) and 3 dimensions (right).

symmetric and has short path lengths. The main difference, however, is that not
necessarily all nodes of the hypercube may exist in STONe. The hamming distance
between two neighbors in STONe could therefore be greater than 1.

In a hypercube network of N nodes a single node has about log IV routing table
entries similar to a CAN with dimension d = log N [147].

Figure 4.4 shows the difference between a ring and a hypercube. In content-
distribution networks ring or tree topologies have more suitable properties than hyper-
cubes when frequent failures occur in the network [92], but they have a low bisection
width and therefore worse behavior under congestion. Routing in content-delivery
networks solves congestion by replication, but routing architectures like STONe have
to be optimized for alternate routes in case of failures. And routing messages in a ring
can become inefficient for message forwarding on an alternative route even when the
path length is still O(log N) [180]. For example, when a message for 11\,_1/ happens to

N-1
be at 10]1...1, and this last link is broken, it goes to 110...0, and then it needs to fix N-2
~~ ~~
N-2 N—2

bits again with an overhead of O(log N).

Hypercube-based Routingin STONe Because STONe’s NodelDs are randomly distributed
across a fixed 64 bit address space, STONe cannot use standard hypercube routing with
bit tfixing from left to right. Even with consecutive NodelDs, hypercube routing is not
possible, since nodes enter and leave the network constantly, and there are always
some address gaps in the hypercube.

Instead, STONe uses prefix-based routing on the partial hypercube. In every slot i
of the routing table STONe stores the node that matches ¢ bits of the address’ prefix.
When there are multiple addresses that suit this requirement STONe picks the one
with the closest Hamming distance, as this optimizes the route.

During routing on every hop the prefix length increases, and eventually, the frag-
ment reaches its destination. When the prefix length increases, the Hamming distance
may decrease or increase depending on the remaining bits after the prefix, but as the
prefix length increases the Hamming distance also decreases.



4.2. Secure Communication 35

When the best prefix match returns a node that does not make any progress, either
the hypercube is broken or the destination does not exist. What STONe should do in
this case depends on the routing semantics: If the destination address exists for sure
it tries to forward the packet to the next of the k destination addresses, thus picking
an alternative path. If it is an insert node operation, and the destination address does
not exist in STONe, it handles the fragment at this node.

100
11110101 I
1 000
o o 10010110
4 ]
1
110
00010100 101 010
11111001 01101101
2 T 1 EE—
0 2 L
1 0 10001001
111 011
00110111 01011101

Figure 4.5: Hypercube Routing in STONe with 8-bit identifiers (b=1 and k=1): The top address is
a standard 3-bit hypercube address, whereas the bottom address of the label is an 8-bit STONe
address. The number on the edges is the common prefix length of the two adjacent nodes.

Figure 4.5 shows hypercube routing in STONe compared to standard hypercube
routing. In this example every node has a random 8-bit long NodelD. In normal
oblivious hypercube routing the current node XORs the destination address with its
own address and forwards the message to the node that fixes the leftmost bit that is
not zero. In STONe not every bit in the address has to be fixed, so we route by prefix
length, i.e. the bit position in the routing table where the leftmost bit is different
from the destination address.

Prefix-based hypercube routing is optimal. Given N n-bit addresses the expected

path length is always less than k’gQN , which is the same as an N-dimensional hyper-

cube. Using prefix-based routing tables we note that the Hamming distance to the
destination on the first ¢ bits is O after  hops, but the Hamming distance of the whole
bit string may increase temporarily along the path. However, the neighbors of a node
are not always the closest in their Hamming distance. For example if STONe has
nodes 00000, 10100, 11010, 11011, and 11111, and it routes from 00000 to 11111,
it traverses through 10100, 11011 to 11111. However, 11010 has a smaller Hamming



36 Chapter 4. STONe Design

distance to 11111 than to 10100 and is not in 11111’s routing table, which is already
used by 11010 when [ = 1.

Optimizing Resilience The advantage of a static routing topology like STONe is that it
is resistant to malicious or bogus routing updates. However, static hypercubes have the
disadvantage that a single link failure already breaks one complete path. When STONe
detects a link failure it usually updates its routing tables and sends a routing update
to its neighbors. However, when routing updates take place too often it degrades
STONe’s performance and scalability significantly. And often congestion or failures
are only temporarily and link quality may improve again after a short time. This also
protects against temporary DDoS attacks that can be fixed after a short time.

Additionally, a single link failure breaks O(log N) paths in the hypercube, and
when a single link fails along the path, the whole path is broken. Therefore, given our
routing strategy in a simple hypercube with a fraction of p;p faulty Internet paths, the
probability that a path of length L, fails is

((1szP)N)
Prait(N,prp) =1 — — 54—
(L)
60%
— 5%
4% -
50% 1 |- 3 -

40% A

30% 1

20% -

Path Failure Probability

10% 1

0% T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

Figure 4.6: Probability Py, that a single message transmission along a hypercube path fails under
different Internet link failure rates 1% — 5% when I = 1 and Lq:, = 2log N.

Figure 4.6 shows Py,;;, when the individual link failure p;p varies from 1% to 5%.
STONe, therefore, maintains [ alternative links per entry in a hypercube node to handle
short-term failures. When the link quality is bad STONe picks a different link. STONe
maintains a reliable connection between the nodes, and each node knows almost
immediately when its peer goes down, but a STONe node can experience internal



4.2. Secure Communication 37

congestion and drop packets. When [ > 1 Py,; is almost P}aiz except that p;p gets

replaced by
-1
;L j
prp = (1 —prp) E Prp-
=0
4.0%
— —5%
0 —
3.5% A ‘;ofz =T
T ,//’
3.0% 1 |——1% -

2.5% -

2.0% -

1.5% ~

1.0% -

STONe Path Failure Probability

0.5% -

0.0%

Number of Nodes

Figure 4.7: Probability Py, that a single message transmission along a hypercube path fails under
different Internet link failure rates 1% — 5% when [ = 2 and Ly, = 2log N.

Figure 4.7 shows the path failure probability P}, for different Internet path failure
rates. We can assume that path failure rates between 0.9% and 1.9% are realistic [139],
and under STONe’s redundant hypercube with [ = 2 the network is able to maintain
the same Internet path failure rate for STONe paths.

Optimizing Bandwidth The hypercube may not only have bottlenecks or congestion,
but because of the static hypercube on a heterogeneous network some nodes may
be underutilized and some overutilized. To make the overlay more homogeneous,
STONe uses up to k virtual addresses per node to separate low-bandwidth from high-
bandwidth nodes. Nodes with higher bandwidth receive more traffic on the average
than nodes with low bandwidth. Furthermore, nodes have alternative paths to pick
from when there is a failure or bad link quality. When all nodes use k£ = % STONe
behaves like an unstructured network. STONe computes the £ —1 additional addresses
from the private key in the Trusted Overlay Networks of the node by chaining the hash
function:

(k) _ k-1
IDSTONei - hSTONe(DHSTONei)

For optimal bandwidth distribution, every node gets k; virtual addresses. If every



38

Chapter 4. STONe Design

node i has k; virtual addresses then the probability that node ¢ is on the path is

(logn') (iog )
P (Z): . log N —1_ log N
(o) ()
log N log N
N
where K =" | k;.
1= =
. ~
0.9 | ~
~
0.8 | S -
0.7 . BEN -
. S —
0.6 h - \\\\ —_——32
~~ ~ — .

e
O

Path Probability
o
>
|

o
w

....

o
N
I

e

o

100 200 300 400 500 600 700 800 900 1000

o

Number of Nodes

Figure 4.8: Probability P, (i) that a specific node i is part of a random path in random routing on
STONe for different k; = Rk: The larger R gets compared to average k the larger the probability
is, but it decreases exponentially depending on the number of nodes in the network. In this
figure k = 1 and R = 1,4, 8,16, 32, 64 depending on the graph.

Figure 4.8 shows the probability distribution for different ratios R = % with k = %
and K = 2N, and in this case £ = 1. When we increase the parameter R, a high
bandwidth node has a better chance to be on an arbitrary path. The probability
decreases exponentially with the number of nodes in the overlay network.

Optimizing Path Length STONe optimizes the hypercube further: To reduce the num-
ber of hops along a path STONe is not based on a Boolean hypercube. Instead it picks a
different base b for the logarithm which shortens the path length exponentially. This
is similar to Pastry [154] where b determines the number of columns in the routing
table. Pastry uses a tree geometry that is not suitable for STONe, since STONe is a
routing overlay and does not have any leaf nodes. The downside is that Pastry also
increases the routing table size linearly. Only for b = N STONe’s overlay network is a
tully connected network.

In the optimized hypercube the Hamming distance is then defined as the Manhat-
tan distance, ie the sum of the absolute ditferences of the single digits. Otherwise the
hypercube insert algorithm is the same, except that the routing table updates have to



4.2. Secure Communication 39

be sent to all nodes with the same minmal Manhattan/Hamming distance.
Considering the optimizations for resilience, bandwidth, and path length in the
hypercube, STONe’s routing table size is

S(N) = Fl(b—1) (logb(kN) - l_Tl> .

The correction factor (1— Z*Tl) is required, because there are not enough prefix matches
for the last slots. The (logy, N)-th slot has only one match, whereas the (log, N — 1)-th

slot has two matches and so on. Therefore, we need to subtract Zﬁ:oi = l(lgl) from I.

The expected path length for two random addresses in a normal Boolean hypercube

is 10g22 Y but in STONe it is only

1 N
L(N) = 3 log, | — =
M (1 B 210gb(’_€N)>

Cost-based Routing In addition to the prefix length and the Hamming distance,
STONe uses a cost metric to allow dynamic routing decisions to take place when
link failures or congestion occurs. This cost metric depends on the link quality. When
a STONe packet z arrives at a node, the router computes the longest prefix match
with z, and looks up the slot in the routing table that has this prefix match. It then
searches for the entry with the best cost metric out of the [ entries in each slot and
torwards the packet to this hop.

The cost metric is -2 c(y) is the link quality to next hop y, and d(z,y) is the

d(z,y)
Hamming distance between the destination address y of the packet and the next hop

z. Because the longest common prefix is the main routing criterion, STONe makes
sure that packets arrive in log N steps and do not circulate in the network. Algorithm 2
shows the routing algorithm. Cost is the cost function, which is the link quality metric
divided by the Hamming distance of the routing table entry to the destination. The
tfunction Prefix_length returns the common prefix length of the two addresses. First,
the algorithm picks the longest pretix match out of the k virtual addresses. Then it
looks up the best match with the destination address given the best match out of the
k addresses. If the next hop does not increase the prefix match, the algorithm tries
the virtual address with the next best prefix match and so on.

4.2.3 Secure Maintenance

Maintenance in STONe has three functions: Handshake, Neighbor Discovery, and
Routing Updates. When a new node joins it has to follow STONe’s handshake protocol



40

Chapter 4. STONe Design

Algorithm 1 Send Packet

send(p, dest)

p.dest= dest
route(p, dest, last)

Algorithm 2 Routing Table Lookup

route(p, dest, last)

max_slot= 0
fori=0to k do
a[i]= prefix_length(local[:], last)
end for
sort(a)
for j=0to k do
max_slot= a[j]
min_cost= MAX_COST
fori=0to k do
slot = prefix_length(local[:], dest)
if slot > max_slot then
max_slot= slot
dest_table= ¢
for j=0to ! do
cost = cost(slot, j)
if cost < min_cost then
min_cost= cost
dest_idx=j
end if
end for
exit
end if
end for
end for
forward(p, local[dest_table][dest _idx])




4.2. Secure Communication 41

until it finds the right position in the overlay. Nodes have to constantly discover
neighbors in the hypercube and also update routing information based on their TCP
status.

Handshake Initially, when a node wants to join STONe it picks a local node, finishes
remote attestation, and sets up the shared key. After that, communication with any
node is encrypted to avoid detection, except for transport-protocol handshakes. The
assumption, of course, is that the local node has not been compromised, but in this
section we will mention some strategies for detecting this.

When a node connects to the STONe network it first establishes a transport-layer
connection with a STONe bootstrap node, authenticates itself to STONe by performing
remote attestation, and finally sets up a shared key with adjacent STONe nodes.
Figure 4.9 depicts, in detail, the handshake when Node 1 connects to Node 2.

Node 1 Node 2

T-SYN(DH-key, ts,)

s address)
T—SYNACK(DH-key, ts, 1Sy TN
T-ACK(tSZ‘ ts,)

Figure 4.9: STONe handshake protocol: Similar to TCP, STONe’s handshake protocol is a three-
way handshake protocol. The node that joins the network, Node 1, first sends a T-SYN packet.
The bootstrap node, Node 2, then replies with a T-SYNACK, and finally, Node 1, confirms the
handshake with an T-ACK packet.

First, two nodes run the protocol for remote attestation in Trusted Computing to
make sure they can trust that both are running the same STONe software. If remote at-
testation fails, Node 2 interrupts the handshake process and filters any further requests
from Node 1 for some time interval to prevent DDoS attacks. Otherwise, Node 1 initi-
ates the connection by sending a T-SYN packet to Node 2. The T-SYN packet contains
Node 1’s Diffie-Hellman key share signed with its signature key, the certificate for Node
1’s public verification key, and a timestamp ts; when the packet has been sent. Node
2 returns a T-SYNACK packet that contains its Diffie-Hellman key share signed with
its signature key, the certificate for Node 2’s public verification key, a timestamp tss,



42 Chapter 4. STONe Design

and Node 1’s timestamp ¢s;. Node 2 then computes the £ STONe addresses I Déjr}o Ney
of Node 1 using the built-in hash function k¢ and shared keys DHY% ., such that
I Dg?;}o Ne, = hre(DH SronNe,) for j = 1..k. When the T-SYNACK packet arrives at Node
1 it returns a T-ACK packet with timestamp ts3 of the T-SYNACK packet. Both nodes
can compute the latency of the link using the three timestamps. This is the cost metric
in the routing table. The cryptographic primitives in the handshake protocol are the
tollowing:

Handshake(i, s, Ssrone) ‘

j <~ i: e TCP Handshake with j
i: e Diffie-Hellman key share for node i:

DHgsrone, = €%, x; = hsrone(K1c; | SsTone)
i—j: e (DHsroNe;, 8ignskrc, (DHsTONe;))
i — i e (DHSTONeja signSKch (DHSTONe]-)a k‘z)

j: e Verify sz‘gnSKch (DHstone;) using PKrc,
I
o IDYrone, = h5ione(DHsroNe,), | = 0..k;
L K;’TONei = (DHSTONej)$i
i: o IDsrone, = Pdrone(DHsroNe,), | = 0..k;
e Insert ID%yoy,, into routing table, | = 0...k;

The authentication mechanism ensures that both nodes have received information
about the authenticity of the STONe router software and that both can compute the
shared Diffie-Hellman key for exchanging subsequent STONe packets.

Neighbor Discovery After a joining STONe node has completed a handshake with the
bootstrap node it has to find its neighbors in the hypercube. Node 1 needs to find
its neighbors in the structured overlay. Figure 4.10 shows the insert process: Node 2
forwards a T-INSERT-KEY packet to the address that is closest to Node 1’s using the
packet forwarding algorithm described in the next section. When the packet arrives
at the destination, Node 3, it connects to Node 1, and after the STONe handshake it
connects to Node 1 via T-SYN and sends a T-START packet to Node 1. Node 1 and 3
then update their routing tables, and Node 1 learns about its neighbors from Node 3.
When the T-INSERT-KEY or T-START packet gets lost the node times out after a while
and restarts the joining process. When Node 1 is behind a NAT but Node 3 is not,
it forwards the T-START packet through the network back to Node 2 and lets Node
1 connect to Node 3. If both nodes are behind NATs, Node 1 first tries to use Node
2 as an intermediate proxy to set up the connection. If that fails it picks a random
node in STONe until it successfully connects to Node 3. Node 2 repeats the insertion
procedure for all £ virtual hypercube addresses, and therefore it takes O(klog N) steps
in the hypercube.



4.2. Secure Communication 43

T-INSERT-KEY

T-INSERT-KEY

T-START

Figure 4.10: Joining and Neighbor Discovery: When a new node (Node 1) joins the network
it first connects to a bootstrap node (Node 2) (upper left). The bootstrap node sends a T-
INSERT-KEY message to the node that has the shortest Hamming distance to Node 1 (Node
3) (upper right). Node 3 then sets up a connection and connects to Node 1 via T-SYN (lower
left). Finally, Node 1 receives a T-START packet and the routing table information about its
new neighbors and can now communicate in STONe (lower right).

Routing Updates When STONe detects a broken link or a peer node, the node updates
its routing table accordingly and sends a routing table update to its neighbors. The
node’s neighbors then update their own routing tables and send their updates to their
neighbors. This process converges eventually and stops when no more updates occur.
Additionally, nodes send their current routing tables to their neighbors in periodic
intervals. We now analyze how many nodes’ routing tables will be updated.

When the N addresses in STONe are randomly distributed, a specific node is ex-
pected to be in S(NN) routing tables throughout STONe. When a node leaves or joins
STONe it takes at most L(/N) update messages for the information to arrive at all nodes
with a total number of S(N) - L(N) = O(log? N) messages in the worst case. However,
the expected number of single updates is much smaller. The probability that a joining
node has prefix length ¢ with an arbitrary node in the network is

1

21-% otherwise.

1 = log Npax



44 Chapter 4. STONe Design

The number of nodes with prefix length 7 in the network is therefore ]\27;1“1”, and

the expected value for the number of occupied prefix slots in the routing table is
Epp(N) = O(log N), since Epp(N) = S 1mew (1 — (1 — 5h)V).
The probability that a joining node has Hamming distance i is

. 1 log N,
max

The expected Hamming distance for a joining node is k’gN%, but because of the
binomial distribution it takes about (% — k)(%_k) joining operations to find a
node with Hamming distance k& when k < Ymaz_ Therefore, it is more likely that the
STONe routing table finds a new prefix instead of a shorter Hamming distance. Given
these probabilities, the number of update messages is O(log N) for the the original
node, O(QLN log? N) for its neighbors, O(QQLN log® N) for their neighbors and so on. We
get for the total number M of update messages

N
M=) 22.1N logt' N = O(log N).
i=0

STONe clusters routing updates over time to reduce the number of messages in
the network and avoid instabilities when the system converges. Whenever an event
occurs, STONe starts a timer that expires after a short fixed time interval. All events of
the node during that interval will be collected and broadcast to the neighbors. This is
especially useful when several nodes join STONe at the same time and the system is
unstable.

Figure 4.11 shows STONe’s routing update messages and key exchanges compared
to mix networks when a new node joins. STONe nodes require only O(log N) rout-
ing updates and key exchanges, whereas mix networks always require O(NN) which
obstructs scalability of mix networks.

4.3 Random Routing

In addition to secure and scalable routing, STONe uses random routing to provide
anonyimity.

Algorithm 3 Send Fragment in Random Routing
send(p, dest)

p.im= NULL
p.dest= NULL
random_route(p, dest, last)




4.3. Random Routing 45

250
—MIX
Key Max
200 Key Avg
— — Msg Max
£ 150 Msg Avg
v
>
L
(Y
°
5 100
!
:ES P d = ~ -~ -
7
S
0 ) — -

1 2 4 8 16 32 64 128 256 512 1024
Number of Nodes

Figure 4.11: STONe under churn: The number of key exchanges and routing update messages
in STONe increases logarithmically and is clearly smaller than for mix networks.

Figure 4.12 shows the scenario in random routing: Sender A forwards messages
to receiver B and wants to hide the route. A picks an intermediate relay node I at
random and forwards the packet to this node. The intermediate node I then forwards
the packet to the receiver B. When B replies to the message from A she picks a ditferent
intermediate relay node J. Neither I nor J can carry out a Predecessor Attack to find
S or R, respectively, because the probability that they are adjacent to A or B is small.
The modified routing algorithm in random routing takes the following steps:

(i) Check whether the message is valid or not. If not, just drop it.

(ii) Check whether this node is the message’s intermediate hop. If yes, copy the

Algorithm 4 Random Routing
random_route(p, dest, last)

if p.im = NULL then
p.im= random()
p.dest= dest
route(p, p.im, last)
else
p.im = NULL
route(p, p.dest, last)
end if




46 Chapter 4. STONe Design

(iii) | forwards message to B (iv) B returns the reply to A via random node |

Figure 4.12: Random Routing in a fully connected network: Node A communicates with node
B through a random intermediate hop I.

tinal field from the message header into the destination field and forward the
message towards the destination.

(iii) Check whether this node is the message’s destination. If yes, deliver it to the
application.

(iv) Forward the message towards the destination.

Random routing addresses both congestion, as well as traffic analysis. Congestion
is less likely to occur, because potential bandwidth bottlenecks between a particular
sender and receiver get automatically scattered across STONe. Because link utiliza-
tion becomes uniform, certain tratfic analysis attacks are more difficult. In addition,
random routing reorders messages without additional butfering as in mixes, because
every message takes a different random route through the network.

