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To my parents





AbstratDenial-of-servie attaks, maliious routing updates, and online identity theft arelearly on the rise on the Internet, osting the US industry billions of dollars. Inreation, there is a large effort to design new tehnologies suh as Trusted Computingthat solve many of these problems effiiently. However, state-of-the-art systems foranonymous ommuniation have various weaknesses against traffi analysis and areoften designed for one speifi purpose. So far, Trusted Computing has not been on-sidered for improving the effiieny of Internet anonymity and privay and buildinga general-purpose arhiteture to solve the problem.In this thesis we desribe the design and implementation of Seure Trusted OverlayNetworks (STONe). STONe is the first system for general-purpose anonymous ommu-niation that is entirely based on Trusted Computing. STONe signifiantly improvesanonymous ommuniation on the Internet and makes three main ontributions.First, STONe uses Trusted Computing to protet against Byzantine Failures on thenetwork stak to provide an overlay network for salable, effiient seure routing, andend-to-end ommuniation. This prevents many ative denial-of-servie attaks onan anonymity network and provides a foundation for more robust protetion againsttraffi analysis. Seond, STONe is the first system to provide anonymous routingthrough load-balaning by random routing previously used for loal luster networks.This turns out to better protet against most existing traffi analysis attaks. Suhattaks have yet been diffiult to ome by, namely the Predeessor Attak and theIntersetion Attak. Third, on the appliation-level, STONe provides appliation-levelanonymity through trusted anonymous sokets and a trusted name servie, an in-expensive trusted ertifiation mehanism with one-way per-session authentiation.We implemented and evaluated a prototype of STONe on PlanetLab and show that itsignifiantly outperforms state-of-the-art systems for anonymous ommuniation atthe expense of additional Trusted Computing hardware.
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Chapter 1
Introdution
Privay is beoming inreasingly important on the Internet. Sophistiated surveillanetools that an reonstrut anyone's HTTP and EMail traffi are now ommeriallyavailable. These tools are beoming extremely powerful, even ausing the FBI todeploy them as a replaement for their in-house surveillane system, Carnivore [6,13, 145℄. Consequently, Internet users inreasingly need systems that ensure theprivay of user identity and ommuniation, unless the user voluntarily disloses thisinformation.Even though enryption keeps the ontent of the messages seret, IP addresses notonly provide routing information but unfortunately also reveal the identity of users.Speifi traffi properties suh as inter-paket timing give an adversary further luesabout the ommuniating parties and the type of traffi. Therefore, a network thatprovides private ommuniation requires transparent protetion against these typesof traffi analysis attaks. Traffi analysis is a long-standing and hard problem.In addition to anonymous routing, end-to-end anonymity is a negleted problemas well. Name server requests are a vital information soure for a privay-intrudingadversary. Credentials in the system are rarely anonymous, and it often beomes easyto fake identities. Appliation endpoints like web servers are often able to distinguishbetween messages they reeive from inside and outside the anonymity network. Thereeiver may not have an inentive to aept messages from inside the anonymitynetwork and may just drop these messages, thereby foring the sender to reveal itsidentity. These are all signifiant shortomings, and an anonymity system with in-tegrated end-to-end support has stronger seurity and anonymity properties than aproxy network that has a peer-to-peer-based system suh as Gnutella running on topof it. Gnutella is known to have privay problems [43℄.In this thesis we present STONe, Seure Trusted Overlay Networks, to address theaforementioned problems. STONe deouples message forwarding from traffi analysisprotetion and integrates end-to-end anonymity with anonymous routing. It ahieves sig-1



2 Chapter 1. Introdutionnifiantly better leverage on performane, resiliene, and anonymity than previoussystems for anonymous ommuniation. But as a trade-off STONe requires a TrustedComputing infrastruture whih is only available in new CPUs [99, 28℄.1.1 Anonymous CommuniationThe Internet by itself does not provide any protetion for anonymity. Every IP paketlearly reveals the soure and destination address of the endpoints, and, unfortunately,the routers require this information to ensure optimal routing in the network. Anadversary with aess to the network or routers is able to arry out traffi analysisattaks, and in addition the endpoints are able to see the peer's identity.So far there exist a variety of systems for anonymous ommuniation, from sendinganonymous email [58℄ to anonymous web browsing [131, 204℄. But building aneffiient system for general-purpose anonymous ommuniation that is robust againsta wide range of attaks beomes a very hallenging task. Often these state-of-the-arttehniques are based on a variation of intermediate proxies or broadast tehniques.They either do not provide full protetion against traffi analysis [131, 204℄, have highlatenies [62℄, are limited to small-sale networks [148, 59℄, or are not resilient againstfailures [58℄. In addition, they are prone to some dangerous traffi analysis attaks,most importantly the predeessor attak [198, 171℄, in whih an adversary analyzespaket header information to find the sender. They are also vulnerable to intersetionattaks [131℄, in whih the adversary measures traffi properties like volume andtiming to find a subset of nodes that omprise the possible ommuniation path. Thedilemma is that protools proteting against the latter attak use randomwalks to blurthe path between the sender and the reeiver and hide the assoiating IP addresses.However, when the route is hanging frequently an adversary needs to ompromiseonsiderably fewer nodes to ath the desired paket header information. To ourknowledge there is no satisfatory solution that solves this problem effiiently.
AnonymizerS R

[S,R] [A,R]

Figure 1.1: Single proxy network for anonymous ommuniation. The sender forwards messagesto the Anonymizer proxy, whih then propagates them to the reeiver, replaing the original senderaddress with its own address.The simplest solution for providing Internet anonymity is to use a trusted proxysuh as Anonymizer [2℄. Figure 1.1 shows the senario: The sender forwards itsmessages to the proxy, and the proxy then propagates the messages to the reeiver.



1.1. Anonymous Communiation 3The reeiver only sees the proxy's IP address and returns messages to the sender usingthat address.However, being a single point of failure, the proxy has to be fully trusted, similarto a ertifiation authority that ertifies publi keys for Internet identities. Wheneveran anonymity proxy leaks information about a forwarded paket it ompromises thewhole system. In addition, trusted bakup servers have to be ready in ase of a failureto avoid disruption of the anonymity servie in ase of a failure or overload situation.The proxy hides the IP addresses, but end-to-end timing still depends on the round-trip time of the individual onnetion and is not random, thus, giving lues to anadversary about the IP addresses.This is partiularly dangerous when a government wants to seize ommuniationdata for traking a dissident. With a single proxy it is fairly easy to do, beause theinformation may be stored in a entral database.
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Figure 1.2: Distributed proxy network for anonymous ommuniation. The sender forwardsmessages to an entry node in the Tor network. The sender's entry node propagates the messageto an exit node, whih then sends the message to the reeiver. Tor resets the path after some timeinterval. The entry and exit nodes know who the sender and the reeiver is.Instead of a single proxy that has these shortomings, distributed proxies thateliminate the single point of trust an be used for anonymous ommuniation. Inthe virtual world systems like Tor [75℄, as shown in Figure 1.2, have beome the state-of-the art tehnology for anonymous ommuniation using this sheme. The senderpiks a random set of proxies and uses them for message forwarding. The senderenrypts the staked IP headers in layers, and every proxy strips off layer after layer,suh that every proxy an only see the previous and next hop. The endpoints donot have to trust the proxies anymore and all messages go through an arbitrary setof untrusted nodes. When a node fails, the sender piks a different set of proxies formessage forwarding.



4 Chapter 1. IntrodutionA distributed proxy that ontains untrustednodes is prone to traffi analysis attaks� the predeessor attak signifiantly degrades almost every anonymity protool indistributed environments when paths are hanging frequently [198℄. The predeessorattak exploits the fat that every node knows its predeessor on the Internet, butthe sender and reeiver never hange during a ommuniation session. When a pathhanges frequently an adversary an detet whether its predeessor is the sender ornot. However, when the path remains stati for too long the system is prone tointersetion and timing attaks [131, 41℄. End-to-end timing as well as the load on everynode tells an adversary where pakets traverse the system, and it is easily possible toreonstrut the sender and reeiver's IP address on the ommuniation path [131℄.Unfortunately, one of the two attak methods always seems to be appliable, so thatit is very diffiult to ahieve good protetion against traffi analysis.Similar to the single proxy, most distributed proxies used for anonymous ommu-niation have a salability problem. A sender has to disover all proxies in the networkand learn the publi keys to onstrut the anonymous message before sending it offto the first proxy. Doing this disovery effiiently would require some underlyingstruture that redues the number of key exhanges. Without enryption the mes-sage's reeiver is revealed [148℄. Furthermore, without admission ontrol the sendersare responsible for route seletion and need to play fair, otherwise they ould ongesta proxy and slow down performane of the distributed proxy network.A general problem that affets single and distributed proxies on the Internet isthe limited 32-bit IP address spae. An adversary an always try to guess the orretnode, and she is always right with probability p = 2−32. For example, if an adversarywants to find out where a data stream is sent from, she an attak arbitrary nodes withDenial of Servie attaks and then wait until the stream beomes weaker. Beause ofthe number of legay routers and appliations in the Internet a global move to IPv6with a 128-bit address spae in the near future seems unlikely. On the other hand,NATs do not really solve this problem, beause they generate a non-uniform addressspae in whih many nodes have the same network address and an therefore not beused as proxies for anonymization.Summarized, there are two goals in anonymous ommuniation systems:Anonymous Identities and Credentials When parties ommuniate on the Inter-net it is their goal to hide their identities, suh as IP address or DNS name, froman external adversary as well as from other parties partiipating in the om-muniation. But they still want to be able to verify some redentials to a peernode.Protetion against Traffi Analysis The parties want to protet their asynhronousInternet traffi against an external eavesdropper whose goal it is to analyze traffi



1.1. Anonymous Communiation 5to determine whih parties are partiipating in ommuniation.TrustedComputing already provides support for seurity in distributed systems [87℄,and STONe relies on the same three features of Trusted Computing in its anonym-ity protool � Strong Proess Isolation, Remote Attestation, and Sealed Storage � toenhane privay in network ommuniation. First, remote attestation [51, 21℄ allowsnodes to anonymously authentiate themselves to their peers, establish trust, andform a trusted overlay network. Seond, strong proess isolation shields memory fromspyware and attakers on the same host by isolating memory pages [133, 99, 28℄.Third, sealed storage provides seure storage for keys and ensures safety of remoteattestation [21℄.Our Seure Trusted Overlay Network (STONe) onsists of multiple building bloks:(1) Effiient Protetion Against Traffi Analysis: STONe protets against traffianalysis using self-mixing by applying random routing to a regular network topologysuh as a hyperube. This ensures uniform traffi patterns with minimal networkongestion. This design provides mixing of network pakets without expliitly usinga high-lateny mix network that is not useful for low-lateny anonymous ommu-niation [187℄. STONe further quikly isolates ompromised nodes to minimize theimpat of the predeessor attak by using Trusted Computing to detet Byzantine failuressuh as software bugs.(2) Salable and Robust Anonymous Routing: STONe improves salability of anony-mous routing beause it enrypts paket headers hop-by-hop instead of using a iruit-based approah like in onion-routing [75℄. The strutured overlay network in STONeensures that nodes an enter and leave the network quikly without interrupting om-muniation of other nodes, thus eliminating single points of failure and ongestednetwork nodes. In addition, STONe also protets the network against ative attaks,suh as Denial-of-Servie from external nodes, whih would harm servie and thusanonymity at a given time.(3) Anonymous Sokets and Name Servers: STONe implements anonymous TCPand UDP soket endpoints for an appliation. Only truly random IP addresses arevisible outside STONe. Suh an anonymous IP address hides identity and loationand is different for every new session the soket uses. In STONe, anonymous IPaddresses are not only network addresses but also anonymous authentiators to ensurethat the anonymous IP address is indeed orret. Further, STONe ontains TNS, theTrusted Name Servie that maintains and verifies self-ertifying anonymous redentials. Itanonymizes name server queries and maps names to anonymous pseudonyms thatertify themselves with self-ontaining publi keys.Our evaluation shows that STONe's performane impat is muh less ompared toexisting anonymity systems that do not use Trusted Computing. STONe's throughput



6 Chapter 1. Introdutionapproximates expeted TCP throughput and exeeds state-of-the-art system Tor by30% [75℄. Also, our experiments verify that STONe sales up to a signifiant numberof nodes on PlanetLab with randomarrivals and departures, whilemaintaining routingstability and low overhead. Thus, STONe an optimize anonymity for loality andavoid ongestion situations, and as a result its average lateny is only about half ofTor's lateny. Finally, our results onfirm the expeted benefit of random routing: itsignifiantly improves the system's robustness against traffi analysis by maintainingsalability and resiliene at the same time. We summarize our ontributions as follows:
• We have designed, implemented, and evaluated STONe, a distributed infrastru-ture for ertified and anonymous ommuniation that is robust against sub-stantially more traffi analysis attaks, more resilient, and more effiient thanprevious systems for anonymous ommuniation suh as Onion Routing, MixNetworks, or Crowds [185, 58, 148℄.
• We are the first to apply random routing over a regular network topology on theheterogeneous Internet to ahieve load balaning and self-mixing of networkpakets, and thus anonymous ommuniation without expliit mixes that ham-per low-lateny ommuniation. Previous approahes use less seure randomwalks instead [185, 58, 148℄.
• STONe is the first system that ombines these three important properties foranonymous ommuniation: Resistane against the Predeessor Attak [148℄,uniform traffi patterns and indistinguishable ommuniation paths [131℄, andsalability [59℄. Further, it provides protetion for traffi anonymity to disguisethe type of ontent, e.g. media stream vs. email traffi. In partiular, to providethe latter it is usually neessary to send expensive over traffi to disguise thetype of traffi [121℄.
• Further, we demonstrate that STONe is indeed a general-purpose system de-signed for both low-lateny and high-throughput ommuniation: We buildtwo appliations, Anonymous Instant Messenger and Anonymous File System. Bothappliations have privay issues that are hard to solve. Using a PlanetLab im-plementation, we demonstrate that our system ahieves reasonable performanewhile preserving privay.



Chapter 2
Trusted Overlay Networks
Byzantine failures are one of the most general problems in distributed systems. Foranonymous ommuniation they pose a partiularly signifiant threat that requiresprotool designers to downsize performane and salability to work around theseproblems. Compared to a fail-stop failure that auses a mahine to rash, Byzantinefailures like software bugs ause a mahine's behavior to beome unpreditable. If theByzantine failure is even an intended maliious attak, an adversary takes ontrol overthewholemahine and uses it to launh further attaks. This threat is real � adversariesan easily get aess to tens of thousands of ompromised omputers in so-alledBotNets and use them to launh DDoS attaks onweb servers or networks [103℄. Whenthe adversary ontrols the mahine, she is also able to monitor all ommuniationhannels traversing through that mahine, and therefore, BotNets are also a threat toanonymity.
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8 Chapter 2. Trusted Overlay NetworksTrusted Computing, as proposed by several manufaturers [99, 28, 21, 79℄, providesimproved proative protetion against Byzantine failures on a loal platform using twodistintive primitives: Strong Proess Isolation and Remote Attestation. In addition tovirtual memory Strong Proess Isolation protets trusted proesses against attaks froma ompromised OS through virtualization [87℄, and thus isolates Byzantine failuresfrom the rest of the mahine that would otherwise make the platform vulnerable. Aproess beomes trusted, and thus part of the Trusted Computing Base (TCB) only whenit ompletes attestation loally. To omplete attestation the proess verifies to the TCBby signing a none that all software from the appliation to the BIOS is trusted, i.e.the none is on the list of trusted software. Otherwise the proess remains untrusted.This separation is shown figure 2.1.Remote attestation is an appliation-based mutual protool between two TCBs thatverifies to the peer TCB that the platform is trusted. Similar to loal attestation on theTCB itself, it verifies to the peer node that all software from the BIOS to the appliationis trusted. Remote Attestation is built into the TCB and an be implemented in variousfashions [165, 51, 114, 87℄. It either exploits hardware properties suh as hardware-speifi lok skew or relies on ryptographi primitives suh as group signaturesthat rely on keys built into hardware. Group signatures are a signature sheme thatpreserves identity from others. The signing node signs a none nb of the binary usingits private signing key, and every other node in the group is then able to use theglobal verifiation key to verify the group signature. Every TCB has a list of validnones nb that are trusted, and without forging or breaking the hardware it is notpossible to get the system to sueed in remote attestation. This signifiantly raisesthe bar for adversaries to ompromise a node � for example, it would not be possibleto ompromise a set of nodes by spreading a worm aross the network.A group of interonneted TCBs forms a Trusted Overlay Network, the platform forSTONe. The Trusted Overlay Network isolates proesses from Byzantine Failures andredues the likelihood of seurity bugs, beause software is trusted. In suh a loseddistributed system a software-based ompromise affets either all nodes or none of thenodes, whih is similar to fail-stop behavior.In addition to the benefits in robustness against Byzantine failures, unfortunately,there are also some ontroversial issues in Trusted Computing that need to be dis-ussed. This is mainly beause it enfores poliies and lets an outside server takeontrol:(i) It is hard for a user to verify that Trusted Computing has been implementedorretly and does not leak any information through hidden bakdoors.(ii) Trusted Computing an pursue anti-ompetitive behavior by implementing restri-tive poliies in TCBs that lok out ertain software from the platform under thepremise that the software is inseure.



9(iii) Systems maintenane beomes hard when operating systems have to be updatedfrequently, sine on every update old nones for attestation have to be removedfrom the list of trusted software.(iv) A loal administrator an be restrited beause Trusted Computing adds anotherprivilege ring around the operating system. Only a global remote administratorwho might not even be known to the owner of the platform ould have alladministrative permissions.(v) When an adversary ompromises a Trusted Computing system, it is usually a totalbreak-in, and the adversary is able to learn everything inluding the TCB's seretkey used for attestation. However, the probability that suh a break-in ours isassumed to be very small.There are several mehanisms in plae to overome these problems. Regardinggenuity of the Trusted Computing implementation the hardware manufaturer itselfhas to be trusted. The manufaturer's damage from bad publiity needs to outweighthe benefit from the bakdoor.Owner override addresses some of the issues related to aess rights [162℄. Inowner override the owner an modify onfigurations or even remote attestation aslong as it is proven that the owner is making the hanges and not a virus or maliiousappliation. The problem with owner override is that it undermines the seurity ofTrusted Computing and allows heating in online games, illegal opying of protetedontent, et.To make the attestation proess more transparent the TCB an use tehniques suhas semanti attestation [93℄. In semanti attestation the signature is not omputedby a hash funtion but by applying a funtion that aptures the properties of theprogram like in proof-arrying ode [134℄. In this ase no additional list of trustedsoftware needs to be distributed, sine attestation only heks the program for givenfuntionality and not what kind of software it is.When an adversary breaks into the TrustedComputing hardware she is able to learnalmost everything on the ompromised mahine. Deniable ryptography against the�rubberhose attak� ould potentially shield suh ompromises but has been fairlyineffiient to implement [125, 53℄. In deniable ryptography a plaintext P is enryptedsuh that the orresponding iphertext C derypts to P under key k1, and under key
k2 C derypts to a different meaningful plaintext different from P. When an adversaryknows key k2 she thinks that she has found the orret key.



10 Chapter 2. Trusted Overlay Networks2.1 Distributed Appliations on Trusted Overlay NetworksTrusted Overlay Networks are the base for STONe. Numerous distributed appliationsan benefit from Trusted Overlay Networks that would otherwise have to ope withByzantine failures. Algorithms that protet against Byzantine failures are often ostly,sine they require repliation [57, 19℄. Trusted Overlay Networks provide a flexibleinfrastruture that strengthens any distributed systems. Here we give a few examplesof distributed appliations that potentially benefit from the Trusted Overlay Networkarhiteture:Ad-Ho NetworksAd-Ho networks are untrusted beause the owner of a node on the ad-honetwork has aess to all submitted data and an eavesdrop on data ormanipulateand drop data. TON protets transmitted data against tampering and traffianalysis. TON also eliminates the problem of free-riders who use the networkinfrastruture without forwarding any data.Distributed File SystemsAs mentioned in the last setion, any distributed peer-to-peer file sharing appli-ation or distributed filesystem has benefits on TON, beause an adversary wouldnot be able to ompromise or injet nodes with maliious ontent. Normally,distributed file systems have to implement repliation in order to protet againstmaliiously modified files [57℄.Global ComputingGlobal Computing suh as SETI�Home is another appliation for TrustedOverlayNetworks [19℄. When an adversary tampers with the partiular result of somenodes the global result is bogus. To protet against this attak omputation hasto be repliated, whih is expensive. In Trusted Overlay Networks repliation isunneessary, sine the nodes are proteted by Trusted Computing hardware.Eletroni Voting or Consensus SystemsAny system for onsensus or in partiular eletroni voting has to be robustagainst Byzantine failures. In partiular, the poliies have to be enfored, suhthat entities do not ast a vote twie or jam the onsensus proess, as, for exam-ple, in Dining Cryptographers.Instant MessagingInstant Messaging is a distributed system that relies on a trusted entral serverfor diretory lookup and message forwarding. This one single trusted entity anfail or get ompromised. With Trusted Overlay Networks we an distribute thefuntionality of this one single trusted entity aross the whole network.



Chapter 3
Model and Definitions
Before we get into the design of STONe in this hapter we explain the underlyingmodels for seurity and networks used in this thesis as well as potential attaks andattak goals onsidered in STONe's design. A reader who is only interested in thesystems design and implementation an skip this hapter and go diretly to hapter 4.3.1 Communiation ModelA network is a set of nodes and links thatmaps to a graphG = (V,E) of verties and edges.Nodes are onneted with bidiretional links and ommuniate by sending data overthese links. We distinguish between synhronous and asynhronous ommuniation.Synhronous ommuniation always depends on a global lok, whereas nodes areallowed to send data at any time in asynhronous ommuniation. We always assumethat nodes are able to separate real data from noise in asynhronous ommuniation.Our model assumes asynhronous Internet ommuniation that uses a standardTCP/IP stak, as in ommodity operating systems. Links are bidiretional point-to-point onnetions, and messages are forwarded hop-by-hop. Routing table informa-tion gets updated using some standard link-state protool like OSPF. Single routers inthe network are untrusted and an be administered by different authorities.An appliation sends traffi at any time through a ommuniation hannel, wheneverdata is available from the user. This hannel an either be onnetion-oriented oronnetion-less. A forwarding node buffers reeived pakets when a potentially highsystem load does not allow forwardingmore pakets. Otherwise the node immediatelysends a paket off to the next hop. We assume that ommuniation hannels last overan extended time period and that partiipating nodes repeatedly exhange messagesover the same ommuniation hannel. Every ommuniation hannel has a paththrough the network. This path is not neessarily stati and may hange over time.In the beginning this path gets initialized, but the network may do multiple path11



12 Chapter 3. Model and Definitionsreformations during the duration of the ommuniation hannel formultiple purposes.Users initiate sessions to exhange traffi with other nodes in the network, andthey do this arbitrarily. A session depends on some appliation and an for exampleonsist of web browsing, peer-to-peer ommuniation or instant messaging. Studieshave shown that session arrival is best modeled aording to a Poisson distribution,but paket arrival times are usually distributed aording to heavy-tailed distribu-tions [141℄.Espeially user sessions are important for anonymity, and we need to distinguishbetween interative sessions and non-interative sessions. In an interative session twonodes send request and reply messages bak and forth. The requesting user waits forthe answer or retransmits the request before she sends out the next message. Inter-ative sessions an have distintive patterns that give an adversary extra information.For example, when a user opens a browser, and the browser always points to the sameuser-speifi homepage, it gives an attaker some extra information. Identifying aweb page � given the number and lengths of enrypted pakets � is not hard [183℄. Inontrast, a non-interative session always onsists of a steady unidiretional streamof messages. We use the term paket for session-layer data and the term message fornetwork-layer data. For example, an HTTP request would be a message and IP datawould be a paket. Data units in STONe's network layer are alled a fragments.A ommuniation network is haraterized by its diameter and its bisetion width.The diameter defines the maximum distane between any pair of proesses, and thebisetion width the minimum number of edges that have to be removed in order todisonnet the network into two halves with idential number of proessors [120℄.The diameter defines the maximum lateny in the network. The bisetion width isa ritial performane fator in a network, sine it desribes the network bottlenekunder ongestion. A ringwith n nodes, for example, has a relatively poor performane,sine its bisetion width is 2 and the diameter is n
2 . In ontrast, a 2-dimensionalmesh with n nodes has a bisetion width of √n and a diameter of 2

√
n, whereas themaintenane ost per node is almost the same. Furthermore, a mathing of a graph ornetwork is a set of edges, suh that no two of them have a vertex in ommon. Thelargest possible mathing on a graph is a set of N

2 nodes, and this is alled a perfetmathing. A graph with a perfet mathing has a bisetion width of N
2 .The ongestion of a link is the expeted queue length of messages over this link atany given time. A ongestion of 1 means that there is no ongestion, and the networkan always work effiiently. When a link has mmessages queued up the m-th messagehas to wait for (m-1) steps until it gets forwarded.



