
Design and Implementation ofSe
ure Trusted OverlayNetworks
Matthias Ja
ob
A DISSERTATIONPRESENTED TO THE FACULTYOF PRINCETON UNIVERSITYIN CANDIDACY FOR THE DEGREEOF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCEBY THE DEPARTMENT OFCOMPUTER SCIENCEAdviser: Edward W. Felten
September 2009

©2009 by Matthias Ja
ob
This thesis has been generated using the ITC StoneTM font.

To my parents

Abstra
tDenial-of-servi
e atta
ks, mali
ious routing updates, and online identity theft are
learly on the rise on the Internet,
osting the US industry billions of dollars. Inrea
tion, there is a large effort to design new te
hnologies su
h as Trusted Computingthat solve many of these problems effi
iently. However, state-of-the-art systems foranonymous
ommuni
ation have various weaknesses against traffi
 analysis and areoften designed for one spe
ifi
 purpose. So far, Trusted Computing has not been
on-sidered for improving the effi
ien
y of Internet anonymity and priva
y and buildinga general-purpose ar
hite
ture to solve the problem.In this thesis we des
ribe the design and implementation of Se
ure Trusted OverlayNetworks (STONe). STONe is the first system for general-purpose anonymous
ommu-ni
ation that is entirely based on Trusted Computing. STONe signifi
antly improvesanonymous
ommuni
ation on the Internet and makes three main
ontributions.First, STONe uses Trusted Computing to prote
t against Byzantine Failures on thenetwork sta
k to provide an overlay network for s
alable, effi
ient se
ure routing, andend-to-end
ommuni
ation. This prevents many a
tive denial-of-servi
e atta
ks onan anonymity network and provides a foundation for more robust prote
tion againsttraffi
 analysis. Se
ond, STONe is the first system to provide anonymous routingthrough load-balan
ing by random routing previously used for lo
al
luster networks.This turns out to better prote
t against most existing traffi
 analysis atta
ks. Su
hatta
ks have yet been diffi
ult to
ome by, namely the Prede
essor Atta
k and theInterse
tion Atta
k. Third, on the appli
ation-level, STONe provides appli
ation-levelanonymity through trusted anonymous so
kets and a trusted name servi
e, an in-expensive trusted
ertifi
ation me
hanism with one-way per-session authenti
ation.We implemented and evaluated a prototype of STONe on PlanetLab and show that itsignifi
antly outperforms state-of-the-art systems for anonymous
ommuni
ation atthe expense of additional Trusted Computing hardware.
i

A
knowledgementsI was very glad to have Ed Felten as my advisor. He gave me the freedom to workon anything I enjoyed and helped me finally su

eed in my resear
h. Dan Boneh,Vivek Pai, Kai Li, and Jennifer Rexford as my thesis
ommittee members providedme with valuable feedba
k and guidan
e in laying out the resear
h and writing mythesis. In addition, I would like to thank espe
ially Dina Katabi, and also MariuszJakubowski and Ramarathnam Venkatesan for su

essful
ollaborations during mygraduate s
hool
areer. And of
ourse, I am grateful to have had many ni
e friendsat different universities and resear
h institutions I have had the
han
e to work at. Ithas always been a good time.

iii

Table of Contents
1 Introdu
tion 11.1 Anonymous Communi
ation . 22 Trusted Overlay Networks 72.1 Distributed Appli
ations on Trusted Overlay Networks 103 Model and Definitions 113.1 Communi
ation Model . 113.2 Systems Model . 133.3 Se
urity Model . 133.4 Priva
y Model . 143.5 Anonymity Model . 163.6 Notations . 194 STONe Design 234.1 System Ar
hite
ture . 254.2 Se
ure Communi
ation . 294.3 Random Routing . 444.4 Syn
hronization in STONe . 464.5 Anonymous Communi
ation . 514.6 Compromised Trusted Computing Hardware 585 STONe Implementation 595.1 Trusted Computing Base . 595.2 Implementing Trusted Overlay Networks 635.3 STONe Implementation . 645.4 Appli
ations . 696 STONe Evaluation 736.1 Se
urity . 736.2 Performan
e . 87v

vi TABLE OF CONTENTS7 Related Work 1017.1 Trusted Computing and Trusted Operating Systems 1017.2 Se
ure Communi
ation . 1057.3 Anonymous Communi
ation . 1077.4 Overlay Networks and Internet Ar
hite
tures 1127.5 Instant Messaging . 1137.6 Filesystems and File Sharing Networks . 1148 Con
lusion and Future Work 115

Chapter 1
Introdu
tion
Priva
y is be
oming in
reasingly important on the Internet. Sophisti
ated surveillan
etools that
an re
onstru
t anyone's HTTP and EMail traffi
 are now
ommer
iallyavailable. These tools are be
oming extremely powerful, even
ausing the FBI todeploy them as a repla
ement for their in-house surveillan
e system, Carnivore [6,13, 145℄. Consequently, Internet users in
reasingly need systems that ensure thepriva
y of user identity and
ommuni
ation, unless the user voluntarily dis
loses thisinformation.Even though en
ryption keeps the
ontent of the messages se
ret, IP addresses notonly provide routing information but unfortunately also reveal the identity of users.Spe
ifi
 traffi
 properties su
h as inter-pa
ket timing give an adversary further
luesabout the
ommuni
ating parties and the type of traffi
. Therefore, a network thatprovides private
ommuni
ation requires transparent prote
tion against these typesof traffi
 analysis atta
ks. Traffi
 analysis is a long-standing and hard problem.In addition to anonymous routing, end-to-end anonymity is a negle
ted problemas well. Name server requests are a vital information sour
e for a priva
y-intrudingadversary. Credentials in the system are rarely anonymous, and it often be
omes easyto fake identities. Appli
ation endpoints like web servers are often able to distinguishbetween messages they re
eive from inside and outside the anonymity network. There
eiver may not have an in
entive to a

ept messages from inside the anonymitynetwork and may just drop these messages, thereby for
ing the sender to reveal itsidentity. These are all signifi
ant short
omings, and an anonymity system with in-tegrated end-to-end support has stronger se
urity and anonymity properties than aproxy network that has a peer-to-peer-based system su
h as Gnutella running on topof it. Gnutella is known to have priva
y problems [43℄.In this thesis we present STONe, Se
ure Trusted Overlay Networks, to address theaforementioned problems. STONe de
ouples message forwarding from traffi
 analysisprote
tion and integrates end-to-end anonymity with anonymous routing. It a
hieves sig-1

2 Chapter 1. Introdu
tionnifi
antly better leverage on performan
e, resilien
e, and anonymity than previoussystems for anonymous
ommuni
ation. But as a trade-off STONe requires a TrustedComputing infrastru
ture whi
h is only available in new CPUs [99, 28℄.1.1 Anonymous Communi
ationThe Internet by itself does not provide any prote
tion for anonymity. Every IP pa
ket
learly reveals the sour
e and destination address of the endpoints, and, unfortunately,the routers require this information to ensure optimal routing in the network. Anadversary with a

ess to the network or routers is able to
arry out traffi
 analysisatta
ks, and in addition the endpoints are able to see the peer's identity.So far there exist a variety of systems for anonymous
ommuni
ation, from sendinganonymous email [58℄ to anonymous web browsing [131, 204℄. But building aneffi
ient system for general-purpose anonymous
ommuni
ation that is robust againsta wide range of atta
ks be
omes a very
hallenging task. Often these state-of-the-artte
hniques are based on a variation of intermediate proxies or broad
ast te
hniques.They either do not provide full prote
tion against traffi
 analysis [131, 204℄, have highlaten
ies [62℄, are limited to small-s
ale networks [148, 59℄, or are not resilient againstfailures [58℄. In addition, they are prone to some dangerous traffi
 analysis atta
ks,most importantly the prede
essor atta
k [198, 171℄, in whi
h an adversary analyzespa
ket header information to find the sender. They are also vulnerable to interse
tionatta
ks [131℄, in whi
h the adversary measures traffi
 properties like volume andtiming to find a subset of nodes that
omprise the possible
ommuni
ation path. Thedilemma is that proto
ols prote
ting against the latter atta
k use randomwalks to blurthe path between the sender and the re
eiver and hide the asso
iating IP addresses.However, when the route is
hanging frequently an adversary needs to
ompromise
onsiderably fewer nodes to
at
h the desired pa
ket header information. To ourknowledge there is no satisfa
tory solution that solves this problem effi
iently.
AnonymizerS R

[S,R] [A,R]

Figure 1.1: Single proxy network for anonymous
ommuni
ation. The sender forwards messagesto the Anonymizer proxy, whi
h then propagates them to the re
eiver, repla
ing the original senderaddress with its own address.The simplest solution for providing Internet anonymity is to use a trusted proxysu
h as Anonymizer [2℄. Figure 1.1 shows the s
enario: The sender forwards itsmessages to the proxy, and the proxy then propagates the messages to the re
eiver.

1.1. Anonymous Communi
ation 3The re
eiver only sees the proxy's IP address and returns messages to the sender usingthat address.However, being a single point of failure, the proxy has to be fully trusted, similarto a
ertifi
ation authority that
ertifies publi
 keys for Internet identities. Wheneveran anonymity proxy leaks information about a forwarded pa
ket it
ompromises thewhole system. In addition, trusted ba
kup servers have to be ready in
ase of a failureto avoid disruption of the anonymity servi
e in
ase of a failure or overload situation.The proxy hides the IP addresses, but end-to-end timing still depends on the round-trip time of the individual
onne
tion and is not random, thus, giving
lues to anadversary about the IP addresses.This is parti
ularly dangerous when a government wants to seize
ommuni
ationdata for tra
king a dissident. With a single proxy it is fairly easy to do, be
ause theinformation may be stored in a
entral database.
Tor

S
R

Tor

Tor
Tor

Tor

Tor

[S,R]

[X,Y]

[Y,Z]

[Z,R]

Figure 1.2: Distributed proxy network for anonymous
ommuni
ation. The sender forwardsmessages to an entry node in the Tor network. The sender's entry node propagates the messageto an exit node, whi
h then sends the message to the re
eiver. Tor resets the path after some timeinterval. The entry and exit nodes know who the sender and the re
eiver is.Instead of a single proxy that has these short
omings, distributed proxies thateliminate the single point of trust
an be used for anonymous
ommuni
ation. Inthe virtual world systems like Tor [75℄, as shown in Figure 1.2, have be
ome the state-of-the art te
hnology for anonymous
ommuni
ation using this s
heme. The senderpi
ks a random set of proxies and uses them for message forwarding. The senderen
rypts the sta
ked IP headers in layers, and every proxy strips off layer after layer,su
h that every proxy
an only see the previous and next hop. The endpoints donot have to trust the proxies anymore and all messages go through an arbitrary setof untrusted nodes. When a node fails, the sender pi
ks a different set of proxies formessage forwarding.

4 Chapter 1. Introdu
tionA distributed proxy that
ontains untrustednodes is prone to traffi
 analysis atta
ks� the prede
essor atta
k signifi
antly degrades almost every anonymity proto
ol indistributed environments when paths are
hanging frequently [198℄. The prede
essoratta
k exploits the fa
t that every node knows its prede
essor on the Internet, butthe sender and re
eiver never
hange during a
ommuni
ation session. When a path
hanges frequently an adversary
an dete
t whether its prede
essor is the sender ornot. However, when the path remains stati
 for too long the system is prone tointerse
tion and timing atta
ks [131, 41℄. End-to-end timing as well as the load on everynode tells an adversary where pa
kets traverse the system, and it is easily possible tore
onstru
t the sender and re
eiver's IP address on the
ommuni
ation path [131℄.Unfortunately, one of the two atta
k methods always seems to be appli
able, so thatit is very diffi
ult to a
hieve good prote
tion against traffi
 analysis.Similar to the single proxy, most distributed proxies used for anonymous
ommu-ni
ation have a s
alability problem. A sender has to dis
over all proxies in the networkand learn the publi
 keys to
onstru
t the anonymous message before sending it offto the first proxy. Doing this dis
overy effi
iently would require some underlyingstru
ture that redu
es the number of key ex
hanges. Without en
ryption the mes-sage's re
eiver is revealed [148℄. Furthermore, without admission
ontrol the sendersare responsible for route sele
tion and need to play fair, otherwise they
ould
ongesta proxy and slow down performan
e of the distributed proxy network.A general problem that affe
ts single and distributed proxies on the Internet isthe limited 32-bit IP address spa
e. An adversary
an always try to guess the
orre
tnode, and she is always right with probability p = 2−32. For example, if an adversarywants to find out where a data stream is sent from, she
an atta
k arbitrary nodes withDenial of Servi
e atta
ks and then wait until the stream be
omes weaker. Be
ause ofthe number of lega
y routers and appli
ations in the Internet a global move to IPv6with a 128-bit address spa
e in the near future seems unlikely. On the other hand,NATs do not really solve this problem, be
ause they generate a non-uniform addressspa
e in whi
h many nodes have the same network address and
an therefore not beused as proxies for anonymization.Summarized, there are two goals in anonymous
ommuni
ation systems:Anonymous Identities and Credentials When parties
ommuni
ate on the Inter-net it is their goal to hide their identities, su
h as IP address or DNS name, froman external adversary as well as from other parties parti
ipating in the
om-muni
ation. But they still want to be able to verify some
redentials to a peernode.Prote
tion against Traffi
 Analysis The parties want to prote
t their asyn
hronousInternet traffi
 against an external eavesdropper whose goal it is to analyze traffi

1.1. Anonymous Communi
ation 5to determine whi
h parties are parti
ipating in
ommuni
ation.TrustedComputing already provides support for se
urity in distributed systems [87℄,and STONe relies on the same three features of Trusted Computing in its anonym-ity proto
ol � Strong Pro
ess Isolation, Remote Attestation, and Sealed Storage � toenhan
e priva
y in network
ommuni
ation. First, remote attestation [51, 21℄ allowsnodes to anonymously authenti
ate themselves to their peers, establish trust, andform a trusted overlay network. Se
ond, strong pro
ess isolation shields memory fromspyware and atta
kers on the same host by isolating memory pages [133, 99, 28℄.Third, sealed storage provides se
ure storage for keys and ensures safety of remoteattestation [21℄.Our Se
ure Trusted Overlay Network (STONe)
onsists of multiple building blo
ks:(1) Effi
ient Prote
tion Against Traffi
 Analysis: STONe prote
ts against traffi
analysis using self-mixing by applying random routing to a regular network topologysu
h as a hyper
ube. This ensures uniform traffi
 patterns with minimal network
ongestion. This design provides mixing of network pa
kets without expli
itly usinga high-laten
y mix network that is not useful for low-laten
y anonymous
ommu-ni
ation [187℄. STONe further qui
kly isolates
ompromised nodes to minimize theimpa
t of the prede
essor atta
k by using Trusted Computing to dete
t Byzantine failuressu
h as software bugs.(2) S
alable and Robust Anonymous Routing: STONe improves s
alability of anony-mous routing be
ause it en
rypts pa
ket headers hop-by-hop instead of using a
ir
uit-based approa
h like in onion-routing [75℄. The stru
tured overlay network in STONeensures that nodes
an enter and leave the network qui
kly without interrupting
om-muni
ation of other nodes, thus eliminating single points of failure and
ongestednetwork nodes. In addition, STONe also prote
ts the network against a
tive atta
ks,su
h as Denial-of-Servi
e from external nodes, whi
h would harm servi
e and thusanonymity at a given time.(3) Anonymous So
kets and Name Servers: STONe implements anonymous TCPand UDP so
ket endpoints for an appli
ation. Only truly random IP addresses arevisible outside STONe. Su
h an anonymous IP address hides identity and lo
ationand is different for every new session the so
ket uses. In STONe, anonymous IPaddresses are not only network addresses but also anonymous authenti
ators to ensurethat the anonymous IP address is indeed
orre
t. Further, STONe
ontains TNS, theTrusted Name Servi
e that maintains and verifies self-
ertifying anonymous
redentials. Itanonymizes name server queries and maps names to anonymous pseudonyms that
ertify themselves with self-
ontaining publi
 keys.Our evaluation shows that STONe's performan
e impa
t is mu
h less
ompared toexisting anonymity systems that do not use Trusted Computing. STONe's throughput

6 Chapter 1. Introdu
tionapproximates expe
ted TCP throughput and ex
eeds state-of-the-art system Tor by30% [75℄. Also, our experiments verify that STONe s
ales up to a signifi
ant numberof nodes on PlanetLab with randomarrivals and departures, whilemaintaining routingstability and low overhead. Thus, STONe
an optimize anonymity for lo
ality andavoid
ongestion situations, and as a result its average laten
y is only about half ofTor's laten
y. Finally, our results
onfirm the expe
ted benefit of random routing: itsignifi
antly improves the system's robustness against traffi
 analysis by maintainings
alability and resilien
e at the same time. We summarize our
ontributions as follows:
• We have designed, implemented, and evaluated STONe, a distributed infrastru
-ture for
ertified and anonymous
ommuni
ation that is robust against sub-stantially more traffi
 analysis atta
ks, more resilient, and more effi
ient thanprevious systems for anonymous
ommuni
ation su
h as Onion Routing, MixNetworks, or Crowds [185, 58, 148℄.
• We are the first to apply random routing over a regular network topology on theheterogeneous Internet to a
hieve load balan
ing and self-mixing of networkpa
kets, and thus anonymous
ommuni
ation without expli
it mixes that ham-per low-laten
y
ommuni
ation. Previous approa
hes use less se
ure randomwalks instead [185, 58, 148℄.
• STONe is the first system that
ombines these three important properties foranonymous
ommuni
ation: Resistan
e against the Prede
essor Atta
k [148℄,uniform traffi
 patterns and indistinguishable
ommuni
ation paths [131℄, ands
alability [59℄. Further, it provides prote
tion for traffi
 anonymity to disguisethe type of
ontent, e.g. media stream vs. email traffi
. In parti
ular, to providethe latter it is usually ne
essary to send expensive
over traffi
 to disguise thetype of traffi
 [121℄.
• Further, we demonstrate that STONe is indeed a general-purpose system de-signed for both low-laten
y and high-throughput
ommuni
ation: We buildtwo appli
ations, Anonymous Instant Messenger and Anonymous File System. Bothappli
ations have priva
y issues that are hard to solve. Using a PlanetLab im-plementation, we demonstrate that our system a
hieves reasonable performan
ewhile preserving priva
y.

Chapter 2
Trusted Overlay Networks
Byzantine failures are one of the most general problems in distributed systems. Foranonymous
ommuni
ation they pose a parti
ularly signifi
ant threat that requiresproto
ol designers to downsize performan
e and s
alability to work around theseproblems. Compared to a fail-stop failure that
auses a ma
hine to
rash, Byzantinefailures like software bugs
ause a ma
hine's behavior to be
ome unpredi
table. If theByzantine failure is even an intended mali
ious atta
k, an adversary takes
ontrol overthewholema
hine and uses it to laun
h further atta
ks. This threat is real � adversaries
an easily get a

ess to tens of thousands of
ompromised
omputers in so-
alledBotNets and use them to laun
h DDoS atta
ks onweb servers or networks [103℄. Whenthe adversary
ontrols the ma
hine, she is also able to monitor all
ommuni
ation
hannels traversing through that ma
hine, and therefore, BotNets are also a threat toanonymity.

Untrusted Kernel

Trusted Kernel

Untrusted
Process

Trusted
Process

Untrusted
Process

Trusted
Process

CPU Memory Disk NetworkFigure 2.1: Trusted Computing: Trusted versus untrusted pro
esses on a Trusted Computingnode 7

8 Chapter 2. Trusted Overlay NetworksTrusted Computing, as proposed by several manufa
turers [99, 28, 21, 79℄, providesimproved proa
tive prote
tion against Byzantine failures on a lo
al platform using twodistin
tive primitives: Strong Pro
ess Isolation and Remote Attestation. In addition tovirtual memory Strong Pro
ess Isolation prote
ts trusted pro
esses against atta
ks froma
ompromised OS through virtualization [87℄, and thus isolates Byzantine failuresfrom the rest of the ma
hine that would otherwise make the platform vulnerable. Apro
ess be
omes trusted, and thus part of the Trusted Computing Base (TCB) only whenit
ompletes attestation lo
ally. To
omplete attestation the pro
ess verifies to the TCBby signing a non
e that all software from the appli
ation to the BIOS is trusted, i.e.the non
e is on the list of trusted software. Otherwise the pro
ess remains untrusted.This separation is shown figure 2.1.Remote attestation is an appli
ation-based mutual proto
ol between two TCBs thatverifies to the peer TCB that the platform is trusted. Similar to lo
al attestation on theTCB itself, it verifies to the peer node that all software from the BIOS to the appli
ationis trusted. Remote Attestation is built into the TCB and
an be implemented in variousfashions [165, 51, 114, 87℄. It either exploits hardware properties su
h as hardware-spe
ifi

lo
k skew or relies on
ryptographi
 primitives su
h as group signaturesthat rely on keys built into hardware. Group signatures are a signature s
heme thatpreserves identity from others. The signing node signs a non
e nb of the binary usingits private signing key, and every other node in the group is then able to use theglobal verifi
ation key to verify the group signature. Every TCB has a list of validnon
es nb that are trusted, and without forging or breaking the hardware it is notpossible to get the system to su

eed in remote attestation. This signifi
antly raisesthe bar for adversaries to
ompromise a node � for example, it would not be possibleto
ompromise a set of nodes by spreading a worm a
ross the network.A group of inter
onne
ted TCBs forms a Trusted Overlay Network, the platform forSTONe. The Trusted Overlay Network isolates pro
esses from Byzantine Failures andredu
es the likelihood of se
urity bugs, be
ause software is trusted. In su
h a
loseddistributed system a software-based
ompromise affe
ts either all nodes or none of thenodes, whi
h is similar to fail-stop behavior.In addition to the benefits in robustness against Byzantine failures, unfortunately,there are also some
ontroversial issues in Trusted Computing that need to be dis-
ussed. This is mainly be
ause it enfor
es poli
ies and lets an outside server take
ontrol:(i) It is hard for a user to verify that Trusted Computing has been implemented
orre
tly and does not leak any information through hidden ba
kdoors.(ii) Trusted Computing
an pursue anti-
ompetitive behavior by implementing restri
-tive poli
ies in TCBs that lo
k out
ertain software from the platform under thepremise that the software is inse
ure.

9(iii) Systems maintenan
e be
omes hard when operating systems have to be updatedfrequently, sin
e on every update old non
es for attestation have to be removedfrom the list of trusted software.(iv) A lo
al administrator
an be restri
ted be
ause Trusted Computing adds anotherprivilege ring around the operating system. Only a global remote administratorwho might not even be known to the owner of the platform
ould have alladministrative permissions.(v) When an adversary
ompromises a Trusted Computing system, it is usually a totalbreak-in, and the adversary is able to learn everything in
luding the TCB's se
retkey used for attestation. However, the probability that su
h a break-in o

urs isassumed to be very small.There are several me
hanisms in pla
e to over
ome these problems. Regardinggenuity of the Trusted Computing implementation the hardware manufa
turer itselfhas to be trusted. The manufa
turer's damage from bad publi
ity needs to outweighthe benefit from the ba
kdoor.Owner override addresses some of the issues related to a

ess rights [162℄. Inowner override the owner
an modify
onfigurations or even remote attestation aslong as it is proven that the owner is making the
hanges and not a virus or mali
iousappli
ation. The problem with owner override is that it undermines the se
urity ofTrusted Computing and allows
heating in online games, illegal
opying of prote
ted
ontent, et
.To make the attestation pro
ess more transparent the TCB
an use te
hniques su
has semanti
 attestation [93℄. In semanti
 attestation the signature is not
omputedby a hash fun
tion but by applying a fun
tion that
aptures the properties of theprogram like in proof-
arrying
ode [134℄. In this
ase no additional list of trustedsoftware needs to be distributed, sin
e attestation only
he
ks the program for givenfun
tionality and not what kind of software it is.When an adversary breaks into the TrustedComputing hardware she is able to learnalmost everything on the
ompromised ma
hine. Deniable
ryptography against the�rubberhose atta
k�
ould potentially shield su
h
ompromises but has been fairlyineffi
ient to implement [125, 53℄. In deniable
ryptography a plaintext P is en
ryptedsu
h that the
orresponding
iphertext C de
rypts to P under key k1, and under key
k2 C de
rypts to a different meaningful plaintext different from P. When an adversaryknows key k2 she thinks that she has found the
orre
t key.

10 Chapter 2. Trusted Overlay Networks2.1 Distributed Appli
ations on Trusted Overlay NetworksTrusted Overlay Networks are the base for STONe. Numerous distributed appli
ations
an benefit from Trusted Overlay Networks that would otherwise have to
ope withByzantine failures. Algorithms that prote
t against Byzantine failures are often
ostly,sin
e they require repli
ation [57, 19℄. Trusted Overlay Networks provide a flexibleinfrastru
ture that strengthens any distributed systems. Here we give a few examplesof distributed appli
ations that potentially benefit from the Trusted Overlay Networkar
hite
ture:Ad-Ho
 NetworksAd-Ho
 networks are untrusted be
ause the owner of a node on the ad-ho
network has a

ess to all submitted data and
an eavesdrop on data ormanipulateand drop data. TON prote
ts transmitted data against tampering and traffi
analysis. TON also eliminates the problem of free-riders who use the networkinfrastru
ture without forwarding any data.Distributed File SystemsAs mentioned in the last se
tion, any distributed peer-to-peer file sharing appli-
ation or distributed filesystem has benefits on TON, be
ause an adversary wouldnot be able to
ompromise or inje
t nodes with mali
ious
ontent. Normally,distributed file systems have to implement repli
ation in order to prote
t againstmali
iously modified files [57℄.Global ComputingGlobal Computing su
h as SETI�Home is another appli
ation for TrustedOverlayNetworks [19℄. When an adversary tampers with the parti
ular result of somenodes the global result is bogus. To prote
t against this atta
k
omputation hasto be repli
ated, whi
h is expensive. In Trusted Overlay Networks repli
ation isunne
essary, sin
e the nodes are prote
ted by Trusted Computing hardware.Ele
troni
 Voting or Consensus SystemsAny system for
onsensus or in parti
ular ele
troni
 voting has to be robustagainst Byzantine failures. In parti
ular, the poli
ies have to be enfor
ed, su
hthat entities do not
ast a vote twi
e or jam the
onsensus pro
ess, as, for exam-ple, in Dining Cryptographers.Instant MessagingInstant Messaging is a distributed system that relies on a trusted
entral serverfor dire
tory lookup and message forwarding. This one single trusted entity
anfail or get
ompromised. With Trusted Overlay Networks we
an distribute thefun
tionality of this one single trusted entity a
ross the whole network.

Chapter 3
Model and Definitions
Before we get into the design of STONe in this
hapter we explain the underlyingmodels for se
urity and networks used in this thesis as well as potential atta
ks andatta
k goals
onsidered in STONe's design. A reader who is only interested in thesystems design and implementation
an skip this
hapter and go dire
tly to
hapter 4.3.1 Communi
ation ModelA network is a set of nodes and links thatmaps to a graphG = (V,E) of verti
es and edges.Nodes are
onne
ted with bidire
tional links and
ommuni
ate by sending data overthese links. We distinguish between syn
hronous and asyn
hronous
ommuni
ation.Syn
hronous
ommuni
ation always depends on a global
lo
k, whereas nodes areallowed to send data at any time in asyn
hronous
ommuni
ation. We always assumethat nodes are able to separate real data from noise in asyn
hronous
ommuni
ation.Our model assumes asyn
hronous Internet
ommuni
ation that uses a standardTCP/IP sta
k, as in
ommodity operating systems. Links are bidire
tional point-to-point
onne
tions, and messages are forwarded hop-by-hop. Routing table informa-tion gets updated using some standard link-state proto
ol like OSPF. Single routers inthe network are untrusted and
an be administered by different authorities.An appli
ation sends traffi
 at any time through a
ommuni
ation
hannel, wheneverdata is available from the user. This
hannel
an either be
onne
tion-oriented or
onne
tion-less. A forwarding node buffers re
eived pa
kets when a potentially highsystem load does not allow forwardingmore pa
kets. Otherwise the node immediatelysends a pa
ket off to the next hop. We assume that
ommuni
ation
hannels last overan extended time period and that parti
ipating nodes repeatedly ex
hange messagesover the same
ommuni
ation
hannel. Every
ommuni
ation
hannel has a paththrough the network. This path is not ne
essarily stati
 and may
hange over time.In the beginning this path gets initialized, but the network may do multiple path11

12 Chapter 3. Model and Definitionsreformations during the duration of the
ommuni
ation
hannel formultiple purposes.Users initiate sessions to ex
hange traffi
 with other nodes in the network, andthey do this arbitrarily. A session depends on some appli
ation and
an for example
onsist of web browsing, peer-to-peer
ommuni
ation or instant messaging. Studieshave shown that session arrival is best modeled a

ording to a Poisson distribution,but pa
ket arrival times are usually distributed a

ording to heavy-tailed distribu-tions [141℄.Espe
ially user sessions are important for anonymity, and we need to distinguishbetween intera
tive sessions and non-intera
tive sessions. In an intera
tive session twonodes send request and reply messages ba
k and forth. The requesting user waits forthe answer or retransmits the request before she sends out the next message. Inter-a
tive sessions
an have distin
tive patterns that give an adversary extra information.For example, when a user opens a browser, and the browser always points to the sameuser-spe
ifi
 homepage, it gives an atta
ker some extra information. Identifying aweb page � given the number and lengths of en
rypted pa
kets � is not hard [183℄. In
ontrast, a non-intera
tive session always
onsists of a steady unidire
tional streamof messages. We use the term pa
ket for session-layer data and the term message fornetwork-layer data. For example, an HTTP request would be a message and IP datawould be a pa
ket. Data units in STONe's network layer are
alled a fragments.A
ommuni
ation network is
hara
terized by its diameter and its bise
tion width.The diameter defines the maximum distan
e between any pair of pro
esses, and thebise
tion width the minimum number of edges that have to be removed in order todis
onne
t the network into two halves with identi
al number of pro
essors [120℄.The diameter defines the maximum laten
y in the network. The bise
tion width isa
riti
al performan
e fa
tor in a network, sin
e it des
ribes the network bottlene
kunder
ongestion. A ringwith n nodes, for example, has a relatively poor performan
e,sin
e its bise
tion width is 2 and the diameter is n
2 . In
ontrast, a 2-dimensionalmesh with n nodes has a bise
tion width of √n and a diameter of 2

√
n, whereas themaintenan
e
ost per node is almost the same. Furthermore, a mat
hing of a graph ornetwork is a set of edges, su
h that no two of them have a vertex in
ommon. Thelargest possible mat
hing on a graph is a set of N

2 nodes, and this is
alled a perfe
tmat
hing. A graph with a perfe
t mat
hing has a bise
tion width of N
2 .The
ongestion of a link is the expe
ted queue length of messages over this link atany given time. A
ongestion of 1 means that there is no
ongestion, and the network
an always work effi
iently. When a link has mmessages queued up the m-th messagehas to wait for (m-1) steps until it gets forwarded.