4.4 Synchronization in STONe

The remaining problem in Tratfic Analysis with asynchronous random routing is
intersection attacks. Any idle node in STONe that is not a sender or receiver forwards
significantly fewer fragments than a sender or receiver does. Synchronization is the
typical method for addressing this problem.



4.4. Synchronization in STONe 47

The main goal of synchronization in STONe is that links, and therefore nodes,
should be utilized equally to make intersection attacks hard. The average rate in
STONe, ), is the average per-link rate in the overlay, whereas links are simple point-to-
point Internet connections. A high-bandwidth node has more virtual addresses and
therefore more links. All links in STONe are utilized equally when every node sends
at the rate \.

In general, synchronization can be global or local. In local synchronization trat-
fic is synchronized only between two nodes. However, local synchronization, even
among a limited set of nodes, would provide only local anonymity, even if it spreads
globally [177]. This still leaves the door open for intersection attacks. This is similar
to the end-to-end argument in systems design — local encryption does not necessarily
provide end-to-end security [156]. In addition, these local schemes, even with extra
traffic, often do not optimize for the bandwidth-delay product, since delay and extra
traffic only depend on the local view of the mix. When the bandwidth-delay product
grows, more data is in the pipeline between the sender and the receiver, and this
requires larger retransmission buffers and more frequent transmissions to get optimal
performance out of transport-layer protocols such as TCP.

A system low-level synchronization method would be hard to implement in STONe
for several reasons: First, STONe is based on wide-area connections and TCP, and
TCP’s congestion control mechanisms may not always allow timely message delivery.
Second, since STONe runs on the Internet with heterogeneous links and variable
background tratfic, available link capacities vary, and it would be hard to allocate
tixed link capacities for synchronization. Random routing in contrast works on top of
the existing Internet routing architecture and is able to balance tratfic relative to the
individual link capacities. Further, it STONe synchronizes traffic by padding all links
with random cover traffic it wastes a lot of Internet bandwidth. In STONe’s practical
scenario, many people use it over DSL lines, and usually the link between the end
system and the router is the bottleneck. STONe may have to share this link with other
untrusted Internet applications. Fair sharing of network links between trusted and
untrusted applications is required. Also, users may have to pay by tratfic volume, and
therefore they want to minimize traffic as well.

TCP already provides two end-to-end synchronization mechanisms: congestion
control and flow control. Whenever a node sends a full window of data, the window
increases incrementally. The current TCP window indicates the link capacity, and
congestion control regulates the sender rate. Now, every node 7 starts to send data
and tries to increase its send window size slowly to /\i

The synchronization algorithm presented in this section has the following idea:
If for STONe node i’s send rate \;, \; < A the STONe node sends extra cover traffic
to its immediate neighbors to reach \. The neighbors immediately drop any cover



48 Chapter 4. STONe Design

traffic packets. If a node cannot afford rate X it automatically starts dropping packets
because of TCP congestion control. This in turn reduces \. When other nodes see the
drop in X they stop increasing their send rates and restart later. If node i increases its
send rate ), it is only allowed to increase it by an upper limit A\,,4,.

Application
(PR
»  Random Routing
X+A)\max X-'-A)\max
' N N,
——> Overlay >

Figure 4.13: Traffic Rates on a STONe node: The actual network rates \; and p; in the synchro-
nized overlay are larger than the average traffic rate A in the STONe network. The individual
application rates \; and p; can be larger or smaller than the average rate .

Figure 4.13 shows the situation of different traffic streams in STONe without syn-
chronization: X, and y are the incoming and outgoing traffic rates in STONe’s overlay
network. ) is the average traffic rate across the network at time step ¢ (when ¢ = 0 we
just leave it out):

y:lfyt
Ni:O

A; and p; are the local send and receive rates of applications on node i. For conduct-
ing the intersection attack, an adversary observes )\, and y/ across the network and
correlates these values for traffic analysis. Both values include A),,., > ), which is
the amount for possible extra cover traffic plus the traffic the STONe node forwards
tor random routing as an intermediate hop. Synchronization has to make sure that
both values X\, and p are uncorrelated with the current traffic stream. X, and p are
always greater than )\, whereas )\; and p; are always less than .

Before getting into the details of the synchronization algorithm, there are some
important observations to make: First, in random routing, the sender forwards every
message to a global random node, and therefore every node can measure ), the average
traffic rate. Second, every STONe node is able to estimate the number of nodes N in
STONe from the number of entries in its routing tables.

The algorithm is based on a credit/debit scheme to decide whether to send mes-
sages from the application, cover traffic messages or hold back in sending anything.
This decision takes place whenever the application’s send buffer is not empty, or



4.4. Synchronization in STONe 49

the node has to forward a fragment in random routing (not proxy-based hop-to-hop
torwarding).

Upon joining the network every node gets a minimum number of credit points
(MIN_CREDIT) for each of which it is allowed to send one fragment from its send
buffer. The node can acquire an additional credit point after it has forwarded N
fragments (N is the number of nodes in STONe) in random routing.

When sending data, the node is always allowed to send a single fragment from the
send bufter for every single credit point. Once a node runs out of credit it has to wait
until it acquires new credit, ie. forwards more fragments, until it can send the next
fragment from the send buffer.

When the send buffer is empty and there are already MIN_ CREDIT credit points
available, no more credit is added when the node forwards fragments. Instead, the
nodes sends an extra fragment as cover traffic to a random neighbor whenever it has
torwarded N fragments.

Algorithm 5 Synchronizing Traffic in a Domain of N nodes with time window T
1. Initialize

credit= MIN_CREDIT
fragment_count= 0

2. Forward Fragment in Random Routing

fragment_count++

if fragment_count == N then
fragment_count= 0
credit+ +
Send Fragment

end if

3. Send Fragment

if (send_buffer > 0 && credit > 0) then
credit-
send_fragment()
else
if ( credit > MIN_CREDIT) then
credit- -
send_cover_traffic()
end if
end if

Algorithm 5 shows the final synchronization algorithm. When a node receives a
fragment as an intermediate hop in random routing it counts the number of fragments
to obtain the average rate in STONe. ) is the number of fragments forwarded over a



50 Chapter 4. STONe Design

time interval T. A\, is initially MIN CREDIT over a time interval T and converges
towards the number of fragments forwarded divided by the number of nodes N in
STONe over some time interval T.

In random routing ) is the control parameter for global traffic synchronization.
Given that random routing gets feedback on the current average traffic rate and is
therefore self-timing, we can minimize additional cover traffic to make traffic patterns
uniform across the network: Whenever a STONe node has received N fragments to
torward in random routing it also sends one of its own fragments. Node i is allowed
to increase )\; beyond A to A + A\, which will slowly increase A and therefore every
other node’s cover traffic.

STONe has to configure the global parameter A\,,,,;, which is a tradeoff in the
bandwidth-delay product of the whole system. An individual node with average
latency d; between its neighbors has a bandwidth-delay product I1(7) of

)

> =

1 1 -
H(Z) = )\; (dz + max (O, K — )\—>> = ()\ + A)\maaj) (dz + max (()7
When node i is idle (i.e. \; = 0) or busy (i.e. \; = \) we get
Hidle(i) = Hbusy(i) = dz(j\ + A)\maa:)

The goal in STONe is to avoid large oscillations of ), since this supports intersection
attacks. Therefore, to ensure fairness all A\; should be distributed uniformly. It takes
N messages on average for all STONe nodes to notice that A has increased. And
ideally, the bandwidth-delay product II(7) is as small as possible. This exact outcome
happens when ); — ) is minimal. This is exactly the case when A\, = %, which
is the expected standard deviation of A when \; are uniformly distributed. After &

. . I N+
sequential steps (ie. forwarded fragments) with \! = %

. 1\%_
No=(1+5) A

This has a shorter response time to changes, and causes cover traffic to be linear in

we get

the number of nodes N. If a node has to send a burst of data at rate \,,; it takes

_ log(2es)
log (1 + %)

steps until it reaches \,,4,.

The total required bandwidth per node is (2 + +)X. In addition to the average
send rate for every node A the maximum increase is ++-A. When a bottleneck node
has bandwidth b then \ < %ﬂb ~ 1b for large N. The system _is secure against
intersection attacks, since all nodes adapt their send rate to %)\ synchronously,



4.5. Anonymous Communication 51

even though communication is still asynchronous.

Session Scheduling An extension for future work is to synchronize sessions on application-
level. This does not work for highly interactive applications such as web browsing and
instant messaging, but it does work for file transfers. A distributed scheduler caches
requests for network tasks until it has collected a large enough number that overlaps.

It then starts these tasks at the same time.

4.5 Anonymous Communication

An anonymous application layer poses many challenges. First of all, an application
that communicates through this application layer can potentially be untrusted outside
the TCB and should not be able to link an application endpoint to a real IP address.
It is also crucial to have an anonymous name service running in the network, since
a query to an external name server such as DNS would be a weak spot in the system
that is easy to attack.

STONe integrates end-to-end anonymity with anonymous self-certifying creden-
tials by providing two services to applications: STONe Sockets and Trusted Name
Service (TNS). Using these two building blocks it is straighttorward to turn an existing
socket application into an application that runs on STONe and is robust against traffic
analysis.

4.5.1 STONe Interface

The most important part of Anonymous Communication is the interface between the
network and the application. STONe already provides a secure infrastructure that
is robust against traffic analysis. Yet, an adversary who receives STONe fragments
legitimately at the communication endpoint would still be able to see the STONe
addresses in the clear. Hiding the STONe address not only protects against address
filtering but also gives the adversary valuable information about STONe’s topology.
The adversary is then able to obtain secrets about the randomized hypercube structure
—a main support for protection against traffic analysis.

STONe Capabilities hide the original STONe address from the application. These
capabilities are opaque random strings and have the sole purpose of providing a handle
tor the application to communicate with the peer. Only the STONe router is able to
decrypt these capabilities to obtain the original STONe address. A 128-bit capability
for destination d contains a 64-bit STONe address Ty and a 32-bit STONe service ID S.
STONe obtains the capability by encrypting the 7,; and S under the STONe session key
for session j on node i SKrc,, which is derived from the secret Trusted Computing
key SKrc, and a 32-bit nonce n;:



52 Chapter 4. STONe Design

Cigd = Fi(Tq | 5) = EKTCi(Td | S| ny)

STONe uses per-session keys to convert capabilities into STONe addresses and vice
versa. Otherwise the adversary is able to correlate capabilities among ditferent appli-
cations or different sessions of the same application to determine which applications
communicate with the same destination. The nonce n; belongs to the socket state.
Every time the application reconnects to the same node and opens a new session,
the STONe router increases ¢ by 1 and generates a new n; by getting a new random
number 7;.

STONe provides two services to applications that are built around these capabil-
ities: STONe Sockets and the Trusted Name Service (TNS). With these two building
blocks it is straightforward to turn an existing socket application into a STONe Socket
application that runs on STONe and is protected from attacks on anonymity. Addi-
tionally, STONe provides TSOCKETS — a TCP proxy that translates STONe connections
into TCP connections. Any TCP socket application can use TSOCKETS to connect to
STONe. The 32-bit IP addresses that are visible to the applications are opaque and
randomized, making them similar to STONe capabilities.

STONe Sockets One application building block of STONe is the STONe Socket in-
terface. STONe Sockets are anonymous application-level endpoints. Externally, they
provide fully randomized IP addresses over TCP and UDDP, but internally, STONe Sock-
ets use a Trusted Datagram Service (TDS) and a Trusted Stream Service (TSS). STONe
generates random IP addresses from STONe’s network addresses— STONe Capabilities.
STONe Capabilities look like opaque random strings, but for the STONe Router they
contain meaningful session information. In every per-session capability there is en-
crypted a 64-bit STONe address 7, and a 32-bit STONe service ID S; pointing to a
destination d in STONe:

Ca = Erpe. (Ta | Sa | no).

The first 64 bit of the capability contain the 32-bit IP address and a 32-bit port
number. When an application opens a new session STONe generates a new random
nonce n; associated with this session and computes a new capability Cy. Since K¢, is
hidden from the application, only the TCB is able to encrypt and decrypt capabilities.

Figure 4.14 shows how STONe converts capabilities into STONe addresses and
service IDs, and the other way around. The application places capabilities into the
STONe Socket calls, and the STONe Socket library passes the capabilities to the STONe
router within the TCB for decryption and further use. In the converse, when a STONe
Socket call returns a capability to the application, the STONe router encrypts the



4.5. Anonymous Communication 53

Application Application
64 32
T, |s
i
96 bit 96 bit 96 bit

STONe, ﬁ STONe,
Router Router

Figure 4.14: Conversion of STONe capabilities: An application on router X receives the capabil-
ity encrypted under Fx that depends on the built-in Trusted Computing key. Between the two
routers the capability gets transmitted in plaintext, but the message is encrypted as a whole.

STONe address and service ID and passes the resulting capability to the application.
The encryption function depends on the built-in AES keys Kr¢, and Kr¢,, such that
F;(A) = Exyq, (A | ;). All STONe has to cache is the random per-session nonce r; for
every session.

Trusted Datagram Service — TDS

STONe offers TDS datagram service for connectionless communication. A STONe
datagram packet can consist of multiple STONe fragments with fixed-size unit for net-
work communication. Upon receipt, STONe reassembles multiple fragments together
to one STONe datagram packet. The datagram service is unreliable and unacknowl-
edged, and the application is responsible for resending packets. TDS is an adaptation
of UDP that uses STONe's capabilities.

Trusted Stream Service — TSS

STONe also offers a connection-oriented stream service called the Trusted Stream Ser-
vice (TSS). STONe cannot use TCP for end-to-end communication for multiple reasons:
First, point-to-point links in STONe already use TCP, and in case of a congestion on
the link the protocol increases time-outs, causing the upper level TCP also to increase
timeouts and queue packets for retransmission. Then both TCPs try to retransmit
packets, which only makes the problem worse. Eventually, they will have to give up
and reset the connection. Second, packet reordering caused by random routing is a
problem in TCP. TCP’s fast retransmit algorithm interprets excessive packet reordering
as a loss and tries to retransmit packet, thereby wasting valuable bandwidth [178].
Retransmission is not the only problem, and TCP does not detect these losses as
reorderings but as buffer overflows. Once it detects any losses, it starts congestion
control mechanisms to regulate throughput [46, 140].



54 Chapter 4. STONe Design

TSS avoids these problems altogether, since it does not have congestion control
and is also aware of packet reorderings. TSS is similar to TCP except for flow control
and congestion control, but its protocol states are equivalent. STONe already uses
random routing and synchrony as an efficient measure against congestion. Initially,
TSS does a three-way handshake to establish the connection and initialize the butfers
tor tlow-control. A STONe stream consists of STONe fragments. All nodes in the
STONe network use the same retransmission timeout to protect against attacks that
attempt to identify a communication channel based on their retransmission patterns.
The retransmission timeout depends on the maximum path latency in the overlay,
which is log(N)-times the maximum per-hop latency, where N is the number of nodes
in the overlay.

Trusted Name Service — TNS

Because opaque capabilities are only application-specific handles within socket appli-
cations, STONe requires a global naming infrastructure that maps anonymous names
to capabilities, similar to what a pseudonym server does [123]. TNS is a trusted ap-
plication within STONe, and therefore common attacks are hard to mount from any
malicious application. TNS is different from a DNS server because is it easy to reg-
ister new entries. Further, TNS can handle different application-level services for a
single node as well, such as a shared address book. TNS is similar to Tor’s Location-
Hidden Services, where two parties use a third random node as a rendez-vous point
for exchanging services [75].

An application registers names along with an application-specific publickey PK7yg,.
TNS is self-certifying because each TNS request returns an entry in which the capa-
bility is XORed with the hash of the public key. Only when the application has the
entry’s public key it is able to obtain and use the capability.

TNS uses a challenge-response mechanism during name registration to ensure that
the mapping between the public key and the network address is correct. This certifi-
cation mechanism prevents falsifying of identities, while allowing anonymous com-
munication. When a node joins the system, its trusted infrastructure learns about the
addresses of the name servers, but these addresses stay invisible to the applications.

An application registers a name for a service at the name server using the tns_register
tunction in the STONe Socket library. If an application wants to register a service it
needs to provide PKryg, for it. TNS executes a challenge-response mechanism to
check that the application really owns the private key:

Application — TNS: < IDjyg,, PKTng,, Cf>

TNS — Application: <r>

Application — TNS: <z := Egg(r)> with SK = SK# .y,
TNS: verify Dpg(z) = r with PK = PK7 g,




4.5. Anonymous Communication 55

First the application calls tns_register, causing the STONe Socket to send to TNS the
capability Cf , as well as the name /D7y g, and PK7yg, of the service the application
wants to register. TNS generates a random string r and sends it as a challenge to the
application. The application encrypts r using the private key SK srone, and sends the
ciphertext x back to the TNS. TNS verifies that the decrypted ciphertext x is equal to r.
After these operations the TNS server is sure that the capability « belongs to PKrns,,
and it can register <IDryg,, PKTns,> as a certified name.

When a client application wants to look up a capability, it queries TNS using
the <IDryns,, PKrns,> tuple or just IDryg,. An application resolves a name in
TNS and obtains the corresponding capability through the tns_query function in the
STONe Socket library. It can search for any name and get back a list of corresponding
capabilities. If TNS provides a public key the query is certified, and the application
can trust that the capability belongs to the public key:

Application — TNS:  <IDjyg . PKjyg, >
TNS — Application: <cap>

The application then retrieves the original capability Cij by XORing cap with PKrysg,.
The key for every entry is the name and public key. It is also possible to register the
same name and the same public key multiple times if the same entity is located at
multiple destinations. TNS returns a list of all entries. TNS also allows wild-card
searches without passing the public key to the server when the corresponding flag
is set during the register operation. This is a privacy option. Registering the same
entry at multiple locations does not violate anonymity because the capabilities do not
provide any locality information.

Normally, such a server for secure and anonymous peer-to-peer names would have
to store N? different names for one service in a network of N nodes, because every
node would have to have a different address. However, trusted computing is able
to map multiple network addresses to a single one, and therefore every node in the
network needs to store only one entry.

TNS is located locally on STONe nodes, and every node learns from its neighbors
the location of the closest TNS node. However, when a TNS node crashes, all the
information is lost. Without TNS it is not possible to obtain capabilities for commu-
nication in STONe. Therefore, TNS must be highly available and implemented as a
distributed name service where data gets replicated dynamically.

Trusted SOCKS Proxy — TSOCKS

Some applications do not require the full strength of 96-bit capabilities. Rather back-
wards compatibility to the existing Internet is desirable. For this purpose TSOCKS
provides an proxy server between TSS and TCP that is similar to SOCKS [119]. SOCKS



56 Chapter 4. STONe Design

is a TCP proxy that allows multiple clients to share the same outgoing connection on
a proxy, thus reducing the number of ports a firewall has to allocate. For example, Tor
uses SOCKS to connect to Privoxy to eliminate any application-level privacy-related
information in web browsing [75, 18]. The purpose of TSOCKS, however, is to gener-
ate random IP addresses for applications to communicate through STONe. STONe’s
96-bit opaque capability translates to a 32-bit IP address and a 16-bit port number,
thus reducing the effective address length 48-bit. Because of the address length lim-
itations, applications running on top of TSOCKS do not have the same guarantees
against denial-of-service attacks as STONe socket applications. Furthermore, the con-
nection between the TSOCKS proxy and the client needs to be sufficiently protected
against an eavesdropping adversary. Ideally, the TSOCKS proxy is a trusted process on
the local platform.

4.5.2 STONe Applications

There are several examples of applications in distributed systems that strongly benefit
from STONe’s security and anonymity.

Trusted Load-Balancing — TLB

STONe’s enhanced security provides simple load-balancing without DHTs for server
applications. The server registers several entries with IDryg, = < App, Loc;>, where
Loc; is the number of the server, and all servers have to be enumerated consecutively
from 0 to Locy,q, — 1. A separate key server carries out admission control by randomly
distributing public keys to all clients. In this process the application belonging to
the same capability will only see one of the Loc,,,, public keys. The application
uses that public key to request the corresponding destination capability from TNS. To
minimize key distribution overhead, all server instances of App have the same public
key PKrns,. Giving all instances the same PKryg, does not compromise security,
because they all relate to the same server application. TLB is robust against attacks
on STONe - especially tratfic analysis attacks — which protects load-balancing in a
global network as strongly as if it took place in a local server cluster behind a firewall.
TLB is different from DNS-based load-balancing because TNS is trusted and is hard to
sabotage.