3.2. Systems Model 133.2 Systems ModelIn this work we assume an asynhronous distributed system model. The networkonsists of N nodes that are fully onneted through the Internet. Every node in thedistributed system an have a different administrator and also run different versionsof the appliation.Appliations ommuniate whenever data is available to send. Asynhronousdistributed systems have ommuniation unertainty, beause nodes may rash andremain undeteted. In addition, our model allows Byzantine failures, suh that anadversary an ompromise nodes and tamper with ommuniation hannels.Protetion against Byzantine failures is ahieved by sandboxing and blak-boxingfrom Trusted Computing hardware. Chapter 2 ontains explanations about TrustedComputing and Trusted Overlay Networks.3.3 Seurity ModelIn our seurity model we tolerate an adversary that an launh any type of software-based attak. We model the adversary as a Dolev-Yao attaker. A Dolev-Yao attakeris a non-deterministi proess that has omplete ontrol over the ommuniationnetwork [76℄. The attaker an introdue pakets into the network when she has aessto the untrusted operating system on a node ; these pakets may have fake identities,mount a DDoS attak or try to introdue Trojans into the overlay nodes. Also, anattaker might pose as a honeypot to interept all ommuniation between a senderand a reeiver, whih is alled a man-in-the-middle attak. Sybil attaks are possible,when an adversary tries to ompromise the network with her own ompromisednodes [56℄. We distinguish between an adversary with physial aess to the mahineand the adversary with only virtual aess. The adversary with physial aess aneavesdrop on network-layer pakets. The other may not be able to.A seond type of adversary is an external attaker with aess to the network. Thisadversary an listen to network ommuniation or tamper with traffi. Usually, thiskind of adversary needs to have signifiant power equivalent to an Internet ServieProvider (ISP).STONe is a ommuniation infrastruture that protets against most ommonnetwork attaks. Speifially, it protets against the following attaks:Denial-of-Servie AttaksAn adversary an launh DDoS attaks on other nodes in the network, eitherfrom within the network or as an outsider. These DDoS attaks have multiplelayers: First, the adversary an flood the network with pakets to saturate thenetwork bandwidth. It is typially quite hard to protet against this type of



14 Chapter 3. Model and Definitionsattak, so the goal is to ahieve an improvement over a normal TCP/IP-basednetwork ommuniation hannel. Seond, the adversary an do protool-levelattaks like SYN floods [20℄. And furthermore, it an launh appliation-levelattaks like HTTP floods [103℄. In these ases either the network infrastruture isobstruted or appliation-level servies do not work anymore.Routing AttaksSabotaging the network as well by deliberately (i) rerouting messages, (ii) re-ordering messages, (iii) dropping messages, (iv) launhing DDoS attaks againstservers, or (v) manipulating NodeIDs is another possible attak. Standard rout-ing protools suh as BGP [150℄ have these problems. For example, an adversaryan tamper with the protool that updates the routing tables and pretends linkfailures. The adversary thus dereases the performane of the network.Traffi AnalysisAn adversary is able to arry out Traffi Analysis in two different ways: Beausesoftware has bugs an adversary ould either ompromise the OS kernel or anotherproess to measure network paket data, or she ould probe nodes remotely. Whennodes are ompromised it is straightforward to eavesdrop on traffi to either findspeifi targets in the network or to loate and trak ommuniation to violateprivay. An adversary investigates ommuniation patterns over multiple nodesto find out whih parties are ommuniating. On the other hand she is alsoable to analyze traffi harateristis to see whether, for example, some party isrunning peer-to-peer traffi or browsing the web. By remotely probing nodesonly a limited set of attaks is possible. In this attak an adversary determinesthe load of the individual nodes or measures the timing for enryption [131℄.3.4 Privay ModelAording to Merriam-Webster, Privay is �the quality or state of being apart fromompany or observation�. For example, any unauthorized intrusion is a breah of pri-vay. On the Internet, breah of privay is often assoiated with stealing onfidentialinformation suh as redit ard numbers. In ommon peer-to-peer protools, privateinformation leaks at different plaes [43℄. In this thesis we onsider the followingattaks on privay:Passive Logging AttakLogging and interseting information on the Internet is a large threat. An ad-versary who logs any type of information on the Internet is onsidered a passivelogging adversary. Logging information that is freely available is nothing illegal,but the amount of available information may not be authorized by the logged



3.4. Privay Model 15entity, beause people are unaware of tehnial options they have available tohide this information. On the Internet, for example, several anonymous routingsystems are available to protet information about an IP address leaking to awebsite (e.g. [75, 148, 2℄).Phishing AttakIn a Phishing attak an adversary uses soial engineering to fool somebody intoa fake network site. Phishing attaks set up forged websites of real ompanieson whih an adversary wants to obtain any onfidential information suh asredit ard or soial seurity numbers. The forged websites pretend to be majorompanies suh as PayPal, Citibank, or EBay. Often, Phishing adversaries sendoffiial-looking emails to their vitims that point them to their forged website.The main vulnerability Phishing adversaries exploit is people's superfiial trustin ompanies' logos and letterheads. These sams are sometimes even so hard todistinguish that there are Phishing IQ tests [16℄. Eletroni ertifiates solve thisproblem, sine they learly identify the ompany the website belongs to [22℄.Phishing does not require that many people get triked into the sam, but thenumber of irulating email messages is so large that even a few hundred usersare suffiient to ause a signifiant amount of damage [111℄.Pharming AttakIn a Pharming attak an adversary ompromises the Internet name server di-retly [111℄. Whenever a lient ontats the name server it gets redireted tothe adversary's website. Pharming attaks require the adversary to exploit someatual tehnial vulnerabilities, whereas a Phishing adversary exploits humanweakness.Censorship AttakIn ontrast to the previous passive attaks that try to gather information froman individual, the ensorship attak is an ative privay intrusion attak. Whensomeone publishes legitimate information and an adversary suppresses or deletesthis piee of information it is also an unauthorized intrusion. On the Internetensorship attaks are generally hard beause only ISPs an ensor informationglobally by disonneting servers. In a loal environment firewalls are usuallybeing used to shut off information from the Internet. Censorship is not onlyintrusion into the author's privay, but also into the reader's privay, beausesomeone else deides whih information people are able to obtain. Of ourse,there have to be methods for bloking illegal ontent.Impersonation AttakAnother type of a privay breah ours when an adversary impersonates some-one's identity after stealing signifiant identifiation (aka identity theft). This



16 Chapter 3. Model and Definitionsauses massive privay intrusion beause the adversary an impersonate anotherperson online and ause serious damage. Like the ensorship attak imperson-ation is also an ative intrusion attak.Traffi AnalysisTraffi Analysis by itself is also a breah of privay. When an adversary analyzestraffi to unover the identities of the sender and the reeiver she violates privay.We disuss the underlying anonymity model of Traffi Analysis in the followingparagraph.3.5 Anonymity ModelAnonymity is defined as �the state of not being identifiable within a set of subjets,the anonymity set� [143℄. An anonymity set is therefore the set of all distinguishablesubjets in the system. Anonymity helps to protet privay but falls short of realprivay.Someone ould say that ryptography provides anonymity beause it provides op-erations to randomize messages [174℄. In partiular, seure multiparty omputa-tion [89, 146℄ and seret sharing [167, 45℄ are related to anonymous ommuniation.However, this is only one part of anonymity. Messages have multiple properties � forexample, a network message has a ertain timing behavior that ryptography annothide, and only synhronous ommuniation, as in seure multiparty omputation,an solve this problem. If the anonymity set is a pool of messages it an be identifiedbased on the timing behavior. Furthermore, if the anonymity set is the set of all nodesin the network, ryptography alone does not help.On the other hand steganography an solve some of these problems, but this is onlypartially true. Steganography hides messages without using ryptography by embed-dingmessages, for example, in digital images or TCP protool headers [172, 106℄. How-ever, it is hard to prove seurity, and often steganography an be broken. Steganogra-phy not only disguisesmessage ontent but also hides the atualmessage transmission.Therefore, protetion against traffi analysis is in some sense steganography.In our anonymity model for ommuniation networks we define an adversary'sgoals for traffi analysis. In a network of N nodes an adversary himself an be thesender, the reeiver or a third party. This adversary ontrols any type of nodes withinthe network � senders, reeivers or internal idle nodes � and pursues the followinggoals [148℄:Sender AnonymityThe sender of a ommuniation hannel wants to protet her anonymity againsta Traffi Analysis adversary. The adversary ould either be the reeiver or anylimited set of nodes in the network.



3.5. Anonymity Model 17Reeiver AnonymitySimilarly, the adversary's inentive is to find out the orret reeiver. Any nodealong the path from the sender to the reeiver has to know how to forward thepaket, but there exist tehniques that provide this message forwarding withoutrevealing the reeiver's identity.Unlinkability of Sender and Reeiver or internal nodesWhen the adversary already knows the possible andidates for senders and re-eivers of a partiular ommuniation hannel in the network, her goal is to linkthem together. She may also know the sender or reeiver already but wants tounover the other party.Loality of NodesIn some ases the adversary wants to find out where a ertain node is loated,either in its logial position in the network defined by its neighbors, or in its ab-solute geographial position. This attak goal is independent from the previousones where the adversary's only goal is to detet senders and reeivers.Traffi CharateristisIn addition to the sender and reeiver identity of a ommuniation hannel theatual traffi harateristis provide important information to the adversary. Shean then expliitly state that some node downloaded files from ertain sites, andshe may even be able to reonstrut the ontent.Ativity MonitoringIn this ase the adversary wants to determine whih node is ative or onlineat a given time. This is also some form of anonymity and furthermore helpsto break unlinkability, sine nodes have to be ative when they partiipate in aommuniation hannel.Furthermore, an adversary with external resoures has an advantage against an ad-versary without external resoures. The adversary with external resoures an om-muniate with ompromised nodes through her own ommuniation network. Shean use the network to reroute messages and has additional omputational power toanalyze traffi logs she ollets.We also distinguish between internal and external adversaries. An external adversaryan only observe traffi and send pakets on the links, but an internal adversary hasfull ontrol over the nodes.Speifially, in STONe we are onsidering the following popular traffi analysisattaks that are weaknesses of existing systems for anonymous ommuniation:
• Predeessor AttakThe predeessor attak is a ommon way to ompromise sender/reeiver ano-



18 Chapter 3. Model and Definitionsnymity. In this attak an adversary exploits the fat that many systems againsttraffi analysis use frequent path reformations to simulate a random walk overa graph (e.g. [75, 148℄). However, sender and reeiver never hange and aretherefore learly distinguishable from other nodes. When an adversary observespredeessors of network pakets over time on a limited set of nodes, and thenetwork pakets always ome from the same node, an adversary an onludethat this node must be a sender. This attak only works when the adversary isable to learly identify the end-to-end onnetion related to the urrent messageas well as its predeessor [198, 171℄.
• Intersetion AttakIn an intersetion attak an adversary monitors properties at nodes and orre-lates the olleted information. For example, in a partially onneted network,when the adversary disovers the sender's neighbors in the network, she is ableto redue the sets of nodes that belong to the ommuniation path. Or, inan unsynhronized network an adversary an analyze traffi volumes to orre-late possible ommuniation endpoints [67℄. Alternatively, an adversary mightmath the length and ontent of messages along different links and use thisinformation to reonstrut the ommuniation path [34, 138℄. This informationan also be used to onfirm some hypotheses about the traffi pattern [68℄.
• Passive Logging AttakNetwork sites are logging network addresses of lients that have aessed thesystem for maintenane reasons, and an adversary an abuse this informationand ollet an aess log of users onneting to the site, suh as a web serveraess log. A publi Internet lient by itself annot exhange or hide its networkaddress [197℄.
• Timing AnalysisIn a Timing Analysis attak an adversarymeasures themessage inter-arrival timeson the set of nodes she ontrols. She then orrelates the measured informationfrom different nodes and when the informationmathes she onludes that theymust have forwarded the samemessages with high probability. This requires thatthe adversary is able to distinguish and identify messages on the network [121℄.
• Membership List AttakBy olleting information about the time when nodes enter and leave the net-work, an adversary is able to narrow down the anonymity set from the set of allnodes in the network [9, 41℄.



3.6. Notations 19Anonymity Measure The ommon measure for anonymity is the entropy of the ano-nymity set. Entropy is a measure for randomness that has the following three assump-tions [168℄:
• A small hange in the probability of membership p(i) in the anonymity setshould only hange the entropy by a small amount.
• When all ourrenes i are equally likely then inreasing one set of ourrenesalways inreases entropy.
• The entropy of two sets of ourrenes is the weighted sum of the entropies ofthe two sets.The entropy funtion is then defined by

H(x) = −
n∑

i=1

p(i) log2 p(i).In our anonymity model we require randomness of the anonymity set. It shouldbe hard for an adversary to redue the anonymity set to the nodes he is interested in.Then, as a logial onsequene, anonymity is the entropy H(A) of the anonymity set
A divided by the maximum entropy HM [163, 72℄:

d(A) =
H(A)

HM

=
−∑N

i=1 pi log2(pi)

log2(N)

d is also alled the degree of anonymity [72℄. The degree of anonymity desribes theamount of information about the anonymity set the system is leaking. When d → 1 allnodes appear to be a solution to the anonymity attak. If, however, d → 0 the attakeris suessful and an isolate an element from the anonymity set. This definition ofanonymity as the entropy follows the randomness measure of other disiplines, suhas ryptography and steganography.3.6 Notations3.6.1 General NotationsThis thesis uses most standard onventions for mathematial notations. When weuse log it always means log2 unless it has an expliit base b as in logb. ln refers to thenatural logarithm with base e.Table 3.1 shows the standard terms used in this thesis. These terms desribe keysand identifiers in Trusted Computing or STONe, or desribe some properties of thenetwork.
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Symbol Desription
Nmax Maximum number of nodes in STONe; this value dependsonly on the length of STONe addresses (n= log Nmax= 64)
rj j-th n-bit random number in the internal pseudo-randomnumber generator of Trusted Computing
NSTONe Number of nodes in STONe
SSTONe 128-bit seret shared by all STONe nodes
hTC(·) Hash funtion of the Trusted Computing platform
hSTONe(·) Hash funtion of STONe; hSTONe(m) = hTC(SSTONe | m)

PKTCi
1024-bit RSA publi key built into the Trusted Computingplatform of node i

SKTCi
1024-bit RSA seret key built into the Trusted Computingplatform of node i

KTCi
128-bit AES seret key built into the Trusted Computing plat-form of node i

Kj
STONei

128-bit seret key for stream ipher between STONe nodes
i and j

DHt
STONei

Diffie-Hellman key share of node i for setting up streamiphers at the t-th insert operation; DHSTONei
=

hSTONe(KTCi
| SSTONe)

Cs
STONei

Opaque 96-bit apability used for STONe Soket ommuni-ation to address servie s on node i

ID
(j)
STONei

64-bit identifier for the j-th virtual hyperube address (0 ≤
j ≤ k − 1) of node i; ID

(j)
STONei

= hj+1
STONe(DHSTONei

)

PKs
TNSd

Publi key in TNS for destination d and servie s

SKs
TNSd

Private key in TNS for destination d and servie s

IDs
TNSd

Name identifier in TNS for destination d and servie sTable 3.1: Definitions of terms used in the thesis.



3.6. Notations 21Distribution Symbol PDF/PMF EntropyBinomial Dist.1 B(n, k, p) P (X = k) =
(
n
k

)
pk(1 − p)(n−k) ln(

√

2πenp(1 − p))Uniform Dist. U(a, b) P (X = k) =

{ 1
b−a+1 , a ≤ k ≤ b

0, otherwise
ln(b − a + 1)Exponential Dist. Exp(λ) f(x) = λe−λx 1 − ln(λ)Normal Dist. N(π, σ) f(x) = 1

σ
√

2π
e−

(x−µ)2

2σ2 ln(σ
√

2πe)Table 3.2: Definitions of probability distributions used in this thesis.1The entropy for the binomial distribution assumes the entral limit theorem. [173℄3.6.2 Probability TheoryTable 3.6.2 shows the probability distributions we use in this thesis. The entropy
H(X) orresponds to Shannon's original formula [168℄: For a disrete distributionwith pi = P (X = i) we have H(X) =

∑N
i=0 pi log pi. In the ontinuous ase it is

H(X) =
∫∞
0 f(x) log f(x)dx where f(x) is the probability density funtion. We say therandom variable X follows distribution D when X ∼ D. To approximate the BinomialDistribution with the Normal Distribution we use Central Limit Theorem [173℄: When

n is large B(n, p) ∼ N(np, np(1 − p)).3.6.3 CryptographyIn this thesis we use publi key enryption, signature shemes, and hash funtions. Asin our ommuniation model a message m is a bit string of arbitrary length, and thismessage for the ryptography operating an be any type of data, within a session oron the network-layer. In m = m1|m2|...|mk we ompose a message m from k messages
m1...mk. We denote a message m signed with the orresponding private signing keyof node i's publi key ki by <m>ki

. The hash of a message m is h(m). The k-timesiteration of h on a message m is written as hk(m). σ, ki) denotes the verifiation ofsignature σ using publi key ki. Furthermore, we denote Ek(m) the enryption ofmessage m under key k, and Dk(c) is the deryption of iphertext c under key k.





Chapter 4
STONe DesignIn the previous hapters we introdued Trusted Overlay Networks as a distributedomputing arhiteture that establishes trust between partiipating nodes. STONe'sdesign is based on a Trusted Overlay Network that onsists of distributed trustedproxies. STONe's main design goals are: salability, resiliene and resistane againsttraffi analysis.To ensure salability and resiliene STONe has to support short node insertiontimes, whih requires fast neighbor disovery and key exhanges. In ontrast, ananonymity network that relies on a stati set of proxies, suh as Tor [75℄, does notneed to be salable.Therefore, we designed STONe as a strutured overlay network that is based on atopology similar to a hyperube (see e.g.[147℄). Suh a topology is more advantageousthan a tree or ring struture sine it minimizes the number of key exhanges and theaverage path length at the same time, thus optimizing the network for high hurn.These are the design goals in STONe:Deentralized ControlSTONe is distributed aross different administrative domains. In Trusted Over-lay Networks nodes an be administered by different people, but seurity andanonymity during ommuniation are still guaranteed aross the network.No Central Membership ListSTONe does not have a entral membership list of nodes in the system. Eahnode reognizes only the addresses of its immediate neighbors and any infor-mation that should be proteted is hidden within the trusted proess. A entralmembership list is a potential threat to anonymity, beause an adversary anidentify all nodes of the network and shut them down.Seure CommuniationSTONe provides appliation-level endpoints for a seure ommuniation infras-23



24 Chapter 4. STONe Designtruture. When two parties ommuniate, an adversary should not have thehane to launh any ommon attaks unless she breaks into the Trusted Com-puting hardware.Transparent Anonymous CommuniationSTONe Sokets are appliation-level endpoints for anonymous ommuniation.When an appliation uses STONe Sokets, it is hard for an adversary to ompro-mise anonymity of the nodes partiipating in ommuniation.Large Address Spae to Protet against DDoS attaksSTONe's overlay network provides a 96-bit address spae that ontains nodesthat are behind different NATs and firewalls. In STONe an attaker is not able tosan the 96-bit address spae in a brute-fore manner to loate nodes she wantsto attak.Self-Certifying Peer AddressesSTONe provides a Trusted Name Servies (TNS) that maps names to anonymousaddresses and self-ertifies these addresses in the overlay without revealing iden-tities to anyone. The appliation has full ontrol over any information that goespubli in the overlay.Seure and Anonymous RoutingSTONe is funtional despite ommon attaks on the overlay. For example, adenial-of-servie attak on the overlay should not weaken the system signifi-antly, sine an adversary ould use this attak to sabotage the anonymity ser-vie.Salable and Resilient RoutingSTONe provides a salable and resilient routing infrastruture layer to maintainseurity and anonymity in the network aross firewalls and NATs. In STONe,every node must be able reah every other node with high probability. Further-more, STONe routers are not always available. Nodes that forward messages inSTONe frequently leave and enter the network. Therefore, STONe has to pro-vide a stealthy sheme to keep routing tables up-to-date. This an importantfeature in a system that provides an infrastruture with different servies. Forexample, in some appliations. suh as Instant Messaging or Internet telephone,lients have an inentive to stay online for longer time intervals, whereas a sim-ple file-download lient may log off after a download finishes. Trusted OverlayNetworks' ability to protet against Byzantine faults without using expensiverepliation tehniques provides a strong basis for tolerating high hurn in thenetwork.



4.1. System Arhiteture 25Simple Programming Interfae and Robust Name ServieSTONe provides a simple appliation soket interfae. This interfae is similarto normal Internet sokets. Further, STONe requires a robust and trusted nameservie that maps names to opaque network addresses. It is important that thisname servie is robust against ommon attaks.4.1 System Arhiteture
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Figure 4.1: STONe Arhiteture: A single STONe node onsists of the Proxy and Router thatare loated in the Trusted Computing Base of the PC. The STONe Soket library is diretlylinked to the appliation. Appliations an be inside and outside the TCB.Figure 4.1 shows the arhiteture of STONe. STONe does not require any trustedthird parties for establishing seure routing, and it also does not require ostly traffianalysis protetion to ensure anonymity and improve seurity.Eah STONe node onsists of three omponents: STONe Proxy, STONe Router, andthe STONe Soket library, as shown in figure 4.1. The STONe Proxy and the Routerare two individual proesses loated in the TCB. When a node onnets to STONe itproves by remote attestation to its neighbors in the overlay that the ontents of theTCB � STONe Proxy and Router � are trusted, and that neighbors in the overlay antrust future transmissions from this node. Appliations are ompletely independentfrom STONe. If they run inside the TCB, a STONe node an use remote attestationas well to verify trustworthiness of the appliation to its peers. Instead of linkinga standard OS soket library, appliations have to use the STONe soket library toommuniate with other appliations in the overlay.



26 Chapter 4. STONe DesignNetwork Topology STONe is a strutured routing overlay network derived from ahyperube topology that not only provides salability but also availability aross fire-walls or NATs. This is a fundamental differene to ontent-distribution overlays suhas Gnutella [7℄, where the the total amount of data in transit in the overlay networkis muh less, beause it only serves lookup requests and no data transfers. STONe isalso different from web ahing overlay networks [1℄, beause nodes may enter andleave the network, and partiipating nodes are not neessarily loated in the publiInternet but in private networks behind NATs.In general, STONe works on any strutured overlay. However, STONe has to opti-mize the overlay struture for salability and resiliene. STONe's topology is equivalentto a CAN network with diameter d = log N , but as pointed out earlier, the main dif-ferene to many existing strutured peer-to-peer networks is that every STONe nodeitself is the key and vie versa. Hene, STONe does not require leaf nodes that repliateobjets, as for example in Pastry [154℄. But it requires redundant routing paths, sinenodes may frequently leave and enter the overlay. Furthermore, lateny has to be asshort as possible, and the overlays's goal is to minimize the number of hops on theroutes and the routing table size should be minimal.A node joins STONe by authentiating itself to an existing bootstrap node onthe overlay using remote attestation, and from there it finds its existing neigh-bors on the hyperube. The node's hyperube address in the overlay network isa ryptographially-seure keyed hash of its Diffie-Hellman key share: ID
(j)
STONei

=

hSTONe(DHSTONei
). DHSTONei

is derived from the Trusted Computing seretKj
STONei

.Assigning addresses in this fashion randomizes the overlay topology and makes thesystemmore robust against traffi analysis. The built-in seret Trusted Computing key
KTCi

is seured in hardware making it hard for an adversary to forge a valid identity.STONe Proxy: Similar to proxies in other anonymity networks, the STONe Proxy isresponsible for relaying pakets between adjaent STONe nodes. The Proxy maintainsfor eah of its neighbors a onnetion state and a shared stream ipher with the sharedkeys Kj
STONei

between nodes i and j.Whenever the STONe Proxy onnets to another node in the network, it firstdoes a TCP handshake, then exeutes the remote attestation protool, and finallyruns a simple Diffie-Hellman key exhange to set up a shared key. STONe keys areautomatially ertified by remote attestation.The STONe Proxy protets STONe against attaks from the underlying network. Anattaker an launh attaks on STONe from outside the overlay by injeting paketsinto the TCP streams or dropping pakets in some streams. The STONe Proxy ats asa rudimentary firewall; pakets arriving at wrong ports, or with invalid TCP sequenenumbers are silently dropped. When the STONe Proxy identifies too many orrupt



4.1. System Arhiteture 27pakets on one stream, it quikly establishes a different TCP onnetion with its peers.If an attaker overloads a STONe Proxy by flooding it with pakets, the routerwould normally drop TCP onnetions. Yet, when these pakets only initiate newonnetions it would still prevent the router from proessing other pakets withoutadditional delay. In STONe we separate Proxy and Router, and therefore the Router isable to start a different STONe Proxy and reonstrut the onnetion state using theinformation from the routing tables in the STONe Router. This is not the only advan-tage of the separation between the STONe Proxy and Router. It also allows enryptionand routing of pakets to happen in parallel. In partiular, future ommodity PCs willhave symmetri multiproessing apabilities, and therefore enryption and routingan take plae in parallel.4.1.1 STONe RouterThe STONe Router is the main part of the system. It maintains the routing tables,routes STONe pakets in the overlay, and provides STONe sokets to the appliation.The Router also handles the initial handshake for new nodes entering the system.A node that wants to join STONe onnets to the Router, after it has suessfullyompleted remote attestation. To protet against attaks from the network, the Routerdoes not aept any messages from nodes that did not sueed in remote attestation.After the new node has onneted, the Router hands off the onnetion to the STONeProxy. When appliation data arrives from the STONe Soket Library, the Routerreates a STONe paket and forwards it to the STONe Proxy. When STONe paketsarrive from the network via the STONe Proxy, the Router looks up the next hop in itsrouting table, and forwards the paket to the STONe Proxy.The STONe Router provides two servie abstrations to the appliations throughthe STONe Soket library� a onnetion-oriented trusted stream servie (TSS) and atrusted datagram servie (TDS). The internal protool in TSS is idential to TCP, butit implements only flow ontrol, beause ongestion ontrol would interfere with theunderlying onnetion. Instead, TSS relies on the ongestion avoidane mehanismthat is inherent in our anonymous routing tehnique, as we will see in the nextsetions. In ontrast, TDS provides a onnetion-less datagram servie similar to UDP.There is no extra protool header overhead. TDS and TSS use the fields in the STONefragment that we desribe now.4.1.2 STONe Pakets and FragmentsSTONe pakets � the ommuniation unit for datagram sokets on the trusted data-gram servie (TDS) � onsist of multiple STONe fragments. Fragments and pakets havethe same format, with pakets being the appliation-level unit. Figure 4.2 shows the
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32 bit                                 32 bit
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Source Address