3.2. Systems Model 133.2 Systems ModelIn this work we assume an asyn
hronous distributed system model. The network
onsists of N nodes that are fully
onne
ted through the Internet. Every node in thedistributed system
an have a different administrator and also run different versionsof the appli
ation.Appli
ations
ommuni
ate whenever data is available to send. Asyn
hronousdistributed systems have
ommuni
ation un
ertainty, be
ause nodes may
rash andremain undete
ted. In addition, our model allows Byzantine failures, su
h that anadversary
an
ompromise nodes and tamper with
ommuni
ation
hannels.Prote
tion against Byzantine failures is a
hieved by sandboxing and bla
k-boxingfrom Trusted Computing hardware. Chapter 2
ontains explanations about TrustedComputing and Trusted Overlay Networks.3.3 Se
urity ModelIn our se
urity model we tolerate an adversary that
an laun
h any type of software-based atta
k. We model the adversary as a Dolev-Yao atta
ker. A Dolev-Yao atta
keris a non-deterministi
 pro
ess that has
omplete
ontrol over the
ommuni
ationnetwork [76℄. The atta
ker
an introdu
e pa
kets into the network when she has a

essto the untrusted operating system on a node ; these pa
kets may have fake identities,mount a DDoS atta
k or try to introdu
e Trojans into the overlay nodes. Also, anatta
ker might pose as a honeypot to inter
ept all
ommuni
ation between a senderand a re
eiver, whi
h is
alled a man-in-the-middle atta
k. Sybil atta
ks are possible,when an adversary tries to
ompromise the network with her own
ompromisednodes [56℄. We distinguish between an adversary with physi
al a

ess to the ma
hineand the adversary with only virtual a

ess. The adversary with physi
al a

ess
aneavesdrop on network-layer pa
kets. The other may not be able to.A se
ond type of adversary is an external atta
ker with a

ess to the network. Thisadversary
an listen to network
ommuni
ation or tamper with traffi
. Usually, thiskind of adversary needs to have signifi
ant power equivalent to an Internet Servi
eProvider (ISP).STONe is a
ommuni
ation infrastru
ture that prote
ts against most
ommonnetwork atta
ks. Spe
ifi
ally, it prote
ts against the following atta
ks:Denial-of-Servi
e Atta
ksAn adversary
an laun
h DDoS atta
ks on other nodes in the network, eitherfrom within the network or as an outsider. These DDoS atta
ks have multiplelayers: First, the adversary
an flood the network with pa
kets to saturate thenetwork bandwidth. It is typi
ally quite hard to prote
t against this type of

14 Chapter 3. Model and Definitionsatta
k, so the goal is to a
hieve an improvement over a normal TCP/IP-basednetwork
ommuni
ation
hannel. Se
ond, the adversary
an do proto
ol-levelatta
ks like SYN floods [20℄. And furthermore, it
an laun
h appli
ation-levelatta
ks like HTTP floods [103℄. In these
ases either the network infrastru
ture isobstru
ted or appli
ation-level servi
es do not work anymore.Routing Atta
ksSabotaging the network as well by deliberately (i) rerouting messages, (ii) re-ordering messages, (iii) dropping messages, (iv) laun
hing DDoS atta
ks againstservers, or (v) manipulating NodeIDs is another possible atta
k. Standard rout-ing proto
ols su
h as BGP [150℄ have these problems. For example, an adversary
an tamper with the proto
ol that updates the routing tables and pretends linkfailures. The adversary thus de
reases the performan
e of the network.Traffi
 AnalysisAn adversary is able to
arry out Traffi
 Analysis in two different ways: Be
ausesoftware has bugs an adversary
ould either
ompromise the OS kernel or anotherpro
ess to measure network pa
ket data, or she
ould probe nodes remotely. Whennodes are
ompromised it is straightforward to eavesdrop on traffi
 to either findspe
ifi
 targets in the network or to lo
ate and tra
k
ommuni
ation to violatepriva
y. An adversary investigates
ommuni
ation patterns over multiple nodesto find out whi
h parties are
ommuni
ating. On the other hand she is alsoable to analyze traffi

hara
teristi
s to see whether, for example, some party isrunning peer-to-peer traffi
 or browsing the web. By remotely probing nodesonly a limited set of atta
ks is possible. In this atta
k an adversary determinesthe load of the individual nodes or measures the timing for en
ryption [131℄.3.4 Priva
y ModelA

ording to Merriam-Webster, Priva
y is �the quality or state of being apart from
ompany or observation�. For example, any unauthorized intrusion is a brea
h of pri-va
y. On the Internet, brea
h of priva
y is often asso
iated with stealing
onfidentialinformation su
h as
redit
ard numbers. In
ommon peer-to-peer proto
ols, privateinformation leaks at different pla
es [43℄. In this thesis we
onsider the followingatta
ks on priva
y:Passive Logging Atta
kLogging and interse
ting information on the Internet is a large threat. An ad-versary who logs any type of information on the Internet is
onsidered a passivelogging adversary. Logging information that is freely available is nothing illegal,but the amount of available information may not be authorized by the logged

3.4. Priva
y Model 15entity, be
ause people are unaware of te
hni
al options they have available tohide this information. On the Internet, for example, several anonymous routingsystems are available to prote
t information about an IP address leaking to awebsite (e.g. [75, 148, 2℄).Phishing Atta
kIn a Phishing atta
k an adversary uses so
ial engineering to fool somebody intoa fake network site. Phishing atta
ks set up forged websites of real
ompanieson whi
h an adversary wants to obtain any
onfidential information su
h as
redit
ard or so
ial se
urity numbers. The forged websites pretend to be major
ompanies su
h as PayPal, Citibank, or EBay. Often, Phishing adversaries sendoffi
ial-looking emails to their vi
tims that point them to their forged website.The main vulnerability Phishing adversaries exploit is people's superfi
ial trustin
ompanies' logos and letterheads. These s
ams are sometimes even so hard todistinguish that there are Phishing IQ tests [16℄. Ele
troni

ertifi
ates solve thisproblem, sin
e they
learly identify the
ompany the website belongs to [22℄.Phishing does not require that many people get tri
ked into the s
am, but thenumber of
ir
ulating email messages is so large that even a few hundred usersare suffi
ient to
ause a signifi
ant amount of damage [111℄.Pharming Atta
kIn a Pharming atta
k an adversary
ompromises the Internet name server di-re
tly [111℄. Whenever a
lient
onta
ts the name server it gets redire
ted tothe adversary's website. Pharming atta
ks require the adversary to exploit somea
tual te
hni
al vulnerabilities, whereas a Phishing adversary exploits humanweakness.Censorship Atta
kIn
ontrast to the previous passive atta
ks that try to gather information froman individual, the
ensorship atta
k is an a
tive priva
y intrusion atta
k. Whensomeone publishes legitimate information and an adversary suppresses or deletesthis pie
e of information it is also an unauthorized intrusion. On the Internet
ensorship atta
ks are generally hard be
ause only ISPs
an
ensor informationglobally by dis
onne
ting servers. In a lo
al environment firewalls are usuallybeing used to shut off information from the Internet. Censorship is not onlyintrusion into the author's priva
y, but also into the reader's priva
y, be
ausesomeone else de
ides whi
h information people are able to obtain. Of
ourse,there have to be methods for blo
king illegal
ontent.Impersonation Atta
kAnother type of a priva
y brea
h o

urs when an adversary impersonates some-one's identity after stealing signifi
ant identifi
ation (aka identity theft). This

16 Chapter 3. Model and Definitions
auses massive priva
y intrusion be
ause the adversary
an impersonate anotherperson online and
ause serious damage. Like the
ensorship atta
k imperson-ation is also an a
tive intrusion atta
k.Traffi
 AnalysisTraffi
 Analysis by itself is also a brea
h of priva
y. When an adversary analyzestraffi
 to un
over the identities of the sender and the re
eiver she violates priva
y.We dis
uss the underlying anonymity model of Traffi
 Analysis in the followingparagraph.3.5 Anonymity ModelAnonymity is defined as �the state of not being identifiable within a set of subje
ts,the anonymity set� [143℄. An anonymity set is therefore the set of all distinguishablesubje
ts in the system. Anonymity helps to prote
t priva
y but falls short of realpriva
y.Someone
ould say that
ryptography provides anonymity be
ause it provides op-erations to randomize messages [174℄. In parti
ular, se
ure multiparty
omputa-tion [89, 146℄ and se
ret sharing [167, 45℄ are related to anonymous
ommuni
ation.However, this is only one part of anonymity. Messages have multiple properties � forexample, a network message has a
ertain timing behavior that
ryptography
annothide, and only syn
hronous
ommuni
ation, as in se
ure multiparty
omputation,
an solve this problem. If the anonymity set is a pool of messages it
an be identifiedbased on the timing behavior. Furthermore, if the anonymity set is the set of all nodesin the network,
ryptography alone does not help.On the other hand steganography
an solve some of these problems, but this is onlypartially true. Steganography hides messages without using
ryptography by embed-dingmessages, for example, in digital images or TCP proto
ol headers [172, 106℄. How-ever, it is hard to prove se
urity, and often steganography
an be broken. Steganogra-phy not only disguisesmessage
ontent but also hides the a
tualmessage transmission.Therefore, prote
tion against traffi
 analysis is in some sense steganography.In our anonymity model for
ommuni
ation networks we define an adversary'sgoals for traffi
 analysis. In a network of N nodes an adversary himself
an be thesender, the re
eiver or a third party. This adversary
ontrols any type of nodes withinthe network � senders, re
eivers or internal idle nodes � and pursues the followinggoals [148℄:Sender AnonymityThe sender of a
ommuni
ation
hannel wants to prote
t her anonymity againsta Traffi
 Analysis adversary. The adversary
ould either be the re
eiver or anylimited set of nodes in the network.

3.5. Anonymity Model 17Re
eiver AnonymitySimilarly, the adversary's in
entive is to find out the
orre
t re
eiver. Any nodealong the path from the sender to the re
eiver has to know how to forward thepa
ket, but there exist te
hniques that provide this message forwarding withoutrevealing the re
eiver's identity.Unlinkability of Sender and Re
eiver or internal nodesWhen the adversary already knows the possible
andidates for senders and re-
eivers of a parti
ular
ommuni
ation
hannel in the network, her goal is to linkthem together. She may also know the sender or re
eiver already but wants toun
over the other party.Lo
ality of NodesIn some
ases the adversary wants to find out where a
ertain node is lo
ated,either in its logi
al position in the network defined by its neighbors, or in its ab-solute geographi
al position. This atta
k goal is independent from the previousones where the adversary's only goal is to dete
t senders and re
eivers.Traffi
 Chara
teristi
sIn addition to the sender and re
eiver identity of a
ommuni
ation
hannel thea
tual traffi

hara
teristi
s provide important information to the adversary. She
an then expli
itly state that some node downloaded files from
ertain sites, andshe may even be able to re
onstru
t the
ontent.A
tivity MonitoringIn this
ase the adversary wants to determine whi
h node is a
tive or onlineat a given time. This is also some form of anonymity and furthermore helpsto break unlinkability, sin
e nodes have to be a
tive when they parti
ipate in a
ommuni
ation
hannel.Furthermore, an adversary with external resour
es has an advantage against an ad-versary without external resour
es. The adversary with external resour
es
an
om-muni
ate with
ompromised nodes through her own
ommuni
ation network. She
an use the network to reroute messages and has additional
omputational power toanalyze traffi
 logs she
olle
ts.We also distinguish between internal and external adversaries. An external adversary
an only observe traffi
 and send pa
kets on the links, but an internal adversary hasfull
ontrol over the nodes.Spe
ifi
ally, in STONe we are
onsidering the following popular traffi
 analysisatta
ks that are weaknesses of existing systems for anonymous
ommuni
ation:
• Prede
essor Atta
kThe prede
essor atta
k is a
ommon way to
ompromise sender/re
eiver ano-

18 Chapter 3. Model and Definitionsnymity. In this atta
k an adversary exploits the fa
t that many systems againsttraffi
 analysis use frequent path reformations to simulate a random walk overa graph (e.g. [75, 148℄). However, sender and re
eiver never
hange and aretherefore
learly distinguishable from other nodes. When an adversary observesprede
essors of network pa
kets over time on a limited set of nodes, and thenetwork pa
kets always
ome from the same node, an adversary
an
on
ludethat this node must be a sender. This atta
k only works when the adversary isable to
learly identify the end-to-end
onne
tion related to the
urrent messageas well as its prede
essor [198, 171℄.
• Interse
tion Atta
kIn an interse
tion atta
k an adversary monitors properties at nodes and
orre-lates the
olle
ted information. For example, in a partially
onne
ted network,when the adversary dis
overs the sender's neighbors in the network, she is ableto redu
e the sets of nodes that belong to the
ommuni
ation path. Or, inan unsyn
hronized network an adversary
an analyze traffi
 volumes to
orre-late possible
ommuni
ation endpoints [67℄. Alternatively, an adversary mightmat
h the length and
ontent of messages along different links and use thisinformation to re
onstru
t the
ommuni
ation path [34, 138℄. This information
an also be used to
onfirm some hypotheses about the traffi
 pattern [68℄.
• Passive Logging Atta
kNetwork sites are logging network addresses of
lients that have a

essed thesystem for maintenan
e reasons, and an adversary
an abuse this informationand
olle
t an a

ess log of users
onne
ting to the site, su
h as a web servera

ess log. A publi
 Internet
lient by itself
annot ex
hange or hide its networkaddress [197℄.
• Timing AnalysisIn a Timing Analysis atta
k an adversarymeasures themessage inter-arrival timeson the set of nodes she
ontrols. She then
orrelates the measured informationfrom different nodes and when the informationmat
hes she
on
ludes that theymust have forwarded the samemessages with high probability. This requires thatthe adversary is able to distinguish and identify messages on the network [121℄.
• Membership List Atta
kBy
olle
ting information about the time when nodes enter and leave the net-work, an adversary is able to narrow down the anonymity set from the set of allnodes in the network [9, 41℄.

3.6. Notations 19Anonymity Measure The
ommon measure for anonymity is the entropy of the ano-nymity set. Entropy is a measure for randomness that has the following three assump-tions [168℄:
• A small
hange in the probability of membership p(i) in the anonymity setshould only
hange the entropy by a small amount.
• When all o

urren
es i are equally likely then in
reasing one set of o

urren
esalways in
reases entropy.
• The entropy of two sets of o

urren
es is the weighted sum of the entropies ofthe two sets.The entropy fun
tion is then defined by

H(x) = −
n∑

i=1

p(i) log2 p(i).In our anonymity model we require randomness of the anonymity set. It shouldbe hard for an adversary to redu
e the anonymity set to the nodes he is interested in.Then, as a logi
al
onsequen
e, anonymity is the entropy H(A) of the anonymity set
A divided by the maximum entropy HM [163, 72℄:

d(A) =
H(A)

HM

=
−∑N

i=1 pi log2(pi)

log2(N)

d is also
alled the degree of anonymity [72℄. The degree of anonymity des
ribes theamount of information about the anonymity set the system is leaking. When d → 1 allnodes appear to be a solution to the anonymity atta
k. If, however, d → 0 the atta
keris su

essful and
an isolate an element from the anonymity set. This definition ofanonymity as the entropy follows the randomness measure of other dis
iplines, su
has
ryptography and steganography.3.6 Notations3.6.1 General NotationsThis thesis uses most standard
onventions for mathemati
al notations. When weuse log it always means log2 unless it has an expli
it base b as in logb. ln refers to thenatural logarithm with base e.Table 3.1 shows the standard terms used in this thesis. These terms des
ribe keysand identifiers in Trusted Computing or STONe, or des
ribe some properties of thenetwork.

20 Chapter 3. Model and Definitions

Symbol Des
ription
Nmax Maximum number of nodes in STONe; this value dependsonly on the length of STONe addresses (n= log Nmax= 64)
rj j-th n-bit random number in the internal pseudo-randomnumber generator of Trusted Computing
NSTONe Number of nodes in STONe
SSTONe 128-bit se
ret shared by all STONe nodes
hTC(·) Hash fun
tion of the Trusted Computing platform
hSTONe(·) Hash fun
tion of STONe; hSTONe(m) = hTC(SSTONe | m)

PKTCi
1024-bit RSA publi
 key built into the Trusted Computingplatform of node i

SKTCi
1024-bit RSA se
ret key built into the Trusted Computingplatform of node i

KTCi
128-bit AES se
ret key built into the Trusted Computing plat-form of node i

Kj
STONei

128-bit se
ret key for stream
ipher between STONe nodes
i and j

DHt
STONei

Diffie-Hellman key share of node i for setting up stream
iphers at the t-th insert operation; DHSTONei
=

hSTONe(KTCi
| SSTONe)

Cs
STONei

Opaque 96-bit
apability used for STONe So
ket
ommuni-
ation to address servi
e s on node i

ID
(j)
STONei

64-bit identifier for the j-th virtual hyper
ube address (0 ≤
j ≤ k − 1) of node i; ID

(j)
STONei

= hj+1
STONe(DHSTONei

)

PKs
TNSd

Publi
 key in TNS for destination d and servi
e s

SKs
TNSd

Private key in TNS for destination d and servi
e s

IDs
TNSd

Name identifier in TNS for destination d and servi
e sTable 3.1: Definitions of terms used in the thesis.

3.6. Notations 21Distribution Symbol PDF/PMF EntropyBinomial Dist.1 B(n, k, p) P (X = k) =
(
n
k

)
pk(1 − p)(n−k) ln(

√

2πenp(1 − p))Uniform Dist. U(a, b) P (X = k) =

{ 1
b−a+1 , a ≤ k ≤ b

0, otherwise
ln(b − a + 1)Exponential Dist. Exp(λ) f(x) = λe−λx 1 − ln(λ)Normal Dist. N(π, σ) f(x) = 1

σ
√

2π
e−

(x−µ)2

2σ2 ln(σ
√

2πe)Table 3.2: Definitions of probability distributions used in this thesis.1The entropy for the binomial distribution assumes the
entral limit theorem. [173℄3.6.2 Probability TheoryTable 3.6.2 shows the probability distributions we use in this thesis. The entropy
H(X)
orresponds to Shannon's original formula [168℄: For a dis
rete distributionwith pi = P (X = i) we have H(X) =

∑N
i=0 pi log pi. In the
ontinuous
ase it is

H(X) =
∫∞
0 f(x) log f(x)dx where f(x) is the probability density fun
tion. We say therandom variable X follows distribution D when X ∼ D. To approximate the BinomialDistribution with the Normal Distribution we use Central Limit Theorem [173℄: When

n is large B(n, p) ∼ N(np, np(1 − p)).3.6.3 CryptographyIn this thesis we use publi
 key en
ryption, signature s
hemes, and hash fun
tions. Asin our
ommuni
ation model a message m is a bit string of arbitrary length, and thismessage for the
ryptography operating
an be any type of data, within a session oron the network-layer. In m = m1|m2|...|mk we
ompose a message m from k messages
m1...mk. We denote a message m signed with the
orresponding private signing keyof node i's publi
 key ki by <m>ki

. The hash of a message m is h(m). The k-timesiteration of h on a message m is written as hk(m). σ, ki) denotes the verifi
ation ofsignature σ using publi
 key ki. Furthermore, we denote Ek(m) the en
ryption ofmessage m under key k, and Dk(c) is the de
ryption of
iphertext c under key k.

Chapter 4
STONe DesignIn the previous
hapters we introdu
ed Trusted Overlay Networks as a distributed
omputing ar
hite
ture that establishes trust between parti
ipating nodes. STONe'sdesign is based on a Trusted Overlay Network that
onsists of distributed trustedproxies. STONe's main design goals are: s
alability, resilien
e and resistan
e againsttraffi
 analysis.To ensure s
alability and resilien
e STONe has to support short node insertiontimes, whi
h requires fast neighbor dis
overy and key ex
hanges. In
ontrast, ananonymity network that relies on a stati
 set of proxies, su
h as Tor [75℄, does notneed to be s
alable.Therefore, we designed STONe as a stru
tured overlay network that is based on atopology similar to a hyper
ube (see e.g.[147℄). Su
h a topology is more advantageousthan a tree or ring stru
ture sin
e it minimizes the number of key ex
hanges and theaverage path length at the same time, thus optimizing the network for high
hurn.These are the design goals in STONe:De
entralized ControlSTONe is distributed a
ross different administrative domains. In Trusted Over-lay Networks nodes
an be administered by different people, but se
urity andanonymity during
ommuni
ation are still guaranteed a
ross the network.No Central Membership ListSTONe does not have a
entral membership list of nodes in the system. Ea
hnode re
ognizes only the addresses of its immediate neighbors and any infor-mation that should be prote
ted is hidden within the trusted pro
ess. A
entralmembership list is a potential threat to anonymity, be
ause an adversary
anidentify all nodes of the network and shut them down.Se
ure Communi
ationSTONe provides appli
ation-level endpoints for a se
ure
ommuni
ation infras-23

24 Chapter 4. STONe Designtru
ture. When two parties
ommuni
ate, an adversary should not have the
han
e to laun
h any
ommon atta
ks unless she breaks into the Trusted Com-puting hardware.Transparent Anonymous Communi
ationSTONe So
kets are appli
ation-level endpoints for anonymous
ommuni
ation.When an appli
ation uses STONe So
kets, it is hard for an adversary to
ompro-mise anonymity of the nodes parti
ipating in
ommuni
ation.Large Address Spa
e to Prote
t against DDoS atta
ksSTONe's overlay network provides a 96-bit address spa
e that
ontains nodesthat are behind different NATs and firewalls. In STONe an atta
ker is not able tos
an the 96-bit address spa
e in a brute-for
e manner to lo
ate nodes she wantsto atta
k.Self-Certifying Peer AddressesSTONe provides a Trusted Name Servi
es (TNS) that maps names to anonymousaddresses and self-
ertifies these addresses in the overlay without revealing iden-tities to anyone. The appli
ation has full
ontrol over any information that goespubli
 in the overlay.Se
ure and Anonymous RoutingSTONe is fun
tional despite
ommon atta
ks on the overlay. For example, adenial-of-servi
e atta
k on the overlay should not weaken the system signifi-
antly, sin
e an adversary
ould use this atta
k to sabotage the anonymity ser-vi
e.S
alable and Resilient RoutingSTONe provides a s
alable and resilient routing infrastru
ture layer to maintainse
urity and anonymity in the network a
ross firewalls and NATs. In STONe,every node must be able rea
h every other node with high probability. Further-more, STONe routers are not always available. Nodes that forward messages inSTONe frequently leave and enter the network. Therefore, STONe has to pro-vide a stealthy s
heme to keep routing tables up-to-date. This an importantfeature in a system that provides an infrastru
ture with different servi
es. Forexample, in some appli
ations. su
h as Instant Messaging or Internet telephone,
lients have an in
entive to stay online for longer time intervals, whereas a sim-ple file-download
lient may log off after a download finishes. Trusted OverlayNetworks' ability to prote
t against Byzantine faults without using expensiverepli
ation te
hniques provides a strong basis for tolerating high
hurn in thenetwork.

4.1. System Ar
hite
ture 25Simple Programming Interfa
e and Robust Name Servi
eSTONe provides a simple appli
ation so
ket interfa
e. This interfa
e is similarto normal Internet so
kets. Further, STONe requires a robust and trusted nameservi
e that maps names to opaque network addresses. It is important that thisname servi
e is robust against
ommon atta
ks.4.1 System Ar
hite
ture
STONe Router STONe Router

TCB TCB

App

SSocket

App

SSocket

App

SSocket

App

SSocket

App

SSocket

App

SSocket

STONe Proxy

Attestation

Attestation

...

...

... ...

TCP connections

STONe Proxy

Figure 4.1: STONe Ar
hite
ture: A single STONe node
onsists of the Proxy and Router thatare lo
ated in the Trusted Computing Base of the PC. The STONe So
ket library is dire
tlylinked to the appli
ation. Appli
ations
an be inside and outside the TCB.Figure 4.1 shows the ar
hite
ture of STONe. STONe does not require any trustedthird parties for establishing se
ure routing, and it also does not require
ostly traffi
analysis prote
tion to ensure anonymity and improve se
urity.Ea
h STONe node
onsists of three
omponents: STONe Proxy, STONe Router, andthe STONe So
ket library, as shown in figure 4.1. The STONe Proxy and the Routerare two individual pro
esses lo
ated in the TCB. When a node
onne
ts to STONe itproves by remote attestation to its neighbors in the overlay that the
ontents of theTCB � STONe Proxy and Router � are trusted, and that neighbors in the overlay
antrust future transmissions from this node. Appli
ations are
ompletely independentfrom STONe. If they run inside the TCB, a STONe node
an use remote attestationas well to verify trustworthiness of the appli
ation to its peers. Instead of linkinga standard OS so
ket library, appli
ations have to use the STONe so
ket library to
ommuni
ate with other appli
ations in the overlay.

26 Chapter 4. STONe DesignNetwork Topology STONe is a stru
tured routing overlay network derived from ahyper
ube topology that not only provides s
alability but also availability a
ross fire-walls or NATs. This is a fundamental differen
e to
ontent-distribution overlays su
has Gnutella [7℄, where the the total amount of data in transit in the overlay networkis mu
h less, be
ause it only serves lookup requests and no data transfers. STONe isalso different from web
a
hing overlay networks [1℄, be
ause nodes may enter andleave the network, and parti
ipating nodes are not ne
essarily lo
ated in the publi
Internet but in private networks behind NATs.In general, STONe works on any stru
tured overlay. However, STONe has to opti-mize the overlay stru
ture for s
alability and resilien
e. STONe's topology is equivalentto a CAN network with diameter d = log N , but as pointed out earlier, the main dif-feren
e to many existing stru
tured peer-to-peer networks is that every STONe nodeitself is the key and vi
e versa. Hen
e, STONe does not require leaf nodes that repli
ateobje
ts, as for example in Pastry [154℄. But it requires redundant routing paths, sin
enodes may frequently leave and enter the overlay. Furthermore, laten
y has to be asshort as possible, and the overlays's goal is to minimize the number of hops on theroutes and the routing table size should be minimal.A node joins STONe by authenti
ating itself to an existing bootstrap node onthe overlay using remote attestation, and from there it finds its existing neigh-bors on the hyper
ube. The node's hyper
ube address in the overlay network isa
ryptographi
ally-se
ure keyed hash of its Diffie-Hellman key share: ID
(j)
STONei

=

hSTONe(DHSTONei
). DHSTONei

is derived from the Trusted Computing se
retKj
STONei

.Assigning addresses in this fashion randomizes the overlay topology and makes thesystemmore robust against traffi
 analysis. The built-in se
ret Trusted Computing key
KTCi

is se
ured in hardware making it hard for an adversary to forge a valid identity.STONe Proxy: Similar to proxies in other anonymity networks, the STONe Proxy isresponsible for relaying pa
kets between adja
ent STONe nodes. The Proxy maintainsfor ea
h of its neighbors a
onne
tion state and a shared stream
ipher with the sharedkeys Kj
STONei

between nodes i and j.Whenever the STONe Proxy
onne
ts to another node in the network, it firstdoes a TCP handshake, then exe
utes the remote attestation proto
ol, and finallyruns a simple Diffie-Hellman key ex
hange to set up a shared key. STONe keys areautomati
ally
ertified by remote attestation.The STONe Proxy prote
ts STONe against atta
ks from the underlying network. Anatta
ker
an laun
h atta
ks on STONe from outside the overlay by inje
ting pa
ketsinto the TCP streams or dropping pa
kets in some streams. The STONe Proxy a
ts asa rudimentary firewall; pa
kets arriving at wrong ports, or with invalid TCP sequen
enumbers are silently dropped. When the STONe Proxy identifies too many
orrupt

4.1. System Ar
hite
ture 27pa
kets on one stream, it qui
kly establishes a different TCP
onne
tion with its peers.If an atta
ker overloads a STONe Proxy by flooding it with pa
kets, the routerwould normally drop TCP
onne
tions. Yet, when these pa
kets only initiate new
onne
tions it would still prevent the router from pro
essing other pa
kets withoutadditional delay. In STONe we separate Proxy and Router, and therefore the Router isable to start a different STONe Proxy and re
onstru
t the
onne
tion state using theinformation from the routing tables in the STONe Router. This is not the only advan-tage of the separation between the STONe Proxy and Router. It also allows en
ryptionand routing of pa
kets to happen in parallel. In parti
ular, future
ommodity PCs willhave symmetri
 multipro
essing
apabilities, and therefore en
ryption and routing
an take pla
e in parallel.4.1.1 STONe RouterThe STONe Router is the main part of the system. It maintains the routing tables,routes STONe pa
kets in the overlay, and provides STONe so
kets to the appli
ation.The Router also handles the initial handshake for new nodes entering the system.A node that wants to join STONe
onne
ts to the Router, after it has su

essfully
ompleted remote attestation. To prote
t against atta
ks from the network, the Routerdoes not a

ept any messages from nodes that did not su

eed in remote attestation.After the new node has
onne
ted, the Router hands off the
onne
tion to the STONeProxy. When appli
ation data arrives from the STONe So
ket Library, the Router
reates a STONe pa
ket and forwards it to the STONe Proxy. When STONe pa
ketsarrive from the network via the STONe Proxy, the Router looks up the next hop in itsrouting table, and forwards the pa
ket to the STONe Proxy.The STONe Router provides two servi
e abstra
tions to the appli
ations throughthe STONe So
ket library� a
onne
tion-oriented trusted stream servi
e (TSS) and atrusted datagram servi
e (TDS). The internal proto
ol in TSS is identi
al to TCP, butit implements only flow
ontrol, be
ause
ongestion
ontrol would interfere with theunderlying
onne
tion. Instead, TSS relies on the
ongestion avoidan
e me
hanismthat is inherent in our anonymous routing te
hnique, as we will see in the nextse
tions. In
ontrast, TDS provides a
onne
tion-less datagram servi
e similar to UDP.There is no extra proto
ol header overhead. TDS and TSS use the fields in the STONefragment that we des
ribe now.4.1.2 STONe Pa
kets and FragmentsSTONe pa
kets � the
ommuni
ation unit for datagram so
kets on the trusted data-gram servi
e (TDS) �
onsist of multiple STONe fragments. Fragments and pa
kets havethe same format, with pa
kets being the appli
ation-level unit. Figure 4.2 shows the

28 Chapter 4. STONe Design

32 bit 32 bit

TTLPacket ID

Fragment NumberFlags

Message LengthWindow Size

Source Address

Destination Address

Final Address

Checksum

Acknowledgement NumberSequence Number

Destination ServiceSource Service

Figure 4.2: STONe fragment header: This 68-byte header is mostly self-explanatory. STONeaddresses are generally 64 bits long. Flags des
ribes spe
ial fragment types su
h as e
ho frag-ments, that are used for end-to-end delay measurements.The Pa
ket IDs are listed in Table 4.1.STONe fragment header. It
ontains three 64-bit STONe addresses, the sour
e, desti-nation and final addresses, and the
orresponding 32-bit servi
e-port numbers. Firstwe explain routing that does not make use of the final field, whi
h does not prote
tagainst Traffi
 Analysis. The STONe node sending the fragment pla
es the destinationaddress in the destination field. The final field is reserved for the use of an intermediaterelay when STONe prote
ts against Traffi
 Analysis. Other fields are self-explanatoryand similar to TCP/IP. For example, the STONe Pa
ket ID marks the
ontent of thepa
ket as either a
ontrol pa
ket or a user-data pa
ket. And the sour
e and destinationservi
es are used for multiplexing different so
ket endpoints similar to TCP/UDP ports.The size of a STONe fragment
an be variable and does not depend on IP pa
ket size
onstraints be
ause STONe is based on TCP, whi
h is a stream proto
ol without fixedpa
ket sizes.When the Router re
eives a fragment from the Proxy, it
omputes the
he
ksumover the whole fragment. Then the Router determines the TTL of the fragment.When the TTL of the fragment is 0 the fragment is dropped � otherwise the Routerde
rements TTL and uses STONe's routing algorithm to look up the next hop. Finally,the fragment with the updated
he
ksum gets forwarded to this new hop.Message Types Table 4.1 shows the different message types for the Pa
ket ID field inthe STONe header. Most of them are self-explanatory and relate to TCP's pa
kets. Ajoining node sends an T-INSERT-KEY message into the network. When the T-INSERT-KEY arrives at the destination node it returns a T-START message. Data pa
kets have a

4.2. Se
ure Communi
ation 29Type Des
riptionT-SYN initiates handshake with another nodeT-SYNACK a
knowledges T-SYN pa
ketT-ACK a
knowledges message pa
kets other than T-SYNT-INSERT-KEY sends an insert key message into the networkT-START
onfirms when insert key message arrives at
orre
t nodeT-DATA sends STONe data messagesTSS-CONNECT initiate a TSS
onne
tionTSS-FIN terminate a TSS
onne
tionTable 4.1: Pa
ket Types in STONe: Types starting with a T are for low-level
ommuni
ation inSTONe, and TSS pa
ket types are for high-level
ommuni
ation in the TSS abstra
tion.T-DATA identifier. STONe does not require a T-FIN pa
ket, be
ause FINs are impli
itthrough TCP. Whenever the TCP
onne
tion with another node terminates, STONealso terminates the
onne
tion automati
ally.4.1.3 STONe So
ket LibraryThe STONe So
ket Library is a wrapper that exports a standard so
ket interfa
e forba
kward
ompatibility with existing appli
ations and ease-of-use. Internally, ea
hso
ket file-des
riptor is mapped onto a 96-bit opaque
apability. The so
ket system
alls are trapped by the library and mapped onto messages over UNIX so
kets tothe lo
al STONe router. The library also implements a pseudonym look-up servi
e,i.e., a
lient for the Trusted Name Servi
e (TNS) that maps names to self-
ertifying
apabilities. STONe is hardened against atta
ks on the so
ket library. Even if anatta
ker were to modify the library, she would not be able to a

ess
onfidentialSTONe information or
ompromise the anonymity of
ommuni
ation.4.2 Se
ure Communi
ationIdeally, se
ure
ommuni
ation would be provided by the Internet proto
ol, but un-fortunately, there are some
ommon problems. Even though se
urity proto
olslike IPse
, TLS, OpenSSL or OpenSSH provide network-layer and end-to-end se
u-rity [108, 100, 73, 15, 14℄, se
ure routing is still an unsolved problem. Routingproto
ols like OSPF distribute link-state on the Internet [130℄, but in environmentsthat are prone to Byzantine failures these routing update messages are still subje
t toatta
ks [142℄. On the other hand routers
an be mali
ious [128℄.Furthermore, network address distribution must be se
ure. An adversary who isable to obtain large number of network addresses is able to
ompromise the network.This is espe
ially a problem in modern network
onfigurations where addresses areobtained dynami
ally. For example, in a peer-to-peer network an adversary
an often

30 Chapter 4. STONe Designobtain as many nodeIDs as she wants and laun
h a so-
alled 'Sybil atta
k' [56℄.STONe also has to se
ure the overlay network and make it resilient for randomrouting. Random routing is designed to work in a homogeneous, fast, and reliableenvironment su
h as workstation
lusters, and in STONe random routing is used towork over a heterogeneous and unreliable Internet.4.2.1 Se
urely Assigning Network AddressesAssignment of network addresses is a
ommon se
urity problem, be
ause an adversary
an imitate other nodes to
ompromise the network. On the Internet, IP addressesare usually allo
ated by the network provider � often dynami
ally � and they
ostmoney. In
ontrast, in peer-to-peer networks, an adversary running a large numberof router instan
es
an also obtain a separate address or NodeID for every node in thenetwork and
ompromise the network. In the Sybil or E
lipse atta
k mali
ious nodes
ompromise the peer-to-peer network and imitate other nodes to inter
ept
ommu-ni
ation [78℄. Certifi
ates are always an option to ensure the validity of NodeIDs,but they require a
entral trusted
ertifi
ate authority, whi
h is not
ompliant withSTONe's s
alability requirements. In STONe it is important for routing to use multipleNodeID and have redundan
y, but on the other hand we want to bind the numberof NodeIDs to the number of available nodes in the system. For example, an adver-sary
ould degrade performan
e of the system by adding a slow ma
hine and assignthis ma
hine a vast amount of addresses. Using IP addresses as NodeIDs is also notdesirable be
ause they are not unique a
ross NATs and firewalls.Trusted Overlay Networks already have built-in se
ret keys KTCi
that are uniqueand
ertified on every platform. Initially, STONe sets up the Diffie-Hellman key share

DHt
STONei

from the built-in AES key KTCi
using a se
ure hash fun
tion hTC . The keyshare DHt

STONei
is used on this node to set up an en
rypted tunnel between i and itsneighbor j that uses key Kj

STONei
.STONe
omputes the first NodeID ID

(0)
STONei

= hTC(DHSTONei
) from the hash ofthis key share. Computing the NodeID from DHSTONei

has multiple advantages:(i) Any of i's neighbors
an verify that i really has the key share, otherwise it wouldnot be able to de
rypt the data on the se
ure
hannel. Therefore, a neighbor
anverify that node i indeed uses the
orre
t NodeID.(ii) STONe arranges nodes randomly and independent of their lo
ation on the underlyingInternet topology. This makes it hard for an adversary to insert nodes
lose to aspe
ifi
 node in order to eavesdrop on
ommuni
ations or DDoS the node.(iii) STONe limits the number of NodeIDs per Trusted Computing platform (i.e. for everyse
ret key) be
ause STONe generates the key share from the internal se
ret AES