Application — Key Server: query key

Key Server — Application: PK7yg,, Loc;
Application — TNS:  <<App, Loc;>, PKTyg,>
TNS — Application: Cj

Figure 4.15: Trusted Load-Balancing Protocol



4.5. Anonymous Communication 57

Anonymous File System Anonymity and group-based certification without a central
administrator are important issues for global file systems (e.g.[102]). Assume two
parties — Alice and Bob — want to share a file: First, the global file system should be
able to store Alice’s tile in multiple locations, because nodes that contain the tile may
enter and leave the network arbitrarily. Second, a third untrusted party should not be
able to learn that Alice is the owner of this file. Third, any trusted party should be able
to verity that she got the right file from Alice and not a fake one. Our Anonymous
File System on top of STONe has these properties. Every file in the system has its
name and the owner public key stored on TNS. TNS maps a file to multiple network
addresses. On a node every file gets a unique service ID. TNS models the file system in
this fashion; when Alice wants to store her file in the file system, she registers it with
TNS. Then, Bob looks up Alice’s file by querying TNS. Content-distribution systems
such as Freenet [62] and BitTorrent [5] or other hierarchical file systems could be built
on top of this anonymous filesystem.

Application — TNS: < Flile — / Directoryname, PKTns,>
TNS — Application: Cj

Figure 4.16: Anonymous File System Protocol

Anonymous Instant Messaging Instant Messaging is usually hard to anonymize be-
cause the parties participating in the conversation have to be logged onto the system.
The provider of the service can easily observe the communication channels at any
time, which parties participate and where they are logged on. Furthermore, an at-
tacker with access to the links can easily detect conversational traffic patterns within
a session. We built a prototype of Anonymous Instant Messaging using STONe. Alice
logs onto the system by registering her pseudonym and her public key on TNS. If the
other party Bob wants to talk to Alice, he looks up her pseudonym on TNS, verifies
that this is her public key (if she wants to reveal her identity to him), and starts to talk
anonymously to her over the system. Bob obtains the public key beforehand through
a different trusted channel similar to a web of trust (e.g [86]). When Bob initiates the
conversation, Alice verifies Bob’s public key to make sure that he is the right person.
In Anonymous Instant Messaging, only Alice and Bob know that they are talking with
each other.

Application — TNS: < IM Pseudonym, PK7jyg,>
TNS — Application: C}

Figure 4.17: Anonymous Instant Messaging Protocol



58 Chapter 4. STONe Design

4.6 Compromised Trusted Computing Hardware

So tar we have excluded the hardware attack on the Trusted Computing system, since
it is hard to do and can only be done at a node that is physically available. Because
STONe’s address depends on a built-in key, it is not possible to forge other Trusted
Computing nodes in STONe after extracting the key from the TCB because STONe
will detect duplicates. Furthermore, an adversary is unable to get access to the system
just by knowing the built-in keys. She has to obtain the STONe secret Ssrone to
successfully join the network and also to decrypt messages.

When an adversary learns the secret keys she is able to emulate a full TCB and
join the network. However, having these trusted keys she can mimic only one TCB.
When this happens and remains undetected the following scenario takes place: The
adversary is able to monitor all traffic that goes through this node, and because of
random routing this can be any sender/receiver pair. Furthermore, she is able to learn
the IP addresses of the local routing table and can assemble a membership list of the
network.

It is therefore crucial that hardware compromises are detected immediately, so that
compromised nodes are not able to join the network through remote attestation. In
addition to key-based attestation the TCB could use other platform authenticity tests,
such as Remote Physical Device Fingerprinting [114] to ensure that the TCB runs on
the actual hardware. It is also important to verify that the TCB does not contain any
backdoors.



Chapter 5

STONe Implementation

Normally, STONe would be considered a part of the internal kernel network stack
that provides a different new transport layer. This is ditferent from Tor’s approach,
which uses a network of proxies. Unfortunately, our experimental testbed, PlanetLab,
does not support kernel extensions in the virtualization layer, and therefore we have
to implement STONe as user-level processes. Kernel processes typically get higher
priority, and they do not require expensive copying of buffer data between kernel-
and user-space.

5.1 Trusted Computing Base

5.1.1 Required Hardware

Today there exist several approaches for Trusted Computing hardware. The Trusted
Platform Manager (TPM) contains primitives for remote attestation and sealed stor-
age [21]. These hardware chips are already built into most PCs. Windows and Linux
provide device drivers for them. TPM also provides a trusted boot mechanism that
protects against local attacks.

In addition, STONe requires strong process isolation against attacks from the OS
kernel. Intel is planning to ship LaGrande in tuture PC platforms [99], and AMD'’s
equivalent product Pacifica provides the same functionality on future AMD plat-
torms [28]. Microsoft is going to provide support operating systems support for strong
process isolation in their NGSCB architecture [79].

5.1.2 TCB Software Emulation

We build STONe on top of Linux, but unfortunately, Linux does not have support for
a fully functional TCB, and most devices do not have Trusted Computing hardware,
either. The choices are either to implement a fully-functional device driver that emu-

59



60 Chapter 5. STONe Implementation

lates a TPM and run a trusted operating system on top, or we assume the commodity
operating system to be the root of trust and emulate TCB on top. In previous ap-
proaches virtual machines implemented Trusted Computing such that every trusted
process is mapped to one virtual machine [87]. The virtual machine monitor is the
root of trust and provides the interface to the trusted computing system. In our TCB
emulation we pick a similar approach and use Linux to be the root of trust, since we
want to fit it in the architecture of PlanetLab.

The TCB emulator needs to provide cryptographic functions, such as signature
scheme, hash function and random number generator, as well as attestation and
operating system support. We had to make a design choice for the remote attestation
protocol. When using the standard attestation protocol the TCB public key gets
revealed to the verifying entity. This is not a problem in local attestation, since
the verifying entity is the same as the signing entity — the local TCB. However, it is
a problem in remote attestation, since signing and verification happen on different
platforms, and therefore remote attestation uses group signature schemes that preserve
this privacy of the TCB. Otherwise, a peer could tell that a specific entity signed the
message. In short summary, Figure 5.1 shows the TCB inteface that is required to run
STONe:

tcb_hash()
This computes the hash of the value in. The current implementation uses SHA1
from the OpenSSL crypto library with a built-in TCB hashing key that is the same
on all TCBs.

tcb_srand () and tcb_rand()
tcb_srand initializes the Random Number Generator with start value seed, and
tcb_rand computes the next random number in the sequence. Both functions
map to RAND_seed and RAND_bytes from the OpenSSL crypto library respectively.

tcb_seal () and tcb_unseal()
tcb_seal encrypts plaintexts using the secret built-in platform key, and tcb_unseal
decrypts ciphertexts using the secret built-in platform key.

tcb_pk_sign() and tcb_pk_verify()
This pair does public key signing and verifying using the built-in public key.
These functions map to RSA_sign and RSA_verify from the OpenSSL crypto li-
brary.

tcb_at_sign() and tcb_at_verify()
Invokes the attestation protocol on a given binary. If £d points to a remotely con-
nected socket, the primitive invokes remote attestation. Otherwise it uses local
attestation within the TCB. Normally, remote attestation should use DAA [51] or



5.1. Trusted Computing Base 61

typedef struct msg_s {
int m;
int len;

} msg_t;

typedef struct bin_s {

void *p;
int len;
} bin_t;

typedef struct sig_s {

void *s;
int len;
} sig_t;

int tcb_hash(int in);

int tcb_srand(unsigned int seed);

int tcb_rand();

int tcb_seal(msg_t msg);

int tcb_unseal(msg_t #*msg);

int tcb_pk_sign(msg_t msg, sig_t *sig);

int tcb_pk_verify(msg_t msg, sig_t sig);

int tcb_at_sign(int fd, bin_t bin, sig_t *sig);
int tcb_at_verify(int fd, bin_t bin, sig_t sig);
int tcb_at_join(int fd);

Figure 5.1: TCB Interface for STONe

a similar group signature scheme, but in this emulation we currently use standard
public key signing methods to simplify the complexity of the TCB emulation.
When a DAA implementation is available this can be easily replaced by a call to
the group signature scheme.

tcb_at_join()
Joins a group signature scheme for remote attestation and obtains the shared
signing key. This function only works for remote attestation.

Trusted Operating System Support In addition to these primitives, Trusted Com-
puting requires support from the operating system. In our TCB emulation there are
three issues: (i) Trusted Computing requires strong process isolation, tor which virtual
memory protection is not sufficient. (ii) There must be a loader for every exec() call
that attests the binary locally. (iii) The operating system needs to provide an interface
for remote attestation.



62 Chapter 5. STONe Implementation

Strong Process Isolation

We achieve strong process isolation by using the Linux VServer virtual machine
implementation [11]. PlanetLab [38] is a common testbed for distributed ap-
plications and uses VServer to separate different slices from each other. Since
we do not have control over the VServer in PlanetLab, the Linux kernel in the
virtual machine itself is the root of trust. Because Linux itself does not provide
strong process isolation, there can be only one trusted process or multiple un-
trusted processes per kernel. We create a slice on PlanetLab for every ditferent
application and achieve the desired strong process isolation.

Secure 1/0
The only secure I/O device that we need to emulate for Trusted Overlay Networks
is the network adapter. We emulate secure network I/O by encrypting data from
the application to the peer application after the key exchange is done, as shown
in Figure 5.2.

Local Attestation
The operating system needs to provide local attestation to establish a chain of
trust between the application and the trusted hardware during secure boot. First,
the TCB attests the OS Loader, which is usually the BIOS of a PC, and starts it.
The OS Loader then attests the OS and loads it. Finally, the OS attests any trusted
application and executes it. The TCB emulation provides a wrapper function for
the exec () system call that executes the local attestation protocol.

Remote Attestation

Figure 5.2 shows how two trusted software stacks attest applications to each
other using remote attestation. First, the applications conduct a standard TCP
handshake. After the TCP connection has been established, the application does
a key exchange and sets up an encrypted communication channel. Establishing
the encrypted communication channel before attestation takes place is neces-
sary to protect against replay attacks. Then the connecting TCB joins the group
signature scheme using the tcb_at_join command. It starts the remote attesta-
tion protocol over that connection using the tcb_at_sign. The TCB emulates
the remote attestation protocol, but the application handles all errors. Theo-
retically, we could use IPsec or TLS/SSL to set up a secure network or socket
layer, but we do not require all the functionality on this level, and as discussed
earlier it is an important principle in STONe to integrate handling of security
errors and application errors on the higher level. Encrypting data between the
nodes on this level is completely sufficient, and STONe handles integrity of the
communication on the higher levels.



5.2. Implementing Trusted Overlay Networks 63

Remote Attestation
®
‘//\
Application || Application Key Exchange | Application |4_ Application
a 3
TCB 3 TCB J @ TCB % TCB
0s § 0s T Tep HaCrBishake oS % oS
VServer VServer VServer v VServer
Host OS Host |OS

Figure 5.2: Emulating Remote Attestation and Secure Network I/O on PlanetLab: STONe emulates
the TCB on top of the Linux OS in the VServer. Every VServer slice automatically provides
strong process isolation. The application contains Trusted Overlay Networks and the actual
application.

5.2 Implementing Trusted Overlay Networks

With the TCB emulation on PlanetLab, we build Trusted Overlay Networks (TON) —
the base of STONe. Here we outline only the general implementation issues, but in
STONe we chose to implement Trusted Overlay Networks as socket proxies, since they
give the maximum amount of flexibility for any type of application.

Figure 5.3 shows the implementation of Trusted Overlay Networks: Every node
has two PlanetLab slices — one that runs the TON software, and another that runs the
application. The application communicates through TON with its peer nodes and can
be trusted or untrusted.

The join protocol is simple: A node that wants to join TON first conducts a TCP
handshake with another node in TON. In the next step the two nodes do a key
exchange. Finally, they complete remote attestation.

In the current setting TON has to be implemented in user space because PlanetLab’s
current configuration does not support kernel modules. As we will see this incurs
some performance penalties, but we will also obtain an estimate of how STONe would
behave in kernel space.

So far we have explained the details of TON and outlined how to build TON
on PlanetLab. In the next sections we explain the design and implementation of
STONe, a Trusted Overlay Network that provides secure, reliable, and anonymous
communication.



64 Chapter 5. STONe Implementation

Ve
! TON Application
TCB TCB
oS oS
VServer VServer

T(;N Application
TCB TCB TON Application
[oN (0N TCB TCB
VServer VServer [ON) oS
VServer VServer

Figure 5.3: Implementing Trusted Overlay Networks: This figure displays the Trusted Computing
stack on every platform. Trusted Overlay Networks (TON) sit on top of the TCB and connect
other TON nodes.

5.3 STONe Implementation

We implemented a prototype of STONe under PlanetLab. The STONe Proxy and
STONe Router in the system architecture are different processes, and they communi-
cate via pipes and sockets. The STONe Socket library provides an API for applications
to connect to the STONe Router. TNS is implemented as an application that runs in
the TCB.

STONe Proxy The STONe Proxy decrypts incoming and encrypts outgoing fragments
and communicates with the router. The most important decision in the implementa-
tion of the STONe Proxy is the choice of UDP vs. TCP. The STONe proxy uses TCP for
a few reasons:

First, nodes may leave and enter STONe frequently. TCP connections can auto-
matically detect when a node leaves STONe because the peer’s TCP/IP stack closes the
connection through explicit TCP FINs — even when the router application crashes.
Second, TCP ensures ordered message delivery, allowing the traffic to be encrypted
using a simple stream cipher. Third, TCP flow-control provides reliable transmission
even over lossy paths, and TCP congestion control allows nodes to use up all the
available bandwidth along the path. Fourth, TCP makes it easier to set up incoming
connections to nodes within NATs in peer-to-peer networks. Typically, it is not possi-
ble for a node behind a NAT to receive any connections without additional support.
In STONe, the node behind the NAT connects to another node using TCP, and when
the connection goes this way the NAT often forwards the port automatically. In UDP
only the node behind the NAT can send nodes outside, but it cannot receive any



5.3. STONe Implementation 65

packets. After connection setup in TCP both nodes can send messages back and forth.
For an overview of all possible solutions to this “Hole Punching” in TCP and UDP,
see [83]. And fifth, TCP automatically buffers messages and slows down connections
through congestion. When the STONe Proxy cannot forward any messages and does
not pick up arriving ones, TCP automatically slows down the sender rate of the adja-
cent node. Therefore, no packets have to get dropped in the STONe Proxy. Finally,
TCP congestion control synchronizes tratfic in anonymous routing.

In addition to packet relay on STONe’s overlay links, the STONe Proxy also en-
crypts data. However, it does not use SSL/TLS or IPsec for several reasons: First,
authentication in STONe is done by remote attestation, and these protocols use their
own authentication mechanisms, which have to be adapted for Trusted Computing.
Second, content in STONe application data is already signed by the application, and
STONe only requires a checksum for STONe's packet header to protect against tam-
pering. SSL/TLS would impose additional overhead to signing and verifying messages.
Third, IPsec has difficulties with NATs and firewalls, and we want to make STONe as
transparent as possible to maximize the size of the anonymity set.

STONe Router The STONe Router is a process different from the STONe Proxy to
provide resilience in case of an attack. When the STONe Proxy gets overloaded or
compromised for some reason the Router spawns a new Proxy. After reconnecting
to its neighbors, it then continues operation without much interruption. Further,
this separation enables parallel processing of cryptographic operations and message
forwarding on modern microprocessors that have multiple cores. Pipes under Linux
provide the basic mechanism for interprocess communication between the Router and
the Proxy. The Router does the initial handshake and then hands off the file descriptor
of the TCP connection to the Proxy via access control messages on the internal pipes.

Interprocess Communication Pipes in STONe’s interprocess communication are uni-
directional, and we use two pipes to establish bidirectional communication. Initially
there is a socket pair between the Router and the STONe Proxy to signal events and
pass along file descriptors. Whenever a new node connects to the system, the Router
sends a signal to the STONe Proxy to set up the new connection. For every connection
the Router adds a new bidirectional pipe. Pipes limit the maximum possible STONe
fragment size to 4kB since this is the current maximum buffer limit under Linux.
When the buffer is full the Router gets blocked and has to wait for the Proxy to con-
tinue. There are still possibilities to optimize STONe by adding more butfers, but this
is beyond the scope of this work and is left for future research.

Figure 5.4 shows STONe’s interprocess communication with different applications.
The STONe Router communicates with every single application through the Router



66 Chapter 5. STONe Implementation

App App App

&

19205 J91n0Y
uj | 19)20SS
INO | 3920SS
uj Z 19)20SS
N0 ¢ 19)P0SS

S R Y R R PR RN
pPoeccccccccccccccccccccccone

Figure 5.4: Interprocess Communication in STONe: The layout for interprocess communication
in STONe consists of applications and the Router. Applications send commands to the Router
and receive replies through the Router socket. For every STONe address the application binds
it gets two unidirectional pipes.

socket, which is a standard Unix or Inet socket. The Router socket takes commands
tor the STONe network stack from the application:

SK_CAP
Given a service ID the STONe Router computes the opaque capability for the
local host and returns it to the application.

SK_BIND
Binds a STONe Socket to the a local STONe address. The bind operation generates
two unidirectional pipes between the application process and the STONe Router
process.

SK_CONNECT
Connects the STONe Socket to another listening STONe Socket. The connection
uses the TSS protocol.

SK_LISTEN
Turns the STONe Socket into listening state for incoming connections.

When an application binds a new address to a STONe Socket the STONe Router gener-
ates a new pair of unidirectional pipes for this STONe Socket. An application sending
data through the STONe Socket Library writes the data into the pipe, and the STONe



5.3. STONe Implementation 67

Router then forwards it to the destination. If the STONe Socket is connected via TSS,
this is stream data. If the STONe Socket is not connected and uses TDS, the STONe
Socket Library copies the data into a single STONe packet and writes it into the pipe.
This packet contains the destination capability in the header.

Process Synchronization The STONe Proxy and Router both use asynchronous I/O
and an event-based programming model. Both have a command queue and data
queues for every TCP connection to adjacent nodes. When a new node connects, the
router sends a message to the Proxy, and the Proxy sets up a new data queue for this
node. When an adjacent node leaves the network the Proxy sends a message to the
router. It is important that the Router and Proxy are in sync when a node connects or
disconnects, since otherwise data may be lost.

We circumvent deadlock problems by having only one synchronization point. The
Proxy waits only when no packet arrives from the network and no data arrives from
the Router. The Router waits only when there is no socket data, and when there is
no data from the proxy as well. The main deadlock problem is the internal data pipe,
whose size is only 4kB. STONe needs to make sure that both proxy and router are not
trying to write on a full buffer at the same time. We solve the problem by blocking
the Router, such that no data gets lost. Further, we use the TCP butfer in the proxy
tor buffering STONe packets: Whenever the proxy encounters a full pipe it does not
receive any data from the TCP connection. Eventually, it will receive data from the
router. Then the Router gets the data from the proxy’s write pipe, and finally the
proxy can write the data from the TCP buffer. Using this technique no additional
butfering is necessary. Furthermore, when the TCP buffer in the proxy fills up because
the router is busy, TCP automatically slows down adjacent nodes, which is desirable.
When the router starts picking up packets again from the proxy, TCP will trigger a
slow start.

Resilience Every node has a watchdog process that restarts the STONe Router in case
of a failure or timeout. There are several causes for failures or malicious attacks:

(i) STONe Proxy fails: The STONe Router restarts the Proxy. The Router has all
required state information to restart the Proxy to reconnect to STONe.

(ii) STONe Router fails: The watchdog process restarts the STONe Router. In this case
all state information including any buffered data, will be lost. The Router restarts
the Proxy.

(iii) T-START packet times out: When the T-START packet does not arrive in time the
Router terminates and the watchdog process restarts the router to rejoin STONe.



68 Chapter 5. STONe Implementation

ST OXy STONe Proxy STONe Proxy STONe Proxy
waitpid() restart waitpid() restart
STONe Router STONe Router ST uter STONe Router
waitpid() waitpid() waitpid() restart
Watchdog Watchdog Watchdog Watchdog

Figure 5.5: Resilience in STONe: When the Proxy crashes (left) the Router restarts it. When
the Router crashes (right) the Watchdog process restarts everything.

When a node joins the network it waits until it receives the signal that it can start
to send. Then it starts sending packets. When the joining node does not receive the
start signal within a given time interval it time out and restarts itself.

Cryptography Most cryptographic operations take place within the TCB, but some
require application-level support. STONe uses the OpenSSL cryptography library for
these operations. After the Diffie-Hellman key exchange a node i has a := DH g,
and b := DH%, Ne, and needs to compute the secret shared key for the stream cipher
Krone,- In addition, STONe must encrypt and decrypt data on the link between i
and j using K éTo Ne,- 1t uses RC4 and makes sure to initialize the cipher correctly to
avoid possible security leaks from the key initialization procedure [81, 126].

Application-level support The Router provides sockets and pipes to the application for
interprocess communication. When an application links the socket library it maps a
STONe socket directly onto a Unix socket to communicate with the Router. Internally,
a new STONe Socket gets a new context data structure that contains the necessary
protocol status information for TSS and TDS. This data structure is available in the
router and in the socket library. The socket library contains a similar data structure
that is restricted to the information that is available to any untrusted processes outside
the TCB.

