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Abstract

TAPESTREA is a sound design and composition framework that facilitates the cre-

ation of new sound from existing digital audio recordings, through interactive analysis,

transformation and re-synthesis. During analysis, sinusoidal modeling and transient de-

tection techniques are used to parametrically extract desired sound templates of different

types: sinusoidal events, transient events, and stochastic background. Each extracted

template is transformed and synthesized independently using an appropriate technique,

such as sinusoidal re-synthesis or wavelet tree learning. This allows specialized transfor-

mations on each template based on its type; sinusoidal templates undergo real-time, large-

scale time and frequency transformations, while background is generated parametrically

from extracted samples. The user interacts with TAPESTREA via a set of graphical inter-

faces. Synthesis is further controlled through ChucK scripts, which allow simultaneous,

precise manipulation of many parameters. They also allow control via external input

devices and user-defined GUI elements.

These combined techniques form a workbench for completely transforming a sound

scene, dynamically generating soundscapes, or creating musical tapestries by weaving

together transformed elements from different recordings. Thus, TAPESTREA introduces

a new paradigm for composition, sound design, and other sonic sculpting tasks. Work on

further improving the system includes user studies to compare alternative algorithms for

generating stochastic background noise.
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Chapter 1

Introduction

1.1 Motivation

Around 1950, Pierre Schaeffer developed musique concrète [118, 119]. Unlike traditional

music, musique concrète starts with existing or concrete recorded sounds, which are

organized into abstract musical structures. The existing recordings often include natural

and industrial sounds that are not conventionally musical, but can be manipulated to make

music, either by editing magnetic tape or now more commonly through digital sampling.

Typical manipulations include cutting, copying, reversing, looping and changing the

speed of recorded segments.

Today, several other forms of electronic/electroacoustic music also involve manip-

ulating a set of recorded sounds. Acousmatic music [42], for instance, evolved from

musique concrète and refers to compositions designed for environments that empha-

size the sound itself rather than the performance-oriented aspects of the piece. The

acoustic ecology [120] movement gave rise to soundscape composition [145] or the

creation of realistic soundscapes from recorded environmental audio. One of the key
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features of soundscape composition, according to Truax [145], is that “most pieces can

be placed on a continuum between what might be called ‘found sound’ and ‘abstracted’

approaches.” However, while “contemporary signal processing techniques can easily

render such sounds unrecognizable and completely abstract,” a soundscape composition

piece is expected to remain recognizable even at the abstract end of the continuum.

Sound designers for movies, theater and art often have a related goal of starting with

real world sounds and creating emotionally evocative sound scenes, which are still real,

yet transformed and transformative. Classic examples include mixing a transformed

lion’s roar with other sounds to accompany the wave sounds in The Perfect Storm, and

incorporating a helicopter theme into the sound design for Black Hawk Down [115].

These sound designers are “sound sculptors” as well, but transform sounds to enhance or

create a sense of reality, rather than for purely musical purposes.

Artists from all of the above backgrounds share the process of manipulating record-

ings, but aim to achieve diverse effects. Although a large body of digital audio exists in

the form of sound effects libraries, field recordings, and music collections, naı̈vely mixing

samples from these rarely provides ample control or flexibility. Existing recordings are

likely to include undesirable components overlapping the desired parts, and the palette of

available naı̈ve transformations may not meet an artist’s peculiar needs. More advanced

contemporary tools for manipulating audio often have limited scope, constrained either

in the range of sounds to which they apply or in the manipulation paradigms and variety

of results they offer. This calls for a unified framework for creating a wide range of new

compositions and sound scenes from any combination of existing audio, with expressive

freedom in selecting both what to re-use and how to re-use it.
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1.2 The Thesis

This dissertation presents a single framework for starting with recordings and producing

sounds that can lie anywhere on a ‘found’ to ‘unrecognizable’ continuum. ‘Found’

sounds can be modified in subtle ways or extended indefinitely, while moving towards the

‘unrecognizable’ end of the spectrum unleashes a range of manipulations beyond time-

domain techniques. In fact, the same sets of techniques apply throughout the continuum,

differing only in how they are used. We call this framework TAPESTREA: Techniques

and Paradigms for Expressive Synthesis, Transformation and Rendering of Environmen-

tal Audio.

It is argued that the TAPESTREA framework offers freedom to re-compose existing

sound in both the senses described in Section 1.1. A collection of analysis techniques and

interfaces to extract desired parts of a composite sound support the flexible selection of

what to re-use in a given recording. A variety of transformation and synthesis tools and

interfaces, as well as the choice of analysis technique, together offer interactive control

over how to re-use each selected sound. It is further argued that the result is a novel and

interesting paradigm for manipulating existing sounds via computers, with applications

to musical composition, sound design, and pedagogy.

1.3 Contributions

The TAPESTREA system integrates sinusoidal analysis, stochastic background model-

ing, transient detection, and a new class of user interface that lends itself to any com-

position that originates in recorded environmental audio. This envelops a novel form of

musique concrète that extends to manipulations in the frequency as well as time domain.

Advantages of the TAPESTREA approach include:

3



• TAPESTREA lets the sound sculptor select a region in both time and frequency,

essentially specifying, “Give me this part of that sound,” to extract a reusable sound

template.

• TAPESTREA defines fundamental types of sound components / templates, based

on the modeling techniques for which they are best suited. Sinusoidal (determin-

istic), transient, and stochastic background components are modeled separately

using appropriate methods, leading to specialized control and more powerful trans-

formations on each type.

• To realize these ideas, TAPESTREA provides a set of interfaces that allow the

sound designer or composer to assert parametric control over each phase in the

process, from component extraction to the final re-synthesis.

This work also presents other contributions specific to background generation and

synthesis, including:

• A more efficient wavelet tree algorithm for background synthesis;

• An algorithm to remove transients from background din using neighbor wavelet

tree learning;

• User studies to perceptually compare background synthesis methods and parame-

ters.

TAPESTREA manipulates sounds in several phases (see Figure 1.1). In the analy-

sis phase, the sound is separated into reusable templates that correspond to individual

foreground events or background textures. In the synthesis phase, these templates are

transformed, combined and re-synthesized using time- and frequency-domain techniques

that can be controlled on multiple levels. Both the analysis and synthesis phases are

integral to TAPESTREA; together, they enable the most flexible means for re-using real-

4



Figure 1.1: Teaser: Creating musical tapestries. User-selected regions of input sounds (left) are analyzed
into re-usable templates, which are separately transformed and re-synthesized into new sounds (right).
Numbered diamonds (right) correspond to circled instances of original sound components (left). The
framework allows flexible control at every stage of the process.

world sonic material. Thus, one of the main contributions is the bundling of analysis

and synthesis functionality into a unified framework, more powerful than the sum of its

parts. The TAPESTREA software is open source and freely available at http://taps.

cs.princeton.edu/.

1.3.1 Related Publications

The TAPESTREA system was introduced as a sketch in a graphics and multimedia

conference [98]. It was introduced to the audio community in more detailed papers

presented at audio and computer music conferences, focusing either on its analytic [97] or

compositional [96] aspects. An invited journal version of the computer music conference

paper [96] was subsequently published [100]. Work on the group face (see Section 3.3.1)
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was also presented at a computer music conference [86]. Chapter 2 of this dissertation is

based on a survey paper to be presented shortly [95].

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides a context for

TAPESTREA in the form of a survey of analysis and synthesis methods relevant to creat-

ing synthesized sound environments. It also includes a brief overview of current software

tools for manipulating existing audio. Chapter 3 describes the TAPESTREA system,

beginning with a high-level overview. It proceeds to discuss some of the defining com-

ponents of TAPESTREA: its analysis techniques and interfaces, template representation

and internal transformation options, and synthesis interfaces and methods. The chapter

concludes with an outline of the system’s implementation. Chapter 4 brings together

topics related to usage. It includes a brief overview of the software’s recorded usage

information, followed by the discussion of a set of user studies to compare alternative

background sound texture synthesis methods. Applications of TAPESTREA to musical

composition and pedagogy are also discussed in more detail. Finally, Chapter 5 presents

concluding remarks and develops ideas for future work.
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Chapter 2

Toward Synthesized Environments: A

Survey of Analysis and Synthesis

Methods for Sound Designers and

Composers

The sonic landscape available to us contains a multitude of sounds, ranging from artificial

to natural, purely musical to purely “real-world.” Taking full advantage of this diversity

may require mixing and matching different types of sounds in the same piece. Environ-

mental audio or sound scenes, for example, tend to combine many types of foreground

and background sound sources: ambient textures, noisy events, pitched events, speech,

music, and more. Often, different source types are best suited to different parametric

analysis and synthesis paradigms. Parametric synthesis also offers many advantages over

mixing raw digital recordings, including improved flexibility, control and compression.

Sound designers and composers working with rich sound scenes can therefore benefit

from a full knowledge of a variety of analysis and synthesis techniques. This chapter

7



presents a survey of existing digital audio synthesis and analysis methods, including a

taxonomy based on which types of sounds they support best.

Related literature includes surveys and taxonomies of digital synthesis techniques [131,

142], computer music [108], sound design for games and film [56], sound and music

computing [162], structured audio representations [155] and singing voice synthesis [30].

Many of these touch on common synthesis topics. In [131] (and later [142]), digital

synthesis techniques are arranged into four categories: processed (and sampled) record-

ings, spectral models, physical models and abstract algorithms. [155] discusses analysis

and synthesis techniques related to parametric sound representations and describes their

domain and range as well as their generality. In [162], topics are divided into sound,

music and interaction, with a discussion of analysis and synthesis techniques for each.

However, none of these surveys approaches the field from the perspective of creating

complex environmental scenes or compositions.

This chapter considers a slightly different categorization than [131], taking into ac-

count the technical background and required source material for each method, as well as

how it might contribute to a larger sound scene. Abstract synthesis algorithms (see Sec-

tion 2.1) are discussed first, followed by techniques for sound synthesis from “scratch”

based on physical or perceptual models (see Section 2.2). The largest section, perhaps

most relevant to environmental audio and TAPESTREA, examines methods to synthesize

sound from existing sound, usually involving analysis as well as synthesis (see Section

2.3). This is followed by a brief glance at standalone analysis methods not necessarily

designed for synthesis (see Section 2.4). The chapter also includes a table linking the

described methods to the sound types for which they are known to be effective. A

sound example that combines many synthesis algorithms highlights the applicability

of multiple techniques to a single coherent piece. It is accompanied by brief notes to

sound designers, developers of interactive applications for entertainment (games, etc.),
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and electro-acoustic composers. The chapter then ends with an overview of existing

software tools for manipulating audio.

2.1 Abstract synthesis algorithms

Early electronic music with analog synthesizers used oscillator units and modular syn-

thesis to produce sounds [131]. In the digital world, oscillators range from basic sine,

triangle, square and other simple wave generators, to more complex and hybrid systems.

More complex oscillators include those inspired by advanced physical techniques such as

digital waveguides [133]. An overview of oscillators, including sinusoidal, chaotic, and

noisy variations, is presented in [38]. Oscillators in some form play a role in many aspects

of synthesis, including additive synthesis (adding the outputs of multiple oscillators),

subtractive synthesis (filtering oscillator outputs to remove some frequencies), modular

synthesis (multiplying oscillator phases and outputs) and physical modeling (based on

the oscillation of mass-spring-damper and other physical systems related to sound). Thus,

one may think of them as building blocks of synthesis. They are classified here as abstract

because they do not necessarily arise from one particular “concrete” paradigm.

Abstract synthesis algorithms building on oscillators include amplitude and frequency

modulation and waveshaping. Frequency modulation, or the modulation of one oscil-

lator’s frequency (or phase) by another’s output, was discovered by Chowning to have

interesting musical implications: it can be used for spectral shaping to create unique

timbres [25] and also lends itself well to singing voice synthesis combining a singing

pitch and vibrato [26]. More generally, waveshaping refers to the modification of an

existing signal by a non-linear function [155, 52]. Work on waveshaping includes specific

techniques such as the multiplication of sine waves distorted with non-linear transfer

functions [7] and other structured variations [84].

9



The study of non-linearity and chaos has led to a range of abstract sound synthesis

algorithms. The use of chaotic non-linear systems for direct sound synthesis is explored

in [143] and [44]. A broader overview of chaotic systems in computer music is presented

in [90]. Related work is also surveyed in [52, 53], which proceed to introduce circle maps

as rich non-linear oscillators, from a theoretical and experimental standpoint. The idea of

“errant sound synthesis”, through non-linear oscillators and breakpoint sets, is discussed

in [27], where the goal is described as “not the modelling and reproduction of sounds

from perceptual or physical acoustical data but the potential of any algorithm, cast into

the audio range.”

Auditory display and sonification, or the mapping of other data to sound, also en-

able a form of abstract sound synthesis [80]. Research on sonification for aesthetic

purposes includes the investigation of ways to map images to music [166]. Software

tools for sonification include SonART—a collection of graphical user interface tools to

map data to sonification parameters [15], and a Pure Data-based toolkit for interactive

sonification [104]. Another abstract approach to sound synthesis is to consider synthesis

techniques as structured, abstract entities, facilitating a high-level mathematical under-

standing of synthesis methods [51] and time transformations [36].

2.2 Synthesis from ‘scratch’ using physical or perceptual

models

Synthesis from “scratch” refers to the replication of real-world sounds using physical

or perceptual models, without the raw material of existing audio samples. The model

may represent a sound’s physical source or environment, or the perceptual characteristics

desired. A frequent advantage of such model-based synthesis is the option of high-level
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parametric control over the synthesized sound. Early examples of physical modeling

include musical sound synthesis by solving the wave equation for vibrating objects, by

Hiller and Ruiz [69], and the Karplus-Strong plucked-string algorithm [76, 74]. The

plucked-string algorithm originated as an abstract variation of wavetable synthesis, but

was later discovered to implement a simplified physical model of a plucked string, solving

the one-dimensional wave equation [33]. This idea of interesting but computationally

simple physical models led to digital waveguide synthesis [130, 133], which can produce

a range of musical instrument sounds with expressive control [129], including tube-

based instruments [132] and percussive instruments with membranes [62]. Extensions to

waveguide synthesis include two- and three-dimensional waveguide meshes [153, 154],

and banded waveguides that sample in time, frequency and space to model stiff systems

such as struck bars [33, 54].

Other physical models have been used to reproduce acoustic instrument sounds, in-

cluding reed and bow-string models [128], speech and singing voice synthesis by model-

ing the vocal tract [28, 30], and modal synthesis of percussive sounds [29, 31]. The Syn-

thesis ToolKit (STK) [34] provides a library for real-time synthesis of musical instrument

sounds using physical models. Many of these have been ported and expanded upon in

other systems such as PeRColate (for Max/MSP) [147], ChucK [158], SuperCollider [1],

and others. Non-linearity is also important for the physical modeling of some musical

instrument sounds [105]. The synthesis of real-world contact and motion sounds such

as impact and friction, especially for animations and interactive applications, provides

another arena for physical modeling. Work on this area includes the generation of sound

from object interactions [141], real-time synthesis of sound effects from 3D models

guided by contact forces [151], physically based approximation of sounds caused by

the motion of solid objects [102], and the generalization of dynamic models to “sounding

objects” [113].
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Perceptual models for synthesis from scratch can include spectral information, such

as formants for speech or singing. Formant synthesizers generate the desired formants

using second-order resonant filters [30]. While their parameters can be extracted from

recorded speech, such an analysis stage is not essential to the algorithm. Formant wave

functions (FOFs) are time-domain waveform representations of a formant’s impulse re-

sponse, usually modeled by a sinusoidal oscillator with time-varying amplitude; these

are flexibly generated and added to create a voice-like sound [114, 30]. While formant-

based synthesis methods produce sound containing the desired formants, the idea of

synthesizing audio to match any set of target features is generalized in feature-based

synthesis [71]. This method inputs a set of arbitrary acoustic and perceptual feature

values and uses a parametric optimizer to generate matching audio via arbitrarily selected

synthesis algorithms. It is currently suited to generating abstract sound and audio cari-

catures, but because the sound produced depends on the features and specific synthesis

techniques used, any inherent limitation of the method is still to be discovered.

2.3 Synthesis from existing sounds

A third category of synthesis is the creation of sound from existing sound. As this often

involves some form of analysis of the existing sound, one can also broadly refer to it

as synthesis-by-analysis. In particular, this section looks at concatenative techniques, in

which existing samples are rearranged in the time-domain, and additive synthesis, which

generally takes a more spectral approach. The TAPESTREA system (see Chapter 3)

includes aspects of concatenative as well as additive synthesis.
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2.3.1 Concatenative techniques

A well known concatenative technique is wavetable synthesis [131, 155], the periodic

repetition of a set of time-domain samples, often to create pitched instrument sounds.

Wavetable synthesis may also arguably fit into either of the previous categories; an ab-

straction of it resulted in the plucked-string algorithm [76] (see Section 2.2), while in

frequency-domain wavetable synthesis, a specified harmonic spectrum is transformed to

yield the time-domain samples [131]. However, the algorithm is concatenative in the

general sense of concatenating existing samples in time. Schwarz [121, 122] describes

concatenative synthesis as synthesis using a large database of source sounds segmented

into units, a target sound to be synthesized, and a unit selection algorithm that chooses

the units best matching the target according to a set of unit descriptors. The selected units

are transformed as needed and concatenated in the time-domain, possibly with a cross-

fade. A range of techniques with varying levels of manual control and automation fall

under this umbrella, including methods for speech and singing synthesis [30] and audio

mosaicing [83, 121].

Another type of concatenative synthesis is granular synthesis [144], in which sound is

created by concatenating usually short “sound grains”. This can produce a variety of ab-

stract sounds and textures. FOFs (see section 2.2) can also be interpreted as granular syn-

thesis, especially when the sinusoidal oscillators are replaced by arbitrary samples [155].

Dictionary-based methods with time-localized waveforms provide an analytical counter-

part to granular synthesis, and allow flexible analysis, re-synthesis and transformation of

general audio signals [140].

Granular and other forms of concatenative synthesis have also supported the gener-

ation of soundscapes and sound textures of arbitrary length. Hoskinson and Pai [73]

applied a wavelet-based algorithm to split an existing soundscape into syllable-like seg-
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ments, which were then selected by similarity and concatenated to produce an ongoing

stream. Birchfield et al. [17] describe a model for real-time soundscape generation using

a database of annotated sound files, dynamically selected and combined to produce a

varying soundscape. Fröjd and Horner [63, 64] concatenate longer randomly selected

segments of existing audio, with some overlap, to achieve rapid sound texture synthesis.

TAPESTREA supports granular synthesis through specialized synthesis templates that

can repeatedly play one or more sounds with parametric control (see Chapter 3, Sec-

tion 3.4). Concatenative synthesis also surfaces in Chapter 4, in which a set of concate-

native background synthesis methods (including [64]) are compared through user studies.

2.3.2 Additive synthesis

Additive synthesis generally involves spectral analysis, and addition of the signals syn-

thesized based on this analysis. Risset [111] is credited with the first such additive

synthesis for music, to analyze and re-synthesize trumpet tones [131]. Other groundwork

for additive synthesis includes the development of voice coders, or vocoders, originally

for audio transmission and compression. The channel vocoder [47] passes the input audio

through a bank of bandpass filters to compute the energy present in each frequency band.

This information is used to synthesize a signal with the corresponding energy in each

band, by summing the weighted outputs of a bank of synthesis filters [33]. The phase

vocoder [45] uses the Fast Fourier Transform (FFT) to estimate the phase as well as

magnitude of each frequency band (or bin), resulting in more convincing reconstruction

for general sounds [33]. Both types of vocoders have been used for pitch and time

transformations of the source sound, and for cross-synthesis.

As the phase vocoder uses the information in all the (usually numerous) frequency bins

to reconstruct the sound via an inverse FFT, it does not achieve significiant compression.
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McAulay and Quatieri [92, 110] found that speech signals can be modeled well using

only a few sinusoids instead of all the frequencies present in the FFT. Their method of

sinusoidal modeling keeps track of the peaks (or bins with the highest magnitudes) in each

spectral frame, and matches these peaks across consecutive frames to obtain sinusoidal

tracks or partials. The final result can be re-synthesized by summing the outputs of

sinusoidal oscillators at these variable frequencies. Spectral modeling synthesis [124]

adds filtered noise to this mix, recognizing that the pitched or deterministic elements

of a sound are best modeled by sinusoids, while components such as breath noise bet-

ter suit a stochastic model. Other works introduce transients (brief, bursty events) to

achieve a finer decomposition [156, 85, 14]. Related research also considers transforms

beyond the FFT, such as the continuous wavelet transform to obtain a sines+transient

model [14] and Bayesian spectrum estimation for imperfect real-world data [109]. Reas-

signed bandwidth-enhanced additive synthesis uses a reassigned spectrogram for better

time-frequency resolution and stores noise content as well as amplitude and frequency

for each sinusoidal track [59].

Additive synthesis has typically been used to synthesize speech and instrument sounds,

but TAPESTREA appropriates it for more general environmental sounds. In particular,

it uses SMS [124] to extract sinusoidal templates, possibly from noisy background, and

to re-synthesize them (see Chapter 3, Sections 3.2.1 and 3.4.1). TAPESTREA may also

be seen as a sines+transients+noise framework, although it offers more in the form of

other types of templates, a wide range of synthesis options, and interactive parametric

control. Other existing tools for additive synthesis include Lemur/Loris [60], the CLAM

library[5], AudioSculpt [19] and SPEAR [79].
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2.3.3 Subtractive synthesis and other methods

Other ways to analyze existing sound for synthesis include subtractive synthesis and

Linear Predictive Coding (LPC) [9, 89]. Originally designed for speech coding and

synthesis, LPC analyzes a sound into a source-filter model, such that a linear combination

of the latest samples in a sequence predicts the next sample. The prediction error or

any other signal can then be fed into the filter as a source, allowing cross-synthesis

and pitch transformations as well as re-synthesis of the original sound. LPC has been

explored for musical composition [81], including investigation of its applications to the

synthesis of timbral families [136]. Cascading LPC in the time- and frequency- domains

has been used to model sound textures composed of brief granular events or micro-

transients [10]. Such a model has also been extended to synthesize only the foreground

micro-transient sequence in a complex source texture, with the remaining background din

samples generated stochastically [167].

Sound texture synthesis, or generating an arbitrary quantity of a given source texture,

has also attracted other approaches. Dubnov et al. [46] employ wavelet-tree learning

to synthesize sound textures that are structurally similar to the original, with stochastic

variations. Their method is described in more detail in Chapter 3, Section 3.4.3; it

has been used in TAPESTREA not only to synthesize background templates, but also

to replace transients with background din during analysis (see Section 3.2.2). In other

works, wavelets have also been investigated for modeling and transforming stochas-

tic components of sounds in a parameterized way, focusing on the perceptual effects

of various transformations [94]. Other approaches to sound texture synthesis include

separating the estimated foreground micro-transient sequence from the background din

samples in a complex texture; the former is synthesized using time-frequency LPC and
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mixed according to an inferred statistical distribution, while the latter are generated

stochastically [167]. A survey of sound texture modeling methods is available in [139].

The modeling and detection of transients for sines+transients+noise frameworks also

involve analysis for the purpose of synthesis. Levine and Smith [85] detect transients by

examining the short-time energy envelopes of both the original signal and the residual

(noise) signal. Transient onsets are marked at points where the original signal energy

rises and the ratio of the residual to the original signal energy is also high, indicating

an increase that is not captured well by sinusoidal modeling. Verma and Meng [156]

model transients as the time-domain dual of sinusoidal tracks. They detect transients in a

signal by comparing the energy in short and long segments of its time-domain samples.

Transients can also be found via other onset detection methods, including time-domain

techniques such as analysis of the signal’s amplitude envelope, frequency-domain tech-

niques such as studying spectral magnitude and phase, hybrid methods, and probabilistic

techniques [13]. Methods to facilitate frequency-domain onset detection include adaptive

whitening of FFT bins so that all the bins have similar dynamic ranges [138]. Transient

detection in TAPESTREA is performed through amplitude envelope analysis, using either

a feedback filter or an implementation of [156] (see Chapter 3, Section 3.2.2).

2.4 Analysis not for synthesis

Many sound analysis methods are not necessarily designed with an eye toward synthesis,

although the information they yield can lead to synthesis using techniques such as feature-

based (section 2.2) or concatenative (section 2.3) synthesis. Widmer et al. [162] distin-

guish between the analysis of music versus sound. Topics to explore for sound include

perceptually informed acoustic models, sound source recognition and classification, and

content-based search and retrieval. Issues for music concern understanding music at

17



multiple levels and from multiple disciplines. They also mention the growing use of

semantic data to understand sound and music. This section focuses on content-based

methods; although it merges sound and music, it chiefly examines techniques that include

a level of signal analysis.

One goal of audio analysis is to represent an audio signal in structurally or perceptually

meaningful ways [155]. The separation of a signal into its component sources facilitates

such representation. For environmental audio, source separation falls under computa-

tional auditory scene analysis [20], or estimating the sources in a composite sound scene

to better understand human perception [50, 49] or enable structured representation [93].

Perceptually based and spectral techniques, such as grouping partials by harmonics, mod-

ulation, common onset and proximity, are often used to identify independent sources [50,

49, 93]; a subset of these is available in TAPESTREA (see Chapter 3, Section 3.2.1).

Source separation also plays a role in the automatic transcription of concurrent musical

sounds, in the form of multiple fundamental frequency estimation [78] and harmonic

instrument separation [163]. Also related are blind source separation techniques in which

the sources are estimated via purely computational or statistical rather than perceptually

motivated analysis [22, 57, 70]. Besides source separation, analysis for representation

also includes other aspects of music transcription [67] and audio compression.

Another set of analysis methods aims to understand and use a collection of sounds on

a more global level. These techniques entail extracting and analyzing information from

many sounds and using the results for content-based classification, search, recommen-

dation, or other actions involving comparison. Work in this area includes methods to

extract audio features and to analyze them over the training set and compute distances for

the classification or search. The MARSYAS framework [148] offers tools for performing

many of these steps, and has led to foundational work on automatic genre classifica-

tion [149]. Also related is research on automatic timbre recognition [103]. An overview
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of content-based music information retrieval, both at the signal-level and the collection-

level, is presented in [23].