4.2. Se
ure Communi
ation 31key KTCi
and some randomness. The only way for obtaining more NodeIDs isto buy more hardware or break existing hardware outside of the
urrent STONenetwork. A se
ond router on the same platform would only be able to a
quirethe same set of NodeIDs. Nevertheless, one router per platform does not restri
tthe number of so
ket appli
ations be
ause the STONe address uses 32 bits formultiplexing different appli
ations.4.2.2 Se
ure RoutingThe optimal routing geometry for STONewould be a fully
onne
ted network inwhi
hevery node
an rea
h every other node within a single overlay hop that is the shortestdistan
e between the two nodes on the Internet. This approa
h, however, is nots
alable be
ause a node joining the network needs to obtain identities and keys fromall other nodes in the network. This
auses a large time overhead, espe
ially be
ausekey
hanges are expensive. Furthermore, it uses too many ports on the ma
hine � thisis a
ommon problem when it is lo
ated behind a firewall. Therefore, STONe uses astru
tured routing overlay for s
alability and reliability. However, STONe as a routingoverlay differs from DHT-style routing in many ways:(i) STONe's unique node addresses are the only keys. No additional or repli
ated keysexist.(ii) STONe has tominimize laten
y in the network and not onlymaximize throughputas in
ontent distribution.(iii) STONe requires alternate routes for fault-toleran
e instead of repli
as.Be
ause STONe is based on Trusted Overlay Networks it has a Fail-Stop failuremodel,
ompared to the Byzantine model of other
omparable overlay networks. ASTONe node that fails or
rashes does not turnmali
ious unless the TrustedComputinghardware gets
ompromised. Adja
ent nodes will dete
t the
rash be
ause the kernelnetwork sta
k sends a FIN pa
ket in most
ases, unless the ma
hine suddenly getsdis
onne
ted from the network for some reason. To
ope with this situation and
he
kwhether a
onne
tion is still alive STONe has to send probes over the
onne
tionregularly if it doesn't expe
t any real data [30, 159℄.Therefore, STONe
an be self-organizing and self-maintaining and does not need toprote
t against traitors as
ompared to systems that have Byzantine failures. Sin
enodes are trusted in Trusted Overlay Networks and do not suffer from su
h Byzantinefailures, STONe uses oblivious routing (i.e. the next hop is determined by the destinationand the
urrent hop only) and also dynami
 routing (i.e. it sele
ts the next hop fromthe set of possible next hops based on lowest
ost). STONe uses a hyper
ube-similartopology be
ause hyper
ube routing is effi
ient and requires onlyO(log N) routing table

32 Chapter 4. STONe Designentries for an overlay path length of O(log N). STONe needs to take into
onsiderationrouting table size in addition to path length be
ause nodes have to
onne
t to theirneighbors when they join the network. Also, hyper
ubes are symmetri
 and balan
ed.This is important for providing anonymous
ommuni
ation that prote
ts againstTraffi
 Analysis. Traffi
 Analysis in an asymmetri
 topology
an be signifi
antly easierbe
ause traffi
 on bottlene
k links between two network partitions gives
lues aboutthe
ommuni
ation patterns.However, STONe does not use the Internet address spa
e but
reates its own forseveral reasons: First, nodes behind different NATs may have the same private IPaddresses. Furthermore, in a 32-bit IP address spa
e it is easy to laun
h DDoS orprobing atta
ks on nodes by random guessing, even if routing is anonymous [42℄.Therefore, STONe has to use an extended uniform address spa
e. Internally, STONeaddresses are 64 bit long with a 32 bit servi
e ID. But externally, they appear to STONeappli
ations as 96 bit opaque
apabilities.STONe uses stati
 routing tables that only depend on the geometry of the virtualnetwork topology. But they also allow dynami
 routing de
isions based on
ostmetri
swithin the stati
 stru
ture. Internet routing proto
ols su
h as OSPF [130℄ updatedynami
 routing tables periodi
ally to optimize routes and propagate link failures.But se
ure dynami
 routing is a hard problem be
ause (i) routing updates have tobe trusted for
orre
tness and not only for performan
e, (ii) an adversary
an simulatelink
ongestion to be able to re
eive more traffi
 for routing than the other nodes, and(iii) it is hard to maintain a balan
ed routing topology when routing tables get updateddynami
ally, whi
h is bad for anonymity. For example, BGP is prone to atta
ks, sin
eit does not fulfill any of the three issues mentioned [97℄.Stati
 routing tables, in
ontrast, have stronger se
urity be
ause routing tablesonly depend on NodeIDs and the routing geometry, but performan
e may not beoptimal. STONe balan
es the stati
 topology by determining NodeIDs independentlyfrom their geographi
 lo
ation. If an adversary wants to inje
t a node
lose to anotherspe
ifi
 node, she has to obtain lots of NodeIDs and therefore pur
hase lots of TrustedComputing hardware. Stati
 routing tables also give guarantees for path lengths orrouting table sizes. However, stati
 routing tables doe not optimize for performan
eand s
alability inherently and needs to be reorganized in
ase of link failures. STONe'sstati
 routing tables are derived from an approximation of a hyper
ube that we dis
ussnext.Hyper
ube Properties A typi
al hyper
ube is a graph G = (V,E) with verti
es V andedges E. It is the generalization of a three-dimensional
ube to d dimensions. Ev-ery vertex of su
h a hyper
ube has d edges, and in total a hyper
ube has N := 2dverti
es. Addresses on hyper
ube verti
es are bitstrings, and adja
ent verti
es always

4.2. Se
ure Communi
ation 33have Hamming distan
e 1. A hyper
ube is a re
ursive stru
ture. By
onne
ting two
(d− 1)-dimensional hyper
ubes we
an build a d-dimensional hyper
ube. In this new
d-dimensional hyper
ube the verti
es' addresses of the two (d−1)-dimensional hyper-
ubes are extended by 1-bit prefix 0 or 1, depending on the hyper
ube the vertex isfrom. The Hamming distan
e between two arbitrary nodes defines the distan
e in thenetwork.We
all a mat
hing of a graph a set of edges without
ommon verti
es. A mat
hingis perfe
t when the mat
hing
overs all verti
es. A hyper
ube has a perfe
t mat
hing,and this means that we
an split the hyper
ube in two halves.
Figure 4.3: Proje
tions of 2- to 7-dimensional Hyper
ubes from left to right (Sour
e: MathWorld)Figure 4.3 shows proje
tions ofmulti-dimensional hyper
ubes onto the two-dimensionalspa
e. One big advantage of a hyper
ube is its large bise
tion width of N

2 in a networkof N nodes
ompared to other topologies. This eliminates many
ongestion bottle-ne
ks and makes it highly s
alable. Furthermore, hyper
ubes have short path lengths.The diameter is only log N [120℄.Standard hyper
ube addresses
onsist of bit strings, and on every edge a different bitis flipped su
h that two adja
ent node addresses have Hamming distan
e 1. Routingis then similar to
lass-less routing in CIDR [85℄: The node
ompares the bit stringof the destination address with the one of the
urrent address from left to right andforwards the message to the node with the first differen
e.When we pi
k two random nodes from anywhere in the hyper
ube and
om-pute the Hamming distan
e between the random nodes, this distan
e has a Binomialdistribution that depends on the number of nodes in the network: A hyper
ube'saddress length is d = log N bits, and every bit is 0 or 1 with probability 1
2 . This is aBernoulli experiment with log N trials and probability p = 1

2 . A

ordingly, we derivethe probability Pdist(N, k) that the path length between sender and the re
eiver overa hyper
ube of N nodes is k as follows:
Pdist(N, k) =

1

N

(
log N

k

)

.The expe
ted distan
e is µdist = log N
2 , and the maximum distan
e is Mdist(n) =

log N .STONe uses hyper
ube-based routing, sin
e hyper
ube routing is highly s
alable,

34 Chapter 4. STONe Design
00

01

10

11

000

001

010

011

100

101

110

111

Figure 4.4: Ring versus Hyper
ube Routing for 2 dimensions (left) and 3 dimensions (right).symmetri
 and has short path lengths. The main differen
e, however, is that notne
essarily all nodes of the hyper
ube may exist in STONe. The hamming distan
ebetween two neighbors in STONe
ould therefore be greater than 1.In a hyper
ube network of N nodes a single node has about log N routing tableentries similar to a CAN with dimension d = log N [147℄.Figure 4.4 shows the differen
e between a ring and a hyper
ube. In
ontent-distribution networks ring or tree topologies havemore suitable properties than hyper-
ubes when frequent failures o

ur in the network [92℄, but they have a low bise
tionwidth and therefore worse behavior under
ongestion. Routing in
ontent-deliverynetworks solves
ongestion by repli
ation, but routing ar
hite
tures like STONe haveto be optimized for alternate routes in
ase of failures. And routing messages in a ring
an be
ome ineffi
ient for message forwarding on an alternative route even when thepath length is still O(log N) [180℄. For example, when a message for 1 1...1
︸︷︷︸

N−1

happens tobe at 10 1...1
︸︷︷︸

N−2

, and this last link is broken, it goes to 11 0...0
︸︷︷︸

N−2

, and then it needs to fix N-2bits again with an overhead of O(log N).Hyper
ube-based Routing in STONe Be
ause STONe's NodeIDs are randomly distributeda
ross a fixed 64 bit address spa
e, STONe
annot use standard hyper
ube routing withbit fixing from left to right. Even with
onse
utive NodeIDs, hyper
ube routing is notpossible, sin
e nodes enter and leave the network
onstantly, and there are alwayssome address gaps in the hyper
ube.Instead, STONe uses prefix-based routing on the partial hyper
ube. In every slot iof the routing table STONe stores the node that mat
hes i bits of the address' prefix.When there are multiple addresses that suit this requirement STONe pi
ks the onewith the
losest Hamming distan
e, as this optimizes the route.During routing on every hop the prefix length in
reases, and eventually, the frag-ment rea
hes its destination. When the prefix length in
reases, the Hamming distan
emay de
rease or in
rease depending on the remaining bits after the prefix, but as theprefix length in
reases the Hamming distan
e also de
reases.

4.2. Se
ure Communi
ation 35When the best prefix mat
h returns a node that does not make any progress, eitherthe hyper
ube is broken or the destination does not exist. What STONe should do inthis
ase depends on the routing semanti
s: If the destination address exists for sureit tries to forward the pa
ket to the next of the k destination addresses, thus pi
kingan alternative path. If it is an insert node operation, and the destination address doesnot exist in STONe, it handles the fragment at this node.
110

100

000

001

011111

010

01011101

10001001

00110111

10010110

01101101

11110101

11111001

00010100 101

1

0

2

0

1

1

0

0

3

1

2

4

Figure 4.5: Hyper
ube Routing in STONe with 8-bit identifiers (b=1 and k=1): The top address isa standard 3-bit hyper
ube address, whereas the bottom address of the label is an 8-bit STONeaddress. The number on the edges is the
ommon prefix length of the two adja
ent nodes.Figure 4.5 shows hyper
ube routing in STONe
ompared to standard hyper
uberouting. In this example every node has a random 8-bit long NodeID. In normaloblivious hyper
ube routing the
urrent node XORs the destination address with itsown address and forwards the message to the node that fixes the leftmost bit that isnot zero. In STONe not every bit in the address has to be fixed, so we route by prefixlength, i.e. the bit position in the routing table where the leftmost bit is differentfrom the destination address.Prefix-based hyper
ube routing is optimal. Given N n-bit addresses the expe
tedpath length is always less than log N
2 , whi
h is the same as an N -dimensional hyper-
ube. Using prefix-based routing tables we note that the Hamming distan
e to thedestination on the first i bits is 0 after i hops, but the Hamming distan
e of the wholebit string may in
rease temporarily along the path. However, the neighbors of a nodeare not always the
losest in their Hamming distan
e. For example if STONe hasnodes 00000, 10100, 11010, 11011, and 11111, and it routes from 00000 to 11111,it traverses through 10100, 11011 to 11111. However, 11010 has a smaller Hamming

36 Chapter 4. STONe Designdistan
e to 11111 than to 10100 and is not in 11111's routing table, whi
h is alreadyused by 11010 when l = 1.Optimizing Resilien
e The advantage of a stati
 routing topology like STONe is that itis resistant tomali
ious or bogus routing updates. However, stati
 hyper
ubes have thedisadvantage that a single link failure already breaks one
omplete path. When STONedete
ts a link failure it usually updates its routing tables and sends a routing updateto its neighbors. However, when routing updates take pla
e too often it degradesSTONe's performan
e and s
alability signifi
antly. And often
ongestion or failuresare only temporarily and link quality may improve again after a short time. This alsoprote
ts against temporary DDoS atta
ks that
an be fixed after a short time.Additionally, a single link failure breaks O(log N) paths in the hyper
ube, andwhen a single link fails along the path, the whole path is broken. Therefore, given ourrouting strategy in a simple hyper
ube with a fra
tion of pIP faulty Internet paths, theprobability that a path of length Lpath fails is
Pfail(N, pIP) = 1 −

((1−pIP)N
Lpath

)

(
N

Lpath

) .

0%

10%

20%

30%

40%

50%

60%

0 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

P
a
th

 F
a
il
u
re

 P
ro

b
a
b

il
it

y

5%

4%

3%

2%

1%

Figure 4.6: Probability Pfail that a single message transmission along a hyper
ube path fails underdifferent Internet link failure rates 1% − 5% when l = 1 and Lpath = 2 logN .Figure 4.6 shows Pfail, when the individual link failure pIP varies from 1% to 5%.STONe, therefore,maintains l alternative links per entry in a hyper
ube node to handleshort-term failures. When the link quality is bad STONe pi
ks a different link. STONemaintains a reliable
onne
tion between the nodes, and ea
h node knows almostimmediately when its peer goes down, but a STONe node
an experien
e internal

4.2. Se
ure Communi
ation 37
ongestion and drop pa
kets. When l > 1 Pfail is almost P ′
fail ex
ept that pIP getsrepla
ed by

p′IP = (1 − pIP)

l−1∑

j=0

pj
IP .

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

0 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

S
T

O
N

e
 P

a
th

 F
a
il
u

re
 P

ro
b

a
b

ili
ty

5%

4%

3%

2%

1%

Figure 4.7: Probability Pfail that a single message transmission along a hyper
ube path fails underdifferent Internet link failure rates 1% − 5% when l = 2 and Lpath = 2 logN .Figure 4.7 shows the path failure probability P ′
fail for different Internet path failurerates. We
an assume that path failure rates between 0.9% and 1.9% are realisti
 [139℄,and under STONe's redundant hyper
ube with l = 2 the network is able to maintainthe same Internet path failure rate for STONe paths.Optimizing Bandwidth The hyper
ube may not only have bottlene
ks or
ongestion,but be
ause of the stati
 hyper
ube on a heterogeneous network some nodes maybe underutilized and some overutilized. To make the overlay more homogeneous,STONe uses up to k virtual addresses per node to separate low-bandwidth from high-bandwidth nodes. Nodes with higher bandwidth re
eive more traffi
 on the averagethan nodes with low bandwidth. Furthermore, nodes have alternative paths to pi
kfrom when there is a failure or bad link quality. When all nodes use k = N

log N
STONebehaves like an unstru
tured network. STONe
omputes the k−1 additional addressesfrom the private key in the Trusted Overlay Networks of the node by
haining the hashfun
tion:

ID
(k)
STONei

= hk−1
STONe(DHSTONei

)For optimal bandwidth distribution, every node gets ki virtual addresses. If every

38 Chapter 4. STONe Designnode i has ki virtual addresses then the probability that node i is on the path is
Ppath(i) = 1 −

(
K−ki

log N

)

(
K

log N

) = 1 −
(

N−1
log N

)

(
N+R
log N

)where K =
∑N

i=1 ki.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

P
a
th

 P
ro

b
a
b

il
it

y

64

32

16

8

4

1

Figure 4.8: Probability Ppath(i) that a spe
ifi
 node i is part of a random path in random routing onSTONe for different ki = Rk̄: The larger R gets
ompared to average k̄ the larger the probabilityis, but it de
reases exponentially depending on the number of nodes in the network. In thisfigure k̄ = 1 and R = 1, 4, 8, 16, 32, 64 depending on the graph.Figure 4.8 shows the probability distribution for different ratios R = ki

k̄
with k̄ = K

Nand K = 2N , and in this
ase k̄ = 1. When we in
rease the parameter R, a highbandwidth node has a better
han
e to be on an arbitrary path. The probabilityde
reases exponentially with the number of nodes in the overlay network.Optimizing Path Length STONe optimizes the hyper
ube further: To redu
e the num-ber of hops along a path STONe is not based on a Boolean hyper
ube. Instead it pi
ks adifferent base b for the logarithm whi
h shortens the path length exponentially. Thisis similar to Pastry [154℄ where b determines the number of
olumns in the routingtable. Pastry uses a tree geometry that is not suitable for STONe, sin
e STONe is arouting overlay and does not have any leaf nodes. The downside is that Pastry alsoin
reases the routing table size linearly. Only for b = N STONe's overlay network is afully
onne
ted network.In the optimized hyper
ube the Hamming distan
e is then defined as the Manhat-tan distan
e, ie the sum of the absolute differen
es of the single digits. Otherwise thehyper
ube insert algorithm is the same, ex
ept that the routing table updates have to

4.2. Se
ure Communi
ation 39be sent to all nodes with the same minmal Manhattan/Hamming distan
e.Considering the optimizations for resilien
e, bandwidth, and path length in thehyper
ube, STONe's routing table size is
S(N) = k̄l(b − 1)

(

logb(k̄N) − l − 1

2

)

.The
orre
tion fa
tor (1− l−1
2) is required, be
ause there are not enough prefix mat
hesfor the last slots. The (log2 N)-th slot has only one mat
h, whereas the (log2 N − 1)-thslot has two mat
hes and so on. Therefore, we need to subtra
t∑l

i=0 i = l(l−1)
2 from l.The expe
ted path length for two random addresses in a normal Boolean hyper
ubeis log2 N

2 , but in STONe it is only
L(N) =

1

2
logb




N

k̄l
(

1 − l−1
2 logb(k̄N)

)



 ..Cost-based Routing In addition to the prefix length and the Hamming distan
e,STONe uses a
ost metri
 to allow dynami
 routing de
isions to take pla
e whenlink failures or
ongestion o

urs. This
ost metri
 depends on the link quality. Whena STONe pa
ket x arrives at a node, the router
omputes the longest prefix mat
hwith x, and looks up the slot in the routing table that has this prefix mat
h. It thensear
hes for the entry with the best
ost metri
 out of the l entries in ea
h slot andforwards the pa
ket to this hop.The
ost metri
 is c(x)
d(x,y) . c(y) is the link quality to next hop y, and d(x, y) is theHamming distan
e between the destination address y of the pa
ket and the next hop

x. Be
ause the longest
ommon prefix is the main routing
riterion, STONe makessure that pa
kets arrive in log N steps and do not
ir
ulate in the network. Algorithm 2shows the routing algorithm. Cost is the
ost fun
tion, whi
h is the link qualitymetri
divided by the Hamming distan
e of the routing table entry to the destination. Thefun
tion Prefix_length returns the
ommon prefix length of the two addresses. First,the algorithm pi
ks the longest prefix mat
h out of the k virtual addresses. Then itlooks up the best mat
h with the destination address given the best mat
h out of the
k addresses. If the next hop does not in
rease the prefix mat
h, the algorithm triesthe virtual address with the next best prefix mat
h and so on.4.2.3 Se
ure Maintenan
eMaintenan
e in STONe has three fun
tions: Handshake, Neighbor Dis
overy, andRouting Updates. When a new node joins it has to follow STONe's handshake proto
ol

40 Chapter 4. STONe Design
Algorithm 1 Send Pa
ketsend(p, dest)p.dest= destroute(p, dest, last)
Algorithm 2 Routing Table Lookuproute(p, dest, last)max_slot= 0for i = 0 to k doa[i℄= prefix_length(lo
al[i℄, last)end forsort(a)for j = 0 to k domax_slot= a[j℄min_
ost= MAX_COSTfor i = 0 to k doslot = prefix_length(lo
al[i℄, dest)if slot > max_slot thenmax_slot= slotdest_table= ifor j = 0 to l do
ost =
ost(slot, j)if
ost < min_
ost thenmin_
ost=
ostdest_idx= jend ifend forexitend ifend forend forforward(p, lo
al[dest_table℄[dest_idx℄)

4.2. Se
ure Communi
ation 41until it finds the right position in the overlay. Nodes have to
onstantly dis
overneighbors in the hyper
ube and also update routing information based on their TCPstatus.Handshake Initially, when a node wants to join STONe it pi
ks a lo
al node, finishesremote attestation, and sets up the shared key. After that,
ommuni
ation with anynode is en
rypted to avoid dete
tion, ex
ept for transport-proto
ol handshakes. Theassumption, of
ourse, is that the lo
al node has not been
ompromised, but in thisse
tion we will mention some strategies for dete
ting this.When a node
onne
ts to the STONe network it first establishes a transport-layer
onne
tion with a STONe bootstrap node, authenti
ates itself to STONe by performingremote attestation, and finally sets up a shared key with adja
ent STONe nodes.Figure 4.9 depi
ts, in detail, the handshake when Node 1
onne
ts to Node 2.
Node 1 Node 2

T-SYN(DH-key, ts1)

T-SYNACK(DH-key, ts1, ts2, TNS address)

T-ACK(ts2, ts3)

Remote Attestation

STONe Fragments

Figure 4.9: STONe handshake proto
ol: Similar to TCP, STONe's handshake proto
ol is a three-way handshake proto
ol. The node that joins the network, Node 1, first sends a T-SYN pa
ket.The bootstrap node, Node 2, then replies with a T-SYNACK, and finally, Node 1,
onfirms thehandshake with an T-ACK pa
ket.First, two nodes run the proto
ol for remote attestation in Trusted Computing tomake sure they
an trust that both are running the same STONe software. If remote at-testation fails, Node 2 interrupts the handshake pro
ess and filters any further requestsfrom Node 1 for some time interval to prevent DDoS atta
ks. Otherwise, Node 1 initi-ates the
onne
tion by sending a T-SYN pa
ket to Node 2. The T-SYN pa
ket
ontainsNode 1's Diffie-Hellman key share signed with its signature key, the
ertifi
ate for Node1's publi
 verifi
ation key, and a timestamp ts1 when the pa
ket has been sent. Node2 returns a T-SYNACK pa
ket that
ontains its Diffie-Hellman key share signed withits signature key, the
ertifi
ate for Node 2's publi
 verifi
ation key, a timestamp ts2,

42 Chapter 4. STONe Designand Node 1's timestamp ts1. Node 2 then
omputes the k STONe addresses ID
(j)
STONe1of Node 1 using the built-in hash fun
tion hTC and shared keys DHt

STONe1
, su
h that

ID
(j)
STONe1

= hTC(DHt
STONe1

) for j = 1..k. When the T-SYNACK pa
ket arrives at Node1 it returns a T-ACK pa
ket with timestamp ts3 of the T-SYNACK pa
ket. Both nodes
an
ompute the laten
y of the link using the three timestamps. This is the
ost metri
in the routing table. The
ryptographi
 primitives in the handshake proto
ol are thefollowing: Handshake(i, s, SSTONe)j ↔ i: • TCP Handshake with ji: • Diffie-Hellman key share for node i:
DHSTONei

= exi , xi = hSTONe(KTCi
| SSTONe)i → j: • (DHSTONei

, signSKTCi
(DHSTONei

))j → i: • (DHSTONej
, signSKTCj

(DHSTONej
), ki)j: • Verify signSKTCj

(DHSTONej
) using PKTCj

• ID
(l)
STONei

= hl+1
STONe(DHSTONei

), l = 0...ki

• Ks
STONei

= (DHSTONej
)xii: • IDl

STONej
= hl+1

STONe(DHSTONej
), l = 0...kj

• Insert IDl
STONej

into routing table, l = 0...kjThe authenti
ationme
hanism ensures that both nodes have re
eived informationabout the authenti
ity of the STONe router software and that both
an
ompute theshared Diffie-Hellman key for ex
hanging subsequent STONe pa
kets.Neighbor Dis
overy After a joining STONe node has
ompleted a handshake with thebootstrap node it has to find its neighbors in the hyper
ube. Node 1 needs to findits neighbors in the stru
tured overlay. Figure 4.10 shows the insert pro
ess: Node 2forwards a T-INSERT-KEY pa
ket to the address that is
losest to Node 1's using thepa
ket forwarding algorithm des
ribed in the next se
tion. When the pa
ket arrivesat the destination, Node 3, it
onne
ts to Node 1, and after the STONe handshake it
onne
ts to Node 1 via T-SYN and sends a T-START pa
ket to Node 1. Node 1 and 3then update their routing tables, and Node 1 learns about its neighbors from Node 3.When the T-INSERT-KEY or T-START pa
ket gets lost the node times out after a whileand restarts the joining pro
ess. When Node 1 is behind a NAT but Node 3 is not,it forwards the T-START pa
ket through the network ba
k to Node 2 and lets Node1
onne
t to Node 3. If both nodes are behind NATs, Node 1 first tries to use Node2 as an intermediate proxy to set up the
onne
tion. If that fails it pi
ks a randomnode in STONe until it su

essfully
onne
ts to Node 3. Node 2 repeats the insertionpro
edure for all k virtual hyper
ube addresses, and therefore it takes O(k log N) stepsin the hyper
ube.

4.2. Se
ure Communi
ation 43
T-INSERT-KEY

T-INSERT-KEY

T-SYN
T-START

1

2 2

3

1

1

2

3

1

2

3

Figure 4.10: Joining and Neighbor Dis
overy: When a new node (Node 1) joins the networkit first
onne
ts to a bootstrap node (Node 2) (upper left). The bootstrap node sends a T-INSERT-KEY message to the node that has the shortest Hamming distan
e to Node 1 (Node3) (upper right). Node 3 then sets up a
onne
tion and
onne
ts to Node 1 via T-SYN (lowerleft). Finally, Node 1 re
eives a T-START pa
ket and the routing table information about itsnew neighbors and
an now
ommuni
ate in STONe (lower right).Routing Updates When STONe dete
ts a broken link or a peer node, the node updatesits routing table a

ordingly and sends a routing table update to its neighbors. Thenode's neighbors then update their own routing tables and send their updates to theirneighbors. This pro
ess
onverges eventually and stops when no more updates o

ur.Additionally, nodes send their
urrent routing tables to their neighbors in periodi
intervals. We now analyze how many nodes' routing tables will be updated.When the N addresses in STONe are randomly distributed, a spe
ifi
 node is ex-pe
ted to be in S(N) routing tables throughout STONe. When a node leaves or joinsSTONe it takes at most L(N) update messages for the information to arrive at all nodeswith a total number of S(N) · L(N) = O(log2 N) messages in the worst
ase. However,the expe
ted number of single updates is mu
h smaller. The probability that a joiningnode has prefix length i with an arbitrary node in the network is
PPF (i) =

{
1

Nmax
, i = log Nmax

1
2i+1 otherwise.

44 Chapter 4. STONe DesignThe number of nodes with prefix length i in the network is therefore Nmax

2i+1 , andthe expe
ted value for the number of o

upied prefix slots in the routing table is
EPF (N) = O(log N), sin
e EPF (N) =

∑Nmax

i=0

(
1 − (1 − 1

2i+1)N
).The probability that a joining node has Hamming distan
e i is

PHD(i) =
1

Nmax

(
log Nmax

i

)

.The expe
ted Hamming distan
e for a joining node is log Nmax

2 , but be
ause of thebinomial distribution it takes about (Nmax

2 − k)(
Nmax

2
−k) joining operations to find anode with Hamming distan
e k when k < Nmax

2 . Therefore, it is more likely that theSTONe routing table finds a new prefix instead of a shorter Hamming distan
e. Giventhese probabilities, the number of update messages is O(log N) for the the originalnode, O(1
2N log2 N) for its neighbors, O(1

22N log3 N) for their neighbors and so on. Weget for the total number M of update messages
M =

N∑

i=0

1

2iN
logi+1 N = O(log N).STONe
lusters routing updates over time to redu
e the number of messages inthe network and avoid instabilities when the system
onverges. Whenever an evento

urs, STONe starts a timer that expires after a short fixed time interval. All events ofthe node during that interval will be
olle
ted and broad
ast to the neighbors. This isespe
ially useful when several nodes join STONe at the same time and the system isunstable.Figure 4.11 shows STONe's routing update messages and key ex
hanges
omparedto mix networks when a new node joins. STONe nodes require only O(log N) rout-ing updates and key ex
hanges, whereas mix networks always require O(N) whi
hobstru
ts s
alability of mix networks.4.3 Random RoutingIn addition to se
ure and s
alable routing, STONe uses random routing to provideanonymity.Algorithm 3 Send Fragment in Random Routingsend(p, dest)p.im= NULLp.dest= NULLrandom_route(p, dest, last)

4.3. Random Routing 45

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256 512 1024

Number of Nodes

N
u
m

b
e
r
 o

f
 E

v
e
n

t
s

MIX

Key Max

Key Avg

Msg Max

Msg Avg

Figure 4.11: STONe under
hurn: The number of key ex
hanges and routing update messagesin STONe in
reases logarithmi
ally and is
learly smaller than for mix networks.Figure 4.12 shows the s
enario in random routing: Sender A forwards messagesto re
eiver B and wants to hide the route. A pi
ks an intermediate relay node I atrandom and forwards the pa
ket to this node. The intermediate node I then forwardsthe pa
ket to the re
eiver B. When B replies to themessage from A she pi
ks a differentintermediate relay node J. Neither I nor J
an
arry out a Prede
essor Atta
k to findS or R, respe
tively, be
ause the probability that they are adja
ent to A or B is small.The modified routing algorithm in random routing takes the following steps:(i) Che
k whether the message is valid or not. If not, just drop it.(ii) Che
k whether this node is the message's intermediate hop. If yes,
opy theAlgorithm 4 Random Routingrandom_route(p, dest, last)if p.im = NULL thenp.im= random()p.dest= destroute(p, p.im, last)elsep.im = NULLroute(p, p.dest, last)end if

46 Chapter 4. STONe Design
B

A A

B

A

B

A

B

(i) A wants to communicate with B (ii) A picks random node I to forward the message to

I

(iii) I forwards message to B

I

(iv) B returns the reply to A via random node J

J

Figure 4.12: Random Routing in a fully
onne
ted network: Node A
ommuni
ates with nodeB through a random intermediate hop I.final field from the message header into the destination field and forward themessage towards the destination.(iii) Che
k whether this node is the message's destination. If yes, deliver it to theappli
ation.(iv) Forward the message towards the destination.Random routing addresses both
ongestion, as well as traffi
 analysis. Congestionis less likely to o

ur, be
ause potential bandwidth bottlene
ks between a parti
ularsender and re
eiver get automati
ally s
attered a
ross STONe. Be
ause link utiliza-tion be
omes uniform,
ertain traffi
 analysis atta
ks are more diffi
ult. In addition,random routing reorders messages without additional buffering as in mixes, be
auseevery message takes a different random route through the network.4.4 Syn
hronization in STONeThe remaining problem in Traffi
 Analysis with asyn
hronous random routing isinterse
tion atta
ks. Any idle node in STONe that is not a sender or re
eiver forwardssignifi
antly fewer fragments than a sender or re
eiver does. Syn
hronization is thetypi
al method for addressing this problem.