Destination Address

Final Address

Checksum

Acknowledgement NumberSequence Number

Destination ServiceSource Service

Figure 4.2: STONe fragment header: This 68-byte header is mostly self-explanatory. STONeaddresses are generally 64 bits long. Flags desribes speial fragment types suh as eho frag-ments, that are used for end-to-end delay measurements.The Paket IDs are listed in Table 4.1.STONe fragment header. It ontains three 64-bit STONe addresses, the soure, desti-nation and final addresses, and the orresponding 32-bit servie-port numbers. Firstwe explain routing that does not make use of the final field, whih does not protetagainst Traffi Analysis. The STONe node sending the fragment plaes the destinationaddress in the destination field. The final field is reserved for the use of an intermediaterelay when STONe protets against Traffi Analysis. Other fields are self-explanatoryand similar to TCP/IP. For example, the STONe Paket ID marks the ontent of thepaket as either a ontrol paket or a user-data paket. And the soure and destinationservies are used for multiplexing different soket endpoints similar to TCP/UDP ports.The size of a STONe fragment an be variable and does not depend on IP paket sizeonstraints beause STONe is based on TCP, whih is a stream protool without fixedpaket sizes.When the Router reeives a fragment from the Proxy, it omputes the heksumover the whole fragment. Then the Router determines the TTL of the fragment.When the TTL of the fragment is 0 the fragment is dropped � otherwise the Routerderements TTL and uses STONe's routing algorithm to look up the next hop. Finally,the fragment with the updated heksum gets forwarded to this new hop.Message Types Table 4.1 shows the different message types for the Paket ID field inthe STONe header. Most of them are self-explanatory and relate to TCP's pakets. Ajoining node sends an T-INSERT-KEY message into the network. When the T-INSERT-KEY arrives at the destination node it returns a T-START message. Data pakets have a



4.2. Seure Communiation 29Type DesriptionT-SYN initiates handshake with another nodeT-SYNACK aknowledges T-SYN paketT-ACK aknowledges message pakets other than T-SYNT-INSERT-KEY sends an insert key message into the networkT-START onfirms when insert key message arrives at orret nodeT-DATA sends STONe data messagesTSS-CONNECT initiate a TSS onnetionTSS-FIN terminate a TSS onnetionTable 4.1: Paket Types in STONe: Types starting with a T are for low-level ommuniation inSTONe, and TSS paket types are for high-level ommuniation in the TSS abstration.T-DATA identifier. STONe does not require a T-FIN paket, beause FINs are impliitthrough TCP. Whenever the TCP onnetion with another node terminates, STONealso terminates the onnetion automatially.4.1.3 STONe Soket LibraryThe STONe Soket Library is a wrapper that exports a standard soket interfae forbakward ompatibility with existing appliations and ease-of-use. Internally, eahsoket file-desriptor is mapped onto a 96-bit opaque apability. The soket systemalls are trapped by the library and mapped onto messages over UNIX sokets tothe loal STONe router. The library also implements a pseudonym look-up servie,i.e., a lient for the Trusted Name Servie (TNS) that maps names to self-ertifyingapabilities. STONe is hardened against attaks on the soket library. Even if anattaker were to modify the library, she would not be able to aess onfidentialSTONe information or ompromise the anonymity of ommuniation.4.2 Seure CommuniationIdeally, seure ommuniation would be provided by the Internet protool, but un-fortunately, there are some ommon problems. Even though seurity protoolslike IPse, TLS, OpenSSL or OpenSSH provide network-layer and end-to-end seu-rity [108, 100, 73, 15, 14℄, seure routing is still an unsolved problem. Routingprotools like OSPF distribute link-state on the Internet [130℄, but in environmentsthat are prone to Byzantine failures these routing update messages are still subjet toattaks [142℄. On the other hand routers an be maliious [128℄.Furthermore, network address distribution must be seure. An adversary who isable to obtain large number of network addresses is able to ompromise the network.This is espeially a problem in modern network onfigurations where addresses areobtained dynamially. For example, in a peer-to-peer network an adversary an often



30 Chapter 4. STONe Designobtain as many nodeIDs as she wants and launh a so-alled 'Sybil attak' [56℄.STONe also has to seure the overlay network and make it resilient for randomrouting. Random routing is designed to work in a homogeneous, fast, and reliableenvironment suh as workstation lusters, and in STONe random routing is used towork over a heterogeneous and unreliable Internet.4.2.1 Seurely Assigning Network AddressesAssignment of network addresses is a ommon seurity problem, beause an adversaryan imitate other nodes to ompromise the network. On the Internet, IP addressesare usually alloated by the network provider � often dynamially � and they ostmoney. In ontrast, in peer-to-peer networks, an adversary running a large numberof router instanes an also obtain a separate address or NodeID for every node in thenetwork and ompromise the network. In the Sybil or Elipse attak maliious nodesompromise the peer-to-peer network and imitate other nodes to interept ommu-niation [78℄. Certifiates are always an option to ensure the validity of NodeIDs,but they require a entral trusted ertifiate authority, whih is not ompliant withSTONe's salability requirements. In STONe it is important for routing to use multipleNodeID and have redundany, but on the other hand we want to bind the numberof NodeIDs to the number of available nodes in the system. For example, an adver-sary ould degrade performane of the system by adding a slow mahine and assignthis mahine a vast amount of addresses. Using IP addresses as NodeIDs is also notdesirable beause they are not unique aross NATs and firewalls.Trusted Overlay Networks already have built-in seret keys KTCi
that are uniqueand ertified on every platform. Initially, STONe sets up the Diffie-Hellman key share

DHt
STONei

from the built-in AES key KTCi
using a seure hash funtion hTC . The keyshare DHt

STONei
is used on this node to set up an enrypted tunnel between i and itsneighbor j that uses key Kj

STONei
.STONe omputes the first NodeID ID

(0)
STONei

= hTC(DHSTONei
) from the hash ofthis key share. Computing the NodeID from DHSTONei

has multiple advantages:(i) Any of i's neighbors an verify that i really has the key share, otherwise it wouldnot be able to derypt the data on the seure hannel. Therefore, a neighbor anverify that node i indeed uses the orret NodeID.(ii) STONe arranges nodes randomly and independent of their loation on the underlyingInternet topology. This makes it hard for an adversary to insert nodes lose to aspeifi node in order to eavesdrop on ommuniations or DDoS the node.(iii) STONe limits the number of NodeIDs per Trusted Computing platform (i.e. for everyseret key) beause STONe generates the key share from the internal seret AES



4.2. Seure Communiation 31key KTCi
and some randomness. The only way for obtaining more NodeIDs isto buy more hardware or break existing hardware outside of the urrent STONenetwork. A seond router on the same platform would only be able to aquirethe same set of NodeIDs. Nevertheless, one router per platform does not restritthe number of soket appliations beause the STONe address uses 32 bits formultiplexing different appliations.4.2.2 Seure RoutingThe optimal routing geometry for STONewould be a fully onneted network inwhihevery node an reah every other node within a single overlay hop that is the shortestdistane between the two nodes on the Internet. This approah, however, is notsalable beause a node joining the network needs to obtain identities and keys fromall other nodes in the network. This auses a large time overhead, espeially beausekey hanges are expensive. Furthermore, it uses too many ports on the mahine � thisis a ommon problem when it is loated behind a firewall. Therefore, STONe uses astrutured routing overlay for salability and reliability. However, STONe as a routingoverlay differs from DHT-style routing in many ways:(i) STONe's unique node addresses are the only keys. No additional or repliated keysexist.(ii) STONe has tominimize lateny in the network and not onlymaximize throughputas in ontent distribution.(iii) STONe requires alternate routes for fault-tolerane instead of replias.Beause STONe is based on Trusted Overlay Networks it has a Fail-Stop failuremodel, ompared to the Byzantine model of other omparable overlay networks. ASTONe node that fails or rashes does not turnmaliious unless the TrustedComputinghardware gets ompromised. Adjaent nodes will detet the rash beause the kernelnetwork stak sends a FIN paket in most ases, unless the mahine suddenly getsdisonneted from the network for some reason. To ope with this situation andhekwhether a onnetion is still alive STONe has to send probes over the onnetionregularly if it doesn't expet any real data [30, 159℄.Therefore, STONe an be self-organizing and self-maintaining and does not need toprotet against traitors as ompared to systems that have Byzantine failures. Sinenodes are trusted in Trusted Overlay Networks and do not suffer from suh Byzantinefailures, STONe uses oblivious routing (i.e. the next hop is determined by the destinationand the urrent hop only) and also dynami routing (i.e. it selets the next hop fromthe set of possible next hops based on lowest ost). STONe uses a hyperube-similartopology beause hyperube routing is effiient and requires onlyO(log N) routing table



32 Chapter 4. STONe Designentries for an overlay path length of O(log N). STONe needs to take into onsiderationrouting table size in addition to path length beause nodes have to onnet to theirneighbors when they join the network. Also, hyperubes are symmetri and balaned.This is important for providing anonymous ommuniation that protets againstTraffi Analysis. Traffi Analysis in an asymmetri topology an be signifiantly easierbeause traffi on bottlenek links between two network partitions gives lues aboutthe ommuniation patterns.However, STONe does not use the Internet address spae but reates its own forseveral reasons: First, nodes behind different NATs may have the same private IPaddresses. Furthermore, in a 32-bit IP address spae it is easy to launh DDoS orprobing attaks on nodes by random guessing, even if routing is anonymous [42℄.Therefore, STONe has to use an extended uniform address spae. Internally, STONeaddresses are 64 bit long with a 32 bit servie ID. But externally, they appear to STONeappliations as 96 bit opaque apabilities.STONe uses stati routing tables that only depend on the geometry of the virtualnetwork topology. But they also allow dynami routing deisions based on ostmetriswithin the stati struture. Internet routing protools suh as OSPF [130℄ updatedynami routing tables periodially to optimize routes and propagate link failures.But seure dynami routing is a hard problem beause (i) routing updates have tobe trusted for orretness and not only for performane, (ii) an adversary an simulatelink ongestion to be able to reeive more traffi for routing than the other nodes, and(iii) it is hard to maintain a balaned routing topology when routing tables get updateddynamially, whih is bad for anonymity. For example, BGP is prone to attaks, sineit does not fulfill any of the three issues mentioned [97℄.Stati routing tables, in ontrast, have stronger seurity beause routing tablesonly depend on NodeIDs and the routing geometry, but performane may not beoptimal. STONe balanes the stati topology by determining NodeIDs independentlyfrom their geographi loation. If an adversary wants to injet a node lose to anotherspeifi node, she has to obtain lots of NodeIDs and therefore purhase lots of TrustedComputing hardware. Stati routing tables also give guarantees for path lengths orrouting table sizes. However, stati routing tables doe not optimize for performaneand salability inherently and needs to be reorganized in ase of link failures. STONe'sstati routing tables are derived from an approximation of a hyperube that we disussnext.Hyperube Properties A typial hyperube is a graph G = (V,E) with verties V andedges E. It is the generalization of a three-dimensional ube to d dimensions. Ev-ery vertex of suh a hyperube has d edges, and in total a hyperube has N := 2dverties. Addresses on hyperube verties are bitstrings, and adjaent verties always



4.2. Seure Communiation 33have Hamming distane 1. A hyperube is a reursive struture. By onneting two
(d− 1)-dimensional hyperubes we an build a d-dimensional hyperube. In this new
d-dimensional hyperube the verties' addresses of the two (d−1)-dimensional hyper-ubes are extended by 1-bit prefix 0 or 1, depending on the hyperube the vertex isfrom. The Hamming distane between two arbitrary nodes defines the distane in thenetwork.We all a mathing of a graph a set of edges without ommon verties. A mathingis perfet when the mathing overs all verties. A hyperube has a perfet mathing,and this means that we an split the hyperube in two halves.
Figure 4.3: Projetions of 2- to 7-dimensional Hyperubes from left to right (Soure: MathWorld)Figure 4.3 shows projetions ofmulti-dimensional hyperubes onto the two-dimensionalspae. One big advantage of a hyperube is its large bisetion width of N

2 in a networkof N nodes ompared to other topologies. This eliminates many ongestion bottle-neks and makes it highly salable. Furthermore, hyperubes have short path lengths.The diameter is only log N [120℄.Standard hyperube addresses onsist of bit strings, and on every edge a different bitis flipped suh that two adjaent node addresses have Hamming distane 1. Routingis then similar to lass-less routing in CIDR [85℄: The node ompares the bit stringof the destination address with the one of the urrent address from left to right andforwards the message to the node with the first differene.When we pik two random nodes from anywhere in the hyperube and om-pute the Hamming distane between the random nodes, this distane has a Binomialdistribution that depends on the number of nodes in the network: A hyperube'saddress length is d = log N bits, and every bit is 0 or 1 with probability 1
2 . This is aBernoulli experiment with log N trials and probability p = 1

2 . Aordingly, we derivethe probability Pdist(N, k) that the path length between sender and the reeiver overa hyperube of N nodes is k as follows:
Pdist(N, k) =

1

N

(
log N

k

)

.The expeted distane is µdist = log N
2 , and the maximum distane is Mdist(n) =

log N .STONe uses hyperube-based routing, sine hyperube routing is highly salable,



34 Chapter 4. STONe Design
00

01

10

11

000

001

010

011

100

101

110

111

Figure 4.4: Ring versus Hyperube Routing for 2 dimensions (left) and 3 dimensions (right).symmetri and has short path lengths. The main differene, however, is that notneessarily all nodes of the hyperube may exist in STONe. The hamming distanebetween two neighbors in STONe ould therefore be greater than 1.In a hyperube network of N nodes a single node has about log N routing tableentries similar to a CAN with dimension d = log N [147℄.Figure 4.4 shows the differene between a ring and a hyperube. In ontent-distribution networks ring or tree topologies havemore suitable properties than hyper-ubes when frequent failures our in the network [92℄, but they have a low bisetionwidth and therefore worse behavior under ongestion. Routing in ontent-deliverynetworks solves ongestion by repliation, but routing arhitetures like STONe haveto be optimized for alternate routes in ase of failures. And routing messages in a ringan beome ineffiient for message forwarding on an alternative route even when thepath length is still O(log N) [180℄. For example, when a message for 1 1...1
︸︷︷︸

N−1

happens tobe at 10 1...1
︸︷︷︸

N−2

, and this last link is broken, it goes to 11 0...0
︸︷︷︸

N−2

, and then it needs to fix N-2bits again with an overhead of O(log N).Hyperube-based Routing in STONe Beause STONe's NodeIDs are randomly distributedaross a fixed 64 bit address spae, STONe annot use standard hyperube routing withbit fixing from left to right. Even with onseutive NodeIDs, hyperube routing is notpossible, sine nodes enter and leave the network onstantly, and there are alwayssome address gaps in the hyperube.Instead, STONe uses prefix-based routing on the partial hyperube. In every slot iof the routing table STONe stores the node that mathes i bits of the address' prefix.When there are multiple addresses that suit this requirement STONe piks the onewith the losest Hamming distane, as this optimizes the route.During routing on every hop the prefix length inreases, and eventually, the frag-ment reahes its destination. When the prefix length inreases, the Hamming distanemay derease or inrease depending on the remaining bits after the prefix, but as theprefix length inreases the Hamming distane also dereases.



4.2. Seure Communiation 35When the best prefix math returns a node that does not make any progress, eitherthe hyperube is broken or the destination does not exist. What STONe should do inthis ase depends on the routing semantis: If the destination address exists for sureit tries to forward the paket to the next of the k destination addresses, thus pikingan alternative path. If it is an insert node operation, and the destination address doesnot exist in STONe, it handles the fragment at this node.
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Figure 4.5: Hyperube Routing in STONe with 8-bit identifiers (b=1 and k=1): The top address isa standard 3-bit hyperube address, whereas the bottom address of the label is an 8-bit STONeaddress. The number on the edges is the ommon prefix length of the two adjaent nodes.Figure 4.5 shows hyperube routing in STONe ompared to standard hyperuberouting. In this example every node has a random 8-bit long NodeID. In normaloblivious hyperube routing the urrent node XORs the destination address with itsown address and forwards the message to the node that fixes the leftmost bit that isnot zero. In STONe not every bit in the address has to be fixed, so we route by prefixlength, i.e. the bit position in the routing table where the leftmost bit is differentfrom the destination address.Prefix-based hyperube routing is optimal. Given N n-bit addresses the expetedpath length is always less than log N
2 , whih is the same as an N -dimensional hyper-ube. Using prefix-based routing tables we note that the Hamming distane to thedestination on the first i bits is 0 after i hops, but the Hamming distane of the wholebit string may inrease temporarily along the path. However, the neighbors of a nodeare not always the losest in their Hamming distane. For example if STONe hasnodes 00000, 10100, 11010, 11011, and 11111, and it routes from 00000 to 11111,it traverses through 10100, 11011 to 11111. However, 11010 has a smaller Hamming



36 Chapter 4. STONe Designdistane to 11111 than to 10100 and is not in 11111's routing table, whih is alreadyused by 11010 when l = 1.Optimizing Resiliene The advantage of a stati routing topology like STONe is that itis resistant tomaliious or bogus routing updates. However, stati hyperubes have thedisadvantage that a single link failure already breaks one omplete path. When STONedetets a link failure it usually updates its routing tables and sends a routing updateto its neighbors. However, when routing updates take plae too often it degradesSTONe's performane and salability signifiantly. And often ongestion or failuresare only temporarily and link quality may improve again after a short time. This alsoprotets against temporary DDoS attaks that an be fixed after a short time.Additionally, a single link failure breaks O(log N) paths in the hyperube, andwhen a single link fails along the path, the whole path is broken. Therefore, given ourrouting strategy in a simple hyperube with a fration of pIP faulty Internet paths, theprobability that a path of length Lpath fails is
Pfail(N, pIP ) = 1 −

((1−pIP )N
Lpath
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Figure 4.6: Probability Pfail that a single message transmission along a hyperube path fails underdifferent Internet link failure rates 1% − 5% when l = 1 and Lpath = 2 logN .Figure 4.6 shows Pfail, when the individual link failure pIP varies from 1% to 5%.STONe, therefore,maintains l alternative links per entry in a hyperube node to handleshort-term failures. When the link quality is bad STONe piks a different link. STONemaintains a reliable onnetion between the nodes, and eah node knows almostimmediately when its peer goes down, but a STONe node an experiene internal



4.2. Seure Communiation 37ongestion and drop pakets. When l > 1 Pfail is almost P ′
fail exept that pIP getsreplaed by

p′IP = (1 − pIP )
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Figure 4.7: Probability Pfail that a single message transmission along a hyperube path fails underdifferent Internet link failure rates 1% − 5% when l = 2 and Lpath = 2 logN .Figure 4.7 shows the path failure probability P ′
fail for different Internet path failurerates. We an assume that path failure rates between 0.9% and 1.9% are realisti [139℄,and under STONe's redundant hyperube with l = 2 the network is able to maintainthe same Internet path failure rate for STONe paths.Optimizing Bandwidth The hyperube may not only have bottleneks or ongestion,but beause of the stati hyperube on a heterogeneous network some nodes maybe underutilized and some overutilized. To make the overlay more homogeneous,STONe uses up to k virtual addresses per node to separate low-bandwidth from high-bandwidth nodes. Nodes with higher bandwidth reeive more traffi on the averagethan nodes with low bandwidth. Furthermore, nodes have alternative paths to pikfrom when there is a failure or bad link quality. When all nodes use k = N

log N
STONebehaves like an unstrutured network. STONe omputes the k−1 additional addressesfrom the private key in the Trusted Overlay Networks of the node by haining the hashfuntion:

ID
(k)
STONei

= hk−1
STONe(DHSTONei

)For optimal bandwidth distribution, every node gets ki virtual addresses. If every



38 Chapter 4. STONe Designnode i has ki virtual addresses then the probability that node i is on the path is
Ppath(i) = 1 −

(
K−ki

log N

)

(
K

log N

) = 1 −
(

N−1
log N

)

(
N+R
log N

)where K =
∑N

i=1 ki.
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Figure 4.8: Probability Ppath(i) that a speifi node i is part of a random path in random routing onSTONe for different ki = Rk̄: The larger R gets ompared to average k̄ the larger the probabilityis, but it dereases exponentially depending on the number of nodes in the network. In thisfigure k̄ = 1 and R = 1, 4, 8, 16, 32, 64 depending on the graph.Figure 4.8 shows the probability distribution for different ratios R = ki

k̄
with k̄ = K

Nand K = 2N , and in this ase k̄ = 1. When we inrease the parameter R, a highbandwidth node has a better hane to be on an arbitrary path. The probabilitydereases exponentially with the number of nodes in the overlay network.Optimizing Path Length STONe optimizes the hyperube further: To redue the num-ber of hops along a path STONe is not based on a Boolean hyperube. Instead it piks adifferent base b for the logarithm whih shortens the path length exponentially. Thisis similar to Pastry [154℄ where b determines the number of olumns in the routingtable. Pastry uses a tree geometry that is not suitable for STONe, sine STONe is arouting overlay and does not have any leaf nodes. The downside is that Pastry alsoinreases the routing table size linearly. Only for b = N STONe's overlay network is afully onneted network.In the optimized hyperube the Hamming distane is then defined as the Manhat-tan distane, ie the sum of the absolute differenes of the single digits. Otherwise thehyperube insert algorithm is the same, exept that the routing table updates have to



4.2. Seure Communiation 39be sent to all nodes with the same minmal Manhattan/Hamming distane.Considering the optimizations for resiliene, bandwidth, and path length in thehyperube, STONe's routing table size is
S(N) = k̄l(b − 1)

(

logb(k̄N) − l − 1

2

)

.The orretion fator (1− l−1
2 ) is required, beause there are not enough prefix mathesfor the last slots. The (log2 N)-th slot has only one math, whereas the (log2 N − 1)-thslot has two mathes and so on. Therefore, we need to subtrat∑l

i=0 i = l(l−1)
2 from l.The expeted path length for two random addresses in a normal Boolean hyperubeis log2 N

2 , but in STONe it is only
L(N) =

1

2
logb




N

k̄l
(

1 − l−1
2 logb(k̄N)

)



 ..Cost-based Routing In addition to the prefix length and the Hamming distane,STONe uses a ost metri to allow dynami routing deisions to take plae whenlink failures or ongestion ours. This ost metri depends on the link quality. Whena STONe paket x arrives at a node, the router omputes the longest prefix mathwith x, and looks up the slot in the routing table that has this prefix math. It thensearhes for the entry with the best ost metri out of the l entries in eah slot andforwards the paket to this hop.The ost metri is c(x)
d(x,y) . c(y) is the link quality to next hop y, and d(x, y) is theHamming distane between the destination address y of the paket and the next hop

x. Beause the longest ommon prefix is the main routing riterion, STONe makessure that pakets arrive in log N steps and do not irulate in the network. Algorithm 2shows the routing algorithm. Cost is the ost funtion, whih is the link qualitymetridivided by the Hamming distane of the routing table entry to the destination. Thefuntion Prefix_length returns the ommon prefix length of the two addresses. First,the algorithm piks the longest prefix math out of the k virtual addresses. Then itlooks up the best math with the destination address given the best math out of the
k addresses. If the next hop does not inrease the prefix math, the algorithm triesthe virtual address with the next best prefix math and so on.4.2.3 Seure MaintenaneMaintenane in STONe has three funtions: Handshake, Neighbor Disovery, andRouting Updates. When a new node joins it has to follow STONe's handshake protool
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Algorithm 1 Send Paketsend(p, dest)p.dest= destroute(p, dest, last)
Algorithm 2 Routing Table Lookuproute(p, dest, last)max_slot= 0for i = 0 to k doa[i℄= prefix_length(loal[i℄, last)end forsort(a)for j = 0 to k domax_slot= a[j℄min_ost= MAX_COSTfor i = 0 to k doslot = prefix_length(loal[i℄, dest)if slot > max_slot thenmax_slot= slotdest_table= ifor j = 0 to l doost = ost(slot, j)if ost < min_ost thenmin_ost= ostdest_idx= jend ifend forexitend ifend forend forforward(p, loal[dest_table℄[dest_idx℄)



4.2. Seure Communiation 41until it finds the right position in the overlay. Nodes have to onstantly disoverneighbors in the hyperube and also update routing information based on their TCPstatus.Handshake Initially, when a node wants to join STONe it piks a loal node, finishesremote attestation, and sets up the shared key. After that, ommuniation with anynode is enrypted to avoid detetion, exept for transport-protool handshakes. Theassumption, of ourse, is that the loal node has not been ompromised, but in thissetion we will mention some strategies for deteting this.When a node onnets to the STONe network it first establishes a transport-layeronnetion with a STONe bootstrap node, authentiates itself to STONe by performingremote attestation, and finally sets up a shared key with adjaent STONe nodes.Figure 4.9 depits, in detail, the handshake when Node 1 onnets to Node 2.
Node 1 Node 2

T-SYN(DH-key, ts1)

T-SYNACK(DH-key, ts1, ts2, TNS address)

T-ACK(ts2, ts3)

Remote Attestation

STONe Fragments

Figure 4.9: STONe handshake protool: Similar to TCP, STONe's handshake protool is a three-way handshake protool. The node that joins the network, Node 1, first sends a T-SYN paket.The bootstrap node, Node 2, then replies with a T-SYNACK, and finally, Node 1, onfirms thehandshake with an T-ACK paket.First, two nodes run the protool for remote attestation in Trusted Computing tomake sure they an trust that both are running the same STONe software. If remote at-testation fails, Node 2 interrupts the handshake proess and filters any further requestsfrom Node 1 for some time interval to prevent DDoS attaks. Otherwise, Node 1 initi-ates the onnetion by sending a T-SYN paket to Node 2. The T-SYN paket ontainsNode 1's Diffie-Hellman key share signed with its signature key, the ertifiate for Node1's publi verifiation key, and a timestamp ts1 when the paket has been sent. Node2 returns a T-SYNACK paket that ontains its Diffie-Hellman key share signed withits signature key, the ertifiate for Node 2's publi verifiation key, a timestamp ts2,