In addition to the C library, STONe provides a Python module for STONe Sockets
to make already existing classes in Python easily accessible for STONe Sockets. It is
straightforward to change most socket applications into STONe Socket applications,
since only the data structure of the network address changes. In addition, domain
name server (DNS) requests need to be changed into requests for STONe’s Trusted
Name Service (TNS). Select statements on trusted sockets require STONe’s tselect com-
mand.



5.4. Applications 69

int fd2cap(int fd, cap_t *cap);
void get_local_cap(fd_t rtfd, ton_service_t svc, cap_t cap);
int init_app(char #*stone_appsock);

int tfd_zero(tfd_set_t *fds);

int tfd_set(int fd, tfd_set_t *fds, int type);

int tfd_clr(int fd, tfd_set_t *fds);

int tfd_isset(int fd, tfd_set_t *fds);

int tselect(int n, tfd_set_t *readfds, tfd_set_t *writefds,
tfd_set_t *exceptfds, struct timeval *timeout);

int tsocket(int protocol);

int tbind(int s, fd_t rtfd, ton_service_t svc);

int tconnect(int s, fd_t rtfd, cap_t dest);

int taccept(int s, cap_t *src);

int tlisten(int s, int backlog);

int tsendto(int s, void *sbuf, int len, cap_t dest, int flags);

int trecvfrom(int s, void *rbuf, int len, int flags, cap_t *from);

int tsend(int s, void *buf, int len, int flags);

int trecv(int s, void *buf, int len, int flags);

int tread(int s, void *buf, int len);

Figure 5.6: Trusted Socket API

Figure 5.6 shows the STONe Socket API. Most functions are equivalent to normal
Internet socket calls. In addition, STONe requires its own event-handling functions
that are semantically equivalent to Internet sockets, because internally a STONe Socket
has two file descriptors from two different pipes.

init_app() initializes the application with the STONe router. init_app() uses as
input parameter a Unix socket identifier, which describes the communication channel
with the STONe router.

5.4 Applications

We have implemented three prototype applications that demonstrate the usefulness
of STONe’s API. The Trusted Name Service is one of the STONe’s building blocks, but
it also builds on STONe'’s API. The other two applications the are implemented so far
are the Trusted Instant Messenger and the Trusted File System.

5.4.1 Trusted Name Service

The Trusted Name Service (TNS) consists of a client library and the TNS server. Fig-
ure 5.8 shows the TNS Client API. A TNS Client can either register a name and public



70 Chapter 5. STONe Implementation

initapp(socket, n) -- initialize the application with a Unix socket address
and a service offset

taccept() -- accept a connection, returning new socket and client address

tbind(addr) -- bind the socket to a local address

tclose() -- close the socket

tconnect(addr) -- connect the socket to a remote address

tlisten(n) -- start listening for incoming connections

trecv(buflen, flags) -- receive data

trecvfrom(buflen, flags) -- receive data and sender’s address

tsend(data, flags) -- send data, may not send all of it

tsendto(data, flags, addr) -- send data to a given address

tns_register(rt,name,key,dest,async) -- register name and key from name server

tns_query(rt,name,key,async) -- query name and key from name server

Figure 5.7: TSocket Python Help page

void tns_register(fd_t rtfd, char *name, ton_key_t *pk, int exp, cap_t csvc,
int async);
void tns_unregister(fd_t rtfd, cap_t csvc, int async);
void tns_query(fd_t rtfd, char *name, ton_key_t *pk, cap_t *dest, int *dlen,
int async);

Figure 5.8: Trusted Name Service Client API

key with a capability, unregister a capability, or query the capability of a name and
public key. TNS Client calls can be synchronous or asynchronous. Because commu-
nication is acknowledged, the client spawns a thread in the asynchronous case when
the applications is not blocked. When the client registers a new TNS entry this thread
also solves the challenge from the server.

Figure 5.9 shows the header of a TNS packet used for communication between
client and server. reqid tells the server to either register, unregister or query an entry.
num_entries contains the number of TNS entries within the packet.

5.4.2 Anonymous Instant Messenger

We demonstrate the usability of STONe’s connectionless TDS service by an Instant
Messaging application. The Anonymous Instant Messenger uses TNS for registering
pseudonyms. Whenever a person logs in to the Instant Messenger she registers her
name and public key at the name server, and when she logs off she unregisters it.
For example, Alice registers the name “Chat Alice”. When Bob wants to connect to
Alice he requests the capability “Chat Alice” from TNS along with her public key.
Alternatively, it is also possible to use Anonymous Instant Messenger as a public chat
room. In this case all users register a common name such as “Chat” with the Instant



5.4. Applications 71

Request ID Number of Entries
Sequence Number Acknowledgement Number
Key Length Key Exponent

TNS Name (256)

TNS Public Key (128)

«——— 32bit 32 bit ——

v
A

Figure 5.9: TNS packet header

Messenger and use their public keys as pseudonyms.

5.4.3 Anonymous File System

The Anonymous File System shows how the TSS service works in STONe. Anonymous
File System is a simple distributed peer-to-peer filesystem, in which every client stores
and retrieves files. Every node that participates runs an Anonymous File System server
and client component. Whenever a client publishes a file it stores the file locally
and registers the capability with TNS. Any client that wants to retrieve the file queries
TNS and gets the appropriate capability. The client then connects to the peer that
has stored the file. Filenames are flat in this implementation. The public key is
comparable to a mini-certificate that tells the client who published the file.






Chapter 6

STONe Evaluation

In this chapter we evaluate the current STONe prototype implementation — first the-
oretically and then on PlanetLab [38] — to verify our claims about performance and
security. The evaluation on PlanetLab is crucial because STONe’s random routing
depends on actual network properties. There is still leeway for performance improve-
ments. The performance evaluation in this section should only be considered as a
proof-of-concept.

6.1 Security

6.1.1 Common Attacks

Compromising STONe Nodes STONe’s TCB-based architecture provides robust pro-
tection against Byzantine failures. It is therefore hard for an adversary to compromise
and control a STONe node by software-only attacks. Subverting a TCB requires the
adversary to get local access to the TCB hardware. In practice, this means that only
a small subset of nodes can be compromised. In addition, there are architectures for
tamper-evidence (e.g [182]) that quickly detect such compromises. Once detected,
the compromised TCB appears on a blacklist and is automatically disconnected from
STONe, because the group signature scheme in Remote Attestation will fail. The root
of trust (e.g. the hardware manufacturer) has to ensure that the blacklist is constantly
being updated. In addition, standard techniques such as remote device fingerprint-
ing [114] prevent an adversary from running a virtual TCB in software with secrets
she extracted from a hardware TCB.

Denial-of-Service For a Denial of Service attack, the adversary may compromise ma-
chines all over the Internet, recruit them as bots, and launch DDoS attacks against
single STONe nodes or a group of STONe nodes. In common DDoS attacks on STONe,
the adversary targets different kinds of resources. For STONe, network bandwidth and

73



74 Chapter 6. STONe Evaluation

router CPU are the most attractive properties to attack. Bandwidth attacks are usually
expensive and in STONe become even more expensive because of STONe’s resilience
to single tfailures: Whenever congestion occurs in a destination of the routing table
the node simply turns to the alternative column in the row of the routing table. This
eliminates one node from STONe, but because of STONe’s load balancing, to com-
pletely disable STONe, all nodes need to be attacked by bandwidth flood attacks, and
this is expensive. But not only brute-force bandwidth attacks are hard to accomplish
in STONe. When an adversary tries to attack the Router’s computational resources di-
rectly from outside STONe by sending malformed packets, the Proxy will silently drop
those packets. CPU-based denial of service attacks from within the STONe network
are also difficult to carry out. STONe’s socket interface automatically slows down data
throughput to the STONe router, since the STONe router is a trusted process. Internal
STONe messages such as routing updates are encrypted and signed, and therefore,
forging of these messages is not possible. The only way to isolate a node from STONe
is to carry out a bandwidth flood attack.

IP Routing Attacks If an attacker manipulates IP routing information, STONe will
tail, but this is the nature of an overlay network. The assumption we make in the
beginning is that the network stack is well-protected against these attacks.

Replay Attacks An adversary could try to replay a handshake sequence to pretend that
the adversary is another identity. However, this attack will fail because it would not
be able to compute the shared key between the two nodes.

Protection against these attacks considerably improves STONe’s resilience and
makes it hard for an adversary to disrupt communication. This is important to prevent
sabotage on the anonymity service.

6.1.2 Traffic Analysis Attacks

In Chapter 3 we explained STONe’s anonymity model and measures, the attack goals
in anonymity, and the adversary’s properties. Traffic Analysis protection has several
different objectives: Sender Anonymity, Receiver Anonymity, Unlinkability, Local-
ity of Nodes, and Traffic Characteristics. Despite strong TCB protection, adversaries
against Traffic Analysis might still be able to control the untrusted part of an arbitrary
number of nodes, including the sender and the receiver.

There are several known attacks that an adversary who pursues Traffic Analysis tries
to carry out. On compromised nodes an adversary might measure and record time
and location of messages and correlate this information arbitrarily. She may also use
one of the above common attacks to support traffic analysis, e.g. by isolating nodes
from the network through DDoS.



6.1. Security 75

6.1.3 Traffic Analysis Protection in STONe

STONe uses a trusted overlay network to protect traffic analysis on the underlying In-
ternet. In particular, it should be hard for an adversary to track assignments between
IP addresses and physical nodes in the network and to determines characteristic prop-
erties of the communication channel, as mentioned in Chapter 3. Inherently, STONe
already protects against some traffic analysis attacks due to the design of the STONe
overlay. For example, in Trusted Overlay Networks an adversary is not able to identify
IP source addresses of arriving messages. However, in STONe she is able to see the IP
addresses of the immediate neighbors in the hypercube.

In addition, scalability is very important to provide better anonymity. Compared
to fully connected networks such as Tor or Crowds, STONe’s hypercube topology is
scalable and thus better suited for maintaining large anonymity sets and therefore
better anonymity. Due to the scalable and resilient hypercube structure the network
scales up to a larger number of nodes, similar to what has been suggested in mix
networks [67] or the Crowds-based AP3 system [127]. Furthermore, only nodes that
have an incentive to provide anonymous communication stay in the network. Others
leave. These system properties improve anonymity.

When a sender establishes a new path to start communication, most anonymity
protocols use random walks over graphs. The main advantage for doing this is that
random walks provide mixing properties without using specific mixes [146]. Mix
networks shuffle messages locally, whereas random walks depend on different path
lengths to shuffle messages for anonymity. In contrast to STONe, mixes synchronize
tratfic globally within the network. We decouple the two tasks in STONe’s design —
random routing and synchronization — and show how to optimize them separately.

Random Routing

Random walks used in common anonymity protocols have several problems. If two
nodes A and B are in close proximity, with a high probability a random walk only has
a short path and generates localized traffic patterns that a traffic analysis adversary is
able to exploit.

In a random walk over an ideal hypercube the lower bound on messages per
link can be up to % depending on the path permutation the routing algorithm
implements [49]. In addition, the random walk over a hypercube takes log N log log N
steps until it reaches a truly random distribution. Only after that can the message be
forwarded to the final destination.

Theorem 1. A random walk over a hypercube of N nodes approaches a random distribution
after about log N (loglog N) steps.



76 Chapter 6. STONe Evaluation

Proof. For the proof we use coupling techniques. Let’s start a random walk at address
00...0 in the hypercube and go to some random node A. The length of the address’
bitstring is n = log N. On every step we change a random bit out of the n bits from 0
to 1 or from 1 to 0. The random walk stops when all bits are the same.

This corresponds to the Coupon Collector’s problem [196]: An arbitrary set of
objects contains d distinct objects, each of which can be picked with probability é.
The problem is to determine the number of steps ¢ it takes to pick every object at least
once. The probability E; that object ¢ out of the d objects is missing is

P(E;) = <1 _ é)t.

Therefore, the probability that at least one out of the d objects is missing is

d

S P(E)=d (1 - %)t ~ ded.

=0

When we set this probability to py we get

po < de_é
t > (d+logpy)logd

When p, is small it takes about dlog d steps to pick every object at least once.

On every step during the random walk over the hypercube we draw a bit position
out of the n bits and a bit value out of {0,1}. A and B set the bit position accordingly.
This is exactly the Coupon Collector’s problem with d = 2+n = 2 +log N objects. [

Another known scheme for anonymous communication is sorting networks such
as Batcher networks [90]. However, similar to mix cascades [58, 41], they have the
disadvantage that they are not resilient against compromises because they always
require a fixed number of functional nodes in the network. Furthermore, sorting
networks are less efficient than random walks, since they take O(log® N) steps to sort
N elements.

Random routing, in contrast to a random walk, uses bit fixing in STONe’s prefix-
based hypercube routing algorithm. In random routing, on average, there is only
one message on a given link at the same time, while the expected path length is
2log N [187].

Self-Mixing Property Because random routing picks a different intermediate node on
every message transmission, the communication channel experiences random laten-
cies. As a result, messages get randomly shuffled, making it difficult for an adversary



6.1. Security 77

to find packets that belong to the same communication channel. In addition, such
mixing techniques are designed to prevent an adversary from associating incoming
messages with corresponding replies. An adversary who knows the communication
channel of some messages can only guess which communication channel other mes-
sages belong to.

We have a set N of N nodes in the hypercube that uses the random routing scheme
described earlier. Every phase of the protocol is non-repeating, i.e. when two routes
diverge they will never meet again during the same phase. This effect occurs because
hypercube routing in STONe uses bit-fixing. First, we assume that all nodes in N/
send at the same rate \. Further, every node has h = % messages to send, and
every destination appears on exactly i packets that are randomly distributed across
all senders. This is called a 'full h-relation’ [187].

Since random routing relays every message via a random node and fixes bit by bit,
the probability that the path length in a network of n nodes is k£ follows a binomial

distribution: P,gs(n, k) = 2101gn (2 1<;€g "). Accordingly, the average and maximum are
Uraist(n) = logn and M, q;s:(n) = 2log n. We note that random routing cannot be mod-
eled as a Markov Chain, because it does not have the memory-less Markov property.

The Markov property states that for any process X; and node state i, we have
PT[Xt+1 ZJ‘XO = ’io,Xl = il, ...,Xt = it] = PT[Xt+1 :j‘Xt = ’L] = PZ]

In other words, the transition probability at the current node only depends on the
current state. STONe's routing algorithm, however, depends on bit-fixing from left to
right. P[X;+1 = j] does not depend only on P[X; = i| but also on how many states
the algorithm has already traversed.

Corollar 1. Every node X; € N in a network of |N| = N nodes receives a sequence of
messages fof1...fon- fi are binomially distributed in N, f; ~ B(log N, %).

Proof. The tratfic on all edges of the network is uniformly distributed for two reasons.
First, we assume that all nodes in NV send at the same rate \. Second, every node picks
a random intermediate node for every message it sends. . As a result, the tratfic on
all edges of the network is uniformly distributed, and every node processes messages
at rate 2)\. Because bit-fixing takes place in hypercube routing, the probability that
node X; receives a message from any given node in N (including itself) is distributed
according to a binomial distribution. More precisely, given the distance d(X;,Y) to
node Y the probability that X; receives a fragment from node X; € N at time step
t(i) is Pi(X;) = %(d(l)‘?j&)) where #(i) = £. Since every node sends h = % packets
and packets traverse the network twice, X; receives h - P;(X;) = % ( d(l)‘zf’];[(i)) random
fragments from every node X, in N resulting in Z;V:l 2h - P1(X;) = 2h fragments.

O



78 Chapter 6. STONe Evaluation

We also call this the self-mixing property of random routing. Similar to the original
work on random routing over hypercubes we can generalize this result and define a
partial h-relation in which nodes have at most h messages to send and for every node
X; there are h; < h messages to send. Accordingly, X;’s individual send rate is \; = )\%

Lemma 1. In the partial h-relation every node X; € N receives a sequence fofi.., fon Of
messages where f; is drawn at random with probability p; = }f—N - X; and X; is binomially
distributed.

Proof. Everything from the proof of Corollary 1 is still valid except that the probability
now is 5 P (X;) = 5% (o8 X,)- As aresult, S b S0 Pr(XG) = 0L TN B =
2h messages. O

In some real-world scenarios, especially web browsing, the relationship between
senders and receivers is often only 1:n. As this is a common problem in typical
anonymity networks, it is not an issue in STONe. These lemmas show that anonymity
does not depend on the relationship between senders and receivers but only on the
total distribution of the message destinations.

In particular, random routing protects against most intersection attacks. In inter-
section attacks an adversary measures tratfic load on the compromised nodes. Even
though an adversary may fail to identify individual connections, it is still possible
to mount intersection attacks. Despite STONe shuffling messages, an adversary can
increase her chances of breaking sender/receiver anonymity when senders transmit
messages at different rates \;. The success probability p(k,m) against sender/receiver
anonymity in a network of £ senders and m compromised nodes is:

wm=s- (- () (- () - %)

To be successful in this attack an adversary needs to compromise at least one sender/receiver
and one idle node. As a result of this, cover traffic is required to ensure that senders
and idle nodes are indistinguishable. If there is not enough cover traffic to hide
inactivity in the network, nodes must leave the network to protect anonymity.

In addition, to break unlinkability an adversary has to compromise exactly the
sender node X; and the corresponding receiver X;. Detecting X; and X; on the
communication channel is only possible when the communication channel operates
at a specific common rate. The success probability p(k, m) for this type of intersection
attack against unlinkability is

em =1 (- () =0(3)

Hence, an adversary does not gain significant advantage when she tries to break



6.1. Security 79

unlinkability in that fashion.

In addition to intersection attacks, timing attacks pose a significant threat that
must be considered as well. In timing attacks an adversary measures the inter-arrival
times between two messages in sequence. For example, when a sender transmits
messages f1, f2, and f3 at times tepier(f3) > tenter(f2) > tenter(f1), respectively, on the
Internet, the time differences between the messages remain the same. In STONe, how-
ever, the time differences change along the communication path because of STONe's
self-mixing property. If all senders are sending traffic at the same rate, an adversary is
only able to see two consecutive fragments from exactly one node: The sender that is
closest to the node.

In hypercube routing a node with distance s from the sender forwards 27 of this
sender’s messages. In a fully connected network only every N-th message would come
from the same node, but in a hypercube there is small bias towards the closest sender.
If we assume that all senders send at the same rate, one node ¢ will receive every
(2755 %)-th messages from sender j. In hypercube routing the nodes closest to the
sender propagate 1 of the sender’s messages, the second closest 1 etc.

The attack is successful against unlinkability when an adversary manages to com-
promise the sender, receiver and one of their closest neighbors for each. The problem,
however, is that not all neighbors forward a ditferent number of messages from the
sender. For example, the probability that the first neighbor forwards two sequential
3 = . For the second neighbor it is § - ; = 5. In total, the probabil-
ity that two messages are arriving in sequence when the sender and its neighbor are

messages is 1 -

compromised is
log N 1
(¥ = 3047 =0

On the other hand, the probability that at least one sender and one of its closest
neighbors are compromised is

s o= () (- (52))-

o (1_ (N—maxN(/ZlogN))m) |

Here, k is again the number of senders and m the number of compromised nodes.
Given that the send rate A\ must not be uniform for a successful attack, the success
probability depends on the send rate as well, and there are %logN neighbors to
consider instead of log N. Timing analysis can be a threat to STONe, because the
overall success probability ¢(N) - p(N, k, m) is not necessarily small. To fully protect
against timing analysis attacks all senders have to be synchronized.



80 Chapter 6. STONe Evaluation

Attacks on the Topology When an adversary knows STONe’s hypercube topology, tim-
ing analysis attacks may become significantly easier. In particular, when an adversary
knows the sender’s neighbor, on average, she is able to monitor every N-th message
and correlate these measurements across the network. Therefore it is crucial that
STONe hides network topology information.

By design, STONe hides network topology, since an adversary can only access the
routing tables from within the TCB. Further, STONe derives node addresses from the
internal Trusted Computing keys, thus randomizing them. A STONe node address is
unrelated to its location in the network.

However, there are still ways to recover the topology due to physical network
properties. The main adversary against the hidden topology is tomography. In to-
mography a network monitoring tool typically probes network end-to-end delays to
infer individual communication path characteristics (e.g. [60]). If an adversary de-
tects these individual characteristics she may be able to partially reconstruct STONe's
topology.

Typical tomography works the following way: First, an adversary uses all com-
promised nodes to determine the latencies between them. In the second step she
connects to a random node in the network and measures the end-to-end delays. The
lower bound of the end-to-end delay is a measure for the distance between the node
and the current node. Usually, there exist algorithms that are able to reconstruct
latencies of all possible O(N?) paths using only O(N log N) path measurements [60].