4.4. Syn
hronization in STONe 47The main goal of syn
hronization in STONe is that links, and therefore nodes,should be utilized equally to make interse
tion atta
ks hard. The average rate inSTONe, λ̄, is the average per-link rate in the overlay, whereas links are simple point-to-point Internet
onne
tions. A high-bandwidth node has more virtual addresses andtherefore more links. All links in STONe are utilized equally when every node sendsat the rate λ̄.In general, syn
hronization
an be global or lo
al. In lo
al syn
hronization traf-fi
 is syn
hronized only between two nodes. However, lo
al syn
hronization, evenamong a limited set of nodes, would provide only lo
al anonymity, even if it spreadsglobally [177℄. This still leaves the door open for interse
tion atta
ks. This is similarto the end-to-end argument in systems design � lo
al en
ryption does not ne
essarilyprovide end-to-end se
urity [156℄. In addition, these lo
al s
hemes, even with extratraffi
, often do not optimize for the bandwidth-delay produ
t, sin
e delay and extratraffi
 only depend on the lo
al view of the mix. When the bandwidth-delay produ
tgrows, more data is in the pipeline between the sender and the re
eiver, and thisrequires larger retransmission buffers and more frequent transmissions to get optimalperforman
e out of transport-layer proto
ols su
h as TCP.A system low-level syn
hronizationmethodwould be hard to implement in STONefor several reasons: First, STONe is based on wide-area
onne
tions and TCP, andTCP's
ongestion
ontrol me
hanisms may not always allow timely message delivery.Se
ond, sin
e STONe runs on the Internet with heterogeneous links and variableba
kground traffi
, available link
apa
ities vary, and it would be hard to allo
atefixed link
apa
ities for syn
hronization. Random routing in
ontrast works on top ofthe existing Internet routing ar
hite
ture and is able to balan
e traffi
 relative to theindividual link
apa
ities. Further, if STONe syn
hronizes traffi
 by padding all linkswith random
over traffi
 it wastes a lot of Internet bandwidth. In STONe's pra
ti
als
enario, many people use it over DSL lines, and usually the link between the endsystem and the router is the bottlene
k. STONe may have to share this link with otheruntrusted Internet appli
ations. Fair sharing of network links between trusted anduntrusted appli
ations is required. Also, users may have to pay by traffi
 volume, andtherefore they want to minimize traffi
 as well.TCP already provides two end-to-end syn
hronization me
hanisms:
ongestion
ontrol and flow
ontrol. Whenever a node sends a full window of data, the windowin
reases in
rementally. The
urrent TCP window indi
ates the link
apa
ity, and
ongestion
ontrol regulates the sender rate. Now, every node i starts to send dataand tries to in
rease its send window size slowly to 1
λi
.The syn
hronization algorithm presented in this se
tion has the following idea:If for STONe node i's send rate λi, λi < λ̄ the STONe node sends extra
over traffi
to its immediate neighbors to rea
h λ̄. The neighbors immediately drop any
over

48 Chapter 4. STONe Designtraffi
 pa
kets. If a node
annot afford rate λ̄ it automati
ally starts dropping pa
ketsbe
ause of TCP
ongestion
ontrol. This in turn redu
es λ̄. When other nodes see thedrop in λ̄ they stop in
reasing their send rates and restart later. If node i in
reases itssend rate λi it is only allowed to in
rease it by an upper limit ∆λmax.
Application

Random Routing

Overlay

λi

µ’i

µi

λ+∆λmax λ+∆λmax

λ’iFigure 4.13: Traffi
 Rates on a STONe node: The a
tual network rates λi and µi in the syn
hro-nized overlay are larger than the average traffi
 rate λ̄ in the STONe network. The individualappli
ation rates λi and µi
an be larger or smaller than the average rate λ̄.Figure 4.13 shows the situation of different traffi
 streams in STONe without syn-
hronization: λ′
i and µ′

i are the in
oming and outgoing traffi
 rates in STONe's overlaynetwork. λ̄ is the average traffi
 rate a
ross the network at time step t (when t = 0 wejust leave it out):
λ̄t =

1

N

N∑

i=0

λt
i

λi and µi are the lo
al send and re
eive rates of appli
ations on node i. For
ondu
t-ing the interse
tion atta
k, an adversary observes λ′
i and µ′

i a
ross the network and
orrelates these values for traffi
 analysis. Both values in
lude ∆λmax ≥ λ̄, whi
h isthe amount for possible extra
over traffi
 plus the traffi
 the STONe node forwardsfor random routing as an intermediate hop. Syn
hronization has to make sure thatboth values λ′
i and µ′

i are un
orrelated with the
urrent traffi
 stream. λ′
i and µ′

i arealways greater than λ̄, whereas λi and µi are always less than λ̄.Before getting into the details of the syn
hronization algorithm, there are someimportant observations to make: First, in random routing, the sender forwards everymessage to a global randomnode, and therefore every node
anmeasure λ̄, the averagetraffi
 rate. Se
ond, every STONe node is able to estimate the number of nodes N inSTONe from the number of entries in its routing tables.The algorithm is based on a
redit/debit s
heme to de
ide whether to send mes-sages from the appli
ation,
over traffi
 messages or hold ba
k in sending anything.This de
ision takes pla
e whenever the appli
ation's send buffer is not empty, or

4.4. Syn
hronization in STONe 49the node has to forward a fragment in random routing (not proxy-based hop-to-hopforwarding).Upon joining the network every node gets a minimum number of
redit points(MIN_CREDIT) for ea
h of whi
h it is allowed to send one fragment from its sendbuffer. The node
an a
quire an additional
redit point after it has forwarded Nfragments (N is the number of nodes in STONe) in random routing.When sending data, the node is always allowed to send a single fragment from thesend buffer for every single
redit point. On
e a node runs out of
redit it has to waituntil it a
quires new
redit, ie. forwards more fragments, until it
an send the nextfragment from the send buffer.When the send buffer is empty and there are already MIN_CREDIT
redit pointsavailable, no more
redit is added when the node forwards fragments. Instead, thenodes sends an extra fragment as
over traffi
 to a random neighbor whenever it hasforwarded N fragments.Algorithm 5 Syn
hronizing Traffi
 in a Domain of N nodes with time window T1. Initialize
redit= MIN_CREDITfragment_
ount= 02. Forward Fragment in Random Routingfragment_
ount++if fragment_
ount == N thenfragment_
ount= 0
redit+ +Send Fragmentend if3. Send Fragmentif (send_buffer > 0 &&
redit > 0) then
redit�send_fragment()elseif (
redit > MIN_CREDIT) then
redit- -send_
over_traffi
()end ifend ifAlgorithm 5 shows the final syn
hronization algorithm. When a node re
eives afragment as an intermediate hop in random routing it
ounts the number of fragmentsto obtain the average rate in STONe. λ̄ is the number of fragments forwarded over a

50 Chapter 4. STONe Designtime interval T. ∆λmax is initially MIN_CREDIT over a time interval T and
onvergestowards the number of fragments forwarded divided by the number of nodes N inSTONe over some time interval T.In random routing λ̄ is the
ontrol parameter for global traffi
 syn
hronization.Given that random routing gets feedba
k on the
urrent average traffi
 rate and istherefore self-timing, we
an minimize additional
over traffi
 to make traffi
 patternsuniform a
ross the network: Whenever a STONe node has re
eived N fragments toforward in random routing it also sends one of its own fragments. Node i is allowedto in
rease λi beyond λ̄ to λ̄ + ∆λmax whi
h will slowly in
rease λ̄ and therefore everyother node's
over traffi
.STONe has to
onfigure the global parameter ∆λmax, whi
h is a tradeoff in thebandwidth-delay produ
t of the whole system. An individual node with averagelaten
y di between its neighbors has a bandwidth-delay produ
t Π(i) of
Π(i) = λ′

i

(

di + max

(

0,
1

λ̄
− 1

λi

))

=
(
λ̄ + ∆λmax

)
(

di + max

(

0,
1

λ̄
− 1

λi

))When node i is idle (i.e. λi = 0) or busy (i.e. λi = λ̄) we get
Πidle(i) = Πbusy(i) = di(λ̄ + ∆λmax)The goal in STONe is to avoid large os
illations of λ̄, sin
e this supports interse
tionatta
ks. Therefore, to ensure fairness all λi should be distributed uniformly. It takes

N messages on average for all STONe nodes to noti
e that λ̄ has in
reased. Andideally, the bandwidth-delay produ
t Π(i) is as small as possible. This exa
t out
omehappens when λi − λ̄ is minimal. This is exa
tly the
ase when ∆λmax = λ̄
N
, whi
his the expe
ted standard deviation of λ when λi are uniformly distributed. After ksequential steps (ie. forwarded fragments) with λ̄t = (N+1)λ̄t−1

N
we get

λ̄k =

(

1 +
1

N

)k

λ̄This has a shorter response time to
hanges, and
auses
over traffi
 to be linear inthe number of nodes N . If a node has to send a burst of data at rate λmax it takes
k =

log(λmax

λ̄
)

log
(
1 + 1

N

)steps until it rea
hes λmax.The total required bandwidth per node is (2 + 1
N

)λ̄. In addition to the averagesend rate for every node λ̄ the maximum in
rease is 1
N

λ̄. When a bottlene
k nodehas bandwidth b then λ̄ ≤ N
2N+1b ≈ 1

2b for large N . The system is se
ure againstinterse
tion atta
ks, sin
e all nodes adapt their send rate to N+1
N

λ̄ syn
hronously,

4.5. Anonymous Communi
ation 51even though
ommuni
ation is still asyn
hronous.Session S
heduling An extension for futurework is to syn
hronize sessions on appli
ation-level. This does not work for highly intera
tive appli
ations su
h as web browsing andinstant messaging, but it does work for file transfers. A distributed s
heduler
a
hesrequests for network tasks until it has
olle
ted a large enough number that overlaps.It then starts these tasks at the same time.4.5 Anonymous Communi
ationAn anonymous appli
ation layer poses many
hallenges. First of all, an appli
ationthat
ommuni
ates through this appli
ation layer
an potentially be untrusted outsidethe TCB and should not be able to link an appli
ation endpoint to a real IP address.It is also
ru
ial to have an anonymous name servi
e running in the network, sin
ea query to an external name server su
h as DNS would be a weak spot in the systemthat is easy to atta
k.STONe integrates end-to-end anonymity with anonymous self-
ertifying
reden-tials by providing two servi
es to appli
ations: STONe So
kets and Trusted NameServi
e (TNS). Using these two building blo
ks it is straightforward to turn an existingso
ket appli
ation into an appli
ation that runs on STONe and is robust against traffi
analysis.4.5.1 STONe Interfa
eThe most important part of Anonymous Communi
ation is the interfa
e between thenetwork and the appli
ation. STONe already provides a se
ure infrastru
ture thatis robust against traffi
 analysis. Yet, an adversary who re
eives STONe fragmentslegitimately at the
ommuni
ation endpoint would still be able to see the STONeaddresses in the
lear. Hiding the STONe address not only prote
ts against addressfiltering but also gives the adversary valuable information about STONe's topology.The adversary is then able to obtain se
rets about the randomized hyper
ube stru
ture� a main support for prote
tion against traffi
 analysis.STONe Capabilities hide the original STONe address from the appli
ation. These
apabilities are opaque random strings and have the sole purpose of providing a handlefor the appli
ation to
ommuni
ate with the peer. Only the STONe router is able tode
rypt these
apabilities to obtain the original STONe address. A 128-bit
apabilityfor destination d
ontains a 64-bit STONe address Td and a 32-bit STONe servi
e ID S.STONe obtains the
apability by en
rypting the Td and S under the STONe session keyfor session j on node i SKTCi
, whi
h is derived from the se
ret Trusted Computingkey SKTCi

and a 32-bit non
e nt:

52 Chapter 4. STONe Design
CS

Td
= Fi(Td | S) = EKTCi

(Td | S | nt)STONe uses per-session keys to
onvert
apabilities into STONe addresses and vi
eversa. Otherwise the adversary is able to
orrelate
apabilities among different appli-
ations or different sessions of the same appli
ation to determine whi
h appli
ations
ommuni
ate with the same destination. The non
e nt belongs to the so
ket state.Every time the appli
ation re
onne
ts to the same node and opens a new session,the STONe router in
reases t by 1 and generates a new nt by getting a new randomnumber rj.STONe provides two servi
es to appli
ations that are built around these
apabil-ities: STONe So
kets and the Trusted Name Servi
e (TNS). With these two buildingblo
ks it is straightforward to turn an existing so
ket appli
ation into a STONe So
ketappli
ation that runs on STONe and is prote
ted from atta
ks on anonymity. Addi-tionally, STONe provides TSOCKETS � a TCP proxy that translates STONe
onne
tionsinto TCP
onne
tions. Any TCP so
ket appli
ation
an use TSOCKETS to
onne
t toSTONe. The 32-bit IP addresses that are visible to the appli
ations are opaque andrandomized, making them similar to STONe
apabilities.STONe So
kets One appli
ation building blo
k of STONe is the STONe So
ket in-terfa
e. STONe So
kets are anonymous appli
ation-level endpoints. Externally, theyprovide fully randomized IP addresses over TCP and UDP, but internally, STONe So
k-ets use a Trusted Datagram Servi
e (TDS) and a Trusted Stream Servi
e (TSS). STONegenerates random IP addresses from STONe's network addresses� STONe Capabilities.STONe Capabilities look like opaque random strings, but for the STONe Router they
ontain meaningful session information. In every per-session
apability there is en-
rypted a 64-bit STONe address Td and a 32-bit STONe servi
e ID Sd pointing to adestination d in STONe:
Cd = EKTCi

(Td | Sd | nt).The first 64 bit of the
apability
ontain the 32-bit IP address and a 32-bit portnumber. When an appli
ation opens a new session STONe generates a new randomnon
e nt asso
iated with this session and
omputes a new
apability Cd. Sin
e KTCi
ishidden from the appli
ation, only the TCB is able to en
rypt and de
rypt
apabilities.Figure 4.14 shows how STONe
onverts
apabilities into STONe addresses andservi
e IDs, and the other way around. The appli
ation pla
es
apabilities into theSTONe So
ket
alls, and the STONe So
ket library passes the
apabilities to the STONerouter within the TCB for de
ryption and further use. In the
onverse, when a STONeSo
ket
all returns a
apability to the appli
ation, the STONe router en
rypts the

4.5. Anonymous Communi
ation 53
S

STONeY

Router

Application

FY(Addr)FX(Addr)

Td

STONeX

Router

Application
64

96 bit96 bit

Addr

32

96 bit

Figure 4.14: Conversion of STONe
apabilities: An appli
ation on router X re
eives the
apabil-ity en
rypted under FX that depends on the built-in Trusted Computing key. Between the tworouters the
apability gets transmitted in plaintext, but the message is en
rypted as a whole.STONe address and servi
e ID and passes the resulting
apability to the appli
ation.The en
ryption fun
tion depends on the built-in AES keys KTCX
and KTCY

, su
h that
Fi(A) = EKTCi

(A | rj). All STONe has to
a
he is the random per-session non
e rj forevery session.Trusted Datagram Servi
e � TDSSTONe offers TDS datagram servi
e for
onne
tionless
ommuni
ation. A STONedatagram pa
ket
an
onsist of multiple STONe fragments with fixed-size unit for net-work
ommuni
ation. Upon re
eipt, STONe reassembles multiple fragments togetherto one STONe datagram pa
ket. The datagram servi
e is unreliable and una
knowl-edged, and the appli
ation is responsible for resending pa
kets. TDS is an adaptationof UDP that uses STONe's
apabilities.Trusted Stream Servi
e � TSSSTONe also offers a
onne
tion-oriented stream servi
e
alled the Trusted Stream Ser-vi
e (TSS). STONe
annot use TCP for end-to-end
ommuni
ation formultiple reasons:First, point-to-point links in STONe already use TCP, and in
ase of a
ongestion onthe link the proto
ol in
reases time-outs,
ausing the upper level TCP also to in
reasetimeouts and queue pa
kets for retransmission. Then both TCPs try to retransmitpa
kets, whi
h only makes the problem worse. Eventually, they will have to give upand reset the
onne
tion. Se
ond, pa
ket reordering
aused by random routing is aproblem in TCP. TCP's fast retransmit algorithm interprets ex
essive pa
ket reorderingas a loss and tries to retransmit pa
ket, thereby wasting valuable bandwidth [178℄.Retransmission is not the only problem, and TCP does not dete
t these losses asreorderings but as buffer overflows. On
e it dete
ts any losses, it starts
ongestion
ontrol me
hanisms to regulate throughput [46, 140℄.

54 Chapter 4. STONe DesignTSS avoids these problems altogether, sin
e it does not have
ongestion
ontroland is also aware of pa
ket reorderings. TSS is similar to TCP ex
ept for flow
ontroland
ongestion
ontrol, but its proto
ol states are equivalent. STONe already usesrandom routing and syn
hrony as an effi
ient measure against
ongestion. Initially,TSS does a three-way handshake to establish the
onne
tion and initialize the buffersfor flow-
ontrol. A STONe stream
onsists of STONe fragments. All nodes in theSTONe network use the same retransmission timeout to prote
t against atta
ks thatattempt to identify a
ommuni
ation
hannel based on their retransmission patterns.The retransmission timeout depends on the maximum path laten
y in the overlay,whi
h is log(N)-times the maximum per-hop laten
y, where N is the number of nodesin the overlay.Trusted Name Servi
e � TNSBe
ause opaque
apabilities are only appli
ation-spe
ifi
 handles within so
ket appli-
ations, STONe requires a global naming infrastru
ture that maps anonymous namesto
apabilities, similar to what a pseudonym server does [123℄. TNS is a trusted ap-pli
ation within STONe, and therefore
ommon atta
ks are hard to mount from anymali
ious appli
ation. TNS is different from a DNS server be
ause is it easy to reg-ister new entries. Further, TNS
an handle different appli
ation-level servi
es for asingle node as well, su
h as a shared address book. TNS is similar to Tor's Lo
ation-Hidden Servi
es, where two parties use a third random node as a rendez-vous pointfor ex
hanging servi
es [75℄.An appli
ation registers names alongwith an appli
ation-spe
ifi
 publi
 keyPKTNSd
.TNS is self-
ertifying be
ause ea
h TNS request returns an entry in whi
h the
apa-bility is XORed with the hash of the publi
 key. Only when the appli
ation has theentry's publi
 key it is able to obtain and use the
apability.TNS uses a
hallenge-response me
hanism during name registration to ensure thatthe mapping between the publi
 key and the network address is
orre
t. This
ertifi-
ation me
hanism prevents falsifying of identities, while allowing anonymous
om-muni
ation. When a node joins the system, its trusted infrastru
ture learns about theaddresses of the name servers, but these addresses stay invisible to the appli
ations.An appli
ation registers a name for a servi
e at the name server using the tns_registerfun
tion in the STONe So
ket library. If an appli
ation wants to register a servi
e itneeds to provide PKTNSd

for it. TNS exe
utes a
hallenge-response me
hanism to
he
k that the appli
ation really owns the private key:Appli
ation → TNS: < IDs
TNSd

, PKs
TNSd

, Cj
i >TNS → Appli
ation: <r>Appli
ation → TNS: <x := ESK(r)> with SK = SKs

TNSdTNS: verify DPK(x) = r with PK = PKs
TNSd

4.5. Anonymous Communi
ation 55First the appli
ation
alls tns_register,
ausing the STONe So
ket to send to TNS the
apability Cj
i , as well as the name IDs

TNSd
and PKTNSd

of the servi
e the appli
ationwants to register. TNS generates a random string r and sends it as a
hallenge to theappli
ation. The appli
ation en
rypts r using the private key SKSTONei
and sends the
iphertext x ba
k to the TNS. TNS verifies that the de
rypted
iphertext x is equal to r.After these operations the TNS server is sure that the
apability x belongs to PKTNSd

,and it
an register <IDTNSd
, PKTNSd

> as a
ertified name.When a
lient appli
ation wants to look up a
apability, it queries TNS usingthe <IDTNSd
, PKTNSd

> tuple or just IDTNSd
. An appli
ation resolves a name inTNS and obtains the
orresponding
apability through the tns_query fun
tion in theSTONe So
ket library. It
an sear
h for any name and get ba
k a list of
orresponding
apabilities. If TNS provides a publi
 key the query is
ertified, and the appli
ation
an trust that the
apability belongs to the publi
 key:Appli
ation → TNS: <IDs
TNSd

, PKs
TNSd

>TNS → Appli
ation: <cap>The appli
ation then retrieves the original
apability Cj
i by XORing cap with PKTNSd

.The key for every entry is the name and publi
 key. It is also possible to register thesame name and the same publi
 key multiple times if the same entity is lo
ated atmultiple destinations. TNS returns a list of all entries. TNS also allows wild-
ardsear
hes without passing the publi
 key to the server when the
orresponding flagis set during the register operation. This is a priva
y option. Registering the sameentry at multiple lo
ations does not violate anonymity be
ause the
apabilities do notprovide any lo
ality information.Normally, su
h a server for se
ure and anonymous peer-to-peer names would haveto store N2 different names for one servi
e in a network of N nodes, be
ause everynode would have to have a different address. However, trusted
omputing is ableto map multiple network addresses to a single one, and therefore every node in thenetwork needs to store only one entry.TNS is lo
ated lo
ally on STONe nodes, and every node learns from its neighborsthe lo
ation of the
losest TNS node. However, when a TNS node
rashes, all theinformation is lost. Without TNS it is not possible to obtain
apabilities for
ommu-ni
ation in STONe. Therefore, TNS must be highly available and implemented as adistributed name servi
e where data gets repli
ated dynami
ally.Trusted SOCKS Proxy � TSOCKSSome appli
ations do not require the full strength of 96-bit
apabilities. Rather ba
k-wards
ompatibility to the existing Internet is desirable. For this purpose TSOCKSprovides an proxy server between TSS and TCP that is similar to SOCKS [119℄. SOCKS

56 Chapter 4. STONe Designis a TCP proxy that allows multiple
lients to share the same outgoing
onne
tion ona proxy, thus redu
ing the number of ports a firewall has to allo
ate. For example, Toruses SOCKS to
onne
t to Privoxy to eliminate any appli
ation-level priva
y-relatedinformation in web browsing [75, 18℄. The purpose of TSOCKS, however, is to gener-ate random IP addresses for appli
ations to
ommuni
ate through STONe. STONe's96-bit opaque
apability translates to a 32-bit IP address and a 16-bit port number,thus redu
ing the effe
tive address length 48-bit. Be
ause of the address length lim-itations, appli
ations running on top of TSOCKS do not have the same guaranteesagainst denial-of-servi
e atta
ks as STONe so
ket appli
ations. Furthermore, the
on-ne
tion between the TSOCKS proxy and the
lient needs to be suffi
iently prote
tedagainst an eavesdropping adversary. Ideally, the TSOCKS proxy is a trusted pro
ess onthe lo
al platform.4.5.2 STONe Appli
ationsThere are several examples of appli
ations in distributed systems that strongly benefitfrom STONe's se
urity and anonymity.Trusted Load-Balan
ing � TLBSTONe's enhan
ed se
urity provides simple load-balan
ing without DHTs for serverappli
ations. The server registers several entries with IDTNSi
= < App,Loci>, where

Loci is the number of the server, and all servers have to be enumerated
onse
utivelyfrom 0 to Locmax − 1. A separate key server
arries out admission
ontrol by randomlydistributing publi
 keys to all
lients. In this pro
ess the appli
ation belonging tothe same
apability will only see one of the Locmax publi
 keys. The appli
ationuses that publi
 key to request the
orresponding destination
apability from TNS. Tominimize key distribution overhead, all server instan
es of App have the same publi
key PKTNSi
. Giving all instan
es the same PKTNSi

does not
ompromise se
urity,be
ause they all relate to the same server appli
ation. TLB is robust against atta
kson STONe � espe
ially traffi
 analysis atta
ks � whi
h prote
ts load-balan
ing in aglobal network as strongly as if it took pla
e in a lo
al server
luster behind a firewall.TLB is different from DNS-based load-balan
ing be
ause TNS is trusted and is hard tosabotage. Appli
ation → Key Server: query keyKey Server → Appli
ation: PKs
TNSd

, LociAppli
ation → TNS: <<App, Loci>, PKs
TNSd

>TNS → Appli
ation: Cs
dFigure 4.15: Trusted Load-Balan
ing Proto
ol

4.5. Anonymous Communi
ation 57Anonymous File System Anonymity and group-based
ertifi
ation without a
entraladministrator are important issues for global file systems (e.g.[102℄). Assume twoparties � Ali
e and Bob � want to share a file: First, the global file system should beable to store Ali
e's file in multiple lo
ations, be
ause nodes that
ontain the file mayenter and leave the network arbitrarily. Se
ond, a third untrusted party should not beable to learn that Ali
e is the owner of this file. Third, any trusted party should be ableto verify that she got the right file from Ali
e and not a fake one. Our AnonymousFile System on top of STONe has these properties. Every file in the system has itsname and the owner publi
 key stored on TNS. TNS maps a file to multiple networkaddresses. On a node every file gets a unique servi
e ID. TNS models the file system inthis fashion; when Ali
e wants to store her file in the file system, she registers it withTNS. Then, Bob looks up Ali
e's file by querying TNS. Content-distribution systemssu
h as Freenet [62℄ and BitTorrent [5℄ or other hierar
hi
al file systems
ould be builton top of this anonymous filesystem.Appli
ation → TNS: < File − /Directoryname, PKs
TNSd

>TNS → Appli
ation: Cs
dFigure 4.16: Anonymous File System Proto
olAnonymous Instant Messaging Instant Messaging is usually hard to anonymize be-
ause the parties parti
ipating in the
onversation have to be logged onto the system.The provider of the servi
e
an easily observe the
ommuni
ation
hannels at anytime, whi
h parties parti
ipate and where they are logged on. Furthermore, an at-ta
ker with a

ess to the links
an easily dete
t
onversational traffi
 patterns withina session. We built a prototype of Anonymous Instant Messaging using STONe. Ali
elogs onto the system by registering her pseudonym and her publi
 key on TNS. If theother party Bob wants to talk to Ali
e, he looks up her pseudonym on TNS, verifiesthat this is her publi
 key (if she wants to reveal her identity to him), and starts to talkanonymously to her over the system. Bob obtains the publi
 key beforehand througha different trusted
hannel similar to a web of trust (e.g [86℄). When Bob initiates the
onversation, Ali
e verifies Bob's publi
 key to make sure that he is the right person.In Anonymous Instant Messaging, only Ali
e and Bob know that they are talking withea
h other. Appli
ation → TNS: < IM Pseudonym, PKs

TNSd
>TNS → Appli
ation: Cs

dFigure 4.17: Anonymous Instant Messaging Proto
ol

58 Chapter 4. STONe Design4.6 Compromised Trusted Computing HardwareSo far we have ex
luded the hardware atta
k on the Trusted Computing system, sin
eit is hard to do and
an only be done at a node that is physi
ally available. Be
auseSTONe's address depends on a built-in key, it is not possible to forge other TrustedComputing nodes in STONe after extra
ting the key from the TCB be
ause STONewill dete
t dupli
ates. Furthermore, an adversary is unable to get a

ess to the systemjust by knowing the built-in keys. She has to obtain the STONe se
ret SSTONe tosu

essfully join the network and also to de
rypt messages.When an adversary learns the se
ret keys she is able to emulate a full TCB andjoin the network. However, having these trusted keys she
an mimi
 only one TCB.When this happens and remains undete
ted the following s
enario takes pla
e: Theadversary is able to monitor all traffi
 that goes through this node, and be
ause ofrandom routing this
an be any sender/re
eiver pair. Furthermore, she is able to learnthe IP addresses of the lo
al routing table and
an assemble a membership list of thenetwork.It is therefore
ru
ial that hardware
ompromises are dete
ted immediately, so that
ompromised nodes are not able to join the network through remote attestation. Inaddition to key-based attestation the TCB
ould use other platform authenti
ity tests,su
h as Remote Physi
al Devi
e Fingerprinting [114℄ to ensure that the TCB runs onthe a
tual hardware. It is also important to verify that the TCB does not
ontain anyba
kdoors.

Chapter 5
STONe Implementation
Normally, STONe would be
onsidered a part of the internal kernel network sta
kthat provides a different new transport layer. This is different from Tor's approa
h,whi
h uses a network of proxies. Unfortunately, our experimental testbed, PlanetLab,does not support kernel extensions in the virtualization layer, and therefore we haveto implement STONe as user-level pro
esses. Kernel pro
esses typi
ally get higherpriority, and they do not require expensive
opying of buffer data between kernel-and user-spa
e.5.1 Trusted Computing Base5.1.1 Required HardwareToday there exist several approa
hes for Trusted Computing hardware. The TrustedPlatform Manager (TPM)
ontains primitives for remote attestation and sealed stor-age [21℄. These hardware
hips are already built into most PCs. Windows and Linuxprovide devi
e drivers for them. TPM also provides a trusted boot me
hanism thatprote
ts against lo
al atta
ks.In addition, STONe requires strong pro
ess isolation against atta
ks from the OSkernel. Intel is planning to ship LaGrande in future PC platforms [99℄, and AMD'sequivalent produ
t Pa
ifi
a provides the same fun
tionality on future AMD plat-forms [28℄. Mi
rosoft is going to provide support operating systems support for strongpro
ess isolation in their NGSCB ar
hite
ture [79℄.5.1.2 TCB Software EmulationWe build STONe on top of Linux, but unfortunately, Linux does not have support fora fully fun
tional TCB, and most devi
es do not have Trusted Computing hardware,either. The
hoi
es are either to implement a fully-fun
tional devi
e driver that emu-59

60 Chapter 5. STONe Implementationlates a TPM and run a trusted operating system on top, or we assume the
ommodityoperating system to be the root of trust and emulate TCB on top. In previous ap-proa
hes virtual ma
hines implemented Trusted Computing su
h that every trustedpro
ess is mapped to one virtual ma
hine [87℄. The virtual ma
hine monitor is theroot of trust and provides the interfa
e to the trusted
omputing system. In our TCBemulation we pi
k a similar approa
h and use Linux to be the root of trust, sin
e wewant to fit it in the ar
hite
ture of PlanetLab.The TCB emulator needs to provide
ryptographi
 fun
tions, su
h as signatures
heme, hash fun
tion and random number generator, as well as attestation andoperating system support. We had to make a design
hoi
e for the remote attestationproto
ol. When using the standard attestation proto
ol the TCB publi
 key getsrevealed to the verifying entity. This is not a problem in lo
al attestation, sin
ethe verifying entity is the same as the signing entity � the lo
al TCB. However, it isa problem in remote attestation, sin
e signing and verifi
ation happen on differentplatforms, and therefore remote attestation uses group signature s
hemes that preservethis priva
y of the TCB. Otherwise, a peer
ould tell that a spe
ifi
 entity signed themessage. In short summary, Figure 5.1 shows the TCB intefa
e that is required to runSTONe:t
b_hash()This
omputes the hash of the value in. The
urrent implementation uses SHA1from the OpenSSL
rypto library with a built-in TCB hashing key that is the sameon all TCBs.t
b_srand() and t
b_rand()t
b_srand initializes the Random Number Generator with start value seed, andt
b_rand
omputes the next random number in the sequen
e. Both fun
tionsmap to RAND_seed and RAND_bytes from the OpenSSL
rypto library respe
tively.t
b_seal() and t
b_unseal()t
b_seal en
rypts plaintexts using the se
ret built-in platform key, and t
b_unsealde
rypts
iphertexts using the se
ret built-in platform key.t
b_pk_sign() and t
b_pk_verify()This pair does publi
 key signing and verifying using the built-in publi
 key.These fun
tions map to RSA_sign and RSA_verify from the OpenSSL
rypto li-brary.t
b_at_sign() and t
b_at_verify()Invokes the attestation proto
ol on a given binary. If fd points to a remotely
on-ne
ted so
ket, the primitive invokes remote attestation. Otherwise it uses lo
alattestation within the TCB. Normally, remote attestation should use DAA [51℄ or

5.1. Trusted Computing Base 61typedef stru
t msg_s {int m;int len;} msg_t;typedef stru
t bin_s {void *p;int len;} bin_t;typedef stru
t sig_s {void *s;int len;} sig_t;int t
b_hash(int in);int t
b_srand(unsigned int seed);int t
b_rand();int t
b_seal(msg_t msg);int t
b_unseal(msg_t *msg);int t
b_pk_sign(msg_t msg, sig_t *sig);int t
b_pk_verify(msg_t msg, sig_t sig);int t
b_at_sign(int fd, bin_t bin, sig_t *sig);int t
b_at_verify(int fd, bin_t bin, sig_t sig);int t
b_at_join(int fd);Figure 5.1: TCB Interfa
e for STONea similar group signature s
heme, but in this emulationwe
urrently use standardpubli
 key signing methods to simplify the
omplexity of the TCB emulation.When a DAA implementation is available this
an be easily repla
ed by a
all tothe group signature s
heme.t
b_at_join()Joins a group signature s
heme for remote attestation and obtains the sharedsigning key. This fun
tion only works for remote attestation.Trusted Operating System Support In addition to these primitives, Trusted Com-puting requires support from the operating system. In our TCB emulation there arethree issues: (i) Trusted Computing requires strong pro
ess isolation, for whi
h virtualmemory prote
tion is not suffi
ient. (ii) There must be a loader for every exe
()
allthat attests the binary lo
ally. (iii) The operating system needs to provide an interfa
efor remote attestation.

62 Chapter 5. STONe ImplementationStrong Pro
ess IsolationWe a
hieve strong pro
ess isolation by using the Linux VServer virtual ma
hineimplementation [11℄. PlanetLab [38℄ is a
ommon testbed for distributed ap-pli
ations and uses VServer to separate different sli
es from ea
h other. Sin
ewe do not have
ontrol over the VServer in PlanetLab, the Linux kernel in thevirtual ma
hine itself is the root of trust. Be
ause Linux itself does not providestrong pro
ess isolation, there
an be only one trusted pro
ess or multiple un-trusted pro
esses per kernel. We
reate a sli
e on PlanetLab for every differentappli
ation and a
hieve the desired strong pro
ess isolation.Se
ure I/OThe only se
ure I/O devi
e that we need to emulate for Trusted Overlay Networksis the network adapter. We emulate se
ure network I/O by en
rypting data fromthe appli
ation to the peer appli
ation after the key ex
hange is done, as shownin Figure 5.2.Lo
al AttestationThe operating system needs to provide lo
al attestation to establish a
hain oftrust between the appli
ation and the trusted hardware during se
ure boot. First,the TCB attests the OS Loader, whi
h is usually the BIOS of a PC, and starts it.The OS Loader then attests the OS and loads it. Finally, the OS attests any trustedappli
ation and exe
utes it. The TCB emulation provides a wrapper fun
tion forthe exe
() system
all that exe
utes the lo
al attestation proto
ol.Remote AttestationFigure 5.2 shows how two trusted software sta
ks attest appli
ations to ea
hother using remote attestation. First, the appli
ations
ondu
t a standard TCPhandshake. After the TCP
onne
tion has been established, the appli
ation doesa key ex
hange and sets up an en
rypted
ommuni
ation
hannel. Establishingthe en
rypted
ommuni
ation
hannel before attestation takes pla
e is ne
es-sary to prote
t against replay atta
ks. Then the
onne
ting TCB joins the groupsignature s
heme using the t
b_at_join
ommand. It starts the remote attesta-tion proto
ol over that
onne
tion using the t
b_at_sign. The TCB emulatesthe remote attestation proto
ol, but the appli
ation handles all errors. Theo-reti
ally, we
ould use IPse
 or TLS/SSL to set up a se
ure network or so
ketlayer, but we do not require all the fun
tionality on this level, and as dis
ussedearlier it is an important prin
iple in STONe to integrate handling of se
urityerrors and appli
ation errors on the higher level. En
rypting data between thenodes on this level is
ompletely suffi
ient, and STONe handles integrity of the
ommuni
ation on the higher levels.

5.2. Implementing Trusted Overlay Networks 63
TCP Handshake

Remote Attestation

1

VServer

OS

Application Key Exchange

2

3

TCB

VServer

OS

Application

TCB

VServer

OS

Application

TCB

VServer

OS

Application

Host OS Host OS

TCB

E
n
cr
yp
te
d
 D
at
a E

n
cryp

te
d
 D
ata

Figure 5.2: Emulating Remote Attestation and Se
ure Network I/O on PlanetLab: STONe emulatesthe TCB on top of the Linux OS in the VServer. Every VServer sli
e automati
ally providesstrong pro
ess isolation. The appli
ation
ontains Trusted Overlay Networks and the a
tualappli
ation.5.2 Implementing Trusted Overlay NetworksWith the TCB emulation on PlanetLab, we build Trusted Overlay Networks (TON) �the base of STONe. Here we outline only the general implementation issues, but inSTONe we
hose to implement Trusted Overlay Networks as so
ket proxies, sin
e theygive the maximum amount of flexibility for any type of appli
ation.Figure 5.3 shows the implementation of Trusted Overlay Networks: Every nodehas two PlanetLab sli
es � one that runs the TON software, and another that runs theappli
ation. The appli
ation
ommuni
ates through TON with its peer nodes and
anbe trusted or untrusted.The join proto
ol is simple: A node that wants to join TON first
ondu
ts a TCPhandshake with another node in TON. In the next step the two nodes do a keyex
hange. Finally, they
omplete remote attestation.In the
urrent setting TONhas to be implemented in user spa
e be
ause PlanetLab's
urrent
onfiguration does not support kernel modules. As we will see this in
urssome performan
e penalties, but we will also obtain an estimate of how STONe wouldbehave in kernel spa
e.So far we have explained the details of TON and outlined how to build TONon PlanetLab. In the next se
tions we explain the design and implementation ofSTONe, a Trusted Overlay Network that provides se
ure, reliable, and anonymous
ommuni
ation.