Sound / Goal Methods
Abstract FM, non-linear oscillators, feature-based synthesis, waveta-

bles, concatenative / granular synthesis
Acoustic instruments Wavetables, waveguides / physical models, concatenative /

granular synthesis, additive synthesis
Contact sounds Physical models
Cross-synthesis LPC, vocoders
Pitch / time transforma-
tions

LPC, vocoders, additive synthesis, concatenative / granular
synthesis

Pitched sounds Additive synthesis, concatenative / granular synthesis, FM
synthesis, oscillators

Singing voice FM synthesis, formant synthesis, FOFs, concatenative /
granular synthesis, additive synthesis

Speech Formant synthesis, FOFs, concatenative / granular synthe-
sis, vocoders, additive synthesis, LPC

Textures / soundscapes Concatenative / granular synthesis, LPC, stochastic and
wavelet-based methods

Transients Onset detection, physical models, concatenative / granular
synthesis, sines+transients+noise models

Table 2.1: Taxonomy of analysis/synthesis methods by the types of sounds for which they work well.

2.5 Discussion

This chapter has briefly surveyed methods for audio analysis and synthesis, with a focus

on techniques that combine both. The organization of the methods into categories based

on their underlying technology, source information, and goals implies a taxonomy ac-

cording to both the theory and implementation of these methods. While this taxonomy

includes some concrete aspects such as a method’s source material and intended usage, it

also retains a level of abstraction. This is possible because the theoretical background of

a method dictates, to some extent, the types of sounds for which it is effective.
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For a designer or developer wishing to create specific kinds of sounds, an even more

concrete classification of methods may prove useful. Hence, we present a list of different

types of sounds or synthesis goals, and analysis / synthesis methods known to work well

for each of them (see table 2.1). The first column (sounds / goals) is inferred informally

from the scopes of all the algorithms discussed. This approach permits the construction

of a set of sound types that actually map well to specific algorithms. It does not, however,

restrict the sounds or methods available to the user. Future exploration of existing and

new techniques is bound to yield new mappings between methods and sounds. This paper

offers a summary of currently known options and indicates starting points for further

investigation.

One perspective on synthesizing environments is that due to the variety of sources

they combine, it is most effective to separately model each source with the technique

best suited to it. Future work with sound scenes and environments is then likely to

explore and apply a mix of methods described here. Another perspective is that a single

flexible technique may satisfactorily model the majority of sounds. This presents an

exciting avenue to explore, though such a technique may not model each sound in the

best possible way. Several options lie between these two extremes: present the entire

range of techniques to the machine and let it decide which to use on-the-fly, or select

an all-encompassing technique as the default but let the user override it with another

method if desired, or other options yet unexplored. Since many of these support the use

of multiple algorithms, this overview of available methods is expected to be relevant to

sound designers and the wider computer music community.

The place of TAPESTREA in this broader picture is also somewhere between the two

extremes. In one sense, TAPESTREA was designed with the idea that different analysis

and synthesis methods suit different sounds, thus leaning toward the former extreme. On

the other hand, TAPESTREA aims to provide a single flexible framework to manipulate
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many types of sounds, matching the latter extreme. Possible areas for future work include

exploring more options between the two perspectives, allowing the framework to become

more automated without losing its flexibility or range of control (see Chapter 5).

2.6 A Synthesis Example
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Figure 2.1: A synthesis example (see section 3.6). This sound scene was created using multiple synthesis
algorithms: oscillators (A), FM synthesis (F), parametric synthesis from scratch (B), modal synthesis
(G), LPC (C, D, E, H, M), additive synthesis (I, L), concatenative texture synthesis (J), and feature-based
synthesis (K).

An example sound scene is now presented, created using multiple synthesis algorithms

(see Figure 2.1). This example, co-created with Perry Cook, combines aspects of “real-

world” sound design and more abstract composition. It begins with (A) a beeping alarm

clock (sinusoidal oscillator synthesis, section 2.1), followed by (B) footsteps on a wooden

floor (parametric synthesis from scratch, GaitLab [32], section 2.2). Next come the

sounds of (C) a sliding door opening, (D) a person brushing his teeth, and (E) running

water (all re-synthesized using time-frequency LPC [10], section 2.3.3). (F) A doorbell

(FM synthesis, section 2.1) follows, overlapping with (G) a door being pounded (modal
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synthesis excited by exponentially enveloped noise, section 2.2). The sound of (H) a

door opening (noise-excited LPC, section 2.3.3) marks the transition to a less realistic

scene. The next section begins with (I) a baby crying (sinusoidal additive synthesis [124],

section 2.3.2), leading into a chorus of transformed versions of crying babies (also using

additive synthesis). This chorus is overlaid with (J) several seconds of playground din

(random overlap-add sound texture synthesis [63, 64], section 2.3.1) followed by (K)

white noise shaped to match the root-mean-square power of the preceding din (feature-

based synthesis [71], section 2.2). (L) Wind-chimes transformed in frequency and time

(additive synthesis, section 2.3.2) are also added to the mix, to create a richer scene.

Finally, as this abstract section fades, the sound of (M) a door closing (noise-excited

LPC, section 2.3.3) marks the end of the interlude and the sound scene.

This example illustrates the variety of algorithms that may contribute to a single fairly

simple scene or composition. Several factors influence the choice of algorithm: the

specific sound to be synthesized (see table 2.1), the available material and tools (existing

sound files, physical or perceptual models), the type and range of control desired, and

other variables. Abstract algorithms may allow the most freedom of exploration, in that

they examine the potential of any structure, algorithm, or data. However, they can also

synthesize realistic sounds, such as (A) the alarm and (F) the doorbell in our example.

Synthesis from scratch is especially suitable when there is a model or the means to

create one, and often allows high-level parametric control over the synthesized sound.

Synthesis-by-analysis is appropriate when given existing sounds to transform, arbitrarily

extend, or otherwise re-use. Finally, primarily analytic techniques can also aid synthesis

by providing meaningful information. Thus, each set of techniques has a synthesis scope

defined by sound type and context.

Software tools for synthesizing sound include programming languages (ChucK, Su-

perCollider, Pure Data, Max/MSP and more) as well as specialized software that offer
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great control over a fixed set of algorithms (see Section 2.7.2). All these enable some

form of parametric audio synthesis. One advantage of thinking of audio in this way is

the data compression it achieves. In this example, physical synthesis from scratch com-

presses 400:1 (1.1MB of sound files become 2.8kB of synthesis parameters and scripts).

Other methods of synthesis together do not achieve as high compression (11.7MB be-

come 3.5MB), partly because the additive synthesis through TAPESTREA stores the

parameters in a verbose text format. One may store the same information in a more

space-efficient way by using other formats [164] and performing intelligent compression.

Further, a significantly longer example sound may easily be rendered from the same

parameter files, suggesting even higher compression potential. Even so, a total of 12.8MB

source files become 3.5MB synthesis files to synthesize 5.6MB for the entire 65-second

sample.

Another advantage of using parametric sound synthesis algorithms instead of raw

sound files is the ability to re-render over and again with minor tweaks or major trans-

formations to one or more components. The timbre, distribution, duration, pitch, and

other aspects of each component can be changed in multiple ways according to the

synthesis algorithm used. Thus, we may choose to have more tooth-brushing and less

washing, or change the walker’s gait and walking surface. Such variables can also be

manipulated interactively and in real-time from external control inputs, aiding sound

design for entertainment purposes.

A similar argument applies for composers. In the early days of computer music,

compositions most often centered around one method or technique, but now just as the

orchestral composer has winds, strings, percussion, etc. available in their palette, the

electro-acoustic composer has a rich variety of techniques, each with strengths, weak-

nesses, and characteristics. This overview is aimed to provide a working acquaintance
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with the full set of tools, as well as pointers to more information on specific techniques if

needed, thus facilitating the creation of vivid scenes and compositions.

2.7 Software Tools for Manipulating Audio

Having examined a range of methods for analysis and synthesis, this chapter also presents

a brief overview of existing software tools for analyzing, transforming, synthesizing and

visualizing audio. These include general-purpose editors (section 2.7.1), and specialized

software and programming tools (section 2.7.2). Each of these contributes to sound

analysis and/or synthesis in miscellaneous ways.

2.7.1 General editors

Current tools for commercial or home audio production include a range of sound editors.

Free or inexpensive commercially available software, including Snd [135], Audacity [91]

and GoldWave [65], perform simple audio production tasks such as sound file viewing,

playback, recording, mixing, and some amount of editing. More advanced work includes

the integration of analysis techniques to “auto-correct” recorded music [37]. Midline

audio editing systems, including Peak [16], Logic [6], Cubase [137], and Soundbooth [4],

are geared towards music production and often offer real-time MIDI sequencing capabil-

ity. Some of these systems also allow audio transformation and digital effects process-

ing. MetaSynth [150] offers a series of “rooms” (evocative of TAPESTREA’s “faces”)

for operations like sequencing, applying digital audio effects, and synthesizing sound

by painting scores. Audition [3] allows spectral editing by applying desired effects

to a selected frequency region. At the highest end are digital audio production hard-

ware/software systems such as Pro Tools [43], geared towards commercial sound pro-
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duction. Most of these products support Virtual Studio Technology (VST) plug-ins that

perform synthesis algorithms and apply effects. Some also incorporate audio analysis;

Ableton Live [2] analyzes transients in a sound file to enhance time-stretching of beats.

However, none provides one real-time, extensible, integrated analysis-transformation-

synthesis workspace.

2.7.2 Specialized software

Specialized software tools focus on a specific class of sounds or algorithms. These

include tools for visualizing sound, software to re-arrange or transform sound in various

ways, and interfaces to manipulate sound programmatically.

Visualization

Software that specializes in visualizing sound often aims to aid analysis by presenting in-

formation in meaningful ways. The sndtools suite [99] includes sndpeek, a visualization

tool that displays a time-varying waveform, waterfall plot, and audio feature information

for real-time sound input or file playback. WaveSurfer [126] is an open-source sound

file viewer designed for understanding and analyzing speech. In addition to displaying

waveform, spectrogram and pitch contour information, it allows the editing and labeling

of audio data and is receptive to plug-ins for advanced functionality. Praat [18] enables

visualization and analysis of phonetics, including spectrograms and spectral slices, pitch,

formant and intensity contours, annotation, and some amount of audio manipulation.

Sonic Visualiser [21] displays a range of visual information specialized for music record-

ings, including waveforms, standard and peak spectrograms, and the results of analysis

performed by arbitrary Vamp plug-ins. It also allows manual and automated audio an-

notation and standard audio effects processing. Another specialized visualization and
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analysis tool is Raven [35], designed for bioacoustics tasks such as recognizing and

studying birdsong. Lumisonic [66] is a real-time sound visualizer for hearing-impaired

individuals; it offers a specific graphic representation that can be used for interactive

display and synthesis. While many of these tools are customized for specific domains,

most of them can be used to visualize and analyze any sound. However, by nature they

are most effective on the types of sounds for which they are intended.

Arrangement and transformation

Graphical tools for arranging, transforming, and re-using sound range from basic audio

rearrangement software to advanced analysis and re-synthesis systems. The Interac-

tive Soundscapes Project is a series of installations allowing individuals to compose

soundscapes using the Interactive Soundscape Designer software [107]. This graphical

interface lists audio contributed by community members and allows users to select which

sounds to play and control the gain, panning and pitch of each sound. A more advanced

concatenative synthesis tool is MEAPsoft [161], which automatically segments digital

music into beats or events, extracts features on each segment, and uses these features to re-

arrange segments into a new piece. A graphical interface allows users to input preferences

for each of these steps and optionally displays a visualization of the segments. Graphical

software for audio analysis and transformation include AudioSculpt [19], which analyzes

a sound to obtain an estimated fundamental frequency, partial trajectories, and segmen-

tation points based on transient detection and spectral flows. This information guides

a range of transformations on the original sound, including spectral editing and time-

stretching. SPEAR [79] is a tool for analyzing, viewing, editing and re-synthesizing

the sinusoidal partials of a given sound. The analysis and synthesis are based on the

McAulay-Quatieri technique [92], with variations such as using linear prediction to match

partials or optionally re-synthesizing via an inverse FFT instead of an oscillator bank.
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SPEAR offers transformations such as modifying the frequency, amplitude, and time

of a selected set of tracks through a graphical user interface. Related software also

includes SoundSeed [11], a projected commercial tool for interactively generating game

audio. SoundSeed analyzes a sound into a parametric model and a residual sound;

applying modified parameters to the residual then yields transformed versions of the

original sound. Currently, it supports only impact sounds.

Libraries and languages

Programming tools for manipulating audio include software libraries and audio program-

ming languages. Libraries offer tools for audio manipulation within a broader pro-

gramming language, often focusing on specific manipulations. Boodler [106], for ex-

ample, is a Python soundscape programming tool that allows users to define, share,

install and execute soundscapes with some parametric control. Shared Boodler packages

may consist of a collection of sounds or of “soundscape” programs using these sounds.

Several specialized libraries offer programmatic control over sinusoidal modeling. Im-

plementations of Spectral Modeling Synthesis (SMS) [124] are available in multiple

languages and systems [123]. SMS tools are also integrated into the C++ Library for

Audio and Music (CLAM) [5], a software framework for audio analysis, transformation

and synthesis. CLAM optionally offers user control via graphical tools as well as through

its programming interface. The Loris software package offers programming interfaces in

C, C++ and Python (extensible to other languages via SWIG) for reassigned bandwidth-

enhanced additive synthesis [61]. Loris developed from Lemur [60], an earlier framework

for McAulay-Quatieri sinusoidal modeling [92].

More general audio libraries and programming interfaces include the Synthesis ToolKit

in C++ (STK) [34] for real-time audio processing and synthesis, and the Java Audio
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Synthesis System (JASS) [152] for programming sound synthesis in Java. Both these

systems offer notions of unit generators and patches (or filter-graphs). CMIX [82] is a C

library for sound processing, offering a command parser and tools to create instruments

(or unit generators) and score files. These general-purpose libraries often share pro-

gramming constructs and paradigms with specialized audio programming languages such

as CSOUND, Max/MSP, Pure Data, SuperCollider, and ChucK. A detailed discussion

of audio programming languages is beyond the scope of this dissertation, but avail-

able in [157]. It is interesting to note that some existing languages also offer graphical

programming environments. Languages like Max/MSP and Pure Data are inherently

graphical, while ChucK code can optionally be edited and visualized in a custom-made

environment, the Audicle [159].

Many of the existing software tools for manipulating sound, though powerful, are

either too general to offer fine-tuned control for different types of sounds, or too special-

ized to apply to a wide range of sounds. Even general audio programming languages

may offer limited control to users without a high level of programming sophistication

or ample time to construct a complicated system. TAPESTREA attempts to fill this

gap by presenting a single framework through which one can analyze, transform, and

re-synthesize arbitrary environmental sounds, with interactive control and audiovisual

feedback. Thus, it combines aspects of some of the tools described above, but also goes

further to embody a novel environmental sound design and composition paradigm.
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Chapter 3

TAPESTREA

3.1 Overview

TAPESTREA introduces the paradigm of creating new sounds by extracting and trans-

forming building blocks from existing sounds. This is also called “re-composition”, as

the existing sounds are first interactively decomposed into smaller parts, then selectively

transformed and re-combined to create a new composition or sound scene.

Re-composition takes place in several phases (see Figure 3.1). Existing sounds are

first pre-processed to block the zero-frequency component for sinusoidal analysis. Op-

tionally, all the peak frequencies in each spectral frame of the input can also be pre-

computed. Next, in the analysis phase, the sound is separated into re-usable components

that correspond to individual foreground events or background textures. This phase takes

advantage of multiple analysis tools, including sinusoidal analysis, transient detection,

and FFT-filtering. The extracted building blocks are saved as templates that can be inde-

pendently transformed and re-synthesized. In the transformation and synthesis phases,

these components are modified, combined and re-synthesized using time- and frequency-

29



Template Extraction

Deterministic 
Events

Stochastic 
Background 

Transient 
Events

Post-
processing

Transformations

Spectral 
Manipulation

Stochastic 
Properties 

Temporal / 
Spatial 

Positioning

Synthesis

Sinusoidal 
Resynthesis

Background 
texture 

synthesis
Event 

Positioning

User 
Interaction

Input Audio

Texture
Texture

Texture
Output

Pre-
processing

Figure 3.1: Pipeline diagram of the TAPESTREA system
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domain techniques that can be controlled on multiple levels. Some transformations, such

as low-level changes to sinusoidal templates, take place before the synthesis phase, while

others are applied during synthesis. Finally, the synthesized audio is optionally post-

processed and output.

User interaction is integral to all phases of this pipeline, to produce a fine-tuned

and personal composition. The TAPESTREA executable is named taps (techniques for

audio processing and synthesis). It generally runs in graphical user interface mode,

presenting a set of graphical interfaces or faces for the different phases of re-composition.

However, it also offers a few command line-only modes for special analysis and synthesis

functionality. The software is open-source and freely available for download at http:

//taps.cs.princeton.edu/. While developed primarily by the author, TAPESTREA

was co-created with Perry Cook and Ge Wang, who contributed ideas and foundational

implementation. Other key contributors include Tom Lieber (see Section 3.3.1) and Matt

Hoffman (see Sections 3.2.2 and 3.2.3).

The rest of this chapter details the algorithms and interfaces forming the TAPESTREA

system, followed by a discussion of its implementation. Section 3.2 details the analysis

and information extraction methods and interfaces offered in TAPESTREA. Section 3.3

describes the framework for template representation and internal, low-level transforma-

tions of sinusoidal templates. Section 3.4 focuses on the re-synthesis paradigms used

for sound design and composition. The high-level implementation of the TAPESTREA

system is discussed in Section 3.5. Finally, Section 3.6 presents a demonstrative example

of a re-compositon using TAPESTREA.
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3.2 Analysis Methods, Information Extraction

The first step in the TAPESTREA pipeline is to analyze and extract independent templates

from a composite sound recording. This includes identifying and separating foreground

events from background noise. Foreground events are parts of the scene perceived as

distinct occurrences, and may include both sinusoidal events (the deterministic or sta-

ble components of a sound) and transient events (brief bursts of stochastic energy).

Removing these leaves the stochastic background. What constitutes foreground versus

background in a recording may vary by context, and is determined in TAPESTREA by

the extraction tools used; in this sense, the boundaries between template types are not

rigid, but are interactively defined by the user. An additional raw template corresponds

to neither foreground or background, but essentially captures all parts of a sound within

selected time and frequency bounds. This section describes the methods used to extract

each type of template, and ends with an overview of the analysis user interface.

3.2.1 Sinusoidal modeling

Sinusoidal events are identified through sinusoidal analysis based on the spectral model-

ing framework [124]. The input sound scene is read in as possibly overlapping frames,

each of which is transformed into the frequency domain using the FFT and processed

separately. The maximum and average magnitudes of the spectral frame are computed

and stored. The following steps are then repeated until either a specified maximum

number (N) of peaks have been located or no more peaks are present:

1. The maximum-magnitude bin in the frame, within the specified frequency range, is

located.
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2. If the ratio of its magnitude to the average magnitude of the frame is below a

specified threshold, it is assumed to be noise and deduced that no more peaks are

present.

3. If its magnitude is above a specified absolute threshold, it is added as a sinusoidal

peak and the bins it covered are zeroed out in the analysis frame.

All the sinusoidal peaks and FFT frames can also be pre-computed and stored. In

this case, all the peaks in a frame are found by locating bins where the derivative of the

magnitude changes from positive to negative. The peaks for each frame are stored in

decreasing magnitude order. At run-time, the top N peaks that satisfy any frequency and

threshold bounds are selected per frame for peak matching.

Once the top N peaks in all the frames have been collected, peaks are matched from

frame to frame if they occur at sufficiently similar frequencies. Over time this yields

tracks of peaks lasting across frames. The matching and updating of tracks takes place as

follows:

1. Each existing track from previous frames selects a current frame peak closest to

itself in frequency. If the difference in frequency is above a specified threshold,

that track is dormant and the selected peak remains unmatched.

2. All unmatched peaks are added as new tracks, and all existing tracks that have not

found a continuation are removed if they have remained dormant for a specified

number of frames.

3. Tracks that continue across a specified minimum number of frames are retained.

Having extracted a set of sinusoidal tracks, TAPESTREA offers the option to auto-

matically group related tracks [49, 93] to identify events. A track is judged to belong in

an existing group if it has a minimum specified time-overlap with the group and either:
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Figure 3.2: Spectrum view of sinusoidal and stochastic components: the upper plot shows a single
sinusoidal peak extracted; the lower shows the spectrum after attenuating the bins corresponding to the
extracted peak. This view is taken from the extraction results section of the analysis user interface

(1) its frequency is harmonically related to that of a track in the group, (2) its frequency

and amplitude change proportionally to the group’s average frequency and amplitude,

or (3) it shares common onset and offset times with the group average. If a track fits in

multiple groups, these groups are merged. Groups that last over a specified minimum time

span are considered deterministic events. While the automatic grouping could benefit

from more sophisticated techniques, it may currently be fine-tuned for specific sounds by

manipulating error thresholds for each grouping category. Further, the group face (see
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Figure 3.3: Separating sinusoidal tracks from stochastic residue: (a) original sound; (b) sinusoidal tracks;
(c) residue

Section 3.3.1) offers a manual alternative for re-grouping sinusoidal tracks. If automatic

grouping is not selected, all the tracks found in the analysis phase are together considered

a single event. Each sinusoidal event is defined by a list of tracks, with a history of each

track’s frequency, phase and magnitude, and onset and completion times.

The residue, or the sound with deterministic components removed, is extracted after

the sinusoidal tracks have been identified. TAPESTREA eliminates peaks in a sinusoidal

track from the corresponding spectral frame by smoothing down the magnitudes of the

bins beneath the peak (see Figure 3.2). It also randomizes the phase in these bins.

Figure 3.3 shows the results of a simple sinusoidal separation: the first spectrogram

depicts the original sound, the second displays the extracted sinusoidal tracks, and the

third shows the original sound after the removal of the selected tracks. Parametric control

35



allows more or less of the original sound to be extracted as sinusoidal tracks or left in the

stochastic residue.

3.2.2 Transient detection and separation

Transients are brief stochastic sounds with high energy. While a sinusoidal track looks

like a near-horizontal line on a spectrogram, a transient appears as a vertical line, rep-

resenting the simultaneous presence of information at many frequencies. Transients are

often detected by observing changes in signal energy over time [156, 13]. TAPESTREA

processes the entire sound using a non-linear one-pole envelope follower filter (provided

by Matt Hoffman) with a sharp attack and gradual decay to detect sudden increases in

energy. Points where the ratio of the envelope’s derivative to the average frame en-

ergy is above a user-specified threshold mark transient onsets. A transient’s length is

also user-specified and can thus include any amount of aftermath after the initial onset.

TAPESTREA also provides an alternative transient detection method based on comparing

the ratio of the average energy in a short audio segment to the average energy in a longer

surrounding segment [156]. Both methods essentially perform a time-domain analysis

of signal energy, but the availability of multiple algorithms makes it likelier to capture a

particular desired transient.

Transient events are not well represented by sinusoidal tracks as they contain many

different frequencies, but they can be modeled by peak picking in the time domain [156].

However, they are generally brief enough to be stored as raw sound clips; this is how

they are represented in TAPESTREA. To obtain the background without transients, de-

tected transients are removed and the resulting “holes” are filled by applying wavelet tree

resynthesis [46]. The nearest transient-free segments before and after a transient event

are combined to estimate the background din that will replace it. Wavelet tree learning
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Figure 3.4: Transient removal and hole filling: (a) fireworks with pop (highlighted); (b) fireworks with pop
samples zeroed; (c) fireworks with hole filled

generates more of this background, which is overlap-added into the original sound to

replace the transient. The residue from sinusoidal analysis (see Section 3.2.1), with

transients removed in this way, can be saved to file and used for stochastic background

generation in the synthesis phase. Figure 3.4 demonstrates transient hole-filling via a

series of spectrograms.

3.2.3 Raw template extraction

In some cases, a desired sound may not be satisfactorily captured by either sinusoidal

or transient event templates. Examples include sounds with closely related sinusoidal

and transient components, as well as sounds simply corresponding to a section of the
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spectrogram. The latter can be thought of as a range of frequencies and time, with varying

magnitudes; it differs from sinusoidal templates in that all the frequencies in the range are

desired, rather than only the most prominent ones. Hence, the raw template captures a raw

spectrogram region, using FFT filtering (implemented by Matt Hoffman) to strengthen

the selected frequency range and mute other frequencies, within the given time range.

The spectrum in each frame in the time range is multiplied by a frequency envelope

according to the desired frequency range. A roll-off parameter defines the range over

which the frequency envelope decreases to 0. The set of modified spectra are converted

to time-domain audio samples using the inverse-FFT and stored in this form, similar to

transient event templates.

3.2.4 Analysis interface and parameters

The graphical user interface for sound analysis and template extraction is known as the

analysis face (see Figure 3.5). This interface divides the screen into four major quadrants:

the time-domain display, the frequency-domain display, the extraction results display, and

the extraction control panel. Audio is loaded by selecting an existing sound file or pre-

processed peaks file via the load button, or by recording audio directly into TAPESTREA

through the system microphone, using the record button. By default, the record button

records audio until the stop button is pressed or for up to one minute, whichever occurs

sooner. The maximum recorded audio duration can be adjusted from the command line.

Once loaded, the sound is displayed as a time-domain waveform in the upper-left

quadrant of the screen, and as a spectrogram in the upper-right. Controls associated with

the time-domain waveform include left, right, and now sliders (known as butters within

TAPESTREA). The left and right butters specify a time range for listening and analysis,

while the now butter displays the approximate location of the audio samples currently
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Figure 3.5: Analysis user interface

being played. It is possible to save the samples between left and right as an independent

sound file using the save button between the waveform and spectrogram displays.

The spectrogram display in the upper-right quadrant displays short-time Fourier trans-

form (STFT) information for the entire sound. The horizontal axis denotes time, increas-

ing towards the right; the vertical axis denotes frequency, increasing upwards; the color

depicts the magnitude of the STFT for the associated time and frequency bin. The colors

can be adjusted to some extent using the brightness and contrast sliders beneath the

spectrogram. The spectrogram can also be toggled with a frame-by-frame spectrum view,

through the view button between the waveform and spectrogram displays. The frame-by-

frame spectrum view displays the magnitude spectrum for a frame or window of the

sound, with frequency on the horizontal axis increasing towards the right, and magnitude
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on the vertical axis increasing upwards. The particular frame displayed corresponds to

the location of the now butter, and changes automatically while the sound is playing.