In the next theorem we give an upper bound for the path length. For simplification
we assume that all links have uniform delays, and end-to-end delays only depend on
the path length. For simplification we assume that the hypercube routing algorithm
uses k =1 and [ = 1 as parameters.

Theorem 2. (Valiant [187]) In random routing the average number of hops along an arbi-
trary path is p = log N. When all nodes send h packets the probability that a message does
not get delayed by more than A + (. steps is:

ehlog N A
2A

P(XzA)<hN<

On average the path length in random routing is 2log N. If we set A = k -log N
then P(X > klog N) < N~% when k > eh. For a simple permutation (h = 1), this
bound holds for £ > e.

Lemma 2. The expected arrival-time variation between two fragments in a sequence is
log N
\/ 5

Proof. The distance between sender and receiver is binomially distributed with dis-
tribution B(2log N, ). The expected variation in distance between two independent



6.1. Security 81

trials is the standard deviation: \/ 2log N§ = \/ logQN . O

STONe minimizes congestion even in the worst case, when the network routes
messages synchronously. However, STONe's routing buffers have to tolerate maximum
delay. End-to-end latency can grow up to 14log N hops depending on the permitted
loss rate [47, 187].

So far we have only investigated tomography in a network with homogeneous
links. For STONe we also have to consider tomography in hetereogenous networks
that have individual link delays such as the Internet.

0.9
0.8 i
0.7 - IR~ e = T e

0.6

CDF

0.5 1--- IR {10 fEemeennennn s
0.4 +--{iH4
0.3 4l

0.2 +1lfiflf

0.1 I 7

0 500 1000 1500 2000 2500 3000 3500 4000
RTT [msec]

Figure 6.1: Cumulative Distribution Function of an all-pairs-pings on PlanetLab: A single curve
represents the CDF of the RTT between a single node on PlanetLab and the rest of the network.

We first conduct an all-pair ping on PlanetLab to measure the round-trip times
between all pairs of nodes. PlanetLab is the current testbed for distributed Internet
applications [17]. It emulates the real-world Internet, because it allows applications
to run on geographically distributed machines that have different computation and
communication capabilities [38].

Figure 6.1 shows the cumulative distribution function (CDF) over an all-pair ping
measurement. Every single graph represents the RTT between a fixed node and an-
other arbitrary node on PlanetLab. On average only a few nodes have large RTTs,
whereas 80% of the nodes have RTTs below 500msec. Some nodes in the graph are
weakly connected.

Because RTTs are heavily distributed, an adversary can use additional knowledge
about RTTs to reconstruct the topology. After discovering the overall path length !



82 Chapter 6. STONe Evaluation

and delay D, the adversary’s goal is to detect the specific individual link delays d;
along the path from all N log N individual link delays in STONe. Once she knows the
individual link delays she can use the results from tomography to determine the links
within STONe that are included in the path.

The number of possible different combinations of summations of individual delays
d; resulting in D can be computed by a polynomial of degree (I — 1) if we assume that
all individual link delays in STONe are distinct. For example, when [ = 1 there
exists exactly one possibility, D = dy. When [ = 2 there are about L@J possible
summations. When [ = 3 we have to sum up over all possibilities of length | = 2.
We can express this recursion in closed form ¢; in which y; describes the number of
summations for path length i that result in end-to-end delay z:

a(x) (1 =gz (1 —yox' ) (1 —yr32') - - - (1 = y1z")(1 = o)

(log N)! (log N)!

Now, the probability that an adversary gets a correct combination of individual
delays whose sum results in D is:

Pietay(D, N, 1) = l,q;(Tli))gN

D does not depend on N and in STONe [ < 2log NV for most practical cases. When
N becomes large the success probability is very small and therefore a brute-force attack
by random guessing is hard.

This specific problem can also be specified as a subset sum or knapsack problem.
Knapsack problems can be solved under certain circumstances [136], in particular,
when knapsacks have low density. If the d; are chosen at random with d; ~ 2°V
and 1 < ¢ < N where § > 1.54725 then the knapsack is easily solvable. However,
this distribution does not apply to link delays on the Internet. Furthermore, link
delays have large variance, and therefore, they cannot be formulated as a low density
knapsack problem.

Limitations of Random Routing A significant trade-off in random routing is that only
half of the bandwidth in the network is available. Further, on average the round-trip
time becomes twice as large. Furthermore, random routing is still prone to intersection
attacks when synchronization does not take place, and there are idle nodes in the
network.

Fragment Sizes Even when an adversary only has access to a few nodes she can observe
unique fragment sizes, and by doing tratfic confirmation attacks she can assign tratfic
characteristics to particular communication channels [183].



6.1. Security 83

A common solution to the problem is to use uniform fragment sizes. However,
uniform fragment sizes have a large overhead.

An alternative way to deal with the problem is message splitting [164]. STONe
could split a message that would otherwise fit into one fragment into smaller pieces
and route them through the network along different routes using random routing.
When we split every message into N fragments of random size every node observes a
random fragment every time. However, this also gives an adversary an estimate for
the upper bound of the message size.

Ideally, the fragment size is a global synchronization parameter that depends on the
session-layer requirements of the ditferent communication channels. Every STONe
node uses a uniform fragment size in the beginning. When the real fragment size is
smaller it decreases the size by some maximum A, otherwise it increases the size by
some maximum A. In random routing every node sees the different fragment sizes
and adjusts the uniform fragment size to the average measured fragment size. We
leave this as subject for future research. In the current implementation STONe uses
constant fragment sizes.

Session-based Attacks When a session expires, counting attacks become a threat be-
cause the inactive node is part of the anonymity set but does not show any activity.
There are two alternatives to fix this problem: Either the node drops out of the net-
work, or it has to start some activity.

When a node leaves the network it reduces the size of the anonymity set. On
the other hand, when a node has to start activity that is not intended by the user it
costs extra resources. STONe has to make a trade-off between the churn rate Aopyrn =
Aenter — Aleave, 1-€. the rate at which nodes are entering and leaving the network, and
the average send rate )\, at which nodes are sending traffic within the network.

In fact, when a single node enters and exits the network up to log® N routing
update messages have to be sent. In contrast, sending extra traffic requires up to A
of extra data, where ) is the average data rate in STONe. Optimizing this problem is
another important future aspect of research.

6.1.4 Application-based Anonymity in STONe

Now we look into STONe’s anonymity on the application-layer. Here, STONe provides
the Trusted Name Service as well as STONe sockets as the main features to prevent an
adversary from spying on network addresses and possible communication patterns.

Application-based Denial-of-Service STONe has to protect against a misbehaving ap-
plication that tries to flood the network. However, STONe has the same semantics
as TCP/UDP sockets. When an application sends too much data, filling the butfers



84 Chapter 6. STONe Evaluation

quickly, STONe will block. When a node opens too many connections STONe will
eventually run out of memory. STONe has some advantages over TCP/UDP sockets
because it can shut down a node that tries to launch a DDoS attack, similar to SOS, 13
or Mayday [110, 29, 179].

Denial of Service on TNS An adversary could try to register a bulk of TN Sy ame entries
and brings the server down. There are two issues: First, TNS gets flooded with new
entries, and second, TNS can use up all of its memory, when it has to keep track if
half-open entries. TNS uses SYN cookies to avoid this problem [20]. Further, TNS
does not spend any CPU time on encryption until it has got a response from the
registering STONe client node. To solve the first problem, however, STONe requires
some form of admission control. One solution is to limit the number of entries per
node, but that would not work in TFS because file servers register significantly more
entries than other nodes. Another solution is to have timeouts on the entries and
use computational client puzzles, so that TES can foresee how many entries to expect
from any given node.

Side-Channel Attacks An adversary cannot directly attack the STONe system, but she
is able to monitor system activity. There are possibilities that system load or kernel
activity reveal some patterns that can compromise the anonymity properties of the
application. As suggested in Chapter 2 extra dummy load on the nodes makes it
harder to mount these attacks.

Impersonation Attack Because TNS does not certifty names but only public keys, STONe
applications need to have secure offline channels or key escrow for obtaining the
correct identities in STONe. Otherwise it is always possible to impersonate someone
else on TNS. But this is not much different from standard certification authorities like
Verisign [22] that do oftline checks once.

Censorship Attack Since STONe does not have a central membership list it is hard
tor an adversary to disconnect or launch a DDoS attack on single nodes. On the
application-level TNS is the most vulnerable point because nothing works without
the name lookup service, similar to DNS in the Internet. However, since TNS is a
trusted process it is hard for an adversary to shut it down, but it is prone to DDoS
attacks. TNS has to be replicated to improve resilience and also performance. In
particular, the distributed applications like TFS require a lot of name lookups.

Passive Logging Attack Since STONe’s addresses are opaque capabilities and traffic
analysis is hard, even a global adversary with access to sender, receiver, and arbitrary



6.1. Security 85

nodes does not learn much about communication channels unless he is able to com-
promise the TCB, which can happen only at a very rare occasion. Therefore, Passive
Logging Attacks in STONe are not so powerful.

Phishing and Pharming Attack The Trusted Name Service in STONe is strongly pro-
tected against attacks from the TCB. And this TCB protection makes any type of
Pharming attack hard. Additionally, the security model in STONe is different from
the Internet. DNS maps real domain names to IP addresses, whereas STONe maps
pseudonyms to opaque STONe capabilities. In contrast to DNS, which has a hierar-
chical name space, pseudonyms are unrestricted. Eve can only register an arbitrary
pseudonym and STONe guarantees that she has the corresponding public key. Every-
thing else depends on the “web of trust” in STONe [86].

However, when Eve wants to start a Phishing attack to fool Bob that she is Alice
she needs to set up a web server that contains the take web site. This web site needs to
carry fake credentials from Alice. But because the trusted name server verifies Alice’s
public key, Eve is only able to impose Alice’s identity when she knows Alice’s private
key. Therefore, Phishing attacks are almost impossible.

6.1.5 Anonymity Goals

Summarized, STONe achieves the following individual anonymity goals:

Membership Anonymity In common anonymity systems that consist of untrusted
proxies such as Tor [75] or mix networks [58] the clients themselves are only known
to one single proxy. However, often the set of proxies M is public, and an adversary
can directly focus on blocking or attacking these proxies. STONe does not have to dis-
tinguish between clients and proxies for anonymity reasons, because the membership
list M itself is hidden inside the TCB. Monitoring packets entering and exiting a sin-
gle STONe node just provides an adversary with information about S(N) = O(log N)
random nodes out of N.

Traffic Anonymity On the Internet network packet content, packet size and inter-
packet delays reveal traffic characteristics per se. Existing anonymity networks for
low-latency communication such as Tor or Crowds [75, 148] do not implement any
techniques that protect against all of these problems. STONe, however, inherently
disguises inter-packet times. Random routing causes packets to take different random
routes through the network, and therefore end-to-end delay is random as well. STONe
also makes network packet sizes uniform and re-encrypts packet content using differ-
ent keys on each hop. An attack on tratfic anonymity in STONe needs to be more



86 Chapter 6. STONe Evaluation

sophisticated and typically involves sender and receiver compromises which are hard
to achieve.

Sender/Receiver Anonymity Sender and receiver anonymity in typical anonymity net-
works focuses on detection of exit nodes, because exit nodes have information about
the clients participating in the communication. One of the most efficient ways to
attack sender/receiver anonymity is the predecessor attack [198]: When path refor-
mations take place, sender and receiver never change but intermediate nodes along
the path do. If an adversary samples the source addresses of arriving packets on ran-
dom nodes she observes the sender address more often than addresses of intermediate
nodes. It is therefore possible to identify the sender and receiver. Frequent path
reformations therefore significantly increase the risk of a breach in sender/receiver
anonymity. However, if the adversary is unable to identify the connection it is not
possible to successfully link together detected senders and receiver on the network.

STONe prevents the adversary from identifying the connection, because the mes-
sage include the packet header is encrypted, the packet size is uniform and the path
itself is not distinguishable from any other communication path on the network due to
random routing. This clearly prevents an adversary from carrying out the predecessor
attack.

The best strategy for an adversary to compromise sender/receiver anonymity is to
monitor traffic properties at the sender and the receiver nodes directly. When, for
example, the total measured traffic volume over time is equal at two given nodes
it is likely that they are connected. Also, an adversary may make use of additional
knowledge about the network topology to carry out these intersection attacks. To
protect against such attacks it becomes necessary to synchronize the network at least
partially and cover the sender and receiver nodes.

Figure 6.2 shows how STONe’s anonymity degrades under random routing when
groups of 2, 4, 8, 16, and 32 nodes are synchronized. When only 2 nodes are synchro-
nized the network is in the same state as it no synchronization takes place. However,
by adding only a little synchronization it is already possible to slow down anonym-
ity degradation significantly. Random routing supports efficient implementation of
synchronization, because every node knows the total traffic volume of the network.

As a result, STONe is resistant against most traffic analysis attacks. Most impor-
tantly, STONe prevents the Predecessor Attack, because an adversary is not able to
identify network connections, thus allowing frequent path reformations. STONe is
also scalable and therefore supports large anonymity sets. Its core benefit in protecting
against traffic analysis lies in the fact that it uses random routing instead of random
walks used in previous approaches to anonymous communication. Random walks
still preserve locality and therefore do not provide optimal anonymity.



6.2. Performance 87

o
(@)
I

o
N
L

Sender/Rec. Anon.

o
N
I

O T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
Fraction of compromised nodes

Figure 6.2: Sender/Receiver Anonymity Degradation: Partially synchronized nodes under Ran-
dom Routing in STONe stop the sender/receiver anonymity degradation.

6.2 Performance

Our theoretical security analysis showed that STONe’s features defeat many attacks.
However, we need to verify that the actual implementation indeed realizes the desired
properties. First of all, we investigate STONe’s pertormance overhead.

6.2.1 Microbenchmarks

In the first series of experiments we measure microbenchmarks on two STONe nodes.
STONe runs on two Linux machines that are connected via 100MBit/s Ethernet. One
machine has two 3.2Ghz Pentium 4 CPUs with 2GB memory, the other two 3GHz
Pentium 4 CPUs with 1GB memory. Both run Fedora Linux kernel version 2.6.9. The
goal is to measure the baseline performance overhead of STONe.

Hop-by-hop Latency The objective of the first experiment is to determine hop-by-
hop latency between the two nodes over Ethernet for various fragment sizes. The
round-trip time (RTT) of a common ICMP ping is the bottomline case for the RTT
between the two STONe nodes. In this scenario STONe carries out full encryption
but no random routing or synchronization. In the experiment the message size varies
tfrom 512 to 4096 bytes. 4096 bytes is the maximum, since this is also the maximum
capacity of the internal IPC pipeline between the STONe proxy and the STONe router.

Figure 6.3 shows the results of this first experiment. STONe has a constant pro-
cessing overhead of about 150 usec for every message and an additional 2-5% for
encryption.



88 Chapter 6. STONe Evaluation

2500

HICMP

2000 17 B STONeunencr.|

RTT [usec]

512 1024 2048 4096
Fragment Size [bytes]

Figure 6.3: Hop-by-hop round-trip times for different message sizes: Both RTTs for ICMP and
STONe increase at the same rate as the fragment size. STONe’s overhead is approximately
2-5% for encryption, and a fixed overhead of 150 usec for the additional routing layer on
every node.

Proxy overhead 40 usec
Router overhead 60 usec
Context switch and IPC | 40 usec

Table 6.1: Processing overhead in STONe: Look-ups in the routing tables make up the largest
share of message processing time. The remaining time is spent by the proxy and the OS-based
scheduling and context switches.

Table 6.1 shows the time spent during the message processing. A message spends
most of its time in the router when it looks up the next hop. The proxy itself has
system calls for reading and writing data, and the rest of the time is spent on context-
switches and message copying between the proxy and the router.

The two-process architecture in STONe is responsible for some of the overhead.
A single process could reduce the overhead by 50-100 usec. However, the router
would not be protected from outside attacks, especially when the network stack is
under a DDoS attack. In our current architecture the router monitors tratfic patterns
at the Proxy and automatically detects when it is being attacked. It can then start
another Proxy that listens to a different port. For performance reasons it may also be
worthwhile to use kernel threads instead of user-level processes. However, the current
PlanetLab architecture has constraints that prevent the use of kernel threads.

End-to-End Throughput In the second experiment we determine STONe’s end-to-end
throughput between these two nodes. We measure the average throughput during
a large file transfer from one node to the other via the Trusted Stream Service (TSS).
In the experiment we change the maximum window size as well as the fragment for



6.2. Performance 89

every different run.

14000

12000 -

10000 -

8000 ~

[kb/sec]

6000 -

Throughput

4000 -

2000 -

0 T T T T T
4096 8192 16384 32768 65536 131172

Max. Window Size
[bytes]

Figure 6.4: End-to-end throughput in STONe for different fragment sizes of 4096, 2048 and
1024 bytes compared to the expected throughput of the connection (Exp) and the measured Tor
throughput (Tor): For large fragment sizes STONe achieves almost the expected throughput for
every maximum window size. Smaller fragment sizes require more processing overhead.

Figure 6.4 shows the measured throughput as a function of the maximum windows
size. The expected theoretical throughput is %W or the maximum band-
width of the connection, whichever is smaller. The RTT between the two nodes is
100psec and the bandwidth 100 MBit/sec. Therefore, the maximum possible through-
put is about 12.5 MB/sec.

TSS stalls when the maximum window size is smaller than four fragments, because
it does not saturate the underlying TCP connection, and TCP slows down. STONe
achieves almost the expected throughput between two nodes, especially when the
send window size becomes large.

In comparison, the graph also contains the measured throughput of Tor by using
the 'torify’ command, which turns a standard socket application into a Tor socket
application [75]. Tor uses TCP flow- and congestion control mechanism, which is not
optimized for long delays in anonymity networks. As the graph shows Tor imposes
a penalty of about 30% on throughput in general, which is significantly larger than
STONe’s minimum penalty under TSS.

These microbenchmarks show that STONe’s prototype implementation can accom-
modate reasonable throughput for most Internet applications. In random routing this
implementation achieves an average throughput that is close to the theoretical maxi-
mum throughput. This is subject to further improvements as for smaller packet sizes
overhead for copying data between user-space and kernel-space occurs. However, we
had to implement this prototype in user-space and leave the kernel-level implementa-



920 Chapter 6. STONe Evaluation

tion for future work, because PlanetLab as our testbed does not permit kernel modules.
For end-to-end application-level communication between directly connected nodes,
copying packets between user and kernel space does not make any difference. But on
multi-hop routes this overhead occurs on every single hop. As an additional option
STONe can reduce the number of hops on the path at additional cost for the routing
table space and additional handshakes upon node join operations.

6.2.2 Basic System Performance
In the second series of experiments we run benchmarks on a large-scale environment

to validate our theoretical analysis about the network topology from earlier chapters.

Scalability Scalability is crucial in STONe, since a system for anonymous communi-
cation requires a large anonymity set of nodes. In these experiments we measure the
average number of routing table entries in a network of 16 to 512 nodes.

120

100 +

40

20

Expected Number of Routing Table Entries per
Node
[e)}
<)
|

16 32 64 128 256 512 1024

Number of Nodes

Figure 6.5: Routing Table Sizes for a variable number of STONe nodes N with b = 2 different values
for the digit in the address and parameters k;[ with & virtual addresses and [ alternative routing
table entries per node: The measured routing table size in STONe approaches the theoretical
expected value S(N).

Figure 6.5 verifies that the increase in routing table size is logarithmic in the size of
the STONe network. Remember, that we have k addresses per node in the overlay and /
alternative entries per routing table slot with a correction factor. Therefore, the routing
table size S(N) is not exactly logarithmic but S(N) = ki(b — 1)(log,(kN)) (1 — 51).



6.2. Performance 91

To better illustrate the routing table sizes for different £ and [ we keep the number
of STONe nodes N constant but only change parameters k£ and [. Again, we measure
the routing table sizes and compare them against the expected size.

140
120

8

i=]

£ 100

[}

]

s

o, 80

£

5

g 60

&

(=]

2 40

€

=]

z
20
0

Different k/I for N=128 nodes

Figure 6.6: Routing Table Sizes for N = 128 with k virtual addresses per node and [ entries per
routing table slot.

Figure 6.6 contains the number of routing table entries for constant number of
STONe nodes N = 128. When [ increases the routing table size increases polynomially.
When £ increases the routing table size increases logarithmically. This is exactly what
we expect from S(NV).

These results also show that STONe indeed supports high churn. Even for large
networks with hundreds of nodes the number of required handshakes during an insert
operation for a joining node is limited.

6.2.3 Random Routing on PlanetLab

Finally, we evaluate the outcome of random routing on PlanetLab. Remember that
it is the goal in random routing to protect against timing attacks and contextual
attacks, such as intersection attacks. In addition, an adversary who is observing
random connections should not be able to compromise sender/receiver anonymity or
unlinkability.