64 Chapter 5. STONe Implementation

VServer

OS

TON

TCB

VServer

OS

Application

TCB

VServer

OS

TON

TCB

VServer

OS

Application

TCB

VServer

OS

TON

TCB

VServer

OS

Application

TCB

Figure 5.3: Implementing TrustedOverlayNetworks: This figure displays the TrustedComputingsta
k on every platform. Trusted Overlay Networks (TON) sit on top of the TCB and
onne
tother TON nodes.5.3 STONe ImplementationWe implemented a prototype of STONe under PlanetLab. The STONe Proxy andSTONe Router in the system ar
hite
ture are different pro
esses, and they
ommuni-
ate via pipes and so
kets. The STONe So
ket library provides an API for appli
ationsto
onne
t to the STONe Router. TNS is implemented as an appli
ation that runs inthe TCB.STONe Proxy The STONe Proxy de
rypts in
oming and en
rypts outgoing fragmentsand
ommuni
ates with the router. The most important de
ision in the implementa-tion of the STONe Proxy is the
hoi
e of UDP vs. TCP. The STONe proxy uses TCP fora few reasons:First, nodes may leave and enter STONe frequently. TCP
onne
tions
an auto-mati
ally dete
t when a node leaves STONe be
ause the peer's TCP/IP sta
k
loses the
onne
tion through expli
it TCP FINs � even when the router appli
ation
rashes.Se
ond, TCP ensures ordered message delivery, allowing the traffi
 to be en
ryptedusing a simple stream
ipher. Third, TCP flow-
ontrol provides reliable transmissioneven over lossy paths, and TCP
ongestion
ontrol allows nodes to use up all theavailable bandwidth along the path. Fourth, TCP makes it easier to set up in
oming
onne
tions to nodes within NATs in peer-to-peer networks. Typi
ally, it is not possi-ble for a node behind a NAT to re
eive any
onne
tions without additional support.In STONe, the node behind the NAT
onne
ts to another node using TCP, and whenthe
onne
tion goes this way the NAT often forwards the port automati
ally. In UDPonly the node behind the NAT
an send nodes outside, but it
annot re
eive any

5.3. STONe Implementation 65pa
kets. After
onne
tion setup in TCP both nodes
an send messages ba
k and forth.For an overview of all possible solutions to this �Hole Pun
hing� in TCP and UDP,see [83℄. And fifth, TCP automati
ally buffers messages and slows down
onne
tionsthrough
ongestion. When the STONe Proxy
annot forward any messages and doesnot pi
k up arriving ones, TCP automati
ally slows down the sender rate of the adja-
ent node. Therefore, no pa
kets have to get dropped in the STONe Proxy. Finally,TCP
ongestion
ontrol syn
hronizes traffi
 in anonymous routing.In addition to pa
ket relay on STONe's overlay links, the STONe Proxy also en-
rypts data. However, it does not use SSL/TLS or IPse
 for several reasons: First,authenti
ation in STONe is done by remote attestation, and these proto
ols use theirown authenti
ation me
hanisms, whi
h have to be adapted for Trusted Computing.Se
ond,
ontent in STONe appli
ation data is already signed by the appli
ation, andSTONe only requires a
he
ksum for STONe's pa
ket header to prote
t against tam-pering. SSL/TLS would impose additional overhead to signing and verifying messages.Third, IPse
 has diffi
ulties with NATs and firewalls, and we want to make STONe astransparent as possible to maximize the size of the anonymity set.STONe Router The STONe Router is a pro
ess different from the STONe Proxy toprovide resilien
e in
ase of an atta
k. When the STONe Proxy gets overloaded or
ompromised for some reason the Router spawns a new Proxy. After re
onne
tingto its neighbors, it then
ontinues operation without mu
h interruption. Further,this separation enables parallel pro
essing of
ryptographi
 operations and messageforwarding on modern mi
ropro
essors that have multiple
ores. Pipes under Linuxprovide the basi
 me
hanism for interpro
ess
ommuni
ation between the Router andthe Proxy. The Router does the initial handshake and then hands off the file des
riptorof the TCP
onne
tion to the Proxy via a

ess
ontrol messages on the internal pipes.Interpro
ess Communi
ation Pipes in STONe's interpro
ess
ommuni
ation are uni-dire
tional, and we use two pipes to establish bidire
tional
ommuni
ation. Initiallythere is a so
ket pair between the Router and the STONe Proxy to signal events andpass along file des
riptors. Whenever a new node
onne
ts to the system, the Routersends a signal to the STONe Proxy to set up the new
onne
tion. For every
onne
tionthe Router adds a new bidire
tional pipe. Pipes limit the maximum possible STONefragment size to 4kB sin
e this is the
urrent maximum buffer limit under Linux.When the buffer is full the Router gets blo
ked and has to wait for the Proxy to
on-tinue. There are still possibilities to optimize STONe by adding more buffers, but thisis beyond the s
ope of this work and is left for future resear
h.Figure 5.4 shows STONe's interpro
ess
ommuni
ation with different appli
ations.The STONe Router
ommuni
ates with every single appli
ation through the Router

66 Chapter 5. STONe Implementation
App AppApp

R
o

u
te

r S
o

ck
e
t

S
S
o

ck
e
t

1
 In

S
S
o

ck
e
t

2
 In

S
S
o

ck
e
t

2
 O

u
t

S
S
o

ck
e
t

1
 O

u
tFigure 5.4: Interpro
ess Communi
ation in STONe: The layout for interpro
ess
ommuni
ationin STONe
onsists of appli
ations and the Router. Appli
ations send
ommands to the Routerand re
eive replies through the Router so
ket. For every STONe address the appli
ation bindsit gets two unidire
tional pipes.so
ket, whi
h is a standard Unix or Inet so
ket. The Router so
ket takes
ommandsfor the STONe network sta
k from the appli
ation:SK_CAPGiven a servi
e ID the STONe Router
omputes the opaque
apability for thelo
al host and returns it to the appli
ation.SK_BINDBinds a STONe So
ket to the a lo
al STONe address. The bind operation generatestwo unidire
tional pipes between the appli
ation pro
ess and the STONe Routerpro
ess.SK_CONNECTConne
ts the STONe So
ket to another listening STONe So
ket. The
onne
tionuses the TSS proto
ol.SK_LISTENTurns the STONe So
ket into listening state for in
oming
onne
tions.When an appli
ation binds a new address to a STONe So
ket the STONe Router gener-ates a new pair of unidire
tional pipes for this STONe So
ket. An appli
ation sendingdata through the STONe So
ket Library writes the data into the pipe, and the STONe

5.3. STONe Implementation 67Router then forwards it to the destination. If the STONe So
ket is
onne
ted via TSS,this is stream data. If the STONe So
ket is not
onne
ted and uses TDS, the STONeSo
ket Library
opies the data into a single STONe pa
ket and writes it into the pipe.This pa
ket
ontains the destination
apability in the header.Pro
ess Syn
hronization The STONe Proxy and Router both use asyn
hronous I/Oand an event-based programming model. Both have a
ommand queue and dataqueues for every TCP
onne
tion to adja
ent nodes. When a new node
onne
ts, therouter sends a message to the Proxy, and the Proxy sets up a new data queue for thisnode. When an adja
ent node leaves the network the Proxy sends a message to therouter. It is important that the Router and Proxy are in syn
 when a node
onne
ts ordis
onne
ts, sin
e otherwise data may be lost.We
ir
umvent deadlo
k problems by having only one syn
hronization point. TheProxy waits only when no pa
ket arrives from the network and no data arrives fromthe Router. The Router waits only when there is no so
ket data, and when there isno data from the proxy as well. The main deadlo
k problem is the internal data pipe,whose size is only 4kB. STONe needs to make sure that both proxy and router are nottrying to write on a full buffer at the same time. We solve the problem by blo
kingthe Router, su
h that no data gets lost. Further, we use the TCP buffer in the proxyfor buffering STONe pa
kets: Whenever the proxy en
ounters a full pipe it does notre
eive any data from the TCP
onne
tion. Eventually, it will re
eive data from therouter. Then the Router gets the data from the proxy's write pipe, and finally theproxy
an write the data from the TCP buffer. Using this te
hnique no additionalbuffering is ne
essary. Furthermore, when the TCP buffer in the proxy fills up be
ausethe router is busy, TCP automati
ally slows down adja
ent nodes, whi
h is desirable.When the router starts pi
king up pa
kets again from the proxy, TCP will trigger aslow start.Resilien
e Every node has a wat
hdog pro
ess that restarts the STONe Router in
aseof a failure or timeout. There are several
auses for failures or mali
ious atta
ks:(i) STONe Proxy fails: The STONe Router restarts the Proxy. The Router has allrequired state information to restart the Proxy to re
onne
t to STONe.(ii) STONe Router fails: The wat
hdog pro
ess restarts the STONe Router. In this
aseall state information in
luding any buffered data, will be lost. The Router restartsthe Proxy.(iii) T-START pa
ket times out: When the T-START pa
ket does not arrive in time theRouter terminates and the wat
hdog pro
ess restarts the router to rejoin STONe.

68 Chapter 5. STONe Implementation
STONe Proxy

waitpid()

waitpid()

STONe Router

Watchdog

STONe Proxy

waitpid()

waitpid()

STONe Router

Watchdog

STONe Router

Watchdog

restart

STONe Proxy

waitpid()

STONe Proxy

STONe Router

Watchdog

restart

restart

Figure 5.5: Resilien
e in STONe: When the Proxy
rashes (left) the Router restarts it. Whenthe Router
rashes (right) the Wat
hdog pro
ess restarts everything.When a node joins the network it waits until it re
eives the signal that it
an startto send. Then it starts sending pa
kets. When the joining node does not re
eive thestart signal within a given time interval it time out and restarts itself.Cryptography Most
ryptographi
 operations take pla
e within the TCB, but somerequire appli
ation-level support. STONe uses the OpenSSL
ryptography library forthese operations. After the Diffie-Hellman key ex
hange a node i has a := DHt
STONeiand b := DHt

STONej
and needs to
ompute the se
ret shared key for the stream
ipher

Kj
STONei

. In addition, STONe must en
rypt and de
rypt data on the link between iand j using Kj
STONei

. It uses RC4 and makes sure to initialize the
ipher
orre
tly toavoid possible se
urity leaks from the key initialization pro
edure [81, 126℄.Appli
ation-level support The Router provides so
kets and pipes to the appli
ation forinterpro
ess
ommuni
ation. When an appli
ation links the so
ket library it maps aSTONe so
ket dire
tly onto a Unix so
ket to
ommuni
ate with the Router. Internally,a new STONe So
ket gets a new
ontext data stru
ture that
ontains the ne
essaryproto
ol status information for TSS and TDS. This data stru
ture is available in therouter and in the so
ket library. The so
ket library
ontains a similar data stru
turethat is restri
ted to the information that is available to any untrusted pro
esses outsidethe TCB.In addition to the C library, STONe provides a Python module for STONe So
ketsto make already existing
lasses in Python easily a

essible for STONe So
kets. It isstraightforward to
hange most so
ket appli
ations into STONe So
ket appli
ations,sin
e only the data stru
ture of the network address
hanges. In addition, domainname server (DNS) requests need to be
hanged into requests for STONe's TrustedName Servi
e (TNS). Sele
t statements on trusted so
kets require STONe's tsele
t
om-mand.

5.4. Appli
ations 69int fd2
ap(int fd,
ap_t *
ap);void get_lo
al_
ap(fd_t rtfd, ton_servi
e_t sv
,
ap_t
ap);int init_app(
har *stone_appso
k);int tfd_zero(tfd_set_t *fds);int tfd_set(int fd, tfd_set_t *fds, int type);int tfd_
lr(int fd, tfd_set_t *fds);int tfd_isset(int fd, tfd_set_t *fds);int tsele
t(int n, tfd_set_t *readfds, tfd_set_t *writefds,tfd_set_t *ex
eptfds, stru
t timeval *timeout);int tso
ket(int proto
ol);int tbind(int s, fd_t rtfd, ton_servi
e_t sv
);int t
onne
t(int s, fd_t rtfd,
ap_t dest);int ta

ept(int s,
ap_t *sr
);int tlisten(int s, int ba
klog);int tsendto(int s, void *sbuf, int len,
ap_t dest, int flags);int tre
vfrom(int s, void *rbuf, int len, int flags,
ap_t *from);int tsend(int s, void *buf, int len, int flags);int tre
v(int s, void *buf, int len, int flags);int tread(int s, void *buf, int len);Figure 5.6: Trusted So
ket APIFigure 5.6 shows the STONe So
ket API. Most fun
tions are equivalent to normalInternet so
ket
alls. In addition, STONe requires its own event-handling fun
tionsthat are semanti
ally equivalent to Internet so
kets, be
ause internally a STONe So
kethas two file des
riptors from two different pipes.init_app() initializes the appli
ation with the STONe router. init_app() uses asinput parameter a Unix so
ket identifier, whi
h des
ribes the
ommuni
ation
hannelwith the STONe router.5.4 Appli
ationsWe have implemented three prototype appli
ations that demonstrate the usefulnessof STONe's API. The Trusted Name Servi
e is one of the STONe's building blo
ks, butit also builds on STONe's API. The other two appli
ations the are implemented so farare the Trusted Instant Messenger and the Trusted File System.5.4.1 Trusted Name Servi
eThe Trusted Name Servi
e (TNS)
onsists of a
lient library and the TNS server. Fig-ure 5.8 shows the TNS Client API. A TNS Client
an either register a name and publi

70 Chapter 5. STONe Implementationinitapp(so
ket, n) -- initialize the appli
ation with a Unix so
ket addressand a servi
e offsetta

ept() -- a

ept a
onne
tion, returning new so
ket and
lient addresstbind(addr) -- bind the so
ket to a lo
al addresst
lose() --
lose the so
kett
onne
t(addr) --
onne
t the so
ket to a remote addresstlisten(n) -- start listening for in
oming
onne
tionstre
v(buflen, flags) -- re
eive datatre
vfrom(buflen, flags) -- re
eive data and sender's addresstsend(data, flags) -- send data, may not send all of ittsendto(data, flags, addr) -- send data to a given addresstns_register(rt,name,key,dest,asyn
) -- register name and key from name servertns_query(rt,name,key,asyn
) -- query name and key from name serverFigure 5.7: TSo
ket Python Help pagevoid tns_register(fd_t rtfd,
har *name, ton_key_t *pk, int exp,
ap_t
sv
,int asyn
);void tns_unregister(fd_t rtfd,
ap_t
sv
, int asyn
);void tns_query(fd_t rtfd,
har *name, ton_key_t *pk,
ap_t *dest, int *dlen,int asyn
);Figure 5.8: Trusted Name Servi
e Client APIkey with a
apability, unregister a
apability, or query the
apability of a name andpubli
 key. TNS Client
alls
an be syn
hronous or asyn
hronous. Be
ause
ommu-ni
ation is a
knowledged, the
lient spawns a thread in the asyn
hronous
ase whenthe appli
ations is not blo
ked. When the
lient registers a new TNS entry this threadalso solves the
hallenge from the server.Figure 5.9 shows the header of a TNS pa
ket used for
ommuni
ation between
lient and server. reqid tells the server to either register, unregister or query an entry.num_entries
ontains the number of TNS entries within the pa
ket.5.4.2 Anonymous Instant MessengerWe demonstrate the usability of STONe's
onne
tionless TDS servi
e by an InstantMessaging appli
ation. The Anonymous Instant Messenger uses TNS for registeringpseudonyms. Whenever a person logs in to the Instant Messenger she registers hername and publi
 key at the name server, and when she logs off she unregisters it.For example, Ali
e registers the name �Chat Ali
e�. When Bob wants to
onne
t toAli
e he requests the
apability �Chat Ali
e� from TNS along with her publi
 key.Alternatively, it is also possible to use Anonymous Instant Messenger as a publi

hatroom. In this
ase all users register a
ommon name su
h as �Chat� with the Instant

5.4. Appli
ations 71

32 bit 32 bit

TNS Public Key (128)

TNS Name (256)

Key ExponentKey Length

Acknowledgement NumberSequence Number

Number of EntriesRequest ID

Figure 5.9: TNS pa
ket headerMessenger and use their publi
 keys as pseudonyms.5.4.3 Anonymous File SystemThe Anonymous File System shows how the TSS servi
e works in STONe. AnonymousFile System is a simple distributed peer-to-peer filesystem, in whi
h every
lient storesand retrieves files. Every node that parti
ipates runs an Anonymous File System serverand
lient
omponent. Whenever a
lient publishes a file it stores the file lo
allyand registers the
apability with TNS. Any
lient that wants to retrieve the file queriesTNS and gets the appropriate
apability. The
lient then
onne
ts to the peer thathas stored the file. Filenames are flat in this implementation. The publi
 key is
omparable to a mini-
ertifi
ate that tells the
lient who published the file.

Chapter 6
STONe EvaluationIn this
hapter we evaluate the
urrent STONe prototype implementation � first the-oreti
ally and then on PlanetLab [38℄ � to verify our
laims about performan
e andse
urity. The evaluation on PlanetLab is
ru
ial be
ause STONe's random routingdepends on a
tual network properties. There is still leeway for performan
e improve-ments. The performan
e evaluation in this se
tion should only be
onsidered as aproof-of-
on
ept.6.1 Se
urity6.1.1 Common Atta
ksCompromising STONe Nodes STONe's TCB-based ar
hite
ture provides robust pro-te
tion against Byzantine failures. It is therefore hard for an adversary to
ompromiseand
ontrol a STONe node by software-only atta
ks. Subverting a TCB requires theadversary to get lo
al a

ess to the TCB hardware. In pra
ti
e, this means that onlya small subset of nodes
an be
ompromised. In addition, there are ar
hite
tures fortamper-eviden
e (e.g [182℄) that qui
kly dete
t su
h
ompromises. On
e dete
ted,the
ompromised TCB appears on a bla
klist and is automati
ally dis
onne
ted fromSTONe, be
ause the group signature s
heme in Remote Attestation will fail. The rootof trust (e.g. the hardware manufa
turer) has to ensure that the bla
klist is
onstantlybeing updated. In addition, standard te
hniques su
h as remote devi
e fingerprint-ing [114℄ prevent an adversary from running a virtual TCB in software with se
retsshe extra
ted from a hardware TCB.Denial-of-Servi
e For a Denial of Servi
e atta
k, the adversary may
ompromise ma-
hines all over the Internet, re
ruit them as bots, and laun
h DDoS atta
ks againstsingle STONe nodes or a group of STONe nodes. In
ommon DDoS atta
ks on STONe,the adversary targets different kinds of resour
es. For STONe, network bandwidth and73

74 Chapter 6. STONe Evaluationrouter CPU are the most attra
tive properties to atta
k. Bandwidth atta
ks are usuallyexpensive and in STONe be
ome even more expensive be
ause of STONe's resilien
eto single failures: Whenever
ongestion o

urs in a destination of the routing tablethe node simply turns to the alternative
olumn in the row of the routing table. Thiseliminates one node from STONe, but be
ause of STONe's load balan
ing, to
om-pletely disable STONe, all nodes need to be atta
ked by bandwidth flood atta
ks, andthis is expensive. But not only brute-for
e bandwidth atta
ks are hard to a

omplishin STONe. When an adversary tries to atta
k the Router's
omputational resour
es di-re
tly from outside STONe by sending malformed pa
kets, the Proxy will silently dropthose pa
kets. CPU-based denial of servi
e atta
ks from within the STONe networkare also diffi
ult to
arry out. STONe's so
ket interfa
e automati
ally slows down datathroughput to the STONe router, sin
e the STONe router is a trusted pro
ess. InternalSTONe messages su
h as routing updates are en
rypted and signed, and therefore,forging of these messages is not possible. The only way to isolate a node from STONeis to
arry out a bandwidth flood atta
k.IP Routing Atta
ks If an atta
ker manipulates IP routing information, STONe willfail, but this is the nature of an overlay network. The assumption we make in thebeginning is that the network sta
k is well-prote
ted against these atta
ks.Replay Atta
ks An adversary
ould try to replay a handshake sequen
e to pretend thatthe adversary is another identity. However, this atta
k will fail be
ause it would notbe able to
ompute the shared key between the two nodes.Prote
tion against these atta
ks
onsiderably improves STONe's resilien
e andmakes it hard for an adversary to disrupt
ommuni
ation. This is important to preventsabotage on the anonymity servi
e.6.1.2 Traffi
 Analysis Atta
ksIn Chapter 3 we explained STONe's anonymity model and measures, the atta
k goalsin anonymity, and the adversary's properties. Traffi
 Analysis prote
tion has severaldifferent obje
tives: Sender Anonymity, Re
eiver Anonymity, Unlinkability, Lo
al-ity of Nodes, and Traffi
 Chara
teristi
s. Despite strong TCB prote
tion, adversariesagainst Traffi
 Analysis might still be able to
ontrol the untrusted part of an arbitrarynumber of nodes, in
luding the sender and the re
eiver.There are several known atta
ks that an adversary who pursues Traffi
 Analysis triesto
arry out. On
ompromised nodes an adversary might measure and re
ord timeand lo
ation of messages and
orrelate this information arbitrarily. She may also useone of the above
ommon atta
ks to support traffi
 analysis, e.g. by isolating nodesfrom the network through DDoS.

6.1. Se
urity 756.1.3 Traffi
 Analysis Prote
tion in STONeSTONe uses a trusted overlay network to prote
t traffi
 analysis on the underlying In-ternet. In parti
ular, it should be hard for an adversary to tra
k assignments betweenIP addresses and physi
al nodes in the network and to determines
hara
teristi
 prop-erties of the
ommuni
ation
hannel, as mentioned in Chapter 3. Inherently, STONealready prote
ts against some traffi
 analysis atta
ks due to the design of the STONeoverlay. For example, in Trusted Overlay Networks an adversary is not able to identifyIP sour
e addresses of arriving messages. However, in STONe she is able to see the IPaddresses of the immediate neighbors in the hyper
ube.In addition, s
alability is very important to provide better anonymity. Comparedto fully
onne
ted networks su
h as Tor or Crowds, STONe's hyper
ube topology iss
alable and thus better suited for maintaining large anonymity sets and thereforebetter anonymity. Due to the s
alable and resilient hyper
ube stru
ture the networks
ales up to a larger number of nodes, similar to what has been suggested in mixnetworks [67℄ or the Crowds-based AP3 system [127℄. Furthermore, only nodes thathave an in
entive to provide anonymous
ommuni
ation stay in the network. Othersleave. These system properties improve anonymity.When a sender establishes a new path to start
ommuni
ation, most anonymityproto
ols use random walks over graphs. The main advantage for doing this is thatrandom walks provide mixing properties without using spe
ifi
 mixes [146℄. Mixnetworks shuffle messages lo
ally, whereas random walks depend on different pathlengths to shuffle messages for anonymity. In
ontrast to STONe, mixes syn
hronizetraffi
 globally within the network. We de
ouple the two tasks in STONe's design �random routing and syn
hronization � and show how to optimize them separately.Random RoutingRandom walks used in
ommon anonymity proto
ols have several problems. If twonodes A and B are in
lose proximity, with a high probability a random walk only hasa short path and generates lo
alized traffi
 patterns that a traffi
 analysis adversary isable to exploit.In a random walk over an ideal hyper
ube the lower bound on messages perlink
an be up to N
log N

depending on the path permutation the routing algorithmimplements [49℄. In addition, the random walk over a hyper
ube takes log N log log Nsteps until it rea
hes a truly random distribution. Only after that
an the message beforwarded to the final destination.Theorem 1. A random walk over a hyper
ube of N nodes approa
hes a random distributionafter about log N (log log N) steps.

76 Chapter 6. STONe EvaluationProof. For the proof we use
oupling te
hniques. Let's start a random walk at address
00...0 in the hyper
ube and go to some random node A. The length of the address'bitstring is n = log N . On every step we
hange a random bit out of the n bits from 0to 1 or from 1 to 0. The random walk stops when all bits are the same.This
orresponds to the Coupon Colle
tor's problem [196℄: An arbitrary set ofobje
ts
ontains d distin
t obje
ts, ea
h of whi
h
an be pi
ked with probability 1

d
.The problem is to determine the number of steps t it takes to pi
k every obje
t at leaston
e. The probability Ei that obje
t i out of the d obje
ts is missing is

P (Ei) =

(

1 − 1

d

)t

.Therefore, the probability that at least one out of the d obje
ts is missing is
d∑

i=0

P (Ei) = d

(

1 − 1

d

)t

≈ de−
t
d .When we set this probability to p0 we get

p0 < de−
t
d

t > (d + log p0) log dWhen p0 is small it takes about d log d steps to pi
k every obje
t at least on
e.On every step during the random walk over the hyper
ube we draw a bit positionout of the n bits and a bit value out of {0, 1}. A and B set the bit position a

ordingly.This is exa
tly the Coupon Colle
tor's problem with d = 2 + n = 2 + log N obje
ts.Another known s
heme for anonymous
ommuni
ation is sorting networks su
has Bat
her networks [90℄. However, similar to mix
as
ades [58, 41℄, they have thedisadvantage that they are not resilient against
ompromises be
ause they alwaysrequire a fixed number of fun
tional nodes in the network. Furthermore, sortingnetworks are less effi
ient than random walks, sin
e they take O(log2 N) steps to sort
N elements.Random routing, in
ontrast to a random walk, uses bit fixing in STONe's prefix-based hyper
ube routing algorithm. In random routing, on average, there is onlyone message on a given link at the same time, while the expe
ted path length is
2 log N [187℄.Self-Mixing Property Be
ause random routing pi
ks a different intermediate node onevery message transmission, the
ommuni
ation
hannel experien
es random laten-
ies. As a result, messages get randomly shuffled, making it diffi
ult for an adversary

6.1. Se
urity 77to find pa
kets that belong to the same
ommuni
ation
hannel. In addition, su
hmixing te
hniques are designed to prevent an adversary from asso
iating in
omingmessages with
orresponding replies. An adversary who knows the
ommuni
ation
hannel of some messages
an only guess whi
h
ommuni
ation
hannel other mes-sages belong to.We have a setN of N nodes in the hyper
ube that uses the random routing s
hemedes
ribed earlier. Every phase of the proto
ol is non-repeating, i.e. when two routesdiverge they will never meet again during the same phase. This effe
t o

urs be
ausehyper
ube routing in STONe uses bit-fixing. First, we assume that all nodes in Nsend at the same rate λ. Further, every node has h = T
N

messages to send, andevery destination appears on exa
tly h pa
kets that are randomly distributed a
rossall senders. This is
alled a 'full h-relation' [187℄.Sin
e random routing relays every message via a random node and fixes bit by bit,the probability that the path length in a network of n nodes is k follows a binomialdistribution: Prdist(n, k) = 1
2 log n

(2 log n
k

). A

ordingly, the average and maximum are
µrdist(n) = log n and Mrdist(n) = 2 log n. We note that random routing
annot be mod-eled as a Markov Chain, be
ause it does not have the memory-less Markov property.The Markov property states that for any pro
ess Xt and node state ik we have

Pr[Xt+1 = j|X0 = i0,X1 = i1, ...,Xt = it] = Pr[Xt+1 = j|Xt = i] = Pij .In other words, the transition probability at the
urrent node only depends on the
urrent state. STONe's routing algorithm, however, depends on bit-fixing from left toright. P [Xt+1 = j] does not depend only on P [Xt = i] but also on how many statesthe algorithm has already traversed.Corollar 1. Every node Xi ∈ N in a network of |N | = N nodes re
eives a sequen
e ofmessages f0f1...f2h. fi are binomially distributed in N , fi ∼ B(log N, 1
2).Proof. The traffi
 on all edges of the network is uniformly distributed for two reasons.First, we assume that all nodes in N send at the same rate λ. Se
ond, every node pi
ksa random intermediate node for every message it sends. . As a result, the traffi
 onall edges of the network is uniformly distributed, and every node pro
esses messagesat rate 2λ. Be
ause bit-fixing takes pla
e in hyper
ube routing, the probability thatnode Xi re
eives a message from any given node in N (in
luding itself) is distributeda

ording to a binomial distribution. More pre
isely, given the distan
e d(Xj , Y) tonode Y the probability that Xi re
eives a fragment from node Xj ∈ N at time step

t(i) is P1(Xj) = 1
N

(log N
d(Xj ,Xi)

) where t(i) = i
λ
. Sin
e every node sends h = T

N
pa
ketsand pa
kets traverse the network twi
e, Xi re
eives h · P1(Xj) = T

N2

(log N
d(Xj ,Xi)

) randomfragments from every node Xj in N resulting in∑N
j=1 2h · P1(Xj) = 2h fragments.

78 Chapter 6. STONe EvaluationWe also
all this the self-mixing property of random routing. Similar to the originalwork on random routing over hyper
ubes we
an generalize this result and define apartial h-relation in whi
h nodes have at most h messages to send and for every node
Xi there are hi ≤ h messages to send. A

ordingly, Xi's individual send rate is λi = λhi

h
.Lemma 1. In the partial h-relation every node Xi ∈ N re
eives a sequen
e f0f1.., f2h ofmessages where fi is drawn at random with probability pi = hi

hN
· Xi and Xi is binomiallydistributed.Proof. Everything from the proof of Corollary 1 is still valid ex
ept that the probabilitynow is hj

h
P1(Xj) =

hj

hN

(log N
d(Xj ,Xi)

). As a result,∑N
k=1 hk ·∑N

l=1 P1(Xl) =
∑N

k=1

∑N
l=1

hkhl

hN
=

2h messages.In some real-world s
enarios, espe
ially web browsing, the relationship betweensenders and re
eivers is often only 1:n. As this is a
ommon problem in typi
alanonymity networks, it is not an issue in STONe. These lemmas show that anonymitydoes not depend on the relationship between senders and re
eivers but only on thetotal distribution of the message destinations.In parti
ular, random routing prote
ts against most interse
tion atta
ks. In inter-se
tion atta
ks an adversary measures traffi
 load on the
ompromised nodes. Eventhough an adversary may fail to identify individual
onne
tions, it is still possibleto mount interse
tion atta
ks. Despite STONe shuffling messages, an adversary
anin
rease her
han
es of breaking sender/re
eiver anonymity when senders transmitmessages at different rates λi. The su

ess probability p(k,m) against sender/re
eiveranonymity in a network of k senders and m
ompromised nodes is:
p(k,m) = 1 −

((

1 −
(

k

N

)m)(

1 −
(

N − k

N

)m))

= O

(
km

N

)

.To be su

essful in this atta
k an adversary needs to
ompromise at least one sender/re
eiverand one idle node. As a result of this,
over traffi
 is required to ensure that sendersand idle nodes are indistinguishable. If there is not enough
over traffi
 to hideina
tivity in the network, nodes must leave the network to prote
t anonymity.In addition, to break unlinkability an adversary has to
ompromise exa
tly thesender node Xi and the
orresponding re
eiver Xj . Dete
ting Xi and Xj on the
ommuni
ation
hannel is only possible when the
ommuni
ation
hannel operatesat a spe
ifi

ommon rate. The su

ess probability p(k,m) for this type of interse
tionatta
k against unlinkability is
p(k,m) = 1 −

(

1 −
(

N − 1

N

)m)2

= O

(
1

N

)

.Hen
e, an adversary does not gain signifi
ant advantage when she tries to break

6.1. Se
urity 79unlinkability in that fashion.In addition to interse
tion atta
ks, timing atta
ks pose a signifi
ant threat thatmust be
onsidered as well. In timing atta
ks an adversary measures the inter-arrivaltimes between two messages in sequen
e. For example, when a sender transmitsmessages f1, f2, and f3 at times tenter(f3) > tenter(f2) > tenter(f1), respe
tively, on theInternet, the time differen
es between themessages remain the same. In STONe, how-ever, the time differen
es
hange along the
ommuni
ation path be
ause of STONe'sself-mixing property. If all senders are sending traffi
 at the same rate, an adversary isonly able to see two
onse
utive fragments from exa
tly one node: The sender that is
losest to the node.In hyper
ube routing a node with distan
e s from the sender forwards 2−s of thissender's messages. In a fully
onne
ted network only every N -th message would
omefrom the same node, but in a hyper
ube there is small bias towards the
losest sender.If we assume that all senders send at the same rate, one node i will re
eive every
(2−l·sj + 1

N
)-th messages from sender j. In hyper
ube routing the nodes
losest to thesender propagate 1

2 of the sender's messages, the se
ond
losest 1
4 et
.The atta
k is su

essful against unlinkability when an adversary manages to
om-promise the sender, re
eiver and one of their
losest neighbors for ea
h. The problem,however, is that not all neighbors forward a different number of messages from thesender. For example, the probability that the first neighbor forwards two sequentialmessages is 1

2 · 1
2 = 1

4 . For the se
ond neighbor it is 1
4 · 1

4 = 1
16 . In total, the probabil-ity that two messages are arriving in sequen
e when the sender and its neighbor are
ompromised is

q(N) =

log N
∑

i=1

i · 4−i = O

(
1

N

)

.On the other hand, the probability that at least one sender and one of its
losestneighbors are
ompromised is
p(N, k,m) =

(

1 −
(

N − k

N

)m)
(

1 −
(

N − log N

N

)m−1
)

=

O

(

1 − (N − max (k, log N))m

Nm

)

.Here, k is again the number of senders and m the number of
ompromised nodes.Given that the send rate λ must not be uniform for a su

essful atta
k, the su

essprobability depends on the send rate as well, and there are λ
λj

log N neighbors to
onsider instead of log N . Timing analysis
an be a threat to STONe, be
ause theoverall su

ess probability q(N) · p(N, k,m) is not ne
essarily small. To fully prote
tagainst timing analysis atta
ks all senders have to be syn
hronized.