The frame-by-frame spectrum view also offers low and high butters to specify a

frequency range for sinusoidal or raw template extraction. Thus, analysis occurs for

frequency bins between low and high, and time samples between left and right. Select-

ing or drawing a rectangle on the spectrogram specifies the time and frequency ranges

simultaneously and is often most convenient. The (un) zoom buttons visible between the

waveform and spectrogram displays allow the displays to zoom out to the entire sound,

or in to the currently selected time and frequency ranges. Zooming affects all three

displays: the waveform, spectrogram, and frame-by-frame spectrum. This facilitates

toggling between an in-depth view of a particular time and frequency region, and an

overview of the complete sound.

The selected time range of the loaded audio is re-played using the play button, while

the stop button stops any audio currently playing. The larger separate button performs

template extraction on the loaded audio, given the selected analysis ranges, mode, and

parameters. The analysis mode is selected via a panel of small red buttons at the bottom

right of the screen. The specific parameters for the selected mode are displayed in the

bottom-right quadrant or extraction control panel, while the bottom-left quadrant shows

the extraction results. Details for specific analysis modes are described below.

Sinusoidal analysis

Sinusoidal analysis (see Section 3.2.1) is performed when the separate button is pressed

while the sines or groups pane is selected in the extraction control panel. Sliders in the

sines pane control sinusoidal analysis parameters such as the number of sinusoidal peaks

to locate per frame, and thresholds for peaks and tracks. The parameters are listed in
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Table 3.1. The magnitude threshold for sinusoidal analysis can be viewed in the frame-

by-frame spectrum as a red line (see Figure 3.6). Only peaks above the line are accepted

as possible sinusoidal tracks. While the mag. threshold slider determines the threshold

for the lowest frequency bin, the slope of the line is determined by the tilt slider near the

spectrum view. Tilt allows the threshold to be vary across frequency bins, to an extent.

Selecting the do grouping box enables the automatic sinusoidal track grouping fea-

ture. Sliders in the groups pane control the sinusoidal grouping parameters, and can be

adjusted to obtain groups based more on one criterion than another. These parameters are

also described in more detail in Table 3.2.

Once all the parameters have been selected and the separate button pressed, sinu-

soidal analysis is performed. TAPESTREA then re-synthesizes and plays the extracted

sinusoidal component. In the bottom left quadrant of the screen (see Figure 3.2), the

sinusoidal plot shows a frame-by-frame spectrum of the extracted and re-synthesized

sinusoidal tracks, while the stochastic plot shows a frame-by-frame spectrum of the

remaining stochastic residue. The sum of these two spectra should be very close to the

frame-by-frame spectrum of the original sound.

Both the sinusoidal and stochastic components in the extraction results display have

associated save and play buttons. For the sinusoidal component, the play button plays

the current sinusoidal event template, while the save button saves it. If the grouping

option was not selected, the current sinusoidal event template consists of all the extracted

sinusoidal tracks. If automatic grouping was selected, each group of tracks is considered

a separate sinusoidal event template. In that case, the previous and next buttons can be

used to navigate between multiple sinusoidal events found in a single round of analysis,

while the all button re-synthesizes and plays the sinusoidal tracks from all the event

templates as one unit.
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Name Range Default Description / Notes
Frequency
min/max

0–20 kHz 0–20 kHz Defines frequency region in which to
extract sinusoidal tracks.

Time
start/end

Source
sound
duration

Entire
sound

Defines time region for sinusoidal
track extraction.

# Sine tracks 1–50 4 Number of sinusoidal peaks located
per frame. Affects complexity or
richness of extracted sound.

Magnitude
threshold

0.000–0.523 0.000 Minimum peak magnitude.

Threshold
tilt

-90.000–
90.000

0.000 Degrees by which magnitude threshold
“line” can tilt across frequency bins.
Varies threshold as a function of
frequency.

Minimum
track length

0–20 2 Minimum number of frames over
which a track must continue. Enables
selection of longer tracks or momen-
tary peaks.

Frequency
sensitivity

0.000–1.000 0.850 Closeness of a track’s frequency
between adjacent frames, for peak
matching. Higher sensitivity yields
tracks that are more stationary in
frequency.

Allowable si-
lence

0–20 0 Number of frames for which a track
may be dormant or invisible. Allows
a temporarily muted track to remain as
one entity.

Peak-to-
noise ratio

0.000–
20.000

3.100 Minimum ratio of a valid peak magni-
tude to the average magnitude of the
frame. Adaptive threshold local to
each 10-20ms frame; lower ratios give
more harmonics; higher ratios reject
more noise.

Table 3.1: Sinusoidal analysis parameters
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Name Range Default Description / Notes
Harmonic
grouping
error

0.000–1.000 0.100 How far a track’s frequency may
diverge from a group in terms of
harmonics. Higher error means the
grouping by harmonics is less strict,
and tracks in a group need not be as
harmonically related.

Common
modulation
error

0.000–2.000 0.300 How far a track’s amplitude and
frequency envelope may diverge from
a group’s. Higher error allows more
variation.

Onset error 0.000–1.000 0.010 Maximum number of seconds between
a track’s and a group’s onset times.

Offset error 0.010–1.000 0.030 Maximum number of seconds between
a track’s and a group’s end times.

Minimum
event length

0.000–1.000 0.100 Minimum number of seconds a group
of tracks must last to be considered
a sinusoidal event. This can filter
out very brief single tracks that don’t
belong in any group.

Minimum
track overlap

0.000–1.000 0.880 Minimum fractional overlap between a
track and a group. Uses actual overlap
divided by track’s or group’s length.

Table 3.2: Automatic sinusoidal track grouping parameters

The stochastic residue is computed on pressing the save button associated with the

stochastic plot. This avoids unnecessary inverse FFTs if the user is not interested in the

stochastic residue. Saving the stochastic residue results in the computation of the required

inverse FFTs; the ensuing background sound is then written to file. Selecting the clip only

option before saving the stochastic residue limits the extracted background to parts of the

original sound clip within the specified analysis time ranges. If this option is deselected,

the background includes the entire time range of the original sound. In both cases, all

sinusoidal event templates found are removed. Once the stochastic background has been

saved, it can be heard via the associated play button.
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When saving any template, a file dialog box is presented in case the user wants to save

it to file externally. This is optional, and hitting “cancel” in the dialog box prevents it from

being saved externally. In either case, the template is saved in the internal TAPESTREA

library for the duration of the current session, and can thus be re-used in the synthesis

face. This applies to all templates.

Transient analysis

The transients pane provides control over transient detection parameters (see Section

3.2.2). A box labeled use energy ratio determines which transient detection method is

used. By default, transients are detected using an envelope follower filter, with user con-

trol over the filter’s attack and decay, transient detection threshold, and other parameters

(see Table 3.3). Selection of the use energy ratio box results in the detection of transients

by comparing the signal energy in short versus long frames of audio samples [156]. This

method offers a different set of parameters, including the number of samples to consider

for a short and a long frame, and a related transient detection threshold (see Table 3.4).

In either case, the detected transients are highlighted in the time-domain view of

the original sound (top-left quadrant) and updated automatically whenever the analysis

parameters are modified. Hitting the separate button results in the computation of a

stochastic background with the currently detected transients removed, as described in

Section 3.2.2. In transient analysis mode, the extraction results panel (bottom-left quad-

rant) displays time-domain views of the detected transients and computed background.

The waveform of the background is presented in the bottom-most plot; above it is a

higher-resolution waveform of the currently selected transient. Once again, the user may

navigate the list of detected transient events using the previous and next buttons near the
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Name Range Default Description / Notes
Attack 0.000–1.000 0.400 Envelope follower filter’s attack /

rising coefficient. Usually should be
low.

Decay 0.000–1.000 0.900 Envelope follower filter’s decay /
falling coefficient. Usually should be
high.

Threshold 0.000–
15.000

1.000 Minimum ratio of envelope’s deriva-
tive to frame’s average energy, at
potential transient onset. Higher
threshold means fewer transients are
found.

Minimum
gap

1–22050 2000 Minimum number of samples between
successive transient onsets. Also the
default transient length; increasing it
includes more samples in the transient.

Anti-aging
factor

0.000–1.000 0.950 Weighting amount for past values,
in average frame energy computation.
If 0, only current sound sample is
processed; if 1, only past energy is
considered; something in between is
most suitable.

Table 3.3: Transient detection parameters: envelope follower

transient waveform display, and may hear or save the currently selected transient or the

stochastic background via the associated play and save buttons.

Iteration for background extraction

Background extraction takes place as an optional part of the sinusoidal and transient

analysis stages. However, it is sometimes helpful to iteratively remove events to extract

a cleaner background. In both sinusoidal and transient analysis modes, a load me button

near the stochastic background display (bottom-left quadrant) facilitates this. Once a

stochastic background has been computed, the load me button loads it into TAPESTREA

as the next audio file to analyze. All the standard analysis steps can then be performed

on this background, including further levels of iteration. To return to the previous audio
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Name Range Default Description / Notes
Long frame
size

1–88200 22050 Size of longer time frame, in samples.

Short frame
size

1–44100 2756 Size of shorter time frame, in samples.
Ratio of energy in short frame to long
frame is computed to detect transients.

Threshold 0.000–
15.000

4.500 Minimum short:long energy ratio for a
valid transient.

Minimum
gap

1–22050 2826 Minimum number of samples between
transients. Not equal to transient
length in this case.

Maximum
transient
length

1–88200 44100 Maximum number of samples for
which a transient can last.

Table 3.4: Transient detection parameters: energy ratio

file that was being analyzed, one may use the back button near the center of the screen.

For example, a user can load an original sound, extract a background from it, load the

background and play with it, finish exploring it, and press back to reload the original

file. The back button exists mainly to support iterative background extraction, and is thus

associated with a single previous audio file rather than a historical stack.

Raw template extraction

Raw template extraction (see Section 3.2.3) is performed by selecting the raw pane in

the bottom-right quadrant. Time and frequency ranges can be specified by selecting a

rectangle on the spectrogram or by setting bounds on the waveform and frame-by-frame

spectrum views. The rolloff slider in the extraction control panel offers control over

the frequency rolloff for the pass band as a fraction of the Nyquist frequency. Further

information on these parameters is presented in Table 3.5.

Extraction with the given time, frequency and rolloff parameters takes place on click-

ing the separate button. A frame-by-frame spectrum of the extracted region is then
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displayed in the extraction results panel. As usual, the play button beneath this display

replays the extracted template, while the save button allows it to be saved to the internal

TAPESTREA library or externally to disk.

Name Range Default Description / Notes
Frequency
min/max

0–20 kHz 0–20 kHz Defines frequency region for extrac-
tion.

Time
start/end

Source
sound
duration

Entire
sound

Defines time region for extraction.

Rolloff 0.000–1.000 0.200 Frequency range for rolloff using a
raised cosine. Fraction of Nyquist
frequency.

Table 3.5: Raw template extraction parameters

Other panes

The extraction control panel may also display other information. Selecting the library

view shows the templates currently saved in the internal TAPESTREA library. The

settings pane allows users to modify the analysis window size and FFT size. These

are mainly relevant to the sinusoidal analysis, but can also affect raw template extraction

and the frequency-domain displays in the analysis face.

Pre-processing

The TAPESTREA analysis may also run in optional pre-processing mode, to pre-compute

FFT and peak information for the sinusoidal modeling. Audio files are pre-processed by

running TAPESTREA from the command line with the following arguments:

taps --preprocess file1.wav file2.wav fileN.wav

In this mode, the graphical user interface is not displayed; instead, TAPESTREA runs

silently until it has finished pre-processing all the input files. The resulting output consists
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of two types of files for each input audio file. fileN.fft contains FFT frames for the

associated sound file fileN.wav, computed with TAPESTREA’s default windowing, hop

size, and zero padding. fileN.pp contains information on the sinusoidal peaks in each

frame of the associated sound file and FFT file.

The generated fileN.pp can subsequently be loaded into TAPESTREA’s analysis

face in place of fileN.wav. On doing so, fileN.fft and fileN.wav are also loaded

internally. Sinusoidal analysis then uses fileN.pp and fileN.fft to avoid re-computing

the FFT and locating the top peaks in each frame. This can sometimes make the sinusoidal

analysis faster, although the most computationally intensive task of matching peaks to

form tracks is still performed online since it depends on the specific peak selection. An-

other drawback of pre-processing is that interactive modifications to the analysis window

size and FFT size through the settings pane will not be reflected in the pre-computed

information. It is, however, a valid option for those who seek to improve performance by

any amount without manipulating many analysis parameters.

At the end of the analysis phase, the user has a collection of sinusoidal events isolated

in time and frequency from the background, transient events, stochastic background tex-

ture, and abstract raw spectrogram templates. Output sound scenes and compositions are

constructed parametrically from these templates, such that each template is transformed

independently. The particular transformations available for a template depend partly on

its internal representation, which is further discussed in Section 3.3.

3.3 Representation and Internal Transformation

Extracted templates are represented in different ways according to their type. Sinusoidal

event templates are defined by a set of sinusoidal tracks; a sinusoidal track itself is
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a set of time points with the corresponding frequency and magnitude values at each

point. Transient events are stored as sound samples; their inherent brevity makes this

representation feasible and convenient. Raw templates are also stored as sound samples,

allowing the same kinds of synthesis and transformation operations as transient events.

The stochastic background, which may reasonably have a longer duration than foreground

events, is saved primarily as a sound file containing the original extracted background.

The background synthesis module reads this sound file and analyzes and re-synthesizes

the samples in real-time, storing relevant information in an intermediate wavelet tree

format.

Any template may be saved externally in two possible formats. A .tap file is a text

file containing the template data in a specific order; it includes some generic information

such as the template name and type, and default values for general synthesis parameters.

The more specific synthesis parameters and representation details are stored according to

template type. A .xml file stores the same information in XML format with further details

such as source and analysis information. It has the advantage of being transparent and

extensible; it is straightforward, for instance, for a human to edit a part of the XML file

in a meaningful way or to additionally label it with her own set of tags. It also facilitates

future changes to a template’s representation if required. Further, it paves the way for

more informed template interactions, such as the selection of templates from an XML

database given user-specified criteria such as template type, source sound file, analysis

parameters, synthesis parameters, feature values, personal labels, and numerous other

possibilities.

While the .tap and .xml formats currently determine the external representation of a

template, its internal representation determines the transformations available to it within

TAPESTREA. Most transformations are temporary and take place during or immediately
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preceding a template’s re-synthesis. The group face, however, applies low-level transfor-

mations to sinusoidal templates.

3.3.1 The Group Face

Track display
spectrogram-based 
interactive display of 

selected and deselected 
sinusoidal tracks

Library
currently loaded 

sinusoidal templates

Manipulation tools
tools for selecting, 

manipulating, grouping 
and saving tracks

Figure 3.7: Track manipulation interface

A sinusoidal event template in TAPESTREA can be interactively extracted in the

analysis face (see Section 3.2.1) and transformed as one unit in the synthesis face (see

Section 3.4.1). The group face (see Figure 3.7), created with Tom Lieber, enables more

in-depth manipulation of sinusoidal event templates. It provides an interface through

which a user can interact with the defining components of sinusoidal templates: indi-

vidual sinusoidal tracks. The manipulations it offers are especially relevant for voice

processing.

51



Related software for high-level sinusoidal analysis, transformation and re-synthesis

include the CLAM library [5], Lemur [60], OpenSoundEdit [24], SPEAR [79], and

AudioSculpt [19]. SPEAR [79] and AudioSculpt [19] in particular allow the analysis and

editing of individual sinusoidal tracks (partials) from a graphical interface (see Chapter 2,

Section 2.7.2), while OpenSoundEdit [24] offers a three-dimensional graphical interface

for editing both sinusoidal tracks and resonances. The group face in TAPESTREA

combines graphical track editing functionality with some unique voice-related features,

and is specially designed to modify sinusoidal templates within TAPESTREA. These

modified templates can then be combined with other templates to create a rich piece of

music or sound design.

The group face consists of a spectrogram-like display, a library of available sinu-

soidal templates, and a set of controls to play, stop, and modify selected tracks. The

selected sinusoidal tracks are drawn on the spectrogram display; at each point, the height

corresponds to frequency, horizontal location corresponds to time, and depth of color

corresponds to magnitude. An individual track can be selected or deselected by clicking

on it. Only tracks that have been selected will be played back; the others are either

lightly colored or invisible, as specified by the user. There are also buttons and keyboard

shortcuts for inverting the current selection and for selecting all tracks. The template

library on the group face shows the currently loaded sinusoidal templates only, and allows

for multiple templates to be selected simultaneously. The tracks of selected sinusoidal

templates are displayed in the spectrogram area. All currently selected tracks can be saved

together to a new sinusoidal template regardless of their template of origin; subsequent

modifications to the new template no longer affect the original templates. A limited

number of undo operations are also supported; a backup state is created each time an

editing control is selected.
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Track manipulations

This section describes additional controls and track manipulation operations offered in

the group face. Table 3.6 summarizes the parameters for these.

Name Control Range Default Description
Harmonics General On/off Off Apply selection operations

harmonics of specified
track, or only to specified
track.

Show-all General On/off On Show or hide deselected
tracks of selected templates.

Periodic-
vibrato

Vibrato 0.000–
10.000

0.000 Gain of the periodic vibrato
component.

Random-
vibrato

Vibrato 0.000–
10.000

0.000 Noise gain for vibrato.

Vibrato-
frequency
(Hz)

Vibrato 0.000–
30.000

0.000 Frequency of periodic vi-
brato.

Freq-warp Warp 0.010–
100.000

1.000 Frequency scaling amount
for a track.

Time-stretch Warp 0.010–
100.000

1.000 Time scaling amount for a
track.

Gain amount Gain 0.500–
1.500

1.300 Gain scaling amount for
selected portions of a track.

Time range
(sec.)

Gain 0.000–
1.000

0.010 Time range around selected
point to which the gain
scaling is applied.

Frequency
range (Hz)

Gain 0–
srate/16

100 Frequency range around se-
lected point to which the
gain scaling is applied.

Single track /
Line

Cut On/off
(radio)

Single
track on

Apply a cut only to a single
track or to all tracks passing
through the selected point in
time.

Frequency /
Time

Move On/off
(radio)

Frequency
on

Move selected tracks in fre-
quency or in time.

Fudge
amount

Harmonics++ 0.000–
1.000

0.200 Error forgiveness for har-
monics selection.

Table 3.6: Track manipulation parameters
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Harmonic selection is available via a harmonics checkbox. When checked, all se-

lection and deselection commands are applied not only to the specified track, but also to

tracks that appear to be at harmonic frequencies. Track frequencies are examined at the

time position that was clicked, allowing the selection of tracks that are harmonic at some

points but not at others. The harmonics selection can be made more or less forgiving

of deviations from exact integer multiples of the specified track’s frequency, via a fudge

amount slider in the harmonics++ tool.

Vibrato can be applied to selected tracks via the vibrato tool. This multiplies the

frequency of each track at each time point by 1 + αsin(2π fvt) + βr, where α is the

amount of periodic vibrato, fv is the periodic vibrato frequency, β is the amount of random

vibrato, and r is a pseudo-random sequence uniformly distributed in [−1,1). The vibrato

tool offers sliders to manipulate α, β and fv. The vibrato of all tracks is synchronized.

Frequency and time scaling on selected tracks is specified via sliders in the warp

tool. Comparable frequency and time scaling is available in the synthesis face. While the

synthesis face scaling operations are temporary and controllable in real-time, they apply

to the entire sinusoidal template. In contrast, scaling in the group face resembles all other

group face operations in that it applies only to individual selected tracks and changes the

internal data representing those tracks.

Frequency and time can also be edited via the move tool, which translates the selected

tracks by a fixed amount in frequency or time, instead of scaling them. Tracks shifted in

frequency in this way lose their harmonic relations, while shifting a subset of tracks in

time changes the temporal structure of the entire template. Frequency can also be pitch

quantized via the quantize tool. This tool quantizes each frequency point of the selected

tracks to the frequencies represented by integral MIDI note values (in other words, to a

chromatic scale).
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Several tools allow transformation on a sub-track level. The gain tool facilitates gain

painting on tracks using the cursor. When the cursor moves, the gains of selected tracks

at points near the cursor are scaled by a quantity specified by the gain amount slider.

The time and frequency ranges that determine which track points are “near” the current

cursor position are set via the time range and frequency range sliders. Points within the

specified distance from the cursor position, in both time and frequency, are modified.

The edit point tool allows editing of individual history points on a track by shifting

them in time or frequency. Clicking on a track selects the history point nearest to the

click location; this point can then be dragged to a different position. Neighboring points

on the same track are adjusted to preserve temporal order and to provide a form of local

temporal smoothing if the selected point is shifted in time. No such adjustment takes

place for frequency modifications, however, allowing more freedom of point-by-point

editing in the frequency domain.

Finally, the cut tool allows individual tracks to be split into two parts in time, before

and after the cursor position. This tool offers two modes: in single track mode, only the

clicked track is cut at the specified time point; in line mode, clicking at any point along

the line corresponding to a particular time cuts all selected tracks intersecting the line.

Splitting facilitates the application of track-wide operations, such as selection, deselection

and transformation, to only a part of an erstwhile track.

Applications and Examples

The group face enables a range of manipulations and editing options, some of which

are now described. One application is the arbitrary filtering of high or low frequencies.

While the exclusion of certain frequencies can easily be achieved by setting frequency

bounds for sinusoidal template extraction on the analysis face, an already extracted tem-
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plate can be further filtered by deselecting tracks above or below a certain frequency. A

conventional filter effect can also be replicated by decreasing the gain on undesired tracks

instead of completely removing them.

A related application of selecting and deselecting individual tracks is clean extraction.

Extracting tracks from audio by selecting a rectangle on the analysis face spectrogram

may lead to extra unwanted tracks, including those that intersect the smallest rectangle

one can draw around the actually desired region. Analysis parameter manipulations, such

as decreasing the number of peaks to find or increasing the magnitude threshold, can

help to some extent, but there remains a risk of extracting a high-energy unwanted track

instead of lower-energy wanted tracks. The group face allows this problem to be solved

manually; one may extract a template with additional peaks and remove the unwanted

tracks afterwards by deselecting them.

Time, amplitude and frequency manipulations allow the underlying structure of a

template to be re-organized. This is further supported by the ability to freely combine

selected tracks from different parts of different templates, to create a new hybrid template

that can then be treated as a synthesis unit. Track splitting also contributes to this form

of re-organization, as well as supporting clean extraction by allowing a track to be split

at time points where it appears discontinuous in frequency.

The harmonics selection option is particularly applicable to voice processing. Se-

lected harmonics can be processed as a group, allowing a range of effects. For in-

stance, sinusoidal extraction with more tracks than needed will often capture the voiced

as well as noisy (consonant) parts of a sound. Transformations can then be applied to

the voiced (and usually harmonic) parts of the extracted template, leaving the relatively

noisy consonants unchanged. The group face also facilitates the selection of odd or even

harmonics alone. As described above, all the harmonics of a track can be selected by
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checking the harmonics box and clicking on the track in question. Clicking the second

harmonic track then selects or deselects only the even harmonics. The odd harmonics

alone can subsequently be obtained via the invert button. The ability to select even or

odd harmonics not only enables simple pitch modifications, but also allows the user to

apply different effects to harmonic groups within a template. Separate vibrato, time and

frequency transformations, and gain can be applied to each group, supporting a range of

classic and new examples of psychoacoustic effects.

Thus, the group face begins to explore track-level manipulation to modify templates

in new ways. It has plenty of scope for further expansion, including areas such as adding

sub-harmonics to a template, identifying formants in a template for more intelligent

transformation, and evaluating and adjusting dissonance in a set of tracks. These and

other avenues for future work are discussed in Chapter 5. Even now, the group face

brings more freedom into the manipulation of sinusoidal templates in TAPESTREA.

It offers low-level control to sound designers and also provides a pedagogical tool for

audio enthusiasts. Perhaps most importantly from a conceptual perspective, manipulating

individual tracks in the variety of ways described allows a template to be transformed

and re-organized on an extremely fundamental level, enabling the re-composition of a

template itself as well as a larger sound scene.

3.4 Synthesis, Composition, Sound Design

Once the desired parts of a sound have been extracted and saved as templates, each

template may be transformed and synthesized individually in TAPESTREA. The syn-

thesis interface (see Figure 3.8) provides access to the current library of saved templates,

displayed as objects (see Figure 3.9). Templates saved to file from prior sessions can

also be loaded into the internal library. Selecting any template in the library displays a
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Figure 3.8: Synthesis user interface

set of high-level transformation and synthesis parameters suited to the template type. A

selected template can be synthesized to generate sound at any time, including while its

transformation parameters are being modified. At this point, TAPESTREA also offers

additional synthesis templates to control the placement or distribution of basic templates

in a composition. Thus, components can be manipulated individually and in groups,

modeling both single sound and group characteristics. The transformation and synthesis

options for the different template types are as follows:

3.4.1 Sinusoidal Re-synthesis

Sinusoidal events are synthesized from their tracks via sinusoidal re-synthesis. Frequency

and magnitude between consecutive frames in a track are linearly interpolated, and time-
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Figure 3.9: Internal template library view on synthesis face

domain samples are computed from this information. The track representation allows

considerable flexibility in applying frequency and time transformations on a sinusoidal

event. The event’s frequency can be linearly scaled before computing the time-domain

samples, by multiplying the frequency at each point on its tracks by a specified factor.

Similarly, the event can be stretched or shrunk in time by scaling the time values in the

time-to-frequency trajectories of its tracks. This works for almost any frequency or time

scaling factor without producing artifacts. Frequency and time transformations can take

place in real-time in TAPESTREA, allowing an event to be greatly stretched, shrunk or

pitch-shifted even as it is being synthesized.