42 Chapter 4. STONe Designand Node 1's timestamp ts1. Node 2 then omputes the k STONe addresses ID
(j)
STONe1of Node 1 using the built-in hash funtion hTC and shared keys DHt

STONe1
, suh that

ID
(j)
STONe1

= hTC(DHt
STONe1

) for j = 1..k. When the T-SYNACK paket arrives at Node1 it returns a T-ACK paket with timestamp ts3 of the T-SYNACK paket. Both nodesan ompute the lateny of the link using the three timestamps. This is the ost metriin the routing table. The ryptographi primitives in the handshake protool are thefollowing: Handshake(i, s, SSTONe)j ↔ i: • TCP Handshake with ji: • Diffie-Hellman key share for node i:
DHSTONei

= exi , xi = hSTONe(KTCi
| SSTONe)i → j: • (DHSTONei

, signSKTCi
(DHSTONei

))j → i: • (DHSTONej
, signSKTCj

(DHSTONej
), ki)j: • Verify signSKTCj

(DHSTONej
) using PKTCj

• ID
(l)
STONei

= hl+1
STONe(DHSTONei

), l = 0...ki

• Ks
STONei

= (DHSTONej
)xii: • IDl

STONej
= hl+1

STONe(DHSTONej
), l = 0...kj

• Insert IDl
STONej

into routing table, l = 0...kjThe authentiationmehanism ensures that both nodes have reeived informationabout the authentiity of the STONe router software and that both an ompute theshared Diffie-Hellman key for exhanging subsequent STONe pakets.Neighbor Disovery After a joining STONe node has ompleted a handshake with thebootstrap node it has to find its neighbors in the hyperube. Node 1 needs to findits neighbors in the strutured overlay. Figure 4.10 shows the insert proess: Node 2forwards a T-INSERT-KEY paket to the address that is losest to Node 1's using thepaket forwarding algorithm desribed in the next setion. When the paket arrivesat the destination, Node 3, it onnets to Node 1, and after the STONe handshake itonnets to Node 1 via T-SYN and sends a T-START paket to Node 1. Node 1 and 3then update their routing tables, and Node 1 learns about its neighbors from Node 3.When the T-INSERT-KEY or T-START paket gets lost the node times out after a whileand restarts the joining proess. When Node 1 is behind a NAT but Node 3 is not,it forwards the T-START paket through the network bak to Node 2 and lets Node1 onnet to Node 3. If both nodes are behind NATs, Node 1 first tries to use Node2 as an intermediate proxy to set up the onnetion. If that fails it piks a randomnode in STONe until it suessfully onnets to Node 3. Node 2 repeats the insertionproedure for all k virtual hyperube addresses, and therefore it takes O(k log N) stepsin the hyperube.
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Figure 4.10: Joining and Neighbor Disovery: When a new node (Node 1) joins the networkit first onnets to a bootstrap node (Node 2) (upper left). The bootstrap node sends a T-INSERT-KEY message to the node that has the shortest Hamming distane to Node 1 (Node3) (upper right). Node 3 then sets up a onnetion and onnets to Node 1 via T-SYN (lowerleft). Finally, Node 1 reeives a T-START paket and the routing table information about itsnew neighbors and an now ommuniate in STONe (lower right).Routing Updates When STONe detets a broken link or a peer node, the node updatesits routing table aordingly and sends a routing table update to its neighbors. Thenode's neighbors then update their own routing tables and send their updates to theirneighbors. This proess onverges eventually and stops when no more updates our.Additionally, nodes send their urrent routing tables to their neighbors in periodiintervals. We now analyze how many nodes' routing tables will be updated.When the N addresses in STONe are randomly distributed, a speifi node is ex-peted to be in S(N) routing tables throughout STONe. When a node leaves or joinsSTONe it takes at most L(N) update messages for the information to arrive at all nodeswith a total number of S(N) · L(N) = O(log2 N) messages in the worst ase. However,the expeted number of single updates is muh smaller. The probability that a joiningnode has prefix length i with an arbitrary node in the network is
PPF (i) =

{
1

Nmax
, i = log Nmax

1
2i+1 otherwise.



44 Chapter 4. STONe DesignThe number of nodes with prefix length i in the network is therefore Nmax

2i+1 , andthe expeted value for the number of oupied prefix slots in the routing table is
EPF (N) = O(log N), sine EPF (N) =

∑Nmax

i=0

(
1 − (1 − 1

2i+1 )N
).The probability that a joining node has Hamming distane i is

PHD(i) =
1

Nmax

(
log Nmax

i

)

.The expeted Hamming distane for a joining node is log Nmax

2 , but beause of thebinomial distribution it takes about (Nmax

2 − k)(
Nmax

2
−k) joining operations to find anode with Hamming distane k when k < Nmax

2 . Therefore, it is more likely that theSTONe routing table finds a new prefix instead of a shorter Hamming distane. Giventhese probabilities, the number of update messages is O(log N) for the the originalnode, O( 1
2N log2 N) for its neighbors, O( 1

22N log3 N) for their neighbors and so on. Weget for the total number M of update messages
M =

N∑

i=0

1

2iN
logi+1 N = O(log N).STONe lusters routing updates over time to redue the number of messages inthe network and avoid instabilities when the system onverges. Whenever an eventours, STONe starts a timer that expires after a short fixed time interval. All events ofthe node during that interval will be olleted and broadast to the neighbors. This isespeially useful when several nodes join STONe at the same time and the system isunstable.Figure 4.11 shows STONe's routing update messages and key exhanges omparedto mix networks when a new node joins. STONe nodes require only O(log N) rout-ing updates and key exhanges, whereas mix networks always require O(N) whihobstruts salability of mix networks.4.3 Random RoutingIn addition to seure and salable routing, STONe uses random routing to provideanonymity.Algorithm 3 Send Fragment in Random Routingsend(p, dest)p.im= NULLp.dest= NULLrandom_route(p, dest, last)
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Figure 4.11: STONe under hurn: The number of key exhanges and routing update messagesin STONe inreases logarithmially and is learly smaller than for mix networks.Figure 4.12 shows the senario in random routing: Sender A forwards messagesto reeiver B and wants to hide the route. A piks an intermediate relay node I atrandom and forwards the paket to this node. The intermediate node I then forwardsthe paket to the reeiver B. When B replies to themessage from A she piks a differentintermediate relay node J. Neither I nor J an arry out a Predeessor Attak to findS or R, respetively, beause the probability that they are adjaent to A or B is small.The modified routing algorithm in random routing takes the following steps:(i) Chek whether the message is valid or not. If not, just drop it.(ii) Chek whether this node is the message's intermediate hop. If yes, opy theAlgorithm 4 Random Routingrandom_route(p, dest, last)if p.im = NULL thenp.im= random()p.dest= destroute(p, p.im, last)elsep.im = NULLroute(p, p.dest, last)end if
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(i) A wants to communicate with B (ii) A picks random node I to forward the message to

I

(iii) I forwards message to B

I

(iv) B returns the reply to A via random node J

J

Figure 4.12: Random Routing in a fully onneted network: Node A ommuniates with nodeB through a random intermediate hop I.final field from the message header into the destination field and forward themessage towards the destination.(iii) Chek whether this node is the message's destination. If yes, deliver it to theappliation.(iv) Forward the message towards the destination.Random routing addresses both ongestion, as well as traffi analysis. Congestionis less likely to our, beause potential bandwidth bottleneks between a partiularsender and reeiver get automatially sattered aross STONe. Beause link utiliza-tion beomes uniform, ertain traffi analysis attaks are more diffiult. In addition,random routing reorders messages without additional buffering as in mixes, beauseevery message takes a different random route through the network.4.4 Synhronization in STONeThe remaining problem in Traffi Analysis with asynhronous random routing isintersetion attaks. Any idle node in STONe that is not a sender or reeiver forwardssignifiantly fewer fragments than a sender or reeiver does. Synhronization is thetypial method for addressing this problem.



4.4. Synhronization in STONe 47The main goal of synhronization in STONe is that links, and therefore nodes,should be utilized equally to make intersetion attaks hard. The average rate inSTONe, λ̄, is the average per-link rate in the overlay, whereas links are simple point-to-point Internet onnetions. A high-bandwidth node has more virtual addresses andtherefore more links. All links in STONe are utilized equally when every node sendsat the rate λ̄.In general, synhronization an be global or loal. In loal synhronization traf-fi is synhronized only between two nodes. However, loal synhronization, evenamong a limited set of nodes, would provide only loal anonymity, even if it spreadsglobally [177℄. This still leaves the door open for intersetion attaks. This is similarto the end-to-end argument in systems design � loal enryption does not neessarilyprovide end-to-end seurity [156℄. In addition, these loal shemes, even with extratraffi, often do not optimize for the bandwidth-delay produt, sine delay and extratraffi only depend on the loal view of the mix. When the bandwidth-delay produtgrows, more data is in the pipeline between the sender and the reeiver, and thisrequires larger retransmission buffers and more frequent transmissions to get optimalperformane out of transport-layer protools suh as TCP.A system low-level synhronizationmethodwould be hard to implement in STONefor several reasons: First, STONe is based on wide-area onnetions and TCP, andTCP's ongestion ontrol mehanisms may not always allow timely message delivery.Seond, sine STONe runs on the Internet with heterogeneous links and variablebakground traffi, available link apaities vary, and it would be hard to alloatefixed link apaities for synhronization. Random routing in ontrast works on top ofthe existing Internet routing arhiteture and is able to balane traffi relative to theindividual link apaities. Further, if STONe synhronizes traffi by padding all linkswith random over traffi it wastes a lot of Internet bandwidth. In STONe's pratialsenario, many people use it over DSL lines, and usually the link between the endsystem and the router is the bottlenek. STONe may have to share this link with otheruntrusted Internet appliations. Fair sharing of network links between trusted anduntrusted appliations is required. Also, users may have to pay by traffi volume, andtherefore they want to minimize traffi as well.TCP already provides two end-to-end synhronization mehanisms: ongestionontrol and flow ontrol. Whenever a node sends a full window of data, the windowinreases inrementally. The urrent TCP window indiates the link apaity, andongestion ontrol regulates the sender rate. Now, every node i starts to send dataand tries to inrease its send window size slowly to 1
λi
.The synhronization algorithm presented in this setion has the following idea:If for STONe node i's send rate λi, λi < λ̄ the STONe node sends extra over traffito its immediate neighbors to reah λ̄. The neighbors immediately drop any over



48 Chapter 4. STONe Designtraffi pakets. If a node annot afford rate λ̄ it automatially starts dropping paketsbeause of TCP ongestion ontrol. This in turn redues λ̄. When other nodes see thedrop in λ̄ they stop inreasing their send rates and restart later. If node i inreases itssend rate λi it is only allowed to inrease it by an upper limit ∆λmax.
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λ’iFigure 4.13: Traffi Rates on a STONe node: The atual network rates λi and µi in the synhro-nized overlay are larger than the average traffi rate λ̄ in the STONe network. The individualappliation rates λi and µi an be larger or smaller than the average rate λ̄.Figure 4.13 shows the situation of different traffi streams in STONe without syn-hronization: λ′
i and µ′

i are the inoming and outgoing traffi rates in STONe's overlaynetwork. λ̄ is the average traffi rate aross the network at time step t (when t = 0 wejust leave it out):
λ̄t =

1

N

N∑

i=0

λt
i

λi and µi are the loal send and reeive rates of appliations on node i. For ondut-ing the intersetion attak, an adversary observes λ′
i and µ′

i aross the network andorrelates these values for traffi analysis. Both values inlude ∆λmax ≥ λ̄, whih isthe amount for possible extra over traffi plus the traffi the STONe node forwardsfor random routing as an intermediate hop. Synhronization has to make sure thatboth values λ′
i and µ′

i are unorrelated with the urrent traffi stream. λ′
i and µ′

i arealways greater than λ̄, whereas λi and µi are always less than λ̄.Before getting into the details of the synhronization algorithm, there are someimportant observations to make: First, in random routing, the sender forwards everymessage to a global randomnode, and therefore every node anmeasure λ̄, the averagetraffi rate. Seond, every STONe node is able to estimate the number of nodes N inSTONe from the number of entries in its routing tables.The algorithm is based on a redit/debit sheme to deide whether to send mes-sages from the appliation, over traffi messages or hold bak in sending anything.This deision takes plae whenever the appliation's send buffer is not empty, or



4.4. Synhronization in STONe 49the node has to forward a fragment in random routing (not proxy-based hop-to-hopforwarding).Upon joining the network every node gets a minimum number of redit points(MIN_CREDIT) for eah of whih it is allowed to send one fragment from its sendbuffer. The node an aquire an additional redit point after it has forwarded Nfragments (N is the number of nodes in STONe) in random routing.When sending data, the node is always allowed to send a single fragment from thesend buffer for every single redit point. One a node runs out of redit it has to waituntil it aquires new redit, ie. forwards more fragments, until it an send the nextfragment from the send buffer.When the send buffer is empty and there are already MIN_CREDIT redit pointsavailable, no more redit is added when the node forwards fragments. Instead, thenodes sends an extra fragment as over traffi to a random neighbor whenever it hasforwarded N fragments.Algorithm 5 Synhronizing Traffi in a Domain of N nodes with time window T1. Initializeredit= MIN_CREDITfragment_ount= 02. Forward Fragment in Random Routingfragment_ount++if fragment_ount == N thenfragment_ount= 0redit+ +Send Fragmentend if3. Send Fragmentif (send_buffer > 0 && redit > 0) thenredit�send_fragment()elseif ( redit > MIN_CREDIT) thenredit- -send_over_traffi()end ifend ifAlgorithm 5 shows the final synhronization algorithm. When a node reeives afragment as an intermediate hop in random routing it ounts the number of fragmentsto obtain the average rate in STONe. λ̄ is the number of fragments forwarded over a



50 Chapter 4. STONe Designtime interval T. ∆λmax is initially MIN_CREDIT over a time interval T and onvergestowards the number of fragments forwarded divided by the number of nodes N inSTONe over some time interval T.In random routing λ̄ is the ontrol parameter for global traffi synhronization.Given that random routing gets feedbak on the urrent average traffi rate and istherefore self-timing, we an minimize additional over traffi to make traffi patternsuniform aross the network: Whenever a STONe node has reeived N fragments toforward in random routing it also sends one of its own fragments. Node i is allowedto inrease λi beyond λ̄ to λ̄ + ∆λmax whih will slowly inrease λ̄ and therefore everyother node's over traffi.STONe has to onfigure the global parameter ∆λmax, whih is a tradeoff in thebandwidth-delay produt of the whole system. An individual node with averagelateny di between its neighbors has a bandwidth-delay produt Π(i) of
Π(i) = λ′

i

(

di + max

(

0,
1

λ̄
− 1

λi

))

=
(
λ̄ + ∆λmax

)
(

di + max

(

0,
1

λ̄
− 1

λi

))When node i is idle (i.e. λi = 0) or busy (i.e. λi = λ̄) we get
Πidle(i) = Πbusy(i) = di(λ̄ + ∆λmax)The goal in STONe is to avoid large osillations of λ̄, sine this supports intersetionattaks. Therefore, to ensure fairness all λi should be distributed uniformly. It takes

N messages on average for all STONe nodes to notie that λ̄ has inreased. Andideally, the bandwidth-delay produt Π(i) is as small as possible. This exat outomehappens when λi − λ̄ is minimal. This is exatly the ase when ∆λmax = λ̄
N
, whihis the expeted standard deviation of λ when λi are uniformly distributed. After ksequential steps (ie. forwarded fragments) with λ̄t = (N+1)λ̄t−1

N
we get

λ̄k =

(

1 +
1

N

)k

λ̄This has a shorter response time to hanges, and auses over traffi to be linear inthe number of nodes N . If a node has to send a burst of data at rate λmax it takes
k =

log(λmax

λ̄
)

log
(
1 + 1

N

)steps until it reahes λmax.The total required bandwidth per node is (2 + 1
N

)λ̄. In addition to the averagesend rate for every node λ̄ the maximum inrease is 1
N

λ̄. When a bottlenek nodehas bandwidth b then λ̄ ≤ N
2N+1b ≈ 1

2b for large N . The system is seure againstintersetion attaks, sine all nodes adapt their send rate to N+1
N

λ̄ synhronously,



4.5. Anonymous Communiation 51even though ommuniation is still asynhronous.Session Sheduling An extension for futurework is to synhronize sessions on appliation-level. This does not work for highly interative appliations suh as web browsing andinstant messaging, but it does work for file transfers. A distributed sheduler ahesrequests for network tasks until it has olleted a large enough number that overlaps.It then starts these tasks at the same time.4.5 Anonymous CommuniationAn anonymous appliation layer poses many hallenges. First of all, an appliationthat ommuniates through this appliation layer an potentially be untrusted outsidethe TCB and should not be able to link an appliation endpoint to a real IP address.It is also ruial to have an anonymous name servie running in the network, sinea query to an external name server suh as DNS would be a weak spot in the systemthat is easy to attak.STONe integrates end-to-end anonymity with anonymous self-ertifying reden-tials by providing two servies to appliations: STONe Sokets and Trusted NameServie (TNS). Using these two building bloks it is straightforward to turn an existingsoket appliation into an appliation that runs on STONe and is robust against traffianalysis.4.5.1 STONe InterfaeThe most important part of Anonymous Communiation is the interfae between thenetwork and the appliation. STONe already provides a seure infrastruture thatis robust against traffi analysis. Yet, an adversary who reeives STONe fragmentslegitimately at the ommuniation endpoint would still be able to see the STONeaddresses in the lear. Hiding the STONe address not only protets against addressfiltering but also gives the adversary valuable information about STONe's topology.The adversary is then able to obtain serets about the randomized hyperube struture� a main support for protetion against traffi analysis.STONe Capabilities hide the original STONe address from the appliation. Theseapabilities are opaque random strings and have the sole purpose of providing a handlefor the appliation to ommuniate with the peer. Only the STONe router is able toderypt these apabilities to obtain the original STONe address. A 128-bit apabilityfor destination d ontains a 64-bit STONe address Td and a 32-bit STONe servie ID S.STONe obtains the apability by enrypting the Td and S under the STONe session keyfor session j on node i SKTCi
, whih is derived from the seret Trusted Computingkey SKTCi

and a 32-bit none nt:
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CS

Td
= Fi(Td | S) = EKTCi

(Td | S | nt)STONe uses per-session keys to onvert apabilities into STONe addresses and vieversa. Otherwise the adversary is able to orrelate apabilities among different appli-ations or different sessions of the same appliation to determine whih appliationsommuniate with the same destination. The none nt belongs to the soket state.Every time the appliation reonnets to the same node and opens a new session,the STONe router inreases t by 1 and generates a new nt by getting a new randomnumber rj.STONe provides two servies to appliations that are built around these apabil-ities: STONe Sokets and the Trusted Name Servie (TNS). With these two buildingbloks it is straightforward to turn an existing soket appliation into a STONe Soketappliation that runs on STONe and is proteted from attaks on anonymity. Addi-tionally, STONe provides TSOCKETS � a TCP proxy that translates STONe onnetionsinto TCP onnetions. Any TCP soket appliation an use TSOCKETS to onnet toSTONe. The 32-bit IP addresses that are visible to the appliations are opaque andrandomized, making them similar to STONe apabilities.STONe Sokets One appliation building blok of STONe is the STONe Soket in-terfae. STONe Sokets are anonymous appliation-level endpoints. Externally, theyprovide fully randomized IP addresses over TCP and UDP, but internally, STONe Sok-ets use a Trusted Datagram Servie (TDS) and a Trusted Stream Servie (TSS). STONegenerates random IP addresses from STONe's network addresses� STONe Capabilities.STONe Capabilities look like opaque random strings, but for the STONe Router theyontain meaningful session information. In every per-session apability there is en-rypted a 64-bit STONe address Td and a 32-bit STONe servie ID Sd pointing to adestination d in STONe:
Cd = EKTCi

(Td | Sd | nt).The first 64 bit of the apability ontain the 32-bit IP address and a 32-bit portnumber. When an appliation opens a new session STONe generates a new randomnone nt assoiated with this session and omputes a new apability Cd. Sine KTCi
ishidden from the appliation, only the TCB is able to enrypt and derypt apabilities.Figure 4.14 shows how STONe onverts apabilities into STONe addresses andservie IDs, and the other way around. The appliation plaes apabilities into theSTONe Soket alls, and the STONe Soket library passes the apabilities to the STONerouter within the TCB for deryption and further use. In the onverse, when a STONeSoket all returns a apability to the appliation, the STONe router enrypts the
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Figure 4.14: Conversion of STONe apabilities: An appliation on router X reeives the apabil-ity enrypted under FX that depends on the built-in Trusted Computing key. Between the tworouters the apability gets transmitted in plaintext, but the message is enrypted as a whole.STONe address and servie ID and passes the resulting apability to the appliation.The enryption funtion depends on the built-in AES keys KTCX
and KTCY

, suh that
Fi(A) = EKTCi

(A | rj). All STONe has to ahe is the random per-session none rj forevery session.Trusted Datagram Servie � TDSSTONe offers TDS datagram servie for onnetionless ommuniation. A STONedatagram paket an onsist of multiple STONe fragments with fixed-size unit for net-work ommuniation. Upon reeipt, STONe reassembles multiple fragments togetherto one STONe datagram paket. The datagram servie is unreliable and unaknowl-edged, and the appliation is responsible for resending pakets. TDS is an adaptationof UDP that uses STONe's apabilities.Trusted Stream Servie � TSSSTONe also offers a onnetion-oriented stream servie alled the Trusted Stream Ser-vie (TSS). STONe annot use TCP for end-to-end ommuniation formultiple reasons:First, point-to-point links in STONe already use TCP, and in ase of a ongestion onthe link the protool inreases time-outs, ausing the upper level TCP also to inreasetimeouts and queue pakets for retransmission. Then both TCPs try to retransmitpakets, whih only makes the problem worse. Eventually, they will have to give upand reset the onnetion. Seond, paket reordering aused by random routing is aproblem in TCP. TCP's fast retransmit algorithm interprets exessive paket reorderingas a loss and tries to retransmit paket, thereby wasting valuable bandwidth [178℄.Retransmission is not the only problem, and TCP does not detet these losses asreorderings but as buffer overflows. One it detets any losses, it starts ongestionontrol mehanisms to regulate throughput [46, 140℄.