80 Chapter 6. STONe EvaluationAtta
ks on the Topology When an adversary knows STONe's hyper
ube topology, tim-ing analysis atta
ks may be
ome signifi
antly easier. In parti
ular, when an adversaryknows the sender's neighbor, on average, she is able to monitor every N -th messageand
orrelate these measurements a
ross the network. Therefore it is
ru
ial thatSTONe hides network topology information.By design, STONe hides network topology, sin
e an adversary
an only a

ess therouting tables from within the TCB. Further, STONe derives node addresses from theinternal Trusted Computing keys, thus randomizing them. A STONe node address isunrelated to its lo
ation in the network.However, there are still ways to re
over the topology due to physi
al networkproperties. The main adversary against the hidden topology is tomography. In to-mography a network monitoring tool typi
ally probes network end-to-end delays toinfer individual
ommuni
ation path
hara
teristi
s (e.g. [60℄). If an adversary de-te
ts these individual
hara
teristi
s she may be able to partially re
onstru
t STONe'stopology.Typi
al tomography works the following way: First, an adversary uses all
om-promised nodes to determine the laten
ies between them. In the se
ond step she
onne
ts to a random node in the network and measures the end-to-end delays. Thelower bound of the end-to-end delay is a measure for the distan
e between the nodeand the
urrent node. Usually, there exist algorithms that are able to re
onstru
tlaten
ies of all possible O(N2) paths using only O(N log N) path measurements [60℄.In the next theoremwe give an upper bound for the path length. For simplifi
ationwe assume that all links have uniform delays, and end-to-end delays only depend onthe path length. For simplifi
ation we assume that the hyper
ube routing algorithmuses k = 1 and l = 1 as parameters.Theorem 2. (Valiant [187℄) In random routing the average number of hops along an arbi-trary path is µ = log N . When all nodes send h pa
kets the probability that a message doesnot get delayed by more than ∆ + µ steps is:
P (X ≥ ∆) < hN

(
eh log N

2∆

)∆On average the path length in random routing is 2 log N . If we set ∆ = k · log Nthen P (X ≥ k log N) < N−k when k ≥ eh. For a simple permutation (h = 1), thisbound holds for k ≥ e.Lemma 2. The expe
ted arrival-time variation between two fragments in a sequen
e is
√

log N
2 .Proof. The distan
e between sender and re
eiver is binomially distributed with dis-tribution B(2 log N, 1

2). The expe
ted variation in distan
e between two independent

6.1. Se
urity 81trials is the standard deviation: √2 log N 1
4 =

√
log N

2 .STONe minimizes
ongestion even in the worst
ase, when the network routesmessages syn
hronously. However, STONe's routing buffers have to toleratemaximumdelay. End-to-end laten
y
an grow up to 14 log N hops depending on the permittedloss rate [47, 187℄.So far we have only investigated tomography in a network with homogeneouslinks. For STONe we also have to
onsider tomography in hetereogenous networksthat have individual link delays su
h as the Internet.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

RTT [msec]

C
D

F

Figure 6.1: Cumulative Distribution Fun
tion of an all-pairs-pings on PlanetLab: A single
urverepresents the CDF of the RTT between a single node on PlanetLab and the rest of the network.We first
ondu
t an all-pair ping on PlanetLab to measure the round-trip timesbetween all pairs of nodes. PlanetLab is the
urrent testbed for distributed Internetappli
ations [17℄. It emulates the real-world Internet, be
ause it allows appli
ationsto run on geographi
ally distributed ma
hines that have different
omputation and
ommuni
ation
apabilities [38℄.Figure 6.1 shows the
umulative distribution fun
tion (CDF) over an all-pair pingmeasurement. Every single graph represents the RTT between a fixed node and an-other arbitrary node on PlanetLab. On average only a few nodes have large RTTs,whereas 80% of the nodes have RTTs below 500msec. Some nodes in the graph areweakly
onne
ted.Be
ause RTTs are heavily distributed, an adversary
an use additional knowledgeabout RTTs to re
onstru
t the topology. After dis
overing the overall path length l

82 Chapter 6. STONe Evaluationand delay D, the adversary's goal is to dete
t the spe
ifi
 individual link delays dialong the path from all N log N individual link delays in STONe. On
e she knows theindividual link delays she
an use the results from tomography to determine the linkswithin STONe that are in
luded in the path.The number of possible different
ombinations of summations of individual delays
di resulting in D
an be
omputed by a polynomial of degree (l − 1) if we assume thatall individual link delays in STONe are distin
t. For example, when l = 1 thereexists exa
tly one possibility, D = d0. When l = 2 there are about ⌊ (D−1)

2 ⌋ possiblesummations. When l = 3 we have to sum up over all possibilities of length l = 2.We
an express this re
ursion in
losed form ql in whi
h yi des
ribes the number ofsummations for path length i that result in end-to-end delay x:
ql(x)

(log N)!
=

(1 − yl−1x
l−1)(1 − yl−2x

l−2)(1 − yl−3x
l−3) · · · (1 − y1x

1)(1 − y0)

(log N)!Now, the probability that an adversary gets a
orre
t
ombination of individualdelays whose sum results in D is:
Pdelay(D,N, l) =

ql(D)

l! · 2N log N
.

D does not depend on N and in STONe l < 2 log N for most pra
ti
al
ases. When
N be
omes large the su

ess probability is very small and therefore a brute-for
e atta
kby random guessing is hard.This spe
ifi
 problem
an also be spe
ified as a subset sum or knapsa
k problem.Knapsa
k problems
an be solved under
ertain
ir
umstan
es [136℄, in parti
ular,when knapsa
ks have low density. If the di are
hosen at random with di ≈ 2βNand 1 ≤ i ≤ N where β > 1.54725 then the knapsa
k is easily solvable. However,this distribution does not apply to link delays on the Internet. Furthermore, linkdelays have large varian
e, and therefore, they
annot be formulated as a low densityknapsa
k problem.Limitations of Random Routing A signifi
ant trade-off in random routing is that onlyhalf of the bandwidth in the network is available. Further, on average the round-triptime be
omes twi
e as large. Furthermore, random routing is still prone to interse
tionatta
ks when syn
hronization does not take pla
e, and there are idle nodes in thenetwork.Fragment Sizes Evenwhen an adversary only has a

ess to a fewnodes she
an observeunique fragment sizes, and by doing traffi

onfirmation atta
ks she
an assign traffi

hara
teristi
s to parti
ular
ommuni
ation
hannels [183℄.

6.1. Se
urity 83A
ommon solution to the problem is to use uniform fragment sizes. However,uniform fragment sizes have a large overhead.An alternative way to deal with the problem is message splitting [164℄. STONe
ould split a message that would otherwise fit into one fragment into smaller pie
esand route them through the network along different routes using random routing.When we split every message into N fragments of random size every node observes arandom fragment every time. However, this also gives an adversary an estimate forthe upper bound of the message size.Ideally, the fragment size is a global syn
hronizationparameter that depends on thesession-layer requirements of the different
ommuni
ation
hannels. Every STONenode uses a uniform fragment size in the beginning. When the real fragment size issmaller it de
reases the size by some maximum ∆, otherwise it in
reases the size bysome maximum ∆. In random routing every node sees the different fragment sizesand adjusts the uniform fragment size to the average measured fragment size. Weleave this as subje
t for future resear
h. In the
urrent implementation STONe uses
onstant fragment sizes.Session-based Atta
ks When a session expires,
ounting atta
ks be
ome a threat be-
ause the ina
tive node is part of the anonymity set but does not show any a
tivity.There are two alternatives to fix this problem: Either the node drops out of the net-work, or it has to start some a
tivity.When a node leaves the network it redu
es the size of the anonymity set. Onthe other hand, when a node has to start a
tivity that is not intended by the user it
osts extra resour
es. STONe has to make a trade-off between the
hurn rate λchurn =

λenter − λleave, i.e. the rate at whi
h nodes are entering and leaving the network, andthe average send rate λ̄, at whi
h nodes are sending traffi
 within the network.In fa
t, when a single node enters and exits the network up to log2 N routingupdate messages have to be sent. In
ontrast, sending extra traffi
 requires up to λ̄of extra data, where λ̄ is the average data rate in STONe. Optimizing this problem isanother important future aspe
t of resear
h.6.1.4 Appli
ation-based Anonymity in STONeNow we look into STONe's anonymity on the appli
ation-layer. Here, STONe providesthe Trusted Name Servi
e as well as STONe so
kets as the main features to prevent anadversary from spying on network addresses and possible
ommuni
ation patterns.Appli
ation-based Denial-of-Servi
e STONe has to prote
t against a misbehaving ap-pli
ation that tries to flood the network. However, STONe has the same semanti
sas TCP/UDP so
kets. When an appli
ation sends too mu
h data, filling the buffers

84 Chapter 6. STONe Evaluationqui
kly, STONe will blo
k. When a node opens too many
onne
tions STONe willeventually run out of memory. STONe has some advantages over TCP/UDP so
ketsbe
ause it
an shut down a node that tries to laun
h a DDoS atta
k, similar to SOS, I3or Mayday [110, 29, 179℄.Denial of Servi
e on TNS An adversary
ould try to register a bulk of TNSName entriesand brings the server down. There are two issues: First, TNS gets flooded with newentries, and se
ond, TNS
an use up all of its memory, when it has to keep tra
k ifhalf-open entries. TNS uses SYN
ookies to avoid this problem [20℄. Further, TNSdoes not spend any CPU time on en
ryption until it has got a response from theregistering STONe
lient node. To solve the first problem, however, STONe requiressome form of admission
ontrol. One solution is to limit the number of entries pernode, but that would not work in TFS be
ause file servers register signifi
antly moreentries than other nodes. Another solution is to have timeouts on the entries anduse
omputational
lient puzzles, so that TFS
an foresee how many entries to expe
tfrom any given node.Side-Channel Atta
ks An adversary
annot dire
tly atta
k the STONe system, but sheis able to monitor system a
tivity. There are possibilities that system load or kernela
tivity reveal some patterns that
an
ompromise the anonymity properties of theappli
ation. As suggested in Chapter 2 extra dummy load on the nodes makes itharder to mount these atta
ks.Impersonation Atta
k Be
ause TNS does not
ertify names but only publi
 keys, STONeappli
ations need to have se
ure offline
hannels or key es
row for obtaining the
orre
t identities in STONe. Otherwise it is always possible to impersonate someoneelse on TNS. But this is not mu
h different from standard
ertifi
ation authorities likeVerisign [22℄ that do offline
he
ks on
e.Censorship Atta
k Sin
e STONe does not have a
entral membership list it is hardfor an adversary to dis
onne
t or laun
h a DDoS atta
k on single nodes. On theappli
ation-level TNS is the most vulnerable point be
ause nothing works withoutthe name lookup servi
e, similar to DNS in the Internet. However, sin
e TNS is atrusted pro
ess it is hard for an adversary to shut it down, but it is prone to DDoSatta
ks. TNS has to be repli
ated to improve resilien
e and also performan
e. Inparti
ular, the distributed appli
ations like TFS require a lot of name lookups.Passive Logging Atta
k Sin
e STONe's addresses are opaque
apabilities and traffi
analysis is hard, even a global adversary with a

ess to sender, re
eiver, and arbitrary

6.1. Se
urity 85nodes does not learn mu
h about
ommuni
ation
hannels unless he is able to
om-promise the TCB, whi
h
an happen only at a very rare o

asion. Therefore, PassiveLogging Atta
ks in STONe are not so powerful.Phishing and Pharming Atta
k The Trusted Name Servi
e in STONe is strongly pro-te
ted against atta
ks from the TCB. And this TCB prote
tion makes any type ofPharming atta
k hard. Additionally, the se
urity model in STONe is different fromthe Internet. DNS maps real domain names to IP addresses, whereas STONe mapspseudonyms to opaque STONe
apabilities. In
ontrast to DNS, whi
h has a hierar-
hi
al name spa
e, pseudonyms are unrestri
ted. Eve
an only register an arbitrarypseudonym and STONe guarantees that she has the
orresponding publi
 key. Every-thing else depends on the �web of trust� in STONe [86℄.However, when Eve wants to start a Phishing atta
k to fool Bob that she is Ali
eshe needs to set up a web server that
ontains the fake web site. This web site needs to
arry fake
redentials from Ali
e. But be
ause the trusted name server verifies Ali
e'spubli
 key, Eve is only able to impose Ali
e's identity when she knows Ali
e's privatekey. Therefore, Phishing atta
ks are almost impossible.6.1.5 Anonymity GoalsSummarized, STONe a
hieves the following individual anonymity goals:Membership Anonymity In
ommon anonymity systems that
onsist of untrustedproxies su
h as Tor [75℄ or mix networks [58℄ the
lients themselves are only knownto one single proxy. However, often the set of proxies M is publi
, and an adversary
an dire
tly fo
us on blo
king or atta
king these proxies. STONe does not have to dis-tinguish between
lients and proxies for anonymity reasons, be
ause the membershiplist M itself is hidden inside the TCB. Monitoring pa
kets entering and exiting a sin-gle STONe node just provides an adversary with information about S(N) = O(log N)random nodes out of N .Traffi
 Anonymity On the Internet network pa
ket
ontent, pa
ket size and inter-pa
ket delays reveal traffi

hara
teristi
s per se. Existing anonymity networks forlow-laten
y
ommuni
ation su
h as Tor or Crowds [75, 148℄ do not implement anyte
hniques that prote
t against all of these problems. STONe, however, inherentlydisguises inter-pa
ket times. Random routing
auses pa
kets to take different randomroutes through the network, and therefore end-to-end delay is random as well. STONealso makes network pa
ket sizes uniform and re-en
rypts pa
ket
ontent using differ-ent keys on ea
h hop. An atta
k on traffi
 anonymity in STONe needs to be more

86 Chapter 6. STONe Evaluationsophisti
ated and typi
ally involves sender and re
eiver
ompromises whi
h are hardto a
hieve.Sender/Re
eiver Anonymity Sender and re
eiver anonymity in typi
al anonymity net-works fo
uses on dete
tion of exit nodes, be
ause exit nodes have information aboutthe
lients parti
ipating in the
ommuni
ation. One of the most effi
ient ways toatta
k sender/re
eiver anonymity is the prede
essor atta
k [198℄: When path refor-mations take pla
e, sender and re
eiver never
hange but intermediate nodes alongthe path do. If an adversary samples the sour
e addresses of arriving pa
kets on ran-dom nodes she observes the sender address more often than addresses of intermediatenodes. It is therefore possible to identify the sender and re
eiver. Frequent pathreformations therefore signifi
antly in
rease the risk of a brea
h in sender/re
eiveranonymity. However, if the adversary is unable to identify the
onne
tion it is notpossible to su

essfully link together dete
ted senders and re
eiver on the network.STONe prevents the adversary from identifying the
onne
tion, be
ause the mes-sage in
lude the pa
ket header is en
rypted, the pa
ket size is uniform and the pathitself is not distinguishable from any other
ommuni
ation path on the network due torandom routing. This
learly prevents an adversary from
arrying out the prede
essoratta
k.The best strategy for an adversary to
ompromise sender/re
eiver anonymity is tomonitor traffi
 properties at the sender and the re
eiver nodes dire
tly. When, forexample, the total measured traffi
 volume over time is equal at two given nodesit is likely that they are
onne
ted. Also, an adversary may make use of additionalknowledge about the network topology to
arry out these interse
tion atta
ks. Toprote
t against su
h atta
ks it be
omes ne
essary to syn
hronize the network at leastpartially and
over the sender and re
eiver nodes.Figure 6.2 shows how STONe's anonymity degrades under random routing whengroups of 2, 4, 8, 16, and 32 nodes are syn
hronized. When only 2 nodes are syn
hro-nized the network is in the same state as if no syn
hronization takes pla
e. However,by adding only a little syn
hronization it is already possible to slow down anonym-ity degradation signifi
antly. Random routing supports effi
ient implementation ofsyn
hronization, be
ause every node knows the total traffi
 volume of the network.As a result, STONe is resistant against most traffi
 analysis atta
ks. Most impor-tantly, STONe prevents the Prede
essor Atta
k, be
ause an adversary is not able toidentify network
onne
tions, thus allowing frequent path reformations. STONe isalso s
alable and therefore supports large anonymity sets. Its
ore benefit in prote
tingagainst traffi
 analysis lies in the fa
t that it uses random routing instead of randomwalks used in previous approa
hes to anonymous
ommuni
ation. Random walksstill preserve lo
ality and therefore do not provide optimal anonymity.

6.2. Performan
e 87

0

0.2

0.4

0.6

0.8

1

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Fraction of compromised nodes

S
e
n

d
e
r/

R
e
c
.

A
n

o
n

.

32

16

8

4

2

Figure 6.2: Sender/Re
eiver Anonymity Degradation: Partially syn
hronized nodes under Ran-dom Routing in STONe stop the sender/re
eiver anonymity degradation.6.2 Performan
eOur theoreti
al se
urity analysis showed that STONe's features defeat many atta
ks.However, we need to verify that the a
tual implementation indeed realizes the desiredproperties. First of all, we investigate STONe's performan
e overhead.6.2.1 Mi
roben
hmarksIn the first series of experiments we measure mi
roben
hmarks on two STONe nodes.STONe runs on two Linux ma
hines that are
onne
ted via 100MBit/s Ethernet. Onema
hine has two 3.2Ghz Pentium 4 CPUs with 2GB memory, the other two 3GHzPentium 4 CPUs with 1GB memory. Both run Fedora Linux kernel version 2.6.9. Thegoal is to measure the baseline performan
e overhead of STONe.Hop-by-hop Laten
y The obje
tive of the first experiment is to determine hop-by-hop laten
y between the two nodes over Ethernet for various fragment sizes. Theround-trip time (RTT) of a
ommon ICMP ping is the bottomline
ase for the RTTbetween the two STONe nodes. In this s
enario STONe
arries out full en
ryptionbut no random routing or syn
hronization. In the experiment the message size variesfrom 512 to 4096 bytes. 4096 bytes is the maximum, sin
e this is also the maximum
apa
ity of the internal IPC pipeline between the STONe proxy and the STONe router.Figure 6.3 shows the results of this first experiment. STONe has a
onstant pro-
essing overhead of about 150 µsec for every message and an additional 2-5% foren
ryption.

88 Chapter 6. STONe Evaluation

0

500

1000

1500

2000

2500

512 1024 2048 4096

Fragment Size [bytes]

R
T
T
 [

µµ µµs
e
c
]

ICMP

STONe unencr.

STONe

Figure 6.3: Hop-by-hop round-trip times for different message sizes: Both RTTs for ICMP andSTONe in
rease at the same rate as the fragment size. STONe's overhead is approximately2-5% for en
ryption, and a fixed overhead of 150 µsec for the additional routing layer onevery node. Proxy overhead 40 µsecRouter overhead 60 µsecContext swit
h and IPC 40 µsecTable 6.1: Pro
essing overhead in STONe: Look-ups in the routing tables make up the largestshare of message pro
essing time. The remaining time is spent by the proxy and the OS-baseds
heduling and
ontext swit
hes.Table 6.1 shows the time spent during the message pro
essing. A message spendsmost of its time in the router when it looks up the next hop. The proxy itself hassystem
alls for reading and writing data, and the rest of the time is spent on
ontext-swit
hes and message
opying between the proxy and the router.The two-pro
ess ar
hite
ture in STONe is responsible for some of the overhead.A single pro
ess
ould redu
e the overhead by 50-100 µsec. However, the routerwould not be prote
ted from outside atta
ks, espe
ially when the network sta
k isunder a DDoS atta
k. In our
urrent ar
hite
ture the router monitors traffi
 patternsat the Proxy and automati
ally dete
ts when it is being atta
ked. It
an then startanother Proxy that listens to a different port. For performan
e reasons it may also beworthwhile to use kernel threads instead of user-level pro
esses. However, the
urrentPlanetLab ar
hite
ture has
onstraints that prevent the use of kernel threads.End-to-End Throughput In the se
ond experiment we determine STONe's end-to-endthroughput between these two nodes. We measure the average throughput duringa large file transfer from one node to the other via the Trusted Stream Servi
e (TSS).In the experiment we
hange the maximum window size as well as the fragment for

6.2. Performan
e 89every different run.

0

2000

4000

6000

8000

10000

12000

14000

4096 8192 16384 32768 65536 131172

Max. Window Size

[bytes]

T
h

ro
u
g

h
p

u
t

[k
b

/s
e
c
]

4096

2048

1024

Exp

Tor

Figure 6.4: End-to-end throughput in STONe for different fragment sizes of 4096, 2048 and1024 bytes
ompared to the expe
ted throughput of the
onne
tion (Exp) and the measured Torthroughput (Tor): For large fragment sizes STONe a
hieves almost the expe
ted throughput forevery maximum window size. Smaller fragment sizes require more pro
essing overhead.Figure 6.4 shows themeasured throughput as a fun
tion of themaximumwindowssize. The expe
ted theoreti
al throughput is max window size
2·RTT

or the maximum band-width of the
onne
tion, whi
hever is smaller. The RTT between the two nodes is
100µsec and the bandwidth 100 MBit/se
. Therefore, the maximum possible through-put is about 12.5 MB/se
.TSS stalls when the maximum window size is smaller than four fragments, be
auseit does not saturate the underlying TCP
onne
tion, and TCP slows down. STONea
hieves almost the expe
ted throughput between two nodes, espe
ially when thesend window size be
omes large.In
omparison, the graph also
ontains the measured throughput of Tor by usingthe 'torify'
ommand, whi
h turns a standard so
ket appli
ation into a Tor so
ketappli
ation [75℄. Tor uses TCP flow- and
ongestion
ontrol me
hanism, whi
h is notoptimized for long delays in anonymity networks. As the graph shows Tor imposesa penalty of about 30% on throughput in general, whi
h is signifi
antly larger thanSTONe's minimum penalty under TSS.Thesemi
roben
hmarks show that STONe's prototype implementation
an a

om-modate reasonable throughput for most Internet appli
ations. In random routing thisimplementation a
hieves an average throughput that is
lose to the theoreti
al maxi-mum throughput. This is subje
t to further improvements as for smaller pa
ket sizesoverhead for
opying data between user-spa
e and kernel-spa
e o

urs. However, wehad to implement this prototype in user-spa
e and leave the kernel-level implementa-

90 Chapter 6. STONe Evaluationtion for future work, be
ause PlanetLab as our testbed does not permit kernel modules.For end-to-end appli
ation-level
ommuni
ation between dire
tly
onne
ted nodes,
opying pa
kets between user and kernel spa
e does not make any differen
e. But onmulti-hop routes this overhead o

urs on every single hop. As an additional optionSTONe
an redu
e the number of hops on the path at additional
ost for the routingtable spa
e and additional handshakes upon node join operations.6.2.2 Basi
 System Performan
eIn the se
ond series of experiments we run ben
hmarks on a large-s
ale environmentto validate our theoreti
al analysis about the network topology from earlier
hapters.S
alability S
alability is
ru
ial in STONe, sin
e a system for anonymous
ommuni-
ation requires a large anonymity set of nodes. In these experiments we measure theaverage number of routing table entries in a network of 16 to 512 nodes.

0

20

40

60

80

100

120

16 32 64 128 256 512 1024

Number of Nodes

E
x
p

e
ct

e
d

 N
u

m
b

e
r

o
f

R
o

u
ti

n
g

 T
a
b

le
 E

n
tr

ie
s

p
e
r

N
o

d
e

3;3
3;2
3;1
2;2
2;1
1;2
1;1

Figure 6.5: Routing Table Sizes for a variable number of STONe nodes N with b = 2 different valuesfor the digit in the address and parameters k; l with k virtual addresses and l alternative routingtable entries per node: The measured routing table size in STONe approa
hes the theoreti
alexpe
ted value S(N).Figure 6.5 verifies that the in
rease in routing table size is logarithmi
 in the size ofthe STONe network. Remember, that we have k addresses per node in the overlay and lalternative entries per routing table slot with a
orre
tion fa
tor. Therefore, the routingtable size S(N) is not exa
tly logarithmi
 but S(N) = k̄l(b − 1)(logb(k̄N))
(
1 − l−1

2

).

6.2. Performan
e 91To better illustrate the routing table sizes for different k and l we keep the numberof STONe nodes N
onstant but only
hange parameters k and l. Again, we measurethe routing table sizes and
ompare them against the expe
ted size.

0

20

40

60

80

100

120

140

k=1

l=1

k=1

l=2

k=1

l=3

k=2

l=1

k=2

l=2

k=2

l=3

k=3

l=1

k=3

l=2

k=3

l=3

k=4

l=1

k=4

l=2

k=4

l=3

k=5

l=1

k=5

l=2

k=5

l=3

Different k/l for N=128 nodes

N
u
m

b
e
r

o
f

R
o

u
ti

n
g

 T
a
b

le
 E

n
tr

ie
s

Figure 6.6: Routing Table Sizes for N = 128 with k virtual addresses per node and l entries perrouting table slot.Figure 6.6
ontains the number of routing table entries for
onstant number ofSTONe nodesN = 128. When l in
reases the routing table size in
reases polynomially.When k in
reases the routing table size in
reases logarithmi
ally. This is exa
tly whatwe expe
t from S(N).These results also show that STONe indeed supports high
hurn. Even for largenetworks with hundreds of nodes the number of required handshakes during an insertoperation for a joining node is limited.6.2.3 Random Routing on PlanetLabFinally, we evaluate the out
ome of random routing on PlanetLab. Remember thatit is the goal in random routing to prote
t against timing atta
ks and
ontextualatta
ks, su
h as interse
tion atta
ks. In addition, an adversary who is observingrandom
onne
tions should not be able to
ompromise sender/re
eiver anonymity orunlinkability.In this experiment we send STONe e
ho pa
kets from a random node to anotherarbitrary STONe node. We then observe the distribution in the number of hops it

92 Chapter 6. STONe Evaluationtakes to transmit the e
ho pa
kets between the two nodes. Finally, we measure theround-trip time.Path Length In this series of experiments wemeasure the number of hops betweentwo arbitrary nodes in STONe. Random routing
ausesmessages to take different pathsthrough the network, and therefore the number of hops is also random. Remember,the expe
ted path length in STONe's routing is
L(N) =

1

2
logb

(

N

k̄l
(
1 − l−1

2

)

)hops.

0

1

2

3

4

5

6

16 32 64 128 256 512 1024

Number of Nodes

E
x
p

e
ct

e
d

 P
a
th

 L
e
n

g
th

1;1
1;2
2;1
2;2
3;1
3;2
3;3

Figure 6.7: The average single path length between the same sender and re
eiver in randomrouting over time for different pairs k; l with k virtual addresses and l alternative routing tableentries per node.In the first experiment we measure the average number of hops between twoSTONe nodes on STONe networks of different sizes. Figure 6.7 shows that we alwaysapproa
h the expe
ted routing table size S(N), thereby proving our theoreti
al results.In the next experiment we
hange parameters k and l and measure the averagenumber of hops on a STONe network of N = 128 nodes. Figure 6.8 shows that wealmost always a
hieve the expe
ted value. When k is
onstant and l grows, the pathlength de
reases polynomially. When l is
onstant and k grows, the path lengthde
reases logarithmi
ally.

6.2. Performan
e 93

2

3

4

5

6

7

8

k=1

l=1

k=1

l=2

k=1

l=3

k=2

l=1

k=2

l=2

k=2

l=3

k=3

l=1

k=3

l=2

k=3

l=3

k=4

l=1

k=4

l=2

k=4

l=3

k=5

l=1

k=5

l=2

k=5

l=3

Different k/l for N=128 nodes

P
a
th
 L
e
n
g
th
 i
n
 R
a
n
d
o
m
 R
o
u
ti
n
g
 (
S
T
O
N
e
 h
o
p
s)

Figure 6.8: The average round-trip path length between the same sender and re
eiver in randomrouting for k virtual addresses and l alternative routing table entries per node for a STONe networkof 128 nodes.To evaluate random routing quantitatively we define a
ost fun
tion C(N) for theSTONe network as
C(N) =

S(N)

L(N)2
.The rationale for the definition of the
ost fun
tion is that the number of routing tableentries S(N) divided by the average path length L(N) results in the number of nodesof extra information per prefix slot. If this is the number of hops required to rea
hthe destination we have a balan
ed
ost of 1, sin
e this s
enario would
orrespond toa brute-for
e routing method.Figure 6.9 shows the graph for C(N). Some
ombinations of parameters as forexample k = 2, l = 2 � k = 4, l = 1 impose the same
ost. The general
on
lusion isthat l > 2 does not provide enough benefit in the
ase of N = 128. l = 2 seems tobe the optimal solution, sin
e some redundan
y is required, and the studies in earlier
hapters showed that l = 2 provides suffi
ient prote
tion against path failures.In the next step we not only measure the average path length but also the distri-bution of path lengths for different k and l. For the experiment we pi
k k = 2 and

l = 2 for the first run and k = 4 and l = 1 for the se
ond run, be
ause they both haveabout the same
ost.Figure 6.10 shows the measured results. The first notable observation is thatdifferent parameters for k and l
ause different varian
es. Smaller k seems to be

94 Chapter 6. STONe Evaluation

0

2

4

6

8

10

12

14

k=1

l=1

k=1

l=2

k=1

l=3

k=2

l=1

k=2

l=2

k=2

l=3

k=3

l=1

k=3

l=2

k=3

l=3

k=4

l=1

k=4

l=2

k=4

l=3

k=5

l=1

k=5

l=2

k=5

l=3

Different k/l for N=128 nodes

C
o

st
 F

u
n

c
ti

o
n

Figure 6.9: The
ost of random routing for k virtual addresses and l alternative routing table entriesper node in a network of N=128 nodes.preferable to redu
e the laten
ies. The distribution of the number of hops is modaland
onfirms the theory about the binomial distribution.In the next experiment we measure round-trip times on PlanetLab for N = 128 and
ompare them against Tor. In STONe we pi
k k = 2 and l = 2, sin
e this parameter pairtolerates faulty links and allows a

eptable
ost. In the experiment a node
onstantlysends messages to a fixed re
eiver via random routing. The re
eiver boun
es ba
kmessages via random routing, and the sender then measures the round-trip time ofthe message.Figure 6.11 shows STONe's RTTs on PlanetLab. The number of hops is binomiallydistributed, but the a
tual node-to-node delays have a heavy-tailed distribution whi
h
auses a stret
h in the total round-trip times. The average round-trip time is onlyaround 400msec, but the maximum round-trip time is about 1000msec.Figure 6.12 shows the distan
e in the number of hops it takes messages to get fromthe sender to the re
eiver and ba
k. As expe
ted it is binomially distributed with apeak at 7.Finally, figure 6.13 shows the
umulative distribution fun
tion over the hop-by-hop delays of the sele
ted 64 PlanetLab nodes. Hop-by-hop delays are usually between
30msec and 120msec, whi
h is realisti
 for a
ontinent-wide network. A trans
onti-nental ICMP e
ho a
ross the US usually takes about 70 − 100msec.In
ontrast to STONe, figure 6.14 shows the RTTs on Tor when using Tor so
ketsin
onne
tion with a user-level e
ho server over TCP. The standard deviation of the

6.2. Performan
e 95

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10

Number of Hops for N=128 in Random Routing

%
 S
e
n
d
e
r-
R
e
ce
iv
e
r
P
a
ir
s

k=2 l=2

k=4 l=1

Figure 6.10: Distribution of the distan
e in STONe between all sender/re
eiver pairs for N = 128:The path length is binomially distributed for different k and l.round-trip times is more
on
entrated around the average round-trip time, and theabsolute average value is larger. Tor's problem is that it is not fault-tolerant and
annoteasily swit
h to alternative routes when
ongestion o

urs.Anonymity The final experiments verify the anonymity
laims of STONe. In STONe,an adversary has to eavesdrop on the sender or re
eiver itself to
ompromise sender/re
eiveranonymity or unlinkability. This is mu
h stronger than what mix networks or onionrouting provide.For this experiment we
ount the number of messages that a single node forwards.When an adversary listens to
onne
tions leading to these nodes, this would be thedata volume she is able to
ount. To maximize the adversary's
han
es we generatetraffi
 only between sele
ted nodes in the entire network without any ba
kgroundnoise.Figure 6.15 shows the result. As predi
ted, only the sender and re
eiver haveforwarded more fragments than any other node, and the traffi
 over the remainingnodes is almost balan
ed be
ause of random routing.In the last experiment we want to test syn
hronization to bridge the gap betweensender/re
eiver and the rest of the nodes. This gap is responsible for anonymity
ompromises. For this experiment we set up a network of 8 nodes, transfer a large filefrom one node to another, and measure the throughput.Figure 6.16 shows the results. In a network of 8 nodes STONe smoothly approx-imates a maximum throughput. However, as shown earlier, the penalty for syn-
hronization is large. In the beginning the a
tual differen
e between the requiredthroughput λi and the average throughput λ̄ is large, and therefore the in
rement hasto be large as well. The resulting throughput λ̄+∆λmax then in
reases logarithmi
ally

96 Chapter 6. STONe Evaluation

0

200

400

600

800

1000

0 50 100 150 200

Echo Trial for N=64 in Random Routing

R
T

T
 [

m
se

c]

Figure 6.11: STONe's RTT between the same sender and re
eiver in random routing over time: Itshows that random routing results in a random RTT. The middle line marks the average RTTwhereas the other two lines delimit the standard deviation around this average RTT.over time as expe
ted. It is subje
t to future work to determine the optimal parametersfor syn
hronization and to minimize its overhead in large environments.

6.2. Performan
e 97

0%

5%

10%

15%

20%

25%

30%

2 4 5 6 7 8 9 10 11 12 13

Number of RTT Hops for N=64 in Random Routing

%
 E

ch
o

 P
a
ck

e
ts

Figure 6.12: STONe's distan
es in the number of hops for the round-trip experiment when N = 64in random routing. It shows that the distan
e for both ways is also binomially distributed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

RTT/Number of Hops [msec/hop]

C
D

F

Figure 6.13: Cumulative Distribution Fun
tion of RTT/Number of Hops in random routing: Itshows that the assumptions for hop-to-hop delays in the PlanetLab experiment are realisti
.