3.4.2 Transient and Raw Template Playback and Transformation

Since transient events and raw templates are stored directly as time-domain audio frames,

synthesizing these without any transformation involves playing back the samples in the
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audio frame. TAPESTREA also allows time-stretching and pitch-shifting of transient

and raw templates. This is implemented using a phase vocoder [45]. A phase vocoder

analyzes sound by reading it in segments or frames overlapping by a given amount (hop

size) and computing the FFT of each frame. This yields polar data for each frame in the

form of a magnitude and phase for every frequency bin in the FFT. The sound is then re-

synthesized by overlap-adding the inverse FFTs of the polar frames. To scale the original

sound in time, the analysis hop size may be multiplied by a timescale factor to obtain

a different re-synthesis hop size. To scale the original sound in frequency, the analyzed

polar frames may be re-sampled in frequency before re-synthesis, such that y[n] = x[n/s],

where x[n] is the original polar value of bin n, s is the frequency scaling factor, and y[n] is

the new polar value of bin n. TAPESTREA adapts a phase vocoder implementation from

the sndtools suite [99], with phase fixing as described in [45]. The original template is

analyzed in segments of 1024 samples (0.02 seconds at a 44.1 kHz sampling rate), with

an analysis hop size of 128 samples. Each segment is multiplied by a Hanning window

before analysis. The entire brief template is analyzed part by part and held in memory

prior to re-synthesis. Synthesis then takes place with the specified time and frequency

scaling parameters.

While a phase vocoder itself does not impose a limit on the scaling range, it is more

computationally expensive than the transformations on sinusoidal events, and the results

may often sound less clean. This is because the sinusoidal tracks drive a sine oscillator

bank, allowing smooth frequency and amplitude transitions with no need to store phase

information, whereas a phase vocoder would require an extremely small analysis hop size

to achieve a similar effect. To facilitate fast interactive transformations on transients and

raw templates, TAPESTREA limits the analysis hop size and segment size as described

above, and constrains time stretching to within 4 times the original length. The resulting

transformations sound most effective for scaling factors of 0.25 to 4, which limits the
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scaling to a range smaller than that of sinusoidal events, yet large enough to create

noticeable effects.

Transient events as well as time-shrunk sinusoidal events can by nature also act as

grains for traditional granular synthesis [144, 112]. The transformation tools for sinu-

soidal events and transients, along with the additional synthesis templates described in

Sections 3.4.4 to 3.4.6, can thus provide an interactive “granular synthesis” interface.

3.4.3 Background Generation Methods

The internal representation of a stochastic background template begins with a link to

a sound file containing the related background samples extracted in the analysis phase.

However, merely looping through this sound file does not produce a satisfactory back-

ground sound. Instead, our goal here is to generate ongoing background that sounds

controllably similar to the original extracted stochastic background.

Therefore, the stochastic background is synthesized from the saved sound file using

an extension of the wavelet tree learning algorithm [46]. In the original algorithm,

the saved background is decomposed into a wavelet tree where each node represents a

coefficient, with depth corresponding to resolution. The wavelet coefficients are com-

puted using the Daubechies wavelet with 5 vanishing moments. A new wavelet tree

is then constructed, with each node selected from among the nodes in the original tree

according to similarity of context. A node’s context includes its chain of ancestors as

well as its first k predecessors: nodes at the same level as itself but preceding it in time

(see Figure 3.10). The context of the next node for the new tree is compared to the

contexts of nodes in the original tree, yielding a distance value for each original tree node

considered. Eventually, the next new tree node is selected from among those original

tree nodes whose distance values fall below a specified threshold. The learning algorithm
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Figure 3.10: Wavelet tree learning algorithm [46]: context of a given node n (colored dark grey) in a wavelet
tree. The ancestors of n are the nodes encountered in the path (marked with thick lines and medium grey
coloring) between n and the root of the wavelet tree. The predecessors (colored light grey) are nodes at the
same level as n but preceding it in time.

also takes into account the amount of randomness desired. Finally, the new wavelet tree

undergoes an inverse wavelet transform to provide the synthesized time-domain samples.

This learning technique works best with the separated stochastic background as input,

where the sinusoidal events it would otherwise chop up have been removed.

The following steps describe the original algorithm in greater detail:

1. Obtain a wavelet tree decomposition, T , of the original signal.
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2. Set a threshold ε such that the interval [−ε/2,ε/2] contains P% of the signal

coefficients, for a given value of P.

3. Begin learning the new wavelet tree, T new, by copying levels 0 and 1 of T .

4. For the remaining nodes in T new, loop through levels 1 to depth(T )−1 and offsets

0 to max offset at each level:

(a) Create a candidate set of nodes in T that fit the context of T new(l,o), where l

is the level and o the offset of the given node in T new.

(b) Randomly select a node from the candidate set and copy the values of its

children to the children of T new(l,o).

5. Perform the inverse wavelet transform on the completed T new to obtain the synthe-

sized sound samples.

The candidate set at each node in T new, given by T new(l,o), is computed through the

following steps:

1. Compare ancestors. For each node T (l,n) on level l of T :

(a) sum = 0, L[T (l,n)] = 0

(b) for level v = l to 1,

i. sum += |T (v,n/2l−v)−T new(v,o/2l−v)|

ii. if sum /(l− v+1) < ε then L[T (l,n)]++ else break

2. M1 = max(L)

3. Compare predecessors. For each node T (l,n) such that L[T (l,n)] == M1,

(a) S[T (l,n)] = 0

(b) for predecessor p = 1 to k,

63



i. if |T (l,n− p)−T new(l,o− p)|< ε then S[T (l,n)]++ else break

4. M2 = max(S)

5. Candidate set = all nodes T (l,n) such that L[T (l,n)] == M1 and S[T (l,n)] == M2.

TAPESTREA uses a modified and optimized version of the above algorithm, following

the same basic steps but varying in details. The modified algorithm includes the option of

incorporating randomness into the first level of learning by randomly swapping the two

values in level 1 when copying them from T to T new. It also considers k as a function

of the node level rather than a constant. Thus, in step 3(b) of the candidate set selection

algorithm above, “for predecessor p = 1 to k” is replaced by “for predecessor p = 1 to

k2l” where k lies in [0,1] and 2l is the number of nodes in level l of the wavelet tree.

This allows a more equitable amount of predecessors to be considered at each level.

More importantly, the modified algorithm optionally avoids learning the coefficients at

the highest resolutions. These resolutions roughly correspond to high frequencies, and

randomness at these levels does not significantly alter the results, while the learning

involved takes the most time. Optionally stopping the learning at a lower level thus

optimizes the algorithm and allows it to run in real-time. The learning is stopped by

identifying candidate sets only up to a specified final learning level; when this level is

reached, the entire subtree starting at each selected node is copied instead of the value of

the selected node alone, in step 4(b) of the original algorithm above.

Further, TAPESTREA offers interactive control over the learning parameters in the

form of randomness and similarity sliders. The former sets the P value described in step

2 of the original algorithm above, while the latter controls the predecessor factor k. Other

interactive controls include options to turn on the random swapping of level 1 values and

to perform the predecessor comparisons before the ancestor comparisons when building

the candidate sets. The size of a sound segment to be analyzed as one unit can also be
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controlled in powers of two, and results in a smooth synthesized background for larger

sizes versus a more chunky background for smaller sizes. Creatively manipulating these

parameters can even yield interesting musical compositions generated through stochastic

background alone.

3.4.4 Event Loops

Re-synthesis 
Control Panel

(real-time)
controls for a loop 

template

Selected 
Template
(and type)

Figure 3.11: Loop template control parameters on synthesis face

Event loops (see Figure 3.11) are synthesis templates designed to facilitate the para-

metric repetition of a single event. Any sinusoidal or transient event template can be

formed into a loop. When the loop is played, instances of the associated event are syn-

thesized at the specified density and periodicity, and within a specified range of random

transformations. These parameters can be modified while the loop is playing, to let the

synthesized sound change gradually.
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The density refers to how many times the event is repeated per second, and may

be on the order of 0.001 to 1000. At the higher densities, and especially for brief

events, the synthesized sound is often perceived as continuous, thus resembling granular

synthesis. The periodicity, ranging from 0 to 1, denotes how periodic the repetition

is, with a periodicity of 1 meaning that the event is repeated at fixed time intervals.

The interval between consecutive occurrences of an event is generally determined by

feeding the desired periodicity and density into a Gaussian random number generator.

It is straightforward to replace this generator with one that follows a Poisson or other

user-specified probability distribution.

In addition to the parameters for specifying the temporal placement of events, each

instance of the recurring event can be randomly transformed within a range. The range

is determined by selected average frequency- and time-scale factors, and a randomness

factor that dictates how far an individual transformation may vary from the average. In-

dividual transformation parameters are uniformly selected from within this range. Apart

from frequency and time scaling, the gain and pan of event instances can also randomly

vary in the same way.

3.4.5 Timelines

While a loop parametrically controls the repetition of a single event, with some amount

of randomization, a timeline allows a template to be explicitly placed in time, in relation

to other templates. Any number of existing templates can be added to a timeline, as well

as deleted from it or re-positioned within it once they have been added. A template’s

location on the timeline indicates its onset time with respect to when the timeline starts

playing. When a timeline plays, each template on it is synthesized at the appropriate onset

time, and is played for its duration or till the end of the timeline is reached. The duration
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of the entire timeline can be on the order of milliseconds to weeks, and may be modified

after the timeline’s creation. TAPESTREA also allows the placement of timelines within

timelines (or even within themselves). This allows template placement to be controlled

at multiple time-scales or levels, enabling a “multiresolution synthesis.”

3.4.6 Mixed Bags

Re-synthesis 
control panel 

(real-time) 
controls for a 

mixed bag

Templates 
in the Bag

Individual 
Parameters

Template-
sensitive 

option

Figure 3.12: Mixed bag control parameters on synthesis face

Another template for synthesis purposes is the mixed bag (see Figure 3.12), which is

designed to control the relative densities of multiple, possibly repeating, templates. Like

a timeline, a mixed bag can contain any number of templates, but these are randomly

placed in time and transformed, as in loops. The goal is to facilitate the synthesis of a

composition with many repeating components, without specifying precisely when each
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event occurs. The real-time parameters for controlling this also enable the tone of a piece

to change over time while using the same set of components, simply by synthesizing

these components differently.

When a template is added to a mixed bag, it can be set to play either once or repeatedly.

It also has a likelihood parameter, which determines the probability of that template’s

being played in preference over any of the other templates in the bag. Finally, it has

a randomness parameter, which controls the range for random transformations on that

template, analogous to the randomness control in event loops. Beyond these individual

template parameters, each mixed bag has overall periodicity and density settings, which

control the temporal distribution of repeating templates in the same way that an event

loop does. However, while a loop plays instances of a single event, a mixed bag randomly

selects a repeating template from its list whenever it is time to synthesize a new instance.

Templates with higher likelihood settings are more likely to be selected for synthesis.

One way to think of a mixed bag is as a physical bag of marbles. The overall periodic-

ity and density parameters determine when and how often someone dips her hand in the

bag and pulls out a marble, or a template to be synthesized. The likelihood setting of a

marble controls how likely it is for the hand to pull out that particular marble. A repeating

marble is tossed back into the bag as soon as it has been drawn and observed (played).

3.4.7 Pitch and Time Quantizations

While sliders control the synthesis parameters in a continuous way, more customized

musical control can be exerted by quantizing pitches and times to user-specified values.

Pitch and time tables can be loaded on-the-fly for each template.

The frequency scaling factor of a template is quantized to the nearest entry in its pitch

table, if it has one. This directly sets the frequency at which a sinusoidal, transient, or
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raw template is synthesized. For event loops and mixed bags, it controls the possible fre-

quency scaling during random transformations on the underlying events. The frequencies

of individual templates on a timeline are scaled, in the order in which they are played, by

successive entries on the timeline’s pitch table. This allows a user-defined musical scale

to be applied to most templates.

Rhythm can be similarly specified by quantizing time to the nearest entry in a time

table. In event loops and mixed bags, this quantizes the event density parameter as well

as the intervals between consecutive events. On timelines, templates are positioned only

at time points corresponding to table entries, if a table exists. Thus, templates can start

synthesizing at particular beats.

3.4.8 Score Language

The manipulations described so far can be controlled via a visual interface. Even finer

control over the synthesis can be obtained through the use of a score language. The audio

programming language ChucK [158] is used here both for specifying precise parameter

values and for controlling exactly how these values change over time. Since ChucK

allows the user to specify events and actions precisely and concurrently in time, it is

straightforward to write scores to dynamically evolve a sound tapestry.

A ChucK virtual machine is attached to TAPESTREA, which registers a set of API

bindings with which ChucK programs can access and control sound templates and au-

tomate tasks. Each script (called a shred) can be loaded as a sound template and be

played or put on timelines. Scripts can run in parallel, synchronized to each other while

controlling different parts of the synthesis. It is also possible to create, from within a

script, user interface elements for controlling intermediate variables and events used in the

script itself. Further, because ChucK supports MIDI, Open Sound Control (OSC) [165]
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and Human Interface Device (HID) messaging [157], scripting offers an easy way to

control TAPESTREA synthesis in real-time from a wide range of input devices, in-

cluding gamepads, joysticks, keyboards and mice. It also allows the implementation

of “traditional” sound synthesis algorithms to produce additional audio in parallel with

the standard TAPESTREA synthesis.

3.4.9 Other Controls

TAPESTREA also offers some generic synthesis and playback controls. The gain and

stereo panning of templates can be controlled individually, or randomly set by event loops

and mixed bags. A reverberation effect adapted from STK [34] can also be added to the

final synthesized sound.

The synthesis interface provides several ways to instantiate new templates. Any ex-

isting template can be copied, while sinusoidal and transient event templates can also be

saved as event loops. New timelines and mixed bags can be freely created, and existing

templates can be dragged onto or off these as needed. Templates can also be deleted from

the library, provided they are not being used in a timeline or a mixed bag. Finally, while

sound is generally synthesized in real-time, TAPESTREA offers the option of writing the

synthesized sound to file.

3.4.10 Synthesis interface and parameters

The primary interface for controlling sound synthesis is the synthesis face. This face

divides the screen into three areas. The top half displays a timeline and related controls.

The bottom-left quadrant displays the internal library of available templates, with a box

around the currently selected one. The bottom-right quadrant displays transformation
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and synthesis parameters for the selected template. Both the graphical representation of

a template and the parameters displayed for it depend on the template’s type. The control

parameters for sinusoidal, transient, raw, loop, timeline, and mixed bag templates are

described in Table 3.7. The background re-synthesis parameters for wavelet tree learning

are detailed in Table 3.8.

A template is selected in the synthesis face (see Figure 3.8) by clicking on its icon in

the library display. Once selected, it can be transformed and synthesized via the paramet-

ric controls available in the bottom-right quadrant. In addition to these type-dependent

controls, a row of more general buttons consistently occupies an area near the center of

the screen. The load button opens a file dialog box from which various TAPESTREA

files can be loaded, including templates saved to file, ChucK scripts, quantization files,

and unprocessed sound files. Templates saved to file are loaded, added to the internal

library, and immediately accessible for transformation and synthesis. ChucK scripts are

treated similarly to templates; however, they are compiled upon loading. Thus, scripts

load successfully only if there is no parse error; otherwise, the user is warned via an

alert. Once loaded, a script is ready for execution. Loading a quantization file reads in a

quantization table and associates it with the currently selected template. Finally, loading

a sound file makes it appear in the library in the form of a special template that can be

replayed with a limited extent of time and frequency transformations.

The load button neighbors a listen button, which plays the currently selected template.

In the case of ChucK scripts, the listen button causes the script to begin executing. Finite-

length templates such as sinusoidal and transient events, raw templates, timelines and

finite scripts play until their end point and stop automatically, unless stopped earlier via

the stop button. Unending templates such as backgrounds, loops, mixed bags and scripts

with infinite loops continue to play until the stop button is pressed. The stop button in

the synthesis face stops only the currently selected template.
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Name Range Default Valid templates Description
Pan 0.000–

1.000
0.500 All Panning between left

(0.0) and right (1.0)
speakers.

Gain 0.100–
10.000

1.000 All Gain of selected tem-
plate.

Freq-warp 0.010–
100.000

1.000 Sinusoidal, tran-
sient, raw, loop

Frequency scaling
amount (transients and
raw templates do not
attain full range).

Time-stretch 0.010–
100.000

1.000 Sinusoidal, tran-
sient, raw, loop

Time scaling amount
(transient and raw tem-
plates do not attain full
range).

Periodicity 0.000–
1.000

0.500 Loop, mixed bag Periodicity of template
repetition (whether they
repeat at fixed or ran-
dom time intervals).

Density 0.001–
1000.00

0.500 Loop, mixed bag Average number of
times templates are
repeated per second.

Randomness 1.000–
3.000

2.000 Loop, mixed bag Range of random
freq-warp, time-
stretch, gain and pan
transformations on
repeated templates.

Likelihood 0–20 1 Mixed bag How often a template
is played compared to
other templates in the
bag.

Play once True,
false

False Mixed bag Whether a template in
the bag is played once
or repeats

Duration 1.000 ms–
100.000
weeks

1.000
minute

Timeline Duration of timeline.

Table 3.7: Transformation and synthesis parameters for built-in TAPESTREA templates, excluding
backgrounds and ChucK scores)
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Name Range Default Description / Notes
Randomness 0.001–1.000 0.250 Error in learning wavelet tree coeffi-

cients. P (percentage) parameter in
original paper [46].

Similarity 0.000–1.000 0.300 Fraction of predecessors considered at
each level of wavelet tree learning.

Start-level 1–15 1 Level at which wavelet tree learning
begins.

Stop-level 1–15 9 Level at which wavelet tree learning
stops. For optimization.

Total-levels 1–18 13 Total number of levels in wavelet tree.
2Total-levels is the number of samples
analyzed in one segment.

Order True, false True Whether the learning algorithm con-
siders ancestors (true) or predecessors
(false) first. True matches the original
algorithm.

++Random True, false False Whether to randomly swap coeffi-
cients in the first level of learning
instead of copying them directly. For
slightly more structural randomness.

Table 3.8: Wavelet tree learning parameters

A limited form of undo is available for most templates via the revert button, which

reverts the transformation and synthesis parameters of the selected template to the values

they had immediately after selection. The values to revert to are updated each time a

template is selected. Thus, clicking revert directly after selecting a template results

in no change, but doing so after selecting the template and changing some parameters

undoes those changes. Timelines and mixed bags cannot be reverted in this way because

alterations to them may include the addition or removal of enclosed templates as well as

the usual transformation and synthesis parameter modifications.

Other general functionality includes the copy button, which makes a copy of the

selected template and adds it to the library for immediate use. A save button allows

the selected template in its current state to be saved to file. Selecting any of the write to

file boxes at the center-left causes the final synthesized audio to be written to file while
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the box remains selected. The write2 box writes a stereo sound file, while the write8

box writes an 8-channel sound file. The both simultaneously writes both stereo and 8-

channel versions for exactly the same time-samples. All sound files generated in this way

are named to include the word “tapestrea” and a time stamp for identification. Further

details on specific aspects of the synthesis interface are described below.

Library pane

The library pane at the bottom-left quadrant displays all the templates currently in the in-

ternal TAPESTREA library. Each template type is associated with a unique combination

of colors and geometric representation to form an icon. For instance, sinusoidal templates

are represented as green spheres, while loops are represented as light brown “donuts”

(see Figure 3.9). Clicking on a template in the library pane selects that template. The

bottom-right pane then displays the controls for that template, which can be manipulated

in real-time. A template can also be deleted from the library by selecting it and pressing

the Backspace or Delete key; only templates not being used in a timeline or mixed bag

can be deleted in this way. It is also possible to play a template without selecting it, by

right-clicking on its icon.

Loops

A loop can be created from a sinusoidal event, transient event or raw template, as well

as from a sound file loaded directly into the synthesis face. Creating a loop from a

selected template involves selecting the loop me box in the bottom-right parameter pane

and clicking on the copy button. The new loop is then added to the library and can be

manipulated as desired.
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Timelines

A timeline is created by selecting a duration and clicking the new button at the top

right, in the timeline display. The new timeline created is automatically selected and

displayed in the top half of the screen. In the library pane, the name of the currently

selected timeline is always written in dark red instead of black to distinguish it from

other timelines. The duration of the current timeline, in seconds, is displayed at the top

left. If no timeline is being displayed, a message to that effect appears instead. The

duration can also be modified after the timeline has been created, by altering the duration

controls at the top right. If a timeline is shortened so that some of the events on it occur

too far from the beginning to be played (or displayed), their existence is marked by a red

arrow at the right end of the timeline.

Marks appear on the timeline at intervals of the currently selected duration unit, or

the next lowest unit if the duration is a proper fraction of the current unit. Zoom and

shift sliders below the timeline allow zooming into specific parts of the timeline. A

template can be added to the current timeline by dragging and dropping its icon from

the library pane onto the timeline display. The dropped icon’s horizontal distance from

the beginning of the timeline determines when the template is played. A template can

also be re-positioned on the timeline by dragging and re-positioning its icon. Dragging a

template’s icon off the timeline into whitespace removes the template from the timeline.

Like other templates, a timeline is played by selecting it and clicking the listen button.

The left and right butters on the timeline denote the boundaries of the time range that is

synthesized, and can be adjusted to play a certain region.
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Mixed bags

A new mixed bag can be created via a keyboard command. A template is added to a mixed

bag by dragging its icon from the library pane to the parameter control pane (bottom-

right quadrant) while the appropriate mixed bag is selected. Dragging a template’s icon

off the mixed bag’s parameter control pane into white space results in the template’s

removal from the mixed bag. Any number of templates can be added and removed in this

way, even while the mixed bag is playing. When a new mixed bag is created, its global

controls, such as density, periodicity, gain and pan, are visible by default. Parameters

for individual templates within the mixed bag, such as randomness and likelihood (see

Table 3.7), can be viewed by selecting the see LOCAL controls box. Deselecting the

box displays the global parameters once more.

ChucK scripts

ChucK scripts in TAPESTREA follow the format of the ChucK audio programming

language [157]. In addition to the standard ChucK keywords, objects, and constructs,

ChucK scripts also support the TAPESTREA scripting synthesis API, which provides

specific objects and functions to control TAPESTREA from ChucK programs. While

many of the operations provided can also be performed manually via the synthesis face,

the scripting synthesis API offers an alternative interface to exert similar control. Ad-

vantages and disadvantages of the scripting synthesis API versus the GUI are briefly

discussed in Chapter 4.

The synthesis API is composed of following objects:

TapsSynth : A set of functions to access the synthesis face and internal template library

TapsTemp : An object representing a TAPESTREA template
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TapsBus : A set of functions to modify TAPESTREA’s audio bus settings

TapsUI : An object representing a TAPESTREA user interface element

TapsSynth offers static functions to load a template from file into the internal library,

make copies of already loaded templates in the library, and count the number of currently

loaded templates with a given substring in their name. A TapsTemp object represents

a TAPESTREA template in a ChucK program. It can be associated with a specific

template read from file or from the internal library through a selection of read operations.

TapsTemp also offers functions corresponding to the operations and transformations that

can be performed on a template in the synthesis face, such as play, stop, timeStretch and

freqWarp. In addition, it offers some control not readily available from the GUI, such as

assigning the template to play on a particular audio bus via the bus function. Much of real-

time synthesis control via scripts relies on creating and modifying TapsTemp instances.

TapsBus provides an interface to manipulate individual audio buses in TAPESTREA,

corresponding to the audio control face in the GUI (see Section 3.5). This allows a

ChucK script to set the gain, pan or reverberation for a particular bus.

TapsUI provides an API to add user interface elements like sliders, buttons and flip-

pers (on/off switches) to the synthesis face via ChucK scripts. Interface elements defined

in a ChucK script appear in the transformation parameters pane (bottom-right quadrant)

of the synthesis face when that script is selected and playing. Values from these elements

may then be mapped to other parameters in the ChucK script. Thus, these elements

offer an interactive, real-time user interface to ChucK scripts running in the synthesis

face. The API itself borrows from the miniAudicle user interface [116]. Within a ChucK

script, a user interface element may be treated as an event that broadcasts whenever its

value is updated. The element’s value may also be polled at will. The API also follows a
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Figure 3.13: Scripting synthesis API diagram: arrows denote the subclass to superclass relationship

hierarchical structure, with each type of element inheriting from a general TapsUI object.

Figure 3.13 depicts the overall organization of the scripting synthesis API.

Non-GUI mode

TAPESTREA synthesis can also optionally take place in a limited non-GUI mode, con-

trolled only from the command line. Non-GUI mode is entered by starting TAPESTREA

from the command line in the following way:
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taps --nogui

The --nogui argument prevents the default GUI from running, and instead begins an

infinite server loop that listens for client commands. Client commands can be entered

from a second command window and include the following options:

taps --status : Prints list of templates currently in the internal library, showing tem-

porary id, name, type, and current status.

taps --add name : Adds template identified by “name” to the library (short form:

taps + name)

taps --play id : Plays a template from the library, identified by its temporary id

(short: taps p id)

taps --stop id : Stops a template identified by its temporary id (short: taps s id)

taps --remove id : Removes a template, identified by its id, from the library (short:

taps - id)

This functionality may facilitate the control of TAPESTREA synthesis from an ex-

ternal program. For example, TAPESTREA running in non-GUI mode might load a

ChucK script receiving and mapping OSC messages to template synthesis parameters. An

external program such as a game or interactive installation may then send OSC messages

to the ChucK script, thus indirectly controlling the sound synthesized by TAPESTREA.

Such a framework has not been thoroughly explored, but is feasible.

3.5 Implementation

Structurally, TAPESTREA is composed of several modules (see Figure 3.14), brought

together by the Graphical User Interface. Each face in the user interface corre-
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Figure 3.14: TAPESTREA system modules

sponds to a specific set of tasks or a structural module. The Analysis module (see

Section 3.5.1) consists of the tools for analyzing sounds and extracting templates. It

combines a set of more specialized modules for sinusoidal analysis, transient detection,

and FFT filtering. The Synthesis module (see Section 3.5.2) contains the tools for

synthesizing sound from templates. It includes specialized modules for sinusoidal re-

synthesis, background generation, and transient playback and transformation, as well

as implementations of additional synthesis structures. The Analysis and Synthesis
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modules interact with each other via external or internal representations of extracted

templates. Externally, templates can be saved to file and re-loaded into memory as

needed. Internally, templates are stored in a Library structure (see Section 3.5.3) that

is accessible from every part of TAPESTREA. The Track Transformations module

(see Section 3.5.4) allows optional track-level manual editing of sinusoidal templates

currently in the Library. The Scripting module (see Section 3.5.5) can also modify

the Library, and offers additional control over synthesis. It also interacts with the audio

control interface for users to specify post-processing options for the synthesized audio.