In this experiment we send STONe echo packets from a random node to another
arbitrary STONe node. We then observe the distribution in the number of hops it



92 Chapter 6. STONe Evaluation

takes to transmit the echo packets between the two nodes. Finally, we measure the
round-trip time.

Path Length In this series of experiments we measure the number of hops between
two arbitrary nodes in STONe. Random routing causes messages to take different paths
through the network, and therefore the number of hops is also random. Remember,
the expected path length in STONe’s routing is

1 N
L(N) = 5 logp (m)

hops.

Expected Path Length
w

16 32 64 128 256 512 1024

Number of Nodes

Figure 6.7: The average single path length between the same sender and receiver in random
routing over time for different pairs k;! with k virtual addresses and [ alternative routing table
entries per node.

In the first experiment we measure the average number of hops between two
STONe nodes on STONe networks of different sizes. Figure 6.7 shows that we always
approach the expected routing table size S(N), thereby proving our theoretical results.

In the next experiment we change parameters k£ and /[ and measure the average
number of hops on a STONe network of N = 128 nodes. Figure 6.8 shows that we
almost always achieve the expected value. When £ is constant and [ grows, the path
length decreases polynomially. When [ is constant and k& grows, the path length
decreases logarithmically.



6.2. Performance 93

Path Length in Random Routing (STONe hops)

k=2 k=2 k=2 k=3 k=3 k=
1 1=2 =3 I=1

Different k/I for N=128 nodes

Figure 6.8: The average round-trip path length between the same sender and receiver in random
routing for k virtual addresses and [ alternative routing table entries per node for a STONe network
of 128 nodes.

To evaluate random routing quantitatively we define a cost function C'(N) for the
STONe network as

The rationale for the definition of the cost function is that the number of routing table
entries S(NN) divided by the average path length L(/N) results in the number of nodes
of extra information per prefix slot. If this is the number of hops required to reach
the destination we have a balanced cost of 1, since this scenario would correspond to
a brute-force routing method.

Figure 6.9 shows the graph for C(N). Some combinations of parameters as for
example k = 2,1 =2 -k =4, =1 impose the same cost. The general conclusion is
that [ > 2 does not provide enough benefit in the case of N = 128. [ = 2 seems to
be the optimal solution, since some redundancy is required, and the studies in earlier
chapters showed that [ = 2 provides sufficient protection against path failures.

In the next step we not only measure the average path length but also the distri-
bution of path lengths for different £ and [. For the experiment we pick k£ = 2 and
[ = 2 for the first run and £ = 4 and [ = 1 for the second run, because they both have
about the same cost.

Figure 6.10 shows the measured results. The first notable observation is that
different parameters for £ and [ cause ditferent variances. Smaller k£ seems to be



94 Chapter 6. STONe Evaluation

Cost Function

Different k/I for N=128 nodes

Figure 6.9: The cost of random routing for & virtual addresses and [ alternative routing table entries
per node in a network of N=128 nodes.

preferable to reduce the latencies. The distribution of the number of hops is modal
and confirms the theory about the binomial distribution.

In the next experiment we measure round-trip times on PlanetLab for N = 128 and
compare them against Tor. In STONe we pick k£ = 2 and [ = 2, since this parameter pair
tolerates faulty links and allows acceptable cost. In the experiment a node constantly
sends messages to a fixed receiver via random routing. The receiver bounces back
messages via random routing, and the sender then measures the round-trip time of
the message.

Figure 6.11 shows STONe’s RTTs on PlanetLab. The number of hops is binomially
distributed, but the actual node-to-node delays have a heavy-tailed distribution which
causes a stretch in the total round-trip times. The average round-trip time is only
around 400msec, but the maximum round-trip time is about 1000msec.

Figure 6.12 shows the distance in the number of hops it takes messages to get from
the sender to the receiver and back. As expected it is binomially distributed with a
peak at 7.

Finally, figure 6.13 shows the cumulative distribution function over the hop-by-
hop delays of the selected 64 PlanetLab nodes. Hop-by-hop delays are usually between
30msec and 120msec, which is realistic for a continent-wide network. A transconti-
nental ICMP echo across the US usually takes about 70 — 100msec.

In contrast to STONe, figure 6.14 shows the RTTs on Tor when using Tor sockets
in connection with a user-level echo server over TCP. The standard deviation of the



6.2. Performance 95

35

30 oo mmm e

L e

e k=2 1=2
e R . B D R k=4 1=1
04— B B A r

L I o B Bl

. il | i .

2 3 4 5 6 7 8 9 10

% Sender-Receiver Pairs

Number of Hops for N=128 in Random Routing

Figure 6.10: Distribution of the distance in STONe between all sender/receiver pairs for N = 128:
The path length is binomially distributed for different k£ and I.

round-trip times is more concentrated around the average round-trip time, and the
absolute average value is larger. Tor’s problem is that it is not fault-tolerant and cannot
easily switch to alternative routes when congestion occurs.

Anonymity The final experiments verify the anonymity claims of STONe. In STONe,
an adversary has to eavesdrop on the sender or receiver itself to compromise sender/receiver
anonymity or unlinkability. This is much stronger than what mix networks or onion
routing provide.

For this experiment we count the number of messages that a single node forwards.
When an adversary listens to connections leading to these nodes, this would be the
data volume she is able to count. To maximize the adversary’s chances we generate
tratfic only between selected nodes in the entire network without any background
noise.

Figure 6.15 shows the result. As predicted, only the sender and receiver have
torwarded more fragments than any other node, and the traffic over the remaining
nodes is almost balanced because of random routing.

In the last experiment we want to test synchronization to bridge the gap between
sender/receiver and the rest of the nodes. This gap is responsible for anonymity
compromises. For this experiment we set up a network of 8 nodes, transter a large file
from one node to another, and measure the throughput.

Figure 6.16 shows the results. In a network of 8 nodes STONe smoothly approx-
imates a maximum throughput. However, as shown earlier, the penalty for syn-
chronization is large. In the beginning the actual difference between the required
throughput ); and the average throughput )\ is large, and therefore the increment has
to be large as well. The resulting throughput A4 A\, then increases logarithmically



926

Chapter 6. STONe Evaluation

RTT [msec]

1000 - — . . . o
) .. °
. ., °
800 «----¢* J oo .
° . o
° L
[ ) - L]
.
600 - oo R
°
° s :
° ° °
400 g T — e
e o o [ %9 ° eoe ° o,
e o o° «% o°, N ‘e Q’o. o .. '
0 @ o q, o % S @ g °°
200 - o, ®e o ’ 4,0 %.
® 0 ° . e [ P o ® ° eo_ ©
® oo e L LI L4
° ° ®
0 T ° T
50 100 150 200

Echo Trial for N=64 in Random Routing

Figure 6.11: STONe’s RTT between the same sender and receiver in random routing over time: It
shows that random routing results in a random RTT. The middle line marks the average RTT
whereas the other two lines delimit the standard deviation around this average RTT.

over time as expected. It is subject to future work to determine the optimal parameters

tor synchronization and to minimize its overhead in large environments.



6.2. Performance 97

30%

25%

20%

15%

109 |- - -y
N I I
2 4 5 6 7 8 9 10 11 12 13

% Echo Packets

0% -

Number of RTT Hops for N=64 in Random Routing

Figure 6.12: STONe’s distances in the number of hops for the round-trip experiment when N = 64
in random routing. It shows that the distance for both ways is also binomially distributed.

0.9

0.8

0.7 A

0.6

CDF

0.5 A

0.4

0.3 A

0.2 A

0.1 A

0 w ‘ ‘
0 50 100 150 200

RTT/Number of Hops [msec/hop]

Figure 6.13: Cumulative Distribution Function of RTT/Number of Hops in random routing: It
shows that the assumptions for hop-to-hop delays in the PlanetLab experiment are realistic.



98 Chapter 6. STONe Evaluation

1000 0 ° .
P
.. . L4 ° . o ® ° . 0.
Und . oo 00 e o ..o . o o 0
o % ©® ) %e % e ° ° ° % °
800 [e—® . o~ e . " .
[ ® " 2 ° ° o °
'...o.o. 'o o™ o °.° % m o o...
S, . . ¢
L4 °
< 600 *
b
E
E
& 400
200 -
O T T T T T T
0 20 40 60 80 100 120
Echo Trial

Figure 6.14: Tor round-trip times for 4096 byte messages: In contrast to STONe’s random
routing the RTTs are more concentrated around the average. The vertical lines mark the
average and the standard deviation.

2500

2000 -

1500 +

1000 -

500 ~

Number of forwarded fragments

Node

Figure 6.15: Anonymity in Random Routing — Counting the number of forwarded fragments: The
routing path is not recognizable, but the sender and receiver clearly stick out of all the nodes
in the STONe network.



6.2. Performance 99

ouv

500

300

Throughput
[kb/sec]

200

100 -

Time

Figure 6.16: Synchronized Communication for N = 8: The throughput approaches the average
logarithmically when a single connection sends at maximum throughput.






Chapter 7

Related Work

STONe intersects with many different research areas. The first part of this chapter
is about Trusted Computing and Trusted Operating Systems. There is a large body
of work on these topics, which are long-standing research problems. In the second
part of the chapter we survey Secure Communication. In the third part we look into
alternative approaches for anonymous communication and Traffic Analysis. After this
we compare existing architectures for secure and anonymous communications. In the
last part we describe the related work of the applications we implemented on STONe.

7.1 Trusted Computing and Trusted Operating Systems

7.1.1  Trusted Computing

Trusted Computing covers two main areas: One is how to protect execution against
an adversary, and the other is how to prove genuity and trust of a platform.

The idea of protecting program execution against tampering in commodity com-
puters is not new [116]. First approaches have been implemented in tamper-resistant
modules using cryptographic techniques to secure communication and storage [109].
This work presents the base of today’s Trusted Computing systems. Further de-
velopment are cryptographic Co-processors [201] that implement copy protection,
electronic cash or secure postage in distributed systems. Secure cryptographic Co-
processors were one of the first systems that provided sealed tamper-resistant storage.
Recent research describes how to actually build a sealed storage system for secrets with
minimal architectural support [118]. In this research user secrets are decoupled from
hardware devices, without the requirement for built-in device secrets.

Execute-only memory [186] is a hardware platform on which memory content is
tamper-resistant but not hidden as in Trusted Computing. However, XOM is prone
to replay attacks which need to be fixed by additional memory integrity checks [169].
Further studies explore how to run an untrusted operating system on such an architec-

101



102 Chapter 7. Related Work

ture [122]. Trusted operating systems have to be evaluated yet. A similar, but different
approach to tamper-resistance is AEGIS, a tamper-evident architecture [182]. Similar
to XOM, all components external to the processor are untrusted, but XOM provides
a larger number of processes and is more flexible on the application-level. Intel’s
Execute Disable Bit uses a similar concept on the current Intel Pentium architecture
to provide a bit that disables code execution in a memory segment. This is a powerful
protection method - especially against buffer overruns.

The idea of using virtual machines for strong isolation has been around for a
while [133]. Another approach for process isolation in Trusted Computing is to use
Virtual Machines [87]. However, for example, by using virtual machines such as the
VServer in PlanetLab [11] for isolation and attestation it is possible to implement
Trusted Overlay Networks. Microsoft’s NGSCB is an implementation for Trusted Com-
puting [79] that uses a similar memory protection scheme. Software-only protection
against tampering is a hard problem, but there has been some recent work on control-
tlow integrity checks against a limited adversary [26].

Authentication and trust on the hardware platform have also been widely studied.
Intel was the first to introduce serial numbers for its processors to identity hardware
plattorms [8]. The secure boot mechanism by Arbaugh [32] has defined a new prim-
itive: Attestation. The idea of attestation is that all components of a PC have to be
loaded and verified successively, starting with a verifiable small code base as the root
of trust — in this case a PC’s BIOS. Attestation defines the trust relationship between
the components and is also a method for implementing access control. A process
is trusted only if it attests to the operating system. The Terra system suggests ways
to implement attestation using Virtual Machines and SSL [87], but the downside of
their approach is heavy overhead and its limitation to monolithic operating systems.
SWATT is a software-only approach to attestation of memory contents [166].

TCPA is an industry consortium that set up a standard for Trusted Computing
hardware [21]. In Trusted Computing it is the certified platform key that is a quasi-
identification of platforms. However, this raises privacy concerns for attestation since
these identities should only be revealed when a platform is compromised. Group
signatures and direct anonymous attestation address this problem [51, 48]. There is
also research work on trying to identify a platform based on its hardware properties,
which could be regarded as an implicit form of authentication. Timing behavior
of TLB accesses is a property that is hard to emulate, and it can therefore be used to
verify that a particular software runs on the hardware and not a virtual machine [107].
Remote device fingerprinting identifies devices in a network based on the clock skew
in TCP timestamps [114].

Trust and security in operating systems is mostly an unsolved problem. Every
day new security breaches make the news. Common examples are exploits like butfer



7.1. Trusted Computing and Trusted Operating Systems 103

overruns or new phishing attacks by malware on the PC [3]. Some worms or viruses are
harmless and simply waste bandwidth by spreading themselves through the Internet.
Others let the adversary control the victim’s system, erase valuable data, and turn
compromised systems into a Bot-Net which the adversary can use to attack servers
with large resources [103].

The main problem is insecure user interfaces and software bugs that allow system
compromises. For example, in some cases a user connects to a server, and he con-
tirms that he wants to see the website despite problems with the certiticate. Thereby
confidential information may leak or untrusted code may compromise the system.

7.1.2 Trusted Operating Systems

Operating systems need to provide support for applications to protect against these
attacks. As functionality of operating systems increases they incorporate more code,
but single modules do not get protected. One example is the integration of Internet
Explorer into Windows, which over the years has proven not to result in any strong
benetfits for the user and furthermore opens additional doors for an adversary to attack
the OS. Another example is device drivers in operating systems: Device driver crashes
become a serious problem for operating systems reliability [184], and virtual machines
are an efficient protection method against it. However, being a source for crashes also
means being a source for potential security bugs.

The idea for trusted operating systems has been around for decades, but often trust
is associated with information flow or access control (e.g.[132]). In the literature,
“trust” in operating systems is often not well-understood. Even the original Bell and
LaPadula paper on security in Multics [39] does not define what it means for a process
to be trusted. Later, Neumann et al. implemented a provably secure operating system
(PSOS) [135]. PSOS is a hierarchically-structured capability-based operating system
design. Every layer manages objects of a certain type and these objects are accessed by
capabilities. PSOS can be considered as the first type-safe operating system. Rushby
evaluates approaches for the design and verification of a secure system [155]: He says
that security systems should be conceived as distributed systems in which security is
achieved by isolation but also partly by trusted functions performed by some system
components. The Fluke OS is a first step towards this type of operating system [82].

Trusted Overlay Networks inherently implement end-to-end security in distributed
systems [156] and also tolerate some untrusted platforms and give them trust against
tampering by using common techniques against Byzantine failures [115].

In general there are three methods for isolating applications, and they all have
different root of trusts. First, application-level sandboxing isolates applications from
each other [188]. This is similar to virtual machines or simulators on the application-
level (e.g. Java, CLR, SimOS, Wine or SoftWindows). Second, virtual memory protects



104 Chapter 7. Related Work

the memory of single processes from each other, and only kernel-level processes can
break this protection. Third, hypervisors replicate the hardware as a whole machine;
protection depends only on a small hypervisor code base. The problem of the first
two approaches is that they cannot protect against operating system faults which is
a common cause of failures, and when they communicate with untrusted operating
system code additional protection is required [192]. Furthermore, they rely on a large
code base for the root of trust.

Earlier papers on hypervisor-based fault-tolerance emphasize the ability for crash
recovery [50], and this as well improves the reliability of operating systems against
tailures and also Byzantine faults. For example, when an adversary gets control over
the print spooler because of a software bug he should not automatically get access to
the network stack. Isolation and modularization are not necessary between all pro-
cesses. The most significant protection boundary is between user- and kernel-space,
as well as between kernel modules like device drivers. Often an outside adversary
exploits a vulnerability in a system call to get access to a root shell and therefore tull
control over the victim system. With isolation this is not a problem. In a multi-user
server system like PlanetLab [38], where every user has her own environment, process
isolation is required on the virtual machine level. However, on a single-user system
as a PC a local user with root access has control over the whole machine. The main
adversary in this scenario is an intruder from the network. Virtual memory protection
is good enough for many process-to-process isolation techniques, and the penalty for
context-switching is often lower than for virtual machines, since a process does not
require suspending and resuming full operating systems state. For high reliability it
is useful to have virtual machines, because it is straightforward to reinstate machine
state in case of a failure.

A trusted operating system layer is important for clients and servers. On servers
it efficiently increases fault-tolerance and robustness against security bugs between
different users. On the client-side strong protection has to take place between user-
space and kernel-space. Furthermore, user-interfaces require protection as well. The
philosophy behind client-side operating systems is that the platform should be open
and the user controls everything [117, 79]. Client operating systems have to preserve
openness but make administration and user interaction more secure. Thin clients in
contrast are centrally controlled and have their applications in local networks [161].

These approaches have never evolved in the wide area, since hardware is still
cheaper than network bandwidth. Furthermore, availability of high bandwidth wire-
less networKks is often still restricted outside office buildings, and it is not clear whether
a user wants his information stored on a central server that may fail or become in-
secure. There has to be a trust relationship to this central authority for security and
privacy which may only work in local networks, excluding ubiquitous laptop com-



7.2. Secure Communication 105

puters.

Virtualizing a whole operating system uses lots of system resources and is hardly
scalable on a normal PC [87]. However, new hypervisor approaches that use paravitu-
alization can have much higher performance on commodity operating systems [36]
or provide much better scalability [195].

On the application-level in Distributed Systems there has also been a consider-
ate amount of work on classifying information. In program partitioning a compiler
partitions a program depending on the trust level of data during computation to pro-
tect confidential information from untrusted hosts [202]. Similarly, we can partition
programs for privilege separation, where privileged instructions such as setuid can be
executed in a protected monitor process [52].

System updates and attestation are another crucial aspect of trusted operating
systems. Attestation is an operation that verifies authenticity of the code. However,
this signature only tells the attesting entity that it is certified by some manufacturer.
It does not necessarily verify what it does or which bugs it fixes. Semantic attestation
is a new way of defining attestation [93].

A modular architecture that allows trusted extensions similar to Exokernel [80]
has advantages for systems updates, since single modules can be easily certified and
updated separately. A trusted compiler used in systems like SPIN can support the
implementation of these update systems [40].

Microsoft’s singularity kernel [98] follows the language-based approach to trusted
operating systems by using managed or trusted code in the operating system modules.
However, this restricts the software-hardware interface. The operating system vendor
controls the virtual machine, and this has the danger that the system becomes a
proprietary virtual machine.

7.2 Secure Communication

The most important systems and protocols for secure communication in the Internet
are SSH [14], SSL [15], IPsec [108], and TLS [73]. However, even securing communi-
cation on the network or application layer does not mean that the network is really
secure. The strongest threats are Byzantine failures from malicious attacks.

Byzantine faults in the form of software bugs are common in today’s Internet.
Nodes get compromised and adversaries take them over to join the node to a whole
Bot-Net of compromised nodes. Protecting against Byzantine failures is desirable in
distributed systems.

Anonymity protocols require protection of the network stack against Byzantine
Faults as well, or it becomes hard to design an anonymity protocol that is reliable
against Tratfic Analysis. There are already systems that protect against Byzantine faults



106 Chapter 7. Related Work

in networks and distributed applications like secure routing [56] or virtual machine
and replication techniques like BFT [57]. It is the idea to use these in anonymity
networks as well.

The first alternative to protect the network from Byzantine failures is secure routing
systems. They have multiple components: First, they maintain routing state against
an adversary who is tampering with the system. Second, they forward messages se-
curely and protect against malicious routers in the system who eavesdrop on tratfic,
drop packets, or reroute packets in the network. For example, secure BGP [97] protects
against an attacker who tries to modify routing state in BGP, and routing in Fatih [128]
protects against an attacker on message forwarding. Another approach for secure rout-
ing in structured peer-to-peer networks is to implement self-certification of application
data in the network [56] which can tolerate about 25% malicious nodes. An additional
problem in peer-to-peer networks is the Sybil attack [78]. It is often easy to obtain
network addresses or nodelDs, and certificates have to be used. This is not necessary
tor IP addresses, since they are generally more difficult to obtain in large amounts.
Another technique is, like in STONe, to use Trusted Computing for distributing node
addresses in peer-to-peer networks to protect against these attacks [35].

The second alternative is to protect the network stack of the router against attacks
on its state. One possibility is to use techniques from distributed systems such as
state machine replication like BFT [S7]. However, replication is relatively expensive.
In addition it is also possible to establish local protection like standard sandboxing
or virtualization techniques to detect malicious behavior or intrusion directly on the
router. STONe provides the novel idea to use Trusted Computing to protect the
network stack against failures.