98 Chapter 6. STONe Evaluation

0

200

400

600

800

1000

0 20 40 60 80 100 120

Echo Trial

R
T
T
 [

m
se

c
]

Figure 6.14: Tor round-trip times for 4096 byte messages: In
ontrast to STONe's randomrouting the RTTs are more
on
entrated around the average. The verti
al lines mark theaverage and the standard deviation.

0

500

1000

1500

2000

2500

1

Node

N
u

m
b

e
r

o
f

fo
rw

a
rd

e
d

 f
ra

g
m

e
n

ts

Figure 6.15: Anonymity in Random Routing � Counting the number of forwarded fragments: Therouting path is not re
ognizable, but the sender and re
eiver
learly sti
k out of all the nodesin the STONe network.

6.2. Performan
e 99

0

100

200

300

400

500

600

Time

T
h
ro

u
g
h
p
u
t

[k
b
/s

e
c]

Figure 6.16: Syn
hronized Communi
ation for N = 8: The throughput approa
hes the averagelogarithmi
ally when a single
onne
tion sends at maximum throughput.

Chapter 7
Related WorkSTONe interse
ts with many different resear
h areas. The first part of this
hapteris about Trusted Computing and Trusted Operating Systems. There is a large bodyof work on these topi
s, whi
h are long-standing resear
h problems. In the se
ondpart of the
hapter we survey Se
ure Communi
ation. In the third part we look intoalternative approa
hes for anonymous
ommuni
ation and Traffi
 Analysis. After thiswe
ompare existing ar
hite
tures for se
ure and anonymous
ommuni
ations. In thelast part we des
ribe the related work of the appli
ations we implemented on STONe.7.1 Trusted Computing and Trusted Operating Systems7.1.1 Trusted ComputingTrusted Computing
overs two main areas: One is how to prote
t exe
ution againstan adversary, and the other is how to prove genuity and trust of a platform.The idea of prote
ting program exe
ution against tampering in
ommodity
om-puters is not new [116℄. First approa
hes have been implemented in tamper-resistantmodules using
ryptographi
 te
hniques to se
ure
ommuni
ation and storage [109℄.This work presents the base of today's Trusted Computing systems. Further de-velopment are
ryptographi
 Co-pro
essors [201℄ that implement
opy prote
tion,ele
troni

ash or se
ure postage in distributed systems. Se
ure
ryptographi
 Co-pro
essors were one of the first systems that provided sealed tamper-resistant storage.Re
ent resear
h des
ribes how to a
tually build a sealed storage system for se
rets withminimal ar
hite
tural support [118℄. In this resear
h user se
rets are de
oupled fromhardware devi
es, without the requirement for built-in devi
e se
rets.Exe
ute-only memory [186℄ is a hardware platform on whi
h memory
ontent istamper-resistant but not hidden as in Trusted Computing. However, XOM is proneto replay atta
ks whi
h need to be fixed by additional memory integrity
he
ks [169℄.Further studies explore how to run an untrusted operating system on su
h an ar
hite
-101

102 Chapter 7. Related Workture [122℄. Trusted operating systems have to be evaluated yet. A similar, but differentapproa
h to tamper-resistan
e is AEGIS, a tamper-evident ar
hite
ture [182℄. Similarto XOM, all
omponents external to the pro
essor are untrusted, but XOM providesa larger number of pro
esses and is more flexible on the appli
ation-level. Intel'sExe
ute Disable Bit uses a similar
on
ept on the
urrent Intel Pentium ar
hite
tureto provide a bit that disables
ode exe
ution in a memory segment. This is a powerfulprote
tion method � espe
ially against buffer overruns.The idea of using virtual ma
hines for strong isolation has been around for awhile [133℄. Another approa
h for pro
ess isolation in Trusted Computing is to useVirtual Ma
hines [87℄. However, for example, by using virtual ma
hines su
h as theVServer in PlanetLab [11℄ for isolation and attestation it is possible to implementTrusted Overlay Networks. Mi
rosoft's NGSCB is an implementation for Trusted Com-puting [79℄ that uses a similar memory prote
tion s
heme. Software-only prote
tionagainst tampering is a hard problem, but there has been some re
ent work on
ontrol-flow integrity
he
ks against a limited adversary [26℄.Authenti
ation and trust on the hardware platform have also been widely studied.Intel was the first to introdu
e serial numbers for its pro
essors to identify hardwareplatforms [8℄. The se
ure boot me
hanism by Arbaugh [32℄ has defined a new prim-itive: Attestation. The idea of attestation is that all
omponents of a PC have to beloaded and verified su

essively, starting with a verifiable small
ode base as the rootof trust � in this
ase a PC's BIOS. Attestation defines the trust relationship betweenthe
omponents and is also a method for implementing a

ess
ontrol. A pro
essis trusted only if it attests to the operating system. The Terra system suggests waysto implement attestation using Virtual Ma
hines and SSL [87℄, but the downside oftheir approa
h is heavy overhead and its limitation to monolithi
 operating systems.SWATT is a software-only approa
h to attestation of memory
ontents [166℄.TCPA is an industry
onsortium that set up a standard for Trusted Computinghardware [21℄. In Trusted Computing it is the
ertified platform key that is a quasi-identifi
ation of platforms. However, this raises priva
y
on
erns for attestation sin
ethese identities should only be revealed when a platform is
ompromised. Groupsignatures and dire
t anonymous attestation address this problem [51, 48℄. There isalso resear
h work on trying to identify a platform based on its hardware properties,whi
h
ould be regarded as an impli
it form of authenti
ation. Timing behaviorof TLB a

esses is a property that is hard to emulate, and it
an therefore be used toverify that a parti
ular software runs on the hardware and not a virtual ma
hine [107℄.Remote devi
e fingerprinting identifies devi
es in a network based on the
lo
k skewin TCP timestamps [114℄.Trust and se
urity in operating systems is mostly an unsolved problem. Everyday new se
urity brea
hes make the news. Common examples are exploits like buffer

7.1. Trusted Computing and Trusted Operating Systems 103overruns or new phishing atta
ks bymalware on the PC [3℄. Some worms or viruses areharmless and simply waste bandwidth by spreading themselves through the Internet.Others let the adversary
ontrol the vi
tim's system, erase valuable data, and turn
ompromised systems into a Bot-Net whi
h the adversary
an use to atta
k serverswith large resour
es [103℄.The main problem is inse
ure user interfa
es and software bugs that allow system
ompromises. For example, in some
ases a user
onne
ts to a server, and he
on-firms that he wants to see the website despite problems with the
ertifi
ate. Thereby
onfidential information may leak or untrusted
ode may
ompromise the system.7.1.2 Trusted Operating SystemsOperating systems need to provide support for appli
ations to prote
t against theseatta
ks. As fun
tionality of operating systems in
reases they in
orporate more
ode,but single modules do not get prote
ted. One example is the integration of InternetExplorer into Windows, whi
h over the years has proven not to result in any strongbenefits for the user and furthermore opens additional doors for an adversary to atta
kthe OS. Another example is devi
e drivers in operating systems: Devi
e driver
rashesbe
ome a serious problem for operating systems reliability [184℄, and virtual ma
hinesare an effi
ient prote
tion method against it. However, being a sour
e for
rashes alsomeans being a sour
e for potential se
urity bugs.The idea for trusted operating systems has been around for de
ades, but often trustis asso
iated with information flow or a

ess
ontrol (e.g.[132℄). In the literature,�trust� in operating systems is often not well-understood. Even the original Bell andLaPadula paper on se
urity in Multi
s [39℄ does not define what it means for a pro
essto be trusted. Later, Neumann et al. implemented a provably se
ure operating system(PSOS) [135℄. PSOS is a hierar
hi
ally-stru
tured
apability-based operating systemdesign. Every layer manages obje
ts of a
ertain type and these obje
ts are a

essed by
apabilities. PSOS
an be
onsidered as the first type-safe operating system. Rushbyevaluates approa
hes for the design and verifi
ation of a se
ure system [155℄: He saysthat se
urity systems should be
on
eived as distributed systems in whi
h se
urity isa
hieved by isolation but also partly by trusted fun
tions performed by some system
omponents. The Fluke OS is a first step towards this type of operating system [82℄.Trusted Overlay Networks inherently implement end-to-end se
urity in distributedsystems [156℄ and also tolerate some untrusted platforms and give them trust againsttampering by using
ommon te
hniques against Byzantine failures [115℄.In general there are three methods for isolating appli
ations, and they all havedifferent root of trusts. First, appli
ation-level sandboxing isolates appli
ations fromea
h other [188℄. This is similar to virtual ma
hines or simulators on the appli
ation-level (e.g. Java, CLR, SimOS, Wine or SoftWindows). Se
ond, virtual memory prote
ts

104 Chapter 7. Related Workthe memory of single pro
esses from ea
h other, and only kernel-level pro
esses
anbreak this prote
tion. Third, hypervisors repli
ate the hardware as a whole ma
hine;prote
tion depends only on a small hypervisor
ode base. The problem of the firsttwo approa
hes is that they
annot prote
t against operating system faults whi
h isa
ommon
ause of failures, and when they
ommuni
ate with untrusted operatingsystem
ode additional prote
tion is required [192℄. Furthermore, they rely on a large
ode base for the root of trust.Earlier papers on hypervisor-based fault-toleran
e emphasize the ability for
rashre
overy [50℄, and this as well improves the reliability of operating systems againstfailures and also Byzantine faults. For example, when an adversary gets
ontrol overthe print spooler be
ause of a software bug he should not automati
ally get a

ess tothe network sta
k. Isolation and modularization are not ne
essary between all pro-
esses. The most signifi
ant prote
tion boundary is between user- and kernel-spa
e,as well as between kernel modules like devi
e drivers. Often an outside adversaryexploits a vulnerability in a system
all to get a

ess to a root shell and therefore full
ontrol over the vi
tim system. With isolation this is not a problem. In a multi-userserver system like PlanetLab [38℄, where every user has her own environment, pro
essisolation is required on the virtual ma
hine level. However, on a single-user systemas a PC a lo
al user with root a

ess has
ontrol over the whole ma
hine. The mainadversary in this s
enario is an intruder from the network. Virtual memory prote
tionis good enough for many pro
ess-to-pro
ess isolation te
hniques, and the penalty for
ontext-swit
hing is often lower than for virtual ma
hines, sin
e a pro
ess does notrequire suspending and resuming full operating systems state. For high reliability itis useful to have virtual ma
hines, be
ause it is straightforward to reinstate ma
hinestate in
ase of a failure.A trusted operating system layer is important for
lients and servers. On serversit effi
iently in
reases fault-toleran
e and robustness against se
urity bugs betweendifferent users. On the
lient-side strong prote
tion has to take pla
e between user-spa
e and kernel-spa
e. Furthermore, user-interfa
es require prote
tion as well. Thephilosophy behind
lient-side operating systems is that the platform should be openand the user
ontrols everything [117, 79℄. Client operating systems have to preserveopenness but make administration and user intera
tion more se
ure. Thin
lients in
ontrast are
entrally
ontrolled and have their appli
ations in lo
al networks [161℄.These approa
hes have never evolved in the wide area, sin
e hardware is still
heaper than network bandwidth. Furthermore, availability of high bandwidth wire-less networks is often still restri
ted outside offi
e buildings, and it is not
lear whethera user wants his information stored on a
entral server that may fail or be
ome in-se
ure. There has to be a trust relationship to this
entral authority for se
urity andpriva
y whi
h may only work in lo
al networks, ex
luding ubiquitous laptop
om-

7.2. Se
ure Communi
ation 105puters.Virtualizing a whole operating system uses lots of system resour
es and is hardlys
alable on a normal PC [87℄. However, new hypervisor approa
hes that use paravitu-alization
an have mu
h higher performan
e on
ommodity operating systems [36℄or provide mu
h better s
alability [195℄.On the appli
ation-level in Distributed Systems there has also been a
onsider-ate amount of work on
lassifying information. In program partitioning a
ompilerpartitions a program depending on the trust level of data during
omputation to pro-te
t
onfidential information from untrusted hosts [202℄. Similarly, we
an partitionprograms for privilege separation, where privileged instru
tions su
h as setuid
an beexe
uted in a prote
ted monitor pro
ess [52℄.System updates and attestation are another
ru
ial aspe
t of trusted operatingsystems. Attestation is an operation that verifies authenti
ity of the
ode. However,this signature only tells the attesting entity that it is
ertified by some manufa
turer.It does not ne
essarily verify what it does or whi
h bugs it fixes. Semanti
 attestationis a new way of defining attestation [93℄.A modular ar
hite
ture that allows trusted extensions similar to Exokernel [80℄has advantages for systems updates, sin
e single modules
an be easily
ertified andupdated separately. A trusted
ompiler used in systems like SPIN
an support theimplementation of these update systems [40℄.Mi
rosoft's singularity kernel [98℄ follows the language-based approa
h to trustedoperating systems by using managed or trusted
ode in the operating systemmodules.However, this restri
ts the software-hardware interfa
e. The operating system vendor
ontrols the virtual ma
hine, and this has the danger that the system be
omes aproprietary virtual ma
hine.7.2 Se
ure Communi
ationThe most important systems and proto
ols for se
ure
ommuni
ation in the Internetare SSH [14℄, SSL [15℄, IPse
 [108℄, and TLS [73℄. However, even se
uring
ommuni-
ation on the network or appli
ation layer does not mean that the network is reallyse
ure. The strongest threats are Byzantine failures from mali
ious atta
ks.Byzantine faults in the form of software bugs are
ommon in today's Internet.Nodes get
ompromised and adversaries take them over to join the node to a wholeBot-Net of
ompromised nodes. Prote
ting against Byzantine failures is desirable indistributed systems.Anonymity proto
ols require prote
tion of the network sta
k against ByzantineFaults as well, or it be
omes hard to design an anonymity proto
ol that is reliableagainst Traffi
 Analysis. There are already systems that prote
t against Byzantine faults

106 Chapter 7. Related Workin networks and distributed appli
ations like se
ure routing [56℄ or virtual ma
hineand repli
ation te
hniques like BFT [57℄. It is the idea to use these in anonymitynetworks as well.The first alternative to prote
t the network fromByzantine failures is se
ure routingsystems. They have multiple
omponents: First, they maintain routing state againstan adversary who is tampering with the system. Se
ond, they forward messages se-
urely and prote
t against mali
ious routers in the system who eavesdrop on traffi
,drop pa
kets, or reroute pa
kets in the network. For example, se
ure BGP [97℄ prote
tsagainst an atta
ker who tries to modify routing state in BGP, and routing in Fatih [128℄prote
ts against an atta
ker onmessage forwarding. Another approa
h for se
ure rout-ing in stru
tured peer-to-peer networks is to implement self-
ertifi
ation of appli
ationdata in the network [56℄ whi
h
an tolerate about 25%mali
ious nodes. An additionalproblem in peer-to-peer networks is the Sybil atta
k [78℄. It is often easy to obtainnetwork addresses or nodeIDs, and
ertifi
ates have to be used. This is not ne
essaryfor IP addresses, sin
e they are generally more diffi
ult to obtain in large amounts.Another te
hnique is, like in STONe, to use Trusted Computing for distributing nodeaddresses in peer-to-peer networks to prote
t against these atta
ks [35℄.The se
ond alternative is to prote
t the network sta
k of the router against atta
kson its state. One possibility is to use te
hniques from distributed systems su
h asstate ma
hine repli
ation like BFT [57℄. However, repli
ation is relatively expensive.In addition it is also possible to establish lo
al prote
tion like standard sandboxingor virtualization te
hniques to dete
t mali
ious behavior or intrusion dire
tly on therouter. STONe provides the novel idea to use Trusted Computing to prote
t thenetwork sta
k against failures.De
oupling Byzantine faults from anonymity proto
ols makes anonymity proto
oldesign easier. When no Byzantine faults o

ur, interse
tion atta
ks are still possiblewhile routers from a single trust domain
ollude. A single trust domain would beequivalent to a
entralized message forwarding network, and this is prone to passivelogging atta
ks. With at least two trust domains, one domain knows the senderand the other the re
eiver, but neither both. In a system that has random Byzantinefaults, a single adversary
ould
ontrol a Bot-Net a
ross trusted domains and prote
tionbe
omes mu
h more diffi
ult.In systems with multiple but stati
 trusted domains it is good enough to have afixed number of multiple hops that are spreading a
ross at least two trust domainsthat do not
ollude [84℄. In a system with Byzantine faults, however, the path lengthdepends on the total number of nodes in the network, the largest domain size, and theexpe
ted fra
tion of infe
ted hosts that
ould potentially be
ome part of a Bot-Net.There is a trade-off between implementing a system that prote
ts against Byzantinefailures and one that uses longer paths instead.

7.3. Anonymous Communi
ation 107Byzantine failures also have an adverse effe
t on the proto
ol that distributes therouting information. Flooding or broad
asting this information is more robust againstByzantine failures [142℄, but it is inherently ineffi
ient, sin
e it
onsumes networkbandwidth and router resour
es that are exponential in the number of messages.When the system does not use flooding, it has to
ope with possible traitors thatimitate legitimate nodes. In a system without Trusted Computing additional
ryptog-raphy is needed to prote
t against these atta
ks [142℄.Lastly, there are Denial of Servi
e atta
ks that disrupt
ommuni
ation. DistributedDenial of Servi
e atta
ks (DDoS)
an o

ur on different layers. The brute-for
e methodis to flood a server with network pa
kets to disrupt servi
e. However, this atta
krequires a vast amount of network bandwidth that is hard to obtain. On the networklayer an adversary
an exploit a leak in TCP that keeps tra
k of half-open
onne
tionsin memory. When the adversary floods the server with su
h SYN requests it runsout of memory for new
onne
tions. A
ommon te
hnique is to use SYN
ookies toprote
t against this atta
k [20℄. A SYN
ookie
ontains a unique sequen
e numberthat is the keyed hash of the
onne
tion information (sour
e IP address and portand destination IP address and port). The server does not have to store informationanymore be
ause the pa
ket with the sequen
e number during the handshake is self-verifying. Furthermore, there exist DDoS atta
ks on spe
ifi
 proto
ols [70℄.Other methods to prote
t against DDoS atta
ks on the network layer are IP tra
e-ba
k and hashba
k te
hniques [160, 176℄, and also the use of
apabilities [200℄. Be-
ause in network layer atta
ks IP addresses are often mimi
ked we
an modify therouters to add some extra information to the pa
ket that identifies the
ommuni-
ation path and therefore the sender. All pa
kets with the same path identifi
ationinformation that have been mali
ious
an be filtered a

ordingly. These methods
analso be used to filter pa
kets.DDoS atta
ks are most powerful on the appli
ation-level. When an adversarylaun
hes an appli
ation-level DDoS atta
k on a server its goal is to starve its internalresour
es su
h as CPU or disk I/O. There are multiple ways to prote
t against thisatta
k. One is to use
omputational puzzles to de
rease the rate of server a

esses [71,194℄. Another method is to use reverse Turing tests to distinguish human users fromautomated atta
kers [103℄. To laun
h su
h an atta
k a whole network of
lients isrequired that simulates a flash
rowd. This situation normally only happens whenmany users a

ess the same website and ex
eed the normal usage level.7.3 Anonymous Communi
ationThere exist quite a few
ommer
ial or open-sour
e systems for anonymous
ommuni-
ation. Anonymizer [2℄ is a simple trusted HTTP proxy for anonymous web browsing.

108 Chapter 7. Related WorkIt is like a NAT between the sender and the re
eiver of the
onne
tion and prote
tsagainst passive logging atta
ks on the re
eiver by repla
ing the sender's IP address.However, su
h systems are a single point of failure and trust, and a
losed, non-verifiable system
an potentially log and store all sour
e and destination addresses ofmessages it forwards. Tor is another system for anonymizing
ommuni
ation [75℄. In
ontrast to Anonymizer it uses a set of proxies, and if one proxy gets
ompromised itdoes not
ompromise the whole system. Freenet, in
ontrast, is a distributed systemfor file-sharing that provides some anonymity, but its main goal is to be
ensorship-resistant and to provide anonymity of
ontent. A single file is split up in small pie
esthat are hard to assign to the originator. Distributed Hashing is used to find all thepie
es and put them together [62℄. A single file
an only be retrieved sequentially,pie
e by pie
e.Today's systems like Anonymizer, Tor, or Freenet are the state-of-the-art for ano-nymity in distributed systems. However, their prote
tion against Traffi
 Analysis isoften poor. Freenet's prote
tion against Traffi
 Analysis is based onmix networks, andTor does not prote
t against Traffi
 Analysis at all.Anonymous
ommuni
ation is a
ombination of many different areas. One area issteganography. Two parties may hide their
ommuni
ation in some
overt
hannelsof network proto
ol headers or digital images. For example, TCP
ontains some
overt
hannels [172℄. However, most of these te
hniques have been proven to be inse
ure.Theoreti
ally, anonymous
ommuni
ation is related to se
ure multiparty
ompu-tation whereN parties have private inputs, but they want to
ompute a boolean
ir
uitthat outputs a single publi
 value. An adversary with a

ess to the
ir
uit is not ableto tell what the inputs were and who gave whi
h input [89℄. Anonymous Commu-ni
ation is only a subset of se
ure multiparty
omputation. Using se
ure multiparty
omputation for anonymous
ommuni
ation is inherently ineffi
ient [146℄.In syn
hronous networks anonymous
ommuni
ation ofN parties
an be a
hievedin O(log N) steps by rapid mixing [146, 47℄. Other systems have been proposed basedon se
ret sharing [63℄. However, the asyn
hronous
ase whi
h is more
ommon,requires additional
over traffi
 to hide a

ess patterns. This has been elaborated inthe Oblivious RAM [90℄ where memory a

ess patterns are hidden. Oblivious RAMuses a Bat
her network to shuffle the memory lo
ations. This works well in a physi
almemory be
ause it has a fixed size. In STONe, however, the number of parti
ipatingnodes is dynami
.Therefore, Chaum proposed mix networks for asyn
hronous email
ommuni
a-tion [58℄. Mixes have a variety of appli
ations, espe
ially in voting. A single mix
olle
ts messages and dispat
hes them at random, so that it is hard for an adversaryto
orrelate in
oming with outgoing messages. A single mix is a single point of fail-ure when
ompromised and often also prone to brute-for
e dis
losure atta
ks [112℄.

7.3. Anonymous Communi
ation 109
KKnn KKnn--11 KKnn--22 KKnn--33 KK11

KKnn(x(xmm))
KKnn(x(xmm--11))
KKnn(x(xmm--22))
KKnn(x(xmm--33))

KKnn(x(x11))
......

Figure 7.1: Mix Cas
ades: Several mixes are arranged in a linear
hain. Every mix delaysmessages, and an adversary who only observes one mix is not able to tra
e messages.Therefore, mixes are often
onne
ted into mix
as
ades as shown in figure 7.1. Thenumber of hops in a mix
as
ade depends on the number of different trust domains.Ideally, every hop is within different trust domains. The disadvantage of mix
as-
ades is reliability. Be
ause a
as
ade is only a fixed path through the network, asingle broken mix destroys the
ommuni
ation path. Free peer-to-peer mix networkswould solve this problem. However, the degree of anonymity de
reases be
ause dif-ferent paths get routed through different mixes. STONe's random routing alleviatesthis problem be
ause it
hanges the path frequently and would therefore let randompaths go through the same mixes.Pool mixes [64℄ and stop-and-gomixes [112℄ are the typi
al type of mixes. Both areused for email
ommuni
ation. The differen
e is that pool mixes wait until enoughmessages arrive before they dispat
h them, and stop-and-go mixes delay messagesrandomly. However, stop-and-go mixes are prone to statisti
al dis
losure atta
ks [66℄.When the adversary wants to tra
e a single message she
olle
ts statisti
al informationabout all in
oming and outgoing messages in the mix. Mix networks known as so-
alled anonymous remailers have been su

essfully implemented for email anonymity.Early examples are Babel [91℄ andMixmaster [129℄. Mixminion is a re
ent anonymousremailer that now also uses link en
ryption [69℄.In general, mix networks are not useful for low-laten
y
ommuni
ation. On a busyrouter there is usually enough traffi
 for mixing, and additional non-uniform delay
an
ause pa
ket reordering � a
ommon problem in transport-layer proto
ols su
h asTCP. A less effi
ient way to provide anonymity on a low-laten
y network is to pad all
ommuni
ation with
over traffi
 [65, 144℄.Many proto
ols for anonymous low-laten
y
ommuni
ation therefore only pro-vide sender/re
eiver anonymity by hiding the sender and re
eiver addresses [185, 148℄.If they do not send
over traffi
 anonymity depends on the amount of real ba
kgroundtraffi
. Jap [9℄ orMorphMix [151℄ are a systemswithmixes that depend on the amountof ba
kground traffi
, be
ause mixes
an only delay pa
kets for a
ertain time interval,even if there is nothing to shuffle with. Then timing atta
ks are usually possible [121℄.In STONe we pi
k a different approa
h be
ause Trusted Overlay Networks already pro-te
t the sender address. STONe prote
ts against Traffi
 Analysis by random routing

110 Chapter 7. Related Workand syn
hrony.There are several reliability and reputation issues in mixes. How
an a mix betrusted ? Several issues similar to the ones in STONe
ome up in mixes as well [74℄,but if they are trusted we
ould as well use random routing instead to prote
t againsttraffi
 analysis as shown in this thesis.Fragile Mixes [149℄ provide a novel prote
tion me
hanism against a mix admin-istrator who is giving away logs. By doing so she would automati
ally
ompromiseher own anonymity. The assumption is that a mix administrator also parti
ipatesin anonymous
ommuni
ation. However, this does not prote
t against an outsideadversary eavesdropping on messages.One of the largest-s
aling systems for anonymous routing today is Tor [75℄. Toris based on the idea of onion routing [185℄ where pa
kets get en
rypted in layersand every hop along the route strips off one layer and sees the pa
ket header that
ontains the address to the next hop. Tor is a large-s
ale implementation of onionrouting and solves problems from the first generation. For example, onion routingwas fairly ineffi
ient be
ause it used publi
 key
ryptography. Tor now sets up sharedkeys between the sender and the hops along the path. In addition Tor implementslo
ation-hidden servi
es, whi
h are similar to anonymous STONe So
kets. In lo
ation-hidden servi
es, two parties � Ali
e and Bob � trust that a rendez-vouz point will neverleak information about them. The rendezvous point is the anonymous address thatAli
e and Bob use to
ommuni
ate. However, this is still a single point of trust, andSTONe strengthens this vulnerability, be
ause it
an rely on the Trusted Computinghardware. Another disadvantage of Tor is that it uses sour
e routing be
ause it needsto
ompute the onion in advan
e, and it is less flexible in resilien
e than STONe.Cashmere or P5 address resilien
e in anonymous
ommuni
ation by using group
ommuni
ation [204, 170℄. Every group in the network shares the same key, anden
rypted pa
kets get forwarded to all members of a group. Interse
tion atta
ks arethe main problem of these proto
ols. By leaving a group and joining another anadversary
an learn whi
h nodes are online, and she
an also de
rypt traffi
 of thisgroup. In STONe we de
ided to solve the resilien
e problem by adding redundan
y tothe overlay stru
ture and not by using multi
ast. STONe is equivalent to a multi
astnetwork with N groups where N is the number of nodes. Mix networks are known tobe vulnerable to timing atta
ks [121℄.Crowds [148℄ uses a different approa
h for anonymous
ommuni
ation. InCrowds,upon message arrival anode flips a
oin and either forwards the message randomly toa hop or sends it dire
tly to the re
eiver. This te
hnique is similar to random routingin STONe, but the problem in Crowds is that it does not provide re
eiver anonymity.Also, it is basi
ally an anonymous web proxy and does not
are about appli
ation-level
ommuni
ation. Frequent path reformations make most anonymity systems,

7.3. Anonymous Communi
ation 111espe
ially Crowds, vulnerable against the Prede
essor atta
k in whi
h an adversaryfinds the sender by investigating the prede
essor of the message [171℄.Tarzan [84℄ is a peer-to-peer overlay network that is transparent on the IP-layer.It sets up
ir
uits in advan
e and uses lo
al mimi
 traffi
 to hide traffi
 patterns. InSTONe we de
ided in favor of a global traffi
 s
heme that may in
rease the laten
ybut provides stronger prote
tion against anonymity. Tarzan also addresses the issueof appli
ation transparen
y on IP-Level, but does not integrate appli
ation-level ano-nymity with anonymous routing like STONe. The link from Tarzan to the appli
ationis a vulnerability. STONe also has the advantage that it gets strong hardware supportand does not have to
ope with mali
ious hosts. Tarzan also uses sour
e routing and
annot easily route around failures.Broad
ast networks like DC-Nets [59, 175℄ or XOR-Trees [77℄ are syn
hronous.In Dining Cryptographers every node broad
asts an en
rypted message at the sametime to all other parties, and the parties are not able to tra
e the originator of themessage. In DC-Nets, however, all parties have to play fair be
ause they
an jam the
ommuni
ation. The advantage of DC-Nets is that there is no additional delay in the
ommuni
ation, but instead they use bandwidth. XOR-Trees implement a broad
asttree to redu
e the number of messages in the broad
ast system.There are
ontroversies about the ethi
s of anonymous
ommuni
ation [44, 137℄.People
an use the
ommuni
ation networks to establish �Darknets� to ex
hangeillegal
ontent. Digital
ommuni
ation networks enhan
e old-fashioned �sneakernets� to ex
hange pirated software. This, of
ourse,
omes down to ongoing legaldisputes between
ontent providers and network providers as in theMGMvs. Groksterlawsuit [12℄. System Routing Traffi
 Analysis AppAnonymizer [2℄ Single Proxy Trusted Proxy YesFreenet [62℄ Onion Routing Mix Network NoFreedom [33℄ Onion Routing Random Walk YesPipenet [65℄ Onion Routing Cover Traffi
 NoTor [75℄ Onion Routing Random Walk YesCrowds [148℄ IP Random Walk NoJap [9℄ Onion Routing Mix Network NoHerbivore [175℄ DC Broad
ast NoCashmere [204℄ Onion Routing Broad
ast YesP5 [170℄ IP Broad
ast NoTarzan [84℄ Onion Routing Cover Traffi
 YesMorphMix [151℄ Onion Routing Mix Network NoAnon [96℄ Onion Routing Cover Traffi
 YesISDNMixes [144℄ Swit
hed Cir
uit Mix Network YesTable 7.1: Comparison of Systems for Anonymous Communi
ation

112 Chapter 7. Related WorkTable 7.1 gives an overview of
ommon systems for anonymous
ommuni
ation.The se
ond
olumn
ontains the type of anonymous routing the system uses. Asinge proxy means that the system only
onsists of one large proxy network that isfirewalled from the outside. Another alternative is just plain Internet routing (IP),Overlay routing, Dining Cryptographer's (DC) or Onion Routing. The next
olumnshows themeasure the system provides against Traffi
 Analysis. A trusted proxymeansthat the anonymous routing system is trusted and shut off from the atta
ker. It mayor may not provide measures against end-to-end traffi
 analysis. In a random walkthe
lient pi
ks a set of random nodes to form the path. A broad
ast s
heme prote
tsagainst Traffi
 Analysis by sending the same message to multiple nodes. Nodes mayalso send
over traffi
 only to prote
t against Traffi
 Analysis. Mix networks are also
ommonly used. They sometimes in
lude a random walk and
over traffi
, but thebasi

hara
teristi
 of a mix is that it delays and shuffles messages. The fourth
olumndes
ribes whether the system supports appli
ation-level anonymity. Often the systemsuse pseudonyms instead of IP addresses and
reate hidden rendez-vous point like Tor.7.4 Overlay Networks and Internet Ar
hite
tures7.4.1 Overlay NetworksModern overlay networks emerged almost a de
ade ago with the advent of Internetservi
es. The main problem was to enhan
e performan
e for web browsing, andtherefore some kind of web
a
hing method had to be established. The theoreti
albase of this work for stru
tured overlays is
onsistent hashing [105℄, from whi
h theAkamai network [1℄ emerged. Today there exists a large variety of overlay networks �stru
tured or unstru
tured.STONe borrows several ideas from stru
tured overlay networks and uses a hyper-
ube topology similar to CAN [147℄ to enhan
e load-balan
ing and resilien
e. Thedifferen
e between STONe and
ontent-distribution networks [158℄ is that STONe isneither a lo
ation servi
e that finds obje
ts in distributed systems nor a distributedstorage system. STONe a routing overlay. It does not have to optimize for
a
hingperforman
e or repli
as, but it needs to provide for alternate routes.Topologies for
ontent-distribution networks other than CAN in
lude a ring [180℄or tree [154℄ with different failure properties. The main
on
lusion of that resear
h isthat a ring has the best fault-toleran
e properties [92℄. Bamboo [152℄ is a re-engineeredDHT for Pastry that optimizes for frequent and large membership
hanges.Two popular wide-area implementations of these suggestednetworks are CoDeeN [193℄,Tapestry [203℄, andOpenDHT [153℄. CoDeeN is a network of proxy servers for
ontent-distribution, whereas OpenDHT is a distributed storage fa
ility. Tapestry [203℄ imple-ments a routing overlay for lo
ating obje
ts and servi
es.