54 Chapter 4. STONe DesignTSS avoids these problems altogether, sine it does not have ongestion ontroland is also aware of paket reorderings. TSS is similar to TCP exept for flow ontroland ongestion ontrol, but its protool states are equivalent. STONe already usesrandom routing and synhrony as an effiient measure against ongestion. Initially,TSS does a three-way handshake to establish the onnetion and initialize the buffersfor flow-ontrol. A STONe stream onsists of STONe fragments. All nodes in theSTONe network use the same retransmission timeout to protet against attaks thatattempt to identify a ommuniation hannel based on their retransmission patterns.The retransmission timeout depends on the maximum path lateny in the overlay,whih is log(N)-times the maximum per-hop lateny, where N is the number of nodesin the overlay.Trusted Name Servie � TNSBeause opaque apabilities are only appliation-speifi handles within soket appli-ations, STONe requires a global naming infrastruture that maps anonymous namesto apabilities, similar to what a pseudonym server does [123℄. TNS is a trusted ap-pliation within STONe, and therefore ommon attaks are hard to mount from anymaliious appliation. TNS is different from a DNS server beause is it easy to reg-ister new entries. Further, TNS an handle different appliation-level servies for asingle node as well, suh as a shared address book. TNS is similar to Tor's Loation-Hidden Servies, where two parties use a third random node as a rendez-vous pointfor exhanging servies [75℄.An appliation registers names alongwith an appliation-speifi publi keyPKTNSd
.TNS is self-ertifying beause eah TNS request returns an entry in whih the apa-bility is XORed with the hash of the publi key. Only when the appliation has theentry's publi key it is able to obtain and use the apability.TNS uses a hallenge-response mehanism during name registration to ensure thatthe mapping between the publi key and the network address is orret. This ertifi-ation mehanism prevents falsifying of identities, while allowing anonymous om-muniation. When a node joins the system, its trusted infrastruture learns about theaddresses of the name servers, but these addresses stay invisible to the appliations.An appliation registers a name for a servie at the name server using the tns_registerfuntion in the STONe Soket library. If an appliation wants to register a servie itneeds to provide PKTNSd

for it. TNS exeutes a hallenge-response mehanism tohek that the appliation really owns the private key:Appliation → TNS: < IDs
TNSd

, PKs
TNSd

, Cj
i >TNS → Appliation: <r>Appliation → TNS: <x := ESK(r)> with SK = SKs

TNSdTNS: verify DPK(x) = r with PK = PKs
TNSd



4.5. Anonymous Communiation 55First the appliation alls tns_register, ausing the STONe Soket to send to TNS theapability Cj
i , as well as the name IDs

TNSd
and PKTNSd

of the servie the appliationwants to register. TNS generates a random string r and sends it as a hallenge to theappliation. The appliation enrypts r using the private key SKSTONei
and sends theiphertext x bak to the TNS. TNS verifies that the derypted iphertext x is equal to r.After these operations the TNS server is sure that the apability x belongs to PKTNSd

,and it an register <IDTNSd
, PKTNSd

> as a ertified name.When a lient appliation wants to look up a apability, it queries TNS usingthe <IDTNSd
, PKTNSd

> tuple or just IDTNSd
. An appliation resolves a name inTNS and obtains the orresponding apability through the tns_query funtion in theSTONe Soket library. It an searh for any name and get bak a list of orrespondingapabilities. If TNS provides a publi key the query is ertified, and the appliationan trust that the apability belongs to the publi key:Appliation → TNS: <IDs
TNSd

, PKs
TNSd

>TNS → Appliation: <cap>The appliation then retrieves the original apability Cj
i by XORing cap with PKTNSd

.The key for every entry is the name and publi key. It is also possible to register thesame name and the same publi key multiple times if the same entity is loated atmultiple destinations. TNS returns a list of all entries. TNS also allows wild-ardsearhes without passing the publi key to the server when the orresponding flagis set during the register operation. This is a privay option. Registering the sameentry at multiple loations does not violate anonymity beause the apabilities do notprovide any loality information.Normally, suh a server for seure and anonymous peer-to-peer names would haveto store N2 different names for one servie in a network of N nodes, beause everynode would have to have a different address. However, trusted omputing is ableto map multiple network addresses to a single one, and therefore every node in thenetwork needs to store only one entry.TNS is loated loally on STONe nodes, and every node learns from its neighborsthe loation of the losest TNS node. However, when a TNS node rashes, all theinformation is lost. Without TNS it is not possible to obtain apabilities for ommu-niation in STONe. Therefore, TNS must be highly available and implemented as adistributed name servie where data gets repliated dynamially.Trusted SOCKS Proxy � TSOCKSSome appliations do not require the full strength of 96-bit apabilities. Rather bak-wards ompatibility to the existing Internet is desirable. For this purpose TSOCKSprovides an proxy server between TSS and TCP that is similar to SOCKS [119℄. SOCKS



56 Chapter 4. STONe Designis a TCP proxy that allows multiple lients to share the same outgoing onnetion ona proxy, thus reduing the number of ports a firewall has to alloate. For example, Toruses SOCKS to onnet to Privoxy to eliminate any appliation-level privay-relatedinformation in web browsing [75, 18℄. The purpose of TSOCKS, however, is to gener-ate random IP addresses for appliations to ommuniate through STONe. STONe's96-bit opaque apability translates to a 32-bit IP address and a 16-bit port number,thus reduing the effetive address length 48-bit. Beause of the address length lim-itations, appliations running on top of TSOCKS do not have the same guaranteesagainst denial-of-servie attaks as STONe soket appliations. Furthermore, the on-netion between the TSOCKS proxy and the lient needs to be suffiiently protetedagainst an eavesdropping adversary. Ideally, the TSOCKS proxy is a trusted proess onthe loal platform.4.5.2 STONe AppliationsThere are several examples of appliations in distributed systems that strongly benefitfrom STONe's seurity and anonymity.Trusted Load-Balaning � TLBSTONe's enhaned seurity provides simple load-balaning without DHTs for serverappliations. The server registers several entries with IDTNSi
= < App,Loci>, where

Loci is the number of the server, and all servers have to be enumerated onseutivelyfrom 0 to Locmax − 1. A separate key server arries out admission ontrol by randomlydistributing publi keys to all lients. In this proess the appliation belonging tothe same apability will only see one of the Locmax publi keys. The appliationuses that publi key to request the orresponding destination apability from TNS. Tominimize key distribution overhead, all server instanes of App have the same publikey PKTNSi
. Giving all instanes the same PKTNSi

does not ompromise seurity,beause they all relate to the same server appliation. TLB is robust against attakson STONe � espeially traffi analysis attaks � whih protets load-balaning in aglobal network as strongly as if it took plae in a loal server luster behind a firewall.TLB is different from DNS-based load-balaning beause TNS is trusted and is hard tosabotage. Appliation → Key Server: query keyKey Server → Appliation: PKs
TNSd

, LociAppliation → TNS: <<App, Loci>, PKs
TNSd

>TNS → Appliation: Cs
dFigure 4.15: Trusted Load-Balaning Protool



4.5. Anonymous Communiation 57Anonymous File System Anonymity and group-based ertifiation without a entraladministrator are important issues for global file systems (e.g.[102℄). Assume twoparties � Alie and Bob � want to share a file: First, the global file system should beable to store Alie's file in multiple loations, beause nodes that ontain the file mayenter and leave the network arbitrarily. Seond, a third untrusted party should not beable to learn that Alie is the owner of this file. Third, any trusted party should be ableto verify that she got the right file from Alie and not a fake one. Our AnonymousFile System on top of STONe has these properties. Every file in the system has itsname and the owner publi key stored on TNS. TNS maps a file to multiple networkaddresses. On a node every file gets a unique servie ID. TNS models the file system inthis fashion; when Alie wants to store her file in the file system, she registers it withTNS. Then, Bob looks up Alie's file by querying TNS. Content-distribution systemssuh as Freenet [62℄ and BitTorrent [5℄ or other hierarhial file systems ould be builton top of this anonymous filesystem.Appliation → TNS: < File − /Directoryname, PKs
TNSd

>TNS → Appliation: Cs
dFigure 4.16: Anonymous File System ProtoolAnonymous Instant Messaging Instant Messaging is usually hard to anonymize be-ause the parties partiipating in the onversation have to be logged onto the system.The provider of the servie an easily observe the ommuniation hannels at anytime, whih parties partiipate and where they are logged on. Furthermore, an at-taker with aess to the links an easily detet onversational traffi patterns withina session. We built a prototype of Anonymous Instant Messaging using STONe. Alielogs onto the system by registering her pseudonym and her publi key on TNS. If theother party Bob wants to talk to Alie, he looks up her pseudonym on TNS, verifiesthat this is her publi key (if she wants to reveal her identity to him), and starts to talkanonymously to her over the system. Bob obtains the publi key beforehand througha different trusted hannel similar to a web of trust (e.g [86℄). When Bob initiates theonversation, Alie verifies Bob's publi key to make sure that he is the right person.In Anonymous Instant Messaging, only Alie and Bob know that they are talking witheah other. Appliation → TNS: < IM Pseudonym, PKs

TNSd
>TNS → Appliation: Cs

dFigure 4.17: Anonymous Instant Messaging Protool



58 Chapter 4. STONe Design4.6 Compromised Trusted Computing HardwareSo far we have exluded the hardware attak on the Trusted Computing system, sineit is hard to do and an only be done at a node that is physially available. BeauseSTONe's address depends on a built-in key, it is not possible to forge other TrustedComputing nodes in STONe after extrating the key from the TCB beause STONewill detet dupliates. Furthermore, an adversary is unable to get aess to the systemjust by knowing the built-in keys. She has to obtain the STONe seret SSTONe tosuessfully join the network and also to derypt messages.When an adversary learns the seret keys she is able to emulate a full TCB andjoin the network. However, having these trusted keys she an mimi only one TCB.When this happens and remains undeteted the following senario takes plae: Theadversary is able to monitor all traffi that goes through this node, and beause ofrandom routing this an be any sender/reeiver pair. Furthermore, she is able to learnthe IP addresses of the loal routing table and an assemble a membership list of thenetwork.It is therefore ruial that hardware ompromises are deteted immediately, so thatompromised nodes are not able to join the network through remote attestation. Inaddition to key-based attestation the TCB ould use other platform authentiity tests,suh as Remote Physial Devie Fingerprinting [114℄ to ensure that the TCB runs onthe atual hardware. It is also important to verify that the TCB does not ontain anybakdoors.



Chapter 5
STONe Implementation
Normally, STONe would be onsidered a part of the internal kernel network stakthat provides a different new transport layer. This is different from Tor's approah,whih uses a network of proxies. Unfortunately, our experimental testbed, PlanetLab,does not support kernel extensions in the virtualization layer, and therefore we haveto implement STONe as user-level proesses. Kernel proesses typially get higherpriority, and they do not require expensive opying of buffer data between kernel-and user-spae.5.1 Trusted Computing Base5.1.1 Required HardwareToday there exist several approahes for Trusted Computing hardware. The TrustedPlatform Manager (TPM) ontains primitives for remote attestation and sealed stor-age [21℄. These hardware hips are already built into most PCs. Windows and Linuxprovide devie drivers for them. TPM also provides a trusted boot mehanism thatprotets against loal attaks.In addition, STONe requires strong proess isolation against attaks from the OSkernel. Intel is planning to ship LaGrande in future PC platforms [99℄, and AMD'sequivalent produt Paifia provides the same funtionality on future AMD plat-forms [28℄. Mirosoft is going to provide support operating systems support for strongproess isolation in their NGSCB arhiteture [79℄.5.1.2 TCB Software EmulationWe build STONe on top of Linux, but unfortunately, Linux does not have support fora fully funtional TCB, and most devies do not have Trusted Computing hardware,either. The hoies are either to implement a fully-funtional devie driver that emu-59



60 Chapter 5. STONe Implementationlates a TPM and run a trusted operating system on top, or we assume the ommodityoperating system to be the root of trust and emulate TCB on top. In previous ap-proahes virtual mahines implemented Trusted Computing suh that every trustedproess is mapped to one virtual mahine [87℄. The virtual mahine monitor is theroot of trust and provides the interfae to the trusted omputing system. In our TCBemulation we pik a similar approah and use Linux to be the root of trust, sine wewant to fit it in the arhiteture of PlanetLab.The TCB emulator needs to provide ryptographi funtions, suh as signaturesheme, hash funtion and random number generator, as well as attestation andoperating system support. We had to make a design hoie for the remote attestationprotool. When using the standard attestation protool the TCB publi key getsrevealed to the verifying entity. This is not a problem in loal attestation, sinethe verifying entity is the same as the signing entity � the loal TCB. However, it isa problem in remote attestation, sine signing and verifiation happen on differentplatforms, and therefore remote attestation uses group signature shemes that preservethis privay of the TCB. Otherwise, a peer ould tell that a speifi entity signed themessage. In short summary, Figure 5.1 shows the TCB intefae that is required to runSTONe:tb_hash()This omputes the hash of the value in. The urrent implementation uses SHA1from the OpenSSL rypto library with a built-in TCB hashing key that is the sameon all TCBs.tb_srand() and tb_rand()tb_srand initializes the Random Number Generator with start value seed, andtb_rand omputes the next random number in the sequene. Both funtionsmap to RAND_seed and RAND_bytes from the OpenSSL rypto library respetively.tb_seal() and tb_unseal()tb_seal enrypts plaintexts using the seret built-in platform key, and tb_unsealderypts iphertexts using the seret built-in platform key.tb_pk_sign() and tb_pk_verify()This pair does publi key signing and verifying using the built-in publi key.These funtions map to RSA_sign and RSA_verify from the OpenSSL rypto li-brary.tb_at_sign() and tb_at_verify()Invokes the attestation protool on a given binary. If fd points to a remotely on-neted soket, the primitive invokes remote attestation. Otherwise it uses loalattestation within the TCB. Normally, remote attestation should use DAA [51℄ or



5.1. Trusted Computing Base 61typedef strut msg_s {int m;int len;} msg_t;typedef strut bin_s {void *p;int len;} bin_t;typedef strut sig_s {void *s;int len;} sig_t;int tb_hash(int in);int tb_srand(unsigned int seed);int tb_rand();int tb_seal(msg_t msg);int tb_unseal(msg_t *msg);int tb_pk_sign(msg_t msg, sig_t *sig);int tb_pk_verify(msg_t msg, sig_t sig);int tb_at_sign(int fd, bin_t bin, sig_t *sig);int tb_at_verify(int fd, bin_t bin, sig_t sig);int tb_at_join(int fd);Figure 5.1: TCB Interfae for STONea similar group signature sheme, but in this emulationwe urrently use standardpubli key signing methods to simplify the omplexity of the TCB emulation.When a DAA implementation is available this an be easily replaed by a all tothe group signature sheme.tb_at_join()Joins a group signature sheme for remote attestation and obtains the sharedsigning key. This funtion only works for remote attestation.Trusted Operating System Support In addition to these primitives, Trusted Com-puting requires support from the operating system. In our TCB emulation there arethree issues: (i) Trusted Computing requires strong proess isolation, for whih virtualmemory protetion is not suffiient. (ii) There must be a loader for every exe() allthat attests the binary loally. (iii) The operating system needs to provide an interfaefor remote attestation.



62 Chapter 5. STONe ImplementationStrong Proess IsolationWe ahieve strong proess isolation by using the Linux VServer virtual mahineimplementation [11℄. PlanetLab [38℄ is a ommon testbed for distributed ap-pliations and uses VServer to separate different slies from eah other. Sinewe do not have ontrol over the VServer in PlanetLab, the Linux kernel in thevirtual mahine itself is the root of trust. Beause Linux itself does not providestrong proess isolation, there an be only one trusted proess or multiple un-trusted proesses per kernel. We reate a slie on PlanetLab for every differentappliation and ahieve the desired strong proess isolation.Seure I/OThe only seure I/O devie that we need to emulate for Trusted Overlay Networksis the network adapter. We emulate seure network I/O by enrypting data fromthe appliation to the peer appliation after the key exhange is done, as shownin Figure 5.2.Loal AttestationThe operating system needs to provide loal attestation to establish a hain oftrust between the appliation and the trusted hardware during seure boot. First,the TCB attests the OS Loader, whih is usually the BIOS of a PC, and starts it.The OS Loader then attests the OS and loads it. Finally, the OS attests any trustedappliation and exeutes it. The TCB emulation provides a wrapper funtion forthe exe() system all that exeutes the loal attestation protool.Remote AttestationFigure 5.2 shows how two trusted software staks attest appliations to eahother using remote attestation. First, the appliations ondut a standard TCPhandshake. After the TCP onnetion has been established, the appliation doesa key exhange and sets up an enrypted ommuniation hannel. Establishingthe enrypted ommuniation hannel before attestation takes plae is nees-sary to protet against replay attaks. Then the onneting TCB joins the groupsignature sheme using the tb_at_join ommand. It starts the remote attesta-tion protool over that onnetion using the tb_at_sign. The TCB emulatesthe remote attestation protool, but the appliation handles all errors. Theo-retially, we ould use IPse or TLS/SSL to set up a seure network or soketlayer, but we do not require all the funtionality on this level, and as disussedearlier it is an important priniple in STONe to integrate handling of seurityerrors and appliation errors on the higher level. Enrypting data between thenodes on this level is ompletely suffiient, and STONe handles integrity of theommuniation on the higher levels.
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Figure 5.2: Emulating Remote Attestation and Seure Network I/O on PlanetLab: STONe emulatesthe TCB on top of the Linux OS in the VServer. Every VServer slie automatially providesstrong proess isolation. The appliation ontains Trusted Overlay Networks and the atualappliation.5.2 Implementing Trusted Overlay NetworksWith the TCB emulation on PlanetLab, we build Trusted Overlay Networks (TON) �the base of STONe. Here we outline only the general implementation issues, but inSTONe we hose to implement Trusted Overlay Networks as soket proxies, sine theygive the maximum amount of flexibility for any type of appliation.Figure 5.3 shows the implementation of Trusted Overlay Networks: Every nodehas two PlanetLab slies � one that runs the TON software, and another that runs theappliation. The appliation ommuniates through TON with its peer nodes and anbe trusted or untrusted.The join protool is simple: A node that wants to join TON first onduts a TCPhandshake with another node in TON. In the next step the two nodes do a keyexhange. Finally, they omplete remote attestation.In the urrent setting TONhas to be implemented in user spae beause PlanetLab'surrent onfiguration does not support kernel modules. As we will see this inurssome performane penalties, but we will also obtain an estimate of how STONe wouldbehave in kernel spae.So far we have explained the details of TON and outlined how to build TONon PlanetLab. In the next setions we explain the design and implementation ofSTONe, a Trusted Overlay Network that provides seure, reliable, and anonymousommuniation.
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Figure 5.3: Implementing TrustedOverlayNetworks: This figure displays the TrustedComputingstak on every platform. Trusted Overlay Networks (TON) sit on top of the TCB and onnetother TON nodes.5.3 STONe ImplementationWe implemented a prototype of STONe under PlanetLab. The STONe Proxy andSTONe Router in the system arhiteture are different proesses, and they ommuni-ate via pipes and sokets. The STONe Soket library provides an API for appliationsto onnet to the STONe Router. TNS is implemented as an appliation that runs inthe TCB.STONe Proxy The STONe Proxy derypts inoming and enrypts outgoing fragmentsand ommuniates with the router. The most important deision in the implementa-tion of the STONe Proxy is the hoie of UDP vs. TCP. The STONe proxy uses TCP fora few reasons:First, nodes may leave and enter STONe frequently. TCP onnetions an auto-matially detet when a node leaves STONe beause the peer's TCP/IP stak loses theonnetion through expliit TCP FINs � even when the router appliation rashes.Seond, TCP ensures ordered message delivery, allowing the traffi to be enryptedusing a simple stream ipher. Third, TCP flow-ontrol provides reliable transmissioneven over lossy paths, and TCP ongestion ontrol allows nodes to use up all theavailable bandwidth along the path. Fourth, TCP makes it easier to set up inomingonnetions to nodes within NATs in peer-to-peer networks. Typially, it is not possi-ble for a node behind a NAT to reeive any onnetions without additional support.In STONe, the node behind the NAT onnets to another node using TCP, and whenthe onnetion goes this way the NAT often forwards the port automatially. In UDPonly the node behind the NAT an send nodes outside, but it annot reeive any



5.3. STONe Implementation 65pakets. After onnetion setup in TCP both nodes an send messages bak and forth.For an overview of all possible solutions to this �Hole Punhing� in TCP and UDP,see [83℄. And fifth, TCP automatially buffers messages and slows down onnetionsthrough ongestion. When the STONe Proxy annot forward any messages and doesnot pik up arriving ones, TCP automatially slows down the sender rate of the adja-ent node. Therefore, no pakets have to get dropped in the STONe Proxy. Finally,TCP ongestion ontrol synhronizes traffi in anonymous routing.In addition to paket relay on STONe's overlay links, the STONe Proxy also en-rypts data. However, it does not use SSL/TLS or IPse for several reasons: First,authentiation in STONe is done by remote attestation, and these protools use theirown authentiation mehanisms, whih have to be adapted for Trusted Computing.Seond, ontent in STONe appliation data is already signed by the appliation, andSTONe only requires a heksum for STONe's paket header to protet against tam-pering. SSL/TLS would impose additional overhead to signing and verifying messages.Third, IPse has diffiulties with NATs and firewalls, and we want to make STONe astransparent as possible to maximize the size of the anonymity set.STONe Router The STONe Router is a proess different from the STONe Proxy toprovide resiliene in ase of an attak. When the STONe Proxy gets overloaded orompromised for some reason the Router spawns a new Proxy. After reonnetingto its neighbors, it then ontinues operation without muh interruption. Further,this separation enables parallel proessing of ryptographi operations and messageforwarding on modern miroproessors that have multiple ores. Pipes under Linuxprovide the basi mehanism for interproess ommuniation between the Router andthe Proxy. The Router does the initial handshake and then hands off the file desriptorof the TCP onnetion to the Proxy via aess ontrol messages on the internal pipes.Interproess Communiation Pipes in STONe's interproess ommuniation are uni-diretional, and we use two pipes to establish bidiretional ommuniation. Initiallythere is a soket pair between the Router and the STONe Proxy to signal events andpass along file desriptors. Whenever a new node onnets to the system, the Routersends a signal to the STONe Proxy to set up the new onnetion. For every onnetionthe Router adds a new bidiretional pipe. Pipes limit the maximum possible STONefragment size to 4kB sine this is the urrent maximum buffer limit under Linux.When the buffer is full the Router gets bloked and has to wait for the Proxy to on-tinue. There are still possibilities to optimize STONe by adding more buffers, but thisis beyond the sope of this work and is left for future researh.Figure 5.4 shows STONe's interproess ommuniation with different appliations.The STONe Router ommuniates with every single appliation through the Router
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5.3. STONe Implementation 67Router then forwards it to the destination. If the STONe Soket is onneted via TSS,this is stream data. If the STONe Soket is not onneted and uses TDS, the STONeSoket Library opies the data into a single STONe paket and writes it into the pipe.This paket ontains the destination apability in the header.Proess Synhronization The STONe Proxy and Router both use asynhronous I/Oand an event-based programming model. Both have a ommand queue and dataqueues for every TCP onnetion to adjaent nodes. When a new node onnets, therouter sends a message to the Proxy, and the Proxy sets up a new data queue for thisnode. When an adjaent node leaves the network the Proxy sends a message to therouter. It is important that the Router and Proxy are in syn when a node onnets ordisonnets, sine otherwise data may be lost.We irumvent deadlok problems by having only one synhronization point. TheProxy waits only when no paket arrives from the network and no data arrives fromthe Router. The Router waits only when there is no soket data, and when there isno data from the proxy as well. The main deadlok problem is the internal data pipe,whose size is only 4kB. STONe needs to make sure that both proxy and router are nottrying to write on a full buffer at the same time. We solve the problem by blokingthe Router, suh that no data gets lost. Further, we use the TCP buffer in the proxyfor buffering STONe pakets: Whenever the proxy enounters a full pipe it does notreeive any data from the TCP onnetion. Eventually, it will reeive data from therouter. Then the Router gets the data from the proxy's write pipe, and finally theproxy an write the data from the TCP buffer. Using this tehnique no additionalbuffering is neessary. Furthermore, when the TCP buffer in the proxy fills up beausethe router is busy, TCP automatially slows down adjaent nodes, whih is desirable.When the router starts piking up pakets again from the proxy, TCP will trigger aslow start.Resiliene Every node has a wathdog proess that restarts the STONe Router in aseof a failure or timeout. There are several auses for failures or maliious attaks:(i) STONe Proxy fails: The STONe Router restarts the Proxy. The Router has allrequired state information to restart the Proxy to reonnet to STONe.(ii) STONe Router fails: The wathdog proess restarts the STONe Router. In this aseall state information inluding any buffered data, will be lost. The Router restartsthe Proxy.(iii) T-START paket times out: When the T-START paket does not arrive in time theRouter terminates and the wathdog proess restarts the router to rejoin STONe.
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Figure 5.5: Resiliene in STONe: When the Proxy rashes (left) the Router restarts it. Whenthe Router rashes (right) the Wathdog proess restarts everything.When a node joins the network it waits until it reeives the signal that it an startto send. Then it starts sending pakets. When the joining node does not reeive thestart signal within a given time interval it time out and restarts itself.Cryptography Most ryptographi operations take plae within the TCB, but somerequire appliation-level support. STONe uses the OpenSSL ryptography library forthese operations. After the Diffie-Hellman key exhange a node i has a := DHt
STONeiand b := DHt

STONej
and needs to ompute the seret shared key for the stream ipher

Kj
STONei

. In addition, STONe must enrypt and derypt data on the link between iand j using Kj
STONei

. It uses RC4 and makes sure to initialize the ipher orretly toavoid possible seurity leaks from the key initialization proedure [81, 126℄.Appliation-level support The Router provides sokets and pipes to the appliation forinterproess ommuniation. When an appliation links the soket library it maps aSTONe soket diretly onto a Unix soket to ommuniate with the Router. Internally,a new STONe Soket gets a new ontext data struture that ontains the neessaryprotool status information for TSS and TDS. This data struture is available in therouter and in the soket library. The soket library ontains a similar data struturethat is restrited to the information that is available to any untrusted proesses outsidethe TCB.In addition to the C library, STONe provides a Python module for STONe Soketsto make already existing lasses in Python easily aessible for STONe Sokets. It isstraightforward to hange most soket appliations into STONe Soket appliations,sine only the data struture of the network address hanges. In addition, domainname server (DNS) requests need to be hanged into requests for STONe's TrustedName Servie (TNS). Selet statements on trusted sokets require STONe's tselet om-mand.



5.4. Appliations 69int fd2ap(int fd, ap_t *ap);void get_loal_ap(fd_t rtfd, ton_servie_t sv, ap_t ap);int init_app(har *stone_appsok);int tfd_zero(tfd_set_t *fds);int tfd_set(int fd, tfd_set_t *fds, int type);int tfd_lr(int fd, tfd_set_t *fds);int tfd_isset(int fd, tfd_set_t *fds);int tselet(int n, tfd_set_t *readfds, tfd_set_t *writefds,tfd_set_t *exeptfds, strut timeval *timeout);int tsoket(int protool);int tbind(int s, fd_t rtfd, ton_servie_t sv);int tonnet(int s, fd_t rtfd, ap_t dest);int taept(int s, ap_t *sr);int tlisten(int s, int baklog);int tsendto(int s, void *sbuf, int len, ap_t dest, int flags);int trevfrom(int s, void *rbuf, int len, int flags, ap_t *from);int tsend(int s, void *buf, int len, int flags);int trev(int s, void *buf, int len, int flags);int tread(int s, void *buf, int len);Figure 5.6: Trusted Soket APIFigure 5.6 shows the STONe Soket API. Most funtions are equivalent to normalInternet soket alls. In addition, STONe requires its own event-handling funtionsthat are semantially equivalent to Internet sokets, beause internally a STONe Sokethas two file desriptors from two different pipes.init_app() initializes the appliation with the STONe router. init_app() uses asinput parameter a Unix soket identifier, whih desribes the ommuniation hannelwith the STONe router.5.4 AppliationsWe have implemented three prototype appliations that demonstrate the usefulnessof STONe's API. The Trusted Name Servie is one of the STONe's building bloks, butit also builds on STONe's API. The other two appliations the are implemented so farare the Trusted Instant Messenger and the Trusted File System.5.4.1 Trusted Name ServieThe Trusted Name Servie (TNS) onsists of a lient library and the TNS server. Fig-ure 5.8 shows the TNS Client API. A TNS Client an either register a name and publi



70 Chapter 5. STONe Implementationinitapp(soket, n) -- initialize the appliation with a Unix soket addressand a servie offsettaept() -- aept a onnetion, returning new soket and lient addresstbind(addr) -- bind the soket to a loal addresstlose() -- lose the sokettonnet(addr) -- onnet the soket to a remote addresstlisten(n) -- start listening for inoming onnetionstrev(buflen, flags) -- reeive datatrevfrom(buflen, flags) -- reeive data and sender's addresstsend(data, flags) -- send data, may not send all of ittsendto(data, flags, addr) -- send data to a given addresstns_register(rt,name,key,dest,asyn) -- register name and key from name servertns_query(rt,name,key,asyn) -- query name and key from name serverFigure 5.7: TSoket Python Help pagevoid tns_register(fd_t rtfd, har *name, ton_key_t *pk, int exp, ap_t sv,int asyn);void tns_unregister(fd_t rtfd, ap_t sv, int asyn);void tns_query(fd_t rtfd, har *name, ton_key_t *pk, ap_t *dest, int *dlen,int asyn);Figure 5.8: Trusted Name Servie Client APIkey with a apability, unregister a apability, or query the apability of a name andpubli key. TNS Client alls an be synhronous or asynhronous. Beause ommu-niation is aknowledged, the lient spawns a thread in the asynhronous ase whenthe appliations is not bloked. When the lient registers a new TNS entry this threadalso solves the hallenge from the server.Figure 5.9 shows the header of a TNS paket used for ommuniation betweenlient and server. reqid tells the server to either register, unregister or query an entry.num_entries ontains the number of TNS entries within the paket.5.4.2 Anonymous Instant MessengerWe demonstrate the usability of STONe's onnetionless TDS servie by an InstantMessaging appliation. The Anonymous Instant Messenger uses TNS for registeringpseudonyms. Whenever a person logs in to the Instant Messenger she registers hername and publi key at the name server, and when she logs off she unregisters it.For example, Alie registers the name �Chat Alie�. When Bob wants to onnet toAlie he requests the apability �Chat Alie� from TNS along with her publi key.Alternatively, it is also possible to use Anonymous Instant Messenger as a publi hatroom. In this ase all users register a ommon name suh as �Chat� with the Instant
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Figure 5.9: TNS paket headerMessenger and use their publi keys as pseudonyms.5.4.3 Anonymous File SystemThe Anonymous File System shows how the TSS servie works in STONe. AnonymousFile System is a simple distributed peer-to-peer filesystem, in whih every lient storesand retrieves files. Every node that partiipates runs an Anonymous File System serverand lient omponent. Whenever a lient publishes a file it stores the file loallyand registers the apability with TNS. Any lient that wants to retrieve the file queriesTNS and gets the appropriate apability. The lient then onnets to the peer thathas stored the file. Filenames are flat in this implementation. The publi key isomparable to a mini-ertifiate that tells the lient who published the file.