Decoupling Byzantine faults from anonymity protocols makes anonymity protocol
design easier. When no Byzantine faults occur, intersection attacks are still possible
while routers from a single trust domain collude. A single trust domain would be
equivalent to a centralized message forwarding network, and this is prone to passive
logging attacks. With at least two trust domains, one domain knows the sender
and the other the receiver, but neither both. In a system that has random Byzantine
taults, a single adversary could control a Bot-Net across trusted domains and protection
becomes much more difficult.

In systems with multiple but static trusted domains it is good enough to have a
tixed number of multiple hops that are spreading across at least two trust domains
that do not collude [84]. In a system with Byzantine faults, however, the path length
depends on the total number of nodes in the network, the largest domain size, and the
expected fraction of infected hosts that could potentially become part of a Bot-Net.
There is a trade-off between implementing a system that protects against Byzantine
tailures and one that uses longer paths instead.



7.3. Anonymous Communication 107

Byzantine failures also have an adverse effect on the protocol that distributes the
routing information. Flooding or broadcasting this information is more robust against
Byzantine failures [142], but it is inherently inefficient, since it consumes network
bandwidth and router resources that are exponential in the number of messages.
When the system does not use flooding, it has to cope with possible traitors that
imitate legitimate nodes. In a system without Trusted Computing additional cryptog-
raphy is needed to protect against these attacks [142].

Lastly, there are Denial of Service attacks that disrupt communication. Distributed
Denial of Service attacks (DDoS) can occur on different layers. The brute-force method
is to flood a server with network packets to disrupt service. However, this attack
requires a vast amount of network bandwidth that is hard to obtain. On the network
layer an adversary can exploit a leak in TCP that keeps track of halt-open connections
in memory. When the adversary floods the server with such SYN requests it runs
out of memory for new connections. A common technique is to use SYN cookies to
protect against this attack [20]. A SYN cookie contains a unique sequence number
that is the keyed hash of the connection information (source IP address and port
and destination IP address and port). The server does not have to store information
anymore because the packet with the sequence number during the handshake is self-
veritying. Furthermore, there exist DDoS attacks on specific protocols [70].

Other methods to protect against DDoS attacks on the network layer are IP trace-
back and hashback techniques [160, 176], and also the use of capabilities [200]. Be-
cause in network layer attacks IP addresses are often mimicked we can modify the
routers to add some extra information to the packet that identifies the communi-
cation path and therefore the sender. All packets with the same path identitication
information that have been malicious can be filtered accordingly. These methods can
also be used to filter packets.

DDoS attacks are most powertul on the application-level. When an adversary
launches an application-level DDoS attack on a server its goal is to starve its internal
resources such as CPU or disk I/O. There are multiple ways to protect against this
attack. One is to use computational puzzles to decrease the rate of server accesses [71,
194]. Another method is to use reverse Turing tests to distinguish human users from
automated attackers [103]. To launch such an attack a whole network of clients is
required that simulates a flash crowd. This situation normally only happens when
many users access the same website and exceed the normal usage level.

7.3 Anonymous Communication

There exist quite a few commercial or open-source systems for anonymous communi-
cation. Anonymizer [2] is a simple trusted HTTP proxy for anonymous web browsing.



108 Chapter 7. Related Work

It is like a NAT between the sender and the receiver of the connection and protects
against passive logging attacks on the receiver by replacing the sender’s IP address.
However, such systems are a single point of failure and trust, and a closed, non-
veritiable system can potentially log and store all source and destination addresses of
messages it forwards. Tor is another system for anonymizing communication [75]. In
contrast to Anonymizer it uses a set of proxies, and it one proxy gets compromised it
does not compromise the whole system. Freenet, in contrast, is a distributed system
tor file-sharing that provides some anonymity, but its main goal is to be censorship-
resistant and to provide anonymity of content. A single file is split up in small pieces
that are hard to assign to the originator. Distributed Hashing is used to find all the
pieces and put them together [62]. A single file can only be retrieved sequentially,
piece by piece.

Today'’s systems like Anonymizer, Tor, or Freenet are the state-of-the-art for ano-
nymity in distributed systems. However, their protection against Traffic Analysis is
often poor. Freenet’s protection against Traffic Analysis is based on mix networks, and
Tor does not protect against Tratfic Analysis at all.

Anonymous communication is a combination of many different areas. One area is
steganography. Two parties may hide their communication in some covert channels
of network protocol headers or digital images. For example, TCP contains some covert
channels [172]. However, most of these techniques have been proven to be insecure.

Theoretically, anonymous communication is related to secure multiparty compu-
tation where NNV parties have private inputs, but they want to compute a boolean circuit
that outputs a single public value. An adversary with access to the circuit is not able
to tell what the inputs were and who gave which input [89]. Anonymous Commu-
nication is only a subset of secure multiparty computation. Using secure multiparty
computation for anonymous communication is inherently inefficient [146].

In synchronous networks anonymous communication of N parties can be achieved
in O(log N) steps by rapid mixing [146, 47]. Other systems have been proposed based
on secret sharing [63]. However, the asynchronous case which is more common,
requires additional cover traffic to hide access patterns. This has been elaborated in
the Oblivious RAM [90] where memory access patterns are hidden. Oblivious RAM
uses a Batcher network to shuffle the memory locations. This works well in a physical
memory because it has a fixed size. In STONe, however, the number of participating
nodes is dynamic.

Therefore, Chaum proposed mix networks for asynchronous email communica-
tion [58]. Mixes have a variety of applications, especially in voting. A single mix
collects messages and dispatches them at random, so that it is hard for an adversary
to correlate incoming with outgoing messages. A single mix is a single point of fail-
ure when compromised and often also prone to brute-force disclosure attacks [112].



7.3. Anonymous Communication 109

Ko(Xm) —*
Ky(m1) —]
Kn(xm—z) —
Kn(Xm3) —*

Ka(x;) —

K

n Kn-1 Kn-2 Kn-3 K1

Figure 7.1: Mix Cascades: Several mixes are arranged in a linear chain. Every mix delays
messages, and an adversary who only observes one mix is not able to trace messages.

Therefore, mixes are often connected into mix cascades as shown in figure 7.1. The
number of hops in a mix cascade depends on the number of different trust domains.
Ideally, every hop is within ditferent trust domains. The disadvantage of mix cas-
cades is reliability. Because a cascade is only a fixed path through the network, a
single broken mix destroys the communication path. Free peer-to-peer mix networks
would solve this problem. However, the degree of anonymity decreases because dit-
terent paths get routed through different mixes. STONe’s random routing alleviates
this problem because it changes the path frequently and would therefore let random
paths go through the same mixes.

Pool mixes [64] and stop-and-go mixes [112] are the typical type of mixes. Both are
used for email communication. The difference is that pool mixes wait until enough
messages arrive before they dispatch them, and stop-and-go mixes delay messages
randomly. However, stop-and-go mixes are prone to statistical disclosure attacks [66].
When the adversary wants to trace a single message she collects statistical information
about all incoming and outgoing messages in the mix. Mix networks known as so-
called anonymous remailers have been successfully implemented for email anonymity.
Early examples are Babel [91] and Mixmaster [129]. Mixminion is a recent anonymous
remailer that now also uses link encryption [69].

In general, mix networks are not useful for low-latency communication. On a busy
router there is usually enough traffic for mixing, and additional non-uniform delay
can cause packet reordering — a common problem in transport-layer protocols such as
TCP. A less efficient way to provide anonymity on a low-latency network is to pad all
communication with cover traffic [65, 144].

Many protocols for anonymous low-latency communication therefore only pro-
vide sender/receiver anonymity by hiding the sender and receiver addresses [185, 148].
If they do not send cover traffic anonymity depends on the amount of real background
tratfic. Jap [9] or MorphMix [151] are a systems with mixes that depend on the amount
of background tratfic, because mixes can only delay packets for a certain time interval,
even if there is nothing to shuffle with. Then timing attacks are usually possible [121].
In STONe we pick a different approach because Trusted Overlay Networks already pro-
tect the sender address. STONe protects against Traffic Analysis by random routing



110 Chapter 7. Related Work

and synchrony.

There are several reliability and reputation issues in mixes. How can a mix be
trusted ? Several issues similar to the ones in STONe come up in mixes as well [74],
but if they are trusted we could as well use random routing instead to protect against
traffic analysis as shown in this thesis.

Fragile Mixes [149] provide a novel protection mechanism against a mix admin-
istrator who is giving away logs. By doing so she would automatically compromise
her own anonymity. The assumption is that a mix administrator also participates
in anonymous communication. However, this does not protect against an outside
adversary eavesdropping on messages.

One of the largest-scaling systems for anonymous routing today is Tor [75]. Tor
is based on the idea of onion routing [185] where packets get encrypted in layers
and every hop along the route strips off one layer and sees the packet header that
contains the address to the next hop. Tor is a large-scale implementation of onion
routing and solves problems from the first generation. For example, onion routing
was fairly inefficient because it used public key cryptography. Tor now sets up shared
keys between the sender and the hops along the path. In addition Tor implements
location-hidden services, which are similar to anonymous STONe Sockets. In location-
hidden services, two parties — Alice and Bob - trust that a rendez-vouz point will never
leak information about them. The rendezvous point is the anonymous address that
Alice and Bob use to communicate. However, this is still a single point of trust, and
STONe strengthens this vulnerability, because it can rely on the Trusted Computing
hardware. Another disadvantage of Tor is that it uses source routing because it needs
to compute the onion in advance, and it is less flexible in resilience than STONe.

Cashmere or PS5 address resilience in anonymous communication by using group
communication [204, 170]. Every group in the network shares the same key, and
encrypted packets get forwarded to all members of a group. Intersection attacks are
the main problem of these protocols. By leaving a group and joining another an
adversary can learn which nodes are online, and she can also decrypt tratfic of this
group. In STONe we decided to solve the resilience problem by adding redundancy to
the overlay structure and not by using multicast. STONe is equivalent to a multicast
network with N groups where N is the number of nodes. Mix networks are known to
be vulnerable to timing attacks [121].

Crowds [148] uses a different approach for anonymous communication. In Crowds,
upon message arrival anode flips a coin and either forwards the message randomly to
a hop or sends it directly to the receiver. This technique is similar to random routing
in STONe, but the problem in Crowds is that it does not provide receiver anonymity.
Also, it is basically an anonymous web proxy and does not care about application-
level communication. Frequent path reformations make most anonymity systems,



7.3. Anonymous Communication 111

especially Crowds, vulnerable against the Predecessor attack in which an adversary
tinds the sender by investigating the predecessor of the message [171].

Tarzan [84] is a peer-to-peer overlay network that is transparent on the IP-layer.
It sets up circuits in advance and uses local mimic traffic to hide traffic patterns. In
STONe we decided in favor of a global traffic scheme that may increase the latency
but provides stronger protection against anonymity. Tarzan also addresses the issue
of application transparency on IP-Level, but does not integrate application-level ano-
nymity with anonymous routing like STONe. The link from Tarzan to the application
is a vulnerability. STONe also has the advantage that it gets strong hardware support
and does not have to cope with malicious hosts. Tarzan also uses source routing and
cannot easily route around failures.

Broadcast networks like DC-Nets [59, 175] or XOR-Trees [77] are synchronous.
In Dining Cryptographers every node broadcasts an encrypted message at the same
time to all other parties, and the parties are not able to trace the originator of the
message. In DC-Nets, however, all parties have to play fair because they can jam the
communication. The advantage of DC-Nets is that there is no additional delay in the
communication, but instead they use bandwidth. XOR-Trees implement a broadcast
tree to reduce the number of messages in the broadcast system.

There are controversies about the ethics of anonymous communication [44, 137].
People can use the communication networks to establish “Darknets” to exchange
illegal content. Digital communication networks enhance old-fashioned “sneaker
nets” to exchange pirated software. This, of course, comes down to ongoing legal
disputes between content providers and network providers as in the MGM vs. Grokster
lawsuit [12].

| System | Routing | Traffic Analysis | App |
Anonymizer [2] Single Proxy Trusted Proxy | Yes
Freenet [62] Onion Routing | Mix Network No
Freedom [33] Onion Routing | Random Walk | Yes
Pipenet [65] Onion Routing | Cover Traffic No
Tor [75] Onion Routing | Random Walk | Yes
Crowds [148] IP Random Walk | No
Jap [9] Onion Routing | Mix Network No
Herbivore [175] | DC Broadcast No
Cashmere [204] | Onion Routing | Broadcast Yes
P5[170] IP Broadcast No
Tarzan [84] Onion Routing Cover Traffic Yes
MorphMix [151] | Onion Routing | Mix Network | No
Anon [96] Onion Routing | Cover Traffic Yes
ISDNMiixes [144] | Switched Circuit | Mix Network Yes

Table 7.1: Comparison of Systems for Anonymous Communication




112 Chapter 7. Related Work

Table 7.1 gives an overview of common systems for anonymous communication.
The second column contains the type of anonymous routing the system uses. A
singe proxy means that the system only consists of one large proxy network that is
tirewalled from the outside. Another alternative is just plain Internet routing (IP),
Overlay routing, Dining Cryptographer’s (DC) or Onion Routing. The next column
shows the measure the system provides against Traffic Analysis. A trusted proxy means
that the anonymous routing system is trusted and shut off from the attacker. It may
or may not provide measures against end-to-end tratfic analysis. In a random walk
the client picks a set of random nodes to form the path. A broadcast scheme protects
against Traffic Analysis by sending the same message to multiple nodes. Nodes may
also send cover traffic only to protect against Traftfic Analysis. Mix networks are also
commonly used. They sometimes include a random walk and cover tratfic, but the
basic characteristic of a mix is that it delays and shuffles messages. The fourth column
describes whether the system supports application-level anonymity. Often the systems
use pseudonyms instead of IP addresses and create hidden rendez-vous point like Tor.

7.4 Overlay Networks and Internet Architectures

7.4.1 Overlay Networks

Modern overlay networks emerged almost a decade ago with the advent of Internet
services. The main problem was to enhance performance for web browsing, and
therefore some kind of web caching method had to be established. The theoretical
base of this work for structured overlays is consistent hashing [105], from which the
Akamai network [1] emerged. Today there exists a large variety of overlay networks —
structured or unstructured.

STONe borrows several ideas from structured overlay networks and uses a hyper-
cube topology similar to CAN [147] to enhance load-balancing and resilience. The
difference between STONe and content-distribution networks [158] is that STONe is
neither a location service that finds objects in distributed systems nor a distributed
storage system. STONe a routing overlay. It does not have to optimize for caching
performance or replicas, but it needs to provide for alternate routes.

Topologies for content-distribution networks other than CAN include a ring [180]
or tree [154] with different failure properties. The main conclusion of that research is
that a ring has the best fault-tolerance properties [92]. Bamboo [152] is a re-engineered
DHT for Pastry that optimizes for frequent and large membership changes.

Two popular wide-area implementations of these suggested networks are CoDeeN [193],
Tapestry [203], and OpenDHT [153]. CoDeeN is a network of proxy servers for content-
distribution, whereas OpenDHT is a distributed storage facility. Tapestry [203] imple-
ments a routing overlay for locating objects and services.



7.5. Instant Messaging 113

The downside of structured overlays is that they do not adapt well to the het-
erogeneity of the Internet. They also have high maintenance costs and are limited
in searching for data, since they only support simple exact-match. Therefore, stan-
dard file-sharing applications often use unstructured overlays [7, 10]. Some of these
problems, like searching, are more of a problem in content-distribution overlays than
in routing overlays. However, most of these problems in structured overlays can be
tixed with hybrid properties of unstructured overlay [55], and STONe also uses some
of these results to optimize performance.

7.4.2 Internet Architectures

Overlay networks have the ability to fix problems in existing Internet architectures or
extend them with new features. For example, Resilient Overlay Networks (RON) [30]
have been designed to alleviate common problems of path failures in the Inter-
net [159]. Another category is Internet security architectures that protect against
Denial of Service attacks [29, 110, 179, 200]. DOA is an overlay that extends the
Internet address space beyond NATs [191]. Other uses of overlays extend existing
Internet functionality like multicast [101] and QoS [181]. Anonymity networks like
Tor can also be seen as an Internet anonymity architecture [75]. In STONe partici-
pating nodes are authenticated by Trusted Computing hardware which strengthens
the security and anonymity, especially against Byzantine failures. SOS and Mayday
only use lightweight authentication and have weaker mechanisms against Denial of
Service attacks.

In addition to overlays that extend the Internet architecture there exist several
approaches for a next-generation Internet routing architecture. The Nimrod routing
architecture uses network maps (like road maps) instead of routing tables and lets
the clients pick the routes, i.e. uses source routing [54]. Nimrod was designed to
make the network scalable to a large number of nodes. Recent advances on next-
generation Internet architectures are NIRA [199] and FARA [61]. They try to overcome
the addressing problem in the Internet and also address the lack of resilience.

7.5 Instant Messaging

There exist a variety of Instant Messaging systems that are centralized such as AIM [4],
Windows Messenger [24] or Yahoo! Messenger [25]. Some of them have questionable
privacy policies that allow them to record messages arbitrarily on the central server
(e.g. [4]). There are some new system that provide end-to-end privacy and security
using public key encryption [23]. This protects privacy in a centralized system but
does not protect against Traffic Analysis. Skype as a Voice-over-IP system is also a
distributed approach to Instant Messaging [37]. Similar to STONe, it uses an overlay



114 Chapter 7. Related Work

structure for forwarding messages reliably, but it also does not provide protection
against Traffic Analysis.

7.6 Filesystems and File Sharing Networks

There is a large number of network file systems for local- or wide-area networks that
optimize file system performance by caching, as for example NES [157], AES [95],
and xFS [31]. The Coda file system replicates data on multiple servers to improve
availability [113].

SES was one of the first file systems that explicitly provides server certification [124].
When a client accesses a file it finds the public key in the file name and uses this public
key to access the server. This decouples key management from the file system and
prevents an adversary from tampering with file names. The SiRiUS file system [88]
provides a security layer file systems even without a trusted server for access control as
in SFS. SiRiUS uses cryptography to provide access control. Farsite [27] is a distributed
decentralized secure file system that protects against Byzantine faults in an untrusted
environment, but it does not protect against Traffic Analysis.

In addition to standard network file systems there exists a variety of file sharing
systems that are design for publish-subscribe operations. These publish-subscribe
systems are resistant against censorship and protect privacy. Common examples are
Publius [190], Tangler [189], Freenet [62], BitTorrent [5], and Mnemosyn [94]. A
recent study has shown that most of these implementations hide the traffic [104]
against simple mimic attacks. However, we know only that Freenet uses mixes to
protect against Traffic Analysis.



Chapter 8

Conclusion and Future Work

We have presented the design and implementation of Secure and Trusted Overlay Net-
works (STONe). STONe demonstrates that emerging Trusted Computing technologies
would provide a much better platform for anonymous communication compared
to today’s anonymity systems. STONe’s security is based on two cornerstones: A
hardware-based Trusted Computing Platform and an additional secret key. A user can
only enter the system to send and receive messages anonymously if he is in possession
of both. If a traitor gets detected its TCB comes on the blacklist and is hence excluded
from the system. To compromise the system an adversary has to overcome the cost
of purchasing Trusted Computing Hardware and know the changing secret key. This
model is much stronger than in current systems for anonymous communication, but
it is realistic and finally helps to implement anonymous communication. This work
explains the issues and pitfalls that occur when designing a more etficient system for
anonymous communication based on Trusted Computing.

We designed STONe as an overlay network that uses Trusted Computing to iso-
late Byzantine failures, which makes it possible to decouple protection against traffic
analysis from network routing, thus providing more etficient and more secure anony-
mous communication. STONe is resilient against churn and congestion, even in a
large-scale environment, but it also provides strong protection against traffic analysis.
To achieve these goals STONe uses random routing over a regular network topology
such as a hypercube, a novel technique for anonymous routing. Unlike mix networks
for anonymous communication random routing over such technologies is self-mixing
and does not require explicit message shuffling.

At the application-level, STONe provides a socket endpoint to access the anonym-
ity network and a trusted name service that maps names to self-certifying anony-
mous identities. This delivers anonymity to the application endpoint and makes
anonymous communication more robust against attacks that target application be-
havior, such as name server queries. Further, it prevents a malicious application from

115



116 Chapter 8. Conclusion and Future Work

mimicking an arbitrary identity. We have built two applications on top of STONe-
Anonymous Instant Messaging and an Anonymous File System. The results of our
experiments verify our claims.

STONe can have many applications, and is not only useful on the Internet. Em-
bedded devices that use smartcards are protected against any outside attackers, and
STONe can provide anonymity and therefore enhanced security as well. An example
is wireless communication of aircraft components or car security.

There are many opportunities for future work on STONe. We still have to evaluate
STONe in a real system with Trusted Computing hardware and operating systems
that meet the requirements of Trusted Overlay Network. It is crucial that remote
attestation protocols are able to detect any compromised node and only admit a
negligible number of false negatives to the network. TCBs have to be verifiable to
prevent backdoors, and the keys have to be protected by additional hardware and
software tamper-resistance measures. More research on the robustness and security of
these methods is definitely needed.