Finally, the Audio Engine (see Section 3.5.6) computes each buffer of audio to pass to

the digital-analog converter, based on the information it receives from each of the sound-

producing modules. It also inputs audio from sound files or from the microphone and

passes it to the Analysis module when desired. Although the GUI (see Section 3.5.7)

binds all the modules together by providing a common interface to all of them, it is

also possible to run TAPESTREA in non-GUI mode (see Section 3.5.8). In this case,

execution is controlled by a main loop that waits for users to type commands. The

implementation-level structure of these modules is described in the following sections.

3.5.1 Analysis

The Analysis modules perform audio analysis and template extraction. The sinusoidal

analysis is guided by a Driver class that windows the input audio, computes the FFT

for overlapping frames, and sends the FFT information and analysis parameters to a

sinusoidal analysis module. The sinusoidal analysis module, in turn, locates peaks in

each FFT frame and matches them to form tracks. Optionally, it also performs automated

grouping of tracks into events, as well as peak-finding in the pre-processing stage. It

provides the Driver class with a list of tracks found, a list of events found, and a set of
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FFT frames with the peaks attenuated. The Driver computes the stochastic residue on

demand by performing the inverse FFT on the set of modified FFT frames. It also acts as

the medium for requesting the re-synthesis of sinusoidal events or tracks for playback in

the analysis face.

The transient analysis relies on a module consisting of a TransientExtractor class,

with a separate subclass for each transient detection algorithm. The main computation

takes place in the the act of performing analysis given a file name, time range, and set of

parameters. A vector of transient locations (consisting of start and end sample indices)

is returned at the end of this procedure, along with the samples of the actual detected

envelope when relevant. The function that removes transients from the original audio

takes as input a vector of indices of the transients to remove, and the name of an output

audio file into which the computed background sound is written.

Raw template extraction takes place with the help of an fft bandpass method, which

takes as parameters an audio segment covering the selected time range, the endpoints for

the selected frequency range, and the specified rolloff parameter. This method windows

and performs a single FFT on the entire audio segment. It then modifies the magnitudes

of the relevant frequency bins and computes an inverse-FFT and inverse windowing. The

input audio segment is modified in place.

3.5.2 Synthesis

The Synthesis modules re-synthesize audio from a given template, applying any speci-

fied transformations. Each template is associated with its own instance of an appropriate

synthesis class. The abstract notion of a “template” is in turn associated with a Template

data structure, subclasses of which correspond to specific types of TAPESTREA tem-

plates. All Template classes are designed around the function of passing a requested

82



number of audio samples into a frame or buffer, taking into account the current state

and parameters of the associated template. They facilitate communication between the

modules that perform the actual synthesis, and other components such as the Audio

Engine and the GUI.

The sinusoidal re-synthesis module consists of an abstract sinusoidal re-synthesis class

with two major subclasses. The first subclass, Syn, re-synthesizes the entire sinusoidal

template with the selected transformations into a single sufficiently large audio buffer.

Syn is currently used only when playing an extracted template in the analysis face,

although it has previously also supported the synthesis face. The subclass currently used

in the synthesis face, SynFast, computes only the next N audio samples, where N is the

number of samples requested. By doing so, it can apply the latest time and frequency

transformation parameters to each requested buffer, allowing real-time transformation. It

can also reduce the latency in synthesizing a greatly time-stretched version of a template.

Both subclasses store local copies of the sinusoidal tracks associated with the template.

Both also rely on helper functions that synthesize a single track using a sinusoidal oscil-

lator, and sum the results over all the tracks in the template. SynFast takes advantage

of an additional structure to store the current state of each track, including information

such as how much of the track has been synthesized and the latest observed frequency

and magnitude values. SynFast is associated with the Deterministic template subclass

that invokes its SynFast instance when asked to present audio.

The transient and raw templates both directly store audio samples, and hence share

a synthesis model. Content stored for their synthesis includes a frame containing the

actual audio samples and an instance of a phase vocoder for optional transformations.

These are encapsulated in the PVCTemp template subclass. When requested, the PVCTemp

template returns the next N audio samples without modification if no transformations

are selected. If transformations have been selected, the next N samples are first passed

83



through the phase vocoder with appropriate parameters; the processed samples output by

the phase vocoder are then returned. In either case, cosmetic changes such as alterations

to the overall gain and pan are applied at the end. The same mechanism also applies to

sound files directly loaded into the synthesis face. Structures corresponding to transient

events, raw templates, and sound files are defined in the form of Transient, Raw and

File templates that are subclasses of PVCTemp.

The background synthesis module includes a set of classes for wavelet tree learn-

ing. These are comprised of an implementation of the actual learning algorithm, an

input/output module, and helper structures to represent wavelet tree nodes and binary

trees. The input/output module loops through the original extracted background sound

file for input; it passes the synthesized output to a specified audio callback function

and optionally also writes it to file. The learning module repeatedly sets up a wavelet

tree with the current segment of input audio, synthesizes a new tree using the specified

learning parameters, converts the new tree to audio samples, and returns these samples

as the output signal. These components interact with the rest of TAPESTREA through

the Residue template subclass that contains instances of the wavelet tree learning classes

and runs them on a separate thread. When audio samples are requested of the Residue

template, it essentially invokes the callback function of the input/output module.

In addition to structures corresponding to extracted templates, the Synthesis module

also includes representations of additional synthesis templates, as additional subclasses

of the Template class. These include the LoopTemplate, Timeline and MixedBag, all

of which contain a set of instances of existing templates, processed in different ways.

The LoopTemplate is associated with a single existing event template and replays trans-

formed copies of this template according to specified parameters. The Timeline stores

a vector of templates on the visual timeline with some additional information, and plays

each template at the appropriate time. The MixedBag also stores a vector of templates
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with further information; copies of these templates are transformed and replayed accord-

ing to distribution and randomness parameters. These structures also follow the model

of producing a buffer of audio on demand. They do so by requesting audio from the

individual templates they enclose, at particular times and transformations dictated by

their current parameters, and summing these to obtain the final audio buffer.

Quantization files are treated as information that can be added on to an existing tem-

plate. All classes derived from Template are associated with a time table and a pitch

table, vectors containing acceptable durations and frequencies respectively, empty by

default. Relevant templates quantize time and frequency parameters according to their

current tables before requesting or producing audio. Loading a quantization file replaces

the current time or pitch table.

3.5.3 Library

TAPESTREA’s internal library is represented by a Library structure that stores the cur-

rently loaded templates in memory. Each Template object is wrapped in a UI Template

class to facilitate interaction with the GUI (see Section 3.5.7). Thus, the Library primar-

ily contains a vector of UI Template instances. Adding a new template to the internal

library, for instance by saving an extracted template from the analysis face or by loading

a template from file in the synthesis face, automatically wraps the associated Template

object in a new UI Template, and adds the UI Template object to the Library’s ex-

isting vector. Other supported operations include removing a specified template from

the internal library by removing it from the associated vector, and retrieving subsets of

the available templates by name or type. The internal library is available throughout

TAPESTREA in the form of a static class variable of the Library structure, instantiated

the first time it is sought.
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3.5.4 Track Transformations

A sinusoidal event in TAPESTREA is a collection of sinusoidal tracks. A sinusoidal track

is stored as a Track structure, which includes start and end times as well as a vector of

history points or breakpoints in the track’s progression. Each history point is associated

with a frequency, magnitude, phase and time-stamp, and corresponds to a previously

detected sinusoidal peak. Internal transformations to a track refer to modifications to

this defining information of a single track, rather than temporary changes to the overall

frequency- or time-scaling of an entire sinusoidal event. The group face accesses the

individual tracks of all the sinusoidal events currently loaded in the internal library, and

modifies selected ones directly according to user input. For graphical user interaction,

Track objects are wrapped in a UI Track object, similar to the UI Template construct

enclosing Template objects (see Section 3.5.7).

3.5.5 Scripting

The ChucK scripting module is based on a ScriptEngine structure that contains an

instance of the ChucK virtual machine. ScriptEngine is treated as an audio source

that plays on a particular bus; each time it is requested to provide samples, it invokes

the ChucK audio callback function, which in turn interacts with and updates the ChucK

virtual machine instance. In this way, time is advanced in ChucK. Any audio synthesized

within ChucK from built-in unit generators is returned to ScriptEngine, which passes

it on to the TAPESTREA audio engine. A ScriptCentral structure holds a single static

instance of a ScriptEngine and provides a global interface to it.

When an individual ChucK script is loaded into TAPESTREA, it is compiled by the

ScriptEngine and the virtual machine code is stored in a Scriptor object. Scriptor is

a subclass of Template (see Section 3.5.2) and thus corresponds to the representation of
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a particular score as a TAPESTREA template. When this template or script is played by

the user, the Scriptor object is run via the ScriptEngine. In addition, TAPESTREA

registers a set of API bindings with which ChucK programs can control TAPESTREA

templates and automate tasks. These ChucK classes and functions are also defined in the

scripting module, and provide access to the TAPESTREA internal library and templates

in specific ways (see Section 3.4.10). Thus, when a ChucK script is run, audio may be

produced in two ways: from the built-in ChucK unit generators via the ScriptEngine,

and from the TAPESTREA templates themselves via the additional API bindings. The

Scriptor object controls the stopping and starting of scripts, but does not directly con-

tribute sound samples.

Scriptor also contains functions for manipulating the GUI by adding, removing and

accessing user interface elements. These are used by the API bindings for the TapsUI

interface (see Section 3.4.10). TapsUI inherits from the ChucK Event class. When a

user creates a TapsUI instance from within a ChucK program, a corresponding interface

element is created in TAPESTREA. This element contains an “event” member variable

that refers back to the ChucK object representing it. Manipulating the element in the

synthesis face then triggers a broadcast to the element’s event queue, allowing an event-

based interface to user interface elements in ChucK. This is modeled on the miniAudicle

user interface framework [116].

3.5.6 Audio

The audio engine interfaces with the RtAudio [117] framework for real-time audio. An

AudioCentral structure holds together all the required information, including an RtAudio

instance, and is accessible throughout TAPESTREA. In callback mode, the RtAudio

instance is presented with a callback function that reads microphone input and writes
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synthesized sound samples for playback when required. Synthesized sound samples are

accumulated via an AudioBusParallel structure, also contained in AudioCentral.

A basic sound producing object is called an AudioSrc and consists primarily of tick

functions to fill a buffer with a specified number of sound samples for one or two audio

channels. Additional utilities include static functions to post-process a buffer by applying

an overall gain or pan (for stereo buffers), and to convert a mono buffer to stereo or

multi-channel samples and vice-versa. More specialized sound producing units inherit

from AudioSrc; the Template synthesis structure, for example, is a subclass of it and

follows the same tick function interface. An AudioBus is a subclass that holds a vector

of AudioSrc objects and sums the samples returned by each. An AudioBusParallel, in

turn, contains a vector of AudioBus objects. The AudioCentral class includes a single

AudioBusParallel object, which by default accumulates samples from eight AudioBus

objects, which together provide access to all the existing audio sources. The callback

function obtains samples from the AudioBusParallel instance and forwards them for

playback via RtAudio. AudioBusParallel also allows the writing of accumulated sam-

ples to stereo or multi-channel sound files. In multi-channel mode, each of the AudioBus

objects it contains corresponds to a distinct audio channel.

One subclass of AudioSrc is AudioSrcBuffer, which represents sources that relay

samples from an existing buffer rather than synthesizing them. Examples include classes

to read from an audio frame or segment in memory, a sound file, or microphone input.

Microphone input is saved by the callback function into a designated buffer with a user-

specifiable fixed capacity, stored in the AudioCentral object. The AudioSrcMic struc-

ture derived from AudioSrcBuffer offers an interface for reading from this microphone

buffer and optionally saving a segment of it to a sound file. Sound file reading and writ-

ing use the open source libsndfile library [39], which is distributed with TAPESTREA.

The reading can be handled by AudioSrcFile, another subclass of AudioSrcBuffer.
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Optionally, sound file reading allows automatic sample rate conversion to a pre-specified

rate, via the open source libsamplerate library [40]. The sample-rate-converted version

of a file is stored as a temporary file while in use. Often in ordinary TAPESTREA usage,

a single sound file is opened many times. A file loaded in the analysis face, for example,

is re-opened each time a segment of it is played, as well as opened with a separate pointer

for processing its visual display information or obtaining audio samples for analysis. To

avoid repeated sample rate conversion each time a sound file is opened, a CacheManager

structure maintains a map of file paths to currently open sound file pointers for each

file. The pointers refer to the original or sample-rate-converted version of the file as

appropriate. When a file open operation is requested without the need for a unique

pointer, the CacheManager is first queried for already existent shareable pointers to the

requested file. File close operations are also mediated by the CacheManager.

The audio control face in the GUI offers control over the individual gain and rever-

beration for each audio bus. An overall gain can be applied to the output of a bus via

the AudioSrc interface as described earlier. To apply reverberation, the output is passed

through an AudioFxReverb object that processes the reverberation according to specified

parameters, based on STK [34] reverberation implementations.

3.5.7 Graphical User Interface

The Graphical User Interface inherits from the framework of the Audicle, an OpenGL-

based programming environment for ChucK [159]. Like the Audicle, the TAPESTREA

GUI is separated into distinct “faces” or screens, where each face presents an interface for

a particular manipulation phase. The Audicle framework includes graphics modules for

handling geometry, keyboard and mouse input, and user interface events, as well as the

definition of a basic face structure. TAPESTREA takes advantage of these and provides
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extensions in the form of implementations of common (and uncommon) user interface

elements such as buttons, flippers (on/off switches) and linear and exponential sliders.

The user interface elements module is available to all TAPESTREA faces; each instance

of an interface element is linked to the Audicle event module to determine when it has

been modified by the user.

In addition to standard interface elements, the TAPESTREA GUI also requires more

specialized forms of graphical interaction. For example, template icons on the synthesis

face and individual track representations on the group face must support selection by

clicking, some amount of dragging, and other functionality. In this sense, they act as

user interface elements; yet, they are also clearly linked to internal synthesis structures

or representations. This is handled by creating wrapper classes that inherit from user

interface elements, but also contain references to the underlying synthesis structures.

The UI Template class corresponds to the icon of a synthesis template, and contains

references to two Template instances: a core that is currently in use, and a backup

version for reverts. Because a single Template instance may have multiple icons on

the synthesis face, such as one in the library pane, some on timelines, and some in mixed

bags, a UI Template object also maintains information on other UI Template instances,

or dummies, associated with the very same Template object as itself. The complete list

of dummies for each template is maintained by its first UI Template: the one appearing

in the library pane. Subsequent UI Template instances include a reference back to this

original UI Template instance and are included in its list of dummies. This unifies the

multiple graphical representations for a template, and also helps prevent its accidental

deletion from the internal library while it is being used in other synthesis structures.

A UI Track object plays a similar role, representing the drawing of a sinusoidal track

on the group face. It includes a reference to the actual Track instance that it represents.

Since a track is ordinarily drawn only once, the UI Track object need not maintain
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dummy information. The track manipulation face does, however, support increased

undoing capacity. Hence, instead of a reference to a single backup sinusoidal track,

UI Track includes a double-ended queue of backup versions of its associated Track

instance. This queue is accessed and modified by the group face during user-specified

undo operations and during automatic backups (generally upon the user’s selection of a

new manipulation tool).

In general, the GUI drives TAPESTREA via user input. It therefore communicates

with each of the previously described components, directly or indirectly, acting as the

most common mediator between the user and TAPESTREA.

3.5.8 Non-GUI Execution

In non-GUI execution, the user controls TAPESTREA via the command line without

starting the graphical interface. This limits the control to a set of basic synthesis op-

erations such as loading externally saved templates into the internal library, removing

templates from the library, playing or stopping a particular template, and obtaining the

latest status of all currently loaded templates. The implementation is based on the ChucK

on-the-fly command line framework [157]. When TAPESTREA is run with the --nogui

flag, it starts a TCP server instead of entering a graphics loop. The server listens for

and processes messages from instances of TAPESTREA running in parallel (see Sec-

tion 3.4.10). Any instance of TAPESTREA run with a particular non-GUI command acts

as a client and sends the command to the server. The processing and actual synthesis take

place on the server end.
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Figure 3.15: Example of a soundscape re-composition. Diamonds represent areas of significant shift in the
piece.

3.6 A Re-composition Example

To conclude this chapter on the features and interfaces provided by TAPESTREA and

to demonstrate them in a concrete context, an example re-composition created with Ge

Wang is described here. The spectrogram in Figure 3.15 represents a 5-minute impro-

vised piece titled Etude pour un Enfant Seul (Study for a Child Alone). The source

sound templates were extracted from the BBC Sound Effects Library. They include the

following: a baby’s cry (from CD 27, #6, 69.4 to 70.8 seconds; extracted as sinusoidal:

5 tracks), a bell (CD 14, #8, 0.5 to 7; sinusoidal: 25 tracks), glass breaking (CD 18, #13,

0.5 to 1.5; sinusoidal: 4 tracks), a horn honk (CD 9, #12, 42.9 to 43.4; sinusoidal: 10

tracks), a bird chirp (CD 12, #11, 19.8 to 20; sinusoidal: 4 tracks), and several battlefield

sounds (CD 18, #68, 0.5 to 0.8 and 31 to 31.5; CD 18, #69, 1.47 to 1.97 and 31.9 to

32.4; transients). Additional templates, including an ocean background with bird chirps

removed, were extracted but not used here.

Some areas of interest in the re-composition (denoted by numbered diamonds) are

highlighted in Figure 3.15. In area (1) are time/frequency-warped instances of the baby

(7x time-stretched, 0.5x frequency-scaled), horns (6x time, 0.2x and 0.28x frequency),

and glass (4x time, 0.5x frequency). The percussion involving the battlefield transient

templates begins around (2) and is dynamically coordinated by scripts. In (3), the per-
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cussion develops, punctuated by a solitary glass breaking sound. At (4), greatly modified

bird chirps (.15x time; 0.4x frequency) fade in as part of a periodic loop, which is so dense

that chirps are triggered at audio rates, forming a rich tone. As time-stretch, frequency-

scale, and density are modified, the tone gradually morphs into a flock of birds and back.

Combined with further modifications to periodicity and randomness, the flock reaches

its peak at (5), modeling the sound of more than 30 birds spread out in time, frequency,

volume and pan, all from a single bird chirp template. The flock is then manipulated to

sparser texture, and the child returns at (6) with three longer cries (baby cry; 9x time,

0.4x frequency).

Short excerpts from the original recordings, along with extracted templates and the

final re-composition, are available online at http://taps.cs.princeton.edu/jnmr_

sound_examples/. This simple example also led to a more complex collaborative re-

composition, Etude II pour un Enfant Seul (Loom) (see Chapter 4, Section 4.3.3). A two-

channel version of Etude II is also available at the above website. While these examples

make good use of TAPESTREA, it is equally possible to create entirely differently styled

compositions using the same tools and even the same initial sounds.

Thus, TAPESTREA is a paradigm and unified framework for “re-composing” recorded

sounds by separating them into distinct components and weaving these components into

musical tapestries. The paradigm is applicable to musique concrète, soundscape composi-

tion and beyond, while the framework combines algorithms and interfaces for implement-

ing the concepts. The TAPESTREA interface simultaneously provides visual and audio

information, and the system provides means to interactively extract sound templates,

transform them radically while maintaining salient features, model them individually or

in groups, and synthesize the final multi-level “re-composition” in any number of ways

ranging from a pre-set score to dynamically in real-time. Even with a modest set of

original sounds, there is no end to the variety of musical tapestries one might weave.
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Chapter 4

Applications and Usage Information

This chapter focuses on various usage aspects of TAPESTREA. Section 4.1 briefly de-

scribes user activity up to this point, including answers to a voluntary online survey taken

by some users. Section 4.2 describes a human study to compare alternative background

synthesis methods, with the goal of offering the most perceptually convincing method

as an option in the TAPESTREA synthesis framework. Section 4.3 shares remarks on

the use of TAPESTREA as a compositional tool. Finally, Section 4.4 presents possible

pedagogical applications of TAPESTREA.

4.1 User Activity

As mentioned in Chapter 1, the TAPESTREA software is open-source, cross-platform

and freely available online at http://taps.cs.princeton.edu/. User support in-

cludes online documentation, a wiki, and a mailing list with 176 members as of May

2009. Web logs indicate that the software has been downloaded approximately 10300
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Figure 4.1: Usage: sound design / composition experience of users

times since April 2008; this statistic counts downloads of only the latest released version

at any time, but does not account for bots or repeated downloads by the same person.

To better gauge the specifics of TAPESTREA usage, all users were invited to take

an informal, anonymous online survey. The survey was announced on the TAPESTREA

mailing list and also forwarded to Stanford’s Center for Computer Research in Music and

Acoustics mailing list. Figures 4.1 to 4.5 summarize information from the 16 responses

volunteered. Figure 4.1 depicts the distribution of general sound design and composi-

tional experience among the users who took the survey. Half the users had more than

10 years of experience with composition or sound design, while nearly a quarter had less

than a year’s experience. This suggests that TAPESTREA is accessible to users at varying

degrees of expertise, though perhaps most appealing to those with some specialized

experience or knowledge.

Several questions gathered information on TAPESTREA usage patterns. According to

users’ evaluation of their own familiarity with TAPESTREA, the majority of users con-

sidered themselves at least “slightly” familiar, with “somewhat” familiar being the most
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common response (see Figure 4.2). Half the respondents reported using TAPESTREA at

most “rarely”, while the other half reported using it at least “sometimes” (see Figure 4.3).

This is not surprising, since the relevance of TAPESTREA extends only to compositions

that use existing recordings, which may form a fraction of a composer’s portfolio. Still,

half the respondents reported having used TAPESTREA at least 10 times, and more than

three quarters said they had used it at least five times (see Figure 4.4).

Figure 4.5 displays the usage of TAPESTREA for specific applications. All respon-

dents reported having used TAPESTREA to “play around and explore,” while the ma-

jority also reported having used it to “extract parts of a recording” and to “transform

and synthesize extracted templates.” These can thus be inferred to be the primary pur-

poses of TAPESTREA from the users’ perspective. Half the users said they had used

TAPESTREA to “create a piece that [they] shared with others.” In terms of particular

arenas, the most common one from the options queried in the survey was to “enhance a

recorded piece,” followed by to “teach,” to “enhance video entertainment (like games or

animations),” and finally to “enhance live performance.”
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Figure 4.2: Usage: Familiarity of users with TAPESTREA.
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Positive feedback about TAPESTREA often pertained to its analysis aspects, including

“spectral processing,” the ability to “separate the harmonic and stochastic contents of a

sound,” and “that it can pick out very specific sounds.” Some users enjoyed the “overall

concept” and “integrated extraction and resynthesis tools,” which help “make composi-

tion fast and fluid.” The uniqueness of the software was also mentioned, with references
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to “versatility,” “some possibilities which no other application offers,” and “new ways

to manipulate sound.” Some also liked the graphical user interface (GUI), which was

described as “fun graphics, playful environment” and as a “novel UI—never seen that

approach before.” Feedback also indicated that TAPESTREA appealed to users with or

without programming experience, as described in the following two comments. The first

comes from a non-programmer:

“Interface is good alternative approach to building phrases or scenes. I am

not a programmer, hence an amateur when it comes to software tool design,

even compiling is an effort, but Taps works pretty well even for those of us

without such abilities.”
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The second, in contrast, comes from a programmer who generally works with ChucK:

“Maybe it’s the interface, the parameters or the focus to the compositional

aspect, I’m mainly a ChucK user but when I start off with recordings I look

towards Taps.”

The interface, however, was not to everyone’s taste; some found it “a little cumber-

some” or “not self-explanatory.” Higher resolution of fonts was also suggested. Other

desired features included the ability to work with more types of sound files, “simpler

methods for sample-rate changes and non-real time rendering,” and further documenta-

tion, especially in the form of “a richer gallery of examples.” Some users were dissatisfied

with the synthesized sounds, finding that “algorithms have a distinct ‘sound’ to them”

or that “sound resynthesis quality (or transformed sounds) is short of the ‘professional

quality’ required in my area.” A specific suggestion was to enhance “musicality” by

optionally adding higher synthesized partials to the extracted sinusoidal template. Other

potential drawbacks were the slightly slow analysis, being “not the most lightweight

app, especially for real-time stuff,” and a lack of “compatibility with older machines.”

Responding to TAPESTREA feature requests is an ongoing project. While some requests,

such as adding more information to the GUI or supporting zooming on the spectrogram,

have already been implemented, further suggestions are always expected and encouraged,

but not always immediately implementable. Thus, many of these provide a basis for

future work.

The survey also invited users to optionally describe a sound scene or composition they

created using TAPESTREA, if any. Projects described included turning an answering

machine recording “into a bird-song-like sound,” creating “a sound scene from extracted

and resynthesized traffic noise” recorded by the user, and “creating a transition between

two songs of a modern jazz” band. Some users also mentioned creating part of a compo-
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sition through TAPESTREA. One, for instance, “used it to extract the harmonic content

from a noisy sound—a jet engine” and “used the result in an electronic piece.” Another

usually used TAPESTREA “for twisting field recordings, and arranging and re-arranging

short phrases that merge/layer synthesized sounds and fragments of field recs into a co-

ordinated and semi-rhythmic pattern, with some degree of repetition to it.” The output

would then be placed into a larger composition. Another aspect of usage was introduced

by a user who was “working on a ‘workbench’ version of the synthesis face through

careful ChucK coding in order to make good and intuitive use of the kinds of sounds I get

from Taps combined with live or sequenced control.” These responses suggest a variety

of sound sculpting contexts and paradigms to which TAPESTREA is applicable, ranging

from localized sound manipulation for an external composition to creating a general, re-

usable tool through ChucK scripting. Finally, even those who do not compose using

TAPESTREA may find it relevant; as one user wrote, “I use it in all my classes.”