Chapter 6
STONe EvaluationIn this hapter we evaluate the urrent STONe prototype implementation � first the-oretially and then on PlanetLab [38℄ � to verify our laims about performane andseurity. The evaluation on PlanetLab is ruial beause STONe's random routingdepends on atual network properties. There is still leeway for performane improve-ments. The performane evaluation in this setion should only be onsidered as aproof-of-onept.6.1 Seurity6.1.1 Common AttaksCompromising STONe Nodes STONe's TCB-based arhiteture provides robust pro-tetion against Byzantine failures. It is therefore hard for an adversary to ompromiseand ontrol a STONe node by software-only attaks. Subverting a TCB requires theadversary to get loal aess to the TCB hardware. In pratie, this means that onlya small subset of nodes an be ompromised. In addition, there are arhitetures fortamper-evidene (e.g [182℄) that quikly detet suh ompromises. One deteted,the ompromised TCB appears on a blaklist and is automatially disonneted fromSTONe, beause the group signature sheme in Remote Attestation will fail. The rootof trust (e.g. the hardware manufaturer) has to ensure that the blaklist is onstantlybeing updated. In addition, standard tehniques suh as remote devie fingerprint-ing [114℄ prevent an adversary from running a virtual TCB in software with seretsshe extrated from a hardware TCB.Denial-of-Servie For a Denial of Servie attak, the adversary may ompromise ma-hines all over the Internet, reruit them as bots, and launh DDoS attaks againstsingle STONe nodes or a group of STONe nodes. In ommon DDoS attaks on STONe,the adversary targets different kinds of resoures. For STONe, network bandwidth and73



74 Chapter 6. STONe Evaluationrouter CPU are the most attrative properties to attak. Bandwidth attaks are usuallyexpensive and in STONe beome even more expensive beause of STONe's resilieneto single failures: Whenever ongestion ours in a destination of the routing tablethe node simply turns to the alternative olumn in the row of the routing table. Thiseliminates one node from STONe, but beause of STONe's load balaning, to om-pletely disable STONe, all nodes need to be attaked by bandwidth flood attaks, andthis is expensive. But not only brute-fore bandwidth attaks are hard to aomplishin STONe. When an adversary tries to attak the Router's omputational resoures di-retly from outside STONe by sending malformed pakets, the Proxy will silently dropthose pakets. CPU-based denial of servie attaks from within the STONe networkare also diffiult to arry out. STONe's soket interfae automatially slows down datathroughput to the STONe router, sine the STONe router is a trusted proess. InternalSTONe messages suh as routing updates are enrypted and signed, and therefore,forging of these messages is not possible. The only way to isolate a node from STONeis to arry out a bandwidth flood attak.IP Routing Attaks If an attaker manipulates IP routing information, STONe willfail, but this is the nature of an overlay network. The assumption we make in thebeginning is that the network stak is well-proteted against these attaks.Replay Attaks An adversary ould try to replay a handshake sequene to pretend thatthe adversary is another identity. However, this attak will fail beause it would notbe able to ompute the shared key between the two nodes.Protetion against these attaks onsiderably improves STONe's resiliene andmakes it hard for an adversary to disrupt ommuniation. This is important to preventsabotage on the anonymity servie.6.1.2 Traffi Analysis AttaksIn Chapter 3 we explained STONe's anonymity model and measures, the attak goalsin anonymity, and the adversary's properties. Traffi Analysis protetion has severaldifferent objetives: Sender Anonymity, Reeiver Anonymity, Unlinkability, Loal-ity of Nodes, and Traffi Charateristis. Despite strong TCB protetion, adversariesagainst Traffi Analysis might still be able to ontrol the untrusted part of an arbitrarynumber of nodes, inluding the sender and the reeiver.There are several known attaks that an adversary who pursues Traffi Analysis triesto arry out. On ompromised nodes an adversary might measure and reord timeand loation of messages and orrelate this information arbitrarily. She may also useone of the above ommon attaks to support traffi analysis, e.g. by isolating nodesfrom the network through DDoS.



6.1. Seurity 756.1.3 Traffi Analysis Protetion in STONeSTONe uses a trusted overlay network to protet traffi analysis on the underlying In-ternet. In partiular, it should be hard for an adversary to trak assignments betweenIP addresses and physial nodes in the network and to determines harateristi prop-erties of the ommuniation hannel, as mentioned in Chapter 3. Inherently, STONealready protets against some traffi analysis attaks due to the design of the STONeoverlay. For example, in Trusted Overlay Networks an adversary is not able to identifyIP soure addresses of arriving messages. However, in STONe she is able to see the IPaddresses of the immediate neighbors in the hyperube.In addition, salability is very important to provide better anonymity. Comparedto fully onneted networks suh as Tor or Crowds, STONe's hyperube topology issalable and thus better suited for maintaining large anonymity sets and thereforebetter anonymity. Due to the salable and resilient hyperube struture the networksales up to a larger number of nodes, similar to what has been suggested in mixnetworks [67℄ or the Crowds-based AP3 system [127℄. Furthermore, only nodes thathave an inentive to provide anonymous ommuniation stay in the network. Othersleave. These system properties improve anonymity.When a sender establishes a new path to start ommuniation, most anonymityprotools use random walks over graphs. The main advantage for doing this is thatrandom walks provide mixing properties without using speifi mixes [146℄. Mixnetworks shuffle messages loally, whereas random walks depend on different pathlengths to shuffle messages for anonymity. In ontrast to STONe, mixes synhronizetraffi globally within the network. We deouple the two tasks in STONe's design �random routing and synhronization � and show how to optimize them separately.Random RoutingRandom walks used in ommon anonymity protools have several problems. If twonodes A and B are in lose proximity, with a high probability a random walk only hasa short path and generates loalized traffi patterns that a traffi analysis adversary isable to exploit.In a random walk over an ideal hyperube the lower bound on messages perlink an be up to N
log N

depending on the path permutation the routing algorithmimplements [49℄. In addition, the random walk over a hyperube takes log N log log Nsteps until it reahes a truly random distribution. Only after that an the message beforwarded to the final destination.Theorem 1. A random walk over a hyperube of N nodes approahes a random distributionafter about log N (log log N) steps.



76 Chapter 6. STONe EvaluationProof. For the proof we use oupling tehniques. Let's start a random walk at address
00...0 in the hyperube and go to some random node A. The length of the address'bitstring is n = log N . On every step we hange a random bit out of the n bits from 0to 1 or from 1 to 0. The random walk stops when all bits are the same.This orresponds to the Coupon Colletor's problem [196℄: An arbitrary set ofobjets ontains d distint objets, eah of whih an be piked with probability 1

d
.The problem is to determine the number of steps t it takes to pik every objet at leastone. The probability Ei that objet i out of the d objets is missing is

P (Ei) =

(

1 − 1

d

)t

.Therefore, the probability that at least one out of the d objets is missing is
d∑

i=0

P (Ei) = d

(

1 − 1

d

)t

≈ de−
t
d .When we set this probability to p0 we get

p0 < de−
t
d

t > (d + log p0) log dWhen p0 is small it takes about d log d steps to pik every objet at least one.On every step during the random walk over the hyperube we draw a bit positionout of the n bits and a bit value out of {0, 1}. A and B set the bit position aordingly.This is exatly the Coupon Colletor's problem with d = 2 + n = 2 + log N objets.Another known sheme for anonymous ommuniation is sorting networks suhas Bather networks [90℄. However, similar to mix asades [58, 41℄, they have thedisadvantage that they are not resilient against ompromises beause they alwaysrequire a fixed number of funtional nodes in the network. Furthermore, sortingnetworks are less effiient than random walks, sine they take O(log2 N) steps to sort
N elements.Random routing, in ontrast to a random walk, uses bit fixing in STONe's prefix-based hyperube routing algorithm. In random routing, on average, there is onlyone message on a given link at the same time, while the expeted path length is
2 log N [187℄.Self-Mixing Property Beause random routing piks a different intermediate node onevery message transmission, the ommuniation hannel experienes random laten-ies. As a result, messages get randomly shuffled, making it diffiult for an adversary



6.1. Seurity 77to find pakets that belong to the same ommuniation hannel. In addition, suhmixing tehniques are designed to prevent an adversary from assoiating inomingmessages with orresponding replies. An adversary who knows the ommuniationhannel of some messages an only guess whih ommuniation hannel other mes-sages belong to.We have a setN of N nodes in the hyperube that uses the random routing shemedesribed earlier. Every phase of the protool is non-repeating, i.e. when two routesdiverge they will never meet again during the same phase. This effet ours beausehyperube routing in STONe uses bit-fixing. First, we assume that all nodes in Nsend at the same rate λ. Further, every node has h = T
N

messages to send, andevery destination appears on exatly h pakets that are randomly distributed arossall senders. This is alled a 'full h-relation' [187℄.Sine random routing relays every message via a random node and fixes bit by bit,the probability that the path length in a network of n nodes is k follows a binomialdistribution: Prdist(n, k) = 1
2 log n

(2 log n
k

). Aordingly, the average and maximum are
µrdist(n) = log n and Mrdist(n) = 2 log n. We note that random routing annot be mod-eled as a Markov Chain, beause it does not have the memory-less Markov property.The Markov property states that for any proess Xt and node state ik we have

Pr[Xt+1 = j|X0 = i0,X1 = i1, ...,Xt = it] = Pr[Xt+1 = j|Xt = i] = Pij .In other words, the transition probability at the urrent node only depends on theurrent state. STONe's routing algorithm, however, depends on bit-fixing from left toright. P [Xt+1 = j] does not depend only on P [Xt = i] but also on how many statesthe algorithm has already traversed.Corollar 1. Every node Xi ∈ N in a network of |N | = N nodes reeives a sequene ofmessages f0f1...f2h. fi are binomially distributed in N , fi ∼ B(log N, 1
2 ).Proof. The traffi on all edges of the network is uniformly distributed for two reasons.First, we assume that all nodes in N send at the same rate λ. Seond, every node piksa random intermediate node for every message it sends. . As a result, the traffi onall edges of the network is uniformly distributed, and every node proesses messagesat rate 2λ. Beause bit-fixing takes plae in hyperube routing, the probability thatnode Xi reeives a message from any given node in N (inluding itself) is distributedaording to a binomial distribution. More preisely, given the distane d(Xj , Y ) tonode Y the probability that Xi reeives a fragment from node Xj ∈ N at time step

t(i) is P1(Xj) = 1
N

( log N
d(Xj ,Xi)

) where t(i) = i
λ
. Sine every node sends h = T

N
paketsand pakets traverse the network twie, Xi reeives h · P1(Xj) = T

N2

( log N
d(Xj ,Xi)

) randomfragments from every node Xj in N resulting in∑N
j=1 2h · P1(Xj) = 2h fragments.



78 Chapter 6. STONe EvaluationWe also all this the self-mixing property of random routing. Similar to the originalwork on random routing over hyperubes we an generalize this result and define apartial h-relation in whih nodes have at most h messages to send and for every node
Xi there are hi ≤ h messages to send. Aordingly, Xi's individual send rate is λi = λhi

h
.Lemma 1. In the partial h-relation every node Xi ∈ N reeives a sequene f0f1.., f2h ofmessages where fi is drawn at random with probability pi = hi

hN
· Xi and Xi is binomiallydistributed.Proof. Everything from the proof of Corollary 1 is still valid exept that the probabilitynow is hj

h
P1(Xj) =

hj

hN

( log N
d(Xj ,Xi)

). As a result,∑N
k=1 hk ·∑N

l=1 P1(Xl) =
∑N

k=1

∑N
l=1

hkhl

hN
=

2h messages.In some real-world senarios, espeially web browsing, the relationship betweensenders and reeivers is often only 1:n. As this is a ommon problem in typialanonymity networks, it is not an issue in STONe. These lemmas show that anonymitydoes not depend on the relationship between senders and reeivers but only on thetotal distribution of the message destinations.In partiular, random routing protets against most intersetion attaks. In inter-setion attaks an adversary measures traffi load on the ompromised nodes. Eventhough an adversary may fail to identify individual onnetions, it is still possibleto mount intersetion attaks. Despite STONe shuffling messages, an adversary aninrease her hanes of breaking sender/reeiver anonymity when senders transmitmessages at different rates λi. The suess probability p(k,m) against sender/reeiveranonymity in a network of k senders and m ompromised nodes is:
p(k,m) = 1 −

((

1 −
(

k

N

)m)(

1 −
(

N − k

N

)m))

= O

(
km

N

)

.To be suessful in this attak an adversary needs to ompromise at least one sender/reeiverand one idle node. As a result of this, over traffi is required to ensure that sendersand idle nodes are indistinguishable. If there is not enough over traffi to hideinativity in the network, nodes must leave the network to protet anonymity.In addition, to break unlinkability an adversary has to ompromise exatly thesender node Xi and the orresponding reeiver Xj . Deteting Xi and Xj on theommuniation hannel is only possible when the ommuniation hannel operatesat a speifi ommon rate. The suess probability p(k,m) for this type of intersetionattak against unlinkability is
p(k,m) = 1 −

(

1 −
(

N − 1

N

)m)2

= O

(
1

N

)

.Hene, an adversary does not gain signifiant advantage when she tries to break



6.1. Seurity 79unlinkability in that fashion.In addition to intersetion attaks, timing attaks pose a signifiant threat thatmust be onsidered as well. In timing attaks an adversary measures the inter-arrivaltimes between two messages in sequene. For example, when a sender transmitsmessages f1, f2, and f3 at times tenter(f3) > tenter(f2) > tenter(f1), respetively, on theInternet, the time differenes between themessages remain the same. In STONe, how-ever, the time differenes hange along the ommuniation path beause of STONe'sself-mixing property. If all senders are sending traffi at the same rate, an adversary isonly able to see two onseutive fragments from exatly one node: The sender that islosest to the node.In hyperube routing a node with distane s from the sender forwards 2−s of thissender's messages. In a fully onneted network only every N -th message would omefrom the same node, but in a hyperube there is small bias towards the losest sender.If we assume that all senders send at the same rate, one node i will reeive every
(2−l·sj + 1

N
)-th messages from sender j. In hyperube routing the nodes losest to thesender propagate 1

2 of the sender's messages, the seond losest 1
4 et.The attak is suessful against unlinkability when an adversary manages to om-promise the sender, reeiver and one of their losest neighbors for eah. The problem,however, is that not all neighbors forward a different number of messages from thesender. For example, the probability that the first neighbor forwards two sequentialmessages is 1

2 · 1
2 = 1

4 . For the seond neighbor it is 1
4 · 1

4 = 1
16 . In total, the probabil-ity that two messages are arriving in sequene when the sender and its neighbor areompromised is

q(N) =

log N
∑

i=1

i · 4−i = O

(
1

N

)

.On the other hand, the probability that at least one sender and one of its losestneighbors are ompromised is
p(N, k,m) =

(

1 −
(

N − k
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)m)
(

1 −
(

N − log N

N

)m−1
)

=

O
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1 − (N − max (k, log N))m

Nm

)

.Here, k is again the number of senders and m the number of ompromised nodes.Given that the send rate λ must not be uniform for a suessful attak, the suessprobability depends on the send rate as well, and there are λ
λj

log N neighbors toonsider instead of log N . Timing analysis an be a threat to STONe, beause theoverall suess probability q(N) · p(N, k,m) is not neessarily small. To fully protetagainst timing analysis attaks all senders have to be synhronized.



80 Chapter 6. STONe EvaluationAttaks on the Topology When an adversary knows STONe's hyperube topology, tim-ing analysis attaks may beome signifiantly easier. In partiular, when an adversaryknows the sender's neighbor, on average, she is able to monitor every N -th messageand orrelate these measurements aross the network. Therefore it is ruial thatSTONe hides network topology information.By design, STONe hides network topology, sine an adversary an only aess therouting tables from within the TCB. Further, STONe derives node addresses from theinternal Trusted Computing keys, thus randomizing them. A STONe node address isunrelated to its loation in the network.However, there are still ways to reover the topology due to physial networkproperties. The main adversary against the hidden topology is tomography. In to-mography a network monitoring tool typially probes network end-to-end delays toinfer individual ommuniation path harateristis (e.g. [60℄). If an adversary de-tets these individual harateristis she may be able to partially reonstrut STONe'stopology.Typial tomography works the following way: First, an adversary uses all om-promised nodes to determine the latenies between them. In the seond step sheonnets to a random node in the network and measures the end-to-end delays. Thelower bound of the end-to-end delay is a measure for the distane between the nodeand the urrent node. Usually, there exist algorithms that are able to reonstrutlatenies of all possible O(N2) paths using only O(N log N) path measurements [60℄.In the next theoremwe give an upper bound for the path length. For simplifiationwe assume that all links have uniform delays, and end-to-end delays only depend onthe path length. For simplifiation we assume that the hyperube routing algorithmuses k = 1 and l = 1 as parameters.Theorem 2. (Valiant [187℄) In random routing the average number of hops along an arbi-trary path is µ = log N . When all nodes send h pakets the probability that a message doesnot get delayed by more than ∆ + µ steps is:
P (X ≥ ∆) < hN

(
eh log N

2∆

)∆On average the path length in random routing is 2 log N . If we set ∆ = k · log Nthen P (X ≥ k log N) < N−k when k ≥ eh. For a simple permutation (h = 1), thisbound holds for k ≥ e.Lemma 2. The expeted arrival-time variation between two fragments in a sequene is
√

log N
2 .Proof. The distane between sender and reeiver is binomially distributed with dis-tribution B(2 log N, 1

2). The expeted variation in distane between two independent



6.1. Seurity 81trials is the standard deviation: √2 log N 1
4 =

√
log N

2 .STONe minimizes ongestion even in the worst ase, when the network routesmessages synhronously. However, STONe's routing buffers have to toleratemaximumdelay. End-to-end lateny an grow up to 14 log N hops depending on the permittedloss rate [47, 187℄.So far we have only investigated tomography in a network with homogeneouslinks. For STONe we also have to onsider tomography in hetereogenous networksthat have individual link delays suh as the Internet.
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Figure 6.1: Cumulative Distribution Funtion of an all-pairs-pings on PlanetLab: A single urverepresents the CDF of the RTT between a single node on PlanetLab and the rest of the network.We first ondut an all-pair ping on PlanetLab to measure the round-trip timesbetween all pairs of nodes. PlanetLab is the urrent testbed for distributed Internetappliations [17℄. It emulates the real-world Internet, beause it allows appliationsto run on geographially distributed mahines that have different omputation andommuniation apabilities [38℄.Figure 6.1 shows the umulative distribution funtion (CDF) over an all-pair pingmeasurement. Every single graph represents the RTT between a fixed node and an-other arbitrary node on PlanetLab. On average only a few nodes have large RTTs,whereas 80% of the nodes have RTTs below 500msec. Some nodes in the graph areweakly onneted.Beause RTTs are heavily distributed, an adversary an use additional knowledgeabout RTTs to reonstrut the topology. After disovering the overall path length l



82 Chapter 6. STONe Evaluationand delay D, the adversary's goal is to detet the speifi individual link delays dialong the path from all N log N individual link delays in STONe. One she knows theindividual link delays she an use the results from tomography to determine the linkswithin STONe that are inluded in the path.The number of possible different ombinations of summations of individual delays
di resulting in D an be omputed by a polynomial of degree (l − 1) if we assume thatall individual link delays in STONe are distint. For example, when l = 1 thereexists exatly one possibility, D = d0. When l = 2 there are about ⌊ (D−1)

2 ⌋ possiblesummations. When l = 3 we have to sum up over all possibilities of length l = 2.We an express this reursion in losed form ql in whih yi desribes the number ofsummations for path length i that result in end-to-end delay x:
ql(x)

(log N)!
=

(1 − yl−1x
l−1)(1 − yl−2x

l−2)(1 − yl−3x
l−3) · · · (1 − y1x

1)(1 − y0)

(log N)!Now, the probability that an adversary gets a orret ombination of individualdelays whose sum results in D is:
Pdelay(D,N, l) =

ql(D)

l! · 2N log N
.

D does not depend on N and in STONe l < 2 log N for most pratial ases. When
N beomes large the suess probability is very small and therefore a brute-fore attakby random guessing is hard.This speifi problem an also be speified as a subset sum or knapsak problem.Knapsak problems an be solved under ertain irumstanes [136℄, in partiular,when knapsaks have low density. If the di are hosen at random with di ≈ 2βNand 1 ≤ i ≤ N where β > 1.54725 then the knapsak is easily solvable. However,this distribution does not apply to link delays on the Internet. Furthermore, linkdelays have large variane, and therefore, they annot be formulated as a low densityknapsak problem.Limitations of Random Routing A signifiant trade-off in random routing is that onlyhalf of the bandwidth in the network is available. Further, on average the round-triptime beomes twie as large. Furthermore, random routing is still prone to intersetionattaks when synhronization does not take plae, and there are idle nodes in thenetwork.Fragment Sizes Evenwhen an adversary only has aess to a fewnodes she an observeunique fragment sizes, and by doing traffi onfirmation attaks she an assign traffiharateristis to partiular ommuniation hannels [183℄.