It is also an open problem how to efficiently combine anonymity protocols for
untrusted systems like Onion Routing with protocols for trusted systems like Random
Routing. It is also desirable to implement a distributed trusted name server. When a
single node with all name entries entries leaves the network, STONe has to be able to
restore the membership list. Lastly, the fragment size is an open issue. It is unclear
whether it is necessary to use uniform fragment sizes or vary the size.



Bibliography

1]
2]
[3]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]

Akamai. http://www.akamai.com.

Anonymizer.com. http://www.anonymizer.com.

Anti-Phishing Working Group. http://www.antiphishing.org.

Aol instant messenger. http://www.aim.com.

Bittorrent. http://www.bitrorrent.com.

Epic. http://www.epic.org.

Gnutella. http://www9.limewire.com/developer/gnutella_protocol 0.4.pdf.

Intel serial numbers processors to secure software and internet.
http://www.electronicsweekly.com/2005/03/18/technology/personaltech/scamArticle14335.html.

Jap anonymity & privacy. http://anon.inf.tu-dresden.de.

Kazaa. http://www.kazaa.com.

Linux VServer. http://linux-vserver.org.

Mgm vs. grokster. http://www.eff.org/IP/P2P/MGM_v_Grokster.
Network general. http://www.networkgeneral.com.

Openssh. http://www.openssh.org.

Openssl. http://www.openssl.org.

Phishing iq test. http://www.mailfrontier.com/forms/msft_iq_test.html.
Planetlab all pairs pings. http://pdos.csail.mit.edu/strib/pl_app/.
Privoxy. http://www.privoxy.org.

Seti@home. http://setiathome.ssl.berkeley.edu.

Syn cookies. http://cr.yp.to/syncookies.html.

Trusted computing platform alliance. http://www.trustedpc.org.
Verisign. http://www.verisign.com.

Voltage security. http://www.voltage.com.

117



118

BIBLIOGRAPHY

[24]
[25]
[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Windows messenger. http://www.microsoft.com/windows/messenger.
Yahoo! messenger. http://pager.yahoo.com.

M. Abadi, M. Budiu, U. Erlingsson, and ]. Ligatti. Control-flow integrity: Principles,
implementations, and applications. In CCS 2005.

A. Adya, W. ]. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In OSDI 2002.

AMD Corporation. Pacifica - Next Generation Architecture for Efficient Virtual Ma-
chines. http://developer.amd.com/assets/WinHEC2005 Pacifica Virtualization.pdf.

D. Andersen. Mayday: Distributed filtering for internet services. In USITS 2003.

D. Andersen, H. Balakrishnan, E. Kaashoek, and R. Morris. Resilient overlay networks.
In SOSP 2001.

T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverless
network file systems. In SOSP 1995.

W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable Bootstrap Architecture. In
IEEE Symp. on Sec. and Priv., pages 65-71, 1997.

A. Back, L. Goldberg, and A. Shostack. Freedom systems 2.1 security issues and analysis,
2001.

A. Back, U. Moller, and A. Stiglic. Traffic analysis attacks and trade-offs in anonymity
providing systems. LNCS, 2137.

S. Balfe, A. Lakhani, and K. Paterson. Trusted Computing, chapter Securing Peer-to-Peer
networks using Trusted Computing. IEE Press, 2003.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In SOSP, pages 164-177, 2003.

S. A. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet telephony
protocol. Technical Report CUCS-039-04, Columbia University, 2004.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating System Support for Planetary-Scale Network
Services. In NSDI, pages 253-266, 2004.

D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations and
Model. Technical report, The MITRE Corporation, 1976.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers,
and S. Eggers. Extensibility Safety and Performance in the SPIN Operating System. In
SOSP, pages 267-283, 1995.

O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantage of free MIX routes and
how to overcome them. LNCS, 2009, 2000.

[42] ]J. Bethencourt, J. Franklin, and M. Vernon. Mapping internet sensors with probe

[43]

response attacks. In Usenix Security 2005.

D. Bickson and D. Malkhi. Privacy degradation in the gnutella network. Technical
report, The Hebrew University of Jerusalem, 2003.



BIBLIOGRAPHY 119

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Biddle, P. England, M. Peinado, and B. Willman. The darknet and the future of
content protection. LNCS, 2696, 2002.

G. R. Blakley. Safeguarding cryptographic keys. In National Computer Conference, num-
ber 48, pages 313-317, 1979.

E. Blanton and M. Allman. On making tcp more robust to packet reordering. ACM
Computer Communication Review, 32(1), 2002.

B. Bollobas. Modern Graph Theory. Springer, 2002.

D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In CCS
2004.

A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of
computation. Journal of Computer and System Sciences, 30:130-145, 1985.

T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Tolerance. In SOSP, pages
1-11, 1995.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In CCS 2004.

D. Brumley and D. Song. Privtrans: Automatically partitioning programs for priviledge
separation. In Usenix Security 2004.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. LNCS, 1264,
1999.

I. Castineyra, N. Chiappa, and M. Steenstrup. RFC 1992 - the nimrod routing architec-
ture.

M. Castro, M. Costa, and A. Rowstron. Debunking some myths about structured and
unstructured overlays. In NSDI 2005.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for
structured peer-to-peer overlay networks. In OSDI 2002.

M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI, 1999.

D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
CACM, 24(2):84-88, Feb. 1981.

D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. JACM, (1):65-75, 1988.

Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach to practical and
scalable overlay network monitoring. In SIGCOMM 2004.

D. Clark, R. Braden, A. Falk, and V. Pingali. Fara: Reorganizing the addressing architec-
ture. In ACM SIGCOMM FDNA 2003.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hongang. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In LNCS, volume 2009, 2001.

D. Cooper and K. Birman. Preserving privacy in network of mobile computers. In IEEE
Security and Privacy 1995.

L. Cottrell. Mixmaster and remailer attacks, 1994.
http://www.obscura.com/ loki/remailer/remailer-essay.html.



120

BIBLIOGRAPHY

[65]
[66]
[67]
[68]
[69]

[70]
[71]
[72]

[73]
[74]

[75]

[76]

[77]

W. Dai. Pipenet 1.1, 1996. http://www.eskimo.com/ weidai/pipenet.txt.

G. Danerzis. The statistical disclosure attack. In Sec2003.

G. Danezis. Mix-networks with restricted routes. LNCS, 2760, 2003.

G. Danerzis. The traffic analysis of continuous-time mixes. LNCS, 3424, 2004.

G. Danezis, R. Dingledine, and N. Matthewson. Mixminion: A next-generation anony-
mous remailer. In IEEE Security and Privacy 2003.

N. Daswani and H. Garcia-Molina. Query-flood dos attacks on gnutella. In CCS$ 2002.
D. Dean and A. Stubblefield. Using client puzzles to protect tls. In Usenix Security 2001.

C. Diaz, S. Seys, ]J. Claessens, and B. Preneel. Towards measuring anonymity. In LNCS,
volume 2482, 2003.

T. Dierks and C. Allen. RFC 2246: The TLS Protocol, 1999.

R. Dingledine, M. ]J. Freedman, D. Hopwood, and D. Molnar. A reputation system to
increase mix-net reliability. LNCS, 2137.

R. Dingledine, N. Matthewson, and P. Syverson. Tor: The second-generation onion
router. In Usenix Security 2004.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions of
Information Theory, 2(29):198-208, 1983.

S. Dolev and R. Ostrovsky. Xor-trees for efficient anonymous multicast and reception.
ACM Transactions on Information and System Security, 3(2):63-84, 2000.

[78] J. Douceur. The Sybil Attack. In Proceedings of the 1st International Peer To Peer Systems

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]

Workshop (IPTPS 2002), March 2002.

P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A Trusted Open
Platform. Computer, 36(7):55-62, 2003.

D. R. Engler, M. E Kaashoek, and J. J. O’'Toole. Exokernel: An Operating System Archi-
tecture for Application-Level Resource Management. In SOSP, pages 251-266, 1995.

S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of
rc4. LNCS, 2259.

B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Microkernels meet
Recursive Virtual Machines. SIGOPS Oper. Syst. Rev., 30(SI):137-151, 1996.

B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across network address
translators. In Usenix Technical 2005.

M. J. Freedman and R. Morris. Tarzan: a peer-to-peer anonymizing network layer. In
CCS 2002.

V. Fuller, T. Lj, Y. J, and K. Varadhan. RFC 1519 - classless inter-domain routing (cidr):
An address assignment and aggregation strategy.

S. Garfinkel. PGP Pretty Good Privacy. O'Reilly, 1994.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-
based platform for trusted computing. In SOSP 2003.



BIBLIOGRAPHY 121

[88]

[89]

[90]

[91]
[92]

[93]

[94]

E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: securing remote untrusted
storage. In NDSS 2003.

0. Goldreich. Secure multi-party computation.
http://www.wisdom.weizmann.ac.il/ oded/pp.html.

O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.
JACM, 43(3):431-473, May 1996.

C. Gulcu and G. Tsudik. Mixing e-mail with babel. In NDSS 1996.

K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The
impact of DHT routing geometry n resilience and proximity. In SIGCOMM 2003.

V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attestation - Virtual Machine
Directed Approach to Trusted Computing. In Usenix VM, pages 29-41, 2004.

S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer steganographic storage. In IPTPS
2002.

[95] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.

[96]

[97]

[98]

[99]

Sidebotham, and M. J. West. Scale and performance in a distributed file system. ACM
Transactions on Computer Science, 6(1):51-81, 1988.

H.T.Kung, C.-M. Cheng, K.-S. Tan, and S. Bradner. Design and analysis of an ip-layer
anonymizing infrastructure. In IEEE DISCX 2003.

Y.-C. Hu, A. Perrig, and M. A. Sirbu. Spv: secure path vector routing for securing bgp.
In SIGCOMM 2004.

G. Hunt, J. Larus, D. Tarditi, and T. Wobber. Broad New OS Research: Challenges and
Opportunities. In HotOS X, 2005.

Intel Corporation. LaGrande technology.

[100] J. Ioannidis and M. Blaze. The architecture and implementation of network-layer secu-

rity under unix. In Usenix Security 1993.

[101] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O. Jr. Overcast:

[102]

[103]

[104]

[105]

[106]

[107]

Reliable multicastig with an overlay network. In OSDI 2000.

M. Kaminsky, G. Savvides, D. Mazieres, and M. E. Kasshoek. Decentralized user authen-
tication in a global file system. In OSDI 2004.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving Organized DDoS
Attacks That Mimic Flash Crowds. In NSDI, 2005.

T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. Faloutsos. Is p2p dying or just
hiding ? In Globecomm 2004.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC 1997.

S. Katzenbeisser and F. A. P. Petitcolas, editors. Information hiding techniques for steganog-
raphy and digital watermarking. Artech House Books, 1999.

R. Kennell and L. Jamieson. Establishing the genuity of remote computer systems. In
Usenix Security 2003.



122

BIBLIOGRAPHY

[108]
[109]

[110]

[111]

[112]

S. Kent. RFC 2401: Security Architecture for the Internet Protocol, 1998.

S. T. Kent. Protecting Externally Supplied Software in Small Computers. PhD thesis, MIT-LCS,
1980.

A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services. In SIGCOMM
2002.

P. L. Kerstein. How can we stop phishing and pharming scams ? CSO Magazine July
20th, 2005.

D. Kesdogan, J. Egner, and R. Buschkes. Stop-and-go-mixes providing probabilistic
anonymity in an open system. In LNCS, volume 1525, 1998.

[113] J. Kistler and M. Satyanarayan. Disconnected operation in the code file system. TOCS,

[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

10(1), 1992.

T. Kohno, A. Broido, and K. Claffy. Remote physical device fingerprinting. In IEEE
Security and Privacy 2005.

L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, 1982.

B. W. Lampson. A note on the confinement problem. CACM, 16(10), 1973.

B. W. Lampson and R. E Sproull. An Open Operating System for a Single-User Machine.
In SOSP, pages 98-105, 1979.

R. B. Lee, P. C. S. Kwan, ]J. P. McGregor, J. Dwoskin, and Z. Wang. Architecture for
protecting critical secrets in microprocessors. In ISCA 2005.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC 1928 - SOCKS Protocol
Version 5.

E T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann Publishers, 1991.

B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright. Timing attacks in low-latency
mix-based systems. In Proc. of Financial Cryptography (FC'04).

D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted operating system
on trusted hardware. In SOSP 2003.

D. Mazieres and M. Kaashoek. The design, implementation, and operation of an email
pseudonym server. In CCS 1998.

D. Marzieres, M. Kaminsky, M. E. Kaashoek, and E. Witchel. Separating key management
from file system security. In SOSP 1999.

A. D. McDonald and M. G. Kuhn. Stegfs: A steganographic file system for linux. LNCS,
1768, 1999.

I. Mironov. Not so perfect shuffles in rc4. LNCS, 2442, 2002.

A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. Wallach. AP3: a cooperative,
decentralized service providing anonymous communication. In SIGOPS Europe 2004.

A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih: Detecting and isolating
malicious routers. In IEEE DSN 2005.



BIBLIOGRAPHY 123

[129]

U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster protocol version 2.
Internet-Draft, 2005.

[130] J. Moy. RFC 2328: OSPF Version 2, 1998.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

S. Murdoch and G. Danezis. Low-cost traffic analysis on tor. In IEEE Security and Privacy
2005.

National Security Agency. Security-Enhanced Linux.

National Security Agency. Device for and Method of Secure Computing using Virtual
Machines. United States Patent 6,922,774, 2005.

G. Necula and P. Lee. The design and implementation of a certifying compiler. In PLDI
1998.

P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A provably
secure operating system: The system, its applications, and proofs. Technical Report
CSL-116, SRI International Computer Science Laboratory, May 1980.

A. M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and Computa-
tional Number Theory, American Mathemcatical Society, Proc. Symp. Appl. Math., (42):75-88,
1990.

V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web: An open
proxy’s view. In HotNets II.

C. Partridge, D. Cousins, A. W. Jackson, R. Krishnan, T. Saxena, and W. T. Strayer. Using
signal processing to analyze wireless data tratfic. In ACM Workshop on Wireless Security,
2002.

V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Transactions on
Networking, 5(5):601-615, 1997.

V. Paxson. End-to-end internet dynamics. IEEE/ACM Transactions on Networking,
7(3):277-292, 1999.

V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226-244, June 1995.

R. Perlman. Network Layer Protocol with Byzantine Robustness. PhD thesis, MIT, 1988.

A. Pfitzmann and M. K6hntopp. Anonymity, unobservability and pseudonymity — a
proposal for terminology. LNCS, 2009, 2001.

A. Pfitzmann, B. Pfitzmann, and M. Waidner. Isdn-mixes: Untraceable communication
with small bandwidth overhead. Informatik-Fachberichte, 267:451-463, 1991.

K. Poulsen. Fbi retires carnivore. The Register, Jan 15 2005.

C. Rackoff and D. R. Simon. Cryptographic defense against traffic analysis. In STOC
1993.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-
addressable network. In SIGCOMM 2001.

M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions. ACM Transac-
tions on Information and System Security, 1(1):66-92, Nov. 1998.



124

BIBLIOGRAPHY

[149]
[150]
[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]
[163]

[164]

[165]

[166]

[167]
[168]

[169]

M. K. Reiter and X. Wang. Fragile mixing. In CCS 2004.
Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4, 1995.

M. Rennhard and B. Plattner. Introducing morphmix: Peer-to-peer based anonymous
internet usage with collusion detection. In WPES 2002.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In Usenix
Technical 2004.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, 1. Stoica, and
H. Yu. Opendht: A public dht service and its uses. In SIGCOMM 2005.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
tfor large-scale peer-to-peer systems. In IFIP/ACM Conf. on Dist. Syst. Platf. (Middleware),
2001.

J. M. Rushby. Design and Verification of Secure Systems. In SOSP, pages 12-21, 1981.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design. ACM
Trans. Comput. Syst., 2(4):277-288, 1984.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementa-
tion of the sun network filesystem. In USENIX 1985.

S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An analysis of
internet content delivery systems. In OSDI 2002.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman,
J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed internet routing and
transport. IEEE Micro, 19(1):50-59, 1999.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for ip
traceback. In SIGCOMM 2000.

B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The Interactive Performance of SLIM: A
Stateless, Thin-Client Architecture. In SOSP, pages 32-47, 1999.

S. Schoen. Trusted computing: Promise and risk. Electronic Frontier Foundation.

A. Serjantov and G. Danezis. Towards an information theoretic metric for anonymity.
In LNCS, volume 2482, 2003.

A. Serjantov and S. J. Murdoch. Message splitting against the partial adversary. In PET
2005.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. In SOSP
20085.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: Software-based attestation
for embedded devices. In IEEE Security and Privacy 2004.

A. Shamir. How to share a secret. CACM, 22(1):612-613, 1979.

C. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379-423, 1948.

W. Shapiro and R. Vingralek. How to manage persistant state in drm systems. LNCS,
2320, 2002.



BIBLIOGRAPHY 125

[170]

[171]
[172]
[173]
[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

R. Sherwood, B. Bhattacharjee, and A. Srinivasan. PS5: A protocol for scalable anony-
mous communication. In IEEE Security and Priacy 2002.

V. Shmatikov. Probabilistic model checking of an anonymity system. JACM, 200S5.
G.J. Simmons. The prisoners’ problem and the subliminal channel. In CRYPTO 1983.
Y. G. Sinai. Probability Theory. Springer, 1992.

S. Singh. The Code Book. Anchor, 2000.

E. G. Sirer, S. Goel, M. Robson, and D. Engin. Eluding Carnivores: File Sharing with
Strong Anonymity. In European SIGOPS Workshop, 2004.

A. Snoeren, C. Partridge, I. Sanchez, C. Jones, F. Tchakountio, S. Kent, and W. Strayer.
Hash-based ip traceback. In SIGCOMM 2001.

T. Spalink. Deterministic Sharing of Distributed Resources. PhD thesis, Princeton University,
2006.

W. Stevens. RFC 2001: TCP slow start, congestion avoidance, fast retransmit, and fast
recovery algorithms, January 1997.

I. Stoica, D. Adkins, S. Zhuang, S. Surana, and S. Shenker. Internet indirection infras-
tructure. In SIGCOMM 2002.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-
akrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. In
SIGCOMM 2002.

L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. Overqos: An overlay based
architecture for enhancing internet qos. In NSDI 2004.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architecture for
tamper-evident and tamper-resistant processing. In ISC 2003.

Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu. Statistical
identication of encrypted web browsing traffic. In IEEE Security and Privacy 2002.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of Commodity
Operating Systems. In SOSP, pages 207-222, 2003.

P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections and onion
routing. In IEEE Security and Privacy 1997.

C. Thekkath, D. Boneh, D. Lie, J. Mitchell, M. Horowitz, M. Mitchell, and P. Lincoln.
Architectural support for copy and tamper resistant software. In ASPLOS 2000.

L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In STOC
1981.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-based Fault
Isolation. In SOSP, pages 203-216, 1993.

M. Waldman and D. Mazieres. Tangler: A censorship-resistant publishing system based
on document entanglements. In CCS 2001.

M. Waldman, A. Rubin, and L. E. Cranor. Publius: A robust, tamper-evident, censorship-
resistant web publishing system. In Usenix Security 2000.



126

BIBLIOGRAPHY

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]
[202]

[203]

[204]

M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker. Middel-
boxes no longer considered harmful. In OSDI 2004.

D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible Security Architecture
for Java. In SOSP, pages 116-128, 1997.

L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and Security in the CoDeeN
Content Distribution Network. In Usenix Technical 2004.

B. R. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle outsourcing
techniques for dos resistance. In CCS 2004.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali Isolation
Kernel. SIGOPS Oper. Syst. Rev., 36(S1):195-209, 2002.

H. S. Wilf. generatingfunctionology. Academic Press, 1994.

M. K. Wright, M. Adler, B. N. Levine, and C. Shields. Defending anonymous com-
munication against passive logging attacks. In IEEE Symposium o Security and Privacy
2003.

M. K. Wright, M. Adler, B. N. Levine, and C. Shields. The predecessor attack: An analysis
of a threat to anonymous communication systems. ACM Transactions on Information
and System Security, 7(4):489-522, November 2004.

X. Yang. Nira: A new internet routing architecture. In ACM SIGCOMM FDNA 2003.

X. Yang, D. Wetherall, and T. Anderson. A dos-limiting network architecture. In
SIGCOMM 2005.

B. Yee. Using Secure Coprocessors. PhD thesis, CMU, 1994.

S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure program partitioning. In
SOSP 2001.

B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, UCB.

L. Zhuang, E Zhou, B. Y. Zhao, and A. Rowstron. Cashmere: Resilient anonymous
routing. In NSDI 2005.