4.2 User Study for Background Synthesis

The wavelet tree learning method [46] (see Chapter 3, Section 3.4.3), though effective

for general sound texture synthesis, has a few drawbacks for background synthesis in

TAPESTREA. Real-time wavelet-tree analysis, learning and re-synthesis is supported in

TAPESTREA by reading the original file in consecutive segments of up to 218 samples,

corresponding to an 18-level wavelet tree and slightly less than 6 seconds of audio at a

44.1 kHz. sampling rate. While the segment size can be adjusted (in powers of 2) by the

user, by default it is set to 213 samples (close to 0.2 seconds at 44.1 kHz.) to accommodate

shorter extracted background templates. Thus, the original extracted background is often

divided into multiple shorter segments, which are analyzed, re-synthesized and played

back in order. This results in variation only within each segment, but not in the overall
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structure of the sound. The synthesized background can therefore sound like repeated

looping of the original background.

Selecting a larger segment size, such that only one segment can be read from the

original background, results in repeated reading and re-synthesis of that segment. While

this can sound less repetitive than the alternative, it is still prone to some repetition due to

the nature of wavelet tree learning coupled with re-synthesizing the very same segment

over and over. Because a wavelet tree has fewer coefficients at levels closer to the root (see

Figure 3.10), these levels have less scope for random re-ordering. However, these levels

correspond to lower-frequency, longer-time-span information, which may well contribute

more to the perceived overall structure of the sound. Thus, repeatedly analyzing and re-

synthesizing the same segment can lead to an unwanted sense of high-level repetition.

It is therefore of interest to investigate other background synthesis methods that create

variation at higher levels while leaving low-level details unchanged. The user studies

described below compare several such methods, with the goal of determining which of

them, if any, leads to the most perceptually convincing background synthesis. A common

factor among all the methods studied is the rearrangement of audio segments from the

original sound, without modifying the samples of the segments themselves. Thus, these

methods serve as examples of standard concatenative or granular synthesis (see Chapter 2,

Section 2.3.1). The study, then, implicitly compares different segment rearrangement and

selection algorithms.

4.2.1 Variables and Methods Studied

All the background synthesis methods studied involve automatically rearranging audio

segments from the original sound; they differ in the specific segment selection algorithm.

The six methods studied can be classified into three categories: three perform segment
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selection using a distance metric based on wavelet tree coefficients, two measure distance

using only signal power, and one selects the next segment randomly as described in [63,

64]. The basic algorithm for the methods that use a distance metric is adapted from the

wavelet tree learning algorithm described in [46], with the difference that distances and

selection criteria are applied to segments rather than to wavelet tree nodes. It proceeds as

follows:

1. Given a segment size and a hop size in samples, read the original sound into

multiple, overlapping segments.

2. Perform preprocessing on each segment according to the specific method.

3. Compute and store distances between each pair of segments (not necessarily com-

mutative).

4. Given a randomness parameter P and the set of inter-segment distances, compute ε

such that P is the ratio of the number of distances less than ε to the total number of

computed distances (adapted from [46]).

5. Select the first segment of the original sound as the first segment of the synthesized

background.

6. Randomly select a segment s from a set of “close enough” segments whose distance

from the latest synthesized segment is less than ε (adapted from [46]).

7. Depending on the particular method, the next segment to be synthesized is either

s or the segment immediately following s in the original sound. The selected next

segment is overlap-added to the latest synthesized segment, at the specified hop

size, after applying a sinusoidal window [68] given by:

w[n] = sin
(

πn
N−1

)
,∀n ∈ [0,N−1]
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where N is the size of the selected segment s.

8. While more synthesized background is needed, go to step 6.

The nuances of specific methods are described below:

dEuclideanHop (dEH) uses a wavelet-tree-based distance metric. Its particular de-

tails include:

• Pre-processing: Compute the average power of the input sound and normalize the

power of all the segments to the average value.

• Distance: Compute a wavelet tree for each segment. The distance between two

segments is then the sum of the Euclidean distances for the first Ll/H nodes in

each level of the trees, where H denotes the specified segment size divided by hop

size, Ll denotes the total number of nodes in level l, and t(l,m) denotes the m-th

node at level l of the tree corresponding to segment t. Thus,

dist(t1, t2) =
levels

∑
l=0

Ll/H

∑
m=0

(
t1(l,m)− t2(l,m)

)2

• Next segment: The next segment to be synthesized is the one following the ran-

domly selected “close enough” segment s in the original sound.

dWeightedOverlap (dWO) resembles dEuclideanHop, but the Euclidean distance is

computed between the end of the current segment and the beginning of potential next

segments, as described below:

• Pre-processing: Compute the average power of the input sound and normalize the

power of all the segments to the average value.

• Distance: Compute a wavelet tree for each segment. The distance between two

segments is the sum of weighted Euclidean distances for potentially overlapping
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sections of each level of the tree, given by:

dist(t1, t2) =
levels

∑
l=0

Ll−Ll/H

∑
m=0

(
t1(l,m+Ll/H)− t2(l,m)

)2
mH/Ll

The mH/Ll factor allows a greater weight to the distances between nodes closer in

time to the end of the overlapping region. It also normalizes the Euclidean distance

at each level through division by the number of nodes in the level.

• Next segment: The next segment to be synthesized is the randomly selected “close

enough” segment s.

dWeightedOverlapNoPower (dWONP) uses the same distance metric as dWeighte-

dOverlap, but does not normalize the power of each segment. It is summarized as:

• Pre-processing: None.

• Distance: Compute a wavelet tree for each segment. The distance between two

segments is the sum of weighted Euclidean distances for potentially overlapping

sections of each level of the tree:

dist(t1, t2) =
levels

∑
l=0

Ll−Ll/H

∑
m=0

(
t1(l,m+Ll/H)− t2(l,m)

)2
mH/Ll

• Next segment: The next segment synthesized is the randomly selected “close enough”

segment s.

dPowerOnly (dPO), in contrast, does not use a wavelet tree distance metric but rather

computes distance based on signal power alone, as defined below:

• Pre-processing: None.

• Distance: Compute the power of each segment as the square of the root mean

square (RMS) of the segment samples. The distance between two segments is the

absolute value of the difference between their powers, described below, with N
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being the segment size and t[i] being the i-th sample of segment t:

dist(t1, t2) =
∣∣∣ 1
N

N

∑
i=0

(t1[i])
2− 1

N

N

∑
i=0

(t2[i])
2
∣∣∣

• Next segment: The next segment synthesized is the randomly selected “close enough”

segment s.

dPowerOnlyNext (dPON) uses the same distance metric as dPowerOnly, but differs

in the choice of which segment to synthesize next, as described below:

• Pre-processing: None.

• Distance: Compute the power of each segment as the square of the RMS of the

segment samples. The distance between two segments is the absolute value of the

difference between their powers:

dist(t1, t2) =
∣∣∣ 1
N

N

∑
i=0

(t1[i])
2− 1

N

N

∑
i=0

(t2[i])
2
∣∣∣

• Next segment: The next segment to be synthesized is the one following the ran-

domly selected “close enough” segment s in the original sound.

Finally, OLARandom (OLAR) is an implementation of a sound texture synthesis

method using overlap-adding with no distance metric, described in [63, 64]. The synthe-

sis takes place according to the following procedure:

1. Copy the first second of generated audio directly from the beginning of the original

sound. (Typically the final second is also copied from the original ending, but in

this case, the amount of audio requested is not necessarily known in advance.)

2. Given an average segment size N and a randomness parameter r ranging from 0

to 1, compute the size of the next overlapping segment s to be a random number

between N/(1+ r) and N(1+ r).
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3. Randomly select the start of the next segment s from the available samples in the

original file. An optional parameter constraining this choice is a “minimum dis-

tance” parameter d that does not allow s to start within d seconds of the beginning

of the previous segment.

4. Optionally scale the magnitude of the selected next segment s by a random number

between 0.7 and 1.1.

5. Multiply the selected segment s by a sinusoidal window [68] and overlap-add it to

the previously generated background, using a hop size of approximately half the

selected segment size.

6. While more synthesized background is needed, go to step 2.

In addition to the six methods to be compared, other variables include specific param-

eters such as the segment size and randomness settings for each method. For the five

distance metric methods, segment size and hop size pairs both play a role in the overall

“size” setting. The randomness setting for these methods consists of a single parameter

P, which increases the randomness in the generated sound. The OLARandom method, in

contrast, has one “size” parameter but offers several settings that influence randomness:

the segment size randomness parameter r, the minimum distance requirement d, and

the binary (on/off) random amplitude scaling setting a. Because the study aimed to

compare methods for the purpose of background generation, it was also of interest to

use different types of background sounds as the source sound, making the source sound

another variable. For the purpose of experimentation, a number of fixed values were

selected for each parameter and a set of output sounds were generated for each method

and valid parameter combination (see Table 4.1). The output sounds were 8 to 10 seconds

long on average and were created from input clips of 3 to 5 seconds representing an ocean

background, the din of a public park, and a truck engine sound.
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Parameter Values Relevant Methods
Size in samples 2048–256, 2048–512, dEuclideanHop,
(segment–hop) 2048–1024, 4096–512, dWeightedOverlap,
(sample rate is 44.1kHz.) 4096–1024, 4096–2048, dWeightedOverlapNoPower,

8192–1024, 8192–2048, dPowerOnly,
8192–4096 dPowerOnlyNext

Size in samples 11025 (0.25 seconds), OLARandom
(segment only) 22050, 44100,
(sample rate is 44.1kHz.) 88200 (2 seconds)
Randomness (p) 0.01, 0.1, 0.5, 0.8 dEuclideanHop,

dWeightedOverlap,
dWeightedOverlapNoPower,
dPowerOnlyNext

Randomness (p) 0.1, 0.5, 0.8 dPowerOnly
Size randomness (r) 0.2, 0.8 OLARandom
Minimum distance (d) 0, 5 OLARandom
in seconds
Amplitude scaling (a) on, off OLARandom
Input sounds ocean, park, truck All

Table 4.1: User study parameters: values used for the study, and the methods to which they apply (see
Section 4.2.1).

In the sense of generating a longer background audio segment from fewer samples, the

goal of these methods resembles inverse audio coding. The experimental setup was there-

fore informed by similar studies evaluating audio coding and compression algorithms [75,

125, 134]. Related studies on compression algorithms have presented subjects with pairs

of sounds and asked them to judge each pair by identifying either the original or distorted

sound [75, 134]. A similar study comparing multiple compression algorithms asked

subjects to identify the sound with the better overall quality in each pair [125]. Previous

experiments evaluating sound texture synthesis algorithms typically asked subjects to rate

individual audio clips according to specific criteria [88, 63]. The study described in this

section primarily used the pair comparison technique to obtain detailed information on

relative preferences, although a part of it also asked subjects to rate individual sound clips

on an absolute scale.
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To simplify the study and remain “fair” to each method, the study was conducted in

two phases, supported by comparable experiments that either occurred in two stages [75]

or sought both types of information in a single stage [63]. The first phase of this study

aimed to determine the most suitable size parameter setting for each method, across all

randomness settings and input sounds. This was guided by the notion that all users

ought to have control over the input sound and randomness settings when synthesizing

a background, but only experienced users might know the ideal size settings for a given

method and situation. The second phase then compared sounds synthesized with the most

popular size setting for each method, aiming to determine the most preferred method

overall. Sections 4.2.2 to 4.2.5 describe the design of and results from each phase.

4.2.2 Phase 1 Design

Phase 1 of the study aimed to determine the least objectionable segment size (and hop

size, if relevant) from a range of discrete settings for each method, across all other

parameter settings and input sounds (see Table 4.1). It was designed as a series of

comparisons. Each comparison consisted of a pair of output sounds generated by the

same algorithm from the same input sound and with the same randomness parameters,

differing only in the size settings. For each comparison, a participant was asked to listen

to both sound clips (A and B) at least once, and select whether A or B was better. A third

“don’t know” option was also available. Participants were asked to select as “better” the

more perceptually convincing sound clip. They were also invited to listen to each clip as

many times as needed.

Testing all such unequal size setting combinations for every randomness setting in

each method resulted in a total of 732 unique comparisons. To remain feasible, each

comparison was aimed to be performed by at least two participants. In addition, all
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participants performed a fixed set of 24 comparisons, four from each method, arbitrarily

selected from the larger set to cover a wide range of sizes and randomness settings. Each

participant, therefore, was presented with a set of 90 comparisons, consisting of the 24

common comparisons and 66 other randomly selected comparisons. The input sound for

each comparison was randomly selected on-the-fly, as the focus lay on determining an

ideal size setting regardless of input sound. The order of the two sound clips in each

comparison was also randomized.

Figure 4.6: Screenshot of applet for comparing sounds in Phase 1 of the user study. The radio buttons are
activated after both clips have been heard, and the “Next” button is activated once a selection has been
made.

An entire session for each participant progressed as follows. The context of the study

and the participant’s tasks were first described. If the participant then consented to be

a research subject, he completed a written questionnaire for screening and background

information. The screening questions verified that the participant could commit an hour’s

time to the study, did not have severe hearing impairments, and was comfortable with

a web-based interface for the study. The background questions collected information

on participants’ musical experience, education, age and occupation. The participant’s

tasks were once more described in detail, and the participant was asked to listen to

each of the three original input sounds (ocean, park and truck). He was then left to

complete the 90 comparisons via a web-based Java applet (see Figure 4.6). Most of the

participants used the same workstation and stereo headphones, but could control the audio

volume as desired. At the end of the 90 comparisons, the participant completed a written
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questionnaire of follow-up information and was debriefed about the specific role of Phase

1 in the overall study.

4.2.3 Phase 1 Results

A total of 22 subjects participated in Phase 1. All 22 were students; 14 had a master’s

or other post-graduate degree, 2 had a bachelor’s degree, and 6 had a high school degree

or some college education. 12 participants had at least 2 years of experience playing a

musical instrument, while 10 did not play any instrument. Participants’ ages ranged from

20 to 35 years, with a median age of 26. As estimated, each session took roughly an hour.

Agreement varied on the 24 comparisons common to all participants. Strong agree-

ment (75% or higher in favor of one size over the other) existed for 6 of the comparisons,

across various methods and parameter settings. 13 comparisons showed mild agreement

(60–75% in favor of one size). Very low agreement (less than 60% in favor of any one

size) was present for 5 of the comparisons. These results are reasonable in light of the

likelihood that some pairs of sounds are easy to compare in a well-defined manner, while

it is more difficult to distinguish between other pairs. The discrepancies also suggest that

the consistency of results varies according to the particular comparison.

From the entire set of submitted comparison data, preference values were computed

for each size setting for each method. Given a comparison compm(x,y), where x and y

denote the two sizes being compared and m denotes the background generation method,

the preference value of size x to size y was computed as:

pre fm(x,y) =

∑
compm(x,y)

“x better”+
1
2 ∑

compm(x,y)
“don’t know”

count(compm(x,y))
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Figure 4.7: Segment size comparison results for dEuclideanHop. Both the size and color of each marker
indicate how often the size associated with its column was preferred to the size associated with its row.
Larger markers correspond to average preference values close to 1 (dark red), denoting greater preference.

In this case, count(compm(x,y)) denotes the number of times such a comparison has

taken place. Note that compm(x,y) includes comparisons using each of the distinct

randomness parameter settings for method m. A similar pre fm,r(x,y) was also computed

for each randomness setting r of method m, but the overall preferences for each method

regardless of randomness parameters were of greater relevance to the final goal.

Figures 4.7 to 4.12 show the results for each of the six methods. Each row and column

represents a particular segment size–hop size combination, or in the case of OLARandom

(see Figure 4.12), segment size alone (in samples). The marker at a particular row and
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Figure 4.8: Segment size comparison results for dWeightedOverlap. Both the size and color of each marker
indicate how often the size associated with its column was preferred to the size associated with its row.
Larger markers correspond to average preference values close to 1 (dark red), denoting greater preference.

column displays pre fm(x,y) for column x and row y in method m. In other words, it dis-

plays how often the size associated with the column was preferred to the size associated

with the row, averaged across all randomness settings for that method. Larger marker

sizes indicate greater preference. Marker colors also indicate preference values, with

dark red (1) denoting high preference for the column size and dark blue (0) denoting a

strong lack of preference for the column size. A preference value of 0.5 (green) indicates

indifference between the row and column sizes.
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Figure 4.9: Segment size comparison results for dWeightedOverlapNoPower. Both the size and color
of each marker indicate how often the size associated with its column was preferred to the size associated
with its row. Larger markers correspond to average preference values close to 1 (dark red), denoting greater
preference.

For each method, the overall preference for a particular size may then be estimated by

summing all the preference values in its associated column. A generally preferred size

would correspond to a column of relatively large markers. Such a column is visible for

a few methods, namely dWeightedOverlapNoPower (see Figure 4.9) and OLARandom

(see Figure 4.12). In contrast, the remaining methods appear to have some highly ob-

jectionable sizes, corresponding to columns with relatively small markers or rows with

relatively large markers, rather than a single strongly preferred size (see Figures 4.7, 4.8,

4.10, and 4.11).
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Figure 4.10: Segment size comparison results for dPowerOnly. Both the size and color of each marker
indicate how often the size associated with its column was preferred to the size associated with its row.
Larger markers correspond to average preference values close to 1 (dark red), denoting greater preference.

A one-way analysis of variance (ANOVA) [8] was conducted on the preference results

of each method. For each method, the preferences for a particular size (corresponding to

a column in Figures 4.7 to 4.12) were treated as samples from a distinct population. The

one-way ANOVA then yielded the probability that the means of all the populations (or

all size preferences for the given method) were identical. In general, this probability (p)

was less than 0.05, indicating that there were statistically significant differences among

the size preferences for each method. This does not provide insight on how much better a

particular size is for a method, but rather suggests that segment size settings are relevant
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Figure 4.11: Segment size comparison results for dPowerOnlyNext. Both the size and color of each marker
indicate how often the size associated with its column was preferred to the size associated with its row.
Larger markers correspond to average preference values close to 1 (dark red), denoting greater preference.

to perceptual realism. Table 4.2 summarizes these results by listing the p-value for each

method as well as the segment size with the highest overall preference.

Each participant also provided some qualitative data through the questionnaire at the

end of the session. A majority of participants (12 out of 22) wrote that sounds generated

from the park source were the most difficult to compare, while the ocean source was

marginally considered easier than the truck source.

Reported factors in deciding which clip sounded better include:

115



11025

22050

44100

88200

11
02

5

22
05

0

44
10

0

88
20

0

OLARandom Sizes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.12: Segment size comparison results for OLARandom [63, 64]. Both the size and color of each
marker indicate how often the size associated with its column was preferred to the size associated with
its row. Larger markers correspond to average preference values close to 1 (dark red), denoting greater
preference.

• Smoothness, continuity, lack of abrupt changes or patterns being cut off at odd

times

• Similarity to the original sound clip, presence of key sounds expected in the asso-

ciated natural environment

• Lack of obvious repetition or rhythmic patterns

• Lack of “annoying”, “artificial” or “synthetic” sounds, aesthetics
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Method Best size (in samples) p-value
dEuclideanHop 8192–1024 (segment–hop) 3.45e-005
dWeightedOverlap 8192–1024 (segment–hop) 4.98e-004
dWeightedOverlapNoPower 2048–256 (segment–hop) 0.0025
dPowerOnly 4096–512 (segment–hop) 0.0006
dPowerOnlyNext 4096–1024 (segment–hop) 0.0122
OLARandom 88200 (segment) 0.028

Table 4.2: Summary of Phase 1 results. The second column lists the size with the highest overall preference
for each method. The third column lists the p-value resulting from one-way ANOVA on the size preferences
for that method.

• Sense of “openness” of the environment or “fullness of audio”, layers of sound, a

sufficiently high dynamic range

• Lack of distortion or “random noise of some frequency”

• Fuzziness or lack of distinct sounds

Some participants also reported using different factors according to the input sound.

Specific positive factors for each sound include:

Ocean: Lack of staccato, lack of sudden sounds or variation, wind or wave noise moving

gently from high to low

Truck: Periodic engine noise, presence of a start-up sound and an appropriate order of

events, lack of sudden sounds or variation, a low rumbling

Park: Irregular or continuous background, presence of clear individual voices

The negations of many of these factors were listed as obstacles that made sounds

less perceptually convincing. Other obstacles included artifacts like repetitive clicking,

buzzing or “squealing” (possibly caused by high-frequency repetition of a small number

of samples) in certain sound clips. These probably resulted from particular combinations

of method and parameter settings, and it is expected that the most objectionable of

these combinations were culled via the Phase 1 human comparison data. The qualitative
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results together provide interesting insights into the evaluation of sound textures, and may

serve as valuable criteria in designing more perceptually convincing texture synthesis

algorithms. It is especially intriguing to note the varying evaluation factors for different

input sounds, and to envision blind texture synthesis techniques that are effective for

a wide variety of sources. Because the sound-specific factors, at least for these three

sources, do not appear to be in mutual conflict, it seems feasible to satisfy all of them

with a single algorithm. This, however, is a topic for future work (see Chapter 5).

4.2.4 Phase 2 Design

Phase 2 of the study aimed to compare the background synthesis methods, using sounds

generated with the least objectionable segment size for each method. The appropriate size

for each method was inferred from the Phase 1 results (see Table 4.2). Other parameters

related to randomness were not optimized, as it was of interest to find the ideal method

under all randomness settings. Because the randomness parameters differ between meth-

ods, it was desirable to compare all pairs of sounds generated by different methods, from

the same source sound, with any combination of randomness settings. Once again, this

led to a large comparison set. To obtain multiple responses for each comparison in an

efficient manner, Phase 2 was conducted via Amazon’s Mechanical Turk, a web service

for requesting and performing “human intelligence tasks” (HITs) that are difficult for

a computer to solve. Mechanical Turk has previously been used for labeling image

data [41], collecting similarity ratings between words [101], and labeling audio. It has

also been analyzed as a platform for user studies, leading to a recommendation to include

task-relevant verifiable questions even for subjective tasks [77].

The advantages of using Mechanical Turk typically include the collection of a large

number of responses in a relatively short timeframe at relatively low cost. It is also
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possible that Mechanical Turk workers represent a more diverse population than the fairly

homogeneous group of participants in Phase 1. The remote nature of Mechanical Turk

means that very little control can be exerted over a participant’s workspace, especially

on factors such as audio devices and settings and ambient din. This may be seen as an

advantage because it is realistic—we likewise have very little control over the context

in which end users might use the background synthesis methods. However, it calls for

additional measures to verify that participants can and do at least hear the sounds in

question before comparing them. Thus, a complete Mechanical Turk task for Phase 2

consisted of the following components:

1. An introductory page describing the task, presenting the three source sounds, and

providing detailed instructions for the rest of the task (see Figure 4.13);

2. A sound test page presenting an audio captcha to verify that the participant could

play and hear sounds, and to verify that the entity doing the study was not an

automated “robot” clicking buttons and entering text randomly;

3. For those who passed the sound test, a set of 10 comparisons presented in random

order on a comparisons page (see Figure 4.14);

4. A goodbye page with a button to submit the results back to Mechanical Turk.

The inclusion of 10 comparisons in a single task forced a participant to undergo the

sound test once in every 10 comparisons, allowing periodic sound checks without the

deterrent of a captcha before every comparison. In addition, it permitted greater control

over the specific distribution of comparisons a worker performed. The comparisons were

pre-distributed into arbitrary static sets of 10, such that each set contained the following:

• Seven “valid” comparisons: pairs of sounds generated by different methods and the

same source sound, using arbitrary randomness settings and the ideal Phase 1 size

settings for each method. These aimed to collect the data of primary interest.
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Figure 4.13: Introductory material for Phase 2

• One “identical” comparison, such that both sounds in the pair were exactly the

same. This acted as an indicator of data reliability.

• One “different sounds” comparison, in which both sounds in the pair were gener-

ated by the same method with identical settings, but with different source sounds.

This was also designed to reflect data reliability. Because results from the ocean

and truck sources could often sound similar, these comparisons always included

one sound generated from the park source.
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• One “Phase 1” comparison, consisting of a pair of sounds that had been compared

in Phase 1 and were thus generated from different size settings, but identical in all

other parameters. A specific subset of the comparisons used in Phase 1 populated

this category. The comparisons between the best and worst size settings for each

method, with all randomness settings and source sounds, were included. In ad-

dition, from the 24 common comparisons that all Phase 1 participants undertook,

those resulting in 75% or higher agreement were also included. One of the latter

set actually compared the best and worst size settings for the method in question;

it was not included twice.

Figure 4.14: Screenshot of a Phase 2 comparison
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There were 127 unique tasks, or sets of 10 comparisons. Five complete responses

were collected for each task. The order of the comparisons in a task and of the sounds in

a comparison was randomized each time. The following questions were asked for each

comparison (see Figure 4.14):

• “Which of the two sounds more perceptually convincing?” (answer type: radio

buttons)

• “Which of the two do you prefer?” (answer type: radio buttons)

• “Please describe the differences between the two sounds that lead to one being

more perceptually convincing or preferable. If you found the two equivalent AND

had no preference, please type, ‘None.’ ” (answer type: text field)

• “How convincing is the most convincing sound?” (answer type: radio buttons)

• “Which original source is closest to the first sound?” (answer type: radio buttons)

• “Which original source is closest to the second sound?” (answer type: radio

buttons)

• “Please enter any other comments here (optional)” (answer type: text field)

The time allocated for each complete task (introduction, sound test, 10 comparisons,

and submission) was originally 15 minutes, but was later increased to 20 minutes, with

the reward remaining constant at USD0.05. In general, a submission was rejected only if

the expected time to hear all 20 audio clips exceeded the actual time spent on the task, or

if a worker persisted in giving no difference between two sounds while also marking one

as more convincing or preferable. The former occurrence was very rare (five instances),

while the latter was slightly more common. The text field for differences thus served as

a measure to verify that the respondent was human and attentive. A total of 35 responses

were rejected, and additional data points were collected for the corresponding tasks.
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4.2.5 Phase 2 Results

A total of 6347 comparisons by 304 unique workers were accepted in Phase 2. Answers

to the questions “Which of the two sounds more perceptually convincing?” and “Which

of the two do you prefer?” were cross-tabulated and yielded a χ2 statistic of 10376,

indicating a very high (virtually 1) probability that the two were correlated. A Cramer’s φ

of 0.90 suggested that the effect size was also large [8]. Thus, in general participants

preferred the sounds they found more perceptually convincing. Because the study is

primarily concerned with the perceptual quality of the different methods, the upcoming

analysis will mainly consider answers to the former question only, without significant

loss of insight.