7.5. Instant Messaging 113The downside of stru
tured overlays is that they do not adapt well to the het-erogeneity of the Internet. They also have high maintenan
e
osts and are limitedin sear
hing for data, sin
e they only support simple exa
t-mat
h. Therefore, stan-dard file-sharing appli
ations often use unstru
tured overlays [7, 10℄. Some of theseproblems, like sear
hing, are more of a problem in
ontent-distribution overlays thanin routing overlays. However, most of these problems in stru
tured overlays
an befixed with hybrid properties of unstru
tured overlay [55℄, and STONe also uses someof these results to optimize performan
e.7.4.2 Internet Ar
hite
turesOverlay networks have the ability to fix problems in existing Internet ar
hite
tures orextend them with new features. For example, Resilient Overlay Networks (RON) [30℄have been designed to alleviate
ommon problems of path failures in the Inter-net [159℄. Another
ategory is Internet se
urity ar
hite
tures that prote
t againstDenial of Servi
e atta
ks [29, 110, 179, 200℄. DOA is an overlay that extends theInternet address spa
e beyond NATs [191℄. Other uses of overlays extend existingInternet fun
tionality like multi
ast [101℄ and QoS [181℄. Anonymity networks likeTor
an also be seen as an Internet anonymity ar
hite
ture [75℄. In STONe parti
i-pating nodes are authenti
ated by Trusted Computing hardware whi
h strengthensthe se
urity and anonymity, espe
ially against Byzantine failures. SOS and Maydayonly use lightweight authenti
ation and have weaker me
hanisms against Denial ofServi
e atta
ks.In addition to overlays that extend the Internet ar
hite
ture there exist severalapproa
hes for a next-generation Internet routing ar
hite
ture. The Nimrod routingar
hite
ture uses network maps (like road maps) instead of routing tables and letsthe
lients pi
k the routes, i.e. uses sour
e routing [54℄. Nimrod was designed tomake the network s
alable to a large number of nodes. Re
ent advan
es on next-generation Internet ar
hite
tures are NIRA [199℄ and FARA [61℄. They try to over
omethe addressing problem in the Internet and also address the la
k of resilien
e.7.5 Instant MessagingThere exist a variety of Instant Messaging systems that are
entralized su
h as AIM [4℄,Windows Messenger [24℄ or Yahoo! Messenger [25℄. Some of them have questionablepriva
y poli
ies that allow them to re
ord messages arbitrarily on the
entral server(e.g. [4℄). There are some new system that provide end-to-end priva
y and se
urityusing publi
 key en
ryption [23℄. This prote
ts priva
y in a
entralized system butdoes not prote
t against Traffi
 Analysis. Skype as a Voi
e-over-IP system is also adistributed approa
h to Instant Messaging [37℄. Similar to STONe, it uses an overlay

114 Chapter 7. Related Workstru
ture for forwarding messages reliably, but it also does not provide prote
tionagainst Traffi
 Analysis.7.6 Filesystems and File Sharing NetworksThere is a large number of network file systems for lo
al- or wide-area networks thatoptimize file system performan
e by
a
hing, as for example NFS [157℄, AFS [95℄,and xFS [31℄. The Coda file system repli
ates data on multiple servers to improveavailability [113℄.SFS was one of the first file systems that expli
itly provides server
ertifi
ation [124℄.When a
lient a

esses a file it finds the publi
 key in the file name and uses this publi
key to a

ess the server. This de
ouples key management from the file system andprevents an adversary from tampering with file names. The SiRiUS file system [88℄provides a se
urity layer file systems even without a trusted server for a

ess
ontrol asin SFS. SiRiUS uses
ryptography to provide a

ess
ontrol. Farsite [27℄ is a distributedde
entralized se
ure file system that prote
ts against Byzantine faults in an untrustedenvironment, but it does not prote
t against Traffi
 Analysis.In addition to standard network file systems there exists a variety of file sharingsystems that are design for publish-subs
ribe operations. These publish-subs
ribesystems are resistant against
ensorship and prote
t priva
y. Common examples arePublius [190℄, Tangler [189℄, Freenet [62℄, BitTorrent [5℄, and Mnemosyn [94℄. Are
ent study has shown that most of these implementations hide the traffi
 [104℄against simple mimi
 atta
ks. However, we know only that Freenet uses mixes toprote
t against Traffi
 Analysis.

Chapter 8
Con
lusion and Future Work
We have presented the design and implementation of Se
ure and Trusted Overlay Net-works (STONe). STONe demonstrates that emerging Trusted Computing te
hnologieswould provide a mu
h better platform for anonymous
ommuni
ation
omparedto today's anonymity systems. STONe's se
urity is based on two
ornerstones: Ahardware-based Trusted Computing Platform and an additional se
ret key. A user
anonly enter the system to send and re
eive messages anonymously if he is in possessionof both. If a traitor gets dete
ted its TCB
omes on the bla
klist and is hen
e ex
ludedfrom the system. To
ompromise the system an adversary has to over
ome the
ostof pur
hasing Trusted Computing Hardware and know the
hanging se
ret key. Thismodel is mu
h stronger than in
urrent systems for anonymous
ommuni
ation, butit is realisti
 and finally helps to implement anonymous
ommuni
ation. This workexplains the issues and pitfalls that o

ur when designing a more effi
ient system foranonymous
ommuni
ation based on Trusted Computing.We designed STONe as an overlay network that uses Trusted Computing to iso-late Byzantine failures, whi
h makes it possible to de
ouple prote
tion against traffi
analysis from network routing, thus providing more effi
ient and more se
ure anony-mous
ommuni
ation. STONe is resilient against
hurn and
ongestion, even in alarge-s
ale environment, but it also provides strong prote
tion against traffi
 analysis.To a
hieve these goals STONe uses random routing over a regular network topologysu
h as a hyper
ube, a novel te
hnique for anonymous routing. Unlike mix networksfor anonymous
ommuni
ation random routing over su
h te
hnologies is self-mixingand does not require expli
it message shuffling.At the appli
ation-level, STONe provides a so
ket endpoint to a

ess the anonym-ity network and a trusted name servi
e that maps names to self-
ertifying anony-mous identities. This delivers anonymity to the appli
ation endpoint and makesanonymous
ommuni
ation more robust against atta
ks that target appli
ation be-havior, su
h as name server queries. Further, it prevents a mali
ious appli
ation from115

116 Chapter 8. Con
lusion and Future Workmimi
king an arbitrary identity. We have built two appli
ations on top of STONe�Anonymous Instant Messaging and an Anonymous File System. The results of ourexperiments verify our
laims.STONe
an have many appli
ations, and is not only useful on the Internet. Em-bedded devi
es that use smart
ards are prote
ted against any outside atta
kers, andSTONe
an provide anonymity and therefore enhan
ed se
urity as well. An exampleis wireless
ommuni
ation of air
raft
omponents or
ar se
urity.There are many opportunities for future work on STONe. We still have to evaluateSTONe in a real system with Trusted Computing hardware and operating systemsthat meet the requirements of Trusted Overlay Network. It is
ru
ial that remoteattestation proto
ols are able to dete
t any
ompromised node and only admit anegligible number of false negatives to the network. TCBs have to be verifiable toprevent ba
kdoors, and the keys have to be prote
ted by additional hardware andsoftware tamper-resistan
e measures. More resear
h on the robustness and se
urity ofthese methods is definitely needed.It is also an open problem how to effi
iently
ombine anonymity proto
ols foruntrusted systems like Onion Routing with proto
ols for trusted systems like RandomRouting. It is also desirable to implement a distributed trusted name server. When asingle node with all name entries entries leaves the network, STONe has to be able torestore the membership list. Lastly, the fragment size is an open issue. It is un
learwhether it is ne
essary to use uniform fragment sizes or vary the size.

Bibliography[1℄ Akamai. http://www.akamai.
om.[2℄ Anonymizer.
om. http://www.anonymizer.
om.[3℄ Anti-Phishing Working Group. http://www.antiphishing.org.[4℄ Aol instant messenger. http://www.aim.
om.[5℄ Bittorrent. http://www.bitrorrent.
om.[6℄ Epi
. http://www.epi
.org.[7℄ Gnutella. http://www9.limewire.
om/developer/gnutella_proto
ol_0.4.pdf.[8℄ Intel serial numbers pro
essors to se
ure software and internet.http://www.ele
troni
sweekly.
om/2005/03/18/te
hnology/personalte
h/s
amArti
le14335.html.[9℄ Jap anonymity & priva
y. http://anon.inf.tu-dresden.de.[10℄ Kazaa. http://www.kazaa.
om.[11℄ Linux VServer. http://linux-vserver.org.[12℄ Mgm vs. grokster. http://www.eff.org/IP/P2P/MGM_v_Grokster.[13℄ Network general. http://www.networkgeneral.
om.[14℄ Openssh. http://www.openssh.org.[15℄ Openssl. http://www.openssl.org.[16℄ Phishing iq test. http://www.mailfrontier.
om/forms/msft_iq_test.html.[17℄ Planetlab all pairs pings. http://pdos.
sail.mit.edu/�strib/pl_app/.[18℄ Privoxy. http://www.privoxy.org.[19℄ Seti�home. http://setiathome.ssl.berkeley.edu.[20℄ Syn
ookies. http://
r.yp.to/syn
ookies.html.[21℄ Trusted
omputing platform allian
e. http://www.trustedp
.org.[22℄ Verisign. http://www.verisign.
om.[23℄ Voltage se
urity. http://www.voltage.
om.117

118 BIBLIOGRAPHY[24℄ Windows messenger. http://www.mi
rosoft.
om/windows/messenger.[25℄ Yahoo! messenger. http://pager.yahoo.
om.[26℄ M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Prin
iples,implementations, and appli
ations. In CCS 2005.[27℄ A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Dou
eur, J. Howell, J. R.Lor
h, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and reliablestorage for an in
ompletely trusted environment. In OSDI 2002.[28℄ AMD Corporation. Pa
ifi
a - Next Generation Ar
hite
ture for Effi
ient Virtual Ma-
hines. http://developer.amd.
om/assets/WinHEC2005_Pa
ifi
a_Virtualization.pdf.[29℄ D. Andersen. Mayday: Distributed filtering for internet servi
es. In USITS 2003.[30℄ D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks.In SOSP 2001.[31℄ T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Serverlessnetwork file systems. In SOSP 1995.[32℄ W. Arbaugh, D. Farber, and J. Smith. A Se
ure and Reliable Bootstrap Ar
hite
ture. InIEEE Symp. on Se
. and Priv., pages 65�71, 1997.[33℄ A. Ba
k, I. Goldberg, and A. Shosta
k. Freedom systems 2.1 se
urity issues and analysis,2001.[34℄ A. Ba
k, U. Möller, and A. Stigli
. Traffi
 analysis atta
ks and trade-offs in anonymityproviding systems. LNCS, 2137.[35℄ S. Balfe, A. Lakhani, and K. Paterson. Trusted Computing,
hapter Se
uring Peer-to-Peernetworks using Trusted Computing. IEE Press, 2005.[36℄ P. Barham, B. Dragovi
, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, andA. Warfield. Xen and the Art of Virtualization. In SOSP, pages 164�177, 2003.[37℄ S. A. Baset and H. S
hulzrinne. An analysis of the skype peer-to-peer internet telephonyproto
ol. Te
hni
al Report CUCS-039-04, Columbia University, 2004.[38℄ A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Ros
oe,T. Spalink, and M. Wawrzoniak. Operating System Support for Planetary-S
ale NetworkServi
es. In NSDI, pages 253�266, 2004.[39℄ D. E. Bell and L. J. LaPadula. Se
ure Computer Systems: Mathemati
al Foundations andModel. Te
hni
al report, The MITRE Corporation, 1976.[40℄ B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiu
zynski, D. Be
ker, C. Chambers,and S. Eggers. Extensibility Safety and Performan
e in the SPIN Operating System. InSOSP, pages 267�283, 1995.[41℄ O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantage of free MIX routes andhow to over
ome them. LNCS, 2009, 2000.[42℄ J. Bethen
ourt, J. Franklin, and M. Vernon. Mapping internet sensors with proberesponse atta
ks. In Usenix Se
urity 2005.[43℄ D. Bi
kson and D. Malkhi. Priva
y degradation in the gnutella network. Te
hni
alreport, The Hebrew University of Jerusalem, 2003.

BIBLIOGRAPHY 119[44℄ P. Biddle, P. England, M. Peinado, and B. Willman. The darknet and the future of
ontent prote
tion. LNCS, 2696, 2002.[45℄ G. R. Blakley. Safeguarding
ryptographi
 keys. In National Computer Conferen
e, num-ber 48, pages 313�317, 1979.[46℄ E. Blanton and M. Allman. On making t
p more robust to pa
ket reordering. ACMComputer Communi
ation Review, 32(1), 2002.[47℄ B. Bollobas. Modern Graph Theory. Springer, 2002.[48℄ D. Boneh and H. Sha
ham. Group signatures with verifier-lo
al revo
ation. In CCS2004.[49℄ A. Borodin and J. E. Hop
roft. Routing, merging, and sorting on parallel models of
omputation. Journal of Computer and System S
ien
es, 30:130�145, 1985.[50℄ T. C. Bressoud and F. B. S
hneider. Hypervisor-based Fault Toleran
e. In SOSP, pages1�11, 1995.[51℄ E. Bri
kell, J. Camenis
h, and L. Chen. Dire
t anonymous attestation. In CCS 2004.[52℄ D. Brumley and D. Song. Privtrans: Automati
ally partitioning programs for priviledgeseparation. In Usenix Se
urity 2004.[53℄ R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable en
ryption. LNCS, 1264,1999.[54℄ I. Castineyra, N. Chiappa, and M. Steenstrup. RFC 1992 - the nimrod routing ar
hite
-ture.[55℄ M. Castro, M. Costa, and A. Rowstron. Debunking some myths about stru
tured andunstru
tured overlays. In NSDI 2005.[56℄ M. Castro, P. Drus
hel, A. Ganesh, A. Rowstron, and D. S. Walla
h. Se
ure routing forstru
tured peer-to-peer overlay networks. In OSDI 2002.[57℄ M. Castro and B. Liskov. Pra
ti
al Byzantine Fault Toleran
e. In OSDI, 1999.[58℄ D. Chaum. Untra
eable ele
troni
 mail, return addresses, and digital pseudonyms.CACM, 24(2):84�88, Feb. 1981.[59℄ D. Chaum. The dining
ryptographers problem: Un
onditional sender and re
ipientuntra
eability. JACM, (1):65�75, 1988.[60℄ Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebrai
 approa
h to pra
ti
al ands
alable overlay network monitoring. In SIGCOMM 2004.[61℄ D. Clark, R. Braden, A. Falk, and V. Pingali. Fara: Reorganizing the addressing ar
hite
-ture. In ACM SIGCOMM FDNA 2003.[62℄ I. Clarke, O. Sandberg, B. Wiley, and T.W. Hongang. Freenet: A Distributed AnonymousInformation Storage and Retrieval System. In LNCS, volume 2009, 2001.[63℄ D. Cooper and K. Birman. Preserving priva
y in network of mobile
omputers. In IEEESe
urity and Priva
y 1995.[64℄ L. Cottrell. Mixmaster and remailer atta
ks, 1994.http://www.obs
ura.
om/ loki/remailer/remailer-essay.html.

120 BIBLIOGRAPHY[65℄ W. Dai. Pipenet 1.1, 1996. http://www.eskimo.
om/ weidai/pipenet.txt.[66℄ G. Danezis. The statisti
al dis
losure atta
k. In Se
2003.[67℄ G. Danezis. Mix-networks with restri
ted routes. LNCS, 2760, 2003.[68℄ G. Danezis. The traffi
 analysis of
ontinuous-time mixes. LNCS, 3424, 2004.[69℄ G. Danezis, R. Dingledine, and N. Matthewson. Mixminion: A next-generation anony-mous remailer. In IEEE Se
urity and Priva
y 2003.[70℄ N. Daswani and H. Gar
ia-Molina. Query-flood dos atta
ks on gnutella. In CCS 2002.[71℄ D. Dean and A. Stubblefield. Using
lient puzzles to prote
t tls. In Usenix Se
urity 2001.[72℄ C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity. In LNCS,volume 2482, 2003.[73℄ T. Dierks and C. Allen. RFC 2246: The TLS Proto
ol, 1999.[74℄ R. Dingledine, M. J. Freedman, D. Hopwood, and D. Molnar. A reputation system toin
rease mix-net reliability. LNCS, 2137.[75℄ R. Dingledine, N. Matthewson, and P. Syverson. Tor: The se
ond-generation onionrouter. In Usenix Se
urity 2004.[76℄ D. Dolev and A. Yao. On the se
urity of publi
 key proto
ols. IEEE Transa
tions ofInformation Theory, 2(29):198�208, 1983.[77℄ S. Dolev and R. Ostrovsky. Xor-trees for effi
ient anonymous multi
ast and re
eption.ACM Transa
tions on Information and System Se
urity, 3(2):63�84, 2000.[78℄ J. Dou
eur. The Sybil Atta
k. In Pro
eedings of the 1st International Peer To Peer SystemsWorkshop (IPTPS 2002), Mar
h 2002.[79℄ P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A Trusted OpenPlatform. Computer, 36(7):55�62, 2003.[80℄ D. R. Engler, M. F. Kaashoek, and J. J. O'Toole. Exokernel: An Operating System Ar
hi-te
ture for Appli
ation-Level Resour
e Management. In SOSP, pages 251�266, 1995.[81℄ S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key s
heduling algorithm ofr
4. LNCS, 2259.[82℄ B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Ba
k, and S. Clawson. Mi
rokernels meetRe
ursive Virtual Ma
hines. SIGOPS Oper. Syst. Rev., 30(SI):137�151, 1996.[83℄ B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer
ommuni
ation a
ross network addresstranslators. In Usenix Te
hni
al 2005.[84℄ M. J. Freedman and R. Morris. Tarzan: a peer-to-peer anonymizing network layer. InCCS 2002.[85℄ V. Fuller, T. Li, Y. J, and K. Varadhan. RFC 1519 -
lassless inter-domain routing (
idr):An address assignment and aggregation strategy.[86℄ S. Garfinkel. PGP Pretty Good Priva
y. O'Reilly, 1994.[87℄ T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual ma
hine-based platform for trusted
omputing. In SOSP 2003.

BIBLIOGRAPHY 121[88℄ E.-J. Goh, H. Sha
ham, N. Modadugu, and D. Boneh. SiRiUS: se
uring remote untrustedstorage. In NDSS 2003.[89℄ O. Goldrei
h. Se
ure multi-party
omputation.http://www.wisdom.weizmann.a
.il/ oded/pp.html.[90℄ O. Goldrei
h and R. Ostrovsky. Software prote
tion and simulation on oblivious rams.JACM, 43(3):431�473, May 1996.[91℄ C. Gul
u and G. Tsudik. Mixing e-mail with babel. In NDSS 1996.[92℄ K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoi
a. Theimpa
t of DHT routing geometry n resilien
e and proximity. In SIGCOMM 2003.[93℄ V. Haldar, D. Chandra, and M. Franz. Semanti
 Remote Attestation - Virtual Ma
hineDire
ted Approa
h to Trusted Computing. In Usenix VM, pages 29�41, 2004.[94℄ S. Hand and T. Ros
oe. Mnemosyne: Peer-to-peer steganographi
 storage. In IPTPS2002.[95℄ J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Ni
hols, M. Satyanarayanan, R. N.Sidebotham, and M. J. West. S
ale and performan
e in a distributed file system. ACMTransa
tions on Computer S
ien
e, 6(1):51�81, 1988.[96℄ H.T.Kung, C.-M. Cheng, K.-S. Tan, and S. Bradner. Design and analysis of an ip-layeranonymizing infrastru
ture. In IEEE DISCX 2003.[97℄ Y.-C. Hu, A. Perrig, and M. A. Sirbu. Spv: se
ure path ve
tor routing for se
uring bgp.In SIGCOMM 2004.[98℄ G. Hunt, J. Larus, D. Tarditi, and T. Wobber. Broad New OS Resear
h: Challenges andOpportunities. In HotOS X, 2005.[99℄ Intel Corporation. LaGrande te
hnology.[100℄ J. Ioannidis and M. Blaze. The ar
hite
ture and implementation of network-layer se
u-rity under unix. In Usenix Se
urity 1993.[101℄ J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O. Jr. Over
ast:Reliable multi
astig with an overlay network. In OSDI 2000.[102℄ M. Kaminsky, G. Savvides, D. Mazieres, and M. F. Kasshoek. De
entralized user authen-ti
ation in a global file system. In OSDI 2004.[103℄ S. Kandula, D. Katabi, M. Ja
ob, and A. Berger. Botz-4-Sale: Surviving Organized DDoSAtta
ks That Mimi
 Flash Crowds. In NSDI, 2005.[104℄ T. Karagiannis, A. Broido, N. Brownlee, k

laffy, and M. Faloutsos. Is p2p dying or justhiding ? In Globe
omm 2004.[105℄ D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistenthashing and random trees: Distributed
a
hing proto
ols for relieving hot spots on theWorld Wide Web. In STOC 1997.[106℄ S. Katzenbeisser and F. A. P. Petit
olas, editors. Information hiding te
hniques for steganog-raphy and digital watermarking. Arte
h House Books, 1999.[107℄ R. Kennell and L. Jamieson. Establishing the genuity of remote
omputer systems. InUsenix Se
urity 2003.

122 BIBLIOGRAPHY[108℄ S. Kent. RFC 2401: Se
urity Ar
hite
ture for the Internet Proto
ol, 1998.[109℄ S. T. Kent. Prote
ting Externally Supplied Software in Small Computers. PhD thesis, MIT-LCS,1980.[110℄ A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: Se
ure overlay servi
es. In SIGCOMM2002.[111℄ P. L. Kerstein. How
an we stop phishing and pharming s
ams ? CSO Magazine July20th, 2005.[112℄ D. Kesdogan, J. Egner, and R. Bus
hkes. Stop-and-go-mixes providing probabilisti
anonymity in an open system. In LNCS, volume 1525, 1998.[113℄ J. Kistler and M. Satyanarayan. Dis
onne
ted operation in the
ode file system. TOCS,10(1), 1992.[114℄ T. Kohno, A. Broido, and K. Claffy. Remote physi
al devi
e fingerprinting. In IEEESe
urity and Priva
y 2005.[115℄ L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACMTrans. Program. Lang. Syst., 4(3):382�401, 1982.[116℄ B. W. Lampson. A note on the
onfinement problem. CACM, 16(10), 1973.[117℄ B. W. Lampson and R. F. Sproull. An Open Operating System for a Single-User Ma
hine.In SOSP, pages 98�105, 1979.[118℄ R. B. Lee, P. C. S. Kwan, J. P. M
Gregor, J. Dwoskin, and Z. Wang. Ar
hite
ture forprote
ting
riti
al se
rets in mi
ropro
essors. In ISCA 2005.[119℄ M. Lee
h, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC 1928 - SOCKS Proto
olVersion 5.[120℄ F. T. Leighton. Introdu
tion to Parallel Algorithms and Ar
hite
tures: Arrays, Trees, Hyper-
ubes. Morgan Kaufmann Publishers, 1991.[121℄ B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright. Timing atta
ks in low-laten
ymix-based systems. In Pro
. of Finan
ial Cryptography (FC'04).[122℄ D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted operating systemon trusted hardware. In SOSP 2003.[123℄ D. Mazieres and M. Kaashoek. The design, implementation, and operation of an emailpseudonym server. In CCS 1998.[124℄ D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Wit
hel. Separating key managementfrom file system se
urity. In SOSP 1999.[125℄ A. D. M
Donald and M. G. Kuhn. Stegfs: A steganographi
 file system for linux. LNCS,1768, 1999.[126℄ I. Mironov. Not so perfe
t shuffles in r
4. LNCS, 2442, 2002.[127℄ A. Mislove, G. Oberoi, A. Post, C. Reis, P. Drus
hel, and D. Walla
h. AP3: a
ooperative,de
entralized servi
e providing anonymous
ommuni
ation. In SIGOPS Europe 2004.[128℄ A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih: Dete
ting and isolatingmali
ious routers. In IEEE DSN 2005.

BIBLIOGRAPHY 123[129℄ U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster proto
ol version 2.Internet-Draft, 2005.[130℄ J. Moy. RFC 2328: OSPF Version 2, 1998.[131℄ S. Murdo
h and G. Danezis. Low-
ost traffi
 analysis on tor. In IEEE Se
urity and Priva
y2005.[132℄ National Se
urity Agen
y. Se
urity-Enhan
ed Linux.[133℄ National Se
urity Agen
y. Devi
e for and Method of Se
ure Computing using VirtualMa
hines. United States Patent 6,922,774, 2005.[134℄ G. Ne
ula and P. Lee. The design and implementation of a
ertifying
ompiler. In PLDI1998.[135℄ P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A provablyse
ure operating system: The system, its appli
ations, and proofs. Te
hni
al ReportCSL-116, SRI International Computer S
ien
e Laboratory, May 1980.[136℄ A. M. Odlyzko. The rise and fall of knapsa
k
ryptosystems. Cryptology and Computa-tional Number Theory, Ameri
anMathem
ati
al So
iety, Pro
. Symp. Appl. Math., (42):75�88,1990.[137℄ V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web: An openproxy's view. In HotNets II.[138℄ C. Partridge, D. Cousins, A. W. Ja
kson, R. Krishnan, T. Saxena, and W. T. Strayer. Usingsignal pro
essing to analyze wireless data traffi
. In ACM Workshop on Wireless Se
urity,2002.[139℄ V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Transa
tions onNetworking, 5(5):601�615, 1997.[140℄ V. Paxson. End-to-end internet dynami
s. IEEE/ACM Transa
tions on Networking,7(3):277�292, 1999.[141℄ V. Paxson and S. Floyd. Wide-area traffi
: The failure of poisson modeling. IEEE/ACMTransa
tions on Networking, 3(3):226�244, June 1995.[142℄ R. Perlman. Network Layer Proto
ol with Byzantine Robustness. PhD thesis, MIT, 1988.[143℄ A. Pfitzmann and M. Köhntopp. Anonymity, unobservability and pseudonymity � aproposal for terminology. LNCS, 2009, 2001.[144℄ A. Pfitzmann, B. Pfitzmann, and M. Waidner. Isdn-mixes: Untra
eable
ommuni
ationwith small bandwidth overhead. Informatik-Fa
hberi
hte, 267:451�463, 1991.[145℄ K. Poulsen. Fbi retires
arnivore. The Register, Jan 15 2005.[146℄ C. Ra
koff and D. R. Simon. Cryptographi
 defense against traffi
 analysis. In STOC1993.[147℄ S. Ratnasamy, P. Fran
is, M. Handley, R. Karp, and S. S
henker. A s
alable
ontent-addressable network. In SIGCOMM 2001.[148℄ M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transa
tions. ACM Transa
-tions on Information and System Se
urity, 1(1):66�92, Nov. 1998.

124 BIBLIOGRAPHY[149℄ M. K. Reiter and X. Wang. Fragile mixing. In CCS 2004.[150℄ Y. Rekhter and T. Li. RFC 1771: A Border Gateway Proto
ol 4, 1995.[151℄ M. Rennhard and B. Plattner. Introdu
ing morphmix: Peer-to-peer based anonymousinternet usage with
ollusion dete
tion. In WPES 2002.[152℄ S. Rhea, D. Geels, T. Ros
oe, and J. Kubiatowi
z. Handling Churn in a DHT. In UsenixTe
hni
al 2004.[153℄ S. Rhea, B. Godfrey, B. Karp, J. Kubiatowi
z, S. Ratnasamy, S. Shenker, I. Stoi
a, andH. Yu. Opendht: A publi
 dht servi
e and its uses. In SIGCOMM 2005.[154℄ A. Rowstron and P. Drus
hel. Pastry: S
alable, distributed obje
t lo
ation and routingfor large-s
ale peer-to-peer systems. In IFIP/ACM Conf. on Dist. Syst. Platf. (Middleware),2001.[155℄ J. M. Rushby. Design and Verifi
ation of Se
ure Systems. In SOSP, pages 12�21, 1981.[156℄ J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in SystemDesign. ACMTrans. Comput. Syst., 2(4):277�288, 1984.[157℄ R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementa-tion of the sun network filesystem. In USENIX 1985.[158℄ S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An analysis ofinternet
ontent delivery systems. In OSDI 2002.[159℄ S. Savage, T. Anderson, A. Aggarwal, D. Be
ker, N. Cardwell, A. Collins, E. Hoffman,J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed internet routing andtransport. IEEE Mi
ro, 19(1):50�59, 1999.[160℄ S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Pra
ti
al network support for iptra
eba
k. In SIGCOMM 2000.[161℄ B. K. S
hmidt, M. S. Lam, and J. D. North
utt. The Intera
tive Performan
e of SLIM: AStateless, Thin-Client Ar
hite
ture. In SOSP, pages 32�47, 1999.[162℄ S. S
hoen. Trusted
omputing: Promise and risk. Ele
troni
 Frontier Foundation.[163℄ A. Serjantov and G. Danezis. Towards an information theoreti
 metri
 for anonymity.In LNCS, volume 2482, 2003.[164℄ A. Serjantov and S. J. Murdo
h. Message splitting against the partial adversary. In PET2005.[165℄ A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
ode integrity and enfor
ing untampered
ode exe
ution on lega
y systems. In SOSP2005.[166℄ A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: Software-based attestationfor embedded devi
es. In IEEE Se
urity and Priva
y 2004.[167℄ A. Shamir. How to share a se
ret. CACM, 22(1):612�613, 1979.[168℄ C. Shannon. A mathemati
al theory of
ommuni
ation. Bell System Te
hni
al Journal,27:379�423, 1948.[169℄ W. Shapiro and R. Vingralek. How to manage persistant state in drm systems. LNCS,2320, 2002.

BIBLIOGRAPHY 125[170℄ R. Sherwood, B. Bhatta
harjee, and A. Srinivasan. P5: A proto
ol for s
alable anony-mous
ommuni
ation. In IEEE Se
urity and Pria
y 2002.[171℄ V. Shmatikov. Probabilisti
 model
he
king of an anonymity system. JACM, 2005.[172℄ G. J. Simmons. The prisoners' problem and the subliminal
hannel. In CRYPTO 1983.[173℄ Y. G. Sinai. Probability Theory. Springer, 1992.[174℄ S. Singh. The Code Book. An
hor, 2000.[175℄ E. G. Sirer, S. Goel, M. Robson, and D. Engin. Eluding Carnivores: File Sharing withStrong Anonymity. In European SIGOPS Workshop, 2004.[176℄ A. Snoeren, C. Partridge, I. San
hez, C. Jones, F. T
hakountio, S. Kent, and W. Strayer.Hash-based ip tra
eba
k. In SIGCOMM 2001.[177℄ T. Spalink.Deterministi
 Sharing of Distributed Resour
es. PhD thesis, Prin
etonUniversity,2006.[178℄ W. Stevens. RFC 2001: TCP slow start,
ongestion avoidan
e, fast retransmit, and fastre
overy algorithms, January 1997.[179℄ I. Stoi
a, D. Adkins, S. Zhuang, S. Surana, and S. Shenker. Internet indire
tion infras-tru
ture. In SIGCOMM 2002.[180℄ I. Stoi
a, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-akrishnan. Chord: a s
alable peer-to-peer lookup proto
ol for internet appli
ations. InSIGCOMM 2002.[181℄ L. Subramanian, I. Stoi
a, H. Balakrishnan, and R. Katz. Overqos: An overlay basedar
hite
ture for enhan
ing internet qos. In NSDI 2004.[182℄ G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Ar
hite
ture fortamper-evident and tamper-resistant pro
essing. In ISC 2003.[183℄ Q. Sun, D. R. Simon, Y.-M.Wang, W. Russell, V. N. Padmanabhan, and L. Qiu. Statisti
alidenti
ation of en
rypted web browsing traffi
. In IEEE Se
urity and Priva
y 2002.[184℄ M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of CommodityOperating Systems. In SOSP, pages 207�222, 2003.[185℄ P. F. Syverson, D. M. Golds
hlag, and M. G. Reed. Anonymous
onne
tions and onionrouting. In IEEE Se
urity and Priva
y 1997.[186℄ C. Thekkath, D. Boneh, D. Lie, J. Mit
hell, M. Horowitz, M. Mit
hell, and P. Lin
oln.Ar
hite
tural support for
opy and tamper resistant software. In ASPLOS 2000.[187℄ L. G. Valiant and G. J. Brebner. Universal s
hemes for parallel
ommuni
ation. In STOC1981.[188℄ R. Wahbe, S. Lu

o, T. E. Anderson, and S. L. Graham. Effi
ient Software-based FaultIsolation. In SOSP, pages 203�216, 1993.[189℄ M. Waldman and D. Mazieres. Tangler: A
ensorship-resistant publishing system basedon do
ument entanglements. In CCS 2001.[190℄ M.Waldman, A. Rubin, and L. F. Cranor. Publius: A robust, tamper-evident,
ensorship-resistant web publishing system. In Usenix Se
urity 2000.

126 BIBLIOGRAPHY[191℄ M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker. Middel-boxes no longer
onsidered harmful. In OSDI 2004.[192℄ D. S. Walla
h, D. Balfanz, D. Dean, and E. W. Felten. Extensible Se
urity Ar
hite
turefor Java. In SOSP, pages 116�128, 1997.[193℄ L.Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and Se
urity in the CoDeeNContent Distribution Network. In Usenix Te
hni
al 2004.[194℄ B. R. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New
lient puzzle outsour
ingte
hniques for dos resistan
e. In CCS 2004.[195℄ A. Whitaker, M. Shaw, and S. D. Gribble. S
ale and Performan
e in the Denali IsolationKernel. SIGOPS Oper. Syst. Rev., 36(SI):195�209, 2002.[196℄ H. S. Wilf. generatingfun
tionology. A
ademi
 Press, 1994.[197℄ M. K. Wright, M. Adler, B. N. Levine, and C. Shields. Defending anonymous
om-muni
ation against passive logging atta
ks. In IEEE Symposium o Se
urity and Priva
y2003.[198℄ M. K.Wright, M. Adler, B. N. Levine, and C. Shields. The prede
essor atta
k: An analysisof a threat to anonymous
ommuni
ation systems. ACM Transa
tions on Informationand System Se
urity, 7(4):489�522, November 2004.[199℄ X. Yang. Nira: A new internet routing ar
hite
ture. In ACM SIGCOMM FDNA 2003.[200℄ X. Yang, D. Wetherall, and T. Anderson. A dos-limiting network ar
hite
ture. InSIGCOMM 2005.[201℄ B. Yee. Using Se
ure Copro
essors. PhD thesis, CMU, 1994.[202℄ S. Zdan
ewi
, L. Zheng, N. Nystrom, and A. Myers. Se
ure program partitioning. InSOSP 2001.[203℄ B. Y. Zhao, J. Kubiatowi
z, and A. Joseph. Tapestry: An infrastru
ture for fault-tolerantwide-area lo
ation and routing. Te
hni
al Report UCB/CSD-01-1141, UCB.[204℄ L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cashmere: Resilient anonymousrouting. In NSDI 2005.