6.1. Seurity 83A ommon solution to the problem is to use uniform fragment sizes. However,uniform fragment sizes have a large overhead.An alternative way to deal with the problem is message splitting [164℄. STONeould split a message that would otherwise fit into one fragment into smaller pieesand route them through the network along different routes using random routing.When we split every message into N fragments of random size every node observes arandom fragment every time. However, this also gives an adversary an estimate forthe upper bound of the message size.Ideally, the fragment size is a global synhronizationparameter that depends on thesession-layer requirements of the different ommuniation hannels. Every STONenode uses a uniform fragment size in the beginning. When the real fragment size issmaller it dereases the size by some maximum ∆, otherwise it inreases the size bysome maximum ∆. In random routing every node sees the different fragment sizesand adjusts the uniform fragment size to the average measured fragment size. Weleave this as subjet for future researh. In the urrent implementation STONe usesonstant fragment sizes.Session-based Attaks When a session expires, ounting attaks beome a threat be-ause the inative node is part of the anonymity set but does not show any ativity.There are two alternatives to fix this problem: Either the node drops out of the net-work, or it has to start some ativity.When a node leaves the network it redues the size of the anonymity set. Onthe other hand, when a node has to start ativity that is not intended by the user itosts extra resoures. STONe has to make a trade-off between the hurn rate λchurn =

λenter − λleave, i.e. the rate at whih nodes are entering and leaving the network, andthe average send rate λ̄, at whih nodes are sending traffi within the network.In fat, when a single node enters and exits the network up to log2 N routingupdate messages have to be sent. In ontrast, sending extra traffi requires up to λ̄of extra data, where λ̄ is the average data rate in STONe. Optimizing this problem isanother important future aspet of researh.6.1.4 Appliation-based Anonymity in STONeNow we look into STONe's anonymity on the appliation-layer. Here, STONe providesthe Trusted Name Servie as well as STONe sokets as the main features to prevent anadversary from spying on network addresses and possible ommuniation patterns.Appliation-based Denial-of-Servie STONe has to protet against a misbehaving ap-pliation that tries to flood the network. However, STONe has the same semantisas TCP/UDP sokets. When an appliation sends too muh data, filling the buffers



84 Chapter 6. STONe Evaluationquikly, STONe will blok. When a node opens too many onnetions STONe willeventually run out of memory. STONe has some advantages over TCP/UDP soketsbeause it an shut down a node that tries to launh a DDoS attak, similar to SOS, I3or Mayday [110, 29, 179℄.Denial of Servie on TNS An adversary ould try to register a bulk of TNSName entriesand brings the server down. There are two issues: First, TNS gets flooded with newentries, and seond, TNS an use up all of its memory, when it has to keep trak ifhalf-open entries. TNS uses SYN ookies to avoid this problem [20℄. Further, TNSdoes not spend any CPU time on enryption until it has got a response from theregistering STONe lient node. To solve the first problem, however, STONe requiressome form of admission ontrol. One solution is to limit the number of entries pernode, but that would not work in TFS beause file servers register signifiantly moreentries than other nodes. Another solution is to have timeouts on the entries anduse omputational lient puzzles, so that TFS an foresee how many entries to expetfrom any given node.Side-Channel Attaks An adversary annot diretly attak the STONe system, but sheis able to monitor system ativity. There are possibilities that system load or kernelativity reveal some patterns that an ompromise the anonymity properties of theappliation. As suggested in Chapter 2 extra dummy load on the nodes makes itharder to mount these attaks.Impersonation Attak Beause TNS does not ertify names but only publi keys, STONeappliations need to have seure offline hannels or key esrow for obtaining theorret identities in STONe. Otherwise it is always possible to impersonate someoneelse on TNS. But this is not muh different from standard ertifiation authorities likeVerisign [22℄ that do offline heks one.Censorship Attak Sine STONe does not have a entral membership list it is hardfor an adversary to disonnet or launh a DDoS attak on single nodes. On theappliation-level TNS is the most vulnerable point beause nothing works withoutthe name lookup servie, similar to DNS in the Internet. However, sine TNS is atrusted proess it is hard for an adversary to shut it down, but it is prone to DDoSattaks. TNS has to be repliated to improve resiliene and also performane. Inpartiular, the distributed appliations like TFS require a lot of name lookups.Passive Logging Attak Sine STONe's addresses are opaque apabilities and traffianalysis is hard, even a global adversary with aess to sender, reeiver, and arbitrary



6.1. Seurity 85nodes does not learn muh about ommuniation hannels unless he is able to om-promise the TCB, whih an happen only at a very rare oasion. Therefore, PassiveLogging Attaks in STONe are not so powerful.Phishing and Pharming Attak The Trusted Name Servie in STONe is strongly pro-teted against attaks from the TCB. And this TCB protetion makes any type ofPharming attak hard. Additionally, the seurity model in STONe is different fromthe Internet. DNS maps real domain names to IP addresses, whereas STONe mapspseudonyms to opaque STONe apabilities. In ontrast to DNS, whih has a hierar-hial name spae, pseudonyms are unrestrited. Eve an only register an arbitrarypseudonym and STONe guarantees that she has the orresponding publi key. Every-thing else depends on the �web of trust� in STONe [86℄.However, when Eve wants to start a Phishing attak to fool Bob that she is Alieshe needs to set up a web server that ontains the fake web site. This web site needs toarry fake redentials from Alie. But beause the trusted name server verifies Alie'spubli key, Eve is only able to impose Alie's identity when she knows Alie's privatekey. Therefore, Phishing attaks are almost impossible.6.1.5 Anonymity GoalsSummarized, STONe ahieves the following individual anonymity goals:Membership Anonymity In ommon anonymity systems that onsist of untrustedproxies suh as Tor [75℄ or mix networks [58℄ the lients themselves are only knownto one single proxy. However, often the set of proxies M is publi, and an adversaryan diretly fous on bloking or attaking these proxies. STONe does not have to dis-tinguish between lients and proxies for anonymity reasons, beause the membershiplist M itself is hidden inside the TCB. Monitoring pakets entering and exiting a sin-gle STONe node just provides an adversary with information about S(N) = O(log N)random nodes out of N .Traffi Anonymity On the Internet network paket ontent, paket size and inter-paket delays reveal traffi harateristis per se. Existing anonymity networks forlow-lateny ommuniation suh as Tor or Crowds [75, 148℄ do not implement anytehniques that protet against all of these problems. STONe, however, inherentlydisguises inter-paket times. Random routing auses pakets to take different randomroutes through the network, and therefore end-to-end delay is random as well. STONealso makes network paket sizes uniform and re-enrypts paket ontent using differ-ent keys on eah hop. An attak on traffi anonymity in STONe needs to be more



86 Chapter 6. STONe Evaluationsophistiated and typially involves sender and reeiver ompromises whih are hardto ahieve.Sender/Reeiver Anonymity Sender and reeiver anonymity in typial anonymity net-works fouses on detetion of exit nodes, beause exit nodes have information aboutthe lients partiipating in the ommuniation. One of the most effiient ways toattak sender/reeiver anonymity is the predeessor attak [198℄: When path refor-mations take plae, sender and reeiver never hange but intermediate nodes alongthe path do. If an adversary samples the soure addresses of arriving pakets on ran-dom nodes she observes the sender address more often than addresses of intermediatenodes. It is therefore possible to identify the sender and reeiver. Frequent pathreformations therefore signifiantly inrease the risk of a breah in sender/reeiveranonymity. However, if the adversary is unable to identify the onnetion it is notpossible to suessfully link together deteted senders and reeiver on the network.STONe prevents the adversary from identifying the onnetion, beause the mes-sage inlude the paket header is enrypted, the paket size is uniform and the pathitself is not distinguishable from any other ommuniation path on the network due torandom routing. This learly prevents an adversary from arrying out the predeessorattak.The best strategy for an adversary to ompromise sender/reeiver anonymity is tomonitor traffi properties at the sender and the reeiver nodes diretly. When, forexample, the total measured traffi volume over time is equal at two given nodesit is likely that they are onneted. Also, an adversary may make use of additionalknowledge about the network topology to arry out these intersetion attaks. Toprotet against suh attaks it beomes neessary to synhronize the network at leastpartially and over the sender and reeiver nodes.Figure 6.2 shows how STONe's anonymity degrades under random routing whengroups of 2, 4, 8, 16, and 32 nodes are synhronized. When only 2 nodes are synhro-nized the network is in the same state as if no synhronization takes plae. However,by adding only a little synhronization it is already possible to slow down anonym-ity degradation signifiantly. Random routing supports effiient implementation ofsynhronization, beause every node knows the total traffi volume of the network.As a result, STONe is resistant against most traffi analysis attaks. Most impor-tantly, STONe prevents the Predeessor Attak, beause an adversary is not able toidentify network onnetions, thus allowing frequent path reformations. STONe isalso salable and therefore supports large anonymity sets. Its ore benefit in protetingagainst traffi analysis lies in the fat that it uses random routing instead of randomwalks used in previous approahes to anonymous ommuniation. Random walksstill preserve loality and therefore do not provide optimal anonymity.
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Figure 6.2: Sender/Reeiver Anonymity Degradation: Partially synhronized nodes under Ran-dom Routing in STONe stop the sender/reeiver anonymity degradation.6.2 PerformaneOur theoretial seurity analysis showed that STONe's features defeat many attaks.However, we need to verify that the atual implementation indeed realizes the desiredproperties. First of all, we investigate STONe's performane overhead.6.2.1 MirobenhmarksIn the first series of experiments we measure mirobenhmarks on two STONe nodes.STONe runs on two Linux mahines that are onneted via 100MBit/s Ethernet. Onemahine has two 3.2Ghz Pentium 4 CPUs with 2GB memory, the other two 3GHzPentium 4 CPUs with 1GB memory. Both run Fedora Linux kernel version 2.6.9. Thegoal is to measure the baseline performane overhead of STONe.Hop-by-hop Lateny The objetive of the first experiment is to determine hop-by-hop lateny between the two nodes over Ethernet for various fragment sizes. Theround-trip time (RTT) of a ommon ICMP ping is the bottomline ase for the RTTbetween the two STONe nodes. In this senario STONe arries out full enryptionbut no random routing or synhronization. In the experiment the message size variesfrom 512 to 4096 bytes. 4096 bytes is the maximum, sine this is also the maximumapaity of the internal IPC pipeline between the STONe proxy and the STONe router.Figure 6.3 shows the results of this first experiment. STONe has a onstant pro-essing overhead of about 150 µsec for every message and an additional 2-5% forenryption.
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Figure 6.3: Hop-by-hop round-trip times for different message sizes: Both RTTs for ICMP andSTONe inrease at the same rate as the fragment size. STONe's overhead is approximately2-5% for enryption, and a fixed overhead of 150 µsec for the additional routing layer onevery node. Proxy overhead 40 µsecRouter overhead 60 µsecContext swith and IPC 40 µsecTable 6.1: Proessing overhead in STONe: Look-ups in the routing tables make up the largestshare of message proessing time. The remaining time is spent by the proxy and the OS-basedsheduling and ontext swithes.Table 6.1 shows the time spent during the message proessing. A message spendsmost of its time in the router when it looks up the next hop. The proxy itself hassystem alls for reading and writing data, and the rest of the time is spent on ontext-swithes and message opying between the proxy and the router.The two-proess arhiteture in STONe is responsible for some of the overhead.A single proess ould redue the overhead by 50-100 µsec. However, the routerwould not be proteted from outside attaks, espeially when the network stak isunder a DDoS attak. In our urrent arhiteture the router monitors traffi patternsat the Proxy and automatially detets when it is being attaked. It an then startanother Proxy that listens to a different port. For performane reasons it may also beworthwhile to use kernel threads instead of user-level proesses. However, the urrentPlanetLab arhiteture has onstraints that prevent the use of kernel threads.End-to-End Throughput In the seond experiment we determine STONe's end-to-endthroughput between these two nodes. We measure the average throughput duringa large file transfer from one node to the other via the Trusted Stream Servie (TSS).In the experiment we hange the maximum window size as well as the fragment for
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Figure 6.4: End-to-end throughput in STONe for different fragment sizes of 4096, 2048 and1024 bytes ompared to the expeted throughput of the onnetion (Exp) and the measured Torthroughput (Tor): For large fragment sizes STONe ahieves almost the expeted throughput forevery maximum window size. Smaller fragment sizes require more proessing overhead.Figure 6.4 shows themeasured throughput as a funtion of themaximumwindowssize. The expeted theoretial throughput is max window size
2·RTT

or the maximum band-width of the onnetion, whihever is smaller. The RTT between the two nodes is
100µsec and the bandwidth 100 MBit/se. Therefore, the maximum possible through-put is about 12.5 MB/se.TSS stalls when the maximum window size is smaller than four fragments, beauseit does not saturate the underlying TCP onnetion, and TCP slows down. STONeahieves almost the expeted throughput between two nodes, espeially when thesend window size beomes large.In omparison, the graph also ontains the measured throughput of Tor by usingthe 'torify' ommand, whih turns a standard soket appliation into a Tor soketappliation [75℄. Tor uses TCP flow- and ongestion ontrol mehanism, whih is notoptimized for long delays in anonymity networks. As the graph shows Tor imposesa penalty of about 30% on throughput in general, whih is signifiantly larger thanSTONe's minimum penalty under TSS.Thesemirobenhmarks show that STONe's prototype implementation an aom-modate reasonable throughput for most Internet appliations. In random routing thisimplementation ahieves an average throughput that is lose to the theoretial maxi-mum throughput. This is subjet to further improvements as for smaller paket sizesoverhead for opying data between user-spae and kernel-spae ours. However, wehad to implement this prototype in user-spae and leave the kernel-level implementa-



90 Chapter 6. STONe Evaluationtion for future work, beause PlanetLab as our testbed does not permit kernel modules.For end-to-end appliation-level ommuniation between diretly onneted nodes,opying pakets between user and kernel spae does not make any differene. But onmulti-hop routes this overhead ours on every single hop. As an additional optionSTONe an redue the number of hops on the path at additional ost for the routingtable spae and additional handshakes upon node join operations.6.2.2 Basi System PerformaneIn the seond series of experiments we run benhmarks on a large-sale environmentto validate our theoretial analysis about the network topology from earlier hapters.Salability Salability is ruial in STONe, sine a system for anonymous ommuni-ation requires a large anonymity set of nodes. In these experiments we measure theaverage number of routing table entries in a network of 16 to 512 nodes.
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2

).



6.2. Performane 91To better illustrate the routing table sizes for different k and l we keep the numberof STONe nodes N onstant but only hange parameters k and l. Again, we measurethe routing table sizes and ompare them against the expeted size.
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Figure 6.6: Routing Table Sizes for N = 128 with k virtual addresses per node and l entries perrouting table slot.Figure 6.6 ontains the number of routing table entries for onstant number ofSTONe nodesN = 128. When l inreases the routing table size inreases polynomially.When k inreases the routing table size inreases logarithmially. This is exatly whatwe expet from S(N).These results also show that STONe indeed supports high hurn. Even for largenetworks with hundreds of nodes the number of required handshakes during an insertoperation for a joining node is limited.6.2.3 Random Routing on PlanetLabFinally, we evaluate the outome of random routing on PlanetLab. Remember thatit is the goal in random routing to protet against timing attaks and ontextualattaks, suh as intersetion attaks. In addition, an adversary who is observingrandom onnetions should not be able to ompromise sender/reeiver anonymity orunlinkability.In this experiment we send STONe eho pakets from a random node to anotherarbitrary STONe node. We then observe the distribution in the number of hops it



92 Chapter 6. STONe Evaluationtakes to transmit the eho pakets between the two nodes. Finally, we measure theround-trip time.Path Length In this series of experiments wemeasure the number of hops betweentwo arbitrary nodes in STONe. Random routing ausesmessages to take different pathsthrough the network, and therefore the number of hops is also random. Remember,the expeted path length in STONe's routing is
L(N) =
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Figure 6.7: The average single path length between the same sender and reeiver in randomrouting over time for different pairs k; l with k virtual addresses and l alternative routing tableentries per node.In the first experiment we measure the average number of hops between twoSTONe nodes on STONe networks of different sizes. Figure 6.7 shows that we alwaysapproah the expeted routing table size S(N), thereby proving our theoretial results.In the next experiment we hange parameters k and l and measure the averagenumber of hops on a STONe network of N = 128 nodes. Figure 6.8 shows that wealmost always ahieve the expeted value. When k is onstant and l grows, the pathlength dereases polynomially. When l is onstant and k grows, the path lengthdereases logarithmially.
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Figure 6.8: The average round-trip path length between the same sender and reeiver in randomrouting for k virtual addresses and l alternative routing table entries per node for a STONe networkof 128 nodes.To evaluate random routing quantitatively we define a ost funtion C(N) for theSTONe network as
C(N) =

S(N)

L(N)2
.The rationale for the definition of the ost funtion is that the number of routing tableentries S(N) divided by the average path length L(N) results in the number of nodesof extra information per prefix slot. If this is the number of hops required to reahthe destination we have a balaned ost of 1, sine this senario would orrespond toa brute-fore routing method.Figure 6.9 shows the graph for C(N). Some ombinations of parameters as forexample k = 2, l = 2 � k = 4, l = 1 impose the same ost. The general onlusion isthat l > 2 does not provide enough benefit in the ase of N = 128. l = 2 seems tobe the optimal solution, sine some redundany is required, and the studies in earlierhapters showed that l = 2 provides suffiient protetion against path failures.In the next step we not only measure the average path length but also the distri-bution of path lengths for different k and l. For the experiment we pik k = 2 and

l = 2 for the first run and k = 4 and l = 1 for the seond run, beause they both haveabout the same ost.Figure 6.10 shows the measured results. The first notable observation is thatdifferent parameters for k and l ause different varianes. Smaller k seems to be
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Figure 6.9: The ost of random routing for k virtual addresses and l alternative routing table entriesper node in a network of N=128 nodes.preferable to redue the latenies. The distribution of the number of hops is modaland onfirms the theory about the binomial distribution.In the next experiment we measure round-trip times on PlanetLab for N = 128 andompare them against Tor. In STONe we pik k = 2 and l = 2, sine this parameter pairtolerates faulty links and allows aeptable ost. In the experiment a node onstantlysends messages to a fixed reeiver via random routing. The reeiver bounes bakmessages via random routing, and the sender then measures the round-trip time ofthe message.Figure 6.11 shows STONe's RTTs on PlanetLab. The number of hops is binomiallydistributed, but the atual node-to-node delays have a heavy-tailed distribution whihauses a streth in the total round-trip times. The average round-trip time is onlyaround 400msec, but the maximum round-trip time is about 1000msec.Figure 6.12 shows the distane in the number of hops it takes messages to get fromthe sender to the reeiver and bak. As expeted it is binomially distributed with apeak at 7.Finally, figure 6.13 shows the umulative distribution funtion over the hop-by-hop delays of the seleted 64 PlanetLab nodes. Hop-by-hop delays are usually between
30msec and 120msec, whih is realisti for a ontinent-wide network. A transonti-nental ICMP eho aross the US usually takes about 70 − 100msec.In ontrast to STONe, figure 6.14 shows the RTTs on Tor when using Tor soketsin onnetion with a user-level eho server over TCP. The standard deviation of the
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Figure 6.11: STONe's RTT between the same sender and reeiver in random routing over time: Itshows that random routing results in a random RTT. The middle line marks the average RTTwhereas the other two lines delimit the standard deviation around this average RTT.over time as expeted. It is subjet to future work to determine the optimal parametersfor synhronization and to minimize its overhead in large environments.
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Chapter 7
Related WorkSTONe intersets with many different researh areas. The first part of this hapteris about Trusted Computing and Trusted Operating Systems. There is a large bodyof work on these topis, whih are long-standing researh problems. In the seondpart of the hapter we survey Seure Communiation. In the third part we look intoalternative approahes for anonymous ommuniation and Traffi Analysis. After thiswe ompare existing arhitetures for seure and anonymous ommuniations. In thelast part we desribe the related work of the appliations we implemented on STONe.7.1 Trusted Computing and Trusted Operating Systems7.1.1 Trusted ComputingTrusted Computing overs two main areas: One is how to protet exeution againstan adversary, and the other is how to prove genuity and trust of a platform.The idea of proteting program exeution against tampering in ommodity om-puters is not new [116℄. First approahes have been implemented in tamper-resistantmodules using ryptographi tehniques to seure ommuniation and storage [109℄.This work presents the base of today's Trusted Computing systems. Further de-velopment are ryptographi Co-proessors [201℄ that implement opy protetion,eletroni ash or seure postage in distributed systems. Seure ryptographi Co-proessors were one of the first systems that provided sealed tamper-resistant storage.Reent researh desribes how to atually build a sealed storage system for serets withminimal arhitetural support [118℄. In this researh user serets are deoupled fromhardware devies, without the requirement for built-in devie serets.Exeute-only memory [186℄ is a hardware platform on whih memory ontent istamper-resistant but not hidden as in Trusted Computing. However, XOM is proneto replay attaks whih need to be fixed by additional memory integrity heks [169℄.Further studies explore how to run an untrusted operating system on suh an arhite-101



102 Chapter 7. Related Workture [122℄. Trusted operating systems have to be evaluated yet. A similar, but differentapproah to tamper-resistane is AEGIS, a tamper-evident arhiteture [182℄. Similarto XOM, all omponents external to the proessor are untrusted, but XOM providesa larger number of proesses and is more flexible on the appliation-level. Intel'sExeute Disable Bit uses a similar onept on the urrent Intel Pentium arhitetureto provide a bit that disables ode exeution in a memory segment. This is a powerfulprotetion method � espeially against buffer overruns.The idea of using virtual mahines for strong isolation has been around for awhile [133℄. Another approah for proess isolation in Trusted Computing is to useVirtual Mahines [87℄. However, for example, by using virtual mahines suh as theVServer in PlanetLab [11℄ for isolation and attestation it is possible to implementTrusted Overlay Networks. Mirosoft's NGSCB is an implementation for Trusted Com-puting [79℄ that uses a similar memory protetion sheme. Software-only protetionagainst tampering is a hard problem, but there has been some reent work on ontrol-flow integrity heks against a limited adversary [26℄.Authentiation and trust on the hardware platform have also been widely studied.Intel was the first to introdue serial numbers for its proessors to identify hardwareplatforms [8℄. The seure boot mehanism by Arbaugh [32℄ has defined a new prim-itive: Attestation. The idea of attestation is that all omponents of a PC have to beloaded and verified suessively, starting with a verifiable small ode base as the rootof trust � in this ase a PC's BIOS. Attestation defines the trust relationship betweenthe omponents and is also a method for implementing aess ontrol. A proessis trusted only if it attests to the operating system. The Terra system suggests waysto implement attestation using Virtual Mahines and SSL [87℄, but the downside oftheir approah is heavy overhead and its limitation to monolithi operating systems.SWATT is a software-only approah to attestation of memory ontents [166℄.TCPA is an industry onsortium that set up a standard for Trusted Computinghardware [21℄. In Trusted Computing it is the ertified platform key that is a quasi-identifiation of platforms. However, this raises privay onerns for attestation sinethese identities should only be revealed when a platform is ompromised. Groupsignatures and diret anonymous attestation address this problem [51, 48℄. There isalso researh work on trying to identify a platform based on its hardware properties,whih ould be regarded as an impliit form of authentiation. Timing behaviorof TLB aesses is a property that is hard to emulate, and it an therefore be used toverify that a partiular software runs on the hardware and not a virtual mahine [107℄.Remote devie fingerprinting identifies devies in a network based on the lok skewin TCP timestamps [114℄.Trust and seurity in operating systems is mostly an unsolved problem. Everyday new seurity breahes make the news. Common examples are exploits like buffer



7.1. Trusted Computing and Trusted Operating Systems 103overruns or new phishing attaks bymalware on the PC [3℄. Some worms or viruses areharmless and simply waste bandwidth by spreading themselves through the Internet.Others let the adversary ontrol the vitim's system, erase valuable data, and turnompromised systems into a Bot-Net whih the adversary an use to attak serverswith large resoures [103℄.The main problem is inseure user interfaes and software bugs that allow systemompromises. For example, in some ases a user onnets to a server, and he on-firms that he wants to see the website despite problems with the ertifiate. Therebyonfidential information may leak or untrusted ode may ompromise the system.7.1.2 Trusted Operating SystemsOperating systems need to provide support for appliations to protet against theseattaks. As funtionality of operating systems inreases they inorporate more ode,but single modules do not get proteted. One example is the integration of InternetExplorer into Windows, whih over the years has proven not to result in any strongbenefits for the user and furthermore opens additional doors for an adversary to attakthe OS. Another example is devie drivers in operating systems: Devie driver rashesbeome a serious problem for operating systems reliability [184℄, and virtual mahinesare an effiient protetion method against it. However, being a soure for rashes alsomeans being a soure for potential seurity bugs.The idea for trusted operating systems has been around for deades, but often trustis assoiated with information flow or aess ontrol (e.g.[132℄). In the literature,�trust� in operating systems is often not well-understood. Even the original Bell andLaPadula paper on seurity in Multis [39℄ does not define what it means for a proessto be trusted. Later, Neumann et al. implemented a provably seure operating system(PSOS) [135℄. PSOS is a hierarhially-strutured apability-based operating systemdesign. Every layer manages objets of a ertain type and these objets are aessed byapabilities. PSOS an be onsidered as the first type-safe operating system. Rushbyevaluates approahes for the design and verifiation of a seure system [155℄: He saysthat seurity systems should be oneived as distributed systems in whih seurity isahieved by isolation but also partly by trusted funtions performed by some systemomponents. The Fluke OS is a first step towards this type of operating system [82℄.Trusted Overlay Networks inherently implement end-to-end seurity in distributedsystems [156℄ and also tolerate some untrusted platforms and give them trust againsttampering by using ommon tehniques against Byzantine failures [115℄.In general there are three methods for isolating appliations, and they all havedifferent root of trusts. First, appliation-level sandboxing isolates appliations fromeah other [188℄. This is similar to virtual mahines or simulators on the appliation-level (e.g. Java, CLR, SimOS, Wine or SoftWindows). Seond, virtual memory protets



104 Chapter 7. Related Workthe memory of single proesses from eah other, and only kernel-level proesses anbreak this protetion. Third, hypervisors repliate the hardware as a whole mahine;protetion depends only on a small hypervisor ode base. The problem of the firsttwo approahes is that they annot protet against operating system faults whih isa ommon ause of failures, and when they ommuniate with untrusted operatingsystem ode additional protetion is required [192℄. Furthermore, they rely on a largeode base for the root of trust.Earlier papers on hypervisor-based fault-tolerane emphasize the ability for rashreovery [50℄, and this as well improves the reliability of operating systems againstfailures and also Byzantine faults. For example, when an adversary gets ontrol overthe print spooler beause of a software bug he should not automatially get aess tothe network stak. Isolation and modularization are not neessary between all pro-esses. The most signifiant protetion boundary is between user- and kernel-spae,as well as between kernel modules like devie drivers. Often an outside adversaryexploits a vulnerability in a system all to get aess to a root shell and therefore fullontrol over the vitim system. With isolation this is not a problem. In a multi-userserver system like PlanetLab [38℄, where every user has her own environment, proessisolation is required on the virtual mahine level. However, on a single-user systemas a PC a loal user with root aess has ontrol over the whole mahine. The mainadversary in this senario is an intruder from the network. Virtual memory protetionis good enough for many proess-to-proess isolation tehniques, and the penalty forontext-swithing is often lower than for virtual mahines, sine a proess does notrequire suspending and resuming full operating systems state. For high reliability itis useful to have virtual mahines, beause it is straightforward to reinstate mahinestate in ase of a failure.A trusted operating system layer is important for lients and servers. On serversit effiiently inreases fault-tolerane and robustness against seurity bugs betweendifferent users. On the lient-side strong protetion has to take plae between user-spae and kernel-spae. Furthermore, user-interfaes require protetion as well. Thephilosophy behind lient-side operating systems is that the platform should be openand the user ontrols everything [117, 79℄. Client operating systems have to preserveopenness but make administration and user interation more seure. Thin lients inontrast are entrally ontrolled and have their appliations in loal networks [161℄.These approahes have never evolved in the wide area, sine hardware is stillheaper than network bandwidth. Furthermore, availability of high bandwidth wire-less networks is often still restrited outside offie buildings, and it is not lear whethera user wants his information stored on a entral server that may fail or beome in-seure. There has to be a trust relationship to this entral authority for seurity andprivay whih may only work in loal networks, exluding ubiquitous laptop om-