From all the accepted answers, 2658 found one sound more perceptually convincing

than the other, while 3689 found both equally convincing. The order in which the

two sounds in a comparison were presented generally appeared irrelevant; in the cases

where participants were not neutral between the two sounds, there was no strong bias

towards finding either the first or the second sound more convincing. A goodness-of-fit

test between the observed number of instances for selecting the first or second sound

as more convincing and the expected uniform distribution of selections between the two

sounds yielded a χ2 statistic of 0.0588, corresponding to p = 0.85 in favor of the null

hypothesis [8]. A similar irrelevance of order was found for all comparisons in which

both sounds were identical. However, for the comparisons in which both sound clips

were generated by the same method and parameters but from different source sounds,

there appeared to be a bias towards selecting the second sound as more perceptually

convincing. Of the 635 such comparisons, 197 selected the first sound, 247 selected

the second sound, and 191 were neutral. This corresponded to a χ2 statistic of 5.6306, or

p = 0.02. But despite this ordering bias, the synthesized ocean sounds were clearly found
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to be more convincing than the similarly synthesized park sounds. Results also suggested

that truck sounds were more convincing than park sounds, though by a smaller margin;

in cases where the park sound was heard second, the two were selected almost equally,

but the number of park selections dropped when the truck sound was heard second (see

Table 4.3).

First Second Park Ocean, Truck Neutral Total
sound sound (/ Total) (/ Total) (/ Total) (/ Total)
Ocean Park 45 (0.28) 72 (0.44) 45 (0.28) 162 (1.0)
Park Ocean 29 (0.18) 89 (0.55) 45 (0.28) 163 (1.0)
Truck Park 58 (0.34) 55 (0.32) 57 (0.34) 170 (1.0)
Park Truck 41 (0.29) 55 (0.39) 44 (0.31) 140 (1.0)

Table 4.3: Convincingness by sound: Results from comparisons between sound clips synthesized using
the same method and parameters but different source sounds. The first two columns denote the order of
sounds heard in the comparison. The third column indicates how often the park sound was deemed more
convincing, while the fourth indicates the same for the ocean or truck sound. The fifth column displays
how often both sounds were considered equally convincing. The sixth column gives the total number of
comparisons with the sound permutation.

Preliminary review of the overall results had revealed a number of answers in which at

least one of the source sounds was misidentified, both sounds were reported to be equally

convincing, or the differences between the two sounds were described as “None”. While

each of these choices can be validly made, the questions had been included partly to

gauge the quality of the results. The answers were therefore filtered to obtain multiple,

possibly more or less valid, data subsets. The trivial subset, All (6347 answers), consists

of all the accepted results and has been discussed hitherto. A second subset, Correct

(5140 answers), consists of answers in which both source sounds were correctly identi-

fied. The third subset, Attentive (3979 answers), attempts to eliminate answers from

particular subjects who showed a consistent pattern of indicating no difference between

most pairs of sounds. This set was obtained by computing the ratio between the number

of comparisons for which a subject described the differences as “None” and the total

number of comparisons performed by that subject. A cutoff ratio was then computed
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such that close to a given percentage of the subjects held a ratio lower than the cutoff.

The answers by these subjects were retained, while the answers from those who held

a ratio greater than or equal to the cutoff were discarded. For the Attentive data set,

the cutoff ratio was 0.8, retaining results from close to 90% of the subjects. Finally,

a few frequent participants had been observed to correctly identify most of the source

sounds but generally report no difference between the two sounds in each comparison.

To determine how their elimination affected the correctness of the remaining results, a

fourth subset, AttCorr (2986 answers), was built from answers that were already in the

Attentive subset and also identified both source sounds correctly.

A one-way analysis of variance (ANOVA) [8] of methods was performed on each

of the above data subsets. Each method represented a separate population, the samples

of which were computed from the number of times the method was considered more

convincing than each of the methods studied (including itself), in the data set in ques-

tion. These numbers were normalized by the total number of comparisons between the

appropriate method pair, in the same data set. The results suggest that the differences

between the overall convincingness of different methods were more significant for the

more selective data sets (see Table 4.4). In particular, the ANOVA on the All data set

yielded a p-value of 0.08, above the common 0.05 significance threshold, while the other

three sets yielded p-values less than 0.05. Note that the number of samples passed into

the ANOVA were identical for each data set, as the samples were essentially averages

of the results for each method. The more selective data sets may have produced better

averages, in a sense, by filtering out potentially noisy answers.

The relative convincingness of different methods for each data set can be seen in

Figure 4.15. The four plots correspond to the four data sets being considered. In each

plot, the marker at a given row and column indicates how often a sound generated by

the method associated with the column was considered more convincing than a sound
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Data subset p-value from ANOVA
All 0.0842
Correct 0.0423
Attentive 0.0412
AttCorr 0.0337

Table 4.4: Phase 2 ANOVA for the data sets All, Correct, Attentive and AttCorr (see Section 4.2.5).
One-way ANOVA was performed on each set, with each method representing a different population. The
first column names the data set; the second column gives the p-value resulting from one-way ANOVA on
methods, using only the answers included in that data set.

generated by the method associated with the row, normalized by the total number of such

comparisons. Thus, a column of large markers indicates a relatively convincing method.

The columns of the plots also represent the population samples passed to the ANOVA

for the corresponding data set. Broadly, the results appear consistent across data sets.

In each set, the OLARandom method appears to be the most convincing, followed by a

tie between dPowerOnlyNext and dWeightedOverlap. dEuclideanHop and dPowerOnly

take third place, while the least convincing method is deemed to be dWeightedOver-

lapNoPower. This ordering was computed by summing each column to obtain an overall

convincingness estimate for each method. In fact, strictly following the resulting numbers

suggests that dWeightedOverlap was slightly more convincing than dPowerOnlyNext,

and that dPowerOnly was generally slightly more convincing than dEuclideanHop. This

leads to the following ordering from most to least convincing: OLARandom, dWeighte-

dOverlap, dPowerOnlyNext, dPowerOnly, dEuclideanHop, dWeightedOverlapNoPower.

But the numerical differences on which this stricter ordering is based are quite small

(see Table 4.5). In the AttCorr data set, moreover, the overall convincingness estimate

for dEuclideanHop is slightly higher than that for dPowerOnly, resulting in a change in

ordering. However, the ordering described above is upheld in all data sets if the results of

the self-comparisons of a method are not included in its overall convincingness estimate.

Table 4.5 also presents an alternative way to judge the relative convincingness of

methods. When analyzing the comparisons between any two methods A and B, the
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Method Margin of convincingness over Overall
dEH dWO dWONP dPO dPON OLAR estimate

All data set
dEH 0.000 −0.054 0.167 −0.006 −0.063 −0.069 1.088
dWO 0.054 0.000 0.138 −0.050 −0.013 −0.004 1.265
dWONP −0.167 −0.138 0.000 −0.128 −0.208 −0.165 0.952
dPO 0.006 0.050 0.128 0.000 −0.039 −0.019 1.095
dPON 0.063 0.013 0.208 0.039 0.000 −0.029 1.233
OLAR 0.069 0.004 0.165 0.019 0.029 0.000 1.562

Correct data set
dEH 0.000 −0.052 0.185 −0.034 −0.072 −0.055 1.008
dWO 0.052 0.000 0.174 −0.020 −0.039 −0.010 1.241
dWONP −0.185 −0.174 0.000 −0.156 −0.209 −0.163 0.803
dPO 0.034 0.020 0.156 0.000 −0.053 −0.030 1.010
dPON 0.072 0.039 0.209 0.053 0.000 −0.012 1.193
OLAR 0.055 0.010 0.163 0.030 0.012 0.000 1.485

Attentive data set
dEH 0.000 −0.088 0.182 −0.037 −0.092 −0.097 1.474
dWO 0.088 0.000 0.145 −0.045 −0.007 0.003 1.739
dWONP −0.182 −0.145 0.000 −0.129 −0.287 −0.197 1.335
dPO 0.037 0.045 0.129 0.000 −0.076 −0.022 1.486
dPON 0.092 0.007 0.287 0.076 0.000 −0.037 1.723
OLAR 0.097 −0.003 0.197 0.022 0.037 0.000 2.150

AttCorr data set
dEH 0.000 −0.083 0.235 −0.103 −0.118 −0.062 1.475
dWO 0.083 0.000 0.205 0.012 −0.049 −0.004 1.799
dWONP −0.235 −0.205 0.000 −0.169 −0.271 −0.205 1.229
dPO 0.103 −0.012 0.169 0.000 −0.098 −0.033 1.445
dPON 0.118 0.049 0.271 0.098 0.000 −0.013 1.744
OLAR 0.062 0.004 0.205 0.033 0.013 0.000 2.144

Table 4.5: Margin of convincingness between methods, for each data set. The first column names each
method being studied. The next six columns indicate the margin of convincingness of the row method
over the column method: the difference between the number of times the row method versus the column
method was considered more convincing in a mutual comparison, normalized by the total number of such
comparisons. The highest margin in each column is in bold font, indicating the most convincing method
relative to the column method. When applicable, the name of the method that has nonnegative margins
over all methods is also in bold font. The final column presents the overall convincingness estimate of the
method, as described on page 126.
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(a)

(c) (d)

(b)

Figure 4.15: Phase 2 method ratings for all sounds, for the following data sets: (a) All, (b) Correct, (c)
Attentive, (d) AttCorr. The size of the marker at (x,y) indicates how often method x was considered
more convincing than method y. A column with darker markers corresponds to a method with a higher
overall convincingness estimate, obtained by summing the data points in the column. In this case, self-
comparisons are excluded from the sum for each method.

margin of convincingness of A over B can be computed as the difference between the

number of times A versus B is considered more convincing, divided by the total number

of A-B comparisons. This is also equivalent to subtracting the value of the marker at

(A,B) from the value of the marker at (B,A) in the plots in Figure 4.15. The sign of
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the margin of convincingness then indicates which method was selected more often (a

positive sign indicating a more frequent selection of A), while the magnitude indicates

the size of the victory or defeat. In some cases, an alternative ordering of methods

can be construed from the signs alone. In the All data set, for instance, OLARandom

has a positive margin of convincingness over all other methods, indicating that it was

voted more convincing than each of them. Similarly, dPowerOnlyNext was voted more

convincing than all the other methods except OLARandom. Pursuing this reasoning yields

the following ordering from most to least convincing: OLARandom, dPowerOnlyNext,

dPowerOnly, dWeightedOverlap, dEuclideanHop, dWeightedOverlapNoPower. An iden-

tical ordering arises from the Correct data set. The Attentive data set, however, is not

as well-ordered as no method in it has a positive margin of convincingness over all other

methods. The AttCorr set yields a slightly different ordering from most to least convinc-

ing: OLARandom, dPowerOnlyNext, dWeightedOverlap, dPowerOnly, dEuclideanHop,

dWeightedOverlapNoPower.

Differences between the orderings yielded by the overall convincingness estimates

and the margins of convincingness arise partly from the disregard of magnitude when

applying the latter measure. While the former sorts methods according to an aggregate

score, the latter is more sensitive to choices between individual pairs of methods. Which

technique yields a more meaningful ordering depends to an extent on the importance of

magnitude, or strength of preference, in determining a method’s overall ranking. How-

ever, in this case it is interesting to note that both techniques generally yielded OLARan-

dom as the most convincing synthesis method and dWeightedOverlapNoPower as the

least convincing method. This suggests that in general not accounting for signal power,

either by normalizing it for each segment or by incorporating it in the distance metric,

results in a less perceptually convincing background. The success of OLARandom despite

its disregard of signal power may be related to the relatively large segment sizes it uses.
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Although the methods based on distance metrics can also be run with comparable segment

sizes, in practice this often yielded repetitive audio due to “intelligent” segment selection

on the small number of segments given by a large segment size and relatively short source

sound. The OLARandom method, in contrast, can select a segment from anywhere in the

original sound (as opposed to starting points at hop-sized intervals), and has very few

constraints on the location of the next segment.

Other trends observed in these results include that dPowerOnlyNext is consistently

ranked higher than dPowerOnly, and dWeightedOverlap is consistently ranked higher

than dEuclideanHop. Although dPowerOnly and dPowerOnlyNext use the same distance

metric, they differ in the way it is used. Because dPowerOnly selects as the next segment

a section closely matching the current segment in power, the resulting clip can lack

variation in power or dynamics. In the worst case, with low randomness parameters, a

short section composed of a small subset of available segments is repeated endlessly. The

dPowerOnlyNext method overcomes this hurdle by selecting the segment following the

closest power match to the current segment. This captures some of the power variations

in the original sound, and may consequently sound more perceptually convincing. The

distinction between dWeightedOverlap and dEuclideanHop lies in the distance metrics

themselves. Essentially, dEuclideanHop selects the segment following one whose be-

ginning matches the current segment, with the reasoning that the next segment will

be overlap-added to the remainder of the current segment, recreating the transitions in

the original sound. dWeightedOverlap matches the overlapping portions of consecutive

segments and also weights the distances between tree nodes according to their level and

offset. The results suggest that the latter provides a better distance metric than the former.

The results described above were computed over all three source sounds. The effects

of the source sound itself on method rankings are also worth studying. Since the ranking

by margins of convincingness relies on well-ordered acyclic data, which is not always
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natural, the sound-specific analysis uses the overall convincingness estimates. Figure 4.16

shows the relative convincingness of different methods for each data set, using only the

comparisons between sounds generated from the ocean source. Figure 4.17 shows the

equivalent information for comparisons between park sounds, and Figure 4.18 shows the

results for truck sound comparisons. As in Figure 4.15, a column with large markers

corresponds to a relatively convincing method, and is usually darker because the method

has a higher overall convincingness estimate. The results for each source sound are

assumed to be noisier than the overall results across sources, due to the presence of fewer

data points. However, they do suggest that differences in method rankings exist between

different source sounds.

For the ocean source (see Figure 4.16), dPowerOnlyNext appears to be the most con-

vincing method overall, especially in the Attentive and AttCorr data sets. OLARan-

dom usually takes second place, followed by dWeightedOverlap. The relative preference

for dPowerOnlyNext over dPowerOnly, and for dWeightedOverlap over dEuclideanHop,

are preserved from the across-sounds results, and once again dWeightedOverlapNoPower

is deemed the least convincing. The nature of the ocean source sound may explain the

success of dPowerOnlyNext. While the ocean sound most resembles purely stochastic

noise, it benefits from smoothly varying power to simulate the gradually approaching

and receding ocean waves. Perhaps dPowerOnlyNext best captures some of these wave

dynamics.

Results for the park source (see Figure 4.17) generally match the across-sounds results,

with OLARandom deemed the most convincing, dWeightedOverlapNoPower deemed the

least convincing, and the relative order preserved between the other two pairs. The park

sound has the highest concentration of deterministic components (voices), and can thus be

considered the least stochastic of the three sounds. However, it also has the least amount

of high-level structure—the din of voices need not rise and fall periodically or follow
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(c) (d)

(b)(a)

Figure 4.16: Phase 2 method ratings for the ocean sound, for the data sets: (a) All, (b) Correct, (c)
Attentive, (d) AttCorr. The size of the marker at (x,y) indicates how often method x was considered
more convincing than method y. A column with darker markers corresponds to a method with a higher
overall convincingness estimate. Self-comparisons are excluded from the estimate for each method.

a specific order of events. Thus, OLARandom may have succeeded due to its lack of

structural constraints and its ability to capture more of an individual voice via the longer

segment size.

The truck source results (see Figure 4.18) also suggest a clear choice of OLARandom

as the most convincing method. However, they differ from the across-sounds results in
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(c) (d)

(b)(a)

Figure 4.17: Phase 2 method ratings for the park sound, for the data sets: (a) All, (b) Correct, (c)
Attentive, (d) AttCorr. The size of the marker at (x,y) indicates how often method x was considered
more convincing than method y. A column with darker markers corresponds to a method with a higher
overall convincingness estimate. Self-comparisons are excluded from the estimate for each method.

that dPowerOnly is considered more convincing than dPowerOnlyNext, and dEuclidean-

Hop is judged the least convincing. The truck sound, while fairly noisy, benefits from a

lack of sudden variations, according to comments received in Phase 1 (see Section 4.2.3).

dPowerOnly may rank higher than dPowerOnlyNext because the latter introduces more

variation. Perhaps because the truck sound does not have a more gradual periodic struc-
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(c) (d)

(b)(a)

Figure 4.18: Phase 2 method ratings for the truck sound, for the data sets: (a) All, (b) Correct, (c)
Attentive, (d) AttCorr. The size of the marker at (x,y) indicates how often method x was considered
more convincing than method y. A column with darker markers corresponds to a method with a higher
overall convincingness estimate. Self-comparisons are excluded from the estimate for each method.

ture like ocean waves, OLARandom still produces the most convincing results. The fact

that participants in Phase 1 also listed “an appropriate order of events” as one of the fac-

tors in judging the quality of a synthesized truck clip makes the success of OLARandom

intriguing. However, this outcome may merely reflect a relatively low importance of the

order of events, compared to other factors such as successfully capturing engine noise (see
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Figure 4.19: Phase 2 absolute quality ratings, for each data set. The histogram indicates the overall
frequency of each choice across all methods and sounds. The number of responses for each choice is
divided by the total number of responses in the appropriate data set, to obtain a normalized figure.

Section 4.2.3). The unusual success of dWeightedOverlapNoPower over dEuclideanHop,

despite the former’s lack of power normalization, suggests that the quality discrepancy

between the metrics overrides signal power concerns for the truck sound.

In addition to the relative quality of different methods, the study also attempted to

collect information on the absolute quality of the synthesized audio clips, through the

question, “How convincing is the most convincing sound?” in each comparison. Fig-

ure 4.19 displays the responses across all methods and sounds, for each of the four data

sets. The answers in the All and Correct data sets reported most frequently that the

better sound was “quite” convincing, and least frequently that it was “not” convincing.

In contrast, answers from the Attentive and AttCorr sets most commonly reported

the better sound to be “OK” and least commonly called it “totally” convincing. Thus,

participants who tended to actively discern between the two sounds in a comparison also
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tended to find the sounds less perceptually convincing overall. In all data sets, however,

the two top responses were, “OK,” and, “Quite,” although in different orders.
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Figure 4.20: Phase 2 absolute quality ratings by method, for each data set. The histograms indicate the
overall frequency of each choice for each method, in the corresponding data set. The number of responses
for each choice is normalized by the total number of responses for the given method in that data set.

The above pattern was consistent across all methods, as displayed in Figure 4.20. Dif-

ferences between the quality rating distributions for individual methods were fairly small

in comparison to the overall distribution. However, dWeightedOverlapNoPower stood

out in being considered “not” convincing more frequently than the other methods, which

matches its low ranking based on the relative convincingness data. dWeightedOverlap

was considered “totally” convincing more often than its counterparts, especially in the

Attentive and AttCorr data sets. But because it was also often reported as “not”

convincing, it does not have the highest overall rank. A mean quality rating for each

method can also be estimated from these data by mapping the “Not”, “Somewhat”, “OK”,

“Quite”, and “Totally” answers to 1, 2, 3, 4 and 5 points respectively and computing a

mean for each method. The resulting values, presented in Table 4.6 are quite close to

each other as expected from Figure 4.20, but once more indicate OLARandom as having
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the highest overall quality and dWeightedOverlapNoPower as having the lowest overall

quality. dWeightedOverlap is consistently ranked second according to these means.

Method All Correct Attentive AttCorr
mean (rank) mean (rank) mean (rank) mean (rank)

dEH 3.334 (3) 3.436 (3) 2.743 (5) 2.716 (5)
dWO 3.367 (2) 3.460 (2) 2.797 (2) 2.783 (2)
dWONP 3.280 (6) 3.361 (6) 2.665 (6) 2.579 (6)
dPO 3.295 (5) 3.390 (4) 2.762 (4) 2.743 (3)
dPON 3.304 (4) 3.362 (5) 2.767 (3) 2.729 (4)
OLAR 3.392 (1) 3.474 (1) 2.871 (1) 2.846 (1)

Table 4.6: Phase 2 mean quality rating for methods, according to each data set. The mean was computed
from the absolute quality ratings for each method.
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Figure 4.21: Phase 2 absolute quality ratings by sound, for each data set. The histograms indicate the
overall frequency of each choice for each sound, in the corresponding data set. The number of responses
for each choice is normalized by the total number of responses for the given sound in that data set.

The distribution of absolute quality ratings by source sound, shown in Figure 4.21,

also follows the overall trend for each data set. The ocean sound is noticeably marked

as “OK” more frequently than the other sounds, suggesting that participants generally
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did not strongly like or dislike its synthesized versions. Responses for the other sounds,

especially park, tend to lean towards the less convincing side. This corroborates the

earlier analysis of convincingness by sound (see Table 4.3).

For the comparisons involving two completely identical synthesized sounds, the ma-

jority of responses indicated no preference between the two sounds. 35 of the 81 such

comparisons were unanimously marked “no preference” by all respondents across all four

data sets. These 35 comparisons included a range of methods and source sounds. The

remaining comparisons garnered at least 60% agreement on the neutral option in the All

and Correct sets. All but seven comparisons in the Attentive set and nine comparisons

in the AttCorr set had above 50% votes for the neutral option. This suggests that the

latter two data sets had a higher false positive rate in reporting differences between two

sounds. Still, in these two data sets, the mean agreement on the neutral option for each

comparison was around 85% for the identical comparisons only, compared to around 41%

for all comparisons. Thus, the results appear relatively consistent for the identical sound

comparisons.

Answers to the repeated “Phase 1” comparison questions in Phase 2 (see Section 4.2.4)

generally matched the results from Phase 1, but with a greater degree of neutrality. The

slightly smaller preference margin between sound clips in a comparison is expected, given

the relatively uncontrolled conditions and increased number of participants in Phase 2.

That in general the more convincing clip in each comparison was the same as the “better”

clip in Phase 1 helps validate both phases. An exception to this correspondence to

Phase 1 results occurred for the repeated comparisons between the best and worst size

settings for dWeightedOverlapNoPower. According to the Phase 1 results, this method

had three “worst” size settings, to which the “best” size setting was equally preferred.

Thus, all three best-to-worst-size comparisons were included in Phase 2. The results in

Phase 2, however, indicated that in each such comparison, the worst size was considered
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more convincing than the best size, by a small margin. This may be accounted for by

the magnitude of the best-to-worst-size preferences in dWeightedOverlapNoPower being

lower than the best-to-worst-size preference magnitudes in the other methods in Phase 1.

Although the best size was preferred to all the other sizes, it was not greatly preferred to

any (see Figure 4.9). This ambivalence makes the discrepancy between the Phase 1 and

Phase 2 results for dWeightedOverlapNoPower less surprising. It may also help explain

the overall poor performance of dWeightedOverlapNoPower in Phase 2.

4.2.6 Closing remarks

Put together, the study results suggest that the OLARandom method, though not al-

ways ideal, works well for the majority of sounds, while dWeightedOverlapNoPower

generally does not produce convincing results. The remaining four methods vary in

popularity according to the type of sound being synthesized, though dWeightedOverlap

and dPowerOnlyNext usually generate more acceptable results. The combined results

suggest that random overlap-adding may outperform more “intelligent” or expensive

segment selection algorithms by producing reasonable results for a variety of sounds,

even though it requires the least computation among the methods studied. In future, it

would be interesting to compare OLARandom with more evolved distance-based methods

that bypass some of the limitations of the ones currently studied, such as by introducing

the ability to use larger segment sizes without repeatedly selecting the same segments.

It is also worthwhile to investigate other distance metrics using more advanced and

established features from speech analysis and music information retrieval [12].

While this study compared a number of background synthesis methods, it was far

from exhaustive. It did, however, set up an experimental prototype that can be re-used

for future comparisons between background or sound texture synthesis methods. Such a
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framework can also be adapted to compare synthesis algorithms for other types of sounds,

as well as compression techniques for noisy sounds.

Based on the current results, OLARandom has been added as an alternative background

synthesis method in TAPESTREA. Ensuing data on the actual usage of the available

algorithms to generate backgrounds in TAPESTREA can also provide valuable insights

toward the design of better background synthesis methods. Future inclusion of other

methods such as dWeightedOverlap and dPowerOnlyNext in TAPESTREA can also fur-

ther enhance the richness of background synthesis options, and allow for another level of

long-term human usage data.

4.3 Composing with TAPESTREA

The TAPESTREA system supports a variety of composition and performance models,

ranging from scripted to improvised and from recorded to real-time. This section offers

preliminary remarks on making music with TAPESTREA, in terms of these models. The

following paragraphs discuss the tools relevant to each model as well as the advantages

and drawbacks of each approach. Some existing pieces created with TAPESTREA are

also briefly described.

4.3.1 Scripting versus Improvisation

The GUI and ChucK scripting functionality together define a continuum of approaches.

On the highly scripted end, synthesis is controlled exclusively via ChucK scripts, using

templates that have previously been extracted and saved to file, with no real-time user

input. This leads to the most precisely controlled sound synthesis, in which every detail

may be fine-tuned to suit the composer’s preference. Such a piece is also the most
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exactly reproducible; variations caused by human interaction are removed, leaving only

the variations directly programmed into the ChucK code or resulting from the inherent

synthesis algorithms for certain templates (such as loops and backgrounds). By contrast,

the highly improvised end consists of pieces composed exclusively through interactive

control via the GUI. An “extremely” improvised piece would conceivably also include

interactive template extraction as part of the piece, as well as on-the-fly decisions on tem-

plate transformation and synthesis. Such an approach provides the maximum amount of

freedom to explore during the very process of recording or performing, but the resulting

piece may lack the sophistication of iterative fine-tuning.

Most often, it is convenient to use a combination of scripting and improvisation to

create a piece. Minimally, scripting may refer not to an actual ChucK program but to

a rehearsal-like process by the human or the presence of a physical or mental score,

however detailed or nebulous, guiding the piece. But the combination of a ChucK script

and interactive GUI manipulation may also take several forms. One approach is to

begin the compositional process experimentally, interactively extracting, transforming

and synthesizing different combinations of templates via the GUI. In this case, the GUI

serves as a playground for testing ideas and discovering new sets of manipulations that

work well. Once an interesting idea has been found in this way, it can be “saved”,

polished, and arbitrarily reproduced using ChucK scripting. Thus, an entire piece can

gradually be scripted from improvisational roots. It may also be appropriate for some

parts of the piece to remain improvised in the sense of being controlled from the GUI

alone; for instance, the decision of when to start playing a particular template may be

easier to make in real-time while listening to the currently synthesized audio, than it is to

code into a ChucK program using a precise and objective measure of time. Etude II Pour

Un Enfant Seul (Loom) (see Section 4.3.3) was created with this approach, beginning
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experimentally and evolving into a set of scripts, with a few templates still controlled

on-the-fly through the GUI.

A second way to combine ChucK scripting and the TAPESTREA GUI takes advantage

of the TapsUI class (see Section 3.4.10) to create user interface element handles into

a ChucK script. Thus, control may essentially remain scripted but still receptive to

human input. The composer then determines the range of control exerted by real-time

human input versus by the pre-programmed script. This approach was used in In C

in T (see Section 4.3.3), in which a ChucK script played pre-programmed melodies

but the human could interactively choose the particular melody and template to play.

The two described methods for combining ChucK scripting and TAPESTREA GUI are

also far from mutually exclusive, but rather refer to different aspects of merging the two

components. The TapsUI interface into a ChucK script may further be replaced by other

types of input already built into ChucK, such as MIDI, OSC and HID messages from any

instrument or controller, allowing real-time synthesis control from specialized interface

devices as well as keyboard, mouse, and other computer hardware [58, 157].

The advantages of scripting include precise control over synthesis parameter values

and timing; through a script, one can define exactly when a particular parameter is

updated to a very specific value. It also allows the precise manipulation of multiple

parameters simultaneously, which is impossible using a single mouse and sliders in the

GUI. Further, scripting can facilitate algorithmic manipulation of template parameters,

as well as allowing TAPESTREA templates and ChucK-synthesized audio to be played

simultaneously. Scripting also provides control through a range of input devices as

described above. In contrast, synthesis from the GUI alone diminishes control in terms of

parameter manipulation and input modes. However, it has the advantage of still offering

plenty of functionality without the need to write or debug code. Some operations, such

as creating a new loop, timeline, or mixed bag, are currently supported only in the
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GUI. Further, the combination of immediate audio and visual feedback facilitates direct

template selection and manipulation in ways unmatched by text-only information. While

no formal study has been undertaken to verify this, first-hand experience suggests that

some manipulations are difficult to program but easy to perform on the GUI. This may

result partly from the lack of a mechanism for real-time audio feedback in a script:

at the very least, a script must be re-played after an edit, whereas the GUI supports

interactive real-time parameter modification. Another factor that can make scripting more

challenging is the very precision that doubles as an advantage; a script not only offers but

requires precision; one cannot program a parameter to be modified without directly or

indirectly giving it a precise value, yet it is difficult to determine the appropriate value

without the immediate audio feedback offered by the GUI.

Thus, scripting and GUI manipulation each has its own strengths and weaknesses.

This is perhaps another reason why an intelligent combination of GUI manipulation

and scripting is often the most convenient approach. It remains up to the composer to

determine what particular combination of modalities balances her individual needs with

the requirements of the piece itself. The further integration of scripting and GUI control

in expressive ways is also an avenue for future exploration (see Chapter 5).

4.3.2 Recording versus Live Performance

TAPESTREA supports both recording a piece and performing it live. A piece can be

recorded during synthesis and saved to a sound file of 2 or 8 channels. The recording

is then technically ready to play as a tape piece. In some cases, the composer may

wish to perform further post-processing on the sounds output by TAPESTREA; it is

straightforward to process and mix the output sound files in any other sound editor. Post-

processing can also be facilitated by synthesizing and recording a piece in smaller parts
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instead of recording the whole piece to one file. The tape piece Etude II Pour Un Enfant

Seul (Loom) was developed in this way; it was recorded from TAPESTREA and finishing

touches were later placed using a standard audio editor.

TAPESTREA has not been formally explored in a live performance setting, but the

capability exists. To ensure that a performance is interesting to the audience, it is recom-

mended to design pieces with a human interaction component, either by using visually

compelling external input devices or at least by sharing the performer’s GUI manipula-

tions with the audience. The use of ChucK as the scripting language offers the advantage

of supporting external real-time controllers for live performance, and also provides a

basis for performances with more than one machine or player, synchronized via OSC

messages. The interactive piece In C in T, or a variation thereof, has potential for live

performance.

The advantages TAPESTREA offers for both tape pieces and live performance are

essentially the same, summarized as an ability to flexibly re-compose existing sounds

with great parametric control. Creating a tape piece allows the additional option of

external post-processing before the audience hears the piece, and is safer as unexpected

mistakes or crashes do not reach the audience. On the other hand, live performance

provides an arena to visually engage the audience using appropriate tools, and to respond

to cues from them in real-time. These differences, however, are common to all tape pieces

versus live performances, not only those created using TAPESTREA.

4.3.3 Existing Pieces

Some existing compositions using TAPESTREA are described below. The pieces de-

scribed differ immensely in structure, tone, mood, and specific techniques used, high-

lighting the compositional variety TAPESTREA supports.
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Etude II Pour Un Enfant Seul (Loom)

Etude II Pour Un Enfant Seul or Loom is an 8-channel tape piece composed collabora-

tively with Ge Wang and Perry Cook, showcasing the musical tapestry re-composition

technique introduced by TAPESTREA. Loom uses a small number of templates extracted

from recordings of natural sounds, including a bird squawk, a bird chirp, a duck quack,

a Lutine bell, and several instances of children screaming. These are re-composed in the

musique concrète tradition, but with the previously unavailable combination of analysis

and synthesis tools offered by TAPESTREA. For example, a bird cadenza, created from

a set of bird chirp loops and automated by ChucK scripts, shows the extremely different

textures one can build by transforming a flock of birds over a wide range of parameter

values. In another section, the extracted templates of children screaming are immensely

transformed, with time-stretching by 100 and frequency-scaling by up to 50 times, to

produce a children’s drone. Loom has been played at a concert at the International

Computer Music Conference in 2006, as well as at the Princeton University Composers’

Ensemble Concert in 2007.

The piece is divided into 5 movements. The first movement begins a time-stretched

bird squawk, followed by a relatively sparse flock of birds (synthesized by a single

bird chirp loop) chirping over an ocean background. The sounds of the bird flock are

slowly varied by changing the frequency and time scaling, density, and randomness of

the underlying loop. In the second movement, the ocean background is replaced by

silence and slight reverberation, evoking a “rainforest” ambience. A flock of ducks

(synthesized by a duck quack loop) presumably join the existing bird flock for a brief

interlude. After they depart, the bird chirping becomes increasingly periodic, repetitive,

brief and dense, eventually turning into a constant tone reminiscent of granular synthesis.

The third movement manipulates this bird tone via the loop parameters, and includes
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bird cadenzas in which the tone smoothly transforms itself into a flock of birds and back

into a tone. At the end of this movement, the birds are silenced. The fourth movement

introduces a Lutine bell, accompanied by the sound of broken glass and an occasional bird

squawk. These are moderately time-stretched with varying frequency scaling. The final

movement consists of a chorus of children screaming, greatly time-stretched to create

a rich drone. Versions of the Lutine bell and bird squawk are interspersed among the

children, and end the piece once the children have faded away.

In C in T

In C in T is a TAPESTREA rendering of Terry Riley’s In C. The original piece is designed

for any number of performers and consists of a sequence of 53 musical phrases to be

played in order. Each performer may begin playing the piece at any time, and may play

each phrase as many times as she likes with her choice of dynamics, informed by the

decisions of the rest of the ensemble.

Figure 4.22: Screen shots of In C in T: The image on the left depicts the initial view for selecting an
instrument; the image on the right shows the subsequent controls for navigating the piece.

The TAPESTREA version encodes the 53 musical phrases in a ChucK script and offers

a set of user interface elements via TapsUI to control their playing (see Figure 4.22).

Starting the script displays a set of checkboxes for selecting the “instrument” to play;
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the current choices are horn, donkey, goat, and bird. These correspond to sinusoidal

templates that have been manually normalized so that their default frequency scaling

matches C4 and their default time scaling matches a quarter note at the specified tempo.

After selecting her instrument, the “performer” sees a new set of interface elements to

control the actual playing of the piece. These include a checkbox to start or stop playing, a

button to shift to the next musical phrase (at the end of this iteration of the current phrase),

a slider to shift to an arbitrary phrase out of order, and a slider to control the instrument

gain. With these controls, the performer may navigate the piece. Simultaneously running

and controlling multiple instances of the script with different instruments creates the

illusion of multiple performers. All the instances are locally synchronized to the nearest

eighth note through ChucK.

In C in T has interesting scope for real-time performance by ensembles such as the

Princeton Laptop Orchestra (PLOrk) [146, 127]), although a few challenges exist. As-

suming a reasonably sized ensemble in which each player controls one instrument, it

would be useful to have more than the current four instrument options. This can be

overcome by asking players to “create their own instruments” by extracting and normal-

izing interesting TAPESTREA templates, and allowing ample preparation time for this

step. A second challenge is to synchronize the scripts globally across many machines if

needed; while the current version lacks this functionality, it is possible to implement in

ChucK. Thirdly, the current performance interface relies on GUI manipulations and thus

is not particularly exciting for an audience to watch. It may benefit from other modes of

interaction. In its present state, however, In C in T serves as a working prototype of an

alternate way to create music with TAPESTREA.
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4.4 Pedagogical Applications

The combination of the interactive auditory and visual interfaces in TAPESTREA also

make it a pedagogical tool for demonstrating fundamental concepts in digital signal pro-

cessing for sound. Hearing a sound while observing its spectrogram or changing frame-

by-frame spectrum enables a direct understanding of the mapping between perceived

sound and abstract frequency representations. Further, the options to modify the FFT

size and analysis window size in the analysis face allow a hands-on exploration of the

effects of these changes on the short-time Fourier transform, as seen in the spectrogram

display. Effects of these changed settings can be even further traced to changes in the

resulting sinusoidal separation.

TAPESTREA is particularly amenable to introducing the notions of sinusoids and

harmonicity. These can most clearly be explained through the group face, although the

analysis face and synthesis face also provide some support. On performing sinusoidal

analysis in the analysis face, the detected sinusoidal tracks are superimposed on the

spectrogram display, while the bottom-left pane shows the changing frame-by-frame

spectrum of the synthesized tracks with clearly visible peaks that can be described as

sinusoids at specific frequencies. Observing an extracted sinusoidal template in the

group face allows more interactive exploration. For example, tracks can be selected

and synthesized individually for a firmer understanding of how they map to sound. In

addition, groups of harmonically related or unrelated tracks can be synthesized together,

offering real-time interaction with additive synthesis. The results of particular effects

on one or more tracks is also easily studied, including frequency scaling, shifting and

quantization, temporal changes, vibrato, gain scaling at particular regions of a track,

and point-by-point time and frequency modifications to a single track. The automatic
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harmonic selection especially supports investigating the application of different effects to

different harmonic groups.

TAPESTREA also provides easy access to spectral modeling synthesis (SMS). In a

few seconds, one can analyze a short sound segment and listen to the original segment,

its sinusoidal parts and its stochastic residue. It is helpful to use both synthetic and

real-world examples to demonstrate SMS. A clearly synthetic example of a generated

sine wave over shaped noise helps define the distinction between sinusoids and noise,

and provides a clean separation. Applying the same separation techniques to a more

realistic sound scene then presents an idea of how sinusoidal and noisy components

combine to form real-world auditory environments. They synthesis face can augment this

understanding by allowing the creation of new environments by combining well-defined

components of existing ones.

A particular advantage of using the analysis face is the ability to interactively exper-

iment on analysis parameters for each type of analysis. Analyzing a selection repeat-

edly with different parameters provides a good idea of how each parameter affects the

analysis. For sinusoidal analysis, for instance, it is clear that increasing the number of

tracks captures more of the original sound, increasing the magnitude threshold makes

the analysis more selective, and increasing the frequency sensitivity in matching tracks

generally results in smoother tracks. When performing transient analysis with an enve-

lope follower filter, changing the attack, decay, or other parameters changes the envelope

superimposed on the waveform display. Extracting raw templates with a visually adjusted

rolloff parameter also provides interactive audio feedback.

While the synthesis face often plays a supporting role in pedagogical applications,

it can also be used to demonstrate computer music concepts. A loop of a sinusoidal

template can provide a quick but richly varying example of granular synthesis. Further,
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experimenting with the parameters of any particular template can lead to a better un-

derstanding of the underlying synthesis algorithm. Given that ChucK has already been

used as a successful pedagogical tool [160], instruction of ChucK can be combined with

writing ChucK scores for TAPESTREA, for an even more diverse learning experience.

Thus, TAPESTREA is applicable not only to sound designers and composers, but also to

instructors and students of computer music and digital signal processing.
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Chapter 5

Conclusions and Future Work

TAPESTREA facilitates the re-use of existing sounds to create new sound, with explicit

control over which elements to re-use and how to re-use each element. It achieves

this with a combination of analysis, transformation and synthesis techniques, a set of

user interfaces for each phase of processing, and a unifying paradigm that links all

the components and stages into one ready-to-use package. Section 5.1 summarizes the

contributions embedded in the design and creation of this system. Section 5.2 describes

avenues for future research. Section 5.3 presents brief closing remarks and marks the

conclusion of the conclusion.

5.1 Contributions

Re-composition typically begins with extracting templates from points of interest in

an existing sound. TAPESTREA enables template extraction through analysis techniques

such as sinusoidal modeling, transient detection, and FFT filtering (see Chapter 3, Sec-

tion 3.2). The parametric nature of these techniques permits greater control in extracting
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specific aspects of the original sound, leaving subjective decisions such as the distinction

between perceived “foreground” and “background” elements to the user. This enhances

flexibility in selecting exactly what to re-use.

Upon template extraction, TAPESTREA supports transforming templates indepen-

dently on multiple levels. Each template is represented separately according to the

analysis technique used in extracting it (see Chapter 3, Section 3.3). This allows in-

dependent re-synthesis of each template according to its type, along with “template-

level” transformations suited to the template type. Such transformations include time-

and frequency-scaling of event templates and randomness alterations to background tem-

plates. In addition, “representation-level” transformations to sinusoidal templates take

place in the group face (see Chapter 3, Section 3.3.1); these allow independent trans-

formation of sub-template components such as sinusoidal tracks and individual history

points in these tracks. The ability to transform a template independently of its sonic

surroundings facilitates re-composition by turning each template into a building block to

re-use freely.

In the synthesis stage, TAPESTREA facilitates placing templates together, varying

key parameters in real-time (see Chapter 3, Section 3.4). Key parameters include

template-level transformations that are applied during re-synthesis. In addition, spe-

cialized synthesis templates such as loops, timelines and mixed bags (see Chapter 3,

Sections 3.4.4 to 3.4.6) support combining multiple templates or parametrically repeating

one or more templates. Together, these transformation and synthesis tools offer freedom

in how to re-use the selected templates, and enable the creation of a range of textures,

scenes and compositions.

TAPESTREA also offers a set of graphical interfaces to facilitate these process-

ing stages and techniques. An interface exists for each processing phase (see Chap-
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ter 3, Sections 3.2.4, 3.3.1 and 3.4.10); thus, the GUI helps bring together many of

the TAPESTREA system components (see Figure 3.14). The GUI also serves to make

TAPESTREA highly interactive in every processing phase, complementing the paramet-

ric algorithms used. Together, these facilitate iterative analysis, composition by explo-

ration, and pedagogical applications (see Chapter 4, Section 4.4).

In addition to the graphical interfaces, TAPESTREA includes the option of powerful

scripted control over synthesis (see Chapter 3, Section 3.4.8). Scripts in the ChucK

audio programming language [158] enable precise control over synthesis parameters in

terms of both parameter values and time. They also offer functionality not available in

the GUI alone, such as simultaneous changes to multiple parameters, and an interface for

controlling synthesis in real-time from external input devices via MIDI, OSC and HID

messages. Thus, scripting aids composition in many ways (see Chapter 4, Section 4.3).

Combining the above aspects, TAPESTREA contributes the integration of differ-

ent techniques and interfaces into one flexible tool, creating a new sound design

paradigm. This “re-composition” paradigm entails selectively extracting, transforming,

and combining elements from existing sounds in highly flexible ways. It reflects musique

concrète, but may produce sounds that lie anywhere on the “found” to “unrecognizable”

continuum. Further, the bundling of analysis and synthesis into one framework makes

TAPESTREA more powerful than the sum of its parts. Analysis aids synthesis; analyzing

a sound to obtain independent templates leads to freer template transformations and re-

combination, and thus more selective and flexible synthesis. Synthesis, in turn, aids

analysis; re-synthesizing an extracted template in different ways provides feedback on

how well the template captures the desired sound, perhaps leading to a repeated analysis

with more fine-tuned parameters. The ideal analysis algorithm and parameters may then

reveal something about the captured sound.
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Contributions to background generation and synthesis include a more efficient and

improved wavelet tree algorithm for background synthesis (see Chapter 3, Section 3.4.3).

TAPESTREA offers a real-time version of the original wavelet tree learning algorithm

for sound texture synthesis [46]. This is achieved by optionally performing learning on a

subset of the wavelet tree instead of at all the available levels. Modifications also include

options to increase randomness at the first level of learning. Further, the GUI offers real-

time, interactive control over the original and additional wavelet tree learning parameters.

Wavelet tree learning is also applied to filling in transient holes during analysis

(see Chapter 3, Section 3.2.2). When removing a foreground transient event to obtain

a background din, merely attenuating the samples of the transient or replacing them

with silence does not yield a satisfactory background sound. Wavelet tree learning [46],

however, can synthesize a replacement background texture similar to the din surrounding

the removed transient event.

The search for suitable background generation techniques also led to user studies to

determine the best (perceptual) background synthesis method and parameters from

a given set of options (see Chapter 4, Section 4.2). Though not exhaustive, the two-

phased, web-based study may easily be adapted for future experiments comparing sound

synthesis or compression techniques. Results from the set of methods and parameters

studied in this case suggested that the most effective technique over a range of source

sounds was also the cheapest, a randomized, fast overlap-add method for sound texture

synthesis [63, 64]. An option to parametrically synthesize backgrounds via random

overlap-adding was therefore added to the synthesis framework of TAPESTREA.
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5.2 Future Work

TAPESTREA motivates many paths for future research, related to augmenting and ex-

tending the system, the interface, and the techniques used. Some of these are described

below.

Scripting as a user interface: The current synthesis interface includes a visual GUI

and a textual and logical scripting element. While these provide powerful control over

the synthesis, it is interesting to further develop scripting as a user interface. This in-

cludes novel ways to integrate the GUI and scripting for the user, and to allow seamless

commuting between the two interfaces, making TAPESTREA more accessible to users

with different cognitive styles [48]. It also entails taking full advantage of the unique

strengths of each interface, and using them to cover the weaknesses of the other. Scripts,

for example, facilitate the precise recording of particular sequences of parameter mod-

ifications; however, the process of obtaining optimal parameters by repeatedly editing

the script is painstaking. The GUI, on the other hand, allows real-time, interactive

modification of individual parameters, but no way to record their changing values. Hence,

the ability to automatically log parameter changes from the GUI into a readable and re-

usable ChucK script would prove helpful. ChucK also offers multi-level access to many

audio processing tools not directly available in TAPESTREA, including user-written

audio effects. The current system allows TAPESTREA to receive audio samples from

ChucK, but does not provide a way for TAPESTREA to send synthesized audio samples

to ChucK. Adding such a functionality at both the template and audio bus levels would

allow users to transform and synthesize templates in TAPESTREA and access the synthe-

sized samples in ChucK, and thus apply any desired audio processing algorithms to the

synthesized sound via ChucK. ChucK may then send the processed samples to the audio

output device or back to TAPESTREA to complete the loop. Finally, while scripting is
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currently available only for the synthesis face, scripting interfaces for analysis and track-

level transformations would make the TAPESTREA user interface truly dual. There

remain many other ways to further integrate the GUI and scripting in TAPESTREA;

fully developing scripting as a user interface includes investigating all these possibilities

and retaining those that ultimately make the system more accessible and versatile. The

process of investigation will also shed some insights on user interface design.

An intelligent template database: The current version of TAPESTREA takes a step

toward a searchable template database, by optionally saving extracted templates as XML

files with source sound and analysis information (see Chapter 3, Section 3.3). However,

plenty of scope for further research in this area remains. An “intelligent” template

database is envisioned as one storing the existing template information as well as standard

and user-defined audio feature values, including time-varying information. One may

then retrieve templates by searching for any combination of selected feature values; in

this case, features may include standard audio features, user-defined features, analysis

parameters, meta-data or labels. This also motivates the sharing of both templates and

user-defined features on a single public database, so that all users have access to all the

options. Achieving this requires a simple, extensible framework through which users may

easily implement and add their own audio features, as well as an effective way to associate

each template with time-varying information regarding a dynamically changing feature

set. The question of a suitable user interface to such a database also arises. Further, the

association of templates with audio feature values raises psychoacoustically interesting

questions such as: When are two templates “different” rather than merely transformed

versions of the same template? Which transformations change a template to the extent of

being considered “different”? Which audio features can be associated with the template

itself rather than with a transformed version of it? Answers to these questions may well
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be interdependent, and can be sought through a series of user studies. An intelligent

template database can both facilitate such studies and be informed by their results.

Machine learning and automation: TAPESTREA is designed on the principle of

user interaction rather than automation. Extracting a template, for instance, is an entirely

interactive process. This gives the user freedom to capture the desired parts of a sound

without being limited to extracting only what is perceived as a single source by machines

or even humans. However, automation may play a role in enhancing the interactive ex-

perience. For instance, machine learning on long-term usage data may lead to automatic

suggestions of analysis techniques and parameters for a given sound. The suggestions

may be based on a particular user’s analysis patterns or on more global data on the best

ways to extract templates from sounds according to various audio features. The existence

of a public database of extracted templates, with source sound, analysis parameters and

audio features, would facilitate the collection of such global data. Suggestions could then

be presented according to existing usage patterns, such as “Templates extracted from

this (or similar) sound file(s) have typically used these analysis techniques with these

parameters.” While not compelled to apply the suggested settings, the user may find them

a helpful starting point. Similar suggestions on track-level modifications may help make

the extracted templates cleaner or more in the “style” of the particular user. Automatic

suggestions for synthesis may also be investigated.

Extensions to the group face: As the most recent face in TAPESTREA, the group

face has tremendous scope for further extension. Any analysis or transformation tech-

nique that benefits from a sinusoidal track representation or is especially suitable for sinu-

soidal templates may be appropriate for the group face. For example, formant analysis on

an extracted sinusoidal template might lead to more intelligent frequency transformations

of voiced sounds, in which the vowels remain the same even while the perceived pitch

changes. Another applicable area is the evaluation and augmenting of dissonance in
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a set of sinusoidal tracks [72]. A vocal sinusoidal template may also be modified by

adding sub-harmonics to increase the perceived roughness of the voice [87] or reducing

sub-harmonics and smoothing pitch transitions to increase the perceived sweetness [55].

Similarly, higher harmonics might be interactively added to a template to increase “mu-

sicality”, as suggested in user feedback (see Chapter 4, Section 4.1). Another aspect of

enhancing the group face is to consider applying some of its transformations immediately

before re-synthesis instead of permanently changing the selected track’s representation.

This especially applies to vibrato, for instance. A user may wish to apply vibrato only

to selected tracks rather than the entire template, thus making vibrato inappropriate as a

template-level transformation. However, updating the tracks’ internal representation to

reflect the vibrato causes the vibrato frequency to change if the template is later time-

stretched in the synthesis face. Thus, it would make sense to associate vibrato with

individual tracks, yet to apply it only during re-synthesis. This calls for an intermediate

level of transformations that do not alter the internal representation of a track, but also

do not apply to the entire template. Future work on the group face will ideally combine

this intermediate transformation level with additional algorithms and interface elements

to support the above and other analysis and transformation ideas.

Further ways to interactively separate two simultaneous voices or events: While

the analysis phase in TAPESTREA succeeds partly because of its interactive nature,

it still does not yield ideal results when the template to be extracted coincides with

another event in both time and frequency. In the case of two overlapping sinusoidal

events, a user may partially accomplish further separation through the group face by

manually selecting which tracks to associate with each event. However, the process takes

time and does not allow energy in a single track to be fractionally distributed across

both events. Existing work on automatic source separation of overlapping events [78,

163] takes into account the possible distribution of a single track or frequency across
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multiple sources, but may have additional assumptions such as stereo format or the

presence of musical instrument sounds. It is worth investigating how to leverage the

interactive nature of TAPESTREA to better achieve a clean separation of simultaneous

overlapping events. Possibilities include allowing a user to specify how much of a

sinusoidal peak to extract, either through an absolute threshold or as a fraction of the

total energy, and then retaining the remaining energy in the residue after sinusoidal

analysis. It may also help the user to specify, in addition to a frequency range for the

sinusoidal analysis, a fundamental frequency whose harmonics receive priority in the

sinusoidal track extraction. These additional parameters may vary according to context;

a peak energy retention parameter, for instance, may depend on the specific harmonic

represented by the peak and on the spectra of the surrounding audio frames. Hence, it is

essential to also offer an interface that effectively presents the relevant information and

facilitates the interactive specification of the additional separation parameters.

Sound texture synthesis: An ongoing topic ingrained in TAPESTREA is sound

texture synthesis, especially as it pertains to the continuous generation of perceptually

convincing background audio. The user studies comparing background audio synthe-

sis methods (see Chapter 4, Section 4.2) offer some preliminary insight into qualities

that make synthesized background audio perceptually convincing, for different types of

source sounds. This information, perhaps combined with results from further user studies

dedicated to better understanding these qualities, may guide the automated evaluation

of synthesized textures, as well as leading to improved texture synthesis algorithms. It

is also of interest to further study algorithms for real-time concatenative and granular

sound texture synthesis, especially through the development of meaningful and effective

distance metrics for segment selection.
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5.3 Coda

TAPESTREA offers a prototype of the re-composition paradigm, providing evidence

that computers enable the manipulation and re-use of existing sounds in novel, flexible

and interesting ways. Of course, the software is ultimately a tool embodying a paradigm;

the power of action and application lies with the human user. By making new options

available to humans, TAPESTREA aims to support new insights and creativity in music,

computer science, and the intersection of the two. As in any research, many possibilities

remain to be discovered and pursued.
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