7.2. Seure Communiation 105puters.Virtualizing a whole operating system uses lots of system resoures and is hardlysalable on a normal PC [87℄. However, new hypervisor approahes that use paravitu-alization an have muh higher performane on ommodity operating systems [36℄or provide muh better salability [195℄.On the appliation-level in Distributed Systems there has also been a onsider-ate amount of work on lassifying information. In program partitioning a ompilerpartitions a program depending on the trust level of data during omputation to pro-tet onfidential information from untrusted hosts [202℄. Similarly, we an partitionprograms for privilege separation, where privileged instrutions suh as setuid an beexeuted in a proteted monitor proess [52℄.System updates and attestation are another ruial aspet of trusted operatingsystems. Attestation is an operation that verifies authentiity of the ode. However,this signature only tells the attesting entity that it is ertified by some manufaturer.It does not neessarily verify what it does or whih bugs it fixes. Semanti attestationis a new way of defining attestation [93℄.A modular arhiteture that allows trusted extensions similar to Exokernel [80℄has advantages for systems updates, sine single modules an be easily ertified andupdated separately. A trusted ompiler used in systems like SPIN an support theimplementation of these update systems [40℄.Mirosoft's singularity kernel [98℄ follows the language-based approah to trustedoperating systems by using managed or trusted ode in the operating systemmodules.However, this restrits the software-hardware interfae. The operating system vendorontrols the virtual mahine, and this has the danger that the system beomes aproprietary virtual mahine.7.2 Seure CommuniationThe most important systems and protools for seure ommuniation in the Internetare SSH [14℄, SSL [15℄, IPse [108℄, and TLS [73℄. However, even seuring ommuni-ation on the network or appliation layer does not mean that the network is reallyseure. The strongest threats are Byzantine failures from maliious attaks.Byzantine faults in the form of software bugs are ommon in today's Internet.Nodes get ompromised and adversaries take them over to join the node to a wholeBot-Net of ompromised nodes. Proteting against Byzantine failures is desirable indistributed systems.Anonymity protools require protetion of the network stak against ByzantineFaults as well, or it beomes hard to design an anonymity protool that is reliableagainst Traffi Analysis. There are already systems that protet against Byzantine faults



106 Chapter 7. Related Workin networks and distributed appliations like seure routing [56℄ or virtual mahineand repliation tehniques like BFT [57℄. It is the idea to use these in anonymitynetworks as well.The first alternative to protet the network fromByzantine failures is seure routingsystems. They have multiple omponents: First, they maintain routing state againstan adversary who is tampering with the system. Seond, they forward messages se-urely and protet against maliious routers in the system who eavesdrop on traffi,drop pakets, or reroute pakets in the network. For example, seure BGP [97℄ protetsagainst an attaker who tries to modify routing state in BGP, and routing in Fatih [128℄protets against an attaker onmessage forwarding. Another approah for seure rout-ing in strutured peer-to-peer networks is to implement self-ertifiation of appliationdata in the network [56℄ whih an tolerate about 25%maliious nodes. An additionalproblem in peer-to-peer networks is the Sybil attak [78℄. It is often easy to obtainnetwork addresses or nodeIDs, and ertifiates have to be used. This is not neessaryfor IP addresses, sine they are generally more diffiult to obtain in large amounts.Another tehnique is, like in STONe, to use Trusted Computing for distributing nodeaddresses in peer-to-peer networks to protet against these attaks [35℄.The seond alternative is to protet the network stak of the router against attakson its state. One possibility is to use tehniques from distributed systems suh asstate mahine repliation like BFT [57℄. However, repliation is relatively expensive.In addition it is also possible to establish loal protetion like standard sandboxingor virtualization tehniques to detet maliious behavior or intrusion diretly on therouter. STONe provides the novel idea to use Trusted Computing to protet thenetwork stak against failures.Deoupling Byzantine faults from anonymity protools makes anonymity protooldesign easier. When no Byzantine faults our, intersetion attaks are still possiblewhile routers from a single trust domain ollude. A single trust domain would beequivalent to a entralized message forwarding network, and this is prone to passivelogging attaks. With at least two trust domains, one domain knows the senderand the other the reeiver, but neither both. In a system that has random Byzantinefaults, a single adversary ould ontrol a Bot-Net aross trusted domains and protetionbeomes muh more diffiult.In systems with multiple but stati trusted domains it is good enough to have afixed number of multiple hops that are spreading aross at least two trust domainsthat do not ollude [84℄. In a system with Byzantine faults, however, the path lengthdepends on the total number of nodes in the network, the largest domain size, and theexpeted fration of infeted hosts that ould potentially beome part of a Bot-Net.There is a trade-off between implementing a system that protets against Byzantinefailures and one that uses longer paths instead.



7.3. Anonymous Communiation 107Byzantine failures also have an adverse effet on the protool that distributes therouting information. Flooding or broadasting this information is more robust againstByzantine failures [142℄, but it is inherently ineffiient, sine it onsumes networkbandwidth and router resoures that are exponential in the number of messages.When the system does not use flooding, it has to ope with possible traitors thatimitate legitimate nodes. In a system without Trusted Computing additional ryptog-raphy is needed to protet against these attaks [142℄.Lastly, there are Denial of Servie attaks that disrupt ommuniation. DistributedDenial of Servie attaks (DDoS) an our on different layers. The brute-fore methodis to flood a server with network pakets to disrupt servie. However, this attakrequires a vast amount of network bandwidth that is hard to obtain. On the networklayer an adversary an exploit a leak in TCP that keeps trak of half-open onnetionsin memory. When the adversary floods the server with suh SYN requests it runsout of memory for new onnetions. A ommon tehnique is to use SYN ookies toprotet against this attak [20℄. A SYN ookie ontains a unique sequene numberthat is the keyed hash of the onnetion information (soure IP address and portand destination IP address and port). The server does not have to store informationanymore beause the paket with the sequene number during the handshake is self-verifying. Furthermore, there exist DDoS attaks on speifi protools [70℄.Other methods to protet against DDoS attaks on the network layer are IP trae-bak and hashbak tehniques [160, 176℄, and also the use of apabilities [200℄. Be-ause in network layer attaks IP addresses are often mimiked we an modify therouters to add some extra information to the paket that identifies the ommuni-ation path and therefore the sender. All pakets with the same path identifiationinformation that have been maliious an be filtered aordingly. These methods analso be used to filter pakets.DDoS attaks are most powerful on the appliation-level. When an adversarylaunhes an appliation-level DDoS attak on a server its goal is to starve its internalresoures suh as CPU or disk I/O. There are multiple ways to protet against thisattak. One is to use omputational puzzles to derease the rate of server aesses [71,194℄. Another method is to use reverse Turing tests to distinguish human users fromautomated attakers [103℄. To launh suh an attak a whole network of lients isrequired that simulates a flash rowd. This situation normally only happens whenmany users aess the same website and exeed the normal usage level.7.3 Anonymous CommuniationThere exist quite a few ommerial or open-soure systems for anonymous ommuni-ation. Anonymizer [2℄ is a simple trusted HTTP proxy for anonymous web browsing.



108 Chapter 7. Related WorkIt is like a NAT between the sender and the reeiver of the onnetion and protetsagainst passive logging attaks on the reeiver by replaing the sender's IP address.However, suh systems are a single point of failure and trust, and a losed, non-verifiable system an potentially log and store all soure and destination addresses ofmessages it forwards. Tor is another system for anonymizing ommuniation [75℄. Inontrast to Anonymizer it uses a set of proxies, and if one proxy gets ompromised itdoes not ompromise the whole system. Freenet, in ontrast, is a distributed systemfor file-sharing that provides some anonymity, but its main goal is to be ensorship-resistant and to provide anonymity of ontent. A single file is split up in small pieesthat are hard to assign to the originator. Distributed Hashing is used to find all thepiees and put them together [62℄. A single file an only be retrieved sequentially,piee by piee.Today's systems like Anonymizer, Tor, or Freenet are the state-of-the-art for ano-nymity in distributed systems. However, their protetion against Traffi Analysis isoften poor. Freenet's protetion against Traffi Analysis is based onmix networks, andTor does not protet against Traffi Analysis at all.Anonymous ommuniation is a ombination of many different areas. One area issteganography. Two parties may hide their ommuniation in some overt hannelsof network protool headers or digital images. For example, TCP ontains some overthannels [172℄. However, most of these tehniques have been proven to be inseure.Theoretially, anonymous ommuniation is related to seure multiparty ompu-tation whereN parties have private inputs, but they want to ompute a boolean iruitthat outputs a single publi value. An adversary with aess to the iruit is not ableto tell what the inputs were and who gave whih input [89℄. Anonymous Commu-niation is only a subset of seure multiparty omputation. Using seure multipartyomputation for anonymous ommuniation is inherently ineffiient [146℄.In synhronous networks anonymous ommuniation ofN parties an be ahievedin O(log N) steps by rapid mixing [146, 47℄. Other systems have been proposed basedon seret sharing [63℄. However, the asynhronous ase whih is more ommon,requires additional over traffi to hide aess patterns. This has been elaborated inthe Oblivious RAM [90℄ where memory aess patterns are hidden. Oblivious RAMuses a Bather network to shuffle the memory loations. This works well in a physialmemory beause it has a fixed size. In STONe, however, the number of partiipatingnodes is dynami.Therefore, Chaum proposed mix networks for asynhronous email ommunia-tion [58℄. Mixes have a variety of appliations, espeially in voting. A single mixollets messages and dispathes them at random, so that it is hard for an adversaryto orrelate inoming with outgoing messages. A single mix is a single point of fail-ure when ompromised and often also prone to brute-fore dislosure attaks [112℄.
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Figure 7.1: Mix Casades: Several mixes are arranged in a linear hain. Every mix delaysmessages, and an adversary who only observes one mix is not able to trae messages.Therefore, mixes are often onneted into mix asades as shown in figure 7.1. Thenumber of hops in a mix asade depends on the number of different trust domains.Ideally, every hop is within different trust domains. The disadvantage of mix as-ades is reliability. Beause a asade is only a fixed path through the network, asingle broken mix destroys the ommuniation path. Free peer-to-peer mix networkswould solve this problem. However, the degree of anonymity dereases beause dif-ferent paths get routed through different mixes. STONe's random routing alleviatesthis problem beause it hanges the path frequently and would therefore let randompaths go through the same mixes.Pool mixes [64℄ and stop-and-gomixes [112℄ are the typial type of mixes. Both areused for email ommuniation. The differene is that pool mixes wait until enoughmessages arrive before they dispath them, and stop-and-go mixes delay messagesrandomly. However, stop-and-go mixes are prone to statistial dislosure attaks [66℄.When the adversary wants to trae a single message she ollets statistial informationabout all inoming and outgoing messages in the mix. Mix networks known as so-alled anonymous remailers have been suessfully implemented for email anonymity.Early examples are Babel [91℄ andMixmaster [129℄. Mixminion is a reent anonymousremailer that now also uses link enryption [69℄.In general, mix networks are not useful for low-lateny ommuniation. On a busyrouter there is usually enough traffi for mixing, and additional non-uniform delayan ause paket reordering � a ommon problem in transport-layer protools suh asTCP. A less effiient way to provide anonymity on a low-lateny network is to pad allommuniation with over traffi [65, 144℄.Many protools for anonymous low-lateny ommuniation therefore only pro-vide sender/reeiver anonymity by hiding the sender and reeiver addresses [185, 148℄.If they do not send over traffi anonymity depends on the amount of real bakgroundtraffi. Jap [9℄ orMorphMix [151℄ are a systemswithmixes that depend on the amountof bakground traffi, beause mixes an only delay pakets for a ertain time interval,even if there is nothing to shuffle with. Then timing attaks are usually possible [121℄.In STONe we pik a different approah beause Trusted Overlay Networks already pro-tet the sender address. STONe protets against Traffi Analysis by random routing



110 Chapter 7. Related Workand synhrony.There are several reliability and reputation issues in mixes. How an a mix betrusted ? Several issues similar to the ones in STONe ome up in mixes as well [74℄,but if they are trusted we ould as well use random routing instead to protet againsttraffi analysis as shown in this thesis.Fragile Mixes [149℄ provide a novel protetion mehanism against a mix admin-istrator who is giving away logs. By doing so she would automatially ompromiseher own anonymity. The assumption is that a mix administrator also partiipatesin anonymous ommuniation. However, this does not protet against an outsideadversary eavesdropping on messages.One of the largest-saling systems for anonymous routing today is Tor [75℄. Toris based on the idea of onion routing [185℄ where pakets get enrypted in layersand every hop along the route strips off one layer and sees the paket header thatontains the address to the next hop. Tor is a large-sale implementation of onionrouting and solves problems from the first generation. For example, onion routingwas fairly ineffiient beause it used publi key ryptography. Tor now sets up sharedkeys between the sender and the hops along the path. In addition Tor implementsloation-hidden servies, whih are similar to anonymous STONe Sokets. In loation-hidden servies, two parties � Alie and Bob � trust that a rendez-vouz point will neverleak information about them. The rendezvous point is the anonymous address thatAlie and Bob use to ommuniate. However, this is still a single point of trust, andSTONe strengthens this vulnerability, beause it an rely on the Trusted Computinghardware. Another disadvantage of Tor is that it uses soure routing beause it needsto ompute the onion in advane, and it is less flexible in resiliene than STONe.Cashmere or P5 address resiliene in anonymous ommuniation by using groupommuniation [204, 170℄. Every group in the network shares the same key, andenrypted pakets get forwarded to all members of a group. Intersetion attaks arethe main problem of these protools. By leaving a group and joining another anadversary an learn whih nodes are online, and she an also derypt traffi of thisgroup. In STONe we deided to solve the resiliene problem by adding redundany tothe overlay struture and not by using multiast. STONe is equivalent to a multiastnetwork with N groups where N is the number of nodes. Mix networks are known tobe vulnerable to timing attaks [121℄.Crowds [148℄ uses a different approah for anonymous ommuniation. InCrowds,upon message arrival anode flips a oin and either forwards the message randomly toa hop or sends it diretly to the reeiver. This tehnique is similar to random routingin STONe, but the problem in Crowds is that it does not provide reeiver anonymity.Also, it is basially an anonymous web proxy and does not are about appliation-level ommuniation. Frequent path reformations make most anonymity systems,



7.3. Anonymous Communiation 111espeially Crowds, vulnerable against the Predeessor attak in whih an adversaryfinds the sender by investigating the predeessor of the message [171℄.Tarzan [84℄ is a peer-to-peer overlay network that is transparent on the IP-layer.It sets up iruits in advane and uses loal mimi traffi to hide traffi patterns. InSTONe we deided in favor of a global traffi sheme that may inrease the latenybut provides stronger protetion against anonymity. Tarzan also addresses the issueof appliation transpareny on IP-Level, but does not integrate appliation-level ano-nymity with anonymous routing like STONe. The link from Tarzan to the appliationis a vulnerability. STONe also has the advantage that it gets strong hardware supportand does not have to ope with maliious hosts. Tarzan also uses soure routing andannot easily route around failures.Broadast networks like DC-Nets [59, 175℄ or XOR-Trees [77℄ are synhronous.In Dining Cryptographers every node broadasts an enrypted message at the sametime to all other parties, and the parties are not able to trae the originator of themessage. In DC-Nets, however, all parties have to play fair beause they an jam theommuniation. The advantage of DC-Nets is that there is no additional delay in theommuniation, but instead they use bandwidth. XOR-Trees implement a broadasttree to redue the number of messages in the broadast system.There are ontroversies about the ethis of anonymous ommuniation [44, 137℄.People an use the ommuniation networks to establish �Darknets� to exhangeillegal ontent. Digital ommuniation networks enhane old-fashioned �sneakernets� to exhange pirated software. This, of ourse, omes down to ongoing legaldisputes between ontent providers and network providers as in theMGMvs. Groksterlawsuit [12℄. System Routing Traffi Analysis AppAnonymizer [2℄ Single Proxy Trusted Proxy YesFreenet [62℄ Onion Routing Mix Network NoFreedom [33℄ Onion Routing Random Walk YesPipenet [65℄ Onion Routing Cover Traffi NoTor [75℄ Onion Routing Random Walk YesCrowds [148℄ IP Random Walk NoJap [9℄ Onion Routing Mix Network NoHerbivore [175℄ DC Broadast NoCashmere [204℄ Onion Routing Broadast YesP5 [170℄ IP Broadast NoTarzan [84℄ Onion Routing Cover Traffi YesMorphMix [151℄ Onion Routing Mix Network NoAnon [96℄ Onion Routing Cover Traffi YesISDNMixes [144℄ Swithed Ciruit Mix Network YesTable 7.1: Comparison of Systems for Anonymous Communiation



112 Chapter 7. Related WorkTable 7.1 gives an overview of ommon systems for anonymous ommuniation.The seond olumn ontains the type of anonymous routing the system uses. Asinge proxy means that the system only onsists of one large proxy network that isfirewalled from the outside. Another alternative is just plain Internet routing (IP),Overlay routing, Dining Cryptographer's (DC) or Onion Routing. The next olumnshows themeasure the system provides against Traffi Analysis. A trusted proxymeansthat the anonymous routing system is trusted and shut off from the attaker. It mayor may not provide measures against end-to-end traffi analysis. In a random walkthe lient piks a set of random nodes to form the path. A broadast sheme protetsagainst Traffi Analysis by sending the same message to multiple nodes. Nodes mayalso send over traffi only to protet against Traffi Analysis. Mix networks are alsoommonly used. They sometimes inlude a random walk and over traffi, but thebasi harateristi of a mix is that it delays and shuffles messages. The fourth olumndesribes whether the system supports appliation-level anonymity. Often the systemsuse pseudonyms instead of IP addresses and reate hidden rendez-vous point like Tor.7.4 Overlay Networks and Internet Arhitetures7.4.1 Overlay NetworksModern overlay networks emerged almost a deade ago with the advent of Internetservies. The main problem was to enhane performane for web browsing, andtherefore some kind of web ahing method had to be established. The theoretialbase of this work for strutured overlays is onsistent hashing [105℄, from whih theAkamai network [1℄ emerged. Today there exists a large variety of overlay networks �strutured or unstrutured.STONe borrows several ideas from strutured overlay networks and uses a hyper-ube topology similar to CAN [147℄ to enhane load-balaning and resiliene. Thedifferene between STONe and ontent-distribution networks [158℄ is that STONe isneither a loation servie that finds objets in distributed systems nor a distributedstorage system. STONe a routing overlay. It does not have to optimize for ahingperformane or replias, but it needs to provide for alternate routes.Topologies for ontent-distribution networks other than CAN inlude a ring [180℄or tree [154℄ with different failure properties. The main onlusion of that researh isthat a ring has the best fault-tolerane properties [92℄. Bamboo [152℄ is a re-engineeredDHT for Pastry that optimizes for frequent and large membership hanges.Two popular wide-area implementations of these suggestednetworks are CoDeeN [193℄,Tapestry [203℄, andOpenDHT [153℄. CoDeeN is a network of proxy servers for ontent-distribution, whereas OpenDHT is a distributed storage faility. Tapestry [203℄ imple-ments a routing overlay for loating objets and servies.



7.5. Instant Messaging 113The downside of strutured overlays is that they do not adapt well to the het-erogeneity of the Internet. They also have high maintenane osts and are limitedin searhing for data, sine they only support simple exat-math. Therefore, stan-dard file-sharing appliations often use unstrutured overlays [7, 10℄. Some of theseproblems, like searhing, are more of a problem in ontent-distribution overlays thanin routing overlays. However, most of these problems in strutured overlays an befixed with hybrid properties of unstrutured overlay [55℄, and STONe also uses someof these results to optimize performane.7.4.2 Internet ArhiteturesOverlay networks have the ability to fix problems in existing Internet arhitetures orextend them with new features. For example, Resilient Overlay Networks (RON) [30℄have been designed to alleviate ommon problems of path failures in the Inter-net [159℄. Another ategory is Internet seurity arhitetures that protet againstDenial of Servie attaks [29, 110, 179, 200℄. DOA is an overlay that extends theInternet address spae beyond NATs [191℄. Other uses of overlays extend existingInternet funtionality like multiast [101℄ and QoS [181℄. Anonymity networks likeTor an also be seen as an Internet anonymity arhiteture [75℄. In STONe partii-pating nodes are authentiated by Trusted Computing hardware whih strengthensthe seurity and anonymity, espeially against Byzantine failures. SOS and Maydayonly use lightweight authentiation and have weaker mehanisms against Denial ofServie attaks.In addition to overlays that extend the Internet arhiteture there exist severalapproahes for a next-generation Internet routing arhiteture. The Nimrod routingarhiteture uses network maps (like road maps) instead of routing tables and letsthe lients pik the routes, i.e. uses soure routing [54℄. Nimrod was designed tomake the network salable to a large number of nodes. Reent advanes on next-generation Internet arhitetures are NIRA [199℄ and FARA [61℄. They try to overomethe addressing problem in the Internet and also address the lak of resiliene.7.5 Instant MessagingThere exist a variety of Instant Messaging systems that are entralized suh as AIM [4℄,Windows Messenger [24℄ or Yahoo! Messenger [25℄. Some of them have questionableprivay poliies that allow them to reord messages arbitrarily on the entral server(e.g. [4℄). There are some new system that provide end-to-end privay and seurityusing publi key enryption [23℄. This protets privay in a entralized system butdoes not protet against Traffi Analysis. Skype as a Voie-over-IP system is also adistributed approah to Instant Messaging [37℄. Similar to STONe, it uses an overlay



114 Chapter 7. Related Workstruture for forwarding messages reliably, but it also does not provide protetionagainst Traffi Analysis.7.6 Filesystems and File Sharing NetworksThere is a large number of network file systems for loal- or wide-area networks thatoptimize file system performane by ahing, as for example NFS [157℄, AFS [95℄,and xFS [31℄. The Coda file system repliates data on multiple servers to improveavailability [113℄.SFS was one of the first file systems that expliitly provides server ertifiation [124℄.When a lient aesses a file it finds the publi key in the file name and uses this publikey to aess the server. This deouples key management from the file system andprevents an adversary from tampering with file names. The SiRiUS file system [88℄provides a seurity layer file systems even without a trusted server for aess ontrol asin SFS. SiRiUS uses ryptography to provide aess ontrol. Farsite [27℄ is a distributeddeentralized seure file system that protets against Byzantine faults in an untrustedenvironment, but it does not protet against Traffi Analysis.In addition to standard network file systems there exists a variety of file sharingsystems that are design for publish-subsribe operations. These publish-subsribesystems are resistant against ensorship and protet privay. Common examples arePublius [190℄, Tangler [189℄, Freenet [62℄, BitTorrent [5℄, and Mnemosyn [94℄. Areent study has shown that most of these implementations hide the traffi [104℄against simple mimi attaks. However, we know only that Freenet uses mixes toprotet against Traffi Analysis.



Chapter 8
Conlusion and Future Work
We have presented the design and implementation of Seure and Trusted Overlay Net-works (STONe). STONe demonstrates that emerging Trusted Computing tehnologieswould provide a muh better platform for anonymous ommuniation omparedto today's anonymity systems. STONe's seurity is based on two ornerstones: Ahardware-based Trusted Computing Platform and an additional seret key. A user anonly enter the system to send and reeive messages anonymously if he is in possessionof both. If a traitor gets deteted its TCB omes on the blaklist and is hene exludedfrom the system. To ompromise the system an adversary has to overome the ostof purhasing Trusted Computing Hardware and know the hanging seret key. Thismodel is muh stronger than in urrent systems for anonymous ommuniation, butit is realisti and finally helps to implement anonymous ommuniation. This workexplains the issues and pitfalls that our when designing a more effiient system foranonymous ommuniation based on Trusted Computing.We designed STONe as an overlay network that uses Trusted Computing to iso-late Byzantine failures, whih makes it possible to deouple protetion against traffianalysis from network routing, thus providing more effiient and more seure anony-mous ommuniation. STONe is resilient against hurn and ongestion, even in alarge-sale environment, but it also provides strong protetion against traffi analysis.To ahieve these goals STONe uses random routing over a regular network topologysuh as a hyperube, a novel tehnique for anonymous routing. Unlike mix networksfor anonymous ommuniation random routing over suh tehnologies is self-mixingand does not require expliit message shuffling.At the appliation-level, STONe provides a soket endpoint to aess the anonym-ity network and a trusted name servie that maps names to self-ertifying anony-mous identities. This delivers anonymity to the appliation endpoint and makesanonymous ommuniation more robust against attaks that target appliation be-havior, suh as name server queries. Further, it prevents a maliious appliation from115



116 Chapter 8. Conlusion and Future Workmimiking an arbitrary identity. We have built two appliations on top of STONe�Anonymous Instant Messaging and an Anonymous File System. The results of ourexperiments verify our laims.STONe an have many appliations, and is not only useful on the Internet. Em-bedded devies that use smartards are proteted against any outside attakers, andSTONe an provide anonymity and therefore enhaned seurity as well. An exampleis wireless ommuniation of airraft omponents or ar seurity.There are many opportunities for future work on STONe. We still have to evaluateSTONe in a real system with Trusted Computing hardware and operating systemsthat meet the requirements of Trusted Overlay Network. It is ruial that remoteattestation protools are able to detet any ompromised node and only admit anegligible number of false negatives to the network. TCBs have to be verifiable toprevent bakdoors, and the keys have to be proteted by additional hardware andsoftware tamper-resistane measures. More researh on the robustness and seurity ofthese methods is definitely needed.It is also an open problem how to effiiently ombine anonymity protools foruntrusted systems like Onion Routing with protools for trusted systems like RandomRouting. It is also desirable to implement a distributed trusted name server. When asingle node with all name entries entries leaves the network, STONe has to be able torestore the membership list. Lastly, the fragment size is an open issue. It is unlearwhether it is neessary to use uniform fragment sizes or vary the size.
